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Abstract. This paper presents an approach to generate SPARK code
from Event-B models. System models in Event-B are translated into
SPARK packages including proof annotations. Properties of the Event-B
models such as axioms and invariants are also translated and embed-
ded in the resulting models as pre- and post-conditions. This helps with
generating SPARK proof annotations automatically hence ensuring the
correct behaviour of the resulting code. A prototype plug-in for the Rodin
has been developed and the approach is evaluated on different examples.
We also discuss the possible extensions including to generate scheduled
code and data structures such as records.
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1 Introduction

Ensuring properties of safety- and security-critical systems is paramount. Event-
B [1] is a formal modelling method which enables the design of systems, using
mathematical proofs ensuring the conformity of the system to declared safety
requirements. SPARK [4] is a programming language making use of static anal-
ysis tools which verify written code correctly implements the properties of the
system as specified in the form of written proof annotations (e.g., pre- and post-
conditions). SPARK has been used in many industry-scale projects to implement
safety-critical software. However, manually writing SPARK proof annotations
can be time-consuming and tedious.

Our motivation is to develop a tool-supported approach to translate an
Event-B model into a SPARK package, including proof annotations and other
structures, from which manually written SPARK code can be verified, hence
ensuring the correct behaviour of the software. Event-B supports development
via refinement, allowing details to be consistently introduced into the models.
Properties of the systems such as invariances therefore are easier to be discovered
compare to SPARK. One aim for our approach is to cover as much as possible
the Event-B mathematical language that can be translated into SPARK.
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Our contribution is an approach where Event-B sets and relations are trans-
lated as SPARK Boolean arrays. A library is built to support the translation.
Furthermore, properties of the systems such as axioms and invariants are trans-
lated and embedded in SPARK as pre- and post-conditions. These properties,
in particular invariance properties, are often global system properties ensuring
the safety and consistency of the overall system, and are often difficult to be
discovered. Using these conceptual translation rules, a plug-in was created for
the Rodin platform [2] and was evaluated with several Event-B models. From
the evaluation, we discuss different possible extensions including to generate
scheduled code and records data structure.

The rest of the paper is structured as follows. Section 2 gives some background
information for the paper. This includes an overview of Event-B, SPARK, and
our running example. Our main contribution is presented in Sect. 3. We discuss
limitation and possible extensions of the approach in Sect. 4. Section 5 reviews
the related work. Finally, we summary and discuss future research direction in
Sect. 6.

2 Background

2.1 Event-B

Event-B [1] is a formal method used to design and model software systems, of
which certain properties must hold, such as safety properties. This method is
useful in modelling safety-critical systems, using mathematical proofs to show
consistency of models in adhering to its specification. Models consist of con-
structs known as machines and contexts. A context is the static part of a model,
such as carrier sets (which are conceptually similar to types), constants, and
axioms. Axioms are properties of carrier sets and constants which always hold.
Machines describe the dynamic part of the model, that is, how the state of the
model changes. The state is represented by the current values of the variables,
which may change values as the state changes. Invariants are declared in the
machine, stating properties of variables which should always be true, regard-
less of the state. Events in the machine describe state changes. Events can have
parameters and guards (predicates on variables and event parameters); the guard
must hold true for event execution. Each event has a set of actions which hap-
pen simultaneously, changing the values of the variables, and hence the state.
Every machine has an initialisation event which sets initial variable values. An
important set of proof obligations are invariant preservation. They are generated
and required to be discharged to show that no event can potentially change the
state to one which breaks any invariant, a potentially unsafe state.

An essential feature of Event-B, stepwise refinement, is not used within the
scope of this project, which focuses on Event-B’s modelling of a single abstraction
level model. Further details on refinement can be found in [1,10]. In Sect. 2.3 we
present the our running example including the Event-B model.
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2.2 SPARK

SPARK [4] is a programming language used for systems with high safety stan-
dards. It includes tools performing static verification on programs written in the
language. SPARK is a subset of another programming language, Ada [5], which
is also used for safety-critical software. SPARK removes several major constructs
from Ada, allowing feasible and correct static analysis.

SPARK includes a language of annotations, which are specifications for a
SPARK program, clarifying what the program should do [13]. While program
annotations focus on the flow analysis part of static analysis, focusing on things
such as data dependencies, proof annotations support “assertion based formal
verification”. In particular, a specification for a SPARK procedure has the fol-
lowing aspects:

– Pre aspect: pre-conditions which are required to hold true on calling a sub-
program, without which the subprogram has no obligation to work correctly.

– Post: post-conditions which should be achieved by the actions of a subpro-
gram, provided the pre-conditions held initially

– Global aspect: specifying which global variables are involved in this subpro-
gram, and how they are used.

– Depends aspect: which variables or parameters affect the new value of the
modified variables

Proof annotations also involve loop invariants, which are conditions which hold
true in every iteration of a loop.

This mix of proof and program annotations ensure that any implementation
written in SPARK adheres to its specification, producing reliable, safe software.

2.3 A Running Example

To illustrate our approach, we use an adapted version of the example of a building
access system from [6]. We only present a part of the model here. The full model
and the translation to SPARK is available in [17].

The context declares the sets of PEOPLE and BUILDING with a constant
maxsize to indicate the maximum number of registered users. Note that we have
introduced axioms to constrain the size of our carrier sets and fix the value of the
constant as it is necessary for our generated SPARK code. Normally, Event-B
models are often more abstract, e.g., there are no constraints on the size of the
carrier sets.

context c0
sets PEOPLE BUILDING
constantsmaxsize
axioms
@finite−PEOPLE: finite(PEOPLE)
@card−PEOPLE: card(PEOPLE) = 10
@finite−BUILDING: finite(BUILDING)
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@card−BUILDING: card(BUILDING) = 4
@def−maxsize:maxsize=3
end

The machine models the set of register users, their location and their per-
mission for accessing buildings.

machinem0
variables register size location permission
invariants
@inv1: register ⊆ PEOPLE
@inv2: size ≤ maxsize
@inv3: location ∈ register �→ BUILDING
@inv4: permission ∈ register ↔ BUILDING
@inv5: location ⊆ permission
events
...
end

Invariant @inv5 specifies the access control policy: a register user can only be in
a building where they are allowed.

Initially, there are no users in the system, hence all the variables are assigned
the empty set.

event INITIALISATION
begin
@init−register: register := ∅

@init−size: size := 0
@init−location: location := ∅

@init−permission: permission := ∅

end

We also consider two events RegisterUser and Enter. Event RegisterUser models
the situation where a new user p registers with the system. Guard @grd2 ensures
that the maximum number of registered users will not exceed the limit maxsize.

event RegisterUser
any pwhere
@grd1: p ∈ PERSON \ register
@grd2: size �= maxsize
then
@act1: register := register ∪ {p}
@act2: size := size + 1
end

Event Enter models the situation where a user p enters a building b given that
they have the necessary permission.
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event Enter
any p bwhere
@grd1: p ∈ register
@grd2: b ∈ building
@grd3: p /∈ dom(location)
@grd4: p �→ b ∈ permission
then
@act1: location(p) := b
end

In Sect. 3.2, we will use this example to illustrate our approach to translate
Event-B models to SPARK.

3 Contributions

In this section, we first discuss about the translation of the Event-B mathemat-
ical language into SPARK, then present the translation of the Event-B models.

3.1 Translation of the Mathematical Language

In term of the translation of the Event-B mathematical language into corre-
sponding constructs in SPARK, our aim is to cover as much as possible the
Event-B mathematical language. Due to the abstractness of the Event-B math-
ematical language, we focus on the collection of often-used constructs, including
sets and relations.

Translation of Types. The built-in types in Event-B, i.e., Z and BOOL, are
directly represented as Integer and Boolean in SPARK. Note that there is already
a mismatch as Integer in SPARK are finite and bounded while Z is mathematical
set of integers (infinite). However, any range check, i.e., to ensure that integer
value are within the range from Min Int and Max Int, will be done in SPARK.
Other basic types in Event-B are user-defined carrier sets and they will be trans-
lated as enumerated type or sub-type of Integer (see Sect. 3.2).

Translation of Sets. With the exception of BOOL and enumeration, Event-B
types are often represented as sub-types of Integer in SPARK. As a result, we
can represent Event-B sets as SPARK arrays of Boolean value, indexed by the
Integer range.

type set is array (Integer range<>) ofBoolean;

As a result, a set S containing elements of type T can be declared as

S : set(T);

Subsequently, membership in Event-B, e.g., e ∈ S can be translated as S(e) =True
in SPARK.
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Translation of Relations. Similar to translation of sets, we use two-
dimensional SPARK arrays of Boolean values to represent relations. The two
dimensional arrays are indexed by two Integer ranges corresponding to the type
of the domain and range of the relations.

type relation is array (Integer range<>, Integer range<>) ofBoolean;

Hence, a relation r∈ S↔ T (where S and T are types) can be declared as

r : relation(S, T)

For a tuple e f , membership of a relation r, i.e., e f∈ r will be translated as

r(e, f) =True in SPARK.
With this approach to represent sets and relations, these Event-B constructs

can thus only have carrier sets (but not enumeration) or Integer type elements,
not BOOL. In the future, we will add different translation construct involving
enumerations and BOOL.

Translation of Predicates. For propositional operators, such as ¬, ∧, ∨, ⇒
and ⇔, the translation to SPARK is as expected. In the following, for each
formula F in Event-B, let EB2SPARK(F) be the translation of F in SPARK.

– ¬ P is translated as not EB2SPARK(P).
– P1∧ P2 is translated as EB2SPARK(P1) and then EB2SPARK(P2)
– P1∨ P2 is translated as EB2SPARK(P1) or else EB2SPARK(P2)
– P1⇒ P2 is translated as if EB2SPARK(P1) then EB2SPARK(P2)
– P1⇔ P2 is translated as
if EB2SPARK(P1) then EB2SPARK(P2) else (not EB2SPARK(P2))

For quantifiers, i.e., ∀ and ∃, we need to extract the type of the bound variable
accordingly, i.e.,

– ∀z · P is translated as for all z in z type=> EB2SPARK(P)
– ∃z · P is translated as for some z in z type=> EB2SPARK(P)

Translation of Relational Operators. For relational operators such as ⊆, ⊂,
etc., there are no direct corresponding construct in SPARK. We can translate
according to their mathematical definition. For example S⊆T can be translated
as

for all x in S’Range=> (if S(x) then x inT’Range and thenT(x))

(Note that S and T are translated as Boolean arrays in SPARK). To improve
the translation process, we define a utility function isSubset as follows.

function isSubset (s1 : set; s2 : set) returnBoolean is
(for all x in s1’Range=> (if (s1(x) then x in s2’Range and then s2(x))));



Towards Generating SPARK from Event-B Models 109

With this function S⊆T can be simply translated as isSubset(S,T). Other rela-
tional operators are translated similarly.

The supporting definitions, e.g., definitions for sets and relations, and utility
functions, are collected in a supporting SPARK package, namely sr.ads, that
will be included in every generated files. The translation is described in details
in [17].

3.2 Translation of Event-B Models

Each Event-B model (including the contexts and the machine) will correspond
to a SPARK Ada package. We focus at the moment on the package specification.
The package body, i.e., the implementation, can be generated similarly and is
our future work.

with sr; use sr;
packagem0with SPARK Mode is
−− code generated for m0 (including seen contexts)
endm0;

In particular, each Event-B event corresponds to a procedure where the guard
contributes to the precondition and the action contributes to the post-condition.
In the following, we describe in details the translation of the different modelling
elements.

Translation of Carrier Sets. Carrier sets are types in Event-B and can be
enumerated sets or deferred sets. An enumerated set S containing elements E1,
..., En in Event-B is defined as follows.

sets S
constants E1, ..., En
axioms
@def−S: partition(S, {E1}, ..., {En})

It is straightforward to represent the enumeration in SPARK as follows.

type S is (E1, ..., En);

A deferred set in Event-B will be represented as an Integer subtype in
SPARK. As a result, we require that the deferred set in Event-B to be finite
and with a specified cardinality. That is, it is declared in Event-B as follows,
where n is a literal.

sets S
axioms
@finite−S: finite(S)
@card−S: card(S) = n
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In fact, a carrier set in Event-B provides two concept: a user-defined type
and a set containing all elements of that type. As a result, there are two different
SPARK elements that are generated:

– A type declaration S type.
– A variable S corresponding to the set which a Boolean array containing True

indicating that set contains all elements of S type.

subtype S type is Integer range 1 .. n;
S : set(S type) := (others=>True);

Example 1 (Translation of Carrier Sets). The carrier sets PEOPLE and
BUILDING in the example from Sect. 2.3 are translated as follows.

subtypePEOPLE type is integer range 1 .. 10;
PEOPLE : set (PEOPLE type) := (others=>True);
subtypeBUILDING type is integer range 1 .. 4;
BUILDING : set (BUILDING type) := (others=>True);

Translation of Constants. Event-B constants are translated constant vari-
ables in SPARK. Since constant variable declarations in SPARK require that
the variable be defined with a value, an axiom defining the value of the constant
is also required. As a result, only constants with axioms specifying their values
are translated. For example, the following constant C is specified in Event-B as
follows, where n is a integer literal.

constants C
axioms
@def−C: C = n

The specification is translated into SPARK as follows.

C : constant Integer := n;

Example 2 (Translation of Constants). The constant maxsize in the example
from Sect. 2.3 is translated as follows.

maxsize : constant Integer := 3;

Translation of Axioms. For each Event-B axiom, an expression function is
generated. The name of the function is the axiom label and the predicate is
translated according to Sect. 3.1. At the moment, we do not generate SPARK
function for axioms about finiteness: all variables in SPARK are finite. We also do
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not generate SPARK function for axioms about cardinality: they are non-trivial
to specify and reason about with arrays. For convenience, we also generate an
expression function represent all axioms of the model; we call this expression
function Axioms. We also include in this Axioms constraints about carrier sets,
that is they contain all elements of the types.

Example 3. Translation of Axioms. The translation of axioms for the example
in Sect. 2.3 is as follows

function def maxsize returnBoolean is (maxsize = 3);
functionAxioms returnBoolean is (
isFullSet(PEOPLE) and then
isFullSet(BUILDING) and then
def maxsize);

Here isFullSet is a function defined in sr.ads, ensuring that PEOPLE and
BUILDING are arrays containing only True.

Translation of Variables. Each variable in Event-B corresponds to a variable
in SPARK. For the variable declaration in SPARK, we need to extract the type
of the Event-B variable. At the moment, we support variable types of either
basic types (T), set of basic types (P(T)), and relations between basic types
(P(T1×T2)).

Example 4. Translation of Variables The translation of the variables for the
example in Sect. 2.3 is as follows.

register : set (PEOPLE type);
size : Integer;
location : relation (PEOPLE type, BUILDING type);
permission: relation (PEOPLE type, BUILDING type);

Translation of Invariants. Each invariant corresponds to an expression func-
tion (similar to axioms) and these invariant functions are used as pre- and
post-conditions of every procedures. For convenience, we define an expression
function, namely Invariants as the conjunction of all invariants.

Example 5 (Translation of Invariants). The translation of the invariants of the
example in Sect. 2.3 is as follows.

function inv1 returnBoolean is (isSubset(register, PEOPLE));

function inv2 returnBoolean is (size<= maxsize);

function inv3 returnBoolean is
isPartialFunction(location, register, BUILDING);
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function inv4 returnBoolean
is isRelation(permission, register, BUILDING);

function inv5 returnBoolean is isSubset(location, permission);

function Invariants returnBoolean is (
inv1 and then
inv2 and then
inv3 and then
inv4 and then
inv5

)

Translation of Events. For each Event-B event, a procedure of the same
name is generated. The Event-B event parameters corresponding to the SPARK
procedure input parameters. The other aspects of the specification, i.e., Global,
Depends, Pre and Post are computed accordingly. The following Event-B event

event e
any pwhere
...
then
...
end

is translated into a SPARK procedure with the following structure.

procedure e(p : in p type)with
Pre =>Axioms and then Invariants and then event guards
Post =>Axioms and then Invariants and then event actions
Global =>Computed from the event actions,
Depends =>Computed from the event actions,

First of all, the Pre and the Post aspects contain both the axioms and invari-
ants. Since SPARK does not provide notation for invariants, we just make the
assertions in the pre- and post-conditions of all procedures (except for the one
corresponding to the INITIALISATION, where assertions only appear in the
post-condition). The translation of guards are the translation of the individ-
ual guard predicate as described in Sect. 3.1. For each action the corresponding
SPARK post-condition is generated as follows.

– v := E(p, v) is translated as v= E(p, v’Old)
– v :∈ E(p, v) is translated as isMember(v, E(p, v’Old))
– v :| E(p, v, v’) is translated as E(p, v’Old, v)
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Global aspect specifies the access to the global variables and it could be In
(for variables that are read), Out (variables that are updated but not read),
In Out (for variables that are both read and updated) or Proof In (variables
that only used in Precondition, i.e., for proving). We generate variables In, Out
or In Out based on how they are used in the event actions. Any other variables
will be Proof In as the preconditions references all variables (since they include
all axioms and invariants).

Depends aspect specifies the dependency between the Output variables and
the Input variables. We generate the Depends aspects by inspecting individ-
ual assignment. Each individual assignment corresponds to an Depends aspects
clause, where the left-hand side of the clause is the variable on the left-hand size
of the assignment, and the right-hand size of the clause are all variables on the
right-hand size of the assignment.

Example 6 (Translation of the INITIALISATION event). The INITIALISATION
event in the example from Sect. 2.3 is translated as follows.

procedure INITIALISATIONwith
Pre =>Axioms,
Post =>
Axioms and then
Invariants and then
isEmpty(register) and then
size = 0 and then
isEmpty(location) and then
isEmpty(permission),

Global => (
Out=> (register, size, location, permission),
Proof In => (PEOPLE, BUILDING, maxsize)

)
Depends => (
register => null,
size => null,
location => null,
permission => null

)
end INITIALISATION;

Example 7 (Translation of the Enter event). The Enter event in the example
from Sect. 2.3 is translated as follows.

procedureEnter(p : inPEOPLE type, b : inBUILDING type)with
Pre =>
Axioms and then
Invariants and then
register(p) and then
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BUILDING(b) and then
not (inDomain(p, location)) and then
permission(p, b),

Post =>
Axioms and then
Invariants and then
(for all x in location’Range(1) =>
if x /= p then (for all y in location’Range(2) =>

location(x, y) = location’Old(x,y))
else (for all y in location’Range(2) =>

if y /= b then not location(x, y)
else location(x, y))

),
Global => (
In Out => (location),
Proof In => (PEOPLE, BUILDING, maxsize, register, size, permission)

)
Depends => (
location => (location, p, b),

)
endEnter;

Here the effect of updating a function is specified using universal quantifiers to
ensure that only the location of person p is updated to be b.

4 Discussion

A prototype plug-in was developed for the Rodin platform [2]. The plug-in pro-
vide a context menu for Event-B machine to translate the machine to SPARK
specification package. Since the Event-B to SPARK translator requires informa-
tion such as types of variables, etc., the plug-in looks at the statically checked
version of the machine then generate the SPARK specification according to the
translation described in Sect. 3.

Beside the example of building access control system, we also generate
SPARK code from other models, such as a room booking system, a club man-
agement system [10], controlling car on a bridge [1]. Note that the plug-in only
generate the specification of the package at the moment. We have manually writ-
ten the package body according to the Event-B model and prove that the model
is consistent. More details about these examples can be found in [17].

4.1 Code Scheduling

At the moment, we only generate the SPARK code corresponding to individual
events. Combination of these events according to some scheduling rules, such
as [13] or some user-defined schedule, such as [8] will be our future work. To
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investigate the possibility, we also applied our approach to generate SPARK
code for developing a lift system (the example used in [16]) and manually wrote
the scheduled code in SPARK. The code corresponds to the Event-B model
including events for controlling the door of the lift, controlling the lift motor,
and changing the direction of travel. Some events relevant for our scheduling
example are as follows.

– DoorClosed2Half Up: to open the door from Closed to Half-closed while the
lift travel upwards,

– MotorWinds: to wind the lift motor,
– ChangeDirectionDown CurrentFloor: to change the lift travel direction to down-

ward due to a request at the current floor to go down.
– ChangeDirectionDown BelowFloor: to change the lift travel direction to down-

ward due to a request below the current floor.

Our manually written scheduled code are as follows

ifmotor = STOPPED then
case door is
whenCLOSED =>
if direction = UP then
if hasRequest Up
then
DoorClosed2Half Up;

else
if
floorRequestAbove or
upRequestAbove or
downRequestAbove

then
MotorWinds;

else
if floor /= 0 and then down buttons array(floor) = TRUE then
ChangesDirectionDown CurrentFloor;

elsif
floorRequestBelow or
upRequestBelow or
downRequestBelow

then
ChangesDirectionDown BelowFloor;

end if;
end if;

end if;
else−− direction =Down
...

end if;
whenOPEN => ...
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whenHALF => ...
end case;

else−−motor /= STOPPED
...

end if;

In the above, hasRequest Up, floorRequestAbove, upRequestAbove, etc. are local
variables capturing the different requests for the lift. The manually writ-
ten code invokes the different procedures generated from the Event-B model,
e.g., MotorWinds, DoorClosed2Half Up, ChangesDirectionDown CurrentFloor, and
ChangesDirectionDown BelowFloor. SPARK generates verification conditions to
ensure the correctness of our schedule, e.g., the preconditions of the procedures
are met when the they are invoked. We plan to utilise the framework from [8]
to allow users to specify the schedule and generate the SPARK scheduling code
accordingly. The elevator model and the manually written SPARK code are
available from https://doi.org/10.5258/SOTON/D1554.

4.2 Record Data Structures

At the moment, our main data structures for the generated SPARK code is
Boolean arrays (one-dimensional arrays for sets and two-dimensional arrays for
relations). Some modelling elements are better grouped and represented as record
data structures in the code. To investigate the idea, we extend the lift example to
a MULTI-lift system. The example is inspired by an actual lift system [18]. The
systems allows multiple cabins running on a single shaft system vertically and
horizontally. In our formal model, we have variables modelling the status of the
different cabins in the lift system, e.g., the floor position (cabins floor), the cabin
motor status (cabins motor), the door status (cabins door), the current shaft of
the cabin (cabins shaft), and the cabin floor buttons (cabins floor buttons). The
types of the variables are as follows.

invariants
@typeof−cabins floor: cabins floor∈ CABIN → 0 .. TOP FLOOR
@typeof−cabins motor: cabins motor∈ CABIN → MOTOR
@typeof−cabins door: cabins door∈ CABIN →DOOR
@typeof−cabins shaft: cabins shaft ∈ cabins→ SHAFT
@typeof−floor buttons: floor buttons ∈ cabins→ P(0 ..TOP FLOOR)

With our current approach, the variables will be translated individually as
Boolean arrays. It is more natural to use a SPARK record to represent the cabin
status. For example, the following CABIN Type record can be used to capture
the different attributes of a cabin.

typeCABIN Type is record
floor : Integer; −−The current floor of the cabin
motor : MOTOR Type; −−The current status of the cabin motor
door : DOOR Type; −−The current status of the door

https://doi.org/10.5258/SOTON/D1554
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shaft : SHAFT Type; −−The current shaft of the cabin

−−The current floor buttons status inside the cabin
floor buttons : array (Integer range 0 .. TOP FLOOR) ofBoolean;

end record;

Recognising the record data structures from the Event-B model is one of our
future research directions.

5 Related Work

Generating SPARK code from Event-B models has been considered in [13]. Their
approach involves not only generating pre- and post-conditions, along with loop
invariants, but also generates implementing SPARK code from Event-B models,
using the merging rules described by [1], which describe how to generate sequen-
tial programs from Event-B models. However, the model used in [13] is fairly
concrete, in particular in terms of the data structure used in the model. We aim
to derive proof annotations from models where mathematically abstract concepts
such as sets and relations are used. Given this, the merging rules used in [13]
may not be applicable to very abstract models, as such an algorithm may not be
represented or derivable. Furthermore, merging rules [1] can only be applied to
model with a certain structure where the scheduling is implicitly encoded in the
event guards. In our paper, we focus on the translation of the data structure.
Furthermore, the translation rules from Event-B to SPARK assertions shown
in [13] are limited, particularly in terms of set-theoretical constructs. This is an
issue to address given Event-B is a set-theory-focused modelling tool.

Generating proof annotations from Event-B models has been investigated
in [8]. Their work explores the mapping between Event-B and Dafny [12] con-
structs. This paper claims that a “direct mapping between the two is not straight
forward”. Due to the increased richness of the Event-B notation compared to
Dafny, only a subset of Event-B constructs can be translated. Similar to [13], the
authors of [8] suggest that a particular level of refinement must be achieved by
the Event-B model, to reduce “the syntactic gap between Event-B and Dafny”.
However, the level of refinement required is needed to have a model contain-
ing only those mathematical constructs which have a counterpart in Dafny, not
to obtain a model with a clear algorithmic structure present in its events. As
such, this approach can still translate fairly abstract models. Their paper states
the assumption that the “machine that is being translated is a data refinement
of the abstract machine and none of the abstract variables are present in the
refined machine”. Their approach uses Hoare logic [11], by transforming events
into Hoare triples, and deriving the relevant pre- and post-conditions.

Translation of Event-B models into Dafny is also the scope of [7]. The Dafny
code generated is then verified using the verification tools available to Dafny.
The translation is done so that Dafny code is “correct if and only if the Event-B
refinement-based proof obligations hold”. In other words, their approach allows
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users to verify the correctness of their models using a powerful verification tool.
Specifically, their paper focuses on refinement proof obligations, showing that the
concrete model is a correct refinement of the abstract model. While this is outside
of the scope of our paper, it nevertheless introduces some translation rules which
are relevant for us. For example, their paper demonstrates how invariants may
be translated into Dafny and used in pre-conditions. It also shows an example
of how relations in Event-B may be modelled in Dafny.

Another approach explored is the translation of Event-B to JML-annotated
Java programs [14], which provides a translation “through syntactic rules”. JML
provides specifications which Java programs must adhere to, and so it is similar
to contracts. Their approach generates Java code as well as JML specifications.
Unlike the previous approaches, instead of grouping similar events, every single
event is translated independently. This is perhaps not as efficient, as grouping
similar events and using specific case guards in the post-conditions to differen-
tiate between the expected outcomes can give an insight into how these events
interact. Additionally, event grouping also saves space in the generated code by
having fewer methods. This is only foreseen to be a problem when the trans-
lated model is concrete, and has several events representing different situational
implementations of a single abstract event. Their paper demonstrates transla-
tion rules of machines and events to JML-annotated programs. The approach of
deriving the JML specifications can possibly be adapted for our purpose, and
can perhaps be considered an alternative approach to the one by [8]. However,
an interesting point to note from their paper is that the approach given has the
ability to generate code even from abstract models. The translation rules given
can generate code from variables and assignments to variables in actions, in any
level of abstraction or refinement. Hence, this approach of generating code can
possibly be adapted for the generation of SPARK code.

6 Conclusion

In summary, we present in this paper an approach to generate SPARK code
from Event-B models. We focus on covering as much as possible the Event-
B mathematical language by representing sets and relations as Boolean arrays
in SPARK. Each Event-B event is translated into a SPARK procedure with
pre- and post-conditions, and aspects for flow analysis (i.e., Global and Depends
aspects). Axiom and invariance properties of the models are translated into
SPARK expression functions and are asserted as both pre- and post-conditions
for the generated SPARK procedures. A prototype plug-in for the Rodin plat-
form is developed and evaluated on different examples. We discuss the possible
improvement of the approach including generating code corresponding to some
schedule and using record data structure.

In term of translating sets and relations, we have also considered different
approaches including using functional sets and formal ordered sets [3]. Our
experiment shows that these representations have limited support for set and
relational operators and did not work well with the SPARK provers.
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For future work, we plan to include the generation of the procedure body with
our prototype. The generation will base on the representation of sets and rela-
tions by Boolean arrays. We expect that this extension will be straightforward.
As mentioned earlier, generating SPARK record data structures from Event-B
models is another research direction. The challenge here is to recognise the ele-
ments in the Event-B models corresponding to records. With the introduction
of records in Event-B [9], the mapping from Event-B elements to record data
structures will become straightforward. Furthermore, we aim to develop a devel-
opment process that starts from modelling at the system level using Event-B,
gradually develop the system via refinement and generate SPARK code including
event scheduling and data structure such as records.

During system development by refinement in Event-B, abstract variables can
be replaced (data refined) by concrete variables. This allows (mathematically)
abstract concepts to be replaced by concrete implementation details. Often, sys-
tems properties are expressed using abstract variables and are maintained by
refinement. In this sense, abstract variables are similar to ghost variables in
SPARK. We plan to investigate the translation of abstract variables in Event-B
as ghost variables in SPARK.

Models in Event-B are typically system models, that is they contain not only
the details about the software system but also the model of the environment
where the software system operates. Using decomposition [15], the part of the
model corresponding to the software systems can be extracted. Nevertheless,
having a “logical” model of the environment will also be useful and it can be
represented again using ghost code in SPARK.

Acknowledgements. Supporting material for this study is openly available from the
University of Southampton repository at https://doi.org/10.5258/SOTON/D1554.
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