Chapter 2 Food Processing Industries, Food Waste Classifcation and Handling, Target Compounds

Teresa Cecchi

One of the major moral challenges for modern society is the fact that nearly one in ten people in the world is exposed to severe levels of food insecurity, and an estimated 2 billion people worldwide cannot rely on safe, nutritious and sufficient food (FAO [2020a\)](#page-46-0), whereas industrialized countries are dealing with over-consumption of food, food-related diseases and increasing food waste production; this represents an environmental, economic, and ethical challenge for the modern society.

From a historical perspective, concerns related to food waste (FW) were brought to the scientifc community since the 90s (Kroyer [1995\)](#page-51-0).

Figure [2.1](#page-1-0) illustrates the food volumes of all commodity groups produced in their primary form, in the regions of the world studied in the last decade.

A decade ago, as per the reports of FAO, about one-third of the food produced in the world for human consumption every year—approximately 1.3 billion tonnes got lost or wasted during agricultural production (e.g., mechanical damage), postharvest handling, storage and transportation (e.g., spillage and degradation during storage, damage during transport or non-appropriate transport systems), processing (e.g., degradation during industrial or contamination processing), distribution at the market system (e.g., improper packaging or istorage), and consumption at the household level (Gustavsson et al. [2011](#page-48-0)). It is rewarding to observe that, nowadays, lost or wasted food represents only 14% of the food produced globally, according to the newly-released FAO 2019 State of Food and Agriculture (SOFA) report. The wastage decrease is signifcant, and it is a frst step towards the end goal of zero hunger, as indicated by the Agenda 2030 Sustainable Development Goal 2. The zero hunger goal can be achieved via Target 12.3 of the Sustainable Development Goals (SDGs), which aims at halving, by 2030, per capita global food waste and reduce food losses (Gustafson, [2019\)](#page-48-1).

The huge generation of FW has been harshly impacting the environment, especially due to the emission of GHG.

Both food loss (FL) and FW are used in scientifc literature to identify potential foods that are discharged, lost, degraded, or contaminated, and that will not be used as food. Unfortunately, the defnitions of FL and FW often overlap.

[©] Springer Nature Switzerland AG 2021 17

T. Cecchi, C. De Carolis, *Biobased products from food sector waste*, [https://doi.org/10.1007/978-3-030-63436-0_2](https://doi.org/10.1007/978-3-030-63436-0_2#DOI)

Fig. 2.1 Production volumes of each commodity group, per region (million tonnes) (Gustavsson et al. [2011](#page-48-0)). (Source: Food and Agriculture Organization of the United Nations, [2011], [Jenny Gustavsson, Christel Cederberg, Ulf Sonesson, Robert van Otterdijk, Alexandre Meybeck], [Global food losses and food waste: extent, causes and prevention], [\[http://www.fao.org/fleadmin/](http://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_and_Food_Waste.pdf) [user_upload/suistainability/pdf/Global_Food_Losses_and_Food_Waste.pdf](http://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_and_Food_Waste.pdf)]. Reproduced with permission)

According to the Food and Agriculture Organisation of the United Nations (FAO) "*food losses refer to the decrease in edible food mass throughout the part of the supply chain that specifcally leads to edible food for human consumption. Food losses take place at production, post-harvest and processing stages in the food supply chain*" (Gustavsson et al. [2011;](#page-48-0) Parftt et al. [2010\)](#page-55-0).

Food waste is the food loss occurring at the end of the food chain, at the retail and fnal consumption stages, and its generation is related to retailers' and consumers' behavior (Gustavsson et al. [2011](#page-48-0); Parftt et al. [2010](#page-55-0)).

In the following, we will refer to "food waste" to indicate both food losses and food waste. The fact that these substances are production process undesirable left over defnes them as "wastes" (Commission Regulations 442/1975/EEC; 689/1991/EEC).

FW can be classifed into avoidable FW (edible) and unavoidable FW (nonedible). The avoidable FW generation (due to leftover food, improper storage, unnecessary purchase) can be decreased by taking preventive measures at each level from its production to consumption. For unavoidable FW (such as shells, stones, bones, peels), there is an extreme necessity to have proper waste management and reuse practices. Unfortunately, the word "waste" does not account for the potentiality of re-utilizing it. The term "food byproducts" would be more appropriate to notify that "food wastes" are precious substrates for the extraction of functional compounds and the synthesis of marketable products.

Figure [2.2](#page-2-0) illustrates the per capita food loss and waste. Per capita waste by consumers was between 95 and 115 kg a year in Europe and North America, while consumers in developing countries each throw away only 6–11 kg a year.

In developing countries, 40% of losses occured in the supply chain: improved infrastructures, better transportation, and the expansion of the packaging industry could help to reduce the amount of food loss and waste. On the converse, in industrialized countries, FW at retail and consumer levels due to quality standards that

Fig. 2.2 Per capita food losses and waste (kg/year), at consumption and pre-consumptions stages, in different regions (Gustavsson et al. [2011](#page-48-0)). (Source: Food and Agriculture Organization of the United Nations, [2011], [Jenny Gustavsson, Christel Cederberg, Ulf Sonesson, Robert van Otterdijk, Alexandre Meybeck], [Global food losses and food waste: extent, causes and prevention], [http://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_and_ [Food_Waste.pdf](http://www.fao.org/fileadmin/user_upload/suistainability/pdf/Global_Food_Losses_and_Food_Waste.pdf)]. Reproduced with permission)

over-emphasize appearance and consumption habits at the household level were impressive. FW at the consumer level in developed countries is almost as high as the total net food production in sub-Saharan Africa: this is an unethical and paradoxical absurdity (Gustavsson et al. [2011](#page-48-0)). The graph of the seven commodity groups below shows the percentage food losses and waste of the edible parts of food products that were produced for human consumption.

In 2016, plant-based food, such as fruits, vegetables, roots, and tubers had the highest wastage rates of any food (ca. 45%), followed by fish (35%), cereal (30%), oilseeds, meat, and dairy products (20%) as graphically depicted in Fig. [2.3.](#page-3-0)

Figure [2.4](#page-3-1) depicts the percentages of FW derived from a specifc food industry sector (Baiano [2014](#page-42-0)). It is surprising to observe that circa one-fourth of the global waste comes from the drink industry.

Due to the notorious problem of land competition between food and biomass feedstock dedicated crops, residues represent a highly eligible biorefneries feedstock for reducing the burden on virgin raw materials. The frst step for applying the industrial symbiosis concept in the food chain sector is their identifcation, quantifcation, and characterization followed by the study of the regional availability of FW producers and of potential users. This is a crucial starting point for deciding their best market positioning.

As regards the valorization of FW, it is easier to focus on the recovery of functional compounds derived from byproducts from the early stages of the food processing sector since these sources are abundant and concentrated in production or processing locations and less susceptible to deterioration compared to the wastes, produced across a broad range of retailers and households, that need to be subsequently accumulated. This collection stage complicates their valorization as sources for valuable components since the biological stability might be dramatically reduced due to the growth of pathogens.

Fig. 2.3 Percentage of food losses and waste of the seven commodity groups (FAO 2016)

Fig. 2.4 Food waste generation; percentages of FW derived from a specifc food industry sector (Baiano [2014\)](#page-42-0).

Functional foods meet strengthening consumer demand for foods that enhance health and wellbeing providing a specifc health beneft over and above their nutritional value. Modern science has unraveled the secrets of many FW components and established a sound basis for their nutritional and functional value.

In parallel, technology developments and cost-effectiveness have been the main drivers for a range of functional isolates. Generally speaking, the potential of the valorization of target compounds in specifc FW has to be supported by evidencebased information on their valuable content promoting health. In parallel, the time between waste generation and valorization activities has a direct impact on the fnal concentration and quality of bioactive compounds. Isolation, purifcation, and recovery procedures to improve and standardize target compounds profle are needed and will be dealt with in Chap. [4](https://doi.org/10.1007/978-3-030-63436-0_4).

In the following, we will detail the main FW sources and the high-value target compounds that can be obtained from them.

2.1 Fruits and Vegetables

Fruits and vegetables are high energy food items; soluble carbohydrates (glucose, fructose), vitamins, minerals, fbers, polyphenols and other bioactive compounds make their nutritive profle very rich (Schieber [2017](#page-57-0)). Fruit and vegetable spoilage is very common, and it is often indicated by discoloration, biochemical reactions, and oxidation, thermal treatments, rotting, microbial proliferation, and over-ripening. Wastes from the fruit and vegetable sectors mainly consist of hydrocarbons and relatively small amounts of proteins and fat, with an impressive moisture content of 80–90%. The wastewaters contain large amounts of suspended solids (SS), that result in high biochemical (BOD) and chemical oxygen demand (COD); among dissolved compounds, pesticides, herbicides, and cleaning chemicals can be found (Kosseva [2011\)](#page-50-0). In general, fruits and vegetable byproducts can be proftably used as animal feedstuff (Angulo et al. [2012](#page-42-1)). Common disposal methods, such as composting, land flling, and incineration, give rise to environmental concerns because of toxic and greenhouse gas emissions, microbial proliferation, and landfll leachate (Dessie et al. [2018\)](#page-45-0). Since wastes from the fruit and vegetable sectors are well renowned as one of the best waste source of polyphenols, dietary fber, pigments, enzymes (cellulase, amylase, protease, phytase, etc.), fragrances and favors (vanillin), essential oils, biopesticides, plant growth regulators, and other precious bioactive compounds (Balasundram et al. [2006](#page-42-2); Sharma et al. [2020](#page-58-0)) their valorization is mandatory.

Fruit and vegetable waste can also be a cheap source of starch, cellulose and/ or hemicelluloses; they can be hydrolyzed to soluble sugars and further fermented to produce biohydrogen, bioethanol, and biogas (Díaz et al. [2017\)](#page-46-1). Microbial processing of fruits and vegetable waste has paved the way for their valorization as fermented beverages (fenny, vineger), single-cell proteins (*Saccharomyces* sp., *Candida utilis*, *Endomycopsis fbuligera* and *Pichia burtonii*), single-cell oils (Sharma et al. [2020\)](#page-58-0). Acidogenic fermentation of fruit and vegetable wastes, via the bifdus pathway by *Bifdobacterium,* resulted in lactic acid production (Wu et al. [2015\)](#page-60-0).

Fruit and vegetable wastes were also used to produce succinic acid: frstly, they were hydrolyzed; the fungal hydrolysis by *Aspergillus niger* and *Rhizopus oryzae* produced glucose and fructose; *Actinobacillus succinogenes* used fruit and vegetable wastes hydrolysate as the sole feedstock to produce succinic acid with high yield (Dessie et al. [2018](#page-45-0)).

In Chap. [6,](https://doi.org/10.1007/978-3-030-63436-0_6) the importance of this platform chemical, which has considerable potential economics and environmental meaning for the bioplastics sector, will be detailed.

Many different kinds of fruit and vegetable waste were exploited as biosorbents for heavy metal removal (Sud et al. [2008](#page-59-0)). Compared to conventional treatment methods, biosorption advantages includes: low cost, high effciency, minimization of sludge, and good metal recovery. Biosorption is discussed in Chap. [5](https://doi.org/10.1007/978-3-030-63436-0_5) (Sect. [5.8\)](https://doi.org/10.1007/978-3-030-63436-0_5).

Tables [2.1](#page-5-0) and [2.2](#page-8-0) detail, for fruit and vegetable wastes, respectively, the specifc source and the target molecules which can be upcycled.

In the following, we will detail a classical gamut of source byproducts and associated target compounds.

Source	Target compound	References
Apple pomace	Pectin, polyphenols, fiber, lactic acid, citric acid, aroma compounds, pectinases	Galanakis (2012), Ravindran and Jaiswal (2016) , Wolfe and Liu (2003) , Huber and Rupasinghe (2009), Henríquez et al. (2010), Schieber (2017), Kiran et al. (2014), Dhillon et al. (2011, 2012), Liu et al. (2011), and Vorobiev and Lebovka (2010)
Apple skin	Phenols	Galanakis (2012) and Huber and Rupasinghe (2009)
Apple, black currant. chokeberry, pear, cherry and carrot pomace	Dietary fiber	Nawirska and Kwaśniewska (2005)
Chokeberry and apple pomace	Hemicellulose and pectin as sorbents for heavy metals	Nawirska and Kwaśniewska (2005)
Apple, golden rod and artichoke	Polyphenol	Peschel et al. (2006)
Berries residuals	Phytochemicals, polyphenols, pectin, dietary fiber	Górecka et al. (2010), Rohm et al. (2015), Paes et al. (2014), and Kryževičiute et al. (2016)
Black currant seeds	Essential fatty acids, tocopherols, phytosterols	Bakowska-Barczak et al. (2009)
Lingonberry (Vaccinium vitis-idaea L.) Pomace	Linolenic and linoleic fatty acids	Kitrytė et al. (2020)
Peach pomace	Pectin	Galanakis (2012)
Peach	Antioxidants	Plazzotta et al. (2020)

Table 2.1 Fruit waste: specific source and target molecules for recovery

Source	Target compound	References
Jackfruit waste (peel).	Pectin	Naik et al. (2020)
Apricot kernel	Protein isolate	Galanakis (2012) and Ravindran and Jaiswal (2016)
Kalahari melon seed	Phytosterol	Ravindran and Jaiswal (2016)
Grape pomace	Dietary fiber	Galanakis (2012)
Grape skin	Phenols, fragrance compounds, anthocyanins	Galanakis (2012) and Ghafoor et al. (2010)
Grape processing industry	Ethanol, dietary fibre, grape seed oil, pomace oil, oleanolic acid, catechin, epicatechin, and proanthocyanidins (flavanols), gallic acid (phenolic acid), resveratrol (stilbene), enocyanin (anthocyanin), procyanidins, tartates, malates, citric acid, single cell protein, short-chain fatty acids from vinasse	Schieber (2017), Galanakis (2017), Makris (2018), Luo et al. (2019), Barba et al. (2016), Santamaría et al. (2002), Löf et al. (2011), Spigno et al. (2015), Dahmoune et al. (2013), Vergara-Salinas et al. (2015) Pedras et al. (2017) , Duba et al. (2015) , Drosou et al. (2015), Casazza et al. (2010), Dang et al. (2014) , González-Centeno et al. (2015) , Bonfigli et al. (2017), Caldas et al. (2018), Boussetta et al. (2009), Liu et al. (2011), Mouratoglou et al. (2016), Patsea et al. (2017) , and Bosiljkov et al. (2017)
Wine lees	Calcium tartrate, enocyanin	Galanakis (2012)
Pomace of six fruits (Fragaria ananassa (strawberry), Prunus cerasus (sourcherry), Ribes nigrum (black currant), Ribes rubrum (red currant), Rubus fruticosus (blackberry) and Rubus idaeus (raspberry)	Natural antioxidants, preservatives, antimicrobial compounds	Krisch et al. (2009)
Fresh cut fruit peels, seeds, and unused flesh	Bioactive compounds, (phenolic compounds, carotenoids, vitamins) endowed with antioxidant anti-microbial activity	Ayala-Zavala et al. (2010)
Cold hardy mandarin peel	Narirutin	Galanakis (2012)
Orange peel and other byproducts	Hesperidin, apocarotenoid, limonene, cellulose, fiber	Galanakis (2012), Ravindran and Jaiswal (2016) , Bicu and Mustata (2011) , and de Moraes Crizel et al. (2013)
Lemon by-product	Pectin	Galanakis (2012)

Table 2.1 (continued)

Source	Target compound	References
Citrus by-product	Essential oil (limonene), phenolics, pectin, antioxidants, ethanol, organic acids (citric, malic, malonic, and oxalic acids), and flavonoids, fibers, amino acids and proteins, minerals, lipids, vitamins, carotenoids, xanthan gum	Matharu et al. (2016), Fernández-López et al. (2004) , Scordino et al. (2007) , Satari and Karimi (2018), Farhat et al. (2011), Ferhat et al. (2006), Yang et al. (2009), Fishman et al. (1999) , and Liu et al. (2006)
Clementine	Antioxidants and natural preservatives polyphenols and carotenoids, flavonoids and anthocyanins, proanthocyanidins ascorbic acid	Pfukwa et al. (2019)
Rejected and processed kiwifruits	Soluble and insoluble dietary fiber	Galanakis (2012)
Banana waste	Cyanidin-3-rutinoside Lignin, pectin, cellulose, hemicellulose, phenolic compounds (prodelphinidins, flavonol glycosides), procyanidins, flavanols	Galanakis (2012) Schieber (2017) , Kiran et al. (2014) , and Maneerat et al. (2017)
Mango peels and byproducts	Starch, fiber, sterols, tocopherols, tannins, polyphenols, flavonols, xanthones, anthocyanins, alkylresorcinols, unsaponifiable matter, essential amino acids, antioxidant, carotenoids, vitamins, enzymes, dietary fibers, pectin	Schieber (2017), Abdalla et al. (2007), Ajila et al. (2010) , and Berardini et al. (2005) .
Passion fruit peels	Pectin	Canteri et al. (2010) and Seixas et al. (2014)
Papaya processing wastes	Pectin production Bioactive compounds such as benzyl isothiocyanate	Boonrod et al. (2006) and Hall et al. (2018)
Pineapple	Pectin, phenolic compounds, carotenoids and bromelain, dietary fibre	Schieber (2017), Kiran et al. (2014), Upadhyay et al. (2012), da Silva et al. (2010), and Martins et al. (2014)
Brazilian tropical fruits	Total phenols, anthocyanins, yellow flavonoids, flavonoids, resveratrol, coumarin, other bioactives	Da Silva et al. (2014)
Watermelon fruit rinds	Pectin	Prakash Maran et al. (2014)

Table 2.1 (continued)

2.1 Fruits and Vegetables

Source	Target compound	References
Various vegetable and fruits water extracts	Soluble sugars and organic acids for yeast cultivation without nutrient addition	Stabnikova et al. (2005)
Tomatoes byproducts	Carotenoids (lycopene, β-carotene) and pectin	Schieber (2017), Kiran et al. (2014), Grabowska et al. (2019), Riggi and Avola (2008), Zuorro et al. (2011), Strati and Oreopoulou (2011), Ishida and Chapman (2009), MacHmudah et al. (2012), Baysal et al. (2000), Sarkar and Kaul (2014), and Kehili et al. (2017).
Tomato pomace	Lycopene	Galanakis (2012) and Ravindran and Jaiswal (2016)
Tomato skin	Carotenoids, fibers	Galanakis (2012), Ravindran and Jaiswal (2016), Urbonaviciene et al. (2012), and García Herrera et al. (2010)
Carrot peel	α -carotene, β -carotene, phenols	Galanakis (2012) and Schieber (2017)
Onion	Pectin, fructans, phenolic compounds and dietary fiber myricetin, quercetin, quercetin, luteolin and kaempferol	Kiran et al. (2014), Corell et al. (2018), Nile et al. (2017), Choi et al. (2015), and Zill-E- Huma et al. (2011)
Leeks	Myricetin, quercetin, luteolin and kaempferol Pectins	Corell et al. (2018) Christiaens et al. (2015)
Cauliflower floret curd	Pectin	Galanakis (2012)
Cauliflower	Dietary fiber with high water absorption index, suitable for functional food production	Stojceska et al. (2008)
Cabbage (white)	Sulforaphane Pectin	Tanongkankit et al. (2013) Westereng et al. (2008)
Cabbage (red)	Di-acylated cyanidin Anthocyanins	Valencia-Arredondo et al. (2020) and Ravanfar et al. (2018)
Cabbage (black)	Flavonoids	Romani et al. (2003)
Cabbage, watermelon husk and peach peels	Carotene production, using blakeslea trispora, a heterothallic fungus	Papaioannou and Liakopoulou- Kyriakides (2012)
Verza	Sulforaphane (a biologically active phytochemical)	Sivakumar et al. (2007)

Table 2.2 Vegetables waste: specific source and target molecules for recovery

Source	Target compound	References
Broccoli	Bioactive compounds (glucosinolates, phenolic acids, and flavonoids) and nutrients (vitamin c, minerals, and trace elements) with antioxidant activity	Dominguez-Perles et al. (2011) and Aires et al. (2017)
Chicory roots, citrus peel, cauliflower florets and leaves. endive, and sugar beet pulps	Pectic oligosaccharides and pectin using proteases and cellulases enzymes	Zykwinska et al. (2008)
Chicory	Antioxidants	Lante et al. (2011)
	Fructan and sugars for the production of 5-hydroxymethylfurfural	Stökle and Kruse (2019)
	Hydrochar	Stökle et al. (2019)
Horse chestnut (from gardening) activities)	Quercetin and kaempferol glycosides, saponins of oleane type, flavonoids used in pharmacy and cosmetic industries	Kapusta et al. (2007)
Asparagus	Phenols (flavonoids and hydroxycinnamic acids) and saponins useful as functional ingredients	Fuentes-Alventosa et al. (2013)
Carob pulp aqueous extracts	Carbon source for the production of the biocontrol agent Pantoea agglomerans PBC-1, usable as biopesticide	Manso et al. (2010)
Turnip greens	Organic acids, fatty acids, and tocopherols. Phenolic compounds	Chihoub et al. (2019)
Field herbs	Tannin	Kardel et al. (2013)
Thistle	Antioxidant and Anti-aging Flavonolignans	Drouet et al. (2019)
	Cynaropicrin and Cnicin	Mizuno and Usuki (2018)
	Silymarin	Saleh et al. (2017)
	Total flavonoids and total polyphenols	Lee et al. (2017)
	Silybin A and silybin B	Çelik and Gürü (2015)
	Organic acids, fatty acids, and tocopherols.	Chihoub et al. (2019)
	Phenolic compounds with antioxidant, antibacterial	
Swiss chard	Polyphenols	Santos et al. (2014)

Table 2.2 (continued)

26

Source	Target compound	References
Green beans	Flavonoids	Gbashi et al. (2017)
	Antioxidant phenolic acids and flavonoids	Aires et al. (2017)
	Pectin	Christiaens et al. (2015)
Legumes	Proteins, lipids, fatty acids, vitamins, minerals and phenolic compounds	Kiran et al. (2014) and Parate and Talib (2015)
Pea peel waste	Carbon source to produce cellulase enzymes	Verma et al. (2011)
Pea pod, broad bean pod and okara	Dietary fiber, potassium, iron Fats rich in linoleic and oleic acid.	Mateos-Aparicio et al. (2010)
Soybean wastewater	Albumin, isoflavone aglycone	Galanakis (2012) and Ravindran and Jaiswal (2016)
Soybean vinasse	$L(+)$ -lactic acid	Karp et al. (2011)
Eggplant	Anthocyanins (nasunin) polyphenols (5-O-caffeoylquinic acid) and steroidal glycoalkaloids (alpha-solasonine and alpha-solamargine)	Mauro et al. (2020)
	Phenolics, pectin, pullulan for starch replacement and edible coatings	Kazemi et al. (2019)
Sweet Peppers	Polyphenols, carotenoids	Nath et al. (2015)
	Capsinoids	Oğuzkan (2019)
	Capsaicin and dihydrocapsaicin	Martinez-Sena et al. (2017)
Celery	Flavonoids polyphenols	He et al. (2016)
	Luteolin and apigenin (bioactive flavonoids)	Han and Row (2011) and Zhang et al. (2011)
Pumpkin	Pumpkin polysaccharide	Chen et al. (2020)
	Vanillic acid	Mitić et al. (2020)
	Linoleic and oleic acids, beta-carotene and tocopherols, phytosterols and phenolic compounds	Cuco et al. (2019)
	Polyphenols and fatty acids	Ferreira et al. (2019)
	Polyphenols and fatty acids	Massa et al. (2019)
	Carotenoids	Lima et al. (2019)
	Beta-carotene, tocopherols and phytosterol	Cuco et al. (2019)
	Squalene	Hataminia et al. (2018)
	Antioxidants	Kulczyński et al. (2020)
Zucchini	Antioxidants	Lafarga et al. (2019)
	Flavonols and flavones for cosmeceutical valorization	Piccolella et al. (2019)
Mushroom waste	Ergosterol and vitamin d2	Papoutsis et al. (2020)

Table 2.2 (continued)

Target compound Source		References	
Coffee	Antioxidants, vitamins, enzymes, cellulose, starch, lipids, proteins, pigments, citric acid, gibberellic acid, ethanol, dyes, and dietary fibres (cellulose, hemicelluloses, lignin, pectin, gums)	Murthy and Madhava Naidu (2012) and Kiran et al. (2014)	
Spent coffee grounds	Lipids	Ahangari and Sargolzaei (2013)	
Spent filter coffee	Polyphenols	Pavlović et al. (2013)	
Tea	Caffeine, polyphenols, triacontanol, and saponins	Sui et al. (2019)	
Filter-tea by-product (yarrow-Rose) Hip Mixtures)	Chlorophylls and Carotenoids	Pavlić et al. (2016)	
Cocoa husks	Pectin	Mollea et al. (2008)	

Table 2.2 (continued)

2.1.1 Apple

Apple juice industry produces a million pounds a year of wastes with high costs of disposal and threat to the environment (Wolfe and Liu [2003\)](#page-60-1). Up to 25% of the processed apples turn into by-product (Shalini and Gupta [2010](#page-58-7)), which is largely available during harvesting season. This FW refers to a variable mixture of peels, pomace and seed, with a high content of water, simple sugars (glucose, fructose, and sucrose) and insoluble carbohydrates, such as hemicellulose, cellulose and lignin, and pectin; it has a great biotechnological potential.

Apple pomace was used as a carbon source in the propionic-acetic fermentation via wild strain *Propionibacterium freudenreichii* T82 bacteria. After 120 hours of cultivation, propionic acid biosynthesis reached its maximum (1.771 g/L) while the content of the acetic acid reached the level of 7.049 g/L (Piwowarek et al. [2016\)](#page-55-10).

High concentrations of phenolic compounds in apple peels may support the prevention of chronic diseases, such as cardiovascular diseases and cancer. Besides, several microorganisms can use apple residues as a substrate for growth (Kosseva [2011\)](#page-50-0). This by-product can be used as fuel or cattle feed, but it is also a source of food ingredients, pectin, fbers; moreover, it can be used in biotransformation (Shalini and Gupta [2010\)](#page-58-7).

Valuable food ingredients could be made using the waste peels, dried, and ground to a powder, without large losses of phytochemicals. Blanching treatments for 10 s and freeze-drying represented the best processing condition to keep the total phenolic and favonoid contents similar to those of the fresh apple peels. The phenolic, favonoid, and anthocyanin contents in 100 g of dried peels were, respectively, 3342 ± 12 mg gallic acid equivalents, 2299 ± 52 mg catechin equivalents, and 169.7 ± 1.6 mg cyanidin 3-glucoside equivalents. The apple peel powder had a total antioxidant activity of 220 mg vitamin C equivalents/g: it also had a strong antiproliferative effect on HepG 2 liver cancer cells. Apple peel powder may be used in a range of healthy food products to add phytochemicals and promote the antioxidant activity of foods (Wolfe and Liu [2003](#page-60-1)).

Huber and Rupasinghe [\(2009](#page-49-0)) demonstrated that apple peel extracts are natural antioxidants and effective inhibitors of oxidation of polyunsaturated fatty. Indeed, lipid oxidation is a major concern in the food industry, impacting both the food quality and health of consumers, and new natural food antioxidants would be highly eligible candidates to solve the problem.

Henríquez et al. ([2010\)](#page-49-1) optimized a pilot scale extraction procedure using a double drum-dryer as drying technology and maneuvered temperature and extraction time in order to maximize the retention of phenolic compounds and dietary fber.

2.1.2 Berries

High amounts of wastes from currant, raspberries, and blackberries released during juices, jams, and jellies preparations manufacturing are extremely rich in antioxidants, phenolic acids, favonoids, polyphenols, and fbers, which are eligible to be recovered for different industrial purposes.

Bakowska-Barczak et al. [\(2009](#page-42-3)) focused on residues of seeds from five black currant (*Ribes nigrum L.*) cultivars. Canadian black currant seed oil can be proftably upcycled for the recovery of essential fatty acids, tocopherols, and phytosterols. Extraction of polyphenols from the seed residues remaining after the oil extraction even allowed the recovery of additional valuable phenolic antioxidants.

Pap et al. [\(2004](#page-54-10)) studied waste production prevention and minimization in berry juice processing. Less process waste and effuent resulted from the eco-innovative practices. Supercritical fluid extraction with natural carbon dioxide $(CO₂)$ was deemed the most environmentally friendly solvent-free extraction method for the recovery of value-added compounds.

The amount of fbers in berries residuals makes them as replacement of four in cookies at the level 25 and 50% (Górecka et al. [2010](#page-48-2)). The added raspberry pomace in a dried form resulted in a functional product with high fber content and with a palatable taste whose organoleptic characteristics were positively accepted by consumers.

2.1.3 Citrus Fruits

In contrast with other types of fruits, citrus fruits processing results in large amounts of waste materials, such as peels and seeds, usually discarded during juice manufacturing. These residues are a precious source of a gamut of compounds, including soluble sugars, fber, organic acids, amino acids and proteins, minerals, lipids, favonoids and vitamins (Fernández-López et al. [2004](#page-47-2)).

Different concentrations of lemon albedo and orange dietary fber powder (including that obtained from the orange juice wastewater) were added to cooked and dry-cured sausages to increase their dietary fber content (Fernández-López et al. [2004\)](#page-47-2).

Viuda-Martos et al. [\(2011](#page-60-8)) studied the microbiological properties of the orange juice wastewater and their physico-chemical characteristics, including pH, phenolic compounds and antioxidant activity, organic acids, sugars, soluble solids, and color. Narirutin and hesperidin were the most concentrated phenolic compounds, whereas the main sugar and organic acid were, respectively, glucose and succinic acid. De Moraes Crizel et al. ([2013\)](#page-45-3) suggested that orange juice fbers byproducts can be used as a fat replacer in ice cream because they have an ideal ratio between soluble and insoluble fber and high water and oil retention capacity. Their use as a substitute of fat in ice cream led to a 70% reduction of fat without causing signifcant changes in attributes such as color, odor, and texture while providing a high content of phenolic compounds and carotenoids.

The residue of pigmented orange pulp wash (Scordino et al. [2007](#page-58-2)) was stabilized by removal of enzymes and microorganisms via ultra-fltration; 80% of the water was eliminated by a reverse osmosis treatment to obtain a purifed transparent liquid of slight amber color that is a sugar concentrate (28 Brix) containing about 250 g/L of sugars (glucose, fructose, and sucrose), 9 g/L of citric acid and 1 g/L of pectin. It could be easily used as a natural sweetener in the food and beverage industries.

Citrus fruits byproducts were also effectively used as cattle feed, especially for ruminants. Bampidis and Robinson [\(2006](#page-42-9)) studied the physical and nutrient composition, digestibility, and effects on ruminants (weight and lactating production) according to the size of the rations of these feeds to support growth and lactation in ruminants.

Citrus waste was also used for xanthan gum production (see Sect. [5.1.4](https://doi.org/10.1007/978-3-030-63436-0_5)) using the plant pathogen using *Xanthomonas campestris* (Murad et al. [2019](#page-53-11)).

Cellulose extraction from orange peels is a promising upcycling of these byproducts. Bicu and Mustata ([2011\)](#page-43-5) studied sodium sulfte and sodium metabisulfte as pulping reagents and optimized the main process parameters (reagent dosage and reaction time), to maximize cellulose yield. Recovered cellulose was characterized by good purity, whiteness, and water retention, low crystallinities, and moderate molecular weight. It can be used as fller, water-absorbent, or as raw material to produce cellulose derivatives.

2.1.4 Exotic Fruits

The exotic fruits processing industry also produces a large percentage of waste byproducts very rich in bioactive compounds, phenols, carotenoids, vitamins, fbers that are precious as antioxidants, antimicrobials, favoring, colorants, and texturizer additives (Ayala-Zavala et al. [2010\)](#page-42-5).

New uses for these types of waste are continuously envisioned because fruit byproducts presented higher bioactive compound contents than their respective fruit pulps.

Passion fruit peels, treated with nitric acid, are a major source of pectin, a dietary fber that is a gelling agent and stabilizer (Canteri et al. [2010\)](#page-43-6) due to its rheological properties.

Pineapple stem, a typical pineapple processing waste, was extensively used for bromelain extraction (Upadhyay et al. [2012](#page-59-1)). The waste obtained during this process is a nutraceutical resource of antioxidants, antimicrobials, and inhibitors against 15-lipoxygenase and advanced glycation end products. The anti fungal activity is probably due to high amounts of benzoic acid present in the waste. The bioactivities in all the performed assays indicate that pineapple stem waste could be utilized as an economical source of preventive or therapeutic phytochemicals that have a promising usage in functional food based industries.

Mango "waste mining" seems to be one of the most promising FW upcycling. Abdalla et al. [\(2007\)](#page-41-0) studied mango seed kernel extract and oil. Their combination had synergistic antioxidant potency and could be used as natural antioxidant and antimicrobial in different kinds of food. Phenolic compounds, unsaponifable matter, and crude protein rich in all essential amino acids are typical of this waste. Mango peels powders rich in bioactive compounds, such as antioxidant polyphenols, carotenoids, vitamins, enzymes, and dietary fbers, were incorporated into macaroni (up to 7.5%) to enhance its nutritional quality without affecting its cooking, textural and sensory properties (Ajila et al. [2010\)](#page-41-1). Polyphenolics were extracted from Mango peel while pectin was recovered by alcohol precipitation (Berardini et al. [2005](#page-42-6)).

Virgin coconut oil byproducts, namely coconut skim milk and insoluble protein, can be used to obtain coconut protein powder, with good emulsifying properties that can be used in emulsifed foods (Naik et al. [2012](#page-54-11)).

Besides, coconut and peanuts shell powder could be upcycled as fller in natural rubber (Sareena et al. [2012\)](#page-57-7).

Papaya processing wastes served as a substrate for yeast (*Saccharomyces cerevisiae*) growth as well as a feed supplement for shrimp (Kang et al. [2010\)](#page-49-5) but it is also used for pectin production (Boonrod et al. [2006](#page-43-7)).

Ueno et al. ([2003\)](#page-59-10) proposed to use pineapple and grapes processing wastes as substrate and enzyme for successful lactic acid production.

Da Silva et al. [\(2014](#page-45-5)) quantifed the levels of total phenols, anthocyanins, yellow favonoids, favonoids, resveratrol, coumarin, and other bioactives in pulps and byproducts of twelve typical tropical fruits from Brazil (pineapple, acerola, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind). They are interesting functional food ingredients.

2.1.5 Tomatoes

Tomato is the second most important global vegetable crop next to potato, with a yearly production of 100 million tons fresh fruit in 144 countries (Kalogeropoulos et al. [2012](#page-49-6)). Tomatoes are rich in bioactive and valuable phytochemicals (Dumas et al. [2003](#page-46-10)), such as carotenoids, vitamin C and E and various phenolic compounds. The strong correlations between carotenoid consumption and a reduced risk of cancer and coronary and cardiovascular diseases, probably because of the carotenoids antioxidant activity, made tomato processing byproducts very interesting as a potential and inexpensive source of these bioactive compounds (Urbonaviciene et al. [2012\)](#page-60-4). Actually a huge amount of carotenoids are discarded along with the peels during the processing of tomatoes into pastes or sauces. Lycopene is the most abundant and the most antioxidant carotenoid in tomatoes, but β-carotene is the major dietary precursor of vitamin A.

Kalogeropoulos et al. [\(2012](#page-49-6)) pointed out that antioxidants from tomatoes byproducts could be used for the formulation of functional foods or serve as additives in food systems to extend their shelf-life.

Ćetković et al. ([2012\)](#page-44-8) confrmed the importance of tomato wastes as a potential source of phenolic antioxidants and anticancer agents, identifying and quantifying some individual phenolic compounds, including phenolic acids and favonoids and their antioxidant activity.

For the commercial exploitation of these wastes as nutraceutical resources, it is necessary to consider both environmental and extraction proftability.

The majority of the studies published in the literature focus on two target carotenoids: lycopene and β-carotene (Grabowska et al. [2019\)](#page-48-6). Riggi and Avola [\(2008](#page-56-4)) studied the dependence of carotenoids content in tomato wastes on their source and the month in which they were produced. The highest lycopene and β-carotene contents were recorded in summer due to the higher proportion of red fruits that is statistically correlated with the lycopene content. Zuorro et al. ([2011\)](#page-61-1) indicated that the recovery of lycopene could be greatly enhanced by using cellulolytic and pectinolytic enzymes. Thermal processing of tomatoes (for example, the blanching process) increases carotenoid bioavailability in tomato peels. It was also found that the best source for purifed lycopene was tomato peel with lycopene and β-carotene concentrations higher in the blanched tomatoes than in the non-blanched tomatoes (Urbonaviciene et al. [2012](#page-60-4)).

As regards the extraction of carotenoids, it is clear that the use of a food-friendly and nontoxic solvent is mandatory. Ethyl lactate gave the highest carotenoid yield, compared to other organic solvents, after optimizing the extraction parameters (time, temperature and steps) (Strati and Oreopoulou [2011](#page-59-3); Ishida and Chapman [2009\)](#page-49-2). MacHmudah et al. [2012](#page-52-4)) discussed the use of supercritical carbon dioxide to extract lycopene from tomato peel by-product containing tomato seeds which exerted a synergistic effect on extraction yield. Baysal et al. [\(2000](#page-42-7)) assessed various parameters for lycopene extraction by supercritical carbon dioxide such as temperature, pressure, time, $CO₂$ flow rate, and co-solvent addition.

García Herrera et al. [\(2010](#page-47-5)) demonstrated that peels are mainly composed of carbohydrates, with an average value of 80% of total dietary fber; insoluble fber is the major component. Tomatoes peel fber can be used as a food ingredient of new functional foods.

2.1.6 Pulses

Pulses represent an excellent source of high-quality dietary proteins, dietary fber, micronutrients, and phytochemicals.

Pulses are prone to serious damage due to insect pests which cause serious losses; fumigation is the current way to prevent crop damage, but the use of an antimetabolic protein from wild pulses, involved in plant defense mechanism, such as arcelin, is promising (Karuppiah et al. [2018](#page-50-8)).

Horse gram is an underutilized pulse crop that has been used as a food item for millennia. It grows in a wide assortment of adverse climatic conditions. Besides its importance for human nutrition, its non-nutritive bioactive substances, such as phytic acid, phenolic acid, fber, enzymatic/proteinase inhibitors, favonoids, and high molecular tannins, have signifcant metabolic and/or physiological effects and might be responsible for its use in ethnic and traditional medicine as a potential therapeutic agent to treat kidney stones, urinary diseases, respiratory infections etc. The use of antioxidants from legumes decreases the risk of intestinal diseases, diabetes, coronary heart disease, and dental caries; hence the seed coat fractions and other waste can be proftably used (Prasad and Singh [2015\)](#page-56-9).

Tannins, favonoids, cardiac glycosides, anthocyanins, terpenoids, carotenoids, ascorbic acid, and reducing compounds (Nawaz et al. [2020\)](#page-54-6), antioxidants with anticancer activity (Yang et al. [2019\)](#page-61-6), and quercetin (Aghajanian et al. [2020\)](#page-41-3) are important bioactives that can be recovered from beans waste. Flavonoids (Gbashi et al. [2017\)](#page-47-8), antioxidant phenolic acids (Aires et al. [2017](#page-41-2)), and pectin (Christiaens et al. [2015\)](#page-44-1) are specifc target compounds that can be recovered from green beans waste.

Peel pea waste was used as a carbon source for cellulase production under solidstate cultivation by *Tricoderma reesei*. Cellulase (Sect. [5.7.2\)](https://doi.org/10.1007/978-3-030-63436-0_5) is a crucial enzyme for lignocellulosic biomass waste bioconversion (Verma et al. [2011\)](#page-60-7). Dietary fber, potassium, iron, and fats rich in linoleic and oleic acid can be recovered from pea pod and broad bean pod (Mateos-Aparicio et al. [2010\)](#page-53-6).

2.2 Winemaking Industries

According to FAO statistics (FAO [2020b\)](#page-46-11), grapes are one of the largest and highest value crops grown worldwide in order to produce wine. In the Mediterranean area, Italy, France and Spain are the three main wine producers. The annual production worldwide can reach almost 80 million tons, but 20% of processed grapes remain as a by-product.

The waste from the winemaking process mainly consists of pomace, which is the solid waste that remains after the grape pressing and the fermentation processes, and lees, which are clarifcation sediment.

Grape pomace consists of the seedless fraction (pulp, skin and stem) and the grape seed itself. Wine lees mainly contain ethanol, tartaric acid, and yeast cells with phenolic compounds (Kalli et al. [2018\)](#page-49-7). The traditional disposal of large amounts of pomace in the environment or its incineration may be detrimental because the high polyphenols content decreases the pH and increases the resistance to biodegradation.

The winemaking byproducts generated after grape exploitation constitute a very cheap source of high-value ingredients, including hydrocolloids, dietary fbers, lipids, proteins, and natural antioxidants, which can be used as dietary supplements and nutraceuticals in functional foods, or in the production of phytochemicals, medical remedies, antimicrobial components, and cosmetics (Yu and Ahmedna [2013\)](#page-61-8). The winery waste biomass contains an unparalleled amount and assortment of polyphenols, a broad class of secondary plant metabolites. Target compound content obviously depends on the grape variety, pedo-climatological conditions, and agricultural conditions. In red skins the polyphenol content is usually higher than for corresponding white skins. Specifc polyphenols are contained in stems and seeds, and their apportionment is signifcant. Given the importance of polyphenols as target compounds in wine and fruit industry byproducts Fig. [2.5](#page-18-0) illustrates the principal polyphenolic subclasses.

Fig. 2.5 Principal polyphenolic subclasses

Growing evidence suggests that polyphenolic molecules are endowed with a gamut of benefcial bioactivities and have the potential to exert antioxidant, free radical scavenging, anti-infammatory, antimicrobial, cardioprotective, anticancer, anti-aging, metal chelating, antithrombotic, and antidepressant activity (Rabiei et al. [2017\)](#page-56-10). These multifunctional compounds are capable of interfering with the progression of diabetes, cardiovascular, carcinogenic, neurodegenerative diseases and inhibiting allergic reactions.

The effective recovery of polyphenols from vinifcation waste is the focus of interest of many laboratory-scale research studies; the use of organic solvents is unsuitable in terms of safety and poses environmental concerns. Green, nontoxic solvents and eco-compatible technologies represent a hot research feld with respect to health-related and environmental risks. In this context, an aqueous bioethanol mixture is a green and effective solution for extraction of polyphenols from pomace (skins and seeds), from seeds, and for the extraction of trans-resveratrol from grape stems. Glycerol is a good bio-solvent competitor. Acidity was an important parameter to maximize the extraction yield; lactic acid was successfully used for favonoid extraction, while acetic acid was shown to perform better for favanol recovery. Along with conventional green solvent extraction, additional specifc techniques, such as pressurized-liquid extraction, microwave-assisted extraction, ultrasound-assisted extraction, supercritical fuid extraction, accelerated solvent extraction, and subcritical water, and deep eutectic solvent extraction (that will be dealt with in Chap. [4](https://doi.org/10.1007/978-3-030-63436-0_4)) were successfully used (Makris [2018;](#page-52-0) Aliakbarian et al. [2012;](#page-41-5) Kalli et al. [2018](#page-49-7)).

Novel applications of winery by-product will be detailed in the following.

2.2.1 Winery By-Product for the Food Industry

First of all, within a circular economy approach, grape pomace fnds application in the wine industry itself. It was exploited as a fning agent for red wines to remove tannins (Gil et al. [2018\)](#page-48-10), and to improve the antioxidant potential of red wines, as indicated by total phenolic and favonoid content (Jara-Palacios et al. [2016\)](#page-49-8). Dehydrated waste grape skins were able to release signifcant amounts of pigments, bioactive compounds, and aromas into white wines (Pedroza et al. [2011](#page-55-13)), and positive sensory repercussion from grape seed four usage was also reported (Rosales Soto et al. [2012](#page-57-8)). Fermentation of grape pomace resulted in hydrolytic enzymes such as xylanase, and exo-polygalacturonase, and cellulase commonly used in the clarifcation processes in wine cellars and juices industries as well as in paper and pulp industries (Walia et al. [2017](#page-60-9); Díaz et al. [2012\)](#page-46-12).

Grape waste was also used as a functional ingredient to produce cheese (Marchiani et al. [2016\)](#page-52-7), ice creams (Sagdic et al. [2012\)](#page-57-9), and fermented milk (Frumento et al. [2013\)](#page-47-10) with improved antioxidant activity. Cereal bars, pancakes, and noodles were enriched with phenols from Merlot grape seed four to provide these food products with high antioxidant activity (Rosales Soto et al. [2012\)](#page-57-8), and, similarly, grape pomace was used in bakery products and cookies for the same reason (Acun and Gül [2014](#page-41-6)).

Grape byproducts are a source of natural antioxidants that can replace synthetic antioxidants such as butylated hydroxyanisole and butylated hydroxytoluene, studied for potential toxicities, including hazard for carcinogenicity and genotoxicity (Kalli et al. [2018\)](#page-49-7).

As polyphenols delay lipid peroxidation, grape pomace and its extracts have the potential to protect foods from oxidative damage. In this context, grape byproducts were used for lipid oxidation protection in yoghurt and salad dressings (Tseng and Zhao [2013](#page-59-11)), cooked beef, and pork patties (Rojas and Brewer [2007](#page-57-10); Lorenzo et al. [2014\)](#page-52-8). lamb meat (Guerra-Rivas et al. [2016\)](#page-48-11), pork burgers (Garrido et al. [2011\)](#page-47-11), minced fsh muscle during frozen storage (Sánchez-Alonso et al. [2007](#page-57-11)), cooked and uncooked chicken meat (Selani et al. [2011](#page-58-8)). Extracts of grape pomace were incorporated into chitosan edible flms providing antioxidant properties and promising shelf-life extension (Ferreira et al. [2014\)](#page-47-12).

Along with the antioxidant activity, different components of grape pomace show antimicrobial activity against food spoilage microorganisms and pathogens, limiting the color deterioration, acidifcation, slime forming bacteria, and gas production. The most active compounds were reported to be gallic acid, hydroxybenzoic, and vanillic acid (Tesaki et al. [1999;](#page-59-12) Kalli et al. [2018\)](#page-49-7).

In the fruit processing industry, white grape skin extract improved the antioxidant activity and color stability of a model fruit juice and retained the stability of probiotic strains, during storage (Shah et al. [2010](#page-58-9)).

Grape byproducts provided protection from potentially hazardous substances, such as acrylamide, classifed as "a probably carcinogenic agent to humans", in heat-processed foods: polyphenols from skin extracts and grape seeds blocked its formation during frying (Xu et al. [2015](#page-61-9)). Grape seeds proved to be able to reduce residuals of nitrite after ripening of dry-cured sausages thereby inhibiting the formation of N-nitrosodimethylamine, identifed as a mutagenic and a carcinogenic agent in all species examined (Li et al. [2013](#page-51-11); Wang et al. [2015\)](#page-60-10).

Grape pomace is a potential substrate for the production of microbial proteins (single-cell protein) with a high concentration of essential amino acids like lysine and valine for livestock feed or human nutrition (Kalli et al. [2018\)](#page-49-7).

Tartaric acid from lees may serve as a natural preservative, as an emulsifer in the bread-making industry, as an acidifer in the winemaking industry, and as an ingredient of many food products and beverages. Similarly, enocyanin, known as E163 in the food sector, is a natural pigment derived from the anthocyanins in grape skin, approved by EFSA (European Food Safety Authority) as food dyes and in pharmaceutical products (Smith and Hong-Shum [2011](#page-58-10)).

Target compounds that can be extracted from winery waste are outlined in Table [2.1.](#page-5-0)

2.2.2 Winery By-Product for Cosmetics and Pharmaceutical Industry

Natural formulations are the focus of interest of the anti-aging market to avoid health risks of allergies from long-term exposure to synthetic preservatives, colorants, aromas, and stabilizers.

Anti-ageing properties of polyphenols from grape pomace make them a costeffective source for the cosmetic industry also because they are endowed with antibacterial and antifungal properties that are crucial in cosmetic formulations (Baydar et al. [2006](#page-42-10)). Special care during encapsulation and delivery is needed to prevent the degradation of bioactive compounds (Davidov-Pardo and McClements [2015\)](#page-45-11).

Many dietary supplements include grape seed, grape extract, and red wine powder for therapeutic purposes due to their antioxidant, hypoglycemic and hypolipidemic effects (Weseler and Bast [2017;](#page-60-11) Sun et al. [2016\)](#page-59-13). The addition of grape seed extract and freeze-dried skin pomace to white bread was reported to reduce the postprandial glycemic response and cholesterol levels (Coe and Ryan [2016](#page-45-12); Mildner-Szkudlarz and Bajerska [2013](#page-53-12)). The grape seed extract was shown to reduce *Campylobacter* induced pro-infammatory cytokines secretion in human intestinal epithelial cells HT-29 in a dose-dependent manner (Silvan et al. [2017\)](#page-58-11).

Grape pomace was also exploited as a drug delivery vehicle to create microemulsions (Kumar et al. [2014](#page-51-12)).

2.2.3 Winery By-Product for the Environment, Agriculture, and Animal Feeding

Removal of heavy metals from wastewater is a hot research topic; conventional methods such as chemical precipitation, ion exchange, membrane separation, reverse osmosis, and electro dialysis, are costly and not very effective. Plant wastes, including grape stalks, rice husk, black gram, waste tea, coffee, and walnut shell proved to be potent adsorbents for heavy metal removal (Tripathi and Rawat Ranjan [2015\)](#page-59-14). Winery wastes adsorb heavy metals from aqueous solutions thanks to an ion-exchange mechanism with a significant release of Ca^{2+} , Mg^{2+} , K^+ and H⁺ from grape stalks and uptake of Cu^{2+} and Ni^{2+} . In addition, grape stalk wastes can be reused for the decontamination of metal-containing effuents (Villaescusa et al. [2004](#page-60-12)).

Grape pomace can be composted at frst and then can be used as a soil conditioner with a low content in phosphoric acids and nitrogen (Ferrer et al. [2001](#page-47-13)).

Grape seed can be used in animal feeding (Brenes et al. [2016\)](#page-43-8) with beneficial effects on animal health (Moate et al. [2014;](#page-53-13) Sehm et al. [2011](#page-58-12); Hao et al. [2015;](#page-48-12) Ebrahimzadeh et al. [2018](#page-46-13)).

2.2.4 Winery By-Product as Biorefnery Feedstock

Following the biorefnery idea, grape marc, pomace, vinasses, wine lees, and winery wastewater have been used as raw materials to produce lactic acid, biofuels including ethanol, carboxylic acids (butyric acid, acetic acid), butanol, acetone, enzymes, high-value chemicals and energy via enzymatic or chemical hydrolysis and anaerobic digestion and pyrolysis (Luguel et al. [2011\)](#page-52-9). Factors that may affect the revenue generation of winery waste biorefnery include harvesting, transport, treatment, storage, and distribution (Zacharof [2017\)](#page-61-10).

Anaerobic digestion of grape marc waste was performed under mesophilic conditions at a laboratory scale to produce methane with a coefficient of 252 ± 31 mL of CH₄ per gram of added volatile solids at a temperature of 0° C, and pressure of 1 atm. The volatile fatty acids concentration increased, and the pH and alkalinity slightly declined over the experimental time. The biomethanization can be implemented for waste management, reducing the large volume of waste generated (Javier et al. [2019](#page-49-9)).

High-quality short-chain fatty acids can be recovered from the anaerobic fermentation of wine vinasse and waste activated sludge mixtures. The diversity and abundance of fermentative bacteria resulted in the rapid hydrolysis and acidifcation of bioavailable substrates for short-chain fatty acids generation. Moreover, the presence of wine vinasses enhanced the dewaterability of fermentation residues (Luo et al. [2019](#page-52-1)).

2.3 Cereals and Tubers

Globally, cereal grains obtained from seeds of *Gramineae* family (such as wheat, rice, barley, maize, sorghum, millet, oat, and rye) fll a signifcant proportion of the human diet. Wheat is the dominant crop supply in high-income countries, while in South Asia rice is more prevalent (Gustavsson et al. [2011](#page-48-0)). Cereals processing is a key point of supply chains for important products as bread, pasta, and sweets. Cereal processing produces various byproducts like bran and germ (Sharma et al. [2020](#page-58-0)). Quantifying and correctly qualifying byproducts are an important starting point for deciding their best market positioning. Traditionally, straw, husk, and dried leaves of crops like wheat, corn, rice, and barley are used for making thatching roofs, broom, hand fans, baskets, and other commodities. Husks is actually a thermal insulator in the structures of environmentally friendly buildings (Hỳsek et al. [2019\)](#page-49-10) and can be used in construction materials like lightweight bricks (Kumar and Mor [2013\)](#page-51-13). Cereals products often undergo pretreatments to produce semi-fnished products for various agri-food manufacturing. The typical example is represented by the milling-industry for the production of fours. These semi-fnished products are used, in turn, as raw materials for various food productions. Pretreatments are generally characterized by low production yields with signifcant production of byproducts. Their quantifcation seems, therefore, to be important for both economic and environmental reasons. In addition to cereals residues from the early steps of the manufacturing process, bakeries, confectioneries, and pasta factories generate additional very variegate cereal-based FW. The complexity of data collection does not enable satisfactory offcial data assessments. Table [2.3](#page-24-0) details, for cereal and tubers waste, specifc sources, and target molecules for recovery.

2.3.1 Soft and Durum Wheat Processing

In addition to fours suitable for the production of bread, pasta, and other products for the human diet, wheat milling provides a series of byproducts that are mainly used for feed preparation.

Processing soft and durum wheat aims to the maximum separation between the four containing endosperm from the germ and outer layers (bran). Notably, the milling process is represented by a sequence of physical operations like cleaning, conditioning, breaking, sifting, and grinding.

This last step aims at breaking seeds, opening caryopsis, and detaching, as much as possible, endosperm from the outermost seed parts, leaving them as fat fakes. Further grinding processes aim to reduce particles size. The four yield is about 75%; hence we have 25% of other byproducts such as bran (10%) which contains outer integument fragments and other seed parts almost entirely deprived by the floury nucleus and other cereal residues (15%), namely outer skins fragments and seed parts deprived of wheat bran (Riva [2013](#page-56-11)). The grinding of wheat produces byproducts, rich in high nutritional proteins, dietary fbers, and glucuronoarabinoxylans, that represent a form of hemicellulose found in the cell walls of grasses (Hollmann et al. [2009\)](#page-49-11).

For production of refined flour, bran and germ are removed as they adversely affect the processing properties (Sharma et al. [2020\)](#page-58-0). Wheat bran was used as a bread nutritional improver after an integrated biotechnological approach, combining xylanase treatment and lactic acid bacteria fermentation with a relevant decrease of the predicted glycemic index of the fortifed bread (Pontonio et al. [2020](#page-56-12)). Water insoluble fbers (i.e., hemicelluloses) are able to regulate intestinal function and are used in supplement food products or ready meals (Rodríguez et al. [2006](#page-56-13)).

Wheat bran is an agroindustrial residual which represents an eligible feedstock in biorefnery processes. In line with the need to better utilize underutilized agricultural fractions, a sequential processing for extraction of starch, lipids, and proteins from wheat brans leaving a rest-material enriched in dietary fber was

Source	Target compound	References	
Wheat	Arabinoxylans	Galanakis (2012) and Hollmann	
byproducts		et al. (2009)	
Wheat straw	Hemicellulose	Galanakis (2012)	
Wheat bran	Glucuronoarabinoxylans, fructans, nonstarch carbohydrates and oligosaccharides, phenolic compounds, lipid soluble vitamins and folic acid, and phytosterols, arabinose and xylose	Galanakis (2012), Ravindran and Jaiswal (2016), Schieber (2017), Sardari et al. (2019), and Bedő et al. (2019)	
Straw	Lignin nanoparticles with (applications in the biomedical and environmental fields, such as tissue engineering or regeneration, artificial muscles, and strong underwater antifouling materials)	Lou et al. (2020) and Iravani and Varma (2020)	
	Furfural	Brandenburg et al. (2018)	
	Cellulose and Methylcellulose	Kumar and Kumar Walia (2017)	
Rice bran	Albumin, globulin, hemicellulose b, insoluble dietary fiber, lipids, minerals, and antioxidants (vitamin e and oryzanol)	Galanakis (2012), Ravindran and Jaiswal (2016), Kiran et al. (2014) , and Schieber (2017)	
Rice husk	Silicon, silica	Kong et al. (2019) and Chen et al. (2019a)	
Sesame husk	Insoluble dietary fiber	Ravindran and Jaiswal (2016)	
Oat mill waste	β -Glucan, antioxidants	Galanakis (2012), Ravindran and Jaiswal (2016), and Kock et al. (2018).	
Malt dust	Glucose, arabinose & galactose	Galanakis (2012),	
Brewery's spent grains	Arabinoxylans, ferulic acid, fermentable sugars, bio-oil, bio-char, bioactive peptides (Connolly et al. 2019)	Galanakis (2012), Ravindran and Jaiswal (2016), Luft et al. (2019), López-Linares et al. (2019), Lorente et al. (2019), Connolly et al. (2019), and Ferrentino et al. (2019)	
Brewery	Brewery spent liquid as fermentation	Dhillon et al. (2012) and	
spent liquid	substrate for citric acid production or microalgae production.	Amenorfenyo et al. (2019).	
	Antioxidants	Barbosa-Pereira et al. (2013)	
Potato peel	Phenols, antioxidants, flavonoids and flavonols	Galanakis (2012), Mohdaly et al. (2010), Sabeena Farvin et al. (2012), Kanatt et al. (2005), Okuno et al. (2002), and Amado et al. (2014)	
Potatoes	Lysine, protein (patatin), steroidal alkaloids, cellulolytic enzymes, adsorption dyes, and biopolymer films	Kiran et al. (2014), Matharu et al. (2016) , and Schieber (2017)	
Sugar beet molasses	Organic acids	Galanakis (2012)	
Sugar beet pulp	Phenols, antioxidants, flavonoid and flavonol	Mohdaly et al. (2010)	
Cassava	Sugars	Ona et al. (2019)	

Table 2.3 Cereal, roots and tubers waste: specific source and target molecules for recovery

designed and developed. After a mild water-based extraction of starch, supercritical fuid extraction of lipids, and alkaline extraction of proteins, the remaining material had a fiber content that on average corresponded to $73\pm3\%$ (Sardari et al. [2019](#page-57-12)).

A microbial saccharifcation of wheat bran was the frst step for bioethanol fermentation (Farkas et al. [2019](#page-46-14)). A biotechnological approach was also used, via an integrated biorefnery process, for arabinose and xylitol production from wheat bran; a dilute-sulphuric-acid fractionation process resulted in xylose-rich and arabinose-enriched hydrolysates, separately. Arabinose biopurifcation of the hydrolysates by *Ogataea zsoltii* gave pure arabinose solutions. Xylitol fermentation by *Ogataea zsoltii* on the xylose-rich hydrolysate under the best pH and aeration conditions resulted in a xylitol yield of 53% in the bioreactor (Bedő et al. [2019\)](#page-42-11).

Bioconversion of wheat bran into high value-added products, such as ethanol, lactic acid, and inulinase, was optimized, and mathematical modeling of fermentations from acid-pretreated and non-detoxifed wheat bran predicted the experimental production data. Ethanol and lactic acid yields were up to 30.44% and 66.68%, respectively, when the free *Scheffersomyces stipitis* (ATCC 58,784) and the immobilized *Lactobacillus casei* were used. The feasibility of the process was clearly demonstrated (Germec et al. [2019](#page-48-13)).

2.3.2 ByProducts from Rice Processing (Oryza sativa L.)

The processing needed to transform raw rice into edible rice aims at improving the quality of the edible product consisting of cleaning, husking, bleaching, and optical separation.

During the cleaning process impurities like straw, stones, soil, and foreign seeds are eliminated. Husking is the second step in which peeling machines remove husk (the outer shell that covers the grain) by rubbing; this way, brown or whole-rice is obtained. Husking of rice produces byproducts, which are rich in high nutritional proteins, dietary fbers, and glucuronoarabinoxylans (Hollmann et al. [2009](#page-49-11)).

The bleaching aims at removing chaff and other residues. The product obtained must be further separated by broken seeds with a separator machine. By using the optical separation, a further refnement of rice is carried out on the basis of seed color. Staining defects are often produced during processing operations.

Thus, the yield of refned rice is around 60–65%, while different byproducts could reach 40%.

Byproducts can vary due to a gamut of rice varieties, but a common classifcation can be summarized as follow:

• Rice husk (ca. 20%) is the main brown-beige by-product obtained by rice processing. It is the coating on a grain of rice, made of hard materials, including silica and lignin. It is available in large quantities continuously. Its average humidity is around 10%, and the gross energy (or higher heat value) of its dry matter can be up to 15–16 MJ/kg. It is much more resistant than wheat husk. Its low density ranges from 132 to 140 kg/m³, and it is biologically very stable. The ashes are made almost entirely of silicon oxide and are around 17% (Riva [2013;](#page-56-11) Kumar et al. [2016\)](#page-51-15).

- Rice bud and bran (ca. 10%). Rice germ essentially consists of embryos and small rice fragments. It is generated during the whitening process. Its humidity is around 12%; the gross energy of its dry matter is about 22.3 MJ/kg, while ashes represent 8.7%; Bran contains dietary fbers (β-glucan, pectin, and gum) various antioxidants, rice bran oil, and unsaponifable components including tocotrienols, γ-oryzanol, and β-sitosterol; all these components may be healthy as regards the plasma lipid profle (Riva [2013;](#page-56-11) Watson et al. [2014\)](#page-60-13).
- Rice broken grains (ca.10%) with smaller dimensions. They have a humidity value of 12%; the gross energy of its dry matter is about 18.6 MJ/kg, while ashes are around 0.8% (Riva [2013](#page-56-11)).

Rice husk is useful as pet feed fber, fertilizer and it is also a substrate for vermicomposting technique (Kumar and Mor [2013](#page-51-13)) or in fermentation processes to adjust moisture, maintain the porosity of fermentative material for gaseous exchange (Sharma et al. [2020](#page-58-0)).

Recycling of carbonized rice husk was used for producing high purity silicon (the purity of the silicon can reach up to 99.9) by the combination of electric arc smelting and slag refining (Kong et al. [2019](#page-50-9)). A zinc silicate glass system (ZnO-SiO2) synthesized using the melt and quench method and derived from white rice husk ash was doped with various europium ion concentrations; the luminescent properties are useful for optical devices such as white light-emitting diodes (Khaidir et al. [2019](#page-50-11)). Rice-husk-derived porous silica (Kumar et al. [2016](#page-51-15)), modifed with recycled copper from industrial wastewater and cerium, was found to be useful to remove mercury and NO from simulated fue gases (Chen et al. [2019a\)](#page-44-9). Rice husk ash was also proftably mixed with some cementitious structural materials (Shimamoto and Suzuki [2019](#page-58-13)) or to produce silica fertilizer for rice plants (Sekifuji and Tateda [2019](#page-58-14)), steel fber-reinforced concrete (Koushkbaghi et al. [2019\)](#page-50-12), and for pavement base material (Poltue et al. [2019\)](#page-56-14).

2.3.3 Potatoes

Potato is the largest crop worldwide since it is a quantitatively important energy source due to the high content of carbohydrates, especially starch. Processing of potatoes mainly for the production of chips or French fries generates peels or cull potatoes as byproducts. The use of byproducts from potatoes industry as cattle

feed is very common (Nelson [2010\)](#page-54-14). The upcycling of their peel waste would solve a potentially massive disposal problem. Potatoes processing byproducts are very interesting since they also contain vitamins, minerals, and phytochemicals, such as carotenoids and natural phenols. Sabeena Farvin et al. ([2012](#page-57-13)) demonstrated that the ethanol extract of potato peel is a natural antioxidant for retarding lipid and protein oxidation in minced mackerel via comparison to a control with no added extracts. Radiation processing is very effective for sterilization but may impair the sensory quality of meat. Kanatt et al. ([2005](#page-49-13)) exploited the antioxidant activity of potatoes peel to reduce lipid peroxidation of radiation-processed meat without affecting its favor.

Starch can be recovered from wastewater produced during potato washing for chips, snacks, or fries, thereby avoiding starch sedimentation in drainage pipelines (Catarino et al. [2007](#page-43-10)).

Okuno et al. [\(2002](#page-54-12)) extracted antioxidants from waste powder derived from sweet-potatoes with orange fesh, using supercritical carbon dioxide extraction with no toxic solvent residue.

Among the several roots and tubers, cassava is very popular in South Asia and America; its peel can be enzymatically hydrolyzed to simple sugars as a useful feedstock from a cheap non-food biomass waste (Ona et al. [2019](#page-54-13)).

2.4 Breweries

Brewer's spent grain is the typical waste produced in large amounts by the brewing industry. Its high potential in obtaining fermentable sugars through enzymatic hydrolysis makes it an eligible source of sugars for bioprocesses. The optimization of operational variables such as mechanical stirring, temperature, enzyme and substrate concentrations, and ultrasound (pulse factor and amplitude) were analyzed. The best sugar yield (370.9 g /kg) was obtained using direct sonication that performed better than mechanical stirring and indirect sonication processes. Besides, direct sonication decreased the treatment time, confrming that it is a promising technology for improving the yields of fermentable sugars from brewer's spent grain (Luft et al. [2019\)](#page-52-11).

A microwave-assisted hydrothermal pretreatment technology was similarly developed to recover fermentable sugars from brewer's spent grain without acid or alkali catalysts. These sugars were fermented, yielding 46 kg of butanol per ton of brewer's spent grain (López-Linares et al. [2019](#page-52-12)).

An integral valorization of brewers' spent grains within the biorefnery framework relied on a microwave-assisted, hydrothermal process catalyzed by Ni-Co/ Al-Mg. Using a temperature of 250 °C and a pressure of 125 bar for 2 h, it is possible to convert the original material into (i) 8% high-energy bio-oil made up a complex mixture of phenols, ketones, aldehydes, carboxylic acids, and nitrogen compounds with a higher heating value of 26 MJ/kg; (ii) 35% bio-char (spent solid) with a higher heating value of 32 MJ/kg; (iii) a saccharide-rich (31%) aqueous solution (Lorente et al. [2019\)](#page-52-13).

Brewer's spent grain was used to generate a range of bioactive peptides with antioxidant activity via direct enzymatic hydrolysis without the prior use of an alkali protein extraction step (Connolly et al. [2019](#page-45-13)).

Supercritical fuid extraction was successfully used to extract oils from brewer's spent grain without and with ethanol as co-solvent in percentages, and this procedure was compared to the Soxhlet using hexane as solvent. The fatty acid composition, the yield, the recovery, and the antioxidant activity were similar, but supercritical carbon dioxide is obviously a greener procedure with no health hazard (Ferrentino et al. [2019\)](#page-47-14).

Alternative use of spent brewer's yeast, which is both biologically and nutritionally rich, exploits its angiotensin converting enzyme inhibitory activity (ACE-I), after autolysis and subsequent hydrolysis via an extract of *Cynara cardunculus.* Nanofltration produced a fraction with <3 kDa, stable in the gastrointestinal system and in vitro, exhibiting the highest inhibitory activity. This ingredient can be useful to deal with hypertension (Amorim et al. [2019](#page-42-13)).

Brewer's spent grain and yeast are not the only byproducts of the brewing process. In fact, brewery industries release about 70% of the production water as wastewater into water bodies. Brewery effuents contain huge amounts of organic compounds such as sugars, soluble starch, ethanol, volatile fatty acids, and nitrogen and phosphorous compounds; its discharge raises environmental concerns, including excessive growth of undesirable microbes that causes loss of aquatic lifeforms. Physical wastewater treatment to reduce suspended solids through sedimentation by gravitational force, chemical treatments such as pH adjustment or coagulation/focculation and fnal aerobic (activated sludge) or anaerobic digestion are usually applied for the sake of environmental safety and to comply with strict regulations. Membrane fltration is considered environmentally friendly and safe. Nanofltration can subtract COD, Na+, and Cl− with an average removal rate of 100%, 55%, and 70%, respectively but fouling and high energy consumption are major challenges for this process. Microbial fuel cells (see Sect. [4.3.4](https://doi.org/10.1007/978-3-030-63436-0_4)) are able to convert organic pollutants into electricity, but this technology is still in its infancy. The microalgae wastewater treatment method is an emerging environmentally friendly biotechnological process to turn nutrient-rich wastewaters into useful biomass; this process is interesting for the $CO₂$ sequestration involved in biomass production. Microalgae such as *Chlorella* sp., *Scenedesmus dimorphus*, and *Scenedesmus obliquus* are actually able to absorb organic nutrients, and effciently reduce the organic pollutants, but light and temperature are limiting factors of the process; removal of salt, odor and color is not effcient. The harvested algal biomass from the wastewater may be processed into plant fertilizers, animal feed, or biofuel production (Amenorfenyo et al. [2019\)](#page-41-7).

Aspergillus niger NRRL-567 was used to ferment several food industry wastes, including brewery spent liquid, lactoserum, and starch industry water sludge to produced citric acid. The production was optimized by manipulating several parameters, such as temperature (25–35 °C), pH (3–5), presence of inducers, incubation time, and supplementation with different proportions of apple pomace ultrafltration sludge (Dhillon et al. [2012\)](#page-46-3).

Target compounds that can be extracted from brewery waste are outlined in Table [2.3.](#page-24-0)

2.5 Olive Oil and Edible Oil Industry

Virgin olive oil is valuable vegetable oil, extracted from olive fruits (*Olea europaea* L.) by mechanical and other physical methods since ancient times. This agroindustrial activity is of crucial economic signifcance for many Mediterranean countries (Cecchi et al. [2010a,](#page-44-10) [2011\)](#page-44-11). Nowadays, it is well-known that regular dietary consumption of virgin olive oil manifests in health benefts associated with a Mediterranean diet (Cecchi and Alfei [2013](#page-43-11)).

Olive oil production results in the generation of large quantities of solid wastes (Lozano-Sánchez et al. [2011\)](#page-52-14) and wastewaters (Federici et al. [2009](#page-47-15); Cardinali et al. [2012;](#page-43-12) Bertin et al. [2011](#page-42-14)) rich in antioxidant phenolic compounds (Cecchi et al. [2010b\)](#page-44-12) (phenolic acids and alcohols, secoiridoids, lignans, and favones) with a great nutraceutical and pharmaceutical interest (Cecchi et al. [2011](#page-44-11); Ghanbari et al. [2012\)](#page-48-14). The traditional release of effuents from the oil processing industry into the soil and groundwater results in oily flm formation on the aquatic surface that endangers aquatic animals and may block sewage and drains due to emulsifcation of organic matter (Okino-Delgado et al. [2017\)](#page-54-15).

Waste valorization from olive industry processing regards the recovery of bioactive compounds from wastewaters and the reduction of water pollution problems. To exploit the potential of olive mill wastewaters, Federici et al. ([2009\)](#page-47-15) evaluated various challenging technologies for extraction of fne chemicals and for different biotechnological applications such as the production of important metabolites; technology costs are the major concern for these procedures. Again, antioxidants are the main target compounds in olive mill wastewater with many promising applications in foods, cosmetics, and pharmaceuticals. Among them, oleuropein and hydroxytyrosol (Bouaziz et al. [2008](#page-43-13)) are the most exhaustively studied due to their presence in all olive byproducts and their outstanding biological activities. Cardinali et al. used a membrane technology coupled to low-pressure gel fltration chromatography and focused on polyphenols recovery and structural characterization (Cardinali et al. [2012](#page-43-12)). For the same purpose, Bertin et al. [\(2011](#page-42-14)) applied a solidphase extraction procedure.

A biotechnological degradation of the organic matter from oil industry effuents or kitchen waste oil with the concomitant production of high value-added biobased microbial biosurfactants can be an attractive valorization alternative. For example, *Pseudomonas aeruginosa* synthesized biosurfactants such as rhamnolipids and glycolipids using lipase (Chen et al. [2018](#page-44-13)), (Henkel et al. [2012\)](#page-49-14). Edible oil industry waste was reported to be a cheap source for bioactives such as tocopherols, sterols, and squalene which represents important target compounds of the pharmaceutical and cosmetics industry (Sherazi et al. [2016\)](#page-58-15). Solid byproducts include olive mill pomace or olive press cake containing fragments of skin, pulp, pieces of kernels, and some oil. The oil industry annually produces about 350.9 million tonnes of the de-oiled cake; they are a good source of protein and they are commonly further utilized for preparing animal feed and fertilizer (Chang et al. [2018](#page-44-14)). Their water and methanol/water derived extracts are reported to have antioxidant and breast cancer antiproliferative activities due to the phenolic compounds (hydroxytyrosol in particular) and can be useful for nutraceutical applications, as food supplements (Ramos et al. [2013\)](#page-56-15). Polar lipids able to protect against cardiovascular diseases were extracted, fractionated, and tested for their bioactivity; the presence of platelet-activating factor antagonists in the polar lipid extract from olive oil waste makes it a value-added materials for the functional food industry (Karantonis et al. [2008](#page-50-13)).

Accelerated solvent extraction of polyphenols from the solid residue of olive cake could be proposed as a simple and rapid extraction procedure (Suárez et al. [2009\)](#page-59-15); the phenolic extract characterized by a strong antioxidant activity is a putative natural antioxidant also for the development of supplemented olive oil. Convective dehydration of olive cakes resulted in a dried olive cake that could be upcycled in many food and cosmetic applications or animal feed (Uribe et al. [2013\)](#page-60-14).

Along with polyphenols and polar lipids, there are other important target compounds, including carbohydrates, proteins, fatty acids, polyalcohols, and pigments*.* A hydrothermal treatment and an autohydrolysis of the olive cake, gave a watersoluble fraction comprising monosaccharides, oligosaccharides, and mannitol (Fernández-Bolaños et al. [2004](#page-47-16)).

Application of olive cake to soil was proposed as a simple disposal strategy due to its high content in organic matter, able to adsorb triazine herbicides and to reduce desorption of the most hydrophobic terbuthylazine and prometryn (Delgado-Moreno et al. [2007](#page-45-14)). Actually, olive mill wastes could be used as a source of carbon for soil carbon sequestration strategy (Sánchez-Monedero et al. [2008](#page-57-14)).

Waste cooking oil is the residue of the deep fat frying process, and it is unsuitable for human consumption due to the formation of polar compounds like free shortchain fatty acids, mono- and di-glycerides, aldehydes, ketones, polymers, cyclic and aromatic compounds; cooking oil wastes were bioremediated using lipases extracted from orange wastes through transesterifcation reactions that decreased the toxicity of the waste cooking oil (Okino-Delgado et al. [2017](#page-54-15)).

Olive oil wastewaters were also used for xanthan gum production (see Sect. [5.1.4\)](https://doi.org/10.1007/978-3-030-63436-0_5) using the plant pathogen using *Xanthomonas campestris* (Murad et al. [2019\)](#page-53-11).

Target compounds that can be extracted from oil crops waste are outlined in Table [2.4.](#page-31-0)

Source	Target compound	References
Sunflower seed	Phytosterols	Galanakis (2012)
Sunflower	Proteins and chlorogenic acid	Albe Slabi et al. (2020)
	Polyphenols and flavonoids	Rodríguez et al. (2019)
		Daraee et al. (2019)
Rapeseed meal	Isothiocyanate and Glucosinolates	Ishikawa et al. (2014)
Rapeseed oil waste	Phytosterols and tocopherols	Jafarian Asl et al. (2020)
Soybean seed	Phytosterols	Galanakis (2012)
Soybean oil waste	Phytosterols	Galanakis (2012)
Olive mill waste and wastewater, olive pomace	Phenols, pectin, substrate for biosurfactants (rhamnolipids and glycolipids), and biodiesel production, tocopherols, sterols, squalene, and single cell protein, phenolic acids (ferulic, cinnamic, gallic etc.) and alcohols, secoiridoids, lignans, and flavones, oleuropein and hydroxytyrosol, xanthan gum	Galanakis (2012), Ravindran and Jaiswal (2016), Kiran et al. (2014), Henkel et al. (2012), Ghanbari et al. (2012) , Suárez et al. (2009) , Bouaziz et al. (2008), Federici et al. (2009), Bouaziz et al. (2008), Murad et al. (2019), Cassano et al. (2013), Rahmanian et al. (2014), Crea (2002), Caballero et al. (2020), Di Mauro et al. (1999) and Ferri et al. (2011) .
Olives processing byproducts	Phenolic compounds, polyphenols, carotenoids, phytosterols, squalene, and dietary fiber	Schieber (2017), Karantonis et al. (2008) , Suárez et al. (2009) , Cardinali et al. (2012) and Bertin et al. (2011)
Winter oil seed rape waste	Phytosterol	Ravindran and Jaiswal (2016)
Sesame cake	Antioxidants, phenolics, flavonoid and flavonol	Mohdaly et al. (2010) and Sarkis et al. (2014)

Table 2.4 Oil crops waste: specific source and target molecules for recovery

2.6 Meat Products

Globally, meat consumption has been continuously increasing, and the meat processing industry is a huge segment of the food industry chain system. Animal originated wastes are rich in proteins that are too valuable to be discharged into the environment.

Meat industry discards large quantities of slaughterhouse byproducts, such as blood, entrails, and some muscles (widely consumed in the past due to poverty needs) and non-edible parts such as skin, bones, deboning residues, tendons, skull, hooves, feathers, and detergent residues.

Nearly 40% and 20% of the slaughtered carcass are made of edible and inedible byproducts, respectively (Bhaskar et al. [2007\)](#page-43-14). The former can obviously be used as human food or animal feed (Toldrá et al. [2012](#page-59-16)).

Due to microbiological hazard, the recovery of meat industry byproducts is bound by severe hygiene limitations. For example, the European Union promulgated legislative measures in order to avoid the spread of the bovine spongiform encephalopathy (BSE) (Regulation 999/2001and 853/2004). In this respect, combustion of bone byproducts (Deydier et al. [2005](#page-46-16)) is a safe procedure that produces residues rich in calcium (30.7%) and phosphate (56.3%), with signifcant levels of sodium (2.7%) , potassium (2.5%) and magnesium (0.8%) , and with no heavy metal content. Almost 90% of ash particles are smaller than 1 mm.

Anyhow the recovery of protein from meat byproducts is the focus of interest of many studies.

Selmane et al. investigated the operating conditions of the extraction, purifcation, and concentration of proteins from meat byproducts in order to maximize their recovery (ca. 50%) and to enhance their functional properties, namely gelling, emulsifying, and foaming properties if used as food ingredients (Selmane et al. [2008](#page-58-16)).

Rendering industries are the oldest recycling industries; they convert waste animal tissue into stable bone meal, hydrolyzed feather meal, blood meal, fsh meal, and purifed animal fats (lard and tallow) (Yaakob et al. [2019\)](#page-61-11).

Poultry slaughterhouse waste mixed with molasses were fermented to eliminate pathogens and to produce lactic acid bacteria that can be used as probiotics (Ashayerizadeh et al. [2017\)](#page-42-15). Chicken slaughterhouse wastewater was used for green algae (*Scenedesmus* sp.) biomass generation to be used as fsh feed (Yaakob et al. [2019\)](#page-61-11). Apart from food applications such as blood sausage, blood cake, blood pudding, and blood curd, blood can also be used as a fertilizer or a binder (Adhikari et al. [2018\)](#page-41-10).

The use of a fungal protease for the enzymatic treatment of sheep visceral mass (including stomach, large and small intestines) resulted in a protein hydrolysate rich in some of the essential amino acids that can be used as a favor enhancer, functional ingredient in foods of low protein quality (Bhaskar et al. [2007](#page-43-14)). Tahergorabi et al. used isoelectric solubilization/precipitation to recover functional proteins, useful for novel food preparations, from chicken meat processing byproducts. The authors recommended the addition of $TiO₂$ during the extraction process to increase the gel strength (Tahergorabi et al. [2012](#page-59-17)).

Krasnoshtanova developed methods for increasing the efficiency of enzymatic hydrolysis of meat byproducts. A kinetic models of the processes enabled the determination of the optimal conditions ensuring a degree of substrate conversion of at least 95%; the presence of alkyl hydroxy benzenes improved the efficiency of enzymatic processes. Increased temperatures (55–65 °C) made it superfuous to maintain aseptic conditions (Krasnoshtanova [2010](#page-51-16)).

Gomez-Guillen et al. focused on collagen and gelatin extraction from nonmammalian species (fish and poultry). They can be easily be upcycled as emulsifiers, foaming agents, and colloid stabilizers (Gomez-Guillen et al. [2011](#page-48-15)).

Cellulosic spent casing from frankfurter/sausage production was found to be an excellent source of cellulose that can be hydrolyzed into simple sugars or used as a substrate for the production of cellulase (Cumba and Bellmer [2005](#page-45-17)).

Target compounds that can be extracted from meat waste are outlined in Table [2.5](#page-33-0).

Origin	Source	Target compound	References
Meat	Chicken byproducts	Protein	Galanakis (2012), Ravindran and Jaiswal (2016), Tahergorabi et al. (2012) and Gomez-Guillen et al. (2011)
	Slaughterhouse byproducts	Protein, bone meal, hydrolyzed feather meal, blood meal, animal fats (lard and tallow); substrate for lactic acid bacteria and biomass generation as fish feed	Galanakis (2012), Ravindran and Jaiswal (2016), Selmane et al. (2008), Yaakob et al. (2019), Ashayerizadeh et al. (2017) and Yaakob et al. (2019).
	Bovine blood	Protein	Galanakis (2012)
	Beef lung	Protein	Galanakis (2012)
	Sheep visceral mass	Protein hydrolisate	Galanakis (2012) and Bhaskar et al. (2007)
	Bone byproducts	Calcium, phosphate, sodium, potassium, magnesium, with no heavy metal content	Deydier et al. (2005)
Fish and seafood	Fish leftovers (skin, head, bones)	Protein, lipids, gelatin, chitosan, glycosaminoglycans	Galanakis (2012), Ravindran and Jaiswal (2016), Gehring et al. (2011) , Aspevik et al. (2017), Gomez-Guillen et al. (2011), Sousa et al. (2017), and Prameela et al. (2017)
	Shrimp and crab shells	Chitosan, chitin, chitinase, glycosaminoglycans; astaxanthin, calcium carbonate	Galanakis (2012), Ravindran and Jaiswal (2016), Kiran et al. (2014) , Yan and Chen (2015) , Prameela et al. (2017), Kumar et al. (2018), and Valcarcel et al. (2017)
	Lobster	Chitin	Yan and Chen (2015)
	Surimi wastewater	Proteins	Galanakis (2012)
	Sea products waste	Lipids and pigments from algae, and oils from fish-processing plant waste streams	Kerton et al. (2013)
	Tuna by-product hydrolysate	Antioxidant bioactive peptides.	Saidi et al. (2018)
	Fish cartilage	Chondroitin sulfate	Kim et al. (2012), Gargiulo et al. (2009), and Murado et al. (2010).

Table 2.5 Animal food waste origin, specific source and target molecules for recovery

Origin	Source	Target compound	References
Dairy products	Whey	Lactose, whey protein concentrate and isolate, β -lactoglobulin, α -lactalbumin, probiotics, antibacterials, immunoglobulins, whey peptides, whey permeate, fermentation products, single cell protein, and probiotics, xanthan gum, bioactive peptides.	Smithers (2008), Yadav et al. (2015) , Cheirsilp and Radchabut (2011), Nguyen et al. (2003) , Santos et al. (2019) , Borad et al. (2019) Yadav et al. (2015), Barba et al. (2001) , Pereira et al. (2002) , Cheirsilp and Radchabut (2011), Minhalma et al. (2007) , Nguyen et al. (2003) , Jeantet et al. (2000) , Rektor and Vatai (2004), Kelly et al. (2000), DeSilva et al. (2003) , Borad et al. (2019) , Alonso et al. (2010) , Maragkoudakis et al. (2010), Koutinas et al. (2009), Murad et al. (2019) , Patel and Murthy (2010), Sánchez-García et al. (2018) , and Monti et al. (2018)
	Milk	Biodiesel, ethanol, whey protein, Lactose, baker's yeast, and minerals	Parashar et al. (2016), Matharu et al. (2016) , and Kiran et al. (2014)
	Dairy wastes and wastewaters	Lactose, proteins, peptides, salts, fatty substances, and cleaning chemicals	Kosseva (2011).

Table 2.5 (continued)

2.7 Fishery

Fishery supplies around 20% of the world's food to humans. The utilizable mass of marine animal is unfortunately quite low: for example crabs only yield 40% meat, and in tuna fsh only 75% of the fllet is available (Sharma et al. [2020\)](#page-58-0).

Processing of fish and seafood results in appreciable amounts of wastes (i.e., 9–15% and 6–8% of marine catches in industrialized and developing countries, respectively) rich in proteins and lipids from fsh skin, head frames, and viscera (Gehring et al. [2011](#page-48-16)). After industrial flleting, fsh processing byproducts are *ca.* 60–70% of the total fsh weight (Tahergorabi and Jaczynski [2014](#page-59-18)).

These residuals contain potentially bioactive compounds, which can be made use of as food or feed. Optimal utilization of proteins in such residual raw materials makes use of advanced technologies such as freezing/cooling, acid preservation, salting, rendering and protein hydrolysis (Aspevik et al. [2017](#page-42-16)).

Upcycling fsh byproducts is a crucial practice for marine resources conservation. Different added-value products can be recovered, thereby avoiding the costs associated with the management of wastes.

Strict legislation regulates the upcycling of various animal-based residuals Fish skins constitute an important fraction of the huge amount of fsh byproducts. Fish skins can be valorized through the extraction of gelatins. The gel-forming properties of gelatins are proftably used in food, photographic, cosmetic, and pharmaceutical applications. Gelatins are gummy when moist; hence they are natural biodegradable emulsifers, foaming agents, and colloid stabilizers. Gelatins are also endowed with diverse antimicrobial, antioxidant or antihypertensive activities (Gomez-Guillen et al. [2011](#page-48-15)).

Extraction of gelatin from fsh skin can be optimized manipulating the extraction parameters, such as reagents concentration, water consumption, and time of processing, while maintaining the highest extraction yield. Characterization of the chemical composition, rheology, structure, texture, and molecular weight, enable the introduction in the market of gelatins with unique properties for specifc applications (Sousa et al. [2017](#page-58-17)).

A strictly pharmaceutical compound (i.e., chondroitin sulfate) used for osteoarthritis, can be recovered from scapular cartilage of Shortfn mako shark (Kim et al. [2012\)](#page-50-15), waste of *Scyliorhinus canicula*, (Gargiulo et al. [2009](#page-47-18)), and skate cartilage (Murado et al. [2010](#page-54-16)).

Shells of aquatic animals such as shrimps, lobsters, crabs, prawns, fsh scales, and endoskeletons harbor useful chemicals such as protein, chitin, and calcium carbonate. Crustaceans are a large, diverse arthropod taxon. Their processing results in important byproducts; seafood waste is chitinaceous in nature. Actually, the shell of crabs, lobsters, shrimps, and prawns all contain chitin from which chitosan can be extracted (Galanakis [2012;](#page-47-0) Ravindran and Jaiswal [2016](#page-56-0); Kiran et al. [2014;](#page-50-1) Yan and Chen [2015;](#page-61-12) Prameela et al. [2017;](#page-56-18) Kumar et al. [2018](#page-51-17)). Chitin is insoluble in water and inert to most chemical agents; hence its common disposal (ocean dumping, incineration, landflling) leads to environmental pollution, eutrophication, and biofouling. Its recovery would eradicate the environmental issue along with revenue generation (Yan and Chen [2015](#page-61-12); Kumar et al. [2018\)](#page-51-17). Dried shrimps and crabs contain about 50% of chitin on a dried basis (Yan and Chen [2015\)](#page-61-12), and even if it can be used as an animal feed supplement, bait, or fertilizer, it is the main source of chitosan, an important biopolymer which exhibits antibacterial activity against *Enterococcus faecalis*, *Escherichia coli*, *Staphylococcus aureus*, and *Candida albicans* (Hussein et al. [2013](#page-49-18)). The importance of chitosan will be clearly detailed in Sect. [5.9](https://doi.org/10.1007/978-3-030-63436-0_5). Seafood waste is also a potential source for functional and bioactive compounds: for example, glycosaminoglycans extracted from marine animal waste are better than those obtained from terrestrial organisms (Valcarcel et al. [2017](#page-60-15)); shrimp waste was used to produce nutraceutical compound such as astaxanthin (3,3′-dihydroxy-ß-carotene-4,4′-Dione), a xanthophyll carotenoid present in crustacean waste that was extracted through oxidative transformations of ingested β-carotene or zeaxanthin by feed microalgae (Prameela et al. [2017](#page-56-18)).

Target compounds that can be extracted from fish waste are outlined in Table [2.5](#page-33-0).

2.8 Dairy Products

The dairy industry is an important food industry sector; dairy waste is derived from the processing industry, microbial spoilage of the dairy products, and inappropriate storage or handling. Dairy wastes and wastewaters are a signifcant source of lactose, proteins, peptides, salts, fatty substances, and cleaning chemicals used for maintaining proper hygiene during processing (Kosseva [2011](#page-50-0)). During the processing of raw milk, up to 3.0 L of wastewater are generated per liter of processed milk; the high content of the nutrients poses serious environmental concerns and demands wastewater conversion methods such as activated sludge, sequencing batch reactor, trickling flter, anaerobic sludge blanket, and aerated lagoons (Sharma et al. [2020\)](#page-58-0).

Cheese whey was discovered about 3000 years ago when calves' stomachs were used as milk containers, and the naturally occurring enzyme chymosin (rennet) coagulated the milk and spawned the start of the cheese-making activity. The manufacturing of cheese generates 9 kg of whey per kg of cheese produced (Parashar et al. [2016\)](#page-55-16).

After milk is coagulated during cheese production when pH is dropped to 4.6, 50% of the milk total solids remain in the whey; interestingly, all the lactose (ca. 5%, w/v) and all the typical whey protein (ca. 0.7% w/v) such as β-lactoglobulin, α-lactalbumin, glycomacropeptide, minor protein/peptide components including immunoglobulins, lactoferrin (a whey globular glycoprotein of the immune system, involved in the binding and transport of iron ions, with strong antibacterial, antiviral, antiparasitic, anticancer, and anti-allergic functions, with bone growth enhancement properties), lactoperoxidase (a whey enzyme that catalyzes the oxidation of substrates by hydrogen peroxide, endowed with natural antibacterial activity), serum albumin, lysozyme, and growth factors can be found in whey since they are not involved in curd formation. Whey also include 1.0% (w/v) salts, and $0.1\% \pm 0.8\%$ (w/v) lactic acid (Lee et al. [2000\)](#page-51-18). Whey proteins are the most important target compounds in whey because of their exceptional biological value (15% better than egg protein). This means that the body can well and quickly exploit this kind of proteins; for this reason, whey protein is the protein of choice for bodybuilders, athletes, and debilitated people. Whey proteins are a rich source of the essential and branched amino acids that represent metabolic regulators in protein, glucose and lipid metabolism, thereby playing a role in weight control (Smilowitz et al. [2005\)](#page-58-19). Whey proteins are also a balanced source of the sulfur amino acids (methionine, cysteine), precursors to the potent intracellular antioxidant glutathione (Shoveller et al. [2005\)](#page-58-20). By this scenario, nowadays, the bioactivity of whey is receiving considerable scientifc scrutiny around the world even if whey medicinal applications during the seventeenth and eighteenth centuries were already well renowned (Smithers [2008](#page-58-18)).

Many recent studies established a sound basis for its nutritional and functional value and this underpinning knowledge paved the way to technology developments for its valorization. It was found that the bioactivity of whey also includes (i) physical ftness, (ii) satiety and weight control, (iii) cardiovascular health, (iv) anticancer activity on in vitro cell culture, in vivo animal studies, and some epidemiological investigations (v) growth factor activity and wound healing (vi) antimicrobial effects of lactoferrin for the management of infections and for enhancing the safety of meat (vii) infant nutrition (viii) potent bone growth enhancement properties of lactoferrin for the prevention and treatment of osteoporosis (ix) antimicrobial effects of lactoperoxidase again oral infection and halitosis (Smithers [2008](#page-58-18)).

Historically, the frst management method of the dairy activity was whey disposal via its spraying onto felds, although the smell and salt content were major problems. Discharging the whey into rivers, lakes, sea, or municipal sewage system was also exploited; however environmental concerns progressively restricted and banned this disposal approach. Actually, whey emission into river systems is an environmental hazard due to its high organic content (Biochemical oxygen demand (BOD) >35,000 ppm; chemical oxygen demand (COD) >60,000 ppm) (Smithers [2008](#page-58-18)).

Transformation of whey from a nuisance into a valuable dairy raw material and valuable feedstock has been facilitated by environmental considerations and legislative restrictions on whey disposal, knowledge about target bioactive compounds in whey, and technology advances in whey-processing technologies (concentration, transformation, fractionation, and dehydration of whey, and modern biochemical techniques).

Whey was also used for xanthan gum production (see Sect. [5.1.4\)](https://doi.org/10.1007/978-3-030-63436-0_5) using the plant pathogen using *Xanthomonas campestris* (Murad et al. [2019\)](#page-53-11).

Whey can be simply concentrated and dried as whey powder, or it can be used as substrate for ethanol production; technological advancements have enhanced whey utilization up to 50% of the total produced whey to produce lactose, whey protein, whey permeate, but also fermentation products such as bioethanol, hydrogen, methane, whey peptides, and probiotics (Yadav et al. [2015](#page-61-13)). The recovery of protein and lactose is of utmost importance: no whey utilization strategy is feasible without suitable attention being paid to lactose, which represents more than 75% of whey solids. Whey proteins, containing all 20 amino acids, are widely used to prepare drinks and bars, which are the most popular dietary supplements for athletes; anyhow, whey-based ingredients successfully compete for a share of the burgeoning functional foods market. There are two types of whey protein useful for dietary supplements: whey concentrate and whey isolate. The latter undergoes more processing, which results in higher protein content with fewer carbohydrates, lactose, and fat.

The processes and techniques for the full valorization of target compounds from whey will be described in Chap. [4,](https://doi.org/10.1007/978-3-030-63436-0_4) they include microfiltration, ultrafiltration, nanofltration, reverse osmosis, electrodialysis, and ion exchange, anyhow we will detail in the following whey target compounds.

Microfltration of whey (to remove fat, bacteria, and residual casein micelles) is the frst step of the process.

Whey protein concentrates (up to 80% protein) are then obtained by ultrafiltration, a membrane technique that lowers the fat and lactose content and limits protein denaturation (Barba et al. [2001\)](#page-42-17). Pereira et al. valorized ovine cheese whey, by

means of a thermo-calcic precipitation and microfltration before ultrafltration. The clarifcation step improved the next ultrafltration treatments. The chemical composition of retentate powders was comparable to that of conventional ultrafltration powders (Pereira et al. [2002](#page-55-14)).

The membrane ultrapermeate usually contains lactose, salts, nonprotein nitrogen, and water. If it is subsequently nanofltrated, lactose can be recovered because it is retained by the nanomembrane, while salts and water constitute the permeate. The salt depleted lactose concentrate can be used as a raw material in the pharmaceutical, food, and paper industries; it is a lowcost carbon source for the biotechnological production of kefran, a water-soluble exopolysaccharide that comprises equal amounts of glucose and galactose, by *Lactobacillus kefranofaciens* (Cheirsilp and Radchabut 2011). The valorization of this dairy sugar may involve the use of crystallization, fermentation, hydrolysis, and transformation (into various valuable derivatives).

The salt-enriched permeate from nanofltration, almost free from organic matter, could be reused in the process: nanofltration, using the optimal operating conditions, could therefore minimize the wastewater environmental impact with a maximum water recovery of approximately 80% (Minhalma et al. [2007\)](#page-53-15).

Nguyen et al. used nanofltration to obtain a four-fold concentration of solids from cottage cheese whey, while removing about three-quarters of the sodium and potassium salts and some acids. The desalted nanoconcentrate could be considered an ingredient in dairy and other food products (Nguyen et al. [2003\)](#page-54-17). Anyhow, other techniques such as electrodialysis and chromatography are also used for demineralisation of whey and separation of whey protein from the abundant lactose and residual fat (Jeantet et al. [2000](#page-49-17); Rektor and Vatai [2004](#page-56-19)) to produce functional whey ingredients for athletes and debilitated people.

At variance with whey protein concentrate, whey protein isolate contains up to 90% protein without fat and lactose (Kelly et al. [2000](#page-50-16)); it can be obtained by ionic exchange chromatography that is able to selectivity adsorb and subsequently desorb proteins even if it might trigger their denaturation.

Given the high value of specifc proteins, it would be highly desirable to fractionate whey proteins.

Procedures usually based on selective ion exchange have been developed for selective manufacture of β-lactoglobulin and α-lactalbumin isolates via precipitation of α -lactalbumin from sweet whey concentrated by ultrafiltration, under specifed conditions of pH and temperature, leaving β-lactoglobulin in solution and unaffected by the pH/temperature treatment (Smithers [2008\)](#page-58-18). Alternatively, fractionation can be obtained via liquid chromatography as well as continuous chromatographic separation technology and ultra-high pressure processing aiming at maintaining the functional and nutritional traits of the wide array of whey bioactive compounds (DeSilva et al. [2003](#page-45-18)).

Apart from the major whey proteins (β-lactoglobulin, α-lactalbumin, and glycomacropeptide) whey contains a number of minor proteins. Among them immunoglobulins represent the most abundant. Colostrum is a precious ingredient for the manufacture of immunoglobulin-enriched milk products that are gaining signifcance in the global nutraceutical market as dietary supplements. These immunoglobulin-rich isolates might be important because they contain an abundance of immune components that can be exploited to address the poor immune status of immuno-compromised people and enhance gut health. High-pressure processing enables the preservation of the colostrum immunoglobulins (Borad et al. [2019\)](#page-43-17).

Whey peptides have additional and often varied bioactivity compared to that of the parent molecule (Herrera-Ponce et al. [2019](#page-49-19)). A number of these bioactive whey peptides, together with the parent protein source, have been the focus of interest of in vitro and in vivo studies to investigate their positive infuence on cardiovascular, endocrine, and immune systems. Desolvation and internal gelation have been so far employed for bioactive peptides particulation (Yadav et al. [2015](#page-61-13)). Commercially, the most promising of these peptides is the potent antimicrobial lactoferricin and closely related peptides, derived by peptic or chymosin digestion of lactoferrin (Herrera-Ponce et al. [2019\)](#page-49-19).

Engineering developments have led to a number of innovations and improvements in the drying of whey, whey concentrates, isolate, and permeates: spray drying, freeze-drying, and fltermat drying have different advantages and disadvantages (Písecký [2005\)](#page-55-17), and also infuence on the organoleptic outcomes (Vincenzetti et al. [2018](#page-60-16)).

Lactic acid is widely used in food and pharmaceutical sectors and recently for biopolymers production, as illustrated in Chap. [6.](https://doi.org/10.1007/978-3-030-63436-0_6) To obtain lactic acid from whey, Vasala et al. ([2005\)](#page-60-17) used *Lactobacillus salivarius,* an ideal microorganism for lactic acid fermentation in high-salt high lactose conditions, typical of whey. Yoghurt whey from expired products could be used for lactic acid production by *Lactobacillus casei* (Alonso et al. [2010\)](#page-41-11).

Raw whey permeate can serve as a natural sanitizing agent in the washing of vegetables (Martin-Diana et al. 2006). The possibility to obtain lactic acid from whey fermentation led to the production of a whey-based food disinfectant. A scalable fermentation protocol to produce a disinfectant, with the highest lactic acid concentration and the lowest lactose levels, made use of a specifc mesophiliclactic acid bacteria starter mix over 120 h. Antibacterial activity against food pathogenic and spoilage strains was successfully tested. This fermented whey represents an effective and environmentally-safe alternative to the use of chlorine as a disinfectant for shredded lettuce on the basis of microbial quality and other quality indicators such as texture, color, and sensory perception, pH , O_2 and CO_2 determinations (Santos et al. [2019\)](#page-57-17).

Whey permeate, obtained from ultrafltration, containing lactose, salts, nonprotein nitrogen, and water, is a dairy effuent usually dealt with via land spreading or incorporation into animal feed. It was recently demonstrated that it could be hydrolyzed using enzymes to release fermentable sugars and then integrated into wheat fermentation as a co-substrate or to partially replace process water for ethanol production using *Saccharomyces cerevisiae* (Parashar et al. [2016](#page-55-16)).

Edible flamentous fungi such as *Aspergillus oryzae* and *Neurospora intermedia,* were proftably used to enzymatically convert dairy waste into high-quality biomass for animal feed or human consumption, and chemicals, such as ethanol and glycerol (Mahboubi et al. [2017\)](#page-52-16).

Whey was also used for the production of probiotics. The whey by-product from Ricotta cheese manufacturing, called "Scotta" presented favorable characteristics as a potential growth substrate for the production of a probiotic fermented drink (Maragkoudakis et al. [2010\)](#page-52-15). The manufacture of novel dairy starter cultures for better cheese ripening and extended shelf life, using whey as raw material, was also proposed. The developed technology involved biomass production from whey followed by thermal drying of cultures. Authors found that the most suitable culture in lactose and milk whey fermentation was kefr due to its technological properties (Koutinas et al. [2009](#page-50-17)).

Target compounds that can be extracted from dairy waste are outlined in Table [2.5.](#page-33-0)

2.9 Kitchen Waste

Kitchen waste from public catering rooms, restaurants, households, and canteens broadly consists of fruits, vegetables, staple food, shells, bones, pits, and meat (Zhao et al. [2017\)](#page-61-14). It is compostable. It contains high organic matter and particularly carbohydrates (cellulose, hemicellulose, pectin and starch), protein, lignin, fats, organic acids, inorganic salts, and others (Chen et al. [2017](#page-44-16)). Traditional disposal of kitchen waste such as land-flling, incineration, and direct or indirect discharge into the environment is detrimental to the ecosystem and human health (Sharma et al. [2020\)](#page-58-0). The high moisture content and a pool of nutrients facilitate the growth of pathogens, rotting, breeding of fies, emission of toxic volatiles, including ammonia and greenhouse gases.

Interestingly, kitchen waste could be used as a substrate to generate of a huge array of value-added products. Xanthan gum was produced via chemical and enzymatic treatments of kitchen waste (Li et al. [2017\)](#page-51-19); volatile fatty acids were obtained using anaerobic fermentation, using activated sludge to inoculate FW (Wang et al. [2014\)](#page-60-18); short-chain fatty acids were similarly obtained by co-fermentation of kitchen waste with waste activated sludge under alkaline conditions and the fermentation liquid was successfully used in microbial fuel cells (Chen et al. [2013\)](#page-44-17) described in Sect. [4.3.4;](https://doi.org/10.1007/978-3-030-63436-0_4) kitchen waste was investigated as a nutrient resource for $L(+)$ -lactic acid production by *Lactobacillus manihotivorans* LMG18011 (Ohkouchi and Inoue [2006\)](#page-54-18), and for cellulase manufacture via *Aspergillus niger* in solid-state fermentation (Bansal et al. [2012](#page-42-18)); glucoamylase is another interesting target compound in kitchen waste valorization, it was produced by *Aspergillus niger* UV-60 under submerged fermentation (Wang et al. [2008\)](#page-60-19).

Carbohydrate from kitchen waste after mild acid pretreatment of hydrochloric acid and glucoamylase gave fermentable sugars (93.25g/L glucose, 0.542g/L sucrose, 0.348g/L maltose, and 0.321g/L fructose) as the feedstock for bioethanol production (Hafd et al. [2015](#page-48-17)). Ethanol production from kitchen waste was studied using successive liquefaction, pre-saccharifcation, and simultaneous saccharifcation and fermentation (Nishimura et al. [2017\)](#page-54-19), while biobutanol is the product of enzymatic hydrolysis and *Clostridium acetobutylicum* fermentation of kitchen waste (Chen et al. [2017\)](#page-44-16); methane and hydrogen can also be obtained by anaerobic fermentation (Campuzano and González-Martínez [2016;](#page-43-18) Parthiba Karthikeyan et al. [2018\)](#page-55-18).

Bacillus agaradhaerens C9 degrading enzymes (amylase, protease, lipase, cellulase, xylanase, and pectinase) promoted the hydrolysis of kitchen waste and strong alkaline fermentation conditions induced the production of an environment-friendly and biodegradable macromolecular biofocculant, using unsterilized kitchen waste. The bioflocculant was characterized by a high flocculation efficiency, and it was applied to treat mineral mining processing wastewater comprising heavy metal ions, thereby enabling its recycling (Liu et al. [2019](#page-52-17)).

Bibliography

- Abdalla AEM, Darwish SM, Ayad EHE, El-Hamahmy RM (2007) Egyptian mango by-product 1. Compositional quality of mango seed kernel. Food Chem 103:1134–1140. [https://doi.](https://doi.org/10.1016/j.foodchem.2006.10.017) [org/10.1016/j.foodchem.2006.10.017](https://doi.org/10.1016/j.foodchem.2006.10.017)
- Acun S, Gül H (2014) Effects of grape pomace and grape seed fours on cookie quality. Qual Assur Saf Crop Foods 6:81–88.<https://doi.org/10.3920/QAS2013.0264>
- Adhikari BB, Chae M, Bressler DC (2018) Utilization of slaughterhouse waste in value-added applications: recent advances in the development of wood adhesives. Polymers (Basel) 10:176. <https://doi.org/10.3390/polym10020176>
- Aghajanian S, Kazemi S, Esmaeili S et al (2020) Sequential microwave-assisted extraction for isolation of quercetin from red kidney bean. Int J Eng Trans A Basics 33:12–17. [https://doi.](https://doi.org/10.5829/ije.2020.33.01a.02) [org/10.5829/ije.2020.33.01a.02](https://doi.org/10.5829/ije.2020.33.01a.02)
- Ahangari B, Sargolzaei J (2013) Extraction of lipids from spent coffee grounds using organic solvents and supercritical carbon dioxide. J Food Process Preserv 37:1014-1021. [https://doi.](https://doi.org/10.1111/j.1745-4549.2012.00757.x) [org/10.1111/j.1745-4549.2012.00757.x](https://doi.org/10.1111/j.1745-4549.2012.00757.x)
- Aires A, Carvalho R, Saavedra MJ (2017) Reuse potential of vegetable wastes (broccoli, green bean and tomato) for the recovery of antioxidant phenolic acids and favonoids. Int J Food Sci Technol 52:98–107. <https://doi.org/10.1111/ijfs.13256>
- Ajila CM, Aalami M, Leelavathi K, Rao UJSP (2010) Mango peel powder: a potential source of antioxidant and dietary fber in macaroni preparations. Innov Food Sci Emerg Technol 11:219– 224. <https://doi.org/10.1016/j.ifset.2009.10.004>
- Albe Slabi S, Mathe C, Basselin M et al (2020) Multi-objective optimization of solid/liquid extraction of total sunflower proteins from cold press meal. Food Chem 317. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.foodchem.2020.126423) [foodchem.2020.126423](https://doi.org/10.1016/j.foodchem.2020.126423)
- Aliakbarian B, Fathi A, Perego P, Dehghani F (2012) Extraction of antioxidants from winery wastes using subcritical water. J Supercrit Fluids 65:18–24. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.supflu.2012.02.022) [supfu.2012.02.022](https://doi.org/10.1016/j.supflu.2012.02.022)
- Alonso S, Herrero M, Rendueles M, Díaz M (2010) Residual yoghurt whey for lactic acid production. Biomass Bioenergy 34:931–938. <https://doi.org/10.1016/j.biombioe.2010.01.041>
- Amado IR, Franco D, Sánchez M et al (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299. <https://doi.org/10.1016/j.foodchem.2014.05.103>
- Amenorfenyo DK, Huang X, Zhang Y et al (2019) Microalgae brewery wastewater treatment: potentials, benefts and the challenges. Int J Environ Res Public Health 16. [https://doi.](https://doi.org/10.3390/ijerph16111910) [org/10.3390/ijerph16111910](https://doi.org/10.3390/ijerph16111910)
- Amorim M, Pinheiro H, Pintado M (2019) Valorization of spent brewer's yeast: optimization of hydrolysis process towards the generation of stable ACE-inhibitory peptides. LWT 111:77–84. <https://doi.org/10.1016/j.lwt.2019.05.011>
- Angulo J, Mahecha L, Yepes SA et al (2012) Nutritional evaluation of fruit and vegetable waste as feedstuff for diets of lactating Holstein cows. J Environ Manag. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jenvman.2011.06.050) [jenvman.2011.06.050](https://doi.org/10.1016/j.jenvman.2011.06.050)
- Ashayerizadeh O, Dastar B, Samadi F et al (2017) Study on the chemical and microbial composition and probiotic characteristics of dominant lactic acid bacteria in fermented poultry slaughterhouse waste. Waste Manag 65:178–185.<https://doi.org/10.1016/j.wasman.2017.04.017>
- Aspevik T, Oterhals Å, Rønning SB et al (2017) Valorization of proteins from co- and by-products from the fsh and meat industry. Top Curr Chem 375:53
- Ayala-Zavala JF, Rosas-Domínguez C, Vega-Vega V, González-Aguilar GA (2010) Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: looking for integral exploitation. J Food Sci 75.<https://doi.org/10.1111/j.1750-3841.2010.01792.x>
- Baiano A (2014) Recovery of biomolecules from food wastes — a review. Molecules 19:14821– 14842.<https://doi.org/10.3390/molecules190914821>
- Bakowska-Barczak AM, Schieber A, Kolodziejczyk P (2009) Characterization of Canadian black currant (Ribes nigrum L.) seed oils and residues. J Agric Food Chem 57:11528–11536. [https://](https://doi.org/10.1021/jf902161k) doi.org/10.1021/jf902161k
- Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203. <https://doi.org/10.1016/j.foodchem.2005.07.042>
- Bampidis VA, Robinson PH (2006) Citrus by-products as ruminant feeds: a review. Anim Feed Sci Technol 128:175–217
- Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32:1341–1346.<https://doi.org/10.1016/j.wasman.2012.03.006>
- Barba D, Beolchini F, Cifoni D, Veglió F (2001) Whey protein concentrate production in a pilot scale two-stage diafltration process. Sep Sci Technol 36:587–603. [https://doi.org/10.1081/](https://doi.org/10.1081/SS-100102948) [SS-100102948](https://doi.org/10.1081/SS-100102948)
- Barba FJ, Zhu Z, Koubaa M et al (2016) Green alternative methods for the extraction of antioxidant bioactive compounds from winery wastes and by-products: a review. Trends Food Sci Technol 49:96–109
- Barbosa-Pereira L, Pocheville A, Angulo I et al (2013) Fractionation and purifcation of bioactive compounds obtained from a brewery waste stream. Biomed Res Int 2013:11. [https://doi.](https://doi.org/10.1155/2013/408491) [org/10.1155/2013/408491](https://doi.org/10.1155/2013/408491)
- Baydar NG, Sagdic O, Ozkan G, Cetin S (2006) Determination of antibacterial effects and total phenolic contents of grape (*Vitis vinifera* L.) seed extracts. Int J Food Sci Technol 41:799–804. <https://doi.org/10.1111/j.1365-2621.2005.01095.x>
- Baysal T, Ersus S, Starmans DAJ (2000) Supercritical CO2 extraction of β-carotene and lycopene from tomato paste waste. J Agric Food Chem 48:5507–5511.<https://doi.org/10.1021/jf000311t>
- Bedő S, Antal B, Rozbach M et al (2019) Optimised fractionation of wheat bran for arabinose biopurifcation and xylitol fermentation by Ogataea zsoltii within a biorefnery process. Ind Crops Prod 139.<https://doi.org/10.1016/j.indcrop.2019.111504>
- Berardini N, Knödler M, Schieber A, Carle R (2005) Utilization of mango peels as a source of pectin and polyphenolics. Innov Food Sci Emerg Technol 6:442–452. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ifset.2005.06.004) [ifset.2005.06.004](https://doi.org/10.1016/j.ifset.2005.06.004)
- Bertin L, Ferri F, Scoma A et al (2011) Recovery of high added value natural polyphenols from actual olive mill wastewater through solid phase extraction. Chem Eng J 171:1287–1293. <https://doi.org/10.1016/j.cej.2011.05.056>
- Bettaieb Rebey I, Bourgou S, Detry P et al (2019) Green extraction of fennel and anise edible oils using bio-based solvent and supercritical fuid: assessment of chemical composition, antioxidant property, and oxidative stability. Food Bioprocess Technol 12:1798–1807. [https://doi.](https://doi.org/10.1007/s11947-019-02341-8) [org/10.1007/s11947-019-02341-8](https://doi.org/10.1007/s11947-019-02341-8)
- Bhaskar N, Modi VK, Govindaraju K et al (2007) Utilization of meat industry by products: protein hydrolysate from sheep visceral mass. Bioresour Technol 98:388–394. [https://doi.](https://doi.org/10.1016/j.biortech.2005.12.017) [org/10.1016/j.biortech.2005.12.017](https://doi.org/10.1016/j.biortech.2005.12.017)
- Bicu I, Mustata F (2011) Cellulose extraction from orange peel using sulfte digestion reagents. Bioresour Technol 102:10013–10019. <https://doi.org/10.1016/j.biortech.2011.08.041>
- Bonfgli M, Godoy E, Reinheimer MA, Scenna NJ (2017) Comparison between conventional and ultrasound-assisted techniques for extraction of anthocyanins from grape pomace. Experimental results and mathematical modeling. J Food Eng 207:56–72. [https://doi.](https://doi.org/10.1016/j.jfoodeng.2017.03.011) [org/10.1016/j.jfoodeng.2017.03.011](https://doi.org/10.1016/j.jfoodeng.2017.03.011)
- Boonrod D, Reanma K, Niamsup H (2006) Extraction and Physicochemical characteristics of acid-soluble pectin from raw papaya (Carica papaya) peel. Chiang Mai J Sci 33:129–135
- Borad SG, Singh AK, Kapila S et al (2019) Influence of unit operations on immunoglobulins and thermal stability of colostrum fractions. Int Dairy J 93:85–91. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.idairyj.2019.02.007) [idairyj.2019.02.007](https://doi.org/10.1016/j.idairyj.2019.02.007)
- Bosiljkov T, Dujmić F, Cvjetko Bubalo M et al (2017) Natural deep eutectic solvents and ultrasound-assisted extraction: green approaches for extraction of wine lees anthocyanins. Food Bioprod Process 102:195–203. <https://doi.org/10.1016/j.fbp.2016.12.005>
- Bouaziz M, Hammami H, Bouallagui Z et al (2008) Production of antioxidants from olive processing by-products. Electron J Environ Agric Food Chem 7:3231–3236
- Boussetta N, Lanoisellé JL, Bedel-Cloutour C, Vorobiev E (2009) Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: effect of sulphur dioxide and thermal treatments. J Food Eng 95:192–198. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jfoodeng.2009.04.030) [jfoodeng.2009.04.030](https://doi.org/10.1016/j.jfoodeng.2009.04.030)
- Brandenburg J, Poppele I, Blomqvist J et al (2018) Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction. Appl Microbiol Biotechnol 102:6269–6277.<https://doi.org/10.1007/s00253-018-9081-7>
- Brenes A, Viveros A, Chamorro S, Arija I (2016) Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim Feed Sci Technol 211:1–17
- Caballero AS, Romero-García JM, Castro E, Cardona CA (2020) Supercritical fuid extraction for enhancing polyphenolic compounds production from olive waste extracts. J Chem Technol Biotechnol 95:356–362.<https://doi.org/10.1002/jctb.5907>
- Caldas TW, Mazza KEL, Teles ASC et al (2018) Phenolic compounds recovery from grape skin using conventional and non-conventional extraction methods. Ind Crops Prod 111:86–91. <https://doi.org/10.1016/j.indcrop.2017.10.012>
- Campuzano R, González-Martínez S (2016) Characteristics of the organic fraction of municipal solid waste and methane production: a review. Waste Manag 54:3–12
- Canteri MHG, Scheer AP, Wosiacki G et al (2010) A comparative study of pectin extracted from passion fruit rind fours. J Polym Environ 18:593–599.<https://doi.org/10.1007/s10924-010-0206-z>
- Cardinali A, Pati S, Minervini F et al (2012) Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants. J Agric Food Chem 60:1822–1829.<https://doi.org/10.1021/jf204001p>
- Casazza AA, Aliakbarian B, Mantegna S et al (2010) Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J Food Eng 100:50–55. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jfoodeng.2010.03.026) [jfoodeng.2010.03.026](https://doi.org/10.1016/j.jfoodeng.2010.03.026)
- Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mater 248–249:185–193. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jhazmat.2013.01.006) [jhazmat.2013.01.006](https://doi.org/10.1016/j.jhazmat.2013.01.006)
- Catarino J, Mendonça E, Picado A et al (2007) Getting value from wastewater: by-products recovery in a potato chips industry. J Clean Prod 15:927–931. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jclepro.2005.12.003) [jclepro.2005.12.003](https://doi.org/10.1016/j.jclepro.2005.12.003)
- Cecchi T, Alfei B (2013) Volatile profles of Italian monovarietal extra virgin olive oils via HS-SPME-GC-MS: newly identifed compounds, favors molecular markers, and terpenic profle. Food Chem 141. <https://doi.org/10.1016/j.foodchem.2013.05.090>
- Cecchi T, Passamonti P, Cecchi P (2010a) Study of the quality of extra virgin olive oil stored in PET bottles with or without an oxygen scavenger. Food Chem 120:730–735. [https://doi.](https://doi.org/10.1016/J.FOODCHEM.2009.11.001) [org/10.1016/J.FOODCHEM.2009.11.001](https://doi.org/10.1016/J.FOODCHEM.2009.11.001)
- Cecchi T, Passamonti P, Cecchi P (2010b) Optimization of the measurement of Italian monocultivar extra virgin olive oil antioxidant power via the Briggs-Rauscher reaction. Food Anal Methods 3:1–6.<https://doi.org/10.1007/s12161-009-9071-6>
- Cecchi T, Passamonti P, Alfei B, Cecchi P (2011) Monovarietal extra virgin olive oils from the Marche region, Italy: analytical and sensory characterization. Int J Food Prop 14. [https://doi.](https://doi.org/10.1080/10942910903254811) [org/10.1080/10942910903254811](https://doi.org/10.1080/10942910903254811)
- Cefola M, Carbone V, Minasi P, Pace B (2016) Phenolic profles and postharvest quality changes of fresh-cut radicchio (Cichorium intybus L.): nutrient value in fresh vs. stored leaves. J Food Compos Anal 51:76–84. <https://doi.org/10.1016/j.jfca.2016.06.004>
- Çelik HT, Gürü M (2015) Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide. J Supercrit Fluids 100:105–109. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.supflu.2015.02.025) [supfu.2015.02.025](https://doi.org/10.1016/j.supflu.2015.02.025)
- Ćetković G, Savatović S, Čanadanović-Brunet J et al (2012) Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem 133:938–945. [https://doi.](https://doi.org/10.1016/j.foodchem.2012.02.007) [org/10.1016/j.foodchem.2012.02.007](https://doi.org/10.1016/j.foodchem.2012.02.007)
- Chang FC, Tsai MJ, Ko CH (2018) Agricultural waste derived fuel from oil meal and waste cooking oil. Environ Sci Pollut Res 25:5223–5230. <https://doi.org/10.1007/s11356-017-9119-x>
- Cheirsilp B, Radchabut S (2011) Use of whey lactose from dairy industry for economical kefran production by Lactobacillus kefranofaciens in mixed cultures with yeasts. N Biotechnol 28:574–580. <https://doi.org/10.1016/j.nbt.2011.01.009>
- Chen Y, Luo J, Yan Y, Feng L (2013) Enhanced production of short-chain fatty acid by cofermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells. Appl Energy 102:1197–1204. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.apenergy.2012.06.056) [apenergy.2012.06.056](https://doi.org/10.1016/j.apenergy.2012.06.056)
- Chen H, Shen H, Su HF et al (2017) High-effciency bioconversion of kitchen garbage to biobutanol using an enzymatic cocktail procedure. Bioresour Technol 245:1110–1121. [https://doi.](https://doi.org/10.1016/j.biortech.2017.09.056) [org/10.1016/j.biortech.2017.09.056](https://doi.org/10.1016/j.biortech.2017.09.056)
- Chen C, Sun N, Li D et al (2018) Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Environ Sci Pollut Res 25:14934– 14943.<https://doi.org/10.1007/s11356-018-1691-1>
- Chen MY, Tsai YC, Tseng CF et al (2019a) Using rice-husk-derived porous silica modifed with recycled cu from industrial wastewater and ce to remove Hg0 and NO from simulated fue gases. Aerosol Air Qual Res 19:2557–2567. <https://doi.org/10.4209/aaqr.2019.09.0468>
- Chen S, Huang H, Huang G (2019b) Extraction, derivatization and antioxidant activity of cucumber polysaccharide. Int J Biol Macromol 140:1047–1053. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ijbiomac.2019.08.203) [ijbiomac.2019.08.203](https://doi.org/10.1016/j.ijbiomac.2019.08.203)
- Chen L, Long R, Huang G, Huang H (2020) Extraction and antioxidant activities in vivo of pumpkin polysaccharide. Ind Crops Prod 146.<https://doi.org/10.1016/j.indcrop.2020.112199>
- Chihoub W, Dias MI, Barros L et al (2019) Valorisation of the green waste parts from turnip, radish and wild cardoon: nutritional value, phenolic profle and bioactivity evaluation. Food Res Int 126:108651. <https://doi.org/10.1016/j.foodres.2019.108651>
- Choi IS, Cho EJ, Moon JH, Bae HJ (2015) Onion skin waste as a valorization resource for the by-products quercetin and biosugar. Food Chem 188:537–542. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.foodchem.2015.05.028) [foodchem.2015.05.028](https://doi.org/10.1016/j.foodchem.2015.05.028)
- Christiaens S, Uwibambe D, Uyttebroek M et al (2015) Pectin characterisation in vegetable waste streams: a starting point for waste valorisation in the food industry. LWT – Food Sci Technol 61:275–282. <https://doi.org/10.1016/j.lwt.2014.12.054>
- Ciric A, Krajnc B, Heath D, Ogrinc N (2020) Response surface methodology and artifcial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem Toxicol 135:110976. <https://doi.org/10.1016/j.fct.2019.110976>
- Coe S, Ryan L (2016) White bread enriched with polyphenol extracts shows no effect on glycemic response or satiety, yet may increase postprandial insulin economy in healthy participants. Nutr Res 36:193–200. <https://doi.org/10.1016/j.nutres.2015.10.007>
- Conidi C, Cassano A, Garcia-Castello E (2014) Valorization of artichoke wastewaters by integrated membrane process. Water Res 48:363–374.<https://doi.org/10.1016/j.watres.2013.09.047>
- Connolly A, Cermeño M, Crowley D et al (2019) Characterisation of the in vitro bioactive properties of alkaline and enzyme extracted brewers' spent grain protein hydrolysates. Food Res Int 121:524–532. <https://doi.org/10.1016/j.foodres.2018.12.008>
- Corell L, Armenta S, Esteve-Turrillas FA, de la Guardia M (2018) Flavonoid determination in onion, chili and leek by hard cap espresso extraction and liquid chromatography with diode array detection. Microchem J 140:74–79.<https://doi.org/10.1016/j.microc.2018.04.014>
- Crea R (2002) Method of obtaining a hydroxytyrosol-rich composition from vegetation water. World Intellectual Property Organization. WO/2002/0218310. Crowely, Geneva
- Cuco RP, Cardozo-Filho L, da Silva C (2019) Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent. J Supercrit Fluids 143:8–15. [https://doi.org/10.1016/j.supfu.2018.08.002](https://doi.org/10.1016/j.supflu.2018.08.002)
- Cumba HJ, Bellmer D (2005) Production of value-added products from meat processing cellulosic waste. In: 2005 ASAE Annual International Meeting. American Society of Agricultural and Biological Engineers. ASAE, St. Joseph
- da Silva FV, dos Santos RL, Fujiki TL et al (2010) Desenvolvimento de sistema de controle para precipitação de bromelina a partir de resíduos de abacaxi. Cienc e Tecnol Aliment 30:1033– 1040.<https://doi.org/10.1590/S0101-20612010000400031>
- Da Silva LMR, De Figueiredo EAT, Ricardo NMPS et al (2014) Quantifcation of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem 143:398–404. <https://doi.org/10.1016/j.foodchem.2013.08.001>
- Dahmoune F, Madani K, Jauregi P et al (2013) Fractionation of a red grape marc extract by colloidal gas aphrons. In: Chemical engineering transactions. Italian Association of Chemical Engineering – AIDIC, Milano, pp 1903–1908
- Dai Q, Yang Y, Chen K et al (2019) Optimization of supercritical $CO₂$ operative parameters to simultaneously increase the extraction yield of oil and pentacyclic triterpenes from artichoke leaves and stalks by response surface methodology and ridge analysis. Eur J Lipid Sci Technol 121:1800120. <https://doi.org/10.1002/ejlt.201800120>
- Dang Y-Y, Zhang H, Xiu Z-L (2014) Microwave-assisted aqueous two-phase extraction of phenolics from grape (*Vitis vinifera*) seed. J Chem Technol Biotechnol 89:1576–1581. [https://doi.](https://doi.org/10.1002/jctb.4241) [org/10.1002/jctb.4241](https://doi.org/10.1002/jctb.4241)
- Daraee A, Ghoreishi SM, Hedayati A (2019) Supercritical CO2 extraction of chlorogenic acid from sunfower (Helianthus annuus) seed kernels: modeling and optimization by response surface methodology. J Supercrit Fluids 144:19–27. [https://doi.org/10.1016/j.supfu.2018.10.001](https://doi.org/10.1016/j.supflu.2018.10.001)
- Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsifcation. Food Chem 167:205–212. <https://doi.org/10.1016/j.foodchem.2014.06.082>
- de Moraes Crizel T, Jablonski A, de Oliveira Rios A et al (2013) Dietary fber from orange byproducts as a potential fat replacer. LWT – Food Sci Technol 53:9–14. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.lwt.2013.02.002) [lwt.2013.02.002](https://doi.org/10.1016/j.lwt.2013.02.002)
- Delgado-Moreno L, Sánchez-Moreno L, Peña A (2007) Assessment of olive cake as soil amendment for the controlled release of triazine herbicides. Sci Total Environ 378:119–123. [https://](https://doi.org/10.1016/j.scitotenv.2007.01.023) doi.org/10.1016/j.scitotenv.2007.01.023
- Derrien M, Aghabararnejad M, Gosselin A et al (2018) Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT 93:79–87. <https://doi.org/10.1016/j.lwt.2018.03.016>
- DeSilva K, Stockmann R, Smithers GW (2003) Isolation procedures for functional dairy components – Novel approaches to meeting the challenges. Austr J Dairy Technol 58:148–152
- Dessie W, Zhang W, Xin F et al (2018) Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour Technol 247:1177–1180.<https://doi.org/10.1016/j.biortech.2017.08.171>
- Deydier E, Guilet R, Sarda S, Sharrock P (2005) Physical and chemical characterisation of crude meat and bone meal combustion residue: "waste or raw material?". J Hazard Mater 121:141– 148. <https://doi.org/10.1016/j.jhazmat.2005.02.003>
- Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Apple pomace ultrafltration sludge – a novel substrate for fungal bioproduction of citric acid: optimisation studies. Food Chem 128:864– 871. <https://doi.org/10.1016/j.foodchem.2011.03.107>
- Dhillon GS, Brar SK, Verma M (2012) Biotechnological potential of industrial wastes for economical citric acid bioproduction by Aspergillus niger through submerged fermentation. Int J Food Sci Technol 47:542–548.<https://doi.org/10.1111/j.1365-2621.2011.02875.x>
- Di Mauro A, Fallico B, Passerini A et al (1999) Recovery of hesperidin from orange peel by concentration of extracts on styrene-divinylbenzene resin. J Agric Food Chem 47:4391–4397. <https://doi.org/10.1021/jf990038z>
- Díaz AB, De Ory I, Caro I, Blandino A (2012) Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food Bioprod Process 90:72–78. [https://](https://doi.org/10.1016/j.fbp.2010.12.003) doi.org/10.1016/j.fbp.2010.12.003
- Díaz AI, Laca A, Laca A, Díaz M (2017) Treatment of supermarket vegetable wastes to be used as alternative substrates in bioprocesses. Waste Manag 67:59–66. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.wasman.2017.05.018) [wasman.2017.05.018](https://doi.org/10.1016/j.wasman.2017.05.018)
- Dominguez-Perles R, Moreno DA, Carvajal M, Garcia-Viguera C (2011) Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli. Innov Food Sci Emerg Technol 12:361–368. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ifset.2011.04.005) [ifset.2011.04.005](https://doi.org/10.1016/j.ifset.2011.04.005)
- Drosou C, Kyriakopoulou K, Bimpilas A et al (2015) A comparative study on different extraction techniques to recover red grape pomace polyphenols from vinifcation byproducts. Ind Crops Prod 75:141–149. <https://doi.org/10.1016/j.indcrop.2015.05.063>
- Drouet S, Leclerc EA, Garros L et al (2019) A green ultrasound-assisted extraction optimization of the natural antioxidant and anti-aging favonolignans from milk thistle silybum marianum (L.) gaertn. fruits for cosmetic applications. Antioxidants 8.<https://doi.org/10.3390/antiox8080304>
- Duba KS, Casazza AA, Ben MH et al (2015) Extraction of polyphenols from grape skins and defatted grape seeds using subcritical water: experiments and modeling. Food Bioprod Process 94:29–38.<https://doi.org/10.1016/j.fbp.2015.01.001>
- Dumas Y, Dadomo M, Di Lucca G, Grolier P (2003) Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J Sci Food Agric 83:369–382
- Ebrahimzadeh SK, Navidshad B, Farhoomand P, Aghjehgheshlagh FM (2018) Effects of grape pomace and vitamin E on performance, antioxidant status, immune response, gut morphology and histopathological responses in broiler chickens. South Afr J Anim Sci 48:324–336. [https://](https://doi.org/10.4314/sajas.v48i2.13) doi.org/10.4314/sajas.v48i2.13
- Eyvazkhani R, Bahmanyar H, Mirdehghan Ashkezari SM, Najafpour I (2020) Extraction of essential constituents from effuent of hydro-distillation of fennel and investigation of hydrodynamic parameters using a rotary disc column (RDC). Chem Eng Commun. [https://doi.org/10.1080/0](https://doi.org/10.1080/00986445.2020.1734577) [0986445.2020.1734577](https://doi.org/10.1080/00986445.2020.1734577)
- FAO (2016) SAVE FOOD: Global Initiative on Food Loss and Waste Reduction. Food Agric. Organ. United Nations 01–02. <http://www.fao.org/save-food/resources/infographic/en/> Accessed 11th Mar 2021
- FAO (2020a) The State of Food Security and Nutrition in the World 2020. FAO, IFAD, UNICEF, WFP and WHO
- FAO (2020b) FAOSTAT. <http://www.fao.org/faostat/en/#home>. Accessed 10 Mar 2021
- Farhat A, Fabiano-Tixier AS, El Maataoui M et al (2011) Microwave steam diffusion for extraction of essential oil from orange peel: kinetic data, extract's global yield and mechanism. Food Chem 125:255–261.<https://doi.org/10.1016/j.foodchem.2010.07.110>
- Farkas C, Rezessy-Szabó JM, Gupta VK et al (2019) Microbial saccharifcation of wheat bran for bioethanol fermentation. J Clean Prod 240.<https://doi.org/10.1016/j.jclepro.2019.118269>
- Federici F, Fava F, Kalogerakis N, Mantzavinos D (2009) Valorisation of agro-industrial byproducts, effuents and waste: concept, opportunities and the case of olive mill waste waters. J Chem Technol Biotechnol 84:895–900
- Ferhat MA, Meklati BY, Smadja J, Chemat F (2006) An improved microwave Clevenger apparatus for distillation of essential oils from orange peel. J Chromatogr A 1112:121–126. [https://doi.](https://doi.org/10.1016/j.chroma.2005.12.030) [org/10.1016/j.chroma.2005.12.030](https://doi.org/10.1016/j.chroma.2005.12.030)
- Ferioli F, Giambanelli E, D'Alessandro V, D'Antuono LF (2020) Comparison of two extraction methods (high pressure extraction vs. maceration) for the total and relative amount of hydrophilic and lipophilic organosulfur compounds in garlic cloves and stems. An application to the Italian ecotype "Aglio Rosso di Sulmona" (Sulmona Red Garlic). Food Chem 312. [https://doi.](https://doi.org/10.1016/j.foodchem.2019.126086) [org/10.1016/j.foodchem.2019.126086](https://doi.org/10.1016/j.foodchem.2019.126086)
- Fernández-Bolaños J, Rodríguez G, Gómez E et al (2004) Total recovery of the waste of two-phase olive oil processing: isolation of added-value compounds. J Agric Food Chem 52:5849–5855. <https://doi.org/10.1021/jf030821y>
- Fernández-López J, Fernández-Ginés JM, Aleson-Carbonell L et al (2004) Application of functional citrus by-products to meat products. Trends Food Sci Technol 15:176–185. [https://doi.](https://doi.org/10.1016/j.tifs.2003.08.007) [org/10.1016/j.tifs.2003.08.007](https://doi.org/10.1016/j.tifs.2003.08.007)
- Ferreira AS, Nunes C, Castro A et al (2014) Infuence of grape pomace extract incorporation on chitosan flms properties. Carbohydr Polym 113:490–499. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.carbpol.2014.07.032) [carbpol.2014.07.032](https://doi.org/10.1016/j.carbpol.2014.07.032)
- Ferreira DF, Barin JS, Binello A et al (2019) Highly efficient pumpkin-seed extraction with the simultaneous recovery of lipophilic and hydrophilic compounds. Food Bioprod Process 117:224–230. <https://doi.org/10.1016/j.fbp.2019.07.014>
- Ferrentino G, Ndayishimiye J, Haman N, Scampicchio M (2019) Functional activity of oils from Brewer's spent grain extracted by supercritical carbon dioxide. Food Bioprocess Technol 12:789–798. <https://doi.org/10.1007/s11947-019-02249-3>
- Ferrer J, Páez G, Mármol Z et al (2001) Agronomic use of biotechnologically processed grape wastes. Bioresour Technol 76:39–44. [https://doi.org/10.1016/s0960-8524\(00\)00076-6](https://doi.org/10.1016/s0960-8524(00)00076-6)
- Ferri F, Bertin L, Scoma A et al (2011) Recovery of low molecular weight phenols through solidphase extraction. Chem Eng J 166:994–1001.<https://doi.org/10.1016/j.cej.2010.11.090>
- Fishman ML, Chau HK, Hoagland P, Ayyad K (1999) Characterization of pectin, fash-extracted from orange albedo by microwave heating, under pressure. Carbohydr Res 323:126–138. [https://doi.org/10.1016/S0008-6215\(99\)00244-X](https://doi.org/10.1016/S0008-6215(99)00244-X)
- Frumento D, Paula A, Santo E et al (2013) Development of milk fermented with lactobacillus acidophilus fortifed with vitis vinifera marc four. Food Technol Biotechnol 51(3):370–375
- Fuentes-Alventosa JM, Jaramillo-Carmona S, Rodríguez-Gutiérrez G et al (2013) Preparation of bioactive extracts from asparagus by-product. Food Bioprod Process 91:74–82. [https://doi.](https://doi.org/10.1016/j.fbp.2012.12.004) [org/10.1016/j.fbp.2012.12.004](https://doi.org/10.1016/j.fbp.2012.12.004)
- Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87
- Galanakis CM (2017) Handbook of grape processing by-products: sustainable solutions. Academic, London
- García Herrera P, Sánchez-Mata MC, Cámara M (2010) Nutritional characterization of tomato fber as a useful ingredient for food industry. Innov Food Sci Emerg Technol 11:707–711. <https://doi.org/10.1016/j.ifset.2010.07.005>
- Gargiulo V, Lanzetta R, Parrilli M, De Castro C (2009) Structural analysis of chondroitin sulfate from Scyliorhinus canicula: a useful source of this polysaccharide. Glycobiology 19:1485– 1491.<https://doi.org/10.1093/glycob/cwp123>
- Garrido MD, Auqui M, Martí N, Linares MB (2011) Effect of two different red grape pomace extracts obtained under different extraction systems on meat quality of pork burgers. LWT – Food Sci Technol 44:2238–2243. <https://doi.org/10.1016/j.lwt.2011.07.003>
- Gbashi S, Njobeh P, Steenkamp P, Madala N (2017) Extracción con agua caliente presurizada y huella quimiométrica de favonoides de Bidens pilosa mediante espectrometría de masas en

tándem por UPLC. CYTA – J Food 15:171–180. [https://doi.org/10.1080/19476337.2016.12](https://doi.org/10.1080/19476337.2016.1230151) [30151](https://doi.org/10.1080/19476337.2016.1230151)

- Gehring CK, Gigliotti JC, Moritz JS et al (2011) Functional and nutritional characteristics of proteins and lipids recovered by isoelectric processing of fsh by-products and low-value fsh: a review. Food Chem 124:422–431
- Germec M, Ozcan A, Turhan I (2019) Bioconversion of wheat bran into high value-added products and modelling of fermentations. Ind Crops Prod 139. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.indcrop.2019.111565) [indcrop.2019.111565](https://doi.org/10.1016/j.indcrop.2019.111565)
- Ghafoor K, Park J, Choi YH (2010) Optimization of supercritical fuid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov Food Sci Emerg Technol 11:485–490. <https://doi.org/10.1016/j.ifset.2010.01.013>
- Ghanbari R, Anwar F, Alkharfy KM et al (2012) Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)-A review. Int J Mol Sci 13:1291–1340
- Gil M, Del Barrio-Galán R, Ubeda C, Peña-Neira Á (2018) Effectiveness of fbers from "Cabernet Sauvignon" (Vitis vinifera) pomace as fning agents for red wines. J Food Quality 2018:6408734.<https://doi.org/10.1155/2018/6408734>
- Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827
- González-Centeno MR, Comas-Serra F, Femenia A et al (2015) Effect of power ultrasound application on aqueous extraction of phenolic compounds and antioxidant capacity from grape pomace (Vitis vinifera L.): experimental kinetics and modeling. Ultrason Sonochem 22:506–514. <https://doi.org/10.1016/j.ultsonch.2014.05.027>
- Górecka D, Dziedzic K, Pachołek B, Górecka M (2010) Raspberry pomace as a potential fber source for cookies enrichment. Acta Sci Pol Technol Aliment 9:451–462
- Grabowska M, Wawrzyniak D, Rolle K et al (2019) Let food be your medicine: nutraceutical properties of lycopene. Food Funct 10:3090–3102
- Guerra-Rivas C, Vieira C, Rubio B et al (2016) Effects of grape pomace in growing lamb diets compared with vitamin E and grape seed extract on meat shelf life. Meat Sci 116:221–229. <https://doi.org/10.1016/j.meatsci.2016.02.022>
- Gustavsson J, Cederberg C, Sonesson U et al (2011) Global food losses and food waste: extent, causes and prevention. FAO, Düsseldorf
- Gustafson S (2019) FAO SOFA report 2019: New insights into food loss and waste | IFPRI : International Food Policy Research Institute [WWW Document]. URL [https://www.ifpri.org/](https://www.ifpri.org/blog/fao-sofa-report-2019-new-insights-food-loss-and-waste) [blog/fao-sofa-report-2019-new-insights-food-loss-and-waste](https://www.ifpri.org/blog/fao-sofa-report-2019-new-insights-food-loss-and-waste) Accessed 11th Mar 2021
- Hafd HS, Rahman NA, Md Shah UK, Baharudin AS (2015) Enhanced fermentable sugar production from kitchen waste using various pretreatments. J Environ Manage 156:290–298. [https://](https://doi.org/10.1016/j.jenvman.2015.03.045) doi.org/10.1016/j.jenvman.2015.03.045
- Hall RM, Mayer DA, Mazzutti S, Ferreira SRS (2018) Simulating large scale SFE applied to recover bioactive compounds from papaya seeds. J Supercrit Fluids 140:302–309. [https://doi.](https://doi.org/10.1016/j.supflu.2018.07.013) [org/10.1016/j.supfu.2018.07.013](https://doi.org/10.1016/j.supflu.2018.07.013)
- Han D, Row KH (2011) Determination of luteolin and apigenin in celery using ultrasonic-assisted extraction based on aqueous solution of ionic liquid coupled with HPLC quantifcation. J Sci Food Agric 91:2888–2892. <https://doi.org/10.1002/jsfa.4553>
- Hao R, Li Q, Zhao J et al (2015) Effects of grape seed procyanidins on growth performance, immune function and antioxidant capacity in weaned piglets. Livest Sci 178:237–242. [https://](https://doi.org/10.1016/j.livsci.2015.06.004) doi.org/10.1016/j.livsci.2015.06.004
- Hataminia F, Farhadian N, Karimi M, Ebrahimi M (2018) A novel method for squalene extraction from pumpkin seed oil using magnetic nanoparticles and exploring the inhibition effect of extracted squalene on angiogenesis property. J Taiwan Inst Chem Eng 91:1–9. [https://doi.](https://doi.org/10.1016/j.jtice.2018.05.017) [org/10.1016/j.jtice.2018.05.017](https://doi.org/10.1016/j.jtice.2018.05.017)
- He Q, Li Y, Zhang P et al (2016) Optimisation of microwave-assisted extraction of favonoids and phenolics from celery (Apium graveolens L.) leaves by response surface methodology. Czech J Food Sci 34:341–349. <https://doi.org/10.17221/266/2015-CJFS>
- Henkel M, Müller MM, Kügler JH et al (2012) Rhamnolipids as biosurfactants from renewable resources: concepts for next-generation rhamnolipid production. Process Biochem 47:1207–1219
- Henríquez C, Speisky H, Chiffelle I et al (2010) Development of an ingredient containing apple peel, as a source of polyphenols and dietary fber. J Food Sci. [https://doi.](https://doi.org/10.1111/j.1750-3841.2010.01700.x) [org/10.1111/j.1750-3841.2010.01700.x](https://doi.org/10.1111/j.1750-3841.2010.01700.x)
- Herrera-Ponce AL, Alarcón-Rojo AD, Salmeron I, Rodríguez-Figueroa JC (2019) Physiological health effects of whey protein-derived bioactive peptides: a review. Rev Chil Nutr 46:205–214
- Hollmann J, Elbegzaya N, Pawelzik E, Lindhauer MG (2009) Isolation and characterization of glucuronoarabinoxylans from wheat bran obtained by classical and ultrasoundassisted extraction methods. Qual Assur Saf Crop Foods 1:231–239. [https://doi.](https://doi.org/10.1111/j.1757-837X.2009.00039.x) [org/10.1111/j.1757-837X.2009.00039.x](https://doi.org/10.1111/j.1757-837X.2009.00039.x)
- Huber GM, Rupasinghe HPV (2009) Phenolic profles and antioxidant properties of apple skin extracts. J Food Sci.<https://doi.org/10.1111/j.1750-3841.2009.01356.x>
- Hussein MHM, El-Hady MF, Shehata HAH et al (2013) Preparation of some eco-friendly corrosion inhibitors having antibacterial activity from sea food waste. J Surfactants Deterg 16:233– 242. <https://doi.org/10.1007/s11743-012-1395-3>
- Hỳsek Š, Neuberger P, Sikora A et al (2019) Waste utilization: insulation panel from recycled polyurethane particles and wheat husks. Materials (Basel) 12.<https://doi.org/10.3390/ma12193075>
- Iravani S, Varma RS (2020) Greener synthesis of lignin nanoparticles and their applications. Green Chem 22:612–636
- Ishida BK, Chapman MH (2009) Carotenoid extraction from plants using a novel, environmentally friendly solvent. J Agric Food Chem 57:1051–1059.<https://doi.org/10.1021/jf8026292>
- Ishikawa S, Maruyama A, Yamamoto Y, Hara S (2014) Extraction and characterization of glucosinolates and isothiocyanates from rape seed meal. J Oleo Sci 63:303–308. [https://doi.](https://doi.org/10.5650/jos.ess13170) [org/10.5650/jos.ess13170](https://doi.org/10.5650/jos.ess13170)
- Jafarian Asl P, Niazmand R, Yahyavi F (2020) Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: a comparison with conventional solvent extraction. Heliyon 6. <https://doi.org/10.1016/j.heliyon.2020.e03592>
- Jaime L, Vázquez E, Fornari T et al (2015) Extraction of functional ingredients from spinach (Spinacia oleracea L.) using liquid solvent and supercritical CO2 extraction. J Sci Food Agric 95:722–729. <https://doi.org/10.1002/jsfa.6788>
- Jara-Palacios MJ, Hernanz D, Escudero-Gilete ML, Heredia FJ (2016) The use of grape seed byproducts rich in favonoids to improve the antioxidant potential of red wines. Molecules 21. <https://doi.org/10.3390/molecules21111526>
- Javier H, Ángel SJ, Aida G et al (2019) Revalorization of grape marc waste from liqueur wine: biomethanization. J Chem Technol Biotechnol 94:1499–1508.<https://doi.org/10.1002/jctb.5909>
- Jeantet R, Rodríguez J, Garem A (2000) Nanofltration of sweet whey by spiral wound organic membranes: impact of hydrodynamics. Lait 80:155–163.<https://doi.org/10.1051/lait:2000115>
- Kalli E, Lappa I, Bouchagier P et al (2018) Novel application and industrial exploitation of winery by-products. Bioresour Bioprocess 5:46. <https://doi.org/10.1186/s40643-018-0232-6>
- Kalogeropoulos N, Chiou A, Pyriochou V et al (2012) Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT – Food Sci Technol 49:213-216. [https://doi.](https://doi.org/10.1016/j.lwt.2011.12.036) [org/10.1016/j.lwt.2011.12.036](https://doi.org/10.1016/j.lwt.2011.12.036)
- Kanatt SR, Chander R, Radhakrishna P, Sharma A (2005) Potato peel extract – a natural antioxidant for retarding lipid peroxidation in radiation processed lamb meat. J Agric Food Chem 53:1499–1504.<https://doi.org/10.1021/jf048270e>
- Kang HY, Yang PY, Dominy WG, Lee CS (2010) Bioprocessing papaya processing waste for potential aquaculture feed supplement – economic and nutrient analysis with shrimp feeding trial. Bioresour Technol 101:7973–7979.<https://doi.org/10.1016/j.biortech.2010.05.058>
- Kapusta I, Janda B, Szajwaj B et al (2007) Flavonoids in horse chestnut (Aesculus hippocastanum) seeds and powdered waste water byproducts. J Agric Food Chem 55:8485–8490. [https://doi.](https://doi.org/10.1021/jf071709t) [org/10.1021/jf071709t](https://doi.org/10.1021/jf071709t)
- Karantonis HC, Tsantila N, Stamatakis G et al (2008) Bioactive polar lipids in olive oil, pomace and waste byproducts. J Food Biochem 32:443–459. [https://doi.](https://doi.org/10.1111/j.1745-4514.2008.00160.x) [org/10.1111/j.1745-4514.2008.00160.x](https://doi.org/10.1111/j.1745-4514.2008.00160.x)
- Kardel M, Taube F, Schulz H et al (2013) Different approaches to evaluate tannin content and structure of selected plant extracts – review and new aspects. J Appl Bot Food Qual 86:154–166
- Karp SG, Igashiyama AH, Siqueira PF et al (2011) Application of the biorefnery concept to produce l-lactic acid from the soybean vinasse at laboratory and pilot scale. Bioresour Technol 102:1765–1772.<https://doi.org/10.1016/j.biortech.2010.08.102>
- Karuppiah H, Kirubakaran N, Sundaram J (2018) Genetic resources for arcelin, a stored product insect antimetabolic protein from various accessions of pulses of Leguminosae. Genet Resour Crop Evol 65:79–90.<https://doi.org/10.1007/s10722-017-0510-8>
- Kazemi M, Khodaiyan F, Hosseini SS, Najari Z (2019) An integrated valorization of industrial waste of eggplant: simultaneous recovery of pectin, phenolics and sequential production of pullulan. Waste Manag 100:101–111.<https://doi.org/10.1016/j.wasman.2019.09.013>
- Kehili M, Kammlott M, Choura S et al (2017) Supercritical CO2 extraction and antioxidant activity of lycopene and β-carotene-enriched oleoresin from tomato (Lycopersicum esculentum L.) peels by-product of a Tunisian industry. Food Bioprod Process 102:340–349. [https://doi.](https://doi.org/10.1016/j.fbp.2017.02.002) [org/10.1016/j.fbp.2017.02.002](https://doi.org/10.1016/j.fbp.2017.02.002)
- Kelly PM, Kelly J, Mehra R et al (2000) Implementation of integrated membrane processes for pilot scale development of fractionated milk components. Lait 80:139–153. [https://doi.](https://doi.org/10.1051/lait:2000101) [org/10.1051/lait:2000101](https://doi.org/10.1051/lait:2000101)
- Kerton FM, Liu Y, Omari KW, Hawboldt K (2013) Green chemistry and the ocean-based biorefnery. Green Chem 15:860–871
- Khaidir REM, Fen YW, Zaid MHM et al (2019) Exploring Eu3+-doped ZnO-SiO2 glass derived by recycling renewable source of waste rice husk for white-LEDs application. Results Phys 15. <https://doi.org/10.1016/j.rinp.2019.102596>
- Kim S-B, Ji C-I, Woo J-W et al (2012) Simplifed purifcation of chondroitin sulphate from scapular cartilage of shortfn mako shark (Isurus oxyrinchus). Int J Food Sci Technol 47:91–99. <https://doi.org/10.1111/j.1365-2621.2011.02811.x>
- Kiran EU, Trzcinski AP, Ng WJ, Liu Y (2014) Bioconversion of food waste to energy: A review. Fuel 134:389–399
- Kitrytė V, Kavaliauskaitė A, Tamkutė L et al (2020) Zero waste biorefning of lingonberry (Vaccinium vitis-idaea L.) pomace into functional ingredients by consecutive high pressure and enzyme assisted extractions with green solvents. Food Chem 322. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.foodchem.2020.126767) [foodchem.2020.126767](https://doi.org/10.1016/j.foodchem.2020.126767)
- Kock LB, Brummer Y, Exley T et al (2018) In vitro assessment of oat β-glucans nutritional properties: an inter-laboratory methodology evaluation. Carbohydr Polym 200:271-277. [https://doi.](https://doi.org/10.1016/j.carbpol.2018.07.082) [org/10.1016/j.carbpol.2018.07.082](https://doi.org/10.1016/j.carbpol.2018.07.082)
- Kong J, Gao S, Liu Y et al (2019) Recycling of carbonized rice husk for producing high purity silicon by the combination of electric arc smelting and slag refning. J Hazard Mater 380. [https://](https://doi.org/10.1016/j.jhazmat.2019.120827) doi.org/10.1016/j.jhazmat.2019.120827
- Korotych O, Mondal J, Gattás-Asfura KM et al (2019) Evaluation of commercially available styrene-co-maleic acid polymers for the extraction of membrane proteins from spinach chloroplast thylakoids. Eur Polym J 114:485–500. <https://doi.org/10.1016/j.eurpolymj.2018.10.035>
- Kosseva MR (2011) Management and processing of food wastes. In: Comprehensive biotechnology, 2nd edn. Food and Agriculture Organization of the United Nations, Rome
- Koushkbaghi M, Kazemi MJ, Mosavi H, Mohseni E (2019) Acid resistance and durability properties of steel fber-reinforced concrete incorporating rice husk ash and recycled aggregate. Constr Build Mater 202:266–275.<https://doi.org/10.1016/j.conbuildmat.2018.12.224>
- Koutinas AA, Papapostolou H, Dimitrellou D et al (2009) Whey valorisation: a complete and novel technology development for dairy industry starter culture production. Bioresour Technol 100:3734–3739.<https://doi.org/10.1016/j.biortech.2009.01.058>
- Krasnoshtanova AA (2010) Obtaining enzymatic protein and lipid hydrolysates from byproducts of the meat processing industry. Catal Ind 2:173–179. [https://doi.org/10.1134/](https://doi.org/10.1134/S2070050410020133) [S2070050410020133](https://doi.org/10.1134/S2070050410020133)
- Krisch J, Galgoczy L, Vágvölgyi C et al (2009) Antimicrobial and antioxidant potential of waste products remaining after juice pressing. J Eng Ann 42(2):483–490
- Kroyer GT (1995) Impact of food processing on the environment-an overview. LWT – Food Sci Technol 28:547
- Kryževičiute N, Kraujalis P, Venskutonis PR (2016) Optimization of high pressure extraction processes for the separation of raspberry pomace into lipophilic and hydrophilic fractions. J Supercrit Fluids 108:61–68. [https://doi.org/10.1016/j.supfu.2015.10.025](https://doi.org/10.1016/j.supflu.2015.10.025)
- Kulczyński B, Gramza-Michałowska A, Królczyk JB (2020) Optimization of extraction conditions for the antioxidant potential of different pumpkin varieties (Cucurbita Maxima). Sustain 12. <https://doi.org/10.3390/su12041305>
- Kumar S, Kumar Walia Y (2017) Extraction of methylcellulose from wheat straw of Himachal Pradesh, India. Oriental J Chem 33:2625–2631. <https://doi.org/10.13005/ojc/330560>
- Kumar S, Mor DR (2013) Utilization of rice husk and their ash: a review. Res J Chem Environ Sci 1(5):126–129
- Kumar A, Kushwaha VS, Sharma P (2014) Pharmaceutical microemulsion: formulation, characterization and drug deliveries across skin. Int J Drug Dev Res 6(1):1–21
- Kumar A, Sengupta B, Dasgupta D et al (2016) Recovery of value added products from rice husk ash to explore an economic way for recycle and reuse of agricultural waste. Rev Environ Sci Biotechnol 15:47–65
- Kumar A, Kumar D, George N et al (2018) A process for complete biodegradation of shrimp waste by a novel marine isolate Paenibacillus sp. AD with simultaneous production of chitinase and chitin oligosaccharides. Int J Biol Macromol 109:263–272. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.ijbiomac.2017.12.024) [ijbiomac.2017.12.024](https://doi.org/10.1016/j.ijbiomac.2017.12.024)
- Lafarga T, Rodríguez-Roque MJ, Bobo G et al (2019) Effect of ultrasound processing on the bioaccessibility of phenolic compounds and antioxidant capacity of selected vegetables. Food Sci Biotechnol 28:1713–1721. <https://doi.org/10.1007/s10068-019-00618-4>
- Lante A, Nardi T, Zocca F et al (2011) Evaluation of red chicory extract as a natural antioxidant by pure lipid oxidation and yeast oxidative stress response as model systems. J Agric Food Chem 59:5318–5324.<https://doi.org/10.1021/jf2003317>
- Lee PC, Lee WG, Kwon S et al (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27.<https://doi.org/10.1007/s002530000331>
- Lee SB, Jang HS, Hong IK (2017) Optimization of extraction process for antioxidant from persimmon leaf and thistle using response surface methodology. Appl Chem Eng 28:442–447. [https://](https://doi.org/10.14478/ace.2017.1037) doi.org/10.14478/ace.2017.1037
- Leite AC, Ferreira AM, Morais ES et al (2018) Cloud point extraction of chlorophylls from spinach leaves using aqueous solutions of nonionic surfactants. ACS Sustain Chem Eng 6:590–599. <https://doi.org/10.1021/acssuschemeng.7b02931>
- Li L, Shao J, Zhu X et al (2013) Effect of plant polyphenols and ascorbic acid on lipid oxidation, residual nitrite and N-nitrosamines formation in dry-cured sausage. Int J Food Sci Technol 48:1157–1164.<https://doi.org/10.1111/ijfs.12069>
- Li P, Zeng Y, Xie Y et al (2017) Effect of pretreatment on the enzymatic hydrolysis of kitchen waste for xanthan production. Bioresour Technol 223:84–90. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.biortech.2016.10.035) [biortech.2016.10.035](https://doi.org/10.1016/j.biortech.2016.10.035)
- Lima PM, Rubio FTV, Silva MP et al (2019) Nutritional value and modelling of carotenoids extraction from pumpkin (Cucurbita Moschata) Peel Flour By-Product. Int J Food Eng 15. <https://doi.org/10.1515/ijfe-2018-0381>
- Liu Y, Shi J, Langrish TAG (2006) Water-based extraction of pectin from favedo and albedo of orange peels. Chem Eng J 120:203–209. <https://doi.org/10.1016/j.cej.2006.02.015>
- Liu D, Vorobiev D, Savoire R, Lanoiselle J-L (2011) Extraction of polyphenols from grape seeds by unconventional methods and extract concentration through polymeric membrane. Food Process Eng a Chang World Proc 11th Int Congr Eng Food 2011:1939–1940
- Liu W, Dong Z, Sun D et al (2019) Bioconversion of kitchen wastes into biofocculant and its pilot-scale application in treating iron mineral processing wastewater. Bioresour Technol 288:121505. <https://doi.org/10.1016/j.biortech.2019.121505>
- Löf D, Schillén K, Nilsson L (2011) Flavonoids: Precipitation kinetics and interaction with surfactant micelles. J Food Sci 76:35–39. <https://doi.org/10.1111/j.1750-3841.2011.02103.x>
- López-Linares JC, García-Cubero MT, Lucas S et al (2019) Microwave assisted hydrothermal as greener pretreatment of brewer's spent grains for biobutanol production. Chem Eng J 368:1045–1055.<https://doi.org/10.1016/j.cej.2019.03.032>
- Lorente A, Remón J, Budarin VL et al (2019) Analysis and optimisation of a novel "bio-brewery" approach: Production of bio-fuels and bio-chemicals by microwave-assisted, hydrothermal liquefaction of brewers' spent grains. Energy Convers Manag 185:410–430. [https://doi.](https://doi.org/10.1016/j.enconman.2019.01.111) [org/10.1016/j.enconman.2019.01.111](https://doi.org/10.1016/j.enconman.2019.01.111)
- Lorenzo JM, Sineiro J, Amado IR, Franco D (2014) Infuence of natural extracts on the shelf life of modifed atmosphere-packaged pork patties. Meat Sci 96:526–534. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.meatsci.2013.08.007) [meatsci.2013.08.007](https://doi.org/10.1016/j.meatsci.2013.08.007)
- Lou R, Ma R, Lin K-T et al (2020) Facile extraction of wheat straw by deep eutectic solvent (DES) to produce lignin nanoparticles. ACS Sustain Chem Eng 14:59. [https://doi.org/10.1021/](https://doi.org/10.1021/acssuschemeng.8b05816) [acssuschemeng.8b05816](https://doi.org/10.1021/acssuschemeng.8b05816)
- Lozano-Sánchez J, Giambanelli E, Quirantes-Piné R et al (2011) Wastes generated during the storage of extra virgin olive oil as a natural source of phenolic compounds. J Agric Food Chem 59:11491–11500. <https://doi.org/10.1021/jf202596q>
- Luft L, Confortin TC, Todero I et al (2019) Ultrasound technology applied to enhance enzymatic hydrolysis of Brewer's spent grain and its potential for production of fermentable sugars. Waste Biomass Valoriz 10:2157–2164. <https://doi.org/10.1007/s12649-018-0233-x>
- Luguel C, Annevelink B, Laurmaa J et al (2011) European biorefnery joint strategic research roadmap. JRC Tech Rep 2011:68
- Luo J, Zhu Y, Song A et al (2019) Efficient short-chain fatty acids recovery from anaerobic fermentation of wine vinasse and waste activated sludge and the underlying mechanisms. Biochem Eng J 145:18–26. <https://doi.org/10.1016/j.bej.2019.02.010>
- MacHmudah S, Zakaria WS et al (2012) Lycopene extraction from tomato peel by-product containing tomato seed using supercritical carbon dioxide. J Food Eng 108:290–296. [https://doi.](https://doi.org/10.1016/j.jfoodeng.2011.08.012) [org/10.1016/j.jfoodeng.2011.08.012](https://doi.org/10.1016/j.jfoodeng.2011.08.012)
- Mahboubi A, Ferreira JA, Taherzadeh MJ, Lennartsson PR (2017) Value-added products from dairy waste using edible fungi. Waste Manag 59:518–525. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.wasman.2016.11.017) [wasman.2016.11.017](https://doi.org/10.1016/j.wasman.2016.11.017)
- Makris DP (2018) Green extraction processes for the efficient recovery of bioactive polyphenols from wine industry solid wastes – recent progress. Curr Opin Green Sustain Chem 13:50–55
- Maneerat N, Tangsuphoom N, Nitithamyong A (2017) Effect of extraction condition on properties of pectin from banana peels and its function as fat replacer in salad cream. J Food Sci Technol 54:386–397. <https://doi.org/10.1007/s13197-016-2475-6>
- Manso T, Nunes C, Raposo S, Lima-Costa ME (2010) Carob pulp as raw material for production of the biocontrol agent P. agglomerans PBC-1. J Ind Microbiol Biotechnol 37:1145–1155. [https://](https://doi.org/10.1007/s10295-010-0762-1) doi.org/10.1007/s10295-010-0762-1
- Maragkoudakis P, Nardi T, Bovo B et al (2010) Valorisation of a milk industry by-product as substrate for microbial growth. J Biotechnol 150:340–340. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.jbiotec.2010.09.361) [jbiotec.2010.09.361](https://doi.org/10.1016/j.jbiotec.2010.09.361)
- Marchiani R, Bertolino M, Ghirardello D et al (2016) Physicochemical and nutritional qualities of grape pomace powder-fortifed semi-hard cheeses. J Food Sci Technol 53:1585–1596. [https://](https://doi.org/10.1007/s13197-015-2105-8) doi.org/10.1007/s13197-015-2105-8
- Martin-Diana AB, Rico D, Frias J et al (2006) Whey permeate as a bio-preservative for shelf life maintenance of fresh-cut vegetables. Innov Food Sci Emerg Technol 7:112–123. [https://doi.](https://doi.org/10.1016/j.ifset.2005.08.002) [org/10.1016/j.ifset.2005.08.002](https://doi.org/10.1016/j.ifset.2005.08.002)
- Martinez-Sena MT, de la Guardia M, Esteve-Turrillas FA, Armenta S (2017) Hard cap espresso extraction and liquid chromatography determination of bioactive compounds in vegetables and spices. Food Chem 237:75–82.<https://doi.org/10.1016/j.foodchem.2017.05.101>
- Martins BC, Rescolino R, Coelho DF et al (2014) Characterization of bromelain from ananas comosus agroindustrial residues purifed by ethanol factional precipitation. Chem Eng Trans 37:781–786. <https://doi.org/10.3303/CET1437131>
- Massa TB, Stevanato N, Cardozo-Filho L, da Silva C (2019) Pumpkin (Cucurbita maxima) byproducts: obtaining seed oil enriched with active compounds from the peel by ultrasonicassisted extraction. J Food Process Eng 42.<https://doi.org/10.1111/jfpe.13125>
- Matassa S, Verstraete W, Pikaar I, Boon N (2016) Autotrophic nitrogen assimilation and carbon capture for microbial protein production by a novel enrichment of hydrogen-oxidizing bacteria. Water Res 101:137–146.<https://doi.org/10.1016/j.watres.2016.05.077>
- Mateos-Aparicio I, Redondo-Cuenca A, Villanueva-Suárez MJ et al (2010) Pea pod, broad bean pod and okara, potential sources of functional compounds. LWT – Food Sci Technol 43:1467– 1470.<https://doi.org/10.1016/j.lwt.2010.05.008>
- Matharu AS, de Melo EM, Houghton JA (2016) Opportunity for high value-added chemicals from food supply chain wastes. Bioresour Technol 215:123–130
- Maumela P, van Rensburg E, Chimphango AFA, Görgens JF (2020) Sequential extraction of protein and inulin from the tubers of Jerusalem artichoke (Helianthus tuberosus L.). J Food Sci Technol 57:775–786.<https://doi.org/10.1007/s13197-019-04110-z>
- Mauro RP, Agnello M, Rizzo V et al (2020) Recovery of eggplant feld waste as a source of phytochemicals. Sci Hortic (Amsterdam) 261:109023.<https://doi.org/10.1016/j.scienta.2019.109023>
- Mena-García A, Rodríguez-Sánchez S, Ruiz-Matute AI, Sanz ML (2020) Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. J Chromatogr A 1613. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.chroma.2019.460703) [chroma.2019.460703](https://doi.org/10.1016/j.chroma.2019.460703)
- Mildner-Szkudlarz S, Bajerska J (2013) Protective effect of grape by-product-fortifed breads against cholesterol/cholic acid diet-induced hypercholesterolaemia in rats. J Sci Food Agric 93:3271–3278.<https://doi.org/10.1002/jsfa.6171>
- Minhalma M, Magueijo V, Queiroz DP, de Pinho MN (2007) Optimization of "Serpa" cheese whey nanofltration for effuent minimization and by-products recovery. J Environ Manag 82:200– 206. <https://doi.org/10.1016/j.jenvman.2005.12.011>
- Mitić M, Janković S, Mašković P et al (2020) Kinetic models of the extraction of vanillic acid from pumpkin seeds. Open Chem 18:22–30.<https://doi.org/10.1515/chem-2020-0001>
- Mizuno H, Usuki T (2018) Ionic liquid-assisted extraction and isolation of cynaropicrin and cnicin from artichoke and blessed thistle. ChemistrySelect 3:1781–1786. [https://doi.org/10.1002/](https://doi.org/10.1002/slct.201703063) [slct.201703063](https://doi.org/10.1002/slct.201703063)
- Moate PJ, Williams SRO, Torok VA et al (2014) Grape marc reduces methane emissions when fed to dairy cows. J Dairy Sci 97:5073–5087. <https://doi.org/10.3168/jds.2013-7588>
- Mohdaly AAA, Sarhan MA, Smetanska I, Mahmoud A (2010) Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. J Sci Food Agric 90:218–226. <https://doi.org/10.1002/jsfa.3796>
- Mollea C, Chiampo F, Conti R (2008) Extraction and characterization of pectins from cocoa husks: a preliminary study. Food Chem 107:1353–1356. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.foodchem.2007.09.006) [foodchem.2007.09.006](https://doi.org/10.1016/j.foodchem.2007.09.006)
- Monti L, Donati E, Zambrini AV, Contarini G (2018) Application of membrane technologies to bovine Ricotta cheese exhausted whey (scotta). Int Dairy J 85:121–128. [https://doi.](https://doi.org/10.1016/j.idairyj.2018.05.007) [org/10.1016/j.idairyj.2018.05.007](https://doi.org/10.1016/j.idairyj.2018.05.007)
- Mouratoglou E, Malliou V, Makris DP (2016) Novel glycerol-based natural eutectic mixtures and their efficiency in the ultrasound-assisted extraction of antioxidant polyphenols from agri-food waste biomass. Waste Biomass Valoriz 7:1377–1387. [https://doi.org/10.1007/](https://doi.org/10.1007/s12649-016-9539-8) [s12649-016-9539-8](https://doi.org/10.1007/s12649-016-9539-8)
- Murad HA, Abo-Elkhair AG, Azzaz HH (2019) Production of xanthan gum from nontraditional substrates with perspective of the unique properties and wide industrial applications. JSMC Microbiol 1:6
- Murado MA, Fraguas J, Montemayor MI et al (2010) Preparation of highly purifed chondroitin sulphate from skate (Raja clavata) cartilage by-products. Process optimization including a new procedure of alkaline hydroalcoholic hydrolysis. Biochem Eng J 49:126–132. [https://doi.](https://doi.org/10.1016/j.bej.2009.12.006) [org/10.1016/j.bej.2009.12.006](https://doi.org/10.1016/j.bej.2009.12.006)
- Murthy PS, Madhava Naidu M (2012) Sustainable management of coffee industry by-products and value addition – a review. Resour Conserv Recycl 66:45–58
- Naik A, Raghavendra SN, Raghavarao KSMS (2012) Production of coconut protein powder from coconutwet processing waste and its characterization. Appl Biochem Biotechnol 167:1290–1302
- Naik M, Rawson A, Rangarajan JM (2020) Radio frequency-assisted extraction of pectin from jackfruit (Artocarpus heterophyllus) peel and its characterization. J Food Process Eng. [https://](https://doi.org/10.1111/jfpe.13389) doi.org/10.1111/jfpe.13389
- Nath P, Varghese E, Kaur C (2015) Optimization of enzymatic maceration for extraction of carotenoids and total phenolics from sweet pepper using response surface methodology. Indian J Hortic 72:547–552. <https://doi.org/10.5958/0974-0112.2015.00100.0>
- Nawaz H, Shad MA, Rehman N et al (2020) Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Brazilian J Pharm Sci 56. <https://doi.org/10.1590/s2175-97902019000417129>
- Nawirska A, Kwaśniewska M (2005) Dietary fbre fractions from fruit and vegetable processing waste. Food Chem 91:221–225.<https://doi.org/10.1016/j.foodchem.2003.10.005>
- Nelson ML (2010) Utilization and application of wet potato processing coproducts for fnishing cattle. J Anim Sci 88. <https://doi.org/10.2527/jas.2009-2502>
- Nguyen M, Reynolds N, Vigneswaran S (2003) By-product recovery from cottage cheese production by nanofltration. J Clean Prod 11:803–807. [https://doi.org/10.1016/S0959-6526\(02\)00130-0](https://doi.org/10.1016/S0959-6526(02)00130-0)
- Nile SH, Nile AS, Keum YS, Sharma K (2017) Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors. Food Chem 235:119–126. <https://doi.org/10.1016/j.foodchem.2017.05.043>
- Nishimura H, Tan L, Kira N et al (2017) Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharifcation, and simultaneous saccharifcation and fermentation. Waste Manag 67:86–94. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.wasman.2017.04.030) [wasman.2017.04.030](https://doi.org/10.1016/j.wasman.2017.04.030)
- Noda Y, Asada C, Sasaki C, Nakamura Y (2019) Effects of hydrothermal methods such as steam explosion and microwave irradiation on extraction of water soluble antioxidant materials from garlic husk. Waste Biomass Valoriz 10:3397–3402.<https://doi.org/10.1007/s12649-018-0353-3>
- Oǧuzkan SB (2019) Extraction of capsinoid and its analogs from pepper waste of different genotypes. Nat Prod Commun 14.<https://doi.org/10.1177/1934578X19865673>
- Ohkouchi Y, Inoue Y (2006) Direct production of $I(+)$ -lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97:1554–1562. [https://doi.](https://doi.org/10.1016/j.biortech.2005.06.004) [org/10.1016/j.biortech.2005.06.004](https://doi.org/10.1016/j.biortech.2005.06.004)
- Okino-Delgado CH, do Prado DZ, Facanali R et al (2017) Bioremediation of cooking oil waste using lipases from wastes. PLoS One 12:e0186246. <https://doi.org/10.1371/journal.pone.0186246>
- Okuno S, Yoshinaga M, Nakatani M et al (2002) Extraction of antioxidants in sweetpotato waste powder with supercritical carbon dioxide. Food Sci Technol Res 8:154–157. [https://doi.](https://doi.org/10.3136/fstr.8.154) [org/10.3136/fstr.8.154](https://doi.org/10.3136/fstr.8.154)
- Ona JI, Halling PJ, Ballesteros M (2019) Enzyme hydrolysis of cassava peels: treatment by amylolytic and cellulolytic enzymes. Biocatal Biotransform 37:77–85. [https://doi.org/10.1080/10](https://doi.org/10.1080/10242422.2018.1551376) [242422.2018.1551376](https://doi.org/10.1080/10242422.2018.1551376)
- Paes J, Dotta R, Barbero GF, Martínez J (2014) Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J Supercrit Fluids 95:8–16. [https://doi.org/10.1016/j.supfu.2014.07.025](https://doi.org/10.1016/j.supflu.2014.07.025)
- Pagano E, Romano B, Izzo AA, Borrelli F (2018) The clinical efficacy of curcumin-containing nutraceuticals: an overview of systematic reviews. Pharmacol Res 134:79–91
- Pap N, Pongrácz E, Myllykoski L, Keiski R (2004) Waste minimization and utilization in the food industry: processing of arctic berries, and extraction of valuable compounds from juice- processing by-products. Proc Waste Minimization Resour Use Optim Conf 2004:159–168
- Papaioannou EH, Liakopoulou-Kyriakides M (2012) Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Acta Biochim Pol 59:151–153
- Papoutsis K, Grasso S, Menon A et al (2020) Recovery of ergosterol and vitamin D2 from mushroom waste – potential valorization by food and pharmaceutical industries. Trends Food Sci Technol 99:351–366
- Parashar A, Jin Y, Mason B et al (2016) Incorporation of whey permeate, a dairy effuent, in ethanol fermentation to provide a zero waste solution for the dairy industry. J Dairy Sci 99:1859– 1867.<https://doi.org/10.3168/jds.2015-10059>
- Parate VR, Talib MI (2015) Characterization of tur dal (Cajanus cajan) husk carbon and its kinetics and isotherm study for removing Cu (II) ions. IOSR J Environ Sci 9:27–41. [https://doi.](https://doi.org/10.9790/2402-09432741) [org/10.9790/2402-09432741](https://doi.org/10.9790/2402-09432741)
- Parftt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantifcation and potential for change to 2050. Philos Trans R Soc B Biol Sci 365:3065–3081. [https://doi.](https://doi.org/10.1098/rstb.2010.0126) [org/10.1098/rstb.2010.0126](https://doi.org/10.1098/rstb.2010.0126)
- Parthiba Karthikeyan O, Trably E, Mehariya S et al (2018) Pretreatment of food waste for methane and hydrogen recovery: a review. Bioresour Technol 249:1025–1039
- Patel SR, Murthy ZVP (2010) Optimization of process parameters by Taguchi method in the recovery of lactose from whey using sonocrystallization. Cryst Res Technol 45:747–752. [https://doi.](https://doi.org/10.1002/crat.201000139) [org/10.1002/crat.201000139](https://doi.org/10.1002/crat.201000139)
- Patsea M, Stefou I, Grigorakis S, Makris DP (2017) Screening of natural sodium acetate-based low-transition temperature mixtures (LTTMs) for enhanced extraction of antioxidants and pigments from red vinifcation solid wastes. Environ Process 4:123–135. [https://doi.org/10.1007/](https://doi.org/10.1007/s40710-016-0205-8) [s40710-016-0205-8](https://doi.org/10.1007/s40710-016-0205-8)
- Pavlić B, Ðurković AV, Vladić J et al (2016) Extraction of minor compounds (chlorophylls and carotenoids) from yarrow–rose hip mixtures by traditional versus green technique. J Food Process Eng 39:418–424. <https://doi.org/10.1111/jfpe.12242>
- Pavlović MD, Buntić AV, Šiler-Marinković SS, Dimitrijević-Branković SI (2013) Ethanol infuenced fast microwave-assisted extraction for natural antioxidants obtaining from spent flter coffee. Sep Purif Technol 118:503–510.<https://doi.org/10.1016/j.seppur.2013.07.035>
- Pedras B, Salema-Oom M, Sá-Nogueira I et al (2017) Valorization of white wine grape pomace through application of subcritical water: analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J Supercrit Fluids 128:138–144. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.supflu.2017.05.020) [supfu.2017.05.020](https://doi.org/10.1016/j.supflu.2017.05.020)
- Pedroza MA, Carmona M, Salinas MR, Zalacain A (2011) Use of dehydrated waste grape skins as a natural additive for producing rosé Wines: study of extraction conditions and evolution. J Agric Food Chem 59:10976–10986.<https://doi.org/10.1021/jf202626v>
- Pereira CD, Diaz O, Cobos A (2002) Valorization of by-products from ovine cheese manufacture: clarifcation by thermocalcic precipitation/microfltration before ultrafltration. Int Dairy J 12:773–783. [https://doi.org/10.1016/S0958-6946\(02\)00070-5](https://doi.org/10.1016/S0958-6946(02)00070-5)
- Perotto G, Ceseracciu L, Simonutti R et al (2018) Bioplastics from vegetable waste: via an ecofriendly water-based process. Green Chem 20:894–902. <https://doi.org/10.1039/c7gc03368k>
- Peschel W, Sánchez-Rabaneda F, Diekmann W et al (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97:137–150. [https://doi.](https://doi.org/10.1016/j.foodchem.2005.03.033) [org/10.1016/j.foodchem.2005.03.033](https://doi.org/10.1016/j.foodchem.2005.03.033)
- Pfukwa TM, Fawole OA, Manley M et al (2019) Food preservative capabilities of grape (Vitis vinifera) and clementine mandarin (Citrus reticulata) by-products extracts in South Africa. Sustain 11. <https://doi.org/10.3390/su11061746>
- Piccolella S, Bianco A, Crescente G et al (2019) Recovering cucurbita pepo cv. 'lungo forentino' wastes: UHPLC-HRMS/MS metabolic profle, the basis for establishing their nutra- and cosmeceutical valorisation. Molecules 24.<https://doi.org/10.3390/molecules24081479>
- Písecký J (2005) Spray drying in the cheese industry. Int Dairy J 15:531–536
- Piwowarek K, Lipińska E, Hać-Szymańczuk E (2016) Possibility of using apple pomaces in the process of propionic-acetic fermentation. Electron J Biotechnol 23:1–6. [https://doi.](https://doi.org/10.1016/j.ejbt.2016.07.004) [org/10.1016/j.ejbt.2016.07.004](https://doi.org/10.1016/j.ejbt.2016.07.004)
- Plazzotta S, Manzocco L, Nicoli MC (2017) Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci Technol 63:51–59
- Plazzotta S, Calligaris S, Manzocco L (2018a) Innovative bioaerogel-like materials from fresh-cut salad waste via supercritical-CO2-drying. Innov Food Sci Emerg Technol 47:485–492. [https://](https://doi.org/10.1016/j.ifset.2018.04.022) doi.org/10.1016/j.ifset.2018.04.022
- Plazzotta S, Calligaris S, Manzocco L (2018b) Application of different drying techniques to freshcut salad waste to obtain food ingredients rich in antioxidants and with high solvent loading capacity. LWT – Food Sci Technol 89:276–283. <https://doi.org/10.1016/j.lwt.2017.10.056>
- Plazzotta S, Ibarz R, Manzocco L, Martín-Belloso O (2020) Optimizing the antioxidant biocompound recovery from peach waste extraction assisted by ultrasounds or microwaves. Ultrason Sonochem 63. <https://doi.org/10.1016/j.ultsonch.2019.104954>
- Poltue T, Suddeepong A, Horpibulsuk S et al (2019) Strength development of recycled concrete aggregate stabilized with fy ash-rice husk ash based geopolymer as pavement base material. Road Mater Pavement Des.<https://doi.org/10.1080/14680629.2019.1593884>
- Pontonio E, Dingeo C, Di Cagno R et al (2020) Brans from hull-less barley, emmer and pigmented wheat varieties: from by-products to bread nutritional improvers using selected lactic acid bacteria and xylanase. Int J Food Microbiol 313.<https://doi.org/10.1016/j.ijfoodmicro.2019.108384>
- Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2014) Microwave assisted extraction of pectin from waste Citrullus lanatus fruit rinds. Carbohydr Polym 101:786–791. <https://doi.org/10.1016/j.carbpol.2013.09.062>
- Prameela K, Venkatesh K, Immandi SB et al (2017) Next generation nutraceutical from shrimp waste: the convergence of applications with extraction methods. Food Chem 237:121–132
- Prasad SK, Singh MK (2015) Horse gram- an underutilized nutraceutical pulse crop: a review. J Food Sci Technol 52:2489–2499
- Rabiei Z, Naderi S, Rafeian-Kopaei M (2017) Study of antidepressant effects of grape seed oil in male mice using tail suspension and forced swim tests. Bangladesh J Pharmacol 12:397–402. <https://doi.org/10.3329/bjp.v12i4.33520>
- Rahmanian N, Jafari SM, Galanakis CM (2014) Recovery and removal of phenolic compounds from olive mill wastewater. JAOCS, J Am Oil Chem Soc 91:1–18. [https://doi.org/10.1007/](https://doi.org/10.1007/s11746-013-2350-9) [s11746-013-2350-9](https://doi.org/10.1007/s11746-013-2350-9)
- Ramos P, Santos SAO, Guerra ÂR et al (2013) Valorization of olive mill residues: antioxidant and breast cancer antiproliferative activities of hydroxytyrosol-rich extracts derived from olive oil by-products. Ind Crops Prod 46:359–368. <https://doi.org/10.1016/j.indcrop.2013.02.020>
- Ravanfar R, Moein M, Niakousari M, Tamaddon A (2018) Extraction and fractionation of anthocyanins from red cabbage: ultrasonic-assisted extraction and conventional percolation method. J Food Meas Charact 12:2271–2277.<https://doi.org/10.1007/s11694-018-9844-y>
- Ravindran R, Jaiswal AK (2016) Exploitation of food industry waste for high-value products. Trends Biotechnol 34:58–69.<https://doi.org/10.1016/J.TIBTECH.2015.10.008>
- Rektor A, Vatai G (2004) Membrane fltration of mozzarella whey. Desalination 162:279–286. [https://doi.org/10.1016/S0011-9164\(04\)00052-9](https://doi.org/10.1016/S0011-9164(04)00052-9)
- Riggi E, Avola G (2008) Fresh tomato packinghouses waste as high added-value biosource. Resour Conserv Recycl 53:96–106. <https://doi.org/10.1016/j.resconrec.2008.09.005>
- Riva G (2013) Volume 1 – I sottoprodotti di interesse del DM 6.7.2012. Inquadramento, potenzialità e valutazioni 155:317
- Rodríguez R, Jiménez A, Fernández-Bolaños J et al (2006) Dietary fbre from vegetable products as source of functional ingredients. Trends Food Sci Technol. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.tifs.2005.10.002) [tifs.2005.10.002](https://doi.org/10.1016/j.tifs.2005.10.002)
- Rodríguez M, Nolasco S, Izquierdo N et al (2019) Microwave-assisted extraction of antioxidant compounds from sunfower hulls. Heat Mass Transf und Stoffuebertragung 55:3017–3027. <https://doi.org/10.1007/s00231-019-02648-4>
- Rohm H, Brennan C, Turner C et al (2015) Adding value to fruit processing waste: innovative ways to incorporate fbers from berry pomace in baked and extruded cereal-based foods—a SUSFOOD Project. Foods 4:690–697.<https://doi.org/10.3390/foods4040690>
- Rojas MC, Brewer MS (2007) Effect of natural antioxidants on oxidative stability of cooked, refrigerated beef and pork. J Food Sci 72.<https://doi.org/10.1111/j.1750-3841.2007.00335.x>
- Romani A, Pinelli P, Galardi C et al (2003) Flavonoids in leaves of black cabbage (Brassica oleracea var. acephala DC. subvar. viridis cv. serotina) grown on different soils and at different elevations. Ital J Food Sci 15:197–205
- Rosales Soto MU, Brown K, Ross CF (2012) Antioxidant activity and consumer acceptance of grape seed four-containing food products. Int J Food Sci Technol 47:592–602. [https://doi.](https://doi.org/10.1111/j.1365-2621.2011.02882.x) [org/10.1111/j.1365-2621.2011.02882.x](https://doi.org/10.1111/j.1365-2621.2011.02882.x)
- Sabeena Farvin KH, Grejsen HD, Jacobsen C (2012) Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (Trachurus trachurus): effect on lipid and protein oxidation. Food Chem 131:843–851.<https://doi.org/10.1016/j.foodchem.2011.09.056>
- Sagdic O, Ozturk I, Cankurt H, Tornuk F (2012) Interaction between some phenolic compounds and probiotic bacterium in functional ice cream production. Food Bioprocess Technol 5:2964– 2971.<https://doi.org/10.1007/s11947-011-0611-x>
- Saidi S, Saoudi M, Ben Amar R (2018) Valorisation of tuna processing waste biomass: isolation, purifcation and characterisation of four novel antioxidant peptides from tuna by-product hydrolysate. Environ Sci Pollut Res 25:17383–17392.<https://doi.org/10.1007/s11356-018-1809-5>
- Saleh IA, Vinatoru M, Mason TJ et al (2017) Extraction of silymarin from milk thistle (Silybum marianum) seeds–a comparison of conventional and microwave-assisted extraction methods. J Microw Power Electromagn Energy 51:124–133. [https://doi.org/10.1080/08327823.2017.1](https://doi.org/10.1080/08327823.2017.1320265) [320265](https://doi.org/10.1080/08327823.2017.1320265)
- Sánchez-Alonso I, Jiménez-Escrig A, Saura-Calixto F, Borderías AJ (2007) Effect of grape antioxidant dietary fbre on the prevention of lipid oxidation in minced fsh: evaluation by different methodologies. Food Chem 101:372–378.<https://doi.org/10.1016/j.foodchem.2005.12.058>
- Sánchez-García YI, Bhangu SK, Ashokkumar M, Gutiérrez-Méndez N (2018) Sonocrystallization of lactose from whey. In: Technological approaches for novel applications in dairy processing. InTech, London
- Sánchez-Monedero MA, Cayuela ML, Mondini C et al (2008) Potential of olive mill wastes for soil C sequestration. Waste Manag 28:767–773.<https://doi.org/10.1016/j.wasman.2007.09.029>
- Santamaría B, Salazar G, Beltrán S, Cabezas JL (2002) Membrane sequences for fractionation of polyphenolic extracts from defatted milled grape seeds. Desalination 148:103–109. [https://doi.](https://doi.org/10.1016/S0011-9164(02)00661-6) [org/10.1016/S0011-9164\(02\)00661-6](https://doi.org/10.1016/S0011-9164(02)00661-6)
- Santos J, Oliveira MBPP, Ibáñez E, Herrero M (2014) Phenolic profle evolution of different ready-to-eat baby-leaf vegetables during storage. J Chromatogr A 1327:118–131. [https://doi.](https://doi.org/10.1016/j.chroma.2013.12.085) [org/10.1016/j.chroma.2013.12.085](https://doi.org/10.1016/j.chroma.2013.12.085)
- Santos MIS, Fradinho P, Martins S et al (2019) A novel way for whey: cheese whey fermentation produces an effective and environmentally-safe alternative to chlorine. Appl Sci 9. [https://doi.](https://doi.org/10.3390/app9142800) [org/10.3390/app9142800](https://doi.org/10.3390/app9142800)
- Sardari RRR, Sutiono S, Azeem HA et al (2019) Evaluation of sequential processing for the extraction of starch, lipids, and proteins from wheat bran. Front Bioeng Biotechnol 7. [https://](https://doi.org/10.3389/fbioe.2019.00413) doi.org/10.3389/fbioe.2019.00413
- Sareena C, Ramesan M, Purushothaman E (2012) Utilization of coconut shell powder as a novel fller in natural rubber. J Reinf Plast Compos 31:533–547. [https://doi.](https://doi.org/10.1177/0731684412439116) [org/10.1177/0731684412439116](https://doi.org/10.1177/0731684412439116)
- Sarkar A, Kaul P (2014) Evaluation of tomato processing by-products: a comparative study in a pilot scale setup. J Food Process Eng 37:299–307. <https://doi.org/10.1111/jfpe.12086>
- Sarkis JR, Michel I, Tessaro IC, Marczak LDF (2014) Optimization of phenolics extraction from sesame seed cake. Sep Purif Technol 122:506–514.<https://doi.org/10.1016/j.seppur.2013.11.036>
- Satari B, Karimi K (2018) Citrus processing wastes: environmental impacts, recent advances, and future perspectives in total valorization. Resour Conserv Recycl 129:153–167. [https://doi.](https://doi.org/10.1016/J.RESCONREC.2017.10.032) [org/10.1016/J.RESCONREC.2017.10.032](https://doi.org/10.1016/J.RESCONREC.2017.10.032)
- Schieber A (2017) Side streams of plant food processing as a source of valuable compounds: selected examples. Annu Rev Food Sci Technol 8:97-112. [https://doi.org/10.1146/](https://doi.org/10.1146/annurev-food-030216-030135) [annurev-food-030216-030135](https://doi.org/10.1146/annurev-food-030216-030135)
- Scordino M, Di Mauro A, Passerini A, Maccarone E (2007) Highly purifed sugar concentrate from a residue of citrus pigments recovery process. LWT – Food Sci Technol 40:713–721. [https://](https://doi.org/10.1016/j.lwt.2006.03.007) doi.org/10.1016/j.lwt.2006.03.007
- Sehm J, Treutter D, Lindermayer H et al (2011) The influence of apple- or red-grape pomace enriched piglet diet on blood parameters, bacterial colonisation, and marker gene expression in piglet white blood cells. Food Nutr Sci 02:366–376.<https://doi.org/10.4236/fns.2011.24052>
- Seixas FL, Fukuda DL, Turbiani FRB et al (2014) Extraction of pectin from passion fruit peel (Passifora edulis f.favicarpa) by microwave-induced heating. Food Hydrocoll 38:186–192. <https://doi.org/10.1016/j.foodhyd.2013.12.001>
- Sekifuji R, Tateda M (2019) Study of the feasibility of a rice husk recycling scheme in Japan to produce silica fertilizer for rice plants. Sustain Environ Res 29. [https://doi.org/10.1186/](https://doi.org/10.1186/s42834-019-0011-x) [s42834-019-0011-x](https://doi.org/10.1186/s42834-019-0011-x)
- Selani MM, Contreras-Castillo CJ, Shirahigue LD et al (2011) Wine industry residues extracts as natural antioxidants in raw and cooked chicken meat during frozen storage. Meat Sci 88:397– 403. <https://doi.org/10.1016/j.meatsci.2011.01.017>
- Selmane D, Christophe V, Gholamreza D (2008) Extraction of proteins from slaughterhouse byproducts: Infuence of operating conditions on functional properties. Meat Sci 79:640–647. <https://doi.org/10.1016/j.meatsci.2007.10.029>
- Shah NP, Ding WK, Fallourd MJ, Leyer G (2010) Improving the stability of probiotic bacteria in model fruit juices using vitamins and antioxidants. J Food Sci 75:M278–M282. [https://doi.](https://doi.org/10.1111/j.1750-3841.2010.01628.x) [org/10.1111/j.1750-3841.2010.01628.x](https://doi.org/10.1111/j.1750-3841.2010.01628.x)
- Shalini R, Gupta DK (2010) Utilization of pomace from apple processing industries: a review. J Food Sci Technol 47:365
- Sharma P, Gaur VK, Kim SH, Pandey A (2020) Microbial strategies for bio-transforming food waste into resources. Bioresour Technol 299. <https://doi.org/10.1016/j.biortech.2019.122580>
- Sherazi STH, Mahesar SA, Sirajuddin (2016) Vegetable oil deodorizer distillate: a rich source of the natural bioactive components. J Oleo Sci 65:957–966
- Shimamoto Y, Suzuki T (2019) Recycle of rice husk into agro-infrastructure for decreasing carbon dioxide. Paddy Water Environ 17:555–559. <https://doi.org/10.1007/s10333-019-00752-z>
- Shoveller AK, Stoll B, Ball RO, Burrin DG (2005) Nutritional and functional importance of intestinal sulfur amino acid metabolism. J Nutr 135:1609–1612. [https://doi.org/10.1093/](https://doi.org/10.1093/jn/135.7.1609) [jn/135.7.1609](https://doi.org/10.1093/jn/135.7.1609)
- Silvan JM, Mingo E, Martinez-Rodriguez AJ (2017) Grape seed extract (GSE) modulates *campylobacter* pro-infammatory response in human intestinal epithelial cell lines. Food Agric Immunol 28:739–753.<https://doi.org/10.1080/09540105.2017.1312292>
- Singh J, Jayaprakasha GK, Patil BS (2018) An optimized solvent extraction and characterization of unidentifed favonoid glucuronide derivatives from spinach by UHPLC-HR-QTOF-MS. Talanta 188:763–771.<https://doi.org/10.1016/j.talanta.2018.06.025>
- Sivakumar G, Aliboni A, Antonini A, Bacchetta L (2007) Bioactive sulforaphane from in vitro propagated brassica seedlings. Eng Life Sci 7:275–277.<https://doi.org/10.1002/elsc.200620192>
- Smilowitz JT, Dillard CJ, German JB (2005) Milk beyond essential nutrients: the metabolic food. Aust J Dairy Technol 60:77–83
- Smith J, Hong-Shum L (2011) Food additives data book, 2nd edn. Wiley, New York
- Smithers GW (2008) Whey and whey proteins-From "gutter-to-gold.". Int Dairy J 18:695–704
- Solana M, Mirofci S, Bertucco A (2016) Production of phenolic and glucosinolate extracts from rocket salad by supercritical fuid extraction: process design and cost benefts analysis. J Food Eng 168:35–41.<https://doi.org/10.1016/j.jfoodeng.2015.07.017>
- Sousa SC, Vázquez JA, Pérez-Martín RI et al (2017) Valorization of by-products from commercial fish species: extraction and chemical properties of skin gelatins. Molecules 22. [https://doi.](https://doi.org/10.3390/molecules22091545) [org/10.3390/molecules22091545](https://doi.org/10.3390/molecules22091545)
- Spigno G, Amendola D, Dahmoune F, Jauregi P (2015) Colloidal gas aphrons based separation process for the purifcation and fractionation of natural phenolic extracts. Food Bioprod Process 94:434–442. <https://doi.org/10.1016/j.fbp.2014.06.002>
- Stabnikova O, Wang JY, Bo Ding H, Tay J-H (2005) Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium. Bioresour Technol 96:747–751. <https://doi.org/10.1016/j.biortech.2004.06.022>
- Stojceska V, Ainsworth P, Plunkett A et al (2008) Caulifower by-products as a new source of dietary fbre, antioxidants and proteins in cereal based ready-to-eat expanded snacks. J Food Eng 87:554–563. <https://doi.org/10.1016/j.jfoodeng.2008.01.009>
- Stökle K, Kruse A (2019) Extraction of sugars from forced chicory roots. Biomass Convers Biorefnery 9:699–708.<https://doi.org/10.1007/s13399-019-00374-9>
- Stökle K, Hülsemann B, Steinbach D et al (2019) A biorefnery concept using forced chicory roots for the production of biogas, hydrochar, and platform chemicals. Biomass Convers Biorefnery. <https://doi.org/10.1007/s13399-019-00527-w>
- Strati IF, Oreopoulou V (2011) Effect of extraction parameters on the carotenoid recovery from tomato waste. Int J Food Sci Technol 46:23–29. [https://doi.](https://doi.org/10.1111/j.1365-2621.2010.02496.x) [org/10.1111/j.1365-2621.2010.02496.x](https://doi.org/10.1111/j.1365-2621.2010.02496.x)
- Stumpf B, Künne M, Ma L et al (2020) Optimization of the extraction procedure for the determination of phenolic acids and favonoids in the leaves of globe artichoke (Cynara cardunculus var. scolymus L.). J Pharm Biomed Anal 177.<https://doi.org/10.1016/j.jpba.2019.112879>
- Suárez M, Romero MP, Ramo T et al (2009) Methods for preparing phenolic extracts from olive cake for potential application as food antioxidants. J Agric Food Chem 57:1463–1472. [https://](https://doi.org/10.1021/jf8032254) doi.org/10.1021/jf8032254
- Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – a review. Bioresour Technol 99:6017–6027
- Sui W, Xiao Y, Liu R et al (2019) Steam explosion modifcation on tea waste to enhance bioactive compounds' extractability and antioxidant capacity of extracts. J Food Eng 261:51–59. [https://](https://doi.org/10.1016/j.jfoodeng.2019.03.015) doi.org/10.1016/j.jfoodeng.2019.03.015
- Sun Y, Xiu C, Liu W et al (2016) Grape seed proanthocyanidin extract protects the retina against early diabetic injury by activating the Nrf2 pathway. Exp Ther Med 11:1253-1258. [https://doi.](https://doi.org/10.3892/etm.2016.3033) [org/10.3892/etm.2016.3033](https://doi.org/10.3892/etm.2016.3033)
- Tahergorabi R, Jaczynski J (2014) Isoelectric solubilization/precipitation as a means to recover protein and lipids from seafood by-products. In: Seafood processing by-products: trends and applications. Springer, New York, pp 101–123
- Tahergorabi R, Sivanandan L, Jaczynski J (2012) Dynamic rheology and endothermic transitions of proteins recovered from chicken-meat processing by-products using isoelectric solubilization/precipitation and addition of TiO 2. LWT – Food Sci Technol 46:148–155. [https://doi.](https://doi.org/10.1016/j.lwt.2011.10.013) [org/10.1016/j.lwt.2011.10.013](https://doi.org/10.1016/j.lwt.2011.10.013)
- Tanongkankit Y, Sablani SS, Chiewchan N, Devahastin S (2013) Microwave-assisted extraction of sulforaphane from white cabbages: effects of extraction condition, solvent and sample pretreatment. J Food Eng 117:151–157. <https://doi.org/10.1016/j.jfoodeng.2013.02.011>
- Tesaki S, Tanabe S, Moriyama M et al (1999) Isolation and identifcation of an antibacterial compound from grape and its application to foods. Nippon Nogeikagaku Kaishi 73:125–128. <https://doi.org/10.1271/nogeikagaku1924.73.125>
- Toldrá F, Aristoy MC, Mora L, Reig M (2012) Innovations in value-addition of edible meat byproducts. Meat Sci 92:290–296
- Tripathi A, Rawat Ranjan M (2015) Heavy Metal Removal from Wastewater Using Low Cost Adsorbents. J Bioremediation Biodegrad 06:1–5. <https://doi.org/10.4172/2155-6199.1000315>
- Tseng A, Zhao Y (2013) Wine grape pomace as antioxidant dietary fbre for enhancing nutritional value and improving storability of yogurt and salad dressing. Food Chem 138:356–365. [https://](https://doi.org/10.1016/j.foodchem.2012.09.148) doi.org/10.1016/j.foodchem.2012.09.148
- Ueno T, Ozawa Y, Ishikawa M et al (2003) Lactic acid production using two food processing wastes, canned pineapple syrup and grape invertase, as substrate and enzyme. Biotechnol Lett 25:573–577. <https://doi.org/10.1023/A:1022888832278>
- Upadhyay A, Chompoo J, Araki N, Tawata S (2012) Antioxidant, antimicrobial, 15-LOX, and AGEs inhibitions by pineapple stem waste. J Food Sci 77. [https://doi.](https://doi.org/10.1111/j.1750-3841.2011.02437.x) [org/10.1111/j.1750-3841.2011.02437.x](https://doi.org/10.1111/j.1750-3841.2011.02437.x)
- Urbonaviciene D, Viskelis P, Viskelis J et al (2012) Lycopene and β-carotene in non-blanched and blanched tomatoes. J Food Agric Environ 10:142–146
- Uribe E, Lemus-Mondaca R, Vega-Gálvez A et al (2013) Quality characterization of waste olive cake during hot air drying: nutritional aspects and antioxidant activity. Food Bioprocess Technol 6:1207–1217.<https://doi.org/10.1007/s11947-012-0802-0>
- Valcarcel J, Novoa-Carballal R, Pérez-Martín RI et al (2017) Glycosaminoglycans from marine sources as therapeutic agents. Biotechnol Adv 35:711–725
- Valencia-Arredondo JA, Hernández-Bolio GI, Cerón-Montes GI et al (2020) Enhanced process integration for the extraction, concentration and purifcation of di-acylated cyanidin from red cabbage. Sep Purif Technol 238.<https://doi.org/10.1016/j.seppur.2019.116492>
- Vasala A, Panula J, Neubauer P (2005) Effcient lactic acid production from high salt containing dairy by-products by Lactobacillus salivarius ssp. salicinius with pre-treatment by proteolytic microorganisms. J Biotechnol 117:421–431. <https://doi.org/10.1016/j.jbiotec.2005.02.010>
- Vergara-Salinas JR, Vergara M, Altamirano C et al (2015) Characterization of pressurized hot water extracts of grape pomace: chemical and biological antioxidant activity. Food Chem 171:62–69.<https://doi.org/10.1016/j.foodchem.2014.08.094>
- Verma N, Bansal MC, Kumar V (2011) Pea peel waste: a lignocellulosic waste and its utility in cellulase production BY Trichoderma reesei under solid state cultivation. BioResources 6:1505–1519
- Villaescusa I, Fiol N, Martínez M et al (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.watres.2003.10.040) [watres.2003.10.040](https://doi.org/10.1016/j.watres.2003.10.040)
- Vincenzetti S, Cecchi T, Perinelli DR et al (2018) Effects of freeze-drying and spray-drying on donkey milk volatile compounds and whey proteins stability. LWT – Food Sci Technol 88:189– 195. <https://doi.org/10.1016/j.lwt.2017.10.019>
- Viuda-Martos M, Fernandez-Lopez J, Sayas-Barbera E et al (2011) Physicochemical characterization of the orange juice waste water of a citrus by-product. J Food Process Preserv 35:264–271. <https://doi.org/10.1111/j.1745-4549.2009.00450.x>
- Vorobiev E, Lebovka N (2010) Enhanced extraction from solid foods and biosuspensions by pulsed electrical energy. Food Eng Rev 2:95–108.<https://doi.org/10.1007/s12393-010-9021-5>
- Walia A, Guleria S, Mehta P et al (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7.<https://doi.org/10.1007/s13205-016-0584-6>
- Wang Q, Wang X, Wang X, Ma H (2008) Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 43:280–286. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.procbio.2007.12.010) [procbio.2007.12.010](https://doi.org/10.1016/j.procbio.2007.12.010)
- Wang K, Yin J, Shen D, Li N (2014) Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: effect of pH. Bioresour Technol 161:395– 401. <https://doi.org/10.1016/j.biortech.2014.03.088>
- Wang Y, Li F, Zhuang H et al (2015) Effects of plant polyphenols and α-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon. LWT – Food Sci Technol 60:199–206. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.lwt.2014.09.022) [lwt.2014.09.022](https://doi.org/10.1016/j.lwt.2014.09.022)
- Watson RR, Preedy V, Zibadi S (2014) Wheat and Rice in Disease Prevention and Health, Wheat and Rice in Disease Prevention and Health. Elsevier Inc. https://doi.org/10.1016/C2012-0-00472-3
- Weseler AR, Bast A (2017) Masquelier's grape seed extract: from basic favonoid research to a well-characterized food supplement with health benefts. Nutr J 16:1–19
- Westereng B, Michaelsen TE, Samuelsen AB, Knutsen SH (2008) Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin. Carbohydr Polym 72:32–42.<https://doi.org/10.1016/j.carbpol.2007.07.017>
- Wolfe KL, Liu RH (2003) Apple peels as a value-added food ingredient. J Agric Food Chem. <https://doi.org/10.1021/jf025916z>
- Wu Y, Ma H, Zheng M, Wang K (2015) Lactic acid production from acidogenic fermentation of fruit and vegetable wastes. Bioresour Technol 191:53–58. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.biortech.2015.04.100) [biortech.2015.04.100](https://doi.org/10.1016/j.biortech.2015.04.100)
- Xu C, Yagiz Y, Marshall S et al (2015) Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chem 182:200–208. [https://doi.](https://doi.org/10.1016/j.foodchem.2015.02.133) [org/10.1016/j.foodchem.2015.02.133](https://doi.org/10.1016/j.foodchem.2015.02.133)
- Yaakob MA, Mohamed RMSR, Al-Gheethi A et al (2019) Optimising of Scenedesmus sp. biomass production in chicken slaughterhouse wastewater using response surface methodology and potential utilisation as fsh feeds. Environ Sci Pollut Res 26:12089–12108. [https://doi.](https://doi.org/10.1007/s11356-019-04633-0) [org/10.1007/s11356-019-04633-0](https://doi.org/10.1007/s11356-019-04633-0)
- Yadav JSS, Yan S, Pilli S et al (2015) Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnol Adv 33:756–774
- Yan N, Chen X (2015) Sustainability: don't waste seafood waste. Nature 524:155–157
- Yang EJ, Kim SS, Oh TH et al (2009) Essential oil of citrus fruit waste attenuates LPS-induced nitric oxide production and inhibits the growth of skin pathogens. Int J Agric Biol 11:791–794
- Yang QQ, Gan RY, Ge YY et al (2019) Ultrasonic treatment increases extraction rate of common bean (Phaseolus vulgaris l.) antioxidants. Antioxidants 8. [https://doi.org/10.3390/](https://doi.org/10.3390/antiox8040083) [antiox8040083](https://doi.org/10.3390/antiox8040083)
- Yu J, Ahmedna M (2013) Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol 48:221–237
- Zacharof MP (2017) Grape winery waste as feedstock for bioconversions: applying the biorefnery concept. Waste Biomass Valoriz 8:1011–1025
- Zeaiter Z, Regonesi ME, Cavini S et al (2019) Extraction and characterization of inulin-type fructans from artichoke wastes and their effect on the growth of intestinal bacteria associated with health. Biomed Res Int 2019:1083952. <https://doi.org/10.1155/2019/1083952>
- Zhang Q, Zhou MM, Chen PL et al (2011) Optimization of ultrasonic-assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. J Food Sci 76:C680–C685. [https://](https://doi.org/10.1111/j.1750-3841.2011.02174.x) doi.org/10.1111/j.1750-3841.2011.02174.x
- Zhang G, Wu F, Ma T et al (2019) Preparation and characterization of cellulose nanofbers isolated from lettuce peel. Cellul Chem Technol 53:677–684. [https://doi.org/10.35812/](https://doi.org/10.35812/CelluloseChemTechnol.2019.53.66) [CelluloseChemTechnol.2019.53.66](https://doi.org/10.35812/CelluloseChemTechnol.2019.53.66)
- Zhao J, Liu Y, Wang D et al (2017) Potential impact of salinity on methane production from food waste anaerobic digestion. Waste Manag 67:308–314. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.wasman.2017.05.016) [wasman.2017.05.016](https://doi.org/10.1016/j.wasman.2017.05.016)
- Zill-E-Huma A-VM, Elmaataoui M, Chemat F (2011) A novel idea in food extraction feld: Study of vacuum microwave hydrodiffusion technique for by-products extraction. J Food Eng 105:351–360. <https://doi.org/10.1016/j.jfoodeng.2011.02.045>
- Zuorro A, Fidaleo M, Lavecchia R (2011) Enzyme-assisted extraction of lycopene from tomato processing waste. Enzyme Microb Technol 49:567–573. [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.enzmictec.2011.04.020) [enzmictec.2011.04.020](https://doi.org/10.1016/j.enzmictec.2011.04.020)
- Zykwinska A, Boiffard MH, Kontkanen H et al (2008) Extraction of green labeled pectins and pectic oligosaccharides from plant byproducts. J Agric Food Chem 56:8926–8935. [https://doi.](https://doi.org/10.1021/jf801705a) [org/10.1021/jf801705a](https://doi.org/10.1021/jf801705a)