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Abstract. We develop a complementation procedure and an equiva-
lence checker for nondeterministic Büchi automata. Both are formally
verified using the proof assistant Isabelle/Hol. The verification covers
everything from the abstract correctness proof down to the generated
Sml code.

The complementation follows the rank-based approach. We formalize
the abstract algorithm and use refinement to derive an executable imple-
mentation. In conjunction with a product operation and an emptiness
check, this enables deciding language-wise equivalence between nonde-
terministic Büchi automata. We also improve and extend our library for
transition systems and automata presented in previous research.

Finally, we develop a command-line executable providing complemen-
tation and equivalence checking as a verified reference tool. It can be used
to test the output of other, unverified tools. We also include some tests
that demonstrate that its performance is sufficient to do this in practice.
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1 Introduction

Büchi complementation is the process of taking a Büchi automaton, and con-
structing another Büchi automaton which accepts the complementary language.
It is a much-researched topic [10,15,20,37,38]. In fact, it has been so popu-
lar that there are now several meta-papers [41,43] chronologuing the research
itself. Much of this research has focused on the state complexity of the result-
ing automata (see Sect. 2.3). However, Büchi complementation also has com-
pelling applications. Model checking usually requires having the property to
be checked against as either a formula or a deterministic Büchi automaton, as
those are easily negated and complemented, respectively [15]. However, having
access to a general complementation procedure, it becomes possible to decide
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language containment between arbitrary nondeterministic Büchi automata. This
not only allows for more general model checking, but also enables checking if two
automata are equivalent in terms of their language.

Unfortunately, complementation algorithms are complicated and their cor-
rectness proofs are involved. This is common in the model checking setting and
there are examples of algorithms widely believed to be correct turning out not
to be [8,18,40]. The situation is especially troubling as these tools act as trust
multipliers. That is, the trust in the correctness of one tool is used to justify con-
fidence in the correctness of the many entities that it checks. Motivated by this
situation, our goal is to formally verify one such complementation algorithm.

We use the proof assistant Isabelle/Hol [34] for this. Thanks to its Lcf-like
architecture, Isabelle/Hol and the formalizations it facilitates grant very strong
correctness guarantees. Our contributions are as follows.

1. Formalization of rank-based complementation [20] theory
2. Formally verified complementation implementation
3. Formally verified equivalence checker
4. Extension and continued development of automata library [7,9]

In previous work, Stephan Merz formalized complementation of weak alter-
nating automata [33]. He also started working on a formalization of Büchi com-
plementation. However, this only covers the first part of the complementation
procedure and was never finished or published. Thus, our work constitutes what
we believe to be the first formally verified implementation of Büchi complemen-
tation. The verification gaplessly covers everything from the abstract correctness
proof to the executable Sml code.

The equivalence checker can be used as a command-line tool to check
automata in the Hanoi Omega-Automata format [1]. It takes the role of a
trusted reference implementation that can be used to test the correctness of
other tools, like those translating from Ltl formulae to automata. With an
equivalence checker, it is possible to test whether several algorithms produce
automata with identical languages, given the same formula. It is also possible to
test if an algorithm that simplifies automata preserves their language.

2 Theory

We follow the rank-based complementation construction described in [20]. The
central concept here is the odd ranking, a function f that certifies the rejection of
a word w by the automaton A. The complement automaton A is then designed
to nondeterministically search for such an odd ranking, accepting if and only if
one exists. Thus, the complement automaton accepts exactly those words that
the original automaton rejects.

w /∈ L A ⇐⇒ ∃ f. odd_ranking A w f ⇐⇒ w ∈ L A (1)

Having access to complement and product operations as well as an emptiness
check, we can then decide language containment.

L A ⊆ L B ⇐⇒ L A ∩ L B = ∅ ⇐⇒ L (
A × B

)
= ∅ (2)
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Checking for containment in both directions then leads to a decision procedure
for language-wise equivalence of Büchi automata.

2.1 Notation

We introduce some basic notation. Let w ∈ Σω be an infinite sequence and wk ∈
Σ be the symbol at index k in w. Let A = (Σ,Q, I, δ, F ) be a nondeterministic
Büchi automaton with alphabet Σ, states Q, initial states I :: Q set, successor
function δ :: Σ → Q → Q set, and acceptance condition F :: Q → bool. Let
L A ⊆ Σω denote the language of automaton A.

2.2 Complementation

We want to realize complementation according to Eq. 1. For this, we need to
define odd rankings and the complement automaton. We also need to define run
Dags as a prerequisite for odd rankings.

A run Dag is a graph whose nodes are pairs of states and natural numbers.
Given an automaton A and a word w, we define it inductively as follows.

Definition 1 (Run Dag). G = (V,E) with V ⊆ Q × N and E ⊆ V × V

p ∈ I =⇒ (p, 0) ∈ V

(p, k) ∈ V =⇒ q ∈ δ wk p =⇒ (q, k + 1) ∈ V

(p, k) ∈ V =⇒ q ∈ δ wk p =⇒ ((p, k), (q, k + 1)) ∈ E

Intuitively, each node (p, k) ∈ V represents A being in state p after having read
k characters from w. With that, the run Dag contains all possible paths that A
can take while reading w.

We can now define odd rankings. An odd ranking is a function assigning a
rank to each node in the run Dag. Given an automaton A and a word w, we
require the following properties to hold for odd rankings.

Definition 2 (Odd Ranking). odd_ranking A w f with f :: V → N

∀ v ∈ V. f v ≤ 2 |Q|
∀ (u, v) ∈ E. f u ≥ f v

∀ (p, k) ∈ V. F p =⇒ even (f (p, k))
∀ r ∈ paths G. the path r eventually gets stuck in an odd rank

Intuitively, the rank of a node indicates the distance to a node from which no
more accepting states are visited [15].

The final definition concerns the actual complement automaton. Given an
automaton A = (Σ,Q, I, δ, F ), we define its complement as follows.
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Definition 3 (Complement Automaton). A = (Σ,QC , IC , δC , FC)

δ1 :: Σ → (Q ⇀ N) → (Q ⇀ N) set
g ∈ δ1 a f ⇐⇒ dom g =

⋃
p ∈ dom f. δ a p ∧

∀ p ∈ dom f. ∀ q ∈ δ a p. f p ≥ g q ∧
∀ q ∈ dom g. F q =⇒ even (g q)

δ2 :: Σ → (Q ⇀ N) → Q set → Q set

δ2 a g P =

{
{q ∈ dom g | even (g q)} if P = {}
{q ∈ ⋃

p ∈ P. δ a p | even (g q)} otherwise

QC :: ((Q ⇀ N) × Q set) set
QC = δ∗

C Σ IC

IC :: QC set
IC = (λ p ∈ I. 2 |Q| , ∅)

δC :: Σ → QC → QC set
δC a (f, P ) = {(g, δ2 a g P ) | g ∈ δ1 a f}

FC :: QC → bool
FC (f, P ) = (P = ∅)

Since the complement automaton is designed to nondeterministically search for
an odd ranking, many of the properties from Definition 2 reappear here. Instead
of a ranking on the whole run Dag (V → N), the complement automaton deals
with level rankings. These assign ranks to only the reachable nodes in the current
level (Q ⇀ N). Furthermore, each state keeps track of which paths have yet to
visit an odd rank (Q set). This encodes the property of every path getting stuck
in an odd rank, with the acceptance condition requiring this set to become empty
infinitely often. Together, these lead to the state type (Q ⇀ N) × Q set.

2.3 Complexity and Optimizations

Much of the interest in Büchi complementation focuses on its state complex-
ity [15,38,43]. That is, one considers the number of states in the complement
automaton as a function of the number of states in the original automaton. For
an automaton with n states, the original construction by Büchi [10] resulted in
22O(n) states [15]. The complementation procedure derived from Safra’s deter-
minization construction [37] reduces this to 2O(n log n) or n2n states [15]. The
algorithm from [20] generates a complement automaton with at most (6n)n states
[15]. In the quest for closing the gap between the known lower and upper bounds,
various optimizations to this algorithm have been proposed. The optimization
in [15] lowers the bound to O((0.96n)n) states. The algorithm is then adjusted
further in [38] to lower the bound to O((0.76n)n) states.
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This being the first attempt at formalizing Büchi complementation, we chose
not to implement these more involved optimizations. Instead, we favor the orig-
inal version of the algorithm as presented in [20]. We do however implement one
optimization mentioned in [20]. In Definition 3, for each successor q of p, the
function δ1 considers for q all ranks lower than or equal to the rank of p. We
restrict δ1 so that it only considers for q a rank that is equal to or one less than
the rank of p. This does not change the language of the complement automaton
and significantly restricts the number of successors generated for each state.

It is worth noting that in practice, factors other than asymptotical state com-
plexity can also play a role. For instance, it turns out that determinization-based
complementation often generates fewer states than rank-based complementation
[41]. This is despite the fact that rank-based complementation is optimal in
terms of asymptotical state complexity.

2.4 Equivalence

We want to realize equivalence according to Eq. 2. For this, we need to define a
product operation and an emptiness check on Büchi automata.

The product construction follows the textbook approach, where the product
of two nondeterministic Büchi automata results in one nondeterministic gener-
alized Büchi automaton. For the emptiness check, we use Gabow’s algorithm for
strongly-connected components [16]. This enables checking emptiness of gener-
alized Büchi automata directly, skipping the degeneralization to regular Büchi
automata that is usually necessary for nested-Dfs-based algorithms.

3 Formalization

With the theoretical background established, we now describe the various aspects
of our formalization. This section will mostly give a high-level overview, high-
lighting challenges and points of interest while avoiding technical details. How-
ever, specific parts of the formalization will be presented in greater detail.

3.1 Isabelle/Hol

Isabelle/Hol [34] is a proof assistant based on Higher-Order Logic (Hol), which
can be thought of as a combination of functional programming and logic. Formal-
izations done in Isabelle are trustworthy due to its Lcf architecture. It guaran-
tees that all proofs are checked using a small logical core which is rarely modified
but tested extensively over time, reducing the trusted code base to a minimum.

Code generation in Isabelle/Hol is based on a shallow embedding of Hol
constants in the target language. Equational theorems marked as code equations
are translated into rewrite rules in the target language [17]. This correspondence
embodies the specification of the target language semantics. As this process does
not involve the Lcf kernel, the code generator is part of the trusted code base.
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3.2 Basics

The most basic concept needed for our formalization is that of sequences. The
Hol standard library already includes extensive support for both finite and
infinite sequences. They take the form of the types list and stream.

Definition 4 (Sequences)

datatype α list = [] | α#α list
codatatype α stream = α##α stream

The new datatype package [3,4] allows for codatatypes like stream. The libraries
of both list and stream include many common operations and their properties.

We also make use of a shallow embedding of linear temporal logic (Ltl) on
streams that is defined using inductive and coinductive predicates. This is used
to define a predicate holding infinitely often in an infinite sequence.

Definition 5 (Infinite Occurrence). infs P w ⇐⇒ alw (ev (holds P )) w

3.3 Transition Systems and Automata

In our formalization, we both use and extend the Transition Systems and
Automata library [7,9]. The development of this library was in fact motivated
by the idea of formalizing Büchi complementation and determinization. Since
then, it has been used in several other formalizations [6,8,9,35,36,39].

The goal of this library is to support many different types of automata while
avoiding both duplication and compromising usability. This is achieved via sev-
eral layers of abstraction as well as the use of Isabelle’s locale mechanism. For an
in-depth description, see [9]. Since then, an additional abstraction layer has been
introduced to consolidate various operations on automata like intersection, union,
and degeneralization. However, describing this in detail is outside the scope of this
paper. Thus, we will only introduce the concepts and constants that are used in
later sections. We start with the definition of a transition system.

Definition 6 (Transition System)

locale transition_system =
fixes execute :: transition ⇒ state ⇒ state
fixes enabled :: transition ⇒ state ⇒ bool

It fixes type variables for transitions and states as well as constants to determine
which transitions are enabled in each state and which target states they lead to.
This locale forms the backbone of the library. Note that it may look like it
can only be used to model (sub-)deterministic transition systems. However, by
instantiating the type variable transition, we can actually model many different
types of transition systems, including nondeterministic ones [9].

We can then define concepts concerning sequences of transitions.
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Definition 7 (Targets and Traces)

target = fold execute :: transition list ⇒ state ⇒ state
trace = scan execute :: transition list ⇒ state ⇒ state list
strace = sscan execute :: transition stream ⇒ state ⇒ state stream

Given a sequence of transitions and a source state, these functions give the target
state and the finite and infinite sequence of traversed states, respectively. Note
how each of these is simply a lifted version of execute.

We can also define constants for finite and infinite paths, respectively.

Definition 8 (Paths)

inductive path :: transition list ⇒ state ⇒ bool where

path [] p

enabled a p =⇒ path r (execute a p) =⇒ path (a# r) p

coinductive spath :: transition stream ⇒ state ⇒ bool where

enabled a p =⇒ spath r (execute a p) =⇒ spath (a## r) p

These constants are (co)inductively defined predicates that capture the notion
of all the transitions in a sequence being enabled at their respective states. Like
before, these are lifted versions of enabled, which is also reflected in their types.

3.4 Run Dags

Having established all the basics and foundations, we can now turn to the actual
formalization of Büchi complementation. We start with formalizing Definition 1
concerning run Dags. We do this by instantiating the transition system locale
from Definition 6. This yields definitions for all the required graph-related con-
cepts, like finite and infinite paths as well as reachability.

We then establish a tight correspondence between these definitions and the
ones concerning automata. This requires mostly elemental induction and coin-
duction proofs. Only minor technical work was required to translate between
paths in the automaton being labeled and paths in its run Dag being indexed.

3.5 Odd Rankings

Having formalized run Dags, we can now formalize Definition 2 concerning odd
rankings. The resulting formal definition does not differ significantly from its
informal counterpart and will thus not be repeated here.

We prove the left equivalence from Eq. 1, which states that an odd ranking
f exists if and only if the automaton A rejects the word w.

w /∈ L A ⇐⇒ ∃ f. odd_ranking A w f

We follow the proof given in [20].
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The direction ⇐= is fairly straightforward. Given an odd ranking, we imme-
diately have that all infinite paths in the run Dag get trapped in an odd rank.
Together with the fact that odd ranks are not accepting, we obtain that all infi-
nite paths in the automaton are not accepting. Formally proving this is mainly
technical work consisting of establishing the correspondence between the run
Dag and the automaton. However, there is one exception. In [20], the fact that
all infinite paths get trapped in some rank is merely stated as part of the defi-
nition of rankings. While this is intuitively obvious from the fact that ranks are
natural numbers and always decreasing along a path, it still requires rigorous
proof in a formal setting. Thus, we need to define the notion of decreasing infinite
sequences and prove this property via well-founded induction on the ranks.

The direction =⇒ is a lot more involved. It requires defining an infinite
sequence of subgraphs of the run Dag in order to construct an odd ranking.
Again, we follow the proof given in [20]. As before, we were able to follow the
high-level ideas of this proof in the formalized version, with some parts requiring
more fine-grained reasoning or additional technical work. However, we want to
highlight one particular technique that is used several times in the proof and
that required special attention in the formalized version. While most of our
descriptions focus on high-level ideas, we also want to take this opportunity to
present one part of the formalization in greater detail.

The idea in question concerns itself with the construction of infinite paths in
graphs and transition systems. We already encountered this type of reasoning
in [8]. Assume that there is a state with property P , and that for every state
with property P we can find a path to another state with property P . Then,
there exists an infinite path that contains infinitely many states with property P .
Intuitively, this seems obvious, which is why in informal proofs, statements like
these require no further elaboration. However, in a formal setting, this requires
rigorous reasoning, resulting in the following proof.

Lemma 1 (Recurring Condition)

lemma recurring_condition:
assumes ”P p” ”∀ p. P p =⇒ ∃ r. r �= [] ∧ path r p ∧ P (target r p)”
obtains r where ”spath r p” ”infs P (p##strace r p)”

proof −
obtain f where ”f p �= []” ”path (f p) p” ”P (target (f p) p)”

if ”P p” for p by . . .
let ?g = ”λ p. target (f p) p”
let ?r = ”λ p. flat (smap f (siterate ?g p))”
have ”?r p = f p @- ?r (?g p)” if ”P p” for p by . . .
show ?thesis
proof

show ”spath (?r p) p” by . . .
show ”infs P (p##strace (?r p) p)” by . . .

qed
qed
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This theorem is stated for general transition systems and corresponds closely to
the informal one presented earlier. That is, we assume that P holds at some state
p. We also assume that for every state p where P holds, we can find a nonempty
path r leading to a state target r p where P holds again. We prove that from
these assumptions, one can obtain an infinite path r such that for the states it
traverses, P holds infinitely often. The proof consists of three major steps.

1. Skolemization of the assumption. We obtain a function f that for each state
in which P holds, gives a nonempty path that leads to another state in which
P holds. This can be done by either explicitly invoking the choice theorems
derived from Hilbert’s epsilon operator, or by using metis.

2. Definition of the state iteration function ?g and the infinite path ?r. We define
a function ?g that for each state p gives the target state of the path given by
f . Iterating ?g yields all those states along the infinite path where P holds.
We can then define ?r, which is the infinite path obtained by concatenating
all the finite paths given by f from each state in the iteration of ?g.

3. Proving the required properties of ?r. We now prove both that ?r is an infinite
path and that for the states it traverses, P holds infinitely often. Both of these
proofs require specific coinduction rules for the constants spath and infs. This
is because the coinduction cannot consume the infinite sequence one item at
a time, instead having to operate on finite nonempty prefixes. However, these
coinduction rules are generally useful and once proven, can be reused and
improve compositionality.

In the end, a surprising amount of work is necessary to prove a seemingly
obvious statement. While it is easy to dismiss this as a shortcoming of either
formal logic in general or of a particular proof assistant, we do not think that this
is the case. Instead, we believe that situations like these point out areas where
informal proofs rely on intuition, thereby hiding the actual complexity of the
proof. Since this can lead to subtle mistakes, the ability of formal proofs to make
it visible is valuable and one of the reasons for our confidence in them. It is also
worth noting that these situations do not persistently hinder the construction of
formal proofs. By proving the statement in its most general form, this needs to
be done only once for this type of reasoning to become available everywhere.

3.6 Complement Automaton

Next, we formalize Definition 3 concerning the complement automaton. As in
the previous section, the resulting formal definition differs only slightly from the
informal one and will thus not be repeated here.

We prove the right equivalence from Eq. 1, which states that the complement
automaton A accepts a word w if and only if an odd ranking f exists.

∃ f. odd_ranking A w f ⇐⇒ w ∈ L A (3)

We follow the proof given in [20].
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There are two main challenges to formalizing this proof. The first one is
converting between different representations of rankings. On the side of the odd
ranking, a ranking is a function assigning ranks to the nodes in the run Dag.
On the side of the complement automaton, a ranking is an infinite sequence
of level rankings in the states of the accepting path. While this seems simple
enough conceptually, it requires attention to detail and much technical work in
the formalization. The second challenge consists of proving that two ways of
stating the same property are equivalent. The last condition in the definition of
the odd ranking states that all paths eventually get stuck in an odd rank. On
the side of the complement automaton, this property takes the form of a set
that keeps track of which paths have yet to visit an odd rank. The acceptance
condition of the complement automaton then requires this set to infinitely often
become empty, ensuring that no path visits even ranks indefinitely. This again
requires coinduction and the construction of infinite paths.

Together with the theorem from the previous section, we obtain the correct-
ness theorem of complementation.

Theorem 1 (Complement Language)

theorem complement_language :
assumes ”finite (nodes A)”

shows ”L A = Σω \ L A”

3.7 Refinement Framework

We want our complementation algorithm and equivalence checker to be exe-
cutable. When developing formally verified algorithms, there is a trade-off
between efficiency of the algorithm and simplicity of the proof. For complex
algorithms, a direct proof of an efficient implementation tends to get unmanage-
able, as implementation details obfuscate the main ideas of the proof.

A standard approach to this problem is stepwise refinement [2], which mod-
ularizes the correctness proof. One starts with an abstract version of the algo-
rithm and then refines it in correctness-preserving steps to the concrete, effi-
cient version. A refinement step may reduce the nondeterminism of a program,
replace abstract mathematical specifications by concrete algorithms, and replace
abstract datatypes by their implementations. For example, selection of an arbi-
trary element from a set may be refined to getting the head of a list. This
approach separates the correctness proof of the algorithm from the correctness
proof of the implementation. The former can focus on algorithmic ideas with-
out implementation details getting in the way. The latter consists of a series
of refinement steps, each focusing on a specific implementation detail, without
having to worry about overall correctness.

In Isabelle/Hol, stepwise refinement is supported by the Refinement Frame-
work [24–26,32] and the Isabelle Collections Framework [23,29]. The former
implements a refinement calculus [2] based on a nondeterminism monad [44],
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while the latter provides a library of verified efficient data structures. Both frame-
works come with tool support to simplify their usage for algorithm development
and to automate canonical tasks such as verification condition generation.

3.8 Implementation

Now that the abstract correctness of our complementation procedure is proven,
we want to derive an executable algorithm from our definitions. We use the afore-
mentioned refinement framework to refine our definitions that involve partial
functions and sets to executable code working on association lists. For instance,
the abstract correctness proof is most naturally stated on the complement state
type (Q ⇀ N) × Q set. However, the isomorphic type Q ⇀ (N × bool) is more
suitable for the implementation. Thus, this and several other preliminary steps
are taken to bring the definition into the correct shape. We also introduce the
language-preserving optimization mentioned in Sect. 2.3 at this stage. The cor-
rectness proof of this optimization involves establishing a simulation relation
between the original automaton and its optimized version.

Once these manual refinement steps are completed, we then use the automatic
refinement tool [21,22]. It allows us to automatically refine an abstract definition
to an executable implementation. It does this by instantiating abstract data
structures like sets and partial functions with concrete ones like lists, hash sets,
and association lists. Since refinement is compositional and the structure of the
algorithm is not affected by these substitutions, refinement proofs only have to
be done once for each concrete data structure. As many of these data structures
have already been formalized in the library, very little has to be proven manually
by the user. For instance, choosing to implement a set with a hash set instead
of a list can be as simple as adding a type annotation. In particular, none of the
refinement proofs have to be adjusted or redone.

At this stage, we have an executable definition that takes a successor function
and gives the successor function of the complement automaton. However, we also
want to be able to generate the complement automaton as a whole in an explicit
representation. To do this, we make use of the Dfs Framework [30,31]. It comes
with a sample instantiation that collects all unique nodes in a graph. We define
the graph induced by a given automaton and generate an executable definition
of its successor function. We can then run the previously verified Dfs algorithm
on this graph to explore the complement automaton. The correctness proof of
this algorithm then states that these are indeed all of the reachable states.

The complement automaton now has the state type (Q × (N × bool)) list.
This is the association list implementation of the type Q ⇀ N× bool mentioned
earlier. Since this type is rather unwieldy, we use the result of the exploration
phase to rename all the complement states using natural numbers. We then
use the states explored by the Dfs algorithm to collect all of the transitions in
the automaton. The end result is an explicit representation of the complement
automaton with label type α and state type N. We have A = (Σ, I, δ, F ) with
Σ :: α list, I :: N list, δ :: (N × α × N) list, and F :: N list.
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3.9 Equivalence

We now want to use our complementation algorithm to build an equivalence
checker as outlined in Sect. 2.4. In order to decide language containment and
thus equivalence, we still need a product operation and an emptiness check.
To this end, we add more operations to the automata library [7]. We already
added several operations for deterministic Büchi automata, deterministic co-
Büchi automata, and deterministic Rabin automata as part of [9,39]. We now
also add intersection, union, and degeneralization constructions for nondeter-
ministic Büchi automata. Thanks to the new intermediate abstraction layer
mentioned in Sect. 3.3, these operations generalize to all other nondeterministic
automata in the library. The main challenge here was finding an abstraction for
degeneralization that enables sharing this part of the formalization between both
deterministic and nondeterministic automata. In the end, this was achieved by
stating the main idea of degeneralization on streams rather than automata.

As mentioned in Sect. 2.4, we use an emptiness check based on Gabow’s
algorithm for strongly-connected components. For this, we reuse a formalization
originally developed as part of the Cava model checker [13,14]. This formal-
ization [27,28] includes both the abstract correctness proof of the algorithm, as
well as executable code. Furthermore, it supports checking emptiness of general-
ized Büchi automata directly, enabling us to skip the degeneralization step that
would usually be necessary after the product. This turns out to be significantly
faster.

We now assemble these parts into an equivalence checker and then refine
it to be executable. In contrast to complementation, this algorithm is much
more compositional, simplifying both the abstract correctness proof and the
refinement steps. We ran into one issue with the correctness theorem in the
formalization of Gabow’s algorithm [27,28] not being strong enough due to some
technicalities. We would like to thank the author Peter Lammich for quickly
generalizing the theorem after this issue was discovered.

3.10 Integration

With all the pieces in place, it is now time to integrate everything into a
command-line tool. Having refined all of our definitions to be executable, we
can already export Sml code from Isabelle. In order for these algorithms to
function as part of a stand-alone tool, we need the ability to input and output
automata. For this, we have decided to use the Hanoi Omega-Automata format
[1], also called Hoa. It is used by other automata tools such as Spot [11], Owl
[19], and Goal [42]. The handling of command-line parameters as well as Hoa
parsing and printing are implemented manually in Sml. This piece of code wraps
the verified algorithm in a command-line tool and is the only unverified part of
the final executable.

The result is a command-line tool with two modes of operation: complemen-
tation and equivalence checking. Complementation takes an input automaton in
the Hoa format and outputs the complement automaton either as a transition



Formal Verification of Executable Complementation 251

list or in the Hoa format. Equivalence checking takes two input automata in the
Hoa format and outputs a truth value indicating their equivalence.

Our formalization is available as part of the Archive of Formal Proofs [5].

4 Evaluation

We evaluate the performance of both our complementation implementation and
our equivalence checker. As a benchmark for raw complementation performance,
we run our implementation on randomly-generated automata. The results are
shown in Fig. 1.

Fig. 1. Complementation Performance. We use Spot’s randaut tool to generate random
automata with a given number of states. We then run our complementation implemen-
tation on them. The time limit was set to 60 s.

Furthermore, we compare the performance of our complementation imple-
mentation to Spot [11] and Goal [42]. The results are shown in Fig. 2.

Fig. 2. Complementation Performance Comparison. We use Spot’s randltl and
ltl2tgba tools to generate automata from random Ltl formulae. Automata with a
state count other than 10 are discarded and the rest is complemented with various
tools. Out of 5741 samples, 3962 could be complemented by all tools within the time
limit of 60 s. To ensure comparability, we use the latter set of automata for the average
time and complement states statistics.

Our tool implements the same algorithm as Goal with the rank decrement
option (rank -rd), which is also reflected in the identical number of states of the
complement automata. However, our implementation has significantly shorter
execution times thanks to extensive profiling efforts and use of efficient data
structures from the Isabelle Collections Framework [23,29]. In fact, this effect is
so large that it somewhat makes up for the worse asymptotical state complexity
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when compared to Goal with the tight rank option (rank -tr). The latter has
significant startup overhead, but performs better on automata that are difficult
to complement. While the performance of Spot is superior to either of the other
tools, we want to emphasize that absolute competitiveness with unverified tools
is not the goal of our work. As long as our tool is fast enough to process practical
examples, it can serve its purpose as a verified reference implementation.

We also evaluate the performance of the equivalence checker. To do so, we
generate random Ltl formulae and translate them to Büchi automata via both
Spot [11] and Owl [19]. We then use our equivalence checker on these automata.
The results are shown in Fig. 3.

Fig. 3. Equivalence Checker Performance. We use Spot’s randltl tool to generate
random Ltl formulae. We then use Spot’s ltl2tgba tool as well as Owl’s ltl2dra
translation in conjunction with Spot’s autfilt tool to obtain two translations of the
same formula. Finally, we use our equivalence checker to check if both automata do
indeed have the same language. The time limit was set to 60 s. The state count shown
is that of the larger of the two automata.

When running the equivalence checker on automata that are not equiva-
lent, the performance is often better. This is due to the fact that the algorithm
searches for an accepting cycle in either A×B or A×B. As soon as such a cycle
is found, it can abort and return a negative answer. Since both complement and
product are represented implicitly, this avoids constructing the full state space.

Finally, we use the same testing procedure on translations of the well-known
“Dwyer”-patterns [12]. We were able to successfully check 52 out of the 55 for-
mulae with the following exceptions. One formula resulted in automata of sizes
13 and 8, respectively, whose equivalence could not be verified within the time
limit of 600 s. Two more formulae were successfully translated by Owl’s ltl2dra
translation procedure, but Spot’s autfilt tool could not translate them to a
nondeterministic Büchi automaton within the time limit of 600 s. Note that
Spot’s autfilt tool was also set up to simplify the resulting automata, as oth-
erwise, they would quickly grow to be too large. Out of the 52 checked formulae,
49 could be processed in a matter of milliseconds, with two taking about a second
and one taking 129 s.

From these tests we conclude that the performance of our tool is good enough
to serve as a verified reference tool for examples of practical relevance. Note that
tools like Spot include many more optimizations and heuristics that enable them
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to complement into much smaller automata as well as check the equivalence of
much larger automata. However, it is not our goal to compete with Spot, but
rather to provide a verified reference tool that is fast enough to be useful for
testing other tools.

It turns out that we do not have to look far to find an illustration for this
point. While gathering data for this section, our equivalence checker discov-
ered a language mismatch between Spot’s and Owl’s translation of the same
Ltl formula. The developers of Owl confirmed that this was indeed a bug in
the implementation of its ltl2dra translation procedure and promptly fixed
it. Manifestation of this issue was very rare, first occurring after about 50 000
randomly-generated formulae. This demonstrates the need for verified reference
implementations, as even extensively tested software can still contain undetected
issues.

5 Conclusion

We developed a formally verified and executable complementation procedure
and equivalence checker. The formal theory acts as a very detailed and machine-
checkable description of rank-based complementation. Additionally, our formal-
ization includes executable reference tools. These come with a strong correctness
guarantee as everything from the abstract correctness down to the executable
Sml code is covered by the verification. This high confidence in their correctness
justifies their use to test other, unverified tools.

We also contributed additional functionality as well as an improved architec-
ture to the automata library. This emphasizes the software engineering aspect of
formal theory development where theories can be reused and become more and
more useful as they mature.

For future work, it would be desirable to formalize an algorithm that gener-
ates a complement automaton with fewer states. As mentioned in Sect. 2.3, this
concerns both asymptotical state complexity as well as performance in practice.
It would also be of interest to verify the bounds on asymptotical state complexity.
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