®

Check for
updates

History-Based Specification and
Verification of Java Collections in KeY

Hans-Dieter A. Hiep®)®, Jinting Bian®™ | Frank S. de Boer®),
and Stijn de Gouw ™

CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands
{hdh,j.bian,frb,stijn.de.gouw}@cwi.nl

Abstract. In this feasibility study we discuss reasoning about the cor-
rectness of Java interfaces using histories, with a particular application to
Java’s Collection interface. We introduce a new specification method (in
the KeY theorem prover) using histories, that record method invocations
including their parameters and return value, on an interface. We outline
the challenges of proving client code correct with respect to arbitrary
implementations, and describe a practical specification and verification
effort of part of the Collection interface using KeY (including source
and video material).

Keywords: Formal verification - Interface specification - KeY

1 Introduction

Throughout the history of computer science, a major challenge has been how
to assert that software is free of bugs and works as intended. In particular,
correctness of software libraries is of the utmost importance because these are
the building blocks of millions of programs, and they run on the devices of billions
of users. Formal verification gives precise, mathematical proof of correctness of
software, with respect to specifications of intended behavior expressed in formal
logic. Formal verification can guarantee correctness of software (as opposed, for
instance, to testing) but can be challenging in practice, as it frequently requires
significant effort in specification writing and constructing proof.

Such effort can very well pay off, as is clearly demonstrated by the use of
formal methods which led to the discovery of a major flaw in the design of
TimSort—a crash caused by indexing an array out of bounds. TimSort is the
default sorting library in many widely-used programming languages such as Java
and Python, and platforms like Android. A fixed version, which is now used in all
these platforms, was derived and has been proven correct [10] using KeY, a state-
of-the-art theorem proving technology [1]. Use of formal methods further led to
the discovery of some major flaws in the LinkedList implementation provided
by Java’s Collection Framework—erratic behavior caused by an integer overflow.
A fixed version of the core methods of the linked list implementation in Java has
also been formally proven correct using KeY [11].

© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 199-217, 2020.
https://doi.org/10.1007/978-3-030-63461-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63461-2_11&domain=pdf
http://orcid.org/0000-0001-9677-6644
https://doi.org/10.1007/978-3-030-63461-2_11

200 H.-D. A. Hiep et al.

However, some of the methods of the linked list implementation contain an
interface type as parameter and were out of scope of the work in [11]. As example
we could take the retainAll method. Verification of LinkedList’s implementa-
tion of retainAll requires the verification of the inherited retainAll method
from AbstractCollection. The implementation in AbstractCollection (see
Listing 1) shows a difficult method to verify: the methody body implements
an interface method, acts as a client of the supplied Collection instance by
calling contains, but it also acts as a client of the this instance by calling
iterator. Moreover, as AbstractCollection is an abstract class and does not
provide a concrete implementation of the interface, implementing iterator is
left to a subclass such as LinkedList. Thus arises the need for an approach to
specify interfaces which allows us to verify its (abstract) implementations and
its clients.

public boolean retainAll(Collection c) {
boolean modified = false;
Iterator it = iterator();
while (it.hasNext())
if (!c.contains(it.next())) {
it.remove();
modified = true;
}

return modified;

Listing 1. A difficult method to verify: retainAll in AbstractCollection.

More generally, libraries form the basis of the “programming to interfaces”
discipline, which is one of the most important principles in software engineer-
ing. Interfaces abstract from state and other internal implementation details,
and aids modular program development. However, tool-supported programming
logics and specification languages are predominantly state-based which as such
cannot be directly used for interfaces. The main contribution of this paper is to
show the feasibility of an approach which overcomes this limitation, by integrat-
ing history-based reasoning with existing specification and verification methods.
This work is the next step towards our ultimate goal of completely specifying
and verifying complex software libraries such as the Java Collection Framework,
including its LinkedList class and addAll, removeAll and retainAll methods.

The formal semantic justification of our approach is provided by the fully
abstract semantics for Java introduced in [15] which characterizes exactly the
minimal information about a method implementation in a class in a Java library
that captures its external use. This minimal information consists of histories
(also called traces) of method calls and returns, and provides a formal semantic
justification of the basic observation that such histories completely determine
the concrete state of any implementation and thus can be viewed as constituting
the generic abstract state space of an interface. This observation naturally leads
to the development of a history-based specification language for interfaces.

History-Based Specification and Verification of Java Collections in KeY 201

The background of our approach is given in Sect.2. An important use case,
which leads us to formal requirements on interface specifications, is to reason
about the correctness of clients, viz. programs that use instances of an interface
by calling methods on it. In Sect. 3 we analyze concrete examples that motivates
the design choices that leads us to the core of our approach: we associate to each
instance of an interface a history that represents the sequence of method calls
performed on the object since its creation. For each method call, the parameters
and return value are recorded symbolically in the history. This crucially allows
us to define abstractions over histories, called attributes, used to describe all
possible behaviors of objects regardless of its implementation.

Our methodology is to embed histories and attributes in the KeY theo-
rem prover [1] by encoding them as Java objects, thereby avoiding the need
to change the KeY system itself. Interface specifications can then be written in
the state-based specification language JML [13] by referring to histories and its
attributes to describe the intended behavior of implementations. This method-
ology is described in Sect. 4. Further, a distinguishing feature of histories is that
they support a history-based reference implementation for each interface which
is defined in a systematic manner. This allows an important application of our
methodology: the verification of the satisfiability of interface specifications them-
selves. This is done for part of the Collection interface in Sect.5. We provide
source and video material of the verification effort to make the construction of
the proofs fully reproducible.

We now discuss related work. It can be empirically established that Java
libraries, and Java’s Collection Framework in particular, are heavily used and
have many implementations [8]. Recently, several issues with parts of the Col-
lection Framework were revealed [10,11]. Such issues are hard to discover at
run-time due to their heap size requirements, necessitating a static approach to
analysis. Static verification of the Collection Framework was already initiated
almost two decades ago, see e.g. the work by Huisman et al. [12,14]. What com-
plicates static verification is that it requires formal specifications. Two known
approaches are by Huisman [12] and Kniippel et al. [16], but their specifications
are not complete nor demonstrate the verification of various clients and imple-
mentations. Generally speaking, there seems to be no obvious strategy in spec-
ifying Java interfaces so that its clients and its implementations can be verified
statically by means of a theorem prover. However, for the purpose of run-time
verification, numerous approaches exist to specify and check Java programs, such
as [3-6]. Most of these approaches are based on histories. LARVA [7], a tool also
mainly developed for run-time verification, was extended in e.g. [2] to optimize
away checks at run-time that can be established statically. But, there, static
guarantees are limited by expressivity (no fully-fledged theorem prover is used)
and interfaces are not handled by the static analysis. Closest to the nature of
this work is [17] by Welsch and Poetzsch-Heffter, who reason about backwards
compatibility of Java libraries in a formal manner using histories to capture and
compare the externally observable behavior of two libraries. In [17], however,
two programs are compared, and not a program against a formal specification.

202 H.-D. A. Hiep et al.

2 Background

In this section, we first provide the context of our work on history-based spec-
ification and verification, by giving an overview of the relevant basic concepts,
followed by a brief overview of the specification language JML and theorem
prover KeY, which are used to realize our approach.

At the lowest level of abstraction, a history is a sequence of events. So the
question arises: what events does it contain, and how are the events related
to a given program? To concretize this, we first note that in our setting we
focus on histories for single-threaded object-oriented programs, and classes and
interfaces of Java libraries in particular. For such programs, there are two main
kinds of histories: (a) a single global history for the entire program, and (b)
a local history per object. The first kind, a global history, does not result in a
modular specification and verification approach: such a history is specific to a
particular program and thus cannot be reused in other programs, since as soon
as other objects or classes are added this affects the global history. A global
history is therefore not suitable for specifying and verifying Java libraries, since
libraries are reused in many different client programs. Hence, in our setting, we
tend towards using a local history for each object separately.!

Following the concept of information hiding, we assume that an object encap-
sulates its own state, i.e. other objects cannot directly access its fields, but only
indirectly by calling methods. This is not a severe limitation: one can introduce
getter and setter methods rather than reading and writing a field directly. But
this assumption is crucial to enable any kind of (sound) reasoning about objects:
if objects do not encapsulate their own state, any other object that has a ref-
erence to it can simply modify the values of the fields directly in a malicious
fashion where the new internal state breaks the class invariant of the object?
without the object being able to prevent (or even being aware of) this.

Assuming encapsulation, each object has full control over its own internal
state, it can enforce invariants over its own fields and its state can be completely
determined by the sequence of method calls invoked on the object. How an object
realizes the intended behavior of each method may differ per implementation:
to a client of the object, the internal method body is of no concern, including
any calls to other objects that may be done in the method body. We name
the calls that an object invokes on other objects inside a method outgoing calls
(their direction is out of the object, into another object), and we name the calls
made to the object on methods it exposes incoming calls. The above discussion
makes clear that the semantics of an object-oriented program can be described
purely in terms of its behavior on incoming method calls. Indeed, formally, this
is confirmed by Jeffrey and Rathke’s work [15] which presents a fully abstract
semantics for Java based on traces.

1" A more sophisticated approach will be introduced for inner classes (see Sect. 3).

2 Roughly speaking, a class invariant is a property that all objects of the class must
satisfy before and after every method call. Class invariants typically express consis-
tency properties of the object.

History-Based Specification and Verification of Java Collections in KeY 203

KeY and JML. KeY [1] is a semi-interactive theorem prover for Java programs
(typically > 95% of the proof steps are automated). The input for KeY is a Java
program together with a formal specification in a KeY-dialect of JML. The user
proves the specifications method-by-method. KeY generates appropriate proof
obligations and expresses them in a sequent calculus, where the formulas inside
the sequent are multi-modal dynamic logic formulas in which Java program
fragments are used as the modalities. To reduce such dynamic logic formulas to
first-order formulas, KeY symbolically executes the Java program in the modality
(it has rules for nearly all sequential Java constructs). Once the program is fully
symbolically executed, only formulas without Java program fragments remain.

JML, the Java Modeling Language [13], is a specification language for Java
that supports the design by contract paradigm. Specifications are embedded as
Java comments alongside the program. A method precondition in JML is given
by a requires clause, and a postcondition is given by ensures. JML also sup-
ports class invariants. A class invariant is a property that all instances of a class
should satisfy. In the design by contract setting, each method is proven in iso-
lation (assuming the contracts of methods that it calls), and the class invariant
can be assumed in the precondition and must be established in the postcondi-
tion, as well as at all call-sites to other methods. To avoid manually adding the
class invariant at all these points, JML provides an invariant keyword which
implicitly conjoins the class invariant to all pre- and postconditions. Method
contracts may also contain an assignable clause stating the locations that may
be changed by the method (if the precondition is satisfied), and an accessible
clause that expresses the locations that may be read by the method (if the
precondition is satisfied). Our approach uses all of the above concepts.

Our methodology is based on a symbolic representation of histories. We
encode histories as Java objects to avoid modifying the KeY system and thus
avoid the risk of introducing an inconsistency. Such representation allows the
expression of relations between different method calls and their parameters and
return values, by implementing abstractions over histories, called attributes, as
Java methods. These abstractions are specified using JML.

3 Specification and Verification Challenges for Collection

In this section, we highlight several specification and verification challenges with
histories that occur in real-world programs. We guide our discussion with exam-
ples based on Collection, the central interface of the Java Collection Frame-
work. However, note that our approach, and methodology in general, can be
applied to all interfaces, as our discussion can be generalized from Collection.

A collection contains elements of type Object and can be manipulated inde-
pendently of its implementation details. Typical manipulations are adding and
removing elements, and checking whether it contains an element. Sub-interfaces
of Collection may have refined behavior. In case of interface List, each element
is also associated to a unique position. In case of interface Set, every element is
contained at most once. Further, collections are extensible: interfaces can also
be implemented by programs outside of the Java Collection Framework.

204 H.-D. A. Hiep et al.

How do we specify and verify interface methods using histories?

We focus our discussion on the core methods add, remove, contains, and
iterator of the Collection interface. These four methods comprise the events
of our history. More precisely, we have at least the following events:

— add(o) = b,
remove(o) = b,

— contains(o) = b,
— iterator() =1,

where o is an element, b is a Boolean return value indicating the success of the
method, and 4 is an object implementing Iterator. Abstracting from the imple-
mentations of these methods we can still compute the contents of a collection
from the history of its add and remove events; the other events do not change the
contents. This computation results in a representation of the contents of a col-
lection by a multiset of objects. For each object its multiplicity then equals the
number of successful add events minus the number of successful remove events.
Thus, the contents of a collection (represented by a multiset) is an attribute.

For example, for two separate elements o and o/,
add(o) = true, add(o’) = true, add(o’) = false, remove(o’) = true
is a history of some collection (where the left-most event happens first). The
multiplicity of o in the multiset attribute of this history is 1 (there is one suc-
cessful add event), and the multiplicity of o’ is 0 (there is one successful add
event, and one successful remove event).

The main idea is to associate each instance to its own history. Consequently,
we can use the multiset attribute in method contracts. For example, we can
state that the add method ensures that after returning true the multiplicity of
its argument is increased by one, that the contains method returns true when
the argument is contained (i.e. its multiplicity is positive), and that the remove
method ensures that the multiplicity of a contained object is decreased by one.

How can we specify and verify client-side properties of interfaces?
Consider the client program in Listing 2, where x is a Collection and y is an
Object. To specify the behavior of this program fragment, we could now use the
multiset attribute to express that the contents of the Collection instance x is
not affected.

if (x.add(y)) x.remove(y);

Listing 2. Adding and removing an element does not affect contents.

Another example of this challenge is shown in Listing 3: can we prove the ter-
mination of a client? For an arbitrary collection, it is possible to obtain an object
that can traverse the collection: this is an instance of the Iterator interface con-
taining the core methods hasNext and next. To check whether the traversal is
still on-going, we use hasNext. Subsequently, a call to next returns an object
that is an element of the backing collection, and continues the traversal. Finally,
if all objects of the collection are traversed, hasNext returns false.

History-Based Specification and Verification of Java Collections in KeY 205

Iterator it = x.iterator();
while (it.hasNext()) it.next();

Listing 3. Iterating over the collection.

How do we deal with intertwined object behaviors?

Since an iterator by its very nature directly accesses the internal representation
of the collection it was obtained from?, the behavior of the collection and its
iterator(s) are intertwined: to specify and reason about collections with iterators
a notion of ownership is needed. The behavior of the iterator itself depends on
the collection from which it was created.

How do we deal with non-local behavior in a modular fashion?
Consider the example in Listing 4, where the collection x is assumed non-empty.
We obtain an iterator and its call to next succeeds (because x is non-empty).
Consequently, we perform the calls as in Listing 2: this leaves the collection with
the same elements as before the calls to add and remove. However, the iterator
may become invalidated by a call that modifies the collection; then the iterator
it is no longer valid, and we should not call any methods on it—doing so throws
an exception.

Iterator it = x.iterator(); it.next();
if (x.add(y)) x.remove(y); // may invalidate iterator it

Listing 4. Invalidating an iterator by modifying the owning collection.

Invalidation of an iterator is the result of non-local behavior: the expected
behavior of the iterator depends on the methods called on its owning collection
and also all other iterators associated to the same collection. The latter is true
since the Iterator interface also has a remove method (to allow the in-place
removal of an element) which should invalidate all other iterators. Moreover,
a successful method call to add or remove (or any mutating method) on the
collection invalidates all its iterators.

We can resolve both phenomena by generalizing the above notion of a history,
strictly local to a single object, without introducing interference. We take the
iterator to be a ‘subobject’ of a collection: the methods invoked on the iterator
are recorded in the history of its owning collection. More precisely, we also have
the following events recorded in the history of Collection:

— hasNext(i) = b,
— next(i) = o,
— remove(i),

where b is a Boolean return value indicating the success of the method, and i is
an iterator object. Now, not only can we express what the contents of a collection

3 To iterate over the content of a collection, iterators are typically implemented as
so-called inner classes that have direct access to the fields of the enclosing object.

206 H.-D. A. Hiep et al.

is at the moment the iterator is created and its methods are called, but we can
also define the validity of an iterator as an attribute of the history of the owning
collection.

4 History-Based Specification in KeY

We start with an overview of our methodology: through what framework can
we see the different concepts involved? The goal is to specify interface method
contracts using histories. This is done in a number of steps:

1. We introduce histories by Java classes that represent the inductive data type
of sequences of events, and we introduce attributes of histories encoded by
static Java methods. These attributes are defined inductively over the struc-
ture of a history. The attributes are used within the interface method con-
tracts (of Collection) to specify the intended behavior of every implemen-
tation (of Collection) in terms of history attributes.

2. Attributes are deterministic and thus represent a function. Certain logical
properties of and between attributes hold, comparable to an equational spec-
ification of attributes. These are represented by the method contracts associ-
ated to the static Java methods that encode the attributes.

3. Finally, we append an event to a history by creating a new history object in
a static factory method. The new object consists of the new event as head,
and the old history object as tail. The contract for these static methods also
expresses certain logical properties of and between attributes, of the new
history related to the old history.

The main motivation of our methodology is derived from the fact that the
KeY theorem prover uses the Java Modeling Language as the specification lan-
guage and that both JML and the KeY system do not have built-in support for
specification of interfaces using histories. Instead of extending JML and KeY,
we introduce Java encodings of histories that can be used for the specification
of the Collection interface, which as such can also be used by other tools [4].

Remark 1. JML supports model fields which are used to define an abstract state
and its representation in terms of the concrete state given (by the fields) in a
concrete class. For clients, only the interface type Collection is known rather
than a concrete class, and thus a represents clause cannot be defined. Ghost
variables cannot be used either, since ghost variables are updated by adding set
statements in method bodies and interfaces do not have method bodies. What
remains are model methods, which we use as our specification technique.

4.1 The History Class for Collection

In principle our histories are a simple inductive data type of a sequence of events.
Inductive data types are convenient for defining attributes by induction. How-
ever, no direct support for inductive definitions is given in either Java or KeY.

History-Based Specification and Verification of Java Collections in KeY 207

Thus, we encode histories by defining a concrete History class in Java itself,
specifically for Collection. The externally observable behavior of any imple-
mentation of the Collection interface is then represented by an instance of the
History class, and specific attributes (e.g., patterns) of this behavior are speci-
fied by pure methods (which do not affect the global state of the given program
under analysis). Every instance represents a particular history value.

History History History History
Head| Tail Head| Tail Head| Tail Head| Tail
/ / /o / / / / null
RemoveEvent \y AddEvent AddEvent AddEvent

ret |arg ret |arg ret |arg ret |arg

true \ false| '\ true/ true/
Object

—Qﬁjm Q

Fig. 1. A number of history objects. The left-most represents the history of a collection
in which add is called three times followed by a remove. Intuitively, this history captures
the behavior of a set (the addition of an object already contained returns false).

The History class implements a singly-linked list data structure: a history
consists of a head Event and a tail History. The class Event has sub-classes,
one for each method of the Collection interface. Moreover, there are sub-classes
for each method of the Iterator interface that additionally track the iterator
instance sub-objects. These events are also part of the history of a Collection.
See Fig. 1 and Listing 5.

Each sub-class of the Event class comprises the corresponding method’s argu-
ments and return value as data. For the Collection interface we have the events:
AddEvent, RemoveEvent, ContainsEvent, IteratorEvent. AddEvent has an
Object field arg for the method argument, and a Boolean field ret for the return
value, that corresponds to the method declaration of boolean add(Object).
RemoveEvent and ContainsEvent are similar. IteratorEvent has an Object
field ret for the return value, for Iterator iterator(), which is seen as a
creation event for the iterator sub-object.

For the Iterator interface we have the events: IteratorHasNextEvent,
IteratorNextEvent, IteratorRemoveEvent. IteratorHasNextEvent has a
field inst for the sub-object instance of Iterator, and a Boolean field
ret for the return value, that corresponds to the method declaration
of boolean hasNext(). IteratorNextEvent has an instance field and an
Object field ret, corresponding to the method declaration Object next().
IteratorRemoveEvent only has an instance field, since void remove() returns
nothing.

208 H.-D. A. Hiep et al.

public class History {
Event Head; /*@ nullable ©*/ History Tail; /#@ ghost int length; ©*/
// (attributes and their method contracts...)
// (factory methods... e.g.)
/*@ pure */ static History addEvent(/#*@ nullable */ History h,
/*@ nullable */ Object o, boolean ret) {
return new History(new AddEvent(o, ret), h);

}

Listing 5. The History class structure. Later on, the specification of the addEvent
factory method is given in Listing 10.

Remark 2. As part of the History class, we define footprint() as a JML model
method. The footprint of a history is a particular set of heap locations; if those
locations are not modified then the value of attributes of the history remains
unchanged. In our case, the footprint is the set of fields of events and the singly-
linked history list, but we do not include in our footprint the fields of the objects
that are elements of the collection, since those never influence any attribute value
of a history (we never cast elements of a collection to a specific sub-class to access
its fields).

We treat the history as an immutable data type*: once an object is created,
its fields are never modified. History updates are encoded by the creation of a
new history, with an additional new event as head, pointing to the old history as
tail. Immutability allows us to lift any computed attribute of a history in some
heap over heap modifications that do not affect the footprint of the given history.
This turns out to be crucial in verifying that an implementation is correct with
respect to interface method contracts, where we update a history to reflect that
an incoming method call was performed. Such a contract expresses a particular
relation between the history’s attributes in the heap before and after object
creation and history update: the value of an attribute of the old history in the
heap before remains the same in the heap after these heap modifications.

4.2 Attributes of History

To avoid tying ourselves to a particular history representation, the linked list
of events in the history itself is not exposed and cannot be used in specifica-
tions. Rather, the history is accessed exclusively through “observer symbols”,
also called “query methods”, that map the history to a value. Such observer
symbols we call attributes. Attributes are defined as strictly pure methods,
since their computation cannot affect the heap. Strictly pure methods are also
easier to work with than non-strict or non-pure methods, especially when these
methods are used in specifications of the Collection interface: these methods
evaluate in one heap without modifying it.

4 By immutable, we mean an object for which its fields after construction are never
modified, and its reference type fields point only to immutable objects.

History-Based Specification and Verification of Java Collections in KeY 209

The advantage of the use of KeY is that pure methods that appear in speci-
fications as observer symbols can be translated into a modal JavaDL expression,
and this allows, more generally, reasoning about pure methods [9]. The rule in
the proof system, that replaces observer symbols associated to pure method by
a modal expression that expresses the result of a separate symbolic execution of
calling the method, is called query evaluation [1, Sect. 11.4].

Attributes are defined inductively over the history. In order to prove their
termination we also introduce a ghost field length that represents the length of
the history. A ghost field logically assigns to each object a value used for the
purpose of verification, but is not present at run-time. In each call on the tail of
the history its length decreases, and the length is always positive, thus realizing
a so-called decreasing term.

Attributes are functions of the history. Functionality of an attribute amounts
to showing dependence (only on the footprint of a history), determinism (unique-
ness of result) and termination. To verify that an attribute is deterministic
involves two steps: we first symbolically execute the method body, until we
obtain a proof obligation in which we have to show that the post-condition
holds. The post-condition consequently contains, as observer symbol, the same
method applied to the same formal parameters: we use query evaluation to per-
form another symbolic execution of the same method. We need to prove that
their outcomes are identical, to verify that the method is deterministic. Not every
method can be proven to be deterministic: e.g. if a method body contains a call
to a method that cannot be unfolded and that has an unspecified result, then
the two symbolic executions (first directly, and secondly through an evaluated
query of the observer symbol) need not pick the same result in each method call.

Contents of a Collection: The multiset attribute of a Collection represents
its content and is defined inductively over the structure of the history: the events
corresponding to a successful add and remove call of the Collection interface
increase and decrease the multiplicity of their argument. Note that removing an
element never brings it down to a negative multiplicity. Moreover, remove of the
Iterator interface also decreases the multiplicity; but no longer an argument is
supplied because the removed element is the return value the previous next call
of the corresponding iterator sub-object. Thus, we define an attribute for each
iterator that denotes the object returned by the last next call. Calling remove
on an iterator without a preceding next call is not allowed, so neither is calling
remove consecutively multiple times.

/%@ normal_behavior
@ requires h != null &€ \invariant_for(h);
@ ensures \result == History. Multiset(h,0) &€ \result >= 0;
@ measured_by h.length;
@ accessible h.footprint(); // dependency contract
@x/
/%@ strictly_pure */ static int Multiset(
/+@ nullable x/History h, /*@ nullable */ O0bject o) {
if (h == null) return 0;

210 H.-D. A. Hiep et al.

else {
int ¢ = History.Multiset(h.Tail, o);
if (h.Head instanceof AddEvent &&
((AddEvent) h.Head).arg == o &&
((AddEvent) h.Head).ret == true) { // important
return c + 1;
} else ...
return c;

b}

Listing 6. Part of Multiset method of the History class, with one JML contract.

Listing 6 shows part of the implementation of the Multiset attribute that
is computed by the Multiset static method. It is worthwile to observe that
AddEvent is counted only when its result is true. This makes it possible to
compute the Multiset attribute based on the history: if the return value is omit-
ted, one cannot be certain whether an add has affected the contents. With this
design, further refinements can be made into lists and sets.

Iterating over a Collection: Once an iterator is obtained from a collection,
the elements of the collection can be retrieved one by one. If the Collection
is subsequently modified, the iterator becomes invalidated. An exception to this
rule is if the iterator instance itself directly modifies the collection, i.e. with
its own Iterator.remove() method (instead of Collection.remove(Object)):
calling that method invalidates all other iterators. We have added an attribute
Valid that is true exactly for iterators that are valid (definition omitted).

For each iterator, there is another multiset attribute, Visit (definition omit-
ted), that tracks the multiplicities of the objects already visited. Intuitively, this
visited attribute is used to specify the next method of an iterator. Namely,
next returns an element that had not yet been visited. Calling Iterator.next
increases the Visit multiplicity of the returned object by one and leaves all other
element multiplicities the same. Intuitively, the iterator increases the size of its
Visit multiset attribute during traversal, until it completely covers the whole
collection, represented by the Multiset attribute: then the iterator terminates.

Although these two attributes are useful in defining an implementation of an
iterator, they are less useful in showing client-side correctness of code that uses
an iterator. To show termination of a client that iterates over a collection, we
introduce two derived attributes: CollectionSize and IteratorSize. One can think
of the collection’s size as a sum of the multiplicties of all elements, and similar
for an iterator size of its visited multiset.

History-Based Specification and Verification of Java Collections in KeY 211

4.3 The Collection interface

public interface Collection {
/+*@ model_behavior
@ requires true;
@ model nullable History history();
@x/
// (interface methods and their method contracts ...)

Listing 7. The history() model method of the Collection interface.

The Collection interface has an associated history that is retrieved by an
abstract model method called history(). This model method is used in the
contracts for the interface methods, to specify what relation must hold of the
attribute values of the history in the heap before and after executing the interface
method.

As a typical example we show the specification of the add method in terms
of the Multiset attribute of the new history (after the call) and the old history
(prior to the call). The specification of add closely corresponds to the informal
Javadoc specification written above it. Similar contracts are given for the remove,
contains, and iterator methods. In each contract, we implicitly assume a sin-
gle event is added to the history corresponding to a method call on the interface.
The assignable clause is important, as it rules out implementations from modi-
fying its past history: this ensures that the attributes of the old history object
in the heap before executing the method have the same value in the heap after
the method finished execution.

/*x Ensures that this collection contains the specified element (optional
* operation). Returns true if this collection changed as a result of the call.
x Returns false if this collection does not permit duplicates and already
* contains the specified element. ... xx/
/*@ public normal_behavior
@ ensures history() != null;
@ ensures History. Multiset(history(),0) ==
History. Multiset(\ old(history()), o) + (\result ? 1 : 0);
@ ensures History. Multiset(history(),0) > 0;
@ ensures (\forall Object 01; o1 I= o; History. Multiset(history(),01) ==
History. Multiset(\ old(history()), o1));
@ assignable \set_minus(\everything, (history() == null) ? \empty :
history().footprint());
@x/
boolean add(/+@ nullable */ Object o);

Listing 8. The use of Multiset in the specification of add in the Collection interface.

It is important to note that the value of \result is unspecified. The intended
meaning of the result is that it is true if the collection is modified. There are

212 H.-D. A. Hiep et al.

at least two implementations: that of a set, and that of a list. For a set, the
result is false if the multiplicity prior to the call is positive, for a list the result
is always true. Thus it is not possible to specify the result any further in the
Collection interface that is compatible with both Set and List sub-interfaces.
In particular, consider the following refinements [1, Sect.7.4.5] of add:

— The Set interface also specifies that \result is true if and only if the multiset
attribute before execution of the method is zero, i.e.
ensures History. Multiset(\old(history()), o) == 0 <= \result == true;

— The List interface also specifies that \result is true unconditionally, i.e.
ensures \result == true;

As in another approach [16], one could use a static field that encodes a closed
enumeration of the possible implementations, e.g. set or list, and specify \result
directly. Such closed world perspective does not leave room for other implemen-
tations. In our approach we can obtain refinements of interfaces that inherit from
Collection, while keeping the interface open to other possible implementations,
such as Google Guava’s Multiset or Apache Commons’ MultiSet.

4.4 History-Based Refinement

Given an interface specification we can extract a history-based implementation,
that is used to verify there exists a correct implementation of the interface speci-
fication. The latter establishes that the interface specification itself is satisfiable.
Since one could write inconsistent interface specifications for which there does
not exist a correct implementation, this step is crucial.

The state of the history-based implementation BasicCollection consists
of a single concrete history field this.h. Compare this to the model method of
the interface, which only exists conceptually. By encoding the history as a Java
object, we can also directly work with the history at run-time instead of only
symbolically. The concrete history field points to the most recent history, and
we can use it to compute attributes. The implementation of a method simply
adds for each call a new corresponding event to the history, where the return
value is computed depending on the (attributes of the) old history and method
arguments. The contract of each method is inherited from the interface.

public boolean add(/«@ nullable */ O0bject o) {
boolean ret = true;
this.h = History.addEvent(this.h, o, ret);
return ret;

Listing 9. One of the possible implementations of add in BasicCollection.

See Listing 9 for an implementation of add, that inherits the contract in Listing 8.
Note that due to underspecification of \result there are several possible imple-
mentations, not a unique one. For our purposes of showing that the interface

History-Based Specification and Verification of Java Collections in KeY 213

specification is satisfiable, it suffices to prove that at least one correct implemen-
tation exists.

For each method of the interface we have specified, we also have a static fac-
tory method in the history class which creates a new history object that consists
of the previous history as tail, and the event corresponding to the method call of
the interface as head. We verify that for each such factory method, the relation
between the attributes of the old and the resulting history holds.

/*@ normal_behavior
@ requires h != null ==> \invariant_for(h);
@ ensures \result != null &9 \invariant_for(\result);
©@ ensures History.Multiset(\result,o) ==
History.Multiset(h,o0) + (ret 2 1 : 0);
@ ensures (\forall Object ol; ol != o;
History.Multiset (\result,ol) == History.Multiset(h,o01));
@ ensures \result.Tail == \old(h); */
/*@ pure */ static History addEvent(
/%@ nullable */ History h, /*@ nullable */ Object o, boolean ret);

Listing 10. The contract for the factory method for AddEvent in class History.

For example, the event corresponding to Collection’s add method is added to
a history in Listing 10 (see also Listing5). We have proven that the Multiset
attribute remains unchanged for all elements, except for the argument o if the
return value is true (see Listing6). This property is reflected in the factory
method contract. Similarly, we have a factory method for other events, e.g.
corresponding to Collection’s remove.

5 History-Based Verification in KeY

This section describes our verification work which we performed to show the fea-
sibility of our approach. We use KeY version 2.7-1681 with the default settings.
For the purpose of this article, we have recorded est. 2.5h of video® showing how
to produce some of our proofs using KeY. A repository of all our produced proof
files is available on Zenodo® and includes the KeY version we used.

The proof statistics are shown in Table 1. These statistics must be interpreted
with care: shorter proofs (in the number of nodes and interactive steps) may
exists, and the reported time depends largely on the user’s experience with the
tool. The reported time does not include the time to develop the specifications.

We now describe a number of proofs, that also have been formally verified
using KeY. Note that the formal proof produced in KeY consists of many low-
level proof steps, of which the details are too cumbersome to consider here.

To verify clients of the interface, we use the interface method contracts. In
particular, the verification challenge in Listing 2 makes use of the contracts of

5 https://doi.org/10.6084/m9.figshare.c.5015645.
5 https://doi.org/10.5281/zenodo.3903203.

https://doi.org/10.6084/m9.figshare.c.5015645
https://doi.org/10.5281/zenodo.3903203

214 H.-D. A. Hiep et al.

Table 1. Summary of proof statistics. Nodes and branches are measures of proof
trees, L.step is the number of interactive proof steps, Q.inst is the number of quantifier
instansiation rules, O.Contract is the number of method contracts applied, Dep. is the
number of dependency contracts applied, Loop inv. is the number of loop invariants,
and Time is an estimated wall-clock duration for interactively producing the proof tree.

Nodes | Branches | I.step | Q.inst | O.Contract | Dep. | Loop inv. | Time
171,543 | 3,771 1,499 | 965 79 263 |1 388 min

add and remove, to establish that the contents of the Collection parameter
passed to the program in Listing 2 remains unchanged. More technically, during
symbolic execution of a Java program fragment in KeY, one can replace the
execution of a method by its associated method contract. The contract we have
formulated for add and remove is sufficient in proving the client code in Listing
2: the multiset remains unchanged. In the proof, the user has to interactively
replace occurrences of history attributes by their method contracts. Method
contracts for attributes can in turn be verified by unfolding the method body,
thereby inductively establishing their equational specifications. The specification
of the latter is not shown here, but can be found in the source files.

For the verification challenge in Listing 3, we make use of the contracts for
iterator and the methods of the Iterator interface. The iterator method
returns a fresh Iterator sub-object that is valid upon creation, and its owner
is set to be the collection. The history of the owning collection is updated after
each method call to an iterator sub-object. Each iterator has as derived attribute
IteratorSize, the size of the visited multiset. It is a property of the IteratorSize
attribute that it is not bigger than CollectionSize, the size of the overall col-
lection. To verify termination of a client using the iterator in Listing 3, we can
specify a loop invariant that maintains the validity and ownership of the itera-
tor, and take as decreasing term the value of CollectionSize minus IteratorSize.
Since each call to next causes the visited multiset to become larger, this term
decreases. Since an iterator cannot iterate over more objects than the collec-
tion contains, this term is non-negative. We never needed to verify that the
equational specification for the involved attributes hold and this can be done
separately from verifying the client, thus allowing modular verification.

One of the complications of our history-based approach is reasoning about
invariant properties of (immutable) histories, caused by potential aliasing. This
currently cannot be automated by the KeY tool. We manually introduce a gen-
eral but crucial lemma, that addresses the issue, as illustrated by the following
verification condition that arises when verifying the reference implementation.

One verification condition is a conjunct of the method contract for
the add method of Collection, namely that in the post-condition,
Multiset(history(), o) == Multiset(\old(history()), o) + (\result ? 1 : 0) should
hold. We verify that BasicCollection’s add method is correct with respect to
this contract. Within BasicCollection, the model method history() is defined
by the field this.h, which is updated during the method call with a newly created

History-Based Specification and Verification of Java Collections in KeY 215

history using the factory method History.addEvent. We can use the contract
of the addEvent factory method to establish the relation between the multi-
set value of the new and old history (see Listing10); this contract is in turn
simply verified by unfolding the method body of the multiset attribute and per-
forming symbolic execution, which computes the multiplicity recursively over
the history and adds one to it precisely if the returned value is true. Back in
BasicCollection, after the update of the history field this.h, we need to prove
that the post-condition of the interface method holds (see Listing 8); but we
already have obtained that this property holds after the static factory method
add before this.h was updated.

Y int n; (n > 0 — V History g;
(g.(inv) A g.(created) = true A g.history_length = n —
this.h & g.footprint()))

The update of the history field, as a pointer to the History linked list, does
not affect this structure itself, i.e. the values of attributes are not affected by
changing the history field. This is an issue of aliasing, but we know that the
updated pointer does not affect the attribute values of any History linked list.
This can not be proven automatically: we need to interactively introduce a cut
formula (shown above) that the history field does not occur in the footprint of
the history object itself. The formula can be proven by induction on the length
of the history.

6 Conclusion

Programming to interfaces is one of the core principles in object-oriented pro-
gramming and central to the widely-used Java Collection Framework, which
provides a hierarchy of interfaces and classes that represent object containers.
But current practical static analysis tools, including model checkers and theorem
provers such as KeY, are primarily state-based. Since interfaces do not expose a
state or concrete representation, a major question is how to support interfaces.
The main contribution of this paper is a new systematic method for history-
based reasoning and reusable specifications for Java programs that integrates
seamlessly in the KeY theorem prover, without affecting the underlying proof
system (this ensures our method introduces no inconsistencies). Our approach
includes support for reasoning about interfaces from the client perspective, as
well as about classes that implement interfaces. To show the feasibility of our
novel method, we specified part of the Collection Framework with promising
results. We showed how we can reason about clients with these specifications,
and showed the satisfiability of the specifications by a witness implementation
of the interface. We also showed how to handle inner classes with a notion of
ownership. This is essential for showing termination of clients of the Iterator.
This work is the next step in the formal verification of Java’s Collection
Framework. With our novel method we can continue our specification and ver-
ification work on LinkedList, including methods with arguments of interface
type such as addAll, and its inherited methods removeAll and retainAll.

216 H.-D. A. Hiep et al.

A direction for future work is to further improve practicality of history-based
specification and verification: for example, (a) considering client-side correctness
with multiple (potentially aliasing) objects implementing the same interface, (b)
considering client-side correctness that involves objects that implement multiple
(potentially interfering) interfaces, (c) developing techniques to show that cer-
tain combinations of interfaces are inconsistent, such as an object implementing
both List and Set, (d) considering implementations that initialize the value
of attributes by an arbitrary value at creation time (e.g. a non-empty collec-
tion when it is constructed) which necessitates an object creation event, and
(e) encoding histories as built-in abstract data types with special proof rules, to
avoid modeling histories as Java objects.

Acknowledgements. The authors thank the anonymous reviewers for their helpful
comments and suggestions.

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book. Programming and Software Engi-
neering, vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
49812-6

2. Azzopardi, S., Colombo, C., Pace, G.J.: CLARVA: model-based residual verifica-
tion of Java programs. In: Model-Driven Engineering and Software Development
(MODELSWARD), pp. 352-359. SciTePress (2020)

3. de Boer, F.S., de Gouw, S., Vinju, J.J.: Prototyping a tool environment for run-time
assertion checking in JML with communication histories. In: Formal Techniques
for Java-Like Programs (FT{JP), pp. 6:1-6:7. ACM (2010)

4. Burdy, L., et al.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf. 7(3), 212-232 (2004). https://doi.org/10.1007/s10009-004-0167-
4

5. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework.
In: Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pp. 569-588. ACM (2007)

6. Cheon, Y., Perumandla, A.: Specifying and checking method call sequences of Java
programs. Softw. Qual. J. 15(1), 7-25 (2007)

7. Colombo, C., Pace, G.J., Schneider, G.: LARVA - safer monitoring of real-
time Java programs (tool paper). In: Software Engineering and Formal Methods
(SEFM), pp. 33-37. IEEE Computer Society (2009)

8. Costa, D., Andrzejak, A., Seboek, J., Lo, D.: Empirical study of usage and per-
formance of Java collections. In: Proceedings of the 8th ACM/SPEC International
Conference on Performance Engineering, pp. 389-400 (2017)

9. Darvas, A., Leino, K.R.M.: Practical reasoning about invocations and implemen-
tations of pure methods. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 336-351. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71289-3_26

10. de Gouw, S., de Boer, F.S., Bubel, R., Hahnle, R., Rot, J., Steinhofel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reason. 62(1), 93-126
(2019)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/978-3-540-71289-3_26
https://doi.org/10.1007/978-3-540-71289-3_26

11.

12.

13.

14.

15.

16.

17.

History-Based Specification and Verification of Java Collections in KeY 217

Hiep, H.-D.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M., de Gouw, S.:
Verifying OpenJDK’s LinkedList using KeY. TACAS 2020. LNCS, vol. 12079, pp.
217-234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-7_13
Huisman, M.: Verification of Java’s AbstractCollection class: a case study. In:
Boiten, E.A., Méller, B. (eds.) MPC 2002. LNCS, vol. 2386, pp. 175-194. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45442-X_11

Huisman, M., Ahrendt, W., Grahl, D., Hentschel, M.: Formal specification with
the Java Modeling Language. In: [1], pp. 193—241. Springer, Cham (2016)
Huisman, M., Jacobs, B., van den Berg, J.: A case study in class library verification:
Java’s vector class. Int. J. Softw. Tools Technol. Transf. 3(3), 332-352 (2001)
Jeffrey, A., Rathke, J.: Java JR: fully abstract trace semantics for a core Java lan-
guage. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 423-438. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31987-0_29

Kniippel, A., Thiim, T., Pardylla, C., Schaefer, I.: Experience report on formally
verifying parts of OpenJDK’s API with KeY. In: Workshop on Formal Integrated
Development Environment (F-IDE). EPTCS, vol. 284, pp. 53-70. OPA (2018)
Welsch, Y., Poetzsch-Heffter, A.: A fully abstract trace-based semantics for rea-
soning about backward compatibility of class libraries. Sci. Comput. Program. 92,
129-161 (2014)

https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/3-540-45442-X_11
https://doi.org/10.1007/978-3-540-31987-0_29

	History-Based Specification and Verification of Java Collections in KeY
	1 Introduction
	2 Background
	3 Specification and Verification Challenges for Collection
	4 History-Based Specification in KeY
	4.1 The History Class for Collection
	4.2 Attributes of History
	4.3 The Collection interface
	4.4 History-Based Refinement

	5 History-Based Verification in KeY
	6 Conclusion
	References

