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Preface

In recent years, we have witnessed a proliferation of approaches that integrate several
modeling, verification, and simulation techniques, facilitating more versatile and effi-
cient analysis of computation-intensive systems. These approaches provide powerful
support for the analysis of different functional and non-functional properties of the
systems, different hardware and software components, and their interaction, as well as
design and validation of diverse aspects of system behavior.

This volume contains the papers presented at the 16th International Conference on
integrated Formal Methods (iFM 2020), which has taken place virtually due to the
COVID-19 pandemic. The iFM conference series is a forum for discussing recent
research advances in the development of integrated approaches to formal modeling and
analysis. The conference covers all aspects of the design of integrated techniques,
including language design, system verification and validation, automated tool support,
and the use of such techniques in practice. We are also seeing increasing interest in the
integration of fields such as machine learning and program synthesis with traditional
formal approaches.

iFM 2020 solicited high-quality papers reporting novel research results as well as
tool papers and experience reports. The Program Committee (PC) received 63 sub-
missions and selected 24 for the publication, of which 2 are short papers. The
acceptance rate is 38% (which also includes short papers). Each paper received three
reviews. The PC members thoroughly discussed the merits of each paper before
making the final decisions.

The program of iFM 2020 also includes keynote talks given by three prominent
researchers:

– Edward A. Lee from the University of California, Berkeley, USA
– David Parker from the University of Birmingham, UK
– Hongseok Yang from the School of Computing, KAIST, South Korea

We would like to thank the invited speakers for accepting our invitation and
agreeing to share their research results and aspirations with the iFM 2020 audience.

The PC co-chairs would like to thank the PC members for their active work in
advertising iFM 2020, contributing to the program and reviewing submissions. We also
thank all our subreviewers for providing expert guidance and contributing to the PC
discussions. Despite the pandemic, the PC members and subreviewers stayed active
throughout the entire review and discussion processes. We are especially grateful to the
general chair Carlo A. Furia from Università della Svizzera italiana, Switzerland, for
organizing the conference, and Springer for sponsoring iFM 2020. Finally, we would
like to thank all the authors, who despite hard pandemic times, prepared submissions
and helped us to build a strong and interesting iFM 2020 program.

We hope you enjoyed the conference!

November 2020 Brijesh Dongol
Elena Troubitsyna
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Formal Policy Synthesis
for Continuous-State Systems
via Reinforcement Learning

Milad Kazemi(B) and Sadegh Soudjani(B)

School of Computing, Newcastle University, Newcastle upon Tyne, UK
{M.Kazemi2,Sadegh.Soudjani}@newcastle.ac.uk

Abstract. This paper studies satisfaction of temporal properties on
unknown stochastic processes that have continuous state spaces. We
show how reinforcement learning (RL) can be applied for computing
policies that are finite-memory and deterministic using only the paths of
the stochastic process. We address properties expressed in linear tempo-
ral logic (LTL) and use their automaton representation to give a path-
dependent reward function maximised via the RL algorithm. We develop
the required assumptions and theories for the convergence of the learned
policy to the optimal policy in the continuous state space. To improve
the performance of the learning on the constructed sparse reward func-
tion, we propose a sequential learning procedure based on a sequence of
labelling functions obtained from the positive normal form of the LTL
specification. We use this procedure to guide the RL algorithm towards a
policy that converges to an optimal policy under suitable assumptions on
the process. We demonstrate the approach on a 4-dim cart-pole system
and 6-dim boat driving problem.

Keywords: Continuous-state stochastic systems · Linear temporal
logic · Model-free policy synthesis · Reinforcement learning

1 Introduction

Motivations. Omega-regular languages provide a rich formalism to unambigu-
ously express desired properties of the system. Linear temporal logic (LTL), as
a class of omega-regular languages, is widely used for task specification such as
safety, liveness, and repeated reachability. Synthesising policies formally for a
system to satisfy a specification requires the knowledge of a model of the sys-
tem. Extensive techniques are developed in the literature for different classes of
models including finite-space models [1] and continuous-state or hybrid models
[10,21,24,25]. Reinforcement learning (RL) is a promising paradigm for sequen-
tial decision making when a model of the system is not available or is very hard
to construct and analyse. The objective of an RL algorithm is to find suitable
action policies in order to maximise the collected rewards that depend on the

c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 3–21, 2020.
https://doi.org/10.1007/978-3-030-63461-2_1
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4 M. Kazemi and S. Soudjani

states and actions taken at those states. The RL algorithms are in particular
useful when the total collected reward has an additive structure.

Many objectives including satisfaction of omega-regular properties on
stochastic systems do not admit an equivalent additive reward structure. A nat-
ural approach used in the literature (e.g., [22]), is to use heuristics for assigning
additive rewards and then apply RL algorithms to obtain a policy. Unfortunately,
there is no unique procedure for constructing these rewards and the learning does
not necessarily converge to the optimal policy. Due to all of these limitations,
there is a need to provide data-driven algorithms that do not require any heuris-
tics and have suitable convergence guarantees to policies that are optimal for
satisfaction of temporal properties.

Related Works. In the last few years, researchers have started developing RL-
based policy synthesis techniques in order to satisfy temporal properties. There
is a large body of literature in safe reinforcement learning (see e.g. [9,28]). The
problem of learning a policy to maximise the satisfaction probability of a tem-
poral property was first introduced in 2014 [4,8,29]. The work [4] provides a
heuristic-driven partial exploration of the model to find bounds for reachability
probability. The work [8] uses model-based RL in order to maximise the satis-
faction probability of the property expressed as deterministic Rabin automaton
(DRA). Given a Markov decision process (MDP) with unknown transition prob-
abilities as the model of the system, the algorithms build a probably approxi-
mately correct MDP, which is then composed with the DRA for policy synthesis.
The work [29] is limited to policies that generate traces satisfying the specifi-
cation with probability one. The provided algorithm needs to compute all the
transitions probabilities which in result requires a large memory usage. This
issue is partially addressed in [32] by introducing an actor-critic algorithm that
obtains transition probabilities only when needed in an approximate dynamic
programming framework.

Satisfaction of LTL formulas can be checked on a class of automata called
Limit-Deterministic Büchi Automata (LDBA) [5,11,30]. An implementation of
a wide range of algorithms for translating LTL specifications to various types of
automata is also available [20]. The equivalent LDBA of [30] is used in [13,15] to
constrain the learning algorithm and is applied to an unknown finite MDP. The
work [12] provides an RL-based policy synthesis for finite MDPs with unknown
transition probabilities. It transforms the specification to an LDBA using [11],
and then constructs a parameterised augmented MDP. It shows that the optimal
policy obtained by RL for the reachability probability on the augmented MDP
gives a policy for the MDP with a suitable convergence guarantee. In [3], the
authors utilise the LDBA representation, provide a path-dependent discounting
mechanism for the RL algorithm, and prove convergence of their approach on
finite MDPs when the discounting factor goes to one.

The literature on learning algorithms for formal synthesis on continuous-state
models is very limited. To the best of our knowledge, the only works developed
for continuous-state stochastic models are [14,16,21]. The work [21] provides
formal error bounds by discretising the space of the model, thus is only applica-
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ble to finite-horizon properties. The works [14,16] use respectively neural fitted
Q-iteration and deep deterministic policy gradient(DDPG) approach without
providing a proper formal convergence guarantee. Our approach extends [21]
to all LTL properties instead of finite-horizon properties and does not require
any discretisation or knowledge of the continuity properties of the system. Our
approach is closely related to [12] that discusses only finite-state MDPs. We
utilise the same technique and provide an example that shows the convergence
guarantees of [12] do not hold for all continuous-state MDPs but require an addi-
tional assumption on the model. Our proofs are for general state spaces and do
not rely on the properties of the bottom strongly-connected components of the
MDP, thus simplify the ones in [12]. Due to the space restrictions, these proofs
are included in the extended version [19].

Main Contributions. We apply RL algorithms to continuous-state stochastic
systems using only paths of the system to find optimal policies satisfying an LTL
specification. We show that if a suitable assumption on the system holds, the
formulated optimal average reward converges linearly to the true optimal satis-
faction probability. We use negation of the specification and learn a lower bound
on this satisfaction probability. To improve the performance of the learning on
the constructed sparse reward function, we show how to construct a sequence of
labelling functions based on the positive normal form of the LTL specification
and use them for guiding the RL algorithm in learning the policy and its associ-
ated value function. This sequential learning is able to find policies for our case
studies in less than 1.5 h but direct learning does not converge in 24 h.

Organisation. Section 2 recalls definition of controlled Markov processes
(CMPs) as the unknown model. We also give linear temporal logic, limit-
deterministic automata, and the problem statement in the same section.
Section 3 gives construction of the augmented CMP and the product CMP. It
establishes the relation between the reachability on the augmented CMP and
the LTL satisfaction on the original CMP. Section 4 gives the reward function
for reachability on the augmented CMP that can be used by RL algorithms. It
also gives a procedure for guiding the learning task via a sequence of labelling
functions. Finally, Sect. 5 illustrates our approach on two case studies, a 4-dim
cart-pole system and 6-dim boat driving problem.

2 Preliminaries and Problem Statement

We consider a probability space (Ω,FΩ , PΩ), where Ω is the sample space, FΩ is
a sigma-algebra on Ω comprising subsets of Ω as events, and PΩ is a probability
measure that assigns probabilities to events. We assume that random variables
introduced in this article are measurable functions of the form X : (Ω,FΩ) →
(SX ,FX) from the measurable space (Ω,FΩ) to a measurable space (SX ,FX).
Any random variable X induces a probability measure on its space (SX ,FX)
as Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often directly discuss the
probability measure on (SX ,FX) without explicitly mentioning the underlying
sample space and the function X itself.
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A topological space S is called a Borel space if it is homeomorphic to a
Borel subset of a Polish space (i.e., a separable and completely metrisable space).
Examples of a Borel space are the Euclidean spaces R

n, its Borel subsets endowed
with a subspace topology, as well as hybrid spaces of the form Q × R

n with Q
being a finite set. Any Borel space S is assumed to be endowed with a Borel
sigma-algebra, which is denoted by B(S). We say that a map f : S → Y is
measurable whenever it is Borel measurable. We denote the set of non-negative
integers by N := {0, 1, 2, . . .} and the empty set by ∅.

2.1 Controlled Markov Processes

Controlled Markov processes (CMPs) are a natural choice for physical systems
that have three main features: an uncountable state space that can be continuous
or hybrid, control inputs to be designed, and inputs in the form of disturbance
which have certain probabilistic behaviour [6].

We consider CMPs in discrete time defined over a general state space, char-
acterised by the tuple S = (S,U , {U(s)|s ∈ S}, Ts) , where S is a Borel space
as the state space of the CMP. We denote by (S,B(S)) the measurable space
with B(S) being the Borel sigma-algebra on the state space. U is a Borel space
as the input space of the CMP. The set {U(s)|s ∈ S} is a family of non-empty
measurable subsets of U with the property that K := {(s, u) : s ∈ S, u ∈ U(s)}
is measurable in S × U . Intuitively, U(s) is the set of inputs that are feasible at
state s ∈ S. Ts : B(S) × S × U → [0, 1], is a conditional stochastic kernel that
assigns to any s ∈ S and u ∈ U(s) a probability measure Ts(·|s, u) on the mea-
surable space (S,B(S)) so that for any set A ∈ B(S), Ps,u(A) =

∫
A

Ts(ds|s, u),
where Ps,u denotes the conditional probability P (·|s, u).

u

A

C1

C2

Fig. 1. Cart-pole system with a 4-dim state space. It should stay within the limits
specified by C1, always keep the pole upright in the range C2, and reach the region A.
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Example 1. Consider the cart-pole in Fig. 1. The cart moves along a line in
either direction. The states are position s1, velocity s2, pole’s angle s3, and the
angular velocity s4. The input un is the force applied to the cart at time step
n. Its dynamics in discrete time are according to the following 4-dim difference
equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

s1n+1 = s1n + Δs2n
s2n+1 = s2n + Δa3

s3n+1 = s3n + Δs2n
s4n+1 = s4n + Δa2 + ηn,

with

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

a3 := a1 − la2 cos(s3n)
(M + m)

a2 :=
g sin(s3n) − cos(s3n)a1

l( 43 − m(cos(s3n))2/(M + m))

a1 :=
un + l(s4n)2 sin(s3n)

M + m
.

(1)
Δ is the sampling time, M is the mass of the cart, m is the mass of the pole,
l is the half length of the pole, and ηn models the disturbance. The cart has
discrete input and can be either pushed to the left or right with a fixed value,
U = {−Fmax, Fmax}. This input un appears in a1 that affects both a2 and a3.
Assuming that the disturbances are all independent with normal distribution
N ( · ; 0, σ2), this system is a CMP with S = R

4, U(s) = U for all s ∈ S, and
kernel

Ts(ds̄ | s, u) = N ( ds̄4 ; s4n+ Δa2 , σ2)δ(ds̄1 ; s1n + Δs2n)
×δ(ds̄2 ; s2n + Δa3)δ(ds̄3 ; s3n + Δs2n),

where δ(· ; a) is the Dirac delta measure centred at a and N (· ; m,σ2) is the
normal probability measure with mean m and variance σ2.

2.2 Semantics of Controlled Markov Processes

The semantics of a CMP is characterised by its paths or executions, which reflect
both the history of previous states of the system and of implemented control
inputs. Paths are used to measure the performance of the system.

Definition 1. A finite path of S is a sequence wn = (s0, u0, . . . , sn−1, un−1, sn),
n ∈ N, where si ∈ S are state coordinates and ui ∈ U(si) are control input
coordinates of the path. The space of all paths of length n is denoted by PATHn :=
Kn×S. Further, we denote projections by wn[i] := si and wn(i) := ui. An infinite
path of the CMP S is the sequence w = (s0, u0, s1, u1, . . .), where si ∈ S and
ui ∈ U(si) for all i ∈ N. As above, let us introduce w[i] := si and w(i) := ui.
The space of all infinite paths is denoted by PATH∞ := K∞.

Given an infinite path w or a finite path wn, we assume below that si and
ui are their state and control coordinates respectively, unless otherwise stated.
For any infinite path w ∈ PATH∞, its n-prefix (ending in a state) wn is a finite
path of length n, which we also call n-history. We are now ready to introduce
the notion of control policy.
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Definition 2. A policy is a sequence ρ = (ρ0, ρ1, ρ2, . . .) of universally measur-
able stochastic kernels ρn [2], each defined on the input space U given PATHn

and such that for all wn ∈ PATHn with n ∈ N, ρn(U(sn)|wn) = 1. The set of all
policies is denoted by Π.

Given a policy ρ ∈ Π and a finite path wn ∈ PATHn, the distribution of the
next control input un is given by ρn(·|wn) and is supported on U(sn) (i.e., the
chance of selecting an invalid input at sn is zero). For a CMP S, any policy
ρ ∈ Π together with an initial probability measure α : B(S) → [0, 1] of the CMP
induce a unique probability measure on the canonical sample space of paths [17]
denoted by P ρ

α with the expectation E
ρ
α. When the initial probability measure

is supported on a single point, i.e., α(s) = 1, we write P ρ
s and E

ρ
s in place of P ρ

α

and E
ρ
α, respectively. We denote the set of probability measures on (S,B(S)) by

D. Implementation of a general policy requires an infinite memory. In this work,
we restrict our attention to the class of policies that depend on the paths via a
finite memory.

Definition 3. A finite-memory policy for S is a tuple ρf := (Ŝ, ŝ0, Tp, To),
where Ŝ is the state space of the policy, ŝ0 ∈ Ŝ is the initial state, Tp : Ŝ × S ×
B(Ŝ) → [0, 1] is the stochastic kernel for updating the state of the policy, and
To : Ŝ × S × B(U) → [0, 1] is the output kernel such that To(U(s) | ŝ, s) = 1 for
all ŝ ∈ Ŝ and s ∈ S. We denote the set of such policies by Πf ⊂ Π.

Note that the state space Ŝ could in general be any continuous or hybrid space.
The policy has access to the current state sn of S and updates its own state ŝn

according to ŝn+1 ∼ Tp(· | ŝn, sn). As we will see later in Lemma 1, a finite Ŝ is
sufficient for optimal satisfaction of LTL specifications.

There is a special class of policies called positional that do not need a memory
state as defined next.

Definition 4. A policy ρ is positional if there is a stochastic kernel C : S ×
B(U) → [0, 1] such that at any time n ∈ N, the input un is taken from the
probability measure C(·|sn). Namely, the output kernel To(·|ŝ, s) in Definition 3
is independent of ŝ. We denote the class of positional policies by Πp ⊂ Πf and
a positional policy just by the kernel C ∈ Πp.

Designing optimal finite-memory policies to satisfy a specification on S can
be reduced to finding an optimal positional policy for satisfying a specification
on an extended model S′. This is formally proved in Sect. 3. Next we define the
class of specifications used in this paper.

2.3 Linear Temporal Logic

Linear temporal logic (LTL) provides a high-level language for describing the
desired behaviour of a process. Formulas in this logic are constructed inductively
by using a set of atomic propositions and combining them via Boolean opera-
tors. Consider a finite set of atomic propositions AP that defines the alphabet
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Σ := 2AP. Thus, each letter of this alphabet evaluates a subset of the atomic
propositions as true. Composed as an infinite string, these letters form infinite
words defined as ω = ω0, ω1, ω2, . . . ∈ ΣN. These words are connected to paths
of CMP S via a measurable labelling function L : S → Σ that assigns letters
α = L(s) to state s ∈ S. That is, infinite paths w = (s0, u0, s1, u1, . . .) are
mapped to the set of infinite words ΣN, as ω = L(w) := (L(s0), L(s1), L(s2), . . .).

Definition 5. An LTL formula over a set of atomic propositions AP is con-
structed inductively as

ψ ::= true | false | p | ¬p |ψ1 ∧ ψ2 |ψ1 ∨ ψ2 |©ψ |ψ1 U ψ2 |ψ1 R ψ2, p ∈ AP, (2)

with ψ1, ψ2, ψ being LTL formulas.

Let ωn = (ωn, ωn+1, ωn+2, . . .) be a postfix of ω. The satisfaction relation is
denoted by ω � ψ (or equivalently ω0 � ψ) and is defined recursively as follows

– ωn � true always hold and ωn � false does not hold.
– An atomic proposition, ωn � p for p ∈ AP holds if p ∈ ωn.
– A negation, ωn � ¬p, holds if ωn � p.
– A logical conjunction, ωn � ψ1 ∧ ψ2, holds if ωn � ψ1 and ωn � ψ2.
– A logical disjunction, ωn � ψ1 ∨ ψ2, holds if ωn � ψ1 or ωn � ψ2.
– A temporal next operator, ωn � ©ψ, holds if ωn+1 � ψ.
– A temporal until operator, ωn � ψ1 U ψ2, holds if there exists an i ∈ N such

that ωn+i � ψ2, and for all j ∈ N, 0 ≤ j < i, we have ωn+j � ψ1.
– A temporal release operator is dual of the until operator and is defied as

ωn � ψ1 R ψ2 if ωn � ¬ψ1 U ¬ψ2.

In addition to the aforementioned operators, we can also use eventually ♦,
and always � operators as ♦ψ := (true U ψ) and �ψ := false R ψ.

Remark 1. The above definition is the canonical form of LTL and is called pos-
itive normal form (PNF), in which negations only occur adjacent to atomic
propositions. If this is not the case, it is possible to construct an equivalent for-
mula [1, Theorem 5.24] in the canonical form in polynomial time as a function
of the length of the formula. We utilise the canonical form in Sect. 4.1 to con-
struct a sequence of learning procedures that guides the optimal policy learning
problem.

Example 1 (Continued). The cart in Fig. 1 should stay within the limits spec-
ified by C1, always keep the pole upright in the range C2, and reach the region
A. We can express this requirement as the LTL specification

ψ = ♦a ∧ �(c1 ∧ c2) (3)

with AP = {a, c1, c2} and the labelling function L with a ∈ L(s) if the cart is
inside A, c1 ∈ L(s) if the cart is inside C1, and c2 ∈ L(s) if the pole angle is
inside the specified range of C2.
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2.4 Problem Statement

We are interested in the probability that an LTL specification ψ can be sat-
isfied by paths of a CMP S under different policies. Suppose a CMP S =
(S,U , {U(s)|s ∈ S}, Ts), an LTL specification ψ over the alphabet Σ, and a
labelling function L : S → Σ are given. An infinite path w = (s0, u0, s1, u1, . . .)
of S satisfies ψ if the infinite word ω = L(w) ∈ ΣN satisfies ψ. We denote such
an event by S |= ψ and will study the probability of the event.

Remark 2. In general, one should use the notation S |=Lψ to emphasise the role
of labelling function L in the satisfaction of ψ by paths of S. We eliminate the
subscript L with the understanding that it is clear from the context. We add
the labelling function in Sect. 4.1 when discussing multiple labelling functions
for evaluation of S |= ψ.

Given a policy ρ ∈ Πf and initial state s ∈ S, we define the satisfaction prob-
ability as f(s, ρ) := P ρ

s (S |= ψ), and the supremum satisfaction probability
f∗(s) := supρ∈Πf

P ρ
s (S |= ψ).

Problem 1 (Synthesis for LTL). Given CMP S, LTL specification ψ, and
labelling function L, find an optimal policy ρ∗ ∈ Πf along with f∗(s) s.t.
P ρ∗

s (S |= ψ) = f∗(s).

Measurability of the set {S |= ψ} in the canonical sample space of paths
under the probability measure P ρ

s is proved in [31]. The function f∗(s) is studied
in [31] with an approximation procedure presented in [24]. These works are for
fully known S and only for Büchi conditions where the system should visit a set
B ⊂ S infinitely often. This condition is denoted by ψ = �♦B.

Problem 2 (Synthesis for Büchi Conditions). Given S, a set of accepting states
B ∈ B(S), find an optimal positional policy ρ∗ ∈ Πp along with f∗(s) s.t.
P ρ∗

s (S |= �♦B) = f∗(s).

Remark 3 We have restricted our attention to finite-memory policies in Prob-
lem 1. This is due to the fact that proving existence of an optimal policy ρ∗ ∈ Π
is an open problem. We note that existence of ε-optimal policies is already proved
[7,23]. We prove in Sect. 3 that Problems 1 and 2 are closely related: in order to
find a solution for Problem1, we can find a solution for Problems 2 on another
CMP with an extended state space.

2.5 Limit-Deterministic Büchi Automata

Satisfaction of LTL formulas can be checked on a class of automata called Limit-
Deterministic Büchi Automata (LDBA) [5,11,12,30]. Similar to [12], we use the
translation of the specification to an LDBA that has one set of accepting tran-
sitions and is presented next. This translation is provided by [11]. An imple-
mentation of a wide range of algorithms for translating LTL to various types of
automata is also available [20].
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Definition 6 (LDBA). An LDBA is a tuple A = (Q,Σ, δ, q0,Acc), where Q is
a finite set of states, Σ is a finite alphabet, δ : Q × (Σ ∪ {ε}) → 2Q is a partial
transition function, q0 ∈ Q is an initial state, and Acc ⊂ Q × Σ × Q is a set
of accepting transitions. The transition function δ is such that it is total for all
(q, ω) ∈ Q × Σ, i.e., |δ(q, ω)| ≤ 1 for all ω �= ε and q ∈ Q. Moreover, there is a
partition {QN , QD} for Q such that

– δ(q, ε) = ∅ for all q ∈ QD, i.e., the ε-transitions can only occur in QN .
– δ(q, ω) ⊂ QD for all q ∈ QD and ω ∈ Σ, i.e., the transitions starting in QD

remain in QD.
– Acc ⊂ QD × Σ × QD, the accepting transitions start only in QD.

We can associate to an infinite word ω = (ω0, ω1, ω2, . . .) ∈ (Σ ∪ {ε})N, a
path r = (q0, ω0, q1, ω1, q2, . . .) to A such that q0 is the initial state of A and
qn+1 ∈ δ(qn, ωn) for all n ∈ N. Such a path always exists when ω ∈ ΣN. Let us
denote by inf(r) as the set of transitions (q, ω, q′) appearing in r infinitely often.
We say the word ω is accepted by A if it has a path r with inf(r) ∩ Acc �= ∅.
The accepting language of A is the set of words accepted by A and is denoted
by L(A).

3 Augmented CMP with Reachability Specification

In this section we discuss approximating solutions of Problems 1 and 2 using
reachability specifications. This section contains one of the main contributions
of the paper that is formulating Assumption 1 and proving Theorems 1-3 and
Lemma 1 for continuous-state CMPs.

3.1 The Augmented CMP

Given S = (S,U , {U(s)|s ∈ S}, Ts) and a set of accepting states B ⊂ S, we
construct an augmented CMP Sζ =

(
Sζ ,U , {Uζ(s)|s ∈ Sζ}, T ζ

s

)
that has an

additional dummy state φ, Sζ := S ∪ {φ} and the same input space U . The
set of valid inputs Uζ(s) is the same as U(s) for all s ∈ S and Uζ(φ) = U .
The stochastic kernel of Sζ is a modified version of Ts as T ζ

s (A|s, u) = [1 −
(1 − ζ)1B(s)]Ts(A|s, u), T ζ

s (φ|s, u) = (1 − ζ)1B(s), and Ts(φ|φ, u) = 1, for all
A ∈ B(S), s ∈ S and u ∈ Uζ(s). In words, T ζ

s takes the same Ts, adds a sink state
φ, and for any accepting state s ∈ B, the process will jump to φ with probability
(1− ζ). It also normalises the outgoing transition probabilities of accepting ones
with ζ. We establish a relation between S and Sζ regarding satisfaction of Büchi
conditions under the following assumption.
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Assumption 1. For S and a set B, define the random variable τB as the num-
ber of times the set B is visited in paths of S conditioned on having it as a finite
number. The quantity τ∗

B := supρ E
ρ
s(τB) is bounded for any s ∈ S.

Theorem 1. Given S satisfying Assumption 1 and for any positional policy ρ
on S, there is a positional policy ρ̄ on Sζ such that

P ρ̄
s (Sζ |= ♦φ) − (1 − ζ)Eρ

s(τB) ≤ P ρ
s (S |= �♦B) ≤ P ρ̄

s (Sζ |= ♦φ). (4)

For any ρ̄ on Sζ , there is ρ on S such that the same inequality holds.

The above theorem shows that the probability of satisfying a Büchi condition
with accepting set B ⊂ S by S is upper bounded by the probability of reaching
φ in Sζ . It also establishes a lower bound but requires knowing E

ρ
s(τB).

Inequalities of Theorem 1 can be extended to optimal satisfaction probabili-
ties as stated in the next theorem.

Theorem 2. For any S satisfying Assumption 1, we have

sup
ρ̄

P ρ̄
s (Sζ |= ♦φ) − (1 − ζ)τ∗

B ≤ sup
ρ

P ρ
s (S |= �♦B) ≤ sup

ρ̄
P ρ̄

s (Sζ |= ♦φ). (5)

Corollary 1. Under Assumption 1, the optimal value supρ̄ P ρ̄
s (Sζ |= ♦φ) con-

verges to supρ P ρ
s (S |= �♦B) from above when ζ converges to one from below,

and the rate of convergence is at least linear with (1 − ζ).

Next example highlights the need for Assumption 1 on S to get the linear
convergence. Such an assumption holds for all S with finite state spaces as used
in [3,12] but it may not hold for S with infinite state spaces.

Example 2. Consider the S presented in Fig. 2, which has a countable state
space {1, 2, 3, . . .} and the input space is singleton. S starts at state s = 2. The
state 1 is absorbing. From any other state n, it jumps to state 1 with probability
1
n and to state (n + 1) with probability n−1

n . Take the set of accepting states
B = {3, 4, 5, . . .}. E

ρ
s(τB) is unbounded for S:

E
ρ
s(τB) =

∞∑

n=1

n × 1
2

× 2
3

× 3
4

× · · · n

n + 1
× 1

n + 2
=

∞∑

n=1

n

(n + 1)(n + 2)
= ∞.

It can be easily verified that

P ρ
s (S |= �♦B) =

1
2

× 2
3

× 3
4

× 4
5

× · · · = 0

P ρ̄
s (Sζ |= ♦φ) = (1 − ζ)

[

1 +
1
2
ζ +

1
3
ζ2 +

1
4
ζ3 + . . .

]

=
−(1 − ζ) ln(1 − ζ)

ζ
.

The left-hand side of inequality (5) is still technically true for this S despite
E

ρ
s(τB) = ∞, but the provided lower bound is trivial and does not give linear

convergence mentioned in Corollary 1.
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Fig. 2. A CMP with space {1, 2, 3, . . .}, a single input and accepting states B =
{3, 4, 5, . . .}. Its augmented CMP Sζ does not show convergence with a linear rate.

Remark 4. The lower bound in (5) is useful for showing linear convergence when
ζ → 1−, but it is not beneficial for learning purposes since the computation of τ∗

B

requires knowing the structure of the underlying unknown transition kernel Ts.
In the next subsection, we utilise Theorem 2 to give a lower bound independent
of τ∗

B . We also demonstrate convergence experimentally in the case study section.

3.2 The Product CMP

The product of a CMP and an LDBA is used in the literature, e.g., [3,12,15] for
finite state spaces. We provide this construction for continuous-state CMPs.

Definition 7. The product CMP S⊗ = (S⊗,U⊗, {U⊗(x)|x ∈ S⊗}, T ⊗
x ) of an

CMP (S,U , {U(s)|s ∈ S}, Ts) and an LDBA A = (Q,Σ, δ, q0,Acc) is defined as
follows: S⊗ := S × Q is the set of states, U⊗ := U ∪ Aε with Aε := {εq|q ∈ Q}
is the set of actions. The valid input sets are U⊗(s, q) = U(s) if δ(q, ε) = ∅ and
U⊗(s, q) = εq′ if q′ ∈ δ(q, ε). The stochastic kernel is defined as

T ⊗
x (A × {q′}|s, q, u) :=

⎧
⎪⎨

⎪⎩

Ts(A|s, u) if q′ = δ(q, L(s) and u ∈ U(s)
1A(s) if q′ = δ(q, ε) and u = εq′

0, otherwise,

where 1A(s) is the indicator function of the set A.

Any distribution α : B(S) → [0, 1] for the initial state of S induces an initial
distribution α⊗ : B(Ŝ) → [0, 1] with α⊗(A×{q}) := α(A) for any A ∈ B(S) and
q = q0, and zero otherwise. The set of accepting states in the product CMP S⊗

is
Acc⊗ = {(s, q) | (q, L(s), q′) ∈ Acc, q′ = δ(q, L(s))} . (6)

We say the path w⊗ of S⊗ satisfies the Büchi condition ψB if the number of
states in Acc⊗ visited by the path is not finite (the set is visited infinitely often).
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Lemma 1. Any positional policy on S⊗ can be translated into a finite-memory
policy for S that has a finite state space equal to the space of the LDBA A.
Moreover, the class of finite-memory policies are sufficient for solving Problem1
if an optimal policy exists.

Due to Lemma 1, we focus in the next section on finding positional policies
for the product CMP using reinforcement learning. Next theorem is one of the
main contributions of the paper that formalises a lower bound on the optimal
satisfaction probability.

Theorem 3. For any S, specification ψ, labelling function L, and any s ∈ S,

1 − inf
ρ̄

P ρ̄
s,q0(S

⊗
1ζ |= ♦φ) ≤ sup

ρ
P ρ

s (S |= ψ) ≤ sup
ρ̄

P ρ̄
s,q0(S

⊗
2ζ |= ♦φ), (7)

where S⊗
1ζ and S⊗

2ζ are the augmented CMPs constructed for the products of S
with A¬ψ and Aψ, respectively.

In the next section, we focus on the computation of the right-hand side of (7)
using RL. The left-hand side is computed similarly.

4 Reinforcement Learning for Policy Synthesis

This section contains another main contributions of the paper that is using
relaxed versions of the LTL specification in learning a policy. We have shown
that Problem 1 can be reduced to Problem2 on a product CMP, which then can
be approximated using reachability objectives as shown in (7). The reachability
probability is an average reward criterion

P ρ̄
s (Sζ |= ♦φ) = lim

N→∞
1

N + 1
E

ρ̄
s

N∑

n=0

R(sn), (8)

with the reward function R : Sζ → R defined as R(s) = 1 for s = φ and R(s) = 0
otherwise. It can alternatively be written with a total (undiscounted) additive
reward criterion by assigning reward one to the first visit of the φ and zero
otherwise. Both cases can be computed by RL algorithms whenever the model
of the CMP is not known or is hard to analyse. Any off-the-shelf RL algorithm
for continuous systems can be used to learn a policy. Note that for a general LTL
specification, the reward function R is state dependent on the product CMP, but
it becomes path dependent when interpreted over the original CMP through the
LDBA of the specification.

Advantage Actor-Critic RL. RL algorithms are either value based or policy
based. In value-based RL, the algorithm tries to maximise a value function that
is a mapping between a state-input pair and a value. Policy-based RL tries
to find the optimal policy without using a value function. The policy-based
RL has better convergence and effectiveness on high dimensions or continuous
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state spaces, while value-based RL is more sample efficient and steady. The
intersection between these two categories is the actor-critic RL, where the goal
is to optimise the policy and the value function together. It optimises the policy
and value function as a function of state. We use in this paper the Advantage
Actor-Critic RL (A2C) [26] that takes the value function as a baseline. It makes
the cumulative reward smaller by subtracting it with the baseline, thus have
smaller gradients and more stable updates. It works better in comparison with
other actor-critic RL in terms of the stability of the learning process and lower
variance. An implementation of A2C is available in MATLAB. We have taken
this implementation and adapted it to be applicable to the augmented CMP
S⊗

ζ . A pseudo algorithm of our approach based on the A2C is provided in the
extended version [19].

4.1 Specification-Guided Learning

The reward function R used in (8) is sparse and it slows down the learning. To
improve the learning performance, we give an algorithm that sequentially trains
the Actor and Critic networks and guides the learning process by a sequence of
labelling functions defining satisfaction of the specification with different relax-
ation degrees. This sequential training has a similar spirit as the approach of [22].
The novelty of our algorithm is in constructing a sequence of labelling functions
that automatically encode the satisfaction relaxation, thus requires Actor and
Critic networks with fixed structures.

Relaxed Labelling Functions. We denote the elements of the alphabet by Σ =
{Σ1, . . . , Σm}. The labelling function L : S → Σ induces a partition of the state
space {S1, S2, . . . , Sm} such that Si := L−1(Σi), S = ∪n

i=1Si, and Si ∩ Sj = ∅
for all i �= j. Define the r-expanded version of a set S ⊂ S by

S+r := {s ∈ S | ∃s′ ∈ S with ‖s − s′‖∞ ≤ r}, (9)

for any r ≥ 0, where ‖ · ‖∞ is the infinity norm. Define the r-relaxed labelling
function Lr : S → 2Σ with

Lr(s) := {Σi | L(Si) = Σi and s ∈ S+r
i }, for all s ∈ S. (10)

Theorem 4. The relaxed labelling functions Lr are monotonic with respect to r,
i.e., for any 0 ≤ r ≤ r′ and L, we have {L(s)} = L0(s) ⊂ Lr(s) ⊂ Lr′(s).

Specification interpreted over Σ. We interpret the specification ψ over the letters
in Σ instead of the atomic propositions in AP. For this, we take the PNF form
of ψ and replace an atomic proposition p by ∨i{Σi | p ∈ Σi}. We also replace
¬p by ∨i{Σi | p /∈ Σi}. Let us denote this specification in PNF with the letters
{Σ1, . . . , Σm} treated as atomic propositions ψ̄. We can construct its associated
LDBA Āψ as discussed in Sect. 2.5,

Āψ := (Q̄, 2Σ , δ̄, q̄0,Acc). (11)
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Algorithm 1: Specification-Guided Learning
input : CMP S as a black box, specification ψ, labelling function L : S → Σ
output: Actor network μ(s, q|θμ) and Critic network Q(s, q|θQ)

1 Select hyper-parameters rm > rm−1 > . . . r1 > r0 = 0

2 Compute r-relaxed labelling functions Lri : S → 2Σ according to (10)
3 Compute LDBA Āψ as discussed for (11)
4 Run the Actor-Critic RL with (S, Āψ, Lrm) to get Actor and Critic networks

μ(s, q|θμ) and Q(s, q|θQ)
5 for i = m to 1 do
6 Fix parameters θμ of the Actor network by setting its learning rate to zero
7 Run Actor-Critic RL with Lri−1 to train only the Critic network
8 Change the learning rate of Actor back to normal
9 Run Actor-Critic RL with Lri−1 and initial parameters obtained in Steps 6

and 7

10 end

Theorem 5. For any 0 ≤ r ≤ r′ and L, we have

{S |=Lψ} =
{
S |=L0 ψ̄

}
⊂

{
S |=Lr

ψ̄
}

⊂
{
S |=Lr′ ψ̄

}
, (12)

where Lr is the r-relaxed labelling function defined in (10), and ψ̄ is the specifi-
cation ψ in PNF and interpreted over Σ.

A pseudo algorithm for the specification-guided learning is provided in
Algorithm 1 that is based on repeatedly applying an RL algorithm to S using
a sequence of r-relaxed labelling functions. The algorithm starts by applying
Actor-Critic RL to the most relaxed labelling function Lrm . Then it repeatedly
fixes the actor network (the policy) by setting its learning rate to zero (Step 6),
runs Actor-Critic RL on the next most relaxed labelling function to update the
Critic network that gives the total reward (Step 7), and uses these two networks
as initialisation for running Actor-Critic RL to optimise both Actor and Critic
networks (Step 9).

Remark 5. The main feature of Algorithm1 is that the structure of the LDBA
Āψ is fixed through the entire algorithm and only the labelling function (thus
the reward function) is changed in each iteration.

We presented Algorithm 1 for the computation of the right-hand side of (7). The
lower bound in (7) is computed similarly. The only difference is that the LDBA
is constructed using ¬ψ. The reward function should assign zero to φ and one to
all other states. The r-relaxed labelling functions in (10) can be used for guiding
the computation of the lower bound.
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5 Case Studies

To demonstrate our model-free policy synthesis method, we first apply it to
the cart-pole system of Example 1 and then discuss the results on a 6-dim boat
driving problem. Note that it is not possible to compare our approach with
[21] that only handles finite-horizon specifications. Also, the approach of [14,16]
maximises the frequency of visiting a sequence of sets of accepting transitions
and does not come with formal convergence or lower-bound guarantees.

Our algorithms are implemented in MATLAB R2019a on a 64-bit machine
with an Intel Core(TM) i7 CPU at 3.2 GHz and 16 GB RAM.

5.1 Cart-Pole System

We use negation of the specification (3) to learn a lower bound on the optimal
satisfaction probability. We set the safe interval C2 = [−12◦, 12◦] for the angle,
safe range C1 = [−1, 1] and reach set A = [0.4, 1] in meters for the location. We
first directly apply A2C RL to the specification (3) and set the timeout of 24
hours. The RL does not converge to a policy within this time frame. Note that
it is a very challenging task to keep the pole upright and at the same time move
the cart to reach the desired location.

We then apply Algorithm1 by using the expanded sets A+i = [αi, 1] with αi ∈
{−1, 0.01, 0.4} for defining the relaxed labelling functions Li. We select the Actor
network to have 7 inputs (4 real states and 3 discrete states of the automaton)
and 2 outputs. It also has two fully-connected hidden layers each with 7 nodes.
The Critic network has the same number of inputs as Actor network, one output,
and one fully-connected layer with 7 nodes. We also set ζ = 0.999, learning rate
8 × 10−4, and episode horizon N = 500.

Our sequential learning procedure successfully learns the policy within 44
minutes and gives the lower bound 0.9526 for satisfaction probability (according
to Theorem 3). Figure 3 shows cart’s position (left) and pole’s angle (right) for
50, 000 trajectories under the learned policy. The grey area is an envelop for these
trajectories, their mean is indicated by the solid line and the standard devia-
tion around mean is indicated by dashed lines. Only 515 trajectories (1.03%) go
outside of the safe location [−1, 1] or drop the pole outside of the angle inter-
val [−12◦, 12◦]. All trajectories reach the location [0.4, 1]. The histogram of the
first time the trajectories reach this interval is presented in Fig. 4, which shows
majority of the trajectories reach this interval within 150 time steps.

Using Hoeffding’s inequality,1 we get that the true satisfaction probability
under the learned policy is in the interval [0.975, 1] with confidence 1−4×10−10.
This is in line with the lower bound 0.9526 computed by the RL.

1 Hoeffding’s inequality asserts that the tail of the binomial distribution is exponen-
tially decaying: Prob(H ≥ (p + ε)N) ≤ exp(−2ε2N) for all ε > 0 with the number
of trials N , the success probability p, and the observed number of successes H.
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Fig. 3. Cart-pole system. Cart’s position (left) and pole’s angle (right) for 50, 000
trajectories under the learned policy. The grey area is an envelop for these trajectories,
their mean is indicated by the solid line and the standard deviation around mean is
indicated by dashed lines. Only 515 trajectories (1.03%) go outside of the safe location
[−1, 1] or drop the pole outside of the angle interval [−12◦, 12◦].

Fig. 4. Cart-pole system. Histogram
of the first time the trajectories reach
the interval [0.4, 1]. A majority of the
trajectories reach this interval within
150 time steps.

Fig. 5. Boat driving problem. The
satisfaction probability as a function of
the initial position y0 for the policies
learned with labelling functions Li, i ∈
{0, 1, 2, 3, 4}.

5.2 Boat Driving Problem

The objective in the boat driving problem is to design a policy for driving a
boat from the left bank to the right bank quay in a river with strong nonlinear
current. Variations of this problem have been used in the literature (see e.g. [27]).
We use a more general version presented in [18] with the dynamics reported in
[19]. The model has six continuous states including x and y coordinates for the
location both in the interval [0, 200]. The boat starts its journey from the left
bank of the river x0 = 0 and y0 ∈ [60, 100] and should reach the right bank of
the river xn = 200 and yn ∈ [95, 105] for some n. There is an unknown nonlinear
stochastic current affecting the location of the boat.
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Direct application of A2C RL does not converge to a policy within 24 hours.
We then apply Algorithm1 with labelling functions L4, L3, L2, L1, L0 respectively
with the target range [50, 150], [80, 120], [85, 115], [90, 110], and [95, 105]. We also
adaptively increase the value of ζ to get better lower bounds on the satisfaction
probability: ζ4 = 0.9950, ζ3 = 0.9965, ζ2 = 0.9980, ζ1 = 0.9995, and ζ0 = 0.9999.
The results of this sequential learning procedure are presented in Fig. 5 as a
function of the initial position of the boat. The learning rate is set to 8 × 10−4

and the computational time is 70 minutes. The results show that the lower bound
on satisfaction probability is monotonically increasing for all initial positions of
the boat when ζ increases, which shows also convergence as a function of ζ.

In order to validate the computed bound, we took the initial position
(x0, y0) = (0, 80) and obtained 50,000 trajectories. All trajectories reach the tar-
get location. Based on Hoeffding’s inequality, the true probability is in [0.99, 1]
with confidence 5 × 10−5, which confirms the lower bound 0.9810 computed by
RL.

6 Future Work

We presented an approach for applying reinforcement learning (RL) to unknown
continuous-state stochastic systems with the goal of satisfying a linear tempo-
ral logic specification. We formulated an optimal average reward criterion that
converges linearly to the true optimal satisfaction probability under suitable
assumptions. We used RL to learn a lower bound on this optimal value and
improved the performance of the learning by a sequential algorithm using relaxed
versions of the specification. In future, we plan to study the relation with dis-
counting reward functions [3], formal connections with maximising frequency of
visits, and providing guidance in adapting the network architecture in the RL
to the structure of the specification.
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Abstract. Model learning (a.k.a. active automata learning) is a highly
effective technique for obtaining black-box finite state models of soft-
ware components. We show how one can boost the performance of model
learning techniques for register automata by extracting the constraints
on input and output parameters from a run, and making this grey-box
information available to the learner. More specifically, we provide new
implementations of the tree oracle and equivalence oracle from the RALib
tool, which use the derived constraints. We extract the constraints from
runs of Python programs using an existing tainting library for Python,
and compare our grey-box version of RALib with the existing black-
box version on several benchmarks, including some data structures from
Python’s standard library. Our proof-of-principle implementation results
in almost two orders of magnitude improvement in terms of numbers of
inputs sent to the software system. Our approach, which can be gener-
alized to richer model classes, also enables RALib to learn models that
are out of reach of black-box techniques, such as combination locks.

Keywords: Model learning · Active automata learning · Register
automata · RALib · Grey-box · Tainting

1 Introduction

Model learning, also known as active automata learning, is a black-box technique
for constructing state machine models of software and hardware components
from information obtained through testing (i.e., providing inputs and observing
the resulting outputs). Model learning has been successfully used in numerous
applications, for instance for generating conformance test suites of software com-
ponents [13], finding mistakes in implementations of security-critical protocols
[8–10], learning interfaces of classes in software libraries [14], and checking that
a legacy component and a refactored implementation have the same behaviour
[19]. We refer to [17,20] for surveys and further references.

In many applications it is crucial for models to describe control flow, i.e.,
states of a component, data flow, i.e., constraints on data parameters that are
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passed when the component interacts with its environment, as well as the mutual
influence between control flow and data flow. Such models often take the form
of extended finite state machines (EFSMs). Recently, various techniques have
been employed to extend automata learning to a specific class of EFSMs called
register automata, which combine control flow with guards and assignments to
data variables [1,2,6].

While these works demonstrate that it is theoretically possible to infer such
richer models, the presented approaches do not scale well and are not yet sat-
isfactorily developed for richer classes of models (c.f. [16]): Existing techniques
either rely on manually constructed mappers that abstract the data aspects
of input and output symbols into a finite alphabet, or otherwise infer guards
and assignments from black-box observations of test outputs. The latter can be
costly, especially for models where control flow depends on test on data param-
eters in input: in this case, learning an exact guard that separates two control
flow branches may require a large number of queries.

One promising strategy for addressing the challenge of identifying data-flow
constraints is to augment learning algorithms with white-box information extrac-
tion methods, which are able to obtain information about the System Under
Test (SUT) at lower cost than black-box techniques. Several researchers have
explored this idea. Giannakopoulou et al. [11] develop an active learning algo-
rithm that infers safe interfaces of software components with guarded actions.
In their model, the teacher is implemented using concolic execution for the
identification of guards. Cho et al. [7] present MACE an approach for concolic
exploration of protocol behaviour. The approach uses active automata learn-
ing for discovering so-called deep states in the protocol behaviour. From these
states, concolic execution is employed in order to discover vulnerabilities. Sim-
ilarly, Botinčan and Babć [4] present a learning algorithm for inferring models
of stream transducers that integrates active automata learning with symbolic
execution and counterexample-guided abstraction refinement. They show how
the models can be used to verify properties of input sanitizers in Web applica-
tions. Finally, Howar et al. [15] extend the work of [11] and integrate knowledge
obtained through static code analysis about the potential effects of component
method invocations on a component’s state to improve the performance during
symbolic queries. So far, however, white-box techniques have never been inte-
grated with learning algorithms for register automata.

In this article, we present the first active learning algorithm for a general
class of register automata that uses white-box techniques. More specifically, we
show how dynamic taint analysis can be used to efficiently extract constraints
on input and output parameters from a test, and how these constraints can
be used to improve the performance of the SL∗ algorithm of Cassel et al. [6].
The SL∗ algorithm generalizes the classical L∗ algorithm of Angluin [3] and has
been used successfully to learn register automaton models, for instance of Linux
and Windows implementations of TCP [9]. We have implemented the presented
method on top of RALib [5], a library that provides an implementation of the
SL∗ algorithm.
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Fig. 1. MAT Framework (Our addition—tainting—in red): Double arrows indicate
possible multiple instances of a query made by an oracle for a single query by the
learner. (Color figure online)

The integration of the two techniques (dynamic taint analysis and learning
of register automata models) can be explained most easily with reference to the
architecture of RALib, shown in Fig. 1, which is a variation of the Minimally
Adequate Teacher (MAT) framework of [3]: In the MAT framework, learning is
viewed as a game in which a learner has to infer the behaviour of an unknown
register automaton M by asking queries to a teacher. We postulate M models
the behaviour of a System Under Test (SUT). In the learning phase, the learner
(that is, SL∗) is allowed to ask questions to the teacher in the form of tree queries
(TQs) and the teacher responds with symbolic decision trees (SDTs). In order to
construct these SDTs, the teacher uses a tree oracle, which queries the SUT with
membership queries (MQs) and receives a yes/no reply to each. Typically, the
tree oracle asks multiple MQs to answer a single tree query in order to infer causal
impact and flow of data values. Based on the answers on a number of tree queries,
the learner constructs a hypothesis in the form of a register automaton H. The
learner submits H as an equivalence query (EQ) to the teacher, asking whether
H is equivalent to the SUT model M. The teacher uses an equivalence oracle
to answer equivalence queries. Typically, the equivalence oracle asks multiple
MQs to answer a single equivalence query. If, for all membership queries, the
output produced by the SUT is consistent with hypothesis H, the answer to
the equivalence query is ‘Yes’ (indicating learning is complete). Otherwise, the
answer ‘No’ is provided, together with a counterexample (CE) that indicates
a difference between H and M. Based on this CE, learning continues. In this
extended MAT framework, we have constructed new implementations of the
tree oracle and equivalence oracle that leverage the constraints on input and
output parameters that are imposed by a program run: dynamic tainting is
used to extract the constraints on parameters that are encountered during a
run of a program. Our implementation learns models of Python programs, using
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an existing tainting library for Python [12]. Effectively, the combination of the
SL∗ with our new tree and equivalence oracles constitutes a grey-box learning
algorithm, since we only give the learner partial information about the internal
structure of the SUT.

We compare our grey-box tree and equivalence oracles with the existing
black-box versions of these oracles on several benchmarks, including Python’s
queue and set modules. Our proof-of-concept implementation1 results in almost
two orders of magnitude improvement in terms of numbers of inputs sent to the
software system. Our approach, which generalises to richer model classes, also
enables RALib to learn models that are completely out of reach for black-box
techniques, such as combination locks. The full version of this article (with proofs
for correctness) is available online2.

Outline: Section 2 contains preliminaries; Section 3 discusses tainting in our
Python SUTs; Section 4 contains the algorithms we use to answer TQs using
tainting and the definition for the tainted equivalence oracle needed to learn
combination lock automata; Section 5 contains the experimental evaluation of
our technique; and Sect. 6 concludes.

2 Preliminary Definitions and Constructions

This section contains the definitions and constructions necessary to understand
active automata learning for models with dataflow. We first define the concept
of a structure, followed by guards, data languages, register automata, and finally
symbolic decision trees.

Definition 1 (Structure). A structure S = 〈R,D,R〉 is a triple where R is
a set of relation symbols, each equipped with an arity, D is an infinite domain
of data values, and R contains a distinguished n-ary relation rR ⊆ Dn for each
n-ary relation symbol r ∈ R.

In the remainder of this article, we fix a structure S = 〈R,D,R〉, where R
contains a binary relation symbol = and unary relation symbols = c, for each c
contained in a finite set C of constant symbols, D equals the set N of natural
numbers, =R is interpreted as the equality predicate on N, and to each symbol
c ∈ C a natural number nc is associated such that (= c)R = {nc}.

Guards are a restricted type of Boolean formulas that may contain relation
symbols from R.

Definition 2 (Guards). We postulate a countably infinite set V = {v1, v2, . . .}
of variables. In addition, there is a variable p �∈ V that will play a special role
as formal parameter of input symbols; we write V+ = V ∪ {p}. A guard is
a conjunction of relation symbols and negated relation symbols over variables.
Formally, the set of guards is inductively defined as follows:

1 Available at https://bitbucket.org/toonlenaerts/taintralib/src/basic.
2 See https://arxiv.org/abs/2009.09975.

https://bitbucket.org/toonlenaerts/taintralib/src/basic
https://arxiv.org/abs/2009.09975
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– If r ∈ R is an n-ary relation symbol and x1, . . . , xn are variables from V+,
then r(x1, . . . , xn) and ¬r(x1, . . . , xn) are guards.

– If g1 and g2 are guards then g1 ∧ g2 is a guard.

Let X ⊂ V+. We say that g is a guard over X if all variables that occur in g are
contained in X. A variable renaming is a function σ : X → V+. If g is a guard
over X then g[σ] is the guard obtained by replacing each variable x in g by σ(x).

Next, we define the notion of a data language. For this, we fix a finite set of
actions Σ. A data symbol α(d) is a pair consisting of an action α ∈ Σ and a data
value d ∈ D. While relations may have arbitrary arity, we will assume that all
actions have an arity of one to ease notation and simplify the text. A data word
is a finite sequence of data symbols, and a data language is a set of data words.
We denote concatenation of data words w and w′ by w ·w′, where w is the prefix
and w′ is the suffix. Acts(w) denotes the sequence of actions α1α2 . . . αn in w,
and Vals(w) denotes the sequence of data values d1d2 . . . dn in w. We refer to a
sequence of actions in Σ∗ as a symbolic suffix. If w is a symbolic suffix then we
write �w� for the set of data words u with Acts(u) = w.

Data languages may be represented by register automaton, defined below.

Definition 3 (Register Automaton). A Register Automaton (RA) is a tuple
M = (L, l0,X , Γ, λ) where

– L is a finite set of locations, with l0 as the initial location;
– X maps each location l ∈ L to a finite set of registers X (l);
– Γ is a finite set of transitions, each of the form 〈l, α(p), g, π, l′〉, where

• l, l′ are source and target locations respectively,
• α(p) is a parametrised action,
• g is a guard over X (l) ∪ {p}, and
• π is an assignment mapping from X (l′) to X (l) ∪ {p}; and

– λ maps each location in L to either accepting (+) or rejecting (−).

We require that M is deterministic in the sense that for each location l ∈ L
and input symbol α ∈ Σ, the conjunction of the guards of any pair of distinct
α-transitions with source l is not satisfiable. M is completely specified if for all
α-transitions out of a location, the disjunction of the guards of the α-transitions
is a tautology. M is said to be simple if there are no registers in the initial
location, i.e., X (l0) = ∅. In this text, all RAs are assumed to be completely
specified and simple, unless explicitly stated otherwise. Locations l ∈ L with
λ(l) = + are called accepting, and locations with λ(l) = − rejecting.

Example 1 (FIFO-buffer). The register automaton displayed in Fig. 2 models
a FIFO-buffer with capacity 2. It has three accepting locations l0, l1 and l2
(denoted by a double circle), and one rejecting “sink” location l3 (denoted by a
single circle). Function X assigns the empty set of registers to locations l0 and
l3, singleton set {x} to location l1, and set {x, y} to l2.
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Fig. 2. FIFO-buffer with a capacity of 2 modeled as a register automaton.

2.1 Semantics of a RA

We now formalise the semantics of an RA. A valuation of a set of variables X
is a function ν : X → D that assigns data values to variables in X. If ν is a
valuation of X and g is a guard over X then ν |= g is defined inductively by:

– ν |= r(x1, . . . , xn) iff (ν(x1), . . . , ν(xn)) ∈ rR

– ν |= ¬r(x1, . . . , xn) iff (ν(x1), . . . , ν(xn)) �∈ rR

– ν |= g1 ∧ g2 iff ν |= g1 and ν |= g2

A state of a RA M = (L, l0,X , Γ, λ) is a pair 〈l, ν〉, where l ∈ L is a location
and ν : X (l) −→ D is a valuation of the set of registers at location l. A run of M
over data word w = α1(d1) . . . αn(dn) is a sequence

〈l0, ν0〉
α1(d1),g1,π1−−−−−−−−→ 〈l1, ν1〉 . . . 〈ln−1, νn−1〉

αn(dn),gn,πn−−−−−−−−−→ 〈ln, νn〉,

where

– for each 0 ≤ i ≤ n, 〈li, νi〉 is a state (with l0 the initial location),
– for each 0 < i ≤ n, 〈li−1, αi(p), gi, πi, li〉 ∈ Γ such that ιi � gi and νi = ιi ◦πi,

where ιi = νi−1 ∪ {[p → di]} extends νi−1 by mapping p to di.

A run is accepting if λ(ln) = +, else rejecting. The language of M , notation
L(M ), is the set of words w such that M has an accepting run over w. Word w
is accepted (rejected) under valuation ν0 if M has an accepting (rejecting) run
that starts in state 〈l0, νo〉.
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Fig. 3. SDT for prefix Push(5) Push(7) and (symbolic) suffix Pop Pop.

Example 2. Consider the FIFO-buffer example from Fig. 2. This RA has a run

〈l0, ν0 = []〉 Push(7),g1≡�,π1=[x�→p]−−−−−−−−−−−−−−−→ 〈l1, ν1 = [x → 7]〉
Push(7),g2≡�,π2=[x�→x,y �→p]−−−−−−−−−−−−−−−−−−−→ 〈l2, ν2 = [x → 7, y → 7]〉
Pop(7),g3≡p=x,π3=[x�→y]−−−−−−−−−−−−−−−−→ 〈l1, ν3 = [x → 7]〉

Push(5),g4≡�,π4=[x�→x,y �→p]−−−−−−−−−−−−−−−−−−−→ 〈l2, ν4 = [x → 7, y → 5]〉
Pop(7),g5≡p=x,π5=[x�→y]−−−−−−−−−−−−−−−−→ 〈l1, ν5 = [x → 5]〉

Pop(5),g6≡p=x,π6=[]−−−−−−−−−−−−−→ 〈l0, ν6 = []〉

and thus the trace is Push(7) Push(7) Pop(7) Push(5) Pop(7) Pop(5). �

2.2 Symbolic Decision Tree

The SL∗ algorithm uses tree queries in place of membership queries. The argu-
ments of a tree query are a prefix data word u and a symbolic suffix w, i.e., a
data word with uninstantiated data parameters. The response to a tree query
is a so called symbolic decision tree (SDT), which has the form of tree-shaped
register automaton that accepts/rejects suffixes obtained by instantiating data
parameters in one of the symbolic suffixes. Let us illustrate this on the FIFO-
buffer example from Fig. 2 for the prefix Push(5) Push(7) and the symbolic suffix
Pop Pop. The acceptance/rejection of suffixes obtained by instantiating data
parameters after Push(5) Push(7) can be represented by the SDT in Fig. 3. In
the initial location, values 5 and 7 from the prefix are stored in registers x1 and
x2, respectively. Thus, SDTs will generally not be simple RAs. Moreover, since
the leaves of an SDT have no outgoing transitions, they are also not completely
specified. We use the convention that register xi stores the ith data value. Thus,
initially, register x1 contains value 5 and register x2 contains value 7. The initial
transitions in the SDT contain an update x3 := p, and the final transitions an
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update x4 := p. For readability, these updates are not displayed in the diagram.
The SDT accepts suffixes of form Pop(d1) Pop(d2) iff d1 equals the value stored
in register x1, and d2 equals the data value stored in register x2. For a more
detailed discussion of SDTs we refer to [6].

3 Tainting

We postulate that the behaviour of the SUT (in our case: a Python program)
can be modeled by a register automaton M . In a black-box setting, observations
on the SUT will then correspond to words from the data language of M . In this
section, we will describe the additional observations that a learner can make
in a grey-box setting, where the constraints on the data parameters that are
imposed within a run become visible. In this setting, observations of the learner
will correspond to what we call tainted words of M . Tainting semantics is an
extension of the standard semantics in which each input value is “tainted” with
a unique marker from V. In a data word w = α1(d1)α2(d2) . . . αn(dn), the first
data value d1 is tainted with marker v1, the second data value d2 with v2, etc.
While the same data value may occur repeatedly in a data word, all the markers
are different.

3.1 Semantics of Tainting

A tainted state of a RA M = (L, l0,X , Γ, λ) is a triple 〈l, ν, ζ〉, where l ∈ L
is a location, ν : X (l) → D is a valuation, and ζ : X (l) → V is a function
that assigns a marker to each register of l. A tainted run of M over data word
w = α1(d1) . . . αn(dn) is a sequence

τ = 〈l0, ν0, ζ0〉 α1(d1),g1,π1−−−−−−−−−→ 〈l1, ν1, ζ1〉 . . . 〈ln−1, νn−1, ζn−1〉 αn(dn),gn,πn−−−−−−−−−−→ 〈ln, νn, ζn〉,

where

– 〈l0, ν0〉
α1(d1),g1,π1−−−−−−−−→〈l1, ν1〉 . . .〈ln−1, νn−1〉

αn(dn),gn,πn−−−−−−−−−→〈ln, νn〉 is a run of M ,
– for each 0 ≤ i ≤ n, 〈li, νi, ζi〉 is a tainted state,
– for each 0 < i ≤ n, ζi = κi ◦ πi, where κi = ζi−1 ∪ {(p, vi)}.

The tainted word of τ is the sequence w = α1(d1)G1α2(d2)G2 · · · αn(dn)Gn,
where Gi = gi[κi], for 0 < i ≤ n. We define constraintsM (τ) = [G1, . . . , Gn].

Let w = α1(d1) . . . αn(dn) be a data word. Since register automata are deter-
ministic, there is a unique tainted run τ over w. We define constraintsM (w) =
constraintsM (τ), that is, the constraints associated to a data word are the con-
straints of the unique tainted run that corresponds to it. In the untainted
setting a membership query for data word w leads to a response “yes” if
w ∈ L(M ), and a response “no” otherwise, but in a tainted setting the predi-
cates constraintsM (w) are also included in the response, and provide additional
information that the learner may use.
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Example 3. Consider the FIFO-buffer example from Fig. 2. This RA has a
tainted run

〈l0, [], []〉 Push(7)−−−−−→ 〈l1, [x �→ 7], [x �→ v1]〉 Push(7)−−−−−→ 〈l2, [x �→ 7, y �→ 7], [x �→ v1, y �→ v2]〉
Pop(7)−−−−→ 〈l1, [x �→ 7], [x �→ v2]〉 Push(5)−−−−−→ 〈l2, [x �→ 7, y �→ 5], [x �→ v2, y �→ v4]〉
Pop(7)−−−−→ 〈l1, [x �→ 5], [y �→ v4]〉 Pop(5)−−−−→ 〈l0, [], []〉

(For readability, guards gi and assignments πi have been left out.) The con-
straints in the corresponding tainted trace can be computed as follows:

κ1 = [p → v1] G1 ≡ �[κ1] ≡ �
κ2 = [x → v1, p → v2] G2 ≡ �[κ2] ≡ �
κ3 = [x → v1, y → v2, p → v3] G3 ≡ (p = x)[κ3] ≡ v3 = v1

κ4 = [x → v2, p → v4] G4 ≡ �[κ4] ≡ �
κ5 = [x → v2, y → v4, p → v5] G5 ≡ (p = x)[κ5] ≡ v5 = v2

κ6 = [x → v4, p → v6] G6 ≡ (p = x)[κ6] ≡ v6 = v4

and thus the tainted word is:

Push(7) � Push(7) � Pop(7) v3 = v1 Push(5) � Pop(7) v5 = v2 Pop(5) v6 = v4,

and the corresponding list of constraints is [�,�, v3 = v1,�, v5 = v2, v6 = v4]. �

Various techniques can be used to observe tainted traces, for instance sym-
bolic and concolic execution. In this work, we have used a library called
“taintedstr” to achieve tainting in Python and make tainted traces available
to the learner.

3.2 Tainting in Python

Tainting in Python is achieved by using a library called “taintedstr”3, which
implements a “tstr” (tainted string) class. We do not discuss the entire imple-
mentation in detail, but only introduce the portions relevant to our work. The
“tstr” class works by operator overloading : each operator is overloaded to record
its own invocation. The tstr class overloads the implementation of the “ eq ”
(equality) method in Python’s str class, amongst others. In this text, we only
consider the equality method. A tstr object x can be considered as a triple
〈o, t, cs〉, where o is the (base) string object, t is the taint value associated with
string o, and cs is a set of comparisons made by x with other objects, where
each comparison c ∈ cs is a triple 〈f, a, b〉 with f the name of the binary method
invoked on x, a a copy of x, and b the argument supplied to f .

3 See [12] and https://github.com/vrthra/taintedstr.

https://github.com/vrthra/taintedstr
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Each a method f in the tstr class is an overloaded implementation of the
relevant (base) method f as follows:

1 def f(self , other):
2 self.cs.add((m._name_ , self , other))
3 return self.o.f(other) # ‘o’ is the base string

We present a short example of how such an overloaded method would work
below:

Example 4 (tstr tainting). Consider two tstr objects: x1 = 〈“1”, 1, ∅〉 and
x2 = 〈“1”, 2, ∅〉. Calling x1 == x2 returns True as x1.o = x2.o. As a side-effect
of f , the set of comparisons x1.cs is updated with the triple c = 〈“ eq ”, x1, x2〉.
We may then confirm that x1 is compared to x2 by checking the taint values of
the variables in comparison c: x1.t = 1 and x2.t = 2.

Note, our approach to tainting limits the recorded information to operations
performed on a tstr object. Consider the following snippet, where x1, x2, x3 are
tstr objects with 1, 2, 3 as taint values respectively:

1 if not (x_1 == x_2 or (x_2 != x_3)):
2 # do something

If the base values of x1 and x2 are equal, the Python interpreter will “short-
circuit” the if-statement and the second condition, x2 �= x3, will not be evaluated.
Thus, we only obtain one comparison: x1 = x2. On the other hand, if the base
values of x1 and x2 are not equal, the interpreter will not short-circuit, and
both comparisons will be recorded as {x2 = x3, x1 �= x2}. However, the external
negation operation will not be recorded by any of the tstr objects: the negation
was not performed on the tstr objects. �

4 Learning Register Automata Using Tainting

Given an SUT and a tree query, we generate an SDT in the following steps:
(i) construct a characteristic predicate of the tree query (Algorithm 1) using
membership and guard queries, (ii) transform the characteristic predicate into
an SDT (Algorithm 2), and (iii) minimise the obtained SDT (Algorithm3).

4.1 Tainted Tree Oracle

Construction of Characteristic Predicate. For u = α(d1) · · · αk(dk) a data
word, νu denotes the valuation of {x1, . . . , xk} with νu(xi) = di, for 1 ≤ i ≤ k.
Suppose u is a prefix and w = αk+1 · · · αk+n is a symbolic suffix. Then H
is a characteristic predicate for u and w in M if, for each valuation ν of
{x1, . . . , xk+n} that extends νu,

ν |= H ⇐⇒ α1(ν(x1)) · · · αk+n(ν(xk+n)) ∈ L(M ),

that is, H characterizes the data words u′ with Acts(u′) = w such that u ·
u′ is accepted by M . In the case of the FIFO-buffer example from Fig. 2, a
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Algorithm 1: ComputeCharacteristicPredicate
Data: A tree query consisting of prefix u = α1(d1) · · · αk(dk) and symbolic

suffix w = αk+1 · · · αk+n

Result: A characteristic predicate for u and w in M
1 G := �, H := ⊥, V := {x1, . . . , xk+n}
2 while ∃ valuation ν for V that extends νu such that ν |= G do
3 ν := valuation for V that extends νu such that ν |= G
4 z := α1(ν(x1)) · · · αk+n(ν(xk+n)) // Construct membership query

5 I :=
∧k+n

i=k+1 constraintsM (z)[i] // Constraints resulting from query

6 if z ∈ L(M ) then // Result query ‘‘yes’’ or ‘‘no’’

7 H := H ∨ I
8 G := G ∧ ¬I

9 end
10 return H

characteristic predicate for prefix Push(5) Push(7) and symbolic suffix Pop Pop
is x3 = x1∧x4 = x2. A characteristic predicate for the empty prefix and symbolic
suffix Pop is ⊥, since this trace will inevitably lead to the sink location l3 and
there are no accepting words.

Algorithm 1 shows how a characteristic predicate may be computed by sys-
tematically exploring all the (finitely many) paths of M with prefix u and suffix
w using tainted membership queries. During the execution of Algorithm1, pred-
icate G describes the part of the parameter space that still needs to be explored,
whereas H is the characteristic predicate for the part of the parameter space that
has been covered. We use the notation H ≡ T to indicate syntactic equivalence,
and H = T to indicate logical equivalence. Note, if there exists no parameter
space to be explored (i.e., w is empty) and u ∈ L(M ), the algorithm returns
H ≡⊥ ∨� (as the empty conjunction equals �).

Example 5 (Algorithm 1). Consider the FIFO-buffer example and the tree query
with prefix Push(5) Push(7) and symbolic suffix Pop Pop. After the prefix location
l2 is reached. From there, three paths are possible with actions Pop Pop: l2l3l3,
l2l1l3 and l2l1l0. We consider an example run of Algorithm 1.

Initially, G0 ≡ � and H0 ≡⊥. Let ν1 = [x1 → 5, x2 → 7, x3 → 1, x4 → 1].
Then ν1 extends νu and ν1 |= G0. The resulting tainted run corresponds to path
l2l3l3 and so the tainted query gives path constraint I1 ≡ x3 �= x1 ∧�. Since the
tainted run is rejecting, H1 ≡⊥ and G1 ≡ � ∧ ¬I1.

In the next iteration, we set ν2 = [x1 → 5, x2 → 7, x3 → 5, x4 → 1]. Then ν2
extends νu and ν2 |= G1. The resulting tainted run corresponds to path l2l1l3
and so the tainted query gives path constraint I2 ≡ x3 = x1 ∧ x4 �= x2. Since
the tainted run is rejecting, H2 ≡⊥ and G2 ≡ � ∧ ¬I1 ∧ ¬I2.

In the final iteration, we set ν3 = [x1 → 5, x2 → 7, x3 → 5, x4 → 7]. Then ν3
extends νu and ν3 |= G2. The resulting tainted run corresponds to path l2l1l0
and the tainted query gives path constraint I3 ≡ x3 = x1 ∧ x4 = x2. Now the
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tainted run is accepting, so H3 ≡⊥ ∨I3 and G3 = � ∧ ¬I1 ∧ ¬I2 ∧ ¬I3. As G3 is
unsatisfiable, the algorithm terminates and returns characteristic predicate H3.

Construction of a Non-minimal SDT. For each tree query with prefix u
and symbolic suffix w, the corresponding characteristic predicate H is sufficient
to construct an SDT using Algorithm2.

Algorithm 2: SDTConstructor
Data: Characteristic predicate H, index n = k + 1,
Number of suffix parameters N
Result: Non-minimal SDT T

1 if n = k + N + 1 then
2 l0 := SDT node
3 z := if H ⇐⇒ ⊥ then − else + // Value λ for leaf node of the SDT

4 return 〈 {l0} , l0, [l0 �→ ∅], ∅, [l0 �→ z]〉 // RA with single location

5 else
6 T := SDT node
7 It := {i | xn � xi ∈ H, n > i} // xi may be a parameter or a constant

8 if It is ∅ then
9 t := SDTConstructor(H, n + 1, N) // No guards present

10 Add t with guard � to T
11 else
12 g :=

∧
i∈It

xn �= xi // Disequality guard case

13 H ′ :=
∨

f∈H f ∧ g if f ∧ g is satisfiable else ⊥ // f is a disjunct

14 t′ := SDTConstructor(H ′, n + 1, N)
15 Add t′ with guard g to T
16 for i ∈ It do
17 g := xn = xi // Equality guard case

18 H ′ :=
∨

f∈H f ∧ g if f ∧ g is satisfiable else ⊥
19 t′ := SDTConstructor(H ′, n + 1, N)
20 Add t′ with guard g to T
21 end

22 return T

We construct the SDT recursively while processing each action in the sym-
bolic suffix w = αk+1 · · · αk+m in order. The valuation ν is unnecessary, as
there are no guards defined over the prefix parameters. During the execution
of Algorithm 2, for a suffix action α(xn), the potential set It contains the set of
parameters to which xn is compared to in H. Each element in It can be either
a formal parameter in the tree query or a constant. For each parameter xi ∈ It

we construct an equality sub-tree where xn = xi. We also construct a disequality
sub-tree where xn is not equal to any of the parameters in It. The base case (i.e.,
w = ε) return an accepting or rejecting leaf node according to the characteristic
predicate at the base case: if H ⇐⇒ ⊥ then rejecting, else accepting. Example 6
provides a short explanation of Algorithm2.
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Example 6 (Algorithm 2). Consider a characteristic predicate H ≡ I1∨I2∨I3∨I4,
where I1 ≡ x2 �= x1 ∧ x3 �= x1, I2 ≡ x2 = x1 ∧ x3 �= x1, I3 ≡ x2 �= x1 ∧ x3 = x1,
I4 ≡ x2 = x1 ∧ x3 = x1. We discuss only the construction of the sub-tree rooted
at node s21 for the SDT visualised in Fig. 4a; the construction of the remainder
is similar.

Initially, xn = xk+1 = x2. Potential set It for x2 is {x1} as H contains the
literals x2 = x1 and x2 �= x1. Consider the construction of the equality guard
g := x2 = x1. The new characteristic predicate is H ′ ≡ (I2 ∧ g) ∨ (I4 ∧ g), as I1
and I3 are unsatisfiable when conjugated with g.

For the next call, with n = 3, the current variable is x3, with predicate
H = H ′ (from the parent instance). We obtain the potential set for x3 as {x1}.
The equality guard is g′ := x3 = x1 with the new characteristic predicate H ′′ ≡
I4 ∧ g ∧ g′, i.e., H ′′ ⇐⇒ x2 = x1 ∧ x3 = x1 (note, I2 ∧ g ∧ g′ is unsatisfiable). In
the next call, we have n = 4, thus we compute a leaf. As H ′′ is not ⊥, we return
an accepting leaf t. The disequality guard is g′′ := x3 �= x1 with characteristic
predicate H ′′′ ⇐⇒ x2 = x1 ∧ x3 = x1 ∧ x3 �= x1 ⇐⇒ ⊥. In the next call, we
have n = 4, and we return a non-accepting leaf t′. The two trees t and t′ are
added as sub-trees with their respective guards g′ and g′′ to a new tree rooted
at node s21 (see Fig. 4a). �

SDT Minimisation. Example 6 showed a characteristic predicate H contain-
ing redundant comparisons, resulting in the non-minimal SDT in Fig. 4a. We
use Algorithm 3 to minimise the SDT in Fig. 4a to the SDT in Fig. 4b.

Fig. 4. SDT Minimisation: Redundant nodes (in red, left SDT) are merged together
(in green, right SDT). (Color figure online)

We present an example of the application of Algorithm3, shown for the SDT
of Fig. 4a. Figure 4a visualises a non-minimal SDT T , where s20 and s21 (in red)
are essentially “duplicates” of each other: the sub-tree for node s20 is isomorphic
to the sub-tree for node s21 under the relabelling “x2 = x1”. We indicate this



Grey-Box Learning of Register Automata 35

Algorithm 3: MinimiseSDT
Data: Non-minimal SDT T , current index n
Result: Minimal SDT T ′

1 if T is a leaf then // Base case

2 return T
3 else
4 T ′ := SDT node

// Minimise the lower levels

5 for guard g with associated sub-tree t in T do
6 Add guard g with associated sub-tree MinimiseSDT(t, n + 1) to T ′

7 end
// Minimise the current level

8 I := Potential set of root node of T
9 t′ := disequality sub-tree of T with guard

∧
i∈I xn �= xi

10 I ′ := ∅

11 for i ∈ I do
12 t := sub-tree of T with guard xn = xi

13 if t′〈xi, xn〉 �� t or t′〈xi, xn〉 is undefined then
14 I ′ := I ′ ∪ {xi}
15 Add guard xn = xi with corresponding sub-tree t to T ′

16 end
17 Add guard

∧
i∈I′ xn �= xi with corresponding sub-tree t′ to T ′

18 return T ′

relabelling using the notation T [s20]〈x1, x2〉 and the isomorphism relation under
the relabelling as T [s20]〈x1, x2〉 � T [s21]. Algorithm 3 accepts the non-minimal
SDT of Fig. 4a and produces the equivalent minimal SDT in Fig. 4b. Nodes s20
and s21 are merged into one node, s2, marked in green. We can observe that both
SDTs still encode the same decision tree. With Algorithm 3, we have completed
our tainted tree oracle, and can now proceed to the tainted equivalence oracle.

4.2 Tainted Equivalence Oracle

The tainted equivalence oracle (TEO), similar to its non-tainted counterpart,
accepts a hypothesis H and verifies whether H is equivalent to register automaton
M that models the SUT. If H and M are equivalent, the oracle replies “yes”,
otherwise it returns “no” together with a CE. The RandomWalk Equivalence
Oracle in RALib constructs random traces in order to find a CE.

Definition 4 (Tainted Equivalence Oracle). For a given hypothesis H, max-
imum word length n, and an SUT S, a tainted equivalence oracle is a function
OE(H, n,S) for all tainted traces w of S where |w| ≤ n, OE(H, n,S) returns w
if w ∈ L(H) ⇐⇒ w ∈ L(S) is false, and ‘Yes’ otherwise.

The TEO is similar to the construction of the characteristic predicate to find a
CE: we randomly generate a symbolic suffix of specified length n (with an empty
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Fig. 5. Combination Lock C : Sequence α(1)α(9)α(6)α(2) unlocks the automaton. Error
transitions (from l3 – l1 to l0) have been ‘merged’ for conciseness. The sink state has
not been drawn.

prefix), and construct a predicate H for the query. For each trace w satisfying a
guard in H, we confirm whether w ∈ L(H) ⇐⇒ w ∈ L(M). If false, w is a CE.
If no w is false, then we randomly generate another symbolic suffix. In practise,
we bound the number of symbolic suffixes to generate. Example 7 presents a
scenario of a combination lock automaton that can be learned (relatively easily)
using a TEO but cannot be handled by normal oracles.

Example 7 (Combination Lock RA). A combination lock is a type of RA which
requires a sequence of specific inputs to ‘unlock’. Figure 5 presents an RA C
with a ‘4-digit’ combination lock that can be unlocked by the sequence w =
α(c0)α(c1)α(c2)α(c3), where {c0, c1, c2, c3} are constants. Consider a case where
a hypothesis H is being checked for equivalence against the RA C with w �∈
L(H). While it would be difficult for a normal equivalence oracle to generate the
word w randomly; the tainted equivalence oracle will record at every location
the comparison of input data value p with some constant ci and explore all
corresponding guards at the location, eventually constructing the word w.

For the combination lock automaton, we may note that as the ‘depth’ of the
lock increases, the possibility of randomly finding a CE decreases. �

5 Experimental Evaluation

We have used stubbed versions of the Python FIFO-Queue and Set modules4 for
learning the FIFO and Set models, while the Combination Lock automata were
constructed manually. Source code for all other models was obtained by translat-
ing existing benchmarks from [18] (see also automata.cs.ru.nl) to Python code.
We also utilise a ‘reset’ operation: A ‘reset’ operation brings an SUT back to its
initial state, and is counted as an ‘input’ for our purposes. Furthermore, each
experiment was repeated 30 times with different random seeds. Each experiment
was bounded according to the following constraints: learning phase: 109 inputs
and 5 × 107 resets; testing phase: 109 inputs and 5 × 104 resets; length of the
longest word during testing: 50; and a ten-minute timeout for the learner to
respond.

4 From Python’s queue module and standard library, respectively.

https://automata.cs.ru.nl/
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Figure 6 gives an overview of our experimental results. We use the notation
‘TTO’ to represent ‘Tainted Tree Oracle’ (with similar labels for the other ora-
cles). In the figure, we can see that as the size of the container increases, the
difference between the fully tainted version (TTO+TEO, in blue) and the com-
pletely untainted version (NTO+NEO, in red) increases. In the case where only
a tainted tree oracle is used (TTO+NEO, in green), we see that it is following
the fully tainted version closely (for the FIFO models) and is slightly better in
the case of the SET models.

Fig. 6. Benchmark plots: Number of symbols used with tainted oracles (blue and green)
are generally lower than with normal oracles (red and orange). Note that the y-axis is
log-scaled. Additionally, normal oracles are unable to learn the Combination Lock and
Repetition automata and are hence not plotted. (Color figure online)

The addition of the TEO gives a conclusive advantage for the Combination
Lock and Repetition benchmarks. The addition of the TTO by itself results
in significantly fewer number of symbols, even without the tainted equivalence
oracle (TTO v/s NTO, compare the green and red lines). With the exception of
the Combination Lock and Repetition benchmarks, the TTO+TEO combination
does not provide vastly better results in comparison to the TTO+NEO results,
however, it is still (slightly) better. We note that—as expected—the NEO does
not manage to provide CEs for the Repetition and Combination Lock automata.
The TEO is therefore much more useful for finding CEs in SUTs which utilise
constants.
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6 Conclusions and Future Work

In this article, we have presented an integration of dynamic taint analysis, a
white-box technique for tracing data flow, and register automata learning, a
black-box technique for inferring behavioral models of components. The combi-
nation of the two methods improves upon the state-of-the-art in terms of the
class of systems for which models can be generated and in terms of performance:
Tainting makes it possible to infer data-flow constraints even in instances with a
high intrinsic complexity (e.g., in the case of so-called combination locks). Our
implementation outperforms pure black-box learning by two orders of magni-
tude with a growing impact in the presence of multiple data parameters and
registers. Both improvements are important steps towards the applicability of
model learning in practice as they will help scaling to industrial use cases.

At the same time our evaluation shows the need for further improvements:
Currently, the SL∗ algorithm uses symbolic decision trees and tree queries glob-
ally, a well-understood weakness of learning algorithms that are based on obser-
vation tables. It also uses individual tree oracles each type of operation and relies
on syntactic equivalence of decision trees. A more advanced learning algorithm
for extended finite state machines will be able to consume fewer tree queries,
leverage semantic equivalence of decision trees. Deeper integration with white-
box techniques could enable the analysis of many (and more involved) operations
on data values.

Acknowledgement. We are grateful to Andreas Zeller for explaining the use of taint-
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library for tainting Python programs. We also thank the anonymous reviewers for their
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Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 311–325.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 20

20. Vaandrager, F.: Model learning. Commun. ACM 60(2), 86–95 (2017)

https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-030-22348-9_23
https://doi.org/10.1007/978-3-319-33693-0_20


Clustering-Guided SMT(LRA) Learning

Tim Meywerk1(B) , Marcel Walter1 , Daniel Große2,3 ,
and Rolf Drechsler1,3

1 Research Group of Computer Architecture,
University of Bremen, Bremen, Germany

{tmeywerk,m walter,drechsler}@uni-bremen.de
2 Chair of Complex Systems, Johannes Kepler University Linz, Linz, Austria

daniel.grosse@jku.at
3 Research Department for Cyber-Physical Systems, DFKI GmbH, Bremen, Germany

Abstract. In the SMT(LRA) learning problem, the goal is to learn
SMT(LRA) constraints from real-world data. To improve the scalabil-
ity of SMT(LRA) learning, we present a novel approach called SHREC
which uses hierarchical clustering to guide the search, thus reducing run-
time. A designer can choose between higher quality (SHREC1 ) and lower
runtime (SHREC2 ) according to their needs. Our experiments show a
significant scalability improvement and only a negligible loss of accuracy
compared to the current state-of-the-art.
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1 Introduction

Since the invention of effective solving procedures for the Boolean Satisfiabil-
ity (SAT) problem [20], many formalisms for problem modeling have been intro-
duced over the decades, including but not limited to Linear Programming (LP),
Quantified Boolean Formulas (QBF), and Satisfiability Modulo Theories (SMT)
(cf. [5] for an overview). With the progressive development of highly specialized
solving engines for these domains [7,8], it has become possible to tackle critical
problems like verification [11]. Also, exact logic synthesis [10], optimal planning,
and other optimization problems [9] could be approached in a more effective
manner (again, cf. [5] for an overview).

A trade-off between SAT’s efficient solvers and SMT’s expressive power is Sat-
isfiability Modulo Linear Real Arithmetic (SMT(LRA)) [5]. It combines propo-
sitional logic over Boolean variables and linear arithmetic over real-valued vari-
ables. SMT(LRA) has a wide variety of applications, including formal verifica-
tion [2,6], AI planning and scheduling [21], and computational biology [24].
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Generating SMT(LRA) models1 by hand is both time-consuming and error-
prone and requires detailed domain-specific knowledge. Nevertheless, in many
cases, both satisfying and unsatisfying examples of model configurations can
be extracted from measurements of the modeling domain. In these cases, the
actual modeling task can be automated by an approach called concept learn-
ing. Concept learning has a long history in artificial intelligence, with Probably
Approximately Correct (PAC) learning [23], inductive logic programming [16],
and constraint programming [4]. These approaches usually focus on pure Boolean
descriptions, i. e. SAT formulae. More recently, [13] introduced SMT(LRA) learn-
ing, which is the task of learning an SMT(LRA) formula from a set of satisfying
and unsatisfying examples.

Alternatively, SMT(LRA) learning can also be formulated as a variation on
the programming by example problem known from the Syntax-Guided Synthe-
sis (SyGuS) framework. Most solvers in this area (e. g. [1,3,18,22]) are based on
enumeration of possible solutions to be able to tackle a wide variety of syntac-
tic constraints. This does, however, lead to overly complicated and inconvenient
reasoning on continuous search spaces such as SMT(LRA). Apart from that,
the problems have further subtle differences, e. g. accuracy of the solutions has
higher significance in the concept learning setting.

On top of defining the SMT(LRA) learning problem, [13] also introduced
an exact algorithm called INCAL. As the first of its kind, INCAL naturally
comes with certain drawbacks in terms of runtime and is therefore not applicable
to learn large models, which are required by most real-world concept learning
applications (e. g. [12,15]).

Our contribution in this work is a novel approach for SMT(LRA) learning
which uses Hierarchical Clustering on the examples to guide the search and thus
speed up the model generation process. We call our general approach SHREC
(SMT(LRA) learner with hierarchical example clustering) and introduce two
algorithms SHREC1 and SHREC2 based on this idea. SHREC1 aims at a higher
accuracy of the solution and therefore requires more runtime than SHREC2.
SHREC2 instead follows a very fast and scalable method with minor losses of
accuracy. Therefore, we provide the users, i. e. the model designers, with the
possibility to choose between maximizing the accuracy of the learned model or
improving runtime of the generation process so that also larger models can be
learned in a reasonable time frame.

The remainder of this paper is structured as follows: To keep this paper
self-contained, Sect. 2 gives an overview of related work and preliminaries in
the area of SMT(LRA) learning as well as hierarchical clustering. Section 3 and
Sect. 4 propose our main ideas, i. e. novel approaches for SMT(LRA) learning to
tackle larger and more complex models using methods from machine learning.
In Sect. 5 we conduct an experimental evaluation where we compare our results
to the state-of-the-art. Section 6 concludes the paper.

1 The term model is often used to refer to a satisfying assignment to some logical
formula. In the context of this paper however, model refers to a logical formula that
describes a system in the real world.



Clustering-Guided SMT(LRA) Learning 43

2 Related Work and Preliminaries

In this section, we give an overview of relevant related work and introduce con-
cepts that we utilize in the remainder of this work.

2.1 SMT(LRA) Learning

The problem of SMT(LRA) learning has first been introduced in [13]. The goal
is to find an SMT(LRA) formula which describes some system in the real world.
However, no formal representation of the system is available. Instead, a set of
measurements is given. In the following, these measurements are called examples.
It is further assumed, that there exists an SMT(LRA) formula φ∗ that accurately
describes the system. The problem of SMT(LRA) learning is now defined as
follows:

Definition 1. Given a finite set of Boolean variables B := {b1, . . . , bn} and a
finite set of real-valued variables R := {r1, . . . , rm} together with a finite set of
examples E. Each example e ∈ E = (ae, φ

∗(ae)) is a pair of an assignment
and a label. An assignment ae : B ∪ R �→ {�,⊥} ∪ R maps Boolean variables
to true (�) or false (⊥), and real-valued variables to real-valued numbers. The
label φ∗(ae) is the truth value obtained by applying ae to φ∗. We call an example
positive if φ∗(ae) = � and negative otherwise. We denote the sets of positive
and negative examples by E� and E⊥, respectively.

The task of SMT(LRA) learning is to find an SMT(LRA) formula φ which
satisfies all elements in E�, but does not satisfy any element in E⊥, which can
be written as ∀e ∈ E : φ(ae) = φ∗(ae).

Example 1. Consider the SMT(LRA) formula

φ∗(b1, r1) = (¬b1 ∨ (−0.5 · r1 ≤ −1)) ∧ (b1 ∨ (1 · r1 ≤ 0))

A possible set of examples would be

E = {({b1 �→ �, r1 �→ 0},⊥), ({b1 �→ �, r1 �→ 2.5},�),
({b1 �→ ⊥, r1 �→ 2},⊥), ({b1 �→ ⊥, r1 �→ −0.6},�)}

We call an algorithm that tackles the task of finding an unknown SMT(LRA)
formula to a given set of examples, i. e. finding a solution to an instance of the
aforementioned problem, learner.

Each learner must operate on a given set of possible target formulae, called
the hypothesis space Φ. Similar to [13], we focus on CNF formulae as our hypoth-
esis space.

Definition 2. A CNF formula over a set of variables B ∪ R is a conjunction
of clauses, a clause is a disjunction of literals and a literal can be a Boolean
variable b ∈ B, its negation, or a linear constraint over the real variables. Linear
constraints (also called halfspaces) have the form a1 · r1 + · · · + am · rm ≤ d with
real constants ai and d and real variables ri ∈ R.
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Additionally, we define the cost c of a CNF formula with a given number
of clauses k and (not necessarily unique) halfspaces h as c = wk · k + wh · h,
where wk and wh are weights associated with clauses and halfspaces, respectively.
The cost is a measure for the size and complexity of a formula and can be tuned
to focus more on clauses or halfspaces.

A learner tries to find an SMT(LRA) formula φ ∈ Φ. We say that an example
e satisfies a formula φ iff φ(ae) = � and is consistent with φ iff φ(ae) = φ∗(ae).
Using these definitions, the goal of SMT(LRA) learning is to find a formula φ
that is consistent with all examples, i. e. as mentioned before, one that is satisfied
by all positive examples and unsatisfied by all negative ones.

Example 2. Consider the example set E from Example 1 again. A possible CNF
solution to those examples would be

φ = (b1 ∨ (0.5 · r1 ≤ −0.25)) ∧ (¬b1 ∨ (−1 · r1 ≤ −2.1))

Obviously, φ∗ is also a feasible solution, but might not be found by the learner
which only knows about the example set E.

Since φ∗ is not known to the learner and the example set E is usually non-
exhaustive, it can not be expected that the learner finds a model equivalent
to φ∗. It should, however, be as close as possible. This leads to the measure of
accuracy.

Definition 3. Given two example sets Etrain and Etest which were indepen-
dently sampled from the (unknown) SMT(LRA) formula φ∗, the accuracy of a
formula φ, which was learned from Etrain, is the ratio of correctly classified exam-
ples in Etest.

Generally, finding any formula for a given example set is not a hard problem.
One could construct a simple CNF that explicitly forbids one negative example
in each clause and allows all other possible assignments. However, such a formula
would have numerous clauses and would not generalize well to new examples,
yielding a low accuracy. To avoid such cases of overfitting, a smaller target
formula, i. e. one with lower cost, should generally be preferred over a larger i. e.
more expensive one.

2.2 INCAL

In addition to introducing the problem of SMT(LRA) learning, [13] also pre-
sented the first algorithm to tackle it, called INCAL. INCAL addresses the
SMT(LRA) learning problem by fixing the number of clauses k and the number
of halfspaces h and then encodes the existence of a feasible CNF with those
parameters in SMT(LRA). If no such formula exists, different values for k and h
need to be used. The order in which to try values for k and h can be guided by
the cost function wk · k + wh · h.
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INCAL’s SMT encoding uses Boolean variables to encode which clauses con-
tain which literals, real variables for the coefficients and offset of all halfspaces,
and Boolean auxiliary variables encoding which halfspace and clause are satisfied
by which example. It consists of the definition of those auxiliary variables and
a constraint enforcing the consistency of examples with the learned formula. To
cope with a high number of examples, INCAL uses an iterative approach and
starts the encoding with only a small fraction of all variables. After a solution
consistent with this subset has been found, additional conflicting examples are
added.

The complexity of the learning problem does however not exclusively stem
from the size of the input. Another, arguably even more influential factor is the
complexity of the learned formula. If an example set requires numerous clauses
or halfspaces, it will be much harder for INCAL to solve.

So far, we have discussed the state-of-the-art related work in SMT(LRA)
learning. In this work, we present a new SMT(LRA) learner which incorporates
a hierarchical clustering technique. To keep this paper self-contained, we give
some preliminaries about clustering in the following section.

2.3 Hierarchical Clustering

In machine learning, the problem of clustering is to group a set of objects into
several clusters, such that all objects inside the same cluster are closely related,
while all objects from different clusters are as diverse as possible (cf. [14] for
an overview). To describe the similarity between objects, a distance metric is
needed.

Often, objects are described by the means of a vector (v1, . . . , vn) of real
values. Typical distance metrics of two vectors v, w are (1) the Manhattan dis-
tance (L1 norm) dist(v, w) =

∑n
i=1 |vi − wi| , (2) the Euclidean distance (L2

norm) dist(v, w) =
√∑n

i=1(vi − wi)2 , or (3) the L∞ norm dist(v, w) =
max (|vi − wi|).

A common approach to clustering is hierarchical clustering [19]. The main
idea of hierarchical clustering is to build a hierarchical structure of clusters called
a dendrogram. A dendrogram is a binary tree annotated with distance informa-
tion. Each node in the dendrogram represents a cluster. Each inner node thereby
refers to the union of clusters of its two children; with leaf nodes representing
clusters that contain exactly one vector. This way, the number of contained vec-
tors per node increases in root direction with the root node itself containing
all vectors given to the clustering algorithm. Each inner node is also annotated
with the distance between its two children. In graphical representations of den-
drograms, this is usually visualized by the height of these nodes.

Example 3. An example dendrogram can be seen in Fig. 1. The dashed and
dotted lines may be ignored for now. The dendrogram shows a clustering over
six input vectors, labeled A to F . The distance between nodes can be seen on
the y-axis. For instance, the distance between vectors {B} and {C} is 1, while
the distance between their combined cluster {B,C} and vector {A} is 2.
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Fig. 1. A simple dendrogram

In this paper, we will focus on agglomerative hierarchical clustering [19],
which builds the dendrogram by assigning each vector to its own cluster and
then combines the two closest clusters until a full dendrogram has been built.

To combine the two closest clusters, it is necessary to not only measure the
distance between two vectors but also between larger clusters. To this end, a
linkage criterion is needed. Given two clusters c and d, some established linkage
criteria are (1) the single linkage criterion, which picks the minimum distance
between two vectors from c and d, (2) the complete linkage criterion, which picks
the maximum distance between two vectors from c and d, or (3) the average
linkage criterion, which takes the average of all distances between vectors from c
and d.

Most combinations of distance measure and linkage criterion can be applied
to a given hierarchical clustering problem. The results may, however, vary heavily
depending on the application.

To obtain a concrete clustering from a dendrogram, one fixes a distance
threshold. The final clustering is then made up of the nodes whose distances
lie just below the distance threshold and whose parent nodes are already above
it. In graphical representations, the distance threshold can be indicated by a
horizontal line, making the clusters easily visible.

Example 4. The dashed line in Fig. 1 represents a distance threshold of 3.5.
Following this threshold, the dendrogram would be split into the two clus-
ters {A,B,C} and {D,E, F}. Using a smaller distance threshold of 2.5, indicated
by the dotted line, would result in the three clusters {A,B,C}, {D}, and {E,F}.

The following section shows how we utilize hierarchical clustering in our novel
SMT(LRA) learner.
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3 Using Dendrograms for SMT(LRA) Learning

In this section, we introduce our novel SMT(LRA) learner. We describe how
the hierarchical clustering is used to guide its search and discuss the resulting
algorithm which we call SHREC1. We start with the general idea in Sect. 3.1,
followed by the algorithm in Sect. 3.2 and finally optimizations in Sect. 3.3.
In Sect. 4 we present the algorithm SHREC2 to trade-off some accuracy for a
further increase of scalability.

3.1 Main Idea

The main scalability problem of exact approaches for SMT(LRA) learning lies in
the large combined encoding that is needed to describe a full CNF. This encoding
quickly becomes hard to solve for SMT solvers when the number of clauses and
halfspaces is increased. We, therefore, propose to not learn the target CNF as a
whole, but rather to learn single clauses and then combine them into the target
formula.

When looking at the structure of CNF formulas, it becomes apparent that
positive examples need to satisfy all individual clauses, while negative ones only
need to unsatisfy a single one. If one had a perfect prediction, which negative
examples belong to which clause, one could simply learn each clause on its own,
using a simpler encoding, and still obtain an exact solution. But even an imper-
fect prediction, which needs some additional clauses, would yield a correct and
relatively small solution.

We propose a novel heuristic that produces such a prediction using agglom-
erative hierarchical clustering. The clustering algorithm partitions the negative
examples into groups of closely related examples given their values in the assign-
ment ae. This is due to the intuition that it is easier to find a single clause for a
set of closely related examples as opposed to an arbitrary one. The reason to use
hierarchical clustering as opposed to other clustering algorithms is the ability to
seamlessly adjust the number of clusters and thus the number of clauses in the
target formula.

To obtain a suitable clustering vector, we normalize the examples. For
Boolean variables, the values of � and ⊥ are replaced with 1 and 0, respec-
tively. The values ae(r) of real variables r are translated into the form ae(r)−rmin

rmax−rmin
,

where rmin and rmax are the smallest and highest possible values for variable
r, respectively. If those values are not known beforehand, they can simply be
estimated from the existing data. This normalization ensures that all feature
values lie in the interval [0, 1], which results in each variable having a similar
influence on the clustering outcome.

3.2 Algorithm SHREC1

The full algorithm SHREC1 is described in Algorithm 1. The algorithm receives
as input a set of examples E and returns a formula φ consistent with E. The first
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Algorithm 1. Algorithm SHREC1
Input: Example set E
Output: SMT(LRA) formula φ

1: function learn-model(E)
2: N0 ← build-dendrogram(E⊥)
3: cost ← wk

4: loop
5: k ← 1
6: while wk · k ≤ cost do
7: φ ← �
8: nodes ← select-nodes(N0, k)
9: h ← 0

10: valid ← �
11: for all Ni ∈ nodes do
12: cost-bound ← cost − wk · k − wh · h
13: h′, ψ ← search-clause(Ni, cost-bound)
14: if ψ = ∅ then
15: valid ← ⊥
16: break
17: else
18: φ ← φ ∧ ψ
19: h ← h + h′

20: if valid then
21: return φ
22: else
23: k ← k + 1
24: cost ← next-cost(cost)

25: function search-clause(Ni, cost-bound)
26: h ← 0
27: while wh · h ≤ cost-bound do
28: ω ← encode-clause(E� ∪ Ni, h)
29: ψ ← solve(ω)
30: if ψ �= ∅ then
31: return h, ψ

32: h ← h + 1
33: return h, ∅

step of the algorithm is the function build-dendrogram, which uses agglomer-
ative hierarchical clustering to build a dendrogram from the negative examples.
The function uses the normalization procedure described in the previous section.
Please note that build-dendrogram is agnostic to specific distance metrics and
linkage criteria.
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The resulting dendrogram is referred to by its root node N0. Each subsequent
node Ni has a unique, positive index i. As we do not need to distinguish between
a node and the set of examples covered by it, we use Ni to refer to both the
node Ni and its example set.

The algorithm is composed of several nested loops. The outermost loop
(Lines 2–24) searches for a solution with increasing cost. Similar to INCAL,
the cost is determined using a linear cost function wk · k +wh · h. The algorithm
starts with the cost value set to wk in the first iteration, allowing a solution
with exactly one clause and no halfspaces. After each iteration, the cost is incre-
mented, increasing the search space.

Since for each cost value multiple combinations of k and h are possible, the
next loop (Lines 6–23) starts with k = 1 and keeps increasing the number of
clauses k in each iteration. This, in turn, decreases the number of possible half-
spaces. In each iteration, k nodes are selected from the dendrogram through an
appropriate distance threshold and stored in the variable nodes. The algorithm
then tries to find a clause consistent with each node Ni using as few halfspaces
as possible. This is done in the function search-clause. If clauses for all nodes
could be found within the cost bound, they are combined (Line 18) and the
resulting CNF formula is returned. Since each clause satisfies all positive exam-
ples and each negative example is unsatisfied by at least one clause, this trivial
combination yields a consistent CNF.

The function search-clause constitutes the innermost loop of the algo-
rithm. Given a node Ni and the remaining cost left for halfspaces, the function
tries to find a clause that is consistent with all positive examples and the nega-
tive examples in Ni. To keep the cost as low as possible, an incremental approach
is used again, starting the search with 0 halfspaces and increasing the number
of possible halfspaces h with each iteration. To find a clause for a fixed set of
examples and a fixed number of halfspaces, an SMT encoding is used in Line 28.
This encoding is a simplified version of the encoding from INCAL and uses the
following variables: lb and l̂b with b ∈ B encode whether the clause contains b
or its negation, respectively; ajr and dj with r ∈ R and 1 ≤ j ≤ h describe the
coefficients and offset of halfspace j, respectively; sej with e ∈ E and 1 ≤ j ≤ h
is an auxiliary variable encoding whether example e satisfies halfspace j.

The overall encoding for a single example e can now be formulated with only
two parts, i. e., (1) the definition of sej , which is identical to INCAL’s

h∧

j=1

sej ⇐⇒
∑

r∈R

ajr · ae(r) ≤ dj ,
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and (2) the constraint which enforces consistency of e with the learned clause

h∨

j=1

sej ∨
∨

b∈B

(
(lb ∧ ae(b)) ∨

(
l̂b ∧ ¬ae(b)

))
, if φ∗(ae)

h∧

j=1

¬sej ∨
∧

b∈B

(
(¬lb ∨ ¬ae(b)) ∧

(
¬l̂b ∨ ae(b)

))
, otherwise.

The full encoding is the conjunction of the encodings for all examples in E�∪Ni.
Like INCAL, SHREC1 also uses an incremental approach. First, we only generate
the above encoding for a few examples and then iteratively add more conflicting
examples.

The function solve in Line 29 takes an encoding, passes it to an SMT solver,
and if a solution to the encoding is found, it is translated back into an SMT(LRA)
clause. Otherwise, solve returns ∅.

If a clause could be found within the cost bound (Line 30), it is returned
together with the number of halfspaces used. Otherwise, ∅ is returned together
with the highest attempted number of halfspaces.

This basic algorithm can be further improved in terms of runtime and cost
by two optimizations described in the next section.

3.3 Result Caching and Dendrogram Reordering

The algorithm SHREC1 as described above suffers from two problems, namely
(A) repeated computations and (B) an inflexible search, which we will both
discuss and fix in this section.

First, we address issue (A), that SHREC1 re-computes certain results multi-
ple times. When a node is passed to the function search-clause together with
some cost-bound , a consistent clause is searched using up to cost-bound

wk
halfspaces.

In later iterations of the algorithm’s main loop, search-clause is called again
with the same node and higher cost-bound . This leads to the same SMT encod-
ing being built and solved again. To avoid these repeated computations, each
node caches the results of its computations and uses them to avoid unnecessary
re-computation in the future.

Second, SHREC1 never modifies the initial dendrogram during the search,
making the approach inflexible. We address this issue (B) in the following. If
the initial clustering assigns only a single data point to an unfavorable cluster,
this might lead to a much larger number of clauses needed to find a consistent
formula. This, in turn, leads to a lower accuracy on new examples as well as a
higher runtime. To counteract this problem, we apply a novel technique, which
we call dendrogram reordering : whenever a clause ψ has been found for a given
node Ni and some number of halfspaces h, it might be that ψ is also consistent
with additional examples, which are not part of Ni, but instead of some other
node Nj . To find such nodes Nj , a breadth-first search is conducted on the
dendrogram. If some node Nj has been found such that ∀e ∈ Nj : ψ(ae) = φ∗(ae),
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the dendrogram is reordered to add Nj to the sub-tree under Ni. This does not
increase the cost of Ni, because the new examples are already consistent with ψ,
but might reduce the cost of Nj ’s (transitive) parent node(s).

Figure 2 illustrates the reordering procedure, which consists of the following
steps: (1) Generate a new node Nk and insert it between Ni and its parent.
Consequently, Nk’s first child node is Ni and its parent node is Ni’s former
parent node. Set Nk’s cached clause to ψ. (2) Remove Nj and its whole sub-tree
from its original place in the dendrogram and move it under Nk as Nk’s second
child node. (3) To preserve the binary structure of the dendrogram, Nj ’s former
parent node must now be removed. The former sibling node of Nj takes its place
in the dendrogram.

Fig. 2. Dendrogram reordering

This way, additional examples can be assigned to an already computed clause,
reducing the complexity in other parts of the dendrogram, too, inherently. Con-
sequently, the reordering can only decrease the overall cost of the dendrogram
and never increase it. Therefore, dendrogram reordering can handle imperfect
initial clusterings by dynamically improving them.

4 Improving Runtime Using Nested Dendrograms

In the previous section, we introduced a novel SMT(LRA) learner with improved
runtime compared to INCAL (as we will demonstrate by an experimental evalu-
ation in Sect. 5) without a significant impact on the quality, i. e. the accuracy of
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the resulting formulae. In real-world applications, however, an even faster and
more scalable algorithm might be preferred, even with minor losses of accuracy.
In this section, we propose a technique for nested hierarchical clustering to realize
this trade-off. We call this algorithm SHREC2.

4.1 Main Idea

While SHREC1 is already expected to reduce the runtime of the SMT(LRA)
learner, it still has to solve relatively complex SMT constraints to find a consis-
tent clause. To further improve runtime, we again reduce the complexity of these
SMT solver calls. The algorithm SHREC2 starts just like SHREC1 by clustering
the negative examples and then searching for clauses consistent with the dif-
ferent clusters. However, instead of searching for consistent clauses through an
SMT encoding, SHREC2 also clusters the positive examples, ultimately leaving
only the learning of single halfspaces to the solver. This is realized through a
simpler encoding, shifting the algorithm’s overall complexity from exponential
to polynomial runtime.

When searching for a single clause, negative examples must not satisfy any
literal of the clause, while positive examples only have to satisfy a single literal
each. This fact can now be used to learn literals one by one. To this end, nested
dendrograms are introduced.

We, therefore, extend our definition of dendrograms from the previous sec-
tions. A dendrogram that clusters negative examples like the one used in
SHREC1 is called a negative dendrogram from now on. Its nodes are called
negative nodes denoted as N⊥

i . In SHREC2, we also use positive dendrograms,
which analogously cluster the positive examples. Each node N⊥

i of the negative
dendrogram is assigned a new positive dendrogram N�

i,0. Each positive node N�
i,j

holds a set of positive examples from E� which again are being clustered just
like their negative counterparts.

Given a negative node N⊥
i and some halfspaces h, SHREC2 first finds all

Boolean literals that are consistent with the examples in N⊥
i . Because the

cost function is only dependent on the number of clauses and halfspaces, these
Boolean literals can be part of the clause without increasing the cost. Then, all
positive examples that are inconsistent with any of the Boolean literals are deter-
mined. These examples constitute N�

i,0. The positive dendrogram under N�
i,0 is

built in the same manner as the negative dendrogram, using the same normaliza-
tion scheme. Values of Boolean variables are however left out of the clustering.

To find a set of halfspaces that are consistent with the remaining positive
examples as well as the negative examples in N⊥

i , an encoding is generated for
each of the top h nodes from N�

i,0 matching them with individual halfspaces.

4.2 Algorithm SHREC2

Algorithm 2 describes the algorithm SHREC2. The main function (learn-
model) is identical to the one in Algorithm 1. The difference here can be found
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Algorithm 2. Algorithm SHREC2
Input: Example set E
Output: SMT(LRA) formula φ

1: function learn-model(E)
2: . . . � identical to SHREC1

3: function search-clause(N⊥
i , cost-bound)

4: L ← {b ∈ B | ∀e ∈ N⊥
i : ae(b) = ⊥} ∪

{¬b | b ∈ B,∀e ∈ N⊥
i : ae(b) = �}

5: ψ ← ∨
l∈L l

6: ψ′ ← ψ
7: E′ ← {e ∈ E� | ψ(ae) = ⊥}
8: if E′ = ∅ then
9: return 0, ψ

10: N�
i,0 ← build-dendrogram(E′)

11: h ← 1
12: while wh · h ≤ cost-bound do
13: ψ ← ψ′

14: nodes ← select-nodes(N�
i,0, h)

15: valid ← true
16: for all N�

i,j ∈ nodes do
17: ω ← encode-halfspace(N⊥

i ∪ N�
i,j)

18: θ ← solve(ω)
19: if θ = ∅ then
20: valid ← false
21: break
22: else
23: ψ ← ψ ∨ θ

24: if valid then
25: return h, ψ
26: else
27: h ← h + 1
28: return h, ∅

in the function search-clause, which tries to learn a clause given a set of
negative examples and a cost bound.

The function starts by computing the set L of all literals that are consistent
with all negative examples in N⊥

i (Line 4). It then computes the subset E′ of all
positive examples not consistent with any literal in L (Line 7). These remaining
examples need further literals to be consistent with the clause. Consequently,
if E′ is already empty at this point, the disjunction of the literals in L is already
a consistent clause and can be returned.
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Otherwise, additional literals are needed. Because any further Boolean literals
would be inconsistent with the negative examples, halfspaces are needed. To find
a reasonable assignment of examples in E′ to halfspaces, hierarchical clustering
is used again. Instead of clustering the negative examples, the algorithm clusters
the positive ones in E′. Since Boolean values have no influence on the halfspaces,
they are not used in this clustering.

The remainder of the algorithm is now very similar to the process in the main
function. The algorithm increases the number of halfspaces in each iteration,
starting at 1, until a solution has been found or the cost bound has been reached.
In each iteration, the top h nodes from the positive dendrogram are selected. For
each node N�

i,j , the algorithm tries to find a halfspace for the examples in N⊥
i

and N�
i,j via an encoding. If no such halfspace exists, the algorithm retries with

an increased h. If halfspaces could be found for all nodes, a disjunction of those
halfspaces and the literals in L is returned as a consistent clause.

The encoding for a single example e ∈ E is a simplified version of the one
used in SHREC1, which uses variables ar and d, describing the coefficients and
offset of the halfspace, respectively. The encoding now only consists of a single
constraint per example:

∑

r∈R

ar · ae(r) �� d

where �� is ≤ if φ∗(ae) = � and > otherwise. The full encoding is again the
conjunction of the encodings for all examples. Like in INCAL and SHREC1,
examples are also added iteratively. Please note that the encoding of SHREC2 is
only a linear program instead of a more complex SMT(LRA) encoding, making
it solvable in polynomial time.

SHREC2 also uses result caching and dendrogram reordering in both levels
of dendrograms. Besides, the positive dendrograms are computed only once for
each negative node N⊥

i and are immediately cached for faster access.

5 Experiments

In this section, we evaluate the capabilities and applicability of the proposed
algorithms SHREC1 and SHREC2. We have implemented them in Python using
the SMT solver Z3 [7] version 4.8.6 64 Bit and the scikit-learn package [17] ver-
sion 1.3.1 for the hierarchical clustering. To this end, we conducted case studies
and compared the results in terms of accuracy and runtime to INCAL. We ran all
evaluations on an Intel Xeon E3-1240 v2 machine with 3.40 GHz (up to 3.80 GHz
boost) and 32 GB of main memory running Fedora 26. In the following, we give
detailed insight into the experimental setup in Sect. 5.1. We present the com-
parison of our approaches to INCAL in Sect. 5.2.

5.1 Experimental Setup

Due to the poor scalability of current approaches, no suitable real-world bench-
marks for SMT(LRA) learning exist yet. In addition, benchmarks for SMT
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solving like the SMT-LIB collection are usually either unsatisfiable or only sat-
isfied by few assignments, meaning they do not produce adequately balanced
example sets. Therefore, experiments have to be conducted on randomly gener-
ated benchmarks. To this end, we use an approach similar to [13]: Given a set
of parameters consisting of the number of clauses (k) and halfspaces per clause
(h), we generate a CNF formula fitting these parameters. The generation proce-
dure is also given a set of 1000 randomly generated assignments from variables
to their respective values. The formula is then generated in such a way, that at
least 30% and at most 70% of those assignments satisfy it. To ensure that the
formula does not become trivial, it is also required that each clause is satisfied
by at least 30

k % of assignments that did not satisfy any previous clause. This
ensures, that each clause has a significant influence on the formula and cannot
be trivially simplified.

Fig. 3. Runtime comparison for different values of h

Since the main focus of SHREC is the improved scalability on larger formulae,
we (similar to [13]) generated benchmarks with increasing k and h and fixed all
other parameters to constant values. All generated formulae have 4 Boolean vari-
ables, 4 real variables, and 3 literals per clause. The benchmarks have between 1
and 25 clauses and between 1 and 3 halfspaces per clause, resulting in 75 different
parameter configurations. We expect a higher number of clauses or halfspaces
per clause to generally result in a harder benchmark. Since we cannot precisely
control the difficulty, however, some smaller formulae might turn out to be more
difficult than other larger ones. To mitigate these random fluctuations, we gener-
ated 10 formulae for each configuration, resulting in a total of 750 benchmarks.

For each benchmark, 1000 examples were randomly drawn. Boolean variables
had an equal probability to be assigned to � or ⊥. Real values were uniformly
distributed in the interval [0, 1).2

We used INCAL, SHREC1, and SHREC2 to find a CNF formula consistent
with all examples. All three algorithms used a cost function with equal weights
for clauses and halfspaces (wk = wh = 1). For each run, we measured the
runtime and the accuracy on another independent set of 1000 examples. We set
2 Please note that the choice of the interval does not influence the hardness of the

learning problem because smaller values do not make the SMT solving process easier.
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a timeout of 30 minutes for each run. This timeout is substantially longer than
the one used in [13] and allows us to adequately observe the effect of the different
configurations.

In the following section, the results are presented and discussed.

5.2 Comparison to INCAL

As mentioned in Sect. 3, SHREC1 and SHREC2 are able to use various dis-
tance metrics and linkage criteria in their clustering routine. To determine the
most effective combination, we ran some preliminary experiments on a subset
of the generated benchmarks. We evaluated the Manhattan distance, Euclidean
distance, and the L∞ norm as possible distance metrics and the single, com-
plete and average linkage criteria. Out of the nine possible combinations, the
Manhattan distance together with the average linkage criterion performed best.
Therefore, this combination is used in the following comparison with INCAL.

Fig. 4. Accuracy comparison for different values of h

Figure 3 shows the runtime for 1, 2 and 3 halfspaces per clause, respectively.
On the x-axis, the number of clauses from k = 1 to k = 25 is shown. The y-
axis shows the runtime in seconds. Each data point covers the runs on the 10
different benchmarks for the respective configuration. The squares, circles, and
triangles mark the mean of all 10 runtimes, while the vertical error bars show
the standard deviation. Runs that timed out were included in the calculation of
mean and standard deviation as if they needed exactly 1800 s. If all runs of one
configuration timed out, no data point is shown.

As expected, the number of clauses and halfspaces increases the runtime of all
three algorithms. However, we can observe that the increase in runtime becomes
smaller at a higher number of clauses. INCAL already times out at k ≥ 5 for
benchmarks with a single halfspace per clause and even at k ≥ 3 for benchmarks
with 2 or 3 halfspaces per clause. SHREC1 is able to handle larger benchmarks
better, but still times out at k ≥ 8, k ≥ 6 and k ≥ 4 for h = 1, h = 2,
and h = 3, respectively. On instances where neither INCAL nor SHREC1 time
out, SHREC1 is consistently considerably faster. SHREC2 is a lot more robust for
increasing k and h and does not time out for any benchmark. SHREC2’s runtime



Clustering-Guided SMT(LRA) Learning 57

stays far below that of INCAL and SHREC1 for almost all of the benchmarks.
This indicates SHREC2’s superior scalability in terms of runtime, outperforming
INCAL and SHREC1 by a large margin.

Naturally, we expect this success to come with a trade-off in the form of
lower accuracy. Figure 4 shows the accuracy for 1, 2 and 3 halfspaces per clause,
respectively. As before, each data point shows the mean and standard devia-
tion of 10 benchmarks. Timeouts were not considered in the calculation this
time. Configurations with 10 timeouts again have no data point displayed. As
expected, the accuracy of all three algorithms is lower for larger problems. This
is because a more complicated CNF needs to be found with the same number
of examples. One can also observe, that SHREC1 and especially SHREC2 suffer
more from this decrease in accuracy than INCAL. However, as Fig. 4a shows,
SHREC1’s accuracy still stays above 95% even for benchmarks with up to 7
clauses.

The decrease of accuracy is only crucial for larger values of k and h, which
were not solved by INCAL at all. If given enough time, we can also expect INCAL
to show a lower accuracy for these harder benchmarks. For the benchmarks which
were solved by INCAL, SHREC1 and SHREC2 stay very close to 100% accuracy,
as well. If one wants to compensate for the lower accuracy in other ways, the
improved scalability of SHREC1 and SHREC2 could also be utilized to simply
incorporate more training examples that can be handled due to better scalability.

Overall, the experimental results clearly show that SHREC is superior to the
state-of-the-art exact approach INCAL in terms of scalability. SHREC1 needs
considerably less runtime to learn formulae with only a slight loss of accuracy,
while SHREC2 was several magnitudes faster and still kept the accuracy at a
reasonable level.

6 Conclusion

In this work, we proposed a novel approach for SMT(LRA) learning. Our app-
roach, SHREC, incorporates hierarchical clustering to speed up the learning pro-
cess. Additionally, we presented two specific algorithms exploiting our findings
with different objectives: SHREC1 aims for high accuracy of the learned model
while SHREC2 trades-off accuracy for runtime, yielding a scalable approach to
tackle even harder problems.

Our conducted experimental evaluation supports these claims. When com-
pared to the state-of-the-art algorithm INCAL, our results clearly show that
SHREC1 outperforms INCAL in terms of runtime with almost no loss of accu-
racy. SHREC2 on the other hand can handle benchmarks for which INCAL and
SHREC1 timeout.

The better scalability permits our approach to handling interesting real-world
problems on a larger scale. This opens up new possibilities on a variety of appli-
cations and enables future research in the domain.
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Abstract. Well-Definedness is important for many formal methods. In
B and Event-B it ensures that certain kinds of errors (e.g., division by 0)
cannot appear and that proof rules based on two-valued logic are sound.
For validation tools such as ProB, well-definedness is important for con-
straint solving. B and Event-B establish well-definedness by generating
dedicated proof obligations (POs). Unfortunately, the standard provers
are not always very good at discharging them. In this paper, we present a
new integrated technique to simultaneously generate and discharge well-
definedness POs. The implementation contains a dedicated rule-based
prover written in Prolog supporting B, Event-B and extensions thereof
for data validation. We show that the generation and discharging is sig-
nificantly faster than existing implementations in rodin and Atelier-B
and that a large number of POs are automatically discharged. The POs
are fine-grained enough to provide precise source code feedback, and
allow inspection of problematic POs within various editors.

1 Introduction and Motivation

Well-definedness is an important issue in formal methods. Various approaches
exist to dealing with ill-defined expressions such as a division by zero or a func-
tion applied outside of its domain.

Three-valued logic is one such approach, but is rarely used in practice. Indeed,
some important proof rules or techniques (e.g., proof by contradiction) are not
sound in three-valued logic. This famous quote by the mathematician Hilbert
is also relevant for automated provers: “Taking the principle of excluded middle
from the mathematician would be the same, say, as proscribing the telescope to
the astronomer or to the boxer the use of his fists. To prohibit existence state-
ments and the principle of excluded middle is tantamount to relinquishing the
science of mathematics altogether.”. 1

Another approach is to only allow total functions (over the underlying argu-
ment types), but preclude any knowledge about the function’s value for prob-
lematic inputs. E.g., in the case of division the expression 1/0 would denote a

1 Taken from https://en.wikipedia.org/wiki/Brouwer?Hilbert controversy.
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number, but one has no knowledge about its value within a proof. In this app-
roach we thus can neither prove 1/0 = 0 nor 1/0 �= 0, but we can prove the
predicates 1/0 = 1/0 or ∃y.y = 1/0. This approach is convenient for constraint
solving or model finding and is typically used by SMTLib or Why3 [20]. Its main
drawback is that problematic expressions such as 1/0 may lurk within a formal
model without a user realising it.

The approach of the B-method is to generate well-definedness (WD) proof
obligations (POs) [5] for all formulas under consideration. These POs can be
generated by the rodin platform [3] or by Atelier-B (where they are called
WD-lemmas). If they are discharged we know that the corresponding formulas
are well-defined and that we can apply two-valued logic. This approach is good
for automated proving, enabling to apply effective provers based on two-valued
logic. Also, for users it is good to obtain feedback about ill-defined expressions,
rather than silently giving them an arbitrary value.

There are unfortunately a few outstanding practical issues:

– Discharging the WD proof obligations themselves is often quite time consum-
ing, and the built-in provers of rodin or Atelier-B are not very good at
discharging certain types of relevant goals (e.g., finiteness proof obligations
or boundedness proof obligations for min and max).

– The POs generated by rodin or Atelier-B apply to entire formulas (e.g.,
invariants or guards), and it would be useful to be able to more precisely
pinpoint problematic expressions and operators in the formal models. This
is useful for user feedback, e.g., in an editor. Also, for constraint solving, ill-
defined expressions pose a particular threat. Here a precise annotation can
help the constraint solver in knowing, e.g., which division is susceptible to
divide by zero. We return to this in Sect. 6 below.

– For data validation [23], well-definedness is also an important issue. However,
rodin is missing some datatypes such as strings and sequences (the latter
can be added via the theory plugin; but automated proof support is very
limited). While Atelier-B supports sequences and strings, its automated
proof support for sequences is not very good. Furthermore, extensions to
B are used for data validation (see [16]) which are not (yet) supported by
Atelier-B.

Contributions. In this article we present a new combined well-definedness PO
generator and prover, which has been integrated into the ProB validation tool,
and which

– is based on a fast algorithm to generate WD proof obligations and discharge
them at the same time,

– deals with Event-B, classical B and ProB’s extensions for data validation (or
with any other formalisms which ProB translates internally to B, namely
TLA+, Alloy and Z),

– provides proof support for the B sequence datatype and its many operators,
– produces precise error feedback, either in ProB’s own editor, Atom or

VSCode to the end user,
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– and can provide precise annotation of those operator nodes in the abstract
syntax tree of a formal model which are susceptible to well-definedness errors.

Our prover can be seen as a specialized successor to the ml (mono-lemma) rule-
based prover from Atelier-B, dedicated to discharging WD POs.

2 Well-Definedness Proof-Obligations

We first recall the essential aspects of the well-definedness proof-obligations, as
described in [5]. We suppose some familiarity with the B method. By formula
we here mean either an expression (e.g, x + 1), a predicate (e.g., x > 1) or a
substitution (e.g., x := 1). We denote logical equivalence of predicates by ≡.

With each formula f we associate a well-definedness predicate WD(f). This
predicate is defined inductively over the structure of f and can be seen as a
syntactic operator: it maps a formula f to a predicate. For Event-B the rules
can be found in Sect. 5 of [26] in the rodin handbook or partially in Sect. 5.2.12
of [2]. Here are two such rules for division and function application, where the
type of f is P(Df × Rf ):

WD(a ÷ b) ≡ WD(a) ∧ WD(b) ∧ b �= 0

WD(f(a)) ≡ WD(f) ∧ WD(a) ∧ a ∈ dom(f) ∧ f ∈ Df �→ Rf

An integer literal or a variable has no well-definedness condition:

WD(x) ≡ 	 for integer literals or variables x

We thus have for example WD(10 ÷ (x ÷ y)) ≡ y �= 0 ∧ x ÷ y �= 0.
L and D and Connectives. An important aspect arises in the treatment of the
logical connectives. There are in fact two approaches [5,8] to computing WD :

– the left-to-right approach L which requires that well-definedness of a formula
must be established by predicates on its left,

– and the more flexible D approach, which does not impose a strict left-to-right
examination of the predicates.

rodin uses the L approach, meaning that:

WD(P ∧ Q) ≡ WD(P ) ∧ (P ⇒ WD(Q))

In other words, Q need not be well-defined if P is false. Similarly,

WD(P ∨ Q) ≡ WD(P ) ∧ (P ∨ WD(Q))

Note that the rodin handbook uses L(.) to denote this left-to-right WD-
condition. In [8] the notation ΔMC

P is used instead, where MC stands for Mc
Carthy (see also [9] for CVC-lite).
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The more flexible D approach [5] uses the following rule

D(P ∧ Q) ≡ (D(P ) ∧ D(Q)) ∨ (D(P ) ∧ ¬P ) ∨ (D(Q) ∧ ¬Q)

In [8] this operator is written as ΔK
P instead, where K stands for Kleene.

Given P = (x > 0 ∧ 100/x < 50) and P ′ = (100/x < 50 ∧ x > 0) we have
that WD(P ) ≡ 	 and WD(P ′) ≡ (x �= 0) �≡ 	 but D(P ) ≡ D(P ′) ≡ 	. The
D approach is more powerful, and is commutative wrt ∧ and ∨ but suffers from
an exponential blowup of the size of the WD proof obligations. It is not used in
practice.2 We will use the L approach in the remainder of this article.

B vs Event-B. For classical B the conditions are associated with each operator in
[1] or the Atelier-B handbook [11]. The treatment of substitutions is handled
in [8]. There are some subtle differences in the WD conditions of B and Event-B.
E.g., exponentiation is less permissive in Event-B than inclassical B: (−2)3 is
allowed in classical B, but not well-defined in Event-B (cf. page 43, Table 5.2 in
[26]).3

There is, however, no fundamental difference in the derivation of the WD
proof obligations for predicates and expressions (but classical B has many more
substitutions, see Sect. 3). Our implementation has a flag indicating the language
mode (B, Event-B, Z, Alloy or TLA+), to appropriately adapt the POs.

There is, however, one fundamental difference between rodin and Atelier-
B. rodin adds the goals of WD proof obligations as hypotheses to subsequent
proof obligations. The motivation is to avoid having to re-prove the same goal
multiple times. This technique is not described in [2,26], but can be found in
[25]. In Atelier-B this technique is not applied.

In the example below, the WD PO for axiom axm2 in rodin is f ∈ Z↔Z ⇒
f ∈ Z �→ Z ∧ 2 ∈ dom(f). This PO cannot be proven (and the model contains
a WD error), but its goals f ∈ Z �→ Z and 2 ∈ dom(f) are added by rodin to
the hypotheses of the PO for the theorem thm1, meaning that it can be trivially
proven with the hyp rule (which checks if a hypothesis is on the stack).

1 context Test_WD_Hyp
2 constants f
3 axioms
4 @axm1 f : INT <-> INT // f is a relation
5 @axm2 f(2) = 3 // this can give rise to a WD error
6 theorem @thm1 f : INT +-> INT // can be proven with hyp in Rodin
7 theorem @thm2 f(2) = 4
8 end

Listing 2.1. WD Event-B Rodin Example

2 [12] discusses combining power of D with the efficiency of L, but is not used in
practice as far as we know. It seems to require one to establish the truth or falsity
of individual formulas, which may not be easily feasible in practice.

3 For modulo -3 mod 2 = −1 is well-defined and true in Event-B, but is not well-
defined in classical B. But this is not due to a difference in the WD condition, but
due to the fact that -3 mod 2 is parsed as -(3 mod 2) in rodin and (-3) mod 2 in
Atelier-B. The rodin handbook requires modulo arguments to be non-negative,
which is correct; [26] is in error.
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This optimisation also means that discharging all WD POs is very important
in rodin: one simple error like using f(2) can be used to prove arbitrary goals
(e.g., above one can easily prove a theorem 22=33 by contradiction).

In our algorithm we do not use this optimisation of rodin. As we will see,
our algorithm is fast enough without it, and we also want to establish well-
definedness for each program point in isolation and detect all sub-expressions
which are potentially ill-defined, not just the first one. For example, in rodin
the well-definedness PO of theorem thm2 is proven. This is particularly relevant
when we want to use the information for a constraint solver: it has to know for
every program point whether it is guaranteed to be well-defined or not.

3 Fine-Grained WD Proof Obligations

Below we define our more fine grained way of computing well-definedness proof
obligations. Rather than computing one proof obligation for an entire formula
(such as an invariant or axiom), we will derive multiple proof obligations for
individual operators within each formula. Our formalization thus uses a rela-
tion rather than a function taking a formula and producing a single PO. Our
formalization also manages explicitly a single hypothesis environment, rather
than putting hypotheses piecemeal into the formulas. The reasons will become
apparent later: our formalisation manages the hypotheses like a stack and will
correspond to an efficient implementation in Prolog.

Our PO generation uses the ternary relation H ⊗ F � P meaning that
given the current hypotheses H, the formula F gives rise to a proof obligation
P . P will always be a predicate of the form Hypotheses ⇒ Goal .

For example, we will have that:

– H ⊗ (10 ÷ b) ÷ c � H ⇒ b �= 0 and
– H ⊗ (10 ÷ b) ÷ c � H ⇒ c �= 0.

We will first provide a generic rule for all binary operators which always
requires both arguments to be well-defined without additional hypotheses (e.g.,
÷, +, ∪). These operators are sometimes called strict. We define the direct well-
definedness condition WDC for every such operator, ignoring WD conditions of
arguments. Here are a few rules, where the type of f is P(Df × Rf ):

WDC (a ÷ b) ≡ b �= 0

WDC (a + b) ≡ 	
WDC (f(a)) ≡ a ∈ dom(f) ∧ f ∈ Df �→ Rf

WDC (first(f)) ≡ f ∈ seq(Rf ) ∧ f �= ∅

WDC (inter(a)) ≡ a �= ∅

In the B language dom(f) denotes the domain of f , A �→B denotes the set of
partial functions from A to B, seq(A) the set of all sequences over A, first(f) the
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first element of a sequence f and inter(a) denotes the union of a set of sets a. We
can now provide three generic inference rules for all those binary operators BOP
where no hypotheses are added or removed for discharging the well-definedness
of its arguments:

H ⊗ a ◦ b � H ⇒ WDC (a ◦ b)
◦ ∈ BOP

H ⊗ a � PO
H ⊗ a ◦ b � PO

◦ ∈ BOP
H ⊗ b � PO

H ⊗ a ◦ b � PO
◦ ∈ BOP

For unary operators UOP such as −, union, inter, conc we have the following
rules:

H ⊗ ◦a � H ⇒ WDC (◦a)
◦ ∈ UOP

H ⊗ a � PO
H ⊗ ◦a � PO

◦ ∈ UOP

Logical Connectives. The equivalence ⇔ can simply be treated by the BOP
inference rules with WDC (P ⇔ Q) = 	. Similarly, negation can be treated as a
unary operator with WDC (¬P ) = 	. For the conjunction the first argument P
is pushed onto the hypotheses H for the second argument Q:

H ⊗ P � PO
H ⊗ P ∧ Q � PO

H ∧ P ⊗ Q � PO

H ⊗ P ∧ Q � PO

The implication has exactly the same inference rules:

H ⊗ P � PO
H ⊗ P ⇒ Q � PO

H ∧ P ⊗ Q � PO

H ⊗ P ⇒ Q � PO

For disjunction the negation of P is pushed onto the hypotheses for Q:

H ⊗ P � PO
H ⊗ P ∨ Q � PO

H ∧ ¬P ⊗ Q � PO

H ⊗ P ∨ Q � PO

Here we clearly see the difference with the classical formalization of the WD
operator in the literature, which inserts a hypothesis into a disjunction of the
resulting PO formula: WD(P ∨ Q) ≡ WD(P ) ∧ (P ∨ WD(Q)).

The treatment of quantifiers requires the renaming operator ρV (H) which
renames all variables in the hypotheses which clash with variable in V to fresh
new variables. With this operator we can produce the rules for existential and
universal quantification:

ρV (H) ⊗ P � PO

H ⊗ ∃V.P � PO

ρV (H) ⊗ P � PO

H ⊗ ∀V.P � PO

We have similar rules for other quantified operators, such as
⋃

or
⋂

.
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Proof Obligations for Substitutions. The Atelier-B handbook does not detail
how well-definedness is established for substitutions, and this aspect is not rele-
vant in rodin. For our tool we first developed our own WD proof rules and then
discovered that [8] contains WD rules for substitutions, which seem mostly to
have been taken over in Atelier-B. Some constructs like parallel composition
or CHOICE are simply “transparent” for WD computation and can be treated
in the same way as the binary operators above. This means that in a parallel
construct P ‖ Q each branch must be well-defined on its own: one cannot make
use of guards in P to prove WD(Q) or vice-versa. Some examples in Sect. 5.3
incorrectly rely on the guards in P to establish well-definedness in Q.

Some constructs like IF-THEN-ELSE or SELECT are similar to conjunction
in that hypotheses are added for certain subgoals. This is the rule for simple
assignments:

H ⊗ E � PO
H ⊗ x := E � PO

x is a simple variable

For the assignment, B also allows to assign to functions and nested functions
and to records and nested records. Here are the rules for these cases.

H ⊗ E � PO

H ⊗ r(x) := E � PO

H ⊗ r � PO

H ⊗ r(x) := E � PO

H ⊗ x � PO

H ⊗ r(x) := E � PO

H ⊗ E � PO

H ⊗ r′f := E � PO

H ⊗ r � PO

H ⊗ r′f := E � PO

The above rule also treats nested functions calls. E.g., for the assignment
g(y)(x) := E the above rule applies with r = g(y) and we thus require that E
and x are well-defined and that y ∈ dom(g) and that g is a partial function.

For the WHILE substitution we adapted the proof rule from [8]. A tricky
aspect is the sequential composition. [8] contains a few specific rules and was
trying to avoid having to apply the weakest-precondition computations in full.4

We have adapted a few of the rules from [8], the most used one being WD(x :=
E ; Q ) = WD(E) ∧ WD([x := E]Q)) where [x := E](P ) = P [E/x]. Note
that the default rule for sequential composition treats the assigned variables as
fresh variables without hypotheses, and does generate POs for the sub-formulas.
Note that [8] also contains a rule for parallel composition followed by sequential
composition which is wrong. There is also a special rule for a WHILE loop in
the LHS of a sequential composition which we have not implemented. The rules
implemented thus far proved sufficient for many applications.

4 Fast Integrated POG and Prover

One can notice that in the above proof rules for H ⊗ F � P the hypotheses
H are passed through to subarguments of F and sometimes a new hypothesis is
added. This means that a lot of proof obligations will share common hypotheses.
4 Atelier-B now uses full WP calculus (private communication from Lilian Burdy).
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When using external provers in rodin, each well-definedness PO is discharged
on its own and a new prover instance is launched for every PO. This is not very
efficient, especially when the number of hypotheses becomes large (cf. Sect. 5).
In Atelier-B the hypotheses can be numbered and shared amongst proof obli-
gations, which is useful when discharging multiple proof obligations in one tool
run. However, for every PO the hypotheses must still be assembled.

One key idea of this paper is to discharge the POs in the same order they are
generated by our POG rules and to treat the hypotheses as a stack. E.g., when
one enters the right-hand side of a conjunction we push the left-hand side as a
hypothesis onto the stack, when leaving the conjunction we pop this hypothesis
again. The pushing of a new hypothesis can also conduct a few proof-related
tasks, like normalization and indexing.

Another insight of this paper is that in the Prolog programming language
the popping can be done very efficiently upon backtracking: the Prolog virtual
machine is optimised for these kinds of operations and does them in a memory
and time efficient way.

Below we show our implementation of the above POG rule for the conjunc-
tion. The Prolog predicate compute wd encodes our relation Hypotheses ⊗ A ∧
B � PO with some additional arguments (for source code locations, typing
and options). You can see that there is a call to push A onto the hypothesis
stack, but no pop operation, which is performed upon backtracking.

1 compute_wd_aux(conjunct(A,B),_,_,_,_,Hypotheses ,Options ,PO) :- !,
2 (compute_wd(A,Hypotheses ,Options ,PO)
3 ;
4 push_hyp(Hypotheses ,A,Options ,NewHyp),
5 compute_wd(B,NewHyp ,Options ,PO)).

Listing 4.1. Prolog clause for processing the conjunction

The push hyp predicate will also filter useless hypotheses and normalise the
useful ones. It also performs indexing to ensure that subsequent proving steps
can be performed efficiently. For commutative operators this may mean to store
a hypothesis twice. Our technique will ensure that this overhead is only incurred
once for all proof obligations having that particular hypothesis on the stack.
The proving is performed when an actual PO is generated (in this case, no PO
is directly created by the conjunction itself).

For quantifiers we need to provide the renaming mechanism ρV (H). To avoid
traversing all hypotheses upon every clash, our implementation of ρV (H) actu-
ally stores a list of variable clashes and renamings. The renamings are not applied
to the existing hypotheses, only to new hypotheses and the final goal of the PO.

In essence, the main ideas for obtaining a fast and effective proof obligation
generator and prover are:

– use Prolog pattern matching on the syntax tree to implement the POG gen-
eration,

– combine proof-obligation generation and proving in a single traversal, dis-
charging POs in the same order they are generated,
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– organize the hypothesis as a stack, use Prolog backtracking for popping from
the stack,

– pre-compile the hypotheses to enable logarithmic lookup of hypotheses,
– use a rule-based prover in Prolog which only uses such logarithmic lookups

in hypotheses, performs rewrite steps using Prolog unification and limiting
non-determinism as much as possible.

Normalization and Lookup of Hypotheses. Normalization is employed by many
provers, e.g., it is used in Atelier-B to minimize the number of proof rules that
have to be implemented (see Chap. 3 of Interactive Prover manual of [11]).

Our rules are different from the ones in [11], as we are also concerned with
ensuring logarithmic lookup of hypotheses. Our hypotheses are stored as an AVL
tree using the normalised Prolog term as key. AVL trees are self-balancing binary
search trees with logarithmic lookup, insertion and deletion (see, e.g., Sect. 6.2.3
of [19]). We have used the AVL library of SICStus Prolog 4, and implemented a
new predicate to enable logarithmic lookup if the first argument of the top-level
operator is known, but the second argument may be unknown (making use of
lexicographic ordering of Prolog terms).

Table 1. A few normalization rules and the generation of additional hypotheses

Predicate Normalization Additional Hypotheses Conditions

x > n x ≥ n + 1 if n is a number

n > x x ≤ n − 1 if n is a number

x > y x ≥ y ∧ x �= y y ≤ x otherwise

x < n x ≤ n − 1 if n is a number

n < x x ≥ n + 1 if n is a number

x < y x ≤ y ∧ x �= y y ≥ x otherwise

A ⊂ B A ⊆ B ∧ A �= B B ⊇ A

All hypothesis lookups in our prover are logarithmic (in the number of
hypotheses); no lookup requires a linear traversal. Some hypotheses are stored
multiple times to enable this logarithmic lookup based on first argument: the
predicate a = b is also stored in the form b = a if the term b is susceptible
to be looked up. The predicate a < b may result in three hypotheses being
added: a ≤ b, b ≥ a, a �= b. a �= b is only stored once, as upon lookup time both
arguments are known. The Table 1 shows some of our normalization rules.

Table 2 shows the lookups that are made by our prover in the hypothesis
stack. As mentioned, the first argument A is always known. All other hypotheses
not occuring in Table 2 are not pushed onto the stack (in proving mode), as they
would never be used anyway.
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Table 2. Lookups made in the Hypothesis Stack (A is always known, B known for �=)

Patterns for Lookups

finite(A) A ∈ B

A = B A �= B

A ≤ B A ≥ B

A ⊆ B A ⊇ B

Predicates Supported by the Prover. The rule-based prover contains various Pro-
log predicates for proving a few core B predicates, namely those listed in Table 3.
The following Prolog clauses contain a small part of the check finite predi-
cate responsible for proving the B finite predicate. The first argument is the B
expression which is the argument to the finite operator, the second argument
is the hypothesis stack while the third argument is a proof tree constructed by
the prover (for subsequent inspection or validation). These clauses encode the
axioms finite(BOOL) and finite(∅) as well as the proof rules that finite(A ∩ B)
holds if either finite(A) or finite(B) and that finite(A\B) or finite(ran(A)) hold
if finite(A).

1 check_finite(bool_set ,_,bool_set) :- !.
2 check_finite(empty_set ,_,empty_set) :- !.
3 check_finite(intersection(A,B),Hyps ,intersection(D,PT)) :- !,
4 ( D=left , check_finite(A,Hyps ,PT) -> true
5 ; D=right ,check_finite(B,Hyps ,PT)).
6 check_finite(set_subtraction(A,_),Hyps ,set_subtraction(PT)) :- !,
7 check_finite(A,Hyps ,PT).
8 check_finite(range(A),Hyp ,ran(PT)) :- !, check_finite(A,Hyp ,PT).

Listing 4.2. Some Prolog clauses for checking the finite B predicate

The proof rules and derived Prolog clauses are written such that matching
of B predicates (like intersection or set subtraction above) always occur at
the top-level of the formulas. This ensures that we can use efficient and simple
Prolog unification for the proof rules and that Prolog’s argument indexing often
results in constant time lookup of possible matching proof rules.

Ensuring Termination. To avoid useless rewrites, our prover contains local loop
checks within the predicates of Table 3. Some rewrites are also guarded by an
occurs check, to prevent rewriting x to something like rev(rev(x)). Finally, a
depth bound limits the number of equality and subset rewrites applicable within
a particular proof. Currently the bound is set to allow 5 rewrites; increasing this
bound only minimally increases the number of POs discharged in Sect. 5.3.

Implementation within ProB. The prover has been integrated into the ProB
validation tool. On the one hand, this has eased the implementation, as part of
ProB’s infrastructure (parser, typechecker, static rewriter) could be re-used. For
the rules concerning substitutions (Sect. 3), we also reused the code for comput-
ing written variables. On the other hand, we also plan to use the output of the
prover for ProB’s constraint solver; see Sect. 6. Finally, this also enabled to make
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Table 3. Prolog prover predicates, where T and T ′ are maximal type sets

B Predicates handled by the Prover

A ⊆ B A ∈ B

A ≤ B A �= B

A ∈ T 
→ T ′ (functional)

A−1 ∈ T 
→ T ′ (injective)

A ∈ seq(T ) (is sequence)

finite(T )

dom(A) = D dom(A) ⊆ D′

ran(A) = R ran(A) ⊆ R′

the prover available within rodin, as part of the ProB-Disprover plugin. This
is particularly useful for discharging POs which pose problems to other provers
(e.g., for min, max and card). Existing integrations with editors, such as Atom
and VSCode could also be easily extended to highlight potential WD issues.

5 Benchmarks

Below we provide a variety of benchmarks. Section 5.1 contains artificial bench-
marks to measure scalability compared with Atelier-B and rodin. In Sect. 5.2
we examine a few specific POs extracted as regression tests, while in Sect. 5.3
we perform a more exhaustive evaluation on over 6000 models from the ProB
examples repository. All experiments were run on a MacBook Pro 2.8 GHz i7
processor, 16GB of RAM and running macOS 10.14.6. For the experiments we
have used version 1.10.0-beta2 of the command-line version probcli with the
flags -wd-check -silent, which runs our PO generator and prover on the pro-
vided model and prints a summary information (the -silent flag prevents the
output of source locations for the undischarged POs) available at:

https://www3.hhu.de/stups/downloads/prob/tcltk/releases/1.10.0-beta2/.

5.1 Artificial Benchmarks

We next present the following artificial benchmark model template, where Nr is
a parameter which we have instantiated to various values between 100 and 8000.
Atelier-B generates 3Nr proof obligations, while our implementation generates
6Nr , as we check separately for every function application that ff is a function
and that the argument is in the domain of ff .

https://www3.hhu.de/stups/downloads/prob/tcltk/releases/1.10.0-beta2/
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1 MACHINE FunNrWD
2 CONSTANTS ff
3 PROPERTIES
4 /* axm0 */ ff : 1 .. Nr --> 1 .. 90
5 & /* axm1 */ ff(1) < 100
6 & /* axm2 */ ff(2) < 100
7 ...
8 & /* axmNr */ ff(Nr) < 100
9 & /* axm_nest_1 */ ff(ff(1)) < 100

10 ...
11 & /* axm_nest_Nr */ ff(ff(Nr)) < 100
12 INITIALISATION skip
13 END

Listing 5.1. Artificial Benchmark Template

AtelierB. We have loaded the above model into the 64-bit version 4.6.0-rc4
of Atelier-B for macOS. The timings for Atelier-B were obtained using a
stopwatch, after the models had been loaded and typechecked. The timings of
our implementation were taken within ProB, using walltime for the total time
needed to generate and discharge the POs. The time needed to parse and load
and typecheck the machine was not measured for either tool.

Table 4. Artificial WD Benchmark FunNrWD (classical B)

Nr Atelier-B ProB WD

POG Proof F0 Discharged POG + Proof Discharged

100 4 s 13 s 100% 0.035 s 100%

200 40 s 62 s 100% 0.041 s 100%

500 error – 0% 0.058 s 100%

1000 error – 0% 0.083 s 100%

2000 error – 0% 0.139 s 100%

4000 error – 0% 0.252 s 100%

8000 error – 0% 0.478 s 100%

For Nr = 100 and Nr = 200 our implementation is a few orders of magnitude
faster. Atelier-B ran into a “memory overflow (max expansion reached)” in
default settings for Nr = 200. After increasing the “m” parameter by a factor of
100 we managed to generate the proof obligations for Nr = 200. But for Nr = 500
we were not successful (4.25 GB memory were used; error generated after about
90 s, we tried to increase the memory allowance as much as the UI would let
us). Note that the first run of the WD prover within ProB is always a bit
slower (probably due to JIT startup time) than subsequent runs (e.g., 18 ms for
Nr = 200). This is relevant when checking many POs (such as in Sect. 5.3) or
when ProB is left open while working on a model (Table 4).



Fast and Effective Well-Definedness Checking 75

Rodin. We encoded the above B machines in Event-B and used rodin version
3.4. We used a stop watch to measure the POG (building) time and the auto
prover time (“Retry Auto Provers” command).

Table 5. Artificial WD Benchmark FunNrWD (Event-B)

Nr rodin ProB WD

POG Auto Prover Discharged POG + Proof Discharged

100 3 s 2 min 28 s 49.5% 0.036 s 100%

200 8.5 s 6min 05 s 24.5% 0.044 s 100%

500 47 s 17min 10 s 9.7% 0.063 s 100%

1000 1min 25 s +/− 45min 5.2 % 0.121 s 100%

As Table 5 shows, rodin is initially slower than Atelier-B, but is able to
process larger models. However, the proving time is quite large, as every proof
obligation is sent to a new instance of the provers. For Nr = 100 it is about an
order of magnitude slower than Atelier-B and three orders of magnitude slower
than our technique, and discharges only half of the POs. For Nr = 1000 rodin
is about 23,000 times slower than our technique. We did try to prove some of
the POs in rodin by hand. For axm110 the pp prover needs to be interrupted,
but ml and Z3 can be used to prove it. For axm nest 999 the ml prover fails,
Z3, veriT, and CVC4 run into timeouts and pp needs to be interrupted.

5.2 A Few Selected POs

The regression test 2018 of ProB contains 189 well-defined formulas which were
collected from existing models, leading to 413 POs. Of course this test is biased,
as it contains the regression tests for our prover. However, these regression tests
were usually extracted from existing models, and were written to cover a large
class of typical WD situations arising in practice. Here we wish to show that our
prover does treat some naturally occurring WD POs better than the standard
provers mono-lemma ml and the predicate prover pp in their default settings.

For the experiments we used ProB’s atelierb provers interface module which
calls krt with the options -a m1500000 -p rmcomm. The results are summarised in
Table 6. Our prover discharges all 413 POs in 47 ms, with a maximum walltime
of 5 ms per PO. The maximum walltime of ml was about 18 s for the PO

f : 1,3,5,7,9 --> 1,3,5,7,9 => 5 : dom(f).
If we deduct the minimum walltime of 0.26 s of ml (which is probably due to
the overhead of starting a new ml for each PO) we obtain a runtime of around
45 s for all POs.

For pp some POs seemed to run into an infinite loop and we interrupted the
prover on 18 occasions, e.g., for the PO:
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10 / f(a) = 10 / a & a : NATURAL1 & b : NATURAL &

f : NATURAL1 --> NATURAL1

=> b + 1 : dom(f).
The longest successful run of pp was around 49 s for the PO:

x’ : 2 .. 8 => %x.(x : 2 .. 8|10 / x) : (INTEGER) +-> (INTEGER).
pp was not able to prove e.g. these two POs:

s : perm(1 .. 10) => s : (INTEGER) +-> (INTEGER)

x : POW(1 .. 2) => finite(x).
We have also tried to use Z3 4.8.8 via the translation [22] available in ProB.

This translation does not support sequences and all B operators, and also unfor-
tunately terminated after 23 POs (with an uncaught “datatype is not well-
founded” exception). We tried to selectively skip over some POs, without suc-
cess. In the future it would be good to try the translation to SMTLib from [13]
(but which would not support sequences either).

Table 6. POs Extracted from ProB Regression Tests

Prover Proved Unproved Ctrl-C Min Max Total w/o Min

ProB-WD 413 0 0 0.000 s 0.006 s 0.047 s 0.047 s

ml 190 223 0 0.260 s 18.725 s 152.633 s 45.253 s

pp 230 165 0.092 s 49.144 s 222.940 s 186.600 s

18 1017.406 s –

Z3 9 14 0 0.007 s 2.520 s crash –

5.3 Benchmarks from ProB Examples

The ProB source code is accompanied by a large selection of models, which are
used for regression tests. In a recent effort, the public part of these models have
been made available for reproducible benchmark efforts and other research uses
at: https://github.com/hhu-stups/specifications

For this article we have extracted the parseable and type-correct B and Event-
B specifications to evaluate our tool. The scripts to run our tool are available
in the folder benchmarks/well-definedness of the above repository. The sum-
mary is in Table 7; the detailed results for the 2579 B and 760 Event-B models
can be found in the above repository. We also ran the experiments on the pri-
vate B machines (.mch files) and Event-B files in the ProB examples. These are
summarised in Table 8.

Table 7. ProB WD on Public Benchmarks using ProB Examples

Formalism Files Total POs Discharged Perc Runtime Avg. per File

B 2579 106784 90357 84.62% 4.46 s 1.7 ms

Event-B 760 42824 38847 90.71% 1.10 s 1.4 ms

https://github.com/hhu-stups/specifications
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Table 8. ProB WD on Private Benchmarks from ProB Examples

Formalism Files Total POs Discharged Perc Runtime Avg. per File

B 3370 354769 288968 81.45% 38.67 s 11.5 ms

Event-B 145 32647 27202 83.32% 1.01 s 7.0 ms

The performance exceeded our initial hopes and one could run this analysis
as part of the ProB loading process without users noticing a delay: 82.9% of the
more than half a million POs from 6000 models were discharged in less than 50 s.
For the public Event-B models the tool managed to discharge over 30000 POs
per second. The maximum runtime was 0.310 s for one file (a formal model of
the Z80 processor with many equalities in the invariants). With a newer version
1.10.0-beta4 of ProB 87% of these POs are now discharged in almost the same
time.

The precision of the analysis is also very satisfactory. For many models 100%
of the POs are discharged, e.g. all 114 for a Paxos model by Abrial or all 118 for
MovingParticles, an encoding [24] of an ASM machine in Event-B (whose WD
POs which are tedious to discharge in rodin). The analysis has also uncovered a
considerable number of real well-definedness issues in existing models. In terms
of the true POs, the discharge percentage of our tool should be noticeably higher.
Indeed, we checked the unproven POs of the public Event-B models with ml; it
managed to discharge only 7% of them (i.e., an additional 0.55% overall).

6 Discussions and Outlook

Explanations for Performance. What can explain the big performance difference
of our tool compared to Atelier-B and rodin? Some reasons have already been
mentioned earlier:

– the combined PO generation and proving in one go definitely reduces some
overhead,

– no overhead of calling an external prover (relevant compared to rodin),
– no need to transmit or load hypotheses for a PO, all hypotheses are pre-

compiled on the stack,
– efficient popping of hypotheses using Prolog’s backtracking,
– only logarithmic hypotheses lookups are performed in the prover and useless

hypotheses are not stored.

Part of the performance also comes from the special nature of WD POs.
Indeed, one could try to implement our proof rules as custom proof rules for ml,
which would probably boost its benchmark results. Indeed, Atelier-B uses the
theory language to express proof rules, which can be viewed as domain specific
logic “programming language” tailored to B and proof. While Atelier-B comes
with a custom developed compiler — the Logic Solver — it seems like it cannot
compete with state-of-the-art Prolog compilers. A small experiment consisted
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in summing the numbers from 1..500000 in the theory language (written by
Thierry Lecomte) and in Prolog. Using krt in Atelier-B 4.3.1 this task runs
in over 6 s, while SICStus Prolog perform the same task in 0.001 s. Thus some
of the performance is certainly due to implementing our proof rules in Prolog.
The drawback of Prolog is that it has more limited matching (i.e., unification),
namely only at the top-level of a Prolog term. This meant that we had to repeat
some rewriting rules multiple times (for each predicate in Table 3).

rodin uses external provers such as ml, pp or Z3 [13], and also the TOM
rewriting library[6]. rodin’s internal sequent prover, however, seems to have
been developed using hand-written matching, which is probably much less effi-
cient than in Prolog or a dedicated term rewriting system. The hand-written
solution can be very verbose: the equivalent of the last line 8 of our Prolog
prover in Listing 4.2 is a file FiniteRan.java5 with 82 lines of code (9 lines
are copyright notice). The Prolog code is also very flexible (e.g., it can be used
for finding proofs but also for re-playing or checking proofs if the proof tree
argument is provided).

We are not the first to use Prolog to implement a prover [7,14,28]. An open
question is whether using term rewriting [18] would be an even better app-
roach. As mentioned above, Prolog unification is more limited, but very efficient.6

Within a term rewriting system we could simplify our prover code, possibly use
AC unification and avoid duplication of rewrite rules. An interesting topic for
future research would be to port our prover to such a term rewriting system (like
Maude) in the hope of not losing too much performance.

WD and Constraint Solving. Well-definedness is important for constraint solving
in ProB’s kernel. Indeed, constraint propagation can be much more effective if
one assumes well-definedness. Take for example the predicate x ∈ 1..10 ∧ y ≥
0 ∧ z = x ÷ y ∧ z > 10. If we assume well-definedness of x ÷ y, we can infer that
z ∈ 1..10 and hence realise that the constraint has no solution. If on the other
hand, we wish to detect WD errors, the constraint solver has to delay until it
knows whether y is 0 or not. In case y = 0 one can produce an error message,
and if y > 0 the constraint is unsatisfiable. The detection of well-definedness
errors is made more complicated by the fact that a solver does not necessarily
treat predicates from left-to-right.

This is the reason many constraint solvers ignore well-definedness errors (see
also [15]). E.g., in SMTLib or the finite domain constraint library CLP(FD) of
SICStus Prolog, a division by zero simply results in an unsatisfiable predicate
(and not in an error). This is not the approach used by ProB: it tries to detect
well-definedness errors, but unfortunately is not guaranteed to detect all WD
errors, because some of the checks would be prohibitively expensive at solving
5 See FiniteRan.java in org.eventb.internal.core.seqprover.eventbExtensions

at https://sourceforge.net/p/rodin-b-sharp/rodincore. A lot of other proof rules are
more compact, though.

6 The missing occurs check in Prolog is not an issue, because we use the ground
representation for the B formulas, and hence any variable in a proof rule is always
instantiated to a ground term.

https://sourceforge.net/p/rodin-b-sharp/rodincore
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time. Particularly, within nested set comprehensions such well-definedness issues
can cause unexpected results. The techniques of this article will allow us to
implement a much better approach in the future:

– if all WD POs are discharged, we know that no WD errors can arise. We can
then perform stronger constraint propagations in the ProB kernel.

– if not all WD POs are discharged, we can resort to full WD checking at
runtime for those places where the POs have not been discharged.

Outlook. Concerning our proof obligation generator we plan to extend it as
needed to cover substitutions in classical B more precisely. Full coverage will,
however, also require a full implementation of the weakest-precondition com-
putation. The generator is currently tailored for use within ProB; for usage
outside of ProB, we will need to allow to preserve the interleaved exact order of
theorems and invariants for rodin models or the order of included invariants in
B. It would also be benefical to extract the proof status information from rodin
and Atelier-B; this will further improve performance and precision and give
users a fallback solution in case our prover is not powerful enough.

The prover itself can be further improved, in particular cycle detection can
be made more efficient. We also plan to provide a “strength” option to enable
more non-deterministic proof rules, at the cost of runtime. The quantifier instan-
tiations and treatment of implications can also be extended.

It would be useful to visualize the proof tree constructed by our tool, and
display the useful hypotheses for a particular PO. The proof tree could also be
checked by a second tool, for validation purposes. Similar to what was done for
ml, we could also attempt to prove all our rewrite rules using another prover.

About 10 years ago Abrial proposed [4] an outline for a new improved prover
P3 for the B method. The results of this paper could be an encouragement to
try and develop this successor to ml and pp using Prolog, possibly incorporating
ideas from SMT solvers into the Prolog prover as shown in [17,27]. Maybe our
approach could also be used to provide an easily extensible, yet efficient, prover
for rodin’s theory plugin [10].

Summary. In summary, we have developed a new fast and effective integrated
proof obligation generator and prover for well-definedness. It can deal with B
sequences and with various extensions of the B language. It has been integrated
into the ProB validation tool, and is able to analyse formal models effectively
and quickly, with average runtimes below 0.01 s for over 6000 benchmark models.
Our technique is orders of magnitude faster than existing implementations in
Atelier-B and rodin. The output of our tool can be inspected either within
ProB or within the Atom and VSCode editors, which proved to be useful to
detect a considerable number of errors in existing models. The prover is also
available in rodin via ProB’s Disprover [21] plugin. In the future, the output
of the prover will be used by ProB’s constraint solver to improve performance
and to better detect well-definedness errors at solving time.
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Abstract. Designing hybrid systems requires the handling of discrete
and continuous behaviours. The formal verification of such systems
revolves around the use of heavy mathematical features, and related
proofs. This paper presents a generic and reusable framework with dif-
ferent patterns, aimed at easing the design and verification of hybrid
systems. It relies on refinement and proofs using Event-B, and defines
an easily extensible set of generic patterns in the form of theories and
models that are proved once and for all. The model of any specific hybrid
system is then produced by instantiating the corresponding patterns.
The paper illustrates the use of this framework by proposing to realise a
well-known case study of the inverted pendulum, which design uses the
approximation pattern formally defined and verified in Event-B.

1 Introduction

Formal modelling of hybrid systems requires means to describe both continu-
ous and discrete behaviours in a single setting. Several approaches have been
proposed to address this specificity, in general via the integration of theories of
continuous functions and differential equations on the one hand, and logic-based
reasoning on state-transitions systems on the other hand. The most common
methods use hybrid automata [3] to model such systems and hybrid model check-
ing [4,14,15,18] to verify their properties. In addition, some other approaches
such as hybrid CSP [9,19], hybrid programs [20,21], continuous action systems
[5], refinement and proof based methods with Event-B [11–13,22] and Hybrid
Event-B [6], have been developed as well.

In previous work, we extended Event-B modelling language via the develop-
ment of various theories to design hybrid systems using a correct-by-construction
approach [11–13,22]. Theories for continuous mathematics, an approximate
refinement relation for approximation following the retrenchment principle [7]
and different hybrid systems architectures have been formally modelled.

The objective of this paper is two-fold. First, it presents a generic and reusable
framework, relying on Event-B, to support and ease the design of hybrid sys-
tems. It is built from the generalisation of the models we defined in our previous
work and on their instantiation to model specific hybrid systems. This frame-
work defines a set of formalised and reusable patterns, verified once and for all.
c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 82–102, 2020.
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Second, it demonstrates the application of this framework, and in particular the
approximation pattern, with the development of the inverted pendulum case
study, where approximate refinement is used to linearise non-linear dynamics.

The organisation of this paper is as follows. Next section presents the designed
generic framework. Section 3 describes the case study of the inverted pendulum
and Sect. 4 gives an overview of Event-B. Section 5 presents the generic models
and theories composing the framework and Sect. 6 is dedicated to the develop-
ment of the case study. Finally, Sect. 7 concludes the paper.

2 The Designed Framework

The generic framework for formal modelling and verification of hybrid sys-
tems relies on the various developments we have conducted to model and ver-
ify different types of hybrid systems [10–13]. These developments revealed sev-
eral reusable building blocks seen as formal development patterns formalised in
Event-B. Figure 1 depicts the framework and its different components, split in
two categories: reusable and specific.

Generic Model  

Approximated Generic 
 Pattern (Linearisation) 

Instantiated  
 model  

Theory of Differential  
Equations   

Theory of Continuous  
Mathematics 

Theory of Approximation 

Domain Theory 

Importation 

Importation 

Based on  

Instantiation 

Extension 

Extension 

Extension 

Generic setting 

System specific setting 

Importation 

Patterns Theories 

Single2Many  
Pattern 

Based on 

Many2Many  
Pattern 

(3) 
(4) 

(1) 

(2) 

(5) 

Single2Single  
Pattern 

Generic 
 model  

Instantiated  
 model  

Instantiated  
 model  

Uses Uses Uses 

(a) 

(b) 

(c) 

(6) 

Fig. 1. Our framework: the big picture

2.1 Reusable Components

These components are the theories and the Event-B generic model and patterns
to be instantiated for specific hybrid systems.

Relevant Theories (1 on Fig. 1). Event-B is based on set theory and first order
logic; this low mathematical level is very expressive, but makes it difficult to
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handle continuous features, essential in hybrid system modelling. These required
mathematical concepts, not available in core Event-B, are defined within mathe-
matical theories, referenced by the models. They make available reals, continuous
functions, differential equations and associated properties. In addition, they also
formalise approximation and define an approximate refinement operator, which
is not available in native Event-B. These theories are defined incrementally, as
denoted by the Extends operator.

Generic Model and Patterns for Hybrid Systems (3 and 4 on Fig. 1). They are
parameterised Event-B models proved once and for all.

Generic Model (6 on Fig. 1). It formalises the generic pattern of Fig. 6. It is
the root model from which all the other models are derived, using Event-B
refinement. Plant and controller behaviours, together with sensing and actuation
actions are meddled at a higher abstract level.

Architecture Patterns (4 on Fig. 1). These specific patterns introduce either cen-
tralised or distributed control and one or many controlled plants. Three Event-B
models refining the generic model define three architecture patterns as Single-
ToSingle [12], SingleToMany [11] and ManyToMany [13].

Approximation Pattern (3 on Fig. 1). It consists of another Event-B model, refin-
ing the generic model and formalising a commonly used approximation operation
realised by designers. In Event-B, this pattern encodes an approximate refine-
ment operation following the principle of retrenchment. Linearisation is an exam-
ple of such an approximation: a non-linear differential equation is approximately
refined by a linear one.

The above introduced components represent a library of patterns deployed
to model specific hybrid systems. They are proved once and for all.

2.2 Specific Components

These components are both theories and models developed for particular hybrid
systems. They are obtained either by theories extensions or pattern instantiation.

Domain Theories (2 on Fig. 1). These specific theories describe the character-
istics of the plant involved in the developed hybrid system, e.g.: kinematics of
a car, robot motion, inverted pendulum, etc. In many cases, more than one
theory may be needed, in particular when it involves different domains (signal
processing, kinematics, etc.).

Instantiation Models (5 on Fig. 1). They are formal models for specific hybrid
systems. They are obtained by applying the different patterns sequentially, start-
ing with the generic model. Event-B refinement is used to instantiate those pat-
terns, and witnesses are provided for the parameters of the generic model and
patterns. These models refer to the domain theories to access the relevant char-
acteristics of the considered system.

In the remainder of this paper, we show how the defined approximation
pattern is deployed. It encodes an Event-B approximate refinement relationship.
The case of the inverted pendulum is considered.
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3 Case Study: The Inverted Pendulum

We consider the well-known case study of the inverted pendulum. This problem
is particularly relevant as it imposes the use of linearisation in order to be
correctly implemented. The case study is then realised in the Event-B based
defined framework using Rodin.

3.1 Description

O

l

M

gθ

u

Fig. 2. Inverted pen-
dulum

An object M is attached to a rigid rod of length l, that is
itself attached to a step motor at point O. This point is
also the origin of the coordinate system. The angle between
the rod and the vertical axis is denoted θ, and the motor
is capable of providing a torque, denoted u. The system is
subject to standard G-force, of intensity g. The goal of the
controller is to stabilise the rod in its vertical position by
instrumenting the motor (and its torque u). From physics
laws, we obtain the system’s equation in θ (Fig. 2):

θ̈ − g

l
sin(θ) = u cos(θ) (1)

Equation 2 is derived from Eq. 1, as an ODE η̇ = fNonLin(η, u) where η =
[ θ θ̇ ]� and u is some control command:

fNonLin((x1, x2), u) = (x2, u cos(x1) +
g

l
) (2)

The factor ω2
0 = g

l is generally constant and ω0 is the angular frequency
(pulsatance) of the system, linked to the period of the pendulum’s oscillations.
This system is controllable when θ < θmax , where θmax is fixed by ω0.

Due to the terms sin(θ) and cos(θ), the system’s ODE is non-linear, meaning
that it does not have an explicit solution, and the reachability is undecidable.
However, when θ is small enough, it is possible to approximate sin(θ) and cos(θ);
more precisely, given θbound, there exists δ such that, for any θ with |θ| < θbound ,
then | sin(θ) − θ| < δ and |1 − cos(θ)| < δ.

Assuming this condition holds, it is possible to approximate Eq. 1 to a simpler
form, so-called linearised :

θ̈ − g

l
θ = v, (3)

with v an adequate linear control command linked to u after linearisation. It can
be expressed as the ODE η̇ = fLin(η, v) where:

fLin((x1, x2), v) = (x2, v +
g

l
x1). (4)

This ODE is linear, making it much easier to handle.
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3.2 Requirements

Fig. 3. System mode
automaton

The requirements of the system can be summarised as fol-
lows:

FUN1 The controller senses the angle (θ) of the pendulum
(:sense angle)

FUN2 If the value of the sensed angle is not 0, the con-
troller sends a command to stabilise the pendulum at
θ = 0 (:calculate control)

SAF1 For |θ| < θmax , the system is always controllable
ENV1 The system is subject to perturbations that may

cause its angle to vary
ENV2 There exists θbound such that |θ| < θbound ; there-

fore, the non-linear system and the linearised system
are always close up to δ > 0

4 Event-B

Event-B [1] is a correct-by-construction method based on set theory and first
order logic. It relies on a powerful state-based modelling language where a set
of events allows for state changes1 (see Table 1). A set of proof obligations (see
Tables 2a and 2b) is automatically generated for each model. Event-B is associ-
ated with a proof system which contains a set of proof rules for formal reasoning.
The design process of the system model consists of an abstract model leading to
the final concrete model. Each refinement gradually introduces additional system
design decisions.

Context (Table 1.a). A Context component describes the static properties. It
introduces all the definitions, axioms and theorems needed to describe the
required concepts using elementary components such as Carrier sets s, constants
c, axioms A and theorems Tctx .

Machines (Table 1.b). Machine describes the model behaviour as a transition sys-
tem. A set of guarded events is used to modify a set of states using Before-After
Predicates (BAP) to record variable changes. They use variables x, invariants
I(x), theorems Tmch(x), variants V (x) and events evt (possibly guarded by G
and/or parameterized by α) as core elementary components.

Refinements (Table 1c). Refinement introduces different characteristics such as
functionality, safety, reachability at different abstraction levels. It decomposes a
machine, a state-transition system, into a less abstract one, with more design
decisions (refined states and events) moving from an abstract level to a less
abstract one (simulation relationship). Gluing invariants relating to abstract
and concrete variables ensures property preservation.

1 Notation. The superscripts A and C denote abstract and concrete features.
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Table 1. Model structure

Context Machine Refinement

CONTEXT Ctx MACHINEMA MACHINEMC

SETSs SEES Ctx REFINESMA

CONSTANTSc VARIABLESxA VARIABLESxC

AXIOMSA INVARIANTSIA(xA) INVARIANTSJ(xA, xC) ∧ IC(xC)

THEOREMSTctx THEOREMSTmch(x
A) ...

END VARIANTV (xA) EVENTS

EVENTS EVENTevtC

EVENTevtA REFINESevtA

ANYαA ANYαC

WHEREGA(xA, αA) WHEREGC(xC , αC)

THEN WITH

xA :| BAPA(αA, xA, xA) xA′, αA:W (αA, αC , xA, xA′, xC , xC)

END THEN

... xC :| BAPC(αC , xC , xC)

END

...

(a) (b) (c)

Table 2. Proof Obligations

(1) Theorems A ⇒ Tctx

A ∧ IA(xA) ⇒ Tmac(x
A)

(2) Invariant A ∧ IA(xA) ∧ GA(xA, αA)

preservation ∧BAPA(xA, αA, xA′
)

(INV) ⇒ IA(xA′)
(3) Event A ∧ IA(xA) ∧ GA(xA, αA)

feasibility (FIS) ⇒ ∃αA · BAPA(xA, αA, xA′)
(4) Variant A ∧ IA(xA) ∧ GA(xA, αA)

progress ∧BAPA(xA, αA, xA′)
⇒ V (xA′) < V (xA)

(a) Machine Proof obligations

(5) Event A ∧ IA(xA) ∧ J(xA, xC)

Simulation ∧GC(xC , αC)

(SIM) ∧W (αA, αC , xA, xA′, xC , xC′)
∧BAPC (xC , αC , xC ′

)

⇒ BAPA (xA , αA , xA ′
)

(6) Guard A ∧ IA(xA) ∧ J(xA, xC)

Strengthening ∧W (αA, αC , xA, xA′, xC , xC′)
(GS) ∧GC (xC , αC ) ⇒ GA (xA , αA )

(7) Invariant A ∧ IA(xA)

preservation ∧GC(xC , αC)

(INV) ∧W (αA, αC , xA, xA′, xC , xC′)
∧BAPC(xC , αC , xC′

)

∧J (xA , xC ) ⇒ J (xA ′
, xC ′

)

(b) Refinement Proof obligations

Proof Obligations (PO) and Property Verification. Tables 2a and 2b provide a set
of proof obligations to guarantee Event-B model consistency, including refine-
ments. These PO are automatically generated. They must be proven in order to
establish the correctness of the defined model.

Extensions with Mathematical Theories. An extension of Event-B is defined [2]
to support externally defined mathematical theories. It offers the introduction of
new data types by defining new types, sets operators, theorems and associated
rewrite and inference rules, all bundled in so-called theories.
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Rodin. It is an Eclipse based IDE for Event-B project management, model edi-
tion, refinement and proof, automatic PO generation, model checking, model
animation and code generation. It is equipped with standard provers, including
support for external provers such as SMT solvers. A plug-in [8] is also available
to support the development of mathematical theories.

5 Modelling the Generic Model and Patterns in Event-B

Modelling hybrid systems requires to handle continuous behaviours. We thus
need to access specific mathematical objects and properties, which are not
natively available in Event-B. These concepts such as differential equations and
their associated properties have been modelled through an intensive use of Event-
B theories and have been used to model various case studies found in [10–12].

This section describes the generic resources used by the defined framework.
They correspond to the upper parts (1), (3), (4) and (6) of Fig. 1.

5.1 Theories for Continuous Mathematics and Differential
Equations (1a and 1b on Fig. 1)

In order to deal with continuous objects, theories have been defined for contin-
uous functions, (ordinary) differential equations as well as for their properties.
They are used throughout the defined models. Their complete definitions are
available at https://irit.fr/∼Guillaume.Dupont/models.php. Some of these con-
cepts as they are used in this paper are recalled below.

Hybrid Modelling Features. Modelling hybrid systems requires to introduce mul-
tiple basic operators and primitives defined below.

Fig. 4. Differential equation theory snip-
pet

– DE(S) type for differential equa-
tions which solutions evolve over set
S

– ode(f, η0, t0) is the ODE (Ordi-
nary Differential Equation) η̇(t) =
f(η(t), t) with initial condition
η(t0) = η0

– solutionOf(D, η, E) is the predi-
cate stating that function η is a
solution of equation E on subset D

– Solvable(D, E , I) predicate states
that equation E has a solution
defined on subset D that satisfies
the constraint I

– Feasible(xs, xp,D,P, I), the feasi-
ble predicate states that, given xs and xp, there exists x′

p ∈ D → S such
that P(xs, xp, x

′
p) holds and ∀t∗ ∈ D,x′

p(t
∗) ∈ I. In state xs, the predicate

https://irit.fr/~Guillaume.Dupont/models.php
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P holds for xp and its next value x′
p on time interval D fulfils the constraint

I. It defines the feasibility condition of a continuous variable (e.g. a state in
a model) change. This operator is used to define the continuous before-after
predicate (CBAP).

These features are encoded in a theory from which we show a snippet on
Fig. 4 (the theory accumulates more than 150 operators and 350 properties).

5.2 A Theory of Approximation (1c on Fig. 1)

In addition to the continuous mathematical objects of Sect. 5.1, a theory of
approximation is required to implement approximate refinement in Event-B.
In the following, we introduce the necessary concepts and operators related to
approximation and used throughout this paper. Let us assume (E, d) to be a
metric space with distance d.

Approximation (≈δ). Let x, y ∈ E and δ ∈ R
+. We say that x approximately

equals to y by δ (or x is a δ-approximation of y) iff x≈δ y ≡ d(x, y) ≤ δ.

δ-expansion. Let S ⊆ E and δ ∈ R
+. The δ-expansion of S, noted Eδ(S), is

defined as Eδ(S) = {y ∈ E | ∃x ∈ S, x≈δ y} = {y ∈ E | ∃x ∈ S, d(x, y) ≤ δ}.

δ-membership (∈δ). Let δ ∈ R
+, S ⊆ E and x ∈ E. x belongs to S up to δ,

denoted x∈δ S, iff x belongs to the δ-expansion of S. We write x∈δ S ≡ x ∈
Eδ(S) ≡ ∃y ∈ S, d(x, y) ≤ δ.

Extended δ-membership Operators. δ-membership is extended as follows.

– Let f ∈ F → E and X ⊆ F , then f ∈δ
X S ≡ ∀x ∈ X, f(x)∈δ S

– Let Σ ∈ F → P(E) (multivalued function), then f ∈δ
X Σ ≡ ∀x ∈ X,

f(x)∈δ Σ(x)

When X is omitted, the operator is applied on the function’s domain of definition
(i.e., X = dom(f)).

Fig. 5. Approximation theory excerpt

Note: δ-approximation (≈δ) (resp. δ-membership (∈δ)) is a weak version of
equality (resp. set membership). Indeed, when δ = 0, by the separation property
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of distance d, we obtain x≈0 y ≡ d(x, y) ≤ 0 ≡ x = y. It follows that for any
S ⊆ E, E0(S) = S and thus x∈0 S ≡ x ∈ S.

Implementation Using Theories. The above defined operators and concepts have
been implemented in two Event-B theories (ApproximationBase and Approxi-
mation) from which an excerpt is given in Fig. 5. Typically, approximation (≈δ)
is expressed algebraically through the DeltaApproximation operator, while its
extension to functions is implemented as the FDeltaApproximation operator.

5.3 The Generic Model (6 on Fig. 1)

As mentioned previously, the core Event-B does not support continuous
behaviours. To handle such behaviours, we have introduced a generic model,
acting as a meta-model encoding a hybrid automaton corresponding to the
generic hybrid system structure depicted in Fig. 6. The notions of time, continu-
ous states, continuous gluing invariants, continuous assignment and continuous
events are introduced. The obtained model interleaves continuous events (with
duration) and discrete events (instantaneous) as defined in [10–13].

Fig. 6. Generic hybrid system
pattern

The generic model is the entry point of the
framework on which every pattern is based.
It takes the form of an Event-B model that
summarises and abstracts any hybrid system
conforming to Fig. 6. Refinement is then used
to derive any specific hybrid system from it.

Time. A notion of time is needed to define con-
tinuous behaviours. We thus introduce dense

time t ∈ R
+, modelled as a continuously evolving variable.

System State. According to the architecture of hybrid systems, we have identified
two types of states:

– Discrete state xs ∈ STATES is a variable that represents the controller’s
internal state. It evolves in a point-wise manner with instantaneous changes.

– Continuous state xp ∈ R
+ → S represents the plant’s state and evolves

continuously. It is modelled as a function of time with values in space S.
In the following, we use x to denote the union of discrete and continuous state
variables.

Continuous Assignment. Continuous variables are essentially functions of time
and are at least defined on [0, t] (where t is the current time). Updating such
variables, thus, requires to (1) make the time progress from t to t′ > t, and
(2) to append to the already existing function a new piece corresponding to its
extended behaviour (on [t, t′]) while ensuring its”past” (i.e. whatever happened
on [0, t]) remains unchanged.
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Similarly to the classic Event-B’s before-after predicate (BAP), we define a
continuous before-after predicate (CBAP) operator, denoted :|t→t′ , as follows2:

xp :|t→t′ P(xs, xp, x
′
p) & I ≡ [0, t] � x′ = [0, t] � x (PP)

∧ P(xs, [t, t′] � xp, [t, t′] � x′
p) (PR)

∧ ∀t∗ ∈ [t, t′], x′
p(t

∗) ∈ I (LI )

The operator consists of three parts: past preservation and coherence at
assignment point (PP), before-after predicate on the added section (PR), and
local invariant preservation (LI ). The discrete state variables xs do not change
in the interval [t, t′] but the predicate P may use it for control purposes. We
note CBAP(xs, xp, x

′
p) ≡ PP (xp, x

′
p) ∧ PR(xs, xp, x

′
p) ∧ LI(xp, x

′
p).

From the above definition, shortcuts are introduced for readability purposes:

– Continuous assignment: x :=t→t′ f & I ≡ x :|t→t′ x′ = f & I
– Continuous evolution along a solvable differential equation E ∈ DE(S):

x :∼t→t′ E & I ≡ x :|t→t′ solutionOf([t, t′], x′, E) & I

The Generic Model in Event-B. Once all the features have been defined, we can
describe the Event-B model.

Fig. 7. Generic model Event-B machine header

The model handles three variables, time t, the continuous state xp and the
discrete state xs constrained using invariants (inv1-4). They are initialised with
0 for t and using non-deterministic assignment for xp and xs. Further refinements
provide more detailed value(s) (Fig. 7).

The events of the generic model follow the arrows of Fig. 6. Figure 8 shows
the Transition and the Sense events modelling discrete state changes. Such
change can arise following the detection of a change in the plant (sensing) or can
be induced by the controller itself (Transition) after a calculation, at the end
of a timer, and so on. This difference is captured by guards 2 and 3 of Sense,
referencing the continuous state. Transition and Sense are so-called discrete
events: they are timeless and instantaneous.

Figure 9 shows the other two types of events Behave and Actuate to model a
change in the plant, induced either by a change in the controller (actuation) or by
2 The � operator denotes the domain restriction operator.
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Fig. 8. Transition and sense events

Fig. 9. Transition and sense events

the environment (behave). Both events rely on a continuous assignment operator
described above. The link between the controller and actuation is modelled by
grd3-4 in Actuate (absent from Behave). Also, the behaviour set in actuation
is constrained by an evolution domain (grd5-6).

Behave and Actuate are continuous events: unlike discrete events, they have
a duration. Discrete events are instantaneous and they preempt continuous ones.

Continuous Gluing Invariant. It is defined with the generic form xA
p ∈ O ◦ xC

p

where O ∈ SC ↔ SA is a relation linking abstract and continuous state-spaces.
This invariant glues the abstract xA

p and concrete xC
p continuous variables. It is

qualified as exact since it maps concrete values in SC to abstract values in SA

using the ∈ operator. Definition of an approximate gluing invariant, extending
exact one, using the ∈δ operator is presented in next section.

5.4 The Approximation Pattern (3 on Fig. 1)

As mentioned in Sect. 2, we have chosen to illustrate the application of the
generic framework using the approximation pattern. The choice of this pattern
is motivated by the fact that 1) it uses an externally defined theory (see Sect. 5.2)
not available in native Event-B and 2) it requires a specific refinement relation-
ship, weakening classical refinement following the principle of retrenchment [7],
and formalising the approximation of a continuous behaviour by another one.
We particularly study the case of linearisation, when moving from a behaviour
characterised by a non-linear differential equation to a behaviour characterised
by a linear differential equation. The definition of this approximate refinement
operation follows the approach of [16,17] where approximation is embedded in
a simulation relationship. In addition, our definition offers an inductive process.
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In this section, we present the approximation pattern as a refinement between
an abstract machine (which elements are super-scripted with A) and a concrete
machine (with superscript C). Figure 10 shows the respective headers of the
machines. Approximation deals with continuous variables (xA/C

p ).

Fig. 10. Machine header

The approximation pattern is applied at the refinement level using approxi-
mated relations instead, and built using the operators defined in Sect. 5.2, e.g.
≈δ or ∈δ (see Fig. 10). It is formalised by inv6 whee the ∈ operator is replaced
by its approximated version (∈δ).

Fig. 11. Sense event

Sensing events (Fig. 11) remain relatively
unchanged compared to normal refinement.
Guard GC must be defined carefully: GC shall
be stronger than GA, taking into account
the error allowed by approximate refinement
(guard strengthening PO).

Actuation (Fig. 12) is almost unchanged.
The provided witness (WITH clause) shall
ensure preservation of approximation after
occurrence of the Actuate event. This wit-

ness leads to a feasibility proof obligation to guarantee that the property
xA′

p ∈δ O ◦ xC′
p holds (i.e. approximation holds).

Fig. 12. Actuate event
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Table 3. Refinement POs for the generic model: case of approximate refinement

(5) Event A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p ) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p )

Simulation ∧xA
p ∈ IA ∧ xC

p ∈ IC ∧ xC
p (t) ∈ GC

(SIM) ∧xA
p ∈δ O ◦ xC

p ∧ xA′
p ∈δ O ◦ xC′

p

∧PP(xC , xC′
) ∧PR(xC , xC′

) ∧LI (xC , xC′
)

⇒ PR(xA, xA′
) ∧ LI (xA, xA′

)

(6) Guard A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p ) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p )

Strengthening ∧xA
p ∈ IA ∧ xC

p ∈ IC

(GS) ∧xA
p ∈δ O ◦ xC

p ∧ xA′
p ∈δ O ◦ xC′

p

∧xC
p (t) ∈ GC ⇒ xA

p (t) ∈ GA

(7) Invariant A ∧ xA
p ∈ R �→ SA ∧ [0, t] ⊆ dom(xA

p ) ∧ xC
p ∈ R �→ SC ∧ [0, t] ⊆ dom(xC

p )

Preservation ∧xA
p ∈ IA ∧ xC

p ∈ IC ∧ xC
p (t) ∈ GC ∧ xA

p ∈δ O ◦ xC
p

(INV) ∧PP(xC , xC′
) ∧PR(xC , xC′

) ∧LI (xC , xC′
)

⇒ xC ′
p ∈ R �→ SC ∧ [0, t′] ⊆ dom(xC ′

p ) ∧ xC ′
p ∈ IC ∧ xA ′

p ∈δ O ◦ xC ′
p

Revisited Proof Obligations. Approximation, similar to the concedes relation of
retrenchment, extends the standard refinement operation which proof obligations
are given in Table 2b. The use of well-definedness and witnesses in approximate
refinement leads to an updated set of proof obligations (highlighted in bold) in
Table 3.

Exact Refinement as a Particular Case of Approximate Refinement. We note
that, when δ = 0 in the operators defined in Sect. 5.1, we actually find back
standard exact operators: ≈0 ≡=, ∈0 ≡∈, etc. By restriction/strengthening,
this means that, for δ = 0, defined approximate refinement looks like exact
refinement.

5.5 The Architecture Patterns (4 on Fig. 1)

Architecture patterns have been introduced in order to model the different types
of structures hybrid systems may have: one controller controlling one plant (sim-
ple control, Single2Single), one controller and several plants (centralised control,
Single2Many) and several controllers with several plants (distributed control,
Many2Many). These patterns have been thoroughly studied, formalised and
implemented in [11–13] respectively.

6 Modelling Hybrid Systems

Modelling specific hybrid systems follows the bottom part of Fig. 1. Two steps are
identified: the first step introduces definitions relevant to the system (Fig. 1(2)),
completing the generic theories of Fig. 1(1) with the relevant types, axioms and
theorems for modelling the specific features of the system to design. The second
step (Fig. 1(5)) is performed by refining and instantiating patterns to obtain the
desired system (used patterns of Fig. 1). This process is exemplified below with
the inverted pendulum case study.
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6.1 Application to the Case Study

Our framework is used to address the case study introduced in Sect. 3. The exact
use of the framework is depicted on Fig. 13, and follows the two steps discussed
before: first, a theory for the physics of the inverted pendulum is defined (Fig. 13
(2)); second, the Single2Single pattern is applied to the generic model in order
to derive a non-linear pendulum model. Finally, the approximation pattern is
used to derive a linearised pendulum model from the non-linear one.

Approximated Generic 
 Pattern(Linearisation) 

Pendulum Domain Theory   

Instantiation 

Importation 

Generic model  

Uses 

Non Linear Pendulum 
 model  

Linearised pendulum 
 model  

Uses 

Single2Single  
Pattern 

Used patterns 

(3) (4) 

(2) 

(1) 

(5) 

Fig. 13. Framework application to the case study

Step 1: A Theory for Simple Inverted Pendulums (2 in Fig. 13). Before
modelling the actual system, we need to develop a domain theory of pendulums,
that holds every important concepts needed to model this kind of system: dif-
ferential equations (both non-linear and linearised) and adequate controls for
the systems, as well as various physical and mathematical properties that will
help in establishing the system’s correctness. The definitions of such a theory
correspond to (2) in Fig. 13.

Fig. 14. Pendulum theory excerpt
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Listing of Fig. 14 gives an extract of the pendulum defined domain the-
ory. It mainly defines the differential equations associated with both the non-
linear (PendulumNonLin) and linearised (PendulumLin) pendulum systems. It
also proposes control functions for both systems (PendulumControlNonLin and
PendulumControlLin resp.) which are algebraically defined together with useful
properties used in proofs.

Step 2: Non-Linear Inverted Pendulum Model (5 in Fig. 13). The Sin-
gle2Single architecture pattern is used to derive, by refinement of the generic
model, a first model of the inverted pendulum, which features the non-linear
differential equation. This step correspond to (4) in Fig. 13.

CONTEXT PendulumCtx EXTENDS GenericCtx
CONSTANTS ω0 ,θmax ,θ0 , c on t r o l
AXIOMS

axm1−2 : ω0 ∈ R ,ω0 �= 0
axm3−5 : θmax = theta max(ω0) ,θ0 ∈ R , |θ0| < θmax

axm6 : partition(STATES , {control})
END

The context for this model
defines the system’s pulsa-
tance (ω0 in axm1-2) and its
associated maximum control-
lable angle (θmax in axm3-5).
Last, the only state of the
system’s mode automaton is
declared in control (axm6).

Fig. 15. Machine header and initialisation

Listings of Fig. 15 give the machine header and the initialisation of the sys-
tem. The continuous state is the vector [θ̇ θ]� defined in inv1-4. inv5 glues this
continuous state to the generic one (xp). It is constrained by inv6. The mode
automaton of the system defines the control (inv7) state and the discrete state
of the machine comprises variables to store the observation of the system when
sensing (sense variables super-scripted of inv8-10). At initialisation θ is set to
an arbitrary value θ0 and the control function control fun (inv11-12) is assigned
to the non-linear differential equation modelling the behaviour of the pendulum
borrowed from the InvertedPendulum theory.
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Fig. 16. Sensing and transition

Fig. 17. System actuation

Following the hybrid automaton of Fig. 3, the system defines two discrete
events: the sensing event sense angle reads and stores the continuous state in
the sense variables, and the transition event transition calculate control
uses the stored continuous state to set up an adequate control function, stored
in control fun. An actuation event updates the plant’s behaviour with the
PendulumNonLin differential equation, associated with control fun’s new value
(Fig. 17).

Step 3: Linearised Inverted Pendulum Model (5 in Fig. 13). The approx-
imation pattern ((3) in Fig. 13) is used to refine the non-linear pendulum model
into a linearised one. The theory of approximation of Sect. 5.2 as well as the
domain theory of pendulums given in Sect. 6.1 allow us to set up an approxi-
mate refinement relationship between the two linear and non-linear models.
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CONTEXT PendulumLinCtx EXTENDS
PendulumCtx

CONSTANTS δ , δctrl , θbound

AXIOMS
axm1−2 : δ ∈ R ,0 < δ
axm3 : δctrl = PendulumControlDelta(ω0, δ)
axm4−7 : θbound ∈ R ,0 < θbound ,

θbound < θmax ,δ < θbound

END

The context of this system extends
the one for the non-linear pendulum. It
introduces a fixed δ (axm1-2), to model
the maximum difference between the
state of both system models as well
as a stricter bound for θ (θbound in
axm4-7). Using the pendulum theory,

it is possible to synthesise δctrl , the maximum difference between the controls of
each system model (axm3) (Fig. 18).

Fig. 18. Machine header and initialisation

The machine header, presented in Fig. 18 is close to the abstract non-linear
model with a new state [θLin θ̇Lin ] (inv1-4). It is glued with the non-linear
abstract state via the approximate gluing invariant, inv5. Both abstract
and concrete states have strengthened constraints (inv6) to ensure the existence
of the approximation relationship. The control function control fun is refined by
control lin fun (inv7). It is linked to the abstract control using the approximated
refinement gluing invariant of inv8. Refined versions of the sensing variables are
introduced. θsenseLin and θ̇senseLin are defined in inv9-10 and constrained in inv11.
They are linked to the abstract sensing variables using inv12 gluing invariant.
Last, Initialisation on the right-hand side of Fig. 18 updates the state vari-
ables. Simple witnesses (WITH clause) are provided for the refined (disappearing)
variables.
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Fig. 19. Linear refined sense and transition with approximation

The sense and transition events (Fig. 19) update system variables. Wit-
nesses are provided to link the state variables of the abstract and refined models.

Fig. 20. Linear refined actuation with approximation

Last, the actuation event of Fig. 20 updates the state variables by providing
a witness using the WITH clause for the abstract continuous state using the defined
approximation. It is central to maintain the approximated gluing invariant.

6.2 Assessment

The main advantage of the defined framework is proof reuse. Indeed, proofs are
realised at the generic level and do not need to be discharged again. The only
remaining proofs relate to the instantiation of the pattern (under the form of
refinement POs) and the specific features of the model, namely invariants.

The first refinement generated 100 POs. 34% of them relate to refinement,
while the vast majority of the others are about well-definedness (33%) of the
operators and invariants (37%), most of which are typing invariants. The second
one generated 63 POs. 19% of them come from refinement, and more specifically
when using the approximation pattern. Again, a significant number of POs relate
to well-definedness (33%) and invariants (44%) are mainly typing invariants. The
interactive proofs have been carried out using rewriting rules, deductive rules
application, and external automatic provers calls, combined in tactics.
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The theory plug-in is still in the early stage of development, it hinders proof
automation. For this reason and because our models extensively rely on it, proofs
had to be done interactively. All the models shown in this paper can be accessed
at https://irit.fr/∼Guillaume.Dupont/models.php.

7 Conclusion

The definition of the proposed framework results from the different experiments
and models that we defined in previous work. Some of the patterns are identi-
fied from our Event-B developments for a simple controlled system [10,12], cen-
tralised control of many plants [11] and distributed control of many controllers
[13].

In this paper, we have shown how the defined framework of Fig. 1 is put into
practice to model the inverted pendulum case study. First, we applied the Sin-
gle2Single architecture pattern and then the Approximation pattern as depicted
in Fig. 13 to obtain a verified linearised model of the inverted pendulum.

The Event-B method together with its IDE Rodin proved powerful to sup-
port the formalisation of such generic patterns as parameterised Event-B models.
These patterns and the necessary theories are proved to be correct once and for
all. Specific hybrid systems models are obtained by instantiation i.e. by provid-
ing witnesses for the parameters of the generic models satisfying the properties
(invariants) expressed at the generic models level. Only this instantiation step
requires to be checked, the other proofs are reused, they are not re-proved again.

The defined framework is open and can be enriched, at the generic level, with
new patterns and other theories. The added patterns may be connected through
refinement to existing ones or may use new other theories. Each time a pattern is
added, it needs to be formally verified. Examples of patterns that can be added
are: discretisation pattern, PID3 controller pattern, introduction of theories for
partial differential equations or delayed differential equations, etc. In addition,
other theories axiomatising different domains from physics should be defined in
order to broaden the use of the defined framework.
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Abstract. This paper presents an approach to generate SPARK code
from Event-B models. System models in Event-B are translated into
SPARK packages including proof annotations. Properties of the Event-B
models such as axioms and invariants are also translated and embed-
ded in the resulting models as pre- and post-conditions. This helps with
generating SPARK proof annotations automatically hence ensuring the
correct behaviour of the resulting code. A prototype plug-in for the Rodin
has been developed and the approach is evaluated on different examples.
We also discuss the possible extensions including to generate scheduled
code and data structures such as records.

Keywords: Event-B · SPARK · Code generation · Rodin platform

1 Introduction

Ensuring properties of safety- and security-critical systems is paramount. Event-
B [1] is a formal modelling method which enables the design of systems, using
mathematical proofs ensuring the conformity of the system to declared safety
requirements. SPARK [4] is a programming language making use of static anal-
ysis tools which verify written code correctly implements the properties of the
system as specified in the form of written proof annotations (e.g., pre- and post-
conditions). SPARK has been used in many industry-scale projects to implement
safety-critical software. However, manually writing SPARK proof annotations
can be time-consuming and tedious.

Our motivation is to develop a tool-supported approach to translate an
Event-B model into a SPARK package, including proof annotations and other
structures, from which manually written SPARK code can be verified, hence
ensuring the correct behaviour of the software. Event-B supports development
via refinement, allowing details to be consistently introduced into the models.
Properties of the systems such as invariances therefore are easier to be discovered
compare to SPARK. One aim for our approach is to cover as much as possible
the Event-B mathematical language that can be translated into SPARK.
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Our contribution is an approach where Event-B sets and relations are trans-
lated as SPARK Boolean arrays. A library is built to support the translation.
Furthermore, properties of the systems such as axioms and invariants are trans-
lated and embedded in SPARK as pre- and post-conditions. These properties,
in particular invariance properties, are often global system properties ensuring
the safety and consistency of the overall system, and are often difficult to be
discovered. Using these conceptual translation rules, a plug-in was created for
the Rodin platform [2] and was evaluated with several Event-B models. From
the evaluation, we discuss different possible extensions including to generate
scheduled code and records data structure.

The rest of the paper is structured as follows. Section 2 gives some background
information for the paper. This includes an overview of Event-B, SPARK, and
our running example. Our main contribution is presented in Sect. 3. We discuss
limitation and possible extensions of the approach in Sect. 4. Section 5 reviews
the related work. Finally, we summary and discuss future research direction in
Sect. 6.

2 Background

2.1 Event-B

Event-B [1] is a formal method used to design and model software systems, of
which certain properties must hold, such as safety properties. This method is
useful in modelling safety-critical systems, using mathematical proofs to show
consistency of models in adhering to its specification. Models consist of con-
structs known as machines and contexts. A context is the static part of a model,
such as carrier sets (which are conceptually similar to types), constants, and
axioms. Axioms are properties of carrier sets and constants which always hold.
Machines describe the dynamic part of the model, that is, how the state of the
model changes. The state is represented by the current values of the variables,
which may change values as the state changes. Invariants are declared in the
machine, stating properties of variables which should always be true, regard-
less of the state. Events in the machine describe state changes. Events can have
parameters and guards (predicates on variables and event parameters); the guard
must hold true for event execution. Each event has a set of actions which hap-
pen simultaneously, changing the values of the variables, and hence the state.
Every machine has an initialisation event which sets initial variable values. An
important set of proof obligations are invariant preservation. They are generated
and required to be discharged to show that no event can potentially change the
state to one which breaks any invariant, a potentially unsafe state.

An essential feature of Event-B, stepwise refinement, is not used within the
scope of this project, which focuses on Event-B’s modelling of a single abstraction
level model. Further details on refinement can be found in [1,10]. In Sect. 2.3 we
present the our running example including the Event-B model.
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2.2 SPARK

SPARK [4] is a programming language used for systems with high safety stan-
dards. It includes tools performing static verification on programs written in the
language. SPARK is a subset of another programming language, Ada [5], which
is also used for safety-critical software. SPARK removes several major constructs
from Ada, allowing feasible and correct static analysis.

SPARK includes a language of annotations, which are specifications for a
SPARK program, clarifying what the program should do [13]. While program
annotations focus on the flow analysis part of static analysis, focusing on things
such as data dependencies, proof annotations support “assertion based formal
verification”. In particular, a specification for a SPARK procedure has the fol-
lowing aspects:

– Pre aspect: pre-conditions which are required to hold true on calling a sub-
program, without which the subprogram has no obligation to work correctly.

– Post: post-conditions which should be achieved by the actions of a subpro-
gram, provided the pre-conditions held initially

– Global aspect: specifying which global variables are involved in this subpro-
gram, and how they are used.

– Depends aspect: which variables or parameters affect the new value of the
modified variables

Proof annotations also involve loop invariants, which are conditions which hold
true in every iteration of a loop.

This mix of proof and program annotations ensure that any implementation
written in SPARK adheres to its specification, producing reliable, safe software.

2.3 A Running Example

To illustrate our approach, we use an adapted version of the example of a building
access system from [6]. We only present a part of the model here. The full model
and the translation to SPARK is available in [17].

The context declares the sets of PEOPLE and BUILDING with a constant
maxsize to indicate the maximum number of registered users. Note that we have
introduced axioms to constrain the size of our carrier sets and fix the value of the
constant as it is necessary for our generated SPARK code. Normally, Event-B
models are often more abstract, e.g., there are no constraints on the size of the
carrier sets.

context c0
sets PEOPLE BUILDING
constantsmaxsize
axioms
@finite−PEOPLE: finite(PEOPLE)
@card−PEOPLE: card(PEOPLE) = 10
@finite−BUILDING: finite(BUILDING)
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@card−BUILDING: card(BUILDING) = 4
@def−maxsize:maxsize=3
end

The machine models the set of register users, their location and their per-
mission for accessing buildings.

machinem0
variables register size location permission
invariants
@inv1: register ⊆ PEOPLE
@inv2: size ≤ maxsize
@inv3: location ∈ register �→ BUILDING
@inv4: permission ∈ register ↔ BUILDING
@inv5: location ⊆ permission
events
...
end

Invariant @inv5 specifies the access control policy: a register user can only be in
a building where they are allowed.

Initially, there are no users in the system, hence all the variables are assigned
the empty set.

event INITIALISATION
begin
@init−register: register := ∅

@init−size: size := 0
@init−location: location := ∅

@init−permission: permission := ∅

end

We also consider two events RegisterUser and Enter. Event RegisterUser models
the situation where a new user p registers with the system. Guard @grd2 ensures
that the maximum number of registered users will not exceed the limit maxsize.

event RegisterUser
any pwhere
@grd1: p ∈ PERSON \ register
@grd2: size �= maxsize
then
@act1: register := register ∪ {p}
@act2: size := size + 1
end

Event Enter models the situation where a user p enters a building b given that
they have the necessary permission.
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event Enter
any p bwhere
@grd1: p ∈ register
@grd2: b ∈ building
@grd3: p /∈ dom(location)
@grd4: p �→ b ∈ permission
then
@act1: location(p) := b
end

In Sect. 3.2, we will use this example to illustrate our approach to translate
Event-B models to SPARK.

3 Contributions

In this section, we first discuss about the translation of the Event-B mathemat-
ical language into SPARK, then present the translation of the Event-B models.

3.1 Translation of the Mathematical Language

In term of the translation of the Event-B mathematical language into corre-
sponding constructs in SPARK, our aim is to cover as much as possible the
Event-B mathematical language. Due to the abstractness of the Event-B math-
ematical language, we focus on the collection of often-used constructs, including
sets and relations.

Translation of Types. The built-in types in Event-B, i.e., Z and BOOL, are
directly represented as Integer and Boolean in SPARK. Note that there is already
a mismatch as Integer in SPARK are finite and bounded while Z is mathematical
set of integers (infinite). However, any range check, i.e., to ensure that integer
value are within the range from Min Int and Max Int, will be done in SPARK.
Other basic types in Event-B are user-defined carrier sets and they will be trans-
lated as enumerated type or sub-type of Integer (see Sect. 3.2).

Translation of Sets. With the exception of BOOL and enumeration, Event-B
types are often represented as sub-types of Integer in SPARK. As a result, we
can represent Event-B sets as SPARK arrays of Boolean value, indexed by the
Integer range.

type set is array (Integer range<>) ofBoolean;

As a result, a set S containing elements of type T can be declared as

S : set(T);

Subsequently, membership in Event-B, e.g., e ∈ S can be translated as S(e) =True
in SPARK.



108 S. Sritharan and T. S. Hoang

Translation of Relations. Similar to translation of sets, we use two-
dimensional SPARK arrays of Boolean values to represent relations. The two
dimensional arrays are indexed by two Integer ranges corresponding to the type
of the domain and range of the relations.

type relation is array (Integer range<>, Integer range<>) ofBoolean;

Hence, a relation r∈ S↔ T (where S and T are types) can be declared as

r : relation(S, T)

For a tuple e f , membership of a relation r, i.e., e f∈ r will be translated as

r(e, f) =True in SPARK.
With this approach to represent sets and relations, these Event-B constructs

can thus only have carrier sets (but not enumeration) or Integer type elements,
not BOOL. In the future, we will add different translation construct involving
enumerations and BOOL.

Translation of Predicates. For propositional operators, such as ¬, ∧, ∨, ⇒
and ⇔, the translation to SPARK is as expected. In the following, for each
formula F in Event-B, let EB2SPARK(F) be the translation of F in SPARK.

– ¬ P is translated as not EB2SPARK(P).
– P1∧ P2 is translated as EB2SPARK(P1) and then EB2SPARK(P2)
– P1∨ P2 is translated as EB2SPARK(P1) or else EB2SPARK(P2)
– P1⇒ P2 is translated as if EB2SPARK(P1) then EB2SPARK(P2)
– P1⇔ P2 is translated as
if EB2SPARK(P1) then EB2SPARK(P2) else (not EB2SPARK(P2))

For quantifiers, i.e., ∀ and ∃, we need to extract the type of the bound variable
accordingly, i.e.,

– ∀z · P is translated as for all z in z type=> EB2SPARK(P)
– ∃z · P is translated as for some z in z type=> EB2SPARK(P)

Translation of Relational Operators. For relational operators such as ⊆, ⊂,
etc., there are no direct corresponding construct in SPARK. We can translate
according to their mathematical definition. For example S⊆T can be translated
as

for all x in S’Range=> (if S(x) then x inT’Range and thenT(x))

(Note that S and T are translated as Boolean arrays in SPARK). To improve
the translation process, we define a utility function isSubset as follows.

function isSubset (s1 : set; s2 : set) returnBoolean is
(for all x in s1’Range=> (if (s1(x) then x in s2’Range and then s2(x))));



Towards Generating SPARK from Event-B Models 109

With this function S⊆T can be simply translated as isSubset(S,T). Other rela-
tional operators are translated similarly.

The supporting definitions, e.g., definitions for sets and relations, and utility
functions, are collected in a supporting SPARK package, namely sr.ads, that
will be included in every generated files. The translation is described in details
in [17].

3.2 Translation of Event-B Models

Each Event-B model (including the contexts and the machine) will correspond
to a SPARK Ada package. We focus at the moment on the package specification.
The package body, i.e., the implementation, can be generated similarly and is
our future work.

with sr; use sr;
packagem0with SPARK Mode is
−− code generated for m0 (including seen contexts)
endm0;

In particular, each Event-B event corresponds to a procedure where the guard
contributes to the precondition and the action contributes to the post-condition.
In the following, we describe in details the translation of the different modelling
elements.

Translation of Carrier Sets. Carrier sets are types in Event-B and can be
enumerated sets or deferred sets. An enumerated set S containing elements E1,
..., En in Event-B is defined as follows.

sets S
constants E1, ..., En
axioms
@def−S: partition(S, {E1}, ..., {En})

It is straightforward to represent the enumeration in SPARK as follows.

type S is (E1, ..., En);

A deferred set in Event-B will be represented as an Integer subtype in
SPARK. As a result, we require that the deferred set in Event-B to be finite
and with a specified cardinality. That is, it is declared in Event-B as follows,
where n is a literal.

sets S
axioms
@finite−S: finite(S)
@card−S: card(S) = n
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In fact, a carrier set in Event-B provides two concept: a user-defined type
and a set containing all elements of that type. As a result, there are two different
SPARK elements that are generated:

– A type declaration S type.
– A variable S corresponding to the set which a Boolean array containing True

indicating that set contains all elements of S type.

subtype S type is Integer range 1 .. n;
S : set(S type) := (others=>True);

Example 1 (Translation of Carrier Sets). The carrier sets PEOPLE and
BUILDING in the example from Sect. 2.3 are translated as follows.

subtypePEOPLE type is integer range 1 .. 10;
PEOPLE : set (PEOPLE type) := (others=>True);
subtypeBUILDING type is integer range 1 .. 4;
BUILDING : set (BUILDING type) := (others=>True);

Translation of Constants. Event-B constants are translated constant vari-
ables in SPARK. Since constant variable declarations in SPARK require that
the variable be defined with a value, an axiom defining the value of the constant
is also required. As a result, only constants with axioms specifying their values
are translated. For example, the following constant C is specified in Event-B as
follows, where n is a integer literal.

constants C
axioms
@def−C: C = n

The specification is translated into SPARK as follows.

C : constant Integer := n;

Example 2 (Translation of Constants). The constant maxsize in the example
from Sect. 2.3 is translated as follows.

maxsize : constant Integer := 3;

Translation of Axioms. For each Event-B axiom, an expression function is
generated. The name of the function is the axiom label and the predicate is
translated according to Sect. 3.1. At the moment, we do not generate SPARK
function for axioms about finiteness: all variables in SPARK are finite. We also do
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not generate SPARK function for axioms about cardinality: they are non-trivial
to specify and reason about with arrays. For convenience, we also generate an
expression function represent all axioms of the model; we call this expression
function Axioms. We also include in this Axioms constraints about carrier sets,
that is they contain all elements of the types.

Example 3. Translation of Axioms. The translation of axioms for the example
in Sect. 2.3 is as follows

function def maxsize returnBoolean is (maxsize = 3);
functionAxioms returnBoolean is (
isFullSet(PEOPLE) and then
isFullSet(BUILDING) and then
def maxsize);

Here isFullSet is a function defined in sr.ads, ensuring that PEOPLE and
BUILDING are arrays containing only True.

Translation of Variables. Each variable in Event-B corresponds to a variable
in SPARK. For the variable declaration in SPARK, we need to extract the type
of the Event-B variable. At the moment, we support variable types of either
basic types (T), set of basic types (P(T)), and relations between basic types
(P(T1×T2)).

Example 4. Translation of Variables The translation of the variables for the
example in Sect. 2.3 is as follows.

register : set (PEOPLE type);
size : Integer;
location : relation (PEOPLE type, BUILDING type);
permission: relation (PEOPLE type, BUILDING type);

Translation of Invariants. Each invariant corresponds to an expression func-
tion (similar to axioms) and these invariant functions are used as pre- and
post-conditions of every procedures. For convenience, we define an expression
function, namely Invariants as the conjunction of all invariants.

Example 5 (Translation of Invariants). The translation of the invariants of the
example in Sect. 2.3 is as follows.

function inv1 returnBoolean is (isSubset(register, PEOPLE));

function inv2 returnBoolean is (size<= maxsize);

function inv3 returnBoolean is
isPartialFunction(location, register, BUILDING);
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function inv4 returnBoolean
is isRelation(permission, register, BUILDING);

function inv5 returnBoolean is isSubset(location, permission);

function Invariants returnBoolean is (
inv1 and then
inv2 and then
inv3 and then
inv4 and then
inv5

)

Translation of Events. For each Event-B event, a procedure of the same
name is generated. The Event-B event parameters corresponding to the SPARK
procedure input parameters. The other aspects of the specification, i.e., Global,
Depends, Pre and Post are computed accordingly. The following Event-B event

event e
any pwhere
...
then
...
end

is translated into a SPARK procedure with the following structure.

procedure e(p : in p type)with
Pre =>Axioms and then Invariants and then event guards
Post =>Axioms and then Invariants and then event actions
Global =>Computed from the event actions,
Depends =>Computed from the event actions,

First of all, the Pre and the Post aspects contain both the axioms and invari-
ants. Since SPARK does not provide notation for invariants, we just make the
assertions in the pre- and post-conditions of all procedures (except for the one
corresponding to the INITIALISATION, where assertions only appear in the
post-condition). The translation of guards are the translation of the individ-
ual guard predicate as described in Sect. 3.1. For each action the corresponding
SPARK post-condition is generated as follows.

– v := E(p, v) is translated as v= E(p, v’Old)
– v :∈ E(p, v) is translated as isMember(v, E(p, v’Old))
– v :| E(p, v, v’) is translated as E(p, v’Old, v)
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Global aspect specifies the access to the global variables and it could be In
(for variables that are read), Out (variables that are updated but not read),
In Out (for variables that are both read and updated) or Proof In (variables
that only used in Precondition, i.e., for proving). We generate variables In, Out
or In Out based on how they are used in the event actions. Any other variables
will be Proof In as the preconditions references all variables (since they include
all axioms and invariants).

Depends aspect specifies the dependency between the Output variables and
the Input variables. We generate the Depends aspects by inspecting individ-
ual assignment. Each individual assignment corresponds to an Depends aspects
clause, where the left-hand side of the clause is the variable on the left-hand size
of the assignment, and the right-hand size of the clause are all variables on the
right-hand size of the assignment.

Example 6 (Translation of the INITIALISATION event). The INITIALISATION
event in the example from Sect. 2.3 is translated as follows.

procedure INITIALISATIONwith
Pre =>Axioms,
Post =>
Axioms and then
Invariants and then
isEmpty(register) and then
size = 0 and then
isEmpty(location) and then
isEmpty(permission),

Global => (
Out=> (register, size, location, permission),
Proof In => (PEOPLE, BUILDING, maxsize)

)
Depends => (
register => null,
size => null,
location => null,
permission => null

)
end INITIALISATION;

Example 7 (Translation of the Enter event). The Enter event in the example
from Sect. 2.3 is translated as follows.

procedureEnter(p : inPEOPLE type, b : inBUILDING type)with
Pre =>
Axioms and then
Invariants and then
register(p) and then
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BUILDING(b) and then
not (inDomain(p, location)) and then
permission(p, b),

Post =>
Axioms and then
Invariants and then
(for all x in location’Range(1) =>
if x /= p then (for all y in location’Range(2) =>

location(x, y) = location’Old(x,y))
else (for all y in location’Range(2) =>

if y /= b then not location(x, y)
else location(x, y))

),
Global => (
In Out => (location),
Proof In => (PEOPLE, BUILDING, maxsize, register, size, permission)

)
Depends => (
location => (location, p, b),

)
endEnter;

Here the effect of updating a function is specified using universal quantifiers to
ensure that only the location of person p is updated to be b.

4 Discussion

A prototype plug-in was developed for the Rodin platform [2]. The plug-in pro-
vide a context menu for Event-B machine to translate the machine to SPARK
specification package. Since the Event-B to SPARK translator requires informa-
tion such as types of variables, etc., the plug-in looks at the statically checked
version of the machine then generate the SPARK specification according to the
translation described in Sect. 3.

Beside the example of building access control system, we also generate
SPARK code from other models, such as a room booking system, a club man-
agement system [10], controlling car on a bridge [1]. Note that the plug-in only
generate the specification of the package at the moment. We have manually writ-
ten the package body according to the Event-B model and prove that the model
is consistent. More details about these examples can be found in [17].

4.1 Code Scheduling

At the moment, we only generate the SPARK code corresponding to individual
events. Combination of these events according to some scheduling rules, such
as [13] or some user-defined schedule, such as [8] will be our future work. To
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investigate the possibility, we also applied our approach to generate SPARK
code for developing a lift system (the example used in [16]) and manually wrote
the scheduled code in SPARK. The code corresponds to the Event-B model
including events for controlling the door of the lift, controlling the lift motor,
and changing the direction of travel. Some events relevant for our scheduling
example are as follows.

– DoorClosed2Half Up: to open the door from Closed to Half-closed while the
lift travel upwards,

– MotorWinds: to wind the lift motor,
– ChangeDirectionDown CurrentFloor: to change the lift travel direction to down-

ward due to a request at the current floor to go down.
– ChangeDirectionDown BelowFloor: to change the lift travel direction to down-

ward due to a request below the current floor.

Our manually written scheduled code are as follows

ifmotor = STOPPED then
case door is
whenCLOSED =>
if direction = UP then
if hasRequest Up
then
DoorClosed2Half Up;

else
if
floorRequestAbove or
upRequestAbove or
downRequestAbove

then
MotorWinds;

else
if floor /= 0 and then down buttons array(floor) = TRUE then
ChangesDirectionDown CurrentFloor;

elsif
floorRequestBelow or
upRequestBelow or
downRequestBelow

then
ChangesDirectionDown BelowFloor;

end if;
end if;

end if;
else−− direction =Down
...

end if;
whenOPEN => ...
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whenHALF => ...
end case;

else−−motor /= STOPPED
...

end if;

In the above, hasRequest Up, floorRequestAbove, upRequestAbove, etc. are local
variables capturing the different requests for the lift. The manually writ-
ten code invokes the different procedures generated from the Event-B model,
e.g., MotorWinds, DoorClosed2Half Up, ChangesDirectionDown CurrentFloor, and
ChangesDirectionDown BelowFloor. SPARK generates verification conditions to
ensure the correctness of our schedule, e.g., the preconditions of the procedures
are met when the they are invoked. We plan to utilise the framework from [8]
to allow users to specify the schedule and generate the SPARK scheduling code
accordingly. The elevator model and the manually written SPARK code are
available from https://doi.org/10.5258/SOTON/D1554.

4.2 Record Data Structures

At the moment, our main data structures for the generated SPARK code is
Boolean arrays (one-dimensional arrays for sets and two-dimensional arrays for
relations). Some modelling elements are better grouped and represented as record
data structures in the code. To investigate the idea, we extend the lift example to
a MULTI-lift system. The example is inspired by an actual lift system [18]. The
systems allows multiple cabins running on a single shaft system vertically and
horizontally. In our formal model, we have variables modelling the status of the
different cabins in the lift system, e.g., the floor position (cabins floor), the cabin
motor status (cabins motor), the door status (cabins door), the current shaft of
the cabin (cabins shaft), and the cabin floor buttons (cabins floor buttons). The
types of the variables are as follows.

invariants
@typeof−cabins floor: cabins floor∈ CABIN → 0 .. TOP FLOOR
@typeof−cabins motor: cabins motor∈ CABIN → MOTOR
@typeof−cabins door: cabins door∈ CABIN →DOOR
@typeof−cabins shaft: cabins shaft ∈ cabins→ SHAFT
@typeof−floor buttons: floor buttons ∈ cabins→ P(0 ..TOP FLOOR)

With our current approach, the variables will be translated individually as
Boolean arrays. It is more natural to use a SPARK record to represent the cabin
status. For example, the following CABIN Type record can be used to capture
the different attributes of a cabin.

typeCABIN Type is record
floor : Integer; −−The current floor of the cabin
motor : MOTOR Type; −−The current status of the cabin motor
door : DOOR Type; −−The current status of the door

https://doi.org/10.5258/SOTON/D1554
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shaft : SHAFT Type; −−The current shaft of the cabin

−−The current floor buttons status inside the cabin
floor buttons : array (Integer range 0 .. TOP FLOOR) ofBoolean;

end record;

Recognising the record data structures from the Event-B model is one of our
future research directions.

5 Related Work

Generating SPARK code from Event-B models has been considered in [13]. Their
approach involves not only generating pre- and post-conditions, along with loop
invariants, but also generates implementing SPARK code from Event-B models,
using the merging rules described by [1], which describe how to generate sequen-
tial programs from Event-B models. However, the model used in [13] is fairly
concrete, in particular in terms of the data structure used in the model. We aim
to derive proof annotations from models where mathematically abstract concepts
such as sets and relations are used. Given this, the merging rules used in [13]
may not be applicable to very abstract models, as such an algorithm may not be
represented or derivable. Furthermore, merging rules [1] can only be applied to
model with a certain structure where the scheduling is implicitly encoded in the
event guards. In our paper, we focus on the translation of the data structure.
Furthermore, the translation rules from Event-B to SPARK assertions shown
in [13] are limited, particularly in terms of set-theoretical constructs. This is an
issue to address given Event-B is a set-theory-focused modelling tool.

Generating proof annotations from Event-B models has been investigated
in [8]. Their work explores the mapping between Event-B and Dafny [12] con-
structs. This paper claims that a “direct mapping between the two is not straight
forward”. Due to the increased richness of the Event-B notation compared to
Dafny, only a subset of Event-B constructs can be translated. Similar to [13], the
authors of [8] suggest that a particular level of refinement must be achieved by
the Event-B model, to reduce “the syntactic gap between Event-B and Dafny”.
However, the level of refinement required is needed to have a model contain-
ing only those mathematical constructs which have a counterpart in Dafny, not
to obtain a model with a clear algorithmic structure present in its events. As
such, this approach can still translate fairly abstract models. Their paper states
the assumption that the “machine that is being translated is a data refinement
of the abstract machine and none of the abstract variables are present in the
refined machine”. Their approach uses Hoare logic [11], by transforming events
into Hoare triples, and deriving the relevant pre- and post-conditions.

Translation of Event-B models into Dafny is also the scope of [7]. The Dafny
code generated is then verified using the verification tools available to Dafny.
The translation is done so that Dafny code is “correct if and only if the Event-B
refinement-based proof obligations hold”. In other words, their approach allows
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users to verify the correctness of their models using a powerful verification tool.
Specifically, their paper focuses on refinement proof obligations, showing that the
concrete model is a correct refinement of the abstract model. While this is outside
of the scope of our paper, it nevertheless introduces some translation rules which
are relevant for us. For example, their paper demonstrates how invariants may
be translated into Dafny and used in pre-conditions. It also shows an example
of how relations in Event-B may be modelled in Dafny.

Another approach explored is the translation of Event-B to JML-annotated
Java programs [14], which provides a translation “through syntactic rules”. JML
provides specifications which Java programs must adhere to, and so it is similar
to contracts. Their approach generates Java code as well as JML specifications.
Unlike the previous approaches, instead of grouping similar events, every single
event is translated independently. This is perhaps not as efficient, as grouping
similar events and using specific case guards in the post-conditions to differen-
tiate between the expected outcomes can give an insight into how these events
interact. Additionally, event grouping also saves space in the generated code by
having fewer methods. This is only foreseen to be a problem when the trans-
lated model is concrete, and has several events representing different situational
implementations of a single abstract event. Their paper demonstrates transla-
tion rules of machines and events to JML-annotated programs. The approach of
deriving the JML specifications can possibly be adapted for our purpose, and
can perhaps be considered an alternative approach to the one by [8]. However,
an interesting point to note from their paper is that the approach given has the
ability to generate code even from abstract models. The translation rules given
can generate code from variables and assignments to variables in actions, in any
level of abstraction or refinement. Hence, this approach of generating code can
possibly be adapted for the generation of SPARK code.

6 Conclusion

In summary, we present in this paper an approach to generate SPARK code
from Event-B models. We focus on covering as much as possible the Event-
B mathematical language by representing sets and relations as Boolean arrays
in SPARK. Each Event-B event is translated into a SPARK procedure with
pre- and post-conditions, and aspects for flow analysis (i.e., Global and Depends
aspects). Axiom and invariance properties of the models are translated into
SPARK expression functions and are asserted as both pre- and post-conditions
for the generated SPARK procedures. A prototype plug-in for the Rodin plat-
form is developed and evaluated on different examples. We discuss the possible
improvement of the approach including generating code corresponding to some
schedule and using record data structure.

In term of translating sets and relations, we have also considered different
approaches including using functional sets and formal ordered sets [3]. Our
experiment shows that these representations have limited support for set and
relational operators and did not work well with the SPARK provers.
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For future work, we plan to include the generation of the procedure body with
our prototype. The generation will base on the representation of sets and rela-
tions by Boolean arrays. We expect that this extension will be straightforward.
As mentioned earlier, generating SPARK record data structures from Event-B
models is another research direction. The challenge here is to recognise the ele-
ments in the Event-B models corresponding to records. With the introduction
of records in Event-B [9], the mapping from Event-B elements to record data
structures will become straightforward. Furthermore, we aim to develop a devel-
opment process that starts from modelling at the system level using Event-B,
gradually develop the system via refinement and generate SPARK code including
event scheduling and data structure such as records.

During system development by refinement in Event-B, abstract variables can
be replaced (data refined) by concrete variables. This allows (mathematically)
abstract concepts to be replaced by concrete implementation details. Often, sys-
tems properties are expressed using abstract variables and are maintained by
refinement. In this sense, abstract variables are similar to ghost variables in
SPARK. We plan to investigate the translation of abstract variables in Event-B
as ghost variables in SPARK.

Models in Event-B are typically system models, that is they contain not only
the details about the software system but also the model of the environment
where the software system operates. Using decomposition [15], the part of the
model corresponding to the software systems can be extracted. Nevertheless,
having a “logical” model of the environment will also be useful and it can be
represented again using ghost code in SPARK.

Acknowledgements. Supporting material for this study is openly available from the
University of Southampton repository at https://doi.org/10.5258/SOTON/D1554.
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Abstract. We present Jaint, a generic security analysis for Java Web-
applications that combines concolic execution and dynamic taint anal-
ysis in a modular way. Jaint executes user-defined taint analyses that
are formally specified in a domain-specific language for expressing taint-
flow analyses. We demonstrate how dynamic taint analysis can be inte-
grated into JDart, a dynamic symbolic execution engine for the Java
virtual machine in Java PathFinder. The integration of the two meth-
ods is modular in the sense that it traces taint independently of symbolic
annotations. Therefore, Jaint is capable of sanitizing taint information
(if specified by a taint analysis) and using multi-colored taint for running
multiple taint analyses in parallel. We design a domain-specific language
that enables users to define specific taint-based security analyses for Java
Web-applications. Specifications in this domain-specific language serve
as a basis for the automated generation of corresponding taint injectors,
sanitization points and taint-flow monitors that implement taint analyses
in Jaint. We demonstrate the generality and effectiveness of the app-
roach by analyzing the OWASP benchmark set, using generated taint
analyses for all 11 classes of CVEs in the benchmark set.

1 Introduction

Web-based enterprise applications are ubiquitous today and many of these appli-
cations are developed in JVM-based languages. The Tiobe index tracks the rel-
evance of programming languages. Java leads this ranking consistently (with
short periods of being ranked second) for the past 15 years1. Moreover, Apache
Tomcat is running Web-applications for over 5, 000 international companies with
a yearly revenue greater than one billion US Dollar each, according to data col-
lected by HG Insights2. Therefore, security of Java Web-applications is of critical
importance and attacks on them are reported every single day3. Though there

1 https://www.tiobe.com/tiobe-index/.
2 https://discovery.hgdata.com/product/apache-tomcat.
3 https://www.cvedetails.com/vulnerabilities-by-types.php.

c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 123–140, 2020.
https://doi.org/10.1007/978-3-030-63461-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63461-2_7&domain=pdf
http://orcid.org/0000-0002-6291-9886
http://orcid.org/0000-0002-1769-3486
http://orcid.org/0000-0002-9524-4459
https://www.tiobe.com/tiobe-index/
https://discovery.hgdata.com/product/apache-tomcat
https://www.cvedetails.com/vulnerabilities-by-types.php
https://doi.org/10.1007/978-3-030-63461-2_7


124 M. Mues et al.

is no publicly available data on the exact distribution of breaches across differ-
ent programming languages. Based on the market share of Java in the realm of
enterprise applications, one can assume that a significant fraction of the reported
breaches exploits vulnerabilities of JVM-based Web-applications.

Many of the vulnerabilities tracked in the Common Vulnerability and Expo-
sures (CVE)4 list pertain to the flow of information through a program from a
(potentially) malicious source to a protected sink. In modern Web-applications,
such flows almost universally exist as these applications receive inputs from
(untrusted) users and, e.g., store these inputs in (protected) databases. These
inputs should pass sanitizing methods, e.g., for escaping of specific characters in
a textual input or prepared and safe statements. Otherwise, attackers might use
these inputs maliciously to inject commands into SQL statements in an attack.

Taint analysis is a well-established technique for analyzing the data flow
through applications: Inputs are tainted and taint is then propagated along the
data flow. Critical sinks (i.e. databases) are monitored by taint guards ensur-
ing that no tainted data values reach the sink (c.f. [1,3,14,23–25]). Otherwise
a security vulnerability is detected. Classically, taint analysis is either imple-
mented as a static analysis, over-approximating flow of taint (c.f. [27]), or as
a dynamic analysis, under-approximating taint flow by observing concrete pro-
gram executions (c.f. [12]). The literature distinguishes data-flow taint, i.e., taint
that propagates from right to left sides of assignments, and control-flow taint,
i.e., taint is propagated through branching conditions to assignments in executed
branches (c.f. [24]). One can observe a close similarity to symbolic execution [25]:
(Data-flow) taint propagates like symbolic values, and (control-flow) taint cap-
tures path constraints of execution paths. However, this close similarity has not
yet been fully leveraged as the basis for an integrated analysis for Java.

In this paper, we present Jaint, a framework for finding security weaknesses
in Java Web-applications. The framework combines dynamic symbolic execu-
tion and dynamic taint analysis into a powerful analysis engine. This analysis
engine is paired with a domain-specific language (DSL) that describes the con-
crete taint analysis tasks, Jaint executes during one analysis run. It is the first
framework exploiting concolic execution for the dynamic but exhaustive explo-
ration of execution paths in Java Web-servlets while maintaining explicit multi
color taint marks on data values. This multi color taint allows the specification of
multiple taint analyses run in parallel tracking data flow from malicious sources
to protected sinks and monitoring potential security vulnerabilities. Moreover,
as taint marks and symbolic values are separate annotations, the framework
supports sanitization definitions on a taint color base making it more precise
than previous work using symbolic annotations as taint marks [11]. The com-
bination of dynamic symbolic execution and dynamic taint analysis results in
greater precision than can be achieved with classic static taint analysis methods
that are insensitive to most conditions on control flow. Moreover, for many of
the identified vulnerabilities, our analysis can produce request parameters that
exhibit a found vulnerability in a servlet. In contrast to purely dynamic taint

4 https://cve.mitre.org.

https://cve.mitre.org
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analysis techniques, our approach is exhaustive given that dynamic symbolic exe-
cution terminates [18]: it generates a set of request parameters for every feasible
execution path.

We have implemented Jaint as an extension of JDart [18], a dynamic sym-
bolic execution engine for Java, and on top of Java PathFinder [13], a software
model checker for Java that is based on a custom implementation of the Java
virtual machine (JPF-VM). Jaint’s DSL for defining concrete taint analyses
(i.e., sources, sanitization methods and sinks) is designed on the basis of the Meta
Programming System (MPS). Jaint’s implementation is publicly available [20].
We evaluate Jaint on the OWASP benchmark suite5, the current industrial
standard for comparing analysis approaches for Java Web-applications. All 11
CWEs in the OWASP benchmark suite can be specified in our domain-specific
language and Jaint analyzes the OWASP benchmark suite with a false negative
rate of 0% and a false positive rate of 0%, identifying all security vulnerabilities.

Related Work. Schwartz et al. [25] describe a formal theory for dynamic taint
propagation and discuss challenges in the implementation of an analysis com-
bining dynamic symbolic execution and dynamic taint analysis. Their focus is
mostly on memory representation problems for running the symbolic analysis in
a programming language that allows pointer arithmetic. Due to the design of the
Java virtual machine, these concerns are not relevant when analyzing Java byte
code. The formalization of taint analysis by Schoepe et al. [24] stresses the impor-
tance of a clear division of data-flow and control-flow based taint propagation.
From our point of view, this observation supports a separation of analysis meth-
ods: dynamic taint analysis and dynamic symbolic execution: Dynamic tainting
tracks information following the data flow path, e.g., through instrumentation
(c.f. [7,8,12,16,17,21,26,28]). Dynamic symbolic execution can be used for con-
trolling the program execution path with external inputs ensuring exhaustive
exploration of all paths.

Haldar et al. [12] presented a dynamic tainting mechanism for Java propagat-
ing the dynamic taint along a single path. Jaint’s advantage over the approach
of Haldar, is the integration of single path propagation with dynamic symbolic
execution [2,6] for exhaustive path enumeration.

For C programs, Corin and Manzano [10] describe the integration of taint
analysis into KLEE [5]. Their work is limited to propagation of single color
taint and do not show, how different analyses can be run on top of the taint
propagation, while we demonstrate how multi color taint can be used to analyze
the OWASP benchmark. It seems some work has been started on KLEE-TAINT6

for a more sophisticated taint analysis in KLEE combining symbolic execution
with taint, but the approach requires to rewrite the C program to inject taint
assigning methods and taint checks for the analysis. Jaint integrates the taint
analysis without any modifications of the bytecode as taint injection and taint
monitoring is computed in the virtual machine and not as part of the binary.
Both approaches require a driver for the dynamic symbolic execution part.
5 https://github.com/OWASP/Benchmark.
6 https://github.com/feliam/klee-taint.
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id conc symb taint
1 ”” A -
2 ”x” B ct
3 Obj. - sink
4 Obj. - sink

iload 2

invoke source()

...

iadd

...

invoke sani(b)

...

invoke sink(b)

iadd:

top = concAdd(l,r)

spreadTnt(top,l,r)

State:

Stack:

Heap:

Program:

Bytecode Semantics:

JPF VM JDart

A �= ′ok′
A = ′ok′

SAFEUNSAFE
(ct)

?

Taint Analysis

Src ::= ct ← source()

Sani ::= sani(*)

Sink ::= ct → sink(*)

Add PC:
A = ′ok′

Terminated:
Taint Exception

Restart:
1 �→ (′nok′, A)

Ret. fr. source()

Taint B w/ ct

Ret. fr. sani(∗)
Remove ct fr. B

Invoke sink(∗)
Raise Exception

Fig. 1. Software Architecture of the implemented Vulnerability Analysis.

Several strategies for the implementation of taint models and taint propaga-
tion have been proposed: They range from integrating the taint check into the
interpreter [22] to a complete taint propagation DSL integrating the taint analy-
sis into the program [9]. In between are the flavors of integrating the taint check
into the compiler [16,28] or into an execution environment [3,7,8,15,21]. We
consider binary instrumentation as part of execution environment modification.
The advantage of a DSL integrated into the program is that the execution envi-
ronment and tool chain stay untouched. Jaint mixes two of those proposals. For
the taint propagation, we modified the program interpreter, in our case the JPF-
VM. In addition, we defined a DSL that allows to describe in which places taint
should be injected, sanitized and checked during execution. As a consequence,
the concrete taint injection does not require a modification of the program. Our
DSL only describes the analysis and not the taint propagation. Hence, it is a
different style of DSL than the one proposed by Conti and Russo [9].

Outline. The paper is structured as follows: We present our analysis framework
Jaint in Sect. 2 and discuss the proposed domain-specific language for expressing
concrete taint analyses in Sect. 3. Section 4 details results from the evaluation of
the integrated analysis on the OWASP benchmark suite. We present conclusions
and discuss directions for future research in Sect. 5.

2 Taint Analysis with Jaint

Jaint integrates dynamic symbolic execution and dynamic tainting in a single
analysis framework. It is built on top of the JPF-VM. Figure 1 illustrates the
interplay between the dynamic symbolic execution handled by JDart [18], the
taint analysis and the JPF-VM.

The virtual machine of Java PathFinder provides several extension mech-
anisms that Jaint uses for the implementation of the analysis: VM events,
bytecodes, peers, and heap annotations. Heap annotations are a mechanism for
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annotating objects on the heap with meta-information. VM events are hooks an
analysis can use to collect or modify meta-information during execution. The
JPF-VM allows to replace bytecode instructions or extend them to collect infor-
mation or trace meta-information during symbolic execution. Peers can replace
implementations of (native) library functions.

The dynamic symbolic execution uses bytecode semantics and peers for
recording symbolic path constraints as shown on the top-most arrow from the
JPF-VM box to the JDart box in Fig. 1. Bytecode semantics for symbolic exe-
cution and taint analysis are similar: while in the one case the result of operations
is computed and maintained symbolically based on the symbolic annotations on
operands, in the other case operations propagate existing taint annotations on
operands to results of operations. E.g., the implementation of the iadd bytecode
pops two integers including potential symbolic and taint annotations from the
stack, performs a concrete addition, computes a symbolic term representing the
result (only in case one of the integers was annotated symbolically), propagates
taint from the integers to the result, and pushes the result and annotations
back onto the stack. Symbolic values are used in path constraints (recorded on
branching bytecode instructions) that accumulate in the constraints tree (upper
right corner of the figure). The JDart concolic execution engine interacts with
the virtual machine by placing concolic values (concrete values with symbolic
annotations as shown in the heap table of the JPF-VM in Fig. 1) on the heap
to drive execution down previously unexplored paths in the constraints tree. In
the current version of Jaint, bytecode implementations do not remove symbolic
annotations or taint (e.g., on multiplication with constant 0). Such behavior
could, however, be implemented easily. JDart has the same limitations that
symbolic execution has in general: recursion and loops are only analyzed up to
a (configurable) fixed number of invocations (iterations, respectively).

The dynamic taint analysis is built around VM events. Listening on VM
events (returns from methods), the taint analysis injects or removes taint from
objects on the heap. E.g., a sanitization interaction between the analysis and
the heap is shown in the lower part of Fig. 1. The method exit event for the sani
method interacts with the taint analysis and removes the ct taint mark from the
heap object with id 2 in this analysis. The interaction is represented by the Ret.
fr. sani(*) arrow. In addition, the taint analysis will check taint annotations
on heap objects and primitive values before entering methods. Those checks are
used for monitoring tainting of protected sinks. In combination with the taint
propagation in the bytecodes, the VM events implement the complete multi-
colored taint analysis. In the remainder of this section, we discuss the central
ideas of the interplay of the internal components of the implementation along a
small example and provide a high-level overview of the analysis.

2.1 Integration of Symbolic Execution and Taint Analysis

Let us assume, we want to analyze method foo(String a, String b) from the
code snippet shown in Listing 1.1. In particular, we want to check that no data
flows from malicious method call source() to the protected method sink()
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1 stat ic void f oo ( S t r ing a ,
S t r ing b) {

2 i f ( a . equa l s ( ”ok” ) )
3 b = san i (b) ;
4 s ink (b) ;}
5 public stat ic void main
6 ( . . . ) {
7 St r ing a =
8 V e r i f i e r .
9 symbString ( ”” , ”A” ) ;

10 St r ing b = source ( ) ;
11 foo (a , b ) ;}
12 public St r ing source ( ) {
13 return V e r i f i e r .
14 symbString ( ”x” , ”B” ) ;}
Listing 1.1. Code Example: Parameter
b of method foo is only sanitized if
parameter a has value "ok".

id conc symb taint
ex.1 ex.2

a ”” ”ok” A -
b ”x” ”x” B ct

id conc symb taint
a ”ok” A -
b ”x” san(B) -

id conc symb taint
a ”” A -
b ”x” B ct

SAFE UNSAFE: b in s

foo(a,b)

a.equals("ok")

pc: (A = ’ok’) pc: (A �= ’ok’)

sink(b) sink(b)

Fig. 2. Tree of concolic executions of
method foo. Nodes show snapshots of the
heap with annotations of taint and sym-
bolic values.

unless the data is sanitized by passing through method sani(). This specifies
the taint property denoted with taint color ct in this example and confirms the
configurable part we have to write down in Jaint’s taint DSL. It is visualized
in the lower right part of Fig. 1. We will first describe how dynamic symbolic
execution is applied to the example followed by the taint integration.

Dynamic Symbolic Execution. Dynamic symbolic execution (DSE) is a
dynamic analysis technique in which a program is executed with concrete data
values while constraints that are imposed on these values along a single execu-
tion are recorded as path constraints. Recorded symbolic constraints can then
be used as a basis for finding new concrete values that drive execution along
previously unexplored program paths. The program execution is restarted with
the new concrete values. This is represented in the top right corner of Fig. 1.

As DSE is a dynamic technique, a driver for the method under analysis
is required. For our example, this can be seen in Listing 1.1. The main(...)
method is used as a test driver for analyzing method foo(...): in the listing,
we create two variables of type String with values "" and "x" and instruct
the analysis to annotate these Strings with symbolic values A and B. These
annotations are tracked, modified, and propagated by the symbolic part of the
underlying execution engine. The state of the analysis is visualized in Fig. 2: the
tree represents executions of foo(...) with different sets of concrete values. The
nodes of the tree visualize the state of the heap, including annotations to heap
cells that keep track of symbolic values and taint.

Let us first focus on symbolic values. Initially, variables a and b are marked
symbolically and contain the original concrete values (column ex.1 in the root
node of Fig. 2). Execution with these values proceeds down the right path in
the tree as a does not equal "ok". Path constraint A �= ′ok′ is recorded. After
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execution terminates, the analysis uses the recorded constraint for generating a
new value for a ("ok" in this case) that drives execution down the unexplored
path, represented by the left leaf of the execution tree. On this path, statement
b=sani(b) is executed and the symbolic value of b is updated accordingly to
symbolic value san(B). After execution of the path the tree is complete, i.e.,
all feasible method paths through foo(...) have been explored and concolic
execution halts. Next, we will briefly discuss, how we integrate the taint analysis
along the paths discovered by dynamic symbolic execution.

Dynamic Taint Analysis. We check if the defined property is violated on
some execution path by tainting relevant data values and tracking propagation
of taint (visualized in the last column of the tables that represent the state of the
heap in Fig. 2). The taint specification interacts with the JPF-VM using JPF’s
listener concept for VM events. The taint analysis subscribes to VM events, such
as method invocations and method exits. If such an event is triggered, e.g., a
method invocation, the generated listener checks whether the invoked method is
part of the taint specification. If this is the case, code for injecting taint, removing
taint or checking taint gets integrated into the execution. The JPF-VM allows to
extend objects with annotations directly on the heap. This is used for adding the
taint marks to the objects on the heap. The JPF-VM takes care to track those
annotations. If Java bytecodes operates on none heap objects as primitive data
types, the implemented bytecode semantics for symbolic execution get extended
with taint propagation semantics.

As the main method used as a driver for running foo only initializes b with a
call of source, only b will be tainted as malicious source with the ct taint color.
As there is no call to source in any of the assignments to a, a never becomes
marked with the ct taint color. Object s gets annotated as a protected sink.
During the first execution (along the right path in the tree), the taint marker
on b is not removed and a connection from source to sink is established upon
invocation of sink(b). The analysis reports that on this path the property that
“no data is allowed to flow from the malicious source to the protected sink” is
violated. Those taint exceptions directly abort the DSE along a path and trigger
the start of the next path. The second execution of foo(...) proceeds along
the left path in the figure. In this case, statement b=sani(b) is executed and
the taint marker is removed from b. The analysis concludes that the path is
safe to execute and exits without any error along this path. After the combined
taint analysis and DSE terminates, akin to other dynamic analysis methods, we
can produce a concrete witness that exhibits the security vulnerability on the
first execution path and triggers our taint monitor. At the same time, we are
confident that all feasible program paths (within the cone of influence of the
symbolic variables) were analyzed.

In the context of taint analysis, control-flow dependent taint is often dis-
cussed as a problem for precise taint analysis. In the scope of the method foo,
both parameters are external parameters, but only b becomes tainted. In con-
trast a is the parameter influencing the control-flow in line 2 of Listing 1.1. As
both are external parameters, we model both of them symbolically, and as the
parameter a influences the if condition, this example further demonstrates, how
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Dynamic Symbolic Execution
+ Data-Flow Taint Analysis

Test Harness
w/ Symbolic Inputs Symbolic PeersTaint VM Listener

System Under Test

Code Generator

Taint Spec.

Satisfied
Violated + Inputs

Don’t Know

Fig. 3. Jaint combines user-defined dynamic taint-analyses with dynamic symbolic
execution of Java programs. Taint DSL Specification (hexagon) and source code arti-
facts (documents) are compiled and analyzed (rectangles); verdicts shown as ellipses.
(Color figure online)

symbolic execution ensures the control-flow dependent value propagation even if
the parameter influencing the control-flow is not part of the taint specification.
In contrast to pure dynamic tainting approaches, Jaint does this without any
over-approximation. Due to the DSE, the analysis keeps track of the different
branches and reports precisely which branches eventually violate a property and
on which branches the property holds. This way, Jaint integrates DSE and
dynamic taint analysis in a single framework splitting the tasks of data-flow
tainting and control-flow tainting between the symbolic model in the DSE and
the dynamic taint analysis. An appropriate symbolic model takes care of even-
tual effects from external parameters on the control-flow. The dynamic taint
analysis only propagates the different taint colors along the current execution
path, checks monitors and eventually removes taint marks wherever required.
We will summarize this workflow below.

2.2 User-Defined Taint Analyses with Jaint

As shown in the previous subsection, the Jaint framework combines dynamic
taint analysis with DSE. Figure 3 shows the analysis workflow. The cyan boxes
are tools built to establish the Jaint workflow. In the center of the lower part is
the analysis engine running dynamic symbolic execution and the data-flow taint
analysis. An analysis will lead to one of three verdicts: no exploitable vulner-
ability exists (Satisfied, green ellipse), a vulnerability and an exploit are found
(Violated + Inputs, red ellipse), the instance is undecidable due to an intractable
symbolic constraint or due to exhausted resources (Don’t Know, orange ellipse).
In the upper half, the required inputs are represented: For some system under
test, a test harness that defines the scope of symbolic analysis, and a set of sym-
bolic peers are provided for the dynamic symbolic execution from the center to
the right side. On the left, the required taint inputs are represented. The user
provides a taint specification in Jaint’s taint DSL. The DSL code generator
part of the framework generates the required VM listeners for the taint analysis,
which are passed along to the main tool.
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Jaint describes taint flow properties in its own domain specific language
(DSL), which is described in detail in Sect. 3. The DSL allows to specify different
taint analyses which are all executed in parallel during the execution of the
program as long as they all use a different taint color. The DSL is built on top
of MPS and Jaint runs a code generator (the upper left cyan box) to synthesize
the required VM listeners working as taint monitors for each of the specified
taint analyses.

A test harness defines the symbolic parts of the system under test and there-
fore the analysis scope. In the test harness certain inputs are modeled sym-
bolically, while others might remain concrete values. For analyzing Java Web-
applications, we constructed symbolic String values as part of JDart along with
a symbolic peer for String operations as an example for such peers. The symbolic
peer models String operations on the basis of symbolic byte arrays. Those byte
arrays are logical encoded in the bit-vector theory for constraint solving. The
String model is robust enough for the evaluation of the OWASP benchmark and
performed well in the Java track of SV-Comp 2020 (c.f. [19]). We released it
open source as part of the JDart version7 used for SV-Comp. Balancing sym-
bolic and concrete parts of the system state space is the key factor for analysis
performance. Unnecessary large state spaces waste resources, while a too small
state space might harm the analysis verdict by cutting away relevant paths.

The analysis environment can be modeled using symbolic peers in JDart.
Apart from the symbolic peer modeling the symbolic operations of Strings, we
can use such peers as well to mock the behavior of an interface or model sym-
bolically the execution of an external resource. As an example, in the case of
SQL injection analyses, a model for java.sql.Statement is required to describe
the taint flow appropriate. Similar, we defined symbolic peers for other system
resources as the file system or the LDAP API. This allows us to analyze the
OWASP benchmark. In the same way, a test harness might skip relevant parts
of the execution, a symbolic peer might threat the analysis, if the environment
model is an under approximation.

Jaint allows to split the task of establishing an effective security analysis in
two domains. A program analysis engineer might model the relevant resources
for dynamic symbolic execution, while a security engineer can define the security
properties. Next, we will explain the DSL Jaint offers for the security engineer.

3 A DSL for Defining Taint Analyses

In Jaint, concrete taint analyses are specified by means of a domain-specific
language (DSL). Taint generators, sanitizers, and monitors are generated from
specifications. While code generation is currently tailored towards JPF/JDart,
it could easily be adapted to generate code for other verification frameworks. The
triggers and conditions for generating and removing taint as well as for raising
alarms that can be specified in the language are generic (for Java programs).
Concrete analyses are however particular to the libraries and frameworks used by
a program under analysis: these libraries have APIs and methods in these APIs
7 https://github.com/tudo-aqua/jdart.

https://github.com/tudo-aqua/jdart
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may be sources or sinks for taint flow. In this section we present this domain-
specific language along with some examples of concrete taint analyses motivated
by CWEs in the OWASP benchmark suite.

Specification of Taint Analyses. Our DSL enables the definition of custom
taint analyses. An analysis is specified by a tuple 〈Src, Sani, Sink〉, consisting
of malicious sources (Src), sanitization methods (Sani), and protected sinks
(Sink). Each of these elements specifies signatures of methods that, upon invo-
cation or return, should trigger either marking a return attribute, removing the
mark from an object, or checking for marked parameters, respectively. The syn-
tax of the DSL is defined in (1) as BNF. Constant syntax elements are highlighted
with gray boxes.

Generation ::= Analysis(, Analysis)∗

Analysis ::= (Src)∗, (Sani)∗, Sink

Src ::= Src::= (id|id+) ← Signatures

Sani ::= Sani::= Signatures

Sink ::= Sink::= (id|id+) → Signatures

Signatures ::= ExtSignature (, ExtSignature)∗

ExtSignature ::= Signature (.<class>Method(Parameter))∗

Signature ::= ( :class).Method(Parameter)

Method ::= (method|<init>)

Parameter ::= (param|param+|V alueCheckExp)
V alueCheckExp ::= (V alueCheck ((and |or) V alueCheck)∗

V alueCheck ::= (ParamV alue has (not)∗ value value)

ParamV alue ::= (type param|class id : id . (Method() |param))

(1)

To allow multiple parallel taint analyses the top-level Generation allows the
containment of multiple Analysis elements. Each analysis is based on the tuple
〈Src, Sani, Sink〉 of which the first two are optional. For some weaknesses saniti-
zation methods are not available and therefore neglectable. Taint analyses which
depend on specific argument values of protected sinks and not on taint flow (c.f.
example in (5)), do not contain source definitions. Each weakness has its unique
identifier (or color) declared by id in the Src and Sink declaration. We use id+ in
Src to indicate that fields and nested objects of the returned object are tainted
additionally. With the usage of id+ in Sink we indicate that not only imme-
diate taint of some parameter value has to be checked when invoking a sink
but also taint of reachable objects from the parameter. The expression class
matches fully qualified class names and method is an expression for matching
method names. We allow ∗ as a wildcard for an arbitrary sequence of symbols.
With <init> we restrict the method check to only consider constructors of the
declared class. The expression param matches names of parameters. We use
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the empty String for methods without parameters and ∗ for arbitrary parame-
ters. With param+ we define that, instead of the return attribute, the declared
parameter will be tainted. To also conveniently describe trigger conditions on the
concrete values passed into sink methods: param may contain expressions like
(int p has value 5) for specific parameter values or (Object o : o.var has
value 5) for field accesses. It indicates that a taint alarm should be raised in
case of a method invocation with a field value of 5 for the field var of parameter
o which is of type Object. For building complex expressions we allow composite
boolean expressions with the keywords and and or e.g., (param has value a)
or (param has not value b).

To express a sequence of method calls that constitute a protected sink, addi-
tional information has to be provided (c.f. ExtSignature). For that, <class>
specifies the type of the returned variable on which taint should be checked.

Example. To clarify this behavior and give an example, we further describe parts
of theCross Site Scripting weakness analysis with a code snippet in Listing 1.2 and
corresponding DSL snippet in (2). Cross site scripting (CWE 798) occurs when
data (e.g., JavaScript code) from an untrusted source is added to the Web-page
and served to other users without proper sanitization.

Src ::= xss+ ← ( : ∗HttpServletRequest).get∗(∗)
Sani ::= ( : org.apache.commons.lang.StringEscapeUtils)

.escapeHtml(∗),
( : org.owasp.esapi.ESAPI).encodeForHTML(∗),
( : org.springframework.web.util.HtmlUtils)
.htmlEscape(∗)

Sink ::= xss+ → ( : javax.servlet.http.HttpServletResponse)
.getWriter().<java.io.PrintWriter>∗(∗)

(2)

1 public void doPost ( HttpServ letRequest request ,
2 HttpServletResponse re sponse ) {
3 . . .
4 S t r ing param = ”” ;
5 java . u t i l . Enumeration<Str ing> headers = reque s t .

getHeaders ( ” Re f e r e r ” ) ;
6 i f ( headers != null && headers . hasMoreElements ( ) ) {
7 param = headers . nextElement ( ) ;
8 }
9 . . .

10 re sponse . getWriter ( ) . format ( . . . , param , . . . ) ; }
Listing 1.2. Code Example: Cross side scripting vulnerability in servlet
BenchmarkTest00013 of the OWASP benchmark suite (omissions for improved
readability).

8 https://cwe.mitre.org/data/definitions/79.html.

https://cwe.mitre.org/data/definitions/79.html
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In line 5 data is read from the HttpServletRequest object. According to the
specification in (2) this classifies as reading from a malicious source. There-
fore, the returned value is annotated with a taint marker of type xss during
concolic execution. At the same time, all elements contained in the returned
Enumeration<String> are tainted as well, as the non-immediate taint flag is
set (c.f. xss+ in Src of (2)). This is necessary as the param variable is set by
getting the next element with the nextElement() method in line 7. Without
implicit taint propagation the taint information would be lost at this point.
From line 7 code is executed that eventually manifests a protected sink for
taint of type xss: In line 10 the condition for the protected source is matched.
The PrintWriter object returned by the getWriter() method is flagged to
signalize possible future taint violations (c.f. xss+ in Sink of (2)). Calling the
format(...) method in the same line first checks the called object if it is flagged.
Here, this is the case, so the real taint check on the parameter param can be exe-
cuted. Since the variable is marked as xss-tainted, the analysis will correctly
raise an alarm.

4 Evaluation

We evaluate Jaint by applying the framework on the OWASP benchmark.
The OWASP benchmark suite (version 1.2) consists of 2, 740 servlets that are
categorized into 11 CWE classes. We aim to answer the following three research
questions during the evaluation:

RQ1: Is Jaint’s Taint-DSL expressive enough for specifying security analyses?
We approach this question by specifying analyses for the 11 CWEs in the
OWASP benchmark and by discussing briefly comparing the expressiveness
to the specifications provided by other tools.

RQ2: Does the combination of dynamic symbolic execution and dynamic tainting
improve precision over the state of the art in security analysis? We approach
this question by comparing Jaint’s precision to industrial tools.

RQ3: How expensive is the application of Jaint, especially compared to existing
tools? We approach this question by analyzing Jaint’s runtime.

We begin by detailing some taint analyses (RQ1), before presenting results from
a series of experiments (RQ2 and RQ3).

4.1 Taint Analyses for OWASP CWEs

The CWEs included in the OWASP benchmark suite, broadly fall into two classes
of properties: Source-to-Sink-Flow and Condition-on-Sink properties. The first
class is the main domain of taint analysis and requires the flow of taint marks
from a source to a sink. The second group checks a concrete value for a concrete
assignment at a certain point of time in the execution flow. While this is not
the typical strength of dynamic tainting, we can still check those properties
easily with Jaint, using only sink conditions. The Source-to-Sink-Flow group
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comprises 8 CWEs: Path Traversal Injection (CWE 22), Cross Site Scripting
(CWE 79), SQL Injection (CWE 89), Command Injection (CWE 78), LDAP
Injection (CWE 90), Weak Randomness (CWE 330), Trust Bound Violation
(CWE 501) and XPath Injection (CWE 643). The Condition-on-Sink group
comprises 3 CWEs: Weak Crypto (CWE 327), Weak Hashing (CWE 330) and
Secure Cookie (CWE 614). In the remainder of this subsection, we detail the
specifications for three of the CWEs.

SQL Injection. The structured query language (SQL) is a fourth-generation
language and SQL queries are constructed as Strings in Java programs. When
this is done manually in a servlet, parameters of the HTTP request are typ-
ically integrated into the SQL query through String concatenation. Without
proper String sanitization before the concatenation, this allows for a so-called
SQL injection (CWE 899), i.e., the resulting SQL query can be manipulated by
injecting additional SQL statements into the query String.

It is well known that proper sanitization of parameters is hard and SQL injec-
tion vulnerabilities are best prevented by using prepared statements instead of
building queries manually. Consequently, the OWASP benchmark assumes that
there are no adequate sanitization methods for this weakness. The specifica-
tion of the corresponding taint analysis is shown in (3). We consider the sql
parameter of any method as a protected sink in some of the interfaces from the
java.sql and org.springframework.jdbc packages.

Src ::= sqli ← ( : ∗HttpServletRequest).get∗()

Sink ::= sqli → ( : java.sql.Statement).∗(sql),

( : java.sql.Connection).∗(sql),

( : org.springframework.jdbc.core.JdbcTemplate).∗(sql)

(3)

Command Injection. Command injection (CWE 7810) attacks are similar to
the injection attacks discussed above. However, instead of injecting statements
into some query language, these attacks aim at injecting commands into a shell,
i.e., into a command that is executed as a new process. (4) specifies the cor-
responding taint analysis. Methods that match patterns Runtime.exec(*) and
ProcessBuilder.*(command) are considered protected sinks.

Src ::= cmdi+ ← ( : ∗HttpServletRequest).get∗()

Sink ::= cmdi → ( : java.lang.Runtime).exec(∗),

( : java.lang.ProcessBuilder).∗(command)

(4)

Secure Cookie Flag. A secure cookie flag (CWE 61411) weakness exists in
a servlet when a cookie with sensitive data is added to the response object
without setting the secure cookie flag (setting the flag forces Web-containers to
use HTTPS communication). The corresponding taint analysis is specified in

9 https://cwe.mitre.org/data/definitions/89.html.
10 https://cwe.mitre.org/data/definitions/78.html.
11 https://cwe.mitre.org/data/definitions/614.html.

https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/614.html
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(5). When a cookie is added to the request, the analysis checks that the secure
flag is set.

Sink ::= ∗ → ( : javax.servlet.http.Response)

.addCookie(cookie c : c.getSecure() has value false)
(5)

Please note that the specification of the trigger condition in (5) is more complex
as in the case of SQL injection as we have to express a condition on a field of an
object.

Summarizing, the expressiveness of Jaint’s taint DSL was sufficient for
expressing the CWEs in the OWASP benchmarks.

Comparing the expressiveness to other tools that provide performance data
for the OWASP benchmark suite, at least SBwFindSecBugs (cf. next subsection)
uses an approach similar to Jaint: Method signatures and parameter positions
are used for specifying taint sources and sinks. Jaint’s taint DSL is more precise
and more expressive than SBwFindSecBugs by allowing custom sources and sinks
per analysis, by allowing to express that an object obtained from a sink becomes
a sink as well, and by allowing to specify constraints on parameter values.

Together, these two results provide some confidence in the expressiveness of
Jaint’s taint DSL (RQ1). Of course, there is effort associated with specifying
custom sources and sinks for analyses and for analyzed APIs but developers of
tools have to spent effort on definition of taint sources and sinks anyway and (in
the long run) all tools can profit from more detailed specifications.

4.2 Experimental Performance Analysis

In this subsection we describe the setup used to evaluate our framework on the
OWASP benchmark and compare Jaint with the other tools based on precision
(RQ2). We will show that Jaint successfully beats existing research approaches
in precision and discusses Jaint’s runtime performance compared with other
noncommercial tools (RQ3).

Setup. Jaint’s taint DSL and a corresponding code generator are implemented
in the Meta Programming System (MPS)12. We used the implementation to
generate monitors and taint injectors together with sanitization points for the
11 CWEs in the OWASP benchmark. We have written a generic HttpServlet
driver for executing each of the servlets. For the DSE, we modeled all data read
from a request object symbolically as it is the untrusted input read from the
web. This ensures that we explore all paths across a HttpServlet that might be
influenced through a request by a malicious attacker, as the OWASP benchmark
does not contain another untrusted source. In addition, we provided suitable
symbolic peers for the used libraries that require environment interaction. For
example, the analysis of a test case related to a potential SQL injection weakness
(CWE 89) requires a suitable abstraction for the database interaction involved
in the test case. In the same way, we provided abstractions for file system access,
12 https://www.jetbrains.com/mps/.

https://www.jetbrains.com/mps/
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Fig. 4. Comparing our results of the generated DSL specification with results
from related work. The percentage is computed as follows: TruePositiveRate −
FalsePositiveRate.

LDAP related implementations and XPath libraries. Those libraries are required
to enable the DSE to process the OWASP benchmark and are not related to the
taint analysis. Using the mentioned driver together with the peers, we analyzed
every servlet with Jaint and 11 taint colors enabled. All experiments were con-
ducted on an Intel(R) Core(TM) i9-7960X machine with 128 GB RAM and an
SSD hard drive, running Ubuntu with kernel 5.4.0-33 (x86 64).

Precision. Over all categories of CWEs, Jaint achieves the maximum possible
precision of 100% true verdicts and 0% false verdicts, i.e., it finds all vulnerabil-
ities in the benchmarks and does not raise a single false alarm. It outperforms
the other tools for which performance is reported to OWASP by a big margin:
the scorecard13 that is provided by the OWASP benchmark suite is shown in
Fig. 4 (Jaint is marked D). The other tools in the card that perform better than
random guessing fall into three groups: over-approximating tools with (close to)
no false negatives but a high rate of false positives (B,H), under-approximating
tools with no false positives but high numbers of false negatives (E,F ), and a
third group (A,I) with high rates of false positives and false negatives.

For some commercial tools, performance data is not included in the OWASP
scorecard, and hence not included in our evaluation, but can be found in promo-
tional statements on the web pages of tool vendors. Most notably, Hdiv’s and
Contrast’s IAST tools also report 100% true verdicts and 0% false positives on
the OWASP benchmark suite. It seems, however, that IAST is a dynamic analy-

13 Score computation: https://owasp.org/www-project-benchmark/#div-scoring.

https://owasp.org/www-project-benchmark/#div-scoring
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sis and—in contrast to Jaint—cannot guarantee complete exploration. Julia, a
commercial static analyzer using abstract interpretation, is reported to achieve
a 90% score in the benchmark, which is a very good score but still includes 116
false positive results [4]. So far, Jaint is the only tool that can provide com-
pleteness guarantees (within the limits of symbolic execution), while performing
precise security analysis (RQ2).

Performance. We compare the runtime of Jaint to the static code analysis
FindSecBugs (H) as performance data for the commercial IAST tools and for
Juliet could not be obtained. FindSecBugs needs 62 s (average over 3 runs with no
significant variance) for analyzing the OWASP benchmark suite, averaging 23 ms
per task. Jaint, in comparison, needs 1 879 s (average over 3 runs with 5 s std.
deviation), i.e., an average of 686 ms per task. While this constitutes a thirtyfold
increase in runtime, the absolute runtime still allows to run Jaint as part of
a CI pipeline, especially since the reported runtime is obtained through single-
threaded and sequential task processing, leaving space for runtime optimization
through parallelization (RQ3).

5 Conclusion

In this paper, we have presented Jaint, a framework for analyzing Java Web-
Applications. Jaint is the first working proof-of-concept for combining dynamic
symbolic execution and dynamic multi-colored taint analysis in Java. Our app-
roach strictly separates symbolic annotations and colored taint markers used
for a security analysis. This enables analysis of arbitrary sanitization operations
while dynamic symbolic execution is still capable of exploring the symbolic state
space. Jaint uses JDart and the JPF-VM, as the dynamic symbolic execution
engine of Java byte code.

We extended JDart with environment models that represent parts of the
Java standard library and provide symbolic summaries and model taint propaga-
tion for some of the interfaces in the Java library, e.g., classes from the java.sql
package. For the specification of security properties that Jaint should check,
we provide a domain-specific language (DSL) based on the Meta Programming
System (MPS). Custom components for checking of specified properties are gen-
erated from specifications (i.e., VM event listeners that can be plugged into the
JPF-VM for taint injection, taint sanitization, and taint monitoring).

The evaluation of the approach on the OWASP benchmark shows promis-
ing results: the implementation achieves a 100% score and 0% false positive
results, outperforming all other research tools for which performance data on
the OWASP benchmark suite is available. Basis for the evaluation was the spec-
ification of taint analyses for the 11 classes of CWEs in the OWASP benchmark
suite using the proposed taint DSL. Specifications were derived by researching
CWEs and by inspection of the code of the OWASP benchmark suite and the
Java class library. As these taint analyses are specified using our DSL we could
demonstrate successfully, that our domain-specific language is expressive enough
for specifying taint analyses for a relevant set of CWEs.
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Being based on the synthetic OWASP benchmark suite, the conducted
experiments only provide initial insights into the applicability and challenges
of combining dynamic symbolic execution and taint analysis for the analysis of
Web-Applications. The scalability of Jaint depends on the performance of the
underlying dynamic symbolic execution engine. Here, the manually developed
environment models may hamper application in industrial contexts. One direc-
tion of future work is thus the automation of environment modeling, e.g., using
domain-specific languages.
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Abstract. In floating-point programs, guard instability occurs when the
control flow of a conditional statement diverges from its ideal execution
under real arithmetic. This phenomenon is caused by the presence of
round-off errors in floating-point computations. Writing programs that
correctly handle guard instability often requires expertise on finite pre-
cision arithmetic. This paper presents a fully automatic toolchain that
generates and formally verifies a guard-stable floating-point C program
from its functional specification in real arithmetic. The generated pro-
gram is instrumented to soundly detect when unstable guards may occur
and, in these cases, to issue a warning. The proposed approach combines
the PRECiSA floating-point static analyzer, the Frama-C software veri-
fication suite, and the PVS theorem prover.

1 Introduction

The development of floating-point software is particularly challenging due to the
presence of round-off errors, which originate from the difference between real num-
bers and their finite precision representation. Since round-off errors accumulate
during numerical computations, they may significantly affect the evaluation of
both arithmetic and Boolean expressions. In particular, unstable guards1 occur
when the guard of a conditional statement contains a floating-point expression
whose round-off error makes the actual Boolean value of the guard differ from the
value that would be obtained assuming real arithmetic. The presence of unstable
guards amplifies the divergence between the output of a floating-point program
and its ideal evaluation in real arithmetic. This divergence may lead to catas-
trophic consequences in safety-critical applications. Understanding how round-
off errors and unstable guards affect the result and execution flow of floating-
point programs requires a deep comprehension of floating-point arithmetic.

This paper presents a fully automatic integrated toolchain that generates and
verifies guard-stable floating-point C code from its formal functional specification
in real arithmetic. This toolchain consists of:

Research by the first three authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.
1 In the literature [15,31], unstable guards are often referred to as unstable tests.
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– PRECiSA [19,29], a static analyzer for floating-point programs2,
– Frama-C [17], a collaborative tool suite for the analysis of C code, and
– the Prototype Verification System (PVS) [23], an interactive theorem prover.

The input of the toolchain is a PVS specification of a numerical algorithm
in real arithmetic, the desired floating-point format (single or double precision),
and initial ranges for the input variables. A formally verified program transfor-
mation is introduced to implement the real-valued specification using floating-
point arithmetic in the chosen floating-point format. This transformation is an
extended and improved version of the one presented in [31]. Numerically unstable
guards are replaced with more restrictive ones that preserve the control flow of
the real-valued original specification. These new guards take into consideration
the round-off error that may occur when the expressions of the original pro-
gram are evaluated in floating-point arithmetic. In addition, the transformation
instruments the program to emit a warning when the floating-point flow may
diverge with respect to the real number specification. This program transforma-
tion is designed to limit the overhead introduced by the new guards. Symbolic
error expressions are used to avoid concrete numerical assumptions on the input
variables. This symbolic approach is highly modular since the transformation is
still correct even if the input ranges are modified.

The static analyzer PRECiSA is extended with a module implementing the
proposed program transformation and with another module that generates the
corresponding C code. This C code includes ANSI/ISO C Specification Language
(ACSL) [1] annotations stating the relationship between the floating-point C
implementation and its functional specification in real arithmetic. To this end,
the round-off errors that occur in conditional guards and the overall round-off
error of each function in the program are estimated by PRECiSA. PVS proof
certificates are generated stating the correctness of these estimations. The cor-
rectness property of the C program states that if the program terminates without
a warning, it follows the same computational path as the real-valued specifica-
tion, i.e., all unstable guards are detected.

The Frama-C/WeakestPrecondition (WP) plug-in is used to generate veri-
fication conditions in the language of PVS and it is customized to automati-
cally integrate the PVS certificates generated by PRECiSA into the proof of
such verification conditions. While PVS is an interactive theorem prover, these
verification conditions are automatically proved by ad-hoc strategies developed
as part of this work. Therefore, neither expertise in theorem proving nor in
floating-point arithmetic is required from the user to verify the correctness of
the generated C program. The proposed approach is applied to a fragment of the
Detect and AvoID Alerting Logic for Unmanned Systems (DAIDALUS) software
library developed by NASA [21]. DAIDALUS is the reference implementation
of detect-and-avoid for unmanned aircraft systems in the standard document
RTCA DO-365 [25].

The remainder of the paper is organized as follows. Section 2 provides a brief
overview of floating-point numbers, unstable guards, and the tool PRECiSA.
2 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.

https://github.com/nasa/PRECiSA
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The proposed program transformation to detect guard instability is introduced
in Sect. 3. Section 4 describes the integrated toolchain to automatically generate
and verify a probably correct floating-point C program from a PVS real-valued
specification. Section 5 discusses related work and Sect. 6 concludes the paper.

2 Preliminaries

Floating-point numbers [16] (or floats) are finite precision representations of
real numbers widely used in computer programs. In this work, F denotes the
set of floating-point numbers. The expression R(ṽ) denotes the conversion of
the float ṽ to reals, while the expression F(r) denotes the floating-point number
representing r , i.e., the rounding of r .

Definition 1 (Round-off error). Let ṽ ∈ F be a floating-point number that
represents a real number r ∈ R, the difference |R(ṽ) − r | is called the round-off
error (or rounding error) of ṽ with respect to r.

When a real number r is rounded to the closest float, the round-off error is
bounded by half unit in the last place of r, ulp(r), which represents the differ-
ence between the two closest consecutive floating-point numbers ṽ1 and ṽ2 such
that ṽ1≤r≤ ṽ2 and ṽ1≠ ṽ2. Round-off errors accumulate through the computation
of mathematical operators. The IEEE-754 standard [16] states that every basic
operation should be performed as if it would be calculated with infinite preci-
sion and then rounded to the nearest floating-point value. Therefore, an initial
error that seems negligible may become significantly larger when combined and
propagated inside nested mathematical expressions.

Let ˜V be a finite set of variables representing floating-point values and V a
finite set of variables representing real values such that ˜V ∩V = ∅. It is assumed
that there is a function χr : ˜V→V that associates to each floating-point variable
x̃ a variable x ∈V representing the real value of x̃. The set of arithmetic expres-
sions over floating-point (respectively real) numbers is denoted as ˜A (respectively
A). The function R

˜A
: ˜A→A converts an arithmetic expression on floating-point

numbers to the corresponding one on real numbers. This function is defined
by replacing each floating-point operation with the corresponding one on real
numbers and by applying R and χr to floating-point values and variables, respec-
tively. Conversely, the function F

˜A
: A→ ˜A applies the rounding F to constants

and variables and replaces each real-valued operator with the corresponding
floating-point one.

The function R
˜B

: ˜B→B is defined as the natural extension of R
˜A

to Boolean
expressions. Given a variable assignment σ : V → R, evalB(σ,B) ∈ {true, false}
denotes the evaluation of the real Boolean expression B. Similarly, given σ̃ :
˜V → F, ˜eval

˜B
(σ̃, ˜B) ∈ {true, false} denotes the evaluation of the floating-point

Boolean expression ˜B. Boolean expressions are also affected by rounding errors.
When φ̃ ∈ ˜B evaluates differently in real and floating-point arithmetic, φ̃ is said
to be unstable.
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Definition 2 (Unstable Guard). A guard φ̃ ∈ ˜B is said to be unstable if there
exist two assignments σ̃ : {x̃1, . . . , x̃n}→F and σ : {χr (x̃1), . . . , χr (x̃n)}→R such
that for all i ∈ {1, . . . , n}, σ(χr (x̃i))=R(σ̃(x̃i)) and evalB(σ,R

˜B
(φ̃))≠˜eval

˜B
(σ̃, φ̃).

Otherwise, the guard is said to be stable.

The evaluation of a conditional statement if φ̃ then ãe1 else ãe2 is said to follow
an unstable path when φ̃ is unstable. When the flows coincide, the evaluation
is said to follow a stable path. The presence of unstable guards amplifies the
effect of round-off errors in numerical programs since the computational flow of
a floating-point program may significantly diverge from the ideal execution of
its representation in real arithmetic. Therefore, for establishing the correctness
of a numerical program, it is essential to correctly estimate the round-off error
associated with both stable and unstable paths.

PRECiSA [29] is a static analyzer for floating-point programs. PRECiSA
accepts as input a floating-point program and automatically generates a sound
over-approximation of the floating-point round-off error and a proof certificate
in PVS ensuring its correctness. Given a program to analyze, for every possible
combination of real and floating-point execution paths, PRECiSA computes a
conditional error bound of the form 〈η, η̃〉t↠ (r, ṽ, e), where η ∈ ˜B is a symbolic
path condition over the reals, η̃ ∈ ˜B is a symbolic path condition over the floats,
r, e∈A are symbolic arithmetic expressions over the reals, and ṽ ∈ ˜A is a symbolic
expression over the floats. Intuitively, 〈η, η̃〉t ↠ (r, ṽ, e) indicates that if both
conditions η and η̃ are satisfied, the output of the ideal real-valued program is r,
the output of the floating-point implementation is ṽ, and the round-off error is
at most e, i.e., |r − ṽ|≤ e. The flag t is used to indicate, by construction, whether
a conditional error bound corresponds to an unstable path, when t = u, or to a
stable path, when t= s. PRECiSA initially computes round-off error estimations
in a symbolic form so that the analysis is modular. Given the initial ranges for the
input variables, PRECiSA uses the Kodiak global optimizer [22,27] to maximize
the symbolic error expression and obtain a concrete numerical enclosure for the
error.

3 A Program Transformation to Detect Unstable Guards

This section presents a program transformation that converts a real-valued spec-
ification into a floating-point program instrumented to detect unstable guards.
This program transformation significantly extends the expressivity of the input
language of the transformation originally presented in [31]. In particular, it pro-
vides support for function calls, for-loops, predicates, and arithmetic expressions
with inline conditionals. In addition, it improves the accuracy of the method to
detect guard instability.

Let ˜Ω be a set of pre-defined floating-point operations, Σ a set of function
symbols, Π a set of predicate symbols such that Σ ∩ Π = ∅, and ˜V a finite
set of variables representing floating-point values, respectively. The syntax of
floating-point program expressions in ˜S is given by the following grammar.
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˜A ∈ ˜A ::= ˜d | x̃ | ˜�(˜A, . . . , ˜A) | f̃(˜A, . . . , ˜A) | ˜B? ˜A : ˜A
˜B ∈ ˜B ::= true | ˜B ∧ ˜B | ¬˜B | ˜A < ˜A | ˜A ≤ ˜A | p̃(˜A, . . . , ˜A)
˜S ∈ ˜S ::= ˜A | let x̃ = ˜A in ˜S | for(i0, in, acc0, λ(i, acc).˜S ) | if ˜B then ˜S else ˜S

| if ˜B then ˜S [elsif ˜B then ˜S ]mj=1 else ˜S | ω

where ˜d ∈ F, x̃ ∈ ˜V, f̃ ∈Σ, p̃ ∈Π, ˜� ∈ ˜Ω, i0, in, acc0 ∈ ˜A, and i, acc ∈ ˜V.
The expression φ̃? ˜Athen : ˜Aelse denotes an inline conditional statement that

can be used as a parameter in an arithmetic operator or in a function call.
The conjunction ∧, negation ¬, and true have the usual classical logic meaning.
The disjunction ∨ operator, the relations >, ≥, and the constant false can be
derived. The notation [elsif ˜B then ˜S ]mj=1 denotes a list of m conditional elsif
branches. Bounded recursion is added to the language as syntactic sugar using
the for construct. The expression for(i0, in, acc0, λ(i, acc).body) emulates a for-
loop where i∈˜V is the control variable that ranges from i0 to in, acc is the variable
where the result is accumulated with initial value acc0, and body is the body of
the loop. For instance, for(1, 10, 0, λ(i, acc).i + acc) represents the value f(1, 0),
where f is the recursive function f(i, acc) ≡ if i>10 then acc else f(i+1, acc+i).
The body of the for-loop is restricted to be of type integer. Therefore, it does
not accumulate round-off errors. The transformation of more generic for-loops
requires the computation of the round-off error of a recursive function, which
is an open problem beyond the scope of this paper. The symbol ω denotes a
warning exceptional statement.

A floating-point program ˜P is defined as a set of function declarations of the
form f̃(x̃1, . . . , x̃n)= ˜S , where x̃1, . . . , x̃n are pairwise distinct variables in ˜V and
all free variables appearing in ˜S are in {x̃1, . . . , x̃n}. The natural number n is
called the arity of f̃ . Henceforth, it is assumed that programs are well-formed in
the sense that, in a program ˜P , for every function call f̃( ˜A1, . . . , ˜An) that occurs
in the body of the declaration of a function g̃, a unique function f̃ of arity n is
defined in ˜P before g̃. Hence, the only recursion allowed is the one provided by
the for-loop construct. The set of floating-point programs is denoted by ˜P.

A real-valued program has the same structure of a floating-point program
where floating-point expressions are replaced with real-valued ones. A real-valued
program does not contain any ω statements. The set of real-valued programs is
denoted by P. The function F

˜P
: P→˜P converts a real program P into a floating-

point one by applying F
˜A

to the arithmetic expressions occurring in P .
The input of the transformation is a real-valued program P . The straightfor-

ward floating-point implementation of P is initially computed as ˜P : =F
˜P
(P ).

Subsequently, the Boolean expressions in the guards of ˜P are replaced with more
restrictive ones that take into consideration the symbolic round-off error. This
is done by means of two Boolean abstractions β+, β− : ˜B→ ˜B defined as follows.

Definition 3. Let εvar : ˜A → ˜V be a function that associates to an expression
ãe ∈ ˜A a variable that represents its round-off error, i.e., |ãe −R

˜A
(ãe)|≤εvar (ãe).

The functions β+, β− : ˜B→ ˜B are defined as follows, where ◇ ∈ {≤, <}.
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β+(ãe ◇ 0) :=

{

ãe ◇ 0 if |ãe − R
˜A
(ãe)| ≤ 0

ãe ◇− εvar (ãe) otherwise

β−(ãe ◇ 0) :=

{

¬(ãe ◇ 0) if |ãe − R
˜A
(ãe)| ≤ 0

¬(ãe ◇ εvar (ãe)) otherwise

β+(φ̃1 ∧ φ̃2) := β+(φ̃1) ∧ β+(φ̃2) β−(φ̃1 ∧ φ̃2) := β−(φ̃1) ∨ β−(φ̃2)

β+(¬φ̃) := β−(φ̃) β−(¬φ̃) := β+(φ̃)

Let εβ
var : ˜B→ ℘(˜V) denote a function computing the error variables introduced

by applying β+ and β− to a Boolean expression. Given φ̃, φ̃1, φ̃2 ∈
˜B, εβ

var (ãe ◇0) :
= {εvar (ãe)}, where ◇ ∈ {≤, <}, εβ

var (φ̃1 ∧ φ̃2) := εβ
var (φ̃1)∪ εβ

var (φ̃2), and εβ
var (¬φ̃) :

= εβ
var (φ̃). For each predicate p̃(x̃1,...,x̃n) = φ̃ such that εβ

var (φ̃) = {e1, . . . , em},
φ̃ ≠ β+(φ̃), and ¬φ̃ ≠ β−(φ̃), two new predicates are introduced:

p̃+(x̃1, . . . , x̃n, e1, . . . , em) = β+(φ̃) p̃−(x̃1, . . . , x̃n, e1, . . . , em) = β−(φ̃)

Thus, the Boolean abstractions for a predicate call are defined as follows:

β+(p̃(ãe1, . . . , ãen)) := p̃+(ãe1, . . . , ãen, e1, . . . , em)

β−(p̃(ãe1, . . . , ãen)) := p̃−(ãe1, . . . , ãen, e1, . . . , em).

Generic inequalities of the form a < b are handled by replacing them with their
equivalent sign-test form a − b < 0. The following lemma states that β+ and
β− correctly approximate a floating-point Boolean expression and its negation,
respectively.

Lemma 1. Given φ̃ ∈ ˜B, let fv(φ̃) be the set of free variables in φ̃. For all σ :
fv(φ)→R, σ̃ : fv(φ̃)→ F, and x̃ ∈ fv(φ̃) such that F(σ(χr (x̃))) = σ̃(x̃), β+ and β−

satisfy the following properties.

1. ˜eval
˜B
(σ̃, β+(φ̃)) ⇒ ˜eval

˜B
(σ̃, φ̃) ∧ evalB(σ,R

˜B
(φ̃)).

2. ˜eval
˜B
(σ̃, β−(φ̃)) ⇒ ˜eval

˜B
(σ̃,¬φ̃) ∧ evalB(σ,¬R

˜B
(φ̃)).

Given a program expression S̃, the function τ : ˜S→˜S×℘(˜V), defined in Fig. 1,
returns a pair formed by the instrumented version of S̃ and the set of new error
variables introduced by β+ and β−. The functions τS : ˜S→ ˜S and τ

˜V
: ˜S→ ℘(˜V)

return the first and the second projection of the result of τ respectively.
In the case of the conditional (Eq. (3.2)), when the round-off error is null and

it does not affect the evaluation of the Boolean expression, i.e., φ̃=β+(φ̃) and ¬φ̃=
β−(φ̃), the transformation function τ is recursively applied to the subprograms
˜S1 and ˜S2. Otherwise, the test on φ̃ is replaced by two more restrictive tests
on β+(φ̃) and β−(φ̃). The then branch is taken when β+(φ̃) is satisfied. By
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Fig. 1. Program transformation rules.

Property 1 in Lemma 1, this means that in the original program both φ̃ and
R(φ̃) hold and, thus, the then branch is taken in both real and floating-point
control flows. The else branch of the transformed program is taken when β−(φ̃)
holds. This means, by Property 2 in Lemma 1, that in the original program the
else branch is taken in both real and floating-point control flows. When neither
β+(φ̃) nor β−(φ̃) is satisfied a warning ω is issued indicating that floating-point
and real flows may diverge. The function εβ

var is applied to φ̃ to collect the new
error variables introduced by the application of β+ and β−. The inline version
of the conditional is transformed in the same way.
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For the n-ary conditional (Eq. (3.4)), in the case the round-off error does
not affect the evaluation of any of the Boolean expression, the transformation
function τ is applied recursively to the subprograms ˜S1, . . . , ˜S2. Otherwise, the
guard φ̃i of the i-th branch is replaced by the conjunction of β+(φ̃i) and β−(φ̃j)
for all the previous branches j < i. By Lemma 1, it follows that the transformed
program takes the i-th branch only when the same branch is taken in both real
and floating-point control flows of the original program. A warning is issued
by the transformed program when real and floating-point control flows of the
original program differ. The new variables introduced by the application of β+

and β− in each branch are computed by the εβ
var function.

In the case of the function call (Eq. (3.7)), new error variables e′
1, . . . , e

′
m

are introduced to model the instantiated error parameters where the formal
parameters x̃1, . . . , x̃n are replaced by the actual parameters ˜A1, . . . , ˜An. These
new variables are added to the set τ

˜V
(˜S ). Thus, when g̃τ (x̃1, . . . , x̃n, e1, . . . , em)∈

τ̄(P ) and for all i = 1 . . . m, if ei = εvar (ãei), then e′
i = εvar (ãei[x̃j ← τS( ˜Aj)]nj=1).

The function τ̄ transforms a real-valued program P into a floating-point
program that is instrumented to detect unstable guards. It is defined as follows.

Definition 4 (Program Transformation). Let P ∈ P be a real-valued pro-
gram, the transformation τ̄ : P→ ˜P is defined as

τ̄(P ) =
⋃

{f̃τ (x̃1, . . . , x̃n, e1, . . . , ek)= if
∨

g̃τ (ȳ)∈fc(˜S ′)(g̃
τ (ȳ) = ω) then ω else ˜S ′ |

f̃(x̃1, . . . , x̃n) = ˜S ∈ F
˜P
(P ), 〈˜S ′, {e1, . . . , ek}〉 = τ(˜S )},

where fc(˜S ) returns all the function calls ocurring in ˜S. The new parameters
e1, . . . , ek are called symbolic error parameters.

A check on each function call g̃τ (ȳ) occurring in the body of f̃ is performed.
If the returned value is warning, this is propagated as the result of f̃ . The
expression ˜S ′ is the instrumented body of f̃ obtained by applying the trans-
formation τ . Each function declaration is equipped with an additional set of
arguments e1, . . . , ek which correspond to the symbolic error parameters intro-
duced by the application of β+ and β− in the body of the function. Therefore,
there is one new argument for each floating-point arithmetic expression occur-
ring in the guard of a conditional. It can be argued that it would be sufficient
to add, for each argument in the original function declaration, a variable rep-
resenting its rounding error. In this case, the Boolean approximations β+ and
β− could be implemented by using the symbolic error expression computed by
PRECiSA. This approach has two main problems. First, such symbolic error
expressions, being real-valued, cannot be evaluated precisely in a floating-point
program. A trivial floating-point implementation would be affected by rounding
error, thus compromising the soundness of the transformation. Second, correctly
estimating the round-off error by using uniquely floating-point-operators is likely
to produce a huge symbolic expression. This will lead to unintelligible code and,
possibly, in a loss of performances since a complex arithmetic expression needs
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to be evaluated at runtime. In addition, the round-off error of computing the
error expression itself needs to be considered. This may lead to an excessively
coarse over-estimation resulting in a large number of false warnings. The choice
of using symbolic error parameters to model the round-off error of arithmetic
expressions avoids the aforementioned problems. This solution provides a good
level of modularity since the symbolic expression is independent of the variables’
initial ranges. Furthermore, this approach preserves the program structure of
the original program.

The following theorem states the correctness of the program transformation
τ̄ . The straightforward floating-point implementation of the original program
F

˜P
(P ) and the transformed program τ̄(P ) return the same output if and only if

the transformed program does not emit a warning.

Theorem 1. Given P ∈ P, for all f̃(x̃1, . . . , x̃n) = ˜S ∈ F
˜P
(P ), let f̃τ (x̃1, . . . , x̃n,

e1, . . . , em) ∈ τ̄(P ) be its transformed version. It holds that

f̃τ (x̃1, . . . , x̃n, e1, . . . , em) ≠ ω ⇐⇒ f̃(x̃1, . . . , x̃n) = f̃τ (x̃1, . . . , x̃n, e1, . . . , em).

The proposed program transformation (including Lemma1 and Theorem 1) has
been formally specified and verified in PVS3.

The intended semantics of the floating-point transformed program τ̄(P ) is the
real-valued semantics of the original program P , i.e., the real-valued semantics of
the transformed program R

˜P
(τ̄(P )) is not relevant for the notion of correctness

considered in this work. Therefore, even if the transformed program presents
unstable guards with respect to R

˜P
(τ̄(P )), Theorem 2 ensures that its floating-

point control flow preserves the control flow of the original specification P on real
arithmetic. The difference between the output of the real number specification P
and the one of the transformed floating-point implementation τ̄(P ) is bounded
by the error occurring in F

˜P
(P ) taking into consideration only the stable cases

(t = s), as stated in the following theorem. In the following, denotes
the set of conditional error bounds computed by PRECiSA for the function f̃
defined in the program P̃ .

Theorem 2 (Program Transformation Correctness). Given P ∈ P, for
all f(x1, . . . , xn) = S ∈ P , let f̃τ (x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P ) be its transformed
floating-point version. Let σ : {x1 . . . xn}→R, and σ̃ : {x̃1 . . . x̃n}→ F, such that
for all i ∈ {1, . . . , n}, R(σ̃(x̃i)) = σ(xi), it holds that

f̃τ (x̃1, . . . , x̃n, e1, . . . , em) ≠ ω ⇐⇒ |f(x1, . . . , xn) − f̃τ (x̃1, . . . , x̃n, e1, . . . , em)| ≤ ef̃

where f̃τ (x̃1, . . . , x̃n, e1, . . . , em) ∈ τ̄(P ) and

3 This formalization is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA
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Therefore, all the unstable cases of the original program are detected in the
transformed program and they no longer influence the overall round-off error.

Example 1. Consider the following fragment of DAIDALUS4, a software library
that implements a detect-and-avoid logic for unmanned aircraft systems (UAS).
A detect-and-avoid logic ensures that UAS remain well clear, e.g., safely sepa-
rated, from traffic aircraft. The real-valued program WCV ∈P consists of six func-
tions. The function wcv determines if two aircraft (ownship and intruder), whose
relative vertical position and velocity are given by (sx, sy, sz) and (vx, vy, vz),
respectively, are in loss of horizontal (hwcv) and vertical (vwcv) well clear. The
function tcoa computes the time to co-altitude of two vertically converging air-
craft. When the aircraft are vertically diverging, the function returns 0. The
function tcpa computes the time to (horizontal) closest point of approach. The
function taumod is an estimation of tcpa that is less demanding on sensor and
surveillance technology. The constants DTHR, TTHR, ZTHR and TCOA are
distance and time thresholds used in the definition of the DAIDALUS well-clear
logic.

tcoa(sz, vz) = if szvz < 0 then −(sz/vz) else 0

tcpa(sx, sy, vx, vy) = if vx ≠ 0 ∧ vy ≠ 0 then −(sxvx + syvy)/(v2
x + v2

y) else 0

taumod(sx, sy, vx, vy) = if sxvx + syvy < 0

then (DTHR2 − s2x)/(sxvx + syvy)

else −1

vwcv(sz, vz) = |sz| ≤ ZTHR ∨ (tcoa(sz, vz) ≥ 0 ∧ tcoa(sz, vz) ≤TCOA)

hwcv(sx, sy, vx, vy)= let t = tcpa(sx, sy, vx, vy), tm = taumod(sx, vx, sy, vy) in

sxvx + syvy < =DTHR2

∨ ((sx + tvx)2 + (sy + tvy)2 < =DTHR2
∧ 0 < =tm ∧ tm < =TTHR)

wcv(sx, sy, sz, vx, vy, vz) = hwcv(sx, sy, vx, vy) ∧ vwcv(sz, vz)

The program τ̄(WCV ) is obtained by using the transformation in Fig. 1. The
floating-point parameters are the rounding of the real ones, e.g., sx=χr (s̃x). The
floating-point rounding of each constant is denoted with a tilde. All inequalities
occurring in WCV have been rearranged to be in the form of a sign-test in the
transformed program. Error variables are introduced by β+ and β− as parameters
for each floating-point expression occurring in the guards. In addition, the error
parameters of the function calls are propagated to the caller. The meaning of
each error variable is shown as a comment in gray.

4 DAIDALUS is available from https://shemesh.larc.nasa.gov/fm/DAIDALUS/.

https://shemesh.larc.nasa.gov/fm/DAIDALUS/.
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˜tcoa
τ
(s̃z, ṽz, etcoa ) = if s̃z ṽz <−etcoa then −(s̃/̃ṽ) %|(s̃z ṽz) − (szvz)| ≤ etcoa

elsif s̃z ṽz ≥ etcoa then 0 else ω

˜tcpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey) = %|ṽx − vx| ≤ ex, |ṽy − vy| ≤ ey

if (ṽx <−ex ∨ ṽx > ex) ∧ (ṽy <−ey ∨ ṽy > ey) then −(s̃xṽx+̃s̃y ṽy)/̃(ṽ
2
x+̃ṽ

2
y)

elsif (ṽx ≥ ex ∧ ṽx ≤−ex) ∨ (ṽy ≥ ey ∧ ṽy ≤−ey) then 0 else ω

˜taumod
τ
(s̃x, s̃y, ṽx, ṽy, etau) = %|(s̃xṽx + s̃y ṽy) − (sxvx + syvy)| ≤ etau

if s̃xṽx + s̃y ṽy <−etau then (D̃THR
2−̃s

2
x)/̃(sxvx+̃syvy)

elsif s̃xṽx + s̃y ṽy ≥ etau then −1 else ω

ṽwcv
+
(s̃z, ṽz, etcoa , e

v
1 , e

v
2 , e

v
3)= if ˜tcoa

τ
(s̃z, ṽz, etcoa ) = ω then ω else

|s̃z|−̃Z̃THR ≤−e
v
1 %||s̃z|−̃Z̃THR) − (|sz| − ZTHR)| ≤ e

v
1

∨ ( ˜tcoa
τ
(s̃z, ṽz, etcoa ) ≥ e

v
2 %| ˜tcoa

τ
(s̃z, ṽz, etcoa ) − tcoa(sz, vz)| ≤ e

v
2

∧
˜tcoa

τ
(s̃z, ṽz, etcoa )−̃T̃COA ≤−e

v
3)

%| ˜tcoa
τ
((s̃z, ṽz, etcoa )−̃T̃COA) − (tcoa(sz, vz) − TCOA)| ≤ e

v
3

ṽwcv
−
(s̃z, ṽz, etcoa , e

v
1 , e

v
2 , e

v
3)= if ˜tcoa

τ
(s̃z, ṽz, etcoa ) = ω then ω else

|s̃z| − Z̃THR > e
v
1 ∧ ( ˜tcoa

τ
(s̃z, ṽz, etcoa ) <−e

v
2 ∨

˜tcoa
τ
(s̃z, ṽz, etcoa )−̃T̃COA > e

v
3)

h̃wcv
+

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4 )=

let t = ˜tcpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey), tm = ˜taumod

τ
(s̃x, s̃y, ṽx, ṽy, etau) in

if t = ω ∨ tm = ω then ω else

s̃xṽx+̃s̃y ṽy−̃D̃THR
2
≤−e

h
1 %|(s̃xṽx+̃s̃y ṽy − D̃THR

2
) − (sxvx + syvy − DTHR

2
)| ≤ e

h
1

∨ ((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2−̃D̃THR
2
≤−e

h
2

%|((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2−̃D̃THR
2
) − ((sx + tvx)

2
+ (sy + tvy)

2 − DTHR
2
)| ≤ e

h
2

∧ tm ≥ e
h
3 %|tm − taumod(sx, sy, vx, vy)| ≤ e

h
3

∧ tm−̃T̃THR ≤−e
h
4 ) %|(tm−̃T̃THR) − (taumod(sx, sy, vx, vy) − TTHR)| ≤ e

h
4

h̃wcv
−
(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e

h
1 , e

h
2 , e

h
3 , e

h
4 )=

let t = ˜tcpa
τ
(s̃x, s̃y, ṽx, ṽy, ex, ey), tm = ˜taumod

τ
(s̃x, s̃y, ṽx, ṽy, etau) in

if t = ω ∨ tm = ω then ω else (s̃xṽx+̃s̃y ṽy−̃D̃THR
2
> e

h
1

∧ ((s̃x+̃tṽx)
2
+̃(s̃y+̃tṽy)

2−̃D̃THR
2
> e

h
2 ∨ tm ≥ e

h
3 ∨ tm−̃T̃THR > e

h
4 ))

w̃cv
+
(s̃x, ṽx, s̃y, ṽy, s̃z, ṽz, etcoa , ex, ey, etau , e

h
1 , e

h
2 , e

h
3 , e

h
4 , e

v
1 , e

v
2 , e

v
3)=

let hv = h̃wcv
+

(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e
h
1 , e

h
2 , e

h
3 , e

h
4 ),

vv = ṽwcv
+
(s̃z, ṽz, etcoa , e

v
1 , e

v
2 , e

v
3) in

if hv = ω ∨ vv = ω then ω else hv ∧ vv

w̃cv
−
(s̃x, ṽx, s̃y, ṽy, s̃z, ṽz, etcoa , ex, ey, etau , e

h
1 , e

h
2 , e

h
3 , e

h
4 , e

v
1 , e

v
2 , e

v
3)=

let hv = h̃wcv
−
(s̃x, ṽx, s̃y, ṽy, ex, ey, etau , e

h
1 , e

h
2 , e

h
3 , e

h
4 ),

vv = ṽwcv
−
(s̃z, ṽz, etcoa , e

v
1 , e

v
2 , e

v
3) in

if hv = ω ∨ vv = ω then ω else hv ∨ vv
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4 Automatic Generation and Verification of Guard-Stable
C Code

The toolchain presented in this section relies on several tools: the static analyzer
PRECiSA, the global optimizer Kodiak [27]5, the static analyzer Frama-C, and
the interactive prover PVS. The input to the toolchain is a real-valued program
expressed in the PVS specification language, the desired floating-point precision
(single and double precision are supported), and initial ranges for the input
variables. The output is an annotated C program that is guaranteed to emit
a warning when real and floating-point paths diverge in the original program
and PVS certificates that ensure its correctness. An overview of the approach is
depicted in Fig. 2.

Fig. 2. Toolchain for automatically generate and verify guard-stable C code.

In this work, PRECiSA is extended to implement the transformation defined
in Sect. 3 and to generate the corresponding C code. Given a real-valued program
P and a desired floating-point format (single or double precision), PRECiSA
applies the transformation presented in Sect. 3. The transformed program is
then converted into C syntax and ANSI/ISO C Specification Language (ACSL)
annotations are generated. ACSL [1] is a behavioral specification language for
C programs centered on the notion of function contract. It is used to state pre-
and post-conditions, assertions, and invariants.

For each function f̃τ in the transformed program, a C procedure is auto-
matically generated. In addition, each function f in the original specification is
expressed as a logic axiomatic definition in ACSL syntax. This definition can be
seen as a predicate modeling the real-valued expected behavior of the function.
The floating-point version f̃ of f is also expressed as an ACSL definition.

An ACSL predicate called f stable paths is introduced to model under which
conditions real and floating-point flows coincide. ACSL preconditions are added
to relate each C floating-point expression with its logic real-valued counter-
part through the error variable representing its round-off error. As mentioned in
Sect. 3, a new error variable e := εvar (ãe) is introduced for each floating-point
arithmetic expression ãe occurring in the conditional guards. For each new error

5 Kodiak is available from https://shemesh.larc.nasa.gov/fm/Kodiak/.

https://shemesh.larc.nasa.gov/fm/Kodiak/
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variable, a precondition stating that |ãe −R
˜A
(ãe)|≤e is added. A post-condition

is introduced for each function stating that, when the transformed function f̃τ

does not emit a warning, the predicate f stable paths holds and the difference
between f̃τ and its real-number specification f is at most the round-off error
computed for the stable paths of f̃ . For the functions containing for-loops, a
recursive real-valued version is generated as a logic axiomatic function in ACSL.
An invariant is also computed in order to relate the result of each iteration of
the for-loop with the corresponding call of the recursive real-valued function.

Example 2. Consider the real-valued specification tcoa and the instrumented
function ˜tcoa

τ
defined in Example 1. The pseudo-code of the annotated C code

generated by PRECiSA is shown below, the pseudo-code of the ACSL annotation
is printed in grey.

/∗@ logic auxiliary functions:
real tcoa(real sz, real vz) = sz ∗ vz < 0 ? − (sz/vz) : 0

double fp tcoa(double s̃z, double ṽz) = s̃z ∗̃ṽz < 0 ? −̃(s̃z /̃ṽz) : 0
predicate tcoa stable paths(real sz, realvz, double s̃z, double ṽz)=

(vz ≠ 0 ∧ sz ∗ vz < 0 ∧ ṽz ≠ 0 ∧ s̃z ∗̃ṽz < 0) ∨ (sz ∗ vz ≥ 0 ∧ s̃z ∗̃ṽz ≥ 0)
requires : 0 ≤ e

ensures :result ≠ ω =⇒ (result = fp tcoa(s̃z, ṽz)
∧∀sz, vz(|(s̃z ∗̃ṽz) − (sz ∗ vz)| ≤ e =⇒ tcoa stable paths(sz, vz, s̃z, ṽz))∗/

double tau tcoa (double s̃z, double ṽz, double e){
if (s̃z ∗̃ṽz <−e){return −̃(s̃z /̃ṽz); }
else { if (s̃z ∗̃ṽz ≥ e){return 0; }

else {return ω; }}}

As already mentioned, PRECiSA handles programs with symbolic param-
eters and generates a symbolic expression modeling an over-estimation of the
round-off error that may occur. Given input ranges for the variables, a numer-
ical evaluation of the symbolic expressions is performed in PRECiSA with the
help of Kodiak, a rigorous global optimizer for real-valued expressions. Kodiak
performs a branch-and-bound search that computes a sound enclosure for a sym-
bolic error expression using either interval arithmetic or Bernstein polynomial
basis. Therefore, it is possible to instantiate the error variables in the trans-
formed program with numerical values representing a provably correct round-off
error over-estimation.
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Example 3. The following function instantiates the symbolic function shown in
Example 2 assuming that 1 ≤ sz ≤ 1000 and 1 ≤ vz ≤ 1000.

/∗@ensures :∀sz, vz(1 ≤ sz ≤ 1000 ∧ 1 ≤ vz ≤ 1000 ∧ result ≠ ω∧

|s̃z − sz| ≤ ulp(sz)/2 ∧ |ṽz − vz| ≤ ulp(vz)/2)
=⇒ |result − tcoa(sz, vz)| ≤ 2.78e − 12 ∗ /

double tau tcoa num(double s̃z, double ṽz){
return tau tcoa (s̃z, ṽz, 1.72e − 10)}

Besides the transformed C program, PRECiSA generates PVS theorems that act
as formal certificates of the soundness of the computed estimations with respect
to the floating-point IEEE-754 standard [16]. These theorems are automatically
discharged in PVS by proof strategies that recursively inspect the round-off error
expression and apply the corresponding lemmas included in the PVS floating-
point round-off error formalization [7]. The instrumented C code for the program
WCV defined in Example 1 and the corresponding PVS certificates are generated
by PRECiSA6 in 7.12 seconds. The C code consists of approximately 500 lines
of code including all the ACSL annotations.

The tool suite Frama-C [17] is used to compute a set of verification conditions
(VCs) stating the relationship between the transformed floating-point program
and the original real-valued specification. Frama-C includes several static ana-
lyzers for the C language that support ACSL annotations. The Frama-C WP
plug-in implements the weakest precondition calculus for ACSL annotations
through C programs. For each annotation, Frama-C computes a set of verifi-
cation conditions in the form of mathematical first-order logic formulas. These
verification conditions can be proved by a combination of external automated
theorem provers, proof assistants, and SMT solvers.

The WP plug-in has been customized to support the PVS certificates gen-
erated by PRECiSA in the proof of correctness of the C program. PRECiSA
also provides a collection of PVS proof strategies that automatically discharge
the VCs generated by Frama-C. To prove the VCs for a particular function f ,
it is necessary to use not only properties about floating-point numbers but also
the contracts of the functions that are called in the body of f . These proofs are
quite tedious and error-prone since several renaming and reformulation steps
are applied by Frama-C to the annotated C code. The PVS strategies follow
the syntactic structure of the input functions to determine which properties and
contracts are needed to prove each of the VCs generated by Frama-C. There-
fore, no expertise in floating-point arithmetic or in PVS is required to verify the
correctness of the generated C code.

Example 4. Consider again the pseudo-code for tcoa depicted in Example 2. The
verification conditions computed by Frama-C for the functions tau tcoa and
tau tcoa num are the following.

6 This example is available at https://shemesh.larc.nasa.gov/fm/PRECiSA.

https://shemesh.larc.nasa.gov/fm/PRECiSA
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ϕtau tcoa = ∀e, sz, vz, es, ev ∈ R, s̃, ṽ ∈ F

(result ≠ ω ∧ e ≥ 0 ∧ |ṽz − vz| ≤ ev ∧ |s̃z − sz| ≤ es ∧ |(s̃z ∗̃ṽz) − (vz ∗ sz)| ≤ e

⇒ |result − tcoa(sz, vz)| ≤ ε
/̃
(sz, es, vz, ev)).

ϕtau tcoa num = ∀sz, vz ∈ R, s̃z, ṽz ∈ F, (result ≠ ω ∧ 1 ≤ s̃z ≤ 1000 ∧ 1 ≤ ṽz ≤ 1000

∧ |sz − s̃z| ≤ 1
2 ulp(sz) ∧ |vz − ṽz| ≤ 1

2 ulp(vz) ∧ |(s̃z ∗̃ṽz)−(vz∗sz)| ≤ 1.72e-10)
⇒ |result − tcoa(sz, vz)| ≤ 2.78e-12

The expression ε
/̃
(sz, es, vz, ev) denotes the symbolic error bound computed by

PRECiSA, the variable e denotes the round-off error of the expression s̃z ∗̃ṽz,
which is introduced when the Boolean approximations β+ and β− are applied.
The proof of these verification conditions follows from the fact that when result
is not a warning ω, it is equal to ˜tcoa(s̃z, ṽz) and from the numerical certificates
output by PRECiSA stating that | ˜tcoa(s̃z, ṽz)− tcoa(sz, vz)|≤ ε

/̃
(sz, es, vz, ev))=

2.78e-12.

5 Related Work

Several tools are available for analyzing numerical aspects of C programs. In
this work, the Frama-C [17] analyzer is used. Support for floating-point round-off
error analysis in Frama-C is provided by the integration with the tool Gappa [12].
However, the applicability of Gappa is limited to straight-line programs without
conditionals. Gappa’s ability to verify more complex programs requires adding
additional ACSL intermediate assertions and providing hints through annotation
that may be unfeasible to automatically generate. The interactive theorem prover
Coq can also be used to prove verification conditions on floating-point numbers
thanks to the formalization defined in [6]. Nevertheless, Coq [2] tactics need
to be implemented to automatize the verification process. Several approaches
have been proposed for the verification of numerical C code by using Frama-C
in combination with Gappa and/or Coq [3–5,13,18,30]. In [20], a preliminary
version of the technique presented in this paper is used to verify a specific case
study of a point-in-polygon containment algorithm. In contrast to the present
work, the aforementioned techniques are not fully automatic and they require
the user intervention in both the specification and verification processes.

Besides Frama-C, other tools are available to formally verify and analyze
numerical properties of C code. Fluctuat [14] is a commercial static analyzer
that, given a C program with annotations about input bounds and uncertainties
on its arguments, produces an estimation of the round-off error of the program.
Fluctuat detects the presence of possible unstable guards in the analyzed pro-
gram, as explained in [15], but does not instrument the program to emit a
warning in these cases. The static analyzer Astrée [9] detects the presence of
run-time exceptions such as division by zero and under and over-flows by means
of sound floating-point abstract domains. In contrast to the approach presented
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here, neither Fluctuat nor Astrée emit proof certificates that can be externally
checked by an external prover.

Precision allocation (or tuning) tools, such as FPTuner [8], Precimonius [26],
and Rosa [11], aim at selecting the lowest floating-point precision for the pro-
gram variables that is enough to achieve the desired accuracy. Rosa soundly
deals with unstable guards and with bounded loops when the variables appear-
ing in the loop are restricted to a finite domain. In contrast with the approach
presented in this paper, Rosa does not instrument the program to emit a warn-
ing when an unstable guard may occur. This means that the target precision
may be difficult to reach without additional optimization rewritings and a pro-
gram transformation as the one presented in this work. Program optimization
tools aim at improving the accuracy of floating-point programs by rewriting
arithmetic expressions in equivalent ones with a lower accumulated round-off
error. Examples of these tools are Herbie [24], AutoRNP [32], Salsa [10], and
CoHD [28].

6 Conclusion

Unstable guards, which occur when rounding errors affect the evaluation of
conditional statements, are hard to detect and fix without the expert use of
specialized tools. This paper presents a toolchain that automatically generates
and verifies floating-point C code that soundly detects the presence of unstable
guards with respect to an ideal real number specification.

The proposed toolchain relies on different formal tools and formal techniques
that have been integrated to make the generation and verification processes fully
automatic. As part of the proposed approach, the program transformation origi-
nally proposed in [31] has been enhanced and improved. The floating-point static
analyzer PRECiSA [19,29] has been extended with two modules. One module
implements the transformation defined in Sect. 3. The other module generates
the corresponding C/ACSL code. Thus, given a PVS program specification writ-
ten in real arithmetic and the desired precision, PRECiSA automatically gen-
erates a guard-stable floating-point version in C syntax enriched with ACSL
annotations. Additionally, PVS proof certificates are automatically generated
by PRECiSA to ensure the correctness of the round-off error overestimations
used in the program transformation.

The absence of unstable guards in the resulting floating-point implementation
and the soundness of the computed round-off errors are automatically verified
using a combination of Frama-C, PRECiSA, and PVS. The Frama-C/WP [17]
plug-in customization developed in this work enabled a seamless integration
between the proof obligations generated by Frama-C and the PVS certificates
generated by PRECiSA. Having externally checkable certificates increases the
level of confidence in the proposed approach. In addition, no theorem prov-
ing expertise is required from the user since proof strategies, which have been
implemented as part of this work, automatically discharge the verification condi-
tions generated by Frama-C. To the best of authors’ knowledge, this is the first
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automatic technique that is able to generate a formally-verified floating-point
program instrumented to detect unstable guards from a real-valued specifica-
tion. The proposed program transformation is designed to correctly detect any
divergence of flow with respect to the original program. However, due to the
error over-estimation used in the Boolean approximation functions, false warn-
ings may arise. The number of false warnings depends on the accuracy of the
round-off error approximation computed by PRECiSA, which has been shown
in [29] to be the most precise round-off error estimator handling programs with
let-in, conditionals, and function calls.

An interesting future direction is the integration of the proposed approach
with numerical optimization tools such as Salsa [10] and Herbie [24]. This inte-
gration will improve the accuracy of the mathematical expressions used inside a
program and, at the same time, prevent unstable guards that may cause unex-
pected behaviors. The proposed approach could also be combined with tuning
precision techniques [8,11]. Since the program transformation lowers the over-
all round-off error, this would likely increase the chance of finding a precision
allocation meeting the target accuracy. Finally, the authors plan to enhance the
approach to support floating-point special values and exceptions such as under-
and over-flows and division by zero.
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4. Boldo, S., Filliâtre, J.C.: Formal verification of floating-point programs. In: Pro-
ceedings of ARITH18 2007, pp. 187–194. IEEE Computer Society (2007)
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Abstract. Over the years, researchers have developed many formal
method tools to support software development. However, hardly any
studies are conducted to determine whether the actual problems develop-
ers encounter are sufficiently addressed. For the relatively young field of
GPU programming, we would like to know whether the tools developed so
far are sufficient, or whether some problems still need attention. To this
end, we first look at what kind of problems programmers encounter in
OpenCL and CUDA. We gather problems from Stack Overflow and cate-
gorise them with card sorting. We find that problems related to memory,
synchronisation of threads, threads in general and performance are essen-
tial topics. Next, we look at (verification) tools in industry and research,
to see how these tools addressed the problems we discovered. We think
many problems are already properly addressed, but there is still a need
for easy to use sound tools. Alternatively, languages or programming
styles can be created, that allows for easier checking for soundness.

Keywords: GPU · GPGPU · Formal methods · Verification · Bugs ·
CUDA · OpenCL

1 Introduction

General-purpose GPU (GPGPU) programming has been around for over 10 years
now, but is notoriously hard to do. In this work, we want to explore what kind
of problems people experience during GPGPU programming and understand
what the difficulties are in overcoming these problems. We accomplish this in
two steps. First we find the problems and next we analyse current solutions
in the domain of formal methods. We view this work as a way of identifying
further research challenges and directions in this domain, with the aim to ease
the difficulty of programming for a GPU.

To find the problems programmers encounter, we looked at Stack Overflow,
which is a widely known website where programmers can ask questions related
to programming. We took a sample of questions that are related to OpenCL
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and CUDA, the two dominant GPGPU programming languages, and categorise
them using card sorting. These categories give us an up-to-date overview of
(most) problems people encounter.

The next step is finding verification tools. Many tools have been devel-
oped that help people in their GPU programming work, like GPUVer-
ify [11], Oclgrind [31], GKLEE [24], VerCors [12] and CUDA-MEMCHECK [1].
Although, only some of these have been picked up by developers of GPGPU
programs. We look at scientific conferences and industry companies for tools.
We narrow the scope to correctness issues and link the tools that solve these
issues and indicate what improvements research can make.

In conclusion, in this work, we aim to help other researchers to focus
their research on GPGPU programming problems that are not or incompletely
addressed with and tools.

We make the following contributions.

1. An overview of common problems people struggle with whilst programming
a GPGPU (Sect. 3).

2. Addressing problems of Sect. 3 where we think formal methods can make a
direct contribution. We discuss solutions of existing tools and new research
opportunities (Sect. 4).

2 Background

We base this section mostly on the CUDA Programming Guide [2]. GPUs are
massive parallel compute devices, that work via the Single Instruction Multiple
Threads (SIMT) execution model, which means that multiple threads are exe-
cuting the same instruction in parallel, but with other data. In this paper, we
consider mainly the CUDA and OpenCL programming languages. We work with
the CUDA terms, but give the corresponding OpenCL terms in parentheses in
this section. CUDA compiles to PTX [3], a pseudo-assembly language, which we
call the instruction level, similarly OpenCL compiles to SPIR [4].

Functions that are executed on the GPU are called kernels. One can start
kernels from the CPU, which we call the host. The GPU itself is called the device.
Data stored on the RAM is not automatically accessible on the GPU and must
be sent from the host to the device before invoking the kernel that uses the
data. The programmer can schedule memory transfers and kernel executions in
a queue.

Threads (Work-Items). When scheduling a kernel, you specify how many
threads (work-items) are going to be executing this kernel. Threads are grouped
together in thread blocks (workgroups) and all the thread blocks together form
the grid (NDRange). From the hardware perspective, thread blocks are sub-
divided into warps (sub-groups or AMD calls them wavefronts), that typically
have a size of 32 (64 on AMD devices) threads. Threads of a warp are executed
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in lockstep, meaning that they execute all the instruction at the same time.1 If
threads of a warp take different execution paths, e.g. due to if statements, the
warp executes each path, but disables threads that are not on that path. This
is called thread divergence, which can lead to performance loss.

A GPU consists of multiple streaming multiprocessors, which execute the
warps in lockstep. Each thread block is assigned to one streaming multiproces-
sors.

Memory Model. A programmer has to manage the memory of a GPU man-
ually. It has global memory, where transferred data from the host is stored, and
any thread can access it. Shared memory (local memory) is shared in a thread
block, which is faster than global memory. One can use it to share results within
a thread block or to have faster access when data is reused. Per thread data is
automatically stored in fast-access registers, or slow local memory in case not
enough registers are available. For optimal global memory accesses, the accesses
should be fully coalesced : this happens if threads of a warp call consecutive
memory addresses and the first address is a multiple of the warp size.

Synchronization. When two threads do a read and write, or two writes to
the same memory address, and this could happen simultaneously, this is called
a data race. Data races lead to non-determinism and are considered, in most
cases, a bug. A GPU can synchronize with a barrier on the thread block level,
which ensures that all threads wait for each other before continuing execution.
It also makes sure that after the synchronization, all writes to global and shared
memory are performed, or depending on the barrier, only to shared memory.
Thus, barriers can prevent intra-block data races in a thread block. All threads
in a thread block must reach the same barrier, otherwise it results in undefined
behaviour and is called barrier divergence.

In between threads of different thread blocks, synchronization is not possible
with a (standard) global barrier, although Sorensen et al. [37] show how this can
be constructed. Data races in between thread blocks are called inter-block data
races. When lockstep execution of warps is not ensured also intra-warp data
races can occur.

Synchronization can also be achieved via fine-grained synchronization using
locks or atomics. Locks can make sure that only one thread has access to a specific
memory address. Atomics allow for communication via memory, without risks
of data races and GPUs typically implement them more efficiently than locks. A
GPU has a weak memory model [6], which means that memory actions within a
thread can be reordered by the hardware if there exist no dependencies within
the thread. Therefore, when using fine-grained synchronization, specific memory
actions may not yet be visible to other threads. Memory fences can be inserted
to enforce a memory order, which might be needed to make sure that no weak-
memory data races occur.
1 Although this is not exactly true any more for Nvidia’s Volta architecture and

onward. See https://developer.nvidia.com/blog/inside-volta/.

https://developer.nvidia.com/blog/inside-volta/
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Other Features. Some other features are less used, although we do want to
mention them since they come up in this work. Dynamic parallelism allows par-
ent kernels, to launch child kernels. A parent and child kernel have a consistent
view of global memory at the start of the launch, but this is not guaranteed while
executing. The parent kernel can synchronize with the child kernels it launched.
A child kernel can recursively call a new child kernel. Warp-level primitives (sub-
group primitives) are primitives that allow communication between threads in
a warp, via the faster registers. For instance, one can use them to make a faster
scan and reduction operation.

3 GPGPU Programming Problems

To know how formal methods can help solve GPGPU problems, we first need
to know with what actual developers are struggling with. Therefore, we look at
Stack Overflow, which is the go-to place for programming-related questions and
is used by many programmers as a reference. Of the languages programmers use
for GPGPU programming, CUDA (729 questions), OpenMP (471) and OpenCL
(311) are the most popular, based on the number of question asked on Stack
Overflow in 2019.2 We focus on CUDA and OpenCL since OpenMP does not
solely focusses on the GPU.

We first explain our approach for gathering and categorizing the results
(Sect. 3.1). Next, we present the categories of programming problems we found,
which we again ordered into themes and sub-themes for a clear overview
(Sect. 3.2).

3.1 Approach

Gathering Problems. As argued above, we look at OpenCL and CUDA on
Stack Overflow. Looking at the general tag gpgpu, cuda and opencl, we found
that the 7 most related tags are gpu, c++, nvidia, c, parallel-processing,
thrust and nvcc. The first five tags we consider too general, which would pollute
our results. The tags thrust and nvcc are a specific CUDA library and compiler,
which we do not want to focus on. Therefore, we stick with the tags gpgpu, cuda
and opencl. On March 2, 2020 there are 17,539 questions on stack overflow that
have the tag cuda, opencl or gpgpu.3 We look at 376 Stack Overflow questions,
which is a representative sample with a confidence level of 95% and a confidence
interval of 5%s. Thus, with a 95% chance, we identify the problems which are
present in at least 5% of the questions in the tags mentioned above.

Categorizing Problems. On the gathered questions, we performed open card
sorting [27, Card-sorting: From Text To Themes], which creates categories in
an unknown data set. We decided to look at the title, body and answers of the

2 https://data.stackexchange.com/stackoverflow/query/1258739/gpgpu-tags.
3 https://data.stackexchange.com/stackoverflow/query/1258838/gpgpu.

https://data.stackexchange.com/stackoverflow/query/1258739/gpgpu-tags
https://data.stackexchange.com/stackoverflow/query/1258838/gpgpu
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questions, to determine the categories. The first author, together with another
PhD student, sorted the first 84 questions, where they achieved a mutual under-
standing of categories and held discussions for any corner cases. The next 43
cards were sorted separately, but in the same room, which allowed discussion on
difficult cards. Eventually, this led to 26 different categories. The last 260 cards
were sorted alone by the first author, and we ended up with 34 categories. For
cards we could sort in multiple categories, we made new overlapping category or
sorted them to the most appropriate category. After the sorting, we went over
the relevant questions once more, to see if a newly made category would be more
suitable.

Relevant Problems for Formal Methods. In the 34 categories, we make two
distinctions. First, we mark problems that are interesting for GPGPU program-
ming; these are 28 of the 34 categories. The non-relevant categories are related to
(GPU) hardware, errors in the host code (unrelated to CUDA or OpenCL API
calls), installing the correct CUDA and OpenCL drivers or libraries, setting up
a development environment, linking libraries and questions related to OpenGL.
In total, we found that 220 of the 376 questions were relevant to GPGPU pro-
gramming.

We present the 28 GPGPU categories in the remainder of this section. We
mark the ones (10) where we think formal methods are directly applicable to
solve correctness problems underlying these questions.

3.2 Results

The results of the card sort are visible in Fig. 1. To organize the results, we have
put some structure into them. We identified two themes: memory and threads and
synchronization. We place the remaining categories in the general theme. Within
each theme, we distinguish between bugs and performance-related questions as
sub-themes. The results of this can be viewed in Fig. 2. We will explain each
theme with its associated categories in the following subsections.

Memory. We first consider the bugs sub-theme categories: ‘memory transfer
bug’, ‘out of bounds’ and ‘memory bug’. An out of bounds error occurs when
an array is indexed outside its bounds, which can be reported at runtime. A
memory transfer bug happens when not all necessary data was transferred to
the device and causes uninitialized memory accesses. We assign the category
memory bug to questions where a memory error happened, but the cause was
unclear from the post. We think that formal methods could help detect these
bugs or possibly ensure programmers that such bugs are not present in their
program. For instance, CUDA-MEMCHECK [1] and ESBMC-GPU [28] are tools
that can detect these kinds of bugs.

Next we consider the memory performance sub-theme: ‘manage memory
spaces’ and ‘memory performance’. A GPU has to manage its own (faster) shared
memory space. This management can be difficult and error-prone to do but is
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Fig. 1. Results of open card sorting 376 GPGPU related questions. We only show the
220 questions and categories relevant to GPGPU programming. The categories labelled
FM Opportunities are the ones where we think formal methods could play a role in
solving the underlying correctness issues.

an essential optimization strategy. We also added questions related to a better
understanding of the memory model here. We label other questions as memory
performance when they are related to access patterns (coalesced) or other ways
to optimize memory usage.

The last two categories are ‘host transfer’ and ‘data types’. Both are related
to getting memory from the host to the device. The host transfer category is more
general. It is related to doing transfers efficiently, asynchronously, transferring
the data back, transferring arrays, parameters or constants, and handling arrays
too big for global memory. We also assign questions related to aligning and
pinning memory here. Actual bugs related to this we report in the ‘memory
transfer bug’ category. We assign questions about overlapping transfers to the
‘optimizing kernel launches’ category. The data types category is more specific.
It contains questions related to correctly transferring a composite data type
(‘struct’ in C) and making sure it has a correct corresponding data type on
the device. We also consider questions related to Structure of Arrays (SoA)
or Arrays of Structures (AoS) here. Although we think that tools can help to
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Fig. 2. Overview of the card sort, where we place the categories under themes and sub-
themes. Similar to Fig. 1 we only show categories relevant to GPGPU programming.
The underlined questions are the ones where we think formal methods could play a
role in solving the underlying correctness issues. The percentages indicate how many
questions are under a specific category, where 100% corresponds to all 220 relevant
GPGPU questions.

solve problems in checking correct correspondence of data types, a programming
language could do this automatically.

Threads and Synchronization. Under the bug sub-theme, we consider ‘data
races’, ‘incorrect thread configuration’ and ‘barrier divergence’. We assign the
category data race to questions where this occurs. A data race is a problem that
is hard to detect: it is non-deterministic by nature, and it is hard to reason about.
Incorrect thread configuration happens when a programmer configures the wrong
number of threads or goes over the maximum amount of threads possible. Some
incorrect configurations will be reported at runtime, while others will run without
errors but do not process all the input. We assign barrier divergence to questions,
where not all threads in a thread block reach the same barrier. This is not allowed
in the general GPU programming model and leads to undefined results. Data
races and barrier divergence bugs are already the study of many formal method
tools, like GPUVerify [11] and GKLEE [24]. We think formal methods can also
reason about thread configurations, where a tool figures out if the indexing of the
input by the threads corresponds with the size of the input or detects memory-
related bugs which are caused by incorrect configurations. Another idea is to
check whether kernels work the same for each thread configuration.



Formal Methods for GPGPU Programming: Is the Demand Met? 167

The ‘optimise thread configuration’ and ‘threads divergence’ categories are
related to the performance sub-theme. When optimising the amount of threads,
one can choose the number of threads per thread block and how much work each
thread does, which both influence performance. Thread divergence, on the other
hand, could lead to bad performance, which a programmer can sometimes avoid.

The threads - general category consists of questions related to understand-
ing the execution model of threads, and what correct configurations are. Syn-
chronization is used to prevent data races from happening by using barriers or
atomics. General questions on how to use this, about using warp primitives or
what can and cannot be synchronized we give this tag. We think formal methods
can help people understand when barriers are necessary, or maybe even place
barriers automatically. For instance, the Simulee [39] tool can detect unnecessary
barriers.

General. First we consider the bug sub-theme. We have a general bug category,
which means something is wrong in the program, but not one of the previously
mentioned bugs. This can be incorrect usage of the available resources (e.g. regis-
ters), people computing something incorrectly, incorrect use of the Thrust library
or it is not yet clear what is wrong. Formal methods, for instance VerCors [12],
can check for functional correctness of programs when something is incorrectly
calculated. Bug in dependency consists of all bugs in Thrust that were fixed in
later versions of the library, and are therefore not considered for formal methods
later on. Dynamic parallelism bug consists of a single question (so/19527391),
where a bug was encountered using dynamic parallelism, although it is unclear
what exactly went wrong. Formal methods tools could also reason about cor-
rectness in this case, although dynamic parallelism would have to be supported.

General performance are questions, where people want to understand, given
a program, algorithm or function, the performance and how to improve it. Ques-
tions about overlapping computations and memory transfers, and ideal schedul-
ing of computation kernels we place in the optimizing kernel launches category.

We came across many questions where people wondered how a specific prob-
lem or algorithm should be programmed on the GPU, or if a library contained
a specific functionality. We placed these in the how to do algorithm category.
Formal methods could help to prove the equivalence between a sequential and
parallel implementation.

The basics category has questions related to how certain concepts are called
(e.g. what is a thread block), how they work, how specific API calls work, or
some basic easy to fix mistakes that prevent correct compilation. Some questions
arose about using higher level patterns in CUDA and OpenCL, for instance using
templated functions. We think these problems are best solved by a beginners
GPU programming book or by using a higher-level programming language.

Profiling are questions related to how to use the profiling tools available
or how to measure runtimes correctly. Sparse matrices are questions on how
to process matrices, or on how to use the cuSparse library. Multi GPU are
questions related to how to use multiple GPUs for computations. The limitation

https://stackoverflow.com/questions/19527391
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category consists of questions related to the limitation of the CUDA/ OpenCL
programming model. For example, the CUDA runtime library can only be called
from the main scope of a C++ program (so/55819758.) Kernel launches are
questions related how to start a computation on the GPU correctly. CUDA
memcheck is about using that specific tool for debugging.

3.3 Insights

Summarizing, we observe that 32.3% of the relevant questions are related to
performance, 34.1% to memory, 20% to bugs and 18.2% to threads and synchro-
nization. These are the areas developers on Stack Overflow are most interested
in. Performance makes sense since programmers will use a GPU to get better
performance, otherwise they would have used the CPU. Memory related ques-
tions are important since memory management works quite differently from CPU
programs. The transferring of data is error-prone, and the management of mem-
ory without race conditions is hard to do. We also think that many developers
are just interested in the result: have a faster parallel version of their original
(sequential) code, which is related to our ‘how to do algorithm’ category. Con-
cluding, there is potential for formal methods to help solve correctness related
issues that GPGPU programmers experience. We will further discuss this in
Sect. 4.

3.4 Threats to Validity

External Validity. There is a bias in the results since we look only at ques-
tions located at Stack Overflow. This may not address the general population of
GPGPU developers. We suspect that there will be more questions by beginning
GPGPU programmers, than by more experienced ones. Therefore, we might not
discover the problems of more experienced users.

Internal Validity. As the categories have been manually created, there is an
internal bias, meaning that if other people were to perform this study with the
same questions, there could be a different outcome. We think that although the
categories might be different, the general topics would be similar. Also, part
of the categorizing is done together with another PhD student for exactly this
reason.

4 Formal Verification Solutions

In Sect. 3, we looked at problems that programmers struggle with when coding
in CUDA and OpenCL. In this section we focus on the problems where we think
formal methods can make a direct contribution, and provide an overview of tools
that (partially) solve these problems. Again, we focus mainly on correctness.
First we explain how we selected these verification tools (Sect. 4.1). Next, we
discuss for each of the selected problems the available solutions and possible
research directions (Sect. 4.2).

https://stackoverflow.com/questions/55819758
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4.1 Approach

In order to find as many tools as possible that target the verification of GPU
applications, we took the following steps in finding them. First, we looked at
the industry. We considered the websites of Nvidia, AMD (gpuopen.com), the
Khronos group, and a list4 found on the IWOCL conference site. Next we looked
at important conferences, based on the Microsoft Academic’s field ratings.5 We
looked in the areas of programming languages, software verification and parallel
computing and selected the following conferences: PLDI, POPL, TACAS, CAV
and IPDPS. For each these conferences, we looked through the years 2015–2020.

This was the initial set of tools we considered, and we snowballed, by looking
at any tools that the original papers referenced. Lastly, we searched Google
Scholar with the following query: “(cuda OR opencl OR gpu) AND (bugs OR
problems OR verification OR formal)”.

4.2 Available Solutions

In this section we consider the problems that we discussed in Sect. 3, where we
identified categories. In Table 1, we provide an overview of the tools we found.
We distinguish between three types of tools (inspired by Donaldson et al. [15,
Chap. 1]): Dynamic tools check for one specific input. Symbolic tools execute
the input symbolically, allowing for more different paths to be tested at once.
Static tools make (sound) approximations of the source code and will try to
prove existence or absence of bugs. We indicate if a tool checks for data races
(Race), barrier divergence (Bar), memory problems (Mem), functional correct-
ness (Func) or equivalence (Eq), or if it helps with synchronization (Sync) or
thread configuration (Thr) in the ‘Solves’ column. With ‘Auto’, we refer to the
degree of automation: is it completely automatic, or does the user need to be
involved in the checking, for instance by writing annotations. The Corr. column
indicates if the tool can prove the absence of bugs in certain settings. We also
list any limitations or other remarks in the table.

Data Races. Ideally, a tool in this category reports existing data races with
precise details or guarantees that data races are not present.

Many dynamic tools are practical and require no manual input, but do not
guarantee the absence of data races. Solely for checking for a specific input, we
think CURD is most suitable, it checks on instruction level, thus can also be
used for higher-level languages. Only the approach of Leung et al. [22] gives
some guarantees for a dynamic tool and can be used to ‘prove’ absence of data
races for specific invariant kernels. One can combine this approach with other
dynamic tools.

Symbolic tools, such as GKLEE and ESBMC-GPU, can test for more input,
and one can (mostly) use them automatically although they can also suffer from

4 https://www.iwocl.org/resources/opencl-libraries-and-toolkits/.
5 https://academic.microsoft.com/home.

http://gpuopen.com
https://www.iwocl.org/resources/opencl-libraries-and-toolkits/
https://academic.microsoft.com/home
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Table 1. Overview of different tools we discuss in this section. We indicate the type
of tool, the problems (which we consider in this section) they solve, the degree of
automation (Auto.), any correctness guarantees (Corr.) it can give, on which languages
it works, and any limitations and other remarks.

Tool Type Solves Auto. Corr. Languages Limitations Remarks

Oclgrind [31] Dynamic

Race

Bar

Mem

High × SPIR Simulates execution

CUDA

Memcheck [1]
Dynamic

Race

Bar

Mem

High × CUDA
No global memory for

Race

GRACE [41] Dynamic Race High × CUDA
No global memory and

atomics for Race

LDetector [26] Dynamic Race High × CUDA
No atomics and intra-

warp checks for Race

Does value checking, to determine a race,

which might miss races

HAccRG [17] Hardware Race - × CUDA

Needs a hardware implementation, but is now

simply simulated. Can check fine-grained

synchronization

BARRACUDA [16] Dynamic
Race

Bar
High × PTX

No intra-warp checks

for Race
Can check fine-grained synchronization

CURD [29] Dynamic
Race

Bar
High × PTX Faster version of BARRACUDA

Leung et al. [22]
Dynamic

/Static
Race - ± CUDA No atomics

Checks on races for one input and determines

if memory accesses are the same for each input.

If they are the same, this proves race freedom

for all inputs

ARCHER [8] Dynamic Race Medium × OpenMP Runs dynamically on the CPU, not GPU specific

PUG [23] Static

Race

Bar

Func

Low � CUDA

Can’t check floating

point values for Func.

Only asserts for Func.

Only checks kernels

Scales badly for correctness checking. Can be

unsound and incomplete. Needs annotations

GPUVerify [11] Static

Race

Bar

Func

Low � CUDA

OpenCL

No indirect accesses

Only asserts for Func.

Only checks kernels

Needs annotations to deal with false positives

for races. Is only sound for some CUDA features

VerCors [12] Static

Race

Bar

Func

Low � OpenCL
No support for floats

(yet)
Needs annotations to prove correctness

GKLEE [24] Symbolic

Race

Bar

Func

Medium × CUDA

(LLVM-IR)

Can’t check floating

point values for Func.

Only asserts for Func.

Difficult to scale for more threads. Generate’s

concrete tests for races

KLEE-CL [14] Symbolic
Race

Eq
Medium × OpenCL

Checks for equivalence on symbolic output,

although false positives are possible for this

SESA [25] Symbolic Race High ± CUDA

(LLVM-IR

Similar to GKLEE, but concretize values when

possible to reduce runtimes. Can be sound and

complete under specific circumstances

ESBMC-GPU [28] Symbolic

Race

Mem

Func

High

Medium
× CUDA Only asserts for Func.

Can be run automatically, but needs

assertions for functional correctness

checks

Xing et al. [40] Static Race High ± PTX

Can check fine-grained synchronization.

It has to unrolls loops, which can

cause unsoundness

Banerjee et al. [10] Static
Race

Eq
High � OpenMP

Equivalent version

should be similar

Equivalence checking is sound, but might not be

possible for complex programs

WEFT [35] Static
Race

Bar
High � PTX

(CUDA)

No global memory and

atomics for Race

It is based on a warp specialized programming

model. It can only verify programs which

are completely predictable, e.g. it cannot have

dependencies on the input for memory locations

and control flow. It will check named barriers,

which are only accesible via PTX

CIVL [36] Symbolic

Race

Eq

Mem

Medium ?

OpenMP

CUDA

Chapel

No atomics

Can use the languages interchangeably, but

has no support for specific GPU capabilities.

Need some annotations for checking

Alur et al. [7] Symbolic Thr High ± LLVM-IR

(CUDA)

Can only prove block size independence for

synchronization free programs

Simulee [39] Dynamic

DR

Bar

Sync

High × LLVM-IR

(CUDA)

Simulates a GPU memory model, and generates

memory via evoluationary computing for it

Vericuda [21] Static Func Low � CUDA Race-free
Needs annotations to prove correctness

and can only prove this for race-free programs
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longer verification times. GPUVerify is the most practical static verifier, although
it needs annotations to overcome false positives. The tool from Xing et al. [40]
is interesting and checks on instruction level, but uses loop unrolling, which
makes it unsound. It could use ideas from GPUVerify, which generates loop
invariants. VerCors can give the most guarantees but needs a serious effort in
annotating. For example, see the work of Safari et al. [33], which verifies a prefix-
sum algorithm.

WEFT, CIVL, Archer, and the tool of Banerjee et al. [10] serve a more
specific purpose, like checking OpenMP or warp-specialised programs.

Overall, many steps have been made to verify data races in GPGPU pro-
grams. Checking on instruction level is a good idea since other programming
languages benefit from this as well. We also think there are proper steps made
to check for fine-grained synchronisation and memory fences which one need
for this kind of synchronisation (e.g., BARRACUDA checks on this). From the
benchmarks that the authors of the tools consider, it seems to be clear though
that there is no tool that always detects or proves the absence of data races.
Also, each author uses a different set of benchmarks. It would be interesting to
test all the mentioned tools with the benchmark suite created by the work of
Schmitz et al. [34], for a fair comparison between tools.

Memory Bugs. Here we look for solutions for the categories: ‘memory bug’,
‘out of bounds’ and ‘memory transfer bug’. Thus, tools should check that memory
addresses which are accessed are valid and initialised.

CUDA-MEMCHECK detects the above errors dynamically for CUDA. The
OCLgrind tool does the same for OpenCL. ESBMC-GPU verifies on index out of
bounds. CIVL checks on array index-out-of bounds. These tools can also check
for memory leaks.

For these memory issues, we see an opportunity to check on the instruction
level. The dynamic tools seem to cover the properties of interests, but this is
not yet the case for the (symbolic) verification tools. For instance, it is unclear
if ESBMC-GPU checks on accessing uninitialised memory. Lastly, only VerCors
could guarantee correctness for the ‘out of bounds’ issues, but it will only check
kernels, not host code and needs annotations.

Barriers and Synchronization. Barrier divergence is also a source of bugs,
which can be verified by GPUVerify and GKLEE. CUDA-MEMCHECK detects
this dynamically. Another interesting topic, which can help developers with ‘syn-
chronisation’, is placing barriers automatically or notifying the user about unnec-
essary barriers. The Simulee tool checks for the latter, but no tool addressed
the former to the best of our knowledge. Automatic barrier placement could be
implemented together with race check tools to afterwards verify for race freedom.

Thread Configuration. The tool by Alur et al. [7] can verify if a
synchronisation-free program is blocksize independent: does the program behave
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the same if the number of blocks is changed, but the total amount of threads stays
the same. We think such an approach can be helpful for newer programmers.
(And would be a good programming style to begin with.) By making one’s pro-
gram work for any block size, it is easier to optimise. Or even better, verify that
one’s program behaves the same for any number of threads6. A thread-invariant
program lets one freely try different thread configurations without introducing
new bugs. Thus, we see an opportunity for verification tools addressing this.

Dynamic Parallelism. As far as we know, there are no tools that support
dynamic parallelism, although we are not sure if tools working at the instruction
level, e.g. BARRACUDA, support this. Support for dynamic parallelism is the
first step to ensure that a tool can check kernels using this concept. One can also
come across new bugs like data races between parent and child kernels. Specific
to dynamic parallelism is the fact that there is a maximum recursion depth of
new kernels and a maximum number of child kernels. A formal methods tool can
check both of these restrictions.

Functional Correctness. VerCors [13] allows deductive checking of functional
correctness of programs, although it needs non-trivial annotations.

On a similar vein, the work of Kojima et al. [20] proposes a Hoare logic for
GPU programs, which the Vericuda tool [21] verifies when one provides Hoare
tuples. However, the latter tool requires that the checked program is data race
free, which should be verified by another program.

ESBMC-GPU, CIVL, GPUVerify and GKLEE allow the programmer to
place assertions. These assertions do not give complete correctness but allow
more flexibility in checking certain aspects of the program.

We think VerCors has potential, although the need for annotations makes it
difficult to use out of the box. An interesting research direction is making the
reuse of annotations easier after a program has been slightly changed, e.g. due
to an optimisation.

Equivalence Checking. Instead of fully verifying a specification, one can do
equivalence checking: take a (simple), possibly sequential, version of a program,
which you know is correct and prove that a parallel implementation is equivalent.
The CIVL tool can do this. Kamil et al. [19] use a similar approach. They
transform Fortran stencil codes to Halide (an image processing DSL), and proof
functional equality, while being able to optimise the program in Halide further.
The tool by Banerjee et al. [10] is similar. It verifies equivalence for parallelising
loop transformations from OpenMP and also verifies data race freedom.

6 https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-
loops/.

https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
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4.3 Research Directions

We think much progress has already been made by formal methods that address
many issues that developers encounter. We make the following observations.

In general, we think that checking on instruction level is valuable. Typically,
all GPU programs will eventually compile to the instruction level, and thus
allows the tool to be used for more programming languages.

No verification tool is completely sound yet, which might be impossible for
the full flexibility of the CUDA and OpenCL languages, but should be the goal.
Tools should support as many program features as possible while staying sound.
Certainly, since programmers use a lot of low-level features when optimising
code, this is an ambitious goal.

Most verification tools only check the GPU kernels, but the host code must
also be correct. Bugs related to memory initialization, memory transfers and
thread configuration are often made on the host side, can be hard to spot and
should be relatively easy to tackle with verification tools.

Another take on this is to identify which patterns and programming features
are sound to verify. This can give rise to a particular programming style, which
can be enforced by a different (domain-specific) language.

In the papers presenting the various tools, those tools are compared with
each other to show that for specific kernels, the new tool is, at that point in
time, the best. It would be better to use a standard benchmark suite, like the
suite by Schmitz et al. [34], which is uniformly used and addresses the errors
we mention in this paper. Additionally, it should support all the CUDA and
OpenCL features. This suite then makes it clear what errors tools can check and
what programming features they do or do not support. For instance, we think
that tools that deal with fine-grained synchronisation are essential.

5 Related Work

GPGPU Problems. The study by Wu et al. [39] is similar to our work. Instead
of Stack Overflow, they look at open source repositories on Github to collect
CUDA bugs. They identify 5 root causes for bugs, which is coarser than our
results. We can match most of our categories with one of their root causes.
Only their ‘poor portability’ we can not match, and is more related to specific
platforms issues, which were questions we marked as irrelevant. Also, the nature
of Stack Overflow means we have more questions related to solely understanding
GPU programming (e.g. ‘Basics’ or ‘How to do algorithm’) and are not things
you could find in commit messages. Because of that reason, the exact numbers
on how often certain issues arise are hard to compare, but we don’t think that
is too important. Both of these methods give a good overview of what kind of
bugs to expect whilst GPGPU programming.

The work of Donaldson et al. [9, Chap. 1] gives an overview of what kind
of correctness issues occur with GPGPU programming and gives a compari-
son between the tools GPUVerify, GKLEE, Oclgrind and CUDA-MEMCHECK.
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They name four different correctness issues: data races, weak memory behaviours,
lack of forward progress guarantees and floating point accuracy. Of these issues,
we have only come across data races in our study. We think the other issues are
more particular for experienced users, and less so for novice users. As mentioned
before, we think Stack Overflow attracts mostly novice users. The taxonomy
made by Donaldson et al. of the considered tools inspired the current work,
although we consider a wider range of tools overall.

Stack Overflow Studies. There were many other studies performed on Stack
Overflow concerning other subjects, for example concurrency [5,30] mobile devel-
opment [32] and machine learning [18]. In [5,30,32] topic modelling is used to
categorize all the questions. We chose to not use topic modeling, since we think
that we can make a finer subdivision of the categories with open card sorting. In
[18] something more related to our work was done, but experts pre-determined
the categories. In our case the goal was to discover problems, therefore it makes
no sense to pre-determine the categories.

6 Discussion

In this work, we showed the problems GPGPU programmers struggle with, while
programming for the GPU using OpenCL or CUDA. We see that memory, syn-
chronization, threads and performance are essential topics for GPGPU program-
ming. Next, we looked at (formal method) tools and how they address the cor-
rectness issues we found. In general, the research community addresses most
problems, but we identified several interesting research directions.

Acknowledgements and Data Availibility Statement. We want to thank Jan
Martens for his help with the card sorting.

The data used for the categorization with card sorting is available in the Figshare
repository: https://doi.org/10.4121/12988781 [38].
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Abstract. Active objects extend the Actor paradigm with structured
communication using method calls and futures. Active objects are, like
actors, known to be data race free. Both are inherently concurrent, as
they share a fundamental decoupling of communication and synchroni-
sation. Both encapsulate their state, restricting access to one process
at a time. Clearly, this rules out low-level races between two processes
accessing a shared variable. However, is that sufficient to guarantee deter-
ministic results from the execution of an active object program?

In this paper we are interested in so-called high-level races caused by
the fact that the arrival order of messages between active objects can
be non-deterministic, resulting in non-deterministic overall behaviour.
We study this problem in the setting of a core calculus and identify
restrictions on active object programs which are sufficient to guarantee
deterministic behaviour for active object programs. We formalise these
restrictions as a simple extension to the type system of the calculus and
prove that well-typed programs exhibit deterministic behaviour.

1 Introduction

Concurrent programs are characterised by multiple threads executing over a
program’s state space, possibly in parallel on multicore or distributed hardware.
Concurrency introduces non-determinism in the programs, which makes it hard
to reason about program behaviour and easy to inadvertently introduce errors.
Two major causes for errors in concurrent programs are deadlocks and races. One
has to choose between making programs more synchronous, which makes them
exhibit less behaviour but also makes them more deadlock-prone, and making
program more asynchronous, which enables more behaviour and makes them
less deadlock-prone. However, allowing more behaviour also allows more races
to occur between the program threads.

Active object languages [1], which extend the Actor [2,3] model of concur-
rency with asynchronous method calls and synchronisation using futures, natu-
rally lend themselves to an asynchronous program style because they decouple
c© Springer Nature Switzerland AG 2020
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communication from synchronisation. Asynchronous method calls can be dis-
patched without any transfer of control between the active objects. Although
asynchrony generally leads to non-determinism, languages based on the Actor
model are known to be free from data races (e.g., [4]). This is because actors (and
active objects) encapsulate internal state and restrict local state access to one
method at a time, which eliminate such low-level races. However, these systems
are prone to high-level communication races which result in a non-deterministic
order of execution for methods on an actor in the system. These races may be
triggered by asynchronous method calls (e.g., they are the only races in ASP [5]),
by the synchronisation on the associated futures (e.g., [6,7]) to retrieve the return
values from these method calls, and by cooperative scheduling inside the active
objects (e.g., [8]). The occurrence of high-level races gives rise to the following
question: under which conditions are active object programs guaranteed to be
deterministic? That is, the programs always produce the same output given a
particular input.

This paper studies the problem of active objects with guaranteed determin-
istic behaviour. Deterministic behaviour for a concurrent program boils down
to confluence properties between execution steps. We formalise the execution of
active objects systems in a core calculus to study their confluence properties. We
combine certain characteristics of the underlying communication network and
the local scheduling policy of each active object with restrictions on the pro-
gram’s topology, and show that these together suffice to prove confluence. We
identify characteristics that can ensure determinacy, and show how to restrict
existing languages to make them partially deterministic. We further show that a
simple typing discipline suffices to statically enforce this topology and relate our
findings to existing calculi and languages to shed light on how to approach the
problem of designing a deterministic active object system in different languages.

The main contributions of the paper can be summarised as follows: We
extend previous work on deterministic active object systems, which enforce a
tree-shaped object graph, to handle explicit futures and cooperative schedul-
ing, and show that a simple type system is sufficient to guarantee deterministic
behaviour even when futures can be shared among objects in the tree-shaped
topology.

Paper Overview. Section 2 motivates the problem addressed in this paper
through an example. Section 3 introduces the active object calculus in which
we study the problem, including its operational semantics and basic type sys-
tem. Section 4 defines and proves confluence properties for our calculus. Section 5
addresses the problem of statically guaranteeing a tree structure in the program
topology. Section 6 discusses related work, and in particular to what extent exist-
ing active object calculi and languages can guarantee deterministic behaviour.
Section 7 concludes the paper.
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2 Motivation and Example

An actor is a single-threaded unit of distribution that communicates with other
actors by asynchronous message sending. The absence of multi-threading inside
an actor and the fact that data is handled by a single actor prevents data races.
However, race conditions can appear when two actors send messages to the same
receiver, or when an actor chooses the next message to be processed. Thus, actors
are a programming abstraction that limits non-determinism, but does not pre-
vent it. Different adaptations of the actor principles entail different sources of
non-deterministic behaviour for programs. To motivate our work on determin-
istic behaviour for active objects, which are actors synchronising on futures, we
review below two classical parallel programming patterns implemented using
active objects and discuss the races they exhibit.

Fig. 1. Implementation with a master-worker pattern.

We consider two implementations of a program which computes the average
over a sequence of values. Figure 1 shows an implementation using a master-
worker pattern based on active objects. Two workers w1 and w2 are called asyn-
chronously (Lines 7 and 8) to perform some work task, the main object then
synchronises on the returns from the two invocations (Lines 9 and 10 use a
get-statement to retrieve the return values) before it computes the average in
Line 11. The implementation is presented in the core calculus of Sect. 3 using an
additional basic type Array with sum and length operators.

Figure 2 shows an implementation of the same problem using a map-reduce
pattern. In this implementation, partial results are reduced as they arrive. The
workers send their results to a Reducer active object who computes the partial
average of the results as they arrive and forwards the average to a receiving active
object out (we omit its implementation). We see that the asynchronous method
calls to the workers (Lines 27 and 28) are not associated with futures in this
implementation, but include a reference to the Reducer instance so the partial
results can be passed on directly. The computed result would be deterministic
with a commutative and associative reduction operator—but this is not the case
in our example. Observe that if the first partial average is computed over an
empty array, a division-by-zero error will be triggered. This bug might only
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Fig. 2. Implementation with a map-reduce pattern.

appear in some executions because messages are received in a non-deterministic
order, which makes the reducer difficult to debug. In contrast, the master-worker
implementation behaves deterministically; if a division-by-zero bug would occur
in that implementation, it would occur in every execution.

Map-reduce is a popular pattern that is supported by powerful runtime
frameworks like Hadoop. In the sequel, we identify why patterns such as map-
reduce are potentially non-deterministic and design a type-system that ensures
deterministic behaviour for active objects. This type system can type the master-
worker implementation, but not the map-reduce one.

3 An Active Object Language

In this section we propose a core language for active objects. We adopt a Java-like
syntax that is similar to ABS [8].

Notations. T denotes a list of elements T , unless stated otherwise this list
is ordered. In the syntax x, y, u range over variable names, m method names,
α, β active object identifiers, f future identifiers, and Act class names. The
set of binary operators on values is represented by an abstract operator ⊕,
it replaces all the classical operations on integer and booleans. Mappings are
denoted [x �→ a] which builds a map from the two lists x and a of identical
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length, m[x �→ a] updates a map, associating the value a to the entry x, and +
merges two maps (taking values in the rightmost one in case of conflict). q#q
(resp. q#q) is the FIFO enqueue (resp. dequeue) operation.

Fig. 3. Static syntax of the core language.

3.1 Syntax and Semantics

We design a simple active object model with one thread per object and where all
objects are active (uniform active object model). Interested readers are referred
to [1] for a complete description of the different request scheduling strategies in
active object languages.

Figure 3 shows the syntax of our language. A program P is made of a set of
classes, each having a set of fields and a set of methods, plus a main method.
A method M has a name m, a set of parameters, and a body, made of a set of
local variables and a statement. Types and terms are standard of active object
languages, for instance new creates an active object, get accesses a future, and
v!m(v) performs a method invocation on an active object and thus systemati-
cally creates a future. The type constructor for future is Fut〈T 〉 like ABS or
any explicit future construct. Sequence is denoted as ; and is associative with
a neutral element skip. Consequently, each statement that is not skip can be
rewritten as s; s′ with s neither skip nor a sequence. ⊕ denotes the (standard)
operations on integers and booleans. Finally, including an await enables coop-
erative scheduling: it interrupts a thread until a condition is validated. Several
design choices had to be made in our language we discuss them briefly below:

– For simplicity, we suppose that local variables and fields have disjoint names.
– We specify a service of requests in FIFO order with a causal ordering of

request transmission, like in ASP [5], Rebeca [9] or Encore [10]. Also, FIFO
communication is supported by many actor and active object implementa-
tions, and it reduces the possible interleaving of messages.

– Adding subtyping is outside the scope of our study.
– With more complex active object models, it is sometimes necessary to have

a syntactic distinction between synchronous and asynchronous invocations.
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For instance, ABS uses ! to identify asynchronous method invocations that
create futures. Our core language adopts ABS syntax here but does not have
synchronous invocation.

Fig. 4. Runtime Syntax of the core language .

The operational semantics of our language is shown in Fig. 5; it expresses a
small-step reduction semantics as a transition between runtime configurations.
The syntax of configurations and runtime terms is defined in Fig. 4, statements
are the same as in the static syntax except that they can contain runtime values
like reference to an object or a future (inside assignment or get statement). A
configuration is an unordered set of active objects and futures. Each active object
is of the form α(a, p, q) where α is the active object identifier, a stores the value
of object fields, p is the task currently be executed, and q a list of pending tasks.
The configuration also contains futures that are resolved by a value w (when a
future is not yet resolved, it is not in the configuration). A task q is made of a
set of local variables � and a statement s to be executed, additionally each task
is supposed to fulfil a future f . The currently performed task p is either empty ∅

or a single task q.
The semantics uses an auxiliary operator – bind – that creates a context for

evaluating a method invocation. If the object α is of type Act, and m is defined
in Act, i.e., Act{..T m(T x) {T y s}..} is one class of the program P , then1:
bind(α, (f, m, w)) � { [ this �→ α, x �→ w ] | s }.

To deal with assignment, we use a dedicated operator for updating the current
fields or local variables:

(a + �)[x �→ w] = a′ + �′ ⇐⇒ a′ = a[x �→ w] and �′ = �, if x ∈ dom(a),
a′ = a and �′ = �[x �→ w], otherwise

We also define a predicate checking whether a thread is enabled, i.e., can
progress. A thread is disabled if it starts with an await statement on a condition
that is false.

disabled(q) ⇐⇒ ∃� e s f. (q = {�|await e ; s}f ∧ [[e]]a+� = false)
enabled(q) ⇐⇒ ¬disabled(q)

1 It is not necessary to initialise the local variables in the local environment because
of the way store update is defined.
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Fig. 5. Semantics of the core language (rules If-True and If-False for reducing if
omitted).

The semantics of a program features the classical elements of active object
programming [8,11], the stateful aspects of the language are expressed as accesses
to either local variables (�) or object fields (a). The first three rules of the
semantics define an evaluation operator [[e]]a+� that evaluates an expression. Note
that [[e]]a+� = w implies that w can only be an object or future name, null, or
an integer or boolean value. The semantics in Fig. 5 contains the following rules
that are standard of active object languages.

Assign deals with assignment to either local variables or object fields.
New creates a new active object at a fresh location β.
Invk (method invocation) creates a task and enqueues it in the target active

object, and a future identifier f ′, a reference to the future can then be used
by the invoker α.

Invk-Self deals with the particular case where the target is the invoking object.
Return evaluates a return statement and resolves the corresponding futures,

finishing a task so that a new task can be performed.
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Serve occurs when there is no current task, it picks the first one that can be
activated from the list of pending tasks and starts its execution. This ensures
a strict single-threaded execution of each request one after the other.

Get fetc.hes the value associated to a future.
Await suspends a task, waiting for the object to be in a given state before

continuing the task. Note that the awaited condition only depends on the
internal state of the active object. This scheduling feature is called cooperative
scheduling because several threads can be executing at the same time but
only one progresses and the context switch between a thread and another is
triggered by the program itself.

The initial configuration for running a program Act{T x M} {T x s} con-
sists of a single object performing a single task defined by the main method, the
corresponding future f is useless as no other object will fetc.h the result (it can
be any future identifier): α(∅, {∅|s}f , ∅). We use →∗ for the reflexive transitive
closure of →.

3.2 Type System

We define a simple type system for our language (the syntax of types is defined
in Fig. 3). The type system is standard for a language with active objects and
futures. The type checking rules are presented in Fig. 6. Classically, Act ranges
over class names and types. Γ is used for typing environments. The typing rules
have the form Γ �T s for statements where T is the return type of the current
method, Γ � e for expressions, Γ � M for methods, and Γ � P for programs.
The static type checking is defined in the first twelve rules of the figure. We
describe below the most interesting rules.

T-Get removes one future construct.
T-Invk creates a future type. This rule adds a future construct for the result

of asynchronous method invocation.
T-Program Note that the main body return type can be chosen arbitrarily:

there is no constraint on the typing of a return statement in the main block.

The initial typing environment Γ , which types the program, associates to each
class name a mapping from method names to method signatures. If m is a method
of class Act defined as follow T ′′ m (T x){T ′ x′ s}, we will have Γ (Act)(m) =
T → T ′′.

The type system is extended for typing configurations, this is expressed in
the last four rules of Fig. 6. A typing environment gives the type of each active
object and future. Each element of the configuration is checked individually in a
very standard manner. The only complex case happens when checking processes,
i.e., statements of requests in the queue or being processed, the complexity only
comes from the necessity to build the typing environment for the body of the
methods.
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Fig. 6. Type system (operator ⊕ has a predefined signature, rule for if omitted).

Properties of the Type System. Our type system verifies subject reduction.

Property 1 (Subject Reduction). If Γ � cn and cn → cn′ then Γ ′ � cn′ with
Γ ⊆ Γ ′.

Proof (Sketch). The proof is by straightforward induction over the application
of transition rules. For example the correct typing of the future value is ensured
by the fact that the return statement is well-typed in the initial configuration
(i.e., it has the return type of the method). This also ensures that the get
statement is well-typed (accordingly to the future type and the return type of
the method), and thus the Get reduction rule obtains the return type without
the future construct. Then, it is easy and classical to prove that every bind
succeeds (because the target method exists). The proof is standard and thus
omitted from the paper. ��
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4 Confluence Properties

In the following, we will state under which conditions a program written in
our language can behave deterministically. We first identify the configurations
modulo renaming of futures and active object identifiers. For this we let σ range
over renaming of futures and active object identifiers (mapping names to names),
and use cnσ to apply the renaming σ to the configuration cn.

Definition 1 (Equivalence). The configurations cn1 and cn2 are equivalent,
denoted as cn1 ≡ cn2, if and only if ∃σ.cn1 = cn2σ.

Note that it is trivial to prove that two equivalent configuration can do the same
reduction step (according to the SOS rules) and reach equivalent configurations.
Our properties will rely on the topology of active objects. For this we first define
the set of active objects referenced by a term of the language as follows.

Definition 2 (References). We state that active object β is referenced by
active object α in configuration cn, written β ∈ refscn(α), if inside configu-
ration cn, the content of the active object α holds a reference to active object β.
More precisely

refs(�) = {β|β ∈ range(�)}
refs({�|s}) = {β|β ∈ range(�)}

refs(α(a, q , q ′)) = refs(a) ∪ refs(q) ∪
⋃

q′∈q′

refs(q ′)

refscn(α) = refs(α(a, q , q ′)) if α(a, q, q′) ∈ cn

For example, consider the configuration

cn1 =α
(
[x �→ β], {[y �→ β] | y := new Act(v) ; y!m()}, ∅

)
γ
(
∅, ∅, ∅

)

β
(
[z �→ f ], {[w �→ 1] | y := w + 1}, {[g �→ γ] | h = g!m()}) f(3)

We have refscn1(α) = {β}, refscn1(β) = {γ} and refscn1(γ) = ∅

We can now define when a configuration has a tree structure. To be precise,
we should call such a configuration a forest as there is no requirement on the
unicity of the tree root.

Definition 3 (Tree Structure). We say that a configuration has a tree struc-
ture when no two objects reference the same third one.

Tree(cn) = ∀αβ ∈ cn. refscn(α) ∩ refscn(β) = ∅

The configuration cn1 given as example above verifies Tree(cn1) because active
object α only references active object β, active object β only references γ, and
active object γ references nothing. If the object field x of α was mapped to γ
instead of β, we would have two active objects referencing γ and the property
Tree(cn1) would be false.
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Fig. 7. Type system modified for no reference passing (each operator ⊕ has a predefined
signature, rule for if-statement is omitted). T �=Act means T is not an object type.

Now, we can state one crucial property of our language; it is a partial con-
fluence property constrained by the structure of the references between active
objects. We first prove a local confluence property. It relies on the fact that the
only conflicting reductions of the calculus is the concurrent sending of request to
a same target active object, from two different active objects. As a consequence,
if each object is referenced by a single object, then there is no conflicting reduc-
tion and we have local confluence.

Property 2 (Local Confluence). For any configuration cn such that Tree(cn), if
there exists cn1 and cn2 such that cn → cn1 and cn → cn2, then there exists
cn′

1 and cn′
2 such that cn1 → cn′

1 ∧ cn2 → cn′
2 ∧ cn′

1 ≡ cn′
2.

Proof (Sketch). The proof of local confluence is classically done by case analysis
on each pair of reduction rules that can be applied. We start by eliminating the
Context rule that is used to extract a sub-configuration and apply it automat-
ically in the proof, which is detailed in an accompanying technical report [12].

��
Finally, as a consequence of the previous property, we can state the following
partial confluence theorem. When at each point of the execution, the graph of
dependencies between active objects forms a tree, the program behaves deter-
ministically.

Theorem 1 (Global Confluence). Let cn be any configuration such that
∀cn′. cn →∗ cn′ ⇒ Tree(cn′).

If there exists cn1 and cn2 such that cn →∗ cn1 and cn →∗ cn2, then there
exists cn′

1 and cn′
2 such that cn1 →∗ cn′

1 ∧ cn2 →∗ cn′
2 ∧ cn′

1 ≡ cn′
2.
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5 Static Tree Structure Guarantee

In this section we define a type system that is sufficient to ensure the tree
structure of active objects and show that every well typed program according to
the type system defined in this section is confluent.

The type system in Fig. 6 is modified by revising rules T-New and T-Invk,
which handles object creations and method invocations, as shown in Fig. 7. The
modified type system is denoted as �. The two revised rules ensure that refer-
ences to an object cannot be passed upon object creation or method invocation,
thus only the creator of an object keeps a reference to it.

Note that this is useless in a tree-structure setting because an object cannot
call itself and it cannot pass its reference to an external object either. Note that,
however, we could add a synchronous call on this to the calculus (stacking a
method invocation), which would not raise any problem (just extending syntax).
Alternatively an asynchronous self call that adds the invocation at the head of the
queue like await would also be safe and maintain confluence property (but with
a strange semantics). To keep the typing rules simple, we use ActA, ActB, . . . , to
represents the types of different objects. Alternatively, we could use subtyping
relatively to a generic object type.

To show that a well-typed program in our language is confluent, we first show
that the type system � verifies subject reduction and reduction maintains the
tree property.

Property 3 (Subject Reduction of �). If Γ � cn and cn → cn′ then Γ ′ � cn′,
where Γ ⊆ Γ ′.

Proof (Sketch) The proof is by classical induction over the application of tran-
sition rules, and is detailed in an accompanying technical report [12]. The proof
also ensures that any return-type and thus any future is not an object, i.e., its
type is not an Act. More concretely, we never have Γ (f) = Act. ��
Property 4 (Reduction Maintains Tree Property) Consider the type-system of
our language modified according to Fig. 7 and extended to configurations.

(Γ � cn ∧ cn → cn′ ∧ Tree(cn)) =⇒ Tree(cn′)

Proof. This is due to the fact that the type system prevents the communication
of an object reference to a newly created object or as method parameter, or as
method result. In fact we prove by induction a stronger property:

(Γ � cn ∧ cn → cn′ ∧ Tree(cn) ∧ ∀f(w) ∈ cn. w �= α)
=⇒ Tree(cn′) ∧ ∀f(w) ∈ cn′. w �= α

Invk. Let cn = α1(a1, {�1 | x = v!m(v) ; s1}f , q1) α2(a2, p, q2). We are given
that Tree(cn), i.e., refscn(α1) ∩ refscn(α2) = ∅, and Γ � cn, which implies
Γ1 �T1 v!m(v) for some Γ1 and T1. This further gives us by rule T-Invk that
(i) Γ1 �T1 v : Act, (ii) Γ1 �T1 v : T , (iii) Γ (Act)(m) = T → T ′, (iv) �ActB. T ′ =
ActB, and (v) ∀v′ ∈ v. Γ ′(∃ActB. � v′ : ActB) =⇒ v′ = null.
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We are further given by rule Invk that cn → cn′ and cn′ = α1(a1, {�1 | x =
fm ; s1}f , q1) α2(a2, p, q2#{�m | sm}fm

) where [[v]]a1+�1 = α2 and α2 �= α1,
[[v]]a1+�1 = w, bind(α2,m,w) = {�m | sm}, and fm is fresh. Given (v) above,
we have refs(�m) = ∅; thus ∀γ. refs(γ) ∩ refs(�m) = ∅. This, together with
Tree(cn), implies Tree(cn′) because �m is the only new term in cn′ that can
contain references to active objects. Also ∀f(w) ∈ cn′. w �= α because the set of
resolved future is the same in cn and cn′.
Return. Let cn = α(a, {� | return e ; s}f , q). We are given that Tree(cn),
and Γ � cn. We are further given by rule Return that cn → cn′, where cn′ =
α(a, ∅, q) f(w) and [[e]]a+� = w. Since Tree(cn), it is easy to see that Tree(cn′).
By Property 3, we have Γ ′ � cn′ where Γ ⊆ Γ ′ implying that Γ ′ � w : Γ ′(f),
where Γ ′(f) = T . From the remark on return-types in the proof of Property 3,
it is clear a well-typed future can never be of any type Act, i.e., � ∃Act.T = Act.
Since f(w) is the only future that is changed, ∀f(w) ∈ cn′.w �= α holds.

The remaining cases are straightforward.
��

Now, we can prove that the type system � is sufficient to ensure the tree structure
required for confluence.

Property 5 (Tree Structure). Consider the type-system of our language modified
according to Fig. 7. If for a program P , Γ � P then the execution of P verifies the
conditions of the global confluence theorem, and P has a deterministic behaviour.

Proof. Consider cn0 is the initial configuration for the program P , we can prove
that ∀cn. cn0 →∗ cn =⇒ Tree(cn). This is a direct consequence of Property 4
and of the fact that cn0 forms a tree. By application of Property 2 we obtain
global confluence. ��

It is easy to see that in the examples of Sect. 2, the master-worker example in
Fig. 1 can be typed with our type system. On the other hand, the transmission
of object references (Lines 27 and 28) in the map-reduce example in Fig. 2 makes
it impossible to type with our type system. This reflects the fact that only the
first one is deterministic.

Ensuring the confluence property in a more flexible way would require a more
dynamic view of the object dependencies, for example by a more powerful static
analysis or a linear type system that would allow the creator to forget a reference
and send it to another object. These more dynamic systems are not studied in
this article and left for future work.

6 Related Work

We review the closest related work and discuss how different actor calculi could
be made partially confluent by following the approach advocated in this paper.
Table 1 summarises the features of some of the languages we discuss, with respect
to the key points that make our approach feasible in practice. FIFO channels are
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mandatory to ensure determinacy of communication between two given objects.
Futures can be safely added to the language to handle responses to messages in
a deterministic manner provided they can only be accessed in a blocking manner.
In the following, when a language appears to us as a meaningful target for our
approach, we explain briefly how our result is applicable. We consider that for the
other languages, the decisions made in the design of the language are somehow
contradictory with the principles of our approach.

Table 1. Deterministic characteristics for a few actor and active object languages.

Language FIFO channels Blocking future synchronisation Cooperative scheduling

ProActive and ASP YES YES NO

Rebeca YES NO NO

AmbientTalk NO NO NO

ABS NO YES Non-deterministic

Encore YES YES Non-deterministic

Akka YES Discouraged Non-deterministic

Lustre with futures YES YES NO

ProActive [13] uses active objects to implement remotely accessible, asyn-
chronous objects. The ASP calculus [5] formalises the ProActive Java library.
This paper also identifies partial confluence properties for active objects, which
can be seen as a follow-up to [5], except that our futures are explicit, where ASP
features implicit futures. Compared to the original work, the presented core lan-
guage is more streamlined, making this contribution easier to adapt to many
programming languages.

Applying our Approach to ProActive. This paper can be seen both as an exten-
sion of [5] and as an adaptation to explicit futures. Additionally we partially
address cooperative scheduling via a restricted await primitive. We also iden-
tify a simple type system that allows us to ensure deterministic behaviour of
programs.

Rebeca [9] and its variants mostly consist of actors communicating by asyn-
chronous messages over FIFO queues, which makes model-checking for Rebeca
programs less prone to state-explosion than most distributed systems [14]. Ensur-
ing a tree structure of Rebeca actors would then be sufficient to guarantee deter-
ministic behaviour; unfortunately the absence of futures in Rebeca forces call-
backs to be used to transmit results of computations, and it is very challenging
to maintain a tree-structure in the presence of callbacks.

AmbientTalk [15], based on the E Programming Language [16], implements
an actor model with a communicating event-loop. It targets embedded systems
and uses asynchronous reaction to future resolution, which prevents deadlocks
at the price of more non-determinism, creating a race between the reaction to
the future resolution and the rest of the computation in the same actor.

Creol [17] and languages inheriting from it, JCoBox [18], ABS [8] and
Encore [10], rely on cooperative scheduling allowing the single execution thread
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of the active object to interrupt the service of one request and start (or recover)
another at explicitly defined program points. A main difference between ABS
and Encore is that the former is built upon Erlang [19] that does not ensure FIFO
ordering of messages, while the latter is built upon Pony [20] that ensures causal
ordering of messages. In addition, Encore supports an advanced capability-based
type system [21] which enables race-free data sharing between active objects.
Confluence properties for cooperative scheduling in ABS have previously been
studied, based on controlling the local scheduler [22,23].

Applying our Approach to Languages à la ABS. ABS is a good candidate for our
approach because of the numerous formal developments it supports. However,
ABS features much less determinism than our core language because communica-
tions are unordered, and cooperative scheduling entails unpredictable interleav-
ing between the treatment of different messages. For example, Encore is similar
to ABS but already ensures FIFO ordering of messages, it would thus be easier
to adapt our work to Encore.

Concerning cooperative scheduling in JCoBox, ABS and Encore, we can state
that await on a future creates a non-blocking future access and should be pro-
scribed if determinism is expected. Other await statements (on the internal state
of an active object) can be kept in the language, but the cooperative scheduling
policy has to be adapted to make it deterministic.

Futures are becoming increasingly mainstream and are now available through
libraries in many languages, including Java, Scala, C++, and Rust. Akka [24,25]
is a scalable library for actors on top of Java and Scala. Communication in Akka
is FIFO which allows scheduling to be performed deterministically. Concerning
return-values, Akka used to favour asynchronous reaction to future resolution
which is not deterministic by nature. In the newest release, Akka 2.6.0, callbacks
are the preferred strategy for returning values. By nature, callbacks entail a
non-tree structure of object dependencies and create race-conditions between
the handling of callbacks and of standard requests.

Lohstroh et al. [26] recently proposed a deterministic actor language. The key
ingredient for determinism is the logical timing of messages based on a protocol
which combines physical and logical timing to ensure determinacy. Unfortunately
the resulting language is only deterministic when each message reaching the
same actor is tagged with a different time, which may not be easy to ensure.
Additionally, to the best of our knowledge, there is no proof of correctness of
the used scheduling protocol and its adaptation to the context of the paper. We
believe our approach could provide the right abstractions to prove correctness
of such scheduling approaches for determinacy, adapting the proof of confluence
provided in this paper and relating it to the scheduling protocol could prove the
confluence property of [26].

Ownership type systems [27] can enforce a given object topology. Their
application to active objects [28], especially inside the Encore language [10,21],
ensures the separation between different memory spaces. Ownership types guar-
antee that each passive (or data) object is referenced by a single active object.
Ownership types are in general adapted to enforce a tree topology, and these
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works could be extended to active objects so that their dependencies form a tree
(and passive objects are still owned by a single active object). This significant
extension of type systems is outside the scope of this paper but would allow
more programs in our calculus to be accepted by the type checker and proven
deterministic. Other modern type system features, especially linearity and bor-
rowing [29], should also be considered for the same reasons. In particular we
envisage the use of linear types and borrowing techniques to extend our results
to computations where the tree structure of active objects may change over time.

Outside the actor community, the addition of futures in Lustre has been
proposed in 2012 [30]. In this work, the authors provide an asynchronous com-
putation primitive based on futures inside a synchronous language. As futures
have good properties with respect to parallelism and determinism, they obtain
a language that is equivalent to the synchronous language but with more par-
allelism. Our approach is very close to futures in Lustre for two reasons: firstly,
both set up a programming model that ensure deterministic behaviour by using
futures and asynchronous invocations, secondly, the way futures are encoded
in Lustre corresponds in fact to an actor-like program where the dependency
between actors form a tree and communication is over FIFO channels.

Applying our Approach to Lustre with Futures. We prove here that, in an asyn-
chronous setting, futures in Lustre still have a deterministic behaviour (the same
behaviour as synchronous programs). Additionally, our await primitive could be
used in Lustre with future to enable cooperative scheduling.

7 Conclusion

This paper has given guidelines on how to implement deterministic active objects
and ensure that in any given framework a program behaves deterministically if
this is desired. We formalised a basic active object calculus where communication
between objects is performed by asynchronous method invocations on FIFO
channels, replies by means of futures, and synchronisation by a blocking wait on
future access. We added a deterministic cooperative scheduling policy, allowing
a thread to be suspended and recovered depending on the internal state of the
object. These conditions are the necessary prerequisites for our approach to be
applicable; in such system we identify precisely the possible races. Our first result
can be summarised as: in our calculus the only source of non-determinacy is the
concurrent sending of messages from two active objects to the same third one.
Then we showed that with the given semantics we can design a type system
that ensure determinacy of results by enforcing a tree structure for objects. For
example, if the active objects were using a communication library ensuring FIFO
ordering and deterministic scheduling, our type system would ensure that the
correctly typed active objects using this library behave deterministically.

The current results are still restrictive in the programs that can be expressed
and the rigidity of its properties; however, we believe that we have a minimal
and reliable basis for further studies. In the future, we plan to introduce more
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dynamic trees for example using linearity and borrowing types, but also primitive
to attach and detach tree to the object dependence graph, in order to constantly
ensure a tree structure, but allow the structure of the tree to evolve at runtime.
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Abstract. In this feasibility study we discuss reasoning about the cor-
rectness of Java interfaces using histories, with a particular application to
Java’s Collection interface. We introduce a new specification method (in
the KeY theorem prover) using histories, that record method invocations
including their parameters and return value, on an interface. We outline
the challenges of proving client code correct with respect to arbitrary
implementations, and describe a practical specification and verification
effort of part of the Collection interface using KeY (including source
and video material).
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1 Introduction

Throughout the history of computer science, a major challenge has been how
to assert that software is free of bugs and works as intended. In particular,
correctness of software libraries is of the utmost importance because these are
the building blocks of millions of programs, and they run on the devices of billions
of users. Formal verification gives precise, mathematical proof of correctness of
software, with respect to specifications of intended behavior expressed in formal
logic. Formal verification can guarantee correctness of software (as opposed, for
instance, to testing) but can be challenging in practice, as it frequently requires
significant effort in specification writing and constructing proof.

Such effort can very well pay off, as is clearly demonstrated by the use of
formal methods which led to the discovery of a major flaw in the design of
TimSort—a crash caused by indexing an array out of bounds. TimSort is the
default sorting library in many widely-used programming languages such as Java
and Python, and platforms like Android. A fixed version, which is now used in all
these platforms, was derived and has been proven correct [10] using KeY, a state-
of-the-art theorem proving technology [1]. Use of formal methods further led to
the discovery of some major flaws in the LinkedList implementation provided
by Java’s Collection Framework—erratic behavior caused by an integer overflow.
A fixed version of the core methods of the linked list implementation in Java has
also been formally proven correct using KeY [11].
c© Springer Nature Switzerland AG 2020
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However, some of the methods of the linked list implementation contain an
interface type as parameter and were out of scope of the work in [11]. As example
we could take the retainAll method. Verification of LinkedList’s implementa-
tion of retainAll requires the verification of the inherited retainAll method
from AbstractCollection. The implementation in AbstractCollection (see
Listing 1) shows a difficult method to verify: the methody body implements
an interface method, acts as a client of the supplied Collection instance by
calling contains, but it also acts as a client of the this instance by calling
iterator. Moreover, as AbstractCollection is an abstract class and does not
provide a concrete implementation of the interface, implementing iterator is
left to a subclass such as LinkedList. Thus arises the need for an approach to
specify interfaces which allows us to verify its (abstract) implementations and
its clients.

public boolean retainAll(Collection c) {
boolean modified = false;
Iterator it = iterator();
while (it.hasNext())

if ( ! c.contains(it.next())) {
it.remove();
modified = true;

}
return modified;

}
Listing 1. A difficult method to verify: retainAll in AbstractCollection.

More generally, libraries form the basis of the “programming to interfaces”
discipline, which is one of the most important principles in software engineer-
ing. Interfaces abstract from state and other internal implementation details,
and aids modular program development. However, tool-supported programming
logics and specification languages are predominantly state-based which as such
cannot be directly used for interfaces. The main contribution of this paper is to
show the feasibility of an approach which overcomes this limitation, by integrat-
ing history-based reasoning with existing specification and verification methods.
This work is the next step towards our ultimate goal of completely specifying
and verifying complex software libraries such as the Java Collection Framework,
including its LinkedList class and addAll, removeAll and retainAll methods.

The formal semantic justification of our approach is provided by the fully
abstract semantics for Java introduced in [15] which characterizes exactly the
minimal information about a method implementation in a class in a Java library
that captures its external use. This minimal information consists of histories
(also called traces) of method calls and returns, and provides a formal semantic
justification of the basic observation that such histories completely determine
the concrete state of any implementation and thus can be viewed as constituting
the generic abstract state space of an interface. This observation naturally leads
to the development of a history-based specification language for interfaces.
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The background of our approach is given in Sect. 2. An important use case,
which leads us to formal requirements on interface specifications, is to reason
about the correctness of clients, viz. programs that use instances of an interface
by calling methods on it. In Sect. 3 we analyze concrete examples that motivates
the design choices that leads us to the core of our approach: we associate to each
instance of an interface a history that represents the sequence of method calls
performed on the object since its creation. For each method call, the parameters
and return value are recorded symbolically in the history. This crucially allows
us to define abstractions over histories, called attributes, used to describe all
possible behaviors of objects regardless of its implementation.

Our methodology is to embed histories and attributes in the KeY theo-
rem prover [1] by encoding them as Java objects, thereby avoiding the need
to change the KeY system itself. Interface specifications can then be written in
the state-based specification language JML [13] by referring to histories and its
attributes to describe the intended behavior of implementations. This method-
ology is described in Sect. 4. Further, a distinguishing feature of histories is that
they support a history-based reference implementation for each interface which
is defined in a systematic manner. This allows an important application of our
methodology: the verification of the satisfiability of interface specifications them-
selves. This is done for part of the Collection interface in Sect. 5. We provide
source and video material of the verification effort to make the construction of
the proofs fully reproducible.

We now discuss related work. It can be empirically established that Java
libraries, and Java’s Collection Framework in particular, are heavily used and
have many implementations [8]. Recently, several issues with parts of the Col-
lection Framework were revealed [10,11]. Such issues are hard to discover at
run-time due to their heap size requirements, necessitating a static approach to
analysis. Static verification of the Collection Framework was already initiated
almost two decades ago, see e.g. the work by Huisman et al. [12,14]. What com-
plicates static verification is that it requires formal specifications. Two known
approaches are by Huisman [12] and Knüppel et al. [16], but their specifications
are not complete nor demonstrate the verification of various clients and imple-
mentations. Generally speaking, there seems to be no obvious strategy in spec-
ifying Java interfaces so that its clients and its implementations can be verified
statically by means of a theorem prover. However, for the purpose of run-time
verification, numerous approaches exist to specify and check Java programs, such
as [3–6]. Most of these approaches are based on histories. LARVA [7], a tool also
mainly developed for run-time verification, was extended in e.g. [2] to optimize
away checks at run-time that can be established statically. But, there, static
guarantees are limited by expressivity (no fully-fledged theorem prover is used)
and interfaces are not handled by the static analysis. Closest to the nature of
this work is [17] by Welsch and Poetzsch-Heffter, who reason about backwards
compatibility of Java libraries in a formal manner using histories to capture and
compare the externally observable behavior of two libraries. In [17], however,
two programs are compared, and not a program against a formal specification.



202 H.-D. A. Hiep et al.

2 Background

In this section, we first provide the context of our work on history-based spec-
ification and verification, by giving an overview of the relevant basic concepts,
followed by a brief overview of the specification language JML and theorem
prover KeY, which are used to realize our approach.

At the lowest level of abstraction, a history is a sequence of events. So the
question arises: what events does it contain, and how are the events related
to a given program? To concretize this, we first note that in our setting we
focus on histories for single-threaded object-oriented programs, and classes and
interfaces of Java libraries in particular. For such programs, there are two main
kinds of histories: (a) a single global history for the entire program, and (b)
a local history per object. The first kind, a global history, does not result in a
modular specification and verification approach: such a history is specific to a
particular program and thus cannot be reused in other programs, since as soon
as other objects or classes are added this affects the global history. A global
history is therefore not suitable for specifying and verifying Java libraries, since
libraries are reused in many different client programs. Hence, in our setting, we
tend towards using a local history for each object separately.1

Following the concept of information hiding, we assume that an object encap-
sulates its own state, i.e. other objects cannot directly access its fields, but only
indirectly by calling methods. This is not a severe limitation: one can introduce
getter and setter methods rather than reading and writing a field directly. But
this assumption is crucial to enable any kind of (sound) reasoning about objects:
if objects do not encapsulate their own state, any other object that has a ref-
erence to it can simply modify the values of the fields directly in a malicious
fashion where the new internal state breaks the class invariant of the object2

without the object being able to prevent (or even being aware of) this.
Assuming encapsulation, each object has full control over its own internal

state, it can enforce invariants over its own fields and its state can be completely
determined by the sequence of method calls invoked on the object. How an object
realizes the intended behavior of each method may differ per implementation:
to a client of the object, the internal method body is of no concern, including
any calls to other objects that may be done in the method body. We name
the calls that an object invokes on other objects inside a method outgoing calls
(their direction is out of the object, into another object), and we name the calls
made to the object on methods it exposes incoming calls. The above discussion
makes clear that the semantics of an object-oriented program can be described
purely in terms of its behavior on incoming method calls. Indeed, formally, this
is confirmed by Jeffrey and Rathke’s work [15] which presents a fully abstract
semantics for Java based on traces.

1 A more sophisticated approach will be introduced for inner classes (see Sect. 3).
2 Roughly speaking, a class invariant is a property that all objects of the class must

satisfy before and after every method call. Class invariants typically express consis-
tency properties of the object.
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KeY and JML. KeY [1] is a semi-interactive theorem prover for Java programs
(typically > 95% of the proof steps are automated). The input for KeY is a Java
program together with a formal specification in a KeY-dialect of JML. The user
proves the specifications method-by-method. KeY generates appropriate proof
obligations and expresses them in a sequent calculus, where the formulas inside
the sequent are multi-modal dynamic logic formulas in which Java program
fragments are used as the modalities. To reduce such dynamic logic formulas to
first-order formulas, KeY symbolically executes the Java program in the modality
(it has rules for nearly all sequential Java constructs). Once the program is fully
symbolically executed, only formulas without Java program fragments remain.

JML, the Java Modeling Language [13], is a specification language for Java
that supports the design by contract paradigm. Specifications are embedded as
Java comments alongside the program. A method precondition in JML is given
by a requires clause, and a postcondition is given by ensures. JML also sup-
ports class invariants. A class invariant is a property that all instances of a class
should satisfy. In the design by contract setting, each method is proven in iso-
lation (assuming the contracts of methods that it calls), and the class invariant
can be assumed in the precondition and must be established in the postcondi-
tion, as well as at all call-sites to other methods. To avoid manually adding the
class invariant at all these points, JML provides an invariant keyword which
implicitly conjoins the class invariant to all pre- and postconditions. Method
contracts may also contain an assignable clause stating the locations that may
be changed by the method (if the precondition is satisfied), and an accessible
clause that expresses the locations that may be read by the method (if the
precondition is satisfied). Our approach uses all of the above concepts.

Our methodology is based on a symbolic representation of histories. We
encode histories as Java objects to avoid modifying the KeY system and thus
avoid the risk of introducing an inconsistency. Such representation allows the
expression of relations between different method calls and their parameters and
return values, by implementing abstractions over histories, called attributes, as
Java methods. These abstractions are specified using JML.

3 Specification and Verification Challenges for Collection

In this section, we highlight several specification and verification challenges with
histories that occur in real-world programs. We guide our discussion with exam-
ples based on Collection, the central interface of the Java Collection Frame-
work. However, note that our approach, and methodology in general, can be
applied to all interfaces, as our discussion can be generalized from Collection.

A collection contains elements of type Object and can be manipulated inde-
pendently of its implementation details. Typical manipulations are adding and
removing elements, and checking whether it contains an element. Sub-interfaces
of Collection may have refined behavior. In case of interface List, each element
is also associated to a unique position. In case of interface Set, every element is
contained at most once. Further, collections are extensible: interfaces can also
be implemented by programs outside of the Java Collection Framework.
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How do we specify and verify interface methods using histories?
We focus our discussion on the core methods add, remove, contains, and
iterator of the Collection interface. These four methods comprise the events
of our history. More precisely, we have at least the following events:

– add(o) = b,
– remove(o) = b,
– contains(o) = b,
– iterator() = i,

where o is an element, b is a Boolean return value indicating the success of the
method, and i is an object implementing Iterator. Abstracting from the imple-
mentations of these methods we can still compute the contents of a collection
from the history of its add and remove events; the other events do not change the
contents. This computation results in a representation of the contents of a col-
lection by a multiset of objects. For each object its multiplicity then equals the
number of successful add events minus the number of successful remove events.
Thus, the contents of a collection (represented by a multiset) is an attribute.

For example, for two separate elements o and o′,
add(o) = true, add(o′) = true, add(o′) = false, remove(o′) = true
is a history of some collection (where the left-most event happens first). The
multiplicity of o in the multiset attribute of this history is 1 (there is one suc-
cessful add event), and the multiplicity of o′ is 0 (there is one successful add
event, and one successful remove event).

The main idea is to associate each instance to its own history. Consequently,
we can use the multiset attribute in method contracts. For example, we can
state that the add method ensures that after returning true the multiplicity of
its argument is increased by one, that the contains method returns true when
the argument is contained (i.e. its multiplicity is positive), and that the remove
method ensures that the multiplicity of a contained object is decreased by one.

How can we specify and verify client-side properties of interfaces?
Consider the client program in Listing 2, where x is a Collection and y is an
Object. To specify the behavior of this program fragment, we could now use the
multiset attribute to express that the contents of the Collection instance x is
not affected.

if (x.add(y)) x.remove(y);

Listing 2. Adding and removing an element does not affect contents.

Another example of this challenge is shown in Listing 3: can we prove the ter-
mination of a client? For an arbitrary collection, it is possible to obtain an object
that can traverse the collection: this is an instance of the Iterator interface con-
taining the core methods hasNext and next. To check whether the traversal is
still on-going, we use hasNext. Subsequently, a call to next returns an object
that is an element of the backing collection, and continues the traversal. Finally,
if all objects of the collection are traversed, hasNext returns false.
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Iterator it = x.iterator();
while (it.hasNext()) it.next();

Listing 3. Iterating over the collection.

How do we deal with intertwined object behaviors?
Since an iterator by its very nature directly accesses the internal representation
of the collection it was obtained from3, the behavior of the collection and its
iterator(s) are intertwined: to specify and reason about collections with iterators
a notion of ownership is needed. The behavior of the iterator itself depends on
the collection from which it was created.

How do we deal with non-local behavior in a modular fashion?
Consider the example in Listing 4, where the collection x is assumed non-empty.
We obtain an iterator and its call to next succeeds (because x is non-empty).
Consequently, we perform the calls as in Listing 2: this leaves the collection with
the same elements as before the calls to add and remove. However, the iterator
may become invalidated by a call that modifies the collection; then the iterator
it is no longer valid, and we should not call any methods on it—doing so throws
an exception.

Iterator it = x.iterator(); it.next();
if (x.add(y)) x.remove(y); // may invalidate iterator it

Listing 4. Invalidating an iterator by modifying the owning collection.

Invalidation of an iterator is the result of non-local behavior: the expected
behavior of the iterator depends on the methods called on its owning collection
and also all other iterators associated to the same collection. The latter is true
since the Iterator interface also has a remove method (to allow the in-place
removal of an element) which should invalidate all other iterators. Moreover,
a successful method call to add or remove (or any mutating method) on the
collection invalidates all its iterators.

We can resolve both phenomena by generalizing the above notion of a history,
strictly local to a single object, without introducing interference. We take the
iterator to be a ‘subobject’ of a collection: the methods invoked on the iterator
are recorded in the history of its owning collection. More precisely, we also have
the following events recorded in the history of Collection:

– hasNext(i) = b,
– next(i) = o,
– remove(i),

where b is a Boolean return value indicating the success of the method, and i is
an iterator object. Now, not only can we express what the contents of a collection

3 To iterate over the content of a collection, iterators are typically implemented as
so-called inner classes that have direct access to the fields of the enclosing object.
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is at the moment the iterator is created and its methods are called, but we can
also define the validity of an iterator as an attribute of the history of the owning
collection.

4 History-Based Specification in KeY

We start with an overview of our methodology: through what framework can
we see the different concepts involved? The goal is to specify interface method
contracts using histories. This is done in a number of steps:

1. We introduce histories by Java classes that represent the inductive data type
of sequences of events, and we introduce attributes of histories encoded by
static Java methods. These attributes are defined inductively over the struc-
ture of a history. The attributes are used within the interface method con-
tracts (of Collection) to specify the intended behavior of every implemen-
tation (of Collection) in terms of history attributes.

2. Attributes are deterministic and thus represent a function. Certain logical
properties of and between attributes hold, comparable to an equational spec-
ification of attributes. These are represented by the method contracts associ-
ated to the static Java methods that encode the attributes.

3. Finally, we append an event to a history by creating a new history object in
a static factory method. The new object consists of the new event as head,
and the old history object as tail. The contract for these static methods also
expresses certain logical properties of and between attributes, of the new
history related to the old history.

The main motivation of our methodology is derived from the fact that the
KeY theorem prover uses the Java Modeling Language as the specification lan-
guage and that both JML and the KeY system do not have built-in support for
specification of interfaces using histories. Instead of extending JML and KeY,
we introduce Java encodings of histories that can be used for the specification
of the Collection interface, which as such can also be used by other tools [4].

Remark 1. JML supports model fields which are used to define an abstract state
and its representation in terms of the concrete state given (by the fields) in a
concrete class. For clients, only the interface type Collection is known rather
than a concrete class, and thus a represents clause cannot be defined. Ghost
variables cannot be used either, since ghost variables are updated by adding set
statements in method bodies and interfaces do not have method bodies. What
remains are model methods, which we use as our specification technique.

4.1 The History Class for Collection

In principle our histories are a simple inductive data type of a sequence of events.
Inductive data types are convenient for defining attributes by induction. How-
ever, no direct support for inductive definitions is given in either Java or KeY.
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Thus, we encode histories by defining a concrete History class in Java itself,
specifically for Collection. The externally observable behavior of any imple-
mentation of the Collection interface is then represented by an instance of the
History class, and specific attributes (e.g., patterns) of this behavior are speci-
fied by pure methods (which do not affect the global state of the given program
under analysis). Every instance represents a particular history value.

Fig. 1. A number of history objects. The left-most represents the history of a collection
in which add is called three times followed by a remove. Intuitively, this history captures
the behavior of a set (the addition of an object already contained returns false).

The History class implements a singly-linked list data structure: a history
consists of a head Event and a tail History. The class Event has sub-classes,
one for each method of the Collection interface. Moreover, there are sub-classes
for each method of the Iterator interface that additionally track the iterator
instance sub-objects. These events are also part of the history of a Collection.
See Fig. 1 and Listing 5.

Each sub-class of the Event class comprises the corresponding method’s argu-
ments and return value as data. For the Collection interface we have the events:
AddEvent, RemoveEvent, ContainsEvent, IteratorEvent. AddEvent has an
Object field arg for the method argument, and a Boolean field ret for the return
value, that corresponds to the method declaration of boolean add(Object).
RemoveEvent and ContainsEvent are similar. IteratorEvent has an Object
field ret for the return value, for Iterator iterator(), which is seen as a
creation event for the iterator sub-object.

For the Iterator interface we have the events: IteratorHasNextEvent,
IteratorNextEvent, IteratorRemoveEvent. IteratorHasNextEvent has a
field inst for the sub-object instance of Iterator, and a Boolean field
ret for the return value, that corresponds to the method declaration
of boolean hasNext(). IteratorNextEvent has an instance field and an
Object field ret, corresponding to the method declaration Object next().
IteratorRemoveEvent only has an instance field, since void remove() returns
nothing.
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public class History {

Event Head; /*@ nullable @*/ History Tail; /*@ ghost int length; @*/

// (attributes and their method contracts...)

// (factory methods... e.g.)

/*@ pure */ static History addEvent(/*@ nullable */ History h,

/*@ nullable */ Object o, boolean ret) {

return new History(new AddEvent(o, ret), h);

}

}

Listing 5. The History class structure. Later on, the specification of the addEvent

factory method is given in Listing 10.

Remark 2. As part of the History class, we define footprint() as a JML model
method. The footprint of a history is a particular set of heap locations; if those
locations are not modified then the value of attributes of the history remains
unchanged. In our case, the footprint is the set of fields of events and the singly-
linked history list, but we do not include in our footprint the fields of the objects
that are elements of the collection, since those never influence any attribute value
of a history (we never cast elements of a collection to a specific sub-class to access
its fields).

We treat the history as an immutable data type4: once an object is created,
its fields are never modified. History updates are encoded by the creation of a
new history, with an additional new event as head, pointing to the old history as
tail. Immutability allows us to lift any computed attribute of a history in some
heap over heap modifications that do not affect the footprint of the given history.
This turns out to be crucial in verifying that an implementation is correct with
respect to interface method contracts, where we update a history to reflect that
an incoming method call was performed. Such a contract expresses a particular
relation between the history’s attributes in the heap before and after object
creation and history update: the value of an attribute of the old history in the
heap before remains the same in the heap after these heap modifications.

4.2 Attributes of History

To avoid tying ourselves to a particular history representation, the linked list
of events in the history itself is not exposed and cannot be used in specifica-
tions. Rather, the history is accessed exclusively through “observer symbols”,
also called “query methods”, that map the history to a value. Such observer
symbols we call attributes. Attributes are defined as strictly pure methods,
since their computation cannot affect the heap. Strictly pure methods are also
easier to work with than non-strict or non-pure methods, especially when these
methods are used in specifications of the Collection interface: these methods
evaluate in one heap without modifying it.
4 By immutable, we mean an object for which its fields after construction are never

modified, and its reference type fields point only to immutable objects.
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The advantage of the use of KeY is that pure methods that appear in speci-
fications as observer symbols can be translated into a modal JavaDL expression,
and this allows, more generally, reasoning about pure methods [9]. The rule in
the proof system, that replaces observer symbols associated to pure method by
a modal expression that expresses the result of a separate symbolic execution of
calling the method, is called query evaluation [1, Sect. 11.4].

Attributes are defined inductively over the history. In order to prove their
termination we also introduce a ghost field length that represents the length of
the history. A ghost field logically assigns to each object a value used for the
purpose of verification, but is not present at run-time. In each call on the tail of
the history its length decreases, and the length is always positive, thus realizing
a so-called decreasing term.

Attributes are functions of the history. Functionality of an attribute amounts
to showing dependence (only on the footprint of a history), determinism (unique-
ness of result) and termination. To verify that an attribute is deterministic
involves two steps: we first symbolically execute the method body, until we
obtain a proof obligation in which we have to show that the post-condition
holds. The post-condition consequently contains, as observer symbol, the same
method applied to the same formal parameters: we use query evaluation to per-
form another symbolic execution of the same method. We need to prove that
their outcomes are identical, to verify that the method is deterministic. Not every
method can be proven to be deterministic: e.g. if a method body contains a call
to a method that cannot be unfolded and that has an unspecified result, then
the two symbolic executions (first directly, and secondly through an evaluated
query of the observer symbol) need not pick the same result in each method call.

Contents of a Collection: The multiset attribute of a Collection represents
its content and is defined inductively over the structure of the history: the events
corresponding to a successful add and remove call of the Collection interface
increase and decrease the multiplicity of their argument. Note that removing an
element never brings it down to a negative multiplicity. Moreover, remove of the
Iterator interface also decreases the multiplicity; but no longer an argument is
supplied because the removed element is the return value the previous next call
of the corresponding iterator sub-object. Thus, we define an attribute for each
iterator that denotes the object returned by the last next call. Calling remove
on an iterator without a preceding next call is not allowed, so neither is calling
remove consecutively multiple times.

/∗@ normal behavior
@ requires h != null && \invariant for(h);
@ ensures \result == History.Multiset(h,o) && \result >= 0;
@ measured by h.length;
@ accessible h.footprint(); // dependency contract
@∗/

/∗@ strictly pure ∗/ static int Multiset(
/∗@ nullable ∗/ History h, /∗@ nullable ∗/ Object o) {

if (h == null) return 0;
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else {
int c = History.Multiset(h.Tail, o);
if (h.Head instanceof AddEvent &&

((AddEvent) h.Head).arg == o &&
((AddEvent) h.Head).ret == true) { // important

return c + 1;
} else ...
return c;

} }
Listing 6. Part of Multiset method of the History class, with one JML contract.

Listing 6 shows part of the implementation of the Multiset attribute that
is computed by the Multiset static method. It is worthwile to observe that
AddEvent is counted only when its result is true. This makes it possible to
compute the Multiset attribute based on the history: if the return value is omit-
ted, one cannot be certain whether an add has affected the contents. With this
design, further refinements can be made into lists and sets.

Iterating over a Collection: Once an iterator is obtained from a collection,
the elements of the collection can be retrieved one by one. If the Collection
is subsequently modified, the iterator becomes invalidated. An exception to this
rule is if the iterator instance itself directly modifies the collection, i.e. with
its own Iterator.remove() method (instead of Collection.remove(Object)):
calling that method invalidates all other iterators. We have added an attribute
Valid that is true exactly for iterators that are valid (definition omitted).

For each iterator, there is another multiset attribute, Visit (definition omit-
ted), that tracks the multiplicities of the objects already visited. Intuitively, this
visited attribute is used to specify the next method of an iterator. Namely,
next returns an element that had not yet been visited. Calling Iterator.next
increases the Visit multiplicity of the returned object by one and leaves all other
element multiplicities the same. Intuitively, the iterator increases the size of its
Visit multiset attribute during traversal, until it completely covers the whole
collection, represented by the Multiset attribute: then the iterator terminates.

Although these two attributes are useful in defining an implementation of an
iterator, they are less useful in showing client-side correctness of code that uses
an iterator. To show termination of a client that iterates over a collection, we
introduce two derived attributes: CollectionSize and IteratorSize. One can think
of the collection’s size as a sum of the multiplicties of all elements, and similar
for an iterator size of its visited multiset.
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4.3 The Collection interface

public interface Collection {
/∗@ model behavior
@ requires true;
@ model nullable History history();
@∗/

// (interface methods and their method contracts ...)
}

Listing 7. The history() model method of the Collection interface.

The Collection interface has an associated history that is retrieved by an
abstract model method called history(). This model method is used in the
contracts for the interface methods, to specify what relation must hold of the
attribute values of the history in the heap before and after executing the interface
method.

As a typical example we show the specification of the add method in terms
of the Multiset attribute of the new history (after the call) and the old history
(prior to the call). The specification of add closely corresponds to the informal
Javadoc specification written above it. Similar contracts are given for the remove,
contains, and iterator methods. In each contract, we implicitly assume a sin-
gle event is added to the history corresponding to a method call on the interface.
The assignable clause is important, as it rules out implementations from modi-
fying its past history: this ensures that the attributes of the old history object
in the heap before executing the method have the same value in the heap after
the method finished execution.

/∗∗ Ensures that this collection contains the specified element (optional
∗ operation). Returns true if this collection changed as a result of the call.
∗ Returns false if this collection does not permit duplicates and already
∗ contains the specified element. ... ∗∗/

/∗@ public normal behavior
@ ensures history() != null ;
@ ensures History.Multiset(history(),o) ==

History.Multiset(\old(history()), o) + (\result ? 1 : 0);
@ ensures History.Multiset(history(),o) > 0;
@ ensures (\forall Object o1; o1 != o; History.Multiset(history(),o1) ==

History.Multiset(\old(history()), o1));
@ assignable \set minus(\everything, (history() == null) ? \empty :

history().footprint());
@∗/

boolean add( /∗@ nullable ∗/ Object o);

Listing 8. The use of Multiset in the specification of add in the Collection interface.

It is important to note that the value of \result is unspecified. The intended
meaning of the result is that it is true if the collection is modified. There are
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at least two implementations: that of a set, and that of a list. For a set, the
result is false if the multiplicity prior to the call is positive, for a list the result
is always true. Thus it is not possible to specify the result any further in the
Collection interface that is compatible with both Set and List sub-interfaces.
In particular, consider the following refinements [1, Sect. 7.4.5] of add:

– The Set interface also specifies that \result is true if and only if the multiset
attribute before execution of the method is zero, i.e.
ensures History.Multiset(\old(history()), o) == 0 ⇐⇒ \result == true;

– The List interface also specifies that \result is true unconditionally, i.e.
ensures \result == true;

As in another approach [16], one could use a static field that encodes a closed
enumeration of the possible implementations, e.g. set or list, and specify \result
directly. Such closed world perspective does not leave room for other implemen-
tations. In our approach we can obtain refinements of interfaces that inherit from
Collection, while keeping the interface open to other possible implementations,
such as Google Guava’s Multiset or Apache Commons’ MultiSet.

4.4 History-Based Refinement

Given an interface specification we can extract a history-based implementation,
that is used to verify there exists a correct implementation of the interface speci-
fication. The latter establishes that the interface specification itself is satisfiable.
Since one could write inconsistent interface specifications for which there does
not exist a correct implementation, this step is crucial.

The state of the history-based implementation BasicCollection consists
of a single concrete history field this.h. Compare this to the model method of
the interface, which only exists conceptually. By encoding the history as a Java
object, we can also directly work with the history at run-time instead of only
symbolically. The concrete history field points to the most recent history, and
we can use it to compute attributes. The implementation of a method simply
adds for each call a new corresponding event to the history, where the return
value is computed depending on the (attributes of the) old history and method
arguments. The contract of each method is inherited from the interface.

public boolean add(/∗@ nullable ∗/ Object o) {
boolean ret = true;
this.h = History.addEvent(this.h, o, ret);
return ret;

}
Listing 9. One of the possible implementations of add in BasicCollection.

See Listing 9 for an implementation of add, that inherits the contract in Listing 8.
Note that due to underspecification of \result there are several possible imple-
mentations, not a unique one. For our purposes of showing that the interface
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specification is satisfiable, it suffices to prove that at least one correct implemen-
tation exists.

For each method of the interface we have specified, we also have a static fac-
tory method in the history class which creates a new history object that consists
of the previous history as tail, and the event corresponding to the method call of
the interface as head. We verify that for each such factory method, the relation
between the attributes of the old and the resulting history holds.

/*@ normal behavior

@ requires h != null ==> \invariant_for(h);

@ ensures \result != null && \invariant_for(\result);

@ ensures History.Multiset(\result,o) ==

History.Multiset(h,o) + (ret ? 1 : 0);

@ ensures (\forall Object o1; o1 != o;

History.Multiset(\result,o1) == History.Multiset(h,o1));

@ ensures \result.Tail == \old(h); */

/*@ pure */ static History addEvent(

/*@ nullable */ History h, /*@ nullable */ Object o, boolean ret);

Listing 10. The contract for the factory method for AddEvent in class History.

For example, the event corresponding to Collection’s add method is added to
a history in Listing 10 (see also Listing 5). We have proven that the Multiset
attribute remains unchanged for all elements, except for the argument o if the
return value is true (see Listing 6). This property is reflected in the factory
method contract. Similarly, we have a factory method for other events, e.g.
corresponding to Collection’s remove.

5 History-Based Verification in KeY

This section describes our verification work which we performed to show the fea-
sibility of our approach. We use KeY version 2.7-1681 with the default settings.
For the purpose of this article, we have recorded est. 2.5 h of video5 showing how
to produce some of our proofs using KeY. A repository of all our produced proof
files is available on Zenodo6 and includes the KeY version we used.

The proof statistics are shown in Table 1. These statistics must be interpreted
with care: shorter proofs (in the number of nodes and interactive steps) may
exists, and the reported time depends largely on the user’s experience with the
tool. The reported time does not include the time to develop the specifications.

We now describe a number of proofs, that also have been formally verified
using KeY. Note that the formal proof produced in KeY consists of many low-
level proof steps, of which the details are too cumbersome to consider here.

To verify clients of the interface, we use the interface method contracts. In
particular, the verification challenge in Listing 2 makes use of the contracts of

5 https://doi.org/10.6084/m9.figshare.c.5015645.
6 https://doi.org/10.5281/zenodo.3903203.

https://doi.org/10.6084/m9.figshare.c.5015645
https://doi.org/10.5281/zenodo.3903203
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Table 1. Summary of proof statistics. Nodes and branches are measures of proof
trees, I.step is the number of interactive proof steps, Q.inst is the number of quantifier
instansiation rules, O.Contract is the number of method contracts applied, Dep. is the
number of dependency contracts applied, Loop inv. is the number of loop invariants,
and Time is an estimated wall-clock duration for interactively producing the proof tree.

Nodes Branches I.step Q.inst O.Contract Dep. Loop inv. Time

171,543 3,771 1,499 965 79 263 1 388 min

add and remove, to establish that the contents of the Collection parameter
passed to the program in Listing 2 remains unchanged. More technically, during
symbolic execution of a Java program fragment in KeY, one can replace the
execution of a method by its associated method contract. The contract we have
formulated for add and remove is sufficient in proving the client code in Listing
2: the multiset remains unchanged. In the proof, the user has to interactively
replace occurrences of history attributes by their method contracts. Method
contracts for attributes can in turn be verified by unfolding the method body,
thereby inductively establishing their equational specifications. The specification
of the latter is not shown here, but can be found in the source files.

For the verification challenge in Listing 3, we make use of the contracts for
iterator and the methods of the Iterator interface. The iterator method
returns a fresh Iterator sub-object that is valid upon creation, and its owner
is set to be the collection. The history of the owning collection is updated after
each method call to an iterator sub-object. Each iterator has as derived attribute
IteratorSize, the size of the visited multiset. It is a property of the IteratorSize
attribute that it is not bigger than CollectionSize, the size of the overall col-
lection. To verify termination of a client using the iterator in Listing 3, we can
specify a loop invariant that maintains the validity and ownership of the itera-
tor, and take as decreasing term the value of CollectionSize minus IteratorSize.
Since each call to next causes the visited multiset to become larger, this term
decreases. Since an iterator cannot iterate over more objects than the collec-
tion contains, this term is non-negative. We never needed to verify that the
equational specification for the involved attributes hold and this can be done
separately from verifying the client, thus allowing modular verification.

One of the complications of our history-based approach is reasoning about
invariant properties of (immutable) histories, caused by potential aliasing. This
currently cannot be automated by the KeY tool. We manually introduce a gen-
eral but crucial lemma, that addresses the issue, as illustrated by the following
verification condition that arises when verifying the reference implementation.

One verification condition is a conjunct of the method contract for
the add method of Collection, namely that in the post-condition,
Multiset(history(), o) == Multiset(\old(history()), o) + (\result ? 1 : 0 ) should
hold. We verify that BasicCollection’s add method is correct with respect to
this contract. Within BasicCollection, the model method history() is defined
by the field this.h, which is updated during the method call with a newly created
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history using the factory method History.addEvent. We can use the contract
of the addEvent factory method to establish the relation between the multi-
set value of the new and old history (see Listing 10); this contract is in turn
simply verified by unfolding the method body of the multiset attribute and per-
forming symbolic execution, which computes the multiplicity recursively over
the history and adds one to it precisely if the returned value is true. Back in
BasicCollection, after the update of the history field this.h, we need to prove
that the post-condition of the interface method holds (see Listing 8); but we
already have obtained that this property holds after the static factory method
add before this.h was updated.

∀ int n; (n ≥ 0 → ∀ History g;
(g.〈inv〉 ∧ g.〈created〉 = true ∧ g.history length = n →

this.h �∈ g.footprint()))

The update of the history field, as a pointer to the History linked list, does
not affect this structure itself, i.e. the values of attributes are not affected by
changing the history field. This is an issue of aliasing, but we know that the
updated pointer does not affect the attribute values of any History linked list.
This can not be proven automatically: we need to interactively introduce a cut
formula (shown above) that the history field does not occur in the footprint of
the history object itself. The formula can be proven by induction on the length
of the history.

6 Conclusion

Programming to interfaces is one of the core principles in object-oriented pro-
gramming and central to the widely-used Java Collection Framework, which
provides a hierarchy of interfaces and classes that represent object containers.
But current practical static analysis tools, including model checkers and theorem
provers such as KeY, are primarily state-based. Since interfaces do not expose a
state or concrete representation, a major question is how to support interfaces.

The main contribution of this paper is a new systematic method for history-
based reasoning and reusable specifications for Java programs that integrates
seamlessly in the KeY theorem prover, without affecting the underlying proof
system (this ensures our method introduces no inconsistencies). Our approach
includes support for reasoning about interfaces from the client perspective, as
well as about classes that implement interfaces. To show the feasibility of our
novel method, we specified part of the Collection Framework with promising
results. We showed how we can reason about clients with these specifications,
and showed the satisfiability of the specifications by a witness implementation
of the interface. We also showed how to handle inner classes with a notion of
ownership. This is essential for showing termination of clients of the Iterator.

This work is the next step in the formal verification of Java’s Collection
Framework. With our novel method we can continue our specification and ver-
ification work on LinkedList, including methods with arguments of interface
type such as addAll, and its inherited methods removeAll and retainAll.



216 H.-D. A. Hiep et al.

A direction for future work is to further improve practicality of history-based
specification and verification: for example, (a) considering client-side correctness
with multiple (potentially aliasing) objects implementing the same interface, (b)
considering client-side correctness that involves objects that implement multiple
(potentially interfering) interfaces, (c) developing techniques to show that cer-
tain combinations of interfaces are inconsistent, such as an object implementing
both List and Set, (d) considering implementations that initialize the value
of attributes by an arbitrary value at creation time (e.g. a non-empty collec-
tion when it is constructed) which necessitates an object creation event, and
(e) encoding histories as built-in abstract data types with special proof rules, to
avoid modeling histories as Java objects.

Acknowledgements. The authors thank the anonymous reviewers for their helpful
comments and suggestions.
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Abstract. When developing file systems, caching is a common tech-
nique to achieve a performant implementation. Integrating write-back
caches into a file system does not only affect functional correctness but
also impacts crash safety properties of the file system. As parts of writ-
ten data are only stored in volatile memory, special care has to be taken
when integrating write-back caches to guarantee that a power cut dur-
ing running operations leads to a consistent state. This paper shows how
non-order-preserving caches can be added to a virtual file system switch
(VFS) and gives a novel crash-safety criterion matching the character-
istics of such caches. Broken down to individual files, a power cut can
be explained by constructing an alternative run, where all writes since
the last synchronization of that file have written a prefix. VFS caches
have been integrated modularly into Flashix, a verified file system for
flash memory, and both functional correctness and crash-safety of this
extension have been verified with the interactive theorem prover KIV.

Keywords: POSIX-compliant File Systems · Write-Back Caching ·
Crash-Safety · Refinement · Interactive Verification

1 Introduction

This paper addresses the modular specification of a caching mechanism to a
virtual filesystem switch (VFS) and the formal verification of crash-safety.

The original VFS is the standard top-level layer of any file system adhering
to the POSIX standard [15] for all file systems used by Linux. Standard file
systems like ext2,3,4 or ReiserFS use it, as well as file systems specific for raw
flash memory, such as JFFS, YAFFS, or UBIFS.

In our Flashix project, we have developed a POSIX-compliant, modular file
system for flash memory, using UBIFS as a blueprint, that was verified to be
functionally correct and crash-safe. This includes a verified implementation of
VFS without caching described in [8,9]. The implementation is one of ten com-
ponents of the verified development, which altogether generates approximately
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18k of C-Code that can be run in the Linux kernel or via the FUSE interface.
Initially, the implementation was sequential, in recent work we have developed a
concept for adding concurrency to components [16], which has led to a concur-
rent implementation of wear leveling and garbage collection (both necessary for
Flash memory). Allowing concurrent calls for the top-level POSIX operations is
work in progress.

VFS is responsible for the generic aspects of file systems: mapping direc-
tory paths to individual nodes, checking access rights, and breaking up writing
data into files into updates for individual data pages. VFS is specific to Linux,
although Windows uses a similar concept called IFS.

Our implementation VFS does not use a cache so far. However, since writing
data to a cache in RAM is about two orders of magnitude more efficient than
writing data to flash memory, caching is essential for efficiency: updating a file
(e.g. editing a file with a text editor) several times will write the last version
only when using a cache instead of persisting each update. It also reduces the
need to read data from flash memory significantly.

We have addressed integrating caches into a verified file system before. Write-
through caches are simple as they just store a redundant part of the persistent
data in RAM. On a crash, nothing is lost, and an invariant stating that cached
data are always identical to a part of the persistent data will suffice for verifica-
tion. In [13] we have looked at order-preserving write-back caches that are used
near the hardware level to queue data before persisting them in larger chunks.
We have shown that these can be integrated into the hierarchy of components
still allowing modular verification of each component separately.

Caching in VFS is rather different, since it is not order-preserving, so for
the top-level POSIX operations, a new weaker crash safety criterion compared
to [13] is necessary. We define write-prefix crash consistency, which states, that
individual files still satisfy a prefix property: On a crash, all writes since the last
fsync (that cleared the cache of this individual file) are retracted. Instead, all of
them have written a prefix of their data after recovery from the crash.

This paper also demonstrates, that adding caching to VFS can be done with-
out reimplementing VFS or breaking the implementation hierarchy represented
as a formal refinement tower. In Software Engineering terms, we use the dec-
orator pattern [10] to add VFS caches as a single new component. Functional
correctness then just requires to verify the new component separately. Crash-
Safety however, which is the main topic of this paper, was quite hard to verify,
since VFS uses a data representation that is optimized for efficiency, and has a
specific interface to the individual file systems that exploits it. This interface is
called AFS (abstract file system) in this paper.

Our result has two limitations. First, we assume that concurrent writes to a
single file are prohibited. Without this restriction, very little can be said about
the file content after a crash. Linux does not enforce this, but assumes that
applications will use file locking (using the flock operation) to ensure this. Sec-
ond, we assume that emptying caches when executing the fsync-command is
done with a specific strategy that empties caches bottom-up. This strategy is
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the default strategy implemented in VFS, but individual file systems can over-
ride this behavior e.g. with persisting the least recently used page first. Within
these limitations, however, our result enables to write applications that use the
file system in a crash-safe way: check-sums written before the actual data can be
used to detect writes, that have not been persisted completely. Such a transac-
tion concept would be similar to using group nodes for order-preserving caches
as used by the file system itself [6].

This paper is organized as follows. Section 2 gives background on the general
concept of a refinement tower: components (“machines”) specified as interfaces
that are refined to implementations, that call subcomponents, which are again
specified and implemented the same way. Section 3 shows the data structures
and operations of the VFS and AFS machines that are relevant for manipulating
file content. Section 4 then shows the extension, that adds caching to VFS.

Section 5 defines the correctness criterion of write-prefix crash consistency
and Sect. 6 gives some insight into its verification, that was done using our
interactive verification system KIV [5]. We cannot fully go into the details of
the proofs, which are very complex, the interested reader can find the full KIV
proofs online [12]. Finally, Sect. 7 gives related work and concludes.

2 Formal Approach

The specification of the Flashix file system shown in Fig. 1a is organized into
specifications of machines. An abstract state machine is an abstract data type,
that consists of a state and some operations with inputs and outputs, that mod-
ify the state. Each operation is specified with a contract. Machines are used to
either specify an interface abstractly (white boxes) or to describe an implemen-
tation (gray), from which code is generated. Both are connected by using the
contract approach to data refinement (dotted lines in Fig. 1). The theory has
been extended with proof obligations for crash safety, as detailed in [7].

To specify contracts uniformly, we prefer the style of abstract state machines
(ASMs [2]) over using relational specifications as in Z [4]: we use a precondi-
tion together with an imperative program over algebraically specified data types
that establishes the postcondition. The program is close to real code for imple-
mentations, but it may be as abstract as “choose nextstate, output with post-
condition” in interfaces, using the choose construct of ASMs. Implementations
may call operations of submachines ( in Fig. 1), which again are abstractly
specified and then implemented as a separate component.

Altogether we get the refinement tower shown in Fig. 1a. At the top-level
is a specification of a POSIX-compliant interface to a file system. This uses
an algebraic tree to represent the directory structure and a sequence of bytes
(or words, the exact size is a parameter of the specification) to represent file
content. The POSIX interface is implemented by VFS, which uses a different data
representation: Directory structure is now represented by numbered nodes, which
are linked by referencing these numbers. Refinement guarantees that the nodes
always form a tree, resulting in a consistent file system.
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(a) Without caching layer. (b) With caching layer.

Fig. 1. Flashix refinement tower.

Files are now represented as a header and several pages, which are arrays
of bytes of the same fixed size. Since file content is cached write-back by VFS
while the directory structure only uses write-through caches, which are easy to
verify, we will ignore directory structure in the following: more information can
be found in [8,9]; the KIV specifications online [12] also have a full list.

VFS calls operations specific to each file system implementation via an inter-
face we call AFS (abstract file system). Again this is specified abstractly, and the
operations relevant for accessing file data will be defined in the next section.

Our implementation of AFS then is specific to flash memory (called FFS in
the figure). Again it is implemented using subcomponents. Altogether we get
a refinement tower with 11 layers. In earlier work, we have verified the various
components [6,14] to be crash-safe refinements according to the theory in [7,16].
The bottom layer of this development is the MTD interface, that Linux uses to
access raw flash memory.

To add caching in VFS, we extend the refinement tower as shown in Fig. 1b.
Instead of implementing AFS directly with FFS, we use an intermediate implemen-
tation Cache of AFS (AFSC in the figure) that caches the data and calls operations
of an identical copy of AFS (called AFSP) to persist cached data. Details on this
implementation will be given in Sect. 4.

3 Data Representation in VFS

The task of VFS is to implement POSIX operations like creating or deleting files
and directories, or opening files and writing buffers to them by elementary oper-
ations on individual nodes, that represent a single directory or file. Each of these
nodes is identified by a natural number ino ∈ Ino, where Ino � N. The operations
on single nodes are implemented by each file system separately, and we specify
them via the AFS interface.

The state of AFS is specified as abstract as possible by two finite maps
(Key �→ V alue denotes a map from finitely many keys to values) with disjoint
domains to store directories and files.

state dirs : Ino �→ Dir files : Ino �→ File where Ino � N
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Fig. 2. Representation of file contents in POSIX and in VFS.

Since we are interested in adding write-back caches for file content, while direc-
tory structure only uses write-through caches, we just specify files

data File = file(meta : Meta, size : N, content : N �→ Page)

Details on the representation of a file are shown in Fig. 2. The uniform rep-
resentation as a sequence of bytes is broken up into file size, metadata (access
rights), and several pages. Each Page is an array of size PAGESIZE. Byte k of a file
is accessed via offset(k) in page(k), which are the remainder and quotient when
dividing k by PAGESIZE. We also use rest(k) to denote the length of the rest
of the page above offset(k). We have rest(k) = PAGESIZE − offset(k), when
the offset is non-zero. Otherwise rest(k) = 0, k is (page-)aligned, and predicate
aligned(k) is true. The start of page pno is at pos(pno) = pno ∗ PAGESIZE.
The pages are stored as a map, a missing page (e.g. page pno − 1 in the figure)
indicates that the page contains zeros only. This sparse representation allows
to create a file with a large size, without allocating all the pages immediately
(which is important, e.g. for streaming data). Another important detail is that
there may be irrelevant data beyond the file size. It is possible that the page
page(sz) at the file size sz contains random junk data (hatched part of the
page) above offset(sz) instead of just zeros. Extra (hatched) pages with a page
number larger than page(sz) are possible as well. Allowing such junk data is
necessary for efficient recovery from a crash: writing data at the end of a file is
always done by writing pages first, and finally incrementing the size. If a crash
happens in between, then removing the extra data when rebooting would require
to scan all files, which would be prohibitively expensive.

With this data representation AFS offers a number of operations that are
called by VFS, using parameters of type Inode as input and output (passed by
reference). An inode has the form

data Inode = inode(ino : Ino, meta : Meta, isdir : Bool,
nlink : N, size : N)

The boolean isdir distinguishes between directories and files, the nlink-field
gives the number of hard links for a file (nlink = 1 for a directory). size stores
the file size for files, and the number of entries for a directory.
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Fig. 3. File operations of AFS.

The relevant AFS operations for modifying file content are specified in Fig. 3.
The operations use semicolons to separate input, in/out, and output parameters.
We give a short description, which also gives some preconditions.

– afs rpage reads the content of the page with number pno into a buffer pbuf :
Page. The file is determined as the inode number of an inode inode, that points
to a file. If the page does not exist, the buffer is set to all zeros (abbreviated
as ⊥), and the exists flag is set to false. The flag is ignored by VFS but will
be relevant for implementing a cache in the next section.

– afs wpage writes the content of pbuf to the respective page. Note that the
page is allowed to be beyond file size (which is not modified).

– The file size is changed with the operation afs wsize. This operation does
not check, whether there are junk pages above the new file size.

– afs fsync synchronizes a file. If a crash happens directly after this operation,
the file accessed by inode must retain its content. On this abstract level, the
operation does nothing. Its implementation, which uses an order-preserving
write-back cache (see [13]) must empty this cache.

– afs truncate is used to change the file size to n, checking that there are
no junk data that would end up being part of the file below the new file
size. This operation first discards all pages above the minimum szT of n and
the old sz : The expression cont upto szT keeps pages below szT only. For
efficiency, the operation then distinguishes two cases, shown in Fig. 4. The
first case a) is when the new size n is at least the old sz . In this case, the
page page(sz ) may contain junk data, which must be overwritten by zeros
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(a) Growing truncation (sz ≤ n). (b) Shrinking truncation (n < sz ).

Fig. 4. Effects of a truncation to n on a file with size sz .

since this range becomes part of the file. Overwriting the part above szT = sz
with zeros is the result of the function call truncate(cont [pno], szT ). This call
can be avoided, if the part is empty or if the old size was aligned. The second
case b) is when the new file size is less than the old. In this case, the page
above the new filesize simply become junk, it does not need to be modified.
The implementation of the afs truncate operation, therefore, avoids writing
pages to persistent store whenever this is possible1.

– afs wbegin is an optimized version of afs truncate for the case n = sz . It
is called at the start of writing content to a file in VFS. It makes sure that
writing beyond the old file size will not accidentally create a page, which
contains junk.

All operations are allowed to non-deterministically (or) return err = true.
This allows the implementation to return errors, e.g. when there is not enough
memory available, which can not be specified on this level of abstraction. The
implementation will resolve the nondeterminism to success whenever possible.

On the basis of the AFS operations, VFS implements two POSIX operations that
modify file content, vfs truncate and vfs write. The first operation changes
file size by just calling afs truncate. Writing a buffer buf (an array of arbitrary
size) of length n at position pos has the following steps:

– afs wbegin is called first, to make sure that writing does not accidentally
read junk data.

– Then the buffer is split at page boundaries, and individual pages are written
by calling afs wpage. Writing starts with the lowest page at page(pos) and
proceeds upwards. If pos is not page-aligned, the first write requires to read
the original page first by calling afs rpage and to merge the original content
below offset(pos) with the initial piece of buf of length rest(pos). Merging
is necessary too for the last page when pos + n is not aligned.

– Writing pages stops as soon as the first call to afs wpage returns an error. If
this is the case, the number n is decremented to the number of bytes actually
written.

1 deleting a page does not write it, but adds a “page deleted” entry to the journal.
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– Finally, if pos + n is larger than the old file size, afs wsize is called, to modify
the file size, and vfs write returns the number n of bytes written.

We will see in the next section that when adding caches it is crucially impor-
tant that VFS implements writing by traversing the pages from low to high
page numbers. We will also find, that the data representation of VFS, where all
calls are optimized for efficiency, which in particular results in an asymmetric
afs truncate (Fig. 4) is one of the main difficulties for adding caches correctly.

4 Integration of Caches into Flashix

Initially, Flashix was developed without having caches for high-level data struc-
tures in mind. To add such caches to Flashix we introduce a new layer between
the Virtual File System Switch and the Flash File System, visualized in Fig. 5.
This layer is implemented as a Decorator [10], i.e. it implements the same inter-
face as the FFS and delegates calls from the VFS to the FFS. The VFS commu-
nicates with a Cache Controller which in turn communicates with the FFS and
manages caches for inodes, pages, and an auxiliary cache for truncations.

Fig. 5. Flashix component hierarchy.

The Inode- and Page-Cache com-
ponents internally store maps from
unique identifiers to the correspond-
ing data structures. They all offer
interfaces to the Cache Controller
for adding resp. updating, reading,
and deleting cache entries. The Cache
Controller is responsible for process-
ing requests from the VFS by either
delegating these requests to the FFS
or fulfilling them with the help of
the required caches. It also has to
keep the caches consistent with data
stored on flash, i.e. update cached
data when changes to corresponding
data on flash have been made.

Similar to the Linux VFS, the
caching layer includes further caches for data structures forming the basic struc-
ture of the file system. These caches however only operate in write-through mode
to speed up read accesses. Otherwise, the integrity of the file system tree after
a crash could be compromised since structural operations are usually highly
dependent on one another and affect multiple data objects.

Compared to structural operations, updates to file data can be considered
mostly in isolation. This means that in particular reads and writes to different
files do not interfere with each other. Therefore we allow write-back caching of
POSIX operations that modify the content of a file, namely write and truncate.
Hence, the Cache Controller does not forward page writes to the FFS and instead
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only stores the pages in the Page Cache. Updates to the size of a file are also
performed in the Inode Cache only as garbage data could be exposed in the event
of a power cut otherwise. To distinguish between up-to-date data and cached
updates, entries of the Page Cache or the Inode Cache include an additional
dirty flag. For the Page Cache, this results in a mapping from inode numbers
and page numbers to entries consisting of a page-sized buffer and a boolean flag.

Figure 6 lists the central operations of the PCache component using the state
pcache : Ino×Nat �→ Bool×Page. Analogously the component ICache is defined.
It stores a mapping icache : Ino �→ Bool × Inode from inode numbers to entries
containing the inode itself and a dirty flag.

Fig. 6. Core of the PCache component.

Writing pages or file sizes results in
putting the new data dirty in the par-
ticular caches. These operations of the
controller component Cache are shown
in Fig. 7 on the right. Reading pages
on the other hand returns the page
in question stored in PCache or, if it
has not been cached yet, it tries to
read it from flash (Fig. 7 on the left).
But reading from flash yields the cor-
rect result only if there was no prior
truncation that would have deleted the
relevant page, i.e. an entry for this
file exists in TCache and applying this
truncation would delete the requested
page (if min(szT , szF ) ≤ pos(pno),
i.e. pno is beyond the cached truncate
size szT and the current persisted size
of the file szF ). If reading the page
from flash is correct and the page actually stores any relevant data (exists is
true), the resulting page is stored clean in PCache to handle repeated read
requests.

For truncations of files, there are several steps Cache needs to perform. These
steps are implemented with the operations cache truncate and cache wbegin
as shown in Fig. 8 on the left. First, when an actual user truncation is executed,
ICache needs to be updated by setting the size to the size the file is truncated
to. Second, cached pages beyond sz resp. n have to be removed from PCache
and the truncate sizes in TCache have to be updated. For this purpose, the two
subcomponents provide dedicated truncation operations pcache truncate resp.
tcache update. tcache update aggregates multiple truncations by caching the
minimal truncate size n for each file only. Additionally, the persisted size sz of
a file is stored in TCache to determine whether it is allowed to read a page
from flash in cache rpage. Finally, if the truncate is growing, i.e. sz ≤ n,
the page at size sz may need to be filled with zeros. The auxiliary operation
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Fig. 7. Cache operations for reading and writing pages and updating file sizes.

cache get tpage is used to determine if this page is existent. This is the case if
the page is either cached in PCache or can be read from flash but would not have
been truncated according to TCache. If necessary, the page is then filled with
zeros beyond offset(sz ) using the truncate function and the result is stored
in PCache.

The synchronization of files, i.e. transferring cached updates to the persistent
storage, is also coordinated by Cache. Clients can use the POSIX fsync operation
to trigger synchronization of a specific file. It is common practice that cached
data is also synchronized concurrently, however, this is left for future work.

The implementation of fsync in Cache is shown in Fig. 8 on the right. The
general idea of this implementation is to first remove all pages from flash that
would have been deleted by truncations on this file since the last synchronization
and then mimic a VFS write that persists all dirty pages in PCache and updates
the file size to the size stored in ICache if necessary.

The operation cache fbegin is responsible for synchronizing truncations
and prepares the subsequent writing of pages and updating the file size in
cache fpages resp. cache finode. When using this synchronization strategy,
it is sufficient to aggregate multiple truncations by truncating to the minimal
size the file was truncated to, and only if this minimal truncation size is lower
than the current file size on flash. As truncation is the only possibility to delete
pages (except for deleting the file as a whole), this afs truncate call deletes all
obsolete pages. The following afs wbegin call ensures that the whole file con-
tent beyond szT resp. szF is zeroed so that writing pages and increasing the file
size on flash is possible safely. Since AFS enforces an initial afs wbegin before
writing pages or updating the file size and Cache is a refinement of AFS, it is
guaranteed that there are dirty pages only in PCache or dirty inodes in ICache
if there is an entry in TCache for the file that is being synchronized. Hence there
is nothing to do if hit after tcache get is false.

cache fpages iterates over all possibly cached pages of the file and writes
dirty pages with afs wpage, marking them clean in PCache after writing
them successfully. Similar to the implementation of vfs write explained in
Sect. 3, this iteration is executed bottom-up, starting at page 0 up to the
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Fig. 8. File truncation (left) and synchronization (right) operations of Cache.

maximal page cached in PCache (returned by pcache max pageno). Finally,
cache finode updates the file size with afs wsize if the cached size is greater
than the persisted size szF .

5 Functional Correctness and Crash-Safety Criterion

Due to our modular approach, verifying the correctness of integrating caches into
Flashix as shown in Fig. 1b requires to prove a single additional data refinement
Cache(AFSP) 	 AFSC only. The proofs are done with a forward simulation R ⊆
AS ×CS using commuting diagrams with states AS ≡ dirsC ×filesC of AFSC and
CS ≡ dirsP × filesP × icache × pcache × tcache of Cache(AFSP).

R ≡ dirsC = dirsP ∧ filesC = ((filesP ↓ tcache) ⊕ pcache) ⊕ icache
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Basically, R states that for each (as, cs) ∈ R the cached AFS state as can be
constructed from cs by applying all cached updates to the persistent AFS state,
i.e. pruning all files at their cached truncate size ( ↓ tcache), overwriting all
pages with their cached contents ( ⊕ pcache), and updating the cached file sizes
( ⊕ icache). As no structural operations are cached, dirsC and dirsP are identical.

While AFSC functionally matches the original specification of AFS, it is easy
to see that AFSC differs quite heavily from AFSP in terms of its crash behavior. A
crash in AFSP, for example, has the effect of removing orphaned files [7], i.e. those
files that are not accessible from the file system tree anymore but still opened in
VFS for reading/writing at the event of the crash. However, if there are pending
writes that have not been synchronized yet, a crash in AFSC additionally may
revert parts of these writes as all data only stored in the volatile state of Cache
is lost.

Usually, we express the effect of a crash in specification components in terms
of a state transition given by a crash predicate � ⊆ S × S and prove that the
implementations of these components match their specification. But as soon as
write-back caches - especially non-order-preserving ones - are integrated into a
refinement hierarchy, it is typically not feasible to express the loss of cached
data explicitly. This is the case for AFSC and thus for POSIX, too. So instead of
verifying crash-safety in a state-based manner, we want to explain the effects of a
crash by constructing an alternative run where losing cached data does not have
any effect on the state of AFSC. If such an alternative run can always be found,
crash-safety holds since all regular (non-crashing) runs of AFSC yield consistent
states, and thus a crash results in a consistent state as well.

Definition 1 (Write-Prefix Crash Consistency). A file system is write-
prefix crash consistent (WPCC) iff a crash keeps the directory tree intact and
for each file f a crash has the effect of retracting all write and truncate operations
to f since the last state it was synchronized and re-executing them, potentially
resulting in writing prefixes of the original runs.

This property results from the fact that files are synchronized individually
by the fsync operation. Thus, all runs of operations that modify the content
of a file, either cached or persistent, can be decoupled from runs of structural
operations or operations accessing the content of other files.

To prove that Flashix satisfies WPCC we need to show that for each possible
occurrence of a crash in Cache(AFSP) we can construct a matching alternative
run for each file in AFSC and lift this to runs in VFS(AFSC). As it turns out, for an
arbitrary file f the only critical case is when a crash occurs during the execution
of cache fsync for this file. In all other cases, updates to the content of f have
been stored in cache only, thus the persistent content of f in AFSP is unchanged
since the last successful execution of cache fsync for f . So we can choose a
VFS(AFSC) run in which all writes and truncates to f have failed and hence have
not written or deleted any data. Constructing such a run is always possible as
AFSC is crash-neutral, i.e. all operations of AFSC are specified to have a run that
fails without any changes to the state (see Fig. 3 and [7]).
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Fig. 9. Effect of a sequence of truncate operations and a following fsync on the states
of one file in AFSC (left) and AFSP (right), including intermediate states of AFSP during
fsync. The state of Cache is ommitted.

However, showing that WPCC holds for crashes during cache fsync is hard.
Initially, our goal was to prove this property locally on the level of AFSC resp.
of Cache and AFSP only. For example, one approach was to construct matching
prefix runs of AFSC by commuting and merging of operation calls. While we will
not go into details of the many pitfalls we ran into, the main problem with
these approaches was that the synchronization of aggregated truncates, as states
resulting from prefix runs of cache fsync could not be reconstructed by any
combination of VFS prefixes from the corresponding AFSC run.

For example, given the sequence of three afs truncate calls followed by an
afs fsync call as visualized in Fig. 9, starting with a synchronized file, i.e. the
contents (and sizes) of the affected file are equal in AFSC and AFSP. Considering
this run in AFSC on the left, the first truncation shrinks the file to a new size
n0 deleting all pages above page(n0). Since aligned(n0) is false, rest(n0) bytes
of junk data remain in page(n0) for the moment. This junk data is removed
not before the second truncation as it increases the file size then to n1 and the
remainder of page(n0) is filled with zeros. When finally the third truncation
shrinks the file again to n2 with n2 < n0 but page(n0) = page(n2), which yields
a mixed page containing valid data, junk, and zeros.

These truncations do not have any effect on the persistent state of AFSP as
Cache handles all requests. Conversely, a call to afs fsync in AFSC leaves its
state unchanged but its implementation Cache triggers a number of calls to
AFSP. First, the file is truncated to n2, the minimal truncation size since its last
synchronized state. Second, junk data above n2 is removed with afs wbegin to
prepare a potential synchronization of pages beyond n2.
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Comparing the state after afs wbegin in AFSP with the state after all trun-
cations in AFSC, one can see that the sizes and the valid part of the content
match but there is some junk data left in AFSC that is not in AFSP. In fact, if a
crash occurs in a state after this afs wbegin call and before the synchroniza-
tion of page(n2) with afs wpage, we cannot construct a VFS prefix run of AFSC
that yields the state of AFSP. Fortunately, the abstraction from VFS(AFSC) to
POSIX ignores bytes written beyond the file size anyway and the implementation
Cache(AFSP) may at most remove more junk data than AFSC, so the implemen-
tation actually matches our crash-safety criterion under the POSIX abstraction
as intended. But in order to prove this, we need to explicitly consider runs of
AFSC in the context of VFS.

In the following section, we give a brief overview of the concrete proof strategy
we pursued to construct such a write-prefix run.

6 Proving Crash-Safety

The main effort for proving that Flashix is actually write-prefix crash consistent
was to show that a crash during cache fsync actually has the effect of write-
prefix runs of VFS. Given the implementation of cache fsync and the fact that
the operations of AFSP are atomic with respect to crashes, effectively two cases
need to be considered, namely a crash occurs

1. between afs truncate and afs wbegin or
2. between persisting pages k − 1 and k with afs wpage.

Two additional cases are crashes before afs truncate or after afs wsize. These
can be viewed as crashing before resp. after the complete cache fsync operation
since no persistent changes happen in these ranges. Note that we do not explicitly
consider crashes immediately after afs wbegin or before afs wsize as separate
cases, but instead we handle these as variants of case 2.

For case 1 finding a write-prefix run is quite obvious. As cache fsync only
executed a single persisting truncation to szT , only vfs truncate calls to szT
were successful in the alternative VFS run as well. For vfs truncate calls to
sizes n greater than szT the run is chosen in which afs truncate fails, so we
get a failing run of vfs truncate too. For vfs write calls the run is chosen in
which the initial afs wbegin fails which results in not calling any further AFSC
operations (cf. Sect. 3).

Verifying case 2 requires more effort. As an example consider the crashed run
shown in the upper half of Fig. 10. We omit irrelevant arguments of operations
and abbreviate wbegin, wpage, wsize, and truncate with wb, w, ws, and
t, respectively. The run contains vfs truncate and vfs write calls, followed by
an interrupted synchronization fsync�. The former operations are performed
in Cache only, so calls to AFSP are performed not until synchronization. fsync
crashes after an ascending sequence w∗|k of wpage operations, which contains
only writes to pages < k. As for case 1, the write-prefix run we construct in the
lower half of Fig. 10 contains successful executions of vfs truncate calls to the
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Fig. 10. Construction of a write-prefix run (lower half) matching a run with a crash
in cache fsync that occurs just before writing page k (upper half).

minimal truncate size. In the example, this is the size n0, so the first truncation
is performed as before. For the second truncation to n1 on the other hand we
choose a failing run of vfs truncate (failing operation runs are marked with
ERR), which results in a stutter step τ in Cache, i.e. no operation is executed in
Cache.

The main aspect of WPCC is that alternative vfs write runs write just as
far as the interrupted fsync was able to persist pages. Hence, the alternative
run successfully performs wbegin and a prefix of the original wpage sequence
w∗, namely the prefix of writes w∗|k to pages < k. All other writes to pages
≥ k are again replaced by stutter steps τ in Cache. Depending on the range the
original vfs write has written to, the restricted sequence w∗|k may be empty or
the full sequence w∗. However, the alternative run will not execute (stutter) for
updates of the file size via wsize. With a complete system run constructed this
way, a full fsync run has the same effect as the crashed execution if the original
run (except for differences in junk data resulting from the problematic nature
of synchronizing truncations discussed in Sect. 5), and thus the alternative run
finishes in a synchronized state.

Proving that the runs constructed this way match the original crashed runs
is done with a forward simulation ∼=k ⊆ CS × CS using commuting diagrams.
Relation ∼=k links all vertically aligned states in Fig. 10.

∼=k ≡ ((filesP ↓ tcache) ⊕ pcache|k).seq(ino)
= (((filesP′ ↓ tcache ′) ⊕ pcache ′) ⊕ icache ′).seq(ino)

where pcache|k restricts pcache to entries for pages i < k and files.seq(Ino)
extracts the content of the file ino as a sequence of bytes up to the current
size of ino in files. Intuitively, two Cache states cs and cs′ are cs ∼=k cs′ if
a synchronization interrupted at page k of cs yields the same content (up to
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Fig. 11. Commuting diagrams of a wpage run writing page i.

the file size) as a complete synchronization of cs′. Note that cs ∼=k cs′ enforces
implicitly that the file size of ino is identical in cs and cs′ and hence the cached
truncate sizes in tcache and tcache ′, as well as the cached size in icache ′, must
be equal.

For the wpage calls the commuting diagrams as shown in Fig. 11 in the bot-
tom plane are required. wpage operations of AFS and Cache are denoted wA and
wC, respectively. When writing a page < k, re-executing this operation maintains
∼=k (Fig. 11a). In contrast, writing pages ≥ k maintains ∼=k if the alternative run
stutters (Fig. 11b). Since VFS is defined on AFSC, these commuting properties
must be lifted from Cache to AFSC in order to construct commuting diagrams for
VFS runs. This is why the commuting diagrams are extended by R-corresponding
AFSC runs, yielding the front and back sides of Fig. 11. So in addition we show

that, given a run as0
wA(i)−−−→ as1 as it is part of vfs write or vfs truncate,

there is an R-corresponding run of Cache. Conversely, we have to show that the
resulting alternative run of Cache can be lifted to an R-corresponding run of
AFSC as well. Depending on the operation, up to two versions of this lifting are
necessary if the run is stuttering: an AFSC run that stutters and a failing run of
the AFSC operation. For wpage, the former is used to skip writes of pages > k
while the latter is required to stop the loop of vfs write when trying to write
page k.

To construct a valid alternative VFS run, analogous commuting diagrams for
wbegin, wsize, and truncate have been proven, not all commuting diagrams
were necessary for each operation though. The proofs of commuting diagrams
for vfs write and vfs truncate then base upon the step by step application
of these commutative properties. Considering the final states of the runs shown
in Fig. 10, tcache, pcache|k, tcache ′, pcache ′, and icache ′ do not contain any
dirty data for ino and so applying them to filesP resp. filesP′ does not have
any effect. Consequently, in theses states cs ∼=k cs′ reduces to filesP.seq(ino) =
filesP′.seq(ino), which is exactly the property we wanted to achieve.



234 S. Bodenmüller et al.

All in all, the verification of the crash-safety properties alone (not including
earlier attempts) took about two months and comprises approx. 300 theorems.
Most of the time was spent proving the commuting diagrams for ∼=k on the
level of Cache, since many different cases have to be considered. Lifting these to
AFSC could be done mainly by reusing the commuting diagrams for R together
with some auxiliary lemmata over the Cache and AFS operations, which in turn
enabled proving the commuting diagrams for VFS without major issues. For more
details, the full proofs can be found online [12].

7 Related Work and Conclusion

In this paper we have shown how to integrate caching of file content as done by
VFS into the modular development of a verified file system. We have defined the
correctness criterion of write-prefix crash consistency for crash safety, and have
verified it with KIV, thus giving applications a formal criterion that can be used
to verify that applications are crash-safe.

For reasons of space we could not formally address how caching of VFS inter-
acts with the order-preserving cache (called “write buffer” in [13]) as used by
lower levels of the implementation. However, informally the answer is as follows.
AFSP operations are implemented atomically, i.e. a page is either persisted as a
whole or not at all. This is necessary to imply linearizability of AFSP operations
in a concurrent context. Removing the data of the write buffer on a crash has the
effect of undoing some AFSP operations according to [7]. Therefore, discarding
the write buffer has the same effect as crashing slightly earlier, and thus WPCC
still holds.

We have also not discussed concurrent top-level calls of POSIX operations.
We have augmented the specification to allow this, and are working on a veri-
fication using the approach given in [16], which has already been used to allow
concurrent garbage collection. For the theory presented here to work, the imple-
mentation ensures that modifications to each file (write, truncate, fsync) are
done sequentially only.

We have discussed lots of related work on verified file systems in general
in earlier work [13,16], here we discuss two related approaches, that generate
running code and have addressed the correctness of write-back caching in file
systems. These are BilbyFS [1] and DFSCQ [3]. BilbyFS is a file system for flash
memory too. It implements caching mechanisms and gives a specification of the
sync operation on the level of AFS and proves the functional correctness of this
operation. However, the verification of crash-safety or caching on the level of
VFS is not considered.

DFSCQ is a sequentially implemented file system not targeted to work specif-
ically with flash memory. Similar to our approach, structural updates to the file
system tree are persisted in order. DFSCQ also uses a page cache, however, it
does not specify an order in which cached pages are written to persistent store.
Therefore it is not provable that a crash leads to a POSIX-conforming alternate
run. Instead a weaker crash-safety criterion is satisfied, called metadata-prefix
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specification: it is proved that a consistent file system results from a crash,
where some subset of the page writes has been executed.

In our context, the weaker criterion should be provable for any (functional
correct) implementation of VFS caches, since we ensure that all AFSP operations
are atomic (calls can never overlap) and the refinement proof of VFS 	 POSIX
has lemmas for all AFS operations, that ensure that even these (and not just the
VFS operations) preserve the abstraction relation to a consistent file system.

Our earlier crash-safety criterion for order-preserving caches can be viewed as
the sequential case of buffered durable linearizability [11], which allows to undo
a postfix of the history of invokes and responses for operations, thus allowing
pending operations of the resulting prefix to have a new result. The criterion
is also sufficient to specify the AFSC interface in a concurrent context (since the
operations are linearizable). However, it is stronger than the criterion given here,
as it does not allow to re-execute several sequentially executed operations (only
one can be pending in the prefix).

Future work on the file system will be to add a background process that
calls fsync to empty caches when no user operations are executed. To imitate
the behavior of Linux VFS, the crucial extension necessary there will be to allow
fsync-calls of this process to be interrupted when the user calls an operation.
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Abstract. We develop a complementation procedure and an equiva-
lence checker for nondeterministic Büchi automata. Both are formally
verified using the proof assistant Isabelle/Hol. The verification covers
everything from the abstract correctness proof down to the generated
Sml code.

The complementation follows the rank-based approach. We formalize
the abstract algorithm and use refinement to derive an executable imple-
mentation. In conjunction with a product operation and an emptiness
check, this enables deciding language-wise equivalence between nonde-
terministic Büchi automata. We also improve and extend our library for
transition systems and automata presented in previous research.

Finally, we develop a command-line executable providing complemen-
tation and equivalence checking as a verified reference tool. It can be used
to test the output of other, unverified tools. We also include some tests
that demonstrate that its performance is sufficient to do this in practice.

Keywords: Formal verification · Omega automata · Complementation

1 Introduction

Büchi complementation is the process of taking a Büchi automaton, and con-
structing another Büchi automaton which accepts the complementary language.
It is a much-researched topic [10,15,20,37,38]. In fact, it has been so popu-
lar that there are now several meta-papers [41,43] chronologuing the research
itself. Much of this research has focused on the state complexity of the result-
ing automata (see Sect. 2.3). However, Büchi complementation also has com-
pelling applications. Model checking usually requires having the property to
be checked against as either a formula or a deterministic Büchi automaton, as
those are easily negated and complemented, respectively [15]. However, having
access to a general complementation procedure, it becomes possible to decide
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language containment between arbitrary nondeterministic Büchi automata. This
not only allows for more general model checking, but also enables checking if two
automata are equivalent in terms of their language.

Unfortunately, complementation algorithms are complicated and their cor-
rectness proofs are involved. This is common in the model checking setting and
there are examples of algorithms widely believed to be correct turning out not
to be [8,18,40]. The situation is especially troubling as these tools act as trust
multipliers. That is, the trust in the correctness of one tool is used to justify con-
fidence in the correctness of the many entities that it checks. Motivated by this
situation, our goal is to formally verify one such complementation algorithm.

We use the proof assistant Isabelle/Hol [34] for this. Thanks to its Lcf-like
architecture, Isabelle/Hol and the formalizations it facilitates grant very strong
correctness guarantees. Our contributions are as follows.

1. Formalization of rank-based complementation [20] theory
2. Formally verified complementation implementation
3. Formally verified equivalence checker
4. Extension and continued development of automata library [7,9]

In previous work, Stephan Merz formalized complementation of weak alter-
nating automata [33]. He also started working on a formalization of Büchi com-
plementation. However, this only covers the first part of the complementation
procedure and was never finished or published. Thus, our work constitutes what
we believe to be the first formally verified implementation of Büchi complemen-
tation. The verification gaplessly covers everything from the abstract correctness
proof to the executable Sml code.

The equivalence checker can be used as a command-line tool to check
automata in the Hanoi Omega-Automata format [1]. It takes the role of a
trusted reference implementation that can be used to test the correctness of
other tools, like those translating from Ltl formulae to automata. With an
equivalence checker, it is possible to test whether several algorithms produce
automata with identical languages, given the same formula. It is also possible to
test if an algorithm that simplifies automata preserves their language.

2 Theory

We follow the rank-based complementation construction described in [20]. The
central concept here is the odd ranking, a function f that certifies the rejection of
a word w by the automaton A. The complement automaton A is then designed
to nondeterministically search for such an odd ranking, accepting if and only if
one exists. Thus, the complement automaton accepts exactly those words that
the original automaton rejects.

w /∈ L A ⇐⇒ ∃ f. odd_ranking A w f ⇐⇒ w ∈ L A (1)

Having access to complement and product operations as well as an emptiness
check, we can then decide language containment.

L A ⊆ L B ⇐⇒ L A ∩ L B = ∅ ⇐⇒ L (
A × B

)
= ∅ (2)
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Checking for containment in both directions then leads to a decision procedure
for language-wise equivalence of Büchi automata.

2.1 Notation

We introduce some basic notation. Let w ∈ Σω be an infinite sequence and wk ∈
Σ be the symbol at index k in w. Let A = (Σ,Q, I, δ, F ) be a nondeterministic
Büchi automaton with alphabet Σ, states Q, initial states I :: Q set, successor
function δ :: Σ → Q → Q set, and acceptance condition F :: Q → bool. Let
L A ⊆ Σω denote the language of automaton A.

2.2 Complementation

We want to realize complementation according to Eq. 1. For this, we need to
define odd rankings and the complement automaton. We also need to define run
Dags as a prerequisite for odd rankings.

A run Dag is a graph whose nodes are pairs of states and natural numbers.
Given an automaton A and a word w, we define it inductively as follows.

Definition 1 (Run Dag). G = (V,E) with V ⊆ Q × N and E ⊆ V × V

p ∈ I =⇒ (p, 0) ∈ V

(p, k) ∈ V =⇒ q ∈ δ wk p =⇒ (q, k + 1) ∈ V

(p, k) ∈ V =⇒ q ∈ δ wk p =⇒ ((p, k), (q, k + 1)) ∈ E

Intuitively, each node (p, k) ∈ V represents A being in state p after having read
k characters from w. With that, the run Dag contains all possible paths that A
can take while reading w.

We can now define odd rankings. An odd ranking is a function assigning a
rank to each node in the run Dag. Given an automaton A and a word w, we
require the following properties to hold for odd rankings.

Definition 2 (Odd Ranking). odd_ranking A w f with f :: V → N

∀ v ∈ V. f v ≤ 2 |Q|
∀ (u, v) ∈ E. f u ≥ f v

∀ (p, k) ∈ V. F p =⇒ even (f (p, k))
∀ r ∈ paths G. the path r eventually gets stuck in an odd rank

Intuitively, the rank of a node indicates the distance to a node from which no
more accepting states are visited [15].

The final definition concerns the actual complement automaton. Given an
automaton A = (Σ,Q, I, δ, F ), we define its complement as follows.
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Definition 3 (Complement Automaton). A = (Σ,QC , IC , δC , FC)

δ1 :: Σ → (Q ⇀ N) → (Q ⇀ N) set
g ∈ δ1 a f ⇐⇒ dom g =

⋃
p ∈ dom f. δ a p ∧

∀ p ∈ dom f. ∀ q ∈ δ a p. f p ≥ g q ∧
∀ q ∈ dom g. F q =⇒ even (g q)

δ2 :: Σ → (Q ⇀ N) → Q set → Q set

δ2 a g P =

{
{q ∈ dom g | even (g q)} if P = {}
{q ∈ ⋃

p ∈ P. δ a p | even (g q)} otherwise

QC :: ((Q ⇀ N) × Q set) set
QC = δ∗

C Σ IC

IC :: QC set
IC = (λ p ∈ I. 2 |Q| , ∅)

δC :: Σ → QC → QC set
δC a (f, P ) = {(g, δ2 a g P ) | g ∈ δ1 a f}

FC :: QC → bool
FC (f, P ) = (P = ∅)

Since the complement automaton is designed to nondeterministically search for
an odd ranking, many of the properties from Definition 2 reappear here. Instead
of a ranking on the whole run Dag (V → N), the complement automaton deals
with level rankings. These assign ranks to only the reachable nodes in the current
level (Q ⇀ N). Furthermore, each state keeps track of which paths have yet to
visit an odd rank (Q set). This encodes the property of every path getting stuck
in an odd rank, with the acceptance condition requiring this set to become empty
infinitely often. Together, these lead to the state type (Q ⇀ N) × Q set.

2.3 Complexity and Optimizations

Much of the interest in Büchi complementation focuses on its state complex-
ity [15,38,43]. That is, one considers the number of states in the complement
automaton as a function of the number of states in the original automaton. For
an automaton with n states, the original construction by Büchi [10] resulted in
22O(n) states [15]. The complementation procedure derived from Safra’s deter-
minization construction [37] reduces this to 2O(n log n) or n2n states [15]. The
algorithm from [20] generates a complement automaton with at most (6n)n states
[15]. In the quest for closing the gap between the known lower and upper bounds,
various optimizations to this algorithm have been proposed. The optimization
in [15] lowers the bound to O((0.96n)n) states. The algorithm is then adjusted
further in [38] to lower the bound to O((0.76n)n) states.
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This being the first attempt at formalizing Büchi complementation, we chose
not to implement these more involved optimizations. Instead, we favor the orig-
inal version of the algorithm as presented in [20]. We do however implement one
optimization mentioned in [20]. In Definition 3, for each successor q of p, the
function δ1 considers for q all ranks lower than or equal to the rank of p. We
restrict δ1 so that it only considers for q a rank that is equal to or one less than
the rank of p. This does not change the language of the complement automaton
and significantly restricts the number of successors generated for each state.

It is worth noting that in practice, factors other than asymptotical state com-
plexity can also play a role. For instance, it turns out that determinization-based
complementation often generates fewer states than rank-based complementation
[41]. This is despite the fact that rank-based complementation is optimal in
terms of asymptotical state complexity.

2.4 Equivalence

We want to realize equivalence according to Eq. 2. For this, we need to define a
product operation and an emptiness check on Büchi automata.

The product construction follows the textbook approach, where the product
of two nondeterministic Büchi automata results in one nondeterministic gener-
alized Büchi automaton. For the emptiness check, we use Gabow’s algorithm for
strongly-connected components [16]. This enables checking emptiness of gener-
alized Büchi automata directly, skipping the degeneralization to regular Büchi
automata that is usually necessary for nested-Dfs-based algorithms.

3 Formalization

With the theoretical background established, we now describe the various aspects
of our formalization. This section will mostly give a high-level overview, high-
lighting challenges and points of interest while avoiding technical details. How-
ever, specific parts of the formalization will be presented in greater detail.

3.1 Isabelle/Hol

Isabelle/Hol [34] is a proof assistant based on Higher-Order Logic (Hol), which
can be thought of as a combination of functional programming and logic. Formal-
izations done in Isabelle are trustworthy due to its Lcf architecture. It guaran-
tees that all proofs are checked using a small logical core which is rarely modified
but tested extensively over time, reducing the trusted code base to a minimum.

Code generation in Isabelle/Hol is based on a shallow embedding of Hol
constants in the target language. Equational theorems marked as code equations
are translated into rewrite rules in the target language [17]. This correspondence
embodies the specification of the target language semantics. As this process does
not involve the Lcf kernel, the code generator is part of the trusted code base.



244 J. Brunner

3.2 Basics

The most basic concept needed for our formalization is that of sequences. The
Hol standard library already includes extensive support for both finite and
infinite sequences. They take the form of the types list and stream.

Definition 4 (Sequences)

datatype α list = [] | α#α list
codatatype α stream = α##α stream

The new datatype package [3,4] allows for codatatypes like stream. The libraries
of both list and stream include many common operations and their properties.

We also make use of a shallow embedding of linear temporal logic (Ltl) on
streams that is defined using inductive and coinductive predicates. This is used
to define a predicate holding infinitely often in an infinite sequence.

Definition 5 (Infinite Occurrence). infs P w ⇐⇒ alw (ev (holds P )) w

3.3 Transition Systems and Automata

In our formalization, we both use and extend the Transition Systems and
Automata library [7,9]. The development of this library was in fact motivated
by the idea of formalizing Büchi complementation and determinization. Since
then, it has been used in several other formalizations [6,8,9,35,36,39].

The goal of this library is to support many different types of automata while
avoiding both duplication and compromising usability. This is achieved via sev-
eral layers of abstraction as well as the use of Isabelle’s locale mechanism. For an
in-depth description, see [9]. Since then, an additional abstraction layer has been
introduced to consolidate various operations on automata like intersection, union,
and degeneralization. However, describing this in detail is outside the scope of this
paper. Thus, we will only introduce the concepts and constants that are used in
later sections. We start with the definition of a transition system.

Definition 6 (Transition System)

locale transition_system =
fixes execute :: transition ⇒ state ⇒ state
fixes enabled :: transition ⇒ state ⇒ bool

It fixes type variables for transitions and states as well as constants to determine
which transitions are enabled in each state and which target states they lead to.
This locale forms the backbone of the library. Note that it may look like it
can only be used to model (sub-)deterministic transition systems. However, by
instantiating the type variable transition, we can actually model many different
types of transition systems, including nondeterministic ones [9].

We can then define concepts concerning sequences of transitions.
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Definition 7 (Targets and Traces)

target = fold execute :: transition list ⇒ state ⇒ state
trace = scan execute :: transition list ⇒ state ⇒ state list
strace = sscan execute :: transition stream ⇒ state ⇒ state stream

Given a sequence of transitions and a source state, these functions give the target
state and the finite and infinite sequence of traversed states, respectively. Note
how each of these is simply a lifted version of execute.

We can also define constants for finite and infinite paths, respectively.

Definition 8 (Paths)

inductive path :: transition list ⇒ state ⇒ bool where

path [] p

enabled a p =⇒ path r (execute a p) =⇒ path (a# r) p

coinductive spath :: transition stream ⇒ state ⇒ bool where

enabled a p =⇒ spath r (execute a p) =⇒ spath (a## r) p

These constants are (co)inductively defined predicates that capture the notion
of all the transitions in a sequence being enabled at their respective states. Like
before, these are lifted versions of enabled, which is also reflected in their types.

3.4 Run Dags

Having established all the basics and foundations, we can now turn to the actual
formalization of Büchi complementation. We start with formalizing Definition 1
concerning run Dags. We do this by instantiating the transition system locale
from Definition 6. This yields definitions for all the required graph-related con-
cepts, like finite and infinite paths as well as reachability.

We then establish a tight correspondence between these definitions and the
ones concerning automata. This requires mostly elemental induction and coin-
duction proofs. Only minor technical work was required to translate between
paths in the automaton being labeled and paths in its run Dag being indexed.

3.5 Odd Rankings

Having formalized run Dags, we can now formalize Definition 2 concerning odd
rankings. The resulting formal definition does not differ significantly from its
informal counterpart and will thus not be repeated here.

We prove the left equivalence from Eq. 1, which states that an odd ranking
f exists if and only if the automaton A rejects the word w.

w /∈ L A ⇐⇒ ∃ f. odd_ranking A w f

We follow the proof given in [20].
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The direction ⇐= is fairly straightforward. Given an odd ranking, we imme-
diately have that all infinite paths in the run Dag get trapped in an odd rank.
Together with the fact that odd ranks are not accepting, we obtain that all infi-
nite paths in the automaton are not accepting. Formally proving this is mainly
technical work consisting of establishing the correspondence between the run
Dag and the automaton. However, there is one exception. In [20], the fact that
all infinite paths get trapped in some rank is merely stated as part of the defi-
nition of rankings. While this is intuitively obvious from the fact that ranks are
natural numbers and always decreasing along a path, it still requires rigorous
proof in a formal setting. Thus, we need to define the notion of decreasing infinite
sequences and prove this property via well-founded induction on the ranks.

The direction =⇒ is a lot more involved. It requires defining an infinite
sequence of subgraphs of the run Dag in order to construct an odd ranking.
Again, we follow the proof given in [20]. As before, we were able to follow the
high-level ideas of this proof in the formalized version, with some parts requiring
more fine-grained reasoning or additional technical work. However, we want to
highlight one particular technique that is used several times in the proof and
that required special attention in the formalized version. While most of our
descriptions focus on high-level ideas, we also want to take this opportunity to
present one part of the formalization in greater detail.

The idea in question concerns itself with the construction of infinite paths in
graphs and transition systems. We already encountered this type of reasoning
in [8]. Assume that there is a state with property P , and that for every state
with property P we can find a path to another state with property P . Then,
there exists an infinite path that contains infinitely many states with property P .
Intuitively, this seems obvious, which is why in informal proofs, statements like
these require no further elaboration. However, in a formal setting, this requires
rigorous reasoning, resulting in the following proof.

Lemma 1 (Recurring Condition)

lemma recurring_condition:
assumes ”P p” ”∀ p. P p =⇒ ∃ r. r �= [] ∧ path r p ∧ P (target r p)”
obtains r where ”spath r p” ”infs P (p##strace r p)”

proof −
obtain f where ”f p �= []” ”path (f p) p” ”P (target (f p) p)”

if ”P p” for p by . . .
let ?g = ”λ p. target (f p) p”
let ?r = ”λ p. flat (smap f (siterate ?g p))”
have ”?r p = f p @- ?r (?g p)” if ”P p” for p by . . .
show ?thesis
proof

show ”spath (?r p) p” by . . .
show ”infs P (p##strace (?r p) p)” by . . .

qed
qed
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This theorem is stated for general transition systems and corresponds closely to
the informal one presented earlier. That is, we assume that P holds at some state
p. We also assume that for every state p where P holds, we can find a nonempty
path r leading to a state target r p where P holds again. We prove that from
these assumptions, one can obtain an infinite path r such that for the states it
traverses, P holds infinitely often. The proof consists of three major steps.

1. Skolemization of the assumption. We obtain a function f that for each state
in which P holds, gives a nonempty path that leads to another state in which
P holds. This can be done by either explicitly invoking the choice theorems
derived from Hilbert’s epsilon operator, or by using metis.

2. Definition of the state iteration function ?g and the infinite path ?r. We define
a function ?g that for each state p gives the target state of the path given by
f . Iterating ?g yields all those states along the infinite path where P holds.
We can then define ?r, which is the infinite path obtained by concatenating
all the finite paths given by f from each state in the iteration of ?g.

3. Proving the required properties of ?r. We now prove both that ?r is an infinite
path and that for the states it traverses, P holds infinitely often. Both of these
proofs require specific coinduction rules for the constants spath and infs. This
is because the coinduction cannot consume the infinite sequence one item at
a time, instead having to operate on finite nonempty prefixes. However, these
coinduction rules are generally useful and once proven, can be reused and
improve compositionality.

In the end, a surprising amount of work is necessary to prove a seemingly
obvious statement. While it is easy to dismiss this as a shortcoming of either
formal logic in general or of a particular proof assistant, we do not think that this
is the case. Instead, we believe that situations like these point out areas where
informal proofs rely on intuition, thereby hiding the actual complexity of the
proof. Since this can lead to subtle mistakes, the ability of formal proofs to make
it visible is valuable and one of the reasons for our confidence in them. It is also
worth noting that these situations do not persistently hinder the construction of
formal proofs. By proving the statement in its most general form, this needs to
be done only once for this type of reasoning to become available everywhere.

3.6 Complement Automaton

Next, we formalize Definition 3 concerning the complement automaton. As in
the previous section, the resulting formal definition differs only slightly from the
informal one and will thus not be repeated here.

We prove the right equivalence from Eq. 1, which states that the complement
automaton A accepts a word w if and only if an odd ranking f exists.

∃ f. odd_ranking A w f ⇐⇒ w ∈ L A (3)

We follow the proof given in [20].
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There are two main challenges to formalizing this proof. The first one is
converting between different representations of rankings. On the side of the odd
ranking, a ranking is a function assigning ranks to the nodes in the run Dag.
On the side of the complement automaton, a ranking is an infinite sequence
of level rankings in the states of the accepting path. While this seems simple
enough conceptually, it requires attention to detail and much technical work in
the formalization. The second challenge consists of proving that two ways of
stating the same property are equivalent. The last condition in the definition of
the odd ranking states that all paths eventually get stuck in an odd rank. On
the side of the complement automaton, this property takes the form of a set
that keeps track of which paths have yet to visit an odd rank. The acceptance
condition of the complement automaton then requires this set to infinitely often
become empty, ensuring that no path visits even ranks indefinitely. This again
requires coinduction and the construction of infinite paths.

Together with the theorem from the previous section, we obtain the correct-
ness theorem of complementation.

Theorem 1 (Complement Language)

theorem complement_language :
assumes ”finite (nodes A)”

shows ”L A = Σω \ L A”

3.7 Refinement Framework

We want our complementation algorithm and equivalence checker to be exe-
cutable. When developing formally verified algorithms, there is a trade-off
between efficiency of the algorithm and simplicity of the proof. For complex
algorithms, a direct proof of an efficient implementation tends to get unmanage-
able, as implementation details obfuscate the main ideas of the proof.

A standard approach to this problem is stepwise refinement [2], which mod-
ularizes the correctness proof. One starts with an abstract version of the algo-
rithm and then refines it in correctness-preserving steps to the concrete, effi-
cient version. A refinement step may reduce the nondeterminism of a program,
replace abstract mathematical specifications by concrete algorithms, and replace
abstract datatypes by their implementations. For example, selection of an arbi-
trary element from a set may be refined to getting the head of a list. This
approach separates the correctness proof of the algorithm from the correctness
proof of the implementation. The former can focus on algorithmic ideas with-
out implementation details getting in the way. The latter consists of a series
of refinement steps, each focusing on a specific implementation detail, without
having to worry about overall correctness.

In Isabelle/Hol, stepwise refinement is supported by the Refinement Frame-
work [24–26,32] and the Isabelle Collections Framework [23,29]. The former
implements a refinement calculus [2] based on a nondeterminism monad [44],
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while the latter provides a library of verified efficient data structures. Both frame-
works come with tool support to simplify their usage for algorithm development
and to automate canonical tasks such as verification condition generation.

3.8 Implementation

Now that the abstract correctness of our complementation procedure is proven,
we want to derive an executable algorithm from our definitions. We use the afore-
mentioned refinement framework to refine our definitions that involve partial
functions and sets to executable code working on association lists. For instance,
the abstract correctness proof is most naturally stated on the complement state
type (Q ⇀ N) × Q set. However, the isomorphic type Q ⇀ (N × bool) is more
suitable for the implementation. Thus, this and several other preliminary steps
are taken to bring the definition into the correct shape. We also introduce the
language-preserving optimization mentioned in Sect. 2.3 at this stage. The cor-
rectness proof of this optimization involves establishing a simulation relation
between the original automaton and its optimized version.

Once these manual refinement steps are completed, we then use the automatic
refinement tool [21,22]. It allows us to automatically refine an abstract definition
to an executable implementation. It does this by instantiating abstract data
structures like sets and partial functions with concrete ones like lists, hash sets,
and association lists. Since refinement is compositional and the structure of the
algorithm is not affected by these substitutions, refinement proofs only have to
be done once for each concrete data structure. As many of these data structures
have already been formalized in the library, very little has to be proven manually
by the user. For instance, choosing to implement a set with a hash set instead
of a list can be as simple as adding a type annotation. In particular, none of the
refinement proofs have to be adjusted or redone.

At this stage, we have an executable definition that takes a successor function
and gives the successor function of the complement automaton. However, we also
want to be able to generate the complement automaton as a whole in an explicit
representation. To do this, we make use of the Dfs Framework [30,31]. It comes
with a sample instantiation that collects all unique nodes in a graph. We define
the graph induced by a given automaton and generate an executable definition
of its successor function. We can then run the previously verified Dfs algorithm
on this graph to explore the complement automaton. The correctness proof of
this algorithm then states that these are indeed all of the reachable states.

The complement automaton now has the state type (Q × (N × bool)) list.
This is the association list implementation of the type Q ⇀ N× bool mentioned
earlier. Since this type is rather unwieldy, we use the result of the exploration
phase to rename all the complement states using natural numbers. We then
use the states explored by the Dfs algorithm to collect all of the transitions in
the automaton. The end result is an explicit representation of the complement
automaton with label type α and state type N. We have A = (Σ, I, δ, F ) with
Σ :: α list, I :: N list, δ :: (N × α × N) list, and F :: N list.
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3.9 Equivalence

We now want to use our complementation algorithm to build an equivalence
checker as outlined in Sect. 2.4. In order to decide language containment and
thus equivalence, we still need a product operation and an emptiness check.
To this end, we add more operations to the automata library [7]. We already
added several operations for deterministic Büchi automata, deterministic co-
Büchi automata, and deterministic Rabin automata as part of [9,39]. We now
also add intersection, union, and degeneralization constructions for nondeter-
ministic Büchi automata. Thanks to the new intermediate abstraction layer
mentioned in Sect. 3.3, these operations generalize to all other nondeterministic
automata in the library. The main challenge here was finding an abstraction for
degeneralization that enables sharing this part of the formalization between both
deterministic and nondeterministic automata. In the end, this was achieved by
stating the main idea of degeneralization on streams rather than automata.

As mentioned in Sect. 2.4, we use an emptiness check based on Gabow’s
algorithm for strongly-connected components. For this, we reuse a formalization
originally developed as part of the Cava model checker [13,14]. This formal-
ization [27,28] includes both the abstract correctness proof of the algorithm, as
well as executable code. Furthermore, it supports checking emptiness of general-
ized Büchi automata directly, enabling us to skip the degeneralization step that
would usually be necessary after the product. This turns out to be significantly
faster.

We now assemble these parts into an equivalence checker and then refine
it to be executable. In contrast to complementation, this algorithm is much
more compositional, simplifying both the abstract correctness proof and the
refinement steps. We ran into one issue with the correctness theorem in the
formalization of Gabow’s algorithm [27,28] not being strong enough due to some
technicalities. We would like to thank the author Peter Lammich for quickly
generalizing the theorem after this issue was discovered.

3.10 Integration

With all the pieces in place, it is now time to integrate everything into a
command-line tool. Having refined all of our definitions to be executable, we
can already export Sml code from Isabelle. In order for these algorithms to
function as part of a stand-alone tool, we need the ability to input and output
automata. For this, we have decided to use the Hanoi Omega-Automata format
[1], also called Hoa. It is used by other automata tools such as Spot [11], Owl
[19], and Goal [42]. The handling of command-line parameters as well as Hoa
parsing and printing are implemented manually in Sml. This piece of code wraps
the verified algorithm in a command-line tool and is the only unverified part of
the final executable.

The result is a command-line tool with two modes of operation: complemen-
tation and equivalence checking. Complementation takes an input automaton in
the Hoa format and outputs the complement automaton either as a transition
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list or in the Hoa format. Equivalence checking takes two input automata in the
Hoa format and outputs a truth value indicating their equivalence.

Our formalization is available as part of the Archive of Formal Proofs [5].

4 Evaluation

We evaluate the performance of both our complementation implementation and
our equivalence checker. As a benchmark for raw complementation performance,
we run our implementation on randomly-generated automata. The results are
shown in Fig. 1.

Fig. 1. Complementation Performance. We use Spot’s randaut tool to generate random
automata with a given number of states. We then run our complementation implemen-
tation on them. The time limit was set to 60 s.

Furthermore, we compare the performance of our complementation imple-
mentation to Spot [11] and Goal [42]. The results are shown in Fig. 2.

Fig. 2. Complementation Performance Comparison. We use Spot’s randltl and
ltl2tgba tools to generate automata from random Ltl formulae. Automata with a
state count other than 10 are discarded and the rest is complemented with various
tools. Out of 5741 samples, 3962 could be complemented by all tools within the time
limit of 60 s. To ensure comparability, we use the latter set of automata for the average
time and complement states statistics.

Our tool implements the same algorithm as Goal with the rank decrement
option (rank -rd), which is also reflected in the identical number of states of the
complement automata. However, our implementation has significantly shorter
execution times thanks to extensive profiling efforts and use of efficient data
structures from the Isabelle Collections Framework [23,29]. In fact, this effect is
so large that it somewhat makes up for the worse asymptotical state complexity
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when compared to Goal with the tight rank option (rank -tr). The latter has
significant startup overhead, but performs better on automata that are difficult
to complement. While the performance of Spot is superior to either of the other
tools, we want to emphasize that absolute competitiveness with unverified tools
is not the goal of our work. As long as our tool is fast enough to process practical
examples, it can serve its purpose as a verified reference implementation.

We also evaluate the performance of the equivalence checker. To do so, we
generate random Ltl formulae and translate them to Büchi automata via both
Spot [11] and Owl [19]. We then use our equivalence checker on these automata.
The results are shown in Fig. 3.

Fig. 3. Equivalence Checker Performance. We use Spot’s randltl tool to generate
random Ltl formulae. We then use Spot’s ltl2tgba tool as well as Owl’s ltl2dra
translation in conjunction with Spot’s autfilt tool to obtain two translations of the
same formula. Finally, we use our equivalence checker to check if both automata do
indeed have the same language. The time limit was set to 60 s. The state count shown
is that of the larger of the two automata.

When running the equivalence checker on automata that are not equiva-
lent, the performance is often better. This is due to the fact that the algorithm
searches for an accepting cycle in either A×B or A×B. As soon as such a cycle
is found, it can abort and return a negative answer. Since both complement and
product are represented implicitly, this avoids constructing the full state space.

Finally, we use the same testing procedure on translations of the well-known
“Dwyer”-patterns [12]. We were able to successfully check 52 out of the 55 for-
mulae with the following exceptions. One formula resulted in automata of sizes
13 and 8, respectively, whose equivalence could not be verified within the time
limit of 600 s. Two more formulae were successfully translated by Owl’s ltl2dra
translation procedure, but Spot’s autfilt tool could not translate them to a
nondeterministic Büchi automaton within the time limit of 600 s. Note that
Spot’s autfilt tool was also set up to simplify the resulting automata, as oth-
erwise, they would quickly grow to be too large. Out of the 52 checked formulae,
49 could be processed in a matter of milliseconds, with two taking about a second
and one taking 129 s.

From these tests we conclude that the performance of our tool is good enough
to serve as a verified reference tool for examples of practical relevance. Note that
tools like Spot include many more optimizations and heuristics that enable them
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to complement into much smaller automata as well as check the equivalence of
much larger automata. However, it is not our goal to compete with Spot, but
rather to provide a verified reference tool that is fast enough to be useful for
testing other tools.

It turns out that we do not have to look far to find an illustration for this
point. While gathering data for this section, our equivalence checker discov-
ered a language mismatch between Spot’s and Owl’s translation of the same
Ltl formula. The developers of Owl confirmed that this was indeed a bug in
the implementation of its ltl2dra translation procedure and promptly fixed
it. Manifestation of this issue was very rare, first occurring after about 50 000
randomly-generated formulae. This demonstrates the need for verified reference
implementations, as even extensively tested software can still contain undetected
issues.

5 Conclusion

We developed a formally verified and executable complementation procedure
and equivalence checker. The formal theory acts as a very detailed and machine-
checkable description of rank-based complementation. Additionally, our formal-
ization includes executable reference tools. These come with a strong correctness
guarantee as everything from the abstract correctness down to the executable
Sml code is covered by the verification. This high confidence in their correctness
justifies their use to test other, unverified tools.

We also contributed additional functionality as well as an improved architec-
ture to the automata library. This emphasizes the software engineering aspect of
formal theory development where theories can be reused and become more and
more useful as they mature.

For future work, it would be desirable to formalize an algorithm that gener-
ates a complement automaton with fewer states. As mentioned in Sect. 2.3, this
concerns both asymptotical state complexity as well as performance in practice.
It would also be of interest to verify the bounds on asymptotical state complexity.
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Abstract. Sorting is one of the fundamental operations in computer sci-
ence, and many sequential and parallel algorithms have been proposed in
the literature. Swap-based sorting algorithms are one category of sort-
ing algorithms where elements are swapped repeatedly to achieve the
desired order. Since these algorithms are widely used in practice, their
(functional) correctness, i.e., proving sortedness and permutation prop-
erties, is of utmost importance. However, proving the permutation prop-
erty using automated program verifiers is much more challenging as the
formal definition of this property involves existential quantifiers. In this
paper, we propose a generic pattern to verify the permutation property
for any sequential and parallel swap-based sorting algorithm automati-
cally. To demonstrate our approach, we use VerCors, a verification tool
based on separation logic for concurrent and parallel programs, to verify
the permutation property of bubble sort, selection sort, insertion sort,
parallel odd-even transposition sort, quick sort, two in-place merge sorts
and TimSort for any arbitrary size of input.

Keywords: Sorting algorithms · Deductive verification · Separation
logic

1 Introduction

Sorting is one of the fundamental and frequently used operations in computer
science. Sorting algorithms take a list of elements as input and rearrange them
into a particular order as output. Sorting has many applications in searching,
data structures and data bases. Because of its importance, the literature con-
tains many sorting algorithms with different complexity. One category of sorting
algorithms is swap-based sorting, where the elements are swapped repeatedly
until the desired order is achieved (e.g., bubble sort).

Because of the increase in the amount of data and emerging multi-core archi-
tectures, also parallel versions of sorting algorithms have been proposed. For
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instance, odd-even transposition sort [16] has been proposed as a parallel ver-
sion of the bubble sort algorithm. Parallelizing algorithms on many-core proces-
sors (e.g., GPGPUs) is an active area of research, and it has been shown that
parallel (GPU-based) implementations of sorting algorithms [14,15,18,19,21,23]
outperform their sequential (CPU-based) counterparts.

Due to the frequent use of both sequential and parallel sorting algorithms,
their correctness is of utmost importance, which means that they must have the
following properties: (1) sortedness: the output is ordered, and (2) permutation:
the output is a permutation of the input (i.e., the elements do not change).

To establish these two properties of sorting algorithms, one can use dynamic
approaches (e.g., testing) and run the programs with concrete inputs to find bugs.
However, this does not guarantee the absence of bugs. In contrast, with static
verification, the complete state space of a program is analyzed without running
it. In deductive verification, a program is annotated with intermediate (invariant)
properties. Then, using a program logic, the annotated code is translated into
proof obligations which are discharged by an automated theorem prover.

Using deductive program verification, proving the permutation property is
harder than the sortedness property. This might be surprising at first glance,
since in the swap-based sorting algorithms, the main operation is only swap-
ping two elements repeatedly. But the permutation property typically requires
reasoning about existential quantifiers, which is challenging for the underlying
automated theorem provers.

As discussed by Filliatre [9], there are three common solutions: (1) in a
higher order logic, one can state the existence of a bijection; (2) one can use
multisets, a collection of unordered lists of elements where multiple instances
can occur; and (3) one can define a permutation as the smallest equivalence
relation containing the transpositions (i.e., the exchanges of elements). In [9,11],
it is shown that the third approach is the best solution for automated proofs
of the permutation property, but it is still not easy to define it formally. The
literature contains various examples of permutation proofs, following the third
approach [3,10,11,22,24,25]. In these papers, a permutation is formally defined
and some of its properties (e.g., transitivity) are proved using deductive program
verifiers, such as KeY [1] or Why3 [12] or interactive theorem provers like Coq [7].
However, they are ad hoc and there is a new proof for each algorithm.

In this paper, we recognize that there is a uniform pattern and we exploit
this to prove the permutation property of any sequential and parallel swap-
based sorting algorithm. We do this using VerCors [4], which is a deductive
verification tool for reasoning about the correctness of concurrent programs.
There are several advantages of our approach w.r.t. the previous work. First,
none of the existing papers verified the permutation property of embarrassingly
parallel sorting algorithms (e.g., in GPGPU). We demonstrate that our uniform
approach also works for such algorithms by proving the permutation property of
the parallel odd-even transposition sort algorithm. Second, the technique works
for all languages supported in the tool such as C, Java and OpenCL, which means
it is possible to prove the permutation property of sorting algorithms in a variety
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of real-world languages. Third, in our permutation proof pattern, we use ghost
variables1 to keep track of value changes, which can be reused when establishing
sortedness. Forth, we illustrate the generality of our approach by proving the
permutation property of a vast collection of well-known sorting algorithms all
together in one place.

Contributions. The main contributions of this paper are:

1. We outline a generic approach to verify the permutation property of any
sequential and parallel swap-based sorting algorithm automatically.

2. We illustrate our technique by proving the permutation property of bubble
sort, selection sort, insertion sort, parallel odd-even transposition sort, quick
sort, two in-place merge sorts and TimSort, using the VerCors verifier.

Organization. Section 2 explains VerCors and its logic, by a verification exam-
ple. Section 3 discusses the proposed generic approach to prove the permutation
property and Sect. 4 applies it to an extensive collection of well-known sorting
algorithms. Section 5 discusses related work and Sect. 6 concludes the paper.

2 VerCors

This section describes VerCors and the logic behind it along with a simple pro-
gram verification example. VerCors2 is a verifier to specify and verify (concurrent
and parallel) programs written in a high-level language such as (subsets of) Java,
C, OpenCL, OpenMP and PVL, where PVL is VerCors’ internal language for
prototyping new features. VerCors can be used to verify memory and thread
safety and functional correctness of programs. The program logic behind Ver-
Cors is based on permission-based separation logic [2,5]. Programs are annotated
with pre- and postconditions in permission-based separation logic. Permissions
are used to capture which heap memory locations may be accessed by which
threads, and verify memory and thread safety. Permissions are written as frac-
tional values in the interval (0, 1] (cf. Boyland [6]): any fraction in the interval
(0, 1) indicates a read permission, while 1 indicates a write permission.

Verification Example. Listing 1 shows a specification of a simple program
that increments all the elements in an array by one. To specify permissions, we
use predicates Perm(L, π) where L is a heap location and π a fractional value in
the interval (0, 1]3. Pre- and postconditions, (denoted by keywords requires and
ensures, respectively in lines 2–4), should hold at the beginning and the end of
the function, respectively. The keyword context everywhere is used to specify
a property that must hold throughout the function (line 1). As precondition, we
have write permissions in all locations in the array (line 2). The postconditions

1 A ghost variable is used for verification purposes and is not part of the program.
2 See https://utwente.nl/vercors.
3 The keywords read and write can also be used instead of fractions in VerCors.

https://utwente.nl/vercors
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List. 1. A simple sequential program

1 /*@ context_everywhere array != NULL && array.length == size;

2 requires (\forall* int k; k>=0 && k<size; Perm(array[k], write));

3 ensures (\forall* int k; k>=0 && k<size; Perm(array[k], write));

4 ensures (\forall int k; k>=0 && k<size; array[k] == \old(array[k])+1);

@*/

5 void Inc(int[] array, int size) {

6
7 loop_invariant i>=0 && i<=size;

8 loop_invariant (\forall* int k; k>=0 && k<size; Perm(array[k], write));

9 loop_invariant (\forall int k; k>=0 && k<i; array[k] == \old(array[k])+1);

10 for(int i = 0; i < size; i++){

11 array[i] = array[i] + 1;

12 }

indicate first, we have write permissions in all locations in the array (line 3),
and second, all values in the array are increased by one (line 4). Note that we
use \forall* as universal separating conjunction over permission predicates and
\forall as standard universal conjunction over logical predicates. Moreover, the
keyword \old is used for an expression to refer to the value of that expression
before entering a function (lines 4 and 9). The loop invariants specify that in
each iteration we have write permissions to the array (line 8) and all values from
index 0 up to index i − 1 are increased by one (line 9). Then, the postcondition
follows from these loop invariants.

3 Permutation Verification of Swap-Based Sorting

In this section, we describe our generic approach to verify the permutation prop-
erty of sequential and parallel swap-based sorting algorithms.

3.1 Swap-Based Sorting Algorithms

An algorithm is a swap-based sorting algorithm if by only swapping the elements
it satisfies the following:

– INPUT: An array Input of integers4 of size N .
– OUTPUT: An array Output of integers of size N such that

• sortedness: ∀i. 0 ≤ i < N−1: Output[i] ≤ Output[i + 1]
• permutation:

∀i ∈ Input: occurrence(Input , i) == occurrence(Output , i).

where occurrence(A, i) counts the number of occurrences of i in A.

4 We specify the type of Input as integers, but it can be other types as well.
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Algorithm 1. Sequential
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: properties to prove sortedness
4: loop(0 .. M)

. . .
5: swap(Output, i, j)
6: inp seq cur = swap-seq(inp seq cur,
7: i, j)

. . .
8: inp seq chain = inp seq chain +
9: seq<seq<int>> {inp seq cur}
10: end loop

Algorithm 2.Parallel
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: properties to prove sortedness
4: par(tid = 0.. K )

...
5: swap(Output, f1(tid), f2(tid))
6: atomic
7: inp seq cur = swap-seq(
8: inp seq cur, f1(tid), f2(tid))
9: end atomic

...
10: end par
11: inp seq chain = inp seq chain +
12: seq<seq<int>> {inp seq cur}

Fig. 1. Annotated pseudocode of sequential and parallel swap-based sorting algorithms.

3.2 Functional Correctness of Swap-Based Sorting Algorithms

To prove the correctness of swap-based sorting algorithms, we use ghost vari-
ables, in particular as sequences in VerCors. The most important advantage of
using ghost variables is that it allows us to reason about both sortedness and per-
mutation properties in the same specification. Moreover, establishing the proof
based on ghost sequences helps us to also apply our technique on other data
types rather than arrays such as linked lists. To demonstrate that, first we dis-
cuss which ghost variables we define and how they are beneficial in verifying
sortedness. Then, we explain in detail how these ghost variables can be used to
describe a generic verification pattern to verify the permutation property.

Figure 1 provides general sketches of the core (annotated) part of sequential
and parallel swap-based sorting algorithms. Initially, we assume that Input and
Output contain the same elements. The key operation in both sequential and
parallel algorithms is the swap function where two elements are swapped. In
the sequential algorithms, there is at most one swap at a time, but there might
be multiple swaps in one iteration (e.g., sequential odd-even sort). In the par-
allel version there might be multiple simultaneous swaps, where f1 and f2 are
two functions that assign a thread to two elements for swapping according to a
thread id (i.e., tid). Note that in the parallel version, there can be a loop inside
or outside the par block. By swapping the elements, a new rearrangement of
the input array is generated. To keep track of these rearrangements of the ele-
ments, we define a ghost variable, inp seq chain (type sequence of sequences),
as a chain of sequences that the first sequence in this chain is Input. We also
define another ghost variable, inp seq cur, as the sequence that always stores
the current rearrangement (i.e., last sequence in the chain).
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List. 2. The occurrence function

1 /*@ ensures \result≥0 && \result≤|xs|;

2 ensures (\forall int i; 0≤i && i<|xs|; element != xs[i]) <==> \result

== 0;

3 ensures (\forall int i; 0≤i && i<|xs|; element == xs[i]) <==>

4 \result == |xs|;
5 ensures element in xs <==> \result>0; @*/

6 static pure int occurrence(seq<int> xs, int element) = |xs| ≤ 0 ? 0 :

7 ( head(xs) == element ? (1+occurrence(tail(xs), element)) :

8 occurrence(tail(xs), element) );

Next, in the sequential version, we define a function, swap-seq and apply it
to inp seq cur to update the current sequence exactly in the same way as the
swap function does over Output (lines 6–7). Finally, we specify a loop invariant
that shows that the array and the sequence are the same in each iteration (line
1). Moreover, in each iteration, after the swapping(s), we add the new current
sequence to the chain of sequences (lines 8–9)5. This proposed pattern is also
applicable for proving the correctness of recursive swap-based sorting algorithms
(e.g., quick sort). In the parallel version, the principle is the same, but as there
might be simultaneous swaps, we update the current sequence atomically (lines
6–9). Note that the exact location where we add the updated sequence to the
chain depends on the algorithms and might be different from the sketches. For
instance, if there is a loop inside the parallel block then we add the sequence
to the chain at the end of the loop inside the parallel block. Notice that in the
parallel algorithm (Fig. 1) the swap function over Output (line 5) is outside
the atomic block. This matches for instance the parallel odd-even transposition
sort. However, in other parallel sorting algorithms, we might need to include the
swap function inside the atomic block to avoid data races6. Note that in the
tool we use permission-based separation logic to prove data race-freedom of the
algorithms.

These constructs allow us to prove the sortedness and permutation properties
of any sequential and parallel swap-based sorting algorithm. By defining a chain
of sequences, a user can provide key properties as invariants to reason about
how the values change in the chain from Input to the last sequence (which is
Output) to prove sortedness (line 3). To prove the permutation property, first
we define a function occurrence (as shown in Listing 2) that counts the number
of occurrences of an element in a sequence7. The postcondition of the function
specifies (the boundary of) the result of the function in general (line 1) and in

5 Note that depending on the algorithm, the new arrangement might be added to the
chain after one swap or multiple swaps.

6 A data race is a situation when two or more threads may access the same memory
location simultaneously where at least one of them is a write.

7 The head operation returns the first element of a sequence and tail returns a new
sequence by eliminating the first element.
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List. 3. The permutation function

1 static pure boolean permutation(seq<int> xs, seq<int> ys) = (|xs| == |ys|)

&&

2 (\forall int i; 0≤i && i<|xs|; occurrence(xs, xs[i]) == occurrence(ys, xs[i

]));

three different conditions where the element exists in the sequence (line 5) or
does not exist (lines 2) or the sequence only contains that element (lines 3–4).

Next, we define a predicate that states that a sequence is a permutation of
another sequence if and only if the size of both are the same and the number of
occurrences of each element in both are the same (Listing 3).

Next, we use VerCors to prove a property that for any sequence if we swap
two arbitrary elements, the result is a permutation of the original sequence:

Property 3.1 For any sequence xs:
(∀i, j.0 ≤ i ≤ j < |xs| :
(∀l.0 ≤ l < |xs| : occurrence(xs, xs[l]) = occurrence(swap-seq(xs, i, j), xs [l]))).

Proof. We define a lemma in VerCors to prove the property. We explain the
steps that we have in the lemma (in VerCors) exactly as implemented8.

If i equals to j both xs and swap-seq(xs, i, j) are the same. Thus, the property
holds and VerCors can infer it. If i is less than j, we split xs and swap-seq(xs, i, j)
into disjoint sequences in VerCors according to i and j as follows:

xs = xs[0..i − 1] + xs[i] + xs[i + 1..j − 1] + xs[j] + xs[j + 1..|xs| − 1] (1)

swap-seq(xs, i, j) = xs[0..i − 1] + xs[j] + xs[i + 1..j − 1] + xs[i]
+ xs[j + 1..|xs| − 1]

(2)

We rewrite (1) and (2) in terms of the occurrence function and prove (by
another lemma in VerCors) that this function distributes over concatenation of
sequences as follows:

occurrence(xs + ys + ... + ts, element) = occurrence(xs, element)
+ occurrence(ys, element) + ... + occurrence(ts, element)

(3)

Then we note that we have the following equalities:

occurrence(xs, element) = occurrence(xs[0..i − 1] + xs[i]
+ xs[i + 1..j − 1] + xs[j] + xs[j + 1..|xs| − 1], element)

(4)

8 The full proof of all properties in VerCors is available at https://github.com/
Safari1991/Permutation.

https://github.com/Safari1991/Permutation
https://github.com/Safari1991/Permutation
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occurrence(swap-seq(xs, i, j), element) = occurrence(xs[0..i − 1]
+ xs[j] + xs[i + 1..j − 1] + xs[i] + xs[j + 1..|xs| − 1], element)

(5)

By applying property (3) to Eqs. (4) and (5) and using commutativity of “+”
on integers, VerCors can conclude that both right-hand sides of (4) and (5) are
equal, hence also their left-hand sides are equal. ��

This allows us to specify that after each swap, the new sequence is a permu-
tation of the previous one. As a corollary we prove that the occurrence function
is symmetric:

Corollary 3.1. For any sequence xs:
(∀i, j.0 ≤ i ≤ j < |swap-seq(xs, i, j)| : (∀l.0 ≤ l < |swap-seq(xs, i, j)| :
occurrence(swap-seq(xs, i, j), swap-seq(xs, i, j)[l])

= occurrence(xs, swap-seq(xs, i, j)[l]))).

Property 3.1 does not specify that the current sequence is a permutation of
the input array (i.e., the first sequence in the chain). To establish that, we use
VerCors to also prove that the occurrence function is transitive:

Property 3.2. For any equal-sized sequences xs, ys and ts:
( (∀l.0 ≤ l < |xs| → occurrence(xs, xs[l]) = occurrence(ys, xs[l])) ∧

(∀l.0 ≤ l < |ys| → occurrence(ys, ys[l]) = occurrence(ts, ys[l])) ) ⇒
(∀l.0 ≤ l < |xs| → occurrence(xs, xs[l]) = occurrence(ts, xs[l]))

Proof. The proof is trivial using Corollary 3.1 and VerCors can infer this without
intermediate proof steps. ��

Using Properties 3.1 and 3.2 we can show that the permutation property is
preserved for each new rearrangement of the input array during the algorithms:

Permutation Invariant. After each swap in the sequential and parallel swap-
based sorting algorithms permutation(inp seq chain[0], inp seq cur) holds.

To understand why this is an invariant: (1) At the beginning, inp seq chain[0]
and inp seq cur are equal to Input, hence the invariant holds. (2) assume that
the invariant holds between sequences inp seq chain[0] (which is Input) and
inp seq chain[M − 1] (which is inp seq cur). Then, after each swap, we can
apply Properties 3.1 and 3.2 to show that the invariant is preserved. Therefore,
after the last swap when we add the updated inp seq cur (inp seq chain[M ]) to
the chain, the invariant still holds. In the pseudocode of sequential and parallel
swap-based sorting algorithms, we only need to apply the two properties before
a swap. This is sufficient to prove the permutation property of the algorithms.
Figure 2 illustrates this and completes the generic pattern. As we can see, the
pattern can be generated automatically and the only parts that a user needs to
fill out are the arguments i and j which are specific to the algorithms.
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4 Case Studies: Proving Permutation of Swap-Based
Sorting Algorithms

In this section, we show how we apply the technique described above, to verify
multiple parallel and sequential swap-based sorting algorithms. In particular, we
discuss how we prove the permutation property of parallel odd even transposition
sort as well as sequential bubble sort, selection sort and insertion sort. Moreover,
we illustrate how we use our approach to prove the permutation property of
recursive in-place sorting algorithms quick sort and merge sort. In addition,
we benefit from the verification of insertion sort and merge sort to verify the
permutation property of TimSort9.

Algorithm 1. Sequential
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: properties to prove sortedness
4: invar: permutation(inp seq chain[0],
5: inp seq cur)
6: loop(0 .. M)

. . .
7: swap(Output, i, j)
8: applying Prop. 3.1 to inp seq cur
9: applying Prop. 3.2 to
10: inp seq chain[0], inp seq cur and
11: swap-seq(inp seq cur, i, j)
12: inp seq cur = swap-seq(inp seq cur,
13: i, j)

. . .
14: inp seq chain = inp seq chain +
15: seq<seq<int>> {inp seq cur}
16: end loop

Algorithm 2. Parallel
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: properties to prove sortedness
4: invar: permutation(inp seq chain[0],
5: inp seq cur)
6: par(tid = 0.. K )

. . .
7: swap(Output, f1(tid), f2(tid))
8: atomic
9: applying Prop. 3.1 to inp seq cur
10: applying Prop. 3.2 to
11: inp seq chain[0], inp seq cur and
12: swap-seq(inp seq cur, f1(tid),
13: f2(tid))
14: inp seq cur = swap-seq(
15: inp seq cur, f1(tid), f2(tid))
16: end atomic

. . .
17: end par
18: inp seq chain = inp seq chain +
19: seq<seq<int>> {inp seq cur}

Fig. 2. Annotated pseudocode of sequential and parallel swap-based sorting algorithms.

4.1 Permutation Verification of Bubble, Selection and Insertion
Sort

In this section, we use our generic pattern to verify the permutation property of
bubble sort, selection sort, and insertion sort, as illustrated in Fig. 3. In bubble

9 The full specifications of all case studies are available at https://github.com/
Safari1991/Permutation.

https://github.com/Safari1991/Permutation
https://github.com/Safari1991/Permutation
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Algorithm 3.Bubble sort
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: permutation(inp seq chain[0],
4: inp seq cur)
5: loop(k: 0 .. N-2)
6: invar: Output == inp seq cur
7: invar: Input == inp seq chain[0]
8: invar: permutation(inp seq chain[0],
9: inp seq cur)
10: loop(t: 0 .. N-k-2)
11: if Output[t] > Output[t+1]
12: swap(Output, t, t+1)
13: applying Prop. 3.1 to inp seq cur
14: applying Prop. 3.2 to
15: inp seq chain[0], inp seq cur and
16: swap-seq(inp seq cur, t, t+1)
17: inp seq cur = swap-seq(
18: inp seq cur, t, t+1)
19: end if
20: end loop
21: inp seq chain = inp seq chain +
22: seq<seq<int>> {inp seq cur}
23: end loop

Algorithm 4.Selection sort
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: permutation(inp seq chain[0],
4: inp seq cur)
5: loop(k: 0 .. N-2)
6: minIdx = k;
7: invar: Output == inp seq cur
8: invar: Input == inp seq chain[0]
9: invar: properties to prove sortedness
10: invar: permutation(inp seq chain[0],
11: inp seq cur)
12: loop(t: k+1 .. N-1)
13: if Output[t] < Output[minIdx]
14: minIdx = t
15: end if
16: end loop
17: swap(Output, k, minIdx)
18: applying Prop. 3.1 to inp seq cur
19: applying Prop. 3.2 to
20: inp seq chain[0], inp seq cur and
21: swap-seq(inp seq cur, k, minIdx)
22: inp seq cur = swap-seq(
23: inp seq cur, k, minIdx)
24: inp seq chain = inp seq chain +
25: seq<seq<int>> {inp seq cur}
26: end loop

Algorithm 5. Insertion sort
1: invar: Output == inp seq cur
2: invar: Input == inp seq chain[0]
3: invar: properties to prove sortedness
4: invar: permutation(inp seq chain[0], inp seq cur)
5: loop(k: 1 .. N-1)
6: invar: Output == inp seq cur
7: invar: Input == inp seq chain[0]
8: invar: properties to prove sortedness
9: invar: permutation(inp seq chain[0], inp seq cur)
10: loop(t: k ..1)
11: if Output[t-1] > Output[t]
12: swap(Output, t-1, t)
13: applying Prop. 3.1 to inp seq cur
14: applying Prop. 3.2 to inp seq chain[0], inp seq cur and
15: swap-seq(inp seq cur, t-1, t)
16: inp seq cur = swap-seq(inp seq cur, t-1, t)
17: end if
18: end loop
19: inp seq chain = inp seq chain + seq<seq<int>> {inp seq cur}
20: end loop

Fig. 3. Proving permutation property of bubble sort, selection sort and insertion sort
using the proposed pattern.
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Algorithm 6. Quick sort
1: if low < high
2: pivot = Output[high], idx = low-1
3: invar: Output == inp seq cur
4: invar: Input == inp seq chain[0]
5: invar: permutation(inp seq chain[0], inp seq cur)
6: loop(k: low .. high-1)
7: if Output[k] ≤ pivot
8: idx++
9: swap(Output, idx, k)

10: applying Prop. 3.1 to inp seq cur and applying Prop. 3.2 to
11: inp seq chain[0], inp seq cur and swap-seq(inp seq cur, idx, k)
12: inp seq cur = swap-seq(inp seq cur, idx, k)
13: end if
14: end loop
15: swap(Output, idx+1, high)
16: applying Prop. 3.1 to inp seq cur and applying Prop. 3.2 to
17: inp seq chain[0], inp seq cur and swap-seq(inp seq cur, idx+1, high)
18: inp seq cur = swap-seq(inp seq cur, idx+1, high)
19: inp seq chain = inp seq chain + seq<seq<int>> {inp seq cur}
20: pivotIdx = idx+1
21: recursive call for Output[low ... pivotIdx-1]
22: recursive call for Output[pivotIdx+1 ... high]
23: end if

and insertion sort, there are two nested loops and a swap happens inside the
inner loop. In selection sort, there are also two nested loops, but a swap happens
in the outer loop. In all three algorithms, we follow exactly the approach as
discussed in Sect. 3. We have the same invariants (for both loops) and we apply
the same properties before a swap. The only differences are the two locations of
elements to be swapped, which we set according to the algorithms themselves.

4.2 Permutation Verification of Quick Sort

The proposed pattern can also be used for recursive in-place sorting algorithms.
To show this, we use the pattern to verify the permutation property of the
quick sort algorithm as illustrated in Algorithm 6. This recursive algorithm is
initialized with low = 0 and high = |Output| − 1. Each recursive call puts
the last element (the pivot), in the correct position in the sorted array in such
a way that all smaller elements will be to the left of the pivot and all larger
elements will be to the right of the pivot. The function recursively applies the
same function to both subarrays to the left and right of the pivot (lines 23–24),
resulting in a sorted array. As we can see there are two swaps, one inside the
loop and the other one outside the loop (lines 9 and 16). Again, we apply the
properties before each swap and we add the new sequence (i.e., inp seq cur) to
the chain (i.e., inp seq chain) after the second swap (line 21). In this way, we
prove permutation of the quick sort algorithm.



268 M. Safari and M. Huisman

Algorithm 7. In-place merge1
1: start2 = mid+1
2: if Output[mid] ≤ Output[start2]
3: return
4: end if
5: invar: Output == inp seq cur
6: invar: Input == inp seq chain[0]
7: invar: permutation(inp seq chain[0],
8: inp seq cur)
9: while(start ≤ mid && start2 ≤ right)
10: if Output[start] ≤ Output[start2]
11: start+=1
12: else
13: idx = start2
14: while(idx != start)
15: swap(Output, idx-1, idx)
16: applying Prop. 3.1 to inp seq cur
17: applying Prop. 3.2 to
18: inp seq chain[0], inp seq cur and
19: swap-seq(inp seq cur, idx-1, idx)
20: inp seq cur = swap-seq(inp seq cur,
21: idx-1, idx)
22: idx–=1
23: end while
24: start+=1, mid+=1, start2+=1
25: end if else
26: end while
27: inp seq chain = inp seq chain +
28: seq<seq<int>> {inp seq cur}

 

Fig. 4. Annotated pseudocode of an in-place merging (left) and an example (right).
Green values in the example indicates that the comparison implies some swaps. (Color
figure online)

4.3 Permutation Verification of Merge Sort

Merge sort is another example of a recursive sort that splits the elements into
smaller parts (recursively) and merges them into a sorted array. Thus, the main
part of the algorithm is merging two sorted subarrays. Figure 4 presents the
(annotated) pseudocode and an example of an in-place merging. The example
shows how the merge operates on two sorted subarrays (from indices 0–3 and
4–7). Initially, start points to the first element in the array (i.e., index 0), and
right indicates the last element (i.e., index N − 1). Moreover, the variable start2
points to the first location in the right subarray (i.e., index mid + 1) where mid
equals (start+right)/2. Then, the elements in these two locations are compared
and if Output[start] > Output[start2], we should insert the element in location
start2 into location start by shifting all elements in between by one location
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to the right (lines 12–25 of the pseudocode). Otherwise, we increase start by 1
(line 11). This process repeats until the array is sorted. As we can see in the
pseudocode, the shifting is implemented as swapping two adjacent elements from
location start2 to start consecutively. In this way, we can reuse the proposed
pattern again to verify the permutation property of this algorithm.

Algorithm 8. In-place merge2
1: if left==mid || mid==right
2: return
3: end if
4: start = mid-1, end = mid
5: while(left≤start && end<right &&
6: Output[start]>Output[end])
7: start–=1, end+=1
8: end while
9: invar: Output == inp seq cur
10: invar: Input == inp seq chain[0]
11: invar: permutation(inp seq chain[0],
12: inp seq cur)
13: loop(k: 0 .. end-mid-1)
14: swap(Output, 2×mid-end+k, mid+k)
15: applying Prop. 3.1 to inp seq cur
16: applying Prop. 3.2 to inp seq chain[0],
17: inp seq cur and swap-seq(inp seq cur,
18: 2×mid-end+k, mid+k)
19: inp seq cur = swap-seq(inp seq cur,
20: 2×mid-end+k, mid+k)
21: end loop
22: recursive call for
23: Output[left ... start+1 ... mid-1]
24: recursive call for
25: Output[mid ... end ... right-1]  

Fig. 5. Another in-place merging: annotated pseudocode (left) and an example (right).
Red values should be swapped with green values in each recursion. (Color figure online)

Figure 5 presents another (annotated) pseudocode and an example of an
in-place merge [8,17] which is more efficient than the previous one in com-
plexity. In this algorithm, initially left points to index zero, right equals N
and the two variables, start and end point to the last and first elements of
the subarrays, respectively10. Variable start decreases and end increases by
one until Output[start] <= Output[end] (lines 5–8). When Output[start] <=
Output[end], we should swap the two subarrays in ranges (start, mid) (as red

10 In the example, the middle element initially is in index 4, because right equals N .
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Algorithm 9. In-place TimSort
1: RUN = 64, k=0
2: invar: Output == inp seq cur
3: invar: Input == inp seq chain[0]
4: invar: permutation(inp seq chain[0], inp seq cur)
5: while(k < N)
6: end = min(k+RUN-1, N-1)
7: insertion sort(Output[k ... end]
8: k+=RUN
9: end while

10: chunk = RUN
11: invar: Output == inp seq cur
12: invar: Input == inp seq chain[0]
13: invar: permutation(inp seq chain[0], inp seq cur)
14: while(chunk < N)
15: left = 0
16: invar: Output == inp seq cur
17: invar: Input == inp seq chain[0]
18: invar: permutation(inp seq chain[0], inp seq cur)
19: while(left < N)
20: mid = left+chunk-1, right = min(left+2×chunk-1, N-1)
21: if(mid < N-1)
22: merge1(Output, left, mid, right)
23: // or merge2(Output, left, mid+1, right+1)
24: end if
25: inp seq chain = inp seq chain + seq<seq<int>> {inp seq cur}
26: left+=2×chunk
27: end while
28: chunk×=2
29: end while

values in the example on the right) and [mid, end) (as green values in the exam-
ple), as in line 13–21 of the pseudocode. As we can see, we do swaps one by one
between the first elements in the two ranges, then between the second elements,
and so on. As a result, all elements in the left subarray become smaller than
all the elements in the right subarray. This means that the subarrays are now
independent and the same process can be applied for both of them. Therefore,
we recursively call this process for the two subarrays to sort the full array (lines
22–25). Thus, the merge function is also recursive in addition to the main func-
tion of merge sort. Since there are swaps in this algorithm, we reuse the generic
pattern and verify the permutation property of this algorithm as well. The only
point is that, since the merging function is recursive, we add the new rearrange-
ment of the elements (i.e., inp seq cur) to the chain (i.e., inp seq chain) in the
main function of merge sort instead of in the merge function itself.
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4.4 Permutation Verification of TimSort

Amongst the sorting algorithms, insertion sort performs better in practice when
the number of elements are small (e.g., 64). Merge sort performs well when the
size of two subarrays is power of 2. TimSort [20] benefits from this as a combina-
tion of insertion and merge sort. Algorithm 9 presents a simplified (annotated)
version of this algorithm. It first sorts small groups of elements (e.g., 64) as
runs (lines 5–9). Then, the algorithm repeatedly merges these equal-size sorted
runs using the merging function (lines 14–29). That means, in the first iteration,
the algorithm merges each two consecutive runs into a larger size of runs, and
it repeats merging for each two consecutive (larger) runs until the full array is
sorted. Note that we can use both merge functions discussed above for TimSort.

Since we already proved permutation of insertion and merge sort, we can
easily prove the permutation property of TimSort. In fact, we prove permutation
of two (in-place) TimSort algorithms using the two verified merge functions.

Fig. 6. An example of odd-even transposition sort. Values in green should be swapped.
(Color figure online)

4.5 Permutation Verification of Parallel Odd-Even Transposition
Sort

Odd-even transposition sort is a parallel version of bubble sort. It consists of two
phases: odd and even. Algorithm 10 presents the annotated pseudocode while
Fig. 6 shows an example of the execution of the algorithm. In the algorithm,
Output is initialized to Input. In the even phase (lines 7–18), even locations
(2 × tid) are compared to their right neighbor (2 × tid + 1) in line 8 and
swapped if they are greater (line 9). In the odd phase (lines 20–31), odd locations
(2 × tid + 1) are compared and swapped in the same way with their right
neighbor (2 × tid + 2) in lines 21–22. This process repeats inside a loop (line
5) until all elements are sorted, i.e., there is no swap (indicated by a boolean,
isSorted).
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Algorithm 10. Parallel odd-even transposition sort
1: boolean isSorted = false;
2: invar: Output == inp seq cur

3: invar: Input == inp seq chain[0]

4: invar: permutation(inp seq chain[0], inp seq cur)

5: while !isSorted do

6: isSorted = true;
7: Par(tid = 0.. N/2 ) // thread id from 0 to N/2-1
8: if 2 × tid + 1 < N && Output[2 × tid] > Output[2 × tid + 1] then

9: Swap(Output, 2 × tid, 2 × tid + 1);
10: atomic

11: applying Property 3.1 to inp seq cur and applying Property 3.2 to

12: inp seq chain[0], inp seq cur and swap-seq(inp seq cur, 2 × tid, 2 × tid + 1)

13: inp seq cur = swap-seq(inp seq cur, 2 × tid, 2 × tid + 1)

14: end atomic

15: isSorted = false
16: end if

17: end par

18: inp seq chain = inp seq chain + seq<seq<int>> {inp seq cur}
19: Par(tid = 0.. N/2) // thread id from 0 to N/2-1
20: if 2 × tid + 2 < N && Output[2 × tid + 1] > Output[2 × tid + 2] then

21: Swap(Output, 2 × tid + 1, 2 × tid + 2);
22: atomic

23: applying Property 3.1 to inp seq cur and applying Property 3.2 to

24: inp seq chain[0], inp seq cur and swap-seq(inp seq cur, 2 × tid + 1, 2 × tid + 2)

25: inp seq cur = swap-seq(inp seq cur, 2 × tid + 1, 2 × tid + 2)

26: end atomic

27: isSorted = false
28: end if

29: end par

30: inp seq chain = inp seq chain + seq<seq<int>> {inp seq cur}
31: end while

To prove permutation, we use the pattern proposed in Algorithm 2 (Fig. 2)
for both phases. We only fill out the two locations that need to be swapped (i.e.,
2 × tid and 2 × tid + 1 in line 14, 2 × tid + 1 and 2 × tid + 2 in line 27). By
applying the properties before a swap (lines 12–14 and 25–27), we establish the
permutation property indicated as an invariant in line 4.

5 Related Work

There are several papers on proving sortedness and permutation properties of
concrete sorting algorithms. In [10,22,24], the authors prove correctness of vari-
ous sorting algorithms using the Why3 [12] platform11. Why3 is a program veri-
fier which has its own language for programming and specification (i.e., WhyML)
11 The verified sorting algorithms using Why3 are available at http://pauillac.inria.fr/

∼levy/why3/sorting.

http://pauillac.inria.fr/~levy/why3/sorting
http://pauillac.inria.fr/~levy/why3/sorting
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based on first-order logic. It is mainly used as backend for other verifiers. To
prove sortedness and permutation properties, suitable lemmas and invariants
are defined and used in the extensive Why3 library12. However, they do not
propose a generic approach to verify sortedness and permutation properties.
Moreover, they do not verify any parallel sorting algorithms and they only prove
the correctness of several sequential sorting algorithms.

Beckert et al. [3] prove JDK’s dual pivot quick sort algorithm using KeY [1].
KeY is a program verifier for Java programs. The annotated Java programs are
transformed into the internal dynamic logic representation of KeY, and then
proof obligations are discharged to its first-order theorem prover which is based
on sequent calculus. They benefit from sequences to prove sortedness and per-
mutation properties of the algorithm. To prove the permutation property, they
provide suitable invariants and prove some lemmas in the tool. They mention
that proving the permutation property is by far the hardest part of their verifica-
tion, which requires more interaction with the tool than the sortedness property.
They neither outline a generic pattern nor verify any parallel sorting algorithms.
In addition, they only verify quick sort in Java.

De Gouw et al. [13] found a bug in the TimSort implementation in one of
OpenJDK’s libraries while verifying the code using KeY. They show the effec-
tiveness of (semi) automatic verification in finding bugs in a complex algorithm.

Filliâtre et al. [11] verify three sorting algorithms, insertion sort, quick sort
and heap sort, in the Coq proof assistant. To prove the permutation property,
they propose to express that the set of permutations is the smallest equivalence
relation containing the transpositions (i.e., the exchanges of elements). We follow
their approach to formally define permutation and prove its properties to prove
any sequential and parallel swap-based sorting algorithms automatically.

Tushkanova et al. [25] discuss two specification languages, Java Modeling
Language (JML) and Krakatoa Modeling Language (KML), to verify selection
sort in Java automatically. To prove the permutation property, they use bags to
show that the input and output array have the same content. Their approach
is different from ours as we opt to not use bags to have a uniform pattern for
verifying both sortedness and permutation.

6 Conclusion

Sorting algorithms are widely use in practice and their correctness is an impor-
tant issue. To prove correctness of sorting algorithms, we should prove sortedness
and permutation properties. Proving the permutation property is harder than
sortedness, because it requires reasoning about existential quantifiers. In this
paper, we propose a uniform approach to verify the permutation property of
any sequential and parallel swap-based sorting algorithms. To demonstrate that
our technique is generic, we prove the permutation property of bubble sort, selec-
tion sort, insertion sort, parallel odd-even transposition sort, in-place (recursive)
quick sort, two merge sorts and TimSort using the VerCorse verifier.
12 See http://why3.lri.fr/stdlib/array.html.

http://why3.lri.fr/stdlib/array.html
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As future work, we plan to augment the proofs by providing the sortedness
property for complex sorting algorithms such as odd-even transposition sort and
TimSort using the proposed pattern.
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Abstract. We describe a new approach to synthesizing a timed automa-
ton from a set of timed scenarios. The set of scenarios specifies a set of
behaviours, i.e., sequences of events that satisfy the time constraints
imposed by the scenarios. The language of the constructed automaton
is equivalent to that set of behaviours. Every location of the automaton
appears in at least one accepting run, and its graph is constructed so as
to minimise the number of clocks. The construction allows a new clock
allocation algorithm whose cost is linear in the number of edges.

1 Introduction

Construction of complex systems, in particular real-time systems, is a very diffi-
cult undertaking. It is more or less generally agreed that it cannot be successful
unless the specification of the system either constitutes, or can be used to derive
a formal model of the system (or at least of its essential aspects)—a model that
can be used to formally verify that the specified system will actually have the
required/expected properties.

A well-researched approach to building formal models of real-time systems is
that of constructing timed automata [3], whose properties can then be formally
verified, e.g., by model checking [8]. This approach can be considered successful,
though it has its problems: verification of a timed automaton can be compu-
tationally expensive, and the cost crucially depends on the properties of the
automaton, such as the number of clocks [2].

Another kind of difficulty is that the task of constructing a complex timed
automaton is itself not easy and quite error-prone. Hence the interest in auto-
matic synthesis of automata from some more “user friendly” notation, for exam-
ple from specifications expressed in various forms of scenarios [9,10,18,19] and
more recently by means of learning [5,11,12].

In this paper we study the problem of synthesizing timed automata from
timed scenarios: a simple and intuitive notation that is properly formalised
and well-understood [15]. We take into account the need to make the result-
ing automaton suitable for verification (by keeping the numbers of clocks small),
as well as some of the practical problems of writing scenarios for a complex
system.
c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 276–294, 2020.
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Development of the specification for a complex system is usually a collabora-
tive effort. The task is often divided into several smaller tasks, each of which is
performed independently by a team of engineers or specialists. A complete spec-
ification of the system is obtained by integrating these individual specifications.

Several important questions arise in this context. For instance: how do the
partial specifications relate to each other? What is the minimum set of high level
assumptions that all teams can agree on so that each of them can work indepen-
dently? How can we ensure the mutual consistency of these partial specifications,
so that they can be integrated into a reasonable whole?

We assume that each team specifies various aspects of a system by using
timed scenarios. A timed scenario is essentially a sequence of event names along
with a set of constraints between the times at which the named events occur. It
specifies a set of behaviours that are composed of this sequence of events and
satisfy the constraints: we say that each of these behaviours is supported by
the scenario. (The notion of “behaviour” is equivalent to that of Alur’s “timed
word”, i.e., a constituent of the language accepted by a timed automaton [3].)

Each timed scenario begins in some state of the specified system, and ends
in some state. Such states are interpreted as “important”, “visible” or even
“expected”, and can be viewed as the high level “interfaces” between timed
scenarios. If a timed scenario ends in some state, and another begins in the same
state, then the two can be composed (see Definition 5) to create a longer timed
scenario.

In the remainder of the paper we will use the term modes to refer to these
“important states”.

So, the process of specifying a particular aspect of a system takes the form
of building a set of partial timed scenarios that would describe the various
behaviours relevant to that aspect. The teams that are responsible for differ-
ent aspects of the system must all agree on the modes (i.e., the “important”
states). This is the minimum amount of information that a team must have
about the work of the other teams, in order to function independently with at
least some degree of confidence that all the scenarios can be integrated at the
end.

Once all such partial timed scenarios are obtained, we compose them to
obtain a maximal set of “complete” timed scenarios. Such scenarios specify all
those behaviours that begin in some initial mode and end in some final mode
of the system, and that are composed of the partial behaviours supported by
the partial timed scenarios. We exclude from this set all those scenarios that are
inconsistent [15], thus obtaining a set Ξ of consistent complete timed scenarios.

We then build an automaton such that every behaviour supported by a timed
scenario in Ξ will be accepted by the automaton and, conversely, every behaviour
accepted by the automaton will be supported by some timed scenario in Ξ.
In other words, the language of the automaton is—in a well-defined sense—
equivalent to the set of behaviours supported by Ξ. We call such an automaton
correct with respect to Ξ, and denote the class of all such automata by TA(Ξ).
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Fig. 1. A few timed scenarios and their synthesized timed automaton

For example, if we assume that μ0 is the initial mode and μ0 and μ2 are
the final modes, then the five timed scenarios of Fig. 1 are synthesized into the
timed automaton A (the notation for timed scenarios is explained in detail in
Sect. 3.1). It turns out (see Sects. 3.3 and 3.4) that inclusion of ξ2 and ξ5 in the
construction of A would make A contain locations that would not appear in any
accepting run.

Under the assumption that the original constraints in a timed scenario cannot
be changed, i.e., replaced by an equivalent set, we propose a method of synthesis
that generates an automaton A in TA(Ξ) with the optimal number of clocks (in
the sense of Sect. 3.5). The construction makes it possible to use a novel clock
allocation algorithm that is very efficient. In addition, all the locations of A are
reachable, that is, every location appears in at least one accepting run of A.

In our earlier work [14] we proposed a form of timed scenarios (called Timed
Event Sequences or TES) and developed a synthesis method for constructing
a timed automaton from a set of TES. A set of restrictions on the given set
of TES ensured that the resulting synthesized automaton was acyclic. Since we
did not address the question of the consistency of timed scenarios, some of the
locations in the synthesized automaton would not appear in any accepting run.
The number of clocks was optimal [13] for the underlying graph of the automaton.

We have recently developed [16] a new scheme for “untangling” the underly-
ing graph of an automaton: this can further decrease the number of clocks. The
scheme can be applied to the automata synthesised by the method described
here (Sect. 3.7). This, together with allowing cycles and with the reachability of
all locations, is a significant improvement over our earlier results [14].

2 Timed Automata

A timed automaton [3] is a tuple A = 〈E,Q, q0, Qf , C, T 〉, where E is a finite
alphabet, Q is the (finite) set of locations, q0 ∈ Q is the initial location, Qf ⊆ Q
is the set of final locations, C is a finite set of clocks (i.e., clock variables),
and T ⊆ Q × Q × E × 2C × 2Φ(C) is the set of transitions. In each transition
(q, q′, e, λ, φ), λ is the set of clocks to be reset with the transition and φ ⊂ Φ(C)



Synthesizing Clock-Efficient Timed Automata 279

is a set of clock constraints over C of the form c ∼ a, where ∼ ∈ {≤, <,≥, >,=},
c ∈ C, and a is a constant in the set of rational numbers, Q.

A clock valuation for a set C of clocks is a mapping from C to R
≥0. A clock

valuation ν for C satisfies a set of clock constraints φ over C iff every clock
constraint in φ evaluates to true after each clock variable c is replaced with ν(c).

For τ ∈ R, ν + τ denotes the clock valuation which maps every clock c to the
value ν(c) + τ . For Y ⊆ C, [Y 
→ τ ]ν denotes the clock valuation for C which
assigns τ to each c ∈ Y and agrees with ν over the rest of the clocks.

A timed word over an alphabet E is a pair (σ, τ) where σ = σ1σ2 . . . is a
finite [1,6] or infinite word over E and τ = τ1τ2 . . . is a finite or infinite sequence
of (time) values such that (i) τi ∈ R

≥0, (ii) τi ≤ τi+1 for all i ≥ 1, and (iii) if the
word is infinite, then for every t ∈ R

≥0 there is some i ≥ 1 such that τi > t.
A run of A over a timed word (σ, τ) is a sequence of the form 〈q0, ν0〉 σ1−→

τ1

〈q1, ν1〉 σ2−→
τ2

〈q2, ν2〉 σ3−→
τ3

. . . , where for all i ≥ 0, qi ∈ Q and νi is a clock valuation

such that (i) ν0(c) = 0 for all clocks c ∈ C and (ii) for every i > 1 there is a
transition in T of the form (qi−1, qi, σi, λi, φi), such that (νi−1+τi−τi−1) satisfies
φi, and νi equals [λi 
→ 0](νi−1 + τi − τi−1).

A run over a finite timed word is accepting if it ends in a final location [1,6].
(We do not consider infinite accepting runs in this paper.)

The language of A, L(A), is the set {(σ, τ) | A has an accepting run over
(σ, τ)}.

3 Synthesizing Timed Automata from Scenarios

3.1 Timed Scenarios

(Parts of this subsection briefly recount our earlier work [15].)

Definition 1. Let Σ be a finite set of symbols called events. A behaviour B
over Σ is a sequence (e0, t0)(e1, t1)(e2, t2) . . . , such that ei ∈ Σ, ti ∈ R

≥0 and
ti−1 ≤ ti for i ∈ {1, 2 . . . }.

We often say “event i of B” (or “the i-th event”) to denote event i of the sequence
e0e1e2 . . . . A behaviour can, but need not, be an infinite sequence.

The intended interpretation of (ei, ti) is that the i-th occurrence of an event is
an occurrence of event ei, and takes place ti time units after the initial occurrence
of an event (namely, e0).

Let M be a finite set of modes, interpreted as the visible states or important
states of a system that is being specified. We assume each mode μ ∈ M is
associated with a label Lμ. Let LM be the set of all such labels and L be a set of
labels such that L ⊃ LM. We assume there is a special symbol none ∈ L \ LM
and that Ln = L\{none}. The elements of L can be associated with events and
are interpreted as symbolic representations of the times at which these events
occur (they are analogous to clocks in timed automata).
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We use Φ(L) to denote the set of constraints of the form α ∼ a, where
α = none is a label in L, ∼ ∈ {≤,≥,=}1, and a is a constant in the set of
rational numbers, Q.

Let S ⊆ L × Σ × 2Φ(Ln) be the set of annotated events of the form (α, e, φ),
where α ∈ L, e is an event in Σ and φ is a set of constraints in Φ(Ln). If
α = none, then the label α is said to be defined by the annotated event (α, e, φ).
We also say that the event is labeled by α.

We use S∗ to denote the set of all sequences (finite or infinite) formed from
elements of S. The subset of S∗ that contains only all the sequences of length n
will be denoted by Sn.

In all the definitions below we will assume the sets Σ, M and L are given,
that μ0 ∈ M is the initial mode, and that MF ⊆ M is the set of final modes.

Definition 2. A timed scenario is a tuple ξ = (μi, ψ, μf ), where μi and μf are
some modes in M and ψ = (α0, e0, φ0)(α1, e1, φ1) . . . is a non-empty sequence
of annotated events in S∗ such that α0 = Lμi and αk ∈ L, for k ≥ 1. Moreover,
for every β ∼ a ∈ φk, if β ∈ L\LM, then there exists a j < k such that αj = β.

The intended interpretation is that the system is in mode μi when the first event
of ξ occurs, and the mode of the system changes to μf when the last event of ξ
occurs. Moreover, each αk, for k ≥ 0, is interpreted as the time of event ek: in
particular, α0 is the time of event e0, which is also the time of leaving mode μi.
A constraint in φk of the form β ∼ a means that the time difference between
the kth event and the latest preceding event whose label is β must satisfy the
constraint. If β ∈ L \ LM, then there must exist some earlier annotated event
in this scenario whose label is β. (If β ∈ LM, then it might be defined in other
scenarios, as will become clear below.)

Informally, a timed scenario ξ describes a set of behaviours in which the times
of events satisfy the constraints in ξ. We say that such behaviours are supported
by ξ (see Definition 6).

For a scenario ξ = (μi, ψ, μf ), with ψ = (α0, e0, φ0)(α1, e1, φ1) . . . , we will
use eseq(ξ) to denote the sequence of events e0e1 . . . , imode(ξ) to denote μi, and
fmode(ξ) to denote μf . The term “event i of ξ” will denote event i in eseq(ξ).

In the remainder of the paper, we will use “scenarios” instead of “timed
scenarios”. A scenario will be written as a sequence of events, preceded and
followed by a mode in square brackets. Events are separated by semicolons, and
the last event is followed by a period. If a label is none, we simply drop it.

For example, ξ1 of Fig. 1 is a representation of (μ0, (Lμ0 , e, ∅)(L0, f, {Lμ0 ≥
4})(none, g, {L0 ≤ 1}), μ2). Label Lμ0 is treated as the time of leaving mode μ0,
that is, the time of event 0 (i.e., e) in ξ1. The constraint Lμ0 ≥ 4 on event 1 (i.e.,
f) means that, for every behaviour supported by ξ1, the time difference between
events 0 and 1 must be at least 4 units of time.

In ξ4 of Fig. 1, label Lμ0 used in Lμ0 ≤ 2 can be the time of event 0 in ξ1 or
event 0 in ξ3. This will become clear after Definition 4.

1 To keep the presentation compact, we do not allow sharp inequalities [15].
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Fig. 2. Compositionofξ3 andξ4 ofFig. 1 Fig. 3. An inconsistent scenario

Definition 3. Let ξ = (μi, ψ, μf ) be a scenario. ξ is closed iff, for any k-th
annotated event (αk, ek, φk) in ψ, and for every β ∼ a ∈ φk, there exists a j < k
such that the j-th annotated event of ψ is (β, ej , φj) for some ej and φj. A
scenario is open if it is not closed.

Scenario ξ1 of Fig. 1 is closed, but ξ2 is open, because the constraint Lμ0 ≤ 1 on
event 1 (i.e., d) refers to the time of an event from some other scenario.

Definition 4. ξ is complete iff ξ is closed, imode(ξ) = μ0 and fmode(ξ) ∈ MF .

Definition 5. Let ξ = (μi
ξ, ψξ, μ

f
ξ ) and η = (μi

η, ψη, μf
η) be two scenarios of

lengths n and m, respectively. If μf
ξ = μi

η, then η can be composed with ξ. The
result is the scenario ξ ◦η = (μi

ξ, ψξψη, μf
η) of length n+m, where ψξψη ∈ Sn+m

is the concatenation of ψξ and ψη.

For instance, ξ3 and ξ4 of Fig. 1 can be composed in two ways (see Fig. 2). In
ξ3 ◦ ξ4, Lμ0 refers to the time of leaving μ0, which is the time of event 0 (i.e.,
a). In ξ4 ◦ ξ3, Lμ0 in the constraint of event 0 does not refer to the time of event
1, because it can only refer to the time of a preceding event. ξ4 ◦ ξ3 is open, but
ξ3 ◦ξ4 is closed. If μ0 is both the initial and a final mode, then ξ3 ◦ξ4 is complete.

Definition 6. Let ξ be a closed scenario. A behaviour B = (e0, t0)(e1, t1) . . .
over Σ is supported by ξ iff eseq(ξ) = e0e1 . . . and every constraint α ∼ a on
event j in ξ evaluates to true after α is replaced by tj − ti, where event i is the
last event before j in ξ whose label is α.

Definition 7. Let ξ be a closed scenario. The semantics of ξ, denoted by �ξ�,
is the set of behaviours that are supported by ξ.

Open scenarios have no semantics. If ξ is complete, then all the behaviours in
�ξ� are finite.

Definition 8. Two closed scenarios, ξ and ξ′ are equivalent iff �ξ� = �ξ′�.

Definition 9. Let ξ be a closed scenario. ξ is consistent iff �ξ� = ∅. ξ is incon-
sistent iff it is not consistent.
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Two inconsistent scenarios are obviously equivalent.
Scenario ξ1 of Fig. 1 is consistent. Scenario ξ of Fig. 3 is inconsistent: �ξ� =

{(b, t0)(a, t1)(b, t2)|t0 = 0 ∧ t2 ≥ t1 ≥ t0 ∧ t1 − t0 ≥ 3 ∧ t2 − t0 ≤ 2} is empty.

Definition 10. Let Ξ be a finite set of finite scenarios. We define
Composed(Ξ) = {ξ = ξ1 ◦ ξ2 ◦ · · · ◦ ξn | ξj ∈ Ξ for 1 ≤ j ≤ n},
Comp(Ξ) = {ξ | ξ ∈ Composed(Ξ) ∧ ξ is complete},
Cons(Ξ) = {ξ | ξ ∈ Comp(Ξ) ∧ ξ is consistent}.

Definition 11. Let Ξ be a finite set of finite scenarios. We define the set of
behaviors supported by Ξ as Supp(Ξ) =

⋃
η∈Cons(Ξ)�η�.

3.2 A Bird’s Eye View

Let TA be the class of all timed automata. Let M be a set of modes, with the
initial mode μ0 ∈ M and a set of final modes MF ⊆ M. Let L be a set of labels,
and Ξ be a finite set of finite scenarios (over the alphabet Σ) whose initial and
final modes belong to M and whose labels belong to L.

We define TA(Ξ) = {A | A ∈ TA and L(A) = Supp(Ξ)}. Given Ξ, the objec-
tive is to synthesize an automaton A ∈ TA(Ξ). Obviously, such an automaton
is not unique, so one can be more specific about the precise goal: the method of
synthesis may depend on the desired properties of the resulting automaton. Our
goals, listed in the order of importance, are as follows:

1. Every location of A should appear in at least one accepting run of A.
2. The number of clocks should be as low as it is possible to make it without

analysing the semantics of the constraints.
3. The number of locations should not be unduly large.

Our general strategy is to construct a finite representation of Cons(Ξ) in the
form of a tree T Ξ that can be almost directly converted to an automaton. The
tree is then modified to decrease the number of clocks.

To obtain Cons(Ξ), we construct a representation of Comp(Ξ) and then
remove from it all those scenarios that are not consistent.

Comp(Ξ) can be computed by taking the members of Ξ and repeatedly
composing them in all possible ways to generate longer scenarios (as long as
these are sure to be complete: see Sect. 3.3). This is done by building a tree
rooted at a node that represents μ0, i.e., is labeled with μ0. Although the tree
will represent the potentially large set Comp(Ξ), we keep it compact by making
sure that a member of Ξ never appears more than once on any branch.

For example, given the set Ξ of scenarios of Fig. 1, Comp(Ξ) can be repre-
sented by the tree of Fig. 4, where each node that corresponds to the beginning
or end of (each instance of) an original scenario is labeled with the appropriate
mode. Observe that after generating the leaf labeled with μ0, it would be pos-
sible to further extend the branch with scenario ξ3, followed by ξ4 and so on.
We avoid this by marking the leaf as a “looping” leaf. In the final automaton
this leaf will be unified with its “looping ancestor”, that is, the ancestor whose
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Fig. 4. The tree of Fig. 1 Fig. 5. The tree of Fig.4 after removing
inconsistent paths

mode is μ0 (the root, in this case), and therefore there will be a cycle. (The
correspondence between the two nodes is shown by the dashed line.) Notice that
ξ5 is not added at node n4.

Assuming V is the set of nodes of the tree, we use the partial function VM :
V → M to denote the labeling function described above.

3.3 Constructing T Ξ

The construction of T Ξ is performed in two steps. Step 2 is repeated until it is
no longer possible to expand the tree.

1. We initialize T Ξ with a node n0 and assign label μ0 to it, i.e., VM (n0) = μ0.
The node is marked as a non-looping leaf.

2. Let nl be a non-looping leaf in T Ξ , let p be the path from n0 to nl, and let
Candidates ⊂ Ξ be the set of scenarios whose initial mode is VM (nl).
(a) For every ξ ∈ Candidates, if ξ contains an annotated event (β, e, φ) such

that there is a constraint α ∼ a in φ for which:
– there is no previous definition of label α in ξ, and
– α is not defined on p,

then remove ξ from Candidates.
(b) Every remaining ξ ∈ Candidates is “grafted” onto the tree at nl. Grafting

is carried out as follows:
– In T Ξ , beginning at nl, we create a path p′ whose length is the length

of ξ. Every transition r in p′ is annotated with the label, event and
constraints of the corresponding annotated event (β, e, φ) in ξ.

– Let nl′ be the final node of p′. We set VM (nl′) = fmode(ξ).
– If there is a node nj on p such that VM (nj) = VM (nl′), then we

mark nl′ as a looping leaf and nj as its looping ancestor. Otherwise
we mark nl′ as a non-looping leaf.

Step 2a ensures that every branch represents a closed scenario.
Given Ξ, we use T Ξ = 〈Σ,V, n0, R〉 to denote its tree. V is a finite set of

nodes; n0 ∈ V is the initial node, and R ⊆ V × V × Σ × L × 2Φ(Ln) is the set of
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transitions of the form (ni, nj , e, β, φ〉, where ni and nj are nodes in V , e is an
event in Σ, β is a label in L, and φ is a set of constraints in 2Φ(Ln).

In our examples different transitions will often be associated with different
events. This will allow us to refer to a transition by the name of its event and
to refer to a path by the sequence of the events that appear in its transitions.

We use the following auxiliary notation:

– if r = (ni, nj , e, β, φ) ∈ R, then source(r) = ni, target(r) = nj , event(r) = e,
label(r) = β, and constraints(r) = φ;

– if n ∈ V , then out(n) = {r | source(r) = n} and in(n) = {r | target(r) = n};
– act target(r) = target(r) if target(r) is not a looping leaf, otherwise

act target(r) is the looping ancestor of target(r).

Definition 12. A sequence of transitions r0r1 . . . rn in T Ξ is a g-path iff, for
0 ≤ i < n, source(ri+1) = act target(ri).

Intuitively, a g-path corresponds to a path in the final automaton. Notice that
a path in the tree is also a g-path.

Let p = r1 . . . rk be a g-path in the tree. We define origin(p) = source(r1),
end(p) = act target(rk), and transitions(p) = {r1, . . . , rk}.

Let p1 and p2 be two g-paths such that end(p1) = origin(p2). p1 ⊕p2 denotes
their concatenation: origin(p1 ⊕ p2) = origin(p1) and end(p1 ⊕ p2) = end(p2).

Definition 13. Given T Ξ , we introduce the following notions:

– A node n is final iff VM (n) ∈ MF .
– A g-path p is complete iff origin(p) = n0 and end(p) is final.
– Let n be a looping leaf with label μ, and let na be its looping ancestor. The

path that begins at na and ends at n is an open cycle. We sometimes call na

the origin of the open cycle.
– Let p be a path that begins at the root and ends at a leaf, r be a transition on

p and α ∼ a be a constraint in constraints(r). We say α is well-defined iff
there is a transition r′ that appears before r on p and label(r′) = α.

Observe that a final node can (but need not) be a leaf, even a looping leaf.
Some of the nodes in T Ξ might not be on a complete g-path: the corre-

sponding locations will not appear in accepting runs, so we must remove them.

Definition 14. A node n is alive iff n is final or there is a g-path from n to a
final node. A node that is not alive is dead.

Removal of dead nodes in T Ξ is quite similar to standard garbage collection. We
remove all nodes that are not marked as “alive” by the following algorithm:
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1. Mark all the nodes in T Ξ as “dead”.
2. Initialize LN to the set of identifiers of final nodes.
3. While LN = ∅:

(a) Remove some n from LN . Mark node n in T Ξ as “alive”.
(b) If n is a looping ancestor, add to LN the identifiers of those looping leaves

associated with n that are not marked as “alive”.
(c) If n has a parent node that is not marked as “alive”, add the identifier of

the parent to LN .

In the tree of Fig. 4 the nodes labeled by VM are drawn with thick lines.
Assuming that μ0 is the initial mode and μ0, μ2 are the final modes, the paths
that begin at n0 and end at n3, n5 or n7 are complete. n0 is the looping ancestor
of n5, and the path between n0 and n5 is an open cycle. Notice that the node
corresponding to ξ5 would be dead and was removed after the initial construction.

Observation 1 T Ξ has the following properties:

1. If p is a path from n0 to a leaf, and r is a transition on p, such that label(r) =
Lμ ∈ LM, then no other transition on p is labeled with Lμ.

2. If r is a transition, and constraints(r) includes a label Lμ ∈ LM, then there is
a unique transition r′ = r on the path from n0 to r, such that label(r′) = Lμ.

3. If r is a transition, such that constraints(r) includes a label L ∈ L\LM, and
n is the latest labeled ancestor node of r, then there is a transition r′ = r on
the path from n to r, such that label(r′) = L.

4. Every label α that appears in a constraint on a transition r is well-defined.

We can think of labels in L \ LM as “local labels”: local to a scenario, or—
equivalently—to a path between two labeled nodes in T Ξ ; LM would then be
the set of “global labels”.

Let a label L appear in a constraint on some transition r. If L ∈ LM, then,
by pt. 2 of Observation 1, L is defined only once on the path from the root to r.
If L ∈ L \ LM, then there might be many definitions of L on this path: in this
case L in the constraint associates with the latest definition of L on the path.

The distinction between local and global labels ensures that in the target
automaton an occurrence of a clock in a constraint always refers to the same clock
reset (see Observation 5). This is important both for checking the consistency of
scenarios (Sect. 3.4) and for our specialized clock allocation algorithm (Sect. 3.5).

Let p be a g-path in T Ξ that begins at n0 and ends at some labeled node.
The g-path represents a closed scenario ξp. If p is complete, ξp is complete. We
have removed dead nodes, so p is complete. T Ξ can be viewed as an encoding
of all the complete scenarios that can be composed from members of Ξ.

We use S(T Ξ) to denote the set of all complete scenarios represented by T Ξ .

Observation 2 Let Ξ be a finite set of finite scenarios, then S(T Ξ) =
Comp(Ξ).
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In the remainder of the paper, whenever we refer to a tree, we assume it is
obtained from a set of scenarios by means of the method described in Sect. 3.3.

3.4 Checking the Consistency of T Ξ

Now that we have built T Ξ to represent all the complete scenarios, we must
remove paths that correspond to inconsistent scenarios, to ensure that the final
automaton does not have locations that never appear in an accepting run.

To check the consistency of the complete scenarios encoded by T Ξ we use
the method described in our earlier work [15]. The check is carried out in two
steps: first we consider the complete paths, then the open cycles.

First step. Let p be a complete path in T Ξ . If ξp is inconsistent, our method
allows us to identify the offending constraint (the first constraint in ξp that makes
it inconsistent): if it is on transition r, we remove the subtree whose trunk is r.

As a result of such pruning we may obtain a smaller tree. Some of its nodes
might no longer be alive (see Definition 14): we must remove them.
As an example consider the tree of Fig. 4 once more. The tree has three complete
paths. Let p1 be the path that begins at n0 and ends at n3, p2 be the path that
begins at n0 and ends at n7, and p3 be the open cycle with origin n0 which is
also a complete path. ξp1 = ξ1 (see Fig. 1) is consistent. p2 and p3 correspond to
scenarios ξp2 = ξ3 ◦ ξ2 and ξp3 = ξ3 ◦ ξ4, shown in Fig. 6.

Fig. 6. Complete sce-
narios

Fig. 7. Nested open
cycles

Fig. 8. A tree

ξp2 is inconsistent. Our method identifies the second constraint on transition
d as the offending constraint, so transition d and node n7 are removed. This
renders n6 dead, so c and n6 are removed. ξp3 is consistent, and all the remaining
nodes are alive. Figure 5 shows the resulting tree.
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Second step. In the second step we consider the scenarios that correspond
to paths that include open cycles: if there is no complete consistent path that
includes an open cycle, then at least a part of the cycle must be removed. We
use the tree of Fig. 7 to illustrate one such situation. Let nf and nk be the final
nodes, p be the path between the root and nc, c1 be the open cycle with origin
nc (with looping leaf nj), p′ be the path between nc and nf , and p′′ be the path
between nc and nk. Assume that the consistency of the scenarios corresponding
to the two complete paths (between the root and nf , and between the root
and nk) is established in the first step. In the second step we first check the
consistency of scenario ξp⊕c1⊕p′ .

The consistency of p ⊕ p′ and p ⊕ p′′ has already been established, so if
ξp⊕c1⊕p′ is inconsistent, the inconsistency must have been introduced by the
inclusion of c1. In that case we remove transitions that belong to c1, but not
those that belong to p′ or p′′ (i.e., we remove the path between nk and nj).
Observe that the first offending constraint in this case might well be on some
transition between nc and nf .

If ξp⊕c1⊕p′ is consistent, then c1 is not removed, but we must consider any
nested cycles. Assume c2 is the open cycle with origin nk and looping leaf nl,
and c11 is the path between nc and nk. We check the consistency of ξp⊕c11⊕c2 .
If the scenario is inconsistent, c2 is removed (recall that nk is final).

While checking the consistency of a path that includes an open cycle it is
enough to consider only one unrolling of each cycle: if it does not introduce an
inconsistency, then in the final automaton there will be an accepting run that
goes through the cycle at least once.

After removing an open cycle we prune away any resulting dead branches.
We use T Ξ

c to denote the tree obtained from T Ξ after removing the incon-
sistent paths. S(T Ξ

c ) denotes the set of complete scenarios represented by T Ξ
c .

Observation 3 S(T Ξ
c ) is the set of all the complete, consistent scenarios that

can be built from elements of Ξ.

With a slight abuse of notation, the set of behaviors represented by T Ξ
c will be

denoted by Supp(T Ξ
c ) =

⋃
ξ∈S(T Ξ

c )�ξ�.
From now on we assume that all our trees are consistent.

3.5 A Specialized Clock Allocation Algorithm for T Ξ
c

Most of the definitions in the remainder of this subsection are adapted from our
previous work [13] and are specialized for the case of trees.

Recall that Ln = L\{none}. For a given T Ξ
c we define the following functions:

– used : R → 2Ln maps transition r to the set {α | α ∼ a ∈ constraints(r)}.
– needed : R → 2Ln maps transition r to a set of labels. α ∈ needed(r) iff there

is a g-path r0r1. . .rk, k ≥ 0, such that r = r0, α ∈ used(rk) and, for any
0 < i < k, α = label(ri).
If α ∈ needed(r), we say α is needed on r. Intuitively, needed(r) identifies
labels whose values are used on r or on some subsequent transitions.
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– born : R → 2Ln maps transition r to a set of labels. α ∈ born(r) iff α =
label(r) and α ∈ needed(r′) for some r′ ∈ out(target(r)).
We say that a label α is born on transition r if born(r) = {α}.
Notice that born(r) is either a singleton or the empty set. Moreover, α ∈
born(r) implies α ∈ needed(r).

– last ref : R → 2Ln maps transition r to the set {α | α ∈ needed(r) ∧ (α ∈
born(r) ∨ ∀r′∈out(act target(r)) α /∈ needed(r′))}.

Note: If a label α is defined on some transition of an open cycle, then, by Observation 1,
its value cannot possibly be needed on any transition outgoing from the origin of the
open cycle. So there is no need to use act target in the definition of born.

As noted above, a label that is born on a transition is needed on that transi-
tion. For instance, in the tree of Fig. 8, born(a) = {Lμ0}, born(f) = {Lμ1} and
born(d) = {L1}. Lμ0 is in needed(a), Lμ1 is in needed(f), and L1 is in needed(d).

However, a label is born on a transition only if it is used on some subsequent
transition. In the tree of Fig. 8, even though label Lμ1 is defined on transition c,
it is not born on c, because it is not subsequently used.

Finally, a label is included in last ref on transition r only if it is used there,
but is not needed on any subsequent transition. For instance, in the tree of Fig. 8
Lμ0 is in last ref (c), but not in last ref (g): after unifying the looping leaf with
its looping ancestor (labeled with μ1), Lμ0 will be needed on c. (It is worth
noticing that if Lμ0 were not referenced on transition c, then it would be needed
on f , g, h and i, but would not belong to last ref (r) for any transition r.)

Definition 15. Let T Ξ
c be a tree and α be a label in Ln . A g-path r0r1...rn in

T Ξ
c (n > 0) is a path of α iff the following four conditions are satisfied:

• α ∈ born(r0),
• α ∈ needed(rn),
• for every 0 < i < n, α /∈ born(ri),
• α /∈ born(rn) ∨ α ∈ used(rn).

In the tree of Fig. 8, afghic and ac are two of several paths of label Lμ0 . Similarly,
fgh is a path of label Lμ1 . de and d are the only paths of label L1, while h and
hi are the only paths of Lμ2 .

Observation 4 Let T Ξ
c be a tree, α ∈ LM, and p and p′ be two paths of α. If

p and p′ overlap, then there must exist a transition r such that α ∈ born(r) and
r is the initial transition of both p and p′.

Intuitively, if a label α ∈ LM has two overlapping paths that are partly disjoint,
then the paths must share at least their first transition and then continue, at
some point diverging as branches of a fork.
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Notice that a label α ∈ Ln \ LM cannot have two partly disjoint paths that
begin on the same transition (see pt. 3 of Observation 1).2

Definition 16. Let P (α, r) be the set of all paths of label α that begin on transi-
tion r. The function range : Ln×R → 2R maps (α, r) to

⋃
p∈P (α,r) transitions(p).

Intuitively, range(α, r) is the set of all transitions on which the value of α defined
on r is needed. If range(α, r) = ∅, we often say that this range of α begins at r.

In the tree of Fig. 8 there is one range of Lμ0 , namely {a, c, f, g, h, i}: it begins
at a. Similarly, {f, g, h} is the only range of Lμ1 , and it begins at f .

It is worth pointing out that if a label α is defined on a transition r of an open
cycle c, then range(α, r) can contain only transitions of those g-paths that begin
at r and do not pass through the origin of c (pts. 1, 3 and 4 of Observation 1).

Definition 17. Let R be a range of α ∈ Ln and R′ be a range of α′ ∈ Ln , such
that R = R′.3 We define conflict(R,R′) = {r ∈ R ∩ R′ | (α ∈ born(r) =⇒
α′ /∈ last ref (r)) ∨ (α′ ∈ born(r) =⇒ α /∈ last ref (r))}.

Definition 18. Let R and R′ be two different ranges. R and R′ conflict iff
conflict(R,R′) = ∅.

If R and R′ conflict, we say that they are conflicting, or that R conflicts with R′

(and vice versa). If r ∈ conflict(R,R′), we say that R and R′ conflict on r.
In the tree of Fig. 8 the range of L1 does not conflict with the ranges of Lμ0 ,

Lμ1 or Lμ2 (and would not conflict even if Lμ0 were used on transition d). The
range of Lμ0 conflicts with the ranges of Lμ1 and Lμ2 .

Observation 5 Let α be a label that appears in used(r) for some transition r
in T Ξ

c . Then there is a unique transition r′ on the path from the root to r, such
that r ∈ range(α, r′).

3.5.1 Clock Allocation We assume the existence of a set C of clocks (i.e.,
“clock” variables).

Definition 19. Let T Ξ
c be a tree with the set R of transitions and the set L

of labels. A clock allocation for T Ξ
c is a relation alloc ⊂ R × Ln × C such that

(r, α, c) ∈ alloc ⇒ α ∈ needed(r).

2 By Observation 1, if α ∈ LM, there is no transition r such that α ∈ born(r)∩used(r).
However, this is quite possible for α ∈ Ln \ LM: in that case, the last transition of
a path of α can be the same as the first transition of another path of α.

3 α may, but need not, be different from α′.
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Recall that Ln = L \ {none}. Inclusion of (r, α, c) in alloc represents the fact
that on transition r clock c is associated with label α.

Definition 20. A clock allocation alloc is incorrect iff there are two conflicting
ranges R and R′, of some labels α and α′ (where α = α′)4, some c ∈ C and
some r ∈ conflict(R,R′) such that (r, α, c) ∈ alloc ∧ (r, α′, c) ∈ alloc.
alloc is correct iff it is not incorrect.

Intuitively, if two labels are needed on a single transition r then a correct allo-
cation associates them with two different clocks, unless r is the transition on
which the range of one label ends and the range of the other label begins (in
which case it is correct to associate both labels with the same clock).

Definition 21. The clock allocation alloc is complete iff, for every transition r
and every α ∈ needed(r), there is a clock c ∈ C such that (r, α, c) ∈ alloc.

Definition 22. We define the number of clocks used in an allocation by:
cost(alloc) = |{c ∈ C | ∃r∈R∃α∈Ln

(r, α, c) ∈ alloc}|.

Definition 23. Let alloc be a complete and correct clock allocation for T Ξ
c . The

allocation alloc is optimal if there is no complete correct allocation alloc′ for T Ξ
c

such that cost(alloc′) < cost(alloc).

This definition is the right one if we cannot modify the graph and do not take into
account the semantics of the constraints. It is, in general, possible to construct
“pathological” examples in which the number of clocks can be smaller than
defined here (e.g., if all the constraints always evaluate to true). See our earlier
work [13] for details and a more formal treatment of this notion of optimality.

We are now ready to present our new clock allocation algorithm. We assume
the values of functions needed , born and last ref are computed by a standard
data-flow algorithm [13] whose cost is O(e3) (where e is the number of edges).

Algorithm 1 finds a clock allocation that is optimal for the given tree T Ξ
c . Its

simplicity is due to Observations 5 and 1. If we assume that set operations are
carried out in constant time, then its cost is O(e). Our general clock allocation
algorithm [13] is based on graph colouring, which is NP-complete in general, but
is cheaper on specialised kinds of graphs.

Algorithm 1: Allocating clocks in T Ξ
c

Input : A tree T Ξ
c = 〈E, V, n0, R〉 and a set C of clocks.

Output: The allocation relation alloc.

1 alloc := ∅;
2 doNode(n0, ∅, C)

4 In our setting two ranges of the same label can overlap, but cannot be conflicting.
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Procedure doNode(node n, set of pairs assoc, set of clocks pool)
1 foreach r ∈ out(n) do
2 doTrans(r, assoc, pool)

Procedure doTrans(transition r, set of pairs assoc, set of clocks pool)
1 newAssoc := {(α, c) ∈ assoc | α ∈ ((needed(r) \ born(r)) ∪ last ref (r))};
2 newPool := pool ∪ {c | ∃α∈L(α, c) ∈ (assoc \ newAssoc)};
3 foreach (α, c) ∈ newAssoc do
4 alloc := alloc ∪ {(r, α, c)};

5 foreach α ∈ last ref (r) do
6 Let d be the clock such that (α, d) ∈ newAssoc;
7 newAssoc := newAssoc \ {(α, d)};
8 newPool := newPool ∪ {d};

9 if born(r) 	= ∅ then
10 Let β ∈ born(r); /* born(r) is a singleton */

11 Let d be the clock in newPool with the smallest number;
12 newPool := newPool \ {d};
13 newAssoc := newAssoc ∪ {(β, d)};
14 alloc := alloc ∪ {(r, β, d)};

15 doNode(target(r),newAssoc,newPool)

3.6 Obtaining the Final Automaton

After allocating clocks we should rewrite the constraints in T Ξ
c in terms of clocks.

Let r be a transition. If α ∈ born(r) and (r, α, ci) ∈ alloc, we annotate r with
the clock reset ci := 0. If β ∼ a ∈ constraints(r) and (r, β, cj) ∈ alloc, we replace
the constraint by cj ∼ a.

T Ξ
a denotes the automaton that is obtained after this step. If T Ξ

c includes
open cycles, then T Ξ

a is not yet the target automaton: we must first form cycles.
This step can be performed by unifying the looping leaves with their correspond-
ing looping ancestors. AΞ denotes the resulting automaton.

The automaton on the right hand side of Fig. 1 is obtained after optimally
allocating clocks in the tree of Fig. 5 and forming the cycles. Observe that clock
c0 is associated with both labels L0 and Lμ0 and that n5 is unified with n0.
(Final locations are drawn as double circles.)

The timed automaton of Fig. 9 corresponds to the tree of Fig. 8. Algorithm 1
replaces the four labels of the tree with two clocks. The allocation is optimal.

Observation 6 Let Ξ be a set of finite scenarios over Σ and let AΞ be the final
timed automaton synthesized from scenarios in Ξ. Then Supp(Ξ) = L(AΞ).
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Fig. 9. An automaton for
the tree of Fig. 8

Fig. 10. A tree, its automaton, and its equivalent tree

3.7 Untangling T Ξ
c

The clock allocation obtained by Algorithm1 is optimal under the assumption
that the underlying graph cannot be changed.

We recently explored the possibility of reducing the number of clocks even
further, by modifying the underlying graph [16]. We found out that the graph
of an automaton can often be “untangled” in order to decrease the number of
conflicting ranges, and hence the number of clocks.

We present a very brief overview of the method. Under the assumption that
the original constraints in a timed automaton A cannot be changed, we determine
A’s real cost C(A), i.e., the maximum of the smallest number of clocks that must
be maintained on any path through the automaton. If this is smaller than the
number of clocks in an optimal clock allocation [13] for A, then we know that
there is at least one language-equivalent automaton, A′, for which it is possible
to allocate only C(A) clocks.

The method can be applied directly to T Ξ
c before we perform clock alloca-

tion. This is illustrated by a simple example. Consider the tree on the left-hand
side of Fig. 10 and its corresponding automaton, shown in the middle of the
figure, obtained after clocks are optimally allocated by Algorithm1. Observe
that the automaton has two clocks. Using our new method [16] we “untangle”
the paths of the tree and obtain the tree shown on the right-hand side of the
figure. Algorithm1 will allocate only one clock for this tree: both Lμ0 and Lμ1

can be replaced by a single clock, as range(Lμ0 , a) is disjoint from range(Lμ1 , b)
(a range for Lμ1 begins only on the rightmost transition with event b).
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4 Related Work and Conclusions

For over three decades scenarios (including various forms of scenarios with time)
have been proposed and used for specifying (and also synthesizing formal models
of) complex systems [4,7,9,19]. The problem of synthesizing a timed automaton
from scenarios has also been considered [17,18].

Our scenarios are different from those proposed by Somé et al. [18]: ours do
not include “conditions”. These “conditions” are not related to time and assert
some facts about the status/mode of the described system.

Our synthesis method is completely different from theirs: in particular, we do
not allow a part of a scenario to be composed with a part of another scenario.
This enables us to precisely define the semantics of a set of scenarios Ξ and
synthesize a timed automaton whose semantics are isomorphic to those of Ξ.

The method of Somé et al. assigns a clock to every location of the synthesized
automaton and resets it in all the incoming transitions of that location. We
perform optimal clock allocation (in the sense of Sect. 3.5). By modifying the
graph (Sect. 3.7) we can often decrease the number of clocks still further.

Finally, our method performs a consistency check of scenarios and excludes
the inconsistent scenarios (or combination thereof) from the construction. As a
result, every location of the automaton appears in at least one accepting run.

Salah et al. [17] synthesize an executable specification for a real-time sys-
tem by integrating scenarios into a timed automaton. Both the syntax and the
semantics of their scenarios are different from ours (the latter are defined in
terms of labeled transition systems). The construction of the automaton is also
completely different from ours, and the automaton includes ε-transitions.

To summarize, we developed a novel approach for synthesizing a timed
automaton from a set of scenarios. The language of the automaton is the set of
all behaviours supported by the set of scenarios. Every location of the automaton
appears in some accepting run of the automaton. The number of clocks is as low
as it is possible to obtain without considering the semantics of clock constraints,
and our new clock allocation algorithm is simple and efficient.
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Abstract. When targeting modern parallel hardware architectures,
constructing correct and high-performing software is complex and time-
consuming. In particular, reorderings of memory accesses that violate
intended sequentially consistent behaviour are a major source of bugs.
Applying synchronisation mechanisms to repair these should be done
sparingly, as they negatively impact performance.

In the past, both static analysis approaches and techniques based on
explicit-state model checking have been proposed to identify where syn-
chronisation fences have to be placed in a program. The former are fast,
but the latter more precise, as they tend to insert fewer fences. Unfortu-
nately, the model checking techniques suffer a form of state space explo-
sion that is even worse than the traditional one.

In this work, we propose a technique using a combination of state
space exploration and static analysis. This combination is in terms of
precision comparable to purely model checking-based techniques, but it
reduces the state space explosion problem to the one typically seen in
model checking. Furthermore, experiments show that the combination
frequently outperforms both purely model checking and static analysis
techniques. In addition, we have added the capability to check for atom-
icity violations, which is another major source of bugs.

1 Introduction

When developing parallel software it is very challenging to guarantee the absence
of bugs. Achieving the intended execution order of instructions while obtaining
high performance is extremely hard. This is particularly the case on parallel
hardware architectures where memory accesses may be reordered. Reorderings
that break the intended sequential and atomic behaviour are a major source of
bugs [31]. These can be avoided by appropriately using synchronisation mech-
anisms such as fences, semaphores, hardware-level atomic operations, and soft-
ware/hardware transactional memory [37]. However, overusing these can cause
contention, as experimentally demonstrated in [4], which negatively impacts per-
formance and therefore defeats the purpose of using parallelism in the first place.

Sequential consistency is arguably the best understood concurrency model.
An (execution) trace of a concurrent program is Sequentially Consistent (SC) iff
c© Springer Nature Switzerland AG 2020
B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 297–317, 2020.
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all memory accesses are performed in program order, atomicity constraints are
respected, and accesses of all threads are serviced as if from a single First In First
Out queue [27]. As this model does not deviate from the software developers’
specification it is very intuitive.

SC is very restrictive and does not benefit from modern compiler and proces-
sor optimisations. It is sufficient, however, that traces produce results that are
observably equivalent to SC traces. Traces that do not do this, which we refer to
as non-SC traces, produce results different from SC traces, i.e., they read and
write combinations of values from/ to memory locations that an SC trace cannot
produce. Such traces violate the behaviour intended by the software developer.

Fig. 1. Interleaving under
weak memory models

In earlier work, either explicit-state model
checking or static analysis was used to detect
non-SC behaviour. Static analysis techniques [4–
6,16,19,28,39], based on the seminal work of
Shasha and Snir [36], estimate the possible SC
behaviour, and derive which violations can occur
when accesses are reordered according to what
the memory model allows. These techniques are
fundamentally limited regarding their accuracy.
In particular, when pointers and guards (if-
statements) are used, over-approximations can-
not in general be avoided (are two pointers point-
ing to the same object? And when does the con-
dition of an if-statement evaluate to true?).

An alternative is to use explicit-state model checking for fence insertion [1,2,
8,14,23,25,29]. In those approaches, program specifications are extended to allow
the model checker to systematically traverse all behaviour allowed by the mem-
ory model. For instance, to specify the memory store behaviour via thread-local
caches, allowed by Total Store Order (TSO) [33,38] and weaker models, additional
store buffers must be modelled. The benefit of these approaches is their accuracy.
However, their main issue is scalability; exploring non-SC executions makes the
state space explosion problem even worse. Not surprisingly, very weak memory
models such as ARMv7 [7] and POWER [22] have not yet been considered. In
Fig. 1, all possible interleavings are given for four memory accesses performed by
two threads: the first should execute a1 followed by a2, the second should execute
b1 followed by b2. Starting at the initial state (the one with the incoming arrow),
the typical diamond of interleavings is indicated by the black states and transi-
tions between them. This diamond represents all possible SC traces. If the mem-
ory model under consideration can also reorder a2 before a1 and reorder b2 before
b1, then the grey states and transitions also need to be explored. Clearly, as the
number of accesses and threads increases, the number of states grows even more
rapidly than when only considering SC traces.

Contributions. We propose to combine the state space exploration approach used
by techniques based on explicit-state model checking, with the core concept of
static analysis approaches, the latter working as a postprocessing procedure, to
keep the precision of model checking while restricting state space exploration to
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SC traces. First, we apply a model checker to explore the state space of a program
specification. This specification describes all possible interleavings of program
instructions, and its state space contains all possible SC executions, as is common
for model checking.1 This state space is used to extract an abstract event graph
(AEG), which more accurately represents conflicts between the memory accesses
of instructions than statically derived ones. Next, this graph is analysed using
our postprocessing tool. Experiments show that constructing the AEG via state
space exploration benefits the overall runtime performance, even compared to a
state-of-the-art static analysis approach.

Besides this different workflow, compared to earlier work, we also support the
specification of atomic instructions, thereby incorporating the atomicity check-
ing originally addressed in [36]. When code does not enforce atomicity, non-SC
behaviour can still occur, and only inserting fences does not suffice. In our app-
roach, sets of accesses that are supposed to be executed atomically, i.e., without
interruption by other threads, are marked for synchronisation if they are involved
in non-SC behaviour. In the final code, these atomic instructions can be enforced
by means of locks.

Our technique is the first model checking-based technique to support memory
models as weak as ARMv7. We have implemented it by translating state machine
specifications to mCRL2, such that the mCRL2 model checking toolset [15] can
be used, and developed a new tool for the postprocessing. We demonstrate our
technique for the memory models TSO, Partial Store Order (PSO) [38] and
ARMv7/POWER, but it can be straightforwardly adapted to other memory
models. During postprocessing, the technique reasons about the (un)safety of
thread program paths by means of path rewrite rules.

Finally, it should be stressed that we reason about programs in which ini-
tially no synchronisation primitives are used. Therefore, the current work is
not about reasoning about the semantics and SC guarantees of fences, atomic
instructions, transactions, etc. When we talk about (atomic) instructions, we
are referring to computation steps that are specified as atomic; whether they
need to be implemented using some synchronisation primitive still needs to be
determined. We acknowledge that in order to make an implementation correct,
it is crucial to know the semantics and guarantees of those primitives; there are
excellent studies on those for Java, C/C++11, and OpenCL [11,12,26], and var-
ious architectures [7,33,35], and applying their insights can be seen as the next
step. Here, we focus on detecting the need for synchronisation. Earlier work on
SC violation checking, such as [4,6,29], reasons about synchronisation primitives
as well, but this is not really needed if one entirely relies on automatic insertion
of synchronisation points.

1 In order for this analysis to terminate, it is important that the system is finite-
state, or at least has a finite-state quotient that can be derived prior to state space
generation [32]. It may perform infinite executions, though, i.e., have cyclic behaviour
between its states.
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This work is also not about optimally implementing synchronisation. An
architecture may provide several types of fences, with various guarantees and
performance penalties. We aim to optimise the number of places in which a
program needs synchronisation, not how that should be implemented. Related
work [4] provides methods for that.

Structure of the Paper. In Sect. 2, we consider parallel program specifications,
and recall the notions of SC, access conflicts and cycle detection in AEGs. We
define the notion of (un)safety of thread program paths in Sect. 3, and present
how we extract an AEG from a state space constructed by an explicit-state
model checker in Sect. 4. The non-SC detection procedure is discussed in Sect. 5.
Experimental results are discussed in Sect. 6. Finally, conclusions and pointers
to future work are given in Sect. 7.

2 Preliminaries

Parallel Program Specifications. We assume that a parallel program involving
shared variables is specified. Figure 2 gives an overview of the concepts related
to such a program used in this work. A program consists of a set of threads
T, each performing a (possibly infinite) sequence of instructions called a thread
program. Such a specification can, for instance, be given as a Promela [21]
or mCRL2 model [15], in which the processes represent the threads, and each
instruction represents an atomic execution step. Each instruction is either of the
form e, e;x1 = e1; . . . ;xn = en or x1 = e1; . . . ;xn = en (n ě 1), with e and the
ei expressions, and the xi memory locations. First, an optional condition e is
checked (an expression evaluating to true or false). If the condition evaluates
to true, or there is no condition, zero or more assignments can be performed
that assign the outcome of interpreting ei to xi. For brevity, we do not define
the form of expressions here (the usual logical and arithmetic operators can be
used to combine variable references), and we assume that expressions are type
correct. The data types we consider are Integer, Boolean, and arrays of Integers
or Booleans. Extending this basic setup is not fundamentally relevant for the
purpose of the current paper.

Fig. 2. Overview of a program

Program Behaviour. To reason about SC
behaviour of a concurrent program we con-
sider its execution on, and its effects on the
memory of, a multi-core machine. To this end
we assume that the state of the machine is
defined by the values stored in its storage
locations. The set of storage locations of a
machine is denoted by L. A location may be
a register or a memory location (associated
to some variable). Figure 2 presents that an
instruction executes zero or more accesses to
locations.
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An access reads from, or writes to, a location x P L and reads or writes
a value. We write Rx and Wx to refer to a read and write access from/to x,
respectively. When both the type (read or write) and the location are irrelevant,
we use a, b, . . .. An access is performed atomically, i.e., two accesses on the same
location behave as if they occur in some serial order. The set of accesses of a
thread t P T is denoted by Vt. The set of all accesses of a program is defined as
V =

⋃
tPT Vt.

For SC checking, only shared memory locations are relevant, i.e., those that
can be accessed by multiple threads. Therefore, when we refer to memory loca-
tions, it is always implied that they are shared, and accesses always address
shared locations.

The execution order of accesses in the program, or the program order, is
defined by a per-thread total order po Ď V × V. Accesses of different threads
are unrelated, hence po is the union of the (thread-local) total execution orders
of accesses of all the threads.

The instructions of a specification are defined using an equivalence relation
at Ď V × V identifying classes of accesses that are to be performed (observably)
atomically. Like po, at only relates accesses of the same thread. With [α], we
refer to the (atomic) set of accesses associated with an instruction α. With
[e] consisting of read accesses for all locations referenced in expression e, we
define [α] as [e;x1 = e1; . . . ;xn = en] = [e] Y ⋃

1ďiďn{Wxi} Y [ei] and [x1 =
e1; . . . ;xn = en] =

⋃
1ďiďn{Wxi} Y [ei]. With xxαyy, we refer to the set of read

accesses performed to evaluate the condition of α: xxe;x1 = e1; . . . ;xn = enyy =
[e] and xxx1 = e1; . . . ;xn = enyy = ∅.

A thread execution trace π is a sequence of accesses a ≺t b ≺t . . ., with ≺t

a irreflexive, antisymmetric, non-transitive binary relation, describing the order
in which accesses of thread t are (visibly) performed. The set of accesses in π
is called [π]. A program execution trace is an interleaving of thread execution
traces, ordered by ≺ (which is also, for convenience in Sect. 4, non-transitive).

Programmers rely on a programming paradigm where executions appear to
be interleavings of instructions, and the instructions appear to be executed in
programmed order without interruption. That is, they expect their program to
be sequentially consistent [27]. The following definition is based on the one given
by Shasha and Snir [36].

Definition 1 (Sequential Consistency). A program execution trace π =
a≺b≺ . . . is sequentially consistent (SC) iff ≺ can be extended to a total order
≺≺ that satisfies:

1. po Ď ≺≺, so that if a po b then a≺≺b;
2. at-equivalent accesses occur in consecutive places in the sequence defined by

≺≺: if a at b but ¬(a at c), then either c≺≺a and c≺≺b, or a≺≺c and b≺≺c.
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By condition 2 of Definition 1, an SC trace retains atomicity of instructions.
In practice, it is sufficient that a trace is observably equivalent to an SC trace,

which is the case if it computes the same values as an SC trace. The potential
values of a location x P L may depend on the order in which two accesses on
x are executed. In this case, those accesses are said to be in conflict. In the
literature, various types of conflicts have been formalised [6,7], but for fence
insertion analysis, the symmetric competing pairs relation (cmp) [4], stemming
from data race detection algorithms [24], typically suffices. We have a cmp b iff
a and b access the same location and at least one of them is a write. A trace
π is observably equivalent to an SC trace π′ if we can obtain π′ by commuting
consecutive accesses in π that are not conflicting.

Fig. 3. Example cycles

We recall the SC violation detection theory of
Shasha and Snir [36], rephrased to be in line with
recent work [4,6,7]. To detect non-SC behaviour,
an abstract event graph (AEG) for a program can
be constructed, in which the nodes are accesses and
edges represent po and cmp. Shasha and Snir prove
that cycles in the AEG with at least one cmp-edge
and one po-edge represent all possibilities for non-
SC executions if we run the program on an archi-
tecture without the guarantee that po is always
respected (i.e., that has a weak memory model).

Consider the cycle σ1 = α1 : Rx po · · · po

α2 : Wy cmp α4 :Ry po α4 : Wx cmp α1 : Rx
in Fig. 3, with α : a indicating access a of instruction α. The grey boxes indicate
the atomic instructions, i.e., they define at. Given the direction of σ1, the involved
accesses would lead to non-SC behaviour if either the trace π1 = α4 : Wx ≺ α1 :
Rx ≺ α2 : Wy ≺ α4 : Ry or the trace π2 = α2 : Wy ≺ α4 : Ry ≺ α4 : Wx ≺ α1 :
Rx is executed, since they contradict the po-order between α4 : Ry and α4 :
Wx, and between α1 : Rx and α2 : Wy, respectively. That both traces are non-
SC can be seen when trying to obtain an SC trace by commuting consecutive,
non-conflicting accesses. For instance, in π1, the accesses of α4 would need to be
commuted next to each other, but α1 : Rx and α2 : Wy prevent α4 : Wx from
moving to the right and α4 : Ry from moving to the left, respectively, due to
conflicts, unless we reorder α1 : Rx and α2 : Wy, but then those instructions
would be removed from each other and the trace would still not be SC. Traces π1

and π2 are not possible on architectures respecting po. However, as we discuss
in Sect. 3, for some architectures, a compiler may ignore the po-order of some
accesses, thereby breaking the cycle, and making non-SC traces possible. In
[4,6,28], a po-path from access a to access b is called unsafe for an architecture
if the latter’s memory model allows b to be executed before a. The remedy to
prevent non-SC behaviour is to enforce unsafe po-paths that are part of a cycle,
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by placing a delay, i.e., indicating that synchronisation is required, somewhere
along the unsafe po-path.2 The delays ensure the cycle remains.

Fig. 4. Atomicity breaking examples

Shasha and Snir demonstrate that
in the analysis, redundant work can be
avoided by only considering cycles that
are simple (they involve each vertex and
edge at most once) and that have no
chords. A chord is an edge between ver-
tices in the cycle that are not each other’s
neighbour in the cycle. For instance, in

Fig. 3, we also have cycles σ2 = α1 : Rx po · · · po α2 : Wy cmp α4 :
Ry po α4 : Wx cmp α3 : Wx cmp α1 : Rx and σ3 = α1 : Rx po · · · po α2 :
Wy cmp α4 : Ry po α4 : Wx cmp α3 : Rx po α3 : Wx cmp α1 : Rx, but
both have the chord α4 : Wx cmp α1 : Rx. The po-path α3 : Rx po α3 :
Wx will be considered when the cycle σ4 = α4 : Wx cmp α3 : Rx po α3 :
Wx cmp α4 : Wx is analysed, hence analysis of σ2 and σ3 is redundant. We call
a cycle critical if it is simple, has no chords, and contains at least one unsafe
po-path.

Concerning atomicity, in Fig. 4, graph (i) represents the common situ-
ation of an instruction α reading and writing from/to the same location,
for instance to increment a counter. A write to the same location can lead
to an atomicity violation: If this write is performed between the read and
write of the instruction, the effect of the former write will be lost. Shasha
and Snir explain that for atomicity checking, it is even needed to go against
the direction of po-edges inside instructions. By doing so, we get one cycle
in graph (i), α :Rx cmp β :Wx cmp α :Wx po α :Rx, and two cycles in
graph (ii), namely α :Wx cmp β : Rx po β :Ry cmp α :Wy po α :Wx
and β :Rx cmp α :Wx po α :Wy cmp β :Ry po β :Rx. The cycles in
graph (ii) represent the reading instruction retrieving an inconsistent state
in which only one location has been updated. The remedy is to enforce po-
edges against their direction, resulting in cyclic dependencies. These cannot be
resolved in practice using fences, but require locks [36]. Recent work [1,2,4,6–
8,14,16,19,23,25,28,29,39] does not address this, allowing non-SC behaviour
due to atomicity violations.

Next, we consider unsafety of po-paths w.r.t. a given weak memory model.
The information is obtained from [4,6,7,18]. The novelty is that we apply path
rewriting.

2 We use the term ’delay’ here to refer to the remedy for non-SC behaviour [36], and
not, as for instance later done in [4,6,7], to refer to the problem, i.e., the unsafe
behaviour itself.
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3 Guarantees of Weak Memory Models

Over the years, various weak memory multiprocessor architectures have been
developed, for instance with x86 [33], SPARC [38], ARMv7 [7], ARMv8 [20] and
POWER [22] processors. For each, suitable memory models have been derived,
to reason about the access reorderings they may apply [3,6,18]. For the x86
and some SPARC processors, the TSO memory model is applicable, while other
SPARC architectures support the PSO model. The POWER and ARMv7 proces-
sors can apply many types of reordering, requiring a very weak memory model.

To reason about the order of accesses, we use a relation <, which is initially
equal to po−, the transitive reduction of po, i.e., apo−b cannot be decomposed
into multiple po-connections between accesses from a to b. With <, we define
paths of accesses a < b < . . .. Paths should not be confused with traces: a trace
is a concrete execution of accesses, while a path indicates the order in which
accesses may be executed. For accesses a and b, we say that a < b is safe for
a memory model iff any trace executing a and b executes a before b. This is
formally expressed as a ppo b, with ppo a safe subrelation of po [4,6].

Table 1. Intra-thread safety guarantees under various memory models (x ‰ y)

Table 1 gives an overview of the guarantees provided by the aforementioned
memory models for accesses performed by the same thread.3 Case 5 expresses
that the order of two writes to the same location is guaranteed under all memory
models. For cases 4, 7 and 8 of ARMv7/POWER, a reordering is allowed if the
latter access is not dependent on the former. We define the following (intra-
thread) dependency relations [6,7]:

1. The address relation addr relates address dependent accesses. We have b addr
a iff a is a read access and is done to (possibly via local variables) compute
an address for access b (for instance an address of an array element). For
example, in order to access in an array v element v[i], first, the value of i

must be retrieved.

3 We ignore rdw and detour dependencies between threads under ARMv7/POWER [7],
since those cannot be checked thread-locally. The penalty is that we under-
approximate the guarantees of those memory models, but the effect seems marginal,
as experimentally observed in [7].
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2. The relation dp combines two dependency relations. We have b dp a iff either
– b needs to write a value dependent on a (for example, to perform x = y,

the value of y must be retrieved before assigning it to x), or
– a is a read needed to evaluate a condition which must hold for the program

branch containing b to be executed (for example, in if (x==0) {y = z},
the write to y and the read from z are both dp-dependent on the read
from x).

Note that case 4 for ARMv7 requires only addr-dependency. A read access
b may be performed even before a condition that guards b has been evaluated,
unless b is address dependent on the read access(es) of the condition. For exam-
ple, in if (x==0) {y=z}, the read access from z can be performed before the
read from x. This is called speculative execution. Cases 7 and 8 for ARMv7 imply
that speculative writing is never allowed, i.e., in the example, the writing to y

cannot be done before the read from x.
Next, we define safety of po-paths, i.e., paths of accesses with < = po−, in

terms of string rewriting. Table 1 can be used to define rewrite rules for TSO,
PSO and ARMv7/POWER: if a model does not guarantee the order of accesses
a and b (i.e., a < b), then the rewrite rule (a < b) ⇒ (b < a) is applicable. We
refer to the set of rewrite rules for a model as Σ, and say that a po-path is safe
w.r.t. Σ iff it is safe under a model with rewrite rules Σ. The transitive closure
of < is <+.

Definition 2 (po-path safety). Given a po-path q between accesses a and b
(a <+ b with < = po−), and a set of rewrite rules Σ, we say that q is safe
w.r.t. Σ iff it cannot be rewritten, using the rewrite rules in Σ, to a path q′ with
b <+ a.

In other words, safety of a po-path between accesses a and b w.r.t. Σ can be
determined by applying a path rewriting algorithm that tries to reorder a and
b.

We already covered the case of two writes related via cmp. For accesses a and
b with at most one being a write, if we have both a po b and a cmp b, then order
guarantee of a < b does not depend on cmp under any of the memory models.
For instance, if a and b are not related via either addr or dp, a is a write and b
is a read, then b can use the result of a before a is globally visible. Concerning
cmp-related accesses of different threads, ARMv7/POWER has a property called
store atomicity relaxation (ARMv8 [20,35] no longer allows this). Because of this,
a cmp-edge in the AEG between a write a and a read b must be considered as
unsafe in the direction from a to b [6]. To remedy this, a so-called A-cumulative
fence must be placed along the po-path following the cmp-edge in the cycle [6].
The other memory models do not have this problem.
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4 Deriving po and cmp via State Space Exploration

Fig. 5. State machines T0 and T1

Given a formal parallel program spec-
ification M , containing a specification
of the individual threads, i.e., which
atomic instructions each thread performs
in which SC order, and the variables
(thread-local and program-global) each
instruction accesses, we can construct
its state space using an explicit-state
model checker. As mentioned in Sect. 2,
M can be expressed using a formal mod-
elling language such as Promela [21] or
mCRL2 [15]. In the next example, we use
a state machine to specify a thread.

Example 1. Figure 5 provides the specification of two threads T0 and T1, each
with a local variable x. The initial value of this variable is provided by function
f and g, respectively. We assume that f and g are too complex to derive by
means of static analysis whether or not they return the same value. From the
initial states of T0 and T1, i.e., 0, five steps can be repeatedly executed. First, T0
sets the global boolean variable b0 to true (initially it has the value false), after
which it waits for global boolean variable b1 to be true as well. Execution can
continue as soon as this is the case; before that, execution is blocked (this has
the same semantics as the condition statement in Promela [21], for instance).
Next, b0 is set to false again, and the value of element x in the global integer
array v is decremented (all elements in v are initially set to some positive value).
Finally, if v[x] is still bigger than 0, the process is repeated. Thread T1 works
similarly to T0, except that b0 and b1 are swapped. Note that the use of b0 and
b1 effectively works as a synchronisation mechanism; for each thread, execution
can only proceed from state 1 to state 2 if the other thread has also proceeded
to state 1. It is not guaranteed that when this has happened, both threads will
proceed to state 2, as one thread may set one of the boolean variables back to
false before the other thread has moved to state 2. However, this issue is not
important for the example.

We define a state space as a tuple GM = (S,A, T , ŝ), with ŝ the initial state,
in which all thread specifications are in their initial state and all variables are
set to their initial value, S the set of states reachable from ŝ (ŝ P S), A a set of
labels, and T : S × A × S the transition relation. With s a−→s′, we express that
from state s, a transition labelled a exists to a state s′. The set out(s) is defined
as out(s) = {a | ∃s′ P S.s a−→s′}.4

4 Note that we define state spaces by means of Labelled Transition Systems, in which
transitions are labelled with events. However, the technique we propose in this paper
can be adapted to Kripke structures, by encoding via state predicates the events that
are performed.



Lock and Fence When Needed 307

Fig. 6. A state space fragment

We construct the state space of a
specification at the level of instructions,
i.e., with each transition, exactly one
instruction is associated. If M consists
of n threads t1, . . . , tn in parallel compo-
sition, then every state s in GM encodes,
besides values for all variables in M ,
the local states s1, . . . , sn of the threads.
For each enabled instruction α from si

(1 ď i ď n) that locally leads to state
s′

i in ti, there is a transition s
ti,α,[α]−−−−−→s′,

with s′ being the state in which ti is in
s′

i, all other threads tk (k ‰ i) are in sk,
and the variables have been updated as
defined by α. Since we use GM to analyse

memory access behaviour, we need to know when read accesses are performed
to evaluate a condition, also when it evaluates to false. For that reason, for
each state s in GM and each instruction α of ti blocked in s, we have a self-loop
s

ti,α,xxαyy−−−−−→s.
Note that GM allows us to precisely reason about accesses, even if pointers

are used or dynamic accessing of array elements. For instance, in Fig. 5, the
accessed location in v[x]>0 is determined by the value of x. Because, of this,
[α] depends on the current state s. In the example, in any system state in which
T0 is in state 2 and x has the value 0, we have [v[x]>0] = {Rv[0]}. A model
checker will make this explicit.

The state space will contain all possible interleavings of instructions in the
specified order. All traces in GM are therefore SC (Definition 1). Next, we wish
to derive an AEG, as is done, for instance, in [4,11,12,26], but we derive it
from the state space, as opposed to the specification (or the source code) of a
program. Before we explain how to derive pr and cmp, consider the example state
space fragment in Fig. 6, which is part of the state space of T0 and T1 (from
Example 1) in parallel composition, when f() = 0 and g() = 1. The transition
labels provide the sets of accesses, with instructions named by pairs ‘thread,
instruction identifier’. To make the figure more clear, only the sets of accesses
are indicated, for instance [T0,0], and their definition is given only once, for
instance {Wb0} for [T0,0]. For this example, this suffices, as x is never updated,
and hence there is no instruction α for which [α] changes over time. The two
outgoing transitions from initial state 0 are associated with instruction 0 of T0

and T1. If we traverse the transition for T0,0, we enter state 1. State 1 has a self-
loop for xxT0, 1yy, representing the read access of b1 to discover that b1 evaluates
to false. Beyond state 2, selfloops are not displayed, to simplify the figure.

For each thread t, instruction α of t and access a P [α], we construct exactly
one vertex xt, α, ay in the AEG. The edges are derived from GM . As each access
(of some instruction and thread) has one AEG vertex, the program order rela-
tion may appear cyclic if the thread specification contains cycles (as in Fig. 5).
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We model this with a program relation pr. It offers the benefit of being able
to represent infinite behaviour, as long as the number of instructions is finite.
Unsafety of pr-paths is similar to unsafety of po-paths. To define pr, we first
consider pairs of accesses from the same instruction α of thread t. We have to
define how these are ordered. We want to be as non-restrictive as possible, so we
restrict pr only by addr and dp (see Sect. 3): for every instruction α and accesses
a, b P [α], we have a pr b iff b addr a or b dp a, i.e., a only must precede b if b
depends on a. In the AEG, if a pr b, we add a pr-edge from xt, α, ay to xt, α, by.

Next, using this definition of pr, we define ⊥(A), with A Ď [α] of an
instruction α, as {a P A | ¬∃b P A.b pr a}, i.e., the accesses in A that are
first in the pr-order. With �(A), we refer to the accesses last in the pr-order:
�(A) = {a P A | ¬∃b P A.a pr b}.

Finally, we extend pr by relating accesses from different instructions executed
by the same thread. If we can establish that the execution of an instruction α
enables the execution of at least some accesses of instruction β, then we pr-
relate the accesses of α executed last with the accesses of β executed first. In
the example of Fig. 6, since the execution of access [T0, 0] = {Wb0} from state
0 leads to a state in which xxT0, 1yy is executable, i.e., Rb1, both accesses are
performed by T0, and xxT0, 1yy was not enabled in state 0, the execution of [T0, 0]
enables xxT0, 1yy. Since Wb0 P �([T0, 0]) and Rb1 P ⊥(xxT0, 1yy), we conclude
that Wb0 pr Rb1 and xT0, 0,Wb0y pr xT0, 1, Rb1y. Similarly, when traversing
the transition for T0,1 from state 3, we can conclude xT0, 1, Rb1y pr xT0, 2,
Wb0y. In general, for any two instructions α, β of a thread t, we have:

xt, α, ay pr xt, β, by ⇐⇒ ∃s, s′ P S.∃A P {[α], xxαyy}, B P {[β], xxβyy}.s
t,α,A−−−→s′

∧(t, β,B) P out(s′) \ out(s) ∧ a P �(A) ∧ b P ⊥(B)

Note that the pr relation is non-transitive, corresponding closely with po−.
Next, we need to derive cmp. A straightforward way is to relate every pair

of accesses (a, b) performed by different threads that access the same location,
if at least one access is a write, and that is essentially the approach taken by
static analysis techniques. With state space exploration, we can define cmp more
precisely. Note that the above condition is the same as the one for data races,
except that there is a data race only if accesses execute at the same time. In
terms of traces, this means that it must be possible to execute b immediately
after a, and vice versa, i.e., we can have both a ≺ b and b ≺ a. We observe that
for AEG construction, this aspect is also relevant. Consider the situation that
accesses a, b cannot be executed at the same time, i.e., no traces are possible in
which either a ≺ b or b ≺ a. In that case, if there would be a cmp-edge between
a and b, it might be possible to construct cycles in which a cmp b or b cmp a
is an edge, but that would represent an execution in which a is directly followed
by b or b followed by a, respectively (recall the example in Fig. 3 of Sect. 2),
behaviour that is not possible.

The following theorem addresses how to determine, by analysing the state
space, whether two accesses of different threads can directly follow each other in
an SC trace.
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Theorem 1. Given a state space GM = (S,A, T , ŝ), two accesses a, b and
instructions α, β with a P [α], b P [β], to be executed by threads t1, t2 of M ,
respectively (t1 ‰ t2). There exists a trace π with a ≺ b or b ≺ a iff there exists a
state s P S with (t1, α,A) P out(s) and (t2, β,B) P out(s), where A P {[α], xxαyy},
B P {[β], xxβyy} and a P A, b P B.5

It follows that cmp-edges can be added to the AEG by checking for each
pair of outgoing transitions of every reachable state whether they are executed
by different threads and have conflicting accesses. In Fig. 6, state 1 shows that
xxT0, 1yy and [T1, 0] conflict. Therefore, we add xT0, 1, Rb1y cmp xT1, 0, Wb1y
to the AEG. In contrast, state 15 demonstrates that [T0, 3] = {Rv[0], Wv[0]}
and [T1, 3] = {Rv[1], Wv[1]} can happen simultaneously, but they have no
conflicting accesses.

The above procedure works for SC, but not yet for weaker memory models.
For instance, if we have three instructions α, β, γ, two threads t, t′, and states
s0, . . . , s3 P S, with s0

t,α,[α]−−−−→s1
t,β,[β]−−−−→s2, s0

t′,γ,[γ]−−−−→s3 and s1
t′,γ,xxγyy−−−−−→s1, then there

is no SC trace in which for any accesses b P [β], c P [γ]\xxγyy we have either b ≺ c
or c ≺ b, but if b can be reordered before some accesses of α, b and accesses of
γ may suddenly conflict.

To both detect all cmp-edges for weak memory models and identify which
pr-paths are unsafe, we first repeatedly apply access reordering on all accesses
in the program, as explained in Sect. 3, with < intially set to pr, and keep track
for each instruction α which accesses of other instructions can be reordered to
be executed at the same time α is executed. This leads to a set of accesses
[α]+ ⊇ [α]. The procedure is continued until a fix-point has been reached, i.e.,
the [α]+ have been identified. While the reordering is performed, we construct a
relation ppr with a ppr+ b iff there exists no unsafe pr-path from a to b: if at any
point we have a < b and b cannot be reordered before a, we know that a ppr b.
When a fix-point has been reached, we know there exists an unsafe pr-path from
access a to access b if ¬(a ppr+ b). The cmp-relation can be constructed by
comparing the accesses in [α]+ and [β]+ of each two instructions α, β that are
associated with different threads and are related to transitions with a common
source state.

Example 2. Consider again Example 1 with threads T0, T1. Figure 7 presents
AEGs, for convenience at the instruction level, that can be constructed when
using model checking (on the left) and when only using static analysis (on the
right). For the moment, ignore the fences and the grey colouring. The vertices
contain the instructions, solid edges represent pr-edges between accesses per-
formed by those instructions, and dashed edges represent cmp-edges between
some of those accesses. In the AEG on the left, the accesses to v[0] and v[1]

have been distinguished, and it has been observed that T0 and T1 never conflict
on accessing v. Hence, those accesses are not related by cmp. In the AEG on
the right, the accesses to v of each thread have been symbolically represented by
v[x], and it is concluded that conflicts can happen, hence the extra cmp-edges.
5 A proof can be found at http://www.win.tue.nl/∼awijs/seqcon-analyser.

http://www.win.tue.nl/~awijs/seqcon-analyser
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Fig. 7. AEGs (at instruction level) for T0 and T1 (Fig. 1), with f()=0, g()=1, obtained
with (left) and without (right) model checking, including locks and fences for TSO.

5 Detecting and Ruling Out Non-SC Behaviour

Shasha and Snir provided a definition of critical cycle that allows efficient detec-
tion in an AEG [36]. We generalise this definition to use the non-transitive, cyclic
pr, distinguish safe and unsafe pr-paths, and support unsafe cmp-edges.

Definition 3 (Critical cycle). A cycle σ in a pr Y cmp AEG is critical iff:

c1. σ contains for each thread t at most one pr-path;
c2. σ contains at consecutive start and end points of pr-paths and/or cmp-edges

up to three accesses to the same location;
c3. For at least one thread t, its pr-path in σ is unsafe, or there is an unsafe

cmp-edge;
c4. At least two threads are involved in σ;
c5. For each pr-path α0 : a0

pr · · · pr αn : an in σ, we have for all 0 ď i <
j ď n that either i = 0 and j = n, or αi : ai ‰ αj : aj.

By c1, c3 and c4, a pr Y cmp cycle consists of at least one pr-path, con-
nected at its start and end accesses via cmp-edges with at least one access of
at least one other thread. Furthermore, for each pr-path, no proper subpath is
a cycle (c5), but it may itself be a cycle. If some proper subpath is a cycle, it
means that a shorter path can be constructed by removing that subpath. By
c1, no chords exist in pr: if a thread t is involved in a cycle both with a pr-path
a pr · · · pr b and a pr-path c pr · · · pr d, then there are multiple chords,
for instance a pr · · · pr d. Finally, c2 ensures that no chords in cmp exist.
If a location is involved more than three times in a cycle, such a chord must
exist [36]. In Fig. 3, σ2 and σ3 violate c2, since x is involved four times, which
points to the existence of the chord α4 : Wx cmp α1 : Rx.

When no atomicity checking is performed, there is actually an additional
condition, namely that the cycle involves at least two locations [4]. The weak
memory models we consider ensure SC per location, i.e., cycles in which all
accesses access the same location do not represent non-SC behaviour. However,
for atomicity checking, such cycles cannot be ignored, as explained in Sect. 2 (see
Fig. 4).



Lock and Fence When Needed 311

Theorem 2. A trace π of a program specification M is non-SC iff it traverses
a pr Y cmp path through the AEG of M that contains a critical cycle.6

Note that enforcing an unsafe pr-path p′ results in enforcing any unsafe pr-
path p containing p′. Any cycle σ satisfying c1 to c4 of Definition 3 contains
a cycle σ′ satisfying c1 to c5. If p is part of σ and p′ is part of σ′, then p is
enforced due to p′ being enforced. Therefore, it suffices to enforce unsafe pr-
paths in critical cycles as defined by Definition 3.

For the detection of critical cycles, algorithms for finding elementary circuits
can be used. We use Tarjan’s algorithm [40], extended to detect cycles meeting
c1-c5 of Definition 3. To support atomicity checking, all that is needed is to allow
cycle detection to move against the pr-order between at-related accesses, as is
explained in Sect. 2 and [36]. The ppr-relation allows us to identify the existence
of unsafe pr-paths in constant time.

With each instruction in the program, we associate a counter. Each time a
critical cycle is detected, we record the involved unsafe pr-paths and cmp-edges
as sequences of the involved instructions, and increment their counters. If we
do atomicity checking, we furthermore mark an instruction for locking if its
execution in the unsafe path violates pr. Once all cycles have been detected,
the sequences of instructions that include an instruction marked for locking are
removed, since a lock will make an unsafe path safe. The counters of all involved
instructions are decremented each time a sequence is removed. For the remaining
sequences, we sort the instructions by the counter values, select the instruction
α with the highest value, and place a delay after ⊥([α]), to ensure that any path
involved α is enforced. We remove each sequence involving α, decrement the
counters of the other instructions, and repeat until all counters have the value 0.

Although the constructed AEGs are more precise than statically derived ones,
we do not claim that our fencing procedure is optimal. In fact, experiments
demonstrate that it is not (see Sect. 6). Future work involves optimising this
procedure as far as possible.

Example 3. Consider the fences and the grey colouring in Fig. 7, which result
from analysing the system under TSO. In both AEGs, the critical cycle σ1 = T0 :
Wb0 pr T0 : Rb1 cmp T1 : Wb1 pr T1 : Rb0 cmp T0 : Wb0 requires that
the two black fences are placed. On the right, additional critical cycles are
detected, due to the inaccuracy of the AEG. The grey nodes represent the
instructions for which it is detected that locks are needed, when atomicity check-
ing is performed. In other words, v[x]=v[x]-1 can only be executed if a lock
on v[x] has been acquired. The involved cycles are actually not directly visi-
ble, due to the AEG being given at the instruction level, but the two instruc-
tions v[x]=v[x]-1 conflict with each other, forming two cycles σ2 = T0 :
Wv[x] pr T0 : Rv[x] cmp T1 : Wv[x] cmp T0 : Wv[x] and σ3 = T1 :
Wv[x] pr T1 : Rv[x] cmp T0 : Wv[x] cmp T1 : Wv[x], both going against
the pr-direction. As locks strictly provide more guarantees than fences [5], placing

6 A proof sketch can be found at http://www.win.tue.nl/∼awijs/seqcon-analyser.

http://www.win.tue.nl/~awijs/seqcon-analyser
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locks means that no more unresolved violations exist. Alternatively, if no atom-
icity checking is performed, the cycles σ4 = T0 : Wb0 pr T0 : Rv[x] cmp T1 :
Wv[x] pr · · · pr T1 : Rb0 cmp T0 : Wb0 and σ5 = T1 : Wb1 pr T1 :
Rv[x] cmp T0 : Wv[x] pr · · · pr T0 : Rb1 cmp T1 : Wb1 require that the
grey fences are placed. If the instructions v[x]=v[x]-1 are locked, this is not
required, as Wb0 in [b0=false] and Wb1 in [b1=false] are separated from the
Rv[x]’s by those locks.

6 Experimental Results

We have implemented our technique using the mCRL2 toolset [15] for state space
exploration. State machine models are first translated to mCRL2 specifications,
from which a state space can be generated and written to disk. In addition,
we have developed a new tool seqcon-analyser in C++, that reads the state
space, constructs an AEG, and suggests where to place fences and locks, based
on critical cycle detection.

We conducted experiments to compare seqcon-analyser with existing
fence insertion tools, and to analyse their scalability. We decided to compare
seqcon-analyser with the static analysis tool musketeer [4] and the model
checking tool remmex [29]. These tools offer a good representation of the cur-
rent state-of-the-art in static-analysis- and model checking-based approaches to
automatic fence insertion, respectively. For instance, in [4], musketeer clearly
outperforms the static analysis tools dfence [30], memorax [1], offence [6],
trencher [14] and pensieve [39], using several instances of four of the models,
Dekker, Peterson, Lamport, and Szymanski, that we also used in our experiments.
Hence, we have not involved the other static analysis tools in our experiments.

Besides the four models already mentioned, we selected six additional models
from the BEEM benchmark set [34], Anderson, Bakery, Elevator2, Leader filters,
Mcs, and Msmie, and manually translated several instances of each of those mod-
els, written in the DVE language [10], to suitable input for seqcon-analyser,
musketeer and remmex.7

Table 2 presents the experimental results, comparing our technique without
atomicity checking (s–a) with musketeer (m) and remmex (r), tools that do
not support atomicity checking. In addition, we report the results obtained when
performing atomicity checking with our tool (s+a). We report the number of
delay insertions under TSO, PSO and ARMv7 whenever possible (remmex does
not support ARMv7) in the form (‘number of locks’ / ‘number of non-cumulative
fences’ / ‘number of A-cumulative fences’). We acknowledge that ARMv8 is more
recent, but the weaker ARMv7 is very suitable to demonstrate the efficiency of
our technique when applied on very weak memory models.

We conducted our experiments on the DAS-5 cluster [9]. Each node runs
CentOs 7.4, and has a 2.4 GHz Intel Haswell E5-2630-v3 CPU and 64 GB of
memory. In the table, we list for each model the number of threads (|T|), the

7 See http://www.win.tue.nl/∼awijs/seqcon-analyser for the models and our tool.

http://www.win.tue.nl/~awijs/seqcon-analyser
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number of instructions (|I|), and the number of memory locations (|L|). For state
space generation, we used version 201908.0 of the mCRL2 toolset, and report
the number of states and the runtime. For our technique, on the one hand, the
runtime of state space generation should be added to the runtime needed for
critical cycle detection to obtain the overall time, but on the other hand, state
space generation is only needed once per case, to perform cycle detection for all
memory models, with and without atomicity checking. For the cycle detection
phase, we have excluded the time needed to read the state space, as it obfuscates
the time for the actual computation. In the future, we plan to avoid storing and
reading state spaces entirely. Translating a state machine model to mCRL2 can
be done instantly.

In Table 2, the best results in each category, in terms of number of fences,
and runtime in case of a tie, are written in bold. It should be mentioned that for
the Anderson instances, musketeer had to be run with the –no-loop-duplication
option enabled, as the standard option reported (erroneously) that no fences
were required.

Even though the models are relatively small, the positive effect of state space
exploration is apparent. Constructing the state space helps to keep the AEG
smaller, and hence to reduce the number of critical cycles. State spaces grow
exponentially, but so does the number of critical cycles in the AEG. Frequently,
state space exploration plus critical cycle detection with seqcon-analyser has
an overall runtime that is not drastically worse than musketeer, and in case
of Dekker.3, the combined time is even shorter. It is important to note here that
various techniques exist to speed up state space exploration considerably (for
instance, by using symbolic [13,17] or GPU exploration [42,43]), whereas much
fewer techniques exist to speed up the enumeration of elementary circuits in a
graph. In other words, it is in practice beneficial to involve state space explo-
ration, as the techniques above can be applied to further reduce the runtime.

The performance of remmex is as expected; since it has to explore all
behaviour, SC and non-SC, it quickly runs out of memory. For the Elevator2
cases, no results could be obtained. remmex needs to be given an error state
representing a violation of a safety property, after which it checks for the reach-
ability of that state under the given memory model. However, for those cases, no
suitable safety properties could be identified. With musketeer, we also expe-
rienced out-of-memory frequently, which was not expected. The tool first con-
structs the entire set of critical cycles before deriving fences. This is not strictly
needed, as alternatively, the output of Tarjan’s algorithm [40], used by mus-
keteer, could be directly processed to store where fences are needed. If the
implementation of musketeer would be changed in this regard, the runtimes
for the ‘o.o.m.’ cases of musketeer would still be much higher than those of
seqcon-analyser, as it always took several hours to fill the memory, and the
number of fences would often be higher.

Finally, regarding the number of locks and fences, seqcon-analyser does
not always identify the smallest number of fences, even though it works with
AEGs that are in general more precise than those of musketeer. This is due
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to the sub-optimal placement of fences to resolve all detected non-SC issues. In
future work, we will continue on improving this aspect. The optimisation prob-
lem of resolving all non-SC behaviour with fences also frequently results in each
tool suggesting different fence locations. For instance, the four fences suggested
by seqcon-analyser for Anderson.1 are not suggested by musketeer. Fur-
thermore, it is interesting to note that in multiple cases, the number of locks
is influenced by the memory model. Unfortunately, musketeer does not sup-
port atomicity checking, so we cannot directly assess this, but with a pure static
analysis technique, this effect would not be observed; if each pair of conflicting
accesses is related by cmp, then for each memory model, the same atomicity
issues would be detected.

7 Conclusions

We have proposed a technique for automatic delay insertion, combining state
space generation and static analysis. It has the precision of model checking-based
techniques, yet better scalability, and frequently even outperforms musketeer,
a state-of-the-art static analysis technique. Furthermore, it supports atomicity
checking. We addressed TSO, PSO, and ARMv7, but an arbitrary set of intra-
thread order guarantees can be specified. These may depend on relations such as
addr and dp, but also on others. In the future, it will be interesting to support the
cat language [7], to make seqcon-analyser more configurable in this respect.
Furthermore, we will investigate to what extent delay suggestions can be updated
when a model is transformed, along the lines of [41].
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Abstract. We consider the problem of estimating the numerical accu-
racy of programs with operations in fixed-point arithmetic and variables
of arbitrary, mixed precision and possibly non-deterministic value. By
applying a set of parameterised rewrite rules, we transform the relevant
fragments of the program under consideration into sequences of oper-
ations in integer arithmetic over vectors of bits, thereby reducing the
problem as to whether the error enclosures in the initial program can
ever exceed a given order of magnitude to simple reachability queries on
the transformed program. We present a preliminary experimental evalu-
ation of our technique on a particularly complex industrial case study.

Keywords: Fixed-point arithmetic · Static analysis · Numerical error
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1 Introduction

Numerical computation can be exceptionally troublesome in the presence of non-
integer arithmetics, which cannot be expected to be exact on a computer. In fact,
the finite representation of the operands can lead to undesirable conditions such
as rounding errors, underflow, numerical cancellation and the like. This numeri-
cal inaccuracy will in turn propagate, possibly non-linearly, through the variables
of the program. When the dependency between variables becomes particularly
intricate (e.g., in control software loops, simulators, neural networks, digital
signal processing applications, common arithmetic routines used in embedded
systems, and generally in any numerically-intensive piece of code), programmers
must thus exercise caution not to end up too far away from their intended result.

The analysis of the numerical accuracy of programs is of particular relevance
when its variables are subject to non-determinism or uncertainty (as often is the
case for the mentioned classes of programs), calling for formal methods to analyse
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the property at hand as precisely as possible, while avoiding explicit low-level
representations which would quickly render the analysis hopelessly infeasible.

Fixed-point [31] arithmetic can be desirable in several applications because
it is cheaper than floating-point, provides a constant resolution over the entire
representation range, and allows to adjust the precision for more or less compu-
tational accuracy. For instance, it has been shown that carefully tailored fixed-
point implementations of artificial neural networks and deep convolutional net-
works can have greater efficiency or accuracy than their floating-point coun-
terparts [21,25]. Programming in fixed-point arithmetic, however, does require
considerable expertise for choosing the appropriate precision for the variables,
for correctly aligning operands of different precision when needed, and for the
separate bookkeeping of the radix point, which is not explicitly represented.
Fixed-point arithmetics is natively supported in Ada, and the ISO/IEC has been
proposing language extensions [1] for the C programming language to support
the fixed-point data type, which have already been implemented in the GNU
compiler collection; similar efforts are being made for more modern languages,
sometimes in the form of external libraries. Yet, crucially, fixed-point arithmetic
is often not supported by the existing verification pipelines.

Here we aim at a tight error analysis in fixed-point arithmetic. Intuitively,
our approach is straightforward. For each fixed-point operation we re-compute
the same value in a greater precision, so that the error bound on a specific
computation can be estimated by computing the difference between the two
values; such errors are in turn propagated through the re-computations. If the
precision of the re-computed values is sufficient enough, this yields an accurate
error bound for each variable in the initial program, at any point of the program.

Rather than implementing the above error semantics as a static analysis, we
devise a set of rewrite rules to transform the relevant fragments of the initial
program into sequences of operations in integer arithmetics over vectors of bits,
with appropriate assertions to check a given bound on the error. This reduces the
problem as to whether the error enclosures in the initial program can ever exceed
a given order of magnitude to (possibly multiple) simple reachability queries on
the transformed program. The translated program can be analysed by any pro-
gram analyser that supports integer arithmetic over variables of mixed precision,
from bit-precise symbolic model checkers to abstraction-based machinery. The
non-fixed-point part of the program is unchanged, thus allowing standard safety
or liveness checks at the same time.

We evaluate our approach on an industrial case study related to the certifi-
cation of a real-time iterative quadratic programming (QP) solver for embedded
model predictive control applications. The solver is based on the Alternating
Direction Method of Multipliers (ADMM) [7], that we assume is implemented in
fixed-point arithmetics for running the controller at either a high sampling fre-
quency or on very simple electronic control modules. Certification of QP solvers
is of paramount importance in industrial control applications, if one needs to
guarantee that a control action of accurate enough quality is computed within
the imposed real-time constraint. Analytical bounds on convergence quality of
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a gradient-projection method for QP in fixed-point arithmetic was established
in [28]. Certification algorithms for a dual active-set method and a block-pivoting
algorithm for QP have been proposed in [8] and [9], respectively, based on poly-
hedral computations, that analyze the behavior of the solver in a parametric way,
determining exactly the maximum number of iterations (and, therefore, of flops)
the solver can make in the worst case, without taking care however of roundoff
errors and only considering changes of problem parameters in the linear term of
the cost function and in the right hand side of the constraints. To the best of
our knowledge, exact certification methods do not exist for ADMM, which is a
method gaining increasing popularity within the control, machine learning, and
financial engineering communities [29]. Our experiments show that it is possible
to successfully compute tight error bounds for different configurations of the case
study using a standard machine and bit-precise bounded model checking.

The rest of the paper is organized as follows. In Sect. 2 we briefly intro-
duce the semantics of operations over fixed-point variables. In Sect. 3 we derive
the expressions for error propagation arising from the considered operations.
Section 4 gives an overview of our workflow and illustrates the details of the
proposed program transformation. In Sect. 5 we show how our approach per-
forms on a case study and in Sect. 7 we report our findings and ideas for future
development. Section 6 gives an overview of the related work.

2 Fixed-Point Arithmetic

The precision or format of a fixed-point variable x is p.q when its integer and
fractional parts are represented using p and q binary digits, respectively. We
denote such a variable by x(p.q) = 〈ap−1, . . . , a0.a−1, . . . , a−q〉. Since the position
of the radix point is not part of the representation, the storage size for a fixed-
point variable is p+q, plus a sign bit in case of signed arithmetics. It is customary
to use a two’s complement representation with sign extension for signed values.

Operations on fixed-point numbers are carried out much like on regular inte-
gers [31]. The sum or difference of two fixed-point numbers takes one extra bit in
the integer part to hold the result, e.g., z(p+1.q) = x(p.q) ± y(p.q), if the operands
are in the same format. If the formats differ, then format conversion of one or
both operands need to be carried out upfront to obtain the same format.

The product of two fixed-point numbers is also performed as in integer arith-
metics. In this case the two operands are not required to be in the same format.
The format to store the result uses the sum of the integer parts of the operands
plus one extra bit for its integer part and the sum of the fractional precisions
of the operands for the fractional part, i.e. z(p+p′+1.q+q′) = x(p.q) × y(p′.q′). Sim-
ilarly, a division operation does not require the operands to be in the same
precision, but it does require extending the dividend by the overall length of the
divisor before the actual integer division takes place. The result, if representable,
requires a precision equal to the sum of the integer part of the dividend and the
fractional part of the divisor plus one extra bit for its integer part, and a preci-
sion equal to the sum of the integer part of the divisor and the fractional part of
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1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 7.510; // +111.10, 011110
3 y(3.2) = 0.510; // +000.10, 000010
4 z(3.2) = x(3.2) + y(3.2); // +0.0, +000.00, 000000

Listing 1: Overflow in fixed-point arithmetics.

the dividend for its fractional part, i.e. z(p+q′+1.q+p′) = x(p.q+p′+q′)/y(p′.q′). The
result of a division operation is not representable in fixed-point if the fractional
part is periodic. Non-representable quotients need to be quantized to allow a
finite fixed-point representation.

An arithmetic right shift of a variable x(p.q) by a non-negative integer k,
for k ≤ p + q has the effect of trimming down the least significant k bits and
extending the variable by k sign bits while shifting the radix point by k positions
to the right. This results in a variable in the same precision of the operand,
x′

(p.q) = x(p.q) k. An arithmetic left shift of variable x(p.q) by a non-negative
integer k trims down the most significant k bits and extends the fractional part
of the operand by k zeros, while shifting the dot by k positions to the right. This
produces a variable in the same precision as the operand, x′

(p.q) = x(p.q) k.
It may be necessary to convert a variable x(p.q) to one with a different format

x′
(p′.q′). While converting to a greater integer or fractional format does not usu-

ally cause problems, converting to a smaller one may cause errors because this
operation amounts to trimming down the representation starting from the most
significant digit, which may cause overflow, an example of which can be seen in
Listing 1. Here, variable z(3.2) in line 4 is not large enough to store the correct
result of adding the values of variables x(3.2) and y(3.2). Indeed, the correct result
(8.010) would require a variable with 4 integer bits to store this value.

1 fixedpoint x(3.2), y(3.2), z(3.2);
2 x(3.2) = 0.510; // +000.10, 000010
3 y(3.2) = * ; // assume +0.25, +000.01, 000001
4 z(3.2) = x(3.2) ∗ y(3.2); //+0.0, +000.00, 000000

Listing 2: A fixed-point program with a numerical error.

Assigning a variable to one with a lower fractional precision amounts to
trimming down the representation starting from the least significant digit and
may cause a numerical error. An example is shown in Listing 2, in which the
value of variable y(3.2) is non-deterministic, i.e. it symbolises any possible value
taken by y, provided it can be stored in the given precision. If we consider a run
of this program in which y(3.2) is assigned to the value 0.2510, the correct result
of multiplying x(3.2) and y(3.2), namely 0.12510, would require 3 fractional bits
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of precision, such as (3.3). Hence, having to store the result in z(3.2) forces the
least significant bit to be dropped and the obtained result is 0.010.

3 Error Propagation in Fixed-Point Arithmetic

To track errors due to quantization and operations between operands which
themselves carry errors from previous computations, we need to express the
errors arising from the single operations in the program (Sect. 2). We denote
the error of a variable x(p.q) with x̄(p̄.q̄) and denote with M(x)(mx

i .m
x
f )

the exact
value that would have been calculated, had all the operations leading to the
computation of x been carried out precisely. Using the identity M(x)(mx

i .m
x
f )

=
x(p.q)+x̄(p̄.q̄) we will derive the expressions for the errors in arithmetic operations
as functions of the values of the operands and of their errors, as proposed in [23],
but adapted to our fixed-point semantics.

We assume that all error variables x̄ have the same format (ei.ef ) and that
it is sufficiently large not to cause overflow or underflow (Sect. 4). We further
assume that the resulting variables of all computations have an adequate preci-
sion to store the correct result (Sect. 2).

Addition/subtraction. Let x(p+1.q) = y(p.q) � z(p.q) for � ∈ {+,−}. Keeping in
mind that � introduces no error itself, since we guarantee a sufficient number of
bits for the result, the value of the error of x can be expressed as:

x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p+1.q) = (M(y)(my
i .m

y
f )

� M(z)(mz
i .m

z
f )
) − (y(p.q) � z(p.q))

= (M(y)(my
i .m

y
f )

− y(p.q)) � (M(z)(mz
i .m

z
f )

− z(p.q)) = ȳ(ei.ef ) � z̄(ei.ef ).

(1)

Multiplication. Let x(p.q) = y(p′.q′)×z(p′′.q′′) with p = p′+p′′+1 and q = q′+q′′.
We derive the expression for the error of multiplication:

x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p.q) = (M(y)(my
i .m

y
f )

× M(z)(mz
i .m

z
f )
) − x(p.q)

= [(ȳ(ei.ef ) + y(p′.q′)) × (z̄(ei.ef ) + z(p′′.q′′))]− x(p.q)

= ȳ(ei.ef ) × z̄(ei.ef ) + ȳ(ei.ef ) × z(p′′.q′′) +

+ y(p′.q′) × z̄(ei.ef ) +(y(p′.q′) × z(p′′.q′′) − x(p.q))

= ȳ(ei.ef ) × z̄(ei.ef ) + ȳ(ei.ef ) × z(p′′.q′′) + y(p′.q′) × z̄(ei.ef ).

(2)

Division. Let x(p.q) = y(p′.q′)/z(p′′.q′′) with p = p′ + q′′ + 1 and q = p′′ + q′.
Division requires the fractional part of y to be zero-padded up to the length
of z (Sect. 2). We do not consider this format, as it has no impact on the
error equation. Moreover, the / operator may introduce quantization errors for
periodic quotients: if the quotient has precision (p.q), this yields an error e
(bounded by 2−q) with respect to the quotient of the exact ÷ operator:
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x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p.q) = (M(y)(my
i .m

y
f )

÷ M(z)(mz
i .m

z
f )
) − x(p.q)

= (ȳ(ei.ef ) + y(p′.q′)) ÷ (z̄(ei.ef ) + z(p′′.q′′))− y(p′.q′)/z(p′′.q′′)

= (ȳ(ei.ef ) + y(p′.q′)) ÷ (z̄(ei.ef ) + z(p′′.q′′))−(y(p′.q′) ÷ z(p′′.q′′) − e)

= (z(p′′.q′′) × ȳ(ei.ef ) − z̄(ei.ef ) × y(p′.q′))

÷ [z(p′′.q′′) × (z̄(ei.ef ) + z(p′′.q′′))] + e.

(3)

Right Shift. To compute the error due to a right shift x(p.q) = y(p.q) k, let us first
notice that the mathematical computation of this operation would only result in
shifting the radix point to the left (which is equivalent to dividing by 2k), and
would maintain the value of the underlying integer, since this operation would
be carried out in infinite precision without truncating any bits. Let denote
the operation that simply truncates the least significant bits and shortens the
variable. We will express as a composition of and a rescaling of the variable.
Let y′

(p′.q′) = y(p.q) k, where (p′.q′) = (p.q−k) if k ≤ q and (p′.q′) = (p+q−k.0)
otherwise. The expression for the error is derived as follows:

x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p.q) = (M(y)(my
i .m

y
f )

k) − x(p.q)

= M(y)(my
i .m

y
f )

× 2−k − (y(p.q) k) × 2−k

= (M(y)(my
i .m

y
f )

− y′
(p′.q′)) × 2−k = (ȳ(ei.ef ) + y(p.q) − y′

(p′.q′)) × 2−k.

(4)

Left shift. To derive the error of x(p.q) = y(p.q) k we introduce to denote
the extention of a variable by zero bits in its fractional part and express as
a composition of and a rescaling of the variable. Let y′

(p.q+k) = y(p.q) k.
Notice that the values of y′

(p.q+k) and y(p.q) coincide. Then we have:

x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p.q) = (M(y)(my
i .m

y
f )

k) − x(p.q)

= M(y)(my
i .m

y
f )

× 2k − (y(p.q) k) × 2k = (M(y)(my
i .m

y
f )

− y′
(p.q+k)) × 2k

= (M(y)(my
i .m

y
f )

− y(p.q)) × 2k = ȳ(ei.ef ) × 2k.
(5)

So far we have been under the assumption that the result of every operation
is stored in a sufficient precision. This allowed us to express the errors in terms of
the values of the operands and their errors, without additional error introduced
by the finite representation of the result (except for division). In general, we can
account for errors due to insufficient precision by storing the result in a long
enough temporary variable, and then performing a precision conversion. The
total error will then be the composition of the two computed errors.

Fractional Precision Conversion. Here we give the expression for the error due
to a fractional precision conversion x(p.q′) = y(p.q), for q′ ≤ q:

x̄(ei.ef) = M(x)(mx
i .m

x
f )

− x(p.q) = M(y)(my
i .m

y
f )

− x(p.q)

= ȳ(ei.ef ) + y(p.q) − x(p.q′) = (y(p.q) − x(p.q′)) + ȳ(ei.ef )
(6)
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Integer Precision Conversion. In the case of an integer precision conversion
x(p′.q) = y(p.q), for p′ ≤ p, we do not give an expression for the error since here
an error would mean overflow, which we treat as undesired behavior.

4 Program Analysis

The overall workflow of our approach is shown in Fig. 1. Given a fixed-point
program PFP and an error bound 2−f on its variables, we wish to know whether
any computation of PFP can ever exceed the given error bound.

Fig. 1. Analysis flow for programs over fixed-point arithmetics.

To that end, we first transform PFP into an expanded fixed-point program
P ′
FP with additional statements for computing and propagating the error, and

assertions that the numerical errors do not exceed the given error bound. We
denote this transformation function with �·�ebei,ef , where ei, ef , and eb are param-
eters of the encoding that represent the integer and fractional precision of the
error variables and the maximum number of least significant non-zero digits for
the error variables, respectively. Notice that checking that numerical errors do
not exceed 2−f is equivalent to checking whether all but the last eb bits of error
variables are zero, for eb = ef −f . By construction, P ′

FP will contain a reachable
assertion failure if and only if either PFP can exceed the given error bound, or
(ei, ef ) is not a sufficient precision for an accurate error analysis, or if overflow
occurs.

However, the program is not ready for the analysis yet. We need to encode
P ′
FP into a bit-vector program P ′′

BV . This amounts to transforming all fixed-point
variables into bit-vectors whose length is the sum of their integer and fractional
parts, and on which operations are carried out as in integer arithmetics. P ′′

BV

can then be analysed by any software verifier that supports integer arithmetic
over variables of mixed precision. For instance, a bounded model checker would
translate P ′′

BV into a propositional formula and feed it to a SAT solver.
If an assertion failure is reached, stating that the chosen precision (ei.ef )

does not suffice to hold the error of a variable, we adjust these parameters (and,
consequently, eb) and re-encode. As a first choice for ei and ef we can perform
light-weight static analysis on the program and choose values s.t. ei ≥ p, ef ≥ q,
where p and q are the integer and fractional precisions of any variable in PFP ,
and ef ≥ k where k is the magnitude appearing in any right shift.
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4.1 Input Program

Let x(p.q) be a fixed-point variable, k a non-negative integer constant, ∗ a sym-
bolic value, and � ∈ {+,−,×, /} and ◦ ∈ { , } the arithmetic operations over
fixed-point variables. For the input program PFP we adopt a C-like syntax
extended with an extra datatype fixedpoint for fixed-point variables:

v ::= x(p.q) | k | ∗
s = fixedpoint x(p.q) | (v = v) | (v = v � v) | (v = v ◦ k)

Assignment (=) of one variable to another can be across the same or different
formats. In the latter case it acts as an implicit format conversion operation. For
assignment to a constant or non-deterministic value, we assume that value to be
in the same precision as the target variable. For binary operations, if one of the
two operands is a constant we assume the same precision of the other operand.
Without loss of generality, we assume that the operations do not occur in nested
expressions (e.g. x= z×y+w), and that ± is always performed on operands of
the same precision. Nested or mixed-precision operations can be accommodated
via intermediate assignments to temporary variables to hold the result of the
sub-expressions or adjust the precisions of the operands, respectively.

Besides fixed-point specific features, the input program PFP can contain
any standard C-like elements such as scalars, arrays, loops, etc. For simplicity,
however, in the rest of the section we assume that all function calls have been
inlined, and main is the only function defined. Finally, we include verification-
oriented primitives for symbolic initialisation (x = ∗) and assertion checking
(assert(condition)) to express safety properties of interest, in form of predi-
cates over the variables of the program.

4.2 Program Transformation

Here we describe the process of encoding the input program into a modified
fixed-point program. We will denote with x′ a temporary variable that does
not belong to the initial program, but is introduced during the encoding. The
purpose of such variables is to store the actual result of an operation without
overflow or numerical error, thus they will always be given sufficient precision.
Variables denoted with x̄ will be introduced to represent the error that arises
from the computation of x. All other variables introduced by the translation will
be denoted by letters of the alphabet not appearing in PFP . We point out here
that our chosen quantization mode is truncation, but other rounding modes may
be considered with slight adjustments.

Error variables are themselves fixed-point variables, but their manipulation
is more involved. If we were to treat error variables as we do program variables,
by keeping track of the errors arising from their computation, we would incur
a recursive definition and have to compute errors of higher degree. Hence, we
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denote with ⊕, �, ⊗ and  the four arithmetic operations on error variables
and with c1, c2 and d three functions needed for the manipulation of error
components and we define their macros in Fig. 5, discussed later.

Figures 2, 3, 4 and 5 display the translation rules for function �·�ebei,ef , for
which we omit the parameters for simplicity. First, we consider all statements
of the input program containing operations in which the format of the result
variable is different from the one needed to hold the correct result. These are
the statements that appear in the left-hand side of the first 8 rules of Fig. 2. For
each of them, we declare an auxiliary variable, designed to hold the exact result
of the considered operation, we introduce an additional statement assigning the

Fig. 2. Rewrite function �·�: first set of rules to be applied.



Tight Error Analysis in Fixed-Point Arithmetic 327

result of said operation to the new variable and finally we introduce a statement
to convert the new result variable to the original one. The last rule of Fig. 2
concerns precision conversion, involving both the integer and fractional part.
We translate it by declaring an auxiliary variable and dividing the integer and
fractional conversions into two separate steps. We point out here that all newly
declared variables introduced by the encoding are implicitly initialized to 0.

When declaring a fixed-point variable z in the original program, by rule
declaration in Fig. 3, in the translated program this will be accompanied by
a declaration of an extra variable z̄ representing the error in the computation of
z. The group of rules assignment describes assignment to a constant, a non-
deterministic value, or another variable in the same precision. In particular, *
indicates any possible value representable in the precision of the target variable.
In both cases, the error variable x̄ will have value zero, as no error is generated
by such an assignment. When a variable y is assigned to another variable x with
the same precision, the error of the former is propagated unchanged to the latter.

The integer precision cast rules handle assignments between variables
with different integer precisions. When assigning a variable to one with greater
integer precision, the old variable is lengthened (by sign extension or zeros,
depending on the representation), so there is no loss of precision and no error is
introduced by this operation. Hence, the error of the new variable is equal to that
of the previous one. The case of an assignment to lower integer precision may
result in overflow. For this kind of assignment we introduce an assertion to check
that the values of the old and the new variable are equal. The error of the new
variable coincides with the error of the old variable, as this assignment entails
no additional error, once the assertion is checked. The assertion statement may
be left out of the encoding if we do not wish to check for overflow.

The fractional precision cast rules encode statements for fractional
conversion. The first rule handles the case of assignment of a variable y to one
with a greater fractional precision x. This translates to extending y by a number
of bits equal to the difference in precision. We indicate this operation with an
internal operator , already introduced in Sect. 3. As this operation introduces
no error, the error variable of the result will be equal to that of the operand.

The conversion of a variable y to one with a lower fractional precision x
translates to a declaration of 4 new variables, the assignment of x to the trimmed-
down value of y (here we use operator introduced earlier) and a number of
statements to compute the error. First, x and y are aligned in order to perform
subtraction. This operation can be carried out error-free and stored in t, since
the value of y′ does not exceed that of y by construction. The value of t is
then stored in a new variable ¯̄y by extending it to obtain the usual precision
for error variables. The total error x̄ is the sum of ȳ and ¯̄y, as derived in Eq. 6,
where ¯̄y corresponds to y − x. Finally, we check whether the absolute value of x̄
exceeds the given error bound by cutting off the last eb bits and checking if the
remaining bits are all zero. We use here our internal operator abs that computes
the absolute value of the underlying integer and returns its properly scaled value.
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Fig. 3. Rewrite function �·� for declarations, assignments, precision conversions and +,
-, × and / operations.
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Fig. 4. Rewrite function �·� for left and right shift operations.

Rule addition/subtraction translates x(p′+1.q′) = y(p′.q′)±z(p′.q′) into the
same statement plus a statement for the computation of the error of x. Notice
that the expression for the error, namely the sum/difference of the errors of the
operands, is the one derived in Eq. 1. We use the special operator ± instead of
± since computations between error variables are carried out differently than
those between program variables. Finally, as for fractional precision conversion,
we check if the obtained error exceeds the error bound. Similarly, in rule mul-
tiplication, the translation of x(p′+p′′+1.q′+q′′) = y(p′.q′) × z(p′′.q′′) introduces a
new statement for the computation of the error of x, whose expression is derived
in Eq. 2. As before, we use operators ⊕ and ⊗ instead of the usual ones. Finally,
we check the error bound as before.

A statement x(p′+q′′+1.q′+q′′) = y(p′.q′)/z(p′′.q′′) is translated by rule division
as follows. The dividend is extended to a new variable t, division is performed
between the obtained variable and the original divisor and the result is stored in
x. The encoding then introduces an extra variable t′, assigned to the product of
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x and z. If t′ coincides with t then the quotient is representable and no quanti-
zation error is introduced, otherwise an error bounded by 2−q (the resolution of
x) is introduced. Variable v is introduced to contain the value 0 if the result is
representable and 1 otherwise. This value is rescaled in a new variable ~x, which
will remain 0 if v = 0 and will be 2−q if v = 1. This variable is then converted
to format (ei.ef) by function c1 and added to the overall error x̄, as derived in
Eq. 3. Again, we check the error bound condition.

In rule left shift in Fig. 4 we translate x(p′+k.q′) = y(p′.q′) k by first
padding y with k zeros in its fractional part and storing the result in a new
variable y′ (we use our internal operator to indicate this). We then change the
format of y′ by moving the radix point by k positions to the right. To indicate
this we use an internal operator ≡ and store the result in x. Since no bits are
lost, the error due to the shift is a rescaling of the error of y, as derived in Eq. 5,
and a conversion of its format to (ei.ef) by function c1, defined later.

When right-shifting a variable y(p′.q′) by k bits, the required format of the
result x(p.q) may vary, based on k and the format of y. Indeed, this operation
translates into a cut of the least significant k bits, possibly removing bits even
from the integer part if k > q′ (third rule), plus the rescaling of the obtained
variable, moving the radix point by k positions to the left, possibly exceeding
the integer part of the variable if k > p′ (second rule). We only allow right
shifting by a number of bits less or equal to the overall length of the variable
(this condition is checked by performing light-weight static analysis on the input
program). The computation of the error, as derived in Eq. 4, is expanded in the
definition of d, defined in Fig. 5 and the obtained error is checked against the
error bound.

Figure 5 defines the operators used for manipulating error components in our
encoding. Function d is used to compute the error in the right-shift rules in Fig. 4.
Esentially, it computes the difference between the exact value of the shifted
variable and the one obtained by trimming it, scales this value appropriately
and stores it in the chosen precision for error variables, as shown in Eq. 4. The
sum and difference of error components computed in d are again the specialised
ones for error variables.

Functions c1 and c2 convert a variable in any precision to one in the chosen
precision for error components. c1, used when the fractional part of the argument
is shorter than ef, reaches an assertion failure if the integer part of the argument
is too large to be stored in ei bits (error overflow). c2 may reach either an
assertion failure for error underflow, if the fractional part of the argument can
not be stored in ef bits, or an assertion failure for error overflow.

The operator ± computes the exact result of a sum/difference of two variables
by assigning it an extra bit and then relies on c2 to convert this result to the
desired precision. Similarly, the operator ⊗ first computes the exact product
and then converts it to the desired format. To perform , the dividend needs
to be extended by the length of the divisor and the quotient is computed. In
case of non-representable quotients an extra error term is computed and added
to the already computed quotient, and the resulting variable is converted to the
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Fig. 5. Rewrite function �·�: expansions for d, c1, c2, ⊕, �, ⊗ and �.

desired precision. Notice that these operations differ from the ones on program
variables in that they do not compute errors due to lack of precision. Indeed,
they are tailored to reach an assertion failure when the computed exact (when
representable) results can not be stored in the designated error variables. Should
this happen during the verification phase, new values for error precisions can be
chosen and the process repeated.
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In the case that the control flow of the input program depends on condi-
tions regarding variables with inexact values, our encoding may be extended
to model the error arising from incorrect branching and loops. Following the
ideas described above, the error of an incorrect branching choice is translated
into a doubling of the conditional block of statements under examination and
the values of the output variables are compared. In the first block, the original
conditional statement is maintained, while the second considers the conditional
statement on the exact values of the variables appearing in it.

Notice that our encoding always assures an exact computation of all repre-
sentable values and gives an over-approximation only for the errors arising from
the computation of quotients. To assure this accuracy, we either make sure an
assertion failure is reached if a variable is too short to contain the value it is
supposed to, or we assign e large enough precision to hold the result.

Fig. 6. Maximum absolute error enclosures

5 Experimental Evaluation

We evaluate our approach on an industrial case study of a real-time iterative
quadratic programming (QP) solver based on the Alternating Direction Method
of Multipliers (ADMM) [7] for embedded control. We consider the case where
some of the coefficients of the problem are nondeterministic, to reflect the fact
that they may vary at run time, to model changes of estimates produced from
measurements and of the set-point signals to track. We studied 16 different con-
figurations of this program by setting the precision to (7.8), (7.12), (7.16), and
(7.20) for all the variables except for the 8 non-deterministic variables repre-
senting the uncertain parameters, which we restricted to a precision of (3.4)
(using a signed bit-vector of 8 bits). Thus, each program configuration has
28·8 = 264 ≈ 1.85 · 1019 different possible assignments. For each such config-
uration we considered up to 1,2,3, and 4 iterations of the ADMM algorithm. For
i iterations the number of arithmetic operations amounted to 38 + i ∗ 111, of
which 10 + i ∗ 61 sums/subtractions and 15 + i ∗ 42 multiplications.
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In order to work out tight upper and lower bounds on the error on the output
variables of the program, we analysed each configuration repeatedly, considering
different error bounds starting from 20 and going down in steps of 2−2, stopping
as soon as a pass is followed by a fail, or when even the last check (ef − f = 0,
see Sect. 4) succeeds. In the first case, we have successfully found upper and
lower bounds; in the second case, we have that the error is exactly zero.

The experimental results are summarised in Fig. 6, where we report the
maximum error upper and lower bounds obtained with our approach. In one
iteration, the analysis of the program with precision (7.8) fails with error bound
2−8 and succeeds with 2−6; for all the other precisions, the analysis always
succeeds, so the error is exactly zero. Larger intervals than 2−2 are reported
when the check of a specific error bound was taking too long for a specific
configuration (time-out was set to 6 days but generally did not exceed 24 h).

For the analysis we used a SAT-based bounded model checker, namely CBMC
5.4 [10], which relies on MiniSat 2.2.1 [13] for propositional satisfiability checking;
for the program rewriting part we used CSeq [15]. For all the experiments we
used a dedicated machine equipped with 128GB of physical memory and a dual
Xeon E5-2687W 8-core CPU clocked at 3.10GHz with hyper-threading disabled,
running 64-bit GNU/Linux with kernel 4.9.95.

6 Related Work

A large body of work on numerical error analysis leverages traditional static
analyses and representations, e.g., based on interval arithmetic or affine arith-
metic [30]; abstraction-based techniques, originally proposed for program syn-
thesis, are [11,12] and [23]. Different tools based on abstract interpretation are
currently available for estimating errors arising from finite-precision computa-
tions [6,16], while an open source library allows users to experiment with differ-
ent abstract domains [26]. Probabilistic error analysis based on abstraction for
floating-point computations has been studied in [14,22].

In general, abstraction-based techniques manipulate abstract objects that
over-approximate the state of the program (i.e., either its variables or the
error enclosures thereof) rather than representing it precisely. For this rea-
son they are relatively lightweight, and can scale up to large programs. How-
ever, the approximation can become too coarse over long computations, and
yield loose error enclosures. Bounded model checking has been used for under-
approximate analysis of properties in finite-precision implementations of numer-
ical programs [2,5,18,20]. Under-approximation and over-approximation are
somehow orthogonal: bounded model checking approaches can be bit-precise,
but are usually more resource intensive.

Interactive theorem provers are also a valid tool for reasoning about numerical
accuracy of finite precision computations. Specifically, fixed-point arithmetic is
addressed in [3] while [17] and [4] reason about floating-point arithmetic.

Our approach allows a separation of concerns from the underlying verifica-
tion technique. The bit-vector program on its own provides a tight represen-
tation of the propagated numerical error, but the program can be analysed by
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any verification tool that supports bit-vectors of arbitrary sizes. Therefore, a
more or less accurate error analysis can be carried out. For instance, if the pri-
ority is on certifying large error bounds, one could try to analyse our encodings
using an abstraction-based technique for over-approximation; if the priority is
on analysing the sources of numerical errors, then using a bit-precise approach
such as bounded model checking would be advisable.

Numerical properties, such as numerical accuracy and stability are of great
interest to the embedded systems community. Examples of works dealing with
the accuracy of finite-precision computations are [27] and [24], which tackle the
problem of controller accuracy, [14] gives probabilistic error bounds in the field
of DSP, while [18] uses bounded model checking to certify unattackability of
sensors in a cyber-physical system.

7 Conclusion

We have presented a technique for error analysis under fixed-point arithmetic via
reachability in integer programs over bit-vectors. It allows the use of standard
verification machinery for integer programs, and the seamless integration of error
analysis with standard safety and liveness checks. Preliminary experiments show
that it is possible to successfully calculate accurate error bounds for different
configurations of an industrial case study using a bit-precise bounded model
checker and a standard workstation.

In the near future, we plan to optimise our encoding, for example by avoid-
ing redundant intermediate computations, and to experiment with parallel or
distributed SAT-based analysis [19]. We also plan to evaluate whether verifica-
tion techniques based on more structured encodings of the bit-vector program
can improve performance. In that respect, it would be interesting to compare
word-level encodings such as SMT against our current SAT-based workflow.

Our current approach considers fixed-point arithmetic as a syntactic exten-
sion of a standard C-like language. However, it would be interesting to focus on
programs that only use fixed-point arithmetics, for which it would be possible
to have a direct SMT encoding in the bit-vector theory, for instance. Under this
assumption, we are currently working on a direct encoding for abstract interpre-
tation (via Crab [26]) to evaluate the efficacy of the different abstract domains
on the analysis of our bit-vector programs, and in particular on the accuracy of
the error bound that such techniques can certificate.

A very difficult problem can arise in programs in which numerical error alters
the control flow. For example, reachability (and thus safety) may be altered by
numerically inaccurate results. We will be considering future extensions of our
approach to take into account this problem.

References

1. Programming languages – C - Extensions to support embedded processors. EEE,
New York (1987). iSO/IEC Technical Report 18037:2008(E)



Tight Error Analysis in Fixed-Point Arithmetic 335

2. Abreu, R.B., Cordeiro, L.C., Filho, E.B.L.: Verifying fixed-point digital filters using
SMT-based bounded model checking. CoRR abs/1305.2892 (2013)

3. Akbarpour, B., Tahar, S., Dekdouk, A.: Formalization of fixed-point arithmetic in
HOL. Formal Methods Syst. Des. 27(1–2), 173–200 (2005)

4. Ayad, A., Marché, C.: Multi-prover verification of floating-point programs. In:
Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 127–141.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14203-1_11

5. de Bessa, I.V., Ismail, H.I., Cordeiro, L.C., Filho, J.E.C.: Verification of delta
form realization in fixed-point digital controllers using bounded model checking.
In: SBESC, pp. 49–54. IEEE (2014)

6. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,
D., Rival, X.: A static analyzer for large safety-critical software. CoRR (2007)

7. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

8. Cimini, G., Bemporad, A.: Exact complexity certification of active-set methods for
quadratic programming 62(12), 6094–6109 (2017)

9. Cimini, G., Bemporad, A.: Complexity and convergence certification of a block
principal pivoting method for box-constrained quadratic programs. Automatica
100, 29–37 (2019)

10. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
TACAS, pp. 168–176 (2004)

11. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL, ACM (2014)
12. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of fixed-point pro-

grams. In: EMSOFT, pp. 22:1–22:10. IEEE (2013)
13. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,

A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

14. Fang, C.F., Rutenbar, R.A., Chen, T.: Fast, accurate static analysis for fixed-point
finite-precision effects in DSP designs. In: ICCAD, pp. 275–282. IEEE/ACM (2003)

15. Fischer, B., Inverso, O., Parlato, G.: CSEQ: a concurrency pre-processor for sequen-
tial C verification tools. In: ASE, pp. 710–713. IEEE (2013)

16. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-18275-4_17

17. Harrison, J.: Floating-point verification using theorem proving. In: Bernardo, M.,
Cimatti, A. (eds.) SFM 2006. LNCS, vol. 3965, pp. 211–242. Springer, Heidelberg
(2006). https://doi.org/10.1007/11757283_8

18. Inverso, O., Bemporad, A., Tribastone, M.: Sat-based synthesis of spoofing attacks
in cyber-physical control systems. In: ICCPS, pp. 1–9. IEEE/ACM (2018)

19. Inverso, O., Trubiani, C.: Parallel and distributed bounded model checking of
multi-threaded programs. In: PPoPP, pp. 202–216. ACM (2020)

20. Ivancic, F., Ganai, M.K., Sankaranarayanan, S., Gupta, A.: Numerical stability
analysis of floating-point computations using software model checking. In: MEM-
OCODE, pp. 49–58. IEEE (2010)

21. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep
convolutional networks. In: ICML. JMLR Workshop and Conference Proceedings,
vol. 48, pp. 2849–2858. JMLR.org (2016)

22. Lohar, D., Prokop, M., Darulova, E.: Sound probabilistic numerical error analysis.
In: Ahrendt, W., Tapia Tarifa, S.L. (eds.) IFM 2019. LNCS, vol. 11918, pp. 322–
340. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34968-4_18

https://doi.org/10.1007/978-3-642-14203-1_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-642-18275-4_17
https://doi.org/10.1007/11757283_8
https://doi.org/10.1007/978-3-030-34968-4_18


336 S. Simić et al.

23. Martel, M., Najahi, A., Revy, G.: Toward the synthesis of fixed-point code for
matrix inversion based on cholesky decomposition. In: DASIP, pp. 1–8. IEEE
(2014)

24. Martinez, A.A., Majumdar, R., Saha, I., Tabuada, P.: Automatic verification of
control system implementations. In: EMSOFT, pp. 9–18. ACM (2010)

25. Moussa, M., Areibi, S., Nichols, K.: On the arithmetic precision for implementing
back-propagation networks on FPGA: a case study. In: Omondi, A.R., Rajapakse,
J.C. (eds.) FPGA Implementations of Neural Networks. Springer, Boston (2006).
https://doi.org/10.1007/0-387-28487-7_2

26. Navas, J.A., Schachte, P., Søndergaard, H., Stuckey, P.J.: Signedness-agnostic pro-
gram analysis: precise integer bounds for low-level code. In: Jhala, R., Igarashi, A.
(eds.) APLAS 2012. LNCS, vol. 7705, pp. 115–130. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35182-2_9

27. Pajic, M., Park, J., Lee, I., Pappas, G.J., Sokolsky, O.: Automatic verification of
linear controller software. In: EMSOFT. pp. 217–226. IEEE (2015)

28. Patrinos, P., Guiggiani, A., Bemporad, A.: A dual gradient-projection algorithm
for model predictive control in fixed-point arithmetic. Automatica (2015)

29. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator
splitting solver for quadratic programs. Mathematical Programming Computation
(2020). http://arxiv.org/abs/1711.08013

30. Stol, J., De Figueiredo, L.H.: Self-validated numerical methods and applications.
In: Monograph for 21st Brazilian Mathematics Colloquium, IMPA. Citeseer (1997)

31. Yates, R.: Fixed-point arithmetic: an introduction. Digital Signal Labs (2009)

https://doi.org/10.1007/0-387-28487-7_2
https://doi.org/10.1007/978-3-642-35182-2_9
http://arxiv.org/abs/1711.08013


Detection of Polluting Test Objectives
for Dataflow Criteria

Thibault Martin1(B) , Nikolai Kosmatov1,2 , Virgile Prevosto1 ,
and Matthieu Lemerre1
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Abstract. Dataflow test coverage criteria, such as all-defs and all-uses,
belong to the most advanced coverage criteria. These criteria are defined
by complex artifacts combining variable definitions, uses and program
paths. Detection of polluting (i.e. inapplicable, infeasible and equiva-
lent) test objectives for such criteria is a particularly challenging task.
This short paper evaluates three detection approaches involving dataflow
analysis, value analysis and weakest precondition calculus. We imple-
ment and compare these approaches, analyze their detection capacities
and propose a methodology for their efficient combination. Initial exper-
iments illustrate the benefits of the proposed approach.

1 Introduction

Among a large range of test coverage criteria proposed in the literature, dataflow
(coverage) criteria [1,2], such as all-defs and all-uses, belong to the most
advanced. These criteria are defined by complex artifacts combining a (program)
location where a variable is defined, a location where it is used, and a path from
the definition to the use such that the variable is not redefined in between (called
a def-clear path). Like for many other criteria (e.g. conditions, mutations), some
test objectives are not relevant (or polluting): they should be removed to prop-
erly ensure or evaluate test coverage [3,4]. Polluting test objectives for dataflow
criteria include inapplicable test objectives [5], where a def-use pair cannot be
linked by a def-clear path. They also include infeasible test objectives, where a
def-use pair can be linked by at least one def-clear path, but none of these paths
is feasible (i.e. can be activated by a test case). Finally, they include duplicate (or
equivalent) test objectives, which are always covered simultaneously: it suffices
to keep only one objective for each equivalence class.

While creating a list of (candidate) test objectives for dataflow criteria can
look easy, detection of polluting objectives for such criteria is challenging, due
to a complex definition, mixing reachability and def-clear paths. Yet it is crucial
to avoid a waste of time during test generation (trying to cover polluting test
objectives) and to allow a correct computation of coverage ratios (by ignoring
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polluting objectives in the total number of objectives). While applying dataflow
criteria for testing [2,6–10] and detection of polluting test objectives for simpler
criteria (see [3,11] for some recent results and related work) were previously
studied, evaluating and combining various program analysis techniques for their
detection for dataflow criteria—the purpose of this work—was not investigated.

Contributions. This short paper evaluates three approaches to detecting pollut-
ing test objectives for dataflow criteria, involving dataflow analysis, (abstract
interpretation based) value analysis, and weakest precondition calculus. We
implement these approaches inside the LTest open-source testing toolset [12].
We evaluate and compare them by some initial experiments and analyze their
detection capacities and limitations. We focus on the key ingredients of dataflow
criteria: def-use pairs. The detection capacities we observed appear to be dif-
ferent from similar experiments made previously for other criteria. Finally, we
propose a methodology for an efficient combination of several techniques.

2 Background and Motivating Example

Background. A large range of test coverage criteria have been defined [1]. Recent
work proposed HTOL (Hyperlabel Test Objective Language) [4], a generic spec-
ification language for test objectives, that can express most of these criteria. We
present here only the subset of HTOL that is useful to express dataflow criteria.

Given a program P , a label � (in the sense of [13]) is a pair (loc, ϕ) where loc
is a location in P and ϕ is a predicate. Label � is covered by a test case t when the
execution of t reaches loc and satisfies ϕ. While labels can express many simple
criteria, test objectives for more complex criteria, including dataflow criteria,
need a more general notion, hyperlabels. In our context, we use labels only
for reachability, thus we always consider ϕ = true and simplify the notation
� � (loc, true) as � � loc, that is, a usual label in the sense of C.

Hyperlabels [4] extend labels by relating them with several constructions,
that include, among others, sequences, conjunctions and disjunctions. Given two
labels � and �′ and a predicate ψ, a sequence hyperlabel h � �

ψ−→ �′ is covered by
a test case t when the execution of t covers both labels � and �′ (in that order),
such that the path section between them satisfies predicate ψ. A conjunction
h1 · h2 requires both hyperlabels h1, h2 to be covered by (possibly distinct) test
cases. A disjunction h1 + h2 requires covering at least one of hyperlabels h1, h2.

A key test objective of dataflow criteria is a def-use pair. For a given variable
v and two labels �, �′, we say that (�, �′) is a def-use pair for v if � is a definition
of v and �′ is a use (i.e. a read) of v. It is linked by a def-clear path for v if there
is a path from � to �′ such that v is not redefined (strictly) between � and �′.
A def-use pair (�, �′) (for v) is covered by a test case t when the execution of
t covers both labels (i.e.—in our context—passes through both locations) �, �′

so that the path between them is a def-clear path (for v). When there is no
ambiguity, we omit the variable name.
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Thus, the test objective to cover a def-use pair (�, �′) can be expressed by a

sequence (hyperlabel) h � �
dc(v)−−−→ �′, where predicate dc(v) requires the path to

be def-clear for variable v. Dataflow criteria rely on such sequences and require
to cover all or some of them in various ways. Therefore we focus in this paper
on detection of polluting sequences.

1 int f(){
2 int res=0, x=1, a;
3 �1: a = ...;
4 if (Cond){
5 �2: a = a + 1;
6 �3: res = a;
7 x = 0;
8 }
9 if (x){

10 �4: res += 2*a;
11 �5: res *= a;
12 }
13 return res;
14 }

Def-use pairs for variable a:

h1 � �1
dc(a)−−−→ �2 h5 � �2

dc(a)−−−→ �3

h2 � �1
dc(a)−−−→ �3 h6 � �2

dc(a)−−−→ �4

h3 � �1
dc(a)−−−→ �4 h7 � �2

dc(a)−−−→ �5

h4 � �1
dc(a)−−−→ �5

All-uses criterion objectives for a:
h8 � h1 · h2 · h3 · h4 h9 � h5 · h6 · h7

All-defs criterion objectives for a:
h10 � h1 + h2 + h3 + h4 h11 � h5 + h6 + h7

Fig. 1. Example of def-use pairs and objectives for all-uses and all-defs for variable a.

Polluting Test Objectives. While the generation of candidate def-use pairs by
combining definitions and uses for each variable can seem to be a simple task,
many of them are irrelevant, or polluting, for various reasons. First, a def-use
pair (�, �′) for variable v is inapplicable if there is no structurally possible def-
clear path from � to �′ for v. Second, a def-use pair (�, �′) is infeasible if such
def-clear paths exist (structurally) but are all infeasible (i.e. cannot be executed
by any test case). Inapplicable and infeasible def-use pairs are both uncoverable.
Finally, a def-use pair (�, �′) is equivalent to another def-use pair (�, �′′) if for
every test case t, the execution of t covers either both pairs or none of them.

Recent research showed that value analysis and weakest precondition calculus
can be efficient to detect polluting test objectives for several (non dataflow)
criteria [3,11] expressed in HTOL. For dataflow criteria, model-checking was
applied to detect infeasible test objectives [14]. Continuing those efforts, this
work adapts several existing program analysis techniques to detect polluting
test objectives for dataflow criteria, implements and evaluates them.

Generating only relevant test objectives for dataflow criteria for an arbitrary
program is undecidable. Indeed, it requires to identify which uses can be reached
from a specific definition. If it were possible, one could apply it to solve the
general reachability problem for a label � in a given program P : {code1; � : code2;}

by considering program P ′ : {�0 :int new=0; code1; � : return new; code2;} with a fresh
variable new and checking whether the def-use pair (�0, �) is generated for P ′.

Motivating Example. Figure 1 gives a simple C code illustrating various cases of
polluting objectives. The upper right of the figure shows all (candidate) def-use
pairs for variable a (h1, . . . , h7), that include polluting objectives. The all-uses
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criterion requires to cover all possible def-use pairs for each definition. For the
definition �1 (resp., �2), this corresponds to the conjunctive hyperlabel h8 (resp.,
h9). The all-defs criterion requires to cover at least one def-use pair for each
definition, which is illustrated by the disjunctive hyperlabel h10 (resp., h11). We
see that sequences are key ingredients to express test objectives of these dataflow
criteria, and we focus on them below. Naturally, detecting polluting sequences
will automatically simplify the combined hyperlabels.

In this example, h2 is inapplicable: structurally, there is no def-clear path
from �1 to �3 since all such paths pass through �2. This sequence should be
strictly speaking discarded, i.e. erased from the combined objectives.

In addition, we can see that h6 and h7 are both infeasible since no test
case can cover �2 and �4 (or �5) at the same time because of x. In this case,
the combined objective h9 becomes infeasible as well. It is also easily seen that
having Cond always false (or true) also makes some objectives infeasible.

Finally, since �4 and �5 lie in the same consecutive block, sequences h3, h4

are equivalent: a test case t either covers both of them, or none of them; and
so are h6, h7. Keeping only one in each group would be sufficient both for test
generation or infeasibility detection. We can keep h3 for h3, h4. If h3 is infeasible,
h4 is as well. If h3 is covered by some test case t, h4 is covered too1.

For simplicity, we assume here that the C code has been normalized (like it
is automatically done in Frama-C [15]), in particular, expressions contain no
side effects and each function has a unique return point.

3 Detection Techniques

3.1 Dataflow Analysis for Inapplicable and Equivalent Sequences

Inapplicable Sequences. A simple approach to generate sequences expressing def-
use pairs consists in performing a simple run through the Abstract Syntax Tree
(AST) and creating a sequence for each definition and use of the same variable in
the program. This approach leads to a significant number of inapplicable objec-
tives. Their detection for an arbitrary program (e.g. with goto’s) is non trivial.
For Fig. 1, we would generate h1, ..., h7, including the inapplicable objective h2.

To avoid generating this kind of objectives, we use a standard dataflow anal-
ysis [16]. This analysis propagates (over the program statements) a state asso-
ciating to each variable v the set Defsv of labels corresponding to definitions of
v that may reach this point through a def-clear path. This dataflow analysis,
denoted MNA, is very efficient to identify Non-Applicable sequences.

Figure 2 illustrates this method for Fig. 1 and variable a. The Defsa set near
a node shows the set of definitions that may have assigned to a the value that a
has at this node. So, after visiting �2, the definition of a at �1 is replaced with
that at �2. Hence, at �3, we will create one sequence (h5) for this use of a, and h2

1 unless the flow is interrupted by a runtime error between �4 and �5; hence we rec-
ommend keeping the first sequence h3, so that a test case covering it either covers
h4 as well, or detects a runtime error, that is thus detected and can be fixed.
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will not be generated. Notice that at node x, the state contains both definitions
of a after the merge of both branches.

Equivalent Sequences. We distinguish two kinds of equivalent sequences. The
first kind is trivial. If a variable v is used more than once in the same expression,
assuming expressions do not contain side effects, the value of v will be the same
for each occurrence. We consider each corresponding def-use pair only once.

The second kind is more complex and relies on the notions of dominance and
post-dominance [17]. For two statements S1 and S2, we say that: S1 dominates
S2 if all paths from the entry point of the function to S2 pass through S1; S2

post-dominates S1 if all paths from S1 to the return point of the function pass
through S2.

We enrich the state propagated by MNA by a set associating to each vari-
able v the set Usesv of (labels corresponding to the) uses of v that must (i.e.
are guaranteed to) reach this point through a def-clear path. Before creating a
sequence with a use at �′′, we check its associated Uses set. If it contains a label
�′ for the same variable, it means that �′ dominates �′′. Then we check if �′′

post-dominates �′ using standard dataflow analysis. If so, for each definition � in
our state, def-use pairs (�, �′), (�, �′′) are equivalent. Figure 2 illustrates that the
Usesa state at �5 contains �4, and since �5 also post-dominates �4, h4 (resp., h7)
is found equivalent to h3 (resp., h6). Notice that after the merge of branches at
the last node, Usesa is empty. We denote this method by MEq.

�1 Defsa: {} Usesa: {}

Cond Defsa: {�1} Usesa: {}

�2 Defsa: {�1} Usesa: {}

�3 Defsa: {�2} Usesa: {}

x Defsa: {�1; �2} Usesa: {}

�4 Defsa: {�1; �2} Usesa: {}

�5 Defsa: {�1; �2} Usesa: {�4}

return Defsa: {�1; �2} Usesa: {}

true

false

true

false

Fig. 2. Dataflow analysis for Fig. 1.

1 int f(void)
2 {
3 /*@ ghost int Ca

6 = 0; */
4 int res = 0, x = 1, a;
5 /*@ ghost Ca

6 = 0; */
6 �1: a = ...;
7 if (Cond) {
8 /*@ ghost Ca

6 = 0; */
9 �2: a = a + 1;

10 /*@ ghost Ca
6 = 1; */

11 �3: res = a;
12 x = 0;
13 }
14 if (x) {
15 /*@ check Ca

6 != 1; */
16 �4: res += 2 * a;
17 �5: res *= a;
18 }
19 return res;
20 }

Fig. 3. Figure 1 instrumented for h6.

3.2 Static Analysis for Uncoverable Sequences

Consider a sequence hyperlabel hi expressing a def-use pair �
dc(v)−−−→ �′ for v. Let

Cv
i be a fresh variable associated to sequence hi, that will represent its status: 0
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for uncovered, and 1 for partially covered, i.e. after seeing only its definition, but
not its use. More precisely, Cv

i is initialized to 0 at the beginning of the function.
When we reach � we set it to 1, meaning that we covered the first member of our
sequence hi. If dc(v) is violated (i.e. if we encounter another definition on our
path) we set Cv

i back to 0. If we can prove that Cv
i �= 1 is always true at �′, then

we show that covering hi is impossible, that is, hi is inapplicable or infeasible.
A similar method was used in [14] with a model-checking approach.

Figure 3 illustrates this method for Fig. 1 for h6 = �2
dc(a)−−−→ �4. We express the

instrumented code in acsl [15] as ghost code, used to provide additional code
for analyzers, without interfering with the original code semantics. We create
the ghost variable Ca

6 that stands for the status of sequence h6 over variable a
(cf. lines 3, 5, 8, 10 in Fig. 3). We also generate an acsl check clause Ca

6 �= 1
before �4 (line 15). If it is proved, then covering h6 is impossible. Notice that h7

would be proved infeasible as well, since they are equivalent.
To detect polluting sequences automatically, we apply static analysis tech-

niques on the instrumented program, more precisely, Value Analysis based on
abstract interpretation and Weakest Precondition calculus. The resulting detec-
tion techniques are denoted MVA and MWP.

Ex./ Indi- Cand. Polluting objective detection
Size cator obj.gen. MNA MEq MVA MWP MNA,Eq MNA,Eq,VA MNA,Eq,WP MNA,Eq,VA,WP

cwe787
34 loc

time 0.3s 0.3 0.3s 4.9s 28.3s 0.3s 1.1s 5,6s 6,4s
#seq. 207 144 99 144 108 171 171 171 171
%seq. 69.6% 47.8% 69.6% 52.2% 82.6% 82.6% 82.6% 82.6%

2048
376 loc

time 0.6s 0.5s 0.5s 6.3s 1m45 0.5s 2.9s 50.2s 52.7s
#seq. 560 159 187 161 14 293 295 294 295
%seq. 28.4% 33.4% 28.8% 2.5% 52.3% 52.7% 52.5% 52.7%

papa-
bench
1399 loc

time 1.2s 1.3s 1.3s 3.4s 1m7s 1.2s 4.1s 42.4s 45.3s
#seq. 376 41 106 102 21 139 181 139 181
%seq. 10.9% 28.2% 27.1% 5.6% 37.0% 48.1% 37.0% 48.1%

debie1
5165 loc

time 1.5s 1.5s 1.5s 1m20s 9m3s 1.5s 37.7s 4m2s 4m43s
#seq. 2149 815 825 876 181 1272 1320 1280 1323
%seq. 37.9% 38.4% 40.8% 8.4% 59.2% 61.4% 59.6% 61.6%

gzip
4790 loc

time 3.3s 2.7s 2.9s 22m20s 71m14s 2.6s 4m40s 29m28s 33m58s
#seq. 7299 3710 2042 3806 1264 4738 4834 4741 4835
%seq. 50.8% 28.0% 52.1% 17.3% 64.9% 66.2% 65.0% 66.2%

itc-
benchm.
11825 loc

time 8.4s 8.4s 8.2s 32.3s 16m57s 8.2s 33.2s 11m45s 12m18s
#seq. 3776 301 892 1145 152 1107 1703 1174 1708
%seq. 8.0% 23.6% 30.3% 4.0% 29.3% 45.1% 31.1% 45.2%

Mono-
cypher
1913 loc

time 28.2s 1.4s 7.0s MO TO 0.9s 16m32s 64m31s 80m10s
#seq. 45707 38880 23839 – – 43410 43414 43410 43414
%seq. 85.1% 52.2% – – 95.0% 95.0% 95.0% 95.0%

Average %seq. 41.5% 35.9% 41.5% 15% 60.0% 64.4% 60.4% 64.5%

Fig. 4. Polluting objectives detected by different techniques and their combinations.

4 Implementation and Evaluation

Implementation. We implemented the detection techniques described in Sect. 3
in LTest2 [12], a set of tools for coverage oriented testing, mostly written in
OCaml as plugins of Frama-C [15], a program analysis platform for C code.

2 available at https://github.com/ltest-dev/LTest.

https://github.com/ltest-dev/LTest


Detection of Polluting Test Objectives for Dataflow Criteria 343

One of the tools, LAnnotate, creates test objectives for a given criterion. It sup-
ports various dataflow criteria (such as def-use, all-defs, all-uses) and generates
(candidate) objectives inside each function. We implemented dataflow analysis
techniques MNA and MEq in LAnnotate to filter out, resp., Non-Applicable
and Equivalent objectives. It does not support pointers yet, and overapproxi-
mates arrays (meaning that an assignment at index i is seen as an assignment
to the entire array). We implemented MVA and MWP in another tool, LUncov.
detecting uncoverable objectives. It performs interprocedural analysis and relies
on Frama-C plugins Eva for value analysis and Wp for weakest precondition.

Experiments. In our evaluation, we address the following research questions:
RQ1: Is dataflow analysis with MNA and MEq effective to detect inapplicable
and equivalent test objectives? Can it scale to real-world applications?
RQ2: Can sound static analysis techniques MVA,MWP effectively find uncover-
able objectives? Can they scale to real-world applications?
RQ3: Is it useful to combine these approaches? What is the best combination?

We use a set of real-life C benchmarks3 of various size (up to 11 kloc) and
nature, and focus on sequences encoding def-use pairs (cf. Sect. 2). Figure 4 illus-
trates the results. For each benchmark, we first generate all candidate def-use
pairs using LAnnotate without any additional analysis (see the third column
in Fig. 4). Next, we apply the techniques, first separately (columns MNA–MWP)
and then in combination (last four columns). We report execution time, the num-
ber of sequences (i.e. def-use pairs) detected as polluting, and the percentage it
represents over the total number of candidate objectives. The last line gives an
average percentage. TO and MO denote a timeout (set to 10 h) and memory-out.
Experiments were run on an Intel(R) Xeon(R) E-2176M with 32 GB RAM.

Notice that MVA requires an entry point function and an initial context to
start the analysis, meaning that objectives are identified as uncoverable with
respect to these starting point and initial context. Value analysis can require a
certain expertise to find optimal settings for a better analysis. As we want our
tool to be as automatic as possible, we used default parameters. As for MWP, it
does not require a global entry point but can be made more precise by provid-
ing contracts, i.e. pre- and postconditions and loops annotations. Again, in our
experiments, annotations were not written for the same reason. Hence, an expert
user can probably further improve the reported results. Similarly, using Frama-
C plugins dedicated to generating acsl annotations might improve these results
as well. However, this demands some adaptations of our own implementation
and is left for future work.

Results. Regarding RQ1, dataflow analysis techniques MNA and MEq are very
fast and very effective. MNA detects an average rate of 41.5% (of all objectives)
as inapplicable. MEq detects an average of 35.9% as equivalent. The rate of
MNA (between 8% and 85.1%) strongly depends on the example. Together, they
identify a very significant number of polluting objectives (column MNA,Eq).
3 taken from https://git.frama-c.com/pub/open-source-case-studies.

https://git.frama-c.com/pub/open-source-case-studies


344 T. Martin et al.

Regarding RQ2, MVA performs really well on smaller programs, and becomes
more expensive for larger examples (e.g. it runs out of memory for Monocypher).
It detects between 27.1% and 69.6% (with an average of 41.5%). MWP is by far
the slowest method of detection. It takes up to 7m14s, times out on Monocypher,
and detects almost no new uncoverables compared to MVA (see below).

Regarding RQ3, while it is natural to expect benefits of a combination
of different analyses, the results were somewhat surprising. Unlike in the pre-
vious work for other (non dataflow) criteria [3,11], the weakest precondition
based technique brings only very slight benefits (see columns MNA,Eq,VA–
MNA,Eq,VA,WP). We believe it is due to the complex nature of dataflow criteria
where infeasibility is less likely to be detected by local reasoning. It is left as
future work to study whether these results can be significantly improved using
additional annotations. Using MNA,Eq before MVA or MWP to filter out some
objectives is clearly very efficient (and makes it possible for MVA, MWP to ter-
minate on the Monocypher example). Overall, our results show that the best
combination appears to be MNA,Eq,VA, whereas executing MWP in addition is
very costly and detects at most 0.2% more sequences. When execution time is
very limited, MNA,Eq can be already very effective.

5 Conclusion and Future Work

Polluting test objectives can be an important obstacle to efficiently applying
test coverage criteria, both for test generation or computation of coverage ratios.
We adapted, implemented and evaluated several sound techniques to detect (a
subset of) such objectives for dataflow criteria. Combining dataflow analysis
to detect inapplicable and equivalent objectives with value analysis to identify
uncoverable ones appears to be the best trade-off for effective and fast detection.
While this work provided a comparative analysis of the detection power of the
analysis techniques, future work includes an evaluation of their results with
respect to the real set of polluting objectives (or its overapproximation computed
by replaying a rich test suite). Future work also includes a better support of the
C language constructs (pointers and arrays) in the implemented tools, improving
the analyses, notably MWP, by automatically generating additional annotations,
as well as extending this study to subsumed (i.e. implied) test objectives and to
other coverage criteria.

Acknowledgements. This work was partially supported by ANR (grant ANR-18-
CE25-0015-01). We thank Sébastien Bardin, and the anonymous reviewers for valuable
comments.
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Abstract. Executable Domain-Specific Languages (DSLs) are a promis-
ing paradigm in software systems development because they are aiming
at performing early analysis of a system’s behavior. They can be simu-
lated and debugged by existing Model-Driven Engineering (MDE) tools
leading to a better understanding of the system before its implementa-
tion. However, as the quality of the resulting system is closely related
to the quality of the DSL, there is a need to ensure the correctness
of the DSL and apply execution engines with a high level of trust. To
this aim we developed Meeduse, a tool in which the MDE paradigm
is mixed with a formal method assisted by automated reasoning tools
such as provers and model-checkers. Meeduse assists the formal defini-
tion of the DSL static semantics by translating its meta-model into an
equivalent formal B specification. The dynamic semantics can be defined
using proved B operations that guarantee the correctness of the DSL’s
behavior with respect to its safety invariant properties. Regarding execu-
tion, Meeduse applies the ProB animator in order to animate underlying
domain-specific scenarios.

Keywords: B Method · Domain-specific languages · MDE

1 Introduction

Model Driven Engineering (MDE) tools allow a rapid prototyping of domain-
specific Languages (DSLs) with automated editor generation, integrated type-
checking and contextual constraints verification, etc. This technique is powerful
and provides a framework to implement the dynamic semantics of the language
or to build compilers that translate the input formalism into another one (e.g.
bytecode, programming language or another DSL). However, the major draw-
back of this approach is that the underlying verification and validation activities
are limited to testing, which makes difficult the development of bug-free lan-
guage analysers and compilers. When these tools are used for safety-critical or
high-assurance software, [20] attests that “validation by testing reaches its limits
and needs to be complemented or even replaced by the use of formal methods
such as model checking, static analysis, and program proof ”. Formal methods
demonstrated their capability to guarantee the safety properties of languages
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B. Dongol and E. Troubitsyna (Eds.): IFM 2020, LNCS 12546, pp. 349–367, 2020.
https://doi.org/10.1007/978-3-030-63461-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63461-2_19&domain=pdf
http://orcid.org/0000-0003-2267-3639
https://doi.org/10.1007/978-3-030-63461-2_19


350 A. Idani

and associated tools [7]; nonetheless, there is a lack of available tools to bridge
the gap between MDE and formal methods for the development of DSLs.

In our works we apply the B method [1] to formally define the semantics that
make a DSL executable and hence guarantee the correctness of its behaviour.
The challenge of executing a DSL is not new and was widely addressed in the
literature at several abstraction levels with various languages [5,12,23,29]. An
executable DSL would not only represent the expected system’s structure but it
must itself behave as the system should run. The description of this behaviour
also applies a language with its own abstract syntax and semantic domain. Unfor-
tunately, most of the well-known existing DSL development approaches apply
languages and tools that are not currently assisted by formal proofs.

In [16] we showed that there is an equivalence between the static semantics
of DSLs and several constructs of the B method. In this paper we present Mee-
duse, a MDE platform built on our previous works [13,16] and whose intention
is to circumvent the aforementioned shortcomings of MDE tools. It allows to
formally check the semantics of DSLs by applying tools of the B method: Ate-
lierB [6] for theorem proving and ProB [21] for animation and model-checking.
The Meeduse approach translates the meta-model of a given DSL, designed in
the Eclipse Modeling Framework (EMF [27]), into an equivalent formal B spec-
ification and then injects a DSL instance into this specification. The strength
of Meeduse is that it synchronises the resulting B specification with the DSL
instance and hence the animation of the B specification automatically leads to
a visual execution of the DSL. This approach was successfully applied on a real-
istic railway case study [14,15] and also to formalize and execute a real-life DSL
transformation [17] which is that of transforming truth tables into binary deci-
sion diagrams. This paper shows how the B method can be integrated within
MDE and presents by practice Meeduse.

Section 2 presents a simple textual DSL built in a MDE tool and discusses
its underlying semantics. Section 3 gives an overall view about the Meeduse app-
roach and architecture and shows how the B method is integrated within a
model-driven architecture. Section 4 applies two approaches to define the DSL
semantics: the meta-model based approach and the CP-net approach. Section 5
summarizes two realistic applications of Meeduse and discusses their results.
Finally, Section 6 draws the conclusions and the perspectives of this work.

2 A Simple DSL

For illustration we apply a well-known DSL builder (Xtext [2]) that allows to
define textual languages using LL(*) grammars and generate a full infrastruc-
ture, including an ANTLR parser API with a type-checker and auto-completion
facilities. We define a simple DSL that represents configuration files edited by
operating system administrators to configure GPU servers. These servers are
packed with graphics cards, called Graphics Processing Units (GPUs) that are
used for high performance computing. Roughly speaking, in a GPU architec-
ture, significant jobs are broken down into smaller computations (called here
processes) that can be executed in parallel by the different GPUs.
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Figure 1 gives the Xtext grammar of our DSL; it defines three non-terminal
rules: Server (the axiom), Gpu and Process. Every rule starts by the definition of a
naming identifier (name=ID) representing object declaration. The declaration of
a server object is followed by two declaration lists: that of GPUs (gpus+=Gpu)*
and that of processes (processes+=Process)*. A GPU has a fixed number of
slots: free slots are defined by an Integer value (size=INT) and the occupied
slots directly refer to their occupying processes (usedBy+=[Process]*).

Fig. 1. Example of an Xtext grammar.

Given a grammar, Xtext applies ANTLR to generate a Java API for a parser
that can build and walk the abstract syntax tree (AST). One interesting feature
of Xtext is that it defines the language AST by means of an EMF meta-model
[27], which makes possible the integration of MDE tools that are built on top
of EMF like OCL constraints checker, etc. Figure 2 provides the EMF meta-
model of our DSL. It is composed of three classes, each of which is issued from
a grammar rule. The grammar axiom is the root class of this meta-model and
the associations represent the various object relationships.

Fig. 2. The GPU server meta-model

Figure 3 presents the textual editor produced by Xtext for our DSL. In this
file, the system administrator defined a server (GPUServer) with two GPUs (GPU1
and GPU2), and five processes (from p1 to p5). Process p2 is assigned to GPU1
and process p1 is assigned to both GPU1 and GPU2.

The DSL’s grammar and the corresponding meta-model define the static
semantics. Regarding the dynamic semantics, we informally define them with
the following process scheduling actions:

– enqueue/purge: respectively assign and de-assign processes to a GPU server.
Technically action enqueue declares a process in the DSL file, and action
purge removes a process from this file. When assigned to the server the initial
state of the process is Waiting.
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Fig. 3. Generated Xtext textual editor

– ready: assigns a GPU with at least one free slot to a waiting process. The
process becomes then Active. If all GPUs are busy, the process enters in an
intermediary state called Ready.

– swap: releases a slot by deactivating the corresponding process (the process
becomes Waiting) and allocates the freed GPU slot to some ready process
(the latter becomes then Active).

These actions must guarantee the following safety properties:

– The number of free slots cannot be negative;
– A process cannot be running on more than one GPU;
– If there is a Ready process then all GPUs are busy;
– A process cannot be Active and Ready or Active and Waiting or Ready and

Waiting at the same time;
– An Active process is assigned to a GPU;
– Waiting and Ready processes are not assigned to GPUs.

3 The Meeduse Approach

In MDE, the implementation of DSLs is derived from their meta-models and as
the semantics of meta-models is standardized [24] (by the Object Management
Group − OMG), the underlying DSL implementation and associated tool-set
code generation follow well established rules. This makes the integration of MDE
tools easy and transparent. In fact, there are numerous MDE tools with various
purposes: model-to-model transformation, model-to-code generation, constraint-
checkers, graphical concrete syntax representation, bi-directional DSL mappings,
etc. All these tools have the ability to work together using shared DSLs, as far as
the semantics of these DSLs are defined by means of meta-models. The overall
principle of a model-driven architecture is that once a meta-model is instantiated,
MDE tools can be synchronised using the resulting model resource.

3.1 Main Approach

Figure 4 shows how Meeduse integrates the formal B method within MDE tools
in order to build proved DSLs and execute their dynamic semantics. The left
hand side of the figure represents a model-driven architecture where a meta-
model (e.g. Fig. 2) is extracted by Xtext from a DSL grammar (e.g. Fig. 1).
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When an input textual file is parsed, a model resource is created as an instance
of the meta-model. Then every modification of the model resource implies a
modification of the textual file, and vice-versa. Thanks to the standard seman-
tics of meta-models, Meeduse can be synchronised with any model resource,
which opens a bridge between MDE tools (Xtext or others) and formal tools like
animators and model-checkers.

Conformant to

B Method

Includes

Animator

Translator

Injector

DSL designers

Define Specify and prove

Instance of

Semantics layer

Modeling layer

Fig. 4. The Meeduse approach.

3.2 Semantics Layer

The Meeduse approach starts by translating the meta-model of a DSL into the
B language. This translation is done by component “Translator” of Fig. 4. The
resulting formal model represents the static semantics of the DSL. It defines the
structural features of the meta-model using B data structures: sets, variables
and typing invariants. This translation applies a classical UML-to-B transfor-
mation technique, because all constructs of a meta-model have an equivalent
in UML. For this purpose component “Translator” embeds B4MSecure [13], an
open-source MDE platform whose advantage, in comparison with other UML-
to-B tools, [8,26] is that it offers an extensibility facility allowing to easily add
new UML-to-B rules or to specialize existing rules depending on the application
context. In Meeduse the application context of UML-to-B rules is that of EMF
meta-models.

A meta-class Class is translated into an abstract set named CLASS repre-
senting possible instances and a variable named Class representing the set of
existing instances. Basic types (e.g. integer, boolean, etc.) become B types (Z,
Bool, etc.), and attributes and references lead to functional relations depending
on their multiplicities. Additional structural invariant properties can be written
in B based on the generated B data. Figure 5 gives clauses SETS, VARIABLES
and INVARIANT generated by Meeduse from the meta-model of Fig. 2.
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MACHINE GPUModel

SETS
SERVER;
GPU;
PROCESS

VARIABLES
Server,
Gpu,
Process,
running,
processes,
gpus,
Gpu size

INVARIANT
Server ⊆ SERVER
∧ Gpu ⊆ GPU
∧ Process ⊆ PROCESS
∧ running ∈ Process Gpu
∧ processes ∈ Process Server
∧ gpus ∈ Gpu Server
∧ Gpu size ∈ Gpu → NAT

Fig. 5. Formal DSL static semantics.

During the extraction of the B specifications, the user can strengthen some
properties of the meta-model. For example, attribute size is defined as an integer
in the meta-model, but we translate its type into type NAT in order to limit its
values to positive numbers as stated in the safety properties. The user can also
complete the multiplicities over one-direction associations and apply to them
specific names. For example, from our grammar Xtext generated a one-direction
association from class Gpu to class Process with role usedBy. This means that
the parser doesn’t look at all to the opposite side of the association and hence
it doesn’t check the number of GPUs on which a process is running. During the
translation of this association into B we assigned multiplicity 0..1 to its opposite
side and we gave to it name running. This choice led to the partial relation
named running from set Process to set Gpu.

Operations of this B specification, that may be generated automatically or
even introduced manually, must preserve the structural invariant of Fig. 5. For
this simple example, the generated invariant addresses four main static proper-
ties: (i) a process cannot be running on more than one GPU, (ii) the number of
free slots is greater or equal to 0, (iii) processes are assigned to only one server
at the same time, and (iv) GPUs cannot be shared by several servers. The proof
of correctness guarantees that every provided operation never produces a wrong
model − regarding this invariant − such as that of Fig. 3 where property (iii) is
violated. Indeed, a proof-based formal approach is expected to provide error-free
domain-specific operations.

3.3 Modeling Layer

The modeling layer is ensured by components “Injector” and “Animator”. The
“Injector” injects a model resource, issued from any EMF-based modeling tool
(Xtext, Sirius, GMF, etc.) into the B specification produced from the meta-
model. This component introduces enumerations into abstract data structures
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like abstract sets, and produces valuations of the B machine variables. Figure 6
presents clauses SETS and INITIALISATION generated by component “Injec-
tor” from an input model resource where five processes are scheduled and such
that GPU1 is running p2 and GPU2 is running p4 and p5. In this model, GPU2 is
busy and GPU1 has one remaining free slot.

↓ Extraction of B data values ↓
SETS

SERVER={GPUServer} ;
GPU={GPU1, GPU2} ;
PROCESS={p1, p2, p3, p4, p5}

INITIALISATION
Server := {GPUServer}
|| Gpu := {GPU1, GPU2}
|| Process := {p1, p2, p3, p4, p5}
|| running := {(p2 �→ GPU1),(p4 �→ GPU2), (p5 �→ GPU2)}
|| processes := {(p1 �→ GPUServer), (p2 �→ GPUServer),

(p3 �→ GPUServer), (p4 �→ GPUServer),
(p5 �→ GPUServer)}

|| gpus := {(GPU1 �→ GPUServer), (GPU2 �→ GPUServer)}
|| Gpu size := {(GPU1 �→ 1), (GPU2 �→ 0)}

Fig. 6. Valuation of the B machine.

In our approach the execution environment of the DSL is composed of Mee-
duse coupled with ProB, and the domain-specific actions (e.g. enqueue/purge,
ready and swap) are defined as B operations that can be animated by the domain
expert. At the beginning of the animation, the injector produces a B specifica-
tion whose initial state is equivalent to the input model resource. If the input
model is wrong (such as that of Fig. 3) ProB would detect it and the animation
is stopped. In fact, our objective is to safely execute the DSL. Given a correct
input model, component “Animator” keeps the equivalence between the state
of the B specifications and the input model resource all along the animation
process. When a new state is reached, Meeduse translates it back to the model
resource and all MDE tools synchronised with this resource are automatically
updated.

The “Animator” applies a constraint solving approach to compute for every
variable the difference between its value before (v) and its value after (v′) the
animation of a B operation. Then, it applies the equivalent transformation to
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the corresponding element in the model resource. Formula v − v′ computes the
values that are removed by the operation, and v′ − v computes the added ones.
Suppose, for example, that from the initial state of Fig. 6 the animation of a given
operation produces the following computation results for variables running and
Gpu size:

1. running – running′ = ∅
2. running′ – running = {(p3 �→ GPU1)}
3. Gpu size – Gpu size′ = {(GPU1 �→ 1)}
4. Gpu size′ – Gpu size = {(GPU1 �→ 0 )}

Having these results, Meeduse transforms the model resource as follows: (1)
and (2) create a link running between objects p3 and GPU1; (3) and (4) modify
the value of attribute size of object GPU1 from 1 to 0. Figure 7 shows how the
input textual file is updated after these modifications: process p3 is now running
on GPU1 and all GPUs became busy.

Fig. 7. Example of an output model.

The reverse translation from a given state of the B machine into the EMF
model resource is limited by the constructs of meta-models that Meeduse is able
to translate into B. If the user adds programmatically some concepts to the
DSL implementation that are not introduced within the EMF meta-model, then
these concepts are missed during the animation. This may happen, for example,
when the DSL encompasses stateful computations that are hand written by
the developer using the Java implementation generated by Xtext. Despite that
Meeduse does not provide a checking facility to ensure that a given model can be
animated, it guarantees that all concepts of the meta-model that are translated
into B are covered during the animation.

3.4 Meeduse Contributions

Figure 8 is a screenshot of Meeduse where the left hand side presents the textual
DSL editor, and the right hand side shows: (1) the list of B operations that can
be enabled, and (2) the current B variable valuations. The B specification used
in this illustration applies B operations that define the domain-specific actions
based on the B data structure extracted from the meta-model. Operation ready
can be applied to p1 or p3 because both are waiting. These processes can also
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be purged using operation purge. Regarding the active processes (p2, p4 and
p5) they can be deactivated by operation swap. Playing with these operations in
Meeduse automatically modifies the model resource and then the textual file is
automatically updated. For example, Fig. 7 would result from the animation of
ready[p3]. When ProB animates a B operation, Meeduse gets the new variable
valuations and then it translates back these valuations to the model resource in
order to keep the equivalence between these valuations and the model resource.
The result is an automatic visual animation directly showed in the MDE tools
that are synchronised with the model resource.

Fig. 8. DSL execution in Meeduse.

Several formal tools provide graphic animation and visualization techniques
[11,19,22], which is intended to favour the communication between a formal
methods engineer and the domain expert by using domain-specific visualiza-
tions. The contribution of Meeduse in comparison with these techniques is that
the input model is provided by the domain expert using a dedicated language.
Indeed, in tools like BMotion Studio [19], the domain-specific visualizations (tex-
tual or graphical) are created by the formal methods engineers who often would
like to remedy the poor readability of their own specifications. We believe that
visual animation may result in representations that lack of real-user perspective.

Furthermore, in visual animation tools, mapping a given graphical or tex-
tual representation to the formal specification is a rather time-consuming task
(several days or several weeks as mentioned in [19]) and the creation of cus-
tom visualizations is often done when the formal model reaches an advanced
stage during the modeling process. This may be counterproductive because the
identification of misunderstandings often leads to enhancements of the formal
specifications which in turn impacts the implementation of the visualization.
In Meeduse, since the naming of the B data, generated from the DSL’s static
semantics, are not modified, the formal methods engineers do not need at all
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to manage the visualizations by themselves. The Meeduse approach does not
require any manual mapping between the domain-specific representations and
the formal specification.

Meeduse presents also an advancement in comparison with existing
approaches where DSLs are mixed with formal methods [4,28]. In these works,
once the formal model is defined (manually [4] or semi-automatically [28]), they
don’t offer any way to animate jointly the formal model and the domain model.
These techniques start from a DSL definition, produce a formal specification
and then they get lost in the formal process. In [28], the authors propose to use
classical visual animation by applying BMotion Studio [19] to the formal speci-
fications generated from the DSL. Our approach applies well-known MDE tools
for DSL creation (EMF, Xtext, etc.) and automatically manages the equivalence
between the formal model and the domain model.

Specifying typing and semantics rules within Xtext in a formal style was inves-
tigated by the Xsemantics tool [3]. The tool aims at filling the gap between the
theory and the implementation of static type systems and operational semantics
for Xtext-based DSLs. However, it does not provide formal tools for proving the
correctness of these semantics. The detection of errors is done after they happen
while Meeduse keeps the input model in a safe state-space regarding its invari-
ant properties. We believe that the alignment of Meeduse with Xsemantics is an
intersting perspective because typing rules as defined by Xsemantics can be seen
in our case as invariants that must not be violated.

4 Defining the Domain-Specific Actions

The dynamic semantics of the DSL can be defined as additional B specifications
with specific invariants and operations that use the data structures issued from
the static semantics. Meeduse offers two strategies to define these specifications:
(1) the meta-model based approach that generates presetted utility operations
from the meta-model, and (2) the CP-net approach in which the domain-specific
actions are first defined using coloured Petri-nets and then translated into B.

4.1 The Meta-model Based Approach

The meta-model based approach generates a list of presetted utility operations:
getters, setters, constructors and destructors. Figure 9 gives operations extracted
for class Process in order to manage link running with class Gpu.

Operation Process SetGpu creates a link between a GPU (parameter aGpu)
with a given process (parameter aProcess) if the process is not already linked
to the GPU ({(aProcess �→ aGpu)} �⊆ running). Process UnsetGpu is the reverse
operation; it removes the link if it already exits.

The utility operations are correct by construction with respect to the invari-
ants produced automatically from the meta-model structure. Indeed, if the struc-
tural invariants are not manually modified, the AtelierB prover should be able to
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Process SetGpu(aProcess, aGpu) =
PRE

aProcess ∈ Process ∧ aGpu ∈ Gpu
∧ {(aProcess �→ aGpu) ⊆�} running

THEN
running := ({aProcess} �− running)

∪ {(aProcess �→ aGpu)}
END;

Process UnsetGpu(aProcess) =
PRE

aProcess ∈ Process
∧ aProcess ∈ dom(running)

THEN
running := {aProcess} �− running

END;

Fig. 9. Example of basic setters.

prove the correctness of the utility operations regarding these invariants. Other-
wise, the operations for which the proof fails must be updated also manually. For
our example, the structural invariants were automatically generated and then
the resulting utility operations didn’t require any manual modification. Meeduse
generated a B specification whose length is about 245 lines of code, with 27 util-
ity operations from which the AtelierB prover generated 43 proof obligations
and proved them automatically.

The advantage of these utility operations is that they guarantee the preser-
vation of the static semantics. In the following, we will use the inclusion mecha-
nism of the B method in order to apply them for the formal specification of the
domain-specific actions (enqueue, purge, ready and swap). Figure 10 gives the
header part and the invariant clause of the proposed specification.

MACHINE DynamicSemantics
INCLUDES GPUModel
VARIABLES

Ready
INVARIANT

Ready ⊆ Process ∧
dom(running) ∩ Ready = ∅ ∧
( ∃ gpu . (gpu ∈ Gpu ∧ Gpu size(gpu) > 0) ⇒ Ready = ∅ )

Fig. 10. Machine DynamicSemantics.

As mentioned in the informal description of our simple DSL, there are active,
ready and waiting processes. In this specification, states active and waiting are
somehow implicit. The domain of relation running (dom(running)) represents
active processes. Thus, processes that are not active, are even ready, if they are
member of set Ready or waiting, otherwise. For space reason, we give only the
example of operation ready (Fig. 11). This operation selects a waiting process
(pp ∈ Process – (dom(running ) ∪ Ready)) and then it decides to activate it (if
there exists a free slot) or to change its state to ready (if all GPUs are busy).
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The activation of a process calls two utility operations from machine GPUModel:
Process SetGPU and GPU SetSize.

The AtelierB prover generated from machine DynamicSemantics 39 proof
obligations; 32 were proved automatically and 7 required the use of the interac-
tive prover. These proofs attest that the domain specific actions, written in B,
preserve the invariants of both dynamic and static semantics.

ready =
ANY pp WHERE pp ∈ Process - (dom(running) ∪ Ready) THEN

IF ∃ gpu . (gpu ∈ Gpu ∧ Gpu size(gpu) > 0) THEN
ANY gg WHERE gg ∈ Gpu ∧ Gpu size(gg) > 0 THEN

Process SetGpu(pp,gg) ;
Gpu SetSize(gg, Gpu size(gg) - 1)

END
ELSE

Ready := Ready ∪ {pp}
END

END ;

Fig. 11. Operation ready.

4.2 The CP-net Approach

Meeduse offers a translation of coloured Petri-net models (CP-nets [18]) into B
in order to help build the dynamic semantics using a readable graphical notation.
CP-nets combine the strengths of classical Petri-nets (i.e. formal semantics) with
the strengths of high-level visual languages (i.e. communication and readability)
[10]. A CP-net model is an executable representation of a system consisting of the
states of the system and the events or transitions that cause the system to change
its state. Despite of a small basic vocabulary, CP-nets allow great flexibility in
modeling a variety of application domains, including communication protocols,
data networks, distributed algorithms, embedded systems, etc. All these domains
apply their own DSLs and hence the CP-net approach of Meeduse coupled with
DSLs, can have a wide range of applications.

The two main notions of CP-nets are: Places and Transitions. Places repre-
sent abstractions on data values (called tokens or colours in the CP-net vocabu-
lary). A place is related to a data-type (called colour-set) that can be simple (i.e.
Integer, Boolean, etc.) or complex (i.e. sequences, products, etc.). In Meeduse,
colour-sets refer to the possible types provided by the B language. Regarding
transitions, they are linked to input and output places. When fired, a transi-
tion consumes tokens from its input places and introduces tokens into its output
places. In our approach, places represent B variables and transitions are B oper-
ations. We identify three kinds of places: existing, new and derived.



Meeduse: A Tool to Build and Run Proved DSLs 361

– Existing: refer to the B variables extracted from the meta-model (Fig. 5).
These places must be assigned to the variables of the B machine.

– New: refer to additional variables that are useful to define the DSL’s
behaviour, such as the Ready state of processes. For these places the user
must provide its type and initial value using the B language.

– Derived: refer to variables whose values are defined from other B data, such
as the Active set of processes. Derivation rules are also written in B.

Figure 12 is a screen-shot of the CP-net component of Meeduse. It shows
the invariant properties, the definition of free slots and the derivation rules for
derived places. The figure also gives the CP-net of operation ready together with
the corresponding B specification. This operation is designed by means of two
CP-net transitions with different guards [freeSlots �= ∅] and [freeSlots = ∅].
Places Gpu size and running refer to existing variables and place Ready intro-
duces a new one that is a subset of variable Process. This place is initialized to
the empty set. Places Waiting and Active are derived with the following rules:
Waiting = Process – (Active ∪ Ready ) and Active = dom(running). When the

ready =
ANY pp WHERE pp ∈ Process ∧ pp ∈ Waiting THEN

SELECT freeSlots �= ∅ THEN
ANY gg, ss WHERE

gg ∈ Gpu ∧ gg ∈ freeSlots
∧ ss ∈ NAT ∧ (gg �→ ss) ∈ Gpu size

THEN
running := running ∪ {(pp �→ gg)} ||
Active := Active ∪ {pp} ||
Gpu size := (Gpu size - {(gg �→ ss)}) ∪ {(gg �→ ss - 1)}

END
WHEN freeSlots = ∅ THEN

Ready := Ready ∪ {pp}
END ||
Waiting := Waiting - {pp}

END ;

Fig. 12. The CP-net component of Meeduse.
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GPU server is busy, transition ready[freeSlots = ∅] can be triggered, which
consumes a token pp from place Waiting and introduces it into place Ready.
If there exists a free slot, transition ready[freeSlots �= ∅] consumes token
pp but introduces it in place Active. In this case, the transition also looks at
a couple of tokens (gg,ss) from place Gpu size such that gg ∈ freeSlots.
The couple is consumed and replaced by couple (gg,ss-1), and tokens pp and
gg are introduced together in place running. In the B specification, a token t
is selected from a place P, whose colour-set is C, using substitution: ANY t
WHERE t ∈ C ∧ t ∈ P ∧ condition THEN. Guards are translated into guards
of the SELECT/WHEN substitutions. Regarding actions, they represent the
consumption and production mechanism of CP-nets using set union and set
subtraction.

In the CP-net approach the additional data structures, invariants, definitions
and operations are injected in the B specification of the meta-model. The B
specification produced by this technique is about 135 lines, for which the AtelierB
prover generated 69 proof obligations: 53 were proved automatically and 16
interactively. Figure 13 gives the CP-nets of the other operations: purge, enqueue
and swap.

We believe that the CP-net approach provides a good visualization of the
dynamic semantics thanks to graphical views. The resulting models are much
more accessible for stakeholders who are not trained in the B method than the
meta-model based approach. However, this approach produces less concise B
specifications (e.g. 11 lines for Fig. 11 against 16 lines for Fig. 12) and generates
several additional variables due to the derived places that are often required.
The number of proof obligations for the dynamic semantics is then greater than
the meta-modeling approach (69 POs for the CP-net approach against 39 for
the meta-modeling approach).

Fig. 13. Enqueue, purge and swap.

5 Evaluation

Two realistic case studies were developed and showed the viability of the tool:
(1) a railway DSL for which the CP-net approach was fully exploited [14,15],
and (2) a model-to-model transformation that applies the meta-model based
approach to transform a given DSL into another one [17].
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5.1 A Formal Railway DSL

In contrast with the textual language developed in this paper, this application
of Meeduse defines a graphical DSL that can be used by railway experts to
design railroad topologies and simulate train behaviours (Fig. 14). This work
starts from two main observations: first, in railway control and safety systems
the use of formal methods is a strong requirement; and second, graphical repre-
sentations of domain concepts are omnipresent in railway documents thanks to
their ability to share standardized information with common knowledge about
several mechanisms (e.g. track circuits, signalling rules, etc.). Meeduse showed
its strength to mix both aspects in the same tool.

Fig. 14. Application of Meeduse to a railway case study.

We fully applied the CP-net approach to define the dynamic semantics of
this DSL and represent train movements, assignment of routes to trains, mod-
ifications of switches positions, etc. This application deals with several safety-
critical invariants for which theorem proving was applied in order to guarantee
an accident-free behavior. The CP-net models were introduced incrementally
using three proved refinement levels. The numbers of proofs generated from
these refinements are presented in Table 1.

Table 1. Proof obligations generated from the railway DSL

POs Automatic Manual

Level 1 17 11 6

Level 2 32 25 7

Level 3 62 41 21



364 A. Idani

5.2 A Formal DSL Transformation

We applied Meeduse to define a real-life DSL transformation [17]. Figure 15
shows the input and output models of the transformation: the input model is
a truth table and the output model is a binary decision diagram (BDD). This
application, carried out during the 12th edition of the transformation tool contest
(TTC’19) won the award of best verification and the third audience award. The
meta-model based approach was applied to take benefit of the utility operations
and define B operations that consume truth table elements and progressively
produce a binary decision diagram.

Fig. 15. Application of Meeduse to DSL transformation.

The B machine of the meta-model is about 1162 lines of code. 260 proof
obligations were generated and automatically proved by the AtelierB prover,
which guarantees that the static features of the output BDD are preserved during
the DSL transformation. Regarding the dynamic semantics, they were specified
by five B operations that are defined in an additional B machine whose length is
about 150 lines of code. The correctness of the dynamic semantics was ensured
by model-checking, rather than by theorem proving because on the one hand
it is less time consuming, and on the other hand, it deals with bounded state
spaces that can be exhaustively checked by the ProB [21] model-checker. The
model-checking proof shows that both input and output models are equivalent.

6 Conclusion

When an executable DSL is not formally checked, it may lead to a succession
of failures: failures of modeling operations (e.g. define a negative value for free
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slots) may result in failures of domain-specific operations (e.g. assign more pro-
cesses to a GPU than its capacity), which in turn may result in failures of the
coordination operations (e.g. wrong process scheduling algorithms). This paper
gave an overview of Meeduse, a tool dedicated to build and run correct DSLs
by formally defining their underlying static and dynamic semantics. It allows to
develop DSL tools intended to be used by domain experts whose requirement
is to apply domain-specific notations to model critical systems and to correctly
simulate their behaviour. In addition to the benefits of the tool for DSL devel-
opment, the proposed technique is a more pragmatic domain-centric animation
than visual animation techniques provided by formal tools because the domain-
centric representations are provided by the domain expert himself who has a
greater knowledge of the application domain than the formal methods engineer.

Several state-based formal methods can get along with the tool as far as
these methods are assisted by publicly available parsers and animators. Some
research works have been devoted in the past to apply a formal method, such
as MAUD [25] or ASM [9], for the verification of a DSL’s semantics. Although
these works are close to Meeduse, they don’t cover the joint execution of the
DSL and the formal model. The transformations they propose can be integrated
within Meeduse in order to enhance them with our technique for DSL animation
and be able to experiment several target formal languages in a single framework.
The use of B is mainly motivated by our long experience with the UML and B
mappings and the availability of B4MSecure [13].

Currently we are working on two main perspectives: (1) provide a palette of
proved DSLs (such as the BPMN language, or a DSL for home-automation) that
are powered by Meeduse in order to make the underlying formal semantics much
more accessible to non-practitioners of formal methods, and (2) propose a tech-
nique for DSLs composition that favours the execution of several DSLs together
and make them collaborate. This perspective would lead to the execution of
several instances of ProB with the aim to animate jointly several heterogeneous
models.
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1 Introduction

Casework is often governed by law, e.g., in municipal governments or in the
finance sector. In these settings, adherence to the law—legal compliance—is an
essential part of “correctness”. However, in systems supporting casework, the law
is rarely a first-class object, and guarantees of compliance are hard to come by.

This problem is compounded by the practical difficulty that compliance is a
property of a collection of IT system. A modern European municipal government
of even a medium-sized city will have a system landscape rivalling enterprises
in complexity and heterogeneity: Disparate systems acquired and updated at
disparate schedules over decades. To reason formally about compliance in such
a setting, it is not enough to know that any single system is in compliance, we
must know that the composite overall system is in compliance.

The law itself is also a collection of interacting entities; typically paragraphs
or sections. Research into formalisation of law has established as paramount the
need for a trustworthy and understandable correspondence between the con-
structs in the formal notation on the one hand, and the natural language texts
that express the rules in the original legal sources on the other [6,14]. Such a
correspondence is necessary to ensure that guarantees provided by the formal
language will, quite literally, “hold up in court”; but also to allow for updating
models when the law inevitably changes. The quest for such correspondences
have given rise to the isomorphism principle [5,6] (see also discussion in [7]) that
formal models of the law must be in one-one correspondence with the structure
of that law—e.g., that each paragraph in a law text corresponds uniquely to a
model fragment in the formal specification.

This paper studies models for the law with the aim of directly constructing
declarative, executable workflow specifications from it. E.g., when the law states
that “the parents must consent to a government interview with their child”,
the executable workflow specification must have activities “consent” and “inter-
view”, and we must be able to prove that in the model, the latter is always
preceded by the former. We specifically consider the Danish Consolidation Act
on Social Services [1], which regulates in minute detail the operations of Danish
Municipalities. We formalise fragments of this law in the Timed Dynamic Condi-
tion Response graphs (DCR graphs) declarative modelling language [11,18,20],
as they are already actively being used to to create executable models of law to
for public digital case management systems [25].

We find that while individual paragraphs of the law are straightforward to
model, interactions between paragraphs are difficult or impossible to model if
one is to take the isomorphism principle seriously. To address this shortcoming,
we propose the meta-formalism of “Networks” for expressing such interactions
via the novel constructs of linking and exclusion. These constructs allow (a)
one-to-many interactions between constraints in the underlying processes and
(b) selectively disregarding such constraints in interactions.

The meta-formalism of Networks is independent of the exact formalisms used
to specify individual process/paragraphs, i.e., it is a hybrid process notation [31].
It is only required that each component notation has a labelled transition sys-



370 S. Debois et al.

tem semantics. Thus, it is technically possible for a network to combine pro-
cesses/paragraphs formalised in disparate notations, e.g., some as DCR, some
as DECLARE [3,30], some as finite automata, and some as BPMN [29].

Our key technical result is a sufficient condition for Networks to give
rise to refinement in the sense of [11,34]. This theorem has been verified in
Isabelle/HOL; the formalisation is available online [32]. Lemmas and Theorems
etc. that have been so verified are marked out with a filled-in box, like this one: �

Parts of the theoretical framework (networks and exclusion) have been imple-
mented by our industry partners, and we report on interviews with practitioners
who find the notions of inter-model synchronisation indeed both necessary and
helpful in practical modelling scenarios. In summary, we make the following
contributions.

1. We demonstrate the use of timed DCR graphs to model excerpts of a real law,
showing examples of both sections that can be modelled straightforwardly and
those that require interaction.

2. We define a notion of Networks with novel concepts of “exclusion” and “link-
ing” tailored to the complex and unusual requirements that modelling the
law under the isomorphism principle poses on compositionality.

3. We show how this notion of compositionality formally gives a syntactic means
of achieving refinement in the sense introduced in [11] of models expressed in
possibly distinct formalisms.

4. We report on a preliminary qualitative evaluation of an implementation of
DCR networks with exclusion as part of the a process engine used to digitalise
administrative processes in municipal governments.

Altogether, the present paper takes significant steps, both technical and practi-
cal, towards achieving compliant-by-design executable declarative process mod-
els of government workflows.

Related Work. We share motivation with the study of Compliant-by-Design
business processes [15]. Here, formal languages expressing laws and regulations
is an active line of research, and a variety of approaches exist, e.g., logics [15–
17], Petri Nets [24], and declarative process languages [10]. We are unaware of
Compliance-by-Design work that include references as language primitives.

The relationship between natural language specifications and (declarative)
business processes has been recently studied in the BPM community with works
for Declare [2], deontic logics [12] and DCR graphs [26]. While these works apply
NLP techniques to identify rules between process activities, they do not consider
the inter-dependencies between rules. The exception is [35], that identifies sub-
sumption, redundancy and conflict between rules. The present work takes a
different tack, by providing a mechanism to modularise rules.

An approach similar to linking has been proposed for Petri Net variants
in [13,22,23]. Here process fragments, modelled as Petri nets, are loosely cou-
pled through event and data dependencies. Our approach is different in that we
employ a declarative process language (DCR graphs), we link event executions
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instead of data, and fragment composition is based on multicast synchronisa-
tion. Finally, several works in logic programming have studied modularity and
composition (see [8] for an overview). Networks and links resemble union and
overriding union operators in modular logic programs.

2 Timed Dynamic Condition Response Graphs

We briefly recall Timed DCR graphs as introduced in [20]. Informally, a DCR
graph comprises a set of events E, a marking assigning state to each event,
and a set of inter-event relations. Together, the two determine (a) whether a
given event is enabled for execution, (b) how such execution would update the
marking; and (c) what events are required to happen within what deadlines.

Time is advanced in discrete steps called “ticks”, and time spans are measured
in integral numbers of such ticks. Deadlines in a timed DCR graph is measured in
how many ticks may elapse before some event must happen; when that number
is 0, time cannot advance any further without either executing the event or
violating the semantics of the DCR graph.

Intuitively, the marking indicates for each event e when (if ever) it was
last executed; when (if ever) it must eventually be executed or excluded—its
deadline—; and whether the event is currently included or excluded. Excluded
events cannot be executed, and are disregarded as obstacles to other events
executing.

Similarly, the relations govern enabledness and marking update: A timed
condition (e, k, e′) ∈ →• means that event e′ can only execute if event e is
excluded or it was previously executed and that the last execution was at least
k time units ago. A timed response (e, k, e′) ∈ •→ means that whenever event e
executes, it imposes the requirement on e′ to either become and stay excluded,
or to execute within at most k time units. A milestone (e, e′) ∈ →� means that
event e′ can only execute if event e is not currently required to be executed or
excluded. An exclusion (resp. inclusion) relation (e, f) ∈ →% resp. (e, f) ∈ →+
toggles the inclusion state of f to false resp. true whenever e is executed.

All in all, the meaning of a DCR graph is the set of sequences of event
executions and time increments it is willing to allow.

We give a brief formal account of timed DCR graphs below; however, the
reader who either knows DCR graphs already, or is satisfied to learn by example
is invited to skip ahead to the next Section.

Notation. Let ω be the set of finite natural numbers and zero. Let ∞ be the
set ω ∪ {ω}, where we refer to ω as infinity. We write X ⇀ Y for a partial
function from X to Y . When f : X → Y is a (possibly partial) function, we
write f [x �→ y] for the function f ′ : X → Y identical to f except f ′(x) = y.
Finally, for a binary relation R, take e R = {f |(e, f) ∈ R} and vice versa.

Definition 1. A timed DCR Graph G is given by a tuple (E,M,→•, •→,→�
,→+,→%, L, l) where
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1. E is a finite set of events
2. M ∈ (E ⇀ ω) × (E ⇀ ∞) × P(E) is the timed marking
3. →• ⊆ E × ω × E, is the timed condition relation
4. •→ ⊆ E × ∞ × E, is the timed response relation
5. →�,→+,→% ⊆ E × E are the milestone, include and exclude relations
6. L is the set of labels
7. l : E → L is a labelling function, which assigns to each event e a label l(e).

We write the components of a marking M as M = (tex, tre, In). The minimal
included response deadline minrG is defined by minrG = min{tre(e) | tre(e) ∈
ω ∧ e ∈ In}.
The marking defines for each event e an integer k = tex(r) indicating how long
ago it was executed or ⊥ = tex(r) if not; a deadline tre(r) for the event to be
executed or ⊥; and a boolean In indicating whether the event is “included”.

Definition 2. Let G be a timed DCR graph. We say that the event e is enabled,
writing enabled(M, e) iff

1. e ∈ In
2. ∀e′ ∈ In . (e′, k, e) ∈ →• =⇒ tex(e′) = ⊥ ∧ k ≤ tex(e′)
3. ∀e′ ∈ In . e′ →� e =⇒ tre(e′) = ⊥
We say that the time-step n is enabled, writing enabled(M,n) when minrG ≥ n.

That is, for e to be enabled, (1) it must be included; (2) whenever it is conditional
upon an included event e′ with delay k, then this e′ was executed at least k time
steps ago; and (3) every included milestone e′ for e is not pending. A time-step
n is enabled iff no included event has a deadline closer than n time units.

Definition 3. Let G be a timed DCR graph. The effect of executing an enabled
event e in M = (tex, tre, In) is a new marking given by:

effectG(M, e) = (tex[e �→ 0], t′re, In \ (e →%) ∪ (e →+))

where t′re(f) = min{k | (e, k, f) ∈ •→} when (e, k, f) ∈ •→ and t′re(f) = tre[e �→
0](f) otherwise. Similarly, the result of advancing time by n time-units is the
new marking given by:

effectG(M,n) = ((+n) ◦ tex, (−n) ◦ tre, In)

where (+n) respectively (−n) denote the function ω⊥ → ω⊥ which preserve ⊥
and otherwise takes k to k + n respectively max(k − n, 0).

That is, executing e updates the marking by (i) setting the last-executed
time tex(e) of e to 0 (now); (ii) clearing any existing deadline of e, then setting
new deadlines for events with responses from e; and (iii) making not-included all
events excluded by e, then making included all events included by e. Similarly,
when the time-step n is enabled, we “advance time” by adding n to all executed
time-stamps, and subtracting n from all deadlines. (An equivalent variation of
this semantics make Timed DCR Graphs finite, see [20] for details.)
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Definition 4 (Labelled transition system). An event or time step α ∈ E∪N
has a transition M

α−→ M ′ iff enabled(M,α) and effectG(M,α) = M ′. A run of
a graph G is a finite or infinite sequence of transitions

G0
α1−→ G1

α2−→ G2
α3−→ · · ·

We write runs(G) for the set of all possible runs for a graph G. An accepting
run is a run such that for all i ≤ k and all e ∈ E, if tire(e) ∈ ω and e ∈ Ini,
then there exists j > i s.t. either e ∈ Inj or αi = e Finally, a trace is a finite or
infinite sequence λ1λ2 . . . of labels and natural numbers, such that there exists
and accepting run G0

α1−→ G1
α2−→ · · · where λi = l(αi) or λi = αi = n ∈ N

Note that in this definition, a trace is a run where events have been replaced
with their labels, but time advances (natural numbers) have been left in. The
indirection of labels is a source of expressive power; see [11] for details.

We write DCR graphs as [M ] R, where M is the marking and R is a list of
relations separated by vertical bars. E.g.:

Here, the marking A : (7, t,⊥) that A was executed 7 time-steps ago, it
is currently included (t), and there is no deadline for it (⊥). Conversely, in
B : (⊥, t, 3), we see that B was not executed, but does have a deadline of 3.
Formally, the marking A : (7, t,⊥) should be read as tex(A) = 7, A ∈ In is true,
and tre(A) = ⊥.

While [20] did not allow multiple distinct deadlines between the same two
events, the present notion of DCR graphs relaxes this limitation by preferring
the minimum of multiple deadlines. This is to ensure that the above calculus-
like notation is always well-defined, i.e., that one can freely write terms such as
A • 5−→ B | A • 10−→ B.

3 Models of Law

We now provide examples of modelling law fragments as DCR graphs. We shall
see how DCR graphs neatly model individual sections of a real-world law. In
Sect. 4, we re-use these models when considering references between sections.

As a real-world example, we shall consider fragments of the Danish Con-
solidation Act for Social Services [33] (CASS). Municipalities in Denmark have
processed an average of 9.337,33 CASS cases in the last 3 years. Revising the
outcome of these cases is standard procedure: In the first semester of 2018, 887
cases (9,5% of the total cases) were revised, and the outcome of 483 cases (5,1%
of the total cases) was changed [27,28].



374 S. Debois et al.

3.1 A Condition: CASS §63(1)
This paragraph describes the situations in which a municipal government must
intervene to provide medical attention for a child:

CASS §63(1): “If the custodial parent fails to have a child or young person
examined or treated for a life-threatening disease or a disease involving the risk
of substantial and permanent impairment of function, the children and young
persons committee may decide to undertake such examination or treatment.”

To model this paragraph as a DCR graph, or in any event-based formalism,
we have to understand from this description what are the events of the graph.
The custodial parent “fail[ing] to have a child or young person examined or
treated” is not an event happening at a particular moment in time but rather
a continuous state of affairs. The key to modelling this situation is to recognise
that the event is not the failure itself, but rather the formal recognition by the
municipal government that this failure is indeed happening. That decision is an
event: It happens at a specific moment in time where a document declaring such
recognition is signed.

With that in mind, we find in 63(1) the events (that the municipal gov-
ernment formally recognises) a “failure to undertake examination or treatment”
and “compulsory examination or treatment”. How are these events related? The
phrasing of the paragraph indicates that only if there is such failure may the
government step in: in process terms, the failure is a condition for the compul-
sory examination or treatment. On the other hand, the phrasing does not require
the government to act. Altogether, we arrive at the following DCR graph:

P63(1)
def= [failure63(1) : (⊥, t,⊥), exam63(1) : (⊥, t,⊥)] failure63(1) →• exam63(1)

In this graph, both events are marked as not executed (⊥), included (t) and
not pending (⊥). The graph has a single condition constraint failure63(1) →•
exam63(1), indicating that the event exam63(1) can execute only if failure63(1) has
previously executed. In this section, we shall not distinguish between an event
and its label, formally taking �(failure63(1)) = failure63(1) and �(exam63(1)) =
exam63(1).

Here, subscripts such as “63(1)” are simply part of the events name and do
not have any special significance. They will become helpful in the next section,
when we need to distinguish between near-identical events in distinct paragraph-
s/graphs.

Considering the possible runs of P63(1), we find among others the following:

〈failure63(1), exam63(1)〉 (1)

On the other hand the singleton exam63(1) is not a run: The condition prohibits
execution exam63(1) without first executing failure63(1).
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3.2 Static Obligations and Inclusion State: CASS §50(3)
This paragraph describes how, during a so-called Child Protection Examination
(CPE), the child being considered for protection must in fact be heard.

CASS §50(3): “The examination shall include a consultation with the child or
young person. The consultation may be dispensed with if factors such as the
maturity of the child or young person or the nature of the case strongly suggests
that the decision should be made without prior consultation. If the consultation
cannot be conducted, steps shall be taken to establish the views of the child or
young person. [...]”

Again we identify events: a “consultation with the child or young person”
(consult50(3)); the declaration that “the consultation may be dispensed with”
(omit50(3)); and the (formal documentation of) “the views of the young person
or child”, established by some other means than consultation (views50(3)).

The text describes a usual course of action of consulting the child, and an
alternative for special cases (marked as “steps shall be taken”). These situations
are usually modelled with an event indicating the declaration of special circum-
stances, which then excludes the common case and includes the special case:

P50(3)
def=[consult50(3) : (⊥, t, ω), omit50(3) : (⊥, t,⊥), views50(3) : (⊥, f, ω)]

omit50(3) →% consult50(3) | omit50(3) →+ views50(3)

In P50(3), the marking (line 1) says that consult50(3) and views50(3) are initially
required to happen eventually (ω). Event views50(3) is initially not included.
While not included it cannot be executed, so the requirement to eventually
happen in the marking does not count. The relations (line 2) say that if event
omit50(3) happens, then (left) consult50(3) is excluded and (right) views50(3) is
included, reversing that state of affairs: While both still technically pending,
it is now consult50(3) which is not included and considered irrelevant, whereas
views50(3) is included and relevant, and thus required to eventually happen.

3.3 Time and Obligations: CASS §50(7)
Part of the requirements for the CPE process described in CASS §50 describes
how quickly the municipal government should react to reports (typically from
medical staff or school staff) that a child may be in need of special support:

CASS §50(7): “The examination must be completed within four (4) months
after the municipal council has become aware that a child or young person may
be in need of special support. Where, exceptionally, an examination cannot be
completed within 4 months, the municipal council shall prepare a provisional
assessment and complete the examination as soon as possible thereafter. ”

We find three events in this text: “the municipal council has become aware that
a child or young person may be in need of special support” (report50(7)), the
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completion of the examination (line 1, compl50(7)), and the preparation of a
provisional assessment (line 4–5, prov50(7)).

We model this paragraph as a graph with relations enforcing the obligation
to either complete the examination, or produce a provisional assessment within
4 months from report’s reception.

That is, if a report is received (report50(7) is executed), the examination must
eventually (ω) be concluded. To model the special case of provisional assess-
ments, we combine deadlines and exclusion: we require that a provisional assess-
ment (prov50(7)) is produced within 4 months after receiving the report, but
remove that requirement using an exclusion once the actual examination com-
pletes (compl50(7)).

4 Modelling References

We now take legal texts whose specifications introduce referential information.

CASS §48(1): “Before the municipal council makes a decision under sections
51, 52, 52a, 56, 57a, 57b, 58, 62 and 63, section 65(2) and (3) and sections 68–
71 and 75, the child or young person must be consulted on these matters. The
consultation may be dispensed with if the child or young person was consulted
immediately beforehand in connection with the performance of a child protec-
tion examination, cf. section 50 below. [...]”

The article continues by describing the circumstances for a consultation to
be omitted, under which a guardian must be present etc. We will ignore these
details for brevity, and focus on the formal relations between paragraph instead.

There are several such references. First, §48(1) requires a consultation before
“making a decision” under a range of other paragraphs, including §63 (see
Sect. 3.1). Recall that §63(1) tasked the municipal government with undertaking
medical examination or treatment for young persons if their custodian failed to
do so. For §63, the “decision” referred to in §48(1) refers to the municipal gov-
ernment deciding to (unilaterally) undertake such exams or treatments, that is,
executing the event exam63(1).

Second, §48(1) explicitly states that if a child consultation was made under
§50, the consultation otherwise required by §48(1) is not necessary. According
to domain specialists, in the situation where both §48 and §50 takes effect, the
various consultations required are all considered “the same”.

These two kinds of references begets the question: How do we model such
references in DCR graphs? We shall see in this section that the latter kind can be
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considered simply a renaming (since the activities are literally considered “the
same”); however, the former kind requires special treatment.

For starters, let us ignore exactly how §48 will be connected to other para-
graphs and make a straightforward model of the requirement that before making
(certain) decisions about a child, that child must be consulted. In this case, it is
straightforward to identify in §48(1) the events “make a decision” (decide48(1))
and “consult the child” (consult48(1)). Notice how consult48(1) is not the same as
the consult50(3) in P50(3)—this is where the subscripts become helpful. In this
case, the model simply contains a condition, stipulating the requirement that
the consultation must come before the decision:

P48(1)
def=

[consult48(1) : (⊥, t,⊥), decide48(1) : (⊥, t,⊥)]consult48(1) →• decide48(1) (2)

It is tempting to think that we can model this reference by simply identifying the
event decide48(1) in P48(1) with event exam63(1) in P63(1). However, this will not be
sufficient, as the decision in §48(1) must also be identified with other decisions
in the other paragraphs listed (51, 52, 52a and so forth). By transitivity, we
would identify them all, but that is non-sensical: the decision to remove a child
from the home in §58 is obviously not identical the decision to conduct a medical
examination in §63(1). Those two things are not at all the same.

However, if proceedings are underway for the same child for both of §58
and §63(1) simultaneously, then the consultation mentioned in §48(1) applies
for both of them. That means that there should be only one such consultation,
simultaneously catering to all the relevant proceedings.

Altogether, we find that we cannot identify all decisions mentioned in §48(1),
however, we must identify the consultations for those decisions in order to main-
tain a strict correspondence with the law; in order to uphold the isomorphism
principle [5,6]. In DCR terms, we have a set of events in distinct graphs (the
decisions), each of which is conditional on the same precondition, specified in a
distinct other graph. To capture this idea, we introduce networks.

4.1 Networks

Networks formalise a notion of “synchronising process models”. While we intend
to use them with DCR graphs as the underlying process model—and this is how
our industry partner is using them—they are intrinsically formalism agnostic:
Any formalism with trace-based semantics can be used as the basic processes,
and there is no requirement that all underlying processes are specified in the
same formalism.

We abstract the underlying formalism into the following notion of a process
notation. Assume a fixed universe U of actions.

Definition 5. A process notation A = (P, excluded, step) comprises a set P of
process models; a function excluded : P → 2U, and a function alph : P → 2U; and
a transition predicate step : P × U × P. We require that (P, l,Q) ∈ step implies
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R, S ::= P process notation | 1, · · · , ln. R link

| R S network parallel | 0 unit

β ::= l | (regular/limited) action

Fig. 1. Syntax of Networks

both l ∈ alph(P ) and alph(P ) = alph(Q), and if also (P, l,Q′) then Q = Q′, that
is, step is action-deterministic.

Intuitively, alph gives a finite bound on the actions a process may exhibit, and we
require this bound to be preserved by step-transitions. Similarly, excluded tells
us which actions are excluded in a given process; this set is allowed to change as
the process evolves.

DCR graphs with injective labelling is a process notation; in this notation
“actions” are DCR trace labels.

Lemma 6. Take P to be the set of timed DCR graphs with labels in U and
injective labelling functions. Let excluded be the function which given a timed
DCR graph G with events E, marking M , and labelling l returns the set of labels
of events of E that are not in In, that is, excluded G = {l(e) | e ∈ E \ In}.
Finally take (G, l,G′) ∈ step iff there exists some event e ∈ E s.t. �(e) = l and
G

e−→→ G′. Then (P, excluded, step) is a process notation.

Note that because of the assumption that the labelling functions are injective, (1)
the step predicate is action deterministic, and (2) it is not possible have distinct
events e, f where �(e) = �(f) yet e ∈ In but f ∈ In. That is, if l ∈ excluded G,
then the graph G has exactly one event labelled l, and that event is excluded.

Network themselves are vaguely reminiscent of CSP [21], and are similar to
the notion of networks for DCR graphs of [19]. However, they differ radically
from both with the introduction of limited actions, exclusion, and links.

The key features of Networks is synchronisation on limited and unlimited
actions. Intuitively, an unlimited action is a “real” action, exhibited by an under-
lying process. Conversely, a limited action indicates that while the network does
not wish to independently execute that action, it is willing to follow along if
someone else does. Limited actions allow a network to deny actions to other
networks, by refusing to engage in them.

We use this mechanism to formalise a notion of linking, where a single label
exhibited by one process is considered a required synchronisation partner for
multiple distinct actions in other processes, but will not independently exhibit
that action. This construct will be helpful in modelling paragraphs of the law
like §48(1), which imposes constraints on multiple other paragraphs.

Notation. Network actions are formed by tagging an underlying action l ∈ U

as either “limited” or “unlimited”. We write limited actions �l and unlimited
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alph(N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if N = 0
alph(P ) if N = P

{l1, . . . , ln} ∪ (alph(M)\{l}) if N = 1, . . . , ln. M

alph(N1) ∪ alph(N2) if N = N1 N2

actions(N) = alph(N) ∪ { | x ∈ alph(N)}

Fig. 2. Alphabet and labels of a DCR network

Fig. 3. Transition semantics of networks (symmetric rule for [n-par] is elided.)

ones simply l. For either, we define the function γ to extract the underlying
process action, γ(l) = γ(�l) = l. For two network actions β1, β2 with the same
underlying action γ(β1) = γ(β2) = l we define their combination �l � �l = �l,
�l � l = l, l � �l = l, and l � l = l—that is, the unlimited action “wins”.

The syntax of Networks is defined in Fig. 1. A network R is a collection
of possibly linked processes. We present the semantics Networks in Fig. 3. The
definition uses the auxiliary notion of the alphabet of a network, the set of labels
it syntactically mentions, and its actions, which is just its alphabet lifted to both
unlimited and limited actions. We give these auxiliary definitions in Fig. 2.

We briefly explain the rules of Fig. 3. In [n-proc] we see that the network
which is just a single process in some notation exhibits the actions of that pro-
cess. In [n-excl] we see that this network also may exhibit a limited network
action for an otherwise excluded underlying process action. Then, a network
l � l1, · · · , ln. R has two ways to fire a transition: In [n-link], we assume that
the underlying network R fires an action l. The linked network then fires, instead
of l, any of the actions li. However, this linked action is limited, as indicated by
the triangle. In [n-passthru], we assume instead that the action l′ has nothing
in common with neither l nor the linked actions l1, . . . , ln; in this case, the linked
network exhibits also the (unlimited) action l′. Finally, the synchronisation rule
for parallel composition of networks R1 ‖ R2 is given in [n-sync] and [n-par].
In [n-sync], we require either both sides to exhibit an action, and the underly-
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ing process action of either to be the same. This allows a limited and unlimited
action to synchronise, with the composite process exhibiting the “least limited”
of the two actions. In [n-par], we allow the composite process to exhibit a net-
work action when either does, provided the underlying process action does not
occur syntactically in the other.

Definition 7 (Network LTS). A Network R defines an LTS where states are
networks, and there is a transition (R, l, R′) whenever R

l−→ R′. A run of R is a
sequence

R = R1
β1−→ R2

β2−→ · · · Rk−1
βk−1−−−→ Rk

A trace trace(r) of a run r is the sequence β1, . . . , βk of actions of the run. The
language of the network R is defined as the set traces of those of its runs that
are everywhere unlimited (where no βi = �l for any l), that is,

lang(R) = {trace(r) | r is an unlimited run of R} .

Note that we do not accept limited actions in traces: limited actions cannot
happen independently, but require a corroborating un-limited action.

4.2 Modelling with Networks

Using Networks underpinned by timed DCR graphs, we can return to the ques-
tion how to model inter-paragraph references using the models in Sect. 3. Note
the subtle difference that in that Sect. 3 we were considering runs, whereas now
we are considering traces. The difference is imperceptible since the models of
Sect. 3 all had every event labelled by itself, that is �(e) = e. For this reason,
we allow ourselves in this section to treat “labels” and “events” interchangeably,
and we will speak only of events.

For modelling §48(1), we simply link the decide48(1) event with the relevant
events from other paragraphs:

R
def= P63(1) ‖ decide48(1) � exam63(1). P48(1) (3)

This R does not admit the trace 〈failure63(1), exam63(1)〉 even though we saw
in (1) that P63(1) does. In R, even if P63(1) allows the action exam63(1), for
the entirety of R to also allow that action, the right-hand side decide48(1) �
exam63(1). P48(1) must synchronise via either the [n-sync] or [n-par] rule. Since
both sides of the parallel has exam63(1) in their alphabet, only [n-sync] applies.
This means that if the parallel were to have the action exam63(1), also the right-
hand side link would have either of the actions exam63(1) or �exam63(1). Looking
at the link rules [n-link] and [n-passthru], we see that the right-side can exhibit
exam63(1) iff P48(1) can exhibit exam63(1), but this is not possible because of the
condition from consult50(3) to decide48(1) in that graph, see (2).

On the other hand, the network R does have the trace

〈failure63(1), consult48(1), exam63(1)〉 .
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We mentioned briefly above §58 which under extreme circumstances allows
the government to remove a child from the home. Assuming a process P58, with
the event remove58 signifying the decision to undertake such removal. We can
then build the network where a child is both subject to proceedings §63 and §58.

R2
def= P63(1) ‖ P58 ‖ decide48(1) � exam63(1), remove58. P48(1) (4)

Again, this model would not admit any trace where exam63(1) or remove58 hap-
pened without a prior consult48(1). It would admit various interleavings of the
§63 and §58 proceedings and the §48(1) requirements.

The dependency on §50(3). Returning to §50(3), we recall that §48 allowed use
of a §50(3) consultation to replace its own, and that practitioners consider both
events “the same”. This has an obvious model: the one where we simply rename
events so that those two identical consultations are identical. This is represented
via the syntactical substitution for a free name, here written P{e/f}:

R3
def= P63(1) ‖ P58 ‖ P50(3) ‖

decide48(1) � exam63(1), remove58.
(
P48(1){consult50(3)/consult48(1)}

)
(5)

It is irrelevant whether the renaming happens inside or outside the link construct.

5 A Theory of Links and Refinement

We now relate the networks to the notion of refinement originally introduced
for DCR graphs [11] and later generalised to arbitrary process models with
trace semantics [34]. Under the right circumstances, networks provide a syntactic
mechanism for establishing refinements, thus providing a useful approximation
for what in DCR graphs is a computationally hard problem.
Notation. Given a sequence s, we define the projection onto a set X as s|X as
simply the (possibly non-contiguous) sub-sequence of s for which each element
is in X. We lift this notion to sets of sequences pointwise.

Definition 8 (Network Refinement). Let R,S be DCR networks. We say
that R is a refinement of S iff lang(R)|alph(S) ⊆ lang(S). �

To establish refinement, we confine the set of actions that may become limited.

Definition 9. Let N be a network and X ⊆ U a finite set of labels. We call X

unlimited for N iff for all β with γ(β) ∈ X and N
β−→ N ′ for some N ′ then β is

unlimited. X is globally unlimited for N if X is unlimited for every M reachable
from N . �

Lemma 10. Let P ∈ P be a process, and let N be the network consisting exactly
of P . Then X is unlimited for N iff in every P ′ reachable (under the process
notation step-relation) from P , x is not excluded for all x ∈ X. �
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We shall see in Lemma 11 below how an unlimited set for a network ensures
the existence of an unlimited sub-trace on one side of a parallel composition
of networks. The proof relies on action-determinacy of networks, which in turn
necessitates that requirement of Definition 5. We conjecture that this require-
ment of action-determinacy is can be dispensed with at the cost of a somewhat
more complicated proof development.

Lemma 11. Let R0, S0 be networks and let X ⊆ U be a set of labels. Suppose
that X is globally unlimited for R0 and that alph(R0) ∩ alph(S0) ⊆ X. Let r be a
run of R0 ‖ S0:

R0 ‖ S0
β1−→ R1 ‖ S1

β2−→ · · · βk−1−−−→ Rk−1 ‖ Sk−1
βk−→ Rk ‖ Sk (6)

Consider the sequence (βi, Ri+1)1≤i<k and take i1, . . . , im to be the indices iden-
tifying a maximal subsequence of this sequence such that βij ∈ X. Then this
subsequence identifies a run r1 of R0:

R0 = Ri1

βi1−−→ Ri2

βi2−−→ · · · Rik′−1

βi
k′−1−−−−→ Rk′ (7)

Moreover, trace(r1) = trace(r)|actions(R1). �

Theorem 12. Let R be a network, assume that X is globally unlimited for R,
and that alph(R) ∩ alph(S) ⊆ X. Then R ‖ S is a refinement of R.

Proof. We must prove that for any trace trace(r) ∈ lang(R ‖ S) we have also
trace(r)|alph(R) ∈ lang(R). By definition of language, every action in trace(r) is
unlimited, so trace(r)|alph(R) = trace(r)|actions(R). But trace(r)|actions(R) is a trace
of R by Lemma 11; and projection preserves unlimited-ness, hence we must have
trace(r)|actions(R) ∈ lang(R). �

Corollary 13. Let P be a DCR Graph in which all events with a label in l, l are
included in all reachable markings. Let R be a Network with alph(R)∩alph(P ) =
{l} ∪ l. Then the network P ‖ l � l. R refines P .

What does Theorem 12 and Corollary 13 mean for modelling? Looking at R2

and R3 from Eqs. (4) and (5), it is straightforward to prove using Theorem12
that both R2 and R3 are in fact refinements of P63(1).

Corollary 14. R2 and R3 both refine P63(1).

This confirms our intuition that (our model of) §48(1) does not in fact modify
§63(1) beyond adding the requirement to have a consultation before deciding.

6 Implementation and Evaluation

A subset of networks with limited actions, exclusions and network composition
but not the link construct, has been implemented by DCR Solutions A/S, a Dan-
ish vendor of adaptive case management systems, and used at Syddjurs Munici-
pality (a Danish Municipal government) to implement a administrative processes
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compliant to CASS in DCR graphs. We report on a qualitative evaluation of
this subset. The objective of the evaluation is to (a) determine whether DCR
networks are relevant for practitioners; (b) estimate its usability as a modelling
construct; and (c) discover its limitations as perceived by practitioners.

The evaluation comprises a structured 2 h interview with a Syddjurs Munic-
ipality staff member (“the subject”) responsible for developing executable DCR
models supporting municipal casework and subsequent analysis of responses.
The subject has 3 years experience modelling with DCR models, and had used
the DCR Network implementation for at least 2 months. The interview was con-
ducted on February 7th, 2020; interview script, answers, and analysis results are
available on-line at [4].

We posed two sets of questions consecutively in a single session. With the
first set, we inquired into the background of the expert and the relevance of
the investigated approach (a). With the second set, we sought to compare law
digitalisation before and after the introduction of DCR networks (b), and to
examine the consequences of using the implementation (b, c). In the interview,
the subject reflected on his past and current experience with modelling the law.

We analysed a recording of the interview using a qualitative inductive app-
roach supported by grounded theory [9]. With the support of qualitative data
analysis tool “Atlas.ti”, we applied initial coding to identify the pertinent aspects
in the interview. We then used focused coding to gather the open-codes into more
abstract concepts based on their similarity traits. Finally, we used axial coding
to establish the relationships between the identified codes.
Outcome. The relevance (a) of DCR networks was justified by a set of domain
requirements. The subject highlighted the presence of references in almost all
law text and the need to model the interaction between distinct law paragraphs.
When reflecting on past modelling experience, the subject mentioned the lack of
mechanisms to model communication between process models representing dis-
tinct law paragraphs. In practice, these mechanisms are needed to automatically
trigger related processes and model constraints between events in related mod-
els. In the absence of such mechanisms,case-workers must synchronise processes
manually, incurring overhead and in some cases leading them to bypass the case
management system altogether.

To investigate usability (b), the subject was guided to compare his past and
current modelling experiences. We note that this interview cannot distinguish
usability of the concept of DCR networks from usability of the tooling used by
the subject. The subject described areas where the proposed implementation
was helpful: the support to automate triggering of events, and for inter-model
constraints between them. According to the subject, these mechanisms facilitate
modelling the interplay between different processes, and also support process
decomposition, making it possible to divide extant models into smaller frag-
ments, each describing a specific law section.
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With regards to limitations (c), the subject raised the lack of explicit mech-
anisms to visualise references between events of different processes, making it
difficult to track and maintain dependencies between different models. Moreover,
the subject felt limited by the absence of simulation tools for DCR networks.
Last but not least, he underlined the necessity to extend the existing approach
to support data flow between process models.

7 Conclusion

We have taken technical and practical steps towards achieving compliant-by-
design executable process descriptions. We used timed DCR graphs to model
excerpts of a real law, showing examples of both sections that can be modelled
straightforwardly and those that required interaction between models. For the
latter, recalling the isomorphism principle, we defined a notion of compositional
Networks with novel concepts of “exclusion” and “linking”. We then showed
how Networks formally provides a syntactic means of achieving refinement in
the sense introduced in [11], here for models expressed in possibly distinct for-
malisms. This development has been verified in Isabelle/HOL, with theories
available on-line [32]. Finally, we reported on a preliminary interview-based eval-
uation with practitioners, which confirms the necessity of treating references in
models. Altogether, we have taken both technical and a practical step towards
executable declarative process models of government workflows.
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Abstract. In order to leverage the capacities of non-linear constraint
solvers, we propose a reformulation of SAT into a box-constrained opti-
mization problem where the objective function is polynomial. We prove
that any optimal solution of the numerical problem corresponds to a
solution of the Boolean formula, and demonstrate a stopping criterion
that can be used with a numerical solver.

1 Introduction

Boolean satisfiability (SAT) is probably the most well known NP-complete prob-
lem, which consists in its simplest form of finding appropriate values for variables
of a propositional logic formula ϕ in Conjunctive Normal Form (CNF) such that
it evaluates to true (�). This problem is typically solved symbolically at the
logical level through different techniques.

However, in recent years, different reformulations have been suggested to
solve SAT by turning it into a numerical problem to be solved by numerical
techniques. For example, a linear algebra approach has been attempted in [6];
the reformulation transforms a SAT instance into a system of linear equations. In
[8], a relaxation of the Boolean variables is mixed with gradient-based algorithms.
The work from [5] offers a reformulation through an optimization of degree 4 by
adding as many variables as the number of clauses in the Boolean formula. In
[7], the reformulation is done by defining an extension of the DeMorgan Laws.

The present work suggests a reformulation of SAT in order to use the capac-
ities of non-linear solvers. The principle, illustrated in Fig. 1, works as follows.
First, a Boolean formula ϕ over Bn is transformed into a real-valued polynomial
ϕ̂ over the interval [0; 1]n, using a transformation called τ , described in Sect. 2
(top arrow). For example, a CNF formula ϕ = (a ∨ b) ∧ (a ∨ ¬b) will result in
the function ϕ̂ = (a + b − ab) + (a + 1 − b − a(1 − b)). The SAT problem turns
into the problem of maximizing ϕ̂, a box-constrained optimization task that can
be offloaded to a numerical solver (right arrow). Section 3 then formally proves
that a real-valued solution provided by such a solver, such as â = (0.99, 0.99),
can be converted into an optimal solution over the integers 0 and 1 using a
backwards transformation ρ (bottom arrow); in our example, this would yield
the point (1, 1). Proposition 5 will show that the result applies even if a solver
c© Springer Nature Switzerland AG 2020
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converges to a solution with coordinates that do not lie close to 0 or 1. Finally,
Theorem 2 will show that such a solution exists if and only if the corresponding
SAT instance admits it as a solution (left arrow).

In the context of this article, the objective function is non-linear (since φ̂ is
polynomial of degree superior or equal to two as soon as there is a clause with two
literals or more). The gradient of a function gives a direction where the function
takes higher values [12]. When this gradient is not accessible, algorithms like
the Nelder-Mead algorithm [11], genetic algorithms [13] or any algorithms from
the derivative-free optimization field [1] are efficient. However, in the present
work, the gradient is available, which makes it suitable for iterative algorithms.
This paper lists a couple theoretical results that could be used when using a
gradient-based algorithm. A few of those theoretical results have been listed in
this paper; for example, some algorithms have been developed specifically for
polynomial optimization [4,10], which is what one gets after reformulating SAT
using the construction presented in this article.

Fig. 1. A summary of the approach fol-
lowed in this paper.

The paper is structured as fol-
lows. Section 2 describes the transfor-
mation rules to define the reformula-
tion. Section 3 studies the properties
of the polynomial obtained after the
transformation. Section 4 analyses the
links between the SAT problem and its
reformulation. It also contains theoret-
ical results that can be used to anticipate numerical results over reformulation.
Section 5 summarizes the theoretical results and talks about other difficulties
that could occur in future numerical tests.

2 SAT as an Optimization Problem

In this section, we will describe how to transform a SAT instance into a polyno-
mial function to maximize. Let a1, . . . an be the n Boolean variables occurring
in an arbitrary SAT instance. For convenience, we shall equate the values ⊥ and
� with integers 0 and 1, respectively. We will note a = (a1; . . . ; an). The set B

will be interpreted as the subset of R containing only the values 0 and 1.
A Boolean variable a (which takes the values 0 or 1) will be assimilated with

its bounded real variable relaxation, by allowing it to take a value in the interval
[0; 1]. For the sake of readability, we shall use the same symbol for a Boolean
variable and its relaxation; it should be clear enough in the formulas whether a
variable is Boolean or real.

Equipped with this notation, we can lift the notion of relaxation from Boolean
variables to Boolean formulas. The transformation will be done using a function
τ : (Bn → B) → ([0; 1]n → [0;N ]), which takes as input a Boolean formula
with N clauses, and produces as its output a real-valued polynomial expressed
in terms of the relaxations of the Boolean variables.
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Definition 1. Let a be an arbitrary propositional variable, and ϕ1 and ϕ2 be
arbitrary Boolean formulas. The transformation function τ : (Bn → B) →
([0; 1]n → [0;N ]) defined recursively as follows:

τ(b) = b, for b ∈ B (1)
τ(a) = a (2)

τ(¬a) = 1 − a (3)
τ(ϕ1 ∨ ϕ2) = τ(ϕ1) + τ(ϕ2) − τ(ϕ1)τ(ϕ2) (4)
τ(ϕ1 ∧ ϕ2) = τ(ϕ1) + τ(ϕ2) (5)

The introduction gave an example of a transformation using those five rules.
It can be easily shown that applying them to a given CNF formula ϕ produces
a unique polynomial, which will be written τ(ϕ). To simplify the notation, we
shall also note this polynomial ϕ̂. Three remarks should be made. First, one
should be careful on the fact that two equivalent Boolean formulas (i.e. which
have the same solutions) that have different CNF representations may have
different transformation through τ . This is shown with the following example:
τ(a∨ a) = 2a− a2 �= τ(a) = a but a∨ a is logically equivalent to a. Second, note
how τ transforms logical conjunction into an addition instead of a multiplication;
this goes against the “probabilistic” interpretation that P (A ∧ B) = P (A)P (B)
when A and B are independant. This decision has been done to reduce the
degree of the polynomial. With a multiplication, the degree of the polynomial
will be equal to the number of literals in the CNF representation of ϕ. With the
addition, the degree will be much smaller and described in Proposition 1.

Finally, since ϕ̂ takes as arguments elements of [0; 1]n, and not Bn, the sim-
plification a2 = a (commonly occurring in operations over {0, 1}) is not used.

The objective of this work is to solve the following optimization problem:

(P ) : max
a∈[0;1]n

ϕ̂(a).

This is a case of an optimization problem that has what are called box constraints,
meaning that all its variables are bounded by real values –the interval [0; 1] in
that case. In addition, the objective function is polynomial, which means that
its gradient can be calculated and used in the solving process.

3 Properties of ϕ̂

It remains to determine how solutions to (P ) can be used to produce solutions
to the original SAT instance, and under what conditions. This is the purpose of
the next two sections. First, we need to establish a few results on the properties
of the polynomial function ϕ̂ on [0; 1]n. This will then help to solve (P ). A first
observation can be made about the degree of the polynomial ϕ̂ when ϕ is k-SAT
(i.e. when each clause contains at most k literals).

Proposition 1. Let k ∈ N∗ (i.e. positive integer). If ϕ is k-SAT, then the degree
of ϕ̂ is k.
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The proof is trivial and can be done by induction. This result is important
as it bounds the degree of the polynomial. Furthermore, since any SAT instance
has a polynomial reduction into 3-SAT [9], this guarantees the existence of a
reformulation of SAT into an optimization problem for a polynomial of degree
at most 3.

We shall then observe that ϕ̂ is “well-behaved” —among other things, that
it maps the real hypercube [0; 1]n on [0;N ], that the discrete hypercube Bn on
{0, . . . , N}, where N is the number of clauses in ϕ and to understand how ϕ̂
behaves on the boundaries of the set [0; 1]n, noted:

∂([0; 1]n) = {(a1, . . . , an) ∈ [0; 1]n : ∃i ∈ {1, . . . , n}, ai ∈ B}.

.

Proposition 2. Let ϕ̂ be a polynomial resulting from the transformation of a
SAT instance ϕ containing N ∈ N∗ clauses. Then: i) if a ∈ [0; 1]n then ϕ̂(a) ∈
[0;N ]; ii) if a ∈ Bn then ϕ̂(a) ∈ {0; . . . ;N}; iii) if a ∈]0; 1[n then ϕ̂(a) ∈]0;N [.

Fig. 2. On the left, studying ϕ̂ on Bn. In the middle, studying ϕ̂ on ]0; 1[n. On the
right, studying ϕ̂ on ∂([0; 1]n).

Proof. It should be noted that, with two variables, the case ii) corresponds to
the first graph on Fig. 2, while iii) corresponds to the second one. For i), let
a ∈ [0; 1]n. If ϕ is a clause, then it can be shown by induction on the length of
the clause that τ(ϕ) ∈ [0; 1]. Then, if ϕ contains N clauses, using equation (5),
it can be shown by induction on the number of clauses that τ(ϕ) ∈ [0;N ]. For
ii), the proof is very similar to i). Let a ∈ Bn. If ϕ is a clause, it can be shown
by induction on the length of the clause that τ(ϕ) ∈ B. Then, if ϕ contains N
clauses, then the transformation through τ of each clauses evaluated in a will be
in B and thus the sum of the N terms being in {0; . . . ;N}. The proof of iii) is
almost identical to ii). 
�

Let us now study the eventuality where there exists a solution to (P ) on
the boundaries of ∂([0; 1]n). Of particular interest is the case where ϕ̂(a) = N ,
a ∈ [0; 1]n but a contains at least one variable that is neither 0 nor 1. This
can be illustrated by the SAT instance ϕ = (a ∨ b) ∧ (¬a ∨ b), which yields
ϕ̂ = (a + b − ab) + ((1 − a) + b − (1 − a)b). This polynomial admits an optimal
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solution at (1/2, 1) ∈ ∂([0; 1]2). However, one can observe that in this case, the
value of a has no impact on the value of ϕ. A solver using the gradient may
notice that ∂ϕ̂/∂a = 0, and thus never change this variable from any value it
was initially set to. More importantly, it should be noted that in this case, both
(0; 1) and (1; 1) are also optimal solutions of ϕ̂. This result corresponds to the
third plot of Fig. 2; as a matter of fact, if ϕ̂ takes the value N on the dot, then
it takes the value N on the whole edge in bold.

Can this observation be generalized to any Boolean formula? It turns out that
the answer is yes. In order to prove it, let us define the function Ψ : [0; 1]n �→
P(Bn) defined for all a ∈ [0; 1]n by Ψ(a) = {x ∈ Bn : ∀i ∈ A(a), xi = ai,∀i /∈
A(a), xi ∈ B}, where A(a) = {i ∈ {1, . . . , n} : ai ∈ B}. Intuitively, given a
non-Boolean solution a, Ψ(a) returns the set of “corners” of the hypercube Bn

adjacent to a. If we use again the third plot of Fig. 2, then the dot has coordinates
(0.25; 1) and Ψ(0.25; 1) = {(0; 1), (1; 1)}. First, we need to prove that the result
is true for a formula containing only one clause.

Proposition 3. Let ϕ be a clause; if there is a ∈ ∂([0; 1]n) such that ϕ̂(a) = 1,
then for all x ∈ Ψ(a), ϕ̂(x) = 1.

Proof. Let k ∈ {1, . . . , n}. We can consider that all the variables are positive
literals in the formula. If not, the one with a negative literal can be redefined
as the opposite of that variable. If needed, it is possible to rename the variables
such that ϕ = a1 ∨ . . . ∨ ak.

We show the result by finite induction on the length of the clause. For k = 1,
then ϕ = a1 and ϕ̂(a) = a1. If, for some a ∈ ∂([0; 1]n), ϕ̂(a) = 1, then a1 = 1;
so, for all x ∈ Ψ(a), a1 = 1. This shows that for all x ∈ Ψ(a), we have that
ϕ̂(x) = 1.

Let k ∈ {1, . . . , n − 1} and let us assume that for any clause of length k, if
a ∈ ∂([0; 1]n) is such that ϕ̂(a) = 1, then for all x ∈ Ψ(a), ϕ̂(x) = 1. Consider a
clause of length k + 1. It can be written ϕ ∨ ak+1 where ϕ is a clause of length
k. So τ(ϕ ∨ ak+1) = τ(ϕ) + τ(ak+1) − τ(ϕ)τ(ak+1). If for some a ∈ ∂([0; 1]n),
τ(ϕ ∨ ak+1)(a) = 1, so necessarily, τ(ϕ)(a) = 1 or τ(ak+1)(a) = 1. In the first
case, by the induction hypothesis, for all x ∈ Ψ(a), τ(ϕ ∨ ak+1)(x) = 1. The
second case is identical to the initial step (k = 1). 
�

Using Proposition 3, the result can now be generalized for logical formulas
which are conjunctions of clauses.

Theorem 1. If ϕ contains N clauses and a ∈ ∂([0; 1]n) is such that ϕ̂(a) = N ,
then for all x ∈ Ψ(a), ϕ̂(x) = N.

Proof. Let a ∈ ∂([0; 1]n) is such that ϕ̂(a) = N . The theorem will be proven
by induction on N ∈ N∗, the number of clauses of ϕ written in CNF. The case
N = 1 is solved with Proposition 3.

Let N ≥ 1 and suppose that, for ϕ containing N clauses, if a ∈ ∂([0; 1]n) is
such that ϕ̂(a) = 1, then for all x ∈ Ψ(a), ϕ̂(x) = 1. Let us define a formula
with N + 1 clauses. It can be written ϕ ∧ C, where ϕ contains N clauses and
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C is a clause. Then τ(ϕ ∧ C) = τ(ϕ) + τ(C). Let a ∈ ∂([0; 1]n) such that
τ(ϕ ∧ C)(a) = N + 1. Then τ(ϕ)(a) + τ(C)(a) = N + 1. Using Property 2, then
necessarily, τ(ϕ)(a) = N and τ(C)(a) = 1. Since C is a clause, by Proposition 3,
for all x ∈ Ψ(a), we have τ(C)(x) = 1. In addition, by the induction hypothesis,
we can assert that for all x ∈ Ψ(a), τ(ϕ)(x) = N . This proves that for all
x ∈ Ψ(a), τ(ϕ ∧ C)(x) = τ(ϕ)(x) + τ(C)(x) = N + 1. 
�

4 From ϕ̂ to ϕ

The previous result is important: it shows that, even when a non-Boolean opti-
mum of ϕ̂ is found, it can be turned into a solution that has only Boolean values
and which is also optimal. It remains to prove that a solution to (P ) can be
used to construct a solution to the original SAT instance. The following theorem
focuses about the case where a solver converges to a solution in Bn.

Theorem 2. For all a ∈ Bn, ϕ(a) = 1 if, and only if, ϕ̂(a) = N .

The proof, very similar to the proof of Proposition 2, is omitted. Theorem 2
is what justifies the transformation of a Boolean formula ϕ to the function τ(ϕ).
Finding a solution of the SAT problem described by ϕ is therefore equivalent to
finding the optimal value (equal to N) of the function ϕ̂.

However, in practice, a numerical solver will typically find a solution a that
does not land perfectly on elements of Bn, but more likely on values very close
to 0 or 1. Likewise, the value taken by ϕ̂ will be a real number close to, but not
equal to N . In such a situation, Theorem 2 does not apply. A natural workaround
would be to round each Boolean value to its nearest integer (0 or 1). To this
end, let us define the “round” function ρ such that ρ(x) = 0 if x < 1/2, and
ρ(x) = 1 otherwise. This function can be lifted to Rn by defining ρ(x1, . . . , xn) =
(ρ(x1), . . . , ρ(xn)).

It is not clear at the onset that taking the round of each variable produces a
solution that is optimal. Case in point, it is well known that in integer program-
ming, rounding a solution after relaxation can lead to an non-optimal solution
[3]. Fortunately, this is not the case with ϕ̂, as we shall prove in Theorem 3.
From this point, ||.|| will be the euclidean norm.

Theorem 3. Let C > 0 be a number that satisfies the Lipschitz condition of ϕ̂
on [0; 1]n, and let â ∈ [0; 1]n. If ϕ̂(â) − C||â − ρ(â)|| > N − 1, then ρ(â) is a
solution of the logical formula ϕ.

Proof. Since ϕ̂ is a polynomial function on a compact set, it is Lipschitz. Let
C > 0 be its Lipschitz constant. Suppose the solver found a solution â ∈ [0; 1]n.
Because ϕ̂ is C-Lipschitz, |ϕ̂(â) − ϕ̂(ρ(â))| ≤ C||â − ρ(â)||, which means that:

ϕ̂(â) − C||â − ρ(â)|| ≤ ϕ̂(ρ(a)) ≤ ϕ̂(â) + C||â − ρ(â)||.
But ρ(â) ∈ Bn, so using Proposition 2.ii) then ϕ̂(ρ(â)) ∈ {0; . . . ;N}. This
means that if ϕ̂(â) − C||â − ρ(â)|| > N − 1, then necessarily ϕ̂(ρ(â)) = N . Thus
it guarantees that ρ(â) is a solution of formula ϕ using Theorem 2. 
�
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The proof of Theorem 3 claims the existence of a Lipschitz constant C with-
out giving its value. However, using the definition of τ (in Definition 1), it is
possible to find a Lipschitz constant of ϕ̂, which depends only on n (the number
of variables) and N (the number of clauses). Lemma 1, which is a consequence
of the mean value theorem with several variables, provides a constant C, which
we then use to prove that ϕ̂ is C-Lipschitz.

Lemma 1. If ϕ̂ is differentiable and C = sup
a∈[0;1]n

||∇ϕ̂(a)||, then ϕ̂ is C-

Lipschitz.

Proposition 4. If ϕ is a CNF Boolean formula containing N clauses depending
of n variables, then ϕ̂ is N

√
n-Lipschitz.

Proof. This proof requires new notations. Consider a clause C where the variable
ai, i ∈ {1; . . . ;n}, appears. We will note C−ai the clause C where ai has been
removed. Also, considering the formula ϕ, we will define Vai

⊆ {1; . . . ;N} the
index of the clauses where ai is a positive literal and Wai

⊆ {1; . . . ;N} the index
of the clauses where ai is a negative literal. By definition of Vai

and Wai
, it can

be observed that for all i ∈ {1; . . . ;N}, |Vai
| + |Wai

| ≤ N .
It can be then shown that for all i ∈ {1, . . . , n} and all a ∈ [0; 1]n,

∂ϕ̂

∂ai
(a) =

∑

k∈Vai

(1 − Ĉ−ai

k (a)) −
∑

k∈Wai

(1 − Ĉ−ai

k (a)).

Then,
∣∣∣ ∂ϕ̂
∂ai

(a)
∣∣∣ ≤

∣∣∣∣∣∣

∑

k∈Vai

(1 − Ĉ−ai

k (a))

∣∣∣∣∣∣
+

∣∣∣∣∣∣

∑

k∈Wai

(1 − Ĉ−ai

k (a))

∣∣∣∣∣∣
≤ |Vai

| + |Wai
|

Hence ||∇ϕ̂(a)||2 ≤
n∑

i=1

(
∂ϕ̂

∂ai
(a)

)2

≤
n∑

i=1

(|Vai
| + |Wai

|)2 ≤
n∑

i=1

N2 ≤ nN2.

By Lemma 1, this means that sup
a∈[0;1]n

||∇ϕ̂(a)|| ≤ N
√

n. 
�

We note that the Lipschitz constant C = N
√

n is elegantly simple, espe-
cially considering the rather complex polynomials produced by τ in practice.
Combining Theorem 3 with Proposition 4 leads to the following proposition:

Proposition 5. If there is â ∈ Bn such that ϕ̂(â) − N
√

n||â − ρ(â)|| > N − 1,
then ρ(â) is a solution of the Boolean formula ϕ.

This result can be used by an iterative numerical solver as a stopping crite-
rion. As soon as a solution â satisfying the condition of Proposition 5 is found,
the solver can stop; there is no point in iterating further to find a better solution,
since we already have the guarantee that ρ(â) is a solution of the SAT instance.
This criterion is specific to the transformation τ we use in this work.
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5 Conclusion

In this work, a reformulation of a SAT instance has been suggested. This trans-
formation leads to an optimization problem where the objective function is a
polynomial function. The link between feasible solutions of the initial SAT prob-
lem and the optimal solution of that reformulation has been made.

As future work, numerical experiments should be performed to test the capac-
ity of this reformulation to solve SAT instances. It is known that in such opti-
mization problems, algorithms using the gradient as a stopping criterion can
converge to local optimums; multi-start solving using Latin hypercubes [2] to
select starting points could help handle that difficulty. In addition, it would be
interesting to combine this reformulation with ideas from other SAT solving
techniques, such as backtracking methods. This would help fixing some values of
the variables. Combining the reformulation with a complete method could help
improve convergence.
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Abstract. We propose a technique to automatically generate a for-
mal specification of the model of a system from a set of observations
of its behaviour. We aim to free systems modellers from the burden of
explicitly formalising the behaviour of an existing system to analyse it.
We take advantage of an algorithm introduced by the process mining
community, which takes as input an event log and generates a formal
specification that can be combined with other specifications to obtain a
global model of the overall behaviour of a system. Specifically, we have
adapted a known process discovery algorithm to produce a specification
in mCRL2, a formal specification language based on process algebras.
The availability of mCRL2 specifications enables us to take advantage
of its rich toolset for verifying systems properties and for effectively rea-
soning over distributed scenarios where multiple organizations interact
to reach common goals. This is an aspect that is not supported by the
approaches based on Petri Nets, usually used for process mining. The
methodology has been integrated in a stand-alone tool and has been
validated using custom-made and real event logs.

1 Introduction

Effective cooperation among organizations requires the compatibility of their
software systems. Such cooperation is better supported by the continuous obser-
vations of systems’ behaviour rather than by sharing documentation that is often
incomplete and out of date [13]. At the same time, the use of automatic tech-
niques for checking a priori whether the observed behaviours of the involved
software systems are compatible reduces the effort of systems integration.

It is worth noticing that different research communities are working on the
definition and implementation of techniques to extract or infer a model from a
set of observations of the system behaviour (usually called log). In the formal
methods community, this task has been carried out mainly by generating finite
state machine models (see, e.g., [13,17,32]), while the business process commu-
nity fosters the use of process mining techniques for generating Petri Nets (see,
e.g., [3,35,38]). Our work aims at bridging the gap between these two communi-
ties and takes as starting point the techniques developed by the process mining
community for the generation of system specifications from logs. However, most
c© Springer Nature Switzerland AG 2020
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Fig. 1. Overview of the PALM methodology.

of the proposed approaches consider only the point of view of a single organi-
zation and do not provide techniques to compositionally derive a specification
of a distributed scenario. To overcome this issue, we rely on techniques from
the process algebra community, to exploit their inherent compositionality and
their large set of analytical tools. This makes it possible to deal with issues of
distributed systems that otherwise could not be considered.

We introduce a novel methodology, called PALM - Process ALgebraic Mining,
and its related software tool, whose aim is obtaining process algebraic specifica-
tions from systems logs via a mining algorithm. The main phases of the method-
ology are described in Figure 1. The starting point is given by logs taken from
components of real world systems; those can be, e.g., logs of an industrial pro-
cess as well as of a client-server network. In the mining step logs are analyzed to
generate a formal specification for each of them, together with a mapping associ-
ating sending/receiving action and with the exchanged messages. The individual
specifications can be exploited for verifying properties of the individual systems,
e.g., by means of model checking techniques. But, more importantly, in case the
logs originate from components of a distributed system, the individual specifi-
cations can be combined, in the aggregation step, to obtain a formal model of
the global system, which again can be analyzed to consider issues originated by
erroneous or unexpected interactions among the components.

Summing up, PALM is a software tool that inputs one or more event logs
and outputs the specification for each log. Additionally, in case of multiple logs
belonging to a distributed system, PALM also outputs the global specification
of the system. We have instantiated the methodology by inputting logs in the
standard XES format and outputting mCRL2 specifications. The rich mCRL2
tool-set, providing equivalence and model checking functionalities, can then be
used for verification. The methodology has been validated by experiments with
both custom-made and real event logs.
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2 Background Notions

Process Mining. Process Mining is a discipline combining data mining, compu-
tational intelligence and process modeling and analysis [4]. Process mining aims
at extracting useful information from event logs for discovering, monitoring and
improving real processes [5]. It is an evidence-based approach, and ensures a
close correspondence between modeled and observed behavior, being the def-
inition of the model based on real process execution traces. This paper deals
exactly with the issue of process discovery to produce a model from an event log
without using any priori information. An event log is a set of cases, while a case
is a sequence of events, that can have attributes to indicate activity name, time,
cost, used resource, etc. Event logs are usually formatted using the eXtensible
Event Stream (XES) standard format [20]. Process discovery is generally based
on an algorithm that produces a model from an event log. Over the years several
mining algorithms have been developed [10], which differ for kind and quality of
the output. In validating our approach we consider three mining algorithms. The
Structured Heuristics Miner [9] first discovers models that are possibly unstruc-
tured and unsound, and then transforms them into structured and sound ones.
The Inductive Miner [26] extracts block-structured process models, called pro-
cess trees, by splitting the logs in smaller pieces and combining them with tree
operators. Finally, the Split Miner [8] aims at identifying combination of split
gateways in order to capture behaviours like concurrency or casual relations,
while filtering the graphs derived by the event logs.

mCRL2. mCRL2 is a formal specification language [19], based on ACP [12],
that, together with its tool-set [15] can be used to describe and analyze concur-
rent systems. The subset of mCRL2 processes used in this paper is generated by
the following grammar:

P :: = a | .i∈IPi | +i∈I Pi | ||i∈IPi | allow(ActSet, P )
| comm(CommSet, P ) | hide(ActSet, P ) | K

where: a denotes an action (including the silent action tau), ActSet denotes a
set of actions; and CommSet denotes a set of communication expressions,
used for renaming of multi-actions (i.e., communicating actions that occur simul-
taneously) to a single action.

In the syntax, .i∈IPi denotes a sequence of processes, +i∈IPi denotes a
choice among processes, ||i∈IPi denotes the parallel composition of pro-
cesses. allow(ActSet, P ) defines the set of actions ActSet that process P can
execute; all other actions, except for tau, are blocked. comm(CommSet, P ) syn-
chronises actions in P according to the communication expressions CommSet;
for example, in comm({a|b -> c}, (a || b)) the parallel actions a and b communi-
cate, yielding action c. hide(ActSet, P ) hides those actions produced by P that
are in ActSet, i.e. it turns these actions into tau actions. K permits to call a
process definition of the form K = P , where K is a unique process identifier.
An mCRL2 specification consists of a main process (identified by the keyword
init) and a collection of process definitions.
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Fig. 2. Running example

Running Example. We illustrate our approach by using, throughout the paper,
a simple travel scenario that is graphically represented, in standard BPMN nota-
tion, in Fig. 2. The running example includes three participants: the customer,
the travel agency and the airline. In the scenario, a customer sends a flight book-
ing to a travel agent and, upon booking confirmation from the agent, pays and
waits for payment confirmation. The travel agent manages in parallel reception
of the payment and ordering the flight ticket to an airline company. The air-
line company evaluates the ticket order and either confirms the payment to the
customer or refunds him.

3 PALM Methodology

In this section, we illustrate the PALM methodology outlined in Fig. 1. In par-
ticular, we describe the mining and the aggregation step.

3.1 Mining

The mining step is the key part of the PALM methodology since it permits
passing from raw data stored in a system log to a formal specification suitable
for analysis. This step consists of three phases: (1) Parsing log data, (2) Mining
tool-independent specification, and (3) Transformation into mCRL2 specification.

Preliminaries. Before going into the details of each phase, we describe the spec-
ification language used for describing the intermediate models produced as out-
put in the second phase. Indeed, although we have fully instantiated our proposal
for generating mCRL2 specifications, we kept the mining process independent
from the final target language, by resorting to a tool-independent description of
the model’s structure. This specification language is based on the typical block
structure operators of workflow models, and relies on the operators defined by
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G. Schimm [31]. The syntax of the block structure language is defined by the
following grammar:

B := a | S{Bi}i∈I | P{Bi}i∈I | C{Bi}i∈I | L{B}

A block structure B is built from task actions a by exploiting operators for
sequential composition (S), imposing an ordered execution of its arguments;
parallel composition (P ), imposing an interleaved execution of its arguments;
exclusive choice (C), imposing the selection of one block out of its arguments;
and loop (L), producing an iterative execution of its argument.

Parsing Log Data. Mining algorithms input an event log and output a model.
As already mentioned in Sect. 2, logs are collections of event-based data orga-
nized as cases. An event has a name and a lifecycle attribute referring to a state
of the transactional lifecycle model of the activity instance producing the event.
In this paper, we refer to a simplified version of the lifecycle, indicating when an
event started and ended using the values ‘start’ and ‘complete’, respectively. We
assume that events with the same name and the same attribute of the lifecycle
correspond to different executions of the same (unique) system activity.

In the parsing phase of our mining process, each case of the log is transformed
into a trace of event names, where the events are ordered according to their
completion defined by the ‘complete’ value of the Lifecycle attribute. In the
(excerpt of the) log in Table 1, concerned with the execution of the Travel Agency
component of our running example, since the event ‘Confirm booking’ starts after
the event ‘Booking received’ has completed, the corresponding trace will include
the subtrace ‘Booking received, Confirm booking’.

Table 1. Excerpt of Travel Agency log

Case Event name Lifecycle

75 Booking received Start

75 Booking received Complete

75 Confirm Booking Start

75 Confirm Booking Complete

75 Payment received Start

75 Order ticket Start

75 Payment received Complete

75 Order ticket Complete

....

Table 2. Excerpt of Airline log

Case Event name Lifecycle

93 Ticket Order Received Start

93 Ticket Order Received Complete

93 Payment refund Start

93 Payment refund Complete

56 Ticket Order Received Start

56 Ticket Order Received Complete

56 Confirm payment Start

56 Confirm payment Complete

....

In this phase, for each trace in the log, we compute a happened-before relation,
which is used in the next phase. This relation takes into account the chronological
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order of events and considers only direct dependencies that are given by the lifecy-
cle of the events (and not by the order in the log). This means that an event e is in
happened-before relation with an event e′ (written e < e′) if the completion of e is
followed by the starting of e′. In Table 1, the happened-before relation of case 75
is {Booking received < Confirm Booking, Confirm Booking < Payment received,
Confirm Booking < Order ticket}. Instead, in Table 2, the happened-before rela-
tion of case 93 is {Ticket Order Received < Payment refund}, while for case 56 it
is {Ticket Order Received < Confirm payment}.

Mining Tool-Independent Specification. This phase is inspired by the algo-
rithm proposed by Schimm [31]. It consists of seven steps, which manipulate the
set of traces in the log to generate the intermediate model described above.
Schimm defined his mining algorithm only in a descriptive way, without provid-
ing any implementation. We extended his work by filling the gaps left underspec-
ified in the original presentation of the algorithm. In particular, we defined and
applied further minimization rules to obtain more compact specifications, and
provided a clear definition of what is a loop and how to detect it. In addition, we
implemented the algorithm we propose, thus leaving no room for ambiguities.

Definition 1 (Loop). Let E be an event log, ρ ∈ E a trace, and hbρ the
happened-before relation of ρ; every loop in ρ starting from event e is identified by
a non-empty set of the form Le = {ρ′ ⊆ ρ | first(ρ′) = e , (last(ρ′) < e) ∈ hbρ},
where ⊆ denotes the subtrace relation, and first(·) and last(·) denote the first
and last event of a trace, respectively.

According to the above definition, a loop is identified in a trace ρ when this
contains at least a subtrace ρ′ such that its last event happened before the first
one. Notably, more than one subtrace starting with the same event can have
this characteristic, depending on the structure of the body of the loop; hence,
all these subtraces are collected together in a set, which will be then analysed
to define the structure corresponding to the body of the loop.

The steps of our mining algorithm are the following:

1st step - Search for loops in: traces, out: traces and sets of subtraces.
All traces retrieved from the log file are analyzed in order to identify possible
loops. When a subtrace is identified as part of a loop, because its last event
is in happened-before relation with the first one (see Definition 1), the sub-
trace is replaced by a reference to the loop and stored in the loop set (as in
Definition 1) to be analysed later. For example, given the log trace abcdcdf ,
after this step we obtain ab0f , where 0 is a reference to the loop set {cd}.
From now on, until step 7, we will deal with loop references as events; hence,
the happened-before relation of each trace with references will be updated
accordingly.
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2nd step - Creation of clusters in: traces, out: traces. Traces with the
same event names and happened-before relations are grouped to form a clus-
ter. This clustering permits reducing the number of traces to process in the
following steps, without affecting the structure of the produced model. For
example, given the two traces abcd and acbd with the same happened-before
relation {a < b, a < c, c < d, b < d}, they are unified in the same cluster.

3rd step - Identification and removal of pseudo-dependencies in:
traces and happened-before relation, out: traces. This step aims at identifying
clustered traces that contain pseudo-dependencies, i.e. precedence dependen-
cies between events that are invalidated by other traces. Specifically, given a
trace ρ1 with two events with a dependency of precedence in the happened-
before relation of the trace, there should not exist another trace ρ2 with the
same event names in which there is not a relation of precedence between the
two events in its happened-before relation. If such other trace ρ2 exists, then
ρ1 contains a pseudo-dependency and, hence, ρ1 is removed from the set of
trace to be passed to the next step. For example, let us consider a trace corre-
sponding to another case of the log in Table 1 such that its happened-before
relation contains the dependency Payment received < Order ticket; this is a
pseudo-dependency because the trace corresponding to the case 75 provides
the proof that this is not a real dependency; thus it will be discarded.

4th step - Model for each cluster in: traces, out: set of coarse block
structure cluster. For every cluster of traces we compute the set P of paths
that can be generated by following the happened-before relation. A path
is a sequence of events e1,. . . ,en, denoted by e1 → . . . → en. Notably, a
path does not represent a trace, but an ordered sequence of events where
each event is in happened-before relation with the next one. Now, every
event e will correspond to a basic action in our block structure represen-
tation. Every path p ∈ P, with p = e1 → . . . → en, is rendered as a
sequence block S{e1, . . . , en} (denoted by S{p} for short). Thus, a set of paths
{p1, . . . , pn} is rendered as a parallel block that embeds the sequence blocks
corresponding to the included paths, i.e. P{S{p1}, ..., S{pn}}. For example,
from the cluster {Booking received, Confirm Booking, Payment received,
Order ticket} obtained by the case 75 in Table 1, with happened-before rela-
tion 〈 Booking received < Confirm Booking, Confirm Booking < Payment
received, Confirm Booking < Order ticket〉, we will obtain the set of paths
P = {Booking received → Confirm Booking → Payment received, Booking
received → Confirm Booking → Order ticket }. The set P will result in the
following block structure: P{S{Booking received, Confirm Booking, Payment
received}, S{Booking received,Confirm Booking,Order ticket}}.

5th step - Unify all block structures in: set of coarse block structures, out:
(single) coarse block structure. All blocks B1,. . . ,Bn obtained in the previous
step are gathered in a single block using the choice operator: C{B1, ..., Bn}.
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6th step - Restructuring the model input: coarse block structure, out-
put: block structure. The structure obtained from the previous step does not
represent yet a model of the system behaviour; it is still defined in terms of
events rather than actions. For example, the same event name may appear
many times in the model, since it has been generated starting from different
cases in the log, but it has to correspond to a single action of the model; such
events should be merged into a single one. To this aim, we apply the following
transformation rules (the symbol � represents a unidirectional transforma-
tion from a block structure term to another) up to commutativity of parallel
and choice operators:

S{B} � B C{B} � B P{B} � B
P{S{e, e1, . . . , en}, . . . , S{e, e′

1, . . . , e
′
m}} � S{e, P{S{e1, . . . , en}, . . . , S{e′

1, . . . , e
′
m}}}

P{S{e1, . . . , en, e}, . . . , S{e′
1, . . . , e

′
m, e}} � S{P{S{e1, . . . , en}, . . . , S{e′

1, . . . , e
′
m}}, e}

C{S{e, e1, . . . , en}, . . . , S{e, e′
1, . . . , e

′
m}} � S{e, C{S{e1, . . . , en}, . . . , S{e′

1, . . . , e
′
m}}}

C{S{e1, . . . , en, e}, . . . , S{e′
1, . . . , e

′
m, e}} � S{C{S{e1, . . . , en}, . . . , S{e′

1, . . . , e
′
m}}, e}

The rules are syntax driven; in the implementation the rules are applied
from the top block-structure to each child recursively, from left to right. As
an example, by applying these rules to the block C{P{S{Booking received,
Confirm Booking, Payment received}, S{Booking received,Confirm Book-
ing,Order ticket}}} we obtain the block S{Booking received, Confirm Book-
ing, P{Payment received,Order ticket}}.

7th step - Replacing loop references in: loop sets, out: block structure.
In this step, we run the algorithm again over the traces in the loop sets. In
this way, we obtain a block structure B for each loop set; the term L{B} will
then replace all occurrences of the corresponding reference. For example, the
trace shown in the first step results in the block S{a, b, 0, f}, that after this
step becomes S{a, b, L{S{c, d}}, f}.

Technical details concerning each step of the mining algorithm can be found
in the companion technical report [11], which provides comments to the source
code of the implementation [2].

Transformation into mCRL2 Specification. The previous phase output is
a block structure specification that is independent of a specific analysis tool.
This choice makes the mining process flexible to be extended to produce specifi-
cations written in different languages, to exploit different process algebras based
techniques and tools. Here, to demonstrate feasibility and effectiveness of our
proposal, we have targeted the methodology to mCRL2 specifications.

To obtain an mCRL2 specification, we defined a function T : B → (P×P(D)),
where B is the set of block structures, P is the set of mCRL2 processes, D is
the set of mCRL2 process definitions, and P(D) denotes the powerset of D.
Intuitively, the transformation function inputs a block structure and outputs a
pair composed of a mCRL2 process and a related set of process definitions. The
function definition uses auxiliary projection operator ↓i, with i ∈ {1, 2}, that
given a pair 〈P,D〉, with P ∈ P and D ⊆ D, returns the i-th element of the pair,
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i.e. 〈P,D〉 ↓1= P and 〈P,D〉 ↓2= D. Formally, function T is defined inductively
on the syntax of block structures as follows:

T (a) = 〈a, ∅〉
T (S{Bi}i∈I) = 〈.i∈IT (Bi) ↓1,

⋃
i∈I T (Bi) ↓2〉

T (C{Bi}i∈I) = 〈+i∈IT (Bi) ↓1,
⋃

i∈I T (Bi) ↓2〉
T (P{Bi}i∈I) = 〈||i∈IT (Bi) ↓1,

⋃
i∈I T (Bi) ↓2〉

T (L{B}) = 〈K, {K = (T (B) ↓1 .K + T (B) ↓1)} ∪ T (B) ↓2〉 with K fresh

Actions are straightforwardly transformed into mCRL2 actions, without produc-
ing any process definition. Each block-structure operator, except for the loop one,
is rendered in terms of the corresponding mCRL2 operator: S as ., C as +, and P
as ||. Thus, a sequential composition of blocks is transformed into a pair, where
the first element is a sequential composition of the processes resulting from the
transformation of each inner block, and the second element is the set given by
the union of the process definitions resulting from the transformation of each
inner block. The transformation of choice and parallel composition is similar.
Instead, a loop structure is rendered as a pair whose first element is a process
call with a fresh identifier K and second element is the union of the recursive
definition of K with the process definitions resulting from the transformation of
the inner block. The definition of K is given in terms of the process resulting
from the transformation of the block occurring as body of the loop; it ensures
the execution of at least one iteration of the body.

A pair 〈P, {K1 = P1, . . . ,Kn = Pn}〉 produced by T corresponds to the
following mCRL2 specification (we use notation act(·) to indicate the actions
occurring within a term of a specification):
act
act(P ) , act(P1) , . . . , act(Pn) ;
proc
K=P ; K1=P1 ; . . . ; Kn=Pn ;
i n i t K ;

Example 1. If we apply the T function to the block structure resulting from
the log in Table 1 (since the example does not contain loops, for the sake of
readability we omit the second element of the pair generated from T ):

T (S{Booking received,Confirm Booking, P{Payment received,Order Ticket}})
= Booking received.Confirm Booking.( Payment received || Order Ticket)

From the block structure resulting from the log in Table 2 we obtain:

T (S{Ticket Order Received,C{Payment Refund,Confirm payment}})
= Ticket Order Received.(Payment refund + Confirm payment)

Using the transformation function T we have obtained an mCRL2 pro-
cess specification well defined from the process algebraic point of view, i.e. it
respects the syntax of the mCRL2 language given in Sect. 2. However, in this
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Tp(a) = a

Tp(.i∈IPi) = Tseq(.i∈ITp(Pi))

Tp(+i∈IPi) = Tch(+i∈ITp(Pi))

Tp(||i∈IPi) = ||i∈ITp(Pi)

Tp(K) = K

Tseq(.i∈{1,...,n}Pi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tseq (.i∈{1,...,j−1}Pi).t.Q1.t.(.h∈{j+1,...,n}Ph)
)
||

||m∈M\{1}t.Qm.t

with addComm(t(|t)|M|−1 → t′),

addAllow(t′), addHide(t′)

if ∃j ∈ I :

Pj= ||m∈MQm

∧ t and t′ fresh

.i∈{1,...,n}Pi otherwise

Tch(+i∈IPi) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tch (+i∈I\{j}ti.Pi.ti) + t.Q1.t
)
||

||m∈M\{1}((+h∈I\{j}th.th) + t.Qm.t)

with addComm({t(|t)|M|−1 → t′}
∪ {ti(|ti)|M|−1 → t′ | i ∈ I \ {j}}),

addAllow(t′), addHide(t′)

if ∃j ∈ I :

Pj= ||m∈MQm

∧ t fresh

∧ ∀i∈I\{j}ti fresh

+i∈IPi otherwise

Fig. 3. Definition of function Tp (and related auxiliary functions).

actual form the specification cannot be used as input for the analysis tools pro-
vided by the mCRL2 toolset. Indeed, these tools require the mCRL2 specifi-
cation to also respect the pCRL format [29], where parallel, communication,
renaming and hiding operators must be positioned at top level. Therefore, we
have defined another function, Tp, to transform a process specification produced
by T (possibly with parallel operator at any level of nesting, and not using
communication, renaming and hiding operators) into an equivalent one in the
pCRL format. Formally, Tp takes as input a pair 〈P,D〉 and returns a tuple
〈P ′,D′, CommSet,AllowSet,HideSet〉, where P ′ and D′ are a process and a
set of process definitions where the parallel operator is moved at top level,
while CommSet, AllowSet and HideSet are sets of communication expressions,
allowed actions and hidden actions, respectively. Intuitively, to move nested par-
allel processes to the top level, the Tp function uses additional synchronization
actions that permit to properly activate the moved processes and to signal their
termination. These added actions are forced to communicate and the actions
resulting from their synchronizations are hidden.

For the sake of presentation, to avoid dealing with projections and other
technicalities concerning tuples, we provide in Fig. 3 a simplified definition of
Tp in which we do not explicitly represent the sets of communication expres-
sions, allowed actions and hidden actions; such sets are indeed populated (in a
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programming style) by means of functions addComm, addAllow and addHide,
respectively. The sets CommSet and HideSet are instantiated to ∅, while the set
AllowSet is instantiated to the set of all actions of the process and the process
definitions to be transformed. We use t, ti and th to denote the synchronisation
actions. In case of process definitions, it is not sufficient to move the parallel
operator at top level of the process occurring as body; the operator has to be
removed by expanding the term according to the interleaving semantics of the
operator (like CCS’s expansion law [27, Sect. 3.3]). Specifically, a process defini-
tion K = P is transformed into K = Td(P ), where the auxiliary function Td is
defined as follows:

Td(a) = a Td(.i∈IPi) = .i∈ITd(Pi) Td(+i∈IPi) = +i∈ITd(Pi)
Td(||i∈IPi) = +s∈(

⋃
i∈I seq(Td(Pi)))s Td(K) = K

with function seq(P ) returning the set of all sequences of actions/calls of P .
With Tseq, each process in the parallel block is surrounded by a pair of

synchronization actions (t and t) that communicate only after the execution
of the sequence preceding the parallel process. For example, a.(b||c) turns
into allow({t′, a, b, c}, comm({t|t → t′}, a.t.b.t||t.c.t)). With Tch we surround
each process in the choice with a pair of synchronization actions that are
used in the resulting process to preserve the choice in each process inside it.
For example, a + (b||c) turns into allow({t′, a, b, c}, comm({t|t → t′, t1|t1 →
t′}, t.a.t + t1.b.t1||t.t + t1.c.t1)). Just one between a and b||c can be executed,
thanks to the synchronization actions (t and t1).

Example 2. We apply function Tp to 〈P, ∅〉, where P is the first mCRL2 process
produced in Example 1 (the second one does not contain the parallel operator).
We obtain Tp(〈P, ∅〉) = 〈Tp(P ), ∅, CommSet,AllowSet,HideSet〉, where:

Tp(P ) = Tseq(Tp(Booking received).Tp(Confirm Booking).
(Tp(Payment received)||Tp(Order Ticket)))

= Tseq(Booking received.Confirm Booking.(Payment received||Order ticket))
= Booking received.Confirm Booking.t.Payment received.t||t.Order Ticket.t
AllowSet = {t′, Booking received, Confirm Booking, Payment received,

Order Ticket}
CommSet = {t|t → t′} HideSet = {t′}

Thus, a tuple 〈P, {K1 = P1, . . . ,Kn = Pn}, CommSet,AllowSet,HideSet〉
produced by Tp corresponds to the following mCRL2 specification:
act
act(AllowSet) , act(CommSet) ;
proc
K=P ; K1=P1 ; . . . ; Kn=Pn ;
i n i t h ide (HideSet , a l low (AllowSet ,comm(CommSet ,K ) ) ) ;

3.2 Aggregation

In this step, the specifications obtained from the logs of components of a dis-
tributed system can be combined to obtain an aggregate specification of the
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overall system. This allows one to focus analysis on the overall behaviour of
a system resulting from the message-based interactions among its components.
This step takes advantage of the parallel composition operators that enable
channel-based communication, to obtain the specification of the full system.

To enable the aggregation step, it is necessary to extract from the logs the
information concerning message exchanges. This information is specified in the
events stored in XES logs by specific attributes indicating input and output
messages. Below, we report the XES code corresponding to an event associated
to the ‘Booking received’ task, which receives a ‘travel’ message:
<event>

<s t r i n g key=”concept:name” value=”Booking r e c e i v ed”/>
<s t r i n g key=”input message ” value=”t r a v e l ”/>
<s t r i n g key=” l i f e c y c l e : t r a n s i t i o n ” value=”s t a r t ”/>
<date key=”time:t imestamp” value=”2020−07−01T01:03:10+01:00”/>

</event>

Information about message exchanges is extracted from the logs during the
parsing phase, and is made available to the aggregation step in terms of two
partial functions: Minp (resp. Mout) takes as input an event name and returns
the name of the received (resp. sent) message, if any.

We define how an aggregate specification is obtained below; we use notation
cod(·) to indicate the codomain of a function.

Definition 2 (Aggregation). Let 〈Pi,Di, CommSeti, AllowSeti,HideSeti〉,
with i ∈ I = {1, . . . n}, be specification tuples obtained at the mining step, and
Minp and Mout be input and output message functions; the sets defining their
aggregate specification are as follows:

– Acti = act(Pi) ∪ act(Di), with i ∈ I;
– Actagg =

⋃
i∈I(Acti ∪ act(CommSeti)) ∪ cod(Minp) ∪ cod(Mout);

– CommSetagg =
⋃

i∈I CommSeti ∪

{a1|a2 → m | a1 ∈ Acti, a2 ∈ Actj , i 
= j, Minp(a1) = Mout(a2) = m};

– AllowSetagg =
⋃

i∈I AllowSeti ∪ cod(Minp) ∪ cod(Mout) \

{a1, a2 | a1 ∈ Acti, a2 ∈ Actj , i 
= j, Minp(a1) = Mout(a2)};

– HideSetagg =
⋃

i∈I HideSeti.

Hence, the corresponding aggregate specification is:

act
Actagg

proc
K1=P1 ; . . . ; Kn=Pn ; D1 ; . . . ; Dn

i n i t h ide (HideSetagg , a l low (AllowSetagg ,comm(CommSetagg ,K1 | | . . . | | Kn ) ) ) ;

Every time two events correspond to a message exchange between two tasks, the
communication is described as a synchronization of actions, which results in an
action named with the message name.

We conclude with a simple example aiming at clarifying the aggregation step;
a richer example based on the running scenario is provided in the next section.
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Example 3. Let us consider a simple collaborating scenario where one participant
sends a message m1 and then waits for a series of messages m2; on the other
side, after receiving m1, the participant decides either to perform an internal
activity and stop, or to perform a different internal activity and send a series
of messages m2. This behaviour is captured by the mining step in terms of the
following specification tuples:

〈a.K1, {K1 = (b.K1 + b)}, ∅, {a, b}, ∅〉
〈c.(d + (e.K2)), {K2 = (f.K2 + f)}, ∅, {c, d, e, f}, ∅〉

where the second components of the tuples are sets of process definitions. The
functions providing the messages information extracted from the logs are defined
by the following cases: Mout(a) = m1, Mout(f) = m2, Minp(c) = m1, and
Minp(b) = m2. Now, the sets defining the corresponding aggregate specification
are defined as follows:

Actagg = {a, b} ∪ {c, d, e, f} ∪ {m1,m2} CommSetagg = {a|c → m1, f |b → m2}
AllowSetagg = Actagg \ {a, c, f, b} = {d, e,m1,m2} HideSetagg = ∅

The resulting aggregate specification is as follows:

act
a, b, c, d, e, f, m1, m2
proc
K3=a.K1 ; K4=c.(d + (e.K2)) ; K1 = (b.K1 + b) ; K2 = (f.K2 + f)
i n i t a l low ({d, e, m1, m2} ,comm({a|c → m1, f |b → m2} ,K3 | | K4 ) ) ;

where the hide command is omitted since the hiding set is empty.

4 PALM at Work

The PALM methodology has been implemented as a command-line Java tool,
called PALM as well, whose source and binary code is available on GitHub [2].

The tool enables us to analyse both the specification resulting from a single
event log and the aggregate specification resulting from multiple logs. It provides
the verification of deadlock freedom and of custom formulas and also function-
alities to support the validation illustrated in Sect. 5, such as the computation
of the fitness measure to analyze the quality of the obtained specifications, and
the transformation into the mCRL2 language of the models produced by other
process mining algorithms, to compare their outcome with the specifications
produced by PALM. In addition, to keep the state space of the produced specifi-
cations manageable for the analysis, the tool allows users to set a loop threshold
parameter, which is used during the generation of the mCRL2 specification to
decide whether to unfold a loop or to represent it as a process definition. Such
a decision is taken by comparing the value of this parameter with the frequency
value computed for each loop in the block structure specification. The loop fre-
quency measures the weight of a loop considering how many times this loop
appears in the log and its length. This value ranges between 0 to 100, where 100
means that the loop has high relevance in the log, i.e. every trace in the log is
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produced by the loop, while 0 means that the loop’s events do not appear in the
log. Thus, if t is the frequency threshold chosen by the user, the PALM tool will
write as recursive processes only those loops that have frequency greater than
or equal to t, while all the other loops are unfolded according to their frequency.
Loop frequency is computed as follows.

Definition 3 (Loop frequency). Given a loop l and a set {ci}i∈I of cases of
a log, the frequency of the loop is computed as follows:

floop(l, {ci}i∈I) =
(∑

i∈I floop(l, ci)
ncases

+
ncases × 100

|I|

)

/2

where l is the loop, ncases is the number of cases in {ci}i∈I in which l is present.
The frequency over a single case is computed as follows:

floop(l, c) = occ(l, c) × |l| / |c| × 100

where occ(l, c) returns the number of occurrences of the loop l in c, while |c|
(resp. |l|) returns the length of c (resp. l).

We conclude the section with the application of the PALM methodology and
its tool to our running example.

Example 4. Let us first consider the mCRL2 process specifications obtained (sep-
arately) from the event logs corresponding to each participant of our running
example (i.e., Customer, Travel agency and Airline). They correspond to pro-
cesses P0, P1 and P2 in Listing 1.1 (their full mCRL2 specifications are reported
in [11]). When these specifications are analysed with mCRL2 tools, the individ-
ual process behaves as expected (e.g., no deadlock occurs1 - all states of the
transition system corresponding to the specification have outgoing transitions).
However, since they are specifications of components of a single distributed sys-
tem, it is important to check also their aggregate specification in Listing 1.1.

act

Confirmpayment , BookTravel , Bookingrece ived , Paymentreceived , Paymentrefund ,

Bookingconfirmed , ConfirmBooking , conf i rmat ion , Ordert i cket ,

TicketOrderReceived , PayTravel , t , Paymentconf irmationreceived , payment ,

payment confirmation , t0 , order , t r a v e l ;

proc

P0=(TicketOrderReceived . ( Paymentrefund+Confirmpayment ) ) ;

P1=(BookTravel . Bookingconfirmed . PayTravel . Paymentconf i rmat ionrece ived ) ;

P2=(( Bookingrece ived . ConfirmBooking . t0 . Paymentreceived . t0 )

| | ( t0 . Order t i cke t . t0 ) ) ;

i n i t hide ({ t } , a l low ({Paymentrefund , conf i rmat ion , t , payment ,

payment confirmation , order , t r a v e l } ,comm({ Bookingrece ived | BookTravel−>t rave l ,

Confirmpayment | Paymentconfirmationreceived−>payment confirmation ,

Order t i cke t | TicketOrderReceived−>order , PayTravel | Paymentreceived−>payment ,

Bookingconfirmed | ConfirmBooking−>conf i rmat ion , t0 | t0−>t } ,P0 | |P1 | |P2) ) ) ;

Listing 1.1. mCRL2 aggregate specification of the running example.

1 In the deadlock checking, the mCRL2 tool is not able to distinguish between a
correct termination and an actual deadlock. Anyway, since the Terminate action is
appended to each correct termination, we can solve this issue by resorting to the
model checking of the logical formula [!Terminate∗] < true > true.
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The fact that the Customer will wait forever to receive the payment confirmation
if the Airlane has to refund the payment (see Fig. 2) is observable only having the
overall specification, since when analyzed separately there is no communication
between the participants. Using one of the mCRL2 checking functionality, we do
detect a deadlock. Interestingly, the tool, in case of deadlock, offers a counterex-
ample trace, i.e. the ordered sequence of actions that leads to the deadlocked
state. In our example, it reports a trace where the customer has paid for the
travel, the order is sent by the travel agency to the airline company, but the
latter takes the “Payment refund” choice and the customer process waits forever
the “payment confirmation” message.

5 Validation

In this section, we report the results of the experiments we carried out to validate
the PALM methodology and the related tool, considering both logs synthetically
generated using PLG2 [16] and logs from a real scenarios [1].

Validation Overview. For validation we compare the results of the exper-
iments conducted with PALM against those obtained by using three well-
known process mining discovery algorithms, i.e. Inductive Miner (IM), Struc-
tured Heuristic Miner (S-HM), and Split Miner (SM), supported by the TKDE
Benchmark tool discussed in [10]. We consider these algorithms since they per-
form quite well in terms of mining time and, also, perform better than others
in terms of quality measures [10]. Our comparison is based on a revised ver-
sion of the fitness quality measure used in process mining to evaluate discovery
algorithms [14,30]. Like the original fitness measure, our notion also aims at
measuring the proportion of behaviour in the event log that is in accordance
with the model but does this differently by taking advantage from the model
checking technique enabled by our process algebraic specifications. For this rea-
son, we refer to it as model checking-based fitness. In this paper we focus on
fitness since it is the measure most considered in the literature; we leave as
future investigation the introduction of other quality measures from the process
mining field, namely precision and generalization.

Definition 4 (Model Checking-based fitness). Let C be the set of cases of
a log and S be an mCRL2 specification, the Model Checking-based fitness (MC-
fitness) measures the ability of the specification S to satisfy the formulas fc such
that c = [e1, ..., en] ∈ C and fc = <tau∗.e1.tau∗. · · · .tau∗.en.tau∗>true. The
MC-fitness is computed as follows:

MC-fitness(C,S) = |{fc | c ∈ C , S |= fc}| / |C|

where S |= fc indicates that the formula fc is satisfied by the specification S.

Notably, fc is a formula describing the case of a log, where each case event is
surrounded by an unbounded numbers of silent actions. Formulas are verified
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Fig. 4. Transformation steps required by the PALM validation.

using mCRL2 model checker. The values of MC-fitness range from 1 and 0, with
1 meaning that every formula can be satisfied, and 0 that none of them can.

Validation has been also enriched by checking equivalence of process models
resulting from the PALM technique and those obtained from the three pro-
cess mining algorithms. The considered equivalences are those supported by the
mCRL2 tool: strong bisimilarity, weak bisimilarity, trace equivalence, weak trace
equivalence, branching bisimilarity, strong simulation and divergence preserving
branching bisimilarity [24]. This part of the validation is interesting because it
permits to detect those situations where two techniques have with similar fitness
values but yield different models from the behavioural point of view (i.e., they
are not equivalent up to any equivalence relation).

Validation Set-Up. Figure 4 describes the preparatory steps needed for com-
paring two different kinds of models, i.e. a process algebra specification with a
BPMN model. To make such comparison, We resort to a common specification
model, that is LPS (Linear Process Specifications) and transform the BPMN
models, obtained by executing the three considered process mining algorithms
via the TKDE tool [10] according to the following steps. We then use ProM [34],
a well-established framework that supports a wide variety of process mining
techniques; in particular we use two of its plug-ins, namely “Convert BPMN
diagram to Petri net” and “Construct coverability graph of a Petri net”. The
BPMN models are first transformed into Petri Nets, and then their Coverability
Graphs (CGs) is obtained from which it is straightforward to obtain a mCRL2
specifications (Definition 5). mCRL2 specifications are given as input to the
appropriate mCRL2 tool to be transformed into LPS, which can be used to
calculate the MC-fitness and run conformance checking.

Definition 5 (From Coverability Graph to mCRL2). Let 〈E,M〉 be a
coverability graph, where E is the set of edges of the form <v, l, v′> with v, v′ ∈
V , l ∈ L, while M ⊆ V is the initial marking. V is the set of vertices and L is
the set of labels. The corresponding mCRL2 specification is as follows:

act
L
proc
{Kv = l1.Kv1 + · · · + lk.Kvk

| < v, l1, v1 >, . . . , < v, lk, vk > ∈ E}
∪ {Kv =de l t a | � ∃ < v, l, v′ >∈ E}
i n i t | | {Kv | v ∈ M} ;
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where delta is the special mCRL2 process that cannot perform anything, and
||{Ki}i∈{1,...,n} denotes the term K1|| . . . ||Kn.

Validation Results. Table 3 summarizes the validation that we ran over three
synthetically generated event logs (whose generating models are publicly avail-
able in [2]) and six real-life event logs. All the synthetic logs (log1, log2, log3)
are built out of 1000 cases that mix parallel and choice behaviours. Specifically,
log1 is generated by a BPMN model with two XOR gateways (split and join)
and with six tasks, while log2 is generated by a model with four gateways (XOR
and AND with split and join) and nine tasks. Differently, log3 is generated by a
model with eight gateways (six XOR, two AND split and join), fourteen tasks
and also include two loops. The real-life logs (rlog1, rlog2, rlog3, rlog4, rlog5,
rlog6) refer to activities of daily living performed by several individuals and col-
lected by using sensors. The logs can be retrieved online [2] as an extraction of
what data.4tu makes available2.

All logs are given as input to PALM and to the other discovery algorithms.
For each of them, we register the mining time to generate the specification (in
seconds), and the value of the MC-fitness. We also calculate if there exists an
equivalence relation between the model generated by PALM and the ones gen-
erated by IM, sHM and SM. In the discovery algorithm column, for the rows
related to PALM, we also specify the loop frequency values (defined in 3), i.e.
90, 50 and 0. The symbol − used in the Table 3 means that the value of that
cell does not need to be computed, while the value N.C. means that we tried to
calculate it but a timeout expired.

According to our experimentation, PALM behaves quite well with the syn-
thetic logs. In particular, the application of the PALM methodology to log1
returns an MC-fitness equal to 1. When comparing the three models generated
by PALM (with different threshold) and those obtained from the same log by
the other algorithms, we can observe that weak-trace equivalence is satisfied.
This means that all resulting models can produce the same cases, possibly with
a different number of silent actions. Considering log2, the comparison does not
change much, apart from the observed equivalence. In this case, even if we obtain
the same value for the MC-fitness, the models are not equivalent up to any of the
considered relations. This is because the generated models can reproduce cases
not included in the current log. For the log3, instead, we do not have a perfect
MC-fitness value; this is probably due to the difficulty to properly identify those
situations where there is a choice between performing a task and skipping it. For
example, let abc and ac be two traces, b can be either performed or skipped.

The experiments with real logs confirm that there is no equivalence relation
according to which the four models are equivalent, but we have quite different
results for fitness. Since fitness values are so different from each other, it is
straightforward that no equivalence exists between the generated models. Hence,
let us focus more on the fitness results. PALM generates from logs rlog1 and
2 https://data.4tu.nl/articles/dataset/Activities of daily living of several individuals/

12674873.

https://data.4tu.nl/articles/dataset/Activities_of_daily_living_of_several_individuals/12674873
https://data.4tu.nl/articles/dataset/Activities_of_daily_living_of_several_individuals/12674873


414 S. Belluccini et al.

Table 3. Results of the PALM Validation.

Model

Name

Discovery

Algorithm

Mining

Time (s)

MC

Fitness
Equiv.

log1

PALM

90

50

0

�1 1 –

�1 1 –

�1 1 –

IM 59,2 1 Weak-trace

sHM 88,2 1 Weak-trace

SM 12,4 1 Weak-trace

log2

PALM

90

50

0

�1 1 –

�1 1 –

�1 1 –

IM 101,2 1 None

sHM 163,4 1 None

SM 24,4 1 None

log3

PALM

90

50

0

�1 0,87 –

�1 0,87 –

�1 0,87 –

IM 127,4 0,99 None

sHM 129 0,99 None

SM 23,8 1 None

Model

Name

Discovery

Algorithm

Mining

Time (s)

MC

Fitness
Equiv.

rlog1

PALM

90

50

0

9,5 0,5 -

4,96 0,5 –

�1 0,6 –

IM 21 1 None

sHM 73,2 0 None

SM 42,6 N.C. N.C.

rlog2

PALM

90

50

0

�1 0,4 –

�1 0,4 –

�1 0,4 –

IM 16,4 N.C. N.C.

sHM 154 0 None

SM 59,6 N.C. N.C.

rlog3

PALM

90

50

0

�1 0,66 –

�1 0,66 –

3 N.C. –

IM 23,2 1 None

sHM 41 0 None

SM 22,7 N.C. N.C.

rlog4

PALM

90

50

0

�1 0,85 –

�1 0,85 –

�1 0,85 –

IM 6,4 1 None

sHM 43,8 0,28 None

SM 53,6 0,57 None

rlog5

PALM

90

50

0

�1 0,71 –

�1 0,85 –

�1 0,85 –

IM 6,4 N.C. N.C.

sHM 56,4 0,71 None

SM 23,0 0,42 None

rlog6

PALM

90

50

0

�1 0,77 –

�1 0,83 –

�1 N.C –

IM 27,6 1 None

sHM 70 0 None

SM 18,8 0,22 None
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rlog2 two specifications with a value of fitness not high, which anyway is in line
with the other discovery algorithms (actually, the sHM algorithm generates a
model that is not able to reproduce any case in the log). Logs rlog3 and rlog6
show the importance of the loop frequency threshold parameter for real logs,
where the number of loops makes the state space to explode. Unfolding the ‘less
important’ loops, i.e. the one with a low loop frequency, allows us to complete the
analysis over specifications, which otherwise requires too much time (the timeout
to compute the fitness value of rlog3 and rlog6 with 0 as threshold expired). For
logs rlog4 and rlog5, our mining tool performs better than the others, as the
specifications generated by PALM are able to reproduce most of the cases in
the logs, while in rlog1, rlog3 and rlog6 IM outperforms PALM and the other
algorithms in terms of MC fitness. In terms of time for generating the models,
PALM always outperforms all the other algorithms.

6 Related Works

In the literature, there are other works that pursuit the goal of generating models
from a set of observations. Such research topic is investigated by both the process
mining community and the engineering and formal method community.

From the process mining perspective, several discovery techniques (see, e.g.,
[3,8,9,26,37]) use event logs to generate process models with a particular focus
on the single organization and with the goal of continuously supporting organi-
zational improvement. Even the used specification languages, i.e. Petri Net or
Process Tree, reveal that they do not focus on distribution and communication
aspects. Indeed, both these languages have difficulties in composing distributed
behaviours. Even when the considered target language is BPMN, which is able
to describe distributed scenarios via collaboration diagrams, they still focus on
individual processes.

Instead, the engineering and formal method communities focuses on gener-
ating finite state machines (FSM) or graph models. They are used to provide
program comprehension, test case generation, and model checking. In [13], for
example, a communicating FSM is generated from a log of system executions
enhanced with time vectors. Although model checking facilities over the models
are available via the McScM tool, an automatic way to compose the models
generated from different logs is not provided. In [25], message sequence graphs
are mined from logs of distributed systems; these models are used for program
comprehension, since they provides an higher-level view of the system behav-
ior and no verification technique is mentioned to analyze the obtained models.
The authors of [32] exploit an idea close to our work, presenting an algorithm
to construct the overall model of a system by composing models of its compo-
nents. The main difference with respect to our work is that they infer a model
by analizying a list of log messages, knowing a priori the architecture depen-
dencies among the components of the distributed system. The output of this
inference process is a FSM. The work focusses on the scalibility problem of large
systems, while no mention to verification techniques is given. Other techniques,
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like the one proposed in [18], focus on building decision trees from message logs
to detect possible failures in the system. Another closely related line of research
concerns automata learning; the aim is to construct an automaton by providing
inputs to a system and observing the corresponding outputs [33]. In this context,
there are two types of learning: active and passive. In the former one (see, e.g.,
[6,7,23]), experiments are carried out over the system, while the latter one (see,
e.g., [21,22,28,36]) is based on generated runs (i.e., logs). Our approach differs
from the ones proposed by the automata learning community for the input and
the output of the process: we consider as input logs, instead of automaton or
traces, and we produce as output a process algebraic specification (in partic-
ular, a mCRL2 specification) instead of automata (FSM, state diagrams, I/O
automata, etc.). Anyway, tailoring of the automata learning techniques to pro-
cess algebraic specification mining, and vice versa, certainly deserves an in-depth
investigation.

7 Conclusions and Future Work

This work proposes a technique to automatically generate the model of a sys-
tem behaviour from a set of observations. In particular, being inspired by the
results achieved by the process mining community, the proposed technique takes
as input the event logs of a distributed system and produces, in a composi-
tional way, a formal specification of the overall behaviour of the system in the
mCRL2 language. This enables us to take advantage of the mCRL2 toolset for
formal verification, aiming at detecting issues that may arise in a distributed
scenario where multiple organizations interact to reach a common goal. The
proposed methodology is supported by a software tool and has been validated
using custom-made and real event logs.

In the future, we want to investigate how to improve in our mining algorithm
the capability of detecting the choice between performing an action and skipping
it, and we plan to extend the target language of the PALM methodology with
data and time features to generate richer specifications. Of course, these kinds of
information must be present in the input logs. Moreover, since the intermediate
block structure that is generated in the mining step allows the PALM approach to
be extended with other process algebras, we plan to investigate these extensions
starting from the CCS and TCCS process algebras and the Caal tool supporting
them. In this paper we do not give any correctness criteria with respect to the
transformation to pCRL format. In particular, we did not study what properties
are preserved by the transformation. In the future, we intend to formally study
whether and which behavioural equivalences are preserved. We would also like
to extend our work about equivalence checking also to other algorithms, to have
a complete scenario about the validation. Finally, we want to improve the repli-
cation of the validation experiments, which currently is only partially supported
by the application, by integrating the TDKE Benchmark and the ProM plug-ins
to generate the BPMN models and consequently the Petri Nets and Coverability
graphs.
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Abstract. The theory of Communicating Sequential Processes going
back to Hoare and Roscoe is still today one of the reference theories for
concurrent specification and computing. In 1997, a first formalization in
Isabelle/HOL of the denotational semantics of the Failure/Divergence
Model of CSP was undertaken; in particular, this model can cope with
infinite alphabets, in contrast to model-checking approaches limited to
finite ones. In this paper, we extend this theory to a significant degree
by taking advantage of more powerful automation of modern Isabelle
version, which came even closer to recent developments in the semantic
foundation of CSP.

More importantly, we use this formal development to analyse a fam-
ily of refinement notions, comprising classic and new ones. This anal-
ysis enabled us to derive a number of properties that allow to deepen
the understanding of these notions, in particular with respect to speci-
fication decomposition principles in the infinite case. Better definitions
allow to clarify a number of obscure points in the classical literature,
for example concerning the relationship between deadlock- and livelock-
freeness. As a result, we have a modern environment for formal proofs
of concurrent systems that allow to combine general infinite processes
with locally finite ones in a logically safe way. We demonstrate a number
of verification-techniques for classical, generalized examples: The Copy-
Buffer and Dijkstra’s Dining Philosopher Problem of an arbitrary size.

Keywords: Process-algebra · Concurrency · Computational models

1 Introduction

Communicating Sequential Processes (CSP) is a language to specify and verify
patterns of interaction of concurrent systems. Together with CCS and LOTOS,
it belongs to the family of process algebras. CSP’s rich theory comprises deno-
tational, operational and algebraic semantic facets and has influenced program-
ming languages such as Limbo, Crystal, Clojure and most notably Golang [15].
CSP has been applied in industry as a tool for specifying and verifying the
concurrent aspects of hardware systems, such as the T9000 transputer [6].
c© Springer Nature Switzerland AG 2020
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The theory of CSP was first described in 1978 in a book by Tony Hoare
[20], but has since evolved substantially [9,10,29]. CSP describes the most com-
mon communication and synchronization mechanisms with one single language
primitive: synchronous communication written -[[-]]-. CSP semantics is described
by a fully abstract model of behaviour designed to be compositional : the deno-
tational semantics of a process P encompasses all possible behaviours of this
process in the context of all possible environments P [[S]] Env (where S is the
set of atomic events both P and Env must synchronize on). This design objec-
tive has the consequence that two kinds of choice have to be distinguished:

1. the external choice, written -�-, which forces a process “to follow” whatever
the environment offers, and

2. the internal choice, written -�-, which imposes on the environment of a pro-
cess “to follow” the non-deterministic choices made.

Generalizations of these two operators �x ∈ A. P (x) and
�

x ∈ A. P (x)
allow for modeling the concepts of input and output : Based on the prefix oper-
ator a→P (event a happens, then the process proceeds with P ), receiving
input is modeled by �x ∈ A. x→P (x) while sending output is represented by�

x∈ A. x→P (x). Setting choice in the center of the language semantics implies
that deadlock-freeness becomes a vital property for the well-formedness of a pro-
cess, nearly as vital as type-checking: Consider two events a and b not involved
in a process P , then (a→P � b→P ) [[{a,b}]] (a→P � b→P ) is deadlock free
provided P is, while (a→P � b→P ) [[{a,b}]] (a→P � b→P ) deadlocks (both
processes can make “ruthlessly” an opposite choice, but are required to synchro-
nize).

Verification of CSP properties has been centered around the notion of pro-
cess refinement orderings, most notably -�FD- and -�-. The latter turns the
denotational domain of CSP into a Scott cpo [33], which yields semantics for
the fixed point operator μx. f(x) provided that f is continuous with respect to
-�-. Since it is possible to express deadlock-freeness and livelock-freeness as a
refinement problem, the verification of properties has been reduced traditionally
to a model-checking problem for finite set of events A.

We are interested in verification techniques for arbitrary event sets A or
arbitrarily parameterized processes. Such processes can be used to model dense-
timed processes, processes with dynamic thread creation, and processes with
unbounded thread-local variables and buffers. However, this adds substantial
complexity to the process theory: when it comes to study the interplay of different
denotational models, refinement-orderings, and side-conditions for continuity,
paper-and-pencil proofs easily reach their limits of precision.

Several attempts have been undertaken to develop a formal theory in an
interactive proof system, mostly in Isabelle/HOL [12,23,28,37]. This paper is
based on [37], which has been the most comprehensive attempt to formalize
denotational CSP semantics covering a part of Bill Roscoe’s Book [29]. Our
contributions are as follows:
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– we ported [37] from Isabelle93-7 and ancient ML-written proof scripts to a
modern Isabelle/HOL version and structured Isar proofs, and extended it
substantially,

– we introduced new refinement notions allowing a deeper understanding of the
CSP Failure/Divergence model, providing some meta-theoretic clarifications,

– we used our framework to derive new types of decomposition rules and
stronger induction principles based on the new refinement notions, and

– we integrate this machinery into a number of advanced verification tech-
niques, which we apply to two generalized paradigmatic examples in the CSP
literature, the CopyBuffer and Dining Philosophers1.

2 Preliminaries

2.1 Denotational CSP Semantics

The denotational semantics of CSP (following [29]) comes in three layers: the
trace model, the (stable) failures model and the failure/divergence model.

In the trace semantics model, a process P is denoted by a set of communi-
cation traces, built from atomic events. A trace here represents a partial history
of the communication sequence occurring when a process interacts with its envi-
ronment. For the two basic CSP processes Skip (successful termination) and
Stop (just deadlock), the semantic function T of the trace model just gives the
same denotation, i.e.the empty trace: T (Skip) = T (Stop) = {[]}. Note that the
trace sets, representing all partial history, is in general prefix closed.

Example 1. Let two processes be defined as follows:

1. Pdet = (a → Stop) � (b → Stop)
2. Pndet = (a → Stop) � (b → Stop)

These two processes Pdet and Pndet cannot be distinguished by using the trace
semantics: T (Pdet) = T (Pndet) = {[],[a],[b]}. To resolve this problem, Brookes
[9] proposed the failures model, where communication traces were augmented
with the constraint information for further communication that is represented
negatively as a refusal set. A failure (t, X) is a pair of a trace t and a set of events
X, called refusal set, that a process can refuse if any of the events in X were
offered to him by the environment after performing the trace t. The semantic
function F in the failures model maps a process to a set of refusals. Let Σ
be the set of events. Then, {([],Σ)} ⊆ F Stop as the process Stop refuses all
events. For Example 1, we have {([],Σ\{a,b}),([a],Σ),([b],Σ)} ⊆ F Pdet, while
{([],Σ\{a}),([],Σ\{b}),([a],Σ),([b],Σ)} ⊆ F Pndet (the - ⊆ - refers to the fact
that the refusals must be downward closed; we show only the maximal refusal

1 All proofs concerning the HOL-CSP 2 core have been published in the Archive of
Formal Proofs [36]; all other proofs are available at https://gitlri.lri.fr/burkhart.
wolff/hol-csp2.0. In this paper, all Isabelle proofs are omitted.

https://gitlri.lri.fr/burkhart.wolff/hol-csp2.0
https://gitlri.lri.fr/burkhart.wolff/hol-csp2.0
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sets here). Thus, internal and external choice, also called nondeterministic and
deterministic choice, can be distinguished in the failures semantics.

However, it turns out that the failures model suffers from another deficiency
with respect to the phenomenon called infinite internal chatter or divergence.

Example 2. The following process Pinf is an infinite process that performs a
infinitely many times. However, using the CSP hiding operator -\-, this activity
is concealed:

1. Pinf = (μ X. a → X) \ {a}

where Pinf will correspond to ⊥ in the process cpo ordering. To distinguish
divergences from the deadlock process, Brookes and Roscoe proposed fail-
ure/divergence model to incorporate divergence traces [10]. A divergence trace is
the one leading to a possible divergent behavior. A well behaved process should
be able to respond to its environment in a finite amount of time. Hence, diver-
gences are considered as a kind of a catastrophe in this model. Thus, a process
is represented by a failure set F , together with a set of divergence traces D; in
our example, the empty trace [] belongs to D Pinf .

The failure/divergence model has become the standard semantics for an enor-
mous range of CSP research and the implementations of [1,34]. Note, that the
work of [23] is restricted to a variant of the failures model only.

2.2 Isabelle/HOL

Nowadays, Isabelle/HOL is one of the major interactive theory development
environments [27]. HOL stands for Higher-Order Logic, a logic based on simply-
typed λ-calculus extended by parametric polymorphism and Haskell-like type-
classes. Besides interactive and integrated automated proof procedures, it offers
code and documentation generators. Its structured proof language Isar is inten-
sively used in the plethora of work done and has been a key factor for the success
of the Archive of Formal Proofs (https://www.isa-afp.org).

For the work presented here, one relevant construction is:

– typedef (α1, ..., αn)t = E

It creates a fresh type that is isomorphic to a set E involving α1, ..., αn types.
Isabelle/HOL performs a number of syntactic checks for these constructions that
guarantee the logical consistency of the defined constants or types relative to
the axiomatic basis of HOL. The system distribution comes with rich libraries
comprising Sets, Numbers, Lists, etc. which are built in this “conservative” way.

For this work, a particular library called HOLCF is intensively used. It
provides classical domain theory for a particular type-class α :: pcpo, i.e.the class
of types α for which

1. a complete partial order -�- is defined, and
2. a least element ⊥ is defined.

https://www.isa-afp.org
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For these types, HOLCF provides a fixed-point operator μX. f X,
fixed-point induction and other (automated) proof infrastructure. Isabelle’s
type-inference can automatically infer, for example, that if α :: pcpo, then
(β ⇒ α) :: pcpo.

3 Formalising Denotational CSP Semantics in HOL

3.1 Process Invariant and Process Type

First, we need a slight revision of the concept of trace: if Σ is the type of the
atomic events (represented by a type variable), then we need to extend this type
by a special event

√
(called “tick”) signaling termination. Thus, traces have the

type (Σ+
√

)∗, written Σ
√∗; since

√
may only occur at the end of a trace, we

need to define a predicate front tickFree t that requires from traces that
√

can
only occur at the end.

Second, in the traditional literature, the semantic domain is implicitly
described by 9 “axioms” over the three semantic functions T , F and D. Infor-
mally:

– the initial trace of a process must be empty;
– any allowed trace must be front tickFree;
– traces of a process are prefix-closed ;
– a process can refuse all subsets of a refusal set;
– any event refused by a process after a trace s must be in a refusal set associ-

ated to s;
– the tick accepted after a trace s implies that all other events are refused;
– a divergence trace with any suffix is itself a divergence one
– once a process has diverged, it can engage in or refuse any sequence of events.
– a trace ending with

√
belonging to divergence set implies that its maximum

prefix without
√

is also a divergent trace.

Formally, a process P of the type Σ process should have the following properties:

([],{}) ∈ F P ∧
(∀ s X. (s,X) ∈ F P −→ front-tickFree s) ∧
(∀ s t . (s@t,{}) ∈ F P −→ (s,{}) ∈ F P ) ∧
(∀ s X Y. (s,Y ) ∈ F P ∧ X ⊆ Y −→ (s,X) ∈ F P ) ∧
(∀ s X Y. (s,X) ∈ F P ∧ (∀ c ∈ Y. ((s@[c],{}) /∈ F P )) −→ (s,X ∪ Y ) ∈ F P ) ∧
(∀ s X. (s@[

√
],{}) ∈ F P −→ (s,X−{√}) ∈ F P ) ∧

(∀ s t. s ∈ D P ∧ tickFree s ∧ front-tickFree t −→ s@t ∈ D P ) ∧
(∀ s X. s ∈ D P −→ (s,X) ∈ F P ) ∧
(∀ s. s@[

√
] ∈ D P −→ s ∈ D P )

Our objective is to encapsulate this wishlist into a type constructed as a
conservative theory extension in our theory HOL-CSP. Therefore third, we define
a pre-type for processes Σ process0 by P(Σ

√∗ ×P(Σ
√

)) ×P(Σ
√∗). Fourth, we

turn our wishlist of “axioms” above into the definition of a predicate is-process P
of type Σ process0 ⇒ bool deciding if its conditions are fulfilled. Since P is a
pre-process, we replace F by fst and D by snd (the HOL projections into a
pair). And last not least fifth, we use the following type definition:
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– typedef ′α process = {P :: ′α process0 . is-process P}

Isabelle requires a proof for the existence of a witness for this set, but this can
be constructed in a straight-forward manner. Suitable definitions for T , F and
D lifting fst and snd on the new ′α process-type allows to derive the above
properties for any P :: ′α process.

3.2 CSP Operators over the Process Type

Now, the operators of CSP Skip, Stop, -�-, -�-, -→-, -[[-]]- etc. for internal choice,
external choice, prefix and parallel composition, can be defined indirectly on
the process-type. For example, for the simple case of the internal choice, we
construct it such that -�- has type ′α process ⇒ ′α process ⇒ ′α process and
such that its projection laws satisfy the properties F (P � Q) = F P ∪ F Q and
D (P � Q) = D P ∪ D Q required from [29]. This boils down to a proof that an
equivalent definition on the pre-process type Σ process0 maintains is-process,
i.e.this predicate remains invariant on the elements of the semantic domain. For
example, we define -�- on the pre-process type as follows:

– definition P � Q ≡ Abs-process(F P ∪ F Q , D P ∪ D Q)

where F = fst ◦ Rep-process and D = snd ◦ Rep-process and where
Rep-process and Abs-process are the representation and abstraction mor-
phisms resulting from the type definition linking ′α process isomorphically to
′α process0. Proving the above properties for F (P � Q) and D (P � Q) requires
a proof that (F P ∪ F Q , D P ∪ D Q) satisfies the 9 “axioms”, which is fairly
simple in this case.

The definitional presentation of the CSP process operators according to [29]
follows always this scheme. This part of the theory comprises around 2000 loc.

3.3 Refinement Orderings

CSP is centered around the idea of process refinement; many critical proper-
ties, even ones typically considered as “liveness properties”, can be expressed
in terms of these, and a conversion of processes in terms of (finite) labelled
transition systems leads to effective model-checking techniques based on graph-
exploration. Essentially, a process P refines another process Q if and only if
it is more deterministic and more defined (has less divergences). Consequently,
each of the three semantics models (trace, failure and failure/divergence) has its
corresponding refinement orderings. What we are interested in this paper is the
following refinement orderings for the failure/divergence model.

1. P �FD Q ≡ F P ⊇ F Q ∧ D P ⊇ D Q
2. P �T D Q ≡ T P ⊇ T Q ∧ D P ⊇ D Q
3. P �F Q ≡ F P ⊇ F Q, F∈ {T ,F ,D}
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Notice that in the CSP literature, only �FD is well studied for fail-
ure/divergence model. Our formal analysis of different granularities on the refine-
ment orderings allows deeper understanding of the same semantics model. For
example, �T D turns out to have in some cases better monotonicity properties
and therefore allow for stronger proof principles in CSP. Furthermore, the refine-
ment ordering �F analyzed here is different from the classical failure refinement
in the literature that is studied for the stable failure model [29], where failures
are only defined for stable states, from which no internal progress is possible.

3.4 Process Ordering and HOLCF

For any denotational semantics, the fixed point theory giving semantics to sys-
tems of recursive equations is considered as keystone. Its prerequisite is a com-
plete partial ordering -�-. The natural candidate -�FD- is unfortunately not
complete for infinite Σ for the generalized deterministic choice, and thus for the
building block of the read-operations.

Roscoe and Brooks [31] finally proposed another ordering, called the process
ordering, and restricted the generalized deterministic choice in a particular way
such that completeness could at least be assured for read-operations. This more
complex ordering is based on the concept refusals after a trace s and defined by
R P s ≡ {X | (s, X) ∈ F P}.

Definition 1 (process ordering). We define P � Q ≡ ψD ∧ ψR ∧ ψM,
where

1. ψD = D P ⊇ D Q
2. ψR = s /∈ D P ⇒ R P s = R Q s
3. ψM = Mins(D P ) ⊆ T Q

Note that the third condition ψM implies that the set of minimal divergent
traces (ones with no proper prefix that is also a divergence) in P , denoted by
Mins(D P ), should be a subset of the trace set of Q. It is straight-forward to
define the least element ⊥ in this ordering by F(⊥) = {(s,X). front-tickFree s}
and D(⊥) = {s. front-tickFree s}

While the original work [37] was based on an own—and different—fixed-
point theory, we decided to base HOL-CSP 2 on HOLCF (initiated by [26] and
substantially extended in [21]). HOLCF is based on parametric polymorphism
with type classes. A type class is actually a constraint on a type variable by
respecting certain syntactic and semantic requirements. For example, a type class
of partial ordering, denoted by α :: po, is restricted to all types α possessing a
relation ≤:α ×α → bool that is reflexive, anti-symmetric, and transitive. Isabelle
possesses a construct that allows to establish, that the type nat belongs to this
class, with the consequence that all lemmas derived abstractly on α :: po are in
particular applicable on nat. The type class of po can be extended to the class
of complete partial ordering cpo. A po is said to be complete if all non-empty
directed sets have a least upper bound (lub). Finally the class of pcpo (Pointed
cpo) is a cpo ordering that has a least element, denoted by ⊥. For pcpo ordering,
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two crucial notions for continuity (cont) and fixed-point operator (μX. f(X))
are defined in the usual way. A function from one cpo to another one is said to
be continuous if it distributes over the lub of all directed sets (or chains). One
key result of the fixed-point theory is the proof of the fixed-point theorem:

cont f =⇒ μX. f(X) = f(μX. f(X))

For most CSP operators ⊗ we derived rules of the form:

cont P =⇒ cont Q =⇒ cont(λx. (P x) ⊗ (Q x))

These rules allow to automatically infer for any process term if it is continuous
or not. The port of HOL-CSP 2 on HOLCF implied that the derivation of the
entire continuity rules had to be completely re-done (3000 loc).
HOL-CSP provides an important proof principle, the fixed-point induction:

cont f =⇒ adm Pr =⇒ Pr ⊥ =⇒ (
∧

X. X =⇒ Pr(f X)) =⇒ Pr(μX. f X)

Fixed-point induction requires a small side-calculus for establishing the admis-
sibility of a predicate; basically, predicates are admissible if they are valid for
any least upper bound of a chain x1 � x2 � x3 ... provided that ∀ i. P r(xi).
It turns out that -�- and -�F D- as well as all other refinement orderings that
we introduce in this paper are admissible. Fixed-point inductions are the main
proof weapon in verifications, together with monotonicities and the CSP laws.
Denotational arguments can be hidden as they are not needed in practical veri-
fications.

3.5 CSP Rules: Improved Proofs and New Results

The CSP operators enjoy a number of algebraic properties: commutativity, asso-
ciativities, and idempotence in some cases. Moreover, there is a rich body of dis-
tribution laws between these operators. Our new version HOL-CSP 2 not only
shortens and restructures the proofs of [37]; the code reduces to 8000 loc from
25000 loc. Some illustrative examples of new established rules are:

– �x ∈ A ∪ B→P (x) = (�x ∈ A→P x) � (�x ∈ B→P x)

– A∪B ⊆C =⇒ (�x∈A→P x [[C]] �x∈B→Q x) = �x∈A∩B→(P x [[C]] Q x)
– A ⊆ C =⇒B ∩ C={} =⇒ (�x ∈ A→P x [[C]] �x ∈ B→Q x) = �x ∈ B→(�x ∈ A→P x [[C]] Q x)
– finite A =⇒ A ∩ C = {} =⇒ ((P [[C]] Q) \ A) = ((P \ A) [[C]] (Q \ A)) ...
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The continuity proof of the hiding operator is notorious. The proof is known
to involve the classical König’s lemma stating that every infinite tree with finite
branching reference processes are

has an infinite path. We adapt this lemma to our context as follows:

infinite tr =⇒ ∀ i. finite{t. ∃ t′ ∈ tr. t = take i t′}
=⇒ ∃ f. strict-mono f ∧ range f ⊆ {t. ∃ t′ ∈ tr. t ≤ t′}

in order to come up with the continuity rule: finite S =⇒ cont P =⇒
cont(λX. P X \ S). Our current proof was drastically shortened by a factor
10 compared to the original one and important immediate steps generalized:
monotonicity, for example, could be generalized to the infinite case.

As for new laws, consider the case of (P \ A) \ B = P \ (A ∪ B) which
is stated in [30] without proof. In the new version, we managed to establish
this law which still need 450 lines of complex Isar code. However, it turned out
that the original claim is not fully true: it can only be established again by
König’s lemma to build a divergent trace of P \ (A ∪ B) which requires A
to be finite (B can be arbitrary) in order to use it from a divergent trace o
f (P \ A) \ B 2. Again, we want to argue that the intricate number of cases to
be considered as well as their complexity makes pen and paper proofs practically
infeasible.

4 Theoretical Results on Refinement

4.1 Decomposition Rules

In our framework, we implemented the pcpo process refinement together with the
five refinement orderings introduced in Sect. 3.3. To enable fixed-point induction,
we first have the admissibility of the refinements.

cont u =⇒ mono v =⇒ adm(λx. u x �F v x) where F∈{T ,F ,D,T D,FD}

Next we analyzed the monotonicity of these refinement orderings, whose
results are then used as decomposition rules in our framework. Some CSP oper-
ators, such as multi-prefix and non-deterministic choice, are monotonic under
all refinement orderings, while others are not.

– External choice is not monotonic only under �F , with the following mono-
tonicities proved:

P �F P ′ =⇒ Q �F Q′ =⇒ (P � Q) �F (P ′ � Q′) where F∈ {T ,D,T D,FD}

– Sequence operator is not monotonic under �F , �D or �T :

P �F P ′=⇒ Q �F Q′ =⇒ (P ; Q) �F (P ′ ; Q′) where F∈ {T D,FD}
2 In [30], the authors point out that the laws involving the hiding operator may fail

when A is infinite; however, they fail to give the precise conditions for this case.
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– Hiding operator is not monotonic under �D:

P �F Q =⇒ P \ A �F Q \ A where F∈{T ,F ,T D,FD}

– Parallel composition is not monotonic under �F , �D or �T :

P �F P ′ =⇒ Q �F Q′ =⇒ (P [[A]] Q) �F (P ′ [[A]] Q′) where F∈ {T D,FD}

4.2 Reference Processes and Their Properties

We now present reference processes that exhibit basic behaviors, introduced in
fundamental CSP works [30]. The process RUN A always accepts events from
A offered by the environment. The process CHAOS A can always choose to
accept or reject any event of A. The process DF A is the most non-deterministic
deadlock-free process on A, i.e., it can never refuse all events of A. To handle
termination better, we added two new processes CHAOSSKIP and DFSKIP .

Definition 2. RUN A ≡ μ X. � x ∈ A → X

Definition 3. CHAOS A ≡ μ X. (STOP � (� x ∈ A → X))

Definition 4. CHAOSSKIP A ≡ μ X. (SKIP � STOP � (� x ∈ A → X))

Definition 5. DF A ≡ μ X. (� x ∈ A → X)

Definition 6. DFSKIP A ≡ μ X. ((� x ∈ A → X) � SKIP )

In the following, we denote RP = {DFSKIP ,DF , RUN, CHAOS,
CHAOSSKIP }. All five reference processes are divergence-free.

D (P UNIV ) = {} where P ∈ RP and UNIV is the set of all events

Regarding the failure refinement ordering, the set of failures F P for any
process P is a subset of F (CHAOSSKIP UNIV ).

CHAOSSKIP UNIV �F P

The following 5 relationships were demonstrated from monotonicity results and
a denotational proof. Thanks to transitivity, we can derive other relationships.

1. CHAOSSKIP A �F CHAOS A
2. CHAOSSKIP A �F DFSKIP A
3. CHAOS A �F DF A
4. DFSKIP A �F DF A
5. DF A �F RUN A

Last, regarding trace refinement, for any process P, its set of traces T P is a
subset of T (CHAOSSKIP UNIV ) and of T (DFSKIP UNIV ) as well.
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1. CHAOSSKIP UNIV �T P
2. DFSKIP UNIV �T P

Recall that a concurrent system is considered as being deadlocked if no
component can make any progress, caused for example by the competition for
resources. In opposition to deadlock, processes can enter infinite loops inside
a sub-component without ever interact with their environment again (“infinite
internal chatter”); this situation called divergence or livelock. Both properties are
not just a sanity condition; in CSP, they play a central role for verification. For
example, if one wants to establish that a protocol implementation IMPL satis-
fies a non-deterministic specification SPEC it suffices to ask if IMPL || SPEC
is deadlock-free. In this setting, SPEC becomes a kind of observer that signals
non-conformance of IMPL by deadlock.

In the literature, deadlock and livelock are phenomena that are often handled
separately. One contribution of our work is establish their precise relationship
inside the Failure/Divergence Semantics of CSP.

Definition 7. deadlock free P ≡ DFSKIP UNIV �F P

A process P is deadlock-free if and only if after any trace s without
√

, the union
of

√
and all events of P can never be a refusal set associated to s, which means

that P cannot be deadlocked after any non-terminating trace.

Theorem 1 (DF definition captures deadlock-freeness).
deadlock-freeP ←→ (∀ s∈ T P. tickFree s −→ (s, {√} ∪ events-of P ) /∈ F P )

Definition 8. livelock free P ≡ D P = {}

Recall that all five reference processes are livelock-free. We also have the
following lemmas about the livelock-freeness of processes:

1. livelock free P ←→ P UNIV �D P where P ∈ RP
2. livelock free P ←→ DFSKIP UNIV 	T D P ←→ CHAOSSKIP UNIV 	T D P

3. livelock free P ←→ CHAOSSKIP UNIV �FD P

Finally, we proved the following theorem.

Theorem 2 (DF implies LF). deadlock-free P −→ livelock-free P

This is totally natural, at a first glance, but surprising as the proof of
deadlock-freeness only requires failure refinement �F (see Definition 7) where
divergence traces are mixed within the failures set. Note that the existing tools
in the literature normally detect these two phenomena separately, such as FDR
for which checking livelock-freeness is very costly. In our framework, deadlock-
freeness of a given system implies its livelock-freeness. However, if a system is
not deadlock-free, then it may still be livelock-free.



430 S. Taha et al.

5 Advanced Verification Techniques

Based on the refinement framework discussed in Sect. 4, we will now turn to
some more advanced proof principles, tactics and verification techniques. We
will demonstrate them on two paradigmatic examples well-known in the CSP
literature: The CopyBuffer and Dijkstra’s Dining Philosophers. In both cases,
we will exploit the fact that HOL-CSP 2 allows for reasoning over infinite CSP;
in the first case, we reason over infinite alphabets approaching an old research
objective: exploiting data-independence [2,25] in process verification. In the lat-
ter case, we present an approach to a verification of a parameterized architecture,
in this case a ring-structure of arbitrary size.

5.1 The General CopyBuffer Example

We consider the paradigmatic copy buffer example [20,30] that is characteristic
for a specification of a prototypical process and its implementation. It is used
extensively in the CSP literature to illustrate the interplay of communication,
component concealment and fixed-point operators. The process COPY , defined
as follows, is a specification of a one size buffer, that receives elements from the
channel left of arbitrary type α (left?x) and outputs them on the channel right
(right!x):

datatype α events = left α | right α | mid α | ack

definition COPY ≡ (μ X. left?x → (right!x → X))

From our HOL-CSP 2 theory that establishes the continuity of all CSP operators,
we deduce that such a fixed-point process COPY exists and follows the unrolling
rule below:

lemma COPY = (left?x → (right!x → COPY ))

We set SEND and REC in parallel but in a row sharing a middle channel
mid and synchronizing with an ack event. Then, we hide all exchanged events
between these two processes and we call the resulting process SY STEM :

definition SEND ≡ (μ X. left?x → (mid!x → (ack → X)))
definition REC ≡ (μ X. mid?x → (right!x → (ack → X)))
definition SY N ≡ (range mid) ∪ {ack}
definition SYSTEM ≡ (SEND [[SY N ]] REC) \ SY N

We want to verify that SY STEM implements COPY . As shown below, we
apply fixed-point induction to prove that SY STEM refines COPY using the
pcpo process ordering � that implies all other refinement orderings. We state:

lemma: COPY � SYSTEM

and apply fixed-point induction over COPY that generates three subgoals:
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1. adm (λa. a � SYSTEM
2. ⊥ � SYSTEM
3. P � SYSTEM =⇒ left?x → right!x → P � SYSTEM

The first two sub-proofs are automatic simplification proofs; the third requires
unfolding SEND and REC one step and applying the algebraic laws. No deno-
tational semantics reasoning is necessary here; it is just an induct-simplify proof
consisting of 2 lines proof-script involving the derived algebraic laws of CSP.

After proving that SYSTEM implements COPY for arbitrary alphabets, we
aim to profit from this first established result to check which relations SYSTEM
has wrt. to the reference processes of Sect. 4.2. Thus, we prove that COPY is
deadlock-free which implies livelock-free, (proof by fixed-point induction sim-
ilar to lemma: COPY � SYSTEM), from which we can immediately infer
from transitivity that SY STEM is. Using refinement relations, we killed four
birds with one stone as we proved the deadlock-freeness and the livelock-freeness
for both COPY and SY STEM processes. These properties hold for arbitrary
alphabets and for infinite ones in particular.

lemma DF UNIV � COPY

corollary deadlock-free COPY
and livelock-free COPY
and deadlock-free SYSTEM
and livelock-free SYSTEM

5.2 New Fixed-Point Inductions

The copy buffer refinement proof DF UNIV � COPY is a typical one step
induction proof with two goals: base: ⊥ � Q and 1−ind: X � Q =⇒ (- → X) � Q.
Now, if unfolding the fixed-point process Q reveals two steps, the sec-
ond goal becomes X � Q =⇒ - → X � - → - → Q. Unfortunately,
this way, it becomes improvable using monotonicities rules. We need here
a two-step induction of the form base0: ⊥ � Q, base1: - → ⊥ � Q and
2−ind: X � Q =⇒ - → - → X � - → - → Q to have a sufficiently power-
ful induction scheme.

For this reason, we derived a number of alternative induction schemes (which
are not available in the HOLCF library), which are also relevant for our final Din-
ing Philosophers example. These are essentially adaptions of k-induction schemes
applied to domain-theoretic setting (so: requiring f continuous and P admissible;
these preconditions are skipped here):

– ... =⇒ ∀ i<k. P (f i ⊥) =⇒ (∀X. (∀ i<k. P (f i X)) −→ P (fk X)) =⇒ P (µX. f X)

– ... =⇒ ∀ i<k. P (f i ⊥) =⇒ (∀X. P X −→ P (fk X)) =⇒ P (μX. f X)

In the latter variant, the induction hypothesis is weakened to skip k steps. When
possible, it reduces the goal size.
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Another problem occasionally occurring in refinement proofs happens when
the left side term involves more than one fixed-point process (e.g.P [[{A}]] Q � S).
In this situation, we need parallel fixed-point inductions. The HOLCF library
offers only a basic one:

– ...=⇒ P ⊥ ⊥ =⇒ (∀X Y. P X Y =⇒ P (f X) (g Y ))=⇒ P (µX. f X) (µX. g X)

This form does not help in cases like in P [[∅]] Q � S with the interleaving
operator on the left-hand side. The simplifying law is:

(�x∈A→P x [[∅]] �x∈B→Q x) = (�x∈A → ( P x [[∅]] �x∈B → Q x)

� (�x∈B → (�x∈A → P x [[∅]] Q x))

Here, (f X [[∅]] g Y ) does not reduce to the (X [[∅]] Y ) term but to two terms
(f X [[∅]] Y ) and (X [[∅]] g Y ). To handle these cases, we developed an advanced
parallel induction scheme and we proved its correctness:

–

... =⇒ (∀Y. P ⊥ Y ) =⇒ (∀X. P X ⊥)

=⇒ ∀X Y. (P X Y ∧ P (f X) Y ∧ P X (g Y )) −→ P (f X) (g Y )

=⇒ P (µX. f X) (µX. g X)

which allows for a “independent unrolling” of the fixed-points in these proofs.
The astute reader may notice here that if the induction step is weakened (having
more hypotheses), the base steps require enforcement.

5.3 Normalization

Our framework can reason not only over infinite alphabets, but also over pro-
cesses parameterized over states with an arbitrarily rich structure. This paves
the way for the following technique, that trades potentially complex process
structure against equivalent simple processes with potentially rich state.

Roughly similar to labelled transition systems, we provide for deterministic
CSP processes a normal form that is based on an explicit state. The general
schema of normalized processes is defined as follows:

Pnorm[[τ ,υ]] ≡ μ X. (λσ. �e∈ (τ σ) → X (υ σ e))

where τ is a transition function which returns the set of events that can be
triggered from the current state σ given as parameter. The update function υ
takes two parameters σ and an event e and returns the new state. This normal
form is closed under deterministic and communication operators.

The advantage of this format is that we can mimick the well-known product
automata construction for an arbitrary number of synchronized processes under
normal form. We only show the case of the synchronous product of two processes:
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Theorem 3 (Product Construction). Parallel composition translates to
normal form:

(Pnorm[[τ1,υ1]] σ1) || (Pnorm[[τ2,υ2]] σ2) =
Pnorm[[λ(σ1,σ2). τ1 σ1 ∩ τ2 σ2 , λ(σ1,σ2).λe.(υ1 σ1 e, υ2 σ2 e)]] (σ1,σ2)

The generalization of this rule for a list of (τ ,υ)-pairs is straight-forward, albeit
the formal proof is not. The application of the generalized form is a corner-
stone of the proof of the general dining philosophers problem illustrated in the
subsequent section.

Another advantage of normalized processes is the possibility to argue over
the reachability of states via the closure R, which is defined inductively over:

– σ ∈ R τ υ σ
– σ ∈ R τ υ σ0 =⇒ e ∈ τ σ =⇒ υ σ e ∈ R τ υ σ0

Thus, normalization leads to a new characterization of deadlock-freeness
inspired from automata theory. We formally proved the following theorem:

Theorem 4 (DF vs. Reachability). If each reachable state s ∈ (R τ υ) has
outgoing transitions, the CSP process is deadlock-free:

∀σ ∈ (R τ υ σ0). τ σ �= {} =⇒ deadlock-free (Pnorm[[τ ,υ]] σ0)

This theorem allows for establishing properties such as deadlock-freeness by
completely abstracting from CSP theory; these are arguments that only involve
inductive reasoning over the transition function.

Summing up, our method consists of four stages:

1. we construct normalized versions of component processes and prove them
equivalent to their counterparts,

2. we state an invariant over the states/variables,
3. we prove by induction over R that it holds on all reachable states, and finally
4. we prove that this invariant guarantees the existence of outgoing transitions.

5.4 Generalized Dining Philosophers

The dining philosophers problem is another paradigmatic example in the CSP
literature often used to illustrate synchronization problems between an arbitrary
number of concurrent systems. It is an example of a process scheme for which
general properties such as deadlock-freeness are desirable in order to inherit them
for specific instances. The general dining philosopher problem for an arbitrary
N is presented in HOL-CSP 2 as follows
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datatype dining-event = picks (phil::nat) (fork::nat)

| putsdown (phil::nat) (fork::nat)

| eat (phil::nat)

definition LPHIL0 ≡ (µ X. (picks 0 (N−1) → (picks 0 0 → eat 0 →
(putsdown 0 0 → (putsdown 0 (N−1) → X)))))

definition RPHIL i ≡ (µ X. (picks i i → (picks i (i−1) → eat i →
(putsdown i (i−1) → (putsdown i i → X)))))

definition FORK i ≡ (µ X. (picks i i → (putsdown i i → X))

�(picks (i+1)%N i →(putsdown (i+1)%N i → X)))

definition PHILs ≡ LPHIL0 ||| (|||i ∈ 1..N RPHIL i)

definition FORKs ≡ |||i ∈ 0..N FORK i

definition DINING ≡ FORKs [[picks, putsdown]] PHILs

Note that both philosophers and forks are pairwise independent but both syn-
chronize on picks and putsdown events. The philosopher of index 0 is left-handed
whereas the other N−1 philosophers are right-handed. We want to prove that
any configuration is deadlock-free for an arbitrary number N.

First, we put the fork process into normal form. It has three states: (0) on
the table, (2) picked by the right philosopher or (1) picked by the left one:

definition transf i σ ≡ if σ = 0 then {picks i i, picks (i+1)%N i}
else if σ = 1 then {putsdown i i}
else if σ = 2 then {putsdown (i+1)%N i}
else {}

definition updf i σ e ≡ if e = (picks i i) then 1
else if e = (picks (i+1)%N i) then 2
else 0

definition FORKnorm i ≡ Pnorm[[transf i, updf i]]

To validate our choice for the states, transition function transf and update
function updf , we prove that they are equivalent to the original process
components: FORKnorm i = FORK i. The anti-symmetry of refinement
breaks this down to the two refinement proofs FORKnorm i � FORK i and
FORK i � FORKnorm i, which are similar to the CopyBuffer example shown
in Sect. 5.1. Note, again, that this fairly automatic induct-simplify-proof just
involves reasoning on the derived algebraic rules, not any reasoning on the level
of the denotational semantics.
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From the generalization of “Theorem 3, we obtain normalized processes for
FORKs, PHILs and DINING:

definition transF ≡ λfs. (
⋂

i<N
. transf i (fs!i))

definition updF ≡ λfs e. let i=(fork e) in fs[i:=(updf i (fs!i) e)]

lemma FORKs = Pnorm[[transF , updF ]] ...
lemma PHILS = Pnorm[[transP , updP ]] ...

definition transD ≡ λ(ps,fs). (transP ps) ∩ (transF fs)
definition updD ≡ λ(ps,fs) e. (updP ps e, updF fs e)

lemma DINING = Pnorm[[transD, updD]]

The variable ps stands for the list of philosophers states and fs for the list of
forks states, both are of size N . The pair (ps, fs) encodes the whole dining
table state over which we need to define an invariant to ensure that no blocking
state is reachable and thus the dining philosophers problem is deadlock-free.
As explained before, the proof is based on abstract reasoning over relations
independent from the CSP context.

The last steps towards our goal are the following definitions and lemmas:

definition INVDINING ps fs ≡ (∀ i. ((fs!i=1) ↔ ps!i �= 0) ∧ ... )
lemma (ps,fs) ∈ R transD updD =⇒ INVDINING ps fs ...
lemma INVDINING ps fs =⇒ transD (ps, fs) �= {} ...

corollary deadlock-free DINING

To sum up, we proved once and for all that the dining philosophers problem
is deadlock free for an arbitrary number N ≥ 2. Common model-checkers like
PAT and FDR fail to answer for a dozen of philosophers (on a usual machine)
due to the exponential combinatorial explosion. Furthermore, our proof is fairly
stable against modifications like adding non synchronized events like thinking or
sitting down in contrast to model-checking techniques.

6 Related Work

The theory of CSP has attracted a lot of interest from the eighties on, and
is still a fairly active research area, both as a theoretical device as well as a
modelling language to analyze complex concurrent systems. It is therefore not
surprising that attempts to its formalisation had been undertaken early with
the advent of interactive theorem proving systems supporting higher-order logic
[12,16,17,22,37], where especially the latter allows for some automated support
for refinement proofs based on induction. However, HOL-CSP2 is based on a
failure/divergence model, while [22] is based on stable failures, which can infer
deadlock-freeness only under the assumption that no livelock occurred; In our
view, this is a too strong assumption for both the theory as well as the tool.
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In the 90ies, research focused on automated verification tools for CSP, most
notably on FDR [1]. It relies on an operational CSP semantics, allowing for a
conversion of processes into labelled transition systems, where the states are
normalized by the “laws” derived from the denotational semantics. For finite
event sets, refinement proofs can be reduced to graph inclusion problems. With
efficient compression techniques, such as bisimulation, elimination and factor-
ization by semantic equivalence [32], FDR was used to analyze some industrial
applications. However, such a model checker cannot handle infinite cases and
does not scale to large systems.

The fundamental limits of automated decision procedures for data and pro-
cesses has been known very early on: Undecidability of parameterized model
checking was proven by reduction to non-halting of Turing machines [35].
However, some forms of well-structured transitions systems, could be demon-
strated to be decidable [8,18]. HOL-CSP2 is a fully abstract model for the fail-
ure/divergence model; as a HOL theory, it is therefore a “relative complete proof
theory” both for infinite data as well as number of components. (see [3] for rel-
ative completeness).

Encouraged by the progress of SMT solvers which support some infinite types,
notably (fixed arrays of) integers or reals, and limited forms of formulas over
these types, SMT-based model-checkers represent the current main-stream to
parametric model-checking. This extends both to LTL-style model-checkers for
Promela-like languages [14,24] as well as process-algebra alikes [4,5,7]. However,
the usual limitations persist: the translation to SMT is hardly certifiable and the
solvers are still not able to handle non-linear computations; moreover, they fail
to elaborate inductive proofs on data if necessary in refinement proofs.

Some systems involve approximation techniques in order to make the for-
mal verification of concurrent systems scalable; results are sometimes inherently
imprecise and require meta-level arguments assuring their truth in a specific
application context. For example, in [5], the synchronization analysis techniques
try to prove the unreachability of a system state by showing that components
cannot agree on the order or on the number of times they participate on sys-
tem rules. Even with such over-approximation, the finiteness restriction on the
number of components persists.

Last but not least, SMT-based tools only focusing on bounded model-
checking like [13,19] use k-induction and quite powerful invariant generation
techniques but are still far from scalable techniques. While it is difficult to make
any precise argument on the scalability for HOL-CSP 2, we argue that we have
no data-type restrictions (events may have realvector-, function- or even pro-
cess type) as well as restrictions on the structure of components. None of our
paradigmatic examples can be automatically proven with any of the discussed
SMT techniques without restrictions.

7 Conclusion

We presented a formalisation of the most comprehensive semantic model for CSP,
a ‘classical’ language for the specification and analysis of concurrent systems
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studied in a rich body of literature. For this purpose, we ported [37] to a modern
version of Isabelle, restructured the proofs, and extended the resulting theory of
the language substantially. The result HOL-CSP 2 has been submitted to the
Isabelle AFP [36], thus a fairly sustainable format accessible to other researchers
and tools.

We developed a novel set of deadlock - and livelock inference proof principles
based on classical and denotational characterizations. In particular, we formally
investigated the relations between different refinement notions in the presence
of deadlock - and livelock; an area where traditional CSP literature skates over
the nitty-gritty details. Finally, we demonstrated how to exploit these results for
deadlock/livelock analysis of protocols.

We put a large body of abstract CSP laws and induction principles together to
form concrete verification technologies for generalized classical problems, which
have been considered so far from the perspective of data-independence or struc-
tural parametricity. The underlying novel principle of “trading rich structure
against rich state” allows to convert processes into classical transition systems
for which established invariant techniques become applicable.

Future applications of HOL-CSP 2 could comprise a combination to model
checkers, where our theory with its derived rules is used to certify the output
of a model-checker over CSP. In our experience, generated labelled transition
systems may be used to steer inductions or to construct the normalized processes
Pnorm[[τ ,υ]] automatically, thus combining efficient finite reasoning over finite
sub-systems with globally infinite systems in a logically safe way.

Acknowledgement. This paper has been written with Isabelle/DOF [11].
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Abstract. We present a method for synthesizing loops over affine
assignments from polynomial invariants. It is complete when the num-
ber of auxiliary variables is bounded, thus serving as a foundation for
strength reduction optimization that convert polynomial expressions into
incremental affine computations. Our work has applications towards syn-
thesizing loops satisfying a given polynomial loop invariant, program ver-
ification, as well as generating number sequences from algebraic relations.
To understand viability of the methodology and heuristics for synthesiz-
ing loops with a large number of auxiliary variables, we implement and
evaluate the method using the Absynth tool.

1 Introduction

To reduce execution time spent within loops, compiler optimization techniques,
such as strength reduction, aim at replacing expensive loop operations with
semantically equivalent but less expensive operations [4]. One such optimization
within strength reduction replaces “strong” loop multiplications by additions
among program variables. The burden of strength reductions comes however
with identifying inductive loop variables and invariants to be used for loop opti-
mization.

In this paper we provide an algorithmic solution to the following loop reason-
ing challenge related to strength reduction: Given a polynomial p(x) over loop
variables x, how can the entire solution space of p(x) = 0 be iteratively computed
using only affine operations among x? We refer to this reasoning challenge as
loop synthesis, which can be considered as the reverse problem of loop invariant
generation: rather than generating invariants p(x) = 0 summarizing a given loop
as in [12,17,22], we synthesize and optimize loops whose functional behavior is
captured by a given invariant p(x) = 0, such that the synthesized loops use only
affine computations among x. We believe ours is the first complete approach for
synthesizing loops from (non-linear) polynomial invariants. The inner magic of
our reduction to SMT derives from algebraic insights, allowing us to test exis-
tential properties of bounded degree polynomials to derive universal relations.

Motivating Example. Let us first motivate loop synthesis using Fig. 1a. The loop
is based on an online tutorial1 of the Dafny verification framework [18] and can
1 https://rise4fun.com/Dafny/.
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be seen as an instance of strength reduction: by maintaining the polynomial
loop invariant n ≤ N ∧ c = n3 ∧ k = 3n2 + 3n + 1 ∧ m = 6n + 6, Fig. 1a uses
only affine updates among its variables. Yet, Fig. 1a is not partially correct with
respect to the precondition N ≥ 0 and post-condition c = N3 and the task is
to revise/repair Fig. 1a into a partially correct program while maintaining the
aforementioned invariant.

(c, k,m, n) ← (0, 0, 0, 0)
while n < N do
c ← c+ k
k ← k +m
m ← m+ 9
n ← n+ 1

end

(a) Faulty loop

(c, k,m, n) ← (0, 1 , 6 , 0)
while n < N do

c ← c+ k
k ← k +m

m ← m+ 6
n ← n+ 1

end

(b) Synthesized loop

(c, k,m, n) ← (0, 1 , 6 , 0)
while n < N do

c ← c+ k

k ← k + 6n+ 6
m ← m+ 6
n ← n+ 1

end

(c) Synthesized loop

Fig. 1. Strength reduction via loop synthesis. Figures b–c are revised versions of Fig. a
such that c = n3 ∧ k = 3n2 + 3n + 1 ∧ m = 6n + 6 is an invariant of Figs. b–c.

In this paper we introduce an algorithmic approach to loop synthesis by rely-
ing on algebraic recurrence equations and constraint solving over polynomials.
In particular, we automatically synthesize Figs. 1b–c by using the given non-
linear polynomial equalities c = n3 ∧ k = 3n2 + 3n + 1 ∧ m = 6n + 6 as input
invariant to our loop synthesis task. Both synthesized programs, with the loop
guard n < N as in Fig. 1a, are partially correct program with respect to the
given requirements. Moreover, Fig. 1b–c precisely capture the solution space of
c = n3 ∧ k = 3n2 +3n+1∧m = 6n+6, by implementing only affine operations,
solving thus foundational challenges of strength reduction.

Algebra-Based Loop Synthesis. Inspired by syntax-guided synthesis – SyGuS [2],
we consider additional requirements on the loop to be synthesized: we impose
syntactic requirements on the form of loop expressions and guards to be synthe-
sized. The imposed requirements allow us to reduce the loop synthesis task to the
problem of generating linear/affine recurrences with constant coefficients, called
C-finite recurrences [15]. As such, we formalize loop synthesis as follows:

Problem 1 (Loop Synthesis). Given a polynomial p(x) over a set x of vari-
ables, generate a loop L with program variables x such that

(i) p(x) = 0 is an invariant of L, and
(ii) each program variable in L induces a C-finite number sequence.

Our approach to synthesis is however conceptually different from other
SyGuS-based methods, such as [8,10,20]: rather than iteratively refining both
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the input and the solution space of synthesized programs, we take polyno-
mial relations describing a potentially infinite set of input values and pre-
cisely capture not just one loop, but the set of all loops (i) whose invari-
ant is given by our input polynomial and (ii) whose variables induce C-finite
number sequences. Any instance of this set therefore yields a loop that is
partially correct by construction and only implements affine computations.
Figures 1b–c depict two solutions of our loop synthesis task for the invariant
c = n3 ∧ k = 3n2 + 3n + 1 ∧ m = 6n + 6.

The main steps of our approach are as follows. (i) Let p(x) be a polynomial
over variables x and let s ≥ 0 be an upper bound on the number of program
variables to be used in the loop. If not specified, s is considered to be the number
of variables from x. (ii) We use syntactic constraints over the loop body to be
synthesized and define a loop template, as given by our programming model (5).
Our programming model imposes that the functional behavior of the synthe-
sized loops can be modeled by a system of C-finite recurrences (Sect. 3). (iii) By
using the invariant property of p(x) = 0 for the loops to the synthesized, we
construct a polynomial constraint problem (PCP) characterizing the set of all
loops satisfying (5) for which p(x) = 0 is a loop invariant (Sect. 4). Our approach
combines symbolic computation techniques over algebraic recurrence equations
with polynomial constraint solving. We prove that our approach to loop synthe-
sis is both sound and complete. By completeness we mean that if there is a loop
L with at most s variables satisfying the invariant p(x) = 0 such that the loop
body meets our C-finite/affine syntactic requirements, then L is synthesized by
our method (Theorem 4). Moving beyond s, that is, deriving an upper bound on
the number of program variables from the invariant, is interesting further work,
with connections to the inverse problem of difference Galois theory [21].

We finally note that our work is not restricted to specifications given by a
single polynomial equality invariant. Rather, the invariant given as input to our
synthesis approach can be conjunctions of polynomial equalities – as also shown
in Fig. 1.

Beyond Loop Synthesis. Our work has applications beyond loop synthesis –
such as in generating number sequences from algebraic relations and program
optimizations.

– Generating number sequences. Our approach provides a partial solution to
an open mathematical problem: given a polynomial relation among number
sequences, e.g.

f(n)4+2f(n)3f(n+1)−f(n)2f(n+1)2−2f(n)f(n+1)3+f(n+1)4 = 1, (1)

synthesize algebraic recurrences defining these sequences. There exists no
complete method for solving this challenge, but we give a complete approach
in the C-finite setting parameterized by an a priori bound s on the order of
the recurrences. For the given relation (1) among f(n) and f(n+1), our work
generates the C-finite recurrence equation f(n + 2) = f(n + 1) + f(n) which
induces the Fibonacci sequence.
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– Program optimizations. Given a polynomial invariant, our approach generates
a PCP such that any solution to this PCP yields a loop satisfying the given
invariant. By using additional constraints encoding a cost function on the
loops to be synthesized, our method can be extended to synthesize loops that
are optimal with respect to the considered costs, for example synthesizing
loops that use only addition in variable updates as a further optimization of
strength reduction. Consider for example Figs. 1b–c: the loop body of Fig. 1b
uses only addition, whereas Fig. 1c implements also multiplications by con-
stants.

Contributions. This paper brings integrated approaches to formal modelling and
analysis of software, by combining symbolic computation, program analysis and
SMT reasoning. In summary, we make the following contributions.
– We propose an automated procedure for synthesizing loops that are partially

correct with respect to a given polynomial loop invariant (Sect. 4). By exploit-
ing properties of C-finite sequences, we construct a PCP which precisely cap-
tures all solutions of our loop synthesis task. We are not aware of previous
approaches synthesizing loops from (non-linear) polynomial invariants.

– We prove that our approach to loop synthesis is sound and complete
(Theorem 4). That is, if there is a loop whose invariant is captured by our
given specification, our approach synthesizes this loop. To this end, we con-
sider completeness modulo an a priori fixed upper bound s on the number of
loop variables.

– We extend our task of loop synthesis with additional constraints, for optimiz-
ing the solution space of our PCP (Sect. 5). These optimizations are essential
in automating loop synthesis and provide automated approaches for strength
reduction.

– We implemented our approach in the new open-source framework Absynth.
We evaluated our work on a number of academic examples on loop analysis as
well as on generating number sequences in algorithmic combinatorics (Sect. 6).

2 Preliminaries

Let K be a computable field with characteristic zero. We also assume K to be
algebraically closed, that is, every non-constant polynomial in K[x] has at least
one root in K. The algebraic closure Q̄ of the field of rational numbers Q is such
a field; Q̄ is called the field of algebraic numbers.

We denote by K[x1, . . . , xn] the multivariate polynomial ring with indeter-
minates x1, . . . , xn. For a list x1, . . . , xn, we write x if the number of variables is
known from the context or irrelevant. As K is algebraically closed, every poly-
nomial p ∈ K[x] of degree r has exactly r roots.

2.1 Polynomial Constraint Problem (PCP)

A polynomial constraint F is a constraint of the form p �� 0 where p is a
polynomial in K[x] and �� ∈ {<,≤,=, �=,≥, >}. A clause is then a disjunc-
tion C = F1 ∨ · · · ∨ Fm of polynomial constraints. A unit clause is a special
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clause consisting of a single disjunct (i.e. m = 1). A polynomial constraint
problem (PCP) is then given by a set of clauses C. We say that a variable
assignment σ : {x1, . . . , xn} → K satisfies a polynomial constraint p �� 0 if
p(σ(x1), . . . , σ(xn)) �� 0 holds. Furthermore, σ satisfies a clause F1 ∨ · · · ∨ Fm if
for some i, Fi is satisfied by σ. Finally, σ satisfies a clause set – and is therefore
a solution of the PCP – if every clause within the set is satisfied by σ. We write
C � K[x] to indicate that all polynomials in the clause set C are contained in
K[x]. For a matrix M with entries m1, . . . ,ms we define the clause set cstr(M)
to be {m1 = 0, . . . ,ms = 0}.

2.2 Number Sequences and Recurrence Relations

A sequence (x(n))∞
n=0 is called C-finite if it satisfies a linear recurrence with

constant coefficients, also known as C-finite recurrence [15]. Let c0, . . . , cr−1 ∈ K

and c0 �= 0, then

x(n + r) + cr−1x(n + r − 1) + · · · + c1x(n + 1) + c0x(n) = 0 (2)

is a C-finite recurrence of order r. The order of a sequence is defined by the
order of the recurrence it satisfies. We refer to a recurrence of order r also as
an r-order recurrence, for example as a first-order recurrence when r = 1 or a
second-order recurrence when r = 2. A recurrence of order r and r initial values
define a sequence, and different initial values lead to different sequences. For
simplicity, we write (x(n))∞

n=0 = 0 for (x(n))∞
n=0 = (0)∞

n=0.

Example 1. Let a ∈ K. The constant sequence (a)∞
n=0 satisfies a first-order recur-

rence equation x(n + 1) = x(n) with x(0) = a. The geometric sequence (an)∞
n=0

satisfies x(n + 1) = ax(n) with x(0) = 1. The sequence (n)∞
n=0 satisfies a second-

order recurrence x(n + 2) = 2x(n + 1) − x(n) with x(0) = 0 and x(1) = 1. 	

From the closure properties of C-finite sequences [15], the product and the

sum of C-finite sequences are also C-finite. Moreover, we also have the following
properties:

Theorem 1 ([15]). Let p = c0 + c1x + · · · + ckxk ∈ K[x]. Then (p(n))∞
n=0 = 0

if and only if c0 = · · · = ck = 0. 	

Theorem 2 ([15]). Let (u)∞

n=0 be a sequence satisfying a C-finite recurrence
of order r. Then, u(n) = 0 for all n ∈ N if and only if u(n) = 0 for n ∈
{0, . . . , r − 1}. 	


We define a system of C-finite recurrences of order r and size s to be of the
form

Xn+r + Cr−1Xn+r−1 + · · · + C1Xn+1 + C0Xn = 0

where Xn =
(
x1(n) · · · xs(n)

)ᵀ and Ci ∈ K
s×s. Every C-finite recurrence system

can be transformed into a first-order system of recurrences by increasing the size
such that we get

Xn+1 = BXn where B is invertible. (3)
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The closed form solution of a C-finite recurrence system (3) is determined by
the roots ω1, . . . , ωt of the characteristic polynomial of B, or equivalently by the
eigenvalues ω1, . . . , ωt of B. We recall that the characteristic polynomial χB of
the matrix B is defined as χB(ω) = det(ωI −B), where det denotes the (matrix)
determinant and I the identity matrix. Let m1, . . . ,mt respectively denote the
multiplicities of the roots ω1, . . . , ωt of χB. The closed form of (3) is then given
by

Xn =
t∑

i=1

mi∑

j=1

Cijω
n
i nj−1 with Cij ∈ K

s×1. (4)

However, not every choice of the Cij gives rise to a solution. For obtaining a
solution, we substitute the general form (4) into the original system (3) and
compare coefficients.

3 Our Programming Model

Given a polynomial relation p(x1, . . . , xs) = 0, our loop synthesis pro-
cedure generates a first-order C-finite/affine recurrence system (3) with
Xn =

(
x1(n) · · · xs(n)

)ᵀ, such that p(x1(n), . . . , xs(n)) = 0 holds for all n ∈ N.
It is not hard to argue that every first-order C-finite recurrence system corre-
sponds to a loop with simultaneous variable assignments of the following form

(x1, . . . , xs) ← (a1, . . . , as)
while true do

(x1, . . . , xs) ← (p1(x1, . . . , xs), . . . , ps(x1, . . . , xs))
end

(5)

where the program variables x1, . . . , xs are numeric, a1, . . . , as are (symbolic)
constants in K and p1, . . . , ps ∈ K[x1, . . . , xs]. For a loop variable xi, we denote
by xi(n) the value of xi at the nth loop iteration. That is, we view loop variables
xi as sequences (xi(n))∞

n=0. We call a loop (5) parameterized if at least one of
a1, . . . , as is symbolic, and non-parameterized otherwise.

Remark 1. Our synthesized loops (5) are non-deterministic, with loop guards
being true. We synthesize loops such that the given invariant holds for an arbi-
trary/unbounded number of loop iterations - for example, also for loop guards
n < N as in Fig. 1. 	

Remark 2. While the output of our synthesis procedure is basically an affine pro-
gram, note that C-finite recurrences capture a larger class of programs. E.g. the
program:

(x, y) ← (0, 0); while true do (x, y) ← (x + y2, y + 1) end

can be modeled by a C-finite recurrence system of order 4, which can be turned
into an equivalent first-order system of size 6. Thus, to synthesize loops inducing
the sequences (x(n))∞

n=0 and (y(n))∞
n=0, we have to consider recurrence systems

of size 6. 	
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Algebraic Relations and Loop Invariants. Let p be a polynomial in K[z1, . . . , zs]
and let (x1(n))∞

n=0, . . . , (xs(n))∞
n=0 be number sequences. We call p an algebraic

relation for the given sequences if p(x1(n), . . . , xs(n)) = 0 for all n ∈ N. More-
over, p is an algebraic relation for a system of recurrences if it is an algebraic
relation for the corresponding sequences. It is immediate that for every algebraic
relation p of a recurrence system, p = 0 is a loop invariant for the corresponding
loop (5); that is, p = 0 holds before and after every loop iteration.

4 Algebra-Based Loop Synthesis

We now present our approach for synthesizing loops satisfying a given polynomial
property (invariant), by using affine loop assignments. We transform the loop
synthesis problem into a PCP as described in Sect. 4.1. In Sect. 4.2, we introduce
the clause sets of our PCP which precisely describe the solutions for the synthesis
of loops, in particular to non-parameterized loops. Proofs of our results can be
found in [13]. We note that our approach can naturally be extended to the
synthesis of parameterized loops, as discussed in the extended version [13] of our
work.

4.1 Setting and Overview of Our Method

Given a constraint p = 0 with p ∈ K[x1, . . . , xs, y1, . . . , ys], we aim to synthesize
a system of C-finite recurrences such that p is an algebraic relation thereof.
Intuitively, the values of loop variables x1, . . . , xs are described by the sequences
x1(n), . . . , xs(n) for arbitrary n, and y1, . . . , ys correspond to the initial values
x1(0), . . . , xs(0). That is, we have a polynomial relation p among loop variables
xi and their initial values yi, for which we synthesize a loop (5) such that p = 0
is a loop invariant of loop (5).

Remark 3. Our approach is not limited to invariants describing relationship
between program variables from a single loop iteration. Instead, it naturally
extends to relations among different loop iterations. For instance, by considering
the relation in Eq. (1), we synthesize a loop computing the Fibonacci sequence.

	

The key step in our work comes with precisely capturing the solution space

for our loop synthesis problem as a PCP. Our PCP is divided into the clause
sets Croots, Ccoeff , Cinit and Calg, as illustrated in Fig. 2 and explained next. Our
PCP implicitly describes a first-order C-finite recurrence system and its corre-
sponding closed form system. The one-to-one correspondence between these two
systems is captured by the clause sets Croots, Ccoeff and Cinit. Intuitively, these
constraints mimic the procedure for computing the closed form of a recurrence
system (see [15]). The clause set Calg interacts between the closed form system
and the polynomial constraint p = 0, and ensures that p is an algebraic relation
of the system. Furthermore, the recurrence system is represented by the matrix
B and the vector A of initial values where both consist of symbolic entries. Then
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a solution of our PCP – which assigns values to those symbolic entries – yields
a desired synthesized loop.

In what follows we only consider a unit constraint p = 0 as input to our loop
synthesis procedure. However, our approach naturally extends to conjunctions
of polynomial equality constraints.

Closed form
system

Polynomial
invariant

Recurrence
system Loop

Calg Croots, Ccoeff

Cinit

Fig. 2. Overview of the PCP describing loop synthesis

4.2 Synthesizing Non-parameterized Loops

We now present our work for synthesizing loops, in particular non-parameterized
loops of the form (5). That is, we aim at computing concrete initial values for all
program variables. Our implicit representation of the recurrence system is thus
of the form

Xn+1 = BXn X0 = A (6)

where B ∈ K
s×s is invertible and A ∈ K

s×1, both containing symbolic entries.
As described in Sect. 2.2, the closed form of (6) is determined by the eigen-

values ωi of B which we thus need to synthesize. Note that B may contain both
symbolic and concrete values. Let us denote the symbolic entries of B by b.
Since K is algebraically closed, we know that B has s (not necessarily distinct)
eigenvalues. We therefore fix a set of distinct symbolic eigenvalues ω1, . . . , ωt

together with their multiplicities m1, . . . ,mt with mi > 0 for i = 1, . . . , t such
that

∑t
i=1 mi = s. We call m1, . . . ,mt an integer partition of s. We next define

the clause sets of our PCP.

Root Constraints Croots. The clause set Croots ensures that B is invertible and that
ω1, . . . , ωt are distinct symbolic eigenvalues with multiplicities m1, . . . ,mt. Note
that B is invertible if and only if all eigenvalues ωi are non-zero. Furthermore,
since K is algebraically closed, every polynomial f(z) can be written as the
product of linear factors of the form z − ω, with ω ∈ K, such that f(ω) = 0.
Therefore, the equation

χB(z) = (z − ω1)m1 · · · (z − ωt)mt

holds for all z ∈ K, where χB(z) ∈ K[ω, b, z]. Bringing everything to one side,
we get

q0 + q1z + · · · + qdz
d = 0,

implying that the qi ∈ K[ω, b] have to be zero. The clause set characterizing the
eigenvalues ωi of B is then

Croots = {q0 = 0, . . . , qd = 0} ∪
⋃

i,j=1,...,t
i�=j

{ωi �= ωj} ∪
⋃

i=1,...,t

{ωi �= 0}.
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Coefficient Constraints Ccoeff . The fixed symbolic roots/eigenvalues ω1, . . . , ωt

with multiplicities m1, . . . ,mt induce the general closed form solution

Xn =
t∑

i=1

mi∑

j=1

Cijω
n
i nj−1 (7)

where the Cij ∈ K
s×1 are column vectors containing symbolic entries. As stated

in Sect. 2.2, not every choice of the Cij gives rise to a valid solution. Instead, Cij

have to obey certain conditions which are determined by substituting into the
original recurrence system of (6):

Xn+1 =
t∑

i=1

mi∑

j=1

Cijω
n+1
i (n + 1)j−1 =

t∑

i=1

mi∑

j=1

⎛

⎝
mi∑

k=j

(
k − 1
j − 1

)
Cikωi

⎞

⎠ ωn
i nj−1

= B

⎛

⎝
t∑

i=1

mi∑

j=1

Cijω
n
i nj−1

⎞

⎠ = BXn

Bringing everything to one side yields Xn+1 − BXn = 0 and thus

t∑

i=1

mi∑

j=1

⎛

⎝

⎛

⎝
mi∑

k=j

(
k − 1
j − 1

)
Cikωi

⎞

⎠ − BCij

⎞

⎠

︸ ︷︷ ︸
Dij

ωn
i nj−1 = 0. (8)

Equation (8) holds for all n ∈ N. By Theorem 1 we then have Dij = 0 for all i, j
and define

Ccoeff =
t⋃

i=1

mi⋃

j=1

cstr(Dij).

Initial Values Constraints Cinit. The constraints Cinit describe properties of initial
values x1(0), . . . , xs(0). We enforce that (7) equals BnX0, for n = 0, . . . , d − 1,
where d is the degree of the characteristic polynomial χB of B, by

Cinit = cstr(M0) ∪ · · · ∪ cstr(Md−1)

where Mi = Xi − BiX0, with X0 as in (6) and Xi being the right-hand side
of (7) where n is replaced by i.

Algebraic Relation Constraints Calg. The constraints Calg are defined to ensure
that p is an algebraic relation among the xi(n). Using (7), the closed forms of
the xi(n) are expressed as

xi(n) = pi,1ω
n
1 + · · · + pi,tω

n
t

where the pi,j are polynomials in K[n, c]. By substituting the closed forms and
the initial values into the polynomial p, we get

p′ = p(x1(n), . . . , xs(n), x1(0), . . . , xs(0)) = q0 + nq1 + n2q2 + · · · + nkqk (9)
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where the qi are of the form

wn
i,1ui,1 + · · · + wn

i,�ui,� (10)

with ui,1, . . . , ui,� ∈ K[a, c] and wi,1, . . . , wi,� being monomials in K[ω].

Proposition 1. Let p be of the form (9). Then (p(n))∞
n=0 = 0 iff (qi(n))∞

n=0 = 0
for i = 0, . . . , k. 	


As p is an algebraic relation, we have that p′ should be 0 for all n ∈ N.
Proposition 1 then implies that the qi have to be 0 for all n ∈ N.

Lemma 1. Let q be of the form (10). Then q = 0 for all n ∈ N if and only if
q = 0 for n ∈ {0, . . . , � − 1}. 	


Even though the qi contain exponential terms in n, it follows from Lemma 1
that the solutions for the qi being 0 for all n ∈ N can be described as a finite
set of polynomial equality constraints: Let Qj

i be the polynomial constraint
wj

i,1ui,1 + · · · + wj
i,�ui,� = 0 for qi of the form (10), and let Ci = {Q0

i , . . . , Q
�−1
i }

be the associated clause set. Then the clause set ensuring that p is indeed an
algebraic relation is given by

Calg = C0 ∪ · · · ∪ Ck.

Remark 4. Observe that Theorem 2 can be applied to (9) directly, as p′ satisfies
a C-finite recurrence. Then by the closure properties of C-finite recurrences,
the upper bound on the order of the recurrence which p′ satisfies is given by
r =

∑k
i=0 2i�. That is, by Theorem 2, we would need to consider p′ with n =

0, . . . , r − 1, which yields a non-linear system with a degree of at least r − 1.
Note that r depends on 2i, which stems from the fact that (n)∞

n=0 satisfies a
recurrence of order 2, and ni satisfies therefore a recurrence of order at most
2i. Thankfully, Proposition 1 allows us to only consider the coefficients of the ni

and therefore lower the size of our constraints. 	

Having defined the clause sets Croots, Ccoeff , Cinit and Calg, we define our PCP

as the union of these four clause sets. Note that the matrix B, the vector A,
the polynomial p and the multiplicities of the symbolic roots m = m1, . . . ,mt

uniquely define the clauses discussed above. We define our PCP to be the clause
set Cp

AB(m) as follows:

Cp
AB(m) = Croots ∪ Cinit ∪ Ccoeff ∪ Calg (11)

Recall that a and b are the symbolic entries in the matrices A and B in (6),
c are the symbolic entries in the Cij in (7), and ω are the symbolic eigenvalues
of B. We then have Cp

AB(m) � K[ω,a, b, c].
It is not difficult to see that the constraints in Calg determine the size of

our PCP. As such, the degree and the number of terms in the invariant have a
direct impact on the size and the maximum degree of the polynomials in our
PCP. Which might not be obvious is that the number of distinct symbolic roots
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Input : A polynomial p ∈ K[x1, . . . , xs, y1, . . . , ys].
Output: A vector A ∈ K

s×1 and a matrix B ∈ K
s×s s.t. p is an algebraic

relation of Xn+1 = BXn and X0 = A, if such A and B exist.

1 A ← (ai) ∈ K
s×1 // symbolic vector

2 B ← (bij) ∈ K
s×s // symbolic matrix

3 for m1, . . . , mt ∈ IntPartitions(s) do
4 sat, σ ← Solve(Cp

AB(m1, . . . , mt))
5 if sat then return σ(A), σ(B)

6 end
Algorithm 1: Synthesis of a non-parameterized C-finite recurrence system

influences the size and the maximum degree of our PCP. The more distinct
roots are considered the higher is the number of terms in (10), and therefore
more instances of (10) have to be added to our PCP.

Let p ∈ K[x1, . . . , xs, y1, . . . , ys], B ∈ K
s×s and A ∈ K

s×1, and let m1, . . . ,mt

be an integer partition of degω(χB(ω)). We then get the following theorem:

Theorem 3. The mapping σ : {ω,a, b, c} → K is a solution of Cp
AB(m) if and

only if p(x, x1(0), . . . , xs(0)) is an algebraic relation for Xn+1 = σ(B)Xn with
X0 = σ(A), and the eigenvalues of σ(B) are σ(ω1), . . . , σ(ωt) with multiplicities
m1, . . . ,mt. 	


From Theorem 3, we then get Algorithm 1 for synthesizing the C-finite
recurrence representation of a non-parameterized loop of the form (5):
IntPartitions(s) returns the set of all integer partitions of an integer s; and
Solve(C) returns whether the clause set C is satisfiable and a model σ if so.
We note that the growth of the number of integer partitions is subexponential,
and so is the complexity Algorithm 1. A more precise complexity analysis of
Algorithm 1 is the subject of future investigations.

Finally, based on Theorem 3 and on the property that the number of integer
partitions of a given integer is finite, we obtain the following result:

Theorem 4. Algorithm1 is sound, and complete w.r.t. recurrence systems of
size s. 	


The completeness in Theorem 4 is relative to systems of size s which is a
consequence of the fact that we synthesize first-order recurrence systems. That
is, there exists a system of recurrence equations of order >1 and size s with an
algebraic relation p ∈ K[x1, . . . , xs], but there exists no first-order system of size
s where p is an algebraic relation.

The precise characterization of non-parameterized loops by non-
parameterized C-finite recurrence systems implies soundness and completeness
of our approach for non-parameterized loops from Theorem4.

Example 2. We showcase Algorithm 1 by synthesizing a loop from the loop
invariant x = 2y. That is, the polynomial is given by p = x − 2y ∈ K[x, y], and
we want to find a recurrence system of the following form
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(
x(n + 1)
y(n + 1)

)
=

(
b11 b12
b21 b22

) (
x(n)
y(n)

) (
x(0)
y(0)

)
=

(
a1

a2

)
(12)

The characteristic polynomial of B is then given by

χB(ω) = ω2 − b11ω − b22ω − b12b21 + b11b22

where its roots define the closed form system. Since we cannot determine the
actual roots of χB(ω), we have to fix a set of symbolic roots. The characteristic
polynomial has two – not necessarily distinct – roots: Either χB(ω) has two
distinct roots ω1, ω2 with multiplicities m1 = m2 = 1, or a single root ω1 with
multiplicity m1 = 2. Let us consider the latter case. The first clause set we
define is Croots for ensuring that B is invertible (i.e. ω1 is nonzero), and that ω1

is indeed a root of the characteristic polynomial with multiplicity 2. That is,
χB(ω) = (ω − ω1)2 has to hold for all ω ∈ K, and bringing everything to one
side yields

(b11 + b22 − 2ω1)ω + b12b21 − b11b22 + ω2
1 = 0

We then get the following clause set:

Croots = {b11 + b22 − 2ω1 = 0, b12b21 − b11b22 + ω2
1 = 0, ω1 �= 0}

As we fixed the symbolic roots, the general closed form system is of the form
(

x(n)
y(n)

)
=

(
c1
c2

)
ωn
1 +

(
d1
d2

)
ωn
1 n (13)

By substituting into the recurrence system we get:
(

c1
c2

)
ωn+1
1 +

(
d1
d2

)
ωn+1
1 (n + 1) =

(
b11 b12
b21 b22

) ((
c1
c2

)
ωn
1 +

(
d1
d2

)
ωn
1 n

)

By further simplifications and re-ordering of terms we then obtain:

0 =
(

c1ω1 + d1ω1 − b11c1 − b12c2
c2ω1 + d2ω1 − b21c1 − b22c2

)
ωn
1 +

(
d1ω1 − b11d1 − b12d2
d2ω1 − b21d1 − b22d2

)
ωn
1 n

Since this equation has to hold for n ∈ N we get the following clause set:

Ccoeff = {c1ω1 + d1ω1 − b11c1 − b12c2 = 0, c2ω1 + d2ω1 − b21c1 − b22c2 = 0,

d1ω1 − b11d1 − b12d2 = 0, d2ω1 − b21d1 − b22d2 = 0}

For defining the relationship between the closed forms and the initial values, we
set (13) with n = i to be equal to the ith unrolling of (12) for i = 0, 1:

(
c1
c2

)
=

(
a1

a2

) (
c1
c2

)
ω1 +

(
d1
d2

)
ω1 =

(
b11 b12
b21 b22

) (
a1

a2

)
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The resulting constraints for defining the initial values are then given by

Cinit = {c1 − a1 = 0, c1ω1 + d1ω1 − b11a1 − b12a2 = 0,

c2 − a2 = 0, c2ω1 + d2ω1 − b21a1 − b22a2 = 0}.

Eventually, we want to restrict the solutions such that x−2y = 0 is an algebraic
relation for our recurrence system. That is, by substituting the closed forms into
the expression x(n) − 2y(n) = 0 we get

0 = x(n) − 2y(n) = c1ω
n
1 + d1ω

n
1 n − 2(c2ωn

1 + d2ω
n
1 n)

= (c1 − 2c2) ωn
1︸ ︷︷ ︸

q0

+ ((d1 − 2d2) ωn
1 )

︸ ︷︷ ︸
q1

n

where q0 and q1 have to be 0 since the above equation has to hold for all n ∈ N.
Then, by applying Lemma 1 to q0 and q1, we get the following clauses:

Calg = {c1 − 2c2 = 0, d1 − 2d2 = 0}

Our PCP is then the union of Croots, Ccoeff , Cinit and Calg. Two possible solutions
for our PCP, and therefore of the synthesis problem, are given by the following
loops:

(x, y) ← (2, 1)
while true do

(x, y) ← (x + 2, y + 1)
end

(x, y) ← (2, 1)
while true do

(x, y) ← (2x, 2y)
end

Note that both loops above have mutually independent affine updates. Yet, the
second one induces geometric sequences and requires handling exponentials of
2n. 	

Remark 5. Our approach to synthesis extends to parameterized loops. That is,
instead of synthesizing concrete initial values for all program variables, it is
possible to keep them symbolic. Hence, the synthesized loops satisfy the given
invariant for all possible initial values for those particular variables; Table 2 lists
five such synthesized loops. Due to the page limit, we refer to [13] for details on
synthesizing parameterized loops.

5 Automating Algebra-Based Loop Synthesis

For automating Algorithm1 for loop synthesis, the challenging task is to find
solutions for our PCPs describing large systems of polynomial constraints with
many variables and high polynomial degrees (11). We propose the following
(partial) solutions for optimizing and exploring the PCP solution space.
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Handling Large Recurrence Templates. It is obvious that the higher the number
of program variables in the loop to be synthesized is, the higher is the number
of variables in the PCP of Algorithm1. To face this increase of complexity we
implemented an iterative search for PCP solutions in the sense that we preset
certain values of the coefficient matrix B in (6). In particular, we start by look-
ing for PCP solutions where the coefficient matrix B is unit upper triangular.
If no such solution is found, we consider B to be an upper triangular matrix
and further to be full symbolic matrix without preset values. This way we first
construct simpler PCPs (in terms of the number of variables) and generalize step
by step, if needed. This iterative approach can also be used to the search for only
integer PCP solutions by imposing/presetting B to contain only integer-valued.

Synthesizing a (unit) upper triangular coefficient matrix B yields a loop
where its loop variables are not mutually dependent on each other. We note
that such a pattern is a very common programming paradigm – all benchmarks
from Table 1 satisfy such a pattern. Yet, as a consequence of restricting the shape
of B, the order of the variables in the recurrence system matters. That is, we
have to consider all possible variable permutations for ensuring completeness
w.r.t. (unit) upper triangular matrices.

Handling Large Polynomial Degrees. The main source of polynomials with high
degrees in the PCP of Algorithm 1 stems from the clause set Calg, i.e. constraints of
the form (10) for n ∈ {0, . . . , �−1}. For any PCP solution σ in line 4 of Algorithm 1,
we have σ(w1)nσ(u1) + · · · + σ(w�)nσ(u�) = 0 for n ∈ {0, . . . , � − 1}, which yields
the following system of linear equations:

Wu =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
σ(w1) σ(w2) σ(w3) · · · σ(w�)
σ(w1)2 σ(w2)2 σ(w3)2 · · · σ(w�)2

...
...

...
. . .

...
σ(w1)�−1 σ(w2)�−1 σ(w3)�−1 · · · σ(w�)�−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

σ(u1)
σ(u2)
σ(u3)

...
σ(u�)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= 0 (14)

where W ∈ K
�×� is a Vandermonde matrix and u ∈ K

�. Suppose our assignment
σ in line 4 of Algorithm 1 is such that σ(wi) �= σ(wj) for i �= j; if this is not the
case we can always create a smaller system of the form (14) by collecting terms.
As σ(wi) �= σ(wj) for i �= j, we derive that W is invertible. Then, it follows by
Cramer’s rule, that σ(ui) = 0 for all i ∈ {1, . . . , �}. Based on this observation,
we propose Algorithm 2 for solving constraints of the form (10). For simplicity,
we only present the case where we have a single constraint of the form (10);
Algorithm 2 however naturally extends to multiple such constraints.

Intuitively, Step 1 of Algorithm2 finds a model σ such that each ui becomes
zero, which makes the values of the wi irrelevant. To this end, we compute
maximum satisfiability of our constraints C using the MaxSAT approach of [19].
If this is not possible, we continue with a partition I = {I1, . . . , I�} of the set of
indices {1, . . . , �}. Then I induces a system of linear equations of the form (14)
of size � which is specified in Step 2 of the algorithm. If the PCP is satisfiable
(Step 3 of Algorithm2), then we have found an assignment σ which satisfies P



454 A. Humenberger et al.

1Input : An arbitrary satisfiable PCP P and a constraint C of the form (10).
Output: A model σ for the polynomial constraint problem P ∪ {C}.

1. Call MaxSAT to compute maximum satisfiability with soft constraints
u1 = 0, . . . , u� = 0 and hard constraints from P, and let σ be the resulting assign-
ment. If all soft constraints are satisfied, then return σ. Otherwise, let I be the
partition such that for every set of indices I ∈ I we have σ(wi) = σ(wj) for
i, j ∈ I.

2. Construct a constraint problem Q as follows:
(a) For each I ∈ I, add constraints wi = wj for i, j ∈ I.
(b) For each distinct pair I, J ∈ I, add a constraint wi �= wj for some i ∈ I

and j ∈ J .
(c) For each I ∈ I, add a constraint

∑
i∈I ui = 0.

3. If P ∪ Q is satisfiable with model σ, then return σ. Otherwise, learn a new
partition I and go to Step 2.

Algorithm 2: Solving C-finite constraints

and the system of the form (14) for C. If the given PCP is unsatisfiable, then
we learn a new partition by making use of the unsatisfiable core and go back to
Step 2 of Algorithm 2.

6 Implementation and Experiments

Our approach to algebra-based loop synthesis is implemented in the tool
Absynth, which consists of about 1800 lines of Julia code and is available at
https://github.com/ahumenberger/Absynth.jl. Inputs to Absynth are conjunc-
tions of polynomial equality constraints, representing a loop invariant. As a
default result, Absynth derives a program that is partially correct with respect
to the given invariant (Table 1). In addition, Absynth can also be used to derive
number sequences for which the given invariant is an algebraic relation (Table 2).

Loop synthesis in Absynth is reduced to solving PCPs. These PCPs are
currently expressed in the quantifier-free fragment of non-linear real arithmetic
(QF NRA). We used Absynth in conjunction with the SMT solvers Yices [7] (ver-
sion 2.6.1) and Z3 [6] (version 4.8.6) for solving the PCPs and therefore synthesiz-
ing loops. For instance, Figs. 1b–c and Example 2 are synthesized automatically
using Absynth.

As PCPs in Absynth are restricted to QF NRA, the implementation of
Algorithm 1 within Absynth does not yet find solutions containing non-real alge-
braic numbers. In our loop synthesis experiments we did not encounter instances
where non-real algebraic numbers are necessary. The synthesis of recurrences,
however, often requires reasoning about non-real algebraic numbers such as the
so-called Perrin numbers p(n) defined via p(n + 3) = p(n + 1) + p(n) and sat-
isfying the relation p(n)3 − 3p(n)p(2n) + 2p(3n) = 6. Going beyond the QF NRA
fragment, as well as considering finite domains (bitvectors/bounded integers)
within Absynth is a next step to investigate.

https://github.com/ahumenberger/Absynth.jl
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Tables 1–2 summarize our experimental results. The experiments were per-
formed on a machine with a 2.9 GHz Intel Core i5 and 16 GB LPDDR3 RAM,
and for each instance a timeout of 60 s was set. The results are given in millisec-
onds, and only include the time needed for solving the constraint problem as
the time needed for constructing the constraints is neglectable. In Table 1, the
columns Yices and Z3 correspond to the results where the respective solver is
called as an external program with and SMTLIB 2.0 file as input; column Z3*
shows the results where our improved, direct Absynth interface (C++ API) was
used to call Z3. Finally, column Z3* + Alg2 depicts the results for Algorithm2
with Z3* as backend solver.

Loop Synthesis. Our benchmark set for loop synthesis (Table 1) consists of invari-
ants for loops from the invariant generation literature. Note that the benchmarks
cubes and double2 in Table 1 are those from Fig. 1 and Example 2, respectively.
A further presentation of a selected set of our benchmarks can be found in the
extended version of our work [13].

The columns un and up in Table 1 show the results where the coefficient
matrix B is restricted to be unit upper triangular and upper triangular respec-
tively. fu indicates that no restriction on B was set. Note that the running time
of Algorithm 1 heavily depends on the order of which the integer partitions and
the variable permutations are traversed. Therefore, in order to get comparable
results, we fixed the integer partition and the variable permutation. That is, for
each instance, we enforced that B in (6) has just a single eigenvalue, and we
fixed a variable ordering where we know that there exists a solution with an
unitriangular matrix B. Hence, there exists at least one solution which all cases
– un, up and fu – have in common. Furthermore, for each instance we added
constraints for avoiding trivial solutions, i.e. loops inducing constant sequences,
and used Algorithm 2 to further reduce our search space.

Recurrence Synthesis. In addition to loop synthesis, we also conducted exper-
iments with respect to synthesizing recurrence equations (Table 2). We took
algebraic relations from [16] and synthesized recurrence equations satisfying the
given relations. None of the instances could be solved by Yices or Z3, but only
by Z3* + Alg2. In contrast to loop synthesis, the synthesis of recurrence equa-
tions often requires reasoning about non-real algebraic numbers which does not
fall into the fragment of non-linear real arithmetic. Hence, for synthesizing recur-
rence equations we plan to integrate a solver which is able to reason about the
whole set of algebraic numbers.

7 Related Work

Synthesis. To the best of our knowledge, existing synthesis approaches are
restricted to linear invariants, see e.g. [24], whereas our work supports loop
synthesis from non-linear polynomial properties. Counterexample-guided syn-
thesis (CEGIS) [3,8,20,23] uses input-output examples satisfying a specification
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Table 1. Absynth for loop synthesis (results in milliseconds)

Instance s i d c Yices Z3 Z3* Z3* + Alg2

un up fu un up fu un up fu un up fu

add1* 5 1 5 173 932 921 - 117 - - 22 726 - 7 2416 -

add2* 5 1 5 173 959 861 - 115 - - 22 109 - 7 2323 -

cubes 5 3 6 94 - - - 116 114 - 18 496 575 87 - -

double1 3 1 4 29 114 112 3882 113 111 113 13 21 63 3 5 120

double2 3 1 3 24 110 106 1665 115 106 115 13 18 40 2 5 21

eucliddiv* 5 1 5 185 213 537 - 114 115 - 19 73 - 10 2554 -

intcbrt* 5 2 12 262 - - - 117 116 - 22 83 469 89 - -

intsqrt1 4 2 6 53 - - - 113 108 114 15 19 - 35 81 -

intsqrt2* 4 1 6 104 105 1164 - 113 111 115 15 27 37 3 9 -

petter1 3 1 4 29 112 116 - 114 113 113 15 18 32 15 32 3629

square 3 1 4 29 112 112 - 112 114 117 13 17 26 10 29 592

dblsquare 3 1 4 30 109 105 - 105 105 110 12 17 26 14 31 -

sum1 4 2 6 53 617 - - 108 112 113 17 24 99 39 250 -

sum2 5 3 6 82 - - - 220 112 - 20 516 - 60 - -

s size of the recurrence system

i number of polynomial invariants

d maximum monomial degree of constraints

c number of constraints

* parameterized system

- timeout (60 s)

Table 2. Absynth for recurrence synthesis (results in milliseconds)

Instance o Yices Z3 Z3* Z3* + Alg2

fibonacci1 2 - - - 324

fibonacci2 2 - - - 22

example28 2 - - - 41

ex1 2 - - - 27

ex2 2 - - - 20

ex3 2 - - - 451

o order of recurrence
- timeout (60 s)

S to synthesize a candidate program P that is consistent with the given inputs.
Correctness of the candidate program P with respect to S is then checked using
verification approaches, in particular using SMT-based reasoning. If verification
fails, a counterexample is generated as an input to P that violates S. This coun-
terexample is then used in conjunction with the previous set of input-outputs to
revise synthesis and generate a new candidate program P . Unlike these methods,
input specifications to our approach are relational (invariant) properties describ-
ing all, potentially infinite input-output examples of interest. Hence, we do not
rely on interactive refinement of our input but work with a precise characteriza-
tion of the set of input-output values of the program to be synthesized. Similarly
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to sketches [20,23], we consider loop templates restricting the search for solu-
tions to synthesis. Yet, our templates support non-linear arithmetic (and hence
multiplication), which is not yet the case in [8,20]. We precisely characterize the
set of all programs satisfying our input specification, and as such, our approach
does not exploit learning to refine program candidates. On the other hand, our
programming model is more restricted than [8,20] in various aspects: we only
handle simple loops and only consider numeric data types and operations.

The programming by example approach of [9] learns programs from input-
output examples and relies on lightweight interaction to refine the specification
of programs to be specified. The approach has further been extended in [14]
with machine learning, allowing to learn programs from just one (or even none)
input-output example by using a simple supervised learning setup. Program
synthesis from input-output examples is shown to be successful for recursive
programs [1], yet synthesizing loops and handling non-linear arithmetic is not
yet supported by this line of research. Our work does not learn programs from
observed input-output examples, but uses loop invariants to fully characterize
the intended behavior of the program to be synthesized. We precisely characterize
the solution space of loops to be synthesized by a system of algebraic recurrences,
without using statistical models supporting machine learning.

A related approach to our work is given in [5], where a fixed-point implemen-
tation for an approximated real-valued polynomial specification is presented, by
combining genetic programming with abstract interpretation to estimate and
refine the (floating-point) error bound of the inferred fixed-point implementa-
tion. While the underlying abstract interpreter is precise for linear expressions,
precision of the synthesis is lost for non-linear arithmetic. Unlike [5], we consider
polynomial specification in the abstract algebra of real-closed fields and do not
address challenges rising from machine reals.

Algebraic Reasoning. Compared to works on invariant generation [11,12,17,22],
the only common aspect between these works and our synthesis method is the
use of linear recurrences to capture the functional behavior of program loops.
Yet, our work is conceptually different from [11,12,17,22], as we reverse engi-
neer invariant generation and do not rely on the ideal structure/Zariski closure of
polynomial invariants. We do not use ideal theory nor Gröbner bases computa-
tion to generate invariants from loops; rather, we generate loops from invariants
by formulating and solving PCPs.

8 Conclusions

We proposed a syntax-guided synthesis procedure for synthesizing loops over
affine assignments from polynomial invariants. We consider loop templates and
use reasoning over recurrence equations modeling the loop behavior. The key
ingredient of our work comes with translating the loop synthesis problem into
a polynomial constraint problem and showing that this constraint problem pre-
cisely captures all solutions to the loop synthesis problem. Additional heuristics
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for solving our constraints have been also implemented in our new tool Absynth
for loop synthesis.

Directions for future work include a complexity analysis of our algorithm;
further investigating the properties of our constraint problems for improving
the scalability of our procedure; generalizing our approach to multi-path loops
and inequality invariants; restricting the solution space to integers or bounded
domains; extending Absynth with reasoning support for arbitrary algebraic num-
bers; and understanding and encoding the best optimization measures for loop
synthesis in the context of strength reduction and other program optimization
approaches.
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