
Employing an IoT Framework as a Generic
Serious Games Analytics Engine

Luca Lazzaroni, Andrea Mazzara, Francesco Bellotti(B), Alessandro De Gloria,
and Riccardo Berta

DITEN, University of Genoa, Via Opera Pia 11A, 16145 Genoa, Italy
{francesco.bellotti,alessandro.degloria,riccardo.berta}@unige.it

Abstract. This paper proposes the use of a new data toolchain for serious games
analytics. The toolchain relies on the open source Measurify Internet of Things
(IoT) framework, and particularly takes advantage of its edge computing extension
(namely, Edgine), which can be seamlessly deployed cross-platform on embedded
devices and PCs aswell. TheEdgine is programmed to download fromMeasurify a
set of scripts, that are periodically executed so to get data from sensors, pre-process
them and send the extracted information to the Measurify APIs. Virtual sensors
can be built in game engine scripts. This paper describes the implementation
of the plug-in which deploys Edgine in Unity 3D, allowing an easy delivery of
virtual sensor information to Measurify. Just as a proof of concept, we present the
utilization of the whole chain within a trivial game scene, showing the application
development efficiency provided by a tool which is made available open source
to researchers and developers.

Keywords: Internet of Things · System architecture · Game development ·
Game engine plug-in · Virtual sensors · Reality-enhanced games

1 Introduction

Serious game analytics is an emerging research field, which aims at turning gameplay
data into “valuable analytics or actionable intelligence for performance measurement,
assessment, and improvement” [1].Not only does this high-level goal require the need for
developing serious games able to provide didactically relevant quantitative information,
but also efficient integration of modules for analytics collection and management [2].

Dealing with big data is a general and common problem, particularly in the context
of the Internet of Things (IoT), for which several solutions have been developed, espe-
cially using cloud-based frameworks. In this paper, we are interested in investigating the
application to the serious game context ofMeasurify (previously known asAtmosphere),
an open source IoT framework built around the concept of measurement, which looks
quite relevant to the goal of assessing and supporting a learner [3].

Actually, that article already briefly reports the experience of a University spin-off
company applying Measurify to design a data management model for the use case of a
3D virtual reality simulator for emergency room personnel instruction. The goal of the

© Springer Nature Switzerland AG 2020
I. Marfisi-Schottman et al. (Eds.): GALA 2020, LNCS 12517, pp. 79–88, 2020.
https://doi.org/10.1007/978-3-030-63464-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63464-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-63464-3_8


80 L. Lazzaroni et al.

instructional tool was to assess the performance of a doctor by evaluating the effects
of his interventions on the various patients. To this end, the Measurify data model was
designed to record (i) the state of a patient, that is characterized by a set of time-evolving
parameters; (ii) the actions performed by the doctor (e.g., how he interacted with the
available simulation tools); and (iii) the events in the simulation (e.g., changes inmedical
equipment availability).

In this paper, we intend to go more in depth about the utilization of Measurify as
an analytics engine, particularly investigating its extension towards edge computing [4],
namely the recently released Edgine module [5], aimed at supporting a configurable
provision of measurements from the field.

The remainder of the paper is organized as follows. Section 2 provides the related
work, while Sect. 3 and 4 describe the Measurify and Edgine systems, respectively.
Section 5 is devoted to the application of the IoT framework to a gaming environment.
Section 6 draws the conclusions on the presented work and outlines possible directions
for future research.

2 Related Work

Serious games analytics is a research field involving empirical research methodologies,
including existing, experimental, and emerging conceptual frameworks, from various
areas, such as: computer science, software engineering, educational data mining and
statistics information visualization [1].

The literature provides several examples of serious game analytics (or game learning
analytics) applications. [6] explored players’ gameplay patterns to understand player
dropout in the Quantum Spectre science game. Based on their results, the authors argue
that modeling player behavior can be useful for both assessing learning and for designing
complex problem solving content for learning environments. [7] present a novel method
that suggests curricular sequencing based on the prediction relationship between math
objectives. The authors argue that their method can potentially be applied to data from
a wide range of games and digital learning platforms, enabling developers to better
understand how to sequence educational content. [8] explore existing log files of the
VIBOA environmental policy game. Our aim is to identify relevant player behaviours
and performance patterns. The correlation analysis suggests to the authors a behavioural
trade that reflects the rate of “switching” between different game objects or activities.
The authors also established a model that uses switching indicators as predictors for the
efficiency of learning. [9] developed a mobile game to support the transfer of theoretical
knowledge on resuscitation training in case of cardiac arrest. To analyse a large and
heterogeneous (in terms of sources and quality) data-set collected from 171 players, the
authors applied different types of data modeling and analyses. This approach showed its
usefulness and revealed some interesting findings.

[10] discuss a conceptual model (ecosystem and architecture) aimed to highlight
the key considerations that may advance the current state of learning analytics, adaptive
learning and SGs, by leveraging SGs as an suitable medium for gathering data and
performing adaptations. [11] describe two key steps towards the systematization of game
learning analytics: 1), the use of a newly-proposed standard tracking model to exchange



Employing an IoT Framework 81

information between the serious game and the analytics platform, allowing reusable
tracker components to be developed for each game engine or development platform; and
2), the use of standardized analysis and visualization assets to provide general but useful
information for any SG that sends its data in the aforementioned format.

3 Measurify APIs

Measurify is a cloud-based Application Programming Interface (API) designed to sup-
port an efficient workflow for preparing different measurement-based data-rich applica-
tions, especially but not exclusively from IoT devices [Atmos]. The framework integrates
APIs implementing Representational State Transfer (REST) services [12], that provide
a platform-independent HTTP interface (e.g., [13]). Measurify exploits the open source
MongoDB non relational database technology for data management, and on the NodeJS
programming language, supporting by design seamless cross-platform portability, with-
out being locked to a specific cloud vendor technology (e.g., Amazon Web Services
for the Internet of Things (AWS IoT) [14] or Microsoft Azure cloud platform [15]),
which is an important limit of current approaches. According to the RESTful program-
ming paradigm, the API exposes a set of resources, A resource is an object with a type,
associated data, relationships to other resources, and a set of methods that operate on
it. Measurify defines a limited but powerful set of resource types (Table 1), that have
been suited to create applications in international research projects in the automotive
and health domains [16–18].

Table 1. Outlook of the measurify resources

Resource Description

Measurement Is the actual data taken from the field (e.g., a temperature value)

Feature Is the type of a measurement. A type could be complex, with several
dimensions, of various numeric/text types (e.g., sets of position records).
Measurements could be of different types

Device Is the instrument (e.g., a thermometer) through which the measurement is
obtained

Thing Is the subject of a measurement (e.g., a weather station located on a
mountain)

Tag Labels that can be attached as attributes to other resources – typically
measurements, features, things and tag themselves

Constraint A generic relationship between two resources (e.g., to support automatic
generation of graphical user interfaces)

Computation Is the actual data taken from the field (e.g., a temperature value)

The first step of the workflow supported byMeasurify consists of the domain model-
ing, where the field objects (i.e., the objects involved in the measurements) are mapped



82 L. Lazzaroni et al.

to the API’s resources. In this phase, the IoT application designer has to define fea-
tures devices, tags, and constraints. In the configuration (or deployment) step, the above
designed model resources are straightforwardly encoded in a.json file, which is POSTed
to the framework APIs, so to create the Application Database (ADB) structure. In the
regime phase, the framework manages the ADB, allowing (i) dynamic insertion/update
of users, things, fieldmeasurements and computation requests; and (ii) retrieval of results
in terms of things, measurements and computation outcomes. The ADB structure can
be updated during the operation as well, by POSTing/PUTting/DELETEing features,
devices, and tags. All these actions happen only through the exposed resource routes
(i.e., standard functions through which objects can be accessed), with the well known
advantages of the RESTful approach in terms of scalability, encapsulation, security,
portability, platform independence, and clarity of terminology and operations.

In the next section, we present the extension of Measurify in the direction of the
edge computing, namely the Edgine (Edge Engine) module.

4 Edgine

Measurify is a cloud-based system designed to host applications receivingmeasurements
data through a REST API. According to the edge computing paradigm, computation is
beingmoved towards the edge, in order to optimize exploitation of resources.Availability
of computing capabilities on the edge, close to the field sensors implies the possibility to
implement sensor hubs, typically represented bymicrocontrollers, that can be configured
from remote in order to deliver the dynamically needed information.

This is the founding idea of Edgine, an edge system designed to support efficient
development of integrated IoT applications. Edgine features an HTTP communication
interface with the cloud (particularly with the Measurify APIs) in order to download
configuration settings and scripts that are executed locally.

The system code consists of two main parts: an initial one and a loop one. In the start
phase, which is implemented inside the setup() function, the Edgine software authenti-
cates itself and connects to the APIs to download its configuration parameters and the list
of scripts to be executed. Then, during the infinite cycle loop, the software continuously
executes each assigned script in sequence, processing the data and sending them to the
Measurify APIs.

Each device associated with Measurify is described by a JSON (JavaScript Object
Notation) file which includes, among others, the feature field, describing the expected
type of the measurements to be delivered, and the scripts field, including all the scripts to
be downloaded and executed by the particular device. A script consists of a sequence of
instructions that typically conclude with the delivery of the processed data to Measurify.
The raw data processing instruction types currently include simple arithmetic functions,
computation of simple statistic operations (e.g., min, max, mean, median, stdev), and
accumulation of values in a (sliding) window.

A key design requirement for Edgine is platform independence, in order to make
this paradigm widely available across edge devices. Thus, we strived to keep the system
as independent as possible from the hardware. To that end, classes have been created to
allow developers to switch fromWindows/Linux/Mac PC platforms to Arduino through
the use of C preprocessor macros.



Employing an IoT Framework 83

The differences between the two main platform types concern the Internet connec-
tion. In the Arduino case, an automatic connection to a WiFi network (predefined in
the code) is performed, and the system is also designed to perform a reconnection in
case of signal loss. In the Edgine version for PC-type machines, on the other hand, the
system waits until a network connection becomes available, before trying to perform
the initial authentication operations. At runtime, data that cannot be sent due to lack of
connectivity are accumulated in a buffer, waiting for a connection.

Up to now,Edgine has been used in some IoTapplications, concerning themonitoring
of environmental parameters such as temperature, humidity, light conditions [19].

5 Serious Game Application

While Edgine has a clear application to edge devices, such as microcontrollers, mobile
phones and automotive electronic central units (ECUs), its concept is abstract and can be
applied to any device processing raw data. Thus, the Edgine can also be employed in a
serious game with a goal to get measurements from it and pre-process them according to
some basic scripts. Everything is dynamically programmed from remote. Conceptually,
this corresponds to applying the IoT sensor measurement concept not only to reality but
also to a game’s virtual reality.

To achieve this goal, it is necessary to insert the Edgine system inside the target
serious game. This can be achieved by integrating Edgine inside a game engine. This
is a general solution, that could be seamlessly applied to any game implemented with a
given game engine.

For the case of Unity 3D, a widely used game engine, the idea is to develop a plug-in
that would wrap Edgine, making it available to any game. For instance, it would be
possible to configure the Edgine so to send to the measurement API (i.e., the generic
analytics engine) information such as: the average distance covered by a virtual character
in the last minute, the number of collected objects, the number of correctly answered
quizzes, etc. The key advantage – especially in a software engineering perspective of
efficient development - is the abstract and generic architectural approach, which makes
the solution generally applicable.

In the following, we describe the implementation of Edgine in Unity 3D. In this
game engine, C# scripts are usually employed to create components and specify their
behaviour. Scripts can exploit libraries of additional functionalities, made available in
Unity as plug-ins. Plug-ins are platform-specific native code libraries that can access
operating system functions and other third-party libraries, that would not otherwise be
available to Unity developers.

A Unity plug-in is equivalent Dynamic-Link Library (DLL), and can be efficiently
developedwithVisual Studio,which is quite similar to theUnity IntegratedDevelopment
Environment (IDE). In theDLL,we implemented a single class,whichwraps themethods
intended to be exposed toUnityC# scripts. Inside the header, it is necessary to define such
functions with the declspec(dllexport) attribute. Moreover, through the extern “C” label,
it is indicated to the compiler that the C linking conventions should be employed for such
function. This is necessary for a correct export, because, otherwise, C++ compilerswould
perform the mangling process, making them unreachable from Unity. The mangling is



84 L. Lazzaroni et al.

a technique used to distinguish functions that have the same name (overloading). The
technique manipulates the name during compilation, so that it becomes unique. But this
would make the final name unknown to the Unity developer. The C language, on the
other hand, does not support function overloading, thus does not perform the mangling.
Thus, the binary file generated by the compilation process contains the original method
names. However, since the C linking convention is adopted, it is necessary that the input
and output data types are those of the C, even if the body of the function is written in
C++.

According to the Edgine programming model presented in the previous section,
the class exposes two methods: Setup() and Action(). The first one will be used at
start-up, the second one will be employed inside the game engine’s update loop. For
the Unity implementation, we let that the service descriptive features (device, thing,
feature, username e password) can be specified by the Unity user as parameters of the
two exposed functions and are not hard-wired in the source code, which is the approach
employed in the edge/embedded environment. Intuitively, the user can specify the names
of the resources related to a correct delivery of measurements toMeasurify. The Action()
function, takes in input the name of the feature and the measurement value, which will
need to be delivered to the cloud.

The compiled Edgine project produces five dll files: NativeCppLibrary.dll, pcred.dll,
PocoFoundationd.dll, PocoNetd.dll, zlibd1.dll, of which the first one is the dynamic
library containing the two functions mentioned above. In order to use the plug-in inside
Unity, it is necessary to copy all these .dll files in the project directory.

As a proof of concept, we implemented a very simple application example of collec-
tion of data from a game scene and their delivery to the cloud. Particularly, we tracked
the collisions of a ball with the borders of a squared region (Fig. 1). Every time a colli-
sion is detected with the wall, a variable is incremented. When the number of collisions
becomes a multiple of 5, the value, added with the time stamp, is sent to the Measurify
APIs, from where it can be manipulated, also in real-time, by other applications and/or
user interfaces.

Fig. 1. Simple game scene in Unity3D



Employing an IoT Framework 85

This goal is achieved by following the standard steps of the workflow of an Edgine-
extended Measurify application. The first step consists in POSTing to Measurify (e.g.,
through a common collaboration platform for API development, such as Postman) the
names and, particularly for the Script resource, the contents of the resources needed
to configure the environment so that it will be able to receive measurements from our
application. In our case, the names are reported in the second column of Table 2. The
Measurify APIs will create the corresponding resources, that will be available at the
URLs in the third column, where the base url is http://students.atmosphere.tools/

Table 2. Measurify resources for the example application

Resource type Resource Resource URL

Thing Ball url/v1/things/ball

Feature Collision url/v1/features/collision

Device Unity url/v1/devices/Unity

Script Collisions-count-send url/v1/scripts/collisions-count-send

The next step concerns the development of the C# script that detects the collision
and exploits the Edgine plug-in to transmit the corresponding value to Measurify. As
anticipated, for the sake of flexibility, in the Unity implementation the Setup() and
Action() functions are parametric, thus we allow the Unity user to specify through the
Inspector module (Fig. 2) the values that will be passed to such functions.

Fig. 2. Variables set by the user inside the Unity Inspector

The Unity scripts are organized in a structure that strictly corresponds to the Edgine
programming model, with an initial Start() method, executed only once at the beginning
of the programme, and anUpdate()method, which is continuously called, at each frame’s
update. The mapping for an Edgine application in Unity is thus straightforward: the
Setup() method is called inside the Start(), while Action() inside Update(), (Fig. 3).

Start() accomplishes the task of initializing all the StringBuilder public variables
involved in the script. Once such user-defined parameters are collected, the plug-in’s
Setup() is executed, which performs the authentication in Measurify, getting the Json

http://students.atmosphere.tools/


86 L. Lazzaroni et al.

Fig. 3. Start and update methods in the Unity script

Web Token (JWT) that will be used in all the subsequent accesses to the cloud APIs. A
Queue<Thread> object is also initialized, that will be useful during the game loop. The
creation of a Thread object, in fact, is necessary when sending data to the cloud, in order
not to block the continuous game update cycle. The threads are inserted in a queue to
simplify their management, as they are created, executed once at a time and destroyed
in order, making use of the Enqueue(), Peek() and Dequeue() methods.

The Update() method first makes a check on the number of accumulated collisions
(a measurement is sent to the cloud only when a multiple of 5 is hit). Then, if the sending
condition is met, a thread is created, consisting of the Play() function calling the plugin’s
Action(), and added to the queue. Once created, a thread is ready to be executed as soon
as no other thread is still alive. In this way, the application is not overloaded with threads.
If some threads are still in the queue when the game is completed and quitted by the
player, the OnApplicationQuit() method launches the missing threads before the actual
end of the program execution. Finally, Fig. 4 shows an example of measurement received
by Measurify in JSON format.

Fig. 4. The measurement received from the Unity game at the Measurify’s end



Employing an IoT Framework 87

6 Conclusions and Future Work

This paper has proposed the use of a new data toolchain for serious games analytics.
The toolchain relies on the open source Measurify IoT framework for measurement
management, and particularly takes advantage of its edge computing extension (Edgine),
which can be seamlessly deployed cross-platform on embedded devices and PCs as
well. The Edgine is programmed to download from Measurify a set of scripts, that
are periodically executed so to get data from sensors, pre-process them and send the
extracted information to the Measurify APIs.

Thanks to its powerful abstractions, this model can be seamlessly employed also in
the virtual reality and gaming domain. Virtual sensors can be built in game engine scripts.
This paper has presented the implementation of the plug-in which deploys Edgine in
Unity 3D, allowing an easy delivery of virtual sensor information to Measurify. Just as
a proof of concept, we have presented the utilization of the whole chain within a trivial
game scene. We plan to employ and test the system with more complex serious game
analytics, and this opportunity is possible for every researcher and practitioner thanks
to the open source release of the whole Measurify framework [20].

There is another aspect beside the general applicability of the toolchain to any virtual
sensors. In fact, the same software engineering approach (and actual Edgine tool) could
be used also for measuring real world parameters, connected to the game. This oppor-
tunity is particularly relevant to augmented reality games and reality enhanced serious
games (e.g., [21–23]). Moreover, the same system can be used also the physiological
parameters of the player. To the best of our knowledge, no tool exists that is able to
process information from such heterogeneous sources as physical and virtual sensors.
For instance, the Edgine toolchain could be used to simultaneously get data about a game
session and a player’s physiological status.

References

1. Loh, C.S., Sheng, Y., Ifenthaler, D. (eds.): Serious Games Analytics. AGL. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-05834-4

2. Alonso-Fernández, C., Pérez-Colado, I., Freire, M., Martínez-Ortiz, I., Fernández-Manjón,
B.: Improving serious games analyzing learning analytics data: lessons learned. In: Gentile,
M., Allegra, M., Söbke, H. (eds.) GALA 2018. LNCS, vol. 11385, pp. 287–296. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11548-7_27

3. Berta, R., Kobeissi, A., Bellotti, F., De Gloria, A.: Atmosphere, an open source measurement-
oriented data framework for IoT. IEEE Trans. Ind. Inf. https://doi.org/10.1109/tii.2020.299
4414

4. Lin, L., Liao, X., Jin, H., Li, P.: Computation offloading toward edge computing. Proc. IEEE
107, 1584–1607 (2019)

5. https://github.com/measurify/edge
6. Hicks, D., Eagle, M., Rowe, E., Asbell-Clarke, J., Edwards, T., Barnes, T.: Using game

analytics to evaluate puzzle design and level progression in a serious game. In: Proceedings
of the Sixth International Conference on Learning Analytics & Knowledge (LAK 2016),
pp. 440–448. ACM, New York (2016). https://doi.org/10.1145/2883851.2883953

https://doi.org/10.1007/978-3-319-05834-4
https://doi.org/10.1007/978-3-030-11548-7_27
https://doi.org/10.1109/tii.2020.2994414
https://github.com/measurify/edge
https://doi.org/10.1145/2883851.2883953


88 L. Lazzaroni et al.

7. Peddycord-Liu, Z., Cody,C.,Kessler, S., Barnes, T., Lynch,C.F., Rutherford, T.:Using serious
game analytics to inform digital curricular sequencing: what math objective should students
play next? In: Proceedings of the Annual Symposium on Computer-Human Interaction in
Play (CHI PLAY 2017), pp. 195–204. ACM, New York (2017). https://doi.org/10.1145/311
6595.3116620

8. Westera,W., Nadolski, R., Hummel, H.: Serious gaming analytics: what students’ log files tell
us about gaming and learning. Int. J. Serious Games 1(2) (2014). https://doi.org/10.17083/
ijsg.v1i2.9

9. Lukosch, H., Cunningham, S.: Data analytics of mobile serious games: applying bayesian
data analysis methods. Int. J. Serious Games 5(1) (2018). https://doi.org/10.17083/ijsg.v5i
1.222

10. Baalsrud Hauge, J.M., et al.: Learning analytics architecture to scaffold learning experience
through technology-based methods. Int. J. Serious Games 2(1) (2015). https://doi.org/10.
17083/ijsg.v2i1.38

11. Alonso-Fernandez, C., Calvo, A., Freire, M., Martinez-Ortiz, I., Fernandez-Manjon, B.: Sys-
tematizing game learning analytics for serious games. In: 2017 IEEE Global Engineering
Education Conference (EDUCON), Athens, pp. 1111–1118 (2017). https://doi.org/10.1109/
EDUCON.2017.7942988

12. Solapure, S.S., Kenchannavar, H.: Internet of Things: a survey related to various recent archi-
tectures and platforms available. In: International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Jaipur, pp. 2296–2301 (2016). https://doi.org/
10.1109/ICACCI.2016.7732395

13. Jiong, S., Liping, J., Jun, L.: The integration of azure sphere and azure cloud services for
Internet of Things. MDPI J. Appl. Sci. 9(13), 2746 (2019). https://doi.org/10.3390/app913
2746

14. Amazon Web Services AWS IoT. https://aws.amazon.com/iot/solutions/industrial-iot
15. Azure IoT, Microsoft (2019). https://azure.microsoft.com/en-us/overview/iot/
16. Cirimele, V., et al.: The fabric ICT platform for managing wireless dynamic charging road

lanes. IEEE Trans. Veh. Technol. 69(3), 2501–2512 (2020)
17. Hiller, J., et al.: The L3Pilot data management toolchain for a level 3 vehicle automation pilot.

Electronics 9, 809 (2020)
18. Monteriù, A., et al.: A smart sensing architecture for domestic moniotring: methodologi-

cal approach and experimental validation. Sensors 18(7) (2018). https://doi.org/10.3390/s18
072310

19. http://students.atmosphere.tools/
20. https://github.com/measurify
21. Massoud, R., Bellotti, F., Poslad, S., Berta, R., De Gloria, A.: Towards a reality-enhanced

serious game to promote eco-driving in the wild. In: Liapis, A., Yannakakis, G.N., Gentile,
M., Ninaus, M. (eds.) GALA 2019. LNCS, vol. 11899, pp. 245–255. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34350-7_24

22. Massoud, R., Poslad, S., Bellotti, F., Berta, R., Mehran, K., De Gloria, A.: A fuzzy logic
module to estimate a driver’s fuel consumption for reality-enhanced serious games. Int. J.
Serious Games 5, 45–62 (2018). https://doi.org/10.17083/ijsg.v5i4.266

23. Fijnheer, J.D., van Oostendorp, H.: Steps to design a household energy game. Int. J. Serious
Games 3(3) (2016). https://doi.org/10.17083/ijsg.v3i3.131

https://doi.org/10.1145/3116595.3116620
https://doi.org/10.17083/ijsg.v1i2.9
https://doi.org/10.17083/ijsg.v5i1.222
https://doi.org/10.17083/ijsg.v2i1.38
https://doi.org/10.1109/EDUCON.2017.7942988
https://doi.org/10.1109/ICACCI.2016.7732395
https://doi.org/10.3390/app9132746
https://aws.amazon.com/iot/solutions/industrial-iot
https://azure.microsoft.com/en-us/overview/iot/
https://doi.org/10.3390/s18072310
http://students.atmosphere.tools/
https://github.com/measurify
https://doi.org/10.1007/978-3-030-34350-7_24
https://doi.org/10.17083/ijsg.v5i4.266
https://doi.org/10.17083/ijsg.v3i3.131

	Employing an IoT Framework as a Generic Serious Games Analytics Engine
	1 Introduction
	2 Related Work
	3 Measurify APIs
	4 Edgine
	5 Serious Game Application
	6 Conclusions and Future Work
	References




