
Four-Valued Monitorability of ω-Regular
Languages

Zhe Chen1,2,3(B), Yunyun Chen1, Robert M. Hierons4, and Yifan Wu1

1 College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics,

Nanjing, People’s Republic of China
zhechen@nuaa.edu.cn

2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
3 State Key Laboratory for Novel Software Technology, Nanjing University,

Nanjing, People’s Republic of China
4 Department of Computer Science, The University of Sheffield, Sheffield, UK

r.hierons@sheffield.ac.uk

Abstract. The use of runtime verification has led to interest in decid-
ing whether a property is monitorable: whether it is always possible for
the satisfaction or violation of the property to be determined after a
finite future continuation during system execution. However, classical
two-valued monitorability suffers from two inherent limitations, which
eventually increase runtime overhead. First, no information is available
regarding whether only one verdict (satisfaction or violation) can be
detected. Second, it does not tell us whether verdicts can be detected
starting from the current monitor state during system execution.

This paper proposes a new notion of four-valued monitorability for
ω-languages and applies it at the state-level. Four-valued monitorabil-
ity is more informative than two-valued monitorability as a property
can be evaluated as a four-valued result, denoting that only satisfaction,
only violation, or both are active for a monitorable property. We can also
compute state-level weak monitorability, i.e., whether satisfaction or vio-
lation can be detected starting from a given state in a monitor, which
enables state-level optimizations of monitoring algorithms. Based on a
new six-valued semantics, we propose procedures for computing four-
valued monitorability of ω-regular languages, both at the language-level
and at the state-level. Experimental results show that our tool imple-
mentation Monic can correctly, and quickly, report both two-valued and
four-valued monitorability.

Keywords: Monitorability · ω-regular languages · Linear temporal
logic · Multi-valued logics · Runtime verification.

Supported by the Joint Research Funds of National Natural Science Foundation of
China and Civil Aviation Administration of China (No. U1533130) and the Open
Project of Shanghai Key Lab. of Trustworthy Computing.

c© Springer Nature Switzerland AG 2020
S.-W. Lin et al. (Eds.): ICFEM 2020, LNCS 12531, pp. 198–214, 2020.
https://doi.org/10.1007/978-3-030-63406-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63406-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-63406-3_12


Four-Valued Monitorability of ω-Regular Languages 199

1 Introduction

Runtime Verification (RV) [6,29,32] is a lightweight formal technique in which
program or system execution is monitored and analyzed. RV uses information
extracted from an execution to check whether certain properties are satisfied or
violated after a finite number of steps, possibly leading to online responses. In
RV, properties are usually expressed using formalisms [26] such as Linear Tem-
poral Logic (LTL) formulas [10,17,33,36], Nondeterministic Büchi Automata
(NBAs), and ω-regular expressions, which represent ω-regular languages [7,15].
RV tools automatically synthesize monitors (i.e., code fragments) from formal
specifications and then weave the code into the system through instrumenta-
tion [24,25,28]. The inserted code typically maintains a set of monitor objects
that can detect property satisfaction or violation during system execution. Such
approaches have been extended to parametric RV, in which properties are
checked over every parameter instance (i.e., a combination of parameter values)
by maintaining a monitor object for every parameter instance [11–13,27,34,38].

Figure 1 shows a monitor specification, written in the Movec language [13],
for the parametric RV of an event-driven system that dispatches a variety of
events (e.g., sensor status, keystrokes, program loadings etc.) to components
(e.g., libraries, mobile apps, microservices etc.). Similar specifications can be
written for other tools such as JavaMOP [11,34] and TraceMatches [4,5]. This
specification defines a parametric monitor, named priority, which takes two
parameters: a component ID c and an event ID e that should be instantiated
with the values (i.e., actual arguments) generated by system execution. The
specification body begins with four actions, which extract information regarding
function calls: r records a component being registered to an event (it also creates
a monitor object by instantiating the monitor parameters with the arguments
of the call), u records an unregister, b records the broadcast of an event (the
argument of the call) to all components, and n records a certain component being
notified of a specific event. This specification is used to monitor system execution
to check whether the property, specified as LTL formula φ1 := (r∧Fu) → ((¬b∧
¬u)Un)Uu, is satisfied or violated after a finite number of steps, i.e., any infinite
future continuation makes the property satisfied or violated, respectively. The
property requires that if a component c registers to an event e and unregisters
later, then before the unregister, the event e cannot be broadcasted until c has
been notified (i.e., c has a higher priority than unregistered components).

In practice, if the satisfaction or violation of a property is detected by a
monitor object then an associated handler (i.e., a piece of code) is automati-
cally triggered to perform some online response [11,13,34]. For example, Fig. 1
includes two handlers for the satisfaction (i.e., validation) and violation of the
LTL formula: if the property is satisfied then a message is logged; if it is vio-
lated then an alarm is signaled and this prints the IDs of the component and
the event. The two handlers may also be extended to more advanced operations,
e.g., profiling and error recovery.

We may also monitor the system against other properties, e.g., φ2 := Fr →
GFn that a component should receive notifications infinitely often after its



200 Z. Chen et al.

monitor priority(c,e) {

creation action r(c,e) after call(% reg_component(% %:c, % %:e));

action u(c,e) after call(% unreg_component(% %:c, % %:e));

action b(e) before execution(% broadcast(% %:e));

action n(c,e) after execution(% notify(% %:c, % %:e));

ltl: (r && <>u) -> ((!b && !u) U n) U u;

@validation {

log("Priority applied: component %lu registers to event %lu.\n",

monitor->c, monitor->e); }

@violation {

printf("Priority violated: component %lu registers to event %lu.\n",

monitor->c, monitor->e); }

};

Fig. 1. A monitor specification with an LTL formula.

registration, φ3 := r → Fu that a component unregisters after its registra-
tion, and φ4 := G(r → ¬uUn) that a registered component receives at least one
notification before its deregistration. The developer may also write handlers for
the satisfaction and violation of each property.

When specifying properties, the developer is usually concerned with their
monitorability [7,10,16,37], i.e., after any number of steps, whether the satis-
faction or violation of the monitored property can still be detected after a finite
future continuation. When writing handlers for these properties, the developer
might consider the following question: “Can the handlers for satisfaction and
violation be triggered during system execution?” We say that a verdict and its
handler are active if there is some continuation that would lead to the ver-
dict being detected and thus its handler being triggered. This question can
be partly answered by deciding monitorability (with the traditional two-valued
notion). For example, φ2 (above) is non-monitorable, i.e., there is some finite
sequence of steps after which no verdict is active. Worse, φ2 is also weakly non-
monitorable [14], i.e., no verdict can be detected after any number of steps.
Thus writing handlers for φ2 is a waste of time as they will never be triggered.
More seriously, monitoring φ2 at runtime adds no value but increases runtime
overhead. In contrast, φ1, φ3 and φ4 are monitorable, i.e., some verdicts are
always active. Thus their handlers must be developed as they may be triggered.
However, this answer is still unsatisfactory, as the existing notion of monitora-
bility suffers from two inherent limitations: limited informativeness and coarse
granularity.

Limited Informativeness. The existing notion of monitorability is not suffi-
ciently informative, as it is two-valued, i.e., a property can only be evaluated
as monitorable or non-monitorable. This means, for a monitorable property, we
only know that some verdicts are active, but no information is available regard-
ing whether only one verdict (satisfaction or violation) is active. As a result, the
developer may still write unnecessary handlers for inactive verdicts. For example,



Four-Valued Monitorability of ω-Regular Languages 201

φ1, φ3 and φ4 are monitorable. We only know that at least one of satisfaction
and violation is active, but this does not tell us which ones are active and thus
which handlers are required. As a result, the developer may waste time in han-
dling inactive verdicts, e.g., the violation of φ3 and the satisfaction of φ4. Thus,
the existing answer is far from satisfactory.

Limited informativeness also weakens the support for property debugging.
For example, when writing a property the developer may expect that both ver-
dicts are active but a mistake may lead to only one verdict being active. The
converse is also the case. Unfortunately, these kinds of errors cannot be revealed
by two-valued monitorability, as the expected property and the written (erro-
neous) property are both monitorable. For example, the developer may write
formula φ4 while having in mind another one φ5 := r → ¬uUn, i.e., what
she/he really wants is wrongly prefixed by one G. These two formulas cannot be
discriminated by deciding two-valued monitorability as both are monitorable.

Coarse Granularity. The existing notion of monitorability is defined at the
language-level, i.e., a property can only be evaluated as monitorable or not as
a whole, rather than a notion for (more fine-grained) states in a monitor. This
means that we do not know whether satisfaction or violation can be detected
starting from the current state during system execution. As a result, every mon-
itor object must be maintained during the entire execution, again increasing
runtime overhead. For example, φ6 := GFr ∨ (¬n → X¬b) is weakly moni-
torable, thus all its monitor objects (i.e., instances of the Finite State Machine
(FSM) in Fig. 2), created for every pair of component and event, are maintained.

Fig. 2. A monitor for LTL formula
φ6 := GFr ∨ (¬n → X¬b). Each
transition is labeled with a proposi-
tional formula denoting a set of satis-
fying states. For example, “!n” denotes
{∅, {r}, {b}, {r, b}} and “true” denotes
all states.

Note that parametric runtime verifi-
cation is NP-complete for detecting viola-
tions and coNP-complete for ensuring sat-
isfaction [12]. This high complexity pri-
marily comes from the large number of
monitor objects maintained for all param-
eter instances [12,13,34]. For state-level
optimizations of monitoring algorithms, if
no verdict can be detected starting from
the current state of a monitor object, then
the object can be switched off and safely
removed to improve runtime performance.
For example, in Fig. 2, only satisfaction
can be detected starting from states P1,
P2 and T, whereas no verdict can be detected starting from state N. Thus a mon-
itor object can be safely removed when it enters N. Unfortunately, the existing
notion does not support such optimizations.

Our Solution. In this paper, we propose a new notion of four-valued moni-
torability for ω-languages, and apply it at the state-level, overcoming the two
limitations discussed above. First, the proposed approach is more informative
than two-valued monitorability. Indeed, a property can be evaluated as a four-
valued result, denoting that only satisfaction, only violation, or both are active



202 Z. Chen et al.

for a monitorable property. Thus, if satisfaction (resp. violation) is inactive, then
writing handlers for satisfaction (resp. violation) is not required. This can also
enhance property debugging. For example, φ4 and φ5 can now be discriminated
by their different monitorability results, as φ4 can never be satisfied but φ5 can
be satisfied and can also be violated. Thus, additional developer mistakes can be
revealed. Second, we can compute state-level weak monitorability, i.e., whether
satisfaction or violation can be detected starting from a given state in a monitor.
For example, in Fig. 2, N is weakly non-monitorable, thus a monitor object can
be safely removed when it enters N, achieving a state-level optimization.

In summary, we make the following contributions.1

– We propose a new notion of four-valued monitorability for ω-languages
(Sect. 3), which provides more informative answers as to which verdicts are
active. This notion is defined using six types of prefixes, which complete the
classification of finite sequences.

– We propose a procedure for computing four-valued monitorability of ω-regular
languages, given in terms of LTL formulas, NBAs or ω-regular expressions
(Sect. 4), based on a new six-valued semantics.

– We propose a new notion of state-level four-valued weak monitorability and
its computation procedure for ω-regular languages (Sect. 5), which describes
which verdicts are active for a state. This can enable state-level optimizations
of monitoring algorithms.

– We have developed a new tool, Monic, that implements the proposed pro-
cedure for computing monitorability of LTL formulas. We evaluated its effec-
tiveness using a set of 97 LTL patterns and formulas φ1 to φ6 (above). Exper-
imental results show that Monic can correctly report both two-valued and
four-valued monitorability (Sect. 6).

2 Preliminaries

Let AP be a non-empty finite set of atomic propositions. A state is a complete
assignment of truth values to the propositions in AP . Let Σ = 2AP be a finite
alphabet, i.e., the set of all states. Σ∗ is the set of finite words (i.e., sequences of
states in Σ), including the empty word ε, and Σω is the set of infinite words. We
denote atomic propositions by p, q, r, finite words by u, v, and infinite words
by w, unless explicitly specified. We write a finite or infinite word in the form
{p, q}{p}{q, r} · · · , where a proposition appears in a state iff it is assigned true.
We drop the brackets around singletons, i.e., {p, q}p{q, r} · · · .

An ω-language (i.e., a linear-time infinitary property) L is a set of infinite
words over Σ, i.e., L ⊆ Σω. Linear Temporal Logic (LTL) [33,36] is a typical
representation of ω-regular languages. LTL extends propositional logic, which
uses boolean connectives ¬ (not) and ∧ (conjunction), by introducing temporal
connectives such as X (next), U (until), R (release), F (future, or eventually) and

1 A longer version of this paper (with all proofs) is available at https://arxiv.org/abs/
2002.06737.

https://arxiv.org/abs/2002.06737
https://arxiv.org/abs/2002.06737


Four-Valued Monitorability of ω-Regular Languages 203

G (globally, or always). Intuitively, Xφ says that φ holds at the next state, φ1Uφ2

says that at some future state φ2 holds and before that state φ1 always holds.
Using the temporal connectives X and U, the full power of LTL is obtained.
For convenience, we also use some common abbreviations: true, false, standard
boolean connectives φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) and φ1 → φ2 ≡ ¬φ1 ∨ φ2, and
additional temporal connectives φ1Rφ2 ≡ ¬(¬φ1U¬φ2) (the dual to U), Fφ ≡
trueUφ (φ eventually holds), and Gφ ≡ ¬F¬φ (φ always holds). We denote by
L(φ) the ω-language accepted by a formula φ.

Let us recall the classification of prefixes that are used to define the three-
valued semantics and two-valued monitorability of ω-languages.

Definition 1 (Good, bad and ugly prefixes [8,31]). A finite word u ∈ Σ∗ is
a good prefix for L if ∀w ∈ Σω.uw ∈ L, a bad prefix for L if ∀w ∈ Σω.uw 	∈ L,
or an ugly prefix for L if no finite extension makes it good or bad, i.e., 	 ∃v ∈
Σ∗.∀w ∈ Σω.uvw ∈ L and 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

In other words, good and bad prefixes satisfy and violate an ω-language in some
finite number of steps, respectively. We denote by good(L), bad(L) and ugly(L)
the set of good, bad and ugly prefixes for L, respectively. Note that they do not
constitute a complete classification of finite words. For example, any finite word
of the form p · · · p is neither a good nor a bad prefix for pUq, and also is not an
ugly prefix as it can be extended to a good prefix (ended with q) or a bad prefix
(ended with ∅).

Definition 2 (Three-valued semantics [10]). Let B3 be the set of three truth
values: true �, false ⊥ and inconclusive ?. The truth value of an ω-language
L ⊆ Σω wrt. a finite word u ∈ Σ∗, denoted by [u |= L]3, is � or ⊥ if u is a good
or bad prefix for L, respectively, and ? otherwise.

Note that the inconclusive value does not correspond to ugly prefixes. Although
an ugly prefix always leads to the inconclusive value, the converse does not hold.
For example, [p · · · p |= L(pUq)]3 = ? but p · · · p is not an ugly prefix.

Bauer et al. [10] presented a monitor construction procedure that trans-
forms an LTL formula φ into a three-valued monitor, i.e., a deterministic FSM
that contains �, ⊥ and ? states, which output �, ⊥ and ? after reading over
good, bad and other prefixes respectively. For example, in Fig. 2, state T is a �
state, whereas the remaining states are all ? states. This construction procedure
requires 2ExpSpace. It has been shown that the three-valued monitor can be
used to compute the truth value of an ω-language wrt. a finite word [10], which
is the output of the corresponding monitor after reading over this word.

Lemma 1. Let M = (Q, Σ, δ, q0, B3, λ3) be a three-valued monitor for an
ω-language L ⊆ Σω, where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ �→ Q is a transition function, q0 ∈ Q is an initial state, B3 is an
output alphabet and λ3 : Q → B3 is an output function. For any u ∈ Σ∗,
[u |= L]3 = λ3(δ(q0, u)).



204 Z. Chen et al.

Definition 3 (Two-valued monitorability [7,10,37]). An ω-language L ⊆
Σω is u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗ s.t. uv is a good or bad prefix, and
monitorable if it is u-monitorable for every u ∈ Σ∗.

In other words, L is u-monitorable if u has a good or bad extension. L is moni-
torable if every finite word has a good or bad extension. Note that an ugly prefix
can never be extended to a good or bad prefix. Thus, L is non-monitorable iff
there exists an ugly prefix for L.

3 Four-Valued Monitorability

In this section, we propose a new notion of four-valued monitorability, to pro-
vide more informative answers to monitorability checking. As we promised, it
can indicate whether only satisfaction, only violation, or both are active for a
monitorable property. Two-valued monitorability cannot achieve this because
its definition only requires that all finite words (i.e., u in Definition 3) can be
extended to good or bad prefixes (which witness satisfaction or violation, respec-
tively), but does not discriminate between them on the types and number of the
verdicts that the extensions of each finite word can witness. To address this
limitation, our approach aims to discriminate accordingly these finite words by
inspecting which types of prefixes they can be extended to.

To achieve this objective, we first need to propose a new classification of
prefixes, as the traditional classification (as the good, the bad and the ugly) is
not satisfactory due to incompleteness, i.e., it does not include the finite words
that are neither good nor bad but can be extended to good or bad prefixes. Thus
we introduce the notions of positive, negative and neutral prefixes, in addition
to good, bad and ugly prefixes, to complete the classification.

Definition 4 (Positive, negative and neutral prefixes). A finite word u is

– a positive prefix for L if it is not good, but some finite extension makes it
good but never bad, i.e., ∃w ∈ Σω.uw 	∈ L, ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L, and
	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L,

– a negative prefix for L if it is not bad, but some finite extension makes it
bad but never good, i.e., ∃w ∈ Σω.uw ∈ L, ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L, and
	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L, or

– a neutral prefix for L if some finite extension makes it good and some makes
it bad, i.e., ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L and ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

We denote by posi(L), nega(L) and neut(L) the set of positive, negative and
neutral prefixes for L, respectively. It is easy to see that the three new sets of
prefixes and the three traditional sets of good, bad and ugly prefixes are mutually
disjoint. An interesting fact, as shown by the following theorem, is that the six
sets of prefixes exactly constitute the complete set of finite words. Furthermore,
the six types of prefixes directly correspond to the six-valued semantics (cf.
Definition 5). This completes the classification of prefixes.



Four-Valued Monitorability of ω-Regular Languages 205

Theorem 1. good(L) ∪ bad(L) ∪ posi(L) ∪ nega(L) ∪ neut(L) ∪ ugly(L) = Σ∗.

The traditional three-valued semantics can identify only good and bad pre-
fixes with the truth values � and ⊥ respectively, whereas all the prefixes of the
other four types are given the same value ?. To discriminate them, we further
divide the value ? into four truth values.

Definition 5 (Six-valued semantics). Let B6 be the set of six truth values:
true �, false ⊥, possibly true ∓, possibly false ±, possibly conclusive + and
inconclusive ×. The truth value of an ω-language L ⊆ Σ∗ wrt. a finite word
u ∈ Σ∗, denoted by [u |= L]6, is �, ⊥, ∓, ±, + or × if u is a good, bad, positive,
negative, neutral or ugly prefix for L, respectively.

Note that the six-valued semantics models a rigorous correspondence between
truth values and prefix types. Unlike the three-valued semantics, the inconclusive
value now exactly corresponds to ugly prefixes.

The definition of four-valued monitorability is built on the following notion
of four-valued u-monitorability which is used to discriminate finite words by
inspecting which types of prefixes they can be extended to.

Definition 6 (Four-valued u-monitorability). An ω-language L ⊆ Σω is

– weakly positively u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗, s.t. uv is a good
prefix.

– weakly negatively u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗, s.t. uv is a bad
prefix.

– positively u-monitorable if it is weakly positively, but not weakly negatively,
u-monitorable. (u has only good extensions, thus u is a good/positive prefix.)

– negatively u-monitorable if it is weakly negatively, but not weakly positively,
u-monitorable. (u has only bad extensions, thus u is a bad/negative prefix.)

– neutrally u-monitorable if it is both weakly positively and weakly negatively
u-monitorable. (u has both good and bad extensions, thus u is a neutral prefix.)

– not u-monitorable if it is neither weakly positively nor weakly negatively u-
monitorable. (u has neither good nor bad extension, thus u is an ugly prefix.)

In other words, the traditional u-monitorability is split into two parts, i.e., weakly
positive and weakly negative u-monitorability. As a result, L is u-monitorable
iff L is positively, negatively or neutrally u-monitorable.

Definition 7 (Four-valued monitorability). An ω-language L ⊆ Σω is

– positively monitorable if it is positively u-monitorable for every u ∈ Σ∗.
– negatively monitorable if it is negatively u-monitorable for every u ∈ Σ∗.
– neutrally monitorable if it is u-monitorable for every u ∈ Σ∗, and is neutrally

ε-monitorable for the empty word ε.
– non-monitorable if it is not u-monitorable for some u ∈ Σ∗.



206 Z. Chen et al.

In other words, the set of monitorable ω-languages is divided into three classes,
i.e., positively, negatively and neutrally monitorable ones. Note that the def-
inition of neutral monitorability consists of two conditions, of which the first
ensures that L is monitorable while the second ensures that both of satisfaction
and violation can be detected after some finite sequences of steps. We denote
the four truth values (positively, negatively, neutrally and non-monitorable) by
M�, M⊥, M+ and M×, respectively.

We can validate that four-valued monitorability indeed provides the informa-
tiveness we require, as described in Sect. 1, by showing the following theorem,
that the truth values M�, M⊥, and M+ indicate that only satisfaction, only vio-
lation, and both can be detected after some finite sequences of steps, respectively.
This theorem can be proved by Definitions 7 and 6, in which u is substituted by
the empty word ε.

Theorem 2. If an ω-language L ⊆ Σω is

– M� then ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L and 	 ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L.
– M⊥ then ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L and 	 ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L.
– M+ then ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L and ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L.

Let us consider some simple but essential examples regarding basic tempo-
ral connectives. More examples, such as the formulas used in Sect. 1, will be
considered in Sect. 6.

– Formula Fp is positively monitorable, as any finite word can be extended to
a good prefix (ended with p) but never a bad prefix. This means that only
satisfaction, but no violation, of the property can be detected after some finite
sequences of steps.

– Formula Gp is negatively monitorable, as any finite word can be extended to
a bad prefix (ended with ∅) but never a good prefix. This means that only
violation, but no satisfaction, of the property can be detected after some finite
sequences of steps.

– Formula pUq is neutrally monitorable, as it is monitorable and ε (more gen-
erally, any finite word of the form p · · · p) can be extended to both a good
prefix (ended with q) and a bad prefix (ended with ∅). This means that both
of satisfaction and violation of the property can be detected after some finite
sequences of steps.

– Formula GFp is non-monitorable, as any finite word can never be extended
to a good or bad prefix, due to the infinite continuations ∅∅ · · · and pp · · ·
respectively. This means that neither satisfaction nor violation of the property
can be detected.

4 Computing Four-Valued Monitorability

In this section, we propose a procedure for computing the four-valued monitora-
bility of ω-regular languages, based on the six-valued semantics.



Four-Valued Monitorability of ω-Regular Languages 207

The first step is a monitor construction procedure that transforms an LTL
formula into a six-valued monitor, i.e., a deterministic FSM which outputs �,
⊥, ∓, ±, + and × after reading over good, bad, positive, negative, neutral and
ugly prefixes respectively. For example, in Fig. 2, states P1, P2 and N are all ?
states under the three-valued semantics. After refining the output function with
the six-valued semantics, states P1 and P2 become ∓ states, whereas state N
becomes a × state.

The construction procedure first constructs a three-valued monitor, using the
traditional approach which requires 2ExpSpace [10]. Then we refine its output
function, assigning new outputs to ? states. Specifically, our procedure traverses
all the states in the monitor, and for each state, starts another nested traversal
to check whether a � state or a ⊥ state is reachable. A ? state is assigned output
∓ if � states are reachable but no ⊥ state is, ± if ⊥ states are reachable but no �
state is, + if both � and ⊥ states are reachable, or × if neither is reachable. This
refinement step can be done in polynomial time and NLSpace (using the three-
valued monitor as the input). Thus, constructing a six-valued monitor requires
also 2ExpSpace. Let us formalize the above construction procedure.

Definition 8. Let M = (Q, Σ, δ, q0, B3, λ3) be a three-valued monitor for an
ω-language L ⊆ Σω. The corresponding six-valued monitor M ′ = (Q, Σ, δ, q0,
B6, λ) is obtained by refining the output function λ3 of M as in Fig. 3.

Fig. 3. The output function λ.

We can show the following lemma, that the six-valued monitor can be used
to compute the truth value of an ω-language wrt. a finite word. This lemma can
be proved by Definitions 5 and 2, Lemma 1 and Definition 8.

Lemma 2. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. For any u ∈ Σ∗, [u |= L]6 = λ(δ(q0, u)).



208 Z. Chen et al.

As a property of the six-valued monitor, the following theorem shows that
each state in a monitor can be reached by exactly one type of prefixes (by
Lemma 2 and Definition 5).

Theorem 3. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. For a state q ∈ Q, λ(q) equals �, ⊥, ∓, ±, + or ×, iff it can
be reached by good, bad, positive, negative, neutral or ugly prefixes, respectively.

Based on the six-valued monitor, the second step determines the four-valued
monitorability of an ω-language L by checking whether its monitor has some
specific reachable states. The monitorability of L is M� iff neither × nor ⊥
states are reachable (thus neither ± nor + states are reachable), M⊥ iff neither
× nor � states are reachable (thus neither ∓ nor + states are reachable), M+

iff no × state is reachable but a + state is reachable (thus both � and ⊥ states
are reachable), and M× iff a × state is reachable. These rules can be formalized:

Theorem 4. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an
ω-language L ⊆ Σω. The monitorability of L, denoted by η(L), is:

η(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M�, iff ∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= × ∧ λ(q′) 	= ⊥
M⊥, iff ∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= × ∧ λ(q′) 	= �
M+, iff

{∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= ×, and
∃u ∈ Σ∗. δ(q0, u) = q′ ∧ λ(q′) = +

M×, iff ∃u ∈ Σ∗. δ(q0, u) = q′ ∧ λ(q′) = ×
The above checking procedure can be done in linear time and NLSpace by

traversing all the states of monitor. However, note that this procedure is per-
formed after constructing the monitor. Thus, when an ω-regular language L is
given in terms of an LTL formula, the four-valued monitorability of L can be
computed in 2ExpSpace; the same complexity as for two-valued monitorability.
As we will see in Sect. 6, the small size of standard LTL patterns means that
four-valued monitorability can be computed in very little time

Now consider other representations of ω-regular languages. If L is given in
terms of a Nondeterministic Büchi Automata (NBA), we first explicitly com-
plement the NBA, and the rest of the procedure stays the same. However, the
complement operation also involves an exponential blowup. If L is given in terms
of an ω-regular expression, we first build an NBA for the expression, which can
be done in polynomial time, and the rest of the procedure is the same as for
NBA. Hence, independent of the concrete representation, four-valued monitora-
bility of an ω-regular language can be computed in 2ExpSpace, by using the
monitor-based procedure.

5 State-Level Four-Valued Weak Monitorability

In this section, we apply four-valued monitorability at the state-level, to predict
whether satisfaction and violation can be detected starting from a given state



Four-Valued Monitorability of ω-Regular Languages 209

in a monitor. Recall that the notions of monitorability (cf. Definitions 3 and 7)
are defined using the extensions to good and bad prefixes. However, good and
bad prefixes are defined for an ω-language, not for a state. Thus such definitions
cannot be directly applied at the state-level. Instead, we define state-level moni-
torability using the reachability of � and ⊥ states, which are equivalent notions
to good and bad prefixes according to Theorem3.

Another note is that the resulting state-level monitorability is too strong
to meet our requirements, because it places restrictions on all the states reach-
able from the considered state. For example, in Fig. 2, we require discriminating
states P1 and P2 from state N, as satisfaction can be detected starting from P1
and P2, but neither satisfaction nor violation can be detected starting from N.
However, P1, P2 and N are all non-monitorable as neither � states nor ⊥ states
are reachable from N (in turn, reachable from P1 and P2). To provide the required
distinction, we should use a weaker form of state-level monitorability as follows.

Definition 9 (State-level four-valued weak monitorability). Let M =
(Q,Σ, δ, q0,B6, λ) be a six-valued monitor. A state q ∈ Q is

– weakly M� if a � state but no ⊥ state is reachable from q.
– weakly M⊥ if a ⊥ state but no � state is reachable from q.
– weakly M+ if both a � state and a ⊥ state are reachable from q.
– weakly M× if neither � states nor ⊥ states are reachable from q.

A state is weakly monitorable, iff it is weakly positively, negatively or neutrally
monitorable. For example, in Fig. 2, states P1, P2 and T are all weakly positively
monitorable as T is a reachable � state, while state N is weakly non-monitorable.
Thus, states P1 and P2 can now be discriminated from state N.

We can validate that state-level four-valued weak monitorability can indeed
predict whether satisfaction and violation can be detected starting from a given
state, as anticipated in Sect. 1, by showing the following theorem, that the truth
values M�, M⊥, M+ and M× indicate that only satisfaction, only violation,
both and neither can be detected, respectively. This theorem can be proved by
Definition 9 and Theorem 3.

Theorem 5. Let M = (Q,Σ, δ, q0,B6, λ) be a six-valued monitor. Suppose a
state q ∈ Q can be reached from q0 by reading u ∈ Σ∗, i.e., δ(q0, u) = q. If q is

– weakly M� then ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.
– weakly M⊥ then ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L.
– weakly M+ then ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.
– weakly M× then 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

The four truth values can be used in state-level optimizations of monitoring
algorithms:

– If a state is weakly positively (resp. negatively) monitorable, then a mon-
itor object can be safely removed when it enters this state, provided that
only violation (resp. satisfaction) handlers are specified, as no handler can be
triggered.



210 Z. Chen et al.

– If a state is weakly neutrally monitorable, then a monitor object must be
preserved if it is at this state as both satisfaction and violation can be detected
after some continuations.

– If a state is weakly non-monitorable, then a monitor object can be safely
removed when it enters this state as no verdict can be detected after any
continuation.

Besides, a monitor object can also be removed when it enters a � state or a ⊥
state, as any finite or infinite continuation yields the same verdict.

Let us consider the relationship between the language-level monitorability
and the state-level weak monitorability. The following lemma shows that the
monitorability of an ω-language depends on the weak monitorability of all the
reachable states of its monitor. This means, if an ω-language is non-monitorable,
then its monitor contains a reachable weakly non-monitorable state.

Lemma 3. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. L is monitorable iff every reachable state of M is weakly
monitorable.

Let us consider how one can compute the state-level four-valued weak mon-
itorability for each state in a six-valued monitor. We first formalize a mapping
from truth values to weak monitorability, and then show that the state-level
weak monitorability can be quickly computed from the output of the state.

Definition 10 (Value-to-weak-monitorability). Let vtom : B6 �→ M4 be
the value-to-weak-monitorability operator that converts a truth value in B6 into
the corresponding result of weak monitorability in M4 = {M�,M⊥,M+,M×},
defined as follows: vtom(�) = vtom(∓) = M�, vtom(⊥) = vtom(±) = M⊥,
vtom(+) = M+ and vtom(×) = M×.

Theorem 6. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an
ω-language L ⊆ Σω. The four-valued weak monitorability of q ∈ Q equals
vtom(λ(q)).

6 Implementation and Experimental Results

We have developed a new tool, Monic, that implements the proposed procedure
for computing four-valued monitorability of LTL formulas. Monic also supports
deciding two-valued monitorability. We have evaluated its effectiveness using a
set of LTL formulas, including formulas φ1 to φ6 (used in Sect. 1) and Dwyer et
al.’s 97 LTL patterns [10,18]. The tool implementation Monic and the dataset of
LTL formulas are available at https://github.com/drzchen/monic. The evalua-
tion was performed on an ordinary laptop, equipped with an Intel Core i7-6500U
CPU (at 2.5GHz), 4GB RAM and Ubuntu Desktop (64-bit).

The result on formulas φ1 to φ6 shows that: φ1 is neutrally monitorable, φ2 is
non-monitorable, φ3 is positively monitorable, φ4 is negatively monitorable, φ5

is neutrally monitorable, and φ6 is non-monitorable (but weakly monitorable).

https://github.com/drzchen/monic


Four-Valued Monitorability of ω-Regular Languages 211

Thus, the violation of φ3 and the satisfaction of φ4 can never be detected, whereas
both verdicts are active for φ1 and φ5. Further, φ4 and φ5 can be discriminated
by their different monitorability results.

We also ran Monic on Dwyer et al.’s specification patterns [10,18], of which
97 are well-formed LTL formulas. The result shows that 55 formulas are moni-
torable and 42 are non-monitorable. For those monitorable ones, 6 are positively
monitorable, 40 are negatively monitorable and 9 are neutrally monitorable. Our
result disagrees with the two-valued result reported in [10] only on the 6th LTL
formula listed in the Appendix of [10]. More precisely, Monic reports negatively
monitorable, whereas the result in [10] is non-monitorable. The formula is as
follows (! for ¬, & for ∧, | for ∨, -> for →, U for U, <> for F, [] for G):

[](("call" & <>"open") ->
((!"atfloor" & !"open") U
("open" | (("atfloor" & !"open") U

("open" | ((!"atfloor" & !"open") U
("open" | (("atfloor" & !"open") U
("open" | (!"atfloor" U "open"))))))))))

A manual inspection of its monitor (in Fig. 4) shows that our result is correct.
Indeed, state F is a ⊥ state, and states N1 to N7 are all ± states that can reach
the ⊥ state F.

Fig. 4. The monitor of an LTL pattern.

Finally, the above results for φ1 to φ6 and the 97 LTL patterns were computed
in 0.03 and 0.07 s, with 16 MB and 20 MB memory consumed, respectively (all
reported by GNU time). To conclude, the results show that Monic can correctly
report both two-valued and four-valued monitorability of typical formulas in very
little time.

7 Related Work

Monitorability is a principal foundational question in RV because it delineates
which properties can be monitored at runtime. The classical results on mon-
itorability have been established for ω-languages, especially for LTL [7,10,37].
Francalanza and Aceto et al. have studied monitorability for the Hennessy-Milner
logic with recursion, both with a branching-time semantics [1,21–23] and with



212 Z. Chen et al.

a linear-time semantics [2]. There exist some variants of monitorability as well.
For example, monitorability has been considered over unreliable communication
channels which may reorder or lose events [30]. However, all of the existing works
only consider two-valued notions of monitorability at the language-level.

Monitorability has been studied in other contexts. For example, a topologi-
cal viewpoint [16] and the correspondence between monitorability and the clas-
sifications of properties (e.g., the safety-progress and safety-liveness classifica-
tions) [19,20,35] have been established. A hierarchy of monitorability definitions
(including monitorability and weak monitorability [14]) has been defined wrt.
the operational guarantees provided by monitors [3].

A four-valued semantics for LTL [8,9] has been proposed to refine the three-
valued semantics [10]. It divides the inconclusive truth value ? into two values:
currently true and currently false, i.e., whether the finite sequence observed
so far satisfies the property based on a finite semantics for LTL. Note that it
provides more information on what has already been seen, whereas our six-valued
semantics describes what verdicts can be detected in the future continuation.

8 Conclusion

We have proposed four-valued monitorability and the corresponding computa-
tion procedure for ω-regular languages. Then we applied the four-valued notion
at the state-level. To our knowledge, this is the first study of multi-valued moni-
torability, inspired by practical requirements from RV. We believe that our work
and implementation can be integrated into RV tools to provide information at
the development stage and thus avoid the development of unnecessary handlers
and the use of monitoring that cannot add value, enhance property debugging,
and enable state-level optimizations of monitoring algorithms.

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for param-
eterized monitorability. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS,
vol. 10803, pp. 203–220. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-89366-2 11

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adven-
tures in monitorability: from branching to linear time and back again. In: Proceed-
ings of the ACM on Programming Languages,(POPL 2019), vol. 3, pp. 52:1–52:29
(2019)

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An oper-
ational guide to monitorability. In: Ölveczky, P.C., Salaün, G. (eds.) SEFM 2019.
LNCS, vol. 11724, pp. 433–453. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30446-1 23

4. Allan, C., et al.: Adding trace matching with free variables to AspectJ. In: Pro-
ceedings of OOPSLA 2005, pp. 345–364. ACM (2005)

5. Avgustinov, P., Tibble, J., de Moor, O.: Making trace monitors feasible. In: Pro-
ceedings of OOPSLA 2007, pp. 589–608. ACM (2007)

https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-319-89366-2_11
https://doi.org/10.1007/978-3-030-30446-1_23
https://doi.org/10.1007/978-3-030-30446-1_23


Four-Valued Monitorability of ω-Regular Languages 213

6. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime
verification. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification.
LNCS, vol. 10457, pp. 1–33. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-75632-5 1

7. Bauer, A.: Monitorability of ω-regular languages. CoRR abs/1006.3638 (2010)
8. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how

ugly is ugly? In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
126–138. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77395-
5 11

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

10. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4), 14 (2011)

11. Chen, F., Rosu, G.: MOP: an efficient and generic runtime verification framework.
In: Proceedings of OOPSLA 2007, pp. 569–588. ACM (2007)

12. Chen, Z.: Parametric runtime verification is NP-complete and coNP-complete. Inf.
Process. Lett. 123, 14–20 (2017)

13. Chen, Z., Wang, Z., Zhu, Y., Xi, H., Yang, Z.: Parametric runtime verification of C
programs. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
299–315. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-
9 17

14. Chen, Z., Wu, Y., Wei, O., Sheng, B.: Deciding weak monitorability for runtime
verification. In: Proceedings of ICSE 2018, pp. 163–164. ACM (2018)

15. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-Languages. In: Etessami, K.,
Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 364–378. Springer, Heidel-
berg (2005). https://doi.org/10.1007/11513988 36

16. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verifica-
tion. Theor. Comput. Sci. 537, 29–41 (2014)

17. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund, K., Penix, J.,
Visser, W. (eds.) SPIN 2000. LNCS, vol. 1885, pp. 323–330. Springer, Heidelberg
(2000). https://doi.org/10.1007/10722468 19

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of ICSE 1999, pp. 411–420. ACM (1999)

19. Falcone, Y., Fernandez, J.-C., Mounier, L.: Runtime verification of safety-progress
properties. In: Bensalem, S., Peled, D.A. (eds.) RV 2009. LNCS, vol. 5779, pp.
40–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04694-0 4

20. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at
runtime? Int. J. Softw. Tools Technol. Transf. (STTT) 14(3), 349–382 (2012).
https://doi.org/10.1007/s10009-011-0196-8

21. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49630-5 9

22. Francalanza, A., et al.: A foundation for runtime monitoring. In: Lahiri, S., Reger,
G. (eds.) RV 2017. LNCS, vol. 10548, pp. 8–29. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-67531-2 2

23. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-
Milner logic with recursion. Formal Methods Syst. Design 51(1), 87–116 (2017).
https://doi.org/10.1007/s10703-017-0273-z

24. Geilen, M.: On the construction of monitors for temporal logic properties. Electr.
Notes Theor. Comput. Sci. 55(2), 181–199 (2001)

https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-540-77395-5_11
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/978-3-662-49674-9_17
https://doi.org/10.1007/11513988_36
https://doi.org/10.1007/10722468_19
https://doi.org/10.1007/978-3-642-04694-0_4
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-662-49630-5_9
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/978-3-319-67531-2_2
https://doi.org/10.1007/s10703-017-0273-z


214 Z. Chen et al.

25. Havelund, K.: Runtime verification of C programs. In: Suzuki, K., Higashino, T.,
Ulrich, A., Hasegawa, T. (eds.) FATES/TestCom -2008. LNCS, vol. 5047, pp. 7–22.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68524-1 3

26. Havelund, K., Reger, G.: Runtime verification logics a language design perspective.
In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.)
Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp. 310–338. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 16

27. Havelund, K., Reger, G., Thoma, D., Zălinescu, E.: Monitoring events that carry
data. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 61–102. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75632-5 3

28. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46002-0 24

29. Havelund, K., Roşu, G.: Runtime verification - 17 years later. In: Colombo, C.,
Leucker, M. (eds.) RV 2018. LNCS, vol. 11237, pp. 3–17. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03769-7 1

30. Kauffman, S., Havelund, K., Fischmeister, S.: Monitorability over unreliable chan-
nels. In: Finkbeiner, B., Mariani, L. (eds.) RV 2019. LNCS, vol. 11757, pp. 256–272.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32079-9 15

31. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods
Syst. Design 19(3), 291–314 (2001). https://doi.org/10.1023/A:1011254632723

32. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Logic Alge-
braic Program. 78(5), 293–303 (2009)

33. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer, Heidelberg (1992). https://doi.org/10.1007/978-1-
4612-0931-7

34. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP
runtime verification framework. Int. J. Softw. Tools Technol. Transf. (STTT) 14(3),
249–289 (2012). https://doi.org/10.1007/s10009-011-0198-6

35. Peled, D., Havelund, K.: Refining the safety–liveness classification of temporal
properties according to monitorability. In: Margaria, T., Graf, S., Larsen, K.G.
(eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?. LNCS,
vol. 11200, pp. 218–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-22348-9 14

36. Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977, pp.
46–57. IEEE Computer Society (1977)

37. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 573–586.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 38

38. Rosu, G., Chen, F.: Semantics and algorithms for parametric monitoring. Log.
Methods Comput. Sci. 8(1), 1–47 (2012)

https://doi.org/10.1007/978-3-540-68524-1_3
https://doi.org/10.1007/978-3-319-63121-9_16
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/3-540-46002-0_24
https://doi.org/10.1007/978-3-030-03769-7_1
https://doi.org/10.1007/978-3-030-32079-9_15
https://doi.org/10.1023/A:1011254632723
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/s10009-011-0198-6
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/978-3-030-22348-9_14
https://doi.org/10.1007/11813040_38

	Four-Valued Monitorability of -Regular Languages
	1 Introduction
	2 Preliminaries
	3 Four-Valued Monitorability
	4 Computing Four-Valued Monitorability
	5 State-Level Four-Valued Weak Monitorability
	6 Implementation and Experimental Results
	7 Related Work
	8 Conclusion
	References




