Chapter 22 Beneficial Role of Plant Growth-Promoting Rhizobacteria in Bioremediation of Heavy Metal(loid)-Contaminated Agricultural Fields

Krishnendu Pramanik **D**[,](https://orcid.org/0000-0002-2102-8809) Sandipan Banerjee **D**, Debosmita Mukherjee **D**, Kunal Kumar Saha (D[,](https://orcid.org/0000-0001-7507-0837) Tushar Kanti Maiti (D, and Narayan Chandra Mandal **D**

Abstract The synergy of plants and microbes is one of the most interesting parts of holobiont research that yet have to be unwrapped before we can understand its implications in agriculture. Environmental stresses on plant ecology have further added to our curiosity in this context. Microorganisms are key players in benefitting plant health. This chapter mainly covers heavy metal and metalloid (HM)-induced phytotoxicity in different crops. We will be describing the role of soil-dwelling plant growth-promoting rhizobacteria (PGPR) in the mitigation of HM-induced damages in plants. We will also consider more generally the influential role of these microbes in biotic stress tolerance and the agricultural adoption of PGPR-involved strategies to combat HMs, which will help us provide adequate food for the world's human population and the animals on which we depend for food, labor and companionship. Our starting point will be PGPR collected directly from the crop rhizosphere and associated with the lessening of HM content in crops, but excluding those intracellular endophytic microbes and those involved in PGPR-assisted phytoremediation. The principal rationale for these research efforts is to reduce the consumer's health risks that are directly associated with the mobilisation or immobilisation of HMs inside plant cells. These microbes are possibly the best candidates for bioremediation because of their resilience and ability to withstand high HM levels, their mediation of the limiting effects that recalcitrant metals exert upon plant's health, our successes of collaboration with the plants and microbes for biocontrol activities and microbial phytostimulation. This elaborative study covers the effect of 10 HMs (viz. Arsenic,

© Springer Nature Switzerland AG 2021

K. Pramanik $(\boxtimes) \cdot S$. Banerjee \cdot D. Mukherjee \cdot K. K. Saha \cdot N. C. Mandal (\boxtimes) Mycology and Plant Pathology Laboratory, Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India e-mail: [kpbu.microbio@gmail.com;](mailto:kpbu.microbio@gmail.com) narayanchandra.mandal@visva-bharati.ac.in

T. K. Maiti

Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal, India

C. J. Hurst (ed.), Microbes: The Foundation Stone of the Biosphere, Advances in Environmental Microbiology 8, [https://doi.org/10.1007/978-3-030-63512-1_22](https://doi.org/10.1007/978-3-030-63512-1_22#DOI)

Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Mercury, Nickel and Zinc) on crops and the HM-resistant PGPR discovered since 20 years. In addition, a general account of fundamental principles behind bacterial heavy metal resistance has been elaborated. Hence, this chapter will be of great interest especially to environmental microbiologists.

22.1 Introduction

The global food crisis is one of the discernible situations that necessitate substantial attention. Due to high population growth (especially in China and India, the top two populated countries in the world) with a proportionate decrease in cultivable land, this catastrophe is becoming more acute daily. Apart from natural sources, several unplanned anthropogenic activities are known to generate an additional burden that jeopardises the environment and its ecosystem, contaminating its different components including soil and groundwater (Sharma and Archana [2016](#page-51-0); Liu and Ma [2020\)](#page-48-0). Heavy metal(loid)s (HMs) are one of the recalcitrant contaminants in agricultural fields that degrade the soil quality affecting the growth and crop yield, causing severe to chronic phytotoxicity. This might be due in part to the selection pressure that HMs impose on the soil-dwelling microbiome involved in phytostimulation and maintaining soil-biogeochemical cycling. However, certain microorganisms with their unequivocal properties combat HMs, developing an array of active or passive resistance mechanisms to survive in such a harsh environment (Chen et al. [2016;](#page-45-0) Tiwari and Lata [2018;](#page-52-0) Kotoky et al. [2019](#page-48-1)). There are successful candidates among them that have been found to colonise the soil area around the rhizosphere and rhizoplane (root surface) in response to enriched soil nutrients including the attractants released as root exudates from host plants. Host root exudates provide nutrients and act as signaling molecules to the colonisers to establish effective plant-microbe interactions. These exudates take the foremost part in controlling the diversity and composition of plant-associated soil microbial communities (Steinauer et al. [2016](#page-52-1)).

Plant growth-promoting rhizobacteria (PGPR) are group of free-living rhizobacterial communities that competitively colonise around the root surfaces stimulating plant growth by secreting a variety of phytostimulating substances and preventing some causes of host's diseases in a sustainable manner (Kloepper [1978\)](#page-48-2). Rhizobacterial plant growth-promoting (PGP) traits include 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, phosphate solubilisation, indole-3 acetic acid (IAA) production, nitrogen fixation, siderophore production and many more. PGPR also protect plants from invading phytopathogens by secreting antibiotics, antifungal compounds, hydrocyanic acid (HCN), chitinase, etc. The PGPR strains with remarkable HM-withstanding property assist their immobile host to develop HM-tolerance for their combined survival in their contaminated habitat. These microbes are known as HM-resistant PGPR (HMR-PGPR). For several years, these PGPR strains have been isolated from the metal-contaminated rhizosphere of different crops including vegetables (Mitra et al. [2018a](#page-49-0), [b](#page-49-1); Pramanik et al. [2017](#page-50-0), [2018a](#page-50-1), [b](#page-50-2); Khanna et al. [2019\)](#page-48-3).

So, to ensure food security, the development of environmental cleanup methods is urgently needed to accomplish the reclamation of contaminated agricultural lands. Unlike the issue of organic pollutants, which sometimes seemed easier to resolve, mitigation of heavy metal contamination has been proving to be one of the more difficult tasks ever undertaken. Organic contaminants can be degraded. The metal pollutants are instead non-degradable in nature, and these contaminants can only be transformed into less toxic forms or removed by means that include accumulation and adsorption. Most of the conventional methods for remediation of heavy-metalcontaminated soil are physicochemical in nature which is expensive, ineffective, creates secondary pollutants and unsuitable for large areas (Quartacci et al. [2006](#page-50-3)). In this context, HM-resistant PGPR-induced bioremediation is one such approach which is inexpensive, effective, sustainable and ecofriendly. Unlike some non-PGPR microbial strains (Hu et al. [2007;](#page-47-0) Rehman et al. [2008;](#page-50-4) Muneer et al. [2009;](#page-49-2) Shakya et al. [2012;](#page-51-1) Liu et al. [2013](#page-48-4); Davolos and Pietrangeli [2013](#page-46-0)) isolated from contaminated soil and groundwater, HM-resistant PGPR play a dual role in heavy metal bioremediation as well as plant growth promotion. Some of the non-PGPR strains have also been proven promising as potent bioremediators.

This chapter encompasses heavy metal and metalloid resistant plant growthpromoting rhizobacteria (HMR-PGPR), which are a functionally defined group of microorganisms, discovered during the last two decades that have been found to improve the growth of different crops across the world under different levels of HMs contamination. It covers latest information on diverse HMR-PGPR that exhibited various degrees of HM-resistance, different levels of release of plant growthpromoting substances and different capacities to accelerate plant growth by reducing HM stress-induced morpho-biochemical changes in the affected plants. A brief account of how biotic stress tolerance is facilitated by plant growth-promoting bacteria (PGPB), general HM resistant mechanisms, signaling cascades and genetically modified PGPR are also presented and discussed. Furthermore, we will provide some conclusions about the major obstacles to the application in HMR-PGPR in the field and future prospects of these strains. We will also discuss the times and places where non-HM resistant PGPR, metal-resistant plant growthpromoting bacteria (PGPB) and rhizobia have been advocated. Overall, this chapter is a substantial collection of information on heterogeneous microbial communities (especially HMR-PGPR) interacting with diverse hosts working in different soil types for crop improvement in a sustainable manner.

22.2 Heavy Metal(loid)-Induced Phytotoxicity in Crop Plants

The incessant spread and increasing levels of HMs in agricultural soils have caused severe impairment of crops which not only results in reduced yield but also a serious toxic threat to the crop consumers. Plants, being immobile, are unable to escape from this stressful environment and uptake bioavailable non-essential HM cations into their plant cells along with essential soil nutrients. These HMs, upon surpassing certain threshold levels, impose severe cellular damages with various unusual morphological manifestations. The threshold level of HMs to induce phytotoxicity highly depends on plant species or even a particular cultivar. The uptake, translocation and cellular compartmentalisation of heavy metals may be governed by perhaps only one or just a few genes (Ernst [1996](#page-46-1)). Moreover, this also depends on the cationic forms of HMs. The observable external changes include reduction of seed germination, changes in root-shoot length and changes in root-shoot fresh and dry weight that ultimately decrease plant biomass (Table [22.1\)](#page-4-0). As the root is directly exposed to the soil HMs, the root is the first organ encountered by toxic HMs, and the toxic effects follow into the shoots and other aerial parts of the plants. Affected root growth results in the poor acquisition of essential nutrients, and thereby an insufficient supply of nutrients to the photosynthetic cells in the aerial parts. To date, the members of Poaceae are the most studied crops on which the phytotoxic effects of different HMs have been investigated (Fig. [22.1](#page-12-0)). The phytotoxic consequences of all the ten HMs (viz. arsenic, cadmium, chromium, cobalt, copper, lead, manganese, mercury, nickel and zinc) discussed here have been studied on Poaceae (Fig. [22.1\)](#page-12-0). After Poaceae, the HM-phytotoxicity studies have focused mainly on members of Fabaceae, Solanaceae and Brassicaceae, as predominant crops (Fig. [22.1](#page-12-0)). The lessstudied families in the context with HM phytotoxicity are Amaryllidaceae, Euphorbiaceae, Amaranthaceae, Rosaceae, Linaceae, Malvaceae, Asteraceae and Cucurbitaceae (Fig. [22.1](#page-12-0)).

Among HMs, arsenic (As) is considered as an analog of phosphate (P) that competes with P-transporters in the root plasma membrane (Meharg and Macnair [1992\)](#page-48-5). Although As-tolerance has been identified in a number of plant species (Meharg and Macnair [1992\)](#page-48-5), elevated As-level has been found to negatively affect rice, maize, black gram, soybean, mung bean, cucumber, sorghum, barley, mustard, broccoli, pea and Chinese cabbage (Table [22.1](#page-4-0)). Biochemical changes identified in these crops include a reduction in photosynthetic pigments (chlorophyll, carotenoids), increased accumulation of reactive oxygen species (ROS), membrane lipid peroxidation, inhibition of ATP formation, enhanced proline and protein content and increased abscisic acid (ABA) synthesis (Table [22.1](#page-4-0)). Furthermore, altered activities of various cellular enzymes including RuBisCO, amylase, protease, catalase, peroxidase and other antioxidant enzymes are evident (Stoeva et al. [2005](#page-52-2); Srivastava et al. [2017;](#page-52-3) Ghosh et al. [2018](#page-46-2); Dong et al. [2020](#page-46-3); Chauhan et al. [2020](#page-45-1)). Besides, As-mediated induction of cell death in root tips, proteomic alteration and disruption

HMs	Crop	Phytotoxic effects ^a	References
As	Oryza sativa (Rice)	· Reduced root-shoot length, biomass and root hair • Increased accumulation of ROS and MDA • Damaged cortical cells and cellular structure • Reduction in RuBisCO activity, pho- tosynthesis • Increased ABA synthesis and growth inhibition	Chauhan et al. (2020)
	Oryza sativa (Rice)	• Decreased rice biomass • Inhibition of root growth · Inhibition of RuBisCO and photosynthesis	Dong et al. (2020)
	Oryza sativa (Rice)	• Reduced seed germination · Decreased root-shoot elongation • Decreased amylase and protease activ- ity • Increased antioxidant enzymes, MDA and proline	Ghosh et al. (2018)
	Vigna mungo (Black gram)	· Catalase activity decreased • Increased amount of lipid peroxidation · Peroxidase increased tremendously · Superoxide dismutase increased • Ascorbate peroxidase also increased • Reduction of photosynthetic pigments	Srivastava et al. (2017)
	Glycine max (Soybean)	• Inhibition of leaf development • Cell death in root tips · Decreased root-shoot biomass · Reduction in chlorophyll content • Increased membrane lipid peroxidation	Armendariz et al. (2016)
	Oryza sativa (Rice)	• Inhibition of ATP formation • Lowered the yield of rice grain • Increased oxidative stress	Syu et al. (2015)
	Phaseolus radiatus (Mung bean), Cucumis sativus (Cucumber), Triticum aestivum (Wheat), Sorghum bicolor (Sor- ghum), Hordeum vulgare (Bar- $lev)$. Brassica campestris var. chinensis (Chinese cab- bage), Brassica oleracea (Broc- coli).	• Inhibition of seed germination • Decreased seedling growth	Yoon et al. (2015)

Table 22.1 Heavy metal(loid)-induced phytotoxicity in different crops

HMs	Crop	Phytotoxic effects ^a	References
	Brassica nigra (Mustard), Pisum sativum (Pea)		
	Oryza sativa (Rice)	• Stimulation of antioxidant enzymes • Increased accumulation of stress- responsive amino acids	Dave et al. (2013)
	Oryza sativa (Rice)	• Reduced seed germination • Stunted root-shoot growth • Inhibition of root formation at higher concentration	Shri et al. (2009)
	Zea mays (Maize)	• Proteomic alteration · Disruption of normal cellular function	Requejo and Tena (2006)
	Phaseolus vulgaris L. (Mung bean)	• Reduced growth, leaf gas exchange, water potential • Decreased protein and chlorophyll content • Root-shoot significantly reduced • Increased peroxidase activity and lipid peroxidation	Stoeva et al. (2005)
Cd	Pisum sativum (Pea)	· Reduced root-shoot length • Decreased fresh, dry weight, biomass • Increased proline, glycine betaine and soluble proteins, sugar content decreased • Chlorophyll 'a', 'b', carotenoid content decreased • Activities of antioxidant enzymes increased • Accumulation of phenols decreased	Sager et al. (2020)
	Oryza sativa (Rice)	• Reduced seed germination • Decreased root-shoot length • Decreased fresh and dry weight • Decreased amylase, total sugar, chlo- rophyll • Protease activity decreased • Increased total protein, antioxidant enzymes • Increased proline ad ethylene content	Mitra et al. (2018a)
	Oryza sativa (Rice)	• Reduced seed germination • Decreased root-shoot length • Decreased fresh and dry weight • Decreased amylase, total sugar, chlo- rophyll · Increased protease activity and total protein • Increased total protein, antioxidant enzymes • Increased proline ad ethylene content	Pramanik et al. (2018a)

Table 22.1 (continued)

Table 22.1 (continued)

HMs	Crop	Phytotoxic effects ^a	References
	Lycopersicon esculentum (Tomato)	· Decreased root-shoot growth • Decreased chlorophyll content in leaves • Enhancement of antioxidant enzyme activities, malondialdehyde formation, H_2O_2 content.	Cho and Park (2000)
Mn	Triticum aestivum (Wheat)	• Inhibited the uptake of other elements • Affected antioxidant enzymes	Faria et al. (2020)
	Glycine max (Soybean)	• Reduced $CO2$ assimilation rate, sto- matal conductance · Increased antioxidant enzymes in roots • Calcium travelled dramatically from the healthy to necrotic tissue under high Mn	Santos et al. (2017)
	Vigna unguiculata (Cowpea)	· Formation of brown spots in sensitive cultivars • Induction of callose formation and an enhanced release into the apoplast of phenols, peroxidases and other stress- related proteins \bullet Proteins related to $CO2$ fixation, stabilisation of the Mn cluster of the photosystem II, pathogenesis-response reactions were affected	Führs et al. (2008)
Ni	Solanum lycopersicum (Tomato)	• Inhibition of growth, biomass, impair- ment of photosynthesis, photosystem function, mineral homeostasis, root activity and osmotic balance • Increased ROS production in leaves and roots of tomato seedlings as com- pared with control plants	Jahan et al. (2020)
	Oryza sativa (Rice)	• Reduced the growth and yield of rice plants compared to the plants grown in normal soil without Ni stress • Reduced nutrient (NPK) content in rice straw and grain	Nazir et al. (2016)
	Zea mays (Maize)	• Seedling mortality at high Ni concen- tration • Inhibition of seedling growth and development • Leaves exhibited chlorosis and yellow spotting · Decreased the amount of soluble sugars in leaves	Nie et al. (2015)
	Vigna cylindrica (Catjang) V. mungo (Black gram) V. radiata (mung bean)	• Reduction in seed germination, fresh biomass • Drastic decline was observed for the formation of nodules and chlorophyll a and b contents	Ishtiaq and Mahmood (2012)

Table 22.1 (continued)

HMs	Crop	Phytotoxic effects ^a	References
	Cicer arietinum (Chickpea)	· Decline in the seed germination, bio- mass and plant growth • Suppression of root nodules, roots and lateral roots • Reduction in chlorophyll content and development of chlorosis	Khan and Khan (2010)
	Hordeum vulgare (Barley)	· Decreased dry weight, which was more prominent in roots than in shoots • Interveinal chlorosis of younger leaves, necrosis of mature leaves and browning of the root system	Rahman et al. (2005)
Pb	Lactuca sativa (Lettuce)	• Decrease in shoot growth • Disturbed lettuce growth and net photosynthesis	Xiong et al. (2018)
	Vicia faba (Faba bean)	· Induction of lipid peroxidation and $H2O2$ generation in leaves · Overproduction of ROS resulting in bimolecular damage • Decreased chlorophyll content	Shahid et al. (2014)
	Glycine max (Soybean)	• Inhibitory effect on carbohydrate con- tent · Starch was more reduced as compared to other carbohydrates • Carotenoids were less affected as compared to total chlorophyll • Reduction of protein content	Imtiyaz et al. (2014)
	Triticum aestivum (Wheat)	· Increased lipid peroxidation, enhanced soluble protein concentrations, accumu- lation of proline in roots · Enhanced Esterase activity \bullet Inhibition of α -amylase activity • Antioxidant enzymes activities	Lamhamdi et al. (2011)
	Solanum lycopersicum (Tomato)	· Decreased calcium, magnesium, potassium phosphorus concentration in shoot and leafs • Decreased Na content in roots, shoots and leafs • Reduction in chlorophyll biosynthesis • Decreased root, shoot and leaf water contents	Akinci et al. (2010)
	Allium sativum (Garlic)	• Antioxidant enzymes increased in roots and shoots • Root-shoot growth were significantly inhibited	Liu et al. (2009)
	Phaseolus vulgaris (Mung bean)	• Decreased root-shoot length • Reduced dry weight and chlorophyll	Tripathi et al. (2005)
	Oryza sativa (Rice)	• Reduced chlorophyll in leaves, caro- tene, sugars, phenols, nonprotein	Chatterjee et al. (2004)

Table 22.1 (continued)

^aROS Reactive oxygen species, MDA Malondialdehyde, RuBisCO Ribulose-1,5-bisphosphate carboxylase/oxygenase, ABA Abscisic acid, SOD Superoxide dismutase, GR Glutathione reductase, CAT Catalase, APX Ascorbate peroxidase

of normal cellular function have also been identified (Requejo and Tena [2006;](#page-50-5) Armendariz et al. [2016\)](#page-44-0).

Likewise, phytotoxicity of other HMs reported almost parallel kinds of morphobiochemical dysfunctions (Table [22.1\)](#page-4-0). Studies of cadmium (Cd)-induced phytotoxicity have focused mainly on rice, wheat, tomato, potato, cucumber, pea, lettuce and mung bean (Table [22.1\)](#page-4-0). An upsurge of ethylene content in rice seedlings has been noticed in response to Cd stress (Mitra et al. [2018a;](#page-49-0) Pramanik et al. [2018a\)](#page-50-1) that is linked to increased accumulation of H_2O_2 , leading to cell apoptosis (Chmielewska-Bak et al. [2014\)](#page-45-9). Cobalt (Co), one of the naturally occurring HMs in the earth's crust, spreads through human activities as well, and that element is taken up by plants from the contaminated soil. However, information on Co-phytotoxicity is less available in the literature compared to As and Cd. Wheat, barley, oilseed rape, tomato and cauliflower have been studied so far to elucidate Co-induced phytotoxicity (Chatterjee and Chatterjee [2000,](#page-45-5) [2003](#page-45-4); Li et al. [2009](#page-48-6); Ozfidan-Konakci et al. [2020](#page-49-3)). Co was found to decrease plant growth, photosynthetic rate, water content, osmotic potential, stomatal conductance, transpiration rate and cause chlorosis that ultimately

Fig. 22.1 Families of studied agricultural crops affected by heavy metal(loid)s

manifested as decreased plant biomass (Table [22.1\)](#page-4-0). An exogenous application of CoCl2 was shown to decrease plant ethylene levels compared to controls (Pramanik et al. [2017,](#page-50-0) [2018a](#page-50-1)). The number of phytotoxicity studies on chromium (Cr), copper (Cu), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) on the more common crop plants is also impressive, with reporting of various morphobiochemical malfunctions in plants.

22.3 Role of Heavy Metal(loid) Resistant Plant Growth-Promoting Rhizobacteria in Crop Improvement

Soil, being the sink of nutrients for plants, is also the chief source of contaminants. The information summarised in Table [22.1](#page-4-0) provides an idea of observed intensification of heavy metal contamination and consequences of the major HM contaminants on some common crops. Plants have developed their own natural mechanisms to regulate the uptake, translocation and accumulation of HMs, which is known as natural phytoremediation. In reality, plants are not the only warriors that are exposed to and affected by soil HMs, and indeed there similarly exist some close neighbors like the rhizospheric microbial community that also have direct or indirect influences on plant growth. Phytoremediation is one of the safest, eco-friendly technologies and is often triggered by plant growth-promoting bacteria (PGPB) as a response to accelerated HM uptake and accumulation in the plant cells (Ullah et al. [2015\)](#page-52-8). This concept of designing and promoting bacteria-assisted phytoremediation

Fig. 22.2 Bacteria-assisted phytoremediation and PGPR-mediated bioremediation of heavy metal (loid)s

technology is not intended to be applied only in the case of agricultural crops that are consumed by humans, cattle or other animals to reduce the high chances of HM toxicity in the food chain (Fig. [22.2\)](#page-13-0). Rather, the preferred usage of PGPR-mediated bioremediation would be in such cases where some specific group of PGPR reduce both the HM-induced phytotoxic effects and HM-uptake as well (Fig. [22.2](#page-13-0)). PGPR fall under a special group of fast-growing microorganisms which are a good instance of phytostimulating biological agents of natural occurrence. Since many years, soil microbiologists and environmentalists have been devoting their tireless efforts to isolate PGPR strains with greater efficiency of bioremediation and plant growth promotion, and to apply their discoveries about HM-contaminated soil for the benefit of sustainable agriculture (Table [22.2\)](#page-14-0). Here, in this review, we will largely examine HM-resistant PGPR (involved in PGPR-mediated bioremediation) publications from the last two decades and present their results in brief (Table [22.2](#page-14-0)). We have considered only those HM-resistant PGPR strains which were tested for their plant growth-promoting activities on selected crops, with those microbes having been applied as bioinoculants either in laboratory conditions or in the field. It is evident from Table [22.2](#page-14-0) that the phytotoxic effects mentioned in Table [22.1](#page-4-0) have been significantly reduced by the use of HM-resistant PGPR.

One of the most vital and key representations of this chapter is the documentation of culture media for the isolation of HM-resistant PGPR. Proteobacteria seem to have been the most commonly isolated group from all the stated culture media. Yeast extract mannitol (YEM) medium has been the most preferable isolation medium, followed by Davis Mingioli (DM) medium with Cd (Fig. [22.3](#page-27-0)). From a critical

Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued) Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued) Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued)

Table 22.2 (continued)

1-aminocyclopropane-1-carboxylic acid deaminase activity, N2 Nitrogen fixation, HCN Hydrocyanic acid production, Ammonia Ammonia production, ND Not N₂ Nitrogen fixation, HCN Hydrocyanic acid production, Ammonia Ammonia production, ND Not こここ morideou ana ohime hinamenin'i unahume 1-aminocyclopropane-1-carboxylic acid deaminase activity, o-accue acia, punci opino Drease Divas avuvity, inn illuur determined determined

Fig. 22.3 Medium used for isolation of heavy metal(loid)-resistant PGPR. (CDM Chemically defined medium, KBM King's B medium, TM+HM T-medium with HM, YEM+CD Yeast extract mannitol with Cd, NA Nutrient agar, TCS Tryptone casein soya, TYE Tryptone yeast extract, LB +MM Luria–Bertani minmal media, DM+CD Davis Mingioli with Cd, AM Ashby's mannitol, YEM Yeast extract mannitol, LB+CD Luria–Bertani with Cd, DFN+CR Dworkin and Foster nutrient with Cr, USA Urease screening agar)

Fig. 22.4 Diversity and distribution of heavy metal(loid)-resistant PGPR

analysis of the information presented in Table [22.2](#page-14-0), we find that the diversity of the HM-resistant PGPR community covers only three bacterial groups, i.e. proteobacteria, firmicutes and actinobacteria, and it is prominantly dominated by proteobacteria (Fig. [22.4](#page-27-1)). Furthermore, proteobacteria is the most abundant

Fig. 22.5 Diversity and abundance of heavy metal(loid)-resistant PGPR

Fig. 22.6 Plant growth-promoting traits in heavy metal(loid)-resistant PGPR

PGPR member responsible for resistance to all the studied heavy metal(oid)s. Actinobacteria exhibit their remediational property only against Cd. The firmicutes are a set of PGPR sensitive to As, Hg and Zn (Fig. [22.5](#page-28-0)). Additionally, among the PGPR members, all the documented phenomenal PGP traits are mainly portrayed by the proteobacterial representatives, and actinobacterial agents are accountable only for their IAA and ACC deaminase producing capabilities (Fig. [22.6\)](#page-28-1). Moreover, in case of firmicutes, they are the silent member in case of N_2 fixation, potassium solubilisation, ammonia and HCN production. However, the firmicutes have exhibited ACC activity, P-solubilisation, siderophore activity and IAA production (Fig. [22.6](#page-28-1)).

22.4 Genetically Modified Plant Growth-Promoting Rhizobacteria for Crop Enhancement

Natural components like the PGPR play an indispensable role in the advancement of sustainable agriculture and also serve as an imperishable treasure box for the environment. Considering the limitations of these natural bio-agents, the idea of using genetic modification approaches has attracted the attention of scientists with the goal of attaining greater desired efficiency. With the improvements achieved by genetically engineering PGPR, the heavy metal accumulating gene and the biocontrolling genes can be assembled to conduct enhanced bioremediation and potentially achieve biocontrol in the rhizospheric soil. In this context, for superior cadmium (Cd²⁺) bioaccumulation purpose, the phytochelatin synthase gene (PCS_{AT}) from Arabidopsis thaliana was introduced into Mesorhizobium huakuii strain B3 and then set up as a symbiosis with M. huakuii strain B3 and Astragalus sinicus, whereupon a desired activity was noted accordingly (Sriprang et al. [2003\)](#page-52-9). It was possible to carry out that project because the peptides like phytochelatins (PC) and metallothioneins (MT) exhibit high affinity towards a variety of heavy metals (Chaudhary and Shukla [2019](#page-45-13)). Furthermore, genetically transformed rhizobacterial strains demonstrated significant biocontrol potentiality over fungal phytopathogens (Sattiraju et al. [2019](#page-51-10)). In such cases, incorporation of a mini-Tn5 vector containing the complete operon for the biosynthesis of an antifungal metabolite phenazine- 1 carboxylic acid (PCA), within Pseudomonas fluorescens has been documented to accelerate the suppression of fungal diseases by the genetically engineered bacterial strain in comparison to the natural bacterial strain (Timms-Wilson et al. [2000\)](#page-52-10). Similar kinds of approaches were reported from several studies where genetically engineered PGPR strains showed enhanced PGP traits as well as biocontrol efficiency (Bloemberg and Lugtenberg [2001](#page-44-4)) and can be exemplified by the integration of Cry-toxin-encoding cry1Ac7 gene from Bacillus thuringiensis, chitinaseencoding chiA gene from Serratia marcescens and ACC deaminase-producing gene from Enterobacter cloacae into rhizobacterial strains like Pseudomonas sp. (Sattiraju et al. [2019](#page-51-10)). The relocation of sss gene from biocontrol strain P. fluorescens WCS365 to other P. fluorescens rhizobacterial strains was found to improve the competitive root colonising efficiency (Dekkers et al. [2000](#page-46-12)). Apart from the genetically modified PGPR, transgenic plants also display greater PGP traits, especially higher ACC deaminase activity and heavy metal accumulation (Zhuang et al. [2007](#page-54-2); Stearns et al. [2005](#page-52-11); Nie et al. [2002\)](#page-49-9). However, genetically modified PGPB are considered less effective in terms of their survival and proliferation as compared to non-transformed versions of the same organisms; and this decreased fitness may be due to overburden of metabolic load by the expression of foreign genes (Glick [2020](#page-46-13)).

22.5 Plant Growth-Promoting Rhizobacteria in Biotic Stress Tolerance

The rhizosphere is a phenomenal environment where the plant-beneficial microbes especially the bacteria renowned as rhizobacteria, colonise and steadily perform several plant growth-promoting activities by means of facilitating nutrient availability and assimilation, and help conquer over disease-instigating microbes (Pérez-Montaño et al. [2014](#page-50-11)). The plant growth-promoting activities of these beneficial rhizobacteria include nitrogen fixation, solubilisation of minerals like phosphorus, production of ACC-deaminase and other plant growth regulators like auxins, gibberellins and cytokinins. Biocontrol properties are one of the key characteristic features of these PGPR (Kloepper [1978](#page-48-2)). Their antagonistic potentiality against phytopathogens is mainly categorised according to activities like the production of siderophores, lytic enzymes, antibiotics, bacteriocins, volatile organic compounds (VOC), hydrogen cyanide (HCN) and their ability to obstruct bacterial quorum sensing (Aloo et al. [2019](#page-44-5); Pérez-Montaño et al. [2014;](#page-50-11) Kumar and Dubey [2012\)](#page-48-16). Apart from these capabilities, PGPR also induce systemic resistance (ISR) proficiency which can help suppress pathogenicity that other microbes exhibit against host plants, and PGPR do as well improve the sustainability of agricultural systems (Beneduzi et al. [2012](#page-44-6)). Among the reported PGPR genera, Pseudomonas sp., Bacillus sp. and Streptomyces sp. are the warhorses in the avenue of biocontrol of phytopathogens (Table [22.3](#page-31-0); Arrebola et al. [2019\)](#page-44-7). Moreover, the rhizobacterial phyla involved in this job are dominated by proteobacteria, firmicutes and actinobacteria (Fig. [22.7](#page-34-0)). The bio-protecting efficiency of PGPR are not only restricted to countering the pathogenic microbial members of the rhizosphere community like fungi and bacteria, but are also promising as agents against metazoan phytopathogens like insects and nematodes (Table [22.3;](#page-31-0) Fig. [22.8](#page-34-1)).

The biological control of phytopathogens by the PGPR group of organisms does in many ways strengthen both plant and soil health. Rhizobacterial secretion of siderophores is among the mechanisms exhibited by the PGPR members that are antagonistic against other microoganisms. The actions of siderophores are based upon their chelation of iron which inhibits iron-dependent nutritional or energetic processes in those other microbes (Chaiharn et al. [2009](#page-45-14)). In iron-limiting soil environments, the binding of iron by siderophore-producing rhizobacteria can also boost up the availability of iron to those plants that are able to accumulate siderophore-bound iron (Tank et al. [2012\)](#page-52-12). Apart from iron chelation, siderophores can bind with other heavy metals like Cd, Cu, Pb, Al and Zn which in turn diminishes the stress to plants that may be imposed by those other heavy metals

PGPR	Phylum	Pathogen	Reference
Fungi as phytopathogen			
Streptomyces sp.	Actinobacteria	Fusarium oxysporum <i>Fusarium</i> sp. Gaeumannomyces sp. Phomopsis sp. Ulocladium sp. Rhizoctonia solani Colletotrichum sp.	Suarez Moreno et al. (2019)
Pseudomonas aeruginosa	Proteobacteria	Rhizopus microsporus Fusarium oxysporum Aspergillus niger Alternaria alternata Penicillium digitatum	Uzair et al. (2018)
Azotobacter sp. Pseudomonas sp.	Proteobacteria Proteobacteria	Helminthosporium sp. Fusarium sp.	Bjelić et al. (2018)
<i>Bacillus</i> sp.	Firmicutes	Fusarium culmorum F. oxysporum Monographella nivalis	Przemieniecki et al. (2018)
Bacillus subtilis	Firmicutes	Puccinia striiformis	Reiss and Jørgensen (2017)
Burkholderia cenocepacia Pseudomonas poae	Proteobacteria Proteobacteria	Alternaria alternata	Ghosh et al. (2016a)
Burkholderia tropica B. unamae B. cepacia	Proteobacteria Proteobacteria Proteobacteria	Alternaria alternata Rhizopus stolonifer Helminthosporium compactum	Ghosh et al. (2016b)
Pseudomonas fluorescens	Proteobacteria	Fusarium oxysporum	Selvaraj et al. (2014)
Bacillus subtilis	Firmicutes	Colletotrichum gloeosporioides	Ashwini and Srividya (2014)
Bacillus simplex B. subtilis	Firmicutes Firmicutes	Fusarium sp.	Schwartz et al. (2013)
Bacillus sp.	Firmicutes	Rhizoctonia solani	Selva Kumar et al. (2013)
Brevibacillus laterosporus	Firmicutes	Fusarium equiseti	Prasanna et al. (2013)
Pseudomonas chlororaphis	Proteobacteria	Fusarium oxysporum Rosellinia necatrix	Calderón et al. (2013)
Pseudomonas chlororaphis	Proteobacteria	Sclerotinia sclerotiorum Pythium aphanidermatum Macrophomina phaseolina Rhizoctonia solani Sclerotium rolfsii Fusarium oxysporum Alternaria solani Botryodiplodia theobromae	Kumar and Dubey (2012)

Table 22.3 Biocontrol activities of different PGPR

PGPR	Phylum	Pathogen	Reference
Rhizobium	Proteobacteria	Macrophomina phaseolina	Kumar (2012)
leguminosarum	Firmicutes	Fusarium oxysporum	
Bacillus subtilis	Proteobacteria	F. solani	
Pseudomonas sp.		Sclerotinia sclerotiorum	
		Rhizoctonia solani	
Bacillus antiquum	Firmicutes	Macrophomonia phaseolina	Gopalakrishnan et al. (2011)
Pseudomonas aeruginosa	Proteobacteria	Aspergillus niger Helminthosporium sp. Fusarium oxysporium	Hassanein et al. (2009)
Bacillus licheniformis	Firmicutes	Gibberella saubinetii Aspergillus niger	Xiao et al. (2009)
Rhizobium spp.	Proteobacteria	Fusarium oxysporum	Mazen et al. (2008)
Bacillus amyloliquefacines	Firmicutes	Fusarium oxysporum	Chen et al. (2007)
Rhizobium leguminosarum	Proteobacteria	Pythium spp.	Huang and Erickson (2007)
Pseudomonas	Proteobacteria	Pythium ultimum	Andersen et al.
fluorescens		Rhizoctonia solani	(2003)
Rhizobium sp.	Proteobacteria	Macrophomina phaseolina	Deshwal et al. (2003)
Myxococcus sp.	Proteobacteria	Cylindrocarpon sp. Fusarium oxysporum Phytophthora capsici Pythium ultimum Rhizoctonia sp. Sclerotinia minor Verticillium albo-atrum	Bull et al. (2002)
Streptomyces sp.	Actinobacteria	V. dahliae Pythium ultimum Fusarium oxysporum	Castillo et al. (2002)
Pseudomonas fluorescens	Proteobacteria	Fusarium oxysporum f.sp. ciceris	Rangeshwaran and Prasad (2000)
Pseudomonas fluorescens	Proteobacteria	Rhizoctonia solani	Ligon et al. (2000)
Bacteria as phytopathogen			
Pseudomonas	Proteobacteria	Ralstonia solanacearum	Mohammed
<i>stutzeri</i>	Proteobacteria		et al. (2020)
P. alcaligenes	Proteobacteria		
P. aeruginosa	Proteobacteria		
P. denitrificans	Proteobacteria		
P. syringae	Proteobacteria		
P. fluorescens			
Streptomyces sp.	Actinobacteria	Burkholderia glumae	Suarez Moreno et al. (2019)
Bacillus	Firmicutes	Ralstonia solanacearum	Etesami and
amyloliquefaciens			Alikhani (2017)

Table 22.3 (continued)

PGPR	Phylum	Pathogen	Reference
Nematode as phytopathogen			
Pseudomonas aeruginosa Burkholderia gladioli	Proteobacteria Proteobacteria	Meloidogyne incognita	Khanna et al. (2019)
Pseudomonas fluorescens Rhizobium leguminosarum	Proteobacteria Proteobacteria	Meloidogyne javanica	Tabatabaei and Saeedizadeh (2017)
Bacillus velezensis B. mojavensis	Firmicutes Firmicutes	Heterodera glycines	Xiang et al. (2017)
Bacillus tequilensis B. flexus	Firmicutes Firmicutes	Meloidogyne incognita	Tiwari et al. (2017)
Bacillus sp. Lysobacter sp.	Firmicutes Proteobacteria	Meloidogyne incognita	Zhou et al. (2016)
Pseudomonas fluorescens Bacillus Subtilis	Proteobacteria Firmicutes	Meloidogyne graminicola	Priya (2015)
Pseudomonas fluorescens	Proteobacteria	Helicotylenchus multicinctus	Selvaraj et al. (2014)
Pseudomonads putida P. fluorescens Serratia marcescens Bacillus amyloliquefaciens B. subtilis B. cereus	Proteobacteria Proteobacteria Proteobacteria Firmicutes Firmicutes Firmicutes	Meloidogyne incognita	Almaghrabi et al. (2013)
Insect (Pest) as phytopathogen			
Pseudomonas protegens	Proteobacteria	Galleria mellonella	Bensidhoum et al. (2016)

Table 22.3 (continued)

(Ahemad and Kibret [2014\)](#page-43-3). PGPR additionally produce various defensive lytic enzymes such as chitinase, glucanase, cellulase, protease, chitosanase, peroxidase, catalase, phenolic lyase, superoxide dismutase, etc. (Aloo et al. [2019\)](#page-44-5) which can act to protect plants from the pathogens. Pathogens responsible for several plant diseases are directly liable for plant growth inhibition and these are mainly fungi and insects (Banerjee and Mandal [2019\)](#page-44-13). The lytic enzymes like chitinase, chitosanase, glucanase and cellulases produced by PGPR act in a straight line biocontrol mechanism against the chitin and glucan cell wall components of those fungi and insects. Disease control management by the PGPR is additionally accomplished not only by means of antibiotics produced like zwittermicin, mycosubtilin, gramicidin S, polymyxin B, bacilysin, rhizocticins, etc. but also by bacteriocins (Saraf et al.

Fig. 22.7 Diversity and abundance of PGPR with biocontrol potentiality

Fig. 22.8 Biocontrol proficiency of various PGPR against different phytopathogens

[2014;](#page-51-14) Haggag [2008;](#page-47-10) Leclere et al. [2005;](#page-48-20) Chin-A-Woeng et al. [2003](#page-45-17)). Enhancement of plant defense mechanisms by a combination of ISR plus biocontrol ability was also validated by studies of several PGPR that produce VOCs (Shafi et al. [2017;](#page-51-15) Cao et al. [2011](#page-44-16)). The occurrence of such dual potentiality can be exemplified by VOCs like 2, 3-butanediol, isoprene and acetoin that are produced by different PGPR (Lee et al. [2015](#page-48-21); Ryu et al. [2004](#page-50-17)). Plant pathogens can also be controlled by many PGPR via HCN production, a recognised VOC which disrupts the electron transport system that leads to blocking the energy supply of the pathogens (Patel and Minocheherhomji [2018\)](#page-49-11).

In recent years, biocontrol has become an emerging and promising technological approach in developing sustainability in agriculture with optimism both for its comprehensive potentiality against various types of plant pathogens as well as its being an efficient alternative resource over chemical fungicides and pesticides. In addition, several PGPR have been documented for their ability to remediate heavy metals in agricultural fields. There are indeed many published reports on heavy metal remediation by the PGPR (Table [22.2\)](#page-14-0); although reporting on the combinational effect of HM bioremediation cum biocontrol activity by PGPR is very scarce. Two such examples of combined activity by PGPR are *Alcaligenes* sp. and *Pseudomonas* aeruginosa, where nickel and manganese bioremediations were testified along with aptitude for biocontrol of phytopathogens like Aspergillus niger, A. flavus, Fusarium oxysporum, Alternaria alternata, Cercospora arachichola and Metarhizium anisopliae (Sayyed and Patel [2011\)](#page-51-16). There is some justifiable optimism that the application of this kind of heavy metal remediating cum biocontrolling PGPR in agricultural fields will replace the usage of chemical pesticides and fertilisers, which in turn will decrease the bioaccumulation of hazardous chemicals into agronomic plants and passage of these contaminants further up the biological chain, leading to a more environmentally safe and affordable agriculture in terms of human welfare. However, the effective biocontrol property of PGPR against invading phytopathogens is subject to the considerations of soil type, host plant species and influential holobiont microbial community in the rhizosphere (Subrahmanyam et al. [2020\)](#page-52-17).

22.6 Mechanism of Heavy Metal(loid) Resistance by Plant Growth-Promoting Rhizobacteria

Plant-associated HM-resistant PGPR are more profoundly present in heavy-metalcontaminated soil, as evidenced by many earlier publications (Pandey et al. [2010;](#page-49-12) Chen et al. [2016](#page-45-0); Treesubsuntorn et al. [2018;](#page-52-18) Pramanik et al. [2017,](#page-50-0) [2018a](#page-50-1), [b](#page-50-2); Mitra et al. [2018a](#page-49-0), [b](#page-49-1)). Such PGPR strains are known to develop resistance mechanisms in adaptation to the different HM ions present in their habitats (Table [22.4](#page-36-0)). The various known survival strategies which metal tolerant species have used to combat HMs are summarised in Table [22.4](#page-36-0). These include active transport of metal ions (efflux/ influx) by the presence of a group of specific membrane bound, cytoplasmic or periplasmic metal transporters (Nies [2003](#page-49-13); Yang et al. [2019](#page-53-16)), production of biodegradable metal chelators like siderophores (Sinha and Mukherjee [2008;](#page-51-17) Dimkpa et al. [2008](#page-46-19)), intracellular bioaccumulation and biosorption (Chen et al. [2016;](#page-45-0) Treesubsuntorn et al. [2018;](#page-52-18) Pramanik et al. [2017](#page-50-0), [2018a](#page-50-1), [b](#page-50-2); Mitra et al. [2018a](#page-49-0), [b;](#page-49-1) Pal and Sengupta [2019](#page-49-14)), enzymatic oxidation and reduction metal transformations (Chatterjee et al. [2009](#page-45-18); Pramanik et al. [2016](#page-50-18); Ghosh et al. [2018](#page-46-2); Kamaruzzaman et al. [2019](#page-47-11)), extracellular complexation by the secretion of extracellular polysaccharides (EPSs) (Gupta and Diwan [2017](#page-47-12)), etc. (Table [22.4](#page-36-0)). The genetic determinants of

	Heavy		
PGPR and Rhizobia	metal resistance	Proposed mechanism	References
Serratia marcescens S ₂ I ₇	Cd(II)	Detoxification of Cd(II) by glutathione S-transferase (GST) mechanism and $czcD$ gene-mediated protein	Kotoky et al. (2019)
Lysinibacillus varians KUBM17 Pseudomonas putida KUBM18	$Cd(II)$, Pb (II)	Bioaccumulation of Cd(II) and Pb(II)	Pal and Sengupta (2019)
Caulobacter flavus $RHGG3$ ^T	$Co(II)$, Cd (II) , $Zn(II)$	Export of Co(II), Cd(II), Zn(II) metal cations from both cytoplasm and peri- plasmic space to outside of cell by efflux transporter protein encoded by several czc genes such as czcA, czcB, czcC and czcD. Another gene znt found to be involved in Cd(II) resistance encoded a Cd(II) exporting ATPase	Yang et al. (2019)
	Cu(II)	Cu(II) resistance by several efflux proteins encoded by different cop genes and also by multicopper oxidase protein encoded by <i>cueO</i> . Another gene system <i>cut</i> also found to be involved in Cu(II) resistance	
Bacillus cereus, Bacillus aerius, Exiguobacterium profundum	Cr(VI)	Reduction of Cr(VI) into Cr(III) and by adsorption of Cr(VI)	Kamaruzzaman et al. (2019)
Curtobacterium sp. GX 31, Sphingomonas sp. GX_{15}	Cd(II)	Biosorption of Cd(II) by physical entrapment, ion exchange and com- plexation on cell surface	Li et al. (2018)
Cupriavidus necator GX 5	Cd(II)	Bioaccumulation of Cd(II)	
Enterobacter sp. S2	Cd(II)	Bioaccumulation of Cd(II)	Mitra et al. (2018a)
Klebsiella michiganensis S8	Cd(II)	Cytosolic accumulation of cadmium	Mitra et al. (2018b)
Enterobacter <i>aerogenes</i> K6	Cd(II)	Bioaccumulation of Cd(II)	Pramanik et al. (2018a)
Bacillus aryabhattai MCC3374	As (III) and As (V)	Bioaccumulation, Biotransformation of $As(V)$ to $As(III)$ by arsenate reductase respectively	Ghosh et al. (2018)
Klebsiella pneumoniae K5	Cd(II)	Bioaccumulation of Cd^{2+} ions and biosorption of Cd^{2+} by negatively charged EPS	Pramanik et al. (2017)
Cellulosimicrobium funkei AR6	Cr(VI)	Bioreduction of Cr(VI) to Cr(III) with- out extracellular donor, immobilisation	Karthik et al. (2017a, b)

Table 22.4 General mechanism of heavy metal(loid)-resistant PGPR including rhizobia

	Heavy metal		
PGPR and Rhizobia	resistance	Proposed mechanism	References
		of Cr(III) by cell wall, intracellular accumulation of Cr(III)	
Enterobacter sp. P36	Cu(II)	Cu(II) accumulation in bacterial cell	Sharaff et al. (2017)
Bacillus aryabhattai AB211	Cu(II)	Resitance by Cu(II) ion efflux system P-type ATPase (CopA), and copper resistance CopC/CopD protein	Bhattacharyya et al. (2017)
	$Co(II)$, Zn (II) , $Cd(II)$	Resitance due to Co(II)/Zn(II)/Cd (II) resistance protein CzcD and heavy metal resistance transcription regula- tory protein HmrR. $Zn(II)$ resistance also conferred by Sensor protein of zinc sigma-54-dependent two-component system and its regula- tory protein	
	$As(V)$ and As(III)	Arsenic resistance by arsenic efflux protein pump and arsenate reductase enzyme	
Enterobacter sp. EG16.	Cd(II)	Intracellular accumulation, biosorption by physical adsorption, ion-exchange and complexation on cell surface	Chen et al. (2016)
Bacillus flexus $ASO-6$	As (III) and As (V)	Oxidation of As(III) by arsenite oxidase encoded by <i>aoxB</i> gene	Das et al. (2016)
Rhizobium sp. ND2	Cr(VI)	Reduction of Cr(VI) to Cr(III), adsorp- tion of chromium on cell wall	Karthik et al. (2016)
Raoultella sp. CrS2	Cr(VI)	Cr (VI) reduction by constitutive chro- mate reductase enzyme	Pramanik et al. (2016)
Bradyrhizobium japonicum	$Pb(II)$, Ni (II)	Biosorption of Pb(II) and Ni(II) metal ions by amino, nitro functional groups present on bacterial cell wall	Seneviratne et al. (2016)
	Cu(II)	Biosorption of Cu(II) metal ions by alcoholic and amino functional groups present on bacterial cell wall	
Enterobacter cloacae HG 1 Klebsiella pneumoniae HG 3	Hg(II)	Mercury tolerance by EPS binding of mercury ions (hypothesised)	Gontia-Mishra et al. (2016)
Enterobacter ludwigii HG 2	Hg(II)	Mercury tolerance by mer operon (hypothesised)	
Bacillus muralisCA9 B. muralis CA16b Bacillus simplex CA15 B. simplex CA16a B. simplex CA22	Hg(II)	Reduction of Hg^{2+} into volatile Hg^{0} by cytoplasmic mercuric reductase encoded by merA gene	Calzada Urquiza et al. (2016)

Table 22.4 (continued)

	Heavy metal		
PGPR and Rhizobia	resistance	Proposed mechanism	References
Bradyrhizobium	As (III)	Bioaccumulation of As(III), reduction	Armendariz
japonicum E109	and As (V)	of $As(V)$ to $As(III)$ by arsenate reduc- tase encoded by <i>arsC</i> gene and efflux by As(III) efflux pump encoded by arsB gene, oxidation of As(III), increased production of biofilm (possibly associ- ated with resistance)	et al. (2015)
Azospirillum brasilense Az39		Bioaccumulation of As(III), reduction of $As(V)$ to $As(III)$ by arsenate reduc- tase encoded by $arsC$ gene and efflux by As(III) efflux pump encoded by arsB gene, increased production of biofilm (possibly associated with resistance) Higher resistance to arsenic due to presence of two extra genes arsH and Acr3 which encode NADPH:FMN oxide reductase and As(III) efflux pro- tein respectively	
Rhizobium sp. CCNWSX0481 SV20, Rhizobium leguminosarum bv. viciae SV 15, Pseudomonas sp. SV23, Enterobacter cloacae SV27	Cu(II)	Bioaccumulation of Cu(II)	Fatnassi et al. (2015)
Pseudomonas spp. Cronobacter spp. Bacillus spp.	Hg(II)	Conversion of methyl mercury into Hg ² ⁺ ions in cell and conversion of toxic Hg^{2+} into less toxic form Hg_2S	Rafique et al. (2015)
Mesorhizobium amorphae 186	Cu(II)	Efflux of Cu(II) metal ions from cyto- plasm to periplasmic space by P-type ATPase (CopA-6910), and CusAB detoxification of periplasm by exporting Cu(II) ions from periplasm to extracellular spaces	Hao et al. (2015)
Enterobacter cloacae AW1 Pseudomonas <i>fluorescens</i> AW2 Pseudomonas putida AW4 Pseudomonas poae AW ₅ Pseudomonas poae AW6	As (III) and As (V)	Bioaccumulation	Oller et al. (2013)

Table 22.4 (continued)

	Heavy metal		
PGPR and Rhizobia	resistance	Proposed mechanism	References
Pseudomonas aeruginosa OSG41	Cr(VI)	Bio-reduction of hexavalent chromium	Oves et al. (2013)
Rhizobium	Ni(II)	Metal adsorption/desorption	Wani and Khan
leguminosarum RL 9			(2013)
Pseudomonas aeruginosa WI-1	Pb(II)	Metallothionein (encoded by bmtA gene) mediated metal sequestration and intracellular bioaccumulation	Naik et al. (2011)
Sinorhizobium spp.	$Zn(II)$, Cd (II) , $Pb(II)$, Cu(II)	Adsorption of heavy metal ions on cell surface, intracellular accumulation of heavy metal ions	Zribi et al. (2011)
Ochrobactrum cytisi Azn 6.2	$Cd(II)$, As (II) , $Zn(II)$, Cu(II)	Biosorption/ Desorption by lipopolysaccharides of cell wall	Rodríguez- Llorente et al. (2010)
Bacillus spp., Achromobacter spp., Brevundimonas spp., Microbacterium spp., Ochrobactrum spp. Ensifer spp. Bosea spp. Sinorhizobium spp. Bordetella sp. Ancylobacter dichloromethanicum $As3-1b$ Georgenia ferrireducensAs5-12 Rhodococcus erythropolisAs5-4a	As (III) and As (V)	Reduction of As(V) into As(III) by arsenate reductase encoded by ArsC gene, efflux of As(III) by ArsB and ArsA genes which code for As(III) efflux pump and used proton motive force and AS(III) activated ATPase Another gene ACR3 homologous to ArsB also codes for As(III) efflux pro- tein in highly resistance strains Either one or both types of genes in combination confer resistance among these bacteria	Cavalca et al. (2010)
Mesorhizobium sp. RC1, Mesorhizobium sp. RC4	Cr(VI)	Reduction of Cr(VI)	Wani et al. (2009)
Cellulosimicrobium cellulans KUCr3	Cr(VI)	Reduction of Cr(VI)	Chatterjee et al. (2009)
Azotobacter chroococcum HKN-5 Bacillus megaterium $HKP-1$	$Pb(II)$, Cd (II)	Adsorption of Pb^{2+} and Cd^{2+} on cell wall	Wu et al. (2009)
Enterobacter asburiae PSI3	Cd(II)	Complexation of metal by extracellu- larly secreted organic acids	Kavita et al. (2008)
Rhizobium sp. RP5	$Zn(II)$, Ni (II)	Metal adsorption/desorption	Wani et al. (2008a)
Rhizobium leguminosarum RL 9	Zn(II)	Metal adsorption/desorption	Wani et al. (2008 _b)

Table 22.4 (continued)

	Heavy metal		
PGPR and Rhizobia	resistance	Proposed mechanism	References
Pseudomonas putida ARB86	Ni(II)	Absorption and accumulation of Ni in cells	Someya et al. (2007)
Bradyrhizobium sp. (vigna) RM8	$Zn(II)$, Ni (II)	Metal adsorption/desorption	Wani et al. (2007)
Brevibacillus brevis B1	Zn(II)	Bioaccumulation and Biosorption	Vivas et al. (2006)
Pseudomonas <i>aeruginosa</i> sp. NBRI 4014 mutants	Cr, Cd(II), Ni	Bioaccumulation and internal seques- tration by resistant enzymes	Gupta et al. (2004)
Azospirillum lipoferum137 Agrobacterium radiobacter10	Cd(II)	Accumulation of Cd	Belimov et al. (2004)
Azospirillum brasilense Sp245	Co(II)	Rapid adsorption of $Co2+$ on cell sur- face followed by rapid metabolic transformation	Kamney et al. (2004)
Pseudomonas putida PNI-MK25	Cu(II)	Efflux of $Cu(II)$ metal ions by P1-type ATPase (CueA)	Adaikkalam and Swarup (2002)
Serratia plymuthica $Br-10$	Cd(II)	Bioaccumulation	Carlot et al. (2002)

Table 22.4 (continued)

metal resistance can be localised either in chromosomal or extrachromosomal genetic elements.

Heavy metals most commonly exist in the form of cations which can form many unspecific complexes. Among all these, a few HM cations are important biological trace elements (such as Mn^{2+} , Zn^{2+} , Cu^{2+} , Ni^{2+} , Mo^{2+} , Co^{2+}) used in regulating several important biochemical reactions. The intracellular passage of different HMs is, in fact, governed by two opposite types of uptake systems. The first of these systems is constitutively expressed, fast, unspecific and uses a variety of substrates, while the second system is inducible, slow and highly specific for substrates (Nies [1999\)](#page-49-18). The main driving force for the first system is an electrochemical gradient across the plasma membrane, and for the second system it is the energy generated by ATP hydrolysis (Nies and Silver [1995\)](#page-49-19). The constitutive and unspecific nature of the first kind of system causes most of the HM-toxicity in bacteria as it continuously accumulates a heavy metal even if the cell already contains a high concentration of that same HM (Nies and Silver [1995](#page-49-19)). After a metal has been accumulated beyond threshold levels, HMs impart several toxic effects such as inhibition of enzyme actions due to the binding of Hg^{2+} , Cd^{2+} and Ag^{2+} to -SH groups, generation of oxidative stress and inhibition of the activity of sulphate and phosphate compounds by structurally related chromate and arsenate, respectively. Briefly, there are six widely known heavy metal resistance mechanisms in bacteria, they are: (1) exclusion of HMs by permeability barriers, (2) extracellular sequestration, (3) intracellular sequestration, (4) enzymatic detoxification of HMs, (5) active transport or efflux system of HMs and (6) reduction in HM sensitivity of cellular targets.

However, the details of many heavy metal resistance mechanisms used by PGPR are still to be fully explored, and we will have to unravel the genetic mysteries behind metal-PGPR interactions to effectively apply them for HM-bioremediation.

22.7 Constraints in the Application of Plant Growth-Promoting Rhizobacteria

Although the PGPR strains far discovered have proven promising in controlled laboratory conditions, their efficacy in reality is contingent on how they act in field conditions. During the last few decades, a number of PGPR strains have been discovered around the world but few reached the ultimate goal of having utility for farmers. In contrast to the laboratory, the reality of field work is one of non-optimal conditions that may or may not be favouarbale for the survival and proliferation of the PGPR strains (Glick [2020](#page-46-13)). The existence and growth of field-applied PGPR strains indeed depends on a vast range of adverse environmental factors that need to be overcome so that the microbes take part in assisting plant growth-promotion activities in contaminated soil (Fig. [22.9](#page-41-0)). It is not an easy task to achieve successful application of such PGPR strains even if they hold a bunch of potentially beneficial

Fig. 22.9 Factors affecting survival and proliferation of PGPR

traits for the crop plants. Apart from following government-enforced guidelines, one of the major constraints in field application is soil type and it directly influences the survival and growth of the microbial communities (Fig. [22.9](#page-41-0)). To introduce a genetically engineered orgainsm, we need to give special attention to the fact that government legislation varies from country-to-country. Soil parameters such as compaction, oxygen content, pH and temperature are also crucial in this respect because they can affect the functioning of the microbes. In contrast to wild type indigenous strains, the genetically modified organisms are often less adaptive perhaps as a consequence of burdensome metabolic demands due to the expression and perhaps overexpression of foreign DNA (Glick [2020\)](#page-46-13). In addition, PGPR strains often do not have equal abilities to compete with soil-borne phytopathogens and other antagonistic soil microbial communities, the PGPR strains sometimes do not have the capacities to tolerate a wide range of soil contaminants, and habituation to growing in nutrient-rich media under laboratory conditions may have resulted in functional loss of active genes that previously made the microbes suitable in contaminated rhizopshere environments (Glick [2020](#page-46-13); Fig. [22.9\)](#page-41-0).

22.8 Conclusion

Heavy metal(loid)-affected agricultural crops have benefitted for many years from the application of indigenous HM-resistant PGPR. Although there are a lot of constraints associated with the application of these microorganisms, their great diversity and natural abundance in contaminated soil offers a ray of hope as we explore their potential role in agriculture. Recent advancements in bioremediation strategies have given us cause for optimism. But, before field application, these PGPR should be verified for their degree of metal resistance, their level of plant growth-promoting traits, and obviously their ability to reduce HM-content in plant parts under controlled conditions. Henceforth, these PGPR are naturally dwelling microflora that should be isolated, enriched and applied for sustainable agriculture in HM-contaminated fields.

Contributing authors of this book chapter

Acknowledgements KP and SB are thankful for financial assistance from the University Grants Commission, India for UGC—Dr. D. S. Kothari Post-Doctoral Fellowship [No.F.4-2/2006 (BSR)/ BL/19-20/0072 dated October 21, 2019] and Department of Biotechnology, India for granting DBT Twinning Project [No. BT/PR25738/NER/95/1329/2017 dated December 24, 2018], respectively. DM acknowledges DST-PURSE program, Visva-Bharati for financial support.

References

- Aafi NE, Brhada F, Dary M et al (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediat 14(3):261–274
- Achouak W, Sutra L, Heulin T et al (2000) Pseudomonas brassicacearum sp. nov. and Pseudomonas thivervalensis sp. nov., two root-associated bacteria isolated from Brassica napus and Arabidopsis thaliana. Int J Syst Evol Micr 50(1):9–18
- Adaikkalam V, Swarup S (2002) Molecular characterization of an operon, cueAR, encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida. Microbiology 148:2857–2867
- Adediran GA, Ngwenya BT, Mosselmans JFW et al (2015) Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J Hazard 283:490–499
- Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20
- Akanbi-Gada MA, Ogunkunle CO, Vishwakarma V et al (2019) Phytotoxicity of nano-zinc oxide to tomato plant (Solanum lycopersicum L.): Zn uptake, stress enzymes response and influence on non-enzymatic antioxidants in fruits. Environ Technol Innov 14:100325
- Akinci IE, Akinci S, Yilmaz K (2010) Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr J Agric Res 5(6):416–423
- Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61
- Aloo BN, Makumba BA, Mbega ER (2019) The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39
- Andersen JB, Koch B, Nielsen TH et al (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:37-46
- Armendariz AL, Talano MA, Oller ALW et al (2015) Effect of arsenic on tolerance mechanisms of two plant growth-promoting bacteria used as biological inoculants. J Environ Sci 33:203–210
- Armendariz AL, Talano MA, Travaglia C et al (2016) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127
- Arrebola E, Tienda S, Vida C et al (2019) Fitness features involved in the biocontrol interaction of pseudomonas chlororaphis with host plants: the case study of PcPCL1606. Front Microbiol 10:719
- Ashwini N, Srividya S (2014) Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3. Biotech 4:127–136
- Banerjee S, Mandal NC (2019) Diversity of chitinase-producing bacteria and their possible role in plant pest control. In: Satyanarayana T, Das SK, Johri BN (eds) Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore, pp 457–491
- Belimov AA, Kunakova AM, Safronova VI et al (2004) Employment of rhizobacteria for the inoculation of barley plants cultivated in soil contaminated with lead and cadmium. Microbiology 73:99–106
- Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051
- Bensidhoum L, Nabti E, Tabli N et al (2016) Heavy metal tolerant *Pseudomonas protegens* isolates from agricultural well water in northeastern Algeria with plant growth promoting, insecticidal and antifungal activities. Eur J Soil Biol 75:38–46
- Bhattacharyya C, Bakshi U, Mallick I et al (2017) Genome-guided insights into the plant growth promotion capabilities of the physiologically versatile *Bacillus aryabhattai* strain AB211. Front Microbiol 8:411
- Bjelić D, Marinković J, Tintor B et al (2018) Antifungal and plant growth promoting activities of indigenous rhizobacteria isolated from maize (Zea mays L.) rhizosphere. Commun Soil Sci Plan 49:88–98
- Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350
- Bull CT, Shetty KG, Subbarao KV (2002) Interactions between myxobacteria, plant pathogenic fungi, and biocontrol agents. Plant Dis 86:889–896
- Calderón CE, Pérez-García A, de Vicente A et al (2013) The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Mol Plant Microbe In 26:554–565
- Calzada Urquiza C, Arvizu Hernández I, Cruz Medina JA et al (2016) Identification by MALDI-TOF mass spectrometry of mercury-resistant bacteria associated with the rhizosphere of an apple orchard. Geomicrobiol J 34:176–182
- Cao Q, Hu Q-H, Khan S et al (2007) Wheat phytotoxicity from arsenic and cadmium separately and together in solution culture and in a calcareous soil. J Hazard 148(1-2):377–382
- Cao Y, Zhang Z, Ling N et al (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fert Soils 47:495–506
- Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20
- Carrasco JA, Armario P, Pajuelo E et al (2005) Isolation and characterisation of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37(6):1131–1140
- Castillo UF, Strobel GA, Ford EJ et al (2002) Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 48:2675–2685
- Cavalca L, Zanchi R, Corsini A et al (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164
- Chaiharn M, Chunhaleuchanon S, Lumyong S (2009) Screening siderophore producing bacteria as potential biological control agent for fungal rice pathogens in Thailand. World J Microbiol Biot 25:1919–1928
- Chatterjee J, Chatterjee C (2000) Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ Pollut 109(1):69–74
- Chatterjee J, Chatterjee C (2003) Management of phytotoxicity of cobalt in tomato by chemical measures. Plant Sci 164(5):793–801
- Chatterjee C, Dube B, Sinha P et al (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plan 35(1-2):255–265
- Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836
- Chaudhary T, Shukla P (2019) Bioinoculants for bioremediation applications and disease resistance: innovative perspectives. Indian J Microbiol 59:129–136
- Chauhan R, Awasthi S, Indoliya Y et al (2020) Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.). J Hazard 390:122122
- Chen XH, Koumoutsi A, Scholz R et al (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014
- Chen Y, Chao Y, Li Y et al (2016) Survival strategies of the plant-associated bacterium Enterobacter sp. strain EG16 under cadmium stress. Appl Environ Microbiol 82:1734–1744
- Chidambaram A, Sundaramoorthy P, Murugan A et al (2009) Chromium induced cytotoxicity in blackgram (Vigna mungo L.). J Environ Health Sci Eng 6(1):17-22
- Chin-A-Woeng TF, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523
- Chmielewska-Bak J, Lefèvre I, Lutts S, Kulik A, Deckert J (2014) Effect of cobalt chloride on soybean seedlings subjected to cadmium stress. Acta Soc Bot Pol 83(3)
- Cho U-H, Park J-O (2000) Mercury-induced oxidative stress in tomato seedlings. Plant Sci 156 $(1):1-9$
- Chou T-S, Chao Y-Y, Huang W-D et al (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168(10):1021–1030
- Danish S, Kiran S, Fahad S et al (2019) Alleviation of chromium toxicity in maize by Fe fortification and chromium tolerant ACC deaminase producing plant growth promoting rhizobacteria. Ecotoxicol Environ Saf 185:109706
- Dary M, Chamber-Pérez M, Palomares A et al (2010) "In situ" phytostabilisation of heavy metal polluted soils using *Lupinus luteus* inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard 177(1-3):323–330
- Das S, Jean JS, Chou ML et al (2016) Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of *Oryza sativa* L.: implications for mitigation of arsenic contamination in paddies. J Hazard Mater 302:10–18
- Dave R, Tripathi RD, Dwivedi S et al (2013) Arsenate and arsenite exposure modulate antioxidants and amino acids in contrasting arsenic accumulating rice $Orrza$ sativa L.) genotypes. J Hazard Mater 262:1123–1131
- Davolos D, Pietrangeli B (2013) A molecular study on bacterial resistance to arsenic-toxicity in surface and underground waters of Latium (Italy). Ecotoxicol Environ Saf. 96:1–9
- Dekkers LC, Mulders IH, Phoelich CC et al (2000) The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type *Pseudomonas* spp. bacteria. Mol Plant Microbe Interact 13:1177–1183
- Deshwal VK, Pandey P, Kang SC et al (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164
- Dias MC, Monteiro C, Moutinho-Pereira J et al (2013) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35(4):1281–1289
- Dimkpa C, Svatoš A, Merten D, Büchel G, Kothe E (2008) Hydroxamate siderophores produced by streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol 54(3):163–172
- Dong Y, Gao M, Song Z et al (2020) Microplastic particles increase arsenic toxicity to rice seedlings. Environ Pollut 259:113892
- Eleftheriou EP, Michalopoulou VA, Adamakis I-DS (2015) Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption. Environ Sci Pollut Res 22(10):7590–7599
- Ernst WHO (1996) Phytotoxicity of heavy metals. In: Rodriguez-Barrueco C (ed) Fertilizers and environment. Developments in plant and soil sciences, vol 66. Springer, Dordrecht, pp 423–430
- Erturk FA, Agar G, Arslan E et al (2014) Determination of genomic instability and DNA methylation effects of Cr on maize (Zea mays L.) using RAPD and CRED-RA analysis. Acta Physiol Plant 36(6):1529–1537
- Etesami H, Alikhani HA (2017) Evaluation of gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryza sativa L.) pathogens. Eur J Plant Pathol 147:7–14
- Faria JM, Teixeira DM, Pinto AP et al (2020) Toxic levels of manganese in an acidic Cambisol alters antioxidant enzymes activity, element uptake and subcellular distribution in Triticum aestivum. Ecotoxicol Environ Saf 193:110355
- Fatnassi IC, Chiboub M, Saadani O et al (2015) Impact of dual inoculation with Rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. CR Biol 338 (4):241–254
- Führs H, Hartwig M, Molina LEB et al (2008) Early manganese-toxicity response in Vigna unguiculata L.–a proteomic and transcriptomic study. Proteomics 8(1):149–159
- Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growthpromoting rhizopseudomonad. Curr Microbiol 56(4):403–407
- Ghosh R, Barman S, Khatun J et al (2016a) Biological control of *Alternaria alternata* causing leaf spot disease of *Aloe vera* using two strains of rhizobacteria. Biol Control 97:102-108
- Ghosh R, Barman S, Mukherjee R et al (2016b) Role of phosphate solubilizing Burkholderia spp. for successful colonization and growth promotion of *Lycopodium cernuum* L.(Lycopodiaceae) in lateritic belt of Birbhum district of West Bengal, India. Microbiol Res 183:80–91
- Ghosh PK, Maiti TK, Pramanik K et al (2018) The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere 211:407–419
- Gill RA, Zang L, Ali B et al (2015) Chromium-induced physio-chemical and ultrastructural changes in four cultivars of Brassica napus L. Chemosphere 120:154–164
- Glick BR (2020) Issues regarding the use of PGPB. In: Beneficial plant-bacterial interactions. Springer, Cham
- Gontia-Mishra I, Sapre S, Sharma A et al (2016) Alleviation of mercury toxicity in wheat by the interaction of mercury-tolerant plant growth-promoting rhizobacteria. J Plant Growth Regul 35:1000–1012
- Gopalakrishnan S, Humayun P, Kiran BK et al (2011) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27:1313–1321
- Goupil P, Souguir D, Ferjani E et al (2009) Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J Plant Physiol 166(13):1446–1452
- Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375(1-2):205–214
- Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71
- Gupta A, Kumar M, Goel R (2004) Bioaccumulation properties of nickel-, cadmium-, and chromium-resistant mutants of Pseudomonas aeruginosa NBRI 4014 at alkaline pH. Biol Trace Elem Res 99:269–277
- Haggag WM (2008) Isolation of bioactive antibiotic peptides from Bacillus brevis and Bacillus polymyxa against Botrytis grey mould in strawberry. Arch Phytopathol Plant Prot 41:477–491
- Han H, Wang Q, He L-y et al (2018) Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria. J Hazard 353:280–289
- Hao X, Xie P, Zhu YG et al (2015) Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environ Sci Technol 49:2328–2340
- Hassanein WA, Awny NM, El-Mougith AA et al (2009) Characterization and antagonistic activities of metabolite produced by Pseudomonas aeruginosa Sha8. J Appl Sci Res 5:392–403
- Hu Q, Dou M, Qi H et al (2007) Detection, isolation, and identification of cadmium-resistant bacteria based on PCR-DGGE. J Environ. Sci. 19:1114–1119
- Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37
- Imtiyaz S, Agnihotri RK, Ganie SA et al (2014) Biochemical response of Glycine max (L.) Merr. to cobalt and lead stress. J Stress Physiol Biochem 10(3):259–272
- Ishtiaq S, Mahmood S (2012) Phytotoxicity of nickel and its accumulation in tissues of three Vigna species at their early growth stages. J Appl Bot Food Qual 84(2):223
- Islam F, Yasmeen T, Arif M et al (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and stress alleviator (salicylic acid) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467
- Jahan MS, Guo S, Baloch AR et al (2020) Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicol Environ Saf 197:110593
- Kamaruzzaman MA, Abdullah SRS, Hasan HA et al (2019) Potential of hexavalent chromiumresistant rhizosphere bacteria in promoting plant growth and hexavalent chromium reduction. J Environ Biol 40:427–433
- Kamnev AA, Antonyuk LP, Kulikov LA et al (2004) Monitoring of cobalt (II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. BioMetals 17:457–466
- Karthik C, Oves M, Sathya K et al (2016) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr (VI) stress. Arch Agron Soil Sci 63:1058–1069
- Karthik C, Oves M, Sathya K et al (2017a) Isolation and characterization of multi-potential Rhizobium strain ND2 and its plant growth-promoting activities under Cr (VI) stress. Arch Agron Soil Sci 63:1058–1069
- Karthik C, Elangovan N, Kumar TS et al (2017b) Characterization of multifarious plant growth promoting traits of rhizobacterial strain AR6 under Chromium (VI) stress. Microbiol. Res 204:65–71
- Kavita B, Shukla S, Kumar GN et al (2008) Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid. World J Microbiol Biotechnol 24:2965–2972
- Khan MR, Khan MM (2010) Effect of varying concentration of nickel and cobalt on the plant growth and yield of chickpea. Aust J Basic & Appl Sci 4(6):1036–1046
- Khanna K, Jamwal VL, Kohli SK et al (2019) Role of plant growth promoting Bacteria (PGPRs) as biocontrol agents of Meloidogyne incognita through improved plant defense of Lycopersicon esculentum. Plant Soil 436:325–345
- Khatun S, Ali MB, Hahn E-J et al (2008) Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environ Exp Bot 64(3):279–285
- Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In: Proceeding of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de Pathologie Vegetale et Phytobacteriologie, INRA, Angers, France
- Kotoky R, Nath S, Maheshwari DK et al (2019) Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environment Sustain 2:135–144
- Kuffner M, De Maria S, Puschenreiter M et al (2010) Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108(4):1471–1484
- Kumar P (2012) Ph.D. thesis. Gurukul Kangri University, Haridwar, India
- Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Pers Appl Microbiol 1:38
- Labra M, Grassi F, Imazio S et al (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54(8):1049–1058
- Lamhamdi M, Bakrim A, Aarab A et al (2011) Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. CR Biol 334(2):118–126
- Leclere V, Béchet M, Adam A et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584
- Lee BD, Dutta S, Ryu H et al (2015) Induction of systemic resistance in *Panax ginseng* against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39:213–220
- Li H-F, Gray C, Mico C et al (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75(7):979–986
- Li X, Li D, Yan Z et al (2018) Biosorption and bioaccumulation characteristics of cadmium by plant growth-promoting rhizobacteria. RSC Adv 8:30902–30911
- Ligon JM, Hill DS, Hammer PE et al (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag Sci 56:688–695
- Liu Y, Ma R (2020) Human health risk assessment of heavy metals in groundwater in the luan river catchment within the north china plain. Geofluids 2020., Article ID 8391793:1–7
- Liu D, Zou J, Meng Q et al (2009) Uptake and accumulation and oxidative stress in garlic (Allium sativum L.) under lead phytotoxicity. Ecotoxicology 18(1):134-143
- Liu Q, Guo H, Li Y et al (2013) Acclimation of arsenic-resistant Fe(II)-oxidizing bacteria in aqueous environment. Int Biodeterior Biodegradation. 76:86–91
- Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168(3):797–802
- Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J et al (2016) Mercury uptake and effects on growth in Jatropha curcas. Int J Environ Sci 48:120-125
- Mathew DC, Ho Y-N, Gicana RG et al (2015) A rhizosphere-associated symbiont, Photobacterium spp. strain MELD1, and its targeted synergistic activity for phytoprotection against mercury. PLoS One 10(3):e0121178
- Mazen MM, El-Batanony NH, Abd El-Monium MM et al (2008) Cultural filtrate of *Rhizobium* spp. and arbuscular mycorrhiza are potential biological control agents against root rot fungal diseases of faba bean. Glob J Biotechnol Biochem 3:32–41
- Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in *Holcus lanatus* L. J Exp Bot 43(4):519-524
- Mitra S, Pramanik K, Sarkar A et al (2018a) Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress. Ecotoxicol Environ Saf 156:183–196
- Mitra S, Pramanik K, Ghosh PK et al (2018b) Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiol Res 210:12–25
- Mohammed AF, Oloyede AR, Odeseye AO (2020) Biological control of bacterial wilt of tomato caused by Ralstonia solanacearum using Pseudomonas species isolated from the rhizosphere of tomato plants. Arch Phytopathol Plant Prot 53:1–16
- Mossa A-W, Young SD, Crout NM (2020) Zinc uptake and phyto-toxicity: Comparing intensityand capacity-based drivers. Sci Total Environ 699:134314
- Muneer B, Rehman A, Shakoori FR et al (2009) Evaluation of Consortia of Microorganisms for Efficient Removal of Hexavalent Chromium from Industrial Wastewater. Bull Environ Contam Toxicol. 82:597–600
- Naik MM, Pandey A, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa strain 4EA. Curr Microbiol 62:409–414
- Namdjoyan S, Kermanian H, Soorki AA et al (2017) Interactive effects of salicylic acid and nitric oxide in alleviating zinc toxicity of Safflower (Carthamus tinctorius L.). Ecotoxicology 26 (6):752–761
- Nazir H, Asghar HN, Zahir ZA et al (2016) Judicious use of kinetin to improve growth and yield of rice in nickel contaminated soil. Int J Phytoremediation 18(7):651–655
- Nie L, Shah S, Rashid A et al (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361
- Nie J, Pan Y, Shi J et al (2015) A comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. Int J Env Res Pub He 12(12):15075–15087
- Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750
- Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27 (2–3):313–339
- Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol 14:186–199
- Oller ALW, Talano MA, Agostini E (2013) Screening of plant growth-promoting traits in arsenicresistant bacteria isolated from the rhizosphere of soybean plants from Argentinean agricultural soil. Plant Soil 369:93–102
- Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83
- Ozfidan-Konakci C, Yildiztugay E, Elbasan F et al (2020) Hydrogen sulfide (H2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. J Hazard 388:122061
- Pal AK, Sengupta C (2019) Isolation of Cadmium and Lead Tolerant Plant Growth Promoting Rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian Agricultural Soil. Soil Sediment Contam 28:601–629
- Pandey V, Dixit V, Shyam R (2009) Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts. Protoplasma 236(1–4):85–95
- Pandey S, Saha P, Barai PK, Maiti TK (2010) Characterization of a Cd^{2+} -resistant strain of Ochrobactrum sp. isolated from slag disposal site of an iron and steel factory. Curr Microbiol 61 (2):106–111
- Patel TS, Minocheherhomji FP (2018) Plant growth promoting Rhizobacteria: blessing to agriculture. Int J Pure App Biosci 6:481–492
- Pérez-Montaño F, Alías-Villegas C, Bellogín RA et al (2014) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res 169:325–336
- Pramanik K, Ghosh PK, Ghosh A et al (2016) Characterization of PGP Traits of a Hexavalent Chromium Resistant Raoultella sp. Isolated from the Rice Field near Industrial Sewage of Burdwan District, WB. India. Soil Sed Contam 25(3):313–331
- Pramanik K, Mitra S, Sarkar A et al (2017) Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res 24:24419–24437
- Pramanik K, Mitra S, Sarkar A et al (2018a) Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain *Enterobacter aerogenes* MCC 3092. J Hazard 351:317–329
- Pramanik K, Mitra S, Sarkar A et al (2018b) Characterization of a Cd^{2+} -resistant plant growth promoting rhizobacterium (Enterobacter sp.) and its effects on rice seedling growth promotion under Cd^{2+} -stress in vitro. Agric Nat Resour 52(3):215–221
- Prasanna L, Eijsink VG, Meadow R et al (2013) A novel strain of *Brevibacillus laterosporus* produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol 97:1601–1611
- Priya MS (2015) Biomanagement of rice root knot nematode, Meloidogyne graminicola Golden and Brichfield in aerobic rice. Int J Manag Soc Sci 3:591–598
- Przemieniecki SW, Kurowski TP, Damszel M et al (2018) Effectiveness of the Bacillus sp. SP-A9 strain as a biological control agent for spring wheat *(Triticum aestivum* L.). J Agric Sci Technol 20:609–619
- Quartacci MF, Argilla A, Baker AJM et al (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925
- Rafique A, Amin A, Latif Z (2015) Screening and characterization of mercury-resistant nitrogen fixing bacteria and their use as biofertilizers and for mercury bioremediation. Pak J Zool 47:1271–1277
- Rahman H, Sabreen S, Alam S et al (2005) Effects of nickel on growth and composition of metal micronutrients in barley plants grown in nutrient solution. J Plant Nutr 28(3):393–404
- Rangeshwaran R, Prasad RD (2000) Isolation and evaluation of rhizospheric bacteria for biological control of chickpea wilt pathogens. J Biol Control 14:9–15
- Rehman A, Zahoor A, Muneer B et al (2008) Chromium tolerance and reduction potential of a Bacillus sp.ev3 Isolated from metal contaminated wastewater. Bull Environ Contam Toxicol 81:25–29
- Reiss A, Jørgensen LN (2017) Biological control of yellow rust of wheat (Puccinia striiformis) with Serenade® ASO (Bacillus subtilis strain QST713). Crop Prot 93:1–8
- Requejo R, Tena M (2006) Maize response to acute arsenic toxicity as revealed by proteome analysis of plant shoots. Proteomics 6(S1):S156–S162
- Rizvi A, Khan MS (2018) Heavy metal induced oxidative damage and root morphology alterations of maize (Zea mays L.) plants and stress mitigation by metal tolerant nitrogen fixing Azotobacter chroococcum. Ecotoxicol Environ Saf 157:9–20
- Rodriguez E, Azevedo R, Fernandes P et al (2011) Cr (VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum. Chem Res Toxicol 24(7):1040–1047
- Rodríguez-Llorente ID, Gamane D, Lafuente A et al (2010) Cadmium biosorption properties of the metal-resistant Ochrobactrum cytisi Azn6. 2. Eng Life Sci 10(1):49–56
- Ryu CM, Farag MA, Hu CH et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026
- Sądej W, Żołnowski AC, Ciećko Z et al (2020) Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of Avena sativa L. J Environ Sci Health A 55(1):82–96
- Sagardoy R, Morales F, López-Millán AF et al (2009) Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant Biol 11(3):339–350
- Sager SMA, Wijaya L, Alyemeni MN et al (2020) Impact of different cadmium concentrations on two Pisum sativum L. genotypes. Pak J Bot 52(3):821–829
- Sahu GK, Upadhyay S, Sahoo BB (2012) Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol Mol Biol Pla 18(1):21-31
- Saleem MH, Fahad S, Khan SU et al (2020) Copper-induced oxidative stress, initiation of antioxidants and phytoremediation potential of flax (Linum usitatissimum L.) seedlings grown under the mixing of two different soils of China. Environ Sci Pollut Res 27(5):5211–5221
- Santos EF, Santini JMK, Paixão AP et al (2017) Physiological highlights of manganese toxicity symptoms in soybean plants: mn toxicity responses. Plant Physiol Biochem 113:6–19
- Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29
- Sattiraju KS, Kotiyal S, Arora A et al (2019) Plant growth-promoting microbes: contribution to stress management in plant hosts. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 199–236
- Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Pseudomonas aeruginosa RZS3 vis-a-vis organophosphorus fungicide. Indian J Microbiol 51:266–272
- Schwartz AR, Ortiz I, Maymon M et al (2013) *Bacillus simplex*—a little known PGPB with antifungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum by. viciae. Agronomy 3:595–620
- Selva Kumar S, Ram Krishna Rao M, Deepak Kumar R et al (2013) Biocontrol by plant growth promoting rhizobacteria against black scurf and stem canker disease of potato caused by Rhizoctonia solani. Arch Phytopathol Plant Protect 46:487–502
- Selvaraj S, Ganeshamoorthi P, Anand T et al (2014) Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59:345–355
- Seneviratne M, Gunaratne S, Bandara T et al (2016) Plant growth promotion by *Bradyrhizobium* japonicum under heavy metal stress. S Afr J Bot 105:19–24
- Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31:446–459
- Shahid M, Dumat C, Pourrut B et al (2014) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144:290-297
- Shakya S, Pradhan B, Smith L et al (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surface water and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255
- Sharaff M, Kamat S, Archana G (2017) Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Ecotoxicol Environ Saf 138:113–121
- Sharma RK, Archana G (2016) Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria. Appl. Soil Ecol. 107:66–78
- Shiyab S, Chen J, Han FX et al (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72(2):619–625
- Shri M, Kumar S, Chakrabarty D et al (2009) Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicol Environ Saf 72(4):1102–1110
- Sinha S, Mukherjee SK (2008) Cadmium–induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56 $(1):55-60$
- Someya N, Sato Y, Yamaguchi I et al (2007) Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production. Commun Soil Sci Plant Anal 38:1155–1162
- Sriprang R, Hayashi M, Ono H et al (2003) Enhanced accumulation of Cd^{2+} by a *Mesorhizobium* sp. transformed with a gene from *Arabidopsis thaliana* coding for phytochelatin synthase. Appl Environ Microbiol 69(3):1791–1796
- Srivastava S, Sinha P, Sharma YK (2017) Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in *Vigna mungo* in presence of arsenic. J Plant Nutr 40(3):298–306
- Stearns JC, Shah S, Greenberg BM et al (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708
- Steinauer K, Chatzinotas A, Eisenhauer N (2016) Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecol Evol. 6(20):7387–7396
- Stoeva N, Berova M, Zlatev Z (2005) Effect of arsenic on some physiological parameters in bean plants. Biol Plant 49(2):293–296
- Suarez Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI et al (2019) Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front Microbiol 10:290
- Subrahmanyam G, Kumar A, Sandilya SP, Chutia M Yadav AN (2020) Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Plant microbiomes for sustainable agriculture. Springer, Cham, pp 1–52
- Sundaramoorthy P, Chidambaram A, Ganesh KS et al (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress;(ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol 333(8):597–607
- Syu C-H, Huang C-C, Jiang P-Y et al (2015) Arsenic accumulation and speciation in rice grains influenced by arsenic phytotoxicity and rice genotypes grown in arsenic-elevated paddy soils. J Hazard 286:179–186
- Tabatabaei FS, Saeedizadeh A (2017) Rhizobacteria cooperative effect against Meloidogyne javanica in rhizosphere of legume seedlings. Hell Plant Prot J 10:25–34
- Tank N, Rajendran N, Patel B et al (2012) Evaluation and biochemical characterization of a distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz J Microbiol 43:639–648
- Timms-Wilson TM, Ellis RJ, Renwick A et al (2000) Chromosomal insertion of phenazine-1 carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300
- Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Front Plant Sci 9(452):1–12
- Tiwari S, Pandey S, Chauhan PS et al (2017) Biocontrol agents in co-inoculation manages root knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] and enhances essential oil content in Ocimum basilicum L. Ind Crops Prod 97:292–301
- Treesubsuntorn C, Dhurakit P, Khaksar G, Thiravetyan P (2018) Effect of microorganisms on reducing cadmium uptake and toxicity in rice $(Or_{VZ}a sativa L)$. Environ Sci Pollut Res 25 (26):25690–25701
- Tripathi M, Munot HP, Shouche Y et al (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant *Pseudomonas putida* KNP9. Curr Microbiol 50(5):233–237
- Ullah A, Heng S, Hussain MF et al (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: A review. Environ Exp Bot 117:28–40
- Uzair B, Kausar R, Bano SA et al (2018) Isolation and molecular characterization of a model antagonistic *Pseudomonas aeruginosa* divulging in vitro plant growth promoting characteristics. Biomed Res Int 2018:1–7
- Vinit-Dunand F, Epron D, Alaoui-Sossé B et al (2002) Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Science Plant Sci 1:53–58
- Vivas A, Biro B, Ruiz-Lozano JM et al (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533
- Wang Q, Xiong D, Zhao P et al (2011) Effect of applying an arsenic-resistant and plant growth– promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111(5):1065–1074
- Wang T, Wang S, Tang X et al (2020) Isolation of urease-producing bacteria and their effects on reducing Cd and Pb accumulation in lettuce *(Lactuca sativa L.)*. Environ Sci Pollut Res Int 27 (8):8707–8718
- Wani PA, Khan MS (2010) *Bacillus* species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48(11):3262–3267
- Wani PA, Khan MS (2013) Nickel detoxification and plant growth promotion by multi metal resistant plant growth promoting Rhizobium species RL9. Bull Environ Contam Toxicol 91:117–124
- Wani PA, Khan MS, Zaidi A (2007) Effect of metal tolerant plant growth promoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70:36–45
- Wani PA, Khan MS, Zaidi A (2008a) Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81:152–158
- Wani PA, Khan MS, Zaidi A (2008b) Impact of zinc-tolerant plant growth-promoting rhizobacteria on lentil grown in zinc-amended soil. Agron Sustain Dev 28(3):449–455
- Wani PA, Zaidi A, Khan MS (2009) Chromium reducing and plant growth promoting potential of Mesorhizobium species under chromium stress. Bioremediat J13:121–129
- Wu SC, Peng XL, Cheung KC et al (2009) Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour Technol. 100:4559–4563
- Wu J, Guo J, Hu Y et al (2015) Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front Plant Sci 6:453
- Wu B, He T, Wang Z et al (2020) Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. J Hazard 385:121587
- Xiang N, Lawrence KS, Kloepper JW et al (2017) Biological control of Heterodera glycines by spore-forming plant growth-promoting rhizobacteria (PGPR) on soybean. Plos ONE 12: e0181201
- Xiao L, Xie CC, Cai J et al (2009) Identification and characterization of a chitinase-produced Bacillus showing significant antifungal activity. Curr Microbiol 58:528–533
- Xiong T, Zhang T, Dumat C et al (2018) Airborne foliar transfer of particular metals in Lactuca sativa L.: Translocation, phytotoxicity, and bioaccessibility. Environ Sci Pollut Res Int 26 (20):20064–20078
- Xu J, Yang L, Wang Z et al (2006) Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 62(4):602–607
- Xu D, Chen Z, Sun K et al (2013) Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicol Environ Saf 97:147–153
- Yang E, Sun L, Ding X et al (2019) Complete genome sequence of Caulobacter flavus RHGG3 T, a type species of the genus Caulobacter with plant growth-promoting traits and heavy metal resistance. 3 Biotech 9(2):42
- Yoon Y, Lee W-M, An Y-J (2015) Phytotoxicity of arsenic compounds on crop plant seedlings. Environ Sci Pollut Res 22(14):11047–11056
- Zaidi S, Musarrat J (2004) Characterization and nickel sorption kinetics of a new metal hyperaccumulator Bacillus sp. J Environ Sci Health A Tox Hazard Subst Environ Eng 39(3):681–691
- Zaidi S, Usmani S, Singh BR et al (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64(6):991–997
- Zhou L, Yuen G, Wang Y et al (2016) Evaluation of bacterial biological control agents for control of root-knot nematode disease on tomato. Crop Prot 84:8–13
- Zhou J, Ren J, Wang X et al (2017) Ascorbic Acid Alleviates Toxicity Induced by Excess Copper in Brassica campestris Ssp. Chinensis Makino. Commun Soil Sci Plan 48(6):656–664
- Zhuang X, Chen J, Shim H et al (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413
- Zribi K, Djébali N, Mrabet M et al (2011) Physiological responses to cadmium, copper, lead, and zinc of Sinorhizobium sp. strains nodulating Medicago sativa grown in Tunisian mining soils. Ann Microbiol 62:1181–1188
- Zurdo-Pineiro JL, Rivas R, Trujillo ME et al (2007) Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Micr 57(4):784–788