
Philosophers May Dine - Definitively!

Safouan Taha1(B), Burkhart Wolff2, and Lina Ye3

1 Université Paris-Saclay, CentraleSupélec, LRI, 91190 Gif-sur-Yvette, France
safouan.taha@lri.fr

2 Université Paris-Saclay, LRI, 91190 Gif-sur-Yvette, France
wolff@lri.fr

3 Université Paris-Saclay, CentraleSupélec, LRI, INRIA, 91190 Gif-sur-Yvette, France
lina.ye@lri.fr

Abstract. The theory of Communicating Sequential Processes going
back to Hoare and Roscoe is still today one of the reference theories for
concurrent specification and computing. In 1997, a first formalization in
Isabelle/HOL of the denotational semantics of the Failure/Divergence
Model of CSP was undertaken; in particular, this model can cope with
infinite alphabets, in contrast to model-checking approaches limited to
finite ones. In this paper, we extend this theory to a significant degree
by taking advantage of more powerful automation of modern Isabelle
version, which came even closer to recent developments in the semantic
foundation of CSP.

More importantly, we use this formal development to analyse a fam-
ily of refinement notions, comprising classic and new ones. This anal-
ysis enabled us to derive a number of properties that allow to deepen
the understanding of these notions, in particular with respect to speci-
fication decomposition principles in the infinite case. Better definitions
allow to clarify a number of obscure points in the classical literature,
for example concerning the relationship between deadlock- and livelock-
freeness. As a result, we have a modern environment for formal proofs
of concurrent systems that allow to combine general infinite processes
with locally finite ones in a logically safe way. We demonstrate a number
of verification-techniques for classical, generalized examples: The Copy-
Buffer and Dijkstra’s Dining Philosopher Problem of an arbitrary size.

Keywords: Process-algebra · Concurrency · Computational models

1 Introduction

Communicating Sequential Processes (CSP) is a language to specify and verify
patterns of interaction of concurrent systems. Together with CCS and LOTOS,
it belongs to the family of process algebras. CSP’s rich theory comprises deno-
tational, operational and algebraic semantic facets and has influenced program-
ming languages such as Limbo, Crystal, Clojure and most notably Golang [15].
CSP has been applied in industry as a tool for specifying and verifying the
concurrent aspects of hardware systems, such as the T9000 transputer [6].
c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 419–439, 2020.
https://doi.org/10.1007/978-3-030-63461-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63461-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-63461-2_23

420 S. Taha et al.

The theory of CSP was first described in 1978 in a book by Tony Hoare
[20], but has since evolved substantially [9,10,29]. CSP describes the most com-
mon communication and synchronization mechanisms with one single language
primitive: synchronous communication written -[[-]]-. CSP semantics is described
by a fully abstract model of behaviour designed to be compositional : the deno-
tational semantics of a process P encompasses all possible behaviours of this
process in the context of all possible environments P [[S]] Env (where S is the
set of atomic events both P and Env must synchronize on). This design objec-
tive has the consequence that two kinds of choice have to be distinguished:

1. the external choice, written -�-, which forces a process “to follow” whatever
the environment offers, and

2. the internal choice, written -�-, which imposes on the environment of a pro-
cess “to follow” the non-deterministic choices made.

Generalizations of these two operators �x ∈ A. P (x) and
�

x ∈ A. P (x)
allow for modeling the concepts of input and output : Based on the prefix oper-
ator a→P (event a happens, then the process proceeds with P), receiving
input is modeled by �x ∈ A. x→P (x) while sending output is represented by�

x∈ A. x→P (x). Setting choice in the center of the language semantics implies
that deadlock-freeness becomes a vital property for the well-formedness of a pro-
cess, nearly as vital as type-checking: Consider two events a and b not involved
in a process P , then (a→P � b→P) [[{a,b}]] (a→P � b→P) is deadlock free
provided P is, while (a→P � b→P) [[{a,b}]] (a→P � b→P) deadlocks (both
processes can make “ruthlessly” an opposite choice, but are required to synchro-
nize).

Verification of CSP properties has been centered around the notion of pro-
cess refinement orderings, most notably -�FD- and -�-. The latter turns the
denotational domain of CSP into a Scott cpo [33], which yields semantics for
the fixed point operator μx. f(x) provided that f is continuous with respect to
-�-. Since it is possible to express deadlock-freeness and livelock-freeness as a
refinement problem, the verification of properties has been reduced traditionally
to a model-checking problem for finite set of events A.

We are interested in verification techniques for arbitrary event sets A or
arbitrarily parameterized processes. Such processes can be used to model dense-
timed processes, processes with dynamic thread creation, and processes with
unbounded thread-local variables and buffers. However, this adds substantial
complexity to the process theory: when it comes to study the interplay of different
denotational models, refinement-orderings, and side-conditions for continuity,
paper-and-pencil proofs easily reach their limits of precision.

Several attempts have been undertaken to develop a formal theory in an
interactive proof system, mostly in Isabelle/HOL [12,23,28,37]. This paper is
based on [37], which has been the most comprehensive attempt to formalize
denotational CSP semantics covering a part of Bill Roscoe’s Book [29]. Our
contributions are as follows:

Philosophers May Dine - Definitively! 421

– we ported [37] from Isabelle93-7 and ancient ML-written proof scripts to a
modern Isabelle/HOL version and structured Isar proofs, and extended it
substantially,

– we introduced new refinement notions allowing a deeper understanding of the
CSP Failure/Divergence model, providing some meta-theoretic clarifications,

– we used our framework to derive new types of decomposition rules and
stronger induction principles based on the new refinement notions, and

– we integrate this machinery into a number of advanced verification tech-
niques, which we apply to two generalized paradigmatic examples in the CSP
literature, the CopyBuffer and Dining Philosophers1.

2 Preliminaries

2.1 Denotational CSP Semantics

The denotational semantics of CSP (following [29]) comes in three layers: the
trace model, the (stable) failures model and the failure/divergence model.

In the trace semantics model, a process P is denoted by a set of communi-
cation traces, built from atomic events. A trace here represents a partial history
of the communication sequence occurring when a process interacts with its envi-
ronment. For the two basic CSP processes Skip (successful termination) and
Stop (just deadlock), the semantic function T of the trace model just gives the
same denotation, i.e.the empty trace: T (Skip) = T (Stop) = {[]}. Note that the
trace sets, representing all partial history, is in general prefix closed.

Example 1. Let two processes be defined as follows:

1. Pdet = (a → Stop) � (b → Stop)
2. Pndet = (a → Stop) � (b → Stop)

These two processes Pdet and Pndet cannot be distinguished by using the trace
semantics: T (Pdet) = T (Pndet) = {[],[a],[b]}. To resolve this problem, Brookes
[9] proposed the failures model, where communication traces were augmented
with the constraint information for further communication that is represented
negatively as a refusal set. A failure (t, X) is a pair of a trace t and a set of events
X, called refusal set, that a process can refuse if any of the events in X were
offered to him by the environment after performing the trace t. The semantic
function F in the failures model maps a process to a set of refusals. Let Σ
be the set of events. Then, {([],Σ)} ⊆ F Stop as the process Stop refuses all
events. For Example 1, we have {([],Σ\{a,b}),([a],Σ),([b],Σ)} ⊆ F Pdet, while
{([],Σ\{a}),([],Σ\{b}),([a],Σ),([b],Σ)} ⊆ F Pndet (the - ⊆ - refers to the fact
that the refusals must be downward closed; we show only the maximal refusal

1 All proofs concerning the HOL-CSP 2 core have been published in the Archive of
Formal Proofs [36]; all other proofs are available at https://gitlri.lri.fr/burkhart.
wolff/hol-csp2.0. In this paper, all Isabelle proofs are omitted.

https://gitlri.lri.fr/burkhart.wolff/hol-csp2.0
https://gitlri.lri.fr/burkhart.wolff/hol-csp2.0

422 S. Taha et al.

sets here). Thus, internal and external choice, also called nondeterministic and
deterministic choice, can be distinguished in the failures semantics.

However, it turns out that the failures model suffers from another deficiency
with respect to the phenomenon called infinite internal chatter or divergence.

Example 2. The following process Pinf is an infinite process that performs a
infinitely many times. However, using the CSP hiding operator -\-, this activity
is concealed:

1. Pinf = (μ X. a → X) \ {a}

where Pinf will correspond to ⊥ in the process cpo ordering. To distinguish
divergences from the deadlock process, Brookes and Roscoe proposed fail-
ure/divergence model to incorporate divergence traces [10]. A divergence trace is
the one leading to a possible divergent behavior. A well behaved process should
be able to respond to its environment in a finite amount of time. Hence, diver-
gences are considered as a kind of a catastrophe in this model. Thus, a process
is represented by a failure set F , together with a set of divergence traces D; in
our example, the empty trace [] belongs to D Pinf .

The failure/divergence model has become the standard semantics for an enor-
mous range of CSP research and the implementations of [1,34]. Note, that the
work of [23] is restricted to a variant of the failures model only.

2.2 Isabelle/HOL

Nowadays, Isabelle/HOL is one of the major interactive theory development
environments [27]. HOL stands for Higher-Order Logic, a logic based on simply-
typed λ-calculus extended by parametric polymorphism and Haskell-like type-
classes. Besides interactive and integrated automated proof procedures, it offers
code and documentation generators. Its structured proof language Isar is inten-
sively used in the plethora of work done and has been a key factor for the success
of the Archive of Formal Proofs (https://www.isa-afp.org).

For the work presented here, one relevant construction is:

– typedef (α1, ..., αn)t = E

It creates a fresh type that is isomorphic to a set E involving α1, ..., αn types.
Isabelle/HOL performs a number of syntactic checks for these constructions that
guarantee the logical consistency of the defined constants or types relative to
the axiomatic basis of HOL. The system distribution comes with rich libraries
comprising Sets, Numbers, Lists, etc. which are built in this “conservative” way.

For this work, a particular library called HOLCF is intensively used. It
provides classical domain theory for a particular type-class α :: pcpo, i.e.the class
of types α for which

1. a complete partial order -�- is defined, and
2. a least element ⊥ is defined.

https://www.isa-afp.org

Philosophers May Dine - Definitively! 423

For these types, HOLCF provides a fixed-point operator μX. f X,
fixed-point induction and other (automated) proof infrastructure. Isabelle’s
type-inference can automatically infer, for example, that if α :: pcpo, then
(β ⇒ α) :: pcpo.

3 Formalising Denotational CSP Semantics in HOL

3.1 Process Invariant and Process Type

First, we need a slight revision of the concept of trace: if Σ is the type of the
atomic events (represented by a type variable), then we need to extend this type
by a special event

√
(called “tick”) signaling termination. Thus, traces have the

type (Σ+
√

)∗, written Σ
√∗; since

√
may only occur at the end of a trace, we

need to define a predicate front tickFree t that requires from traces that
√

can
only occur at the end.

Second, in the traditional literature, the semantic domain is implicitly
described by 9 “axioms” over the three semantic functions T , F and D. Infor-
mally:

– the initial trace of a process must be empty;
– any allowed trace must be front tickFree;
– traces of a process are prefix-closed ;
– a process can refuse all subsets of a refusal set;
– any event refused by a process after a trace s must be in a refusal set associ-

ated to s;
– the tick accepted after a trace s implies that all other events are refused;
– a divergence trace with any suffix is itself a divergence one
– once a process has diverged, it can engage in or refuse any sequence of events.
– a trace ending with

√
belonging to divergence set implies that its maximum

prefix without
√

is also a divergent trace.

Formally, a process P of the type Σ process should have the following properties:

([],{}) ∈ F P ∧
(∀ s X. (s,X) ∈ F P −→ front-tickFree s) ∧
(∀ s t . (s@t,{}) ∈ F P −→ (s,{}) ∈ F P) ∧
(∀ s X Y. (s,Y) ∈ F P ∧ X ⊆ Y −→ (s,X) ∈ F P) ∧
(∀ s X Y. (s,X) ∈ F P ∧ (∀ c ∈ Y. ((s@[c],{}) /∈ F P)) −→ (s,X ∪ Y) ∈ F P) ∧
(∀ s X. (s@[

√
],{}) ∈ F P −→ (s,X−{√}) ∈ F P) ∧

(∀ s t. s ∈ D P ∧ tickFree s ∧ front-tickFree t −→ s@t ∈ D P) ∧
(∀ s X. s ∈ D P −→ (s,X) ∈ F P) ∧
(∀ s. s@[

√
] ∈ D P −→ s ∈ D P)

Our objective is to encapsulate this wishlist into a type constructed as a
conservative theory extension in our theory HOL-CSP. Therefore third, we define
a pre-type for processes Σ process0 by P(Σ

√∗ ×P(Σ
√

)) ×P(Σ
√∗). Fourth, we

turn our wishlist of “axioms” above into the definition of a predicate is-process P
of type Σ process0 ⇒ bool deciding if its conditions are fulfilled. Since P is a
pre-process, we replace F by fst and D by snd (the HOL projections into a
pair). And last not least fifth, we use the following type definition:

424 S. Taha et al.

– typedef ′α process = {P :: ′α process0 . is-process P}

Isabelle requires a proof for the existence of a witness for this set, but this can
be constructed in a straight-forward manner. Suitable definitions for T , F and
D lifting fst and snd on the new ′α process-type allows to derive the above
properties for any P :: ′α process.

3.2 CSP Operators over the Process Type

Now, the operators of CSP Skip, Stop, -�-, -�-, -→-, -[[-]]- etc. for internal choice,
external choice, prefix and parallel composition, can be defined indirectly on
the process-type. For example, for the simple case of the internal choice, we
construct it such that -�- has type ′α process ⇒ ′α process ⇒ ′α process and
such that its projection laws satisfy the properties F (P � Q) = F P ∪ F Q and
D (P � Q) = D P ∪ D Q required from [29]. This boils down to a proof that an
equivalent definition on the pre-process type Σ process0 maintains is-process,
i.e.this predicate remains invariant on the elements of the semantic domain. For
example, we define -�- on the pre-process type as follows:

– definition P � Q ≡ Abs-process(F P ∪ F Q , D P ∪ D Q)

where F = fst ◦ Rep-process and D = snd ◦ Rep-process and where
Rep-process and Abs-process are the representation and abstraction mor-
phisms resulting from the type definition linking ′α process isomorphically to
′α process0. Proving the above properties for F (P � Q) and D (P � Q) requires
a proof that (F P ∪ F Q , D P ∪ D Q) satisfies the 9 “axioms”, which is fairly
simple in this case.

The definitional presentation of the CSP process operators according to [29]
follows always this scheme. This part of the theory comprises around 2000 loc.

3.3 Refinement Orderings

CSP is centered around the idea of process refinement; many critical proper-
ties, even ones typically considered as “liveness properties”, can be expressed
in terms of these, and a conversion of processes in terms of (finite) labelled
transition systems leads to effective model-checking techniques based on graph-
exploration. Essentially, a process P refines another process Q if and only if
it is more deterministic and more defined (has less divergences). Consequently,
each of the three semantics models (trace, failure and failure/divergence) has its
corresponding refinement orderings. What we are interested in this paper is the
following refinement orderings for the failure/divergence model.

1. P �FD Q ≡ F P ⊇ F Q ∧ D P ⊇ D Q
2. P �T D Q ≡ T P ⊇ T Q ∧ D P ⊇ D Q
3. P �F Q ≡ F P ⊇ F Q, F∈ {T ,F ,D}

Philosophers May Dine - Definitively! 425

Notice that in the CSP literature, only �FD is well studied for fail-
ure/divergence model. Our formal analysis of different granularities on the refine-
ment orderings allows deeper understanding of the same semantics model. For
example, �T D turns out to have in some cases better monotonicity properties
and therefore allow for stronger proof principles in CSP. Furthermore, the refine-
ment ordering �F analyzed here is different from the classical failure refinement
in the literature that is studied for the stable failure model [29], where failures
are only defined for stable states, from which no internal progress is possible.

3.4 Process Ordering and HOLCF

For any denotational semantics, the fixed point theory giving semantics to sys-
tems of recursive equations is considered as keystone. Its prerequisite is a com-
plete partial ordering -�-. The natural candidate -�FD- is unfortunately not
complete for infinite Σ for the generalized deterministic choice, and thus for the
building block of the read-operations.

Roscoe and Brooks [31] finally proposed another ordering, called the process
ordering, and restricted the generalized deterministic choice in a particular way
such that completeness could at least be assured for read-operations. This more
complex ordering is based on the concept refusals after a trace s and defined by
R P s ≡ {X | (s, X) ∈ F P}.

Definition 1 (process ordering). We define P � Q ≡ ψD ∧ ψR ∧ ψM,
where

1. ψD = D P ⊇ D Q
2. ψR = s /∈ D P ⇒ R P s = R Q s
3. ψM = Mins(D P) ⊆ T Q

Note that the third condition ψM implies that the set of minimal divergent
traces (ones with no proper prefix that is also a divergence) in P , denoted by
Mins(D P), should be a subset of the trace set of Q. It is straight-forward to
define the least element ⊥ in this ordering by F(⊥) = {(s,X). front-tickFree s}
and D(⊥) = {s. front-tickFree s}

While the original work [37] was based on an own—and different—fixed-
point theory, we decided to base HOL-CSP 2 on HOLCF (initiated by [26] and
substantially extended in [21]). HOLCF is based on parametric polymorphism
with type classes. A type class is actually a constraint on a type variable by
respecting certain syntactic and semantic requirements. For example, a type class
of partial ordering, denoted by α :: po, is restricted to all types α possessing a
relation ≤:α ×α → bool that is reflexive, anti-symmetric, and transitive. Isabelle
possesses a construct that allows to establish, that the type nat belongs to this
class, with the consequence that all lemmas derived abstractly on α :: po are in
particular applicable on nat. The type class of po can be extended to the class
of complete partial ordering cpo. A po is said to be complete if all non-empty
directed sets have a least upper bound (lub). Finally the class of pcpo (Pointed
cpo) is a cpo ordering that has a least element, denoted by ⊥. For pcpo ordering,

426 S. Taha et al.

two crucial notions for continuity (cont) and fixed-point operator (μX. f(X))
are defined in the usual way. A function from one cpo to another one is said to
be continuous if it distributes over the lub of all directed sets (or chains). One
key result of the fixed-point theory is the proof of the fixed-point theorem:

cont f =⇒ μX. f(X) = f(μX. f(X))

For most CSP operators ⊗ we derived rules of the form:

cont P =⇒ cont Q =⇒ cont(λx. (P x) ⊗ (Q x))

These rules allow to automatically infer for any process term if it is continuous
or not. The port of HOL-CSP 2 on HOLCF implied that the derivation of the
entire continuity rules had to be completely re-done (3000 loc).
HOL-CSP provides an important proof principle, the fixed-point induction:

cont f =⇒ adm Pr =⇒ Pr ⊥ =⇒ (
∧

X. X =⇒ Pr(f X)) =⇒ Pr(μX. f X)

Fixed-point induction requires a small side-calculus for establishing the admis-
sibility of a predicate; basically, predicates are admissible if they are valid for
any least upper bound of a chain x1 � x2 � x3 ... provided that ∀ i. P r(xi).
It turns out that -�- and -�F D- as well as all other refinement orderings that
we introduce in this paper are admissible. Fixed-point inductions are the main
proof weapon in verifications, together with monotonicities and the CSP laws.
Denotational arguments can be hidden as they are not needed in practical veri-
fications.

3.5 CSP Rules: Improved Proofs and New Results

The CSP operators enjoy a number of algebraic properties: commutativity, asso-
ciativities, and idempotence in some cases. Moreover, there is a rich body of dis-
tribution laws between these operators. Our new version HOL-CSP 2 not only
shortens and restructures the proofs of [37]; the code reduces to 8000 loc from
25000 loc. Some illustrative examples of new established rules are:

– �x ∈ A ∪ B→P (x) = (�x ∈ A→P x) � (�x ∈ B→P x)

– A∪B ⊆C =⇒ (�x∈A→P x [[C]] �x∈B→Q x) = �x∈A∩B→(P x [[C]] Q x)
– A ⊆ C =⇒B ∩ C={} =⇒ (�x ∈ A→P x [[C]] �x ∈ B→Q x) = �x ∈ B→(�x ∈ A→P x [[C]] Q x)

– finite A =⇒ A ∩ C = {} =⇒ ((P [[C]] Q) \ A) = ((P \ A) [[C]] (Q \ A)) ...

Philosophers May Dine - Definitively! 427

The continuity proof of the hiding operator is notorious. The proof is known
to involve the classical König’s lemma stating that every infinite tree with finite
branching reference processes are

has an infinite path. We adapt this lemma to our context as follows:

infinite tr =⇒ ∀ i. finite{t. ∃ t′ ∈ tr. t = take i t′}
=⇒ ∃ f. strict-mono f ∧ range f ⊆ {t. ∃ t′ ∈ tr. t ≤ t′}

in order to come up with the continuity rule: finite S =⇒ cont P =⇒
cont(λX. P X \ S). Our current proof was drastically shortened by a factor
10 compared to the original one and important immediate steps generalized:
monotonicity, for example, could be generalized to the infinite case.

As for new laws, consider the case of (P \ A) \ B = P \ (A ∪ B) which
is stated in [30] without proof. In the new version, we managed to establish
this law which still need 450 lines of complex Isar code. However, it turned out
that the original claim is not fully true: it can only be established again by
König’s lemma to build a divergent trace of P \ (A ∪ B) which requires A
to be finite (B can be arbitrary) in order to use it from a divergent trace o
f (P \ A) \ B 2. Again, we want to argue that the intricate number of cases to
be considered as well as their complexity makes pen and paper proofs practically
infeasible.

4 Theoretical Results on Refinement

4.1 Decomposition Rules

In our framework, we implemented the pcpo process refinement together with the
five refinement orderings introduced in Sect. 3.3. To enable fixed-point induction,
we first have the admissibility of the refinements.

cont u =⇒ mono v =⇒ adm(λx. u x �F v x) where F∈{T ,F ,D,T D,FD}

Next we analyzed the monotonicity of these refinement orderings, whose
results are then used as decomposition rules in our framework. Some CSP oper-
ators, such as multi-prefix and non-deterministic choice, are monotonic under
all refinement orderings, while others are not.

– External choice is not monotonic only under �F , with the following mono-
tonicities proved:

P �F P ′ =⇒ Q �F Q′ =⇒ (P � Q) �F (P ′ � Q′) where F∈ {T ,D,T D,FD}

– Sequence operator is not monotonic under �F , �D or �T :

P �F P ′=⇒ Q �F Q′ =⇒ (P ; Q) �F (P ′ ; Q′) where F∈ {T D,FD}
2 In [30], the authors point out that the laws involving the hiding operator may fail

when A is infinite; however, they fail to give the precise conditions for this case.

428 S. Taha et al.

– Hiding operator is not monotonic under �D:

P �F Q =⇒ P \ A �F Q \ A where F∈{T ,F ,T D,FD}

– Parallel composition is not monotonic under �F , �D or �T :

P �F P ′ =⇒ Q �F Q′ =⇒ (P [[A]] Q) �F (P ′ [[A]] Q′) where F∈ {T D,FD}

4.2 Reference Processes and Their Properties

We now present reference processes that exhibit basic behaviors, introduced in
fundamental CSP works [30]. The process RUN A always accepts events from
A offered by the environment. The process CHAOS A can always choose to
accept or reject any event of A. The process DF A is the most non-deterministic
deadlock-free process on A, i.e., it can never refuse all events of A. To handle
termination better, we added two new processes CHAOSSKIP and DFSKIP .

Definition 2. RUN A ≡ μ X. � x ∈ A → X

Definition 3. CHAOS A ≡ μ X. (STOP � (� x ∈ A → X))

Definition 4. CHAOSSKIP A ≡ μ X. (SKIP � STOP � (� x ∈ A → X))

Definition 5. DF A ≡ μ X. (� x ∈ A → X)

Definition 6. DFSKIP A ≡ μ X. ((� x ∈ A → X) � SKIP)

In the following, we denote RP = {DFSKIP ,DF , RUN, CHAOS,
CHAOSSKIP }. All five reference processes are divergence-free.

D (P UNIV) = {} where P ∈ RP and UNIV is the set of all events

Regarding the failure refinement ordering, the set of failures F P for any
process P is a subset of F (CHAOSSKIP UNIV).

CHAOSSKIP UNIV �F P

The following 5 relationships were demonstrated from monotonicity results and
a denotational proof. Thanks to transitivity, we can derive other relationships.

1. CHAOSSKIP A �F CHAOS A
2. CHAOSSKIP A �F DFSKIP A
3. CHAOS A �F DF A
4. DFSKIP A �F DF A
5. DF A �F RUN A

Last, regarding trace refinement, for any process P, its set of traces T P is a
subset of T (CHAOSSKIP UNIV) and of T (DFSKIP UNIV) as well.

Philosophers May Dine - Definitively! 429

1. CHAOSSKIP UNIV �T P
2. DFSKIP UNIV �T P

Recall that a concurrent system is considered as being deadlocked if no
component can make any progress, caused for example by the competition for
resources. In opposition to deadlock, processes can enter infinite loops inside
a sub-component without ever interact with their environment again (“infinite
internal chatter”); this situation called divergence or livelock. Both properties are
not just a sanity condition; in CSP, they play a central role for verification. For
example, if one wants to establish that a protocol implementation IMPL satis-
fies a non-deterministic specification SPEC it suffices to ask if IMPL || SPEC
is deadlock-free. In this setting, SPEC becomes a kind of observer that signals
non-conformance of IMPL by deadlock.

In the literature, deadlock and livelock are phenomena that are often handled
separately. One contribution of our work is establish their precise relationship
inside the Failure/Divergence Semantics of CSP.

Definition 7. deadlock free P ≡ DFSKIP UNIV �F P

A process P is deadlock-free if and only if after any trace s without
√

, the union
of

√
and all events of P can never be a refusal set associated to s, which means

that P cannot be deadlocked after any non-terminating trace.

Theorem 1 (DF definition captures deadlock-freeness).
deadlock-freeP ←→ (∀ s∈ T P. tickFree s −→ (s, {√} ∪ events-of P) /∈ F P)

Definition 8. livelock free P ≡ D P = {}

Recall that all five reference processes are livelock-free. We also have the
following lemmas about the livelock-freeness of processes:

1. livelock free P ←→ P UNIV �D P where P ∈ RP
2. livelock free P ←→ DFSKIP UNIV 	T D P ←→ CHAOSSKIP UNIV 	T D P

3. livelock free P ←→ CHAOSSKIP UNIV �FD P

Finally, we proved the following theorem.

Theorem 2 (DF implies LF). deadlock-free P −→ livelock-free P

This is totally natural, at a first glance, but surprising as the proof of
deadlock-freeness only requires failure refinement �F (see Definition 7) where
divergence traces are mixed within the failures set. Note that the existing tools
in the literature normally detect these two phenomena separately, such as FDR
for which checking livelock-freeness is very costly. In our framework, deadlock-
freeness of a given system implies its livelock-freeness. However, if a system is
not deadlock-free, then it may still be livelock-free.

430 S. Taha et al.

5 Advanced Verification Techniques

Based on the refinement framework discussed in Sect. 4, we will now turn to
some more advanced proof principles, tactics and verification techniques. We
will demonstrate them on two paradigmatic examples well-known in the CSP
literature: The CopyBuffer and Dijkstra’s Dining Philosophers. In both cases,
we will exploit the fact that HOL-CSP 2 allows for reasoning over infinite CSP;
in the first case, we reason over infinite alphabets approaching an old research
objective: exploiting data-independence [2,25] in process verification. In the lat-
ter case, we present an approach to a verification of a parameterized architecture,
in this case a ring-structure of arbitrary size.

5.1 The General CopyBuffer Example

We consider the paradigmatic copy buffer example [20,30] that is characteristic
for a specification of a prototypical process and its implementation. It is used
extensively in the CSP literature to illustrate the interplay of communication,
component concealment and fixed-point operators. The process COPY , defined
as follows, is a specification of a one size buffer, that receives elements from the
channel left of arbitrary type α (left?x) and outputs them on the channel right
(right!x):

datatype α events = left α | right α | mid α | ack

definition COPY ≡ (μ X. left?x → (right!x → X))

From our HOL-CSP 2 theory that establishes the continuity of all CSP operators,
we deduce that such a fixed-point process COPY exists and follows the unrolling
rule below:

lemma COPY = (left?x → (right!x → COPY))

We set SEND and REC in parallel but in a row sharing a middle channel
mid and synchronizing with an ack event. Then, we hide all exchanged events
between these two processes and we call the resulting process SY STEM :

definition SEND ≡ (μ X. left?x → (mid!x → (ack → X)))
definition REC ≡ (μ X. mid?x → (right!x → (ack → X)))
definition SY N ≡ (range mid) ∪ {ack}
definition SYSTEM ≡ (SEND [[SY N]] REC) \ SY N

We want to verify that SY STEM implements COPY . As shown below, we
apply fixed-point induction to prove that SY STEM refines COPY using the
pcpo process ordering � that implies all other refinement orderings. We state:

lemma: COPY � SYSTEM

and apply fixed-point induction over COPY that generates three subgoals:

Philosophers May Dine - Definitively! 431

1. adm (λa. a � SYSTEM
2. ⊥ � SYSTEM
3. P � SYSTEM =⇒ left?x → right!x → P � SYSTEM

The first two sub-proofs are automatic simplification proofs; the third requires
unfolding SEND and REC one step and applying the algebraic laws. No deno-
tational semantics reasoning is necessary here; it is just an induct-simplify proof
consisting of 2 lines proof-script involving the derived algebraic laws of CSP.

After proving that SYSTEM implements COPY for arbitrary alphabets, we
aim to profit from this first established result to check which relations SYSTEM
has wrt. to the reference processes of Sect. 4.2. Thus, we prove that COPY is
deadlock-free which implies livelock-free, (proof by fixed-point induction sim-
ilar to lemma: COPY � SYSTEM), from which we can immediately infer
from transitivity that SY STEM is. Using refinement relations, we killed four
birds with one stone as we proved the deadlock-freeness and the livelock-freeness
for both COPY and SY STEM processes. These properties hold for arbitrary
alphabets and for infinite ones in particular.

lemma DF UNIV � COPY

corollary deadlock-free COPY
and livelock-free COPY
and deadlock-free SYSTEM
and livelock-free SYSTEM

5.2 New Fixed-Point Inductions

The copy buffer refinement proof DF UNIV � COPY is a typical one step
induction proof with two goals: base: ⊥ � Q and 1−ind: X � Q =⇒ (- → X) � Q.
Now, if unfolding the fixed-point process Q reveals two steps, the sec-
ond goal becomes X � Q =⇒ - → X � - → - → Q. Unfortunately,
this way, it becomes improvable using monotonicities rules. We need here
a two-step induction of the form base0: ⊥ � Q, base1: - → ⊥ � Q and
2−ind: X � Q =⇒ - → - → X � - → - → Q to have a sufficiently power-
ful induction scheme.

For this reason, we derived a number of alternative induction schemes (which
are not available in the HOLCF library), which are also relevant for our final Din-
ing Philosophers example. These are essentially adaptions of k-induction schemes
applied to domain-theoretic setting (so: requiring f continuous and P admissible;
these preconditions are skipped here):

– ... =⇒ ∀ i<k. P (f i ⊥) =⇒ (∀X. (∀ i<k. P (f i X)) −→ P (fk X)) =⇒ P (µX. f X)

– ... =⇒ ∀ i<k. P (f i ⊥) =⇒ (∀X. P X −→ P (fk X)) =⇒ P (μX. f X)

In the latter variant, the induction hypothesis is weakened to skip k steps. When
possible, it reduces the goal size.

432 S. Taha et al.

Another problem occasionally occurring in refinement proofs happens when
the left side term involves more than one fixed-point process (e.g.P [[{A}]] Q � S).
In this situation, we need parallel fixed-point inductions. The HOLCF library
offers only a basic one:

– ...=⇒ P ⊥ ⊥ =⇒ (∀X Y. P X Y =⇒ P (f X) (g Y))=⇒ P (µX. f X) (µX. g X)

This form does not help in cases like in P [[∅]] Q � S with the interleaving
operator on the left-hand side. The simplifying law is:

(�x∈A→P x [[∅]] �x∈B→Q x) = (�x∈A → (P x [[∅]] �x∈B → Q x)

� (�x∈B → (�x∈A → P x [[∅]] Q x))

Here, (f X [[∅]] g Y) does not reduce to the (X [[∅]] Y) term but to two terms
(f X [[∅]] Y) and (X [[∅]] g Y). To handle these cases, we developed an advanced
parallel induction scheme and we proved its correctness:

–

... =⇒ (∀Y. P ⊥ Y) =⇒ (∀X. P X ⊥)

=⇒ ∀X Y. (P X Y ∧ P (f X) Y ∧ P X (g Y)) −→ P (f X) (g Y)

=⇒ P (µX. f X) (µX. g X)

which allows for a “independent unrolling” of the fixed-points in these proofs.
The astute reader may notice here that if the induction step is weakened (having
more hypotheses), the base steps require enforcement.

5.3 Normalization

Our framework can reason not only over infinite alphabets, but also over pro-
cesses parameterized over states with an arbitrarily rich structure. This paves
the way for the following technique, that trades potentially complex process
structure against equivalent simple processes with potentially rich state.

Roughly similar to labelled transition systems, we provide for deterministic
CSP processes a normal form that is based on an explicit state. The general
schema of normalized processes is defined as follows:

Pnorm[[τ ,υ]] ≡ μ X. (λσ. �e∈ (τ σ) → X (υ σ e))

where τ is a transition function which returns the set of events that can be
triggered from the current state σ given as parameter. The update function υ
takes two parameters σ and an event e and returns the new state. This normal
form is closed under deterministic and communication operators.

The advantage of this format is that we can mimick the well-known product
automata construction for an arbitrary number of synchronized processes under
normal form. We only show the case of the synchronous product of two processes:

Philosophers May Dine - Definitively! 433

Theorem 3 (Product Construction). Parallel composition translates to
normal form:

(Pnorm[[τ1,υ1]] σ1) || (Pnorm[[τ2,υ2]] σ2) =
Pnorm[[λ(σ1,σ2). τ1 σ1 ∩ τ2 σ2 , λ(σ1,σ2).λe.(υ1 σ1 e, υ2 σ2 e)]] (σ1,σ2)

The generalization of this rule for a list of (τ ,υ)-pairs is straight-forward, albeit
the formal proof is not. The application of the generalized form is a corner-
stone of the proof of the general dining philosophers problem illustrated in the
subsequent section.

Another advantage of normalized processes is the possibility to argue over
the reachability of states via the closure R, which is defined inductively over:

– σ ∈ R τ υ σ
– σ ∈ R τ υ σ0 =⇒ e ∈ τ σ =⇒ υ σ e ∈ R τ υ σ0

Thus, normalization leads to a new characterization of deadlock-freeness
inspired from automata theory. We formally proved the following theorem:

Theorem 4 (DF vs. Reachability). If each reachable state s ∈ (R τ υ) has
outgoing transitions, the CSP process is deadlock-free:

∀σ ∈ (R τ υ σ0). τ σ �= {} =⇒ deadlock-free (Pnorm[[τ ,υ]] σ0)

This theorem allows for establishing properties such as deadlock-freeness by
completely abstracting from CSP theory; these are arguments that only involve
inductive reasoning over the transition function.

Summing up, our method consists of four stages:

1. we construct normalized versions of component processes and prove them
equivalent to their counterparts,

2. we state an invariant over the states/variables,
3. we prove by induction over R that it holds on all reachable states, and finally
4. we prove that this invariant guarantees the existence of outgoing transitions.

5.4 Generalized Dining Philosophers

The dining philosophers problem is another paradigmatic example in the CSP
literature often used to illustrate synchronization problems between an arbitrary
number of concurrent systems. It is an example of a process scheme for which
general properties such as deadlock-freeness are desirable in order to inherit them
for specific instances. The general dining philosopher problem for an arbitrary
N is presented in HOL-CSP 2 as follows

434 S. Taha et al.

datatype dining-event = picks (phil::nat) (fork::nat)

| putsdown (phil::nat) (fork::nat)

| eat (phil::nat)

definition LPHIL0 ≡ (µ X. (picks 0 (N−1) → (picks 0 0 → eat 0 →
(putsdown 0 0 → (putsdown 0 (N−1) → X)))))

definition RPHIL i ≡ (µ X. (picks i i → (picks i (i−1) → eat i →
(putsdown i (i−1) → (putsdown i i → X)))))

definition FORK i ≡ (µ X. (picks i i → (putsdown i i → X))

�(picks (i+1)%N i →(putsdown (i+1)%N i → X)))

definition PHILs ≡ LPHIL0 ||| (|||i ∈ 1..N RPHIL i)

definition FORKs ≡ |||i ∈ 0..N FORK i

definition DINING ≡ FORKs [[picks, putsdown]] PHILs

Note that both philosophers and forks are pairwise independent but both syn-
chronize on picks and putsdown events. The philosopher of index 0 is left-handed
whereas the other N−1 philosophers are right-handed. We want to prove that
any configuration is deadlock-free for an arbitrary number N.

First, we put the fork process into normal form. It has three states: (0) on
the table, (2) picked by the right philosopher or (1) picked by the left one:

definition transf i σ ≡ if σ = 0 then {picks i i, picks (i+1)%N i}
else if σ = 1 then {putsdown i i}
else if σ = 2 then {putsdown (i+1)%N i}
else {}

definition updf i σ e ≡ if e = (picks i i) then 1
else if e = (picks (i+1)%N i) then 2
else 0

definition FORKnorm i ≡ Pnorm[[transf i, updf i]]

To validate our choice for the states, transition function transf and update
function updf , we prove that they are equivalent to the original process
components: FORKnorm i = FORK i. The anti-symmetry of refinement
breaks this down to the two refinement proofs FORKnorm i � FORK i and
FORK i � FORKnorm i, which are similar to the CopyBuffer example shown
in Sect. 5.1. Note, again, that this fairly automatic induct-simplify-proof just
involves reasoning on the derived algebraic rules, not any reasoning on the level
of the denotational semantics.

Philosophers May Dine - Definitively! 435

From the generalization of “Theorem 3, we obtain normalized processes for
FORKs, PHILs and DINING:

definition transF ≡ λfs. (
⋂

i<N
. transf i (fs!i))

definition updF ≡ λfs e. let i=(fork e) in fs[i:=(updf i (fs!i) e)]

lemma FORKs = Pnorm[[transF , updF]] ...
lemma PHILS = Pnorm[[transP , updP]] ...

definition transD ≡ λ(ps,fs). (transP ps) ∩ (transF fs)
definition updD ≡ λ(ps,fs) e. (updP ps e, updF fs e)

lemma DINING = Pnorm[[transD, updD]]

The variable ps stands for the list of philosophers states and fs for the list of
forks states, both are of size N . The pair (ps, fs) encodes the whole dining
table state over which we need to define an invariant to ensure that no blocking
state is reachable and thus the dining philosophers problem is deadlock-free.
As explained before, the proof is based on abstract reasoning over relations
independent from the CSP context.

The last steps towards our goal are the following definitions and lemmas:

definition INVDINING ps fs ≡ (∀ i. ((fs!i=1) ↔ ps!i �= 0) ∧ ...)
lemma (ps,fs) ∈ R transD updD =⇒ INVDINING ps fs ...
lemma INVDINING ps fs =⇒ transD (ps, fs) �= {} ...

corollary deadlock-free DINING

To sum up, we proved once and for all that the dining philosophers problem
is deadlock free for an arbitrary number N ≥ 2. Common model-checkers like
PAT and FDR fail to answer for a dozen of philosophers (on a usual machine)
due to the exponential combinatorial explosion. Furthermore, our proof is fairly
stable against modifications like adding non synchronized events like thinking or
sitting down in contrast to model-checking techniques.

6 Related Work

The theory of CSP has attracted a lot of interest from the eighties on, and
is still a fairly active research area, both as a theoretical device as well as a
modelling language to analyze complex concurrent systems. It is therefore not
surprising that attempts to its formalisation had been undertaken early with
the advent of interactive theorem proving systems supporting higher-order logic
[12,16,17,22,37], where especially the latter allows for some automated support
for refinement proofs based on induction. However, HOL-CSP2 is based on a
failure/divergence model, while [22] is based on stable failures, which can infer
deadlock-freeness only under the assumption that no livelock occurred; In our
view, this is a too strong assumption for both the theory as well as the tool.

436 S. Taha et al.

In the 90ies, research focused on automated verification tools for CSP, most
notably on FDR [1]. It relies on an operational CSP semantics, allowing for a
conversion of processes into labelled transition systems, where the states are
normalized by the “laws” derived from the denotational semantics. For finite
event sets, refinement proofs can be reduced to graph inclusion problems. With
efficient compression techniques, such as bisimulation, elimination and factor-
ization by semantic equivalence [32], FDR was used to analyze some industrial
applications. However, such a model checker cannot handle infinite cases and
does not scale to large systems.

The fundamental limits of automated decision procedures for data and pro-
cesses has been known very early on: Undecidability of parameterized model
checking was proven by reduction to non-halting of Turing machines [35].
However, some forms of well-structured transitions systems, could be demon-
strated to be decidable [8,18]. HOL-CSP2 is a fully abstract model for the fail-
ure/divergence model; as a HOL theory, it is therefore a “relative complete proof
theory” both for infinite data as well as number of components. (see [3] for rel-
ative completeness).

Encouraged by the progress of SMT solvers which support some infinite types,
notably (fixed arrays of) integers or reals, and limited forms of formulas over
these types, SMT-based model-checkers represent the current main-stream to
parametric model-checking. This extends both to LTL-style model-checkers for
Promela-like languages [14,24] as well as process-algebra alikes [4,5,7]. However,
the usual limitations persist: the translation to SMT is hardly certifiable and the
solvers are still not able to handle non-linear computations; moreover, they fail
to elaborate inductive proofs on data if necessary in refinement proofs.

Some systems involve approximation techniques in order to make the for-
mal verification of concurrent systems scalable; results are sometimes inherently
imprecise and require meta-level arguments assuring their truth in a specific
application context. For example, in [5], the synchronization analysis techniques
try to prove the unreachability of a system state by showing that components
cannot agree on the order or on the number of times they participate on sys-
tem rules. Even with such over-approximation, the finiteness restriction on the
number of components persists.

Last but not least, SMT-based tools only focusing on bounded model-
checking like [13,19] use k-induction and quite powerful invariant generation
techniques but are still far from scalable techniques. While it is difficult to make
any precise argument on the scalability for HOL-CSP 2, we argue that we have
no data-type restrictions (events may have realvector-, function- or even pro-
cess type) as well as restrictions on the structure of components. None of our
paradigmatic examples can be automatically proven with any of the discussed
SMT techniques without restrictions.

7 Conclusion

We presented a formalisation of the most comprehensive semantic model for CSP,
a ‘classical’ language for the specification and analysis of concurrent systems

Philosophers May Dine - Definitively! 437

studied in a rich body of literature. For this purpose, we ported [37] to a modern
version of Isabelle, restructured the proofs, and extended the resulting theory of
the language substantially. The result HOL-CSP 2 has been submitted to the
Isabelle AFP [36], thus a fairly sustainable format accessible to other researchers
and tools.

We developed a novel set of deadlock - and livelock inference proof principles
based on classical and denotational characterizations. In particular, we formally
investigated the relations between different refinement notions in the presence
of deadlock - and livelock; an area where traditional CSP literature skates over
the nitty-gritty details. Finally, we demonstrated how to exploit these results for
deadlock/livelock analysis of protocols.

We put a large body of abstract CSP laws and induction principles together to
form concrete verification technologies for generalized classical problems, which
have been considered so far from the perspective of data-independence or struc-
tural parametricity. The underlying novel principle of “trading rich structure
against rich state” allows to convert processes into classical transition systems
for which established invariant techniques become applicable.

Future applications of HOL-CSP 2 could comprise a combination to model
checkers, where our theory with its derived rules is used to certify the output
of a model-checker over CSP. In our experience, generated labelled transition
systems may be used to steer inductions or to construct the normalized processes
Pnorm[[τ ,υ]] automatically, thus combining efficient finite reasoning over finite
sub-systems with globally infinite systems in a logically safe way.

Acknowledgement. This paper has been written with Isabelle/DOF [11].

References

1. FDR4 - The CSP Refinement Checker (2019). https://www.cs.ox.ac.uk/projects/
fdr/

2. An, J., Zhang, L., You, C.: The design and implementation of data independence in
the CSP model of security protocol. Adv. Mater. Res. 915–916, 1386–1392 (2014).
https://doi.org/10.4028/www.scientific.net/AMR.915-916.1386

3. Andrews, P.: An Introduction to Mathematical Logic and Type Theory. Applied
Logic Series. Springer, Netherlands (2002). https://doi.org/10.1007/978-94-015-
9934-4

4. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient deadlock-freedom
checking using local analysis and SAT solving. In: Ábrahám, E., Huisman, M.
(eds.) IFM 2016. LNCS, vol. 9681, pp. 345–360. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33693-0 22

5. Antonino, P., Gibson-Robinson, T., Roscoe, A.W.: Efficient verification of concur-
rent systems using synchronisation analysis and SAT/SMT solving. ACM Trans.
Softw. Eng. Methodol. 28(3), 18:1–18:43 (2019)

6. Barrett, G.: Model checking in practice: the t9000 virtual channel processor. IEEE
Trans. Softw. Eng. 21(2), 69–78 (1995). https://doi.org/10.1109/32.345823

https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.ox.ac.uk/projects/fdr/
https://doi.org/10.4028/www.scientific.net/AMR.915-916.1386
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-94-015-9934-4
https://doi.org/10.1007/978-3-319-33693-0_22
https://doi.org/10.1007/978-3-319-33693-0_22
https://doi.org/10.1109/32.345823

438 S. Taha et al.

7. Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R.:
D-Finder 2: towards efficient correctness of incremental design. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
453–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
5 32

8. Bloem, R., et al.: Decidability in parameterized verification. SIGACT News 47(2),
53–64 (2016)

9. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

10. Brookes, S.D., Roscoe, A.W.: An improved failures model for communicating pro-
cesses. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY 1984.
LNCS, vol. 197, pp. 281–305. Springer, Heidelberg (1985). https://doi.org/10.1007/
3-540-15670-4 14

11. Brucker, A.D., Wolff, B.: Isabelle/DOF: design and implementation. In: Ölveczky,
P.C., Salaün, G. (eds.) SEFM 2019. LNCS, vol. 11724, pp. 275–292. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30446-1 15

12. Camilleri, A.J.: A higher order logic mechanization of the CSP failure-divergence
semantics. In: Birtwistle, G. (ed.) IV Higher Order Workshop, Banff 1990. WORK-
SHOPS COMP., pp. 123–150. Springer, London (1991). https://doi.org/10.1007/
978-1-4471-3182-3 9

13. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 29

14. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

15. Donovan, A., Kernighan, B.: The Go Programming Language. Addison-Wesley
Professional Computing Series. Pearson Education, London (2015)

16. Feliachi, A., Gaudel, M.-C., Wolff, B.: Unifying theories in Isabelle/HOL. In: Qin,
S. (ed.) UTP 2010. LNCS, vol. 6445, pp. 188–206. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16690-7 9

17. Feliachi, A., Gaudel, M.-C., Wolff, B.: Isabelle/Circus: a process specification and
verification environment. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 243–260. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27705-4 20

18. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

19. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind model
checker. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 20–27. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 3

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

21. Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in
Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603,
pp. 147–162. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868 10

22. Isobe, Y., Roggenbach, M.: A complete axiomatic semantics for the CSP stable-
failures model. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137,
pp. 158–172. Springer, Heidelberg (2006). https://doi.org/10.1007/11817949 11

https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/978-3-642-20398-5_32
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/3-540-15670-4_14
https://doi.org/10.1007/978-3-030-30446-1_15
https://doi.org/10.1007/978-1-4471-3182-3_9
https://doi.org/10.1007/978-1-4471-3182-3_9
https://doi.org/10.1007/978-3-319-41540-6_29
https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-642-16690-7_9
https://doi.org/10.1007/978-3-642-27705-4_20
https://doi.org/10.1007/978-3-642-27705-4_20
https://doi.org/10.1007/978-3-319-96142-2_3
https://doi.org/10.1007/11541868_10
https://doi.org/10.1007/11817949_11

Philosophers May Dine - Definitively! 439

23. Isobe, Y., Roggenbach, M.: CSP-prover: a proof tool for the verification of scalable
concurrent systems. Inf. Media Technol. 5(1), 32–39 (2010). https://doi.org/10.
11185/imt.5.32

24. Konnov, I., Widder, J.: ByMC: byzantine model checker. In: Margaria, T., Steffen,
B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03424-5 22

25. Lazic, R.S.: A semantic study of data-independence with applications to the
mechanical verification of concurrent systems. Ph.D. thesis, University of Oxford
(1999)

26. Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF.
J-FP 9(2), 191–223 (1999). https://doi.org/10.1017/S095679689900341X

27. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45949-9

28. Noce, P.: Conservation of CSP noninterference security under sequential com-
position. Archive of Formal Proofs (2016). https://www.isa-afp.org/entries/
Noninterference Sequential Composition.shtml

29. Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall, Upper Saddle River
(1997)

30. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-1-84882-258-0

31. Roscoe, A.W.: An alternative order for the failures model. J. Logic Comput. 2,
557–577 (1992)

32. Roscoe, A.W., Gardiner, P.H.B., Goldsmith, M.H., Hulance, J.R., Jackson, D.M.,
Scattergood, J.B.: Hierarchical compression for model-checking CSP or how to
check 1020 dining philosophers for deadlock. In: Brinksma, E., Cleaveland, W.R.,
Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp.
133–152. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 7

33. Scott, D.: Continuous lattices. In: Lawvere, F.W. (ed.) Toposes, Algebraic Geom-
etry and Logic. LNM, vol. 274, pp. 97–136. Springer, Heidelberg (1972). https://
doi.org/10.1007/BFb0073967

34. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

35. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett.
28(4), 213–214 (1988)

36. Taha, S., Ye, L., Wolff, B.: HOL-CSP Version 2.0. Archive of Formal Proofs (2019).
http://isa-afp.org/entries/HOL-CSP.html

37. Tej, H., Wolff, B.: A corrected failure-divergence model for CSP in Isabelle/HOL.
In: Fitzgerald, J., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp.
318–337. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63533-5 17

https://doi.org/10.11185/imt.5.32
https://doi.org/10.11185/imt.5.32
https://doi.org/10.1007/978-3-030-03424-5_22
https://doi.org/10.1017/S095679689900341X
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://www.isa-afp.org/entries/Noninterference_Sequential_Composition.shtml
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/3-540-60630-0_7
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/978-3-642-02658-4_59
http://isa-afp.org/entries/HOL-CSP.html
https://doi.org/10.1007/3-540-63533-5_17

	Philosophers May Dine - Definitively!
	1 Introduction
	2 Preliminaries
	2.1 Denotational CSP Semantics
	2.2 Isabelle/HOL

	3 Formalising Denotational CSP Semantics in HOL
	3.1 Process Invariant and Process Type
	3.2 CSP Operators over the Process Type
	3.3 Refinement Orderings
	3.4 Process Ordering and HOLCF
	3.5 CSP Rules: Improved Proofs and New Results

	4 Theoretical Results on Refinement
	4.1 Decomposition Rules
	4.2 Reference Processes and Their Properties

	5 Advanced Verification Techniques
	5.1 The General CopyBuffer Example
	5.2 New Fixed-Point Inductions
	5.3 Normalization
	5.4 Generalized Dining Philosophers

	6 Related Work
	7 Conclusion
	References

