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Abstract The approach to control traffic flows in intelligent transportation systems
is proposed. The algorithm is based on optimization of the transportation system
functioning criterionwhich is speed (or time) ofmovement. The system is represented
as a graph. The control consists of changing the traffic flows rate on individual
sections of the system (graph edges), for example, by regulating the operation of
traffic lights, and changing the capacity of sections, for example, by using reverse
lanes.
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Optimization · Control · Graphs

1 Introduction

Regional transportation systems have a significant impact on social and economic
development of the region. Therefore, the issues of modernizing transportation
systems are always relevant. The upgrade may involve powerful infrastructure
changes [cf. 1]: construction of new roads, transport hubs, development of new
modes of transport, etc. These activities require significant financial costs and a long
time to implement them.

Effective control of existing transportation infrastructure is another area of devel-
opment of transportation systems, and, as a rule, the cost of implementing such
measures is much lower, since no significant infrastructure changes are required.
The duration of their implementation is also shorter. But such events have a limited
scale of positive effects.
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The relevance and possibilities of effective control of transportation systems have
increased with the development of information and telecommunications technolo-
gies [2]. The intellectualization of transportation systems is developing all over the
world [3], and various technologies are being used. But all of them are based on
collecting information about the current state of transportation systems and fore-
casts of the future state [4]. This information may include [5]: geo-information
data (road and road network diagram, transport nodes, terrain, buildings, traffic
control equipment, traffic flow diagram), traffic flow characteristics (speed, flow
rate, density), information about meteorological characteristics of the environment
(relative humidity, air temperature, pressure, precipitation), and others. The distinc-
tive features of each intelligent transportation system are the ways in which such data
is collected, processed, and used in control decisions [6]. Almost all transportation
systems use graph structures to describe the road scheme, which is a universal tool
in this case allowing to solve optimization problems [7]. The vertices of the graph
can describe the transport nodes corresponding to, for example, the intersection of
roads. And the edges describe the roads themselves.

2 Controlling Traffic Flows

2.1 Graph-Structural Approach to Modelling
of Transportation Systems

Each vertex of the graph can be compared with a vector value that describes its
various characteristics, such as the presence/absence of a traffic light or its signal,
the incoming traffic flow rate, capacity, the value of carbon dioxide emissions, etc.
For each edge of the graph, we can alsomatch its own vector value e(i, j) = [xi ; x j ] =(
e(i, j)
1 , e(i, j)

2 , ..., e(i, j)
m

)
, appropriate, for example, for traffic capacity, traffic flow rate,

etc. In general, these characteristics are not constant and can change over time. It is
also assumed that some of these characteristics can be controlled. For example, by
adjusting traffic lights, it is possible to change the capacity of nodes, and by switching
reverse roads, it is possible to change the capacity of roads and, as a result, the flow
rate of incoming traffic at transport nodes [cf. 8]. The most common graph-structural
object, modelling the traffic flows, is the transportation network [9, 10]. The main
tasks include the equilibrium distribution in the transportation network [11, 12] and
the search for the maximum flow [13, 14]. Control in an intelligent transportation
system consists of setting conditions that optimize certain characteristics [15] of
the transportation system state. In this case, these characteristics act as optimality
criteria. There aremany types of optimality criteria [16]: traffic safety, environmental
impact, etc. But one of the main things is the speed (time) of movement. One of the
possible values that characterizes this criterion is
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k(e(k)) = λ(x (i))

μ(e(k))
, (1)

where λ(x (i)) is the flow rate entering the vertex i, which is the beginning of the edge
k, and μ(e(k)) is the capacity of the edge k. If the value of this criterion is less than
1, the movement is free and the speed is limited by permission signs. The criterion
for the entire transportation system can be defined as follows

K1 = min
m∑

k=1

c(e(k)), (2)

where

c(e(k)) =
{
1, k1(e

(k)) > 1;
0, k1(e

(k)) ≤ 1.
(3)

Thus, the optimal situation is one in which the flow rate of incoming traffic does
not exceed their capacity on as many edges corresponding to roads as possible. Let
us consider the problem of choosing optimal controls for a transportation system,
defined as a graph, and characterized by criterion (2). Let the graph have two param-
eters for each vertex i: x (i)

1 is the flow rate of the incoming streams and x (i)
2 is the

maximum capacity, and each edge also contains two parameters e(i, j)
1 : e(i, j)

1 is the
flow rate of the incoming streams and e(i, j)

2 is the maximum capacity. Let us assume
that different traffic light control modes can be used as control actions, which change
x (i)
2 and reverse road switching, which change e(i, j)

2 .
Parameters set for graph vertices and edges are related. Figure 1 shows possible

variants of the transport node scheme.
For the option (a) in Fig. 1 the link has the following form

α1e
(i,iout1)
1 + α2e

(i,iout2)
1 + · · · + αne

(i,ioutn)
1 = min(e(iin ,i)

1 , x (i)
2 ), (4)

where α1, α2, …, αn are weight coefficients that characterize the separation of
traffic flows along different edges that exit from the same node.

For the option (b) in Fig. 1 the link has the following form

e(i,iout )
1 = min(e(iin1,i)

1 + e(iin2,i)
1 + ... + e(iinm ,i)

1 , x (i)
2 ). (5)

For the option (c) in Fig. 1 the link has the following form

α1e
(i,iout1)
1 + α2e

(i,iout2)
1 + · · · + αne

(i,ioutn)
1

= min(e(iin1,i)
1 + e(iin2,i)

1 + ... + e(iinm ,i)
1 , x (i)

2 )
. (6)
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a) b)

c)

Fig. 1 Schemes of transport vertexes: a one input—several outputs, b several inputs—one output,
c several inputs—several outputs

However, it should be kept in mind that for the option (a), if e(iin ,i)
1 > x (i)

2 , changes
the maximum capacity of the edge e(iin ,i) as follows e(iin ,i)

2 = x (i)
2 . For options (b)

and (c): if e(iin1,i)
1 + e(iin2,i)

1 +· · ·+ e(iinm ,i)
1 > x (i)

2 , the maximum capacity of the edges
changes e(iin1,i), e(iin2,i),…, e(iinm ,i) as follows e(iin1,i)

2 = β1x
(i)
2 , e(iin2,i)

2 = β2x
(i)
2 ,…,

e(iinm ,i)
2 = βmx

(i)
2 , where β1, β2, …, βm are weight coefficients that characterize the

share of transport vertex capacity allocated to the corresponding incoming edge.
In order to account for the capacity of only edges, each vertex x (i) of the highway

graph can be split into two vertexes—x (i)
in and x (i)

out , at the same time setting a new edge
e(iin;iout ) = (x (i)

in ; x (i)
out ). Then all incoming edges in the vertex x (i) will be included

in x (i)
in , while the outgoing ones will come from x (i)

out . The vertex capacity of x (i),
divided into two, will become the capacity of the edge e(iin;iout ) = (x (i)

in ; x (i)
out ). If

there are vertices x ( j), such that the graph has edges e(i, j) and e( j,i), then the edge
e(iout ;iin) = (x (i)

out ; x (i)
in ) is also added.

2.2 Approach to the Redistribution of Traffic Flows
in Transportation System

Control by adjusting the operating modes of traffic lights and switching reverse
roads leads to changes in the capacity of individual graph edges. The total capacity
of adjacent edges remains constant:

∑
j∈Xe

(i, j)
2 + ∑

j∈Xe
( j,i)
2 = const , where X is

the vertex set of the graph.
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Let us set the matrix of maximum edge capacities for a graph

E2 =

⎡
⎢⎢⎣

e(1,1)
2 e(1,2)

2 ... e(1,n)
2

e(2,1)
2 e(2,2)

2 ... e(2,n)
2

... ... ... ...

e(n,1)
2 e(n,2)

2 ... e(n,n)
2

⎤
⎥⎥⎦ (7)

and the matrix of traffic flow rate

E1 =

⎡
⎢⎢⎣

e(1,1)
1 e(1,2)

1 ... e(1,n)
1

e(2,1)
1 e(2,2)

1 ... e(2,n)
1

... ... ... ...

e(n,1)
1 e(n,2)

1 ... e(n,n)
1

⎤
⎥⎥⎦. (8)

Let us compose the vector U of dimension n with elements presented as∑
j∈X e( j,i)

1 − ∑
j∈X e(i, j)

2 (difference between the sum of elements of the column i
of the matrix (8) and the column i of the matrix (7)). The positive value of element
means that the intensity of movement along the edges of the vertex i is higher than
the capacity of the edges exiting it. The negative value indicates that there is a reserve
of capacity of the edges emanating from the vertex i.

Next for each element of the resulting vector, we perform the following actions.
If Ui > 0, we choose all the edges e(i, j), such as Uj < 0. Then the overall ability to
increase the capacity of the node i will be

∑
j∈X j

∣∣Uj

∣∣, where Xj is the set of vertices

x ( j), adjacent the vertex x (i).
For selected edges, according to the control capabilities, we increase the capacity

as follows:

e(i, j)
2new = e(i, j)

2 +
∣∣Uj

∣∣
∑

j∈X j

∣∣Uj

∣∣ min[|Ui |,
∑
j∈X j

∣∣Uj

∣∣]. (9)

This method is used to unload congested areas without loading them. The direct
adjustment of the operating modes of the traffic light and reverse motion at the
specified capacity capabilities is carried out according to the specialized algorithms
[17–19]. The recalculation procedure (9) can also be repeated, if one considers the
range of capacity not only of adjacent vertices, but also of vertices to which one can
construct a route limited to a certain number of edges.

2.3 Numerical Example

Let us consider the example of traffic flow management in the transport network
presented in Fig. 2.
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Fig. 2 Transportation
network graph

The structure of the graph corresponds to the road sections in Lipetsk The lateral
orientation of the edges in Fig. 1 corresponds to two opposite edges. Arrow signs
stand for the the edge traffic flow respectively. The label above refers to an edge
from left to right, the label at the bottom—from right to left. The label on the left
refers to an edge with a direction from the top to the bottom, and the label on the
right refers to the direction from the bottom to the top. In addition, the capacity of
the vertices x (2) = [25; 30; 8; 32; 30; 15; 14; 20; 20] is specified. It corresponds
to the total possibilities of the intersection determined by the given vertex when
organizing movement in all possible directions. In this case, the redistribution of the
total capacity of the vertices in all directions can be considered as a test to check its
effectiveness. One of the most common ways to reach this is to adjust traffic lights.

To connect this section of roads to the entire urban transportation system is ensured
by the formation of additional incoming traffic at vertices 1, 2, 7, 9 and the capacity
of those leaving the transportation network at the same points. This can be taken into
account by putting an extra vertex to the graph, as shown in Fig. 3.

In fact, the new vertex 0 is the analogue of the source and run-off in the classical
transportation network. To implement the proposed flow control algorithm, a number
of changes must be made to the graph: (1) each vertex having multiple inputs and
multiple outputs from the same vertices (see option c) in Fig. 1), must be split into
as many vertices as there are exits. The resulting vertices have one exit and contain
all inputs except the input from the vertex where the exit is going. This is necessary
to ensure that the flow from the input vertex is not redistributed to the vertex itself;
(2) to transfer the capacity from vertices to edges, each vertex must be split into two.
The first will include all edges. One exit with the capacity of the shared vertex will
be directed to the second. The other one will have all the edges coming out. The
example of this partition for the first vertex is shown in Fig. 4.

Vertex 1 was split into three: 1.0, 1.2 and 1.4. The second character in the number
defines the vertex with which the output edge is connected. In turn, each of the three
vertices obtained was split into two to transfer the capacity from the vertex to the
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Fig. 3 Modified transportation network graph

Fig. 4 Partition of vertex 1

edges. The total capacity of the edges [1.0; 1.0*], [1.2; 1.2*] and [1.4; 1.4*] is equal
to the capacity of vertex 1. The edge distribution is determined by the current traffic
light setting. In the initial conditions of the task, let’s assume that the capacity is
proportional to the weight of the output edge among all exits, for example,

e(1.0,1.0∗)
2 = x (1)

2 · e(1,0)
2

e(1,0)
2 + e(1,2)

2 + e(1,4)
2

= 25 · 6

6 + 15 + 15
= 4, 17.

Severed edge intensity values, e.g., [0; 1.2] and [0; 1.4], are determined by the
weighting factors that characterize the division of the traffic across the different
edges leaving the same vertex. Under the conditions of the problem, let the weights
be proportional to the weight of the output edge among all exits, for example,
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Fig. 5 Capacity matrix fragment

e(0,1.2)
1 = e(0,1)

1 · e(1,2)
2

e(1,2)
2 + e(1,4)

2

= 6 · 15

15 + 15
= 3.

In the end, capacity and flow rate matrices are determined for a graph (Fig. 3) of
size [52 × 52]. Figures 5 and 6 show the fragments of the obtained matrices.

The value of the vector U is calculated from the obtained matrices as follows:
U = [0.; 0.97619;−1.70238;−0.27381;−1.83333;−6.28571;

− 4.85714; 0.943182;−5.51136; 0.568182; 2.18182;−1.875;
2.18182; 0.;−1.88661; 1.67443; 1.55385; 1.65833;−2.82947;
− 0.6; 0.685714;−0.771429;−4.13228;−1.00529;−3.07937;
− 2.78307; 0.407407;−1.85185;−0.0740741; 0.518519; 2.33333;
− 1.33333;−1.33333;−3.;−0.833333;−0.7;−3.46667; 3.83333;
− 2.7; 5.86667;−0.272727; 0.974026; 0.298701;−1.5;
0.428571;−0.928571;−1.01099;−1.7033;−6.28571;
3.52448;−2.94872; 6.42424

]]. The

value of the criterion obtained is
∑52

k=1 c(e
(k)) = 18.

Among the many positive elements selected are those whose capacity can be
modified. These elements are [2.5; 4.3; 4.5; 4.7; 6.5; 8.7; 8.9]. So for the elements
2.5 and 8.7 there are no edges e(2.5, j) and e(4.8, j), such as Uj < 0, and their capacity
cannot be increased. Among the remaining edges the edge i is selected, for which
the maximum value is

∑
j∈X j

∣∣Uj

∣∣−Ui , where Xj is the set of vertices x ( j), adjacent

the vertex x (i), with negative values of Uj. Such a vertex is 8.9. So we recalculate
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Fig. 6 Traffic flow rate matrix fragment

the new edge capacity with formula (9):

e(8.9,8.9∗)
2new = e(8.9,8.9∗)

2 +
∣∣Uj

∣∣
∑

j∈X j

∣∣Uj

∣∣ min[|U8.9|,
∑
j∈X j

∣∣Uj

∣∣]

= 7.272727 + 0.298701 = 7.571428

.

That is the edge capacity must be increased by 0.298701. Increase in capacity
in the example presented can only be achieved by redistributing the total capacity
of the vertex between its outgoing edges (traffic lights regulation). In this case, the
limit on the value of the total capacity of the vertex should be respected. In our case
e(8.5,8.5∗)
2new +e(8.7,8.7∗)

2new +e(8.9,8.9∗)
2new = const. The edge e(8.5,8.5∗)

2 has the capacity reserve
of 0.772727.

As a result, the following capability modifications are made:

e(8.9,8.9∗)
2new = 7.272727 + 0.298701 = 7.571428,

e(8.5,8.5∗)
2new = 7.272727 − 0.298701 = 6.974026.
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We get the value of the criterion
∑52

k=1 c(e
(k)) = 17. and repeat this procedure

with new capacity and intensity matrices as long as the criterion is reduced. In the
example given, the value of the criterion can be reduced to 14.

3 Conclusion

Thus, the traffic control algorithm in Intelligent Transportation Systems is presented
in this chapter. The intelligent transportation system is expected to collect and analyze
real-time traffic information. This information is used by the traffic control algorithm.
The algorithm is based on optimization of the performance criterion of the transporta-
tion system—speed (time) of movement. In the above example, using the algorithm
it is possible to reconfigure traffic lights modes in such a way that the total number of
congestion sections decreases from 18 to 14. In case of optimizing not only current
state of the system but also taking into account the future possible states the presented
approach could be extended to time-dependent graphs described in [20].
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