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Abstract. Attack-Defence Trees (ADTrees) are a well-suited formal-
ism to assess possible attacks to systems and the efficiency of counter-
measures. This paper extends the available ADTree constructs with reac-
tive patterns that cover further security scenarios, and equips all con-
structs with attributes such as time and cost to allow for quantitative
analyses. We model ADTrees as (an extension of) Asynchronous Multi-
Agents Systems: EAMAS. The ADTree–EAMAS transformation allows
us to quantify the impact of different agents configurations on metrics
such as attack time. Using EAMAS also permits parametric verification:
we derive constraints for property satisfaction, e.g. the maximum time a
defence can take to block an attack. Our approach is exercised on several
case studies using the Uppaal and IMITATOR tools. We developed the
open-source tool adt2amas implementing our transformation.

1 Introduction

Over the past ten years of security analysis, multiple formalisms have been devel-
oped to study interactions between attacker and defender parties [16,19,22,26,
28]. Among these, Attack-Defence Trees (ADTrees [22]) stand out as a graphi-
cal, straightforward formalism of great modelling versatility. However, research
is thus far focused on bipartite graph characterisations, where nodes belong to
either the attacker or defender party [8,14,22,23]. This can model interactions
between opposing players, but lacks expressiveness to analyse potential sources
of parallelism when each party is itself formed of multiple agents.

Agents distribution over the tree nodes, i.e. which agent performs which task
for which goal, can determine not only the performance but also the feasibility of
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an attack or defence strategy. For instance, a monitored double-locked gate may
require two concurrent burglars, to steal goods before the alerted police arrives.
Likewise, distributed DoS attacks exploit multiplicity to overcome standard DoS
countermeasures. Clearly, studying agents distribution within the operations of
an attack/defence party is crucial to assess attacks and effective countermeasures.
However and to our surprise, we find no literature studies focused in this topic.

To fill this gap we hereby model ADTrees in an agent-aware formalism, and
study the mechanics of different agents distributions. Our approach permits
quantifying performance metrics (e.g. cost and time) of attack/defence strategies
under distinct agents coalitions. Employing modern verification tools—IMITA-
TOR [4] and Uppaal [11]—we reason about the impact of coalition strategies,
and synthesise the value of the attributes that make them feasible, such as the
maximum time allowed for a defence mechanism to be triggered. In this way, we
make an important step towards the analysis of more complex security scenarios.

Contributions. Concretely, in this paper we introduce: (i) a unified scheme
for ADTree representation with counter- and sequential-operators, including a
new construct to negate sequences; (ii) EAMAS: formal semantics to model
ADTrees, where all nodes have attributes and can be operated by agents; (iii)
compositional, sound and complete pattern transformation rules from ADTree to
EAMAS, which can model ADTrees with shared subtrees; (iv) the open-source
tool adt2amas [1] to translate ADTree models into EAMAS and generate IMI-
TATOR models; (v) measurements of the impact of different agents coalitions on
attack performance metrics, such as cost, exercised on several case studies; (vi)
synthesis of ADTree attributes (e.g. time) that enable attack/defence strategies.

Outline. In Sects. 2 and 3 we review the basic notions of ADTrees and AMAS.
Sect. 4 extends AMAS with attributes, to model ADTrees via the graph-based
transformation patterns introduced in Sect. 5. The effectiveness of our approach
is shown in Sect. 6, where we analyse three case studies from the literature, and
demonstrate scalability. We conclude in Sect. 7 and discuss future research.

Related Work. Attack-Defence Trees [22] extend Attack Trees with defen-
sive counter-actions. Several analysis frameworks implement this formalism as
Priced Timed Automata (PTA) [14], I/O-IMCs [7], Bayesian Networks (BN) [15],
stochastic games [9], and so on—see surveys [23,30]. Each framework computes
queries for the underlying semantics: conditional probabilities for BNs, time of
attacks/defences for PTAs, etc. In [25] a model driven approach is proposed to
inter-operate across these frameworks. However, none of them analyses agent
distributions within the attack/defence parties. Such studies are at the core of
this work. Furthermore, most analyses operate on fully described models, where
the attributes of all basic attack and defence nodes are known a priori. Instead
we extend the work of [5] to ADTrees, synthesising (constraints for the) values
of attributes that yield a successful attack or defence. Moreover, our EAMAS
formalism offers a succinct representation amenable to state space reduction
techniques [21]. This deploys lightweight analyses in comparison to other highly
expressive formalisms, such as Attack-Defence Diagrams [16]. Via EAMAS we
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extend the work on Attack Trees in [18]: we give formal semantics to sequential
order operators in ADTrees, that keep the order of events but abstract away their
exact occurrence point in time, as usual in the literature [10,18,20,23,25,28].

2 Attack-Defence Trees

2.1 The Basic ADTree Model

Attack Trees are graphical tree-like representations of attack scenarios. They
allow for evaluating the security of complex systems to the desired degree of
refinement. The root of the tree is the goal of the attacker, and the children

SJ

fdbi

(a) Attack Tree

SJS

pSJ

fdbi

(b) ADTree

Fig. 1. Steal jewels

of a node represent refinements of the node’s
goal into sub-goals. The tree leaves are (pos-
sibly quantified) basic attack actions. For
instance, Fig. 1a shows a simplistic Attack
Tree where the goal is to Steal Jewels from
a museum (SJ), for which burglars must break
in (node bi, an attack leaf ) and force a display
(fd). Nodes in the tree whose state depends on
other nodes are called gates: SJ is an AND gate
with two children.

Attack-Defence Trees [22] can model
counter-actions of a defender: they represent an interplay between the actions of
both attacker and defender. This can model mechanisms triggered by the occur-
rence of opposite actions. So for instance in the ADTree in Fig. 1b, the jewels
burglary will succeed (SJS) only if all attack actions are performed, and the
alerted police (node p, a defence leaf ) does not stop them.

We define ADTree structures as shown in Table 1. The formal semantics of
each construct will be later given in Sect. 5 in terms of (specialised) Multi-
Agent Systems; here we simply give a natural language interpretation of such
semantics. Since constructs are symmetric for attack and defence goals, Table 1
shows a comprehensive selection of structures. Here D, d, d1, · · · , dn P Σd and
A, a, a1, · · · , an P Σa, where Σd and Σa are sets of defence and attack nodes,
respectively. Graphically, triangular nodes stand for arbitrary subtrees that are
children of a gate, and circular (resp. rectangular) nodes represent attack (resp.
defence) leaves, i.e. basic actions that are no further refined. Table 1 thus rein-
terprets [22] using a unified gate notation along the lines of [25], including CAND
gates that express counter-attacks or -defences, e.g. counter defence in the table.

Table 1 also introduces operators for a choice between a successful attack and
a failing defence (named no defence), and vice-versa (inhibiting attack). These
constructs, less usual in the literature [23], model realistic scenarios such as
attack goals succeeding by security negligence rather than by performing costly
attack. This is of interest for quantitative analyses of e.g. cost and probability.

Moreover, we consider sequential operators, which lack a standard interpre-
tation for ADTrees. For Attack Trees, [18] proposes a sequentially ordered con-
junction (SAND) where attacks succeed as soon as all children took place in the
required order. This abstracts away the occurrence time point of events, and
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Table 1. ADTree constructs (selection) and their informal semantics

Name Graphics Semantics

Attack a a “basic attack
action a done”

Defence d d “basic defence
action d done”

And
attack

A

a1 an

A “attacks a1

through an

done”

Or
defence

D

d1 dn

D “one of the
defences d1
through dn
done”

Counter
defence

A

a d

A “attack a done
and defence d
not done”

Name Graphics Semantics

No
defence

A

a d

A “either attack a
done or else
defence d
not done”

Inhibiting
attack

D

d a

D “either defence d
done or else
attack a
not done”

Sequential
and

attack

A

a1 an

A “done attack a1,
then attack a2,
. . .
then attack an”

Failed
reactive
defence

A

a d

A “done attack a
and then did not
do defence d”

describes instead the order in which events must take place. Thus, SAND gates
enforce sequential events and rule out parallel executions: this is a fundamen-
tal construct in multi-agent systems. For instance, Steal Jewels (SJ) in Fig. 1 is
modelled with an AND gate. Let break-in (bi) take 10 min and force the display
(fd) 5 min. If two attackers cooperate, an ADTree analysis could conclude that
attack SJ succeeds after 10 min. But fd depends logically on bi, since the display
can only be forced after breaking in. Using instead a SAND gate for SJ enforces
this sequentiality so that attacks cannot take less than 15 min. We integrate such
SAND gates in our ADTree framework, as the sequential and attack in Table 1.

We further introduce SCAND gates: sequential gates that have attacks and
defences as children. To the best of our knowledge, this is novel in a typed
setting where subtrees (rather than leaves) can be assigned attack/defence goals.
This contribution is conservative: it extends the SAND gates of [18] to coincide
with previous works on sequential operators in defence-aware representations,
e.g. Attack-Defence Diagrams [16]. We distinguish two scenarios: a successful
attack followed by a failed counter defence (failed reactive defence in Table 1),
and vice versa. We disregard the second scenario as uninteresting—it models
defence goals which depend on attacks failing by themselves—and focus on the
first one. SCANDs then model an attack goal that must overcome some counter
defence, triggered only after the incoming attack has been detected.

2.2 Attributes and Agents for ADTrees

Attributes (also “parameters” and “gains” [8,10,25]) are numeric properties of
attack/defence nodes that allow for quantitative analyses. Typical attributes
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include cost and time: in the Steal Jewels example, the 10 min to break in is a
time attribute of this attack leaf. In general, attributes are associated only with
tree leaves, and used to compute e.g. the min/max time required by an attack.

General Attributes. We extend attributes, from leaves, to all nodes in
ADTrees, because a node need not be fully described by its children. An
attribute is then given by a node’s intrinsic value, and a computation func-
tion. For example, refine bi to be an AND gate between pick main lock (pml,
7 min) and saw padlock (sp, 2 min). Then it may take an extra minute to
enter and locate the correct display, counted after pml and sp finished. In gen-
eral, when the goal of a gate is successful, its attribute value is the result of
its computation function applied to its intrinsic value and to the attributes
of its children. For bi, if two burglars cooperate, the computation function is
init time(bi) + max(init time(pml), init time(sp)). This allows for flexibility in
describing different kinds of attributes, and gains special relevance when con-
sidering coalitions of agents, as we will further illustrate in Sect. 2.3. Moreover,
attributes can be parameters as in [5]. We can synthesise constraints over param-
eters, such as init time(bi) � 1 min, e.g. to determine which attribute values
make an attack successful.

Agents. Each action described by an ADTree construct can be performed by a
particular agent. Different attacks/defences could be handled by one or multiple
agents, which allows to express properties on agents coalitions. For instance, in
the Steal Jewels example of Fig. 1b, the minimal number of burglars required
to minimise the SJS attack time is two: one to do bi and another to parallelly
perform fd. If the SJ gate is changed to a SAND, then one burglar suffices, since
bi and fd cannot be parallelised. Upon using the refinement bi “ AND(pml, sp),
then again a coalition of two burglars minimises the attack time, since pml
and sp can be parallelised. Each node in the ADTree will thus be assigned to
an agent, and a single agent can handle multiple nodes. In the general case,
the only constraint is that no agent handles both attack and defence nodes.
Notice that even modern formalisms for ADTrees such as [13] are oblivious of
agents distributions: encoding them requires modifying the tree structure, e.g.
changing an AND for a SAND to enforce the sequential occurrence of actions (i.e.
they are carried out by the same agent). As we show in Sect. 4 and demonstrate
empirically in Sect. 6, our semantics decouples the attack structure from the
agent distribution. This permits to analyse and synthesise which distribution
optimises a goal, e.g. achieve the fastest attack, without tampering with the
ADTree model. Users can thus focus exclusively on the relevant studies of agent
coalitions: this entails less error-prone and shorter computation times than in
formalisms where agent distributions must be hacked into the ADTree structure.

Conditional Counter Measures. It may happen that a countering node has
a successful or unsuccessful outcome depending on the attributes of its children.
We therefore associate conditions with countering nodes, which are Boolean
functions over the attributes of the ADTree. When present, the condition then
comes as an additional constraint for the node operation to be successful.
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2.3 Example: Treasure Hunters

Our simple running example in Fig. 2 features thieves that try to steal a treasure
in a museum. To achieve their goal, they first must access the treasure room,
which involves bribing a guard (b), and forcing the secure door (f). Both actions
are costly and take some time. Two coalitions are possible: either a single thief
has to carry out both actions, or a second thief could be hired to parallelise b and
f. After these actions succeed the attacker/s can steal the treasure (ST), which
takes a little time for opening its display stand and putting it in a bag. If the
two-thieves coalition is used, we encode in ST an extra e 90 to hire the second
thief—the computation function of the gate can handle this plurality—else ST
incurs no extra cost. Then the thieves are ready to flee (TF), choosing an escape
route to get away (GA): this can be a spectacular escape in a helicopter (h),
or a mundane one via the emergency exit (e). The helicopter is expensive but
fast while the emergency exit is slower but at no cost. Furthermore, the time to
perform a successful escape could depend on the number of agents involved in
the robbery. Again, this can be encoded via computation functions in gate GA.

Fig. 2. The treasure hunters

As soon as the treasure room is penetrated
(i.e. after b and f but before ST) an alarm
goes off at the police station, so while the
thieves flee the police hurries to intervene (p).
The treasure is then successfully stolen iff the
thieves have fled and the police failed to arrive
or does so too late. This last possibility is
captured by the condition associated with the
treasure stolen gate (TS), which states that the
arrival time of the police must be greater than
the time for the thieves to steal the treasure
and go away.

3 AMAS

Asynchronous Multi-Agent Systems (AMAS
[17]) are a modern semantic model for the
study of agents’ strategies in asynchronous
systems. They provide an analysis framework
with efficient reachability checks even on non-
trivial models. Technically, AMAS are similar
to networks of automata that synchronise on
shared actions, and interleave local transitions
to execute asynchronously [12,17,27]. However, to deal with agents coalitions,
automata semantics (e.g. for ADTrees) must resort to algorithms and additional
attributes. In contrast, by linking protocols to agents, AMAS are a natural com-
positional formalism to analyse multi-agent systems.
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Definition 1 (Asynchronous Multi-Agent Systems [17]). An asyn-
chronous multi-agent system (AMAS) consists of n agents A “ {1, . . . , n}, where
each agent has an associated tuple Ai “ (Li, ιi, Acti, Pi, Ti) including (i) a set of
local states Li “ {l1i , l

2
i , . . . , l

ni
i }; (ii) an initial state ιi P Li; (iii) a set of actions

Acti “ {a1
i , a

2
i , . . . , a

mi
i }; (iv) a local protocol Pi : Li → 2Acti which selects the

actions available at each local state; and (v) a (partial) local transition function
Ti Ď Li ˆ Acti ˆ Li s.t. (li, a, l′i) P Ti for some l′i P Li iff a P Pi(li).

Sets Acti need not be disjoint. Act “ ⋃
iPA Acti and Loc “ ⋃

iPA Li are
resp. the set of all actions and all local states. For each action a P Act, set
Agent(a) “ {i P A | a P Acti} has all agents that can perform action a. The
parallel composition of AMAS is given by Interleaved Interpreted Systems,
which extend AMAS with propositional variables and define global-states and
-transitions.

Definition 2 (Interleaved Interpreted System [17]). Let PV be a set of
propositional variables. An interleaved interpreted system (IIS)is an AMAS
extended with (i) a set of global states S Ď ∏n

i“1 Li; (ii) an initial state ι P S;
(iii) a (partial) global transition function T : S ˆ Act → S s.t. ∀i P Agent(a),
T (s1, a) “ s2 iff Ti(si1, a) “ si2, whereas ∀i P AzAgent(a), si1 “ si2, where si1 is
the i-th local state of s1; and (iv) a valuation function V : S → 2PV .

4 Extending the AMAS Model

As defined in [17], AMAS do not include attributes. Therefore, to model ADTrees
we now define Extended AMAS, associating attributes with local transitions.

Definition 3 (Extended Asynchronous Multi-Agent Systems) . An
Extended Asynchronous Multi-Agent System (EAMAS) is an AMAS where
each local transition function t P LT “ ⋃

iPA Ti has a finite set of variables
AT t “ {v1

t , . . . , v
k
t } ( attributes) over a domain Dt “ d1t ˆ · · · ˆ dkt .

Let AT “ ⋃
tPT AT t and D “ ∏

tPT Dt. Let Guards be the set of formulæ
of the form β „ 0, where β is a linear expression over attributes of AT and
„ P {<, ď, “, ě, >}. Let M be the set of all messages, FUN be all functions
taking arguments in AT, and EXP(AT ,FUN ) be linear expressions over AT
and FUN . Each transition t P LT has associated: (i) a message fM (t) P ({!, ?}ˆ
M) ∪ {⊥}; (ii) a guard fG(t) P Guards; (iii) an update function ft : AT t →
EXP(AT ,FUN ).

Item (i) indicates whether transition t does not synchronise (⊥), or sends
(marked with !) or receives (?) a message m. For ADTrees, m P M “ {ok ,nok}.
Guards in item (ii) constrain transitions. item (iii) states how taking a transition
modifies the associated attributes. To model ADTrees we further extend IIS.

Definition 4 (Extended Interleaved Interpreted System) . Let PV be
a set of propositional variables, v : AT → D a valuation of the attributes, and
v0 an initial valuation. An extended interleaved interpreted system (EIIS), or
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a model, is an EAMAS extended with (i) a set of global states S Ď L1 ˆ
· · · ˆ Ln ˆ D; (ii) an initial state s0 “ x(ι1, . . . , ιn),v0y P S; (iii) a global
transition relation T Ď S ˆ Act ˆ S s.t. x(l1, . . . , ln,v), a, (l′1, . . . , l

′
n,v′)y P T

iff: either A): |Agent(a)| “ 1 ∧ ∃ti “ (li, a, l′i) P Ti for i P Agent(a) ∧ ∀k P
Az{i} lk “ l′k ∧ v |“ fG(ti) ∧ v′ “ v[AT ti ]; or B): (a) ∃i, j P Agent(a) ∧
∃ti “ (li, a, l′i) P Ti ∧ ∃tj “ (lj , a, l′j) P Tj s.t. fM (ti) “ (!,m) ∧ fM (tj) “ (?,m);
(b) ∀k P Az{i, j} lk “ l′k; (c) v |“ fG(ti) ∧ fG(tj); (d) v′ “ v[AT ti ][AT tj ],
where AT ti and AT tj are disjoint; and (iv) a valuation function V : S →
2PV . In item (d), v[AT ti ][AT tj ] indicates the substitution of attributes in the

valuation v according to transitions ti and tj, that is v′ “ v
[ ∧

vti
PAT ti

vti :“
fti(vti)

][ ∧

vtj
PAT tj

vtj :“ ftj (vtj )
]
.

In the definition of the global transition relation T , item (a) specifies the
synchronisation of transition ti (with a sending action) and tj (with a receiving
action) that share the message m. Item (b) ensures that agents other than i and
j do not change their states in such a synchronisation. Item (c) guarantees that
the guards of ti and tj hold for the valuation v. Finally, item (d) indicates how
v′ is obtained by updating v with the attributes values modified by ti and tj .

5 EAMAS Transformation of ADTrees

We give formal semantics to ADTrees as EIIS. For that, we model ADTree
nodes as EAMAS via transformation patterns. The resulting EAMAS synchro-
nise with each other via shared actions. Note that unlike formalisms such as
Timed Automata where clocks let time elapse, time in EAMAS is an attribute.

We show that this compositional approach is correct, i.e. complete—all rele-
vant ADTree paths are captured by the model—and sound—no new paths are
introduced leading to a node’s goal. Moreover, these semantics are amenable to
state-space reductions [21], and naturally support shared subtrees in the ADTree,
all of which favours its use in practical scenarios.

5.1 Transformation Patterns

Table 2 shows each ADTree construct transformed into one agent (sub-) model.
In this compositional modelling approach, agents communicate via the blue tran-
sitions. Transformations are symmetrical for attack and defence nodes: Table 2
shows attack patterns. A leaf signals action a iff it succeeds. Self-loops in states
lA, lN synchronise with all nodes that depend on this node (leaf or gate). Thus
our semantics can model ADTrees where gates share children. An AND gate suc-
ceeds when all actions occur, in any order. Then attack A occurs, followed by a
broadcast of signal !A ok by the AND gate. The AND fails if any action of a child
fails. OR, CAND, and COR operate in the expected analogous way. Models for SAND
and SCAND enforce the absence of parallelism, as per their semantics in Sect. 2.1.
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Table 2. ADTree nodes and corresponding agent models

ADTree construct Reduced Model (EAMAS) Full Model (2 children only)

Leaf node

a

l0 lA

lN

a
!a ok

!a nok !a nok

l0 lA

lN

a
!a ok

!a nok !a nok

Conjunction/disjunction nodes

A

a1 an

l0

l1 l2 ln lA

lN

?a
1
ok

?a2 ok A

!A ok?a
1 nok

?a
2 nok
...?a

n
nok

!A nok

l0

l1 l2 lA

l1 lN

?a
1
ok

?a
2
ok

?a2 ok

?a1 ok

A

!A ok?a
1 nok?a

2 nok

?a
1
nok

?a
2
nok

?a1 nok
?a1 ok

?a2 ok
?a2 nok

!A nok

A

a1 an

l0 l1 lA
...

l1 l2 lN

?a1 ok

?an ok

A
!A ok

?a
1 nok ?a2 nok

!A nok

l0

l1 l2 lA

l1 lN

?a
1
ok

?a
2
ok

?a
2
ok

?a
1
ok

A

!A ok?a
1 nok?a

2 nok

?a1 nok

?a2 nok

?a1 nok
?a1 ok

?a2 ok
?a2 nok

!A nok

Countering nodes

A

a d

l0 l1

lN

l2 lA
?a ok ?d nok

?a
nok?d

ok

A

!A ok

!A nok

l0

l1

l1

l2 lA

lN

?a
ok

?d
no
k

?d nok

?a ok

?a
nok

?d
ok?a

nok?d
ok

A

?a nok
?a ok

?d ok
?d nok

!A ok

!A nok

A

a d

l0 l1 lA

l1 lN

?a ok

?d nok

A
!A ok

?a
nok ?d ok

!A nok

l0

l1 l2 lA

l1 lN

?a
ok

?d
no
k

A

!A ok
?a
nok?d

ok

?a nok
?a ok

?d ok
?d nok

?a nok

?d ok

?a
ok

?d
no
k

!A nok

Sequential nodes

A

a1 an

l0 l1

lN

l2 ln lA
?a1 ok ?a2 ok

?a
1 nok

?a
2
nok ?a

3
no
k

A

!A ok

!A nok

l0 l1

l1

l2 lA

lN

?a1 ok ?a2 ok

?a
1 nok

?a
2 nok

A

!A ok
?a2 ok

?a2 nok
!A nok

A

a d

l0 l1

lN

l2 lA
?a ok ?d nok

?a
nok

? d
ok

A

!A ok

!A nok

l0 l1

l1

l2

lN

lA
?a ok ?d nok

?a
nok

?d
ok

A

!A ok
?d ok

?d nok
!A nok

To go from the initial to a final state, EAMAS patterns in Table 2 use one
order of actions. We now show that this order represents all orderings of actions
that make the attack/defence succeed. That is, our semantics is complete, in
that it captures all paths of successful attacks/defences—see also [6].
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Theorem 1 (Completeness). Let a1, . . . , an be the children of the ADTree
gate A with EAMAS models Ma1 , . . . ,Man

,MA resp. Let A succeed when
ai1 · · · aim finalise (succeeding or failing) in that order. If the EAMAS models
Maij

finalise in the same order, then MA transits from its initial state l0 to its
final state lA.

Proof. First note that if node x finalises, its EAMAS model will send either
!x ok or !x nok . Moreover, due to the self-loops in the end states, this happens
infinitely often. Thus, if nodes ai1ai2 · · · aim finalise, actions !ai1 ok , !ai2 ok ,. . . ,
!aim ok (or the corresponding !a∗ nok) will be signaled infinitely often. By
hypothesis, gate A succeeds when ai1 · · · aim finalise in that order. All patterns
in Table 2 have (at least) one sequence of actions ?aj1 ok · · · ?ajk ok (or ?a∗ nok)
that take it from l0 to lA. By the first argument, all actions in the sequence of
MA are signaled infinitely often. MA will then transit from l0 to lA.

This covers expected actions that a parent must receive from its children to
achieve its goal. For unexpected sequences of signals, a parent may not react
to all information from its children—e.g. a CAND gate that after ?a ok receives
(unexpectedly) ?d ok . In such scenarios the model cannot reach its final state,
entering a deadlock. This means that the model of A cannot signal its !A ok
action. Notice that this is exactly what should happen, because such unexpected
sequences actually inhibit the goal of node A. To formally complete this argu-
ment, we now prove that the transformations of Table 2 are sound. That is, that
all paths (of actions) that make the model of a node A signal !A ok , correspond
to an ordered sequence of finalising children of A that make it reach its goal.

Theorem 2 Soundness). Let a1, . . . , an be the children of the ADTree gate A
with EAMAS models Ma1 , . . . ,Man

,MA respectively. Let the sequence of actions
?ai1 si1 ?ai2 si2 · · · ?aim sim take MA from its initial state l0 to its final state lA,
where sj P {ok ,nok}. Then the corresponding ordered success or failure of the
children ai1 , . . . , aim make the ADTree gate A succeed.

Proof. First, observe that the reduced models in Table 2 are subsets of the full
models—which consider all possible interleavings of synchronisation messages
from child nodes. Thus, any path π in a reduced model also appears in the
corresponding full model. Moreover, inspecting Tables 1 and 2 shows that, in the
full model MA of gate A, a path of actions ?ai si (from children ai of A) that
transit from l0 to lA, encodes the ordered finalisation of these children that make
the ADTree A succeed. Our hypothesis is the existence of a path π of actions
in (the reduced model) MA, that take this EAMAS from l0 to lA. By the first
argument, π is also a path in (the full model) MA. By the second argument, π
encodes the ordered finalisation of children c of A that make this gate succeed.

5.2 Adding Node Attributes

Transformation patterns in Table 2 concern only an ADTree structure. To take
the value of attributes into account, a child must transmit these to all parents.
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Attributes and Computation Functions. Attributes attached to a node are
given by the intrinsic value and computation function of the node—see Sect. 2.2
and the EAMAS update function in item (iii) of Definition 3. For example, the
cost of an AND gate is typically its own cost plus those of all children. Attributes
values are computed only after all the preconditions of the node are satisfied. OR
gates involve a choice among children: here, computation happens upon receiving
the message from one child. Conditions associated with ADTree countering nodes
(e.g. TS in Fig. 2) are added as guards to the corresponding action transition.

Distribution of Agents over Nodes. Computation functions are a versatile
solution to analyse agents coalitions. For instance, the attack time of an AND gate
can depend on the number of agents (within the attack party) that cooperate
to execute its children. This can be different for the attack cost of the same AND
gate, and for the attack time of a SAND gate. We illustrate this in the following.

Example 1. In our running example—Fig. 2—the computation function for the
attack time of the gate ST “ AND(b, f) can be generically expressed with binary
functions f and g as f

(
init time(ST) , g(init time(b), init time(f))

)
, where:

� f “ +, since ST depends logically on the completion of both children nodes;
� g depends on the agent coalition: if we use a single thief for b and f then

g “ +, if we use two thieves then g “ max.

This duality of g is precisely the kind of analyses that our approach enables. �

In the general case, the children of a binary gate will be subtrees L and R
rather than leaves, which allows for more complex computations of potential
parallelism between the agents in L and R. For example, to model a worst-case
scenario in an AND gate with a set of agents A, let AL Ď A (resp. AR Ď A) be all
agents from subtree L (resp. R). Then let the attack time of the AND be either:

� the sum of the times of L and R if AL X AR �“ ∅, because then some agent is
used in both children and thus full parallelism cannot be ensured;

� the maximum between these times otherwise, since L and R are independent.

Notice that these considerations also cover cases where gates share children,
e.g. AL X AR �“ ∅ above. The main advantage of computations functions—and
our semantics in general—w.r.t. other approaches in the literature is that agents
coalitions that are internal to an attack or defence party can be modelled in any
desired way. In [6] and https://up13.fr/?VvxUgNCK we give more examples.

6 Experiments

Two state-of-the-art verification tools are used to exercise our approach and
provide an empirical demonstration of its capabilities:

– Uppaal [11] is a model-checker for real-time systems. Automata templates
are declared in its GUI and given semantics as Priced Time Automata. A full
model is an automata network built from the instantiation of the templates,
which can be queried using PCTL-like formulæ.

https://up13.fr/?VvxUgNCK
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– IMITATOR [4] is a model-checker for Parametric Timed Automata [3], that
implements full-synchronisation semantics on the shared transition labels of
the automata in the model. Moreover, IMITATOR can synthesise parameter
constraints e.g. to find the values of attributes so that an attack is feasible.

Fig. 3. Uppaal template for SCAND pattern

The GUI of Uppaal per-
mits straightforward implemen-
tations of our transformation
patterns: compare the pattern
for the SCAND gate (last row in
Table 2) with its corresponding
Uppaal template (Fig. 3). Fur-
thermore, the instantiation of
templates to define the full model (“system declarations”) makes it easy to
describe the ADTree structure, as well as the agents distribution via an array.
Our Uppaal models are available as XML files in https://up13.fr/?VvxUgNCK.

In turn, the open source tool IMITATOR [2] can use symbolic computations
to find out the values of attributes that permit or prevent an attack. So for
instance, instead of stating that the police takes 10 min to arrive, our running
example could have the time tp set as a parameter variable. Checking when the
attack fails results in IMITATOR outputting a set of constraints, e.g.{tp ď 5}.

We implemented the tool adt2amas [1] to execute our transformation process
automatically. The tool receives as input the ADTree model and recursively
applies the transformation rules. Then, it compiles the generated EAMAS model
into the format of the tool IMITATOR. Our tool also generates a PDF file with
the EAMAS model—see e.g. Fig. 5 in [6] and also https://up13.fr/?VvxUgNCK.

6.1 Case Studies

The two above mentioned tools were used to analyse 3 literature case studies,
detailed in https://up13.fr/?VvxUgNCK and [6]. These case studies were chosen
so that their ADTree structures are easy to present and grasp by the readers.
Notice that our approach can scale to much larger state spaces as shown in [21].

Forestalling a software release is based on a real-world attack to the
intellectual property of a company from a competitor that wants to be “the first
to market” [10]. We follow [24] where software extraction and deployment by the
competitor must occur before the lawful company deploys its own product.

Compromise IoT device describes an attack to an Internet-of-Things
device via wireless or wired LAN. The attacker accesses the LAN, acquires cre-
dentials, and then exploits software vulnerabilities to run a malicious script. Our
ADTree adds defence nodes on top of the attack trees used in [25].

Obtain admin privileges models a hacker trying to escalate privileges in a
UNIX system, via physical access to an already logged-in CLI or remote access
(attacking SysAdmin). This well known case study [19,23,24,29] has a branching
structure: all gates but one are OR in the original tree of [29]. We enrich this with
the SAND gates of [24], and further add reactive defences.

https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
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Table 3. Quantitative results for ADTrees implementations: origin vs. eamas

Time of an attack Cost of an attack

min max min max

Number of attack agents: 1 2 1 2 1 2 1 2

treasure hunters
origin – 125 min – 132 min – e 690 – e 1190

eamas 185 min 125 min 185 min 125 min e 1100e 1190e 1100 e 1190

forestall
origin – 43 days – 55 days – e 4k – e 10.5k

eamas 43 days 43 days 55 days 55 days e 4k e 4k e 7.5k e 7.5k

iot-dev
origin – 694 min – 695 min – e 270 – e 380

eamas 784 min 694 min 1114 min 694 min e 270 e 270 e 320 e 320

gain-admin
origin – 2942 min – 23070 min – e 100 – e 15820

eamas2942 min2942 min23070 min23070 min e 100 e 100 e 6000 e 6000

6.2 Experimentation Setup

We computed the cost and time of attacks of four ADTrees: one corresponding to
our running example, plus one for each case study. Each tree was implemented:
1) in IMITATOR using the patterns of Table 2 (we call this “eamas”); 2) in
Uppaal using the same patterns (also “eamas”); and 3) in Uppaal using the
original templates of [24,25] that employ clocks and time constraints, extended
to fit Sect. 6.1 (“origin”). Such triple implementation pursues two goals:

(a) verify correctness, checking that the results of reachability (“can the attack
succeed?”) and quantitative queries (“what is the time of the fastest possible
attack?”, “what is the lowest cost incurred?”) coincide between the origin
and eamas implementations, regardless of the tool used;

(b) demonstrate our contributions: studying the impact of agent coalitions on
quantitative metrics such as minimal attack time/cost; and synthesising the
parameter valuations rendering an attack feasible.

6.3 Verifying Correctness

To achieve goal (a) we queried the min/max time and cost of attacks for each
ADTree: Table 3 summarises our results. For all ADTrees, all queries on the
eamas implementations in IMITATOR and in Uppaal yielded the same values,
thus the joint name “eamas”. In the running example, adding the constraint on
the police (associated with TS) would impact the structure of the origin model
too much, and thus this constraint was only implemented in the eamas versions.

Six values in Table 3 (underlined) differ between the eamas and origin
implementations of an ADTree. For max cost this is because the origin models
consider all possible actions for maximisation, unnecessary for e.g. OR gates. An
eamas model by default considers a single attack in such cases, but it can mimic
origin if one forces the occurrence of all attacks (even for OR gates).

The correct max time of iot-dev with 2 agents is the one for eamas: 694 min,
via attacks CPN, GVC, esv, and rms. We suspect that the origin Uppaal imple-
mentation yields an imprecise result due to the use of non-discrete clocks and
our remark i) on Uppaal’s time abstractions when clock variables are used.
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In treasure hunters, the time condition for TS (see Fig. 2) is much more difficult
to model in Uppaal with clocks than in the eamas model where time is an
attribute. The value e 690 in the origin model is incorrect because it uses e
(emergency gate), which would be too slow to get away from an alerted police.

Table 3 also shows initial experiments with agents: we used one or two attack-
ers, in the latter case setting the time-optimal agent distribution. This distribu-
tion was chosen according to the structure of the tree; so for instance when two
attackers are used in the iot-dev case study, we set different agents for the leaves
of gate APN, allowing attacks CPN and GVC to run in parallel.

Such agents coalitions were easily encoded (as arrays) in the eamas models.
In contrast, the origin ADTree implementations use clock variables and con-
straints to encode the duration of attacks/defences. This approach—standard in
verification of real time systems—has two drawbacks when analysing ADTrees:

i) Uppaal uses abstractions and approximations for time zones that rule out
decidability in the general case. Thus, queries (e.g. “is an attack feasible?”)
result in “may be true/false”. In contrast, EAMAS transformations are
untimed and verification is exact. The price to pay is a larger state space
(which we did not reduce but see [21]) and approx. thrice-longer computation
times.

ii) Unless explicitly encoded in each gate, time elapses simultaneously for all
clocks. This is equivalent to having an agent for each tree node. Thus, mod-
elling dependent node executions requires e.g. using a SAND gate rather than
an AND gate. This contaminates the structure of the ADTree with the dis-
tribution of the agents that perform the actions. In contrast, EAMAS can
keep the ADTree structure unmodified while studying agents coalitions.

Remark ii) makes it impossible to analyse one-agent coalitions in the origin
implementations. Therefore, for each ADTree of Table 3, origin entries only
have results for the maximum number of time-parallelisable agents in that tree.

6.4 Playing with Agents Coalitions

In the running example, the min/max times differ for one and two agents, and
an extra cost (e 90) is incurred when the second agent is used. In contrast, the
forestall and gain-admin case studies are intrinsically sequential, hence attack times
(and cost) are unaffected by the number of agents.

The iot-dev case study behaves similar to the running example when adding
an extra agent. However, the minimal time decreases when an agent handles the
CPN subtree while the other one is assigned to gc. Since gc has a longer duration
than any option in the CPN subtree, the choice it makes does not change the
operation time. With one agent, both gc and an option of CPN are achieved by
the same agent, leading to different min and max times, depending on the choice.
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Fig. 4. Scaling w.r.t. the assignment of agents

Figure 4 shows attack times
for a different ADTree (that
can be found in https://up
13.fr/?VvxUgNCK and also
in [6]) where changing the
agents coalition has a larger
impact in attack metrics.
The chart shows the fastest
and slowest attack times
achieved with different assign-
ments of agents to nodes, where all nodes take 1 time unit to complete.

These times coincide when there is a single agent, or one agent per node, since
then there is only one way to assign agents to nodes. Instead, in the middle cases,
the difference between fastest and slowest attack varies substantially for different
agents coalitions. Such difference would be exacerbated by more heterogeneous
time attributes in the nodes. The analyses enabled by our approach show that
the fastest attack can be achieved using only 6 agents.

6.5 Parameter Synthesis

We also experimented with the parametric capabilities offered by IMITATOR:

Treasure Hunters: “To catch the thieves, what is the maximum time the police
can take to arrive?” Answering this question requires synthesising a value for
the time attribute of the p node, which becomes a model parameter. IMITATOR
computed that the police can take at most 5 min to prevent the burglary.

Case Studies: an attack is successful if its associated defence was slower. (i) for
forestall, id should take at most 1 day to block NA—since NAS is a failed reactive
defence, id is triggered as soon as heb succeeds, and must finish faster than the
intrinsic time of NA; (ii) for iot-dev, inc is effective iff it takes at most 3 min; (iii)
for gain-admin we proved that whatever the time for tla, an attack is feasible (as
GSAP is a disjunction), hence the other defences are required.

7 Conclusion and Future Work

We revisited Attack-Defence Trees under a unified syntax, extending the usual
constructs with a new sequential counter-operator (SCAND). More importantly
we introduced EAMAS, an agent-aware formalism to model ADTrees, and trans-
formation patters from the latter to the former that are sound, complete, and
preserve the compositionality of ADTrees, naturally covering cases with shared
subtrees. The impact of different agent coalitions on attack time and cost was
evaluated using Uppaal and IMITATOR. Finally, the feasibility of an attack was
evaluated through parameter synthesis with IMITATOR, to obtain the attribute
values of ADTree nodes that make an attack succeed. Our experiments show that

https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
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(and how) different agent distributions affect the time of attacks/defence strate-
gies, possibly rendering some infeasible. We expect this will open the gate to
richer studies of security scenarios, with multiple agents that can collaborate.

Our next goals include logics to express properties in EAMAS, and adapting
the partial order reduction from [17] as well as the state space reduction for
tree topologies of [21] to agent strategies in EAMAS, including extensions to
parametric timing information. This will allow for studying the strategic abilities
of agents, ultimately in a parametric setting. Finally, we will add support for
agents assignment to our tool adt2amas that transforms ADTrees into EAMAS.
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Russo, A., Schürr, A. (eds.) FASE 2018. LNCS, vol. 10802, pp. 56–73. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89363-1 4

26. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: HASE 2017, pp. 25–32. IEEE (2017)

27. Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking
temporal epistemic logics over interleaved multi-agent systems. In: AAMAS 2010,
vol. 1–3, pp. 659–666. IFAAMAS (2010)

28. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.: Automated generation
and analysis of attack graphs. In: Proceedings 2002 IEEE Symposium on Security
and Privacy, pp. 273–284 (2002). https://doi.org/10.1109/SECPRI.2002.1004377

29. Weiss, J.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference, pp. 572–581 (1991)

30. Widel, W., Audinot, M., Fila, B., Pinchinat, S.: Beyond 2014: formal methods for
attack tree-based security modeling. ACM Comp. Surv. 52(4), 75:1–75:36 (2019).
https://doi.org/10.1145/3331524

https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1016/j.entcs.2014.12.014
https://doi.org/10.1016/j.entcs.2014.12.014
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1007/978-3-540-88873-4_8
https://doi.org/10.1109/IC4.2009.4909245
https://doi.org/10.1109/IC4.2009.4909245
https://doi.org/10.1093/logcom/exs029
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-89363-1_4
https://doi.org/10.1109/SECPRI.2002.1004377
https://doi.org/10.1145/3331524

	Hackers vs. Security: Attack-Defence Trees as Asynchronous Multi-agent Systems
	1 Introduction
	2 Attack-Defence Trees
	2.1 The Basic ADTree Model
	2.2 Attributes and Agents for ADTrees
	2.3 Example: Treasure Hunters

	3 AMAS
	4 Extending the AMAS Model
	5 EAMAS Transformation of ADTrees
	5.1 Transformation Patterns
	5.2 Adding Node Attributes

	6 Experiments
	6.1 Case Studies
	6.2 Experimentation Setup
	6.3 Verifying Correctness
	6.4 Playing with Agents Coalitions
	6.5 Parameter Synthesis

	7 Conclusion and Future Work
	References




