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Preface

The International Conference on Formal Engineering Methods (ICFEM) gathers
researchers and practitioners interested in the recent development in the use and
development of formal engineering methods for software and system development. It
records the latest development in formal engineering methods.

ICFEM 2020 – the 22nd edition of ICFEM – was planned for late October 2020, but
due to the COVID-19 pandemic, the conference was delayed and postponed to Sin-
gapore during March 1–3, 2021. ICFEM 2020 received 41 submissions covering
theory and applications in formal engineering methods together with case studies. Each
paper was reviewed by at least three reviewers, and the Program Committee accepted
16 regular papers and 4 short papers, leading to an attractive scientific program.

After the success of the doctoral symposium of the previous edition, we decided to
host a doctoral symposium again at ICFEM 2020. The doctoral symposium Program
Committee (chaired by Lei Ma from Kyushu University, Japan; Weiyi Shang from
Concordia University, Canada; and Xiaoning Du from Monash University, Australia)
accepted one doctoral symposium paper, included in the back matter of ICFEM 2020
proceedings.

ICFEM 2020 would not have been successful without the contribution and
involvement of the Program Committee members and the external reviewers who
contributed to the review process (with more than 120 reviews) and the selection of the
best contributions. This event would not exist if authors and contributors did not submit
their proposals. We address our thanks to every person, reviewer, author, Programme
Committee member and Organizing Committee member involved in the success of
ICFEM 2020.

The EasyChair system was set up for the management of ICFEM 2020 supporting
submission, review, and volume preparation processes. It proved to be a powerful
framework.

ICFEM 2020 had one affiliated workshop: the 10th International Workshop on
SOFL + MSVL for Reliability and Security (SOFL+MSVL 2020), which brought in
additional participants to the ICFEM week and helped make it an interesting and
successful event. We thank all the workshop organizers for their hard work.

ICFEM 2020 was hosted and sponsored by the National University of Singapore.
The Local Organizing Committee offered all the facilities to run the conference in a
lovely and friendly atmosphere. Many thanks to all the local organizers.



We wish to express our special thanks to the general co-chairs, the Steering
Committee members and in particular Shaoying Liu and Jin Song Dong for their
valuable support.

September 2020 Shang-Wei Lin
Zhe Hou

Brendan Mahony

The original version of the book was revised: the surname of the editor was misspelled.
The surname has been corrected. The correction to the book is available at
https://doi.org/10.1007/978-3-030-63406-3_21

vi Preface

https://doi.org/10.1007/978-3-030-63406-3_21
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Hackers vs. Security: Attack-Defence
Trees as Asynchronous Multi-agent

Systems

Jaime Arias1 , Carlos E. Budde2(B) , Wojciech Penczek3 ,
Laure Petrucci1 , Teofil Sidoruk3,5 , and Mariëlle Stoelinga2,4

1 LIPN, CNRS UMR 7030, Université Sorbonne Paris Nord,
Sorbonne Paris Cité, Villetaneuse, France

2 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
c.e.budde@utwente.nl

3 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
4 Department of Software Science, Radboud University, Nijmegen, The Netherlands

5 Warsaw University of Technology, Warsaw, Poland

Abstract. Attack-Defence Trees (ADTrees) are a well-suited formal-
ism to assess possible attacks to systems and the efficiency of counter-
measures. This paper extends the available ADTree constructs with reac-
tive patterns that cover further security scenarios, and equips all con-
structs with attributes such as time and cost to allow for quantitative
analyses. We model ADTrees as (an extension of) Asynchronous Multi-
Agents Systems: EAMAS. The ADTree–EAMAS transformation allows
us to quantify the impact of different agents configurations on metrics
such as attack time. Using EAMAS also permits parametric verification:
we derive constraints for property satisfaction, e.g. the maximum time a
defence can take to block an attack. Our approach is exercised on several
case studies using the Uppaal and IMITATOR tools. We developed the
open-source tool adt2amas implementing our transformation.

1 Introduction

Over the past ten years of security analysis, multiple formalisms have been devel-
oped to study interactions between attacker and defender parties [16,19,22,26,
28]. Among these, Attack-Defence Trees (ADTrees [22]) stand out as a graphi-
cal, straightforward formalism of great modelling versatility. However, research
is thus far focused on bipartite graph characterisations, where nodes belong to
either the attacker or defender party [8,14,22,23]. This can model interactions
between opposing players, but lacks expressiveness to analyse potential sources
of parallelism when each party is itself formed of multiple agents.

Agents distribution over the tree nodes, i.e. which agent performs which task
for which goal, can determine not only the performance but also the feasibility of

This work was partially funded by the NWO project SEQUOIA, the PHC van Gogh
project PAMPAS, the BQR project AMoJAS, and the IEA project PARTIES.

c© Springer Nature Switzerland AG 2020
S.-W. Lin et al. (Eds.): ICFEM 2020, LNCS 12531, pp. 3–19, 2020.
https://doi.org/10.1007/978-3-030-63406-3_1
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an attack or defence strategy. For instance, a monitored double-locked gate may
require two concurrent burglars, to steal goods before the alerted police arrives.
Likewise, distributed DoS attacks exploit multiplicity to overcome standard DoS
countermeasures. Clearly, studying agents distribution within the operations of
an attack/defence party is crucial to assess attacks and effective countermeasures.
However and to our surprise, we find no literature studies focused in this topic.

To fill this gap we hereby model ADTrees in an agent-aware formalism, and
study the mechanics of different agents distributions. Our approach permits
quantifying performance metrics (e.g. cost and time) of attack/defence strategies
under distinct agents coalitions. Employing modern verification tools—IMITA-
TOR [4] and Uppaal [11]—we reason about the impact of coalition strategies,
and synthesise the value of the attributes that make them feasible, such as the
maximum time allowed for a defence mechanism to be triggered. In this way, we
make an important step towards the analysis of more complex security scenarios.

Contributions. Concretely, in this paper we introduce: (i) a unified scheme
for ADTree representation with counter- and sequential-operators, including a
new construct to negate sequences; (ii) EAMAS: formal semantics to model
ADTrees, where all nodes have attributes and can be operated by agents; (iii)
compositional, sound and complete pattern transformation rules from ADTree to
EAMAS, which can model ADTrees with shared subtrees; (iv) the open-source
tool adt2amas [1] to translate ADTree models into EAMAS and generate IMI-
TATOR models; (v) measurements of the impact of different agents coalitions on
attack performance metrics, such as cost, exercised on several case studies; (vi)
synthesis of ADTree attributes (e.g. time) that enable attack/defence strategies.

Outline. In Sects. 2 and 3 we review the basic notions of ADTrees and AMAS.
Sect. 4 extends AMAS with attributes, to model ADTrees via the graph-based
transformation patterns introduced in Sect. 5. The effectiveness of our approach
is shown in Sect. 6, where we analyse three case studies from the literature, and
demonstrate scalability. We conclude in Sect. 7 and discuss future research.

Related Work. Attack-Defence Trees [22] extend Attack Trees with defen-
sive counter-actions. Several analysis frameworks implement this formalism as
Priced Timed Automata (PTA) [14], I/O-IMCs [7], Bayesian Networks (BN) [15],
stochastic games [9], and so on—see surveys [23,30]. Each framework computes
queries for the underlying semantics: conditional probabilities for BNs, time of
attacks/defences for PTAs, etc. In [25] a model driven approach is proposed to
inter-operate across these frameworks. However, none of them analyses agent
distributions within the attack/defence parties. Such studies are at the core of
this work. Furthermore, most analyses operate on fully described models, where
the attributes of all basic attack and defence nodes are known a priori. Instead
we extend the work of [5] to ADTrees, synthesising (constraints for the) values
of attributes that yield a successful attack or defence. Moreover, our EAMAS
formalism offers a succinct representation amenable to state space reduction
techniques [21]. This deploys lightweight analyses in comparison to other highly
expressive formalisms, such as Attack-Defence Diagrams [16]. Via EAMAS we
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extend the work on Attack Trees in [18]: we give formal semantics to sequential
order operators in ADTrees, that keep the order of events but abstract away their
exact occurrence point in time, as usual in the literature [10,18,20,23,25,28].

2 Attack-Defence Trees

2.1 The Basic ADTree Model

Attack Trees are graphical tree-like representations of attack scenarios. They
allow for evaluating the security of complex systems to the desired degree of
refinement. The root of the tree is the goal of the attacker, and the children

SJ

fdbi

(a) Attack Tree

SJS

pSJ

fdbi

(b) ADTree

Fig. 1. Steal jewels

of a node represent refinements of the node’s
goal into sub-goals. The tree leaves are (pos-
sibly quantified) basic attack actions. For
instance, Fig. 1a shows a simplistic Attack
Tree where the goal is to Steal Jewels from
a museum (SJ), for which burglars must break
in (node bi, an attack leaf ) and force a display
(fd). Nodes in the tree whose state depends on
other nodes are called gates: SJ is an AND gate
with two children.

Attack-Defence Trees [22] can model
counter-actions of a defender: they represent an interplay between the actions of
both attacker and defender. This can model mechanisms triggered by the occur-
rence of opposite actions. So for instance in the ADTree in Fig. 1b, the jewels
burglary will succeed (SJS) only if all attack actions are performed, and the
alerted police (node p, a defence leaf ) does not stop them.

We define ADTree structures as shown in Table 1. The formal semantics of
each construct will be later given in Sect. 5 in terms of (specialised) Multi-
Agent Systems; here we simply give a natural language interpretation of such
semantics. Since constructs are symmetric for attack and defence goals, Table 1
shows a comprehensive selection of structures. Here D, d, d1, · · · , dn P Σd and
A, a, a1, · · · , an P Σa, where Σd and Σa are sets of defence and attack nodes,
respectively. Graphically, triangular nodes stand for arbitrary subtrees that are
children of a gate, and circular (resp. rectangular) nodes represent attack (resp.
defence) leaves, i.e. basic actions that are no further refined. Table 1 thus rein-
terprets [22] using a unified gate notation along the lines of [25], including CAND
gates that express counter-attacks or -defences, e.g. counter defence in the table.

Table 1 also introduces operators for a choice between a successful attack and
a failing defence (named no defence), and vice-versa (inhibiting attack). These
constructs, less usual in the literature [23], model realistic scenarios such as
attack goals succeeding by security negligence rather than by performing costly
attack. This is of interest for quantitative analyses of e.g. cost and probability.

Moreover, we consider sequential operators, which lack a standard interpre-
tation for ADTrees. For Attack Trees, [18] proposes a sequentially ordered con-
junction (SAND) where attacks succeed as soon as all children took place in the
required order. This abstracts away the occurrence time point of events, and
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Table 1. ADTree constructs (selection) and their informal semantics

Name Graphics Semantics

Attack a a “basic attack
action a done”

Defence d d “basic defence
action d done”

And
attack

A

a1 an

A “attacks a1

through an

done”

Or
defence

D

d1 dn

D “one of the
defences d1
through dn
done”

Counter
defence

A

a d

A “attack a done
and defence d
not done”

Name Graphics Semantics

No
defence

A

a d

A “either attack a
done or else
defence d
not done”

Inhibiting
attack

D

d a

D “either defence d
done or else
attack a
not done”

Sequential
and

attack

A

a1 an

A “done attack a1,
then attack a2,
. . .
then attack an”

Failed
reactive
defence

A

a d

A “done attack a
and then did not
do defence d”

describes instead the order in which events must take place. Thus, SAND gates
enforce sequential events and rule out parallel executions: this is a fundamen-
tal construct in multi-agent systems. For instance, Steal Jewels (SJ) in Fig. 1 is
modelled with an AND gate. Let break-in (bi) take 10 min and force the display
(fd) 5 min. If two attackers cooperate, an ADTree analysis could conclude that
attack SJ succeeds after 10 min. But fd depends logically on bi, since the display
can only be forced after breaking in. Using instead a SAND gate for SJ enforces
this sequentiality so that attacks cannot take less than 15 min. We integrate such
SAND gates in our ADTree framework, as the sequential and attack in Table 1.

We further introduce SCAND gates: sequential gates that have attacks and
defences as children. To the best of our knowledge, this is novel in a typed
setting where subtrees (rather than leaves) can be assigned attack/defence goals.
This contribution is conservative: it extends the SAND gates of [18] to coincide
with previous works on sequential operators in defence-aware representations,
e.g. Attack-Defence Diagrams [16]. We distinguish two scenarios: a successful
attack followed by a failed counter defence (failed reactive defence in Table 1),
and vice versa. We disregard the second scenario as uninteresting—it models
defence goals which depend on attacks failing by themselves—and focus on the
first one. SCANDs then model an attack goal that must overcome some counter
defence, triggered only after the incoming attack has been detected.

2.2 Attributes and Agents for ADTrees

Attributes (also “parameters” and “gains” [8,10,25]) are numeric properties of
attack/defence nodes that allow for quantitative analyses. Typical attributes
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include cost and time: in the Steal Jewels example, the 10 min to break in is a
time attribute of this attack leaf. In general, attributes are associated only with
tree leaves, and used to compute e.g. the min/max time required by an attack.

General Attributes. We extend attributes, from leaves, to all nodes in
ADTrees, because a node need not be fully described by its children. An
attribute is then given by a node’s intrinsic value, and a computation func-
tion. For example, refine bi to be an AND gate between pick main lock (pml,
7 min) and saw padlock (sp, 2 min). Then it may take an extra minute to
enter and locate the correct display, counted after pml and sp finished. In gen-
eral, when the goal of a gate is successful, its attribute value is the result of
its computation function applied to its intrinsic value and to the attributes
of its children. For bi, if two burglars cooperate, the computation function is
init time(bi) + max(init time(pml), init time(sp)). This allows for flexibility in
describing different kinds of attributes, and gains special relevance when con-
sidering coalitions of agents, as we will further illustrate in Sect. 2.3. Moreover,
attributes can be parameters as in [5]. We can synthesise constraints over param-
eters, such as init time(bi) � 1 min, e.g. to determine which attribute values
make an attack successful.

Agents. Each action described by an ADTree construct can be performed by a
particular agent. Different attacks/defences could be handled by one or multiple
agents, which allows to express properties on agents coalitions. For instance, in
the Steal Jewels example of Fig. 1b, the minimal number of burglars required
to minimise the SJS attack time is two: one to do bi and another to parallelly
perform fd. If the SJ gate is changed to a SAND, then one burglar suffices, since
bi and fd cannot be parallelised. Upon using the refinement bi “ AND(pml, sp),
then again a coalition of two burglars minimises the attack time, since pml
and sp can be parallelised. Each node in the ADTree will thus be assigned to
an agent, and a single agent can handle multiple nodes. In the general case,
the only constraint is that no agent handles both attack and defence nodes.
Notice that even modern formalisms for ADTrees such as [13] are oblivious of
agents distributions: encoding them requires modifying the tree structure, e.g.
changing an AND for a SAND to enforce the sequential occurrence of actions (i.e.
they are carried out by the same agent). As we show in Sect. 4 and demonstrate
empirically in Sect. 6, our semantics decouples the attack structure from the
agent distribution. This permits to analyse and synthesise which distribution
optimises a goal, e.g. achieve the fastest attack, without tampering with the
ADTree model. Users can thus focus exclusively on the relevant studies of agent
coalitions: this entails less error-prone and shorter computation times than in
formalisms where agent distributions must be hacked into the ADTree structure.

Conditional Counter Measures. It may happen that a countering node has
a successful or unsuccessful outcome depending on the attributes of its children.
We therefore associate conditions with countering nodes, which are Boolean
functions over the attributes of the ADTree. When present, the condition then
comes as an additional constraint for the node operation to be successful.
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2.3 Example: Treasure Hunters

Our simple running example in Fig. 2 features thieves that try to steal a treasure
in a museum. To achieve their goal, they first must access the treasure room,
which involves bribing a guard (b), and forcing the secure door (f). Both actions
are costly and take some time. Two coalitions are possible: either a single thief
has to carry out both actions, or a second thief could be hired to parallelise b and
f. After these actions succeed the attacker/s can steal the treasure (ST), which
takes a little time for opening its display stand and putting it in a bag. If the
two-thieves coalition is used, we encode in ST an extra e 90 to hire the second
thief—the computation function of the gate can handle this plurality—else ST
incurs no extra cost. Then the thieves are ready to flee (TF), choosing an escape
route to get away (GA): this can be a spectacular escape in a helicopter (h),
or a mundane one via the emergency exit (e). The helicopter is expensive but
fast while the emergency exit is slower but at no cost. Furthermore, the time to
perform a successful escape could depend on the number of agents involved in
the robbery. Again, this can be encoded via computation functions in gate GA.

Fig. 2. The treasure hunters

As soon as the treasure room is penetrated
(i.e. after b and f but before ST) an alarm
goes off at the police station, so while the
thieves flee the police hurries to intervene (p).
The treasure is then successfully stolen iff the
thieves have fled and the police failed to arrive
or does so too late. This last possibility is
captured by the condition associated with the
treasure stolen gate (TS), which states that the
arrival time of the police must be greater than
the time for the thieves to steal the treasure
and go away.

3 AMAS

Asynchronous Multi-Agent Systems (AMAS
[17]) are a modern semantic model for the
study of agents’ strategies in asynchronous
systems. They provide an analysis framework
with efficient reachability checks even on non-
trivial models. Technically, AMAS are similar
to networks of automata that synchronise on
shared actions, and interleave local transitions
to execute asynchronously [12,17,27]. However, to deal with agents coalitions,
automata semantics (e.g. for ADTrees) must resort to algorithms and additional
attributes. In contrast, by linking protocols to agents, AMAS are a natural com-
positional formalism to analyse multi-agent systems.
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Definition 1 (Asynchronous Multi-Agent Systems [17]). An asyn-
chronous multi-agent system (AMAS) consists of n agents A “ {1, . . . , n}, where
each agent has an associated tuple Ai “ (Li, ιi, Acti, Pi, Ti) including (i) a set of
local states Li “ {l1i , l

2
i , . . . , l

ni
i }; (ii) an initial state ιi P Li; (iii) a set of actions

Acti “ {a1
i , a

2
i , . . . , a

mi
i }; (iv) a local protocol Pi : Li → 2Acti which selects the

actions available at each local state; and (v) a (partial) local transition function
Ti Ď Li ˆ Acti ˆ Li s.t. (li, a, l′i) P Ti for some l′i P Li iff a P Pi(li).

Sets Acti need not be disjoint. Act “ ⋃
iPA Acti and Loc “ ⋃

iPA Li are
resp. the set of all actions and all local states. For each action a P Act, set
Agent(a) “ {i P A | a P Acti} has all agents that can perform action a. The
parallel composition of AMAS is given by Interleaved Interpreted Systems,
which extend AMAS with propositional variables and define global-states and
-transitions.

Definition 2 (Interleaved Interpreted System [17]). Let PV be a set of
propositional variables. An interleaved interpreted system (IIS)is an AMAS
extended with (i) a set of global states S Ď ∏n

i“1 Li; (ii) an initial state ι P S;
(iii) a (partial) global transition function T : S ˆ Act → S s.t. ∀i P Agent(a),
T (s1, a) “ s2 iff Ti(si1, a) “ si2, whereas ∀i P AzAgent(a), si1 “ si2, where si1 is
the i-th local state of s1; and (iv) a valuation function V : S → 2PV .

4 Extending the AMAS Model

As defined in [17], AMAS do not include attributes. Therefore, to model ADTrees
we now define Extended AMAS, associating attributes with local transitions.

Definition 3 (Extended Asynchronous Multi-Agent Systems) . An
Extended Asynchronous Multi-Agent System (EAMAS) is an AMAS where
each local transition function t P LT “ ⋃

iPA Ti has a finite set of variables
AT t “ {v1

t , . . . , v
k
t } ( attributes) over a domain Dt “ d1t ˆ · · · ˆ dkt .

Let AT “ ⋃
tPT AT t and D “ ∏

tPT Dt. Let Guards be the set of formulæ
of the form β „ 0, where β is a linear expression over attributes of AT and
„ P {<, ď, “, ě, >}. Let M be the set of all messages, FUN be all functions
taking arguments in AT, and EXP(AT ,FUN ) be linear expressions over AT
and FUN . Each transition t P LT has associated: (i) a message fM (t) P ({!, ?}ˆ
M) ∪ {⊥}; (ii) a guard fG(t) P Guards; (iii) an update function ft : AT t →
EXP(AT ,FUN ).

Item (i) indicates whether transition t does not synchronise (⊥), or sends
(marked with !) or receives (?) a message m. For ADTrees, m P M “ {ok ,nok}.
Guards in item (ii) constrain transitions. item (iii) states how taking a transition
modifies the associated attributes. To model ADTrees we further extend IIS.

Definition 4 (Extended Interleaved Interpreted System) . Let PV be
a set of propositional variables, v : AT → D a valuation of the attributes, and
v0 an initial valuation. An extended interleaved interpreted system (EIIS), or
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a model, is an EAMAS extended with (i) a set of global states S Ď L1 ˆ
· · · ˆ Ln ˆ D; (ii) an initial state s0 “ x(ι1, . . . , ιn),v0y P S; (iii) a global
transition relation T Ď S ˆ Act ˆ S s.t. x(l1, . . . , ln,v), a, (l′1, . . . , l

′
n,v′)y P T

iff: either A): |Agent(a)| “ 1 ∧ ∃ti “ (li, a, l′i) P Ti for i P Agent(a) ∧ ∀k P
Az{i} lk “ l′k ∧ v |“ fG(ti) ∧ v′ “ v[AT ti ]; or B): (a) ∃i, j P Agent(a) ∧
∃ti “ (li, a, l′i) P Ti ∧ ∃tj “ (lj , a, l′j) P Tj s.t. fM (ti) “ (!,m) ∧ fM (tj) “ (?,m);
(b) ∀k P Az{i, j} lk “ l′k; (c) v |“ fG(ti) ∧ fG(tj); (d) v′ “ v[AT ti ][AT tj ],
where AT ti and AT tj are disjoint; and (iv) a valuation function V : S →
2PV . In item (d), v[AT ti ][AT tj ] indicates the substitution of attributes in the

valuation v according to transitions ti and tj, that is v′ “ v
[ ∧

vti
PAT ti

vti :“
fti(vti)

][ ∧

vtj
PAT tj

vtj :“ ftj (vtj )
]
.

In the definition of the global transition relation T , item (a) specifies the
synchronisation of transition ti (with a sending action) and tj (with a receiving
action) that share the message m. Item (b) ensures that agents other than i and
j do not change their states in such a synchronisation. Item (c) guarantees that
the guards of ti and tj hold for the valuation v. Finally, item (d) indicates how
v′ is obtained by updating v with the attributes values modified by ti and tj .

5 EAMAS Transformation of ADTrees

We give formal semantics to ADTrees as EIIS. For that, we model ADTree
nodes as EAMAS via transformation patterns. The resulting EAMAS synchro-
nise with each other via shared actions. Note that unlike formalisms such as
Timed Automata where clocks let time elapse, time in EAMAS is an attribute.

We show that this compositional approach is correct, i.e. complete—all rele-
vant ADTree paths are captured by the model—and sound—no new paths are
introduced leading to a node’s goal. Moreover, these semantics are amenable to
state-space reductions [21], and naturally support shared subtrees in the ADTree,
all of which favours its use in practical scenarios.

5.1 Transformation Patterns

Table 2 shows each ADTree construct transformed into one agent (sub-) model.
In this compositional modelling approach, agents communicate via the blue tran-
sitions. Transformations are symmetrical for attack and defence nodes: Table 2
shows attack patterns. A leaf signals action a iff it succeeds. Self-loops in states
lA, lN synchronise with all nodes that depend on this node (leaf or gate). Thus
our semantics can model ADTrees where gates share children. An AND gate suc-
ceeds when all actions occur, in any order. Then attack A occurs, followed by a
broadcast of signal !A ok by the AND gate. The AND fails if any action of a child
fails. OR, CAND, and COR operate in the expected analogous way. Models for SAND
and SCAND enforce the absence of parallelism, as per their semantics in Sect. 2.1.
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Table 2. ADTree nodes and corresponding agent models

ADTree construct Reduced Model (EAMAS) Full Model (2 children only)

Leaf node

a

l0 lA

lN

a
!a ok

!a nok !a nok

l0 lA

lN

a
!a ok

!a nok !a nok

Conjunction/disjunction nodes

A

a1 an

l0

l1 l2 ln lA

lN

?a
1
ok

?a2 ok A

!A ok?a
1 nok

?a
2 nok
...?a

n
nok

!A nok

l0

l1 l2 lA

l1 lN

?a
1
ok

?a
2
ok

?a2 ok

?a1 ok

A

!A ok?a
1 nok?a

2 nok

?a
1
nok

?a
2
nok

?a1 nok
?a1 ok

?a2 ok
?a2 nok

!A nok

A

a1 an

l0 l1 lA
...

l1 l2 lN

?a1 ok

?an ok

A
!A ok

?a
1 nok ?a2 nok

!A nok

l0

l1 l2 lA

l1 lN

?a
1
ok

?a
2
ok

?a
2
ok

?a
1
ok

A

!A ok?a
1 nok?a

2 nok

?a1 nok

?a2 nok

?a1 nok
?a1 ok

?a2 ok
?a2 nok

!A nok

Countering nodes

A

a d

l0 l1

lN

l2 lA
?a ok ?d nok

?a
nok?d

ok

A

!A ok

!A nok

l0

l1

l1

l2 lA

lN

?a
ok

?d
no
k

?d nok

?a ok

?a
nok

?d
ok?a

nok?d
ok

A

?a nok
?a ok

?d ok
?d nok

!A ok

!A nok

A

a d

l0 l1 lA

l1 lN

?a ok

?d nok

A
!A ok

?a
nok ?d ok

!A nok

l0

l1 l2 lA

l1 lN

?a
ok

?d
no
k

A

!A ok
?a
nok?d

ok

?a nok
?a ok

?d ok
?d nok

?a nok

?d ok

?a
ok

?d
no
k

!A nok

Sequential nodes

A

a1 an

l0 l1

lN

l2 ln lA
?a1 ok ?a2 ok

?a
1 nok

?a
2
nok ?a

3
no
k

A

!A ok

!A nok

l0 l1

l1

l2 lA

lN

?a1 ok ?a2 ok

?a
1 nok

?a
2 nok

A

!A ok
?a2 ok

?a2 nok
!A nok

A

a d

l0 l1

lN

l2 lA
?a ok ?d nok

?a
nok

? d
ok

A

!A ok

!A nok

l0 l1

l1

l2

lN

lA
?a ok ?d nok

?a
nok

?d
ok

A

!A ok
?d ok

?d nok
!A nok

To go from the initial to a final state, EAMAS patterns in Table 2 use one
order of actions. We now show that this order represents all orderings of actions
that make the attack/defence succeed. That is, our semantics is complete, in
that it captures all paths of successful attacks/defences—see also [6].
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Theorem 1 (Completeness). Let a1, . . . , an be the children of the ADTree
gate A with EAMAS models Ma1 , . . . ,Man

,MA resp. Let A succeed when
ai1 · · · aim finalise (succeeding or failing) in that order. If the EAMAS models
Maij

finalise in the same order, then MA transits from its initial state l0 to its
final state lA.

Proof. First note that if node x finalises, its EAMAS model will send either
!x ok or !x nok . Moreover, due to the self-loops in the end states, this happens
infinitely often. Thus, if nodes ai1ai2 · · · aim finalise, actions !ai1 ok , !ai2 ok ,. . . ,
!aim ok (or the corresponding !a∗ nok) will be signaled infinitely often. By
hypothesis, gate A succeeds when ai1 · · · aim finalise in that order. All patterns
in Table 2 have (at least) one sequence of actions ?aj1 ok · · · ?ajk ok (or ?a∗ nok)
that take it from l0 to lA. By the first argument, all actions in the sequence of
MA are signaled infinitely often. MA will then transit from l0 to lA.

This covers expected actions that a parent must receive from its children to
achieve its goal. For unexpected sequences of signals, a parent may not react
to all information from its children—e.g. a CAND gate that after ?a ok receives
(unexpectedly) ?d ok . In such scenarios the model cannot reach its final state,
entering a deadlock. This means that the model of A cannot signal its !A ok
action. Notice that this is exactly what should happen, because such unexpected
sequences actually inhibit the goal of node A. To formally complete this argu-
ment, we now prove that the transformations of Table 2 are sound. That is, that
all paths (of actions) that make the model of a node A signal !A ok , correspond
to an ordered sequence of finalising children of A that make it reach its goal.

Theorem 2 Soundness). Let a1, . . . , an be the children of the ADTree gate A
with EAMAS models Ma1 , . . . ,Man

,MA respectively. Let the sequence of actions
?ai1 si1 ?ai2 si2 · · · ?aim sim take MA from its initial state l0 to its final state lA,
where sj P {ok ,nok}. Then the corresponding ordered success or failure of the
children ai1 , . . . , aim make the ADTree gate A succeed.

Proof. First, observe that the reduced models in Table 2 are subsets of the full
models—which consider all possible interleavings of synchronisation messages
from child nodes. Thus, any path π in a reduced model also appears in the
corresponding full model. Moreover, inspecting Tables 1 and 2 shows that, in the
full model MA of gate A, a path of actions ?ai si (from children ai of A) that
transit from l0 to lA, encodes the ordered finalisation of these children that make
the ADTree A succeed. Our hypothesis is the existence of a path π of actions
in (the reduced model) MA, that take this EAMAS from l0 to lA. By the first
argument, π is also a path in (the full model) MA. By the second argument, π
encodes the ordered finalisation of children c of A that make this gate succeed.

5.2 Adding Node Attributes

Transformation patterns in Table 2 concern only an ADTree structure. To take
the value of attributes into account, a child must transmit these to all parents.
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Attributes and Computation Functions. Attributes attached to a node are
given by the intrinsic value and computation function of the node—see Sect. 2.2
and the EAMAS update function in item (iii) of Definition 3. For example, the
cost of an AND gate is typically its own cost plus those of all children. Attributes
values are computed only after all the preconditions of the node are satisfied. OR
gates involve a choice among children: here, computation happens upon receiving
the message from one child. Conditions associated with ADTree countering nodes
(e.g. TS in Fig. 2) are added as guards to the corresponding action transition.

Distribution of Agents over Nodes. Computation functions are a versatile
solution to analyse agents coalitions. For instance, the attack time of an AND gate
can depend on the number of agents (within the attack party) that cooperate
to execute its children. This can be different for the attack cost of the same AND
gate, and for the attack time of a SAND gate. We illustrate this in the following.

Example 1. In our running example—Fig. 2—the computation function for the
attack time of the gate ST “ AND(b, f) can be generically expressed with binary
functions f and g as f

(
init time(ST) , g(init time(b), init time(f))

)
, where:

� f “ +, since ST depends logically on the completion of both children nodes;
� g depends on the agent coalition: if we use a single thief for b and f then

g “ +, if we use two thieves then g “ max.

This duality of g is precisely the kind of analyses that our approach enables. �

In the general case, the children of a binary gate will be subtrees L and R
rather than leaves, which allows for more complex computations of potential
parallelism between the agents in L and R. For example, to model a worst-case
scenario in an AND gate with a set of agents A, let AL Ď A (resp. AR Ď A) be all
agents from subtree L (resp. R). Then let the attack time of the AND be either:

� the sum of the times of L and R if AL X AR �“ ∅, because then some agent is
used in both children and thus full parallelism cannot be ensured;

� the maximum between these times otherwise, since L and R are independent.

Notice that these considerations also cover cases where gates share children,
e.g. AL X AR �“ ∅ above. The main advantage of computations functions—and
our semantics in general—w.r.t. other approaches in the literature is that agents
coalitions that are internal to an attack or defence party can be modelled in any
desired way. In [6] and https://up13.fr/?VvxUgNCK we give more examples.

6 Experiments

Two state-of-the-art verification tools are used to exercise our approach and
provide an empirical demonstration of its capabilities:

– Uppaal [11] is a model-checker for real-time systems. Automata templates
are declared in its GUI and given semantics as Priced Time Automata. A full
model is an automata network built from the instantiation of the templates,
which can be queried using PCTL-like formulæ.

https://up13.fr/?VvxUgNCK
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– IMITATOR [4] is a model-checker for Parametric Timed Automata [3], that
implements full-synchronisation semantics on the shared transition labels of
the automata in the model. Moreover, IMITATOR can synthesise parameter
constraints e.g. to find the values of attributes so that an attack is feasible.

Fig. 3. Uppaal template for SCAND pattern

The GUI of Uppaal per-
mits straightforward implemen-
tations of our transformation
patterns: compare the pattern
for the SCAND gate (last row in
Table 2) with its corresponding
Uppaal template (Fig. 3). Fur-
thermore, the instantiation of
templates to define the full model (“system declarations”) makes it easy to
describe the ADTree structure, as well as the agents distribution via an array.
Our Uppaal models are available as XML files in https://up13.fr/?VvxUgNCK.

In turn, the open source tool IMITATOR [2] can use symbolic computations
to find out the values of attributes that permit or prevent an attack. So for
instance, instead of stating that the police takes 10 min to arrive, our running
example could have the time tp set as a parameter variable. Checking when the
attack fails results in IMITATOR outputting a set of constraints, e.g.{tp ď 5}.

We implemented the tool adt2amas [1] to execute our transformation process
automatically. The tool receives as input the ADTree model and recursively
applies the transformation rules. Then, it compiles the generated EAMAS model
into the format of the tool IMITATOR. Our tool also generates a PDF file with
the EAMAS model—see e.g. Fig. 5 in [6] and also https://up13.fr/?VvxUgNCK.

6.1 Case Studies

The two above mentioned tools were used to analyse 3 literature case studies,
detailed in https://up13.fr/?VvxUgNCK and [6]. These case studies were chosen
so that their ADTree structures are easy to present and grasp by the readers.
Notice that our approach can scale to much larger state spaces as shown in [21].

Forestalling a software release is based on a real-world attack to the
intellectual property of a company from a competitor that wants to be “the first
to market” [10]. We follow [24] where software extraction and deployment by the
competitor must occur before the lawful company deploys its own product.

Compromise IoT device describes an attack to an Internet-of-Things
device via wireless or wired LAN. The attacker accesses the LAN, acquires cre-
dentials, and then exploits software vulnerabilities to run a malicious script. Our
ADTree adds defence nodes on top of the attack trees used in [25].

Obtain admin privileges models a hacker trying to escalate privileges in a
UNIX system, via physical access to an already logged-in CLI or remote access
(attacking SysAdmin). This well known case study [19,23,24,29] has a branching
structure: all gates but one are OR in the original tree of [29]. We enrich this with
the SAND gates of [24], and further add reactive defences.

https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
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Table 3. Quantitative results for ADTrees implementations: origin vs. eamas

Time of an attack Cost of an attack

min max min max

Number of attack agents: 1 2 1 2 1 2 1 2

treasure hunters
origin – 125 min – 132 min – e 690 – e 1190

eamas 185 min 125 min 185 min 125 min e 1100e 1190e 1100 e 1190

forestall
origin – 43 days – 55 days – e 4k – e 10.5k

eamas 43 days 43 days 55 days 55 days e 4k e 4k e 7.5k e 7.5k

iot-dev
origin – 694 min – 695 min – e 270 – e 380

eamas 784 min 694 min 1114 min 694 min e 270 e 270 e 320 e 320

gain-admin
origin – 2942 min – 23070 min – e 100 – e 15820

eamas2942 min2942 min23070 min23070 min e 100 e 100 e 6000 e 6000

6.2 Experimentation Setup

We computed the cost and time of attacks of four ADTrees: one corresponding to
our running example, plus one for each case study. Each tree was implemented:
1) in IMITATOR using the patterns of Table 2 (we call this “eamas”); 2) in
Uppaal using the same patterns (also “eamas”); and 3) in Uppaal using the
original templates of [24,25] that employ clocks and time constraints, extended
to fit Sect. 6.1 (“origin”). Such triple implementation pursues two goals:

(a) verify correctness, checking that the results of reachability (“can the attack
succeed?”) and quantitative queries (“what is the time of the fastest possible
attack?”, “what is the lowest cost incurred?”) coincide between the origin
and eamas implementations, regardless of the tool used;

(b) demonstrate our contributions: studying the impact of agent coalitions on
quantitative metrics such as minimal attack time/cost; and synthesising the
parameter valuations rendering an attack feasible.

6.3 Verifying Correctness

To achieve goal (a) we queried the min/max time and cost of attacks for each
ADTree: Table 3 summarises our results. For all ADTrees, all queries on the
eamas implementations in IMITATOR and in Uppaal yielded the same values,
thus the joint name “eamas”. In the running example, adding the constraint on
the police (associated with TS) would impact the structure of the origin model
too much, and thus this constraint was only implemented in the eamas versions.

Six values in Table 3 (underlined) differ between the eamas and origin
implementations of an ADTree. For max cost this is because the origin models
consider all possible actions for maximisation, unnecessary for e.g. OR gates. An
eamas model by default considers a single attack in such cases, but it can mimic
origin if one forces the occurrence of all attacks (even for OR gates).

The correct max time of iot-dev with 2 agents is the one for eamas: 694 min,
via attacks CPN, GVC, esv, and rms. We suspect that the origin Uppaal imple-
mentation yields an imprecise result due to the use of non-discrete clocks and
our remark i) on Uppaal’s time abstractions when clock variables are used.
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In treasure hunters, the time condition for TS (see Fig. 2) is much more difficult
to model in Uppaal with clocks than in the eamas model where time is an
attribute. The value e 690 in the origin model is incorrect because it uses e
(emergency gate), which would be too slow to get away from an alerted police.

Table 3 also shows initial experiments with agents: we used one or two attack-
ers, in the latter case setting the time-optimal agent distribution. This distribu-
tion was chosen according to the structure of the tree; so for instance when two
attackers are used in the iot-dev case study, we set different agents for the leaves
of gate APN, allowing attacks CPN and GVC to run in parallel.

Such agents coalitions were easily encoded (as arrays) in the eamas models.
In contrast, the origin ADTree implementations use clock variables and con-
straints to encode the duration of attacks/defences. This approach—standard in
verification of real time systems—has two drawbacks when analysing ADTrees:

i) Uppaal uses abstractions and approximations for time zones that rule out
decidability in the general case. Thus, queries (e.g. “is an attack feasible?”)
result in “may be true/false”. In contrast, EAMAS transformations are
untimed and verification is exact. The price to pay is a larger state space
(which we did not reduce but see [21]) and approx. thrice-longer computation
times.

ii) Unless explicitly encoded in each gate, time elapses simultaneously for all
clocks. This is equivalent to having an agent for each tree node. Thus, mod-
elling dependent node executions requires e.g. using a SAND gate rather than
an AND gate. This contaminates the structure of the ADTree with the dis-
tribution of the agents that perform the actions. In contrast, EAMAS can
keep the ADTree structure unmodified while studying agents coalitions.

Remark ii) makes it impossible to analyse one-agent coalitions in the origin
implementations. Therefore, for each ADTree of Table 3, origin entries only
have results for the maximum number of time-parallelisable agents in that tree.

6.4 Playing with Agents Coalitions

In the running example, the min/max times differ for one and two agents, and
an extra cost (e 90) is incurred when the second agent is used. In contrast, the
forestall and gain-admin case studies are intrinsically sequential, hence attack times
(and cost) are unaffected by the number of agents.

The iot-dev case study behaves similar to the running example when adding
an extra agent. However, the minimal time decreases when an agent handles the
CPN subtree while the other one is assigned to gc. Since gc has a longer duration
than any option in the CPN subtree, the choice it makes does not change the
operation time. With one agent, both gc and an option of CPN are achieved by
the same agent, leading to different min and max times, depending on the choice.
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Fig. 4. Scaling w.r.t. the assignment of agents

Figure 4 shows attack times
for a different ADTree (that
can be found in https://up
13.fr/?VvxUgNCK and also
in [6]) where changing the
agents coalition has a larger
impact in attack metrics.
The chart shows the fastest
and slowest attack times
achieved with different assign-
ments of agents to nodes, where all nodes take 1 time unit to complete.

These times coincide when there is a single agent, or one agent per node, since
then there is only one way to assign agents to nodes. Instead, in the middle cases,
the difference between fastest and slowest attack varies substantially for different
agents coalitions. Such difference would be exacerbated by more heterogeneous
time attributes in the nodes. The analyses enabled by our approach show that
the fastest attack can be achieved using only 6 agents.

6.5 Parameter Synthesis

We also experimented with the parametric capabilities offered by IMITATOR:

Treasure Hunters: “To catch the thieves, what is the maximum time the police
can take to arrive?” Answering this question requires synthesising a value for
the time attribute of the p node, which becomes a model parameter. IMITATOR
computed that the police can take at most 5 min to prevent the burglary.

Case Studies: an attack is successful if its associated defence was slower. (i) for
forestall, id should take at most 1 day to block NA—since NAS is a failed reactive
defence, id is triggered as soon as heb succeeds, and must finish faster than the
intrinsic time of NA; (ii) for iot-dev, inc is effective iff it takes at most 3 min; (iii)
for gain-admin we proved that whatever the time for tla, an attack is feasible (as
GSAP is a disjunction), hence the other defences are required.

7 Conclusion and Future Work

We revisited Attack-Defence Trees under a unified syntax, extending the usual
constructs with a new sequential counter-operator (SCAND). More importantly
we introduced EAMAS, an agent-aware formalism to model ADTrees, and trans-
formation patters from the latter to the former that are sound, complete, and
preserve the compositionality of ADTrees, naturally covering cases with shared
subtrees. The impact of different agent coalitions on attack time and cost was
evaluated using Uppaal and IMITATOR. Finally, the feasibility of an attack was
evaluated through parameter synthesis with IMITATOR, to obtain the attribute
values of ADTree nodes that make an attack succeed. Our experiments show that

https://up13.fr/?VvxUgNCK
https://up13.fr/?VvxUgNCK
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(and how) different agent distributions affect the time of attacks/defence strate-
gies, possibly rendering some infeasible. We expect this will open the gate to
richer studies of security scenarios, with multiple agents that can collaborate.

Our next goals include logics to express properties in EAMAS, and adapting
the partial order reduction from [17] as well as the state space reduction for
tree topologies of [21] to agent strategies in EAMAS, including extensions to
parametric timing information. This will allow for studying the strategic abilities
of agents, ultimately in a parametric setting. Finally, we will add support for
agents assignment to our tool adt2amas that transforms ADTrees into EAMAS.
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diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

17. Jamroga, W., Penczek, W., Dembinski, P., Mazurkiewicz, A.: Towards partial order
reductions for strategic ability. In: AAMAS 2018, pp. 156–165. ACM (2018)

18. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
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Abstract. Gossip problem is an information dissemination problem in
which networked agents (nodes) must share their secrets by the minimum
number of calls. In recent years, to solve the problem, various epistemic
gossip protocols have been proposed, where the agents decide who to
call based on the higher-order knowledge about the possession of secrets.
Although most previous studies on the epistemic gossip protocol have
restricted their scope to the environments including only reliable agents,
from the practical viewpoint, it is worthwhile investigating robust pro-
tocols against agent failure. In this paper, we assume the existence of
unreliable agents and analyze the robustness of some existing protocols
using epistemic logic. In our model, when an agent fails, it loses the
secrets and telephone numbers gained by previous calls and returns to
its initial state. In addition, during each call, agents share not only their
possessing secrets but also the history of the transmission path of each
secret. For these settings, we show that the protocols ANY and PIG are
successful (i.e., the protocols always lead to the state where every agent
knows all secrets). We also show that the protocol CO is not immediately
successful under the assumption that agents can fail, but it becomes suc-
cessful if the protocol execution satisfies some conditions. Furthermore,
we clarify sufficient conditions for agents to detect the failure of other
agent, which are useful for designing robust protocols.

1 Introduction

A gossip protocol determines a one-to-one communication (call) to share secrets
among networked agents (nodes). This network is represented as a directed
graph, where the edge from agent a to agent b indicates the relation that a
knows the telephone number of b, i.e. a can call b. Initially, each agent only
knows its own secret, and during each call, two agents share their secrets gained
by previous calls. One of the main challenges with the gossip protocol is to find
the shortest sequence of calls that leads to everyone knowing all secrets. The
minimum length of sequence depends on the initial graph, and according to the
early studies [9,11], it is 2n − 4 for the complete graph, and 2n − 3 for the other
connected graphs for agents n > 3.
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Recently, to solve the problem, various epistemic gossip protocols have been
proposed [5,6]. In these protocols, an agent decides who to call based not only
on the agent’s knowledge about its possessing secrets and telephone numbers,
but also on higher-order knowledge (i.e., the knowledge that the agent has about
the knowledge of other agents). These studies also analyzed the conditions for
the protocols to be successful (i.e., the protocols must achieve the state where
every agent knows all secrets) using epistemic logic [8]. The results provide use-
ful information for designing epistemic gossip protocols. However, most previous
studies on epistemic gossip protocols have been limited to models consisting of
only reliable agents, which were not realistic from a practical viewpoint. There-
fore, to enhance the reliability of the protocols, it is worthwhile investigating the
robustness against agent failure.

In this paper, we assume the existence of unreliable agents and analyze the
robustness of some existing protocols in such a model using epistemic logic.
Specifically, here we focus on the dynamic gossip protocols [6], where agents
exchange not only their possessing secrets but also their telephone numbers
when making a call. In our proposed model, when an agent fails, it loses the
secrets previously learnt and returns to its initial state. In addition, during each
call, agents share not only the secrets but also the history of the transmission
path of each secret.

For these settings, we analyzed the protocols ANY (ANY call), PIG (Possible
Information Growth), and CO (Call me Once), which were originally introduced
by [6]. For the former two, we prove that these are successful even in the environ-
ment where agents can fail. On the other hand, for the latter protocol, we prove
that it is not immediately successful, but it becomes successful if its execution
satisfies some conditions. Furthermore, we clarify sufficient conditions for agents
to detect the failure of other agents.

The contribution of this paper is twofold. First, we give a new model to
analyze the robustness of epistemic gossip protocols. Second, we demonstrate a
logical analysis of some epistemic gossip protocols and prove properties about
the robustness and failure detection. Although we do not present a concrete
robust protocol, our method is still useful in protocol verification and design.

The structure of this paper is as follows. Section 2 presents related work.
Section 3 defines our model and the logic used for the protocol analysis. Section 4
shows some properties about robustness and failure detection in some existing
epistemic gossip protocols. Finally, Sect. 5 concludes the paper and presents pos-
sible future directions.

2 Related Work

The earliest studies of the gossip problem date back to the 1970s [9,11]. (See
also [10] for a survey summarizing results on the classic gossip problem and its
variants as well as techniques to schedule centralized optimal calls).

In recent years, as an approach to the gossip problem, there have been a
number of studies on the epistemic gossip protocol. Attamah et al. [2] have
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proposed a method for the autonomous distributed control of calls by epistemic
gossip protocol and investigated its various extensions. Van Ditmarsch et al.
[6,7] have presented some epistemic gossip protocols with dynamic setting, in
which agents exchange both their secrets and telephone numbers when making a
call. In [6,7], they introduced some successful protocols named ANY, CO, LNS,
and PIG. Our model and analysis presented in this paper are extensions of the
method proposed in the studies [6,7].

Apt et al. [1] provides a framework for formally analyzing the validity and
termination of the epistemic gossip protocol of the merge-then-learn method and
presents the protocol for complete graphs and ring graphs. On the other hand,
in our study and in [6], the learn-then-merge method is adopted in which the
information sent by each agent is acquired and then merged.

Cooper et al. [5] have extended the gossip problem by paying attention to
epistemic depth. Specifically, they set a state about higher-order knowledge as a
goal and investigate the optimal call scheduling for it. Unlike our research, their
focus is on centralized scheduling.

Similar to our research, van den Berg [3] has assumed the existence of unre-
liable agents in the setting of dynamic gossip and investigated their effects and
how to identify them. However, as a possible application, unlike our research,
the prevention of the spread of fake news is emphasized. Therefore, the modeling
of agent “unreliability” is different with ours. In that setting, there is a result
that is similar to the one in this research that the existing protocol called LNS
will not succeed owing to the existence of unreliable agents. It also describes
the counterintuitive and interesting results about the difficulty of identifying
unreliable agents.

This paper also analyzes the failure detection in an environment where agents
can fail. Failure detection is a central research issue for ensuring the reliability
of distributed systems. As an early important study, Chandra and Toueg [4]
have argued the importance of failure detectors in distributed systems. This
study defines two classes of failure detectors with the notions of completeness
and correctness, and shows how they can be used to solve consensus problems
in asynchronous systems where crash failures can occur.

3 Basic Concepts

In this section, we define our proposed model including unreliable agents and
introduce epistemic logic used in protocol specification and analysis.

3.1 Modeling Agent Failure

Our model is obtained by adding events of agent failure to the model defined by
[6]. We first define the set of events as follows.

Definition 1 (Event). Let xy denote the call from agent x to agent y and
[x1 . . . xk] denote the simultaneous failure of agents x1, . . . , xk. We write either
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xy or yx as xy. A call or an agent’s failure is called an event. Let C and F be the
sets of calls and failures, respectively. The set of events E is defined as E = C ∪ F.
We write x ∈ e to denote that agent x is involved in the event e.

Protocol execution is modeled as a sequence of events defined below.

Definition 2 (Event sequence). The expression e1; e2; . . . ; en is used to
denote the sequence e1, e2, . . . , en of n events. E∗ is the set of all event sequences.
Throughout we also use some notations defined below.

– Empty sequence is denoted by ε.
– Semi-colon is also used to concatenate events or event sequences.
– σ � τ indicates that either σ is a prefix of τ or σ = τ .
– σn is used to denote the n-th event in the sequence of σ ∈ E∗

– σ|n is used to denote the prefix of σ up to the n-th event.
– For each x ∈ A, σx is used to denote the subsequence of σ consisting of all

σn which x is involved in.

In [6], during a call, agents exchange their secrets and telephone numbers
gained by previous calls, while in our model, we assume that the history of the
transmission path of each secret is also exchanged. This history is represented
by a tree structure, called a memory tree, and is defined below.

Definition 3 (Memory tree). A memory tree is a binary tree defined as fol-
lows.

– Base Case: 〈x〉 is a memory tree for any x ∈ A.
– Ind. Step: if T and T ′ are memory trees, then 〈T, xy, T ′〉 is a memory tree for

any call xy.

We denote the root of a memory tree T by r(T ) and the set of all leaves by
leaves(T ). For the memory tree Tx of agent x, leaves(Tx) is the set of secrets
owned by x. For T = 〈T1, xy, T2〉, we define TL and TR as TL = T1 and TR = T2,
respectively. We denote that T is a subtree of T ′ by T ⊆ T ′.

Next, we define the gossip graph. The gossip graph is a directed graph indi-
cating the agents’ knowledge about their telephone numbers at a certain point in
time. Formally, a gossip graph consists of a set A of agents, a binary relation N
over A representing the agents’ knowledge about telephone numbers, and a class
{Tx}x∈A each of which represents the set of memory trees stored by an agent.
Similar to the definition of [6], (x, y) ∈ N means that x knows the telephone
number of y. Throughout, we also use the notations Nxy and Nx to denote
(x, y) ∈ N and {y ∈ A | Nxy}, respectively.

Definition 4 (Gossip graph). A gossip graph is a tuple G = (A,N, {Tx}x∈A),
where A is a finite set of agents, N is a subset of A×A and Tx is a memory tree
belonging to x. A gossip graph which satisfies Tx = 〈x〉 and (x, x) ∈ N for any
x is called an initial gossip graph. A gossip graph is weakly connected if in the
graph (A,N) for any x, y ∈ A there exists a directed path from x to y. A gossip
graph is complete if N = A × A. Agent x is called expert if leaves(Tx) = A.
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A gossip graph that represents the initial state is called the initial gossip
graph. Along with a protocol execution, a gossip graph starts with one of the
initial gossip graphs and changes every time an event occurs. Intuitively, when
a call occurs between agents, all information contained in each other’s memory
tree is shared, whereas when an agent fails, it loses the stored memory tree and
returns to the initial state. These processes are formally defined as follows.

Definition 5 (Event-induced gossip graph). For an initial gossip graph
G = (A,N, {Tx}x∈A) and an event sequence σ, a new gossip graph Gσ =
(A,Nσ, {T σ

x }x∈A) obtained by executing σ in G is defined as follows.

– Base Case: if σ = ε, then N ε = N and T ε
x = Tx for all x. (Therefore, Gε = G).

– Ind. Step: if σ = σ′; e,
• for the case where e is a call xy,

Nσ′;xy
z =

{
Nσ′

x ∪ Nσ′
y (z ∈ {x, y})

Nσ′
z (otherwise)

T σ′;xy
z =

{
〈T σ′

x , xy, Tσ′
y 〉 (z ∈ {x, y})

T σ′
z (otherwise)

• for the case where e is a failure e = [x1 . . . xk],

Nσ′;[x1...xk]
z =

{
N (z ∈ {x1, . . . , xk})
Nσ′

z (otherwise)

T σ′;[x1...xk]
z =

{
Tz (z ∈ {x1, . . . , xk})
T σ′

z (otherwise)

A call xy is said to be valid if the gossip graph G = (A,N, {Tx}x∈A) satisfies
Nxy. In addition, we consider the failure [x1 . . . xk] to be valid at G for any gossip
graph G. Thus, it is assumed that the failure (in some cases, consecutively) occurs
at any timing between calls. However, consecutive failures are regarded as one
simultaneous failure. For example, [x1]; [x2]; [x3] is regarded to be the same as
[x1x2x3]. When any element σn of the sequence σ of events is valid in Gσ|n−1,
σ is said to be valid in G.

Example 1. Consider the sequence ab; [b]; ca. Figure 1 shows event-induced graph
Gσ for each prefix σ � ab; [b]; ca. In the graphs of the leftmost column, each node
labeled x represents agent x. Each dashed arrow from x to y represents Nxy,
and solid one represents y ∈ leaves(T σ

x ). Arrows to oneself is omitted. Each row
corresponds to Gσ = (A,Nσ, {T σ

x }x∈A) for the same prefix σ.

The Gossip graph partially represents the knowledge of agents, but not the
higher-order knowledge. Therefore, the higher-order knowledge of the agents in
the epistemic gossip protocol is represented by the Kripke model (cf. [8]). A state
(possible world) in the model is called a gossip state.
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Fig. 1. Event-induced graphs for each prefix σ � ab; [b]; ca

Definition 6 (Gossip state). A gossip state is a pair (G, σ) of an initial gossip
graph G and a finite event sequence σ that is valid in G.

In our model, each agent assumes the initial gossip graph and the event
sequence that realize the current gossip state on the basis of the following com-
mon knowledge.

– The set of agents is A.
– The gossip graph changes depending on events, as defined in the Definition 5.
– The graph when no event has occurred yet is one of the initial gossip graphs.
– When no event has occurred yet, each agent does not know the telephone

numbers that the other agents know.
– Each agent does not know the protocols followed by the other agents.

The last statement being common knowledge means that the agent considers
any valid sequence to be executable, although in reality not all valid sequences
may be executed depending on the given protocol.

Based on the assumptions stated above, the notion of accessibility relation
is defined below. Here, different relations are given for two types of call modes,
asynchronous and synchronous call. Asynchronous call cannot be recognized by
agents other than the calling agents. However, synchronous are recognized by all
agents, but it is impossible to know who is calling. In either call mode, the failure
of the other agents cannot be recognized. Furthermore, if (3) in Definitions 7 and
8 are assumed, the failure of oneself cannot be recognized.

Definition 7 (Asynchronous accessibility relation). Let G = (A,N,
{Tx}x∈A) and H = (A,O, {Ux}x∈A) be initial gossip graphs, and let σ and τ be
valid event sequences in G and H, respectively. The asynchronous accessibility
relation ∼x is the reflexive, symmetric, transitive closure of binary relation ∼′

x

on gossip graphs defined as follows.
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(1) (G, ε) ∼′
x (H, ε) if Nx = Ox.

(2) For any (σ, τ) 	= (ε, ε), we have (G, σ) ∼′
x (H, τ) if any one of the following

conditions hold:
(a) σ = σ′; yz, x /∈ {y, z}, and (G, σ′) ∼′

x (H, τ);
(b) σ = σ′; yz, τ = τ ′; yz, x ∈ {y, z}, for each u ∈ {y, z} it is the case that

Nσ′
u = Oτ ′

u and T σ′
u = Uτ ′

u , and (G, σ′) ∼′
x (H, τ ′);

(c) σ = σ′; [x1 . . . xk], x /∈ {x1, . . . , xk}, and (G, σ′) ∼′
x (H, τ);

(d) σ = σ′; [x1 . . . xk], τ = τ ′; [y1 . . . yl], x ∈ {x1, . . . , xk} ∩ {y1, . . . , yl}, and
(G, σ′) ∼′

x (H, τ ′).
(3) (Optional) If σ = σ′; [x1 . . . xk] and x ∈ {x1, . . . , xk}, then (G, σ) ∼′

x (G, ε).

Definition 8 (Synchronous accessibility relation). Let G = (A, N, {Tx}x∈A)

and H = (A,O, {Ux}x∈A) be initial gossip graphs, and let σ and τ be valid event
sequences in G and H, respectively. The synchronous accessibility relation ≈x

is the reflexive, symmetric, transitive closure of binary relation ≈′
x on gossip

graphs defined as follows.

(1) (G, ε) ≈′
x (H, ε) if Nx = Ox.

(2) For any (σ, τ) 	= (ε, ε) we have (G, σ) ≈′
x (H, τ) if any one of the following

conditions hold:
(a) σ = σ′; yz, τ = τ ′;uv, x /∈ {y, z, u, v}, and (G, σ′) ≈′

x (H, τ ′);
(b) σ = σ′; yz, τ = τ ′; yz, x ∈ {y, z}, for each u ∈ {y, z} it is the case that

Nσ′
u = Oτ ′

u and T σ′
u = Uτ ′

u , and (G, σ′) ≈′
x (H, τ ′);

(c) σ = σ′; [x1 . . . xk], x /∈ {x1, . . . , xk}, and (G, σ′) ≈′
x (H, τ);

(d) σ = σ′; [x1 . . . xk], τ = τ ′; [y1 . . . yl], x ∈ {x1, . . . , xk} ∩ {y1, . . . , yl}, and
(G, σ′) ≈′

x (H, τ ′).
(3) (Optional) If σ = σ′; [x1 . . . xk] and x ∈ {x1, . . . , xk}, then (G, σ) ≈′

x (G, ε).

The Kripke model, which is based on the accessibility relation and the gossip
state defined above, is called the gossip model.

Definition 9 (Gossip model). Given a set of agents A, the asynchronous
gossip model and the synchronous gossip model are respectively the tuples

G∼ = (G, 〈∼a〉a∈A, 〈 e−→〉e∈E) and G≈ = (G, 〈≈a〉a∈A, 〈 e−→〉e∈E),

where

– G is the set of gossip states;
– ∼a and ≈a are relations defined in 7 and 8;
– e−→ is the relation on G such that for any G where event e is valid and for any

σ it is the case that (G, σ) e−→ (G, σ; e).

3.2 Epistemic Logic

To specify and analyse protocols, we use epistemic logic defined below.
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Definition 10 (Language). Given a set of agents A, the language L used to
specify conditions of protocols is defined by the following BNF:

ϕ ::= N(a, b) | S(a, b) | C(ab, c) | F(a) | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ

where a, b, c ∈ A. We define connectives →, ∨ and ↔ in a standard way and
denote the dual of Ka by K̂a.

Intuitively, N(a, b) means that a knows the telephone number of b. S(a, b)
means that a knows the secret of b. C(ab, c) means that ab is included in the
call involving c. C(ab, c) is false whenever c is neither a nor b, and C(ab, a) and
C(ab, b) are true at (G, σ) when σ contains ab. F(a) indicates that a has failed at
least once. Kaϕ means that a knows ϕ, and K̂aϕ means that a considers ϕ to
be possible.

Formally, the truth conditions for the formulas are defined as follows.

Definition 11 (Semantics). Let G∼ = (G, 〈∼a〉a∈A, 〈 ab−→〉a,b∈A) be an asyn-
chronous gossip model. For any (G, σ) ∈ G with G = (A,N, {Tx}x∈A) and for
any formula ϕ in L, we define G∼, (G, σ) |= ϕ by induction on ϕ as follows.

G∼, (G, σ) |= � iff always
G∼, (G, σ) |= N(a, b) iff Nσab

G∼, (G, σ) |= S(a, b) iff b ∈ leaves(T σ
a )

G∼, (G, σ) |= C(ab, c) iff ab ∈ σc

G∼, (G, σ) |= F(a) iff [x1 . . . xk] ∈ σ and a ∈ {x1, . . . , xk}
G∼, (G, σ) |= ¬ϕ iff not G∼, (G, σ) |= ϕ

G∼, (G, σ) |= (ϕ1 ∧ ϕ2) iff G∼, (G, σ) |= ϕ1 and G∼, (G, σ) |= ϕ2

G∼, (G, σ) |= Kaϕ iff for any (H, τ) with (G, σ) ∼a (H, τ),
we have G∼, (H, τ) |= ϕ

We define G≈, (G, σ) |= ϕ by replacing ∼a with ≈a in the above condition on
Kaϕ.

The algorithm that specifies the behavior the agent should follow in the
epistemic gossip protocol is defined below. In this study, we assume that all
agents follow the same protocol.

Definition 12 (Gossip protocol). A gossip protocol is the nondeterministic
algorithm of the following form:

while not all agents are experts and there are u, v ∈ A s.t. ϕ(u, v) is
satisfied and call uv is valid;
select u, v ∈ A s.t. ϕ(u, v) is satisfied and call uv is valid;
execute call uv;

where ϕ(u, v) is a formula in the language L.
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For a given protocol P, all possible sequences of events that can be executed
according to that protocol are called the P∼-permitted sequence. A set of P∼-
permitted sequences is called extensions.

Definition 13 (Permitted sequence). Let P be a protocol given by condition
ϕ(x, y) and G be an initial gossip graph.

– A call ab is P∼-permitted in (G, σ) if G∼, (G, σ) |= ϕ(a, b), call ab is valid in
Gσ and not all agents are experts in Gσ.

– A failure [x1 . . . xk] is P∼-permitted in (G, σ) if there exists a P∼-permitted
call in (G, σ).

– An event sequence σ is P∼-permitted in G if each event σn+1 is P∼-permitted
in (G, σ|n).

– The extension of P in G is the set of all P∼-permitted event sequences in G,
denoted by P∼

G.
– A sequence σ ∈ P∼

G is P∼-maximal on G if it is infinite or there is no event e
such that σ; e ∈ P∼

G.

P≈-permitted, P≈
G and P≈-maximal are defined similarly. When we discuss both

P∼ and P≈ together, we simply write P.

Given an initial gossip graph and a protocol, the more number of sequences
are included in the extension of the protocol that succeed in spreading the secret,
the more the protocol is considered to be successful. Thus, protocols are classified
into the following four types, depending on their level of success.

Definition 14 (Successful). Let G be an initial gossip graph and P be a pro-
tocol.

– A sequence σ ∈ PG is successful if it is finite and in Gσ all agents are experts.
– A sequence σ ∈ PG is fair if it is finite or for any call xy the following condition

holds.
If for any i ∈ N there exists j ≥ i such that xy is P-permitted in Gσ|j ,
then for any i ∈ N there exists j ≥ i such that σj = xy.

– P is strongly successful on G if all maximal σ ∈ PG are successful.
– P is fairly successful on G if all fair and maximal σ ∈ PG are successful.
– P is weakly successful on G if there exists σ ∈ PG which is maximal and

successful.
– P is unsuccessful on G if there is no σ ∈ PG which is maximal and successful.

4 Analysis of Robustness and Failure Detection

In this section, we present the results of our protocol analysis.
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4.1 Properties on Robustness

We analyze the following three protocols [6].

ANY (ANY Call) ϕ(x, y) := �
While not every agent knows all secrets, randomly select a pair xy such that
x knows y’s number and let x call y.

PIG (Possible Information Growth) ϕ(x, y) := K̂x

∨
z∈A(S(x, z) ↔

¬S(y, z))
Call xy can be made if x knows y’s number and if x considers it possible that
there is a secret known by one of x, y but not the other.

CO (Call Me Once) ϕ(x, y) := ¬C(xy, x) ∧ ¬C(yx, x)
Agent x may call agent y if x knows y’s number and there was no prior call
between x and y.

Here, we assume that the number of failures is finite. Thus, for protocol P,
we restrict PG to a set of sequences, each of which contains a finite number of
failures.

First, we confirm that for the protocols ANY and PIG, the properties shown
in [6] also hold even if the agents fail.

Theorem 1. Protocol ANY is fairly successful on G iff G is weakly connected.

Proof. We can prove the statement in a way similar to [7]. We prove only ⇐ part
because the converse is obvious. Let σ be an ANY-permitted and fair sequence.
It suffices to show that σ is not infinite. For contradiction, we assume that σ is
infinite. Now that we assume that σ contains only a finite number of failures,
there is a finite prefix τ � σ such that for any τ ′(τ � τ ′ � σ), we have Nτ = Nτ ′

and leaves(T τ
x ) = leaves(T τ ′

x ) for any x ∈ A. Since σ is not successful, there are
x, y ∈ A such that Nxy and leaves(T τ

x ) 	= leaves(T τ
y ) (Otherwise σ is successful

because G is weakly connected). However, since σ is fair, in σ the call xy is
executed after τ . This is a contradiction. ��
Theorem 2. Protocol PIG∼ is fairly successful on G iff G is weakly connected.

Proof. We can prove the statement by similar argument of [7]. We prove only ⇐
direction because the converse is obvious. Let σ be a PIG∼-maximal sequence.

We first show that if σ is infinite, it is not fair. Since we assume that σ
contains only a finite number of failures, there is a finite prefix τ � σ such that
for any τ ′(τ � τ ′ � σ), we have Nτ = Nτ ′

and leaves(T τ
x ) = leaves(T τ ′

x ) for
any x ∈ A. Further, since σ is not successful, there are x, y ∈ A such that Nxy
and leaves(T τ

x ) 	= leaves(T τ
y ). This implies that after τ the call xy is always

PIG∼-permitted. However, xy is not executed after τ . Therefore, σ is not fair.
We next show that if σ is finite, it is successful. The sequence σ is finite

only if all agents are experts in Gσ or for any x, y ∈ A it is the case that
G∼, (G, σ) 	|= K̂x

∨
z∈A(S(x, z) ↔ ¬S(y, z)). In the former case, σ is successful

by definition. In the latter case, by definition of K̂x, we have G∼, (G, σ) |=
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ab

bc

ca

[b]

a b c

a b c

a b c

a b c

[b]

bc

a b c

a b c

ca

a b c

a b c

ab; [b]; bc is not successful

ab; bc; [b]; ca is not successfulab; bc; ca is successful

Fig. 2. A counter example of Theorem 13 in [7]

Kx¬∨
z∈A(S(x, z) ↔ ¬S(y, z)). This implies that for any x, y ∈ A it is the case

that leaves(T σ
x ) = leaves(T σ

y ). Therefore, σ is successful.
Finally, it remains to show that there exists a successful σ. Let σ be a success-

ful ANY-permitted sequence of minimum length. We show that σ is also PIG∼-
permitted. Clearly, in σ there is no call between two experts. The prefix σ|1 is
PIG∼-permitted. We need to show that each σn+1 is PIG∼-permitted in Gσ|n.
If σn+1 is a failure, then it is clearly PIG∼-permitted in Gσ|n. Thus, we assume
σn+1 is a call xy. In the case leaves(T σ|n

x ) = A, we have leaves(T σ|n
y ) 	= A

Therefore, xy is PIG∼-permitted in Gσ|n. In the case leaves(T σ|n
x ) 	= A, let

z ∈ A\ leaves(T σ|n
x ). Then we have (G, σ|n) ∼x (G, σ|n; zy) and leaves(T σ|n

x ) 	=
leaves(T σ|n;zy

y ). Therefore, xy is PIG∼-permitted in Gσ|n. ��
The reason why these theorems hold is that ANY and PIG are the “careful”

protocol for failures. In other words, in these protocols, agents are forced to
repeatedly exchange information in case of failure. A careful protocol assumes
the worst case and decides who to call, regardless of whether or not the other
agent actually fails. Therefore, if fairness is not assumed, redundant calls may
be repeated.

Unlike ANY and PIG, the property shown in [6] does not hold for CO. More
precisely, CO is successful in a weakly connected graph when there is no agent
failure (cf. Theorem 13 in [7]) but it does not when failure may occur. As a
counterexample of this theorem in our model, in Fig. 2, we show a sequence of
events beginning with a weakly connected initial gossip graph but do not achieve
a successful state.

The result shown above is obtained because CO, unlike ANY and PIG, is a
protocol that reduces too much redundancy and, thus, fails to fully recover fail-
ures. A closer look at the cause yields two useful suggestions. The first suggestion
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is obtained from the counterexample sequence ab; bc; [b]; ca, which suggests that
agents who may fail should not be experts first. This occurs because the infor-
mation owned by such agents may be lost owing to a failure in the future. The
other suggestion is obtained from the counterexample sequence ab; [b]; bc, which
suggests that information should not be routed through an agent who may fail.
This occurs because the transmission of information may fail depending on the
timing of the agent failure.

The following theorem shows that a successful sequence can be achieved if
we schedule the partial sequence of calls to avoid the undesired steps presented
in the counterexamples above.

Theorem 3. For an initial gossip graph G = (A,N, {Tx}x∈A), we assume the
following.

– A single agent a is the only agent who can fail.
– There are at least two agents who do not fail.
– The restriction of G to A \ {a} is weakly connected.
– There is x ∈ A \ {a} such that Nxa.

Then the sequence xa;σ; ya obtained by the following procedure is CO-permitted
and successful (even if σ contains a finite number of a’s failures).

(1) Execute a call xa.
(2) Execute CO among the agents in A \ {a} (let us denote the event sequence

executed in this step by σ, which may contain some [a]).
(3) Select an agent y ∈ A \ {a} other than x and then execute a call ya.

Proof. By executing the call xa in (1), x obtains the secret and the telephone
number of a. Since CO is strongly successful in a weakly connected graph when
there is no agent failure (cf. Theorem 13 in [7]), σ is finite and after the execution
of σ, all z ∈ A \ {a} are experts. Since there are at least two agents who do not
fail, there is an agent y ∈ A \ {a} other than x. By the call ya in (3), a lastly
becomes an expert. Therefore, xa;σ; ya is successful. Moreover, since there is no
calls which a is involved in, xa;σ; ya is CO-permitted. ��

However, in the framework of epistemic gossip protocol, such scheduling can-
not be realized directly. This fact suggests to us, as an alternative approach, to
design a protocol with the level of carefulness that reconciles the trade-off rela-
tionship between the protocol CO and the protocol ANY or PIG. This is an ideal
protocol that is able to detect failures and recover lost information when needed.
In the next subsection, as a first step in designing such protocol, we investigate
sufficient conditions in the sequence of calls that allow agents to detect failures.

4.2 Analysis of Failure Detection

In this subsection, we assume that the following are common knowledge between
agents: gossip graph G is complete; only one particular agent (say, a) can fail;
failure can occur only once. Formally, assuming these three things to be common
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knowledge means that we consider G, which consists of only gossip state (G, σ)
for which the three facts stated above hold. Also, ≈x is used as the reachabil-
ity relation. Under these assumptions, we use the notation σ ≈x τ to denote
(G, σ) ≈x (G, τ) and the notation σ |= φ to denote G≈, (G, σ) |= φ.

For a given protocol P and agents a, x ∈ A, if σ |= KxF (a), agent x is said to
detect a’s failure in σ ∈ PG. By the definition of |=, this is equivalent to [a] ∈ τ
for any τ that satisfies σ ≈x τ . A counterexample τ of this condition, namely
τ that satisfies σ ≈x τ and [a] /∈ τ , is called an optimistic path. The formal
definition is given below.

Definition 15 (Optimistic path). For an event sequence σ, an optimistic
path of x for σ is a sequence τ such that σ ≈x τ and [a] /∈ τ . Let optx : E∗ → 2E

∗

be the function which maps an event sequence σ to the set of optimistic paths
of x for σ. That is, we define optx as follows.

optx(σ) := {τ | σ ≈x τ and [a] /∈ τ}.

In order to show that σ |= KxF (a) holds, it suffices to show that the set
optx(σ) is empty. By the definition of ≈x, the set optx(σ) can be calculated by
induction on σ:

– Base Case: If σ = ε, then optx(σ) = {ε}.
– Ind. Step: If σ = σ′; c and c ∈ C,

• For the case x ∈ c, let c = xy. Then it follows that

optx(σ) = {τ ; c | τ ∈ optx(σ′) and T σ′
y = T τ

y }.

• For the case x /∈ c, it follows that

optx(σ) = {τ ; c′ | τ ∈ optx(σ′) and x /∈ c′}.

If σ = σ′; [a], then optx(σ) = optx(σ′).

Here we note that no assumptions about telephone number appear in the
calculations presented above, because we assume that G is a complete graph. In
addition, optimistic path is usually calculated bottom-up beginning with τ = ε.

Example 2. For σ = ax; [a]; ab; bx, the set optx(σ) can be calculated by the
following steps:

optx(ε) = {ε}
optx(ax) = {ε; ax | T ε

a = T ε
a} = {ax}

optx(ax; [a]) = {ax}
optx(ax; [a]; ab) = {ax; c | x /∈ c}
optx(ax; [a]; ab; bx) = {ax; c; bx | x /∈ c and T

ax;[a];ab
b = T ax;c

b }.

Since there is no call c such that x /∈ c and T
ax;{a};ab
b = T ax;c

b , we have optx(σ) =
∅. Therefore, after the execution of σ, agent x can detect the failure of a. In a
similar way, we can determine whether σ |= KxF (a) is true or not, given σ ∈ E∗.
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From now on, we consider a more general pattern of σ that satisfies σ |=
KxF (a). The pattern of σ, shown in Theorem 4 below, is a generalization of σ
presented in Example 2. The underlying idea is that an agent can detect the
failure by comparing information before and after the a’s failure. Before proving
the theorem, we provide some lemmas. Hereafter, we use suba(T ) to denote
{T ′ ⊆ T | a ∈ r(T ′)}.

Lemma 1. If a finite event sequence σ satisfies [a] /∈ σ, then for any x ∈ A and
for any T ∈ suba(T σ

x ) there is τ � σ such that T = T τ
a .

Proof. We prove this by induction on σ.

– Base Case: If σ = ε, for any x ∈ A it is the case that T σ
x = T ε

x = 〈x〉. Thus,
the statement holds for σ = ε.

– Ind. Step: Let σ = σ′; c and c ∈ C. We fist consider the case a /∈ c. Let c = yz.
Then it follows that

suba(T σ
x ) =

{
suba(T σ′

y ) ∪ suba(T σ′
z ) if x ∈ {y, z},

suba(T σ′
x ) otherwise.

Therefore, by the induction hypothesis, we have the statement. We then con-
sider the case a ∈ c. Let c = ay. Then it follows that

suba(T σ
x ) =

{
suba(T σ′

a ) ∪ suba(T σ′
y ) ∪ {T σ

a } if x ∈ {a, y},

suba(T σ′
x ) otherwise.

We can take τ = σ for T σ
a . Therefore, together with the induction hypothesis,

we have the statement. ��
Lemma 2. If an event sequence σ satisfies [a] /∈ σ, then for any x ∈ A and for
any T, T ′ ∈ suba(T σ

x ) it is the case that T ⊆ T ′ or T ′ ⊆ T .

Proof. By Lemma 1, for any x ∈ A and for any T, T ′ ∈ suba(T σ
x ) there are

τ, τ ′ � σ such that T = T τ
a and T ′ = T τ ′

a . If τ � τ ′, then T τ
a ⊆ T τ ′

a , that is,
T ⊆ T ′. If τ ′ � τ , then T τ ′

a ⊆ T τ
a , that is, T ′ ⊆ T . ��

Lemma 3. For any event sequence σ and any x ∈ A, if [a] /∈ σ and r(T σ
x ) = ax

(xa, resp.), then for any T ∈ suba(T σ
x,R) (suba(T σ

x,L), resp.), it is the case that
T ⊆ T σ

x,L (T σ
x,R, resp.).

Proof. Since we assume r(T σ
x ) = ax (xa, resp.), there is a prefix τ � σ such

that τ = τ ′; ax and T σ
x = T τ

x . Furthermore, we have T σ
x,L = T τ

x,L = T τ ′
a (T τ ′

x ,
resp.) and T σ

x,R = T τ
x,R = T τ ′

x (T τ ′
a , resp.). Since [a] /∈ σ implies [a] /∈ τ ′, using

Lemma 1, for any T ∈ suba(T τ ′
x ) there is a prefix ρ � τ ′ such that T = T ρ

a .
Moreover, since ρ � τ ′, we have T ρ

a ⊆ T τ ′
a , that is, T ⊆ T τ ′

a . Therefore, for any
T ∈ suba(T σ

x,R) (suba(T σ
x,L), resp.), we have T ⊆ T σ

x,L (T σ
x,R, resp.). ��
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Theorem 4. When agent x obtains agent a’s secret distributed before and after
a’s failure from two paths which do not share any nodes, x can detect a’s failure.
Formally, if {b1, . . . , bk}, {c1, . . . , cl} ⊆ A and {b1, . . . , bk}∩{c1, . . . , cl} = ∅ with
k, l ≥ 0, and if σ is a sequence consisting of the following events:

ab1, b1b2, . . . , bk−1bk, bkx, ac1, c1c2, . . . , cl−1cl, clx, [a],

and if

ab1 ≺ b1b2 ≺ · · · ≺ bk−1bk ≺ bkx (1)
ac1 ≺ c1c2 ≺ · · · ≺ cl−1cl ≺ clx (2)

ab1 ≺ [a] ≺ ac1 (3)

where e1 ≺ e2 means that e1 is executed earlier than e2 in σ, then σ |= KxF (a).

Proof. We divide the proof according to whether k and l are equal to 0 or not,
respectively.

– For k = l = 0, we have σ = ax; [a]; ax. Then optx(σ) = {ax; ax | T
ax;[a]
a =

T ax
a }. Since T

ax;[a]
a 	= T ax

a , we have optx(σ) = ∅. Therefore, σ |= KxF (a).
– For k > 0 and l = 0, we have σ = σ′; ax or σ = σ′; bkx. If σ = σ′; ax,

then r(T σ
x ) = ax. By the conditions (1), (2) and (3), it is the case that

T σ′
a = 〈a〉 and T σ′

x has 〈〈a〉, ab1, 〈b1〉〉 or 〈〈b1〉, b1a, 〈a〉〉 as a subtree. Since T σ
x

is 〈T σ′
a , ax, Tσ′

x 〉 or 〈T σ′
x , xa, Tσ′

a 〉, using Lemma 3, we have σ |= KxF (a). If
σ = σ′; bkx, by the conditions (1), (2) and (3), the tree T σ′

bk
has 〈〈a〉, ab1, 〈b1〉〉

or 〈〈b1〉, b1a, 〈a〉〉 as a subtree, and T σ′
x is 〈〈a〉, ax, 〈x〉〉 or 〈〈x〉, xa, 〈a〉〉. Since

the tree T σ
x is 〈T σ′

bk
, bkx, Tσ′

x 〉 or 〈T σ′
x , xbk, T σ′

bk
〉, using Lemma 2, we have

σ |= KxF (a).
– For k = 0 and l > 0, we have σ = ax; [a]; ac1; c1c2; . . . ; cl−1cl; clx. Let σ =

σ′; clx. Then T σ′
cl

has 〈〈a〉, ac1, 〈c1〉〉 or 〈〈c1〉, c1a, 〈a〉〉 as a subtree, and T σ′
x has

〈〈a〉, ax, 〈x〉〉 or 〈〈x〉, xa, 〈a〉〉 as a subtree. Since the tree T σ
x is 〈T σ′

cl
, clx, Tσ′

x 〉
or 〈T σ′

x , xcl, T
σ′
cl

〉, using Lemma 2, we have σ |= KxF (a).
– For k > 0 and l > 0, we have σ = σ′; bkx or σ = σ′; clx. If σ = σ′; bkx, by the

assumption that {b1, . . . , bk}∩{c1, . . . , cl} = ∅ and the conditions (1), (2) and

(3), it is the case that T σ′
bk

= T
ab1;b1b2;...;bk−1bk
bk

and T σ′
x = T

ac1;c1c2;...;cl−1cl;clx
x .

Since {b1, . . . , bk}∩{c1, . . . , cl} = ∅, it follows that 〈b1〉 ⊆ T σ′
bk

and 〈b1〉 	⊆ T σ′
x .

Using Lemma 2, we have σ |= KxF (a). If σ = σ′; clx, By the assumption
that {b1, . . . , bk} ∩ {c1, . . . , cl} = ∅ and the conditions (1), (2) and (3), it is

the case that T σ′
cl

= T
ac1;c1c2;...;cl−1cl
cl and T σ′

x = T
ab1;b1b2;...;bk−1bk;bkx
x . Since

{b1, . . . , bk} ∩ {c1, . . . , cl} = ∅, it follows that 〈c1〉 ⊆ T σ′
cl

and 〈c1〉 	⊆ T σ′
x .

Using Lemma 2, we have σ |= KxF (a). ��

5 Conclusions and Future Work

In this paper, in order to increase the reliability of epistemic gossip protocols,
we proposed a logical analysis method of robustness against agent failure. In our
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model, when agent fails, it loses the secrets and telephone numbers gained by
previous calls and returns to the initial state. In addition, during each call, agent
share not only the secrets but also the history of the transmission path of each
secret.

For this settings, we showed that the protocols ANY and PIG are fairly
successful if the graphs were connected, as in the case where no failure is assumed.
On the other hand, for the protocol CO, we showed that there exists a sequence
of calls that is not successful in a weakly connected graph. These results suggest
the need for a failure detection mechanism. Therefore, in this paper, we also
showed the sufficient condition of the sequence of calls for an agent to detect the
failure of other agents in PIG. Our results provide useful information to make
the protocol robust against agent failure.

There are still issues to be addressed as an extension of this study. Although
condition that the sequence of calls must satisfy to detect other agent’s failure,
we have not achieved a concrete protocol that allows the sequence that satisfies
this condition. Moreover, currently, we have only obtained a sufficient condition.
Thus, there should be a more general form of a sequence of calls where someone
can detect a failure. From a more practical point of view, the robustness against
various other types of failures such as the Byzantine failure of agents and com-
munication failures has not yet been clarified. We plan to address these research
issues by extending the framework given in this study.
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Abstract. Safety Instrumented Systems (SIS) protect major hazard
facilities, e.g. power plants, against catastrophic accidents. An SIS con-
sists of hardware components and a controller software – the “program”.
Current safety analyses of SIS’ include the construction of a fault tree,
summarising potential faults of the components and how they can arise
within an SIS. The exercise of identifying faults typically relies on the
experience of the safety engineer. Unfortunately the program part is often
too complicated to be analysed in such a “by hand” manner and so the
impact it has on the resulting safety analysis is not accurately captured.
In this paper we demonstrate how a formal model for faults and failure
modes can be used to analyse the impact of an SIS program. We outline
the underlying concepts of Failure Mode Reasoning and its application
in safety analysis, and we illustrate the ideas on a practical example.

1 Introduction

Plant accidents can have catastrophic consequences. An explosion at a chem-
ical plant in eastern China killed over 70 people and injured more than 600
in 2019. Safety Instrumented Systems (SIS) are protection mechanisms against
major plant accidents [16]. Failure of SIS components can result in the SIS being
unavailable to respond to hazardous situations. It is therefore crucial to anal-
yse and address such failures. A typical SIS comprises physical components to
interact with plant, and a software program1 that analyses the information and
initiates safety actions. Such software can be highly complex, and even when it
is not itself faulty still propagate input faults from the sensors to the safety actu-
ators. This paper concerns a current omission in the standard safety engineering
process: that of an accurate fault analysis of complex SIS program.

Well established methods, such as Fault Tree Analysis (FTA), already exist
in the industry for analysing and quantifying SIS failure modes [32]. FTA is a
deductive method that uses fault trees for quantitative and qualitative analysis
of failure scenarios. A fault tree is a graphical representation of the conditions
that contribute to the occurrence of a predefined failure event. A fault tree will be
created by a safety analyst and based on their knowledge and understanding of
the failure behaviours in a system. Not only are such by-hand analyses inherently
subject to human-error, they also require expertise, time and effort.
1 In this paper the term program refers to the software code run by SIS CPU; also

known in safety standards as SIS Application Program [16].
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A new method, Failure Mode Reasoning (FMR), was recently introduced to
circumvent the need for by-hand analysis of parts of SIS [17]. Using a special
calculus built on failure modes, FMR analyses the SIS program to identify the
hardware faults at SIS inputs that can result in a given failure at its output. The
main outcome of FMR is a short list of failure modes, which can also be used to
calculate the probability of failure. In this paper we show how to use ideas from
formal methods to justify FMR. We use an abstraction to model failures directly,
and we show that such an abstraction can be used to track failures within the SIS
program so that potential output failures can be linked to the potential input
failures that cause them. We prove the soundness of the technique and illustrate
it on a practical example.

The rest of this paper is organised as follows: Sect. 2 provides a brief expla-
nation of the context and how FMR can enhance safety analysis. Section 3 for-
malises the underlying ideas of analysis of failures for SIS programs. Based on
these concepts, Sects. 4 and 5 formulate the concepts for composing the indi-
vidual elements in FMR and the reasoning process on the interactions between
these elements. Section 6 includes descriptions of how FMR is applied in prac-
tice and in particular in large scale projects. Finally Sects. 7 and 8 wrap up the
paper with a review of FMR’s position with respect to other research works and
potential research in future.

2 SIS and FMR

An SIS consists of sensors, a logic solver, and final elements. The sensors collect
data about the environment (such as temperature and pressure) and the logic
solver processes the sensor readings and controls the final elements to intervene
and prevent a hazard. Such interventions can include shutting down the (indus-
trial) plant and they are referred to as Safety Instrumented Functions (SIFs).
Figure 1b illustrates a simple SIS consisting of two sensors, one logic solver and
one final element. This SIS performs only one SIF, which is to protect the down-
stream process against high pressure in the upstream gas pipe. The sensors
measure the gas pressure and the logic solver initiates a command to close the
valve if the gas pressure exceeds a threshold limit.

(a) Fault Tree (b) SIS

Fig. 1. An example SIS and its corresponding fault tree model
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SIS faults are typically modelled by using fault trees. For an accurate analysis
a fault tree must reflect all potential faults caused by all components in the SIS.
Clearly incorrect sensor readings are a significant factor in safety analysis as
they can lead to hazardous scenarios. One of the problems in safety analysis is
to understand how such deviations can be propagated by the SIS program and
lead to faults at SIS outputs. If done by hand, such understandings depends
critically on the analyst’s knowledge of the details of the SIS program.

Consider, for example the fault tree in Fig. 1a, which is meant to summarise
the failures of SIS in Fig. 1b: the SIS fails if both sensors fail or if the logic
solver fails or if the final element fails. The fault tree is built on the assumption
that the two sensors provide redundancy, which means that provided one of the
two sensors is in a healthy state, that is sufficient to detect potential hazards.
However, the validity of this assumption, and thus the validity of the fault tree,
directly depends on the details of SIS program and how it computes the output
from the input. For example, if the two inputs from sensors are averaged first and
then compared to the high pressure limit as shown in Fig. 2a, the proposed fault
tree (Fig. 1a) is incorrect; because failure of one sensor will affect the average
of the two. But if each sensor reading is separately compared to the threshold
limit first (as in Fig. 2b), the sensors can be considered redundant and the fault
tree would summarise the failures accurately. While the two programs deliver
the same functionality, they do not show the same failure behaviour; and the
proposed fault tree can correspond to only one of them.

(a) Program TAvg (b) Program TOr

For variables i1, i2, w ∈ R and v, z, o ∈ B, and parameter K ∈ R: w = Avg(i1, i2) = (i1 + i2)/2,

o = GcomK(w) = (w > K) and o = Or(v, z) = v ∨ z.

Fig. 2. Two possible implementations for the Logic Solver in Fig. 1a

In real world scenarios, SIS programs are large and complex. It is not unusual
for a typical SIS program to have hundreds of inputs like i1 and i2 and thousands
of Function Blocks [15] like Avg and GcomK . Conducting a detailed analysis of
program of such scales will be a real challenge for a human analyst, but it
nonetheless plays a crucial part in producing accurate results. In such scenarios
an automated method such as FMR can be of a great help.

FMR is a technique for enabling the details of SIS programs to be accurately
reflected in the full safety analysis of a system. The challenge we address is
identifying the SIS input “failure modes” that cause a given SIS output failure
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mode by analysing the SIS program that reads those inputs and produces that
output. The results can then be incorporated in an overall safety analysis of SIS.

SIS programs are commonly developed in the form of Function Block Dia-
grams (FBD) [15]. Figure 2 showed two very simple examples of FBDs. An FBD
consists of function blocks and their interconnections, which we label with vari-
able names. In Fig. 2a, o, w, i1 and i2 are the variables and Avg and GcomK are
the function blocks. We will use this FBD as a worked example through this
paper to demonstrate the FMR process.

The SIS program given at Fig. 2a is supposed to initiate a command to close
the gas value when the pressure rises above a given threshold. In normal circum-
stances, when all inputs report correct measurements from the sensor readings,
an output of t causes the correct shut down command to be delivered when the
pressure is high. Suppose however that the inputs i1, i2 are incorrectly recording
the pressure. These inaccuracies propagate through the program and lead to an
f at the output, meaning that the SIS will not initiate the safety action required
to prevent the hazardous event.

In simple terms, this is how FMR analyses such output deviations: from o
being f by fault we can conclude that w must be less than the threshold limit
set in GcomK : (o = f) ⇒ (w ≤ K). Sentence (w ≤ K) in turn implies that the
average value of i1 and i2 must be less than the threshold limit: (w ≤ K) ⇒
((i1 + i2)/2 ≤ K). Assuming that this is due to an input fault, we can conclude
that either input i1 must be reading lower than what it should, or input i2.
Overall, we can conclude:

(o being f by fault) ⇒ (i1 reads too low) ∨ (i2 reads too low) (1)

Notice that the actual values of inputs are not required, but only their cate-
gories in terms of whether they are “too high”, or “too low”. It turns out that
we can take advantage of this abstraction to simplify the overall analysis. In
the next section we describe a simple model of failures from which we derive an
analysis that uses “failure modes” explicitly.2

FMR completes the SIS safety analysis by incorporating the functionally
most important part of the system – the program, and it does this by analysing
the actual program rather than a synthesised model. The process is automated
and thus it saves time and effort, and offers accuracy and certainty. The purpose
of FMR is similar to fault tree analysis, but it adds rigour to the consideration
of fault propagation in the SIS program.

3 Modelling Failures

In this section we formalise the ideas underlying the identification and analysis
of potential failures for SIS programs. In particular the result of the analysis
should be the identification of potential faults and, in addition, to categorise

2 Note that in Fig. 2b the FMR analysis would produce a different result, i.e.
(o beingf by fault) ⇒ (i1 reads too low) ∧ (i2 reads too low).
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them in terms of their “modes of failure”. This is an essential step in any safety
engineering exercise.

In what follows we use well known constructions from relational-style mod-
elling. Our contribution is to apply those ideas in this new setting for SIS pro-
grams. Let V be an abstract state space; we use PX for the power set over X.
A partition of a set X is a set of pairwise non-intersecting subsets in PX.

We begin with a simple abstract model for a generic SIS function. It is a
function which takes inputs to outputs over an (abstract) type V.

Definition 1. An abstract model for an SIS function is a function of type
V → V.

An SIS function can be a function block (FB), a combination of FBs or
the entire SIS program. As described above, the safety analyst can only access
information about the safety status of the system through the SIS program
variables. The challenge is that this reported status (i.e. the sensor readings)
might be inaccurate or wrong. To model such faults we need to keep track of
the values recorded in the SIS program variables and the value that should have
been reported. When these values are not the same we say that there is a fault.
The next definition shows how to keep track of these faults within a particular
SIS setting.

Definition 2. Given an SIS function f : V → V, a failure model is a function
〈f〉 : V2 → V2 defined by

〈f〉(m,a) := (f(m), f(a)).

For the pair (m,a) ∈ V2, the first component m models the value reported by
the SIS program variables, and the second component a is the actual value that
should be reported. We say that (m,a) is a failure state whenever m 	= a.3

For example, in Fig. 2a we model the simple SIS program as a function TAvg

of type R
2 → B, where the input (pair) corresponds to the readings of the

variables i1, i2, and the output corresponds to the value of the output variable
o.4 There are two possible output failure states wrt. 〈TAvg〉 ∈ (R2)2 → (B)2, and
they are (t, f) and (f, t).

Observe however from Definition 2 that the only way an output failure state
can occur is if the corresponding input is also a failure state (since we are assum-
ing that no additional failures are caused by the SIS program itself). Given a
function f , we say that failure output state (m′, a′) was caused by input failure
state (m,a) if 〈f〉(m,a) = (m′, a′).

In the case of Fig. 2a, the failure state (f, t) can only be caused by input
failure state ((m1,m2), (a1, a2)) if either m1 < a1 or m2 < a2. Here the values
m1, a1 correspond to the variable i1 and m2, a2 correspond to the variable i2 in
the figure. In scenarios where e.g. m1 < a1 there is always some reported value
3 In our abstract model we use a single type V for simplicity of presentation.
4 Note here that we are distinguishing the types in the example.
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for m2 such that the reported average (m1+m2)/2 is below the fixed threshold
in GcomK , thus there exists a scenario satisfying the identified input constraints
such that:

〈TAvg〉((m1, a1), (m2, a2)) = (f, t).

From this example we can see there are potentially infinitely many values for
a failure state (m,a) whenever m,a can take real values. Rather than a safety
engineer needing to know these precise values, what is more relevant is a report
of the (usually) finite number of classes or modes describing the kinds of failure.

Definition 3. Given a set of states V×V wrt. a failure model, the failure modes
are defined by a partition P of V×V. Each subset in P defines a failure mode
(relative to P). Two states (m,a) and (m′, a′) satisfy the same failure mode if
and only if they belong to the same partition subset of P.

Given a partition P defining a set of failure modes we define mdP : V×V →
P which maps failure states to their relevant failure mode (partition subset).

Examples of failure modes are normally described by constraints on vari-
ables. For instance in Fig. 2a the failure modes for the initial failure state
((m1,m2), (a1, a2)) are summarised by “either i1 is reading too low or i2 is
reading too low”. In terms of Definition 3 this can be characterised by part of a
partition that includes �1, �2 and �, where �1 is the set of failure states such that
m1 < a1 ∧ m2 ≥ a2; �2 is the set of failure states such that m1 ≥ a1 ∧ m2 < a2

and � is the set of failure states such that m1 < a1 ∧ m2 < a2.
Given an output failure mode, we would like to compute all initial failure

modes that could cause that final failure mode. We say that an initial failure
mode e (to an SIS function) causes an output failure mode e′ (of an SIS function)
if there exists a failure state satisfying e such that the output of the SIS function
given that initial state satisfies e′.

For a given SIS function f , one way to do this is to compute all relevant
failure states for 〈f〉, and then use mdP to interpret the failure modes for each
failure state. Our first observation is that, given a partition P defining the failure
modes, we can simplify this procedure significantly by abstracting the behaviour
of f to act directly in terms of the failure modes rather than failure states.

Definition 4. Let f : V → V be an SIS function, and P be a partition of V2

defining the set of failure modes as in Definition 3.
We define [f ]P : P → PP to be the failure mode abstraction of f as the

(possibly nondeterministic) function satisfying the following constraint for any
input (m,a) ∈ V2:

mdP ◦ 〈f〉(m,a) ∈ [f ]P ◦ mdP(m,a).

In Fig. 2a, where the initial failure modes are �1, �2 and � explained above, and
final failure modes are f = {(f, t)} and t = {(t, f)}, we can see that [TAvg]P(�1)
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contains f, where we are writing P to represent the partition defined by all initial
and final variables.5

We shall show below that there are a variety of functions that have well-
defined failure mode abstractions. Our next task however, is to show that the
abstraction defined by Definition 4 is compositional, i.e. the abstraction of f ; g
of SIS functions f and g can be computed from the composition of their abstrac-
tions. We recall the well-known Kleisli lifting of set-valued [24,25] functions as
follows. We write the composition f ; g to mean first f is executed, and then g,
or as functions the output from initial s is g(f(s)).

Let ρ : T → PT, define ρ† : PT → PT

ρ†(K) :=
⋃

k∈K

ρ(k). (2)

Lemma 1. Let f, g be SIS functions which have well-defined failure-mode
abstractions as given by Definition 4. The failure-mode abstraction for the com-
position [f ; g]P is equal to [g]†P ◦ [f ]P, where [g]†P : PP → PP is the standard
lifting set out at Eq. 2 above.6

Proof. (Sketch) We show, for any input (m,a), that:

mdP ◦ 〈g〉 ◦ 〈f〉(m,a) ∈ [g]†P ◦ [f ]P ◦ mdP(m,a) ,

and that all failure modes arise in this way. The result follows from Definition 4,
and standard manipulations of set-valued functions [1,25].

The failure mode abstractions [f ]P enable a significant simplification in the
identification of possible failures in an SIS program. For example we shall see that
[TAvg]P = [GcomK ]†P ◦ [Avg]P for abstractions of the function blocks [GcomK ]P
and [Avg]P.

In general a safety analyst considers possible output failure modes and asks
for the inputs that potentially cause them. In some circumstances some failure
modes can never be satisfied by any input, and are deemed unreachable. The
analyst is thus able to concentrate on reachable failure modes, defined next.

Definition 5. Given an SIS function f , and abstraction defined by Definition 4.
A failure mode m ∈ P is reachable (wrt. f) if there is some input failure state
(i, i′) such that mdP ◦ 〈f〉(i, i′) = m.

Failure Mode Reasoning is based on backwards calculational reasoning. We
use a weak transformer to compute all input failure modes which can possibly
cause a given output failure mode. This is similar to the dual transformer of
dynamic logic [7] and the conjugate transformer [26] for the well-known guarded
command language [11].
5 More precisely we would define failure modes separately on inputs and outputs, and

indeed this is what happens in practice. To simplify the presentation however we
assume that there is a single partition which serves to define failure modes on a
single set, without distinguishing between inputs and outputs.

6 Recall that for simplicity we assume that the function modes P applies to both
functions f and g.
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Definition 6. Given SIS function 7 f , we define the inverse failure transformer
[f ]−P : PP → PP as

[f ]−P(K) := {k | [f ]P(k) ∩ K 	= φ}. (3)

Definition 6 satisfies two properties. The first is that any initial failure modes
computed from final failure modes are the ones that could cause the selected
final failure modes. The second is that inverse failure transformers compute all
initial failure modes from final reachable failure modes. The next two definitions
formalise these properties.

Definition 7. Given SIS function f , we say an inverse failure transformer t is
sound wrt. f if all k ∈ t(K) implies [f ]P(k) ∩ K 	= φ.

Definition 8. Given SIS function f , we say an inverse failure transformer t is
complete if for any set of reachable failure modes F and (initial) failure modes
I, we have the following:

I ⊆ t(F) ⇔ (∀i ∈ I · [f ]P(i) ∩ F 	= φ) . (4)

Observe that given failure modes m and m′ such that m ∈ t{m′}, then m′ is
reachable if there is some (i, i′) such that mdP(i, i′) = m. In general the safety
engineer is not concerned with “unrealistic” failure modes in the sense that no
corresponding scenario comprised of failure states can be constructed.

It is clear from Definition 6 that [f ]−P is a sound and complete transformer
relative to f . The definition of completeness is important because it means, for
the safety engineer, that all potential failure modes are accounted for by the
abstraction. The next lemma records the fact that soundness and completeness
is conserved by function composition.

Lemma 2. Let f, g be SIS functions, and let P determine the failure modes so
that [f ]−p and [g]−p are sound and complete transformers. Then their composition
[f ]−p ◦ [g]−p is also sound and complete for the composition SIS function f ; g.

Proof. Follows from Definition 6 and standard facts about functions and their
transformers [25,26].

In this section we have set out a formal methods treatment of failure modes
for SIFs in SIS programs. We have demonstrated a simple model for failures and
shown how this “application-oriented” approach supports a rigorous analysis of
failure modes and how they are propagated in SIS programs. In the following
sections we show how this can be used to justify the use of standard backwards-
reasoning to compute all input failure modes that cause reachable failure modes.

7 We do not treat non-termination nor partial functions.
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4 Failure Mode Reasoning

In this section we show how to apply the failures model introduced in Section 3
to the typical safety analysis.

Recall TAvg defined in Fig. 2a. In this example, the failure modes of interest
relate to whether the readings of the various sensors accurately record the phys-
ical environment or not, and when they do not, which combinations of deviant
readings have the potential to result in a hazard.

The safety analysis begins with the identification of hazardous outputs: these
are outputs from the SIS program which would directly cause a hazard if it is
not correct, in the sense that it deviates from the “true” result which would have
been output had all the sensors accurately recorded the status of the plant.

For simplicity we assume that all readings are real-valued, thus we identify
“True” with “1” and “False” with “0”. Following Definition 3 we set V = R and
identify a partition on R×R given as follows.

Definition 9. Define the failures partition as follows. Let h, l,m respectively
partition R×R defined by:

(r, r′) ∈ h iff r > r′ ; (r, r′) ∈ m iff r = r′ ; (r, r′) ∈ l iff r < r′.

Here we have identified the common failure modes “reading too high”, corre-
sponding to h and “reading too low” corresponding to l. We have also included
“reading correct” corresponding to m which is not strictly speaking a “failure”,
but is useful in the formal analysis. From our gas pressure example, the situa-
tion where the input recorded on i1 is lower than the real pressure in the pipe
is modelled by pairs of values that lie in l.

Safety engineers want to know the input failure modes that “cause” particular
reachable output failures. Definition 8 and Lemma 2 above support a standard
backwards reasoning method on failure modes directly.

For each variable s in an SIS program we use ŝ for a corresponding variable
taking failure modes for values, which in this case is {h, l,m}.

Definition 10. Given an SIS function f and a partition P defining the failure
modes. A failure triple is written

{ ŝ ∈ A } f { ŝ′ ∈ A′ } , (5)

where A,A′ ⊆ {h, l,m}. The triple Eq. 5 is valid if, for each failure mode e ∈ A

there exists (m,m′) such that mdP(m,m′) = e and mdP(〈f〉(m,m′)) ∩ A′ 	= φ.
Note that as a special case where A is a singleton set {a} we write “ŝ = a”

rather than “ŝ ∈ A”.

Definition 5 is reminiscent of a standard Hoare Triple for failure modes,
however a failure triple is based on Definition 6. More importantly Definition 5
corresponds with the scenarios relevant for the assessment of failures. Whenever
f corresponds to an SIS function for example, the valid triple given by Eq. 5
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means that the initial failure mode corresponding to a causes the final failure
mode a′. This effectively enables the identification of failure mode propagation,
summarised in the next result.

Theorem 1. Let f be an SIS function and P define the relevant failure modes.
Let a′ be a reachable final failure mode wrt. f . Then for all a ∈ [f ]−P{a′}

{ ŝ = a } f { ŝ′ = a′ }

is a valid failure triple.

Proof. Definition of [f ]−P , Definition 6.

Backwards Reasoning for Failure Modes: As mentioned above we can use Theo-
rem 1 to compute the failure modes that are the cause of a given reachable final
failure mode. A complex SIS program determining a SIF typically comprises
multiple function blocks with clearly defined “input” variables and “output”
variables, where the outputs are determined by the values on the inputs. The
architecture of the SIS program is then equated with a composition of a series
of function blocks. Now that we have a formal description in terms of failure
triples, we are able to use the standard composition rule:

{ ŝ = a } f1 { ŝ1 = b } ∧ { ŝ1 = b } f2 { ŝ′ = a′ }
⇒ { ŝ = a } f1; f2 { ŝ′ = a′ } .

From this we can now deduce failure triples of a complex SIS program by
reasoning about failure triples for component function blocks. We illustrate this
for Avg and GcomK in the next section.

5 Individual Function Blocks

A typical SIS program library, from which function blocks (FBs) are chosen, may
include 100 types of FBs [31]. For each FB the relationships between FB input
failure modes and FB output failure modes, can be summarised in a Failure
Mode Block (FMB). An FMB is proposed based on the well-defined function of
its corresponding FB. In this section we will propose FMBs for SIS functions
Avg and GcomK , which we used in our gas pressure example, and we will prove
the soundness and completeness of the proposed FMBs. More sample FMBs are
proposed and proven in the appendix of [18].

The Avg function block takes two inputs and computes the average. The
relevant output failures therefore are whether the output reads too high or too
low. The abstraction for failure modes is given below.
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Definition 11. Let Avg be the function defined by: Avg(i1, i2):= (i1+i2)/2. Its
associated FMB, FAvg, is defined as follows:

{̂i1 = h ∨ î2 = h} Avg {ô = h}
{̂i1 = l ∨ î2 = l} Avg {ô = l}

⎧
⎨

⎩

î1 = h ∧ î2 = l∨
î1 = l ∧ î2 = h∨
î1 = m ∧ î2 = m

⎫
⎬

⎭ Avg {ô = m}

Definition 11 tells us that if the output reads too high, then it must be
because one of the two inputs also reads too high. Similarly, if the output reads
too low then it can only be because one of the two inputs reads too low. On
the other hand the output can deliver an accurate result for scenarios where one
input reads too high and the other reads too low. At the qualitative level of
abstraction, however, all of these possibilities must be accounted for.

GcomK is another typical function block which compares the input with a
given threshold and reports whether the input meets the given threshold.

Definition 12. Let GcomK be the function defined by: GcomK(i):= (i > K).
Its associated FMB, FGcom, is defined as follows:

{̂i = h} GcomK {ô = t}
{̂i = l} GcomK {ô = f}

{̂i = l ∨ î = m ∨ î = h} GcomK {ô = m}
Definition 12 tells us that the output reading f when it should read t can only

happen when the input is delivering a lower value than it should, and similarly
the output reading t when it should read f can only happen when the input
reading is falsely reporting a high value. Notice that this definition is actually
independent of K, which is why K is suppressed in the FMB model.

The following theorem confirms that Definition 11 and Definition 12 are
sound and complete in respect of their operational definitions.

Theorem 2. The FAvg and FGcom models Definitions 11 and 12 are the
sound and complete failure models of Avg and GcomK (for all real-valued K).

Proof. Individual FMBs can be proven by using truth-tables. All possible combi-
nations of faults at the inputs and outputs of a corresponding FB can be defined,
based on which the soundness and completeness conditions can be examined.
Detailed proof is given in the appendix of [18].

6 FMR in Practice

The FMR process consists of four main stages: composition, substitution, sim-
plification and calculation. In the composition stage, FMBs and failure mode
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variables are defined and connected in accordance with the SIS program. The
model for our example SIS program (Fig. 2a) will include two FMBs: FAvg and
FGcom. Similarly, variables o, w, i1 and i2 in SIS program will have their own
corresponding failure mode variables ô, ŵ, î1 and î2 in the model.

The reasoning process begins at the last FB, i.e. the one that produces the
SIS output. In our gas pressure example, the given output fault is ô = f. Taking
into account the function of GcomK from Definition 12, we can say:

{ŵ = l} GcomK {ô = f} (6)

Statement (6) suggests that output o being f by fault implies that the input
to the greater comparison FB, w, is reading lower than what it should.

The reasoning process continues through the SIS program until all the conclu-
sion parts of the implication statements include no more intermediate variables.
In our example, the next FB is Avg. Considering the function of Avg, if the fault
ŵ = l occurs at its output, we can conclude that from Definition 11:

{̂i1 = l ∨ î2 = l} Avg {ŵ = l} (7)

This statement suggests that if the reported value at w is lower than its
intended value, then either input i1 or i2 may be reading lower. The reasoning
sequence terminates here as the left hand side of (7) only includes SIS inputs.

In the second stage of FMR we use the logical composition rules to eliminate
intermediate variables in order to reduce the set of FB failure reasons to only one
relation that links SIS inputs to its outputs. In our example, the only internal
variable is ŵ. By substituting (7) in (6) we can conclude:

{̂i1 = l ∨ î2 = l} Avg;GcomK {ô = f} (8)

which is very similar to the result (1) of our earlier informal description of FMR.
The third stage of FMR is simplification, where we use standard rules of

propositional logic [6] to simplify (8) and create the FMR short list of failure
triples. As (8) is already minimal, we can easily see that our short list of faults
comprises î1 = l and î2 = l.

Having the input failure modes identified, we can implement the last stage of
analysis, calculation, in which we would assign probability values to individual
failure events and calculate the overall probability of failure. We skip this stage
for this simple example. A comprehensive safety analysis for a realistic case study
is described in other work [17].

In a more recent project [19] we examined a larger case study where we
integrated FMR with other model-base analysis methods HiP-HOPS [27] and
CFT [21]. We demonstrated that not only is FMR able to handle larger examples
with precision, but its output can also be of value to other safety analysis tools
that are designed to model generic systems but not programs. The process we
examined in this case study is briefly shown in Fig. 3: a SIS that protects a
gas-fired industrial boiler against high level of water. The SIS program in this
example consists of over 2170 function blocks. With close to 100 inputs and
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Fig. 3. SIS configuration

over 25 outputs, the SIS performs a total of 34 safety functions (SIFs). The SIS
program in this project was developed in FBD and saved in XML format.

The FMR analysis produced two short lists of failure modes, one for Danger-
ous Undetected (DU) failure and one for Spurious Trip (ST). The lists included
a total of 39 failure scenarios. In the quantitative stage the failure data of SIS
inputs were entered and the aggregated probability measures for DU and ST
failures were calculated.

Provided that failure data are readily available, the whole analysis process for
an SIS of this scale takes less than an hour to complete, using the experimental
system incorporating FMR analysis [19]. Conducting similar analysis by hand
would take days. To visualise the extent of work, consider manual implementa-
tion of a fault tree with around 3500 gates. Even if the analyst is prepared for
such a challenge, the implemented model, and thus its outcome, will be prone
to human error. In comparison, FMR is fast, accurate, consistent, and reliable.

7 Discussion and Related Works

Reasoning about faults is not a new research topic. Diagnostics based on sys-
tematic inference was extensively studied in the 1980’s. Some of the frequently
cited articles include [8,14,28]. Generally speaking, the studies were aimed at
answering one question: given an observed deviation at the output of a system,
how can we identify the (potentially) faulty components by reasoning based on
the knowledge of system structure and/or system function? Logic circuits, in
particular, would make an interesting application as they typically consist of
complex yet well-defined, logical structures. Unlike inference-based diagnostics,
FMR is primarily designed to target probable input faults, rather than faulty sys-
tem components. Input faults are external to the system and do not represent
system failure scenarios.

FMR uses abstraction techniques, which is also a well-established area, par-
ticularly in formal methods [5]. One may find similarities between the abstraction
in FMR and that of Qualitative Reasoning (QR), where quantitative aspects of
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physical systems are replaced with qualitative representations [2,9]. It should be
noted however that QR is a method for expressing physical entities, and with
an application in AI; whereas FMR is a technique for reasoning about failures,
and (at least, currently) focused on conventional safety systems.

FMR is in some respects similar to FTA. Both methods look at the root
causes that can result in a given top event. Parts of the computation techniques
are similar between the two methods as well. However, FMR and FTA are dif-
ferent in some conceptual respects. FTA is a generic method that can be applied
to any fault in any type of system, whereas FMR is specifically designed for
analysing SIS programs. FTA computes a Boolean state of failure-success, but
FMR computes multiple failure modes. The top event in FTA is a single event,
but the program output in FMR can be an array of variables. The main question
FMR tries to answer is that: given an abstracted state of output and given the
function that produces it, what are the possible (abstracted) states of inputs to
that function. This is obviously different to FTA in which we “know” the fail-
ure behaviour of a system and we build a model (fault tree) to summarise our
understanding. FTA relies on the knowledge and skills of the analyst whereas
FMR extracts information directly from the system. In a general term, FTA is
a failure modeling method while FMR is a mode calculation method.

FTA was first introduced in 1961 to study a missile launch control system.
In almost six decades, many extensions and variations of the method have been
introduced to solve other types of problems. Useful surveys are conducted on
FTA and its extensions in recent years [20,29]. Thanks to the growing capabilities
of today’s technology, attention has shifted towards modularity and automatic
synthesis of fault trees, which can greatly assist with solving complex problems
at less effort. Various model-based dependability analysis methods have been
developed, such as HiP-HOPS [27,30], AADL [13] and AltaRica [23], which
use FTA as their primary means and automate the synthesis process to some
degrees. More recently, the concept of contract-based design has also been used
for automatic generation of hierarchical fault trees from formal models [3].

The common concept in automatic hierarchical synthesis of fault trees is that
if we have the typical definition of component fault trees, we can synthesise the
system level fault tree by interconnecting the smaller fault trees of components.
At a conceptual level, this idea is utilised by FMR too; however, the components
in FMR are the FBs, as opposed to the other methods that analyse physical
systems. Also, while FMR uses the actual SIS program for its analysis, the other
methods rely on separate models or specifications in order to generate fault trees.
The actual running program in SIS is always the most accurate, detailed, and
specific source of information on the behaviour of system, and having that FMR
does not require any additional models.

Model checking has been used in SIS related applications too (see [12,22] as
examples). In model checking a formal specification of system (model) is checked
against a formal specification of requirements. Such methods focus on verifying
the program against the requirements, as opposed to FMR which aims to identify
failure modes.
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Satisfiability Modulo Theories (SMT) is about determining whether a first
order formula is satisfiable with respect to some logical theory [4,10]. SMT
solvers are used in various applications in the field of computer and formal
verification. With respect to FMR, SMT can potentially help with determining
the SIS input values that can result in a given output value. While this makes
a potential area for further research; our experiments so far indicate that any
SMT analysis will require post-processing in order to transform the results into
failure modes.

8 Conclusion

In this paper we have shown how techniques from traditional formal methods
can be brought to bear on a challenging problem in safety engineering: that
of determining with precision how faults arising from incorrect sensor readings
propagate through complex SIS programs. Within the safety engineering dis-
cipline, FMR is a novel way to analyse failure modes in Safety Instrumented
Systems. Future work will include more complex constructs for function blocks,
including looping, timing and probabilistic analysis. Moreover, we are working
on implementing FMR for identify systematic failures in SIS programs, where
the input to the program is correct but the output is faulty due to a pre-existing
error in program.
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Abstract. In the field of deductive software verification, programs with
pointers present a major challenge due to pointer aliasing. In this paper,
we introduce pointers to SPARK, a well-defined subset of the Ada lan-
guage, intended for formal verification of mission-critical software. Our
solution uses a permission-based static alias analysis method inspired by
Rust’s borrow-checker and affine types. To validate our approach, we have
implemented it in the SPARK GNATprove formal verification toolset for
Ada. In the paper, we give a formal presentation of the analysis rules for
a core version of SPARK and discuss their implementation and scope.

1 Introduction

SPARK [1] is a subset of the Ada programming language targeted at safety-
and security-critical applications. SPARK restrictions ensure that the behavior
of a SPARK program is unambiguously defined, and simple enough that formal
verification tools can perform an automatic diagnosis of conformance between a
program specification and its implementation. As a consequence, it forbids the
use of features that either prevent automatic proof, or make it possible only at
the expense of extensive user annotation effort. The lack of support for pointers
is the main example of this choice.

Among the various problems related to the use of pointers in the context
of formal program verification, the most difficult problem is that two names
may refer to overlapping memory locations, a.k.a. aliasing. Formal verification
platforms that support pointer aliasing like Frama-C [2] require users to annotate
programs to specify when pointers are not aliased. This can take the form of
inequalities between pointers when a typed memory model is used, or the form of
separation predicates between memory zones when an untyped memory model is
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used. In both cases, the annotation burden is acceptable for leaf functions which
manipulate single-level pointers, and quickly becomes overwhelming for functions
that manipulate pointer-rich data structures. In parallel to the increased cost of
annotations, the benefits of automation decrease, as automatic provers have
difficulties reasoning explicitly with these inequalities and separation predicates.

Programs often rely on non-aliasing in general for correctness, when such
aliasing would introduce interferences between two unrelated names. We call
aliasing potentially harmful when a memory location modified through one name
could be read through another name, within the scope of a verification condi-
tion. Otherwise, the aliasing is benign, when the memory location is only read
through both names. A reasonable approach to formal program verification is
thus to detect and forbid potentially harmful aliasing of names. Although this
restricted language fragment cannot include all pointer-manipulating programs,
it still allows us to introduce pointers to SPARK with minimal overhead for its
program verification engine.

In this paper, we provide a formal description of the inclusion of pointers in
the Ada language subset supported in SPARK, generalizing intuitions that can
be found in [3,4] or on Adacore’s blog [5,6]. As our main contribution, we show
that it is possible to borrow and adapt the ideas underlying the safe support
for pointers in permission-based languages like Rust, to safely restrict the use of
pointers in usual imperative languages like Ada.

The rest of the paper is organized as follows. In Sect. 2, we give an informal
description of our approach. Section 3 introduces a small formal language for
which we define the formal alias analysis rules in Sect. 4. In Sect. 5, we describe
the implementation of the analysis in GNATProve, a formal verification tool for
Ada, and discuss some limitations with the help of various examples. We survey
related works in Sect. 6 and future works in Sect. 7.

2 Informal Overview of Alias Analysis in SPARK

In Ada, the access to memory areas is given through paths that start with an
identifier (a variable name) and follow through record fields, array indices, or
through a special field all, which corresponds to pointer dereferencing. In what
follows, we only consider record and pointer types, and discuss the treatment of
arrays in Sect. 5.

As an example, we use the following Ada type, describing singly linked lists
where each node carries a Boolean flag and a pointer to a shared integer value.

type List is record
Flag : Boolean;
Key : access Integer;
Next : access List;

end record;

Given a variable A : List, the paths A.Flag, A.Key.all, A.Next.all.Key
are valid and their respective types are Boolean, Integer, and access Integer
(a pointer to an Integer). The important difference between pointers and
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records in Ada is that—similarly to C—assignment of a record copies the values
of fields, whereas assignment of a pointer only copies the address and creates an
alias.

The alias analysis procedure runs after the type checking. The idea is to
associate one of the four permissions—RW, R, W or NO—to each possible path
(starting from the available variables) at each sequence point in the program.
A set of rules ensures that for any two aliased pointers, at most one has the
ownership of the underlying memory area, that means the ability to read and
modify it.

The absence of permission is denoted as the NO permission. Any modification
or access to the value accessible from the path is forbidden. This typically applies
to aliased memory areas that have lost the ownership over their stored values.

The read-only permission R allows us to read any value accessible from the
path: use it in a computation, or pass it as an in parameter in a procedure call.
As a consequence, if a given path has the R permission, then each valid extension
of this path also has it.

The write-only permission W allows us to modify memory occupied by the
value: use it on the left-hand side in an assignment or pass it as an out param-
eter in a procedure call. For example, having a write permission for a path of
type List allows us to modify the Flag field or to change the addresses stored
in the pointer fields Key and Next. However, this does not necessarily give us the
permission to modify memory accessible from those pointers. Indeed, to deref-
erence a pointer, we must read the address stored in it, which requires the read
permission. Thus, the W permission only propagates to path extensions that do
not dereference pointers, i.e., do not contain additional all fields.

The read-write permission RW combines the properties of the R and W per-
missions and grants the full ownership of the path and every value accessible
from it. In particular, the RW permission propagates to all valid path extensions
including those that dereference pointers. The RW permission is required to pass
a value as an in out parameter in a procedure call.

Execution of program statements changes permissions. A simple example of
this is procedure call: all out parameters must be assigned by the callee and get
the RW permission after the call. The assignment statement is more complicated
and several cases must be considered. If we assign a value that does not contain
pointers (say, an integer or a pointer-free record), the whole value is copied
into the left-hand side, and we only need to check that we have the appropriate
permissions: W or RW for the left-hand side and R or RW for the right-hand side.
However, whenever we copy a pointer, an alias is created. We want to make the
left-hand side the new full owner of the value (i.e., give it the RW permission),
and therefore, after the permission checks, we must revoke the permissions from
the right-hand side, to avoid potentially harmful aliasing. The permission checks
are also slightly different in this case, as we require the right-hand side to have
the RW permission in order to move it to the left-hand side.

Let us now consider several simple programs and see how the permission
checks allow us to detect potentially harmful aliasing.
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Fig. 1. Examples of potentially harmful aliasing, with some verification conditions that
require tracking aliases throughout the program to be checked.

Fig. 2. Graphical representation of the permissions attributed to B and its extensions
after assignment A := B; in P1.

Procedure P1 in Fig. 1 receives two in out parameters A and B of type List.
At the start of the procedure, all in out parameters assume permission RW.
In particular, this implies that each in out parameter is separated from all
other parameters, in the sense that no memory area can be reached from two
different parameters. The first assignment copies the structure B into A. Thus,
the paths A.Flag, A.Key, and A.Next are separated, respectively, from B.Flag,
B.Key, and B.Next. However, the paths A.Key.all and B.Key.all are aliased,
and A.Next.all and B.Next.all are aliased as well.

The first assignment does not change the permissions of A and its extensions:
they retain the RW permission and keep the full ownership of their respective
memory areas, even if the areas themselves have changed. The paths under B,
however, must relinquish (some of) their permissions, as shown in Fig. 2. The
paths B.Key.all and B.Next.all as well as all their extensions get the NO
permission, that is, lose both read and write permissions. This is necessary, as
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the ownership over their memory areas is transferred to the corresponding paths
under A. The paths B, B.Key, and B.Next lose the read permission but keep
the write-only W permission. Indeed, we forbid reading from memory that can
be altered through a concurrent path. However, it is allowed to “redirect” the
pointers B.Key and B.Next, either by assigning those fields directly or by copying
some different record into B. The field B.Flag is not aliased, nor has aliased
extensions, and thus retains the initial RW permission. This RW permission
allows us to perform the assignment B.Flag := True on the next line.

The third assignment, however, is now illegal, since B.Key.all does not have
the write permission anymore. What is more, at the end of the procedure the
in out parameters A and B are not separated. This is forbidden, as the caller
assumes that all out and in out parameters are separated after the call just as
they were before.

Procedure P2 in Fig. 1 receives two pointers A and B, and manipulates them
inside a while loop. Since the permissions are assigned statically, we must ensure
that at the end of a single iteration, we did not lose the permissions necessary
for the next iteration. This requirement is violated in the example: after the
last assignment A := B, the path B receives permission W and the path B.all,
permission NO, as B.all is now an alias of A.all. The new permissions for
B and B.all are thus weaker than the original ones (RW for both), and the
procedure is rejected. Should it be accepted, we would have conflicting memory
modifications from two aliased paths at the beginning of the next iteration.

3 µSPARK Language

For the purposes of formal presentation, we introduce μSPARK, a small subset
of SPARK featuring pointers, records, loops, and procedure calls. We present
the syntax of μSPARK, and define the rules of alias safety.

The data types of μSPARK are as follows:

type ::= Integer | Real | Boolean scalar type
| access type access type (pointer)
| ident record type

Every μSPARK program starts with a list of record type declarations:

record ::= type ident is record field� end

field ::= ident : type

We require all field names to be distinct. The field types must not refer to
the record types declared later in the list. Nevertheless, a record type R can be
made recursive by adding a field whose type is a pointer to R (written access
R). We discuss the handling of array types in Sect. 5.
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The syntax of μSPARK statements is defined by the following rules:

path ::= ident variable
| path . ident record field
| path . all pointer dereference

expr ::= path l-value
| 42 | 3.14 | True | False | . . . scalar value
| expr ( + | - | < | = | . . . ) expr binary operator
| null null pointer

stmt ::= path := expr assignment
| path := new type allocation
| if expr then stmt� else stmt� end conditional
| while expr loop stmt� end “while” loop
| ident ( expr� ) procedure call

Following the record type declarations, a μSPARK program contains a set of
mutually recursive procedure declarations:

procedure ::= procedure ident ( param� ) is local� begin stmt� end

param ::= ident : ( in | in out | out ) type

local ::= ident : type

We require all formal parameters and local variables in a procedure to have
distinct names. A procedure call can only pass left-values (i.e., paths) for in
out and out parameters. The execution starts from a procedure named Main
with the empty parameter list.

The type system for μSPARK is rather standard and we do not show it here
in full. We assume that binary operators only operate on scalar types. The null
pointer can have any pointer type access τ . The dereference operator .all
converts access τ to τ . Allocation p := new τ requires path p to have type
access τ . In what follows, we only consider well-typed μSPARK programs. A
formal semantics for μSPARK statements is given in Appendix A.

On the semantic level, we need to distinguish the units of allocation, such as
whole records, from the units of access, such as individual record fields. We use
the term location to refer to the memory area occupied by an allocated value.
We treat locations as elements of an abstract infinite set, and denote them with
letter �. We use the term address to designate either a location, denoted �, or a
specific component inside the location of a record, denoted �.f.g, where f and
g are field names (assuming that at � we have a record whose field f is itself a
record with a field g). A value is either a scalar, an address, a null pointer or a
record, that is, a finite mapping from field names to values.

A μSPARK program is executed in the context defined by a binding Υ that
maps variable names to addresses and a store Σ that maps locations to values.
By a slight abuse of notation, we apply Σ to arbitrary addresses, so that Σ(�.f)
is Σ(�)(f), the value of the field f of the record value stored in Σ at �.
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The evaluation of expressions is effect-free and is denoted �e�Υ
Σ . We also need

to evaluate l-values to the corresponding addresses in the store, written 〈p〉Υ
Σ ,

where p is the evaluated path. Illicit operations, such as dereferencing a null
pointer, cannot be evaluated and stall the execution (blocking semantics). In the
formal rules below, c stands for a scalar constant and �, for a binary operator:

〈x〉Υ
Σ = Υ (x) 〈p.f〉Υ

Σ = 〈p〉Υ
Σ .f 〈p.all〉Υ

Σ = �p�Υ
Σ

�c�Υ
Σ = c �p�Υ

Σ = Σ(〈p〉Υ
Σ) �null�Υ

Σ = null

�e1 � e2�
Υ
Σ = �e1�

Υ
Σ � �e2�

Υ
Σ

4 Access Policies, Transformers, and Alias Safety Rules

We denote paths with letters p and q. We write p � q to denote that p is a strict
prefix of q or, equivalently, q is a strict extension of p. In what follows, we always
mean strict prefixes and extensions, unless explicitly said otherwise.

In the typing context of a given procedure, a well-typed path is said to be
deep if it has a non-strict extension of an access type, otherwise it is called
shallow. We extend these notions to types: a type τ is deep (resp. shallow) if and
only if a τ -typed path is deep (resp. shallow). In other words, a path or a type
is deep if a pointer can be reached from it, and shallow otherwise. For example,
the List type in Sect. 2 is a deep type, and so is access Integer, whereas any
scalar type or any record with scalar fields only is shallow.

An extension q of a path p is called a near extension if it has as many pointer
dereferences as p, otherwise it is a far extension. For instance, given a variable
A of type List, the paths A.Flag, A.Key, and A.Next are the near extensions
of A, whereas A.Key.all, A.Next.all, and their extensions are far extensions,
since they all create an additional pointer dereference by passing through all.

We say that sequence points are the program points before or after a given
statement. For each sequence point in a given μSPARK program, we statically
compute an access policy : a partial function that maps each well-typed path to
one of the four permissions: RW, R, W, and NO, which form a diamond lattice:
RW > R|W > NO. We denote permissions by π and access policies by Π.

Permission transformers modify policies at a given path, as well as its prefixes
and extensions. Symbolically, we write Π

T−→p Π ′ to denote that policy Π ′ results
from application of transformer T to Π at path p. We define a composition
operation Π

T1−→p1 �
T2−→p2 Π ′ that allows chaining the application of permission

transformers T1 at path p1 and T2 at path p2 to Π resulting in the policy Π ′.
We write Π

T1� T2−−−−→p Π ′ as an abbreviation for Π
T1−→p �

T2−→p Π ′ (that is, for
some Π ′′, Π

T1−→p Π ′′ T2−→p Π ′). We write Π
T−→p,q Π ′ as an abbreviation for

Π
T−→p �

T−→q Π ′.
Permission transformers can also apply to expressions, which consists in

updating the policy for every path in the expression. This only includes paths
that occur as sub-expressions: in an expression X.f.g + Y.h, only the paths
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X.f.g and Y.h are concerned, whereas X, X.f and Y are not. The order in which
the individual paths are treated must not affect the final result.

Fig. 3. Alias safety rules for statements.

We define the rules of alias safety for μSPARK statements in the context of
a current access policy. An alias-safe statement yields an updated policy which
is used to check the subsequent statement. We write Π · s → Π ′ to denote that
statement s is safe with respect to policy Π and yields the updated policy Π ′.
We extend this notation to sequences of statements in an obvious way, as the
reflexive-transitive closure of the update relation on Π. The rules for checking
the alias safety of statements are given in Fig. 3. These rules use a number of
permission transformers such as ‘fresh’, ‘check’, ‘move’, ‘observe’, and ‘borrow’,
which we define and explain below.

Let us start with the (P-assign) rule. Assignments grant the full ownership
over the copied value to the left-hand side. If we copy a value of a shallow
type, we merely have to ensure that the right-hand side has the read permission.
Whenever we copy a deep-typed value, aliases may be created, and we must
check that the right-hand side is initially the sole owner of the copied value
(that is, possesses the RW permission) and revoke the ownership from it.

To define the ‘move’ transformer that handles permissions for the right-hand
side of an assignment, we need to introduce several simpler transformers.

Definition 1. Permission transformer check π does not modify the access policy
and only verifies that a given path p has permission π or greater. In other words,
Π

check π−−−−→p Π ′ if and only if Π(p) � π and Π = Π ′. This transformer also
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applies to expressions: Π
check π−−−−→e Π ′ states that Π

check π−−−−→p Π ′(= Π) for every
path p occurring in e.

Definition 2. Permission transformer fresh π assigns permission π to a given
path p and all its extensions.

Definition 3. Permission transformer cut assigns restricted permissions to a
deep path p and its extensions: the path p and its near deep extensions receive
permission W, the near shallow extensions keep their current permissions, and
the far extensions receive permission NO.

Going back to the procedure P1 in Fig. 1, the change of permissions on the
right-hand side after the assignment A := B corresponds to the definition of ‘cut’.
In the case where the right-hand side of an assignment is a deep path, we also
need to change permissions of the prefixes, to reflect the ownership transfer.

Definition 4. Permission transformer block propagates the loss of the read per-
mission from a given path to all its prefixes. Formally, it is defined by the fol-
lowing rules, where x stands for a variable and f for a field name:

Π
block−−−→x Π

Π[p �→ W] block−−−→p Π ′

Π
block−−−→p.all Π ′

Π(p) = NO

Π
block−−−→p.f Π

Π(p) � W Π[p �→ W] block−−−→p Π ′

Π
block−−−→p.f Π ′

Definition 5. Permission transformer move applies to expressions:

– if e has a shallow type, then Π
move−−−→e Π ′ ⇔ Π

check R−−−−→e Π ′,
– if e is a deep path p, then Π

move−−−→e Π ′ ⇔ Π
check RW � cut � block−−−−−−−−−−−−−→p Π ′,

– if e is null, then Π
move−−−→e Π ′ ⇔ Π ′ = Π.

To further illustrate the ‘move’ transformer, let us consider two variables P
and Q of type access List and an assignment P := Q.all.Next. We assume
that Q and all its extensions have full ownership (RW) before the assignment. We
apply the second case in the definition of ‘move’ to the deep path Q.all.Next.
The ‘check RW’ condition is verified, and the ‘cut’ transformer sets the per-
mission for Q.all.Next to W and the permission for Q.all.Next.all and all
its extensions to NO. Indeed, P.all becomes an alias of Q.all.Next.all and
steals the full ownership for this memory area. However, we still can reassign
Q.all.Next to a different address. Moreover, we still can write some new values
into Q.all or Q, without compromising safety. This is enforced by the application
of the ‘block’ transformer at the end. We cannot keep the read permission for Q
or Q.all, since it implies the read access to the data under Q.all.Next.all.

Finally, we need to describe the change of permissions on the left-hand side
of an assignment, in order to reflect the gain of the full ownership. The idea is
that as soon as we have the full ownership for each field of a record, we can
assume the full ownership of the whole record, and similarly for pointers.
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Definition 6. Permission transformer lift propagates the RW permission from
a given path to its prefixes, wherever possible:

Π
lift−−→x Π

Π[p �→ RW] lift−−→p Π ′

Π
lift−−→p.all Π ′

∀q � p.Π(q) = RW Π[p �→ RW] lift−−→p Π ′

Π
lift−−→p.f Π ′

∃q � p.Π(q) 
= RW

Π
lift−−→p.f Π

In the (P-assign) rule, we revoke the permissions from the right-hand side of
an assignment before granting the ownership to the left-hand side. This is done
in order to prevent creation of circular data structures. Consider an assignment
A.Next.all := A, where A has type List. According to the definition of ‘move’,
all far extensions of the right-hand side, notably A.Next.all, receive permission
NO. This makes the left-hand side fail the write permission check.

Allocations p := new τ are handled by the (P-alloc) rule. We grant the
full permission on the newly allocated memory, as it cannot possibly be aliased.

In a conditional statement, the policies at the end of the two branches are
merged selecting the most restrictive permission for each path. Loops require
that no permissions are lost at the end of a loop iteration, compared to the
entry, as explained above for procedure P2 in Fig. 1.

Procedure calls guarantee to the callee that every argument with mode in,
in out, or out has at least permission R, RW or W, respectively. To ensure
the absence of potentially harmful aliasing, we revoke the necessary permissions
using the ‘observe’ and ‘borrow’ transformers.

Definition 7. Permission transformer borrow assigns permission NO to a
given path p and all its prefixes and extensions.

Definition 8. Permission transformer freeze removes the write permission
from a given path p and all its prefixes and extensions. In other words, freeze
assigns to each path q comparable to p the minimum permission Π(q) ∧ R.

Definition 9. Permission transformer observe applies to expressions:

– if e has a shallow type, then Π
observe−−−−→e Π ′ ⇔ Π ′ = Π,

– if e is a deep path p, then Π
observe−−−−→e Π ′ ⇔ Π

freeze−−−→p Π ′,
– if e is null, then Π

observe−−−−→e Π ′ ⇔ Π ′ = Π.

We remove the write permission from the deep-typed in parameters using
the ‘observe’ transformer, in order to allow aliasing between the read-only paths.
As for the in out and out parameters, we transfer the full ownership over them
to the callee, which is reflected by dropping every permission on the caller’s side
using ‘borrow’.

In the (P-call) rule, we revoke permissions right after checking them for
each parameter. In this way, we cannot pass, for example, the same path as an
in and in out parameter in the same call. Indeed, the ‘observe’ transformer
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will remove the write permission, which is required by ‘check RW’ later in the
transformer chain. At the end of the call, the callee transfers to the caller the
full ownership over each in out and out parameter.

We apply our alias safety analysis to each procedure declaration. We start
with an empty access policy, denoted ∅. Then we fill the policy with the permis-
sions for the formal parameters and the local variables and check the procedure
body. At the end, we verify that every in out and out parameter has the RW
permission. Formally, this is expressed with the following rule:

∅
fresh R−−−−→a1,... �

fresh RW−−−−−→b1,... �
fresh W � cut−−−−−−−−→c1,... �

fresh RW−−−−−→d1,... Π ′

Π ′ · s̄ → Π ′′ Π ′′(b1) = · · · = Π ′′(c1) = · · · = RW

procedure P ( a1 : in τa1; . . . ; b1 : in out τb1; . . . ; c1 : out τc1; . . . )
is d1 : τd1; . . . begin s̄ end is alias-safe

We say that a μSPARK program is alias-safe if all its procedures are.
By the end of the analysis, an alias-safe program has an access policy asso-

ciated to each sequence point in it. We say that an access policy Π is consistent
whenever it satisfies the following conditions for all valid paths π, π.f , π.all:

Π(π) = RW =⇒ Π(π.f) = RW Π(π) = RW =⇒ Π(π.all) = RW (1)
Π(π) = R =⇒ Π(π.f) = R Π(π) = R =⇒ Π(π.all) = R (2)
Π(π) = W =⇒ Π(π.f) ≥ W (3)

These invariants correspond to the informal explanations given in Sect. 2. Invari-
ant (1) states that the full ownership over a value propagates to all values reach-
able from it. Invariant (2) states that the read-only permission must also prop-
agate to all extensions. Indeed, a modification of a reachable component can
be observed from any prefix. Invariant (3) states that write permission over a
record value implies a write permission over each of its fields. However, the write
permission does not necessarily propagate across pointer dereference.

Lemma 1 (Policy Consistency). The alias safety rules in Fig. 3 preserve
policy consistency.

When, during an execution, we arrive at a given sequence point with the set
of variable bindings Υ , store Σ, and statically computed and consistent access
policy Π, we say that the state of the execution respects the Concurrent Read,
Exclusive Write condition (CREW), if and only if for any two distinct valid
paths p and q, 〈p〉Υ

Σ = 〈q〉Υ
Σ ∧ Π(p) ≥ W =⇒ Π(q) = NO.

The main result about the soundness of our approach is as follows.

Theorem 1 (Soundness). A terminating evaluation of a well-typed alias-safe
μSPARK program respects the CREW condition at every sequence point.

The full proof, for a slightly different definition of μSPARK, is given in [7].
The argument proceeds by induction on the evaluation derivation, following the
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rules provided in Appendix A. The only difficult cases are assignment, where
the required permission withdrawal is ensured by the ‘move’ transformer, and
procedure call, where the chain of ‘observe’ and ‘borrow’ transformers, together
with the corresponding checks, on the caller’s side, ensures that the CREW
condition is respected at the beginning of the callee.

For the purposes of verification, an alias-safe program can be treated with
no regard for sharing. More precisely, we can safely transform access types into
records with a single field that contains either null or the referenced value. Since
records are copied on assignment, we obtain a program that can be verified using
the standard rules of Floyd-Hoare logic or weakest-precondition calculus (as the
rules have also ensured the absence of aliasing between procedure parameters).

Indeed, consider an assignment A := B where A and B are pointers. In an
alias-safe program, B loses its ownership over the referenced value and cannot be
used anymore without being reassigned. Then, whenever we modify that value
through A.all, we do not need to update B.all in the verification condition. In
other words, we can safely treat A := B as a deep copy of B.all into A.all. The
only adjustment that needs to be made to the verification condition generator
consists in adding checks against the null pointer dereferencement, which is not
handled by our rules.

5 Implementation and Evaluation

The alias safety rules presented above have been implemented in the SPARK
proof tool, called GNATprove. The real SPARK subset differs from μSPARK in
several respects: arrays, functions, additional loop constructs, and global vari-
ables. For arrays, permission rules apply to all elements, without taking into
account the exact index of an element, which may not be known statically in
the general case. Functions return values and cannot perform side effects. They
only take in parameters and may be called inside expressions. To avoid creating
aliases between the function parameters and the returned value, the full RW per-
mission is required on the latter at the end of the callee. The rules for loops have
been extended to handle for-loops and plain loops (which have no exit condition),
and also the exit (break) statements inside loops. Finally, global variables are
considered as implicit parameters of subprograms that access them, with mode
depending on whether the subprogram reads and/or modifies the variable.

Though our alias safety rules are constraining, we feel that they significantly
improve the expressive power of the SPARK subset. To demonstrate it, let us go
over some examples.1 One of the main uses of pointers is to serve as references
to avoid copying potentially big data structures. We believe this use case is
supported as long as the CREW condition is respected. We demonstrate this on
a small procedure that swaps two pointers.

1 https://github.com/GAJaloyan/SPARKExamples.

https://github.com/GAJaloyan/SPARKExamples
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type Int_Ptr is access Integer;

procedure Swap (X, Y: in out Int_Ptr) is
T : Int_Ptr := X; -- ownership of X is moved to T, X gets ‘W’

begin
X := Y; -- ownership of Y is moved to X, Y gets ‘W’, X gets ‘RW’
Y := T; -- ownership of T is moved to Y, T gets ‘W’, Y gets ‘RW’
return; -- when exiting Swap, X and Y should be ‘RW’

end Swap; -- local variable T is not required to have any permission

This code is accepted by our alias safety rules. We can provide it with a contract,
which can then be verified by the SPARK proof tool.

procedure Swap (X, Y: in out Int_Ptr) with
Pre => X /= null and Y /= null,
Post => X.all = Y.all’Old and Y.all = X.all’Old;

Another common use case for pointers in Ada is to store indefinite types
(that is, the types whose size is not known statically, such as String) inside
aggregate data structures like arrays or records. The usual workaround consists
in storing pointers to indefinite elements instead. This usage is also supported
by our alias analysis, as illustrated by an implementation of word sets, which is
accepted and fully verified by SPARK.

type Red_Black is (Red, Black);
type Tree;
type Tree_Ptr is access Tree;
type Tree is record

Value : Integer;
Color : Red_Black;
Left : Tree_Ptr;
Right : Tree_Ptr;

end record;

procedure Rotate_Left
(T: in out Tree_Ptr)

is
X: Tree := T.Right;

begin
T.Right := X.Left;
X.Left := T;
T := X;

end Rotate_Left;

procedure Insert_Rec
(T: in out Tree_Ptr;
V: Integer) is

begin
if T = null then

T := new Tree’(
Value => V,
Color => Red,
Left => null,
Right => null);

elsif T.Value = V then
return;

elsif T.Value > V then
Insert_Rec (T.Left, V);

else
Insert_Rec (T.Right, V);

end if;
Balance (T);

end Insert_Rec;

The last use case that we want to consider is the implementation of recursive
data structures such as lists and trees. While alias safety rules exclude structures
whose members do not have a single owner like doubly linked lists or arbitrary
graphs, they are permissive enough for many non-trivial tree data structures,
for example, red-black trees. To insert a value in a red-black tree, the tree is
first traversed top-down to find the correct leaf for the insertion, and then it is
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traversed again bottom-up to reestablish balancing. Doing this traversal itera-
tively requires storing a link to the parent node in children, which is not allowed
as it would introduce an alias. Therefore, we went for a recursive implementation,
partially shown above. The rotating functions, which are used by the Balance
procedure (not shown here) can be implemented straightforwardly, since rotation
moves pointers around without creating any cycles.

This example passes alias safety analysis successfully (i.e. without errors
from the tool) and can be verified to be free of runtime exceptions (such as
dereferences of null pointers) by the SPARK proof tool.

6 Related Work

The recent adoption of permission-based typing systems by programming lan-
guages is the culmination of several decades of research in this field. Going back
as early as 1987 for Girard’s linear logic [8] and 1983 for Ada’s limited types [9],
Baker was the first to suggest using linear types in programming languages [10],
formalised in 1998 by Clarke et al. [11]. More recent works focus on Java, such
as Javari and Uno [12,13].

Separation logic [14] is an extension of Hoare-Floyd logic that allows reason-
ing about pointers. In general, it is difficult to integrate into automated deductive
verification: in particular, it is not directly supported by SMT provers, although
some recent attempts try to have it mended [15,16].

Permission-based programming languages generalize the issue of avoiding
harmful aliasing to the more general problem of preventing harmful sharing of
resources (memory, but also network connections, files, etc.).

Cyclone and Rust achieve absence of harmful aliasing by enforcing an own-
ership type system on the memory pointed to by objects [17,18]. Furthermore,
Rust has many sophisticated lifetime checks, that prevent dangling pointers,
double free, and null pointer dereference. In SPARK, those checks are handled
by separate analysis passes of the toolset. Even though there is still no formal
description of Rust’s borrow-checker, we must note a significant recent effort to
provide a rigorous formal description of the foundations of Rust [19].

Dafny associates each object with its dynamic frame, the set of pointers
that it owns [20]. This dynamic version of ownership is enforced by modeling
the ownership of pointers in logic, generating verification conditions to detect
violations of the single-owner model, and proving them using SMT provers. In
Spec#, ownership is similarly enforced by proof, to detect violations of the so-
called Boogie methodology [21].

In our work, we use a permission-based mechanism for detecting potentially
harmful aliasing, in order to make the presence of pointers transparent for auto-
mated provers. In addition, our approach does not require additional user anno-
tations, that are required in some of the previously mentioned techniques. We
thus expect to achieve high automation and usability, which was our goal for
supporting pointers in SPARK.
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7 Future Work

The GNAT+SPARK Community release in 2020 contains support for pointers,
as defined in Sect. 3.10 of the SPARK Reference Manual [22], with two important
improvement not discussed in this paper: local observe/borrow operations and
support for proof of absence of memory leaks.

Both these features require extensive changes to the generation of verifica-
tion conditions. Support for local borrows requires special mechanisms to report
changes on the borrower to the borrowee at the end of the borrow, as shown by
recent work on Rust [23]. Support for proof of absence of memory leaks requires
special mechanisms to track values that are either null or moved so that we can
make sure that all values going out of scope are in this case.

8 Conclusion

In this paper, we have presented the rules for alias safety analysis that allow
implementing and verifying in SPARK a wide range of programs using pointers
and dynamic allocation. To the best of our knowledge, this is a novel approach
to control aliasing introduced by arbitrary pointers in a programming language
supported by proof. Our approach does not require additional user annotations
or proof of additional verification conditions, which makes it much simpler to
adopt. We provided a formalization of our rules for a subset of SPARK in order
to mathematically prove the safety of our analysis.

In the future, we plan to extend our formalism and proof to non-terminating
executions. For that purpose, we can provide a co-inductive definition of the big-
step semantics and perform a similar co-inductive soundness proof, as described
by Leroy and Grall [24].

Another long-term goal would be extending our analysis so that it could han-
dle automatic reclamation, parallelism, initialization and lifetime checks, instead
of relying on external checks.

A Semantics for µSPARK statements

We use big-step operational semantics and write Υ · Σ · s ⇓ Σ′ to denote that
μSPARK statement s, when evaluated under binding Υ and store Σ, terminates
with the state of the store Σ′. We extend this notation to sequences of statements
in an obvious way, as the reflexive-transitive closure of the evaluation relation
on Σ. Similarly, we write Σ[�.f �→ v] to denote an update of a single field in a
record, that is, Σ[� �→ Σ(�)[f �→ v]]. In this paper, we do not consider diverging
statements.

Allocation adds a fresh address to the store, mapping it to a default value
for the corresponding type: 0 for Integer, False for Boolean, null for the
access types, and for the record types, a record value where each field has the
default value. Notice that since pointers are initialised to null, there is no deep
allocation. We write �τ to denote the default value of type τ .
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Fig. 4. Semantics of µSPARK (terminating statements).

The evaluation rules are given in Fig. 4. In the (E-call) rule, we evaluate
the procedure body in the dedicated context ΥP · ΣP . This context binds the
in parameters to fresh locations containing the values of the respective expres-
sion arguments, binds the in out and out parameters to the addresses of the
respective l-value arguments, and allocates memory for the local variables. At
the end of the call, the memory allocated for the in parameters and local vari-
ables is reclaimed: the operation �− stands for domain anti-restriction, meaning
that locations �a1 , . . . , �d1 , . . . are removed from Σ′. As there is no possibility to
take the address of a local variable, there is no risk of dangling pointers.
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Abstract. Existing approaches to temporal verification have either sac-
rificed compositionality in favor of achieving automation or vice-versa.
To exploit the best of both worlds, we present a new solution to ensure
temporal properties via a Hoare-style verifier and a term rewriting sys-
tem (T.r.s) on Integrated Dependent Effects. The first contribution is
a novel effects logic capable of integrating value-dependent finite and
infinite traces into a single disjunctive form, resulting in more concise
and expressive specifications. As a second contribution, by avoiding the
complex translation into automata, our purely algebraic T.r.s efficiently
checks the language inclusion, relying on both inductive and coinductive
definitions. We demonstrate the feasibility of our method using a pro-
totype system and a number of case studies. Our experimental results
show that our implementation outperforms the automata-based model
checker PAT by 31.7% of the average computation time.

1 Introduction

We are interested in automatic verification using finite-state, yet possibly non-
terminating models of systems, with the underlying assumption that linear-time
system behavior can be represented as a set of traces representing all the possible
histories. In this model, verification consists of checking for language inclusion:
the implementation describes a set of actual traces, in an automaton A; and the
specification gives the set of allowed traces, in an automaton B; the implemen-
tation meets the specification if every actual trace is allowed, i.e., L(A) ⊆ L(B).

In this paper, we specify system behaviors in the form of Integrated Dependent
Effects, which integrates the basic and ω-regular expressions with dependent
values and arithmetic constraints, gaining the expressive power beyond finite-
state machines. Specifically, our novel effects provide insights of: (i) Definite
finite traces: we use symbolic values to present finite repetitions, which can
be dependent on program inputs; (ii) Definite infinite traces constructed by
infinity operator (ω); (iii) Possibly finite and possibly infinite traces constructed
by Kleene star (�). For example, we express, the effects of method send(n) as:

Φsend(n) � (n≥0 ∧ Sendn · Done) ∨ (n<0 ∧ Sendω)

The send method takes a parameter n, and recursively sends out n messages. The
above specification of send(n) indicates the fact that for non-negative values of
c© Springer Nature Switzerland AG 2020
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the parameter n, the send method generates a finite trace comprising a sequence
with n times of event Send, followed by a final event Done. For the case when
the parameter is negative, it generates an infinite trace of event Send. Note that
(i) the integrated effects can express both finite traces and infinite traces in one
single formula, separated by arithmetic constraints, and (ii) n is a parameter to
send, making the effects dependent w.r.t the value of send’s parameter. Further-
more, by allowing events to be parametrised with symbolic values, the effects
are defined as languages over potentially infinite alphabets of the form Σ × Z,
where Σ is a finite event set, and Z is the infinite integer set.

Deciding the inclusion between two regular sets is PSPACE-complete. The
standard approaches to the problem are based on the following steps: (i) trans-
late each regular expression into an equivalent NFA, (ii) convert those NFAs to
equivalent DFAs and finally (iii) minimize those DFAs to MA and MB, and
then check emptiness of MA ∩ ¬MB. However, any efficient algorithm[9] based
on such translation potentially gives rise to an exponential blow-up.

As an alternative approach, Antimirov and Mosses [5] presented a term
rewriting system (T.r.s) for deciding the inclusion of regular expressions based
on a complete axiomatic algorithm of the algebra of regular sets. A T.r.s is a
refutation method that normalizes regular expressions in such a way that check-
ing their inclusion corresponds to an iterated process of checking the inclusion
of their partial derivatives [4]. Works based on such a T.r.s [3,5,11,12] show its
feasibility and suggest that this method is a better average-case algorithm than
those based on the comparison of minimal DFAs.

In this paper, we present a new solution of extensive temporal verification,
which deploys a decision procedure inspired by Antimirov and Mosses’ algo-
rithm but solving the language inclusions between more expressive Integrated
Dependent Effects. Our main contributions are:

1. Temporal Effects Specification: We define the syntax and semantics of
our novel effects, which escapes LTL, μ-calculus and prior effects (Sect. 3).

2. Automated Verification System: Targeting a core language, we develop
a Hoare-style forward verifier to accumulate effects from the source code, as
the front-end (Sect. 4); and a sound decision procedure (our T.r.s) to solve
the effects inclusions, as the back-end (Sect. 5).

3. Implementation and Evaluation: We prototype the novel effects logic on
top of the HIP/SLEEK system [8] [2]. We further provide case studies and
experimental results to show the feasibility of our method (Sect. 6).

Organization. Section 2 gives a straightforward motivation example to high-
light the key methodologies and contributions. Section 3 formally specifies the
syntax of the target language, and the syntax and semantics of our integrated
dependent effects. Section 4 presents the forward verifier for the target language.
Section 5 illustrates the effects inclusion checking procedure, by presenting a
set of inference rules, and displays the essential auxiliary functions. Section 6
demonstrates the implementation, case studies and experimental results as the
evaluation of our T.r.s. We discuss related works in Sect. 7 and conclude in
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Sect. 8. Termination and soundness proofs can be found in the extended techni-
cal report [2].

2 Overview

We now give a summary of our techniques, using the example shown in Table 1-
(a). Our integrated dependent effects can be illustrated with send and server,
which simulate a server who continuously sends messages to all its clients.

Table 1. (a) Source code and (b) pre/post effects specifications for the methods.

(a) Source Code (b) Effects Specifications

1 void send ( int n){

2 i f (n==0) {

3 event["Done"];
4 } else {
5 event["Send"]; send (n-1);

6 }}

7 void server ( int n){

8 event["Ready"];
9 send(n);

10 server(n);}

Φsend(n)
pre � True ∧ Ready · �

Φsend(n)
post � (n ≥ 0 ∧ Sendn · Done) ∨ (n < 0 ∧ Sendω)

Φserver(n)
pre � n ≥ 0 ∧ ε

Φserver(n)
post � n ≥ 0 ∧ (Ready · Sendn · Done)ω

Here, event[a] is a primitive in our target language (cf. Sect. 3), used to
trigger a single event a. This method server takes an integer parameter n,
triggers an event Ready, then calls the method send, making a boolean choice
depending on input n: in one case it triggers an event Done; otherwise it triggers
an event Send, then makes a recursive call with parameter n-1. Finally server
recurs.

2.1 Integrated Dependent Effects

The effects specifications for server and send are given in Table 1-(b). We
define Hoare-triple style specifications for each of the programs, which leads
to a more compositional verification strategy, where temporal reasoning can be
done locally. Method send’s precondition, denoted by Φsend(n)

pre , requires the event
Ready to have happened at some point of the effects history; and it guarantees
the final effects/postcondition, denoted by Φsend(n)

post .
Method server’s precondition, Φserver(n)

pre , requires the input value be non-
negative while the pre-trace is required to be empty (ε); its postcondition ensures
the final effects Φserver(n)

post – an infinite repetition of a trace consisting of an event
Ready followed by n times of Send followed by Done. Directly from the specifi-
cations, we are aware of (i) termination properties: server must not terminate,
while send may not terminate; (ii) branching properties: different arithmetic
conditions on the input parameters lead to different temporal effects; and (iii)
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required history traces: by defining the prior effects in precondition. The exam-
ples already show that our effects provide more detail information than classical
LTL or μ-calculus, and in fact, it cannot be fully captured by any prior works
[10,13,15,17]. Nevertheless, the gain in expressive power comes at the efforts of
a more dedicated verification process, namely handled by our T.r.s.

2.2 Forward Verification

As shown in Fig. 1, we demonstrate the forward verification process of method
send. The current effects states of a program is captured in the form of {ΦC} .
We define our forward verification rules in Sect. 4. To facilitate the illustration,
we label the verification steps by 1), ..., 8). We mark the deployed verification
rules in green. The verifier invokes the T.r.s to check language inclusions along
the way.

Fig. 1. The forward verification example for method send.

The effects state 1) is obtained by initialising ΦC from the precondition.
The effects states 2), 4) and 7) are obtained by [FV-If-Else], which adds the

constraints from the conditionals into the current effects state, and unions the
effects accumulated from two branches in the end. The effects states 3) and 5)
are obtained by [FV-Event], which simply concatenates the triggered singleton
event to the end of the current effects state. The effects state 6) is obtained by
[FV-Call]. Before each method call, it checks whether the current state satisfies
the precondition of the callee method. The rev function simply reverses the order
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Table 2. The inclusion checking example on the postcondition of method send. I: The
main rewriting proof tree (coming from the step 8) in Fig. 1); II: One sub-tree of the
rewriting process.

I :

(n=0)∧ε � ε [FRAME]

(n=0) ∧ Done � Done

(n=0) ∧ Done � Send0 · Done

(n=0) ∧ Done � Φsend(n)
post II

n<0 ∧ Sendω � Sendω (†) [REOCCUR]
[UNFOLD]

n<0 ∧ Sendω � Sendω (†)
[UNFOLD]

n<0 ∧ Send · Sendω � Sendω

n<0 ∧ Send · Sendω � Φsend(n)
post

[DISJUNCTION]

(n=0 ∧ Done) ∨ (n�=0 ∧ Send · Φsend(n-1)
post ) � Φsend(n)

post

II :

n1=0∧ε � ε [FRAME]

n1=0 ∧ Done � Done

(n2=n1-1∧n2≥0)∧Sendn2 · Done � Sendn2 · Done (‡) [REOCCUR]

n1>0 ∧ Sendn1-1 · Done � Sendn1-1 · Done
[UNFOLD]

n1>0 ∧ Sendn1 · Done � Sendn1 · Done
[CASESPLIT]

(n1=n-1 ∧ n1≥0) ∧ Sendn1 · Done � Sendn1 · Done (‡)
[SUBSTITUTE]

n>0 ∧ Sendn-1 · Done � Sendn-1 · Done
[UNFOLD]

n>0 ∧ Send · Sendn-1 · Done � Sendn · Done

n>0 ∧ Send · Sendn-1 · Done � Φsend(n)
post

of effects sequences. If the precondition is not satisfied, then the verification fails,
otherwise it concatenates the postcondition of the callee to the current effects.

While Hoare logics based on finite traces (terminating runs) [14] and infinite
traces (non-terminating runs) [16] have been considered before, the reasoning on
properties of mixed definitions is new. Prior effects in precondition is also new,
allowing greater safety to be applied to sequential reactive controlling systems
such as web applications, communication protocols and IoT systems.

2.3 The T.r.s

Our T.r.s is designed to check the inclusion between any two integrated depen-
dent effects. We define its inference rules in Sect. 5. Here, we present the rewriting
process on the postcondition checking of the method send. We mark the rules
of some essential inference steps in green. Basically, our effects rewriting system
decides effects inclusion through an iterated process of checking the inclusion of
their partial derivatives. There are two important rules inherited from Antimirov
and Mosses’s algorithm: [DISPROVE], which infers false from a trivially inconsis-
tent inclusion; and [UNFOLD], which applies Theorem1 to generate new inclusions.
Da(r) is the partial derivative of r w.r.t the event a. Termination is guaranteed
because the set of derivatives to be considered is finite, and possible cycles are
detected using memorization.

Theorem 1 (Regular Expressions Inclusion). For regular expressions r
and s, r � s ⇔ (∀a ∈ Σ). Da(r) � Da(s).
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Intuitively, we use [DISPROVE] wherever the left-hand side (LHS) is nullable1

while the right-hand side (RHS) is not. [DISPROVE] is essential because it is the
heuristic refutation step to disprove the inclusion early, which leads to a great
efficiency improvement compared to the standard methods.

Besides, we use symbolic values (assuming non-negative) to capture the finite
traces, depended on program inputs. Whenever the symbolic value is possi-
bly zero, we use the rule [CASESPLIT] to distinguish the zero (base) and non-
zero (inductive) cases, as shown in Table 2-II. In addition, the T.r.s is obli-
gated to reason about mixed inductive (finite) and coinductive (infinite) defi-
nitions. We achieve these features and still guarantee the termination by using
rules: [SUBSTITUTE], which renames the symbolic terms using free variables; and
[REOCCUR], which finds the syntactic identity, as a companion, of the current open
goal, as a bud, from the internal proof tree [7]. (We use (†) and (‡) in Table 2 to
indicate the pairing of buds with companions.)

3 Language and Specifications

In this section, we first introduce the target (sequential C-like) language and
then depict the temporal specification language which supports our effects.

3.1 Target Language

The syntax of our core imperative language is given in Fig. 2 Here, we regard k
and x are meta-variables. kτ represents a constant of basic type τ . var represents
the countably infinite set of arbitrary distinct identifiers. a refers to a singleton
event coming from the finite set of events Σ. We assume that programs we use are
well-typed conforming to basic types τ (we take () as the void type). A program
P comprises a list of method declarations meth∗. Here, we use the ∗ superscript
to denote a finite list (possibly empty) of items, for example, x∗ refers to a list
of variables, x1, ..., xn.

Fig. 2. A core imperative language.

Each method meth has a name mn, an expression-oriented body e, also is
associated with a precondition Φpre and a postcondition Φpost (the syntax of

1 If the event sequence is possibly empty, i.e. contains ε, we call it nullable, formally
defined in Definition 1.
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effects specification Φ is given in Fig. 3). The language allows each iterative
loop to be optimized to an equivalent tail-recursive method, where mutation
on parameters is made visible to the caller. The technique of translating away
iterative loops is standard and is helpful in further minimising our core language.
Expressions comprise unit (), constants k, variables x, local variable declaration
τ x; e, method calls mn(x∗), variable assignments x:=e, expression sequences
e1; e2, binary operations represented by e1 op e2, including +, −, ==, <, etc,
event raises expression event[a], conditional expressions if v then e1 else e2,
and the assertion constructor assert, parametrized with effects Φ.

3.2 The Specification Language

We plant the effects specifications into the Hoare-style verification system. We
use {requires Φpre ensures Φpost} to capture the precondition Φpre and the
postcondition Φpost, defined in Fig. 3

Fig. 3. Syntax of effects.

Effects can be a conditioned event sequence π ∧ es or a disjunction of two
effects Φ1 ∨ Φ2, or an effect Φ existentially quantified over a variable x. Event
sequences comprise false (⊥); an empty trace ε; the wild card representing
any single event; a single event a; sequences concatenation es1 · es2; disjunction
es1 ∨ es2; conjunction es1 ∧ es2; negation ¬es; t times repetition of a trace, est,
where t is a term; Kleene star, zero or many times (possibly infinite) repetition of
a trace; and the infinite repetition of a trace, esω. However, for now, we restrict
the nested usage of operators among ¬, t, � and ω.

We use π to donate a pure formula which captures the (Presburger) arith-
metic conditions on program parameters. We use A(t1, t2) to represent atomic
formulas of two terms (including =, >, <, ≥ and ≤), A term can be a con-
stant integer value n, an integer variable x which is an input parameter of the
program and can be constrained by a pure formula. A term also allows simple
computations of terms, t1+t2 and t1-t2.

3.3 Semantic Model of Effects

To define the model, var is the set of program variables, val is the set of primitive
values, es is the set of event sequences (or event multi-trees, per se), indicat-
ing the sequencing constraints on temporal behaviour. Let s, ϕ |= Φ denote the
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model relation, i.e., the stack s and linear temporal events ϕ satisfy the temporal
effects Φ, with s, ϕ from the following concrete domains: s � var → val and ϕ
� es.

As shown in Fig. 4, we define the semantics of our effects. We use ++ to
represent the append operation of two event sequences. We use [] to represent
the empty sequence, [a] to represent the sequence only contains one element a.

Fig. 4. Semantics of effects.

4 Automated Verification

Fig. 5. Overview of verification.

An overview of our automated verification
system is given in Fig. 5. It consists of a
standard Hoare-style forward verifier (the
front-end) and a T.r.s (the back-end). In
this section, we mainly present the for-
ward verifier, which invokes the back-end,
by introducing a set of forward verifica-
tion rules. Note that we allow the precon-

dition of a method to be false. The body of any such method can always be
successfully verified. This relaxation does not affect the soundness of our verifi-
cation system. The inclusion checking process will be explained in Sect. 5.
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Fig. 6. Some forward verification rules.

We present some of the forward verification rules in Fig. 6, which are used to
systematically accumulate the effects based on the syntax of each statement. We
use P to denote the program being checked. With pre/post conditions declared
for each method in P, we can apply modular verification to a method’s body
using Hoare-style triples � {ΦC} e {Φ′

C}, where ΦC is the current effects and Φ′
C

is the resulting effects by executing e. In [FV-If-Else], (v ∧ ΦC) enforces v into
the pure constraints of every traces in ΦC, same for (¬v ∧ ΦC). In [FV-Call], we
check whether the instantiated precondition of callee, [y∗/x∗]Φpre, is satisfied by
the tail2 of current effects state, in which we use an auxiliary function rev to
reverse the event sequences of effects. Then we obtain the next effects state by
concatenating the instantiated postcondition, [y∗/x∗]Φpost, to the current effects
state. (cf. step 6) in Fig. 1) In [FV-Meth], we initialize the current effects state
using ε, accumulate the effects from the method body, to obtain ΦC, and check
inclusion between ΦC and the declared specifications Φpost

3.

5 Effects Inclusion Checker (the T.r.s)

The effects inclusion checking (an extension of the T.r.s proposed from [5]) will be
triggered i) right before a method call, to check the satisfiability of the precondi-
tion; ii) after the forward verification, to check the satisfiability of the postcondi-
tion; and iii) when there is an assertion, to check the satisfiability of the asserted
effects. As shown in Sect. 4, our forward verification generates effects inclusions
of the form: Γ � Φ1 �Φ

V Φ2 � γR, a shorthand for: Γ � Φ · Φ1 � ∃V. (Φ · Φ2) � γR.
To prove such effects inclusions is to check whether all the possible event

traces in the antecedent Φ1 are legitimately allowed in the possible event traces
from the consequent Φ2, and (in case there are) to compute a residual effects
2 We check the inclusion between the reversed current effects and precondition effects,

meaning that, before calling a method, its required effects has just happened.
3 Φpost only needs to capture the effects from the current method body, excluding the

history effects specified in Φpre.
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γR (also known as “frame” in the frame inference) , which represents what was
not consumed from the antecedent after matching up with the effects from the
consequent. Γ is the proof context, i.e. a set of effects inclusions, Φ is the history
of effects from the antecedent that have been used to match the effects from
the consequent, and V is the set of existentially quantified variables from the
consequent. Note that Γ, Φ and V are derived during the inclusion proof. The
inclusion checking procedure is initially invoked with Γ=∅, Φ=True ∧ ε and V=∅.
We now briefly discuss the key steps and related inference rules that we may use
in such an effects inclusion proof. Firstly, we present the reduction to eliminate
the disjunctions from the antecedents and existential quantifiers. (LHS refers to
left-hand side, and RHS refers to right-hand side.)

I. Effect Disjunction. An inclusion with a disjunctive antecedent succeeds if
both disjunctions entail the consequent.

Γ � Φ1 � Φ � γR
1 Γ � Φ2 � Φ � γR

2

Γ � Φ1 ∨ Φ2 � Φ � (γR1 ∨ γR2)
[LHS-OR]

II. Existential Quantifiers. Existentially quantified variables from the
antecedent are simply lifted out of the inclusion relation by replacing them with
fresh variables. On the other hand, we keep track of the existential variables
coming from the consequent by adding them to V. (u is a fresh variable)

Γ � [u/x]Φ1 �Φ
V Φ2 � γR

Γ � ∃x. Φ1 �Φ
V Φ2 � γR

[LHS-EX]
Γ � Φ1 �Φ

V∪{u} ([u/x]Φ2) � γR

Γ � Φ1 �Φ
V (∃x. Φ2) � γR

[RHS-EX]

Table 3. Some Normalization Lemmas for effects constructed by π ∧ es.

es ∨ es → es εω → ε (es1 · es2) · es3 → es1 · (es2 · es3)
⊥ ∨ es → es es ∧ es → es (es1 ∨ es2) · es3 → es1 · es3 ∨ es2 · es3
es ∨ ⊥ → es es ∧ ⊥ → ⊥ es1 · (es2 ∨ es3) → es1 · es2 ∨ es1 · es3
ε · es → es ⊥ω → ⊥ esω · es1 → esω

es · ε → es εt → ε False ∧ es → False ∧ ⊥
⊥ · es → ⊥ t=0 ∧ est → ε es ∧ ε → ⊥ (δπ(es)=false)
es · ⊥ → ⊥ ⊥t → ⊥ es ∧ ε → ε (δπ(es)=true)

III. Normalization. The rewriting of an inclusion between two quantifier-free
effects starts with a general normalization for both the antecedent and the con-
sequent. We assume that the effects formulae are tailored accordingly using the
lemmas in Table 3, which are extended from the normalization rules suggested
by Antimirov and Mosses, being able to further normalize our dependent effects.
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IV. Substitution. In order to guarantee the termination, for both the
antecedent and the consequent, a term t1⊕t2 will be substituted with a fresh
variable u constrained with u=t1 ⊕ t2 ∧ u≥0, where ⊕∈{+,−}. (cf. Table 2-II)

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ � (π1 ∧ π′)∧esu1 · es � (π2∧π′) ∧ es2 � γR

Γ � π1 ∧ (es1t1⊕t2 · es) � π2 ∧ es2 � γR
[LHS-SUB]

π′=(u=t1 ⊕ t2 ∧ u≥0) Γ � (π1 ∧ π′)∧es1 � (π2∧π′) ∧ esu2 · es � γR

Γ � π1 ∧ es1 � π2 ∧ (es2t1⊕t2 · es) � γR
[RHS-SUB]

V. Case Split. Based on the semantics of the symbolic integer t, whenever it is
possibly zero, we conduct a case split, to distinguish the zero (base) case, leads
to an empty trace; and the non-zero (inductive) case. (cf. Table 2-II)

[LHS-CASESPLIT]
Γ � ((π1 ∧ t=0) ∧ es) ∨ ((π1 ∧ t > 0) ∧ es1 · est-11 · es) � π2 ∧ es2 � γR

Γ � π1 ∧ (est1 · es) � π2 ∧ es2 � γR

[RHS-CASESPLIT]
Γ � π1 ∧ es1 � ((π2 ∧ t=0) ∧ es) ∨ ((π2 ∧ t > 0) ∧ es2 · est-12 · es) � γR

Γ � π1 ∧ es1 � π2 ∧ (est2 · es) � γR

VI. Unfolding (Induction). Here comes the key inductive step of unfolding
the inclusion. Firstly, we make use of the fst auxiliary function to get a set of
events F, which are all the possibly first event from the antecedent. Secondly, we
obtain a new proof context Γ′ by adding the current inclusion, as an inductive
hypothesis, into the current proof context Γ. Thirdly, we iterate each element
a (a ∈ F), and compute the partial derivatives (the next-state effects) of both the
antecedent and consequent w.r.t a. The proof of the original inclusion succeeds
if all the derivative inclusions succeeds.

F = fstπ1
(es1) Γ′ = Γ, (π1 ∧ es1 � π2 ∧ es2)

∀a ∈ F. (Γ′ � Dπ1
a (es1) � Dπ2

a (es2))
Γ � π1 ∧ es1 � π2 ∧ es2

[UNFOLD]

Next we provide the definitions and the key implementations4 of Nullable, First
and Derivative respectively. Intuitively, the Nullable function δπ(es) returns a
boolean value indicating whether π ∧ es contains the empty trace; the First
function fstπ(es) computes a set of possible initial events of π ∧ es; and the
Derivative function Dπ

a(es) computes a next-state effects after eliminating one
event a from the current effects π ∧ es.

4 As the implementations according to basic regular expressions can be found in prior
work [12]. Here, we focus on presenting the definitions and how do we deal with
dependent values in the effects, as the key novelties of this work.
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Definition 1 (Nullable). Given any event sequence es under condition π, we
define δπ(es) to be:

δπ(es) : bool=

{
true if ε ∈ �π ∧ es1�ϕ

false if ε /∈ �π ∧ es1�ϕ

, where δπ(est) = SAT(π ∧ (t=0))5

Definition 2 (First). Let fstπ(es):={a | a · es′ ∈ �π ∧ es�} be the set of ini-
tial events derivable from event sequence es w.r.t. the condition π.

fstπ(es1·es2)=
{
fstπ(es1) ∪ fstπ(es2) if δπ(es1)=true

fstπ(es1) if δπ(es1)=false

Definition 3 (Derivative). The derivative Dπ
a(es) of an event sequence es

w.r.t. an event a and the condition π computes the effects for the left quotient
a-1�π ∧ es�, where we define Dπ

a(est) = Dπ∧t>0
a (es) · est-1.

Dπ
a(es1 · es2)=

{
Dπ
a(es1) · es2 ∨ Dπ

a(es2) if δπ(es1)=true

Dπ
a(es1) · es2 if δπ(es1)=false

VII. Disprove (Heuristic Refutation). This rule is used to disprove the
inclusions when the antecedent is nullable, while the consequent is not nullable.
Intuitively, the antecedent contains at least one more trace (the empty trace)
than the consequent.

δπ1
(es1) ∧ ¬δπ1∧π2

(es2)
Γ � π1 ∧ es1 �� π2 ∧ es2

[DISPROVE]

VIII. Prove. We use three rules to prove an inclusion: (i) [PROVE] is used when
there is a subset relation ⊆ between the antecedent and consequent; (ii) [FRAME]
is used when the consequent is empty, we prove this inclusion with a residue
γR

6; and (iii) [REOCCUR] is used when there exists an inclusion hypothesis in the
proof context Γ, which meets the conditions. It essentially assigns to the current
unexpanded inclusion an interior inclusion with an identical sequent labelling.

π1 ⇒ π2 es1 ⊆ es2
Γ � π1 ∧ es1 � π2 ∧ es2

[PROVE]
π1 ⇒ π2 γR=π1 ∧ es1

Γ � (π1∧es1 � π2∧ε) � γR
[FRAME]

∃.(π′
1 ∧ es′

1 � π′
2 ∧ es′

2) ∈ Γ π1⇒π′
1⇒π′

2⇒π2 es1⊆es′
1 es′

2⊆es2
Γ � π1 ∧ es1 � π2 ∧ es2

[REOCCUR]

5 The proof obligations are discharged using the Z3 SMT prover, while deciding the
nullability of effects constructed by symbolic terms, represented by SAT(π).

6 A residue refers to the remaining event sequences from antecedent after matching
up with the consequent. An inclusion with no residue means the antecedent com-
pletely/exactly matches with the consequent.
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6 Implementation and Evaluation

To show the feasibility of our approach, we have implemented our effects logic
using OCaml, on top of the HIP/SLEEK system [8]. The proof obligations gener-
ated by our verification are discharged using constraint solver Z3. Furthermore,
we provide a web UI [2] to present more non-trivial examples. Next, we show
case studies to demonstrate the expressive power of our integrated dependent
effects.

6.1 Case Studies

i. Encoding LTL. Classical LTL extended propositional logic with the tem-
poral operators G (“globally”) and F (“in the future”), which we also write
� and ♦, respectively; and introduced the concept of fairness, which ensures
an infinite-paths semantics. LTL was subsequently extended to include the U
(“until”) operator and the X (“next time”) operator. As shown in Table 4, we
encode these basic operators into our effects, making it more intuitive and read-
able, mainly when nested operators occur. Furthermore, by putting the effects
in the precondition, our approach naturally composites past-time LTL along the
way.

Table 4. Examples for converting LTL formulae into Effects. (A,B are events, n ≥0,
m ≥0 are the default constraints.)

�A ≡ A� ♦A ≡ n · A A U B ≡ An · B A → ♦B ≡ ¬A ∨ n · B
XA ≡ · A �♦A ≡ n · A · ( m · A)� ♦�A ≡ n · A� ♦A ∨ ♦B ≡ n · A ∨ m · B

ii. Encoding μ-calculus. μ-calculus provides a single, elegant, uniform logical
framework of great raw expressive power by using a least fixpoint (μ) and a great-
est fixpoint (v). More specifically, it can express properties such as vZ.P ∧ XXZ,
which says that there exists a path where the atomic proposition P holds at
every even position, and any valuation can be used on odd positions. As we can
see, such properties already go beyond the first order logic. In fact, analogously
to our effects, the symbolic/constant values correspond to the least fixpoint (μ),
referring to finite traces, and the constructor ω corresponds to the greatest fix-
point (v), referring to infinite traces. For example, we write ( · A)ω, meaning
that the event A recurs at every even position in an infinite trace.
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1 void send ( int n){

2 i f (...) {

3 event[Done];
4 } else {
5 event[Send];
6 send (n-1);

7 }}

Fig. 7. An unknown conditional

iii. Kleene Star. By using �, we make
an approximation of the possible traces
when the termination is non-deterministic.
As shown in Fig. 7, a weaker specification
of send(n) can be provided as Send� · Done,
meaning that the repetition of event Send

can be both finite and infinite, which is
more concise than the prior work, also
beyond μ-calculus. By supporting a variety
of specifications, we can make a trade-off
between precision and scalability, which is important for realistic method-
ology on automated verification. For example, we can weaken precondition
of server(n) (cf. Table 1) to Φserver(n)

pre � True ∧ ε, and opt for either of
the following two postcondition:Φserver(n)

post1 � n≥0∧(Ready · Sendn · Done)ω, or

Φserver(n)
post2 � n≥0∧(Ready · Sendn · Done)ω ∨ n<0∧Ready · Sendω, with the lat-

ter being more complex but more precise.

iv. Beyond Regular, Context-Free and Context-Sensitive. The paradig-
matic non-regular linear language: n>0 ∧ an · bn, can be naturally expressed
by the depended effects. Besides, the effects can also express grammars such
as n>0 ∧ an · bn · cn, or n>0 ∧ m>0 ∧ an · bm · cn, which are beyond context-free
grammar. Those examples show that the traces which cannot be recognized
even by push-down automata (PDA) can be represented by our effects. How-
ever, such specifications are significant, suppose we have a traffic light control
system, we could have a specifications n>0 ∧ m>0 ∧ (Redn · Yellowm · Greenn)ω,
which specifies that (i) this is a continuous-time system which has an infinite
trace, (ii) all the colors will occur at each life circle, and (iii) the duration of the
green light and the red light is always the same. Moreover, these effects can not
be translated into linear bounded automata (LBA) either, which equivalents to
context-sensitive grammar, as LBA are only capable of expressing finite traces.

6.2 Experimental Results

We mainly compare our backend T.r.s with the mature model checker PAT [18],
which implements techniques for LTL properties with fairness assumptions. We
chose a realistic benchmark containing 16 IOT programs implemented in C for
Arduino controlling programs [1]. For each of the programs, we (i) derive a num-
ber of temporal properties (for 16 distinct execution models, there are in total
235 properties with 124 valid and 111 invalid), (ii) express these properties using
both LTL formulae and our effects, (iii) we record the total computation time
using PAT and our T.r.s. Our test cases are provided as a benchmark [2]. We
conduct experiments on a MacBook Pro with a 2.6 GHz Intel Core i7 processor.

As shown in Table 5, comparing the T.r.s to PAT, the total (dis-) proving
time has been reduced by 31.7%. For that, we summarize the underlying reasons
which lead to the improvement: (1)When the transition states of the models are
small, the average execution time spent by the T.r.s is even less than the NFAs
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Table 5. The experiments are based on 16 real world C programs, we record the lines
of code (LOC), the number of testing temporal properties (#Prop.), and the (dis-)
proving times (in milliseconds) using PAT and our T.r.s respectively.

Programs LOC # Prop. PAT(ms) T.r.s(ms)

1. Chrome Dino Game 80 12 32.09 7.66

2. Cradle with Joystick 89 12 31.22 9.85

3. Small Linear Actuator 180 12 21.65 38.68

4. Large Linear Actuator 155 12 17.41 14.66

5. Train Detect 78 12 19.50 17.35

6. Motor Control 216 15 22.89 4.71

7. Train Demo 2 133 15 49.51 59.28

8. Fridge Timer 292 15 17.05 9.11

9. Match the Light 143 15 23.34 49.65

10. Tank Control 104 15 24.96 19.39

11. Control a Solenoid 120 18 36.26 19.85

12. IoT Stepper Motor 145 18 27.75 6.74

13. Aquariumatic Manager 135 10 25.72 3.93

14. Auto Train Control 122 18 56.55 14.95

15. LED Switch Array 280 18 44.78 19.58

16. Washing Machine 419 18 33.69 9.94

Total 2546 235 446.88 305.33

construction time, which means it is not necessary to construct the NFAs when
a T.r.s solves it faster; (2)When the total states become larger, on average, the
T.r.s outperforms automata-based algorithms, due to the significantly reduced
search branches provided by the normalization lemmas; and (3)For the invalid
cases, the T.r.s disproves them earlier without constructing the whole NFAs.

7 Related Work

Recently, temporal reasoning has garnered renewed importance for possibly non-
terminating control programs with subtle use of recursion and non-determinism,
as used in reactive or stream-based applications. In this section, we discuss the
related works in the following two perspectives: (i) temporal verification and
expressive effects; and (ii) efficient algorithms for language inclusion checking.

7.1 Verification and Expressive Effects

A vast range of techniques has been developed for the prediction of program
temporal behaviors without actually running the system. One of the leading
communities of temporal verification is automata-based model checking, mainly
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for finite-state systems. Various model checkers are based on some temporal logic
specifications, such as LTL and CTL. Such tools extract the logic design from
the program using modeling languages and verify specific assertions to guarantee
various properties. However, classical model checking techniques usually require
a manual modelling stage and need to be bounded when encountering non-
terminating traces.

Meanwhile, to conduct temporal reasoning locally, there is a sub-community
whose aim is to support temporal specifications in the form of effects via the
type-and-effect system. The inspiration from this approach is that it leads to
a modular and compositional verification strategy, where temporal reasoning
can be combined together to reason about the overall program [10,13,17]. How-
ever, the temporal effects in prior work tend to coarsely over-approximate the
behaviours either via ω-regular expressions [10] or by büchi automata [13]. One
of the recent works [17] proposes the dependent temporal effects on program
input values, which allows the reasoning on infinite input alphabet, but still
loses the precision of the branching properties. The conventional effects have
the form (Φu,Φv), which separates the finite and infinite effects. In this work,
by integrating possibly finite and possibly infinite effects into a single disjunc-
tive form with size properties, our integrated dependent effects eliminate the
finiteness distinction, and enable an expressive modular temporal verification.

7.2 Efficient Algorithms for Language Inclusion Checking

Generally, it is unavoidable for any language inclusion checking solutions to
have an exponential worst-case complexity. As there are no existing automata
capable to express dependent effects, neither there exist corresponding inclusion
checking algorithms. Here we reference two efficient prior works targeting basic
regular sets: Antichain-based algorithms and the traditional T.r.s, which are
both avoiding the explicit, complex translation from the NFAs into their minimal
DFAs.

Antichain-based algorithm [9] was proposed for checking universality and
language inclusion for finite word automata. By investigating the easy-to-check
pre-order on set inclusion over the states powerset, Antichain is able to soundly
prune the search space, therefore it is more succinct than the sets of states
manipulated by the classical fixpoint algorithms. It significantly outperforms the
classical subset construction, in many cases, it still suffers from the exponential
blow up problem.

The main peculiarity of a purely algebraic T.r.s [5,6,12] is that it provides
a reasoning logic for regular expression inclusions to avoid any kind of transla-
tion aforementioned. Specifically, a T.r.s takes finite steps to reduce r � t into
its normal form r′ � t′ and the inclusion checking fails whenever r′ � t′ is not
valid. A T.r.s is shown to be feasible and, generally, faster than the standard
methods, because (i) it deploys the heuristic refutation step to disprove inclu-
sions earlier; (ii) it prunes the search space by using fine-grained normalization
lemmas. Overall, it provides a better average-case performance than those based
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on the translation to minimal DFAs. More importantly, a T.r.s allows us to
accommodate infinite alphabets and capture size-dependent properties.

In this work, we choose to deploy an extended T.r.s, which composites opti-
mizations from both Antichain-based algorithm and classical T.r.s. Having such
a T.r.s as the back-end to verify temporal effects, one can benefit from the high
efficiency without translating effects into automata. We generalize the Antimirov
and Mosses’s rewriting procedure [5], to be able to further reason about infinite
traces, together with size properties and arithmetic constraints. One of the direct
benefits granted by our effects logic is that it provides the capability to check
the inclusion for possibly finite and infinite event sequences without a deliberate
distinction, which is already beyond the strength of existing T.r.s [3,5,11,12].

8 Conclusion

We devise a concise and precise characterization of temporal properties. We
propose a novel logic for effects to specify and verify the implementation of the
possibly non-terminating programs, including the use of prior effects in precon-
ditions. We implement the effects logic on top of the HIP/SLEEK system [8] and
show its feasibility. Our work is the first solution that automate modular tempo-
ral verification using an expressive effects logic, which primarily benefits modern
sequential controlling systems ranging over a variety of application domains.

Acknowledgement. This work is supported by the Academic Research Fund (AcRF)
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Abstract. Imperative programming languages are not reversible in gen-
eral; however, there are well-known approaches to make them reversible,
e.g., by storing computation histories or checkpointing. Another success-
ful approach is based on designing restricted languages where all the
commands are reversible (cf. Janus, R-WHILE). We present an alterna-
tive approach where we do not restrict the language. Instead, we modify
the operational semantics (while preserving the meaning of programs) to
obtain reversibility at both language level and computation level.

Keywords: Language-level reversibility · Reversible computation
steps · Universal languages · Imperative programming

1 Introduction

This paper studies reversibility properties of imperative languages using formal
specifications of the language operational semantics.

Reversibility has been studied at various abstraction layers (from hardware
to software) since Landauer [17,18] demonstrated in 1961 that irreversible oper-
ations cause heat loss in computers. Although this effect was negligeable in early
computers, advances in low power computing and quantum computing triggered
renewed interest in reversible computing and reversible programming languages
(see [22] for a recent account of reversible computing foundations).

We focus on reversibility at programming language level, and consider two
related notions: source-code reversibility and computation-step reversibility. The
latter is usually defined as the property of being backwards deterministic, that
is, every configuration has at most one predecessor [22]. Then every computation
step can be undone (there is no information loss in computation steps). This is
useful for example during program debugging [2]. Source-code reversibility, or
program inversion (see, e.g., [8,11,12]), aims at defining, for each program P , a
program that computes the inverse of P (in a sense to be made precise later).

Reversible models of computation (e.g., reversible Turing machines [21]) can
be used to specify reversible algorithms and study their computability and com-
plexity properties. For the latter, an alternative approach is based on the use of
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S.-W. Lin et al. (Eds.): ICFEM 2020, LNCS 12531, pp. 91–106, 2020.
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concise programming languages with formal semantics [9,16,23,26]. This is the
approach we follow in this paper.

Simple reversible imperative programming languages, such as R-WHILE [10]
and Janus [19,27], have been used to study reversible programming. Janus is
a high-level imperative language that supports deterministic forward and back-
ward computation. It provides restricted (non-destructive) assignment1, con-
ditional and loop constructs, and mechanisms to call and uncall procedures.
A more concise reversible imperative language, called R-CORE, uses a sin-
gle reversible control flow construct (a loop but no conditional), a reversible
assignment statement and a limited number of variables that can store tree data
structures [11]. R-CORE has the same power of a reversible imperative language
such as R-WHILE and Janus. Due to the restrictions in assignments, conditional
and loops, these languages are not Turing complete [14,27]. However, they are
reversible-Turing-complete (i.e., any computable reversible function can be pro-
grammed) and irreversible functions can be embedded into reversible ones2 using
well-known translations [6,17].

Since writing reversible embeddings of irreversible programs by hand can
be difficult, Burhman et al [7] (see also [1]) suggest that the natural way is to
compile irreversible programs to reversible ones. This paper is part of the effort
to simplify the task of writing reversible programs. Here, instead of compiling
we provide an operational semantics that similarly hides from the programmer
the mechanisms that embed non-reversible computation into reversible one. We
present a simple imperative programming language, RIMP, with unrestricted
assignment, conditional and while-loop constructs, and provide a fine-grained
operational semantics that ensures programs are reversible both at source-code
level and at computation level. Thus, RIMP’s operational semantics provides a
formal specification of an interpreter for the language and a formal basis for the
development of a debugger [2]. The advantages of incorporating the reversible
embedding in the operational semantics of the language are twofold: on one
hand, programmers can use the language in the standard way (all the commands
behave as expected in an imperative language) and obtain reversibility “for free”,
on the other hand, this approach provides a uniform way of obtaining reversible
versions of imperative languages and can be directly implemented in a semantic
framework such as K [25].

Summarising, our main contributions are:

– We define a minimal imperative language with the standard syntax and spec-
ify a big-step operational semantics that ensures all programs can be inverted.
We provide a function rev that, given a program P , produces a program Pr

that performs the reverse of the computations of P . To be able to reverse
assignments, each variable is represented using a pair consisting of a num-

1 Assignments are non-destructive if the difference between the post- and pre-
assignment values of the variable can be statically known, e.g., an assignment of the
form x := x+2 is non-destructive and can be reversed by the assignment x := x−2.

2 This does not mean they are universal: the reversible translation of the irreversible
function is a different function, see [4] for more details.
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ber and a stack that can be seen as a dynamic version of a non-destructive
assignment (the stack can be omitted if all assignments for a given variable
are non-destructive as in Janus). To be able to reverse while-loops, the big-
step semantics uses counters. Since all assignments are reversible, we are able
to deal with unrestricted conditionals (we use assignments to save the values
of the variables used in the condition).

– We define an abstract machine equivalent to the standard one but with an
extra stack and a switch to make the machine go forwards or backwards. The
extra stack is used to store source code for backwards computations, not to
store computation traces. The machine is deterministic in both directions.

Overview. In the next section we recall SIMP, a simple imperative language, used
as a basis for the specification of RIMP in Sect. 3. Section 4 defines a source-code
to source-code inversion function. Section 5 presents an abstract machine for
RIMP, which is forward and backward deterministic. Section 6 discusses related
work. Finally, we conclude in Sect. 7.

2 Preliminaries: SIMP

Programs in SIMP are commands (C) or integer expressions (E). For simplicity,
we represent Booleans using integers (false is represented by 0, all other values
represent true), however in examples we use true and false for clarity. The abstract
syntax of SIMP is defined by the following grammar.

P :: = C | E
C :: = skip | l := E | C;C | if E then C else C | while E do C
E :: = !l | n | E op E | ¬E
op :: = + | − | ∗ | / | > | < | = | ∧

SIMP has sequencing (indicated by ;) and assignments. There is also a selector,
a loop construct, and a skip instruction which will simply pass the control to
the following statement. In the grammar above we assume that n ∈ Z (the set
of integers) and l ∈ L = {l0, l1, . . .} (a set of locations or variables). We only
consider simple expressions, built out of numbers, variables and operators. The
expression !l denotes the value stored in l.

We only consider well-typed abstract syntax trees. As usual, we use infix
notation (e.g., E op E instead of op(E,E)), omitting parentheses when possible
and using indentation to avoid ambiguity.

Example 1. Assuming a natural number n has been read and stored in the vari-
able i1, the following program Fact computes the factorial of n:

l:=!i1; factorial := 1;
while !l > 0do

(factorial := !factorial∗!l; l := !l − 1)
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The operational semantics of SIMP is defined by a transition system with:

– Initial configurations of the form 〈P, s〉 where P is a SIMP program and s is
a store represented by a partial function from locations to integers.
We denote by dom(s) the set of locations where s is defined. Without loss
of generality we assume s contains the input values for the program in a set
of variables i1, . . . , in which are not modified by P . The expression s[l �→ n]
denotes the function s′ that coincides with s except that it maps l to the
value n: s[l �→ n](l) = n and s[l �→ n](l′) = s(l′) if l 	= l′.
Final configurations have the form 〈n, s〉 (where n is an integer), 〈skip, s〉,
or are blocked configurations, such as 〈!l, s〉 where l 	∈ dom(s). The first and
third forms correspond to expressions and the second form to commands.

– An inductively defined evaluation relation 〈P, s〉 ⇓ 〈P ′, s′〉, where 〈P ′, s′〉 is a
final configuration, see Fig. 1. In the rules to evaluate expressions we use op
to denote standard machine operations, for example, n1+n2 represents the
sum of n1 and n2, and n1 ∧n2 is 0 if one of the inputs is 0, 1 otherwise.

(const)
〈c, s〉 ⇓ 〈c, s〉 if c ∈ Z

(var)
〈!l, s〉 ⇓ 〈n, s〉 if s(l) = n

〈E1, s〉 ⇓ 〈b1, s〉
(not)

〈¬E1, s〉 ⇓ 〈b, s〉 if b = not b1

〈E1, s〉 ⇓ 〈n1, s〉 〈E2, s〉 ⇓ 〈n2, s〉
(op)

〈E1 op E2, s〉 ⇓ 〈n, s〉 if n = n1 op n2

(skip)
〈skip, s〉 ⇓ 〈skip, s〉

〈E, s〉 ⇓ 〈n, s〉
(:=)

〈l := E, s〉 ⇓ 〈skip, s[l �→ n]〉
〈C1, s〉 ⇓ 〈skip, s′〉 〈C2, s

′〉 ⇓ 〈skip, s′′〉
(seq)

〈C1;C2, s〉 ⇓ 〈skip, s′′〉
〈E, s〉 ⇓ 〈true, s〉 〈C1, s〉 ⇓ 〈skip, s′〉

(ifT)〈if E then C1 else C2, s〉 ⇓ 〈skip, s′〉
〈E, s〉 ⇓ 〈false, s〉 〈C2, s〉 ⇓ 〈skip, s′〉

(ifF)〈if E then C1 else C2, s〉 ⇓ 〈skip, s′〉
〈E, s〉⇓〈true, s〉 〈C, s〉⇓〈skip, s1〉 〈while E do C, s1〉⇓〈skip, s2〉

(whileT)〈while E do C, s〉 ⇓ 〈skip, s2〉
〈E, s〉 ⇓ 〈false, s〉

(whileF)〈while E do C, s〉 ⇓ 〈skip, s〉

Fig. 1. Axioms and rules defining evaluation for SIMP

SIMP is universal but not reversible: for example, an assignment l := 0 cannot
be reversed. One way to avoid this problem is to forbid destructive assignments.
Alternatively, a more general notion of value can be used, as shown in the next
section. However, to make the language reversible, we also need to be able to
reverse conditionals and while-loops. These are generally irreversible so restric-
tions are imposed in reversible languages [10,19,27], or logs of computations
are used to ensure reversibility [14,24]. We define reversible versions of these
commands by renaming variables in conditions and using counters in loops.
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3 RIMP: A Reversible Imperative Language

The language RIMP is a variant of SIMP with an extended syntax and modified
operational semantics. Although the execution of programs in RIMP and SIMP
is different, the results are equivalent as stated in Theorem 2.

The syntax of RIMP is the same as the syntax of SIMP, except that RIMP has
an additional statement of the form l =: E, which we call reverse assignment.
This is a key feature of RIMP.

Regarding conditionals, first we observe that any conditional can be trans-
formed so that the variables used in the condition are not modified in the
branches: if a program contains a command C = if E then C1 else C2, where
l1, . . . , ln are the variables used in E, then C can be replaced by a sequence
of assignments l′i := !li for new variables l′1, . . . , l

′
n followed by a conditional

if E′ then C1 else C2, where E′ coincides with E except that all occurrences
of li are replaced by l′i. By transforming conditionals in this way we will be
able to define the reverse of a conditional, using the same semantic rules for the
conditional as in SIMP.

Ensuring the while-loop is reversible is harder. To achieve reversibility, we
will associate a different counter with each while-loop in the program. More pre-
cisely, we define a syntactic transformation, where the ith while-loop command
while E do C occurring in the program (the order in which they are numbered
is not important) is replaced by a sequence of commands as follows.

counteri := 0;
while E do (C; counteri := !counteri + 1)

Remark 1. From now on, we assume that counteri is a protected name (not
used by programmers) and RIMP programs have been processed to satisfy the
above conditions, that is, in any command of the form if E then C1 else C2

the variables in E are not modified by C1 and C2, and each while-loop uses a
counter as specified above. This is not a restriction since any program can be
translated into a program that satisfies these conditions.

Example 2. The following program Fact is the translation of the program Fact
given in Example 1 to compute the factorial of a number stored in the variable
i1.

l := !i1; factorial := 1;
counter1:= 0;
while1!l > 0do

(factorial := !factorial∗!l; l := !l − 1;
counter1 := !counter1 + 1)

As in Sect. 2, we specify the evaluation semantics of programs using config-
urations of the form 〈P, s〉, where s contains the input values for P in variables
i1, . . . , in, which we assume are not modified by the program. However, we use
the following set of runtime values in the store, where n ∈ Z:

v :: = 0 | +(n, v)
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It is easy to define the integer associated with a runtime value:

[[0]] = 0, [[+(n, v)]] = n + [[v]]

and conversely, any number n ∈ Z can be stored as a runtime value rv(n):

rv(0) = 0, rv(n) = +(n, 0) (n 	= 0).

The store will be represented by a function s that maps each variable to a
pair (k, v) where k = [[v]]. Although there is redundancy is this representation
(we could use just v) we prefer to store also k to avoid recomputing [[v]]. We
write s1(l) and s2(l) to denote the first and second components of the pair s(l),
respectively (i.e., si is the composition of s and the ith projection).

Example 3. The pair (3,+(2,+(1, 0))) is valid since the runtime value
+(2,+(1, 0)) corresponds to the integer 3: [[+(2,+(1, 0))]] = 3. Different run-
time values may be associated with the same integer, for example, (3,+(3, 0))
is also valid. This is not a problem: different runtime values associated with the
same integer correspond to different executions that produce the same number,
as we will show later.

The evaluation relation for RIMP, denoted ⇓RIMP, associates each configura-
tion 〈P, s〉 with its final result (assuming P is a terminating program). We define
⇓RIMP inductively. The rules to evaluate expressions in RIMP are the same as in
SIMP (see Fig. 1) except for axiom (var), which is replaced as follows:

(var)〈!l, s〉 ⇓RIMP 〈n, s〉 ifs1(l) = n

The rule to evaluate assignment statements l := E in RIMP is different from
the one in SIMP, as it uses runtime values.

〈E, s〉 ⇓RIMP 〈n, s〉
(:=) where n1 = n − s1(l)〈l := E, s〉 ⇓RIMP 〈skip, s[l �→ (n,+(n1, s2(l)))]〉

This assignment command is equivalent to SIMP’s, as shown below.

Lemma 1. Let s be a SIMP store and s the store obtained by pairing each num-
ber k in s with rv(k).
〈l := E, s〉 ⇓ 〈skip, s′〉 if and only if 〈l := E, s〉 ⇓RIMP 〈skip, s′′〉, where s′′

1 = s′.
In particular s′(l) = s′′

1(l) = [[s′′
2(l)]] = n, where 〈E, s〉 ⇓RIMP 〈n, s〉.

Example 4. Consider again the program Fact of Example 2. Assume the input
is 2, i.e., assume s(i1) = (2,+(2, 0)), s(l) = s(factorial) = s(counter1) = (0, 0).
Then 〈Fact, s〉 ⇓RIMP 〈skip, s′〉 where s′

1(factorial) = 2. The store s′ contains
the following values: s′(i1) = (2,+(2, 0)), s′(l) = (0,+(−1,+(−1,+(2, 0)))),
s′(factorial) = (2,+(0, (+1,+(1, 0)))), s′(counter1) = (2,+(1,+(1,+(0, 0)))).
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Although it is not intended for programmers to use reverse-assignment com-
mands x =: E in their programs, below we provide the rule to evaluate such
commands. The idea is to define the semantics in such a way that this command
reverses the last assignment x := E. The following rule achieves this effect.

〈E, s′〉 ⇓RIMP 〈n, s′〉
(=:) where s′ = s[l �→ (n − n1, v)]〈l =: E, s[l �→ (n,+(n1, v)])〉 ⇓RIMP 〈skip, s′〉

Given a program P in SIMP, let P be the translation of P such that no
conditional command modifies the variables in the condition and while-loops use
counters as specified above. The programs P and P produce equivalent results
when executed using SIMP and RIMP evaluation rules, respectively. In this sense
the translation preserves the semantics of the program.

Theorem 2. Let P be a SIMP program, s a store, P the translation of P and s
the store obtained by pairing each number k in s with rv(k). 〈P, s〉 ⇓ 〈u, s′〉 if and
only if 〈P , s〉 ⇓RIMP 〈u, s′′〉. Moreover, for any variable l in dom(s′), s′′

1(l) = s′(l)
(i.e., s′ and s′′ coincide in all the variables in dom(s′), but s′′ may contain more
variables).

4 A Program Inverter for RIMP

In this section we define a function rev that takes a RIMP program P and
produces a program Pr that computes the reverse of the computations generated
by P . At this point, we should clarify that from a computability point of view,
if P computes a function f , it is not the case that rev(P ) will compute f−1.
Indeed this would only be possible if f were injective. However, rev(P ) will be the
inverse of P in the sense that any computation performed by P can be undone
and the store returned to its initial state by executing rev(P ). The function rev
is therefore a program inverter [10,14]. In the next section we study a different
notion of reversibility, where instead of reversing at the level of the source code
we reverse at the level of computation steps.

Let us define more precisely what the function rev should achieve. The fol-
lowing definition is adapted from the one stated for the R-WHILE program
inverter (see Lemma 1 in [10]).

Definition 1 (Correctness of rev). Given a program P , rev(P ) is correct if
for any s, 〈P, s〉 ⇓ 〈skip, s′〉 implies 〈rev(P ), s′〉 ⇓ 〈skip, s′′〉 where s′′ and s are
equivalent over dom(s).

It is well-known that to achieve correctness it is sufficient to define an oper-
ational semantics for P that checkpoints the execution or preserves a trace of
each computation step [24]. We follow an alternative approach: The following
syntax-directed function for RIMP programs, rev, relies on the use of runtime
values for variables, under the assumption that conditionals and while-loops have
been translated as explained above. The function rev is parametric on an index
table, T , which indicates for each while-loop in P , its index i and its condition
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E (the latter is used when applying rev a second time to get back to the original
program).

rev(E) = E
rev(x := E) = x =: E
rev(x =: E) = x := E
rev(skip) = skip

rev(C1;C2) = rev(C2); rev(C1)
rev(if E then C1 else C2) = if E then rev(C1) else rev(C2)
rev(whilei E do C) = whilei !counteri > 0 do rev(C) if counteri�∈E
rev(whilei !counteri > 0 do C) = whilei E do rev(C) if T (i) = E

Example 5. The following program is obtained by applying rev to the program
Fact given in Example 2:

while1!counter1 > 0do
(counter1 =: !counter1 + 1;
l =: !l − 1; factorial =:!factorial∗ !l);

counter1 =: 0;
factorial =: 1; l =: !i1

Let s be a store such that s(i1) = (2,+(2, 0)), s(l) = s(factorial) =
s(counter1) = (0, 0). As indicated in Example 4, 〈Fact, s〉 ⇓RIMP 〈skip, s′〉
where s′(i1) = (2,+(2, 0)), s′(l) = (0,+(−1,+(−1,+(2, 0)))), s′(factorial) =
(2,+(0, (+1,+(1, 0)))), s′(counter1) = (2,+(1,+(1,+(0, 0)))).

Now if we run rev(Fact) in s′, we get back to the initial store s:
〈rev(Fact), s′〉 ⇓RIMP 〈skip, s〉. Indeed, after executing the while loop, we obtain
a store s′′ where s′′(i1) = (2,+(2, 0)), s′′(l) = (2,+(2, 0)), s′′(factorial) =
(1,+(1, 0)), s′′(counter1) = (0,+(0, 0)), and the three final reverse assignments
leave the value (0, 0) in counter1, factorial and l.

Note that rev(rev(Fact)) = Fact. This is indeed a general property.

Property 1. The function rev is self-inverse: If P is a RIMP program as specified
in Remark 1, then rev(rev(P )) = P .

The function rev is correct (see Definition 1).

Theorem 3. Let P be a RIMP program as described in Remark 1. For any s,
if 〈P, s〉 ⇓RIMP 〈u, s′〉 then 〈rev(P ), s′〉 ⇓RIMP 〈u, s′′〉 where s(l) = s′′(l) for all
l ∈ dom(s).

5 Reversing the Computations in RIMP

To define a notion of reversibility at computation-step level, we define a small-
step semantics for RIMP by means of an abstract machine. For terminating pro-
grams, the abstract machine and the big-step evaluation semantics produce the
same results (the big-step semantics is undefined for non-terminating programs).
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The abstract machine for RIMP consists of five main elements:

1. a control stack c, where instructions are stored;
2. a results stack, where intermediate results of computations are stored;
3. an arithmetic unit, also called processor, which performs reversible arithmetic

operations and comparisons;
4. a store, also called memory, modelled by a partial function m mapping loca-

tions to runtime values;
5. a back stack, which is used when computing backwards.

For simplicity, we assume the processor performs only integer-valued binary
operations of addition, subtraction, multiplication and division, and always
returns a result (division by zero produces a number rather than an error; we
leave the treatment of errors for future work). As before, we represent the mem-
ory as a partial function, dom(m) is the set of locations where m is defined.

Formally, an abstract machine is a transition system, and is therefore defined
by a set of configurations and a transition relation. The configurations of the
abstract machine for RIMP are tuples 〈c, r,m, b〉 of control stack, results stack,
memory and back stack. Stacks are inductively defined: an empty stack is
denoted by nil, and a non-empty stack i · c is obtained by pushing an element i
on top of a stack c. The definition of the stacks c, r, b is given by the grammar:

c, b ::= nil | i · c
i ::= P | l | lab
r ::= nil | P · r | l · r

where lab are instruction labels, P and l denote programs and locations (see
the grammar in Sect. 2) and expressions are extended with underlined numbers,
operators and variables (this will be used to distinguish backward and forward
computation in the abstract machine). In other words, the control and back
stack may be empty, or contain commands, expressions, locations and keywords
such as if or while. In the same way, the results stack may be empty or contain
commands, expressions or locations.

Initial configurations have the form 〈P · nil, nil,m, nil〉, where we assume
that P is a RIMP program.

The transition relation, denoted by →, specifies how to execute commands
and evaluate expressions. A transition 〈c, r,m, b〉 → 〈c′, r′,m′, b′〉 corresponds
to a step of computation of the abstract machine. There is a special transition
switch to change the direction of computation. This can be done at any point in
the computation.

〈c, r,m, b〉 switch−→ 〈b, r,m, c〉
Final configurations have the form 〈nil, nil,m, b〉, since the machine stops

when the control stack is empty in which case the results stack is also empty.
By executing a switch transition, the machine performs an additional set of
computation steps to empty the back stack, returning to the initial configuration
(the output of the program should be saved or printed first). No garbage is
produced.
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Tables 1, 2, 3 and 4 show the transition rules. Since the goal is to perform
computations both forwards and backwards, we have more transition rules than
in standard abstract machines for imperative languages. However, the machine
does not store traces of computations, instead it ensures that when a command
has been executed, its inverse is stored in the back stack (the inverse is a program,
not a computation history).

The left-hand sides of rules could be simplified: for example, in rule mun
(Table 1) it is not necessary for the pattern-matching algorithm to check that
both occurrences of n are the same, one could simply use two different variables
in the left-hand side, under the assumption that the rules are used only during
executions that start in an initial configuration. We have kept the more detailed
versions of the rules to help see the effect of backward steps.

Table 1. Rules for expressions

〈n · c, r,m, b〉 num−→ 〈c, n · r,m, n · b〉
〈n · b, n · r,m, c〉 mun−→ 〈b, r,m, n · c〉

〈!l · c, r,m, b〉 var−→ 〈c,m1(l) · r,m, !l · b〉
〈!l · b, n · r,m, c〉 rav−→ 〈b, r,m, !l · c〉

〈(E1 oper E2) · c, r,m, b〉 exp−→
〈E1 · E2 · oper · c, r,m, exp · E1 · E2 · b〉

where oper = op or op

〈exp · E1 · E2 · b, r,m,E1 · E2 · op · c〉 pxe−→ 〈b, r,m, (E1 op E2) · c〉

〈op · c, n2 · n1 · r,m,E2 · E1 · exp · E1 · E2 · b〉 op−→ 〈c, n · r,m, (E1opE2) · b〉
where n = n1 op n2

〈op · b, n2 · n1 · n · r,m,E2 · E1 · exp · E1 · E2 · c〉 op−→ 〈b, r,m, (E1opE2) · c〉
where n = n1 op n2

〈¬E · c, r,m, b〉 neg−→ 〈E · ¬ · c, r,m, neg · E · b〉
〈neg · E · b, r,m,E · c〉 gen−→ 〈b, r,m,¬E · c〉

〈¬ · c, n · r,m,E · neg · E · b〉 ¬−→ 〈c, n′ · r,m, (¬E) · b〉
where n′=not(n)

〈¬ · b, n · n′ · r,m,E · neg · E · c〉 ¬−→ 〈b, r,m, (¬E) · c〉 if n′ = not(n)

Example 6. Consider again the program Fact given in Example 2, and an initial
configuration c0 = 〈Fact · nil, nil,m, nil〉 where m(i1) = (2,+(2, 0)), m(l) =
m(factorial) = m(counter1) = (0, 0).
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Table 2. Rules for skip, assignment and sequence commands

〈skip · c, r,m, b〉 skip−→ 〈c, r,m, skip · b〉
〈(l := E) · c, r,m, b〉 asgn−→ 〈E· !l · := ·c, l · r,m, asgn · E · b〉

〈asgn · E · b, l · r,m,E· !l · := c〉 ngsa−→ 〈b, r,m, (l := E) · c〉
〈:= ·c, n2 · n1 · l · r,m, !l · E · asgn · E · b〉 :=−→

〈c, r,m[l �→ (n1,+(n,m2(l)))], (l =: E) · b〉
where n = n1 − n2

〈(l =: E) · c, r,m[l �→ (n1,+(n, v))], b〉 asgnr

−→
〈E· !l · =: · c, l · r,m′, asgnr · n · E · b〉

where m′ = m[l �→ (n1 − n, v)]

〈asgnr · n · E · b, l · r,m,E· !l · =: · c〉 ngsar

−→
〈b, r,m[l �→ (m1(l) + n,+(n,m2(l))], (l =: E) · c〉

〈=: ·c, n2 · n1 · l · r,m′, !l · E · asgnr · n · E · b〉 =:−→ 〈c, r,m′, (l := E) · b〉 if n = n1 − n2

〈(C1;C2) · c, r,m, b〉 seq−→ 〈C1 · C2·; ·c, r,m, seq · b〉
〈seq · b, r,m,C1 · C2·; ·c〉 qes−→ 〈b, r,m, (C1;C2) · c〉

〈; ·c, r,m, rev(C2) · rev(C1) · seq · b〉 ;−→ 〈c, r,m, (rev(C2); rev(C1)) · b〉

Below are the transitions from the initial configuration until the first assign-
ment is fully evaluated. Here C is the program Fact without the first assignment.

c0
seq−→ 〈(l := !i1) · C·; ·nil, nil,m, seq · nil〉 asgn−→

〈!i1·!l· := ·C·; ·nil, l · nil,m, asgn·!i1 · seq · nil〉 var−→
〈!l· := ·C·; ·nil, 2 · l · nil,m, !i1 · asgn·!i1 · seq · nil〉 var−→
〈:= ·C·; ·nil, 0 · 2 · l · nil,m, !l · !i1 · asgn·!i1 · seq · nil〉 :=−→
〈C·; ·nil, nil,m[l �→ (2,+(2, 0))], (l =: !i1) · seq · nil〉.

Note that the reverse of the assignment command executed has been stored in
the back stack. Now applying rules seq, asgn, num, var, :=, the next assignment
is evaluated, producing

〈(counter1 := 0;C′)·; ·; ·nil, nil,m[factorial �→ (1,+(1, 0)), l �→ (2,+(2, 0))],
(factorial =: 1) · seq · (l =: !i1) · seq · nil〉
where C′ =
while1 !l > 0 do (factorial :=!factorial ∗!l; l := !l − 1; counter1 := !counter1 + 1).

Further transitions produce 〈C ′·; ·; ·; ·nil, nil,m′, b〉, where
m′ = m[counter1 �→ (0, 0), factorial �→ (1,+(1, 0)), l �→ (2,+(2, 0))] and
b = (counter1 =: 0) · seq · (factorial =: 1) · seq · (l =: !i1) · seq · nil.
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Table 3. Rules for conditionals

〈(if E then C1 else C2) · c, r,m, b〉 cond−→ 〈E · if · cond · c, C1 · C2 · r,m, cond · b〉
〈cond · b, C1 · C2 · r,m,E · if · cond · c〉 dnoc−→ 〈b, r,m, (if E then C1 else C2) · c〉

〈if · cond · c, true · C1 · C2 · r,m,E · cond · b〉 ifT−→ 〈C1 · cond · c, C1 · C2 · r,m,E · if · cond · b〉
〈if · cond · b, true · C1 · C2 · r,m,E · C1 · cond · c〉 fiT−→ 〈E · cond · b, true · C1 · C2 · r,m, if · cond · c〉

〈if · cond · c, false · C1 · C2 · r,m,E · cond · b〉 ifF−→ 〈C2 · cond · c, C1 · C2 · r,m,E · if · cond · b〉
〈if · cond · b, false · C1 · C2 · r,m,E · C2 · cond · c〉 fiF−→ 〈E · cond · b, false · C1 · C2 · r,m, if · cond · c〉

〈cond · c, C1 · C2 · r,m, rev(C) · E · if · cond · b〉 endif−→ 〈c, r,m, (if E then rev(C1) else rev(C2)) · b〉
where C is either C1 or C2

Table 4. Rules for loops

〈(whilei E do C) · c, r,m, b〉 loop−→
〈E · whilei · loopi · c, E · C · r,m, loopi · b〉

〈loopi · b, E · C · r,m,E · whilei · loopi · c〉 pool−→ 〈b, r,m, (whilei E do C) · c〉

〈whilei · loopi · c, true · E · C · r,m,E · loopi · b〉 loopT−→
〈C ·(whilei E do C) · c, E · C · r,m, true · whilei · loopi · b〉

〈whilei · loopi · b, true · E · C · r,m, true · C ·(whilei E do C) · c〉 poolT−→
〈E · loopi · b, true · E · C · r,m,whilei · loopi · c〉

〈whilei · loopi · c, false · E · C · r,m,E · loopi · b〉 loopF−→
〈loopi · c, E · C · r,m, false · whilei · loopi · b〉

〈whilei · loopi · b, false · E · C · r,m, false · loopi · c〉 poolF−→
〈E · loopi · b, false · E · C · r,m,whilei · loopi · c〉

〈loopi · c, E · C · r,m, false · whilei · loopi · b〉 endwF−→
〈loopi · c, 0 · C1 · E · C · r,m, endwi · b〉

where C1 = rev(whilei E do C)

〈endwi · b, 0 · C1 · E · C · r,m, loopi · c〉 wendF−→
〈false · whilei · loopi · b, E · C · r,m, loopi · c〉

〈loopi · c, n · C1 · E · C · r,m, endwi · rev(C) · true · whilei · loopi · b〉 endwT−→
〈loopi · c, n+ 1 · C1 · E · C · r,m, endwi · b〉

〈endwi · b, n+ 1 · C1 · E · C · r,m, loopi · c〉 wendT−→
〈endwi · rev(C) · true · whilei · loopi · b, n · C1 · E · C · r,m, loopi · c〉
〈loopi · c, n · C1 · E · C · r,m, b〉 endw−→ 〈c, r,m,C1 · b〉 otherwise

i.e., (endwF ), (endwT ) don’t apply
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The machine now executes C ′. First, rule loop is applied, producing the config-
uration c1 below, where Cl is the loop body.

c1 = 〈(!l > 0) · while1 · loop1·; ·; ·; ·nil, (!l > 0) · Cl · nil,m′, loop1 · b〉 exp−→
〈!l · 0· > ·while1 · loop1·; ·; ·; ·nil, (!l > 0) · Cl · nil,m′, exp · !l · 0 · loop1 · b〉 var−→num−→

〈> ·while1 · loop·; ·; ·; ·nil, 0 · 2 · (!l > 0) · Cl · nil,m′, 0 · !l · exp · !l · 0 · loop1 · b〉 op−→
〈while1 · loop1·; ·; ·; ·nil, true · (!l > 0) · Cl · nil,m′, (!l>0) · loop1 · b〉 loopT−→
〈Cl · C′·; ·; ·; ·nil, (!l > 0) · Cl · nil,m′, true · while1 · loop1 · b〉.

The machine is now ready to execute the body of the loop and then repeat, until
the condition is false, at which point a sequence of transitions

loopF−→ endwF−→ endwT−→
endwT−→ endw−→ ;−→ ;−→ ;−→ leads to the final configuration:

〈nil, nil,m′′, rev(Fact) · nil〉 where m′′ = m[factorial �→ (2,+(0,+(1,+(1, 0)))),
l �→ (0,+(−1,+(−1,+(2, 0)))), counter1 �→ (2,+(1,+(1,+(0, 0)))]

.

RIMP’s abstract machine is switch-deterministic: for each configuration, there
is at most one transition rule applicable in addition to switch.

Theorem 4 (Determinism). For any configuration c of the RIMP abstract
machine, there is at most one non-switch transition rule applicable to c.

The abstract machine is reversible: at any point, the application of the switch
rule triggers a change of direction, reversing the computation done. To prove this
result, we use two properties: the first states that the machine correctly evaluates
expressions and leaves the result at the top of the results stack. The second states
that if P is a terminating program, and we start the machine at a configuration
where P is at the top of the control stack, the machine performs a finite number
of transitions and stops with rev(P ) in the back stack.

Lemma 2 (Correctness of the Abstract Machine). For any RIMP expres-
sion E and command C:

1. 〈E · c, r,m, b〉 →∗ 〈c, n · r,m,E · b〉 if and only if 〈E,m〉 ⇓RIMP 〈n,m〉.
2. 〈C · c, r,m, b〉 →∗ 〈c, r,m′, rev(C) · b〉 if and only if 〈C,m〉 ⇓RIMP 〈skip,m′〉.
Theorem 5 (Reversible Computation). Let 〈c, r,m, b〉 be a configuration
obtained by applying transition rules starting from the initial configuration 〈E ·
nil, nil,m0, nil〉 (resp. 〈C ·nil, nil,m0, nil〉), where E, C are a RIMP expression
and command respectively. If 〈c, r,m, b〉 →∗ 〈c′, r′,m′, b′〉 then 〈b′, r′,m′, c′〉 →∗

〈b, r,m, c〉.

6 Related Work

Standard computation models (such as Turing machines and the λ-calculus)
are not reversible: they can perform computation steps that destroy informa-
tion. In fact, any non-injective function is irreversible. However, irreversible
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computation can be embedded into reversible computation by adding extra
storage to save the intermediate states of the computation, as shown by Lan-
dauer [17,18] and Bennett [6]. Models of computation that are by construc-
tion reversible are also available (e.g., reversible Turing machines, reversible
logic gates, see [21]). For a detailed discussion of the power of reversible Turing
machines we refer to [4]. Perumalla [24] provides a detailed account of reversibil-
ity, including reversible programming languages (both language-level and compu-
tation level) and reversible hardware. In this paper, we focus only on reversibility
of imperative languages and consider both source-code level and computation
level reversibility.

Imperative languages are not reversible in general. There are two well-known
approaches to transform irreversible languages into reversible ones: by storing
snapshots of the memory (i.e., checkpointing) and by using commands to restore
the state (the control flow approach). In this paper we propose a hybrid app-
roach, based on the use of a representation of values that indicates how they
were constructed. In a closely related work [14], a stack is associated with each
variable and used to save all the previous values held by the variable. Our rep-
resentation of values is equivalent.

Based on RIMP’s big-step operational semantics we define a program inverter:
a function rev that takes a program as input and outputs a program that per-
forms the reverse computation of the input program. The function rev is anal-
ogous to the program inverters defined for reversible languages (see, e.g., [10]);
however, since RIMP has general assignment and loop commands, the inver-
sion relies on an augmented representation of values combined with the use of
counters. It behaves like the function inv defined by Hoey et al [14], but we do
not add stacks to reverse conditionals and while-loops. Instead, we transform
the conditions in if-then-else commands to ensure the values are preserved so
conditionals are reversible, and we associate a counter with each while-loop.

Reversible abstract machines have been extensively studied [22,27]. RIMP’s
abstract machine could be seen as an instance of interpreted-based reversal,
however, unlike standard augmented interpreters that store a sequential log of all
the operations executed and use the log to reverse the computation, the abstract
machine does not store computation histories. Instead, it stores the source code
of the reverse command (as defined by the rev function), once the command has
been executed. The machine has forward and backward deterministic transition
rules, so the direction of computation can be changed at any point. At the end
of the execution of a command, the source code for the reverse command is
in the back stack, which allows the machine to reverse the whole computation
without storing histories. RIMP’s abstract machine works as an interpreter when
executing in forward mode but is also able to execute in backward mode, as a
basis for a debugging tool.

We are currently exploring reversibility of RIMP at lower level. We have iden-
tified two directions: a compilation that targets a reversible assembly language
in the style of PISA (see, e.g., [5]), inspired by [3]; and a token-based implemen-
tation, inspired by structural approaches to reversibility [1,20].
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7 Conclusions and Future Work

We have discussed the design of a simple imperative language, RIMP, where
programs can be inverted: the function rev translates a RIMP program into
a program that performs the reverse computation. Using this feature we have
built an abstract machine for RIMP where any computation step can be reversed
(including the steps performed to evaluate expressions), without using compu-
tation logs to store all the computation history. Thus, RIMP’s abstract machine
can also be used as a debugger (indeed, one of the motivations for the study of
reversibility is to provide foundations for debugging [2]).

In future work, we will develop a compiled version of RIMP, targeting a
reversible low-level language, and analyse the amount of space used to make
the programs reversible. We will also consider an extension of RIMP with local
variable definitions and procedure calls. Another direction for future work is
the addition of a concurrent operator, adapting the techniques used by Hoey et
al [13–15] to reverse parallel programs. Finally, the approach presented in this
paper could be implemented in a language framework such as K [25] to generate
reversible versions of imperative languages in a uniform way.
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cedures. In: Pérez, J.A., Tini, S. (eds.) Proceedings Combined 25th International
Workshop on Expressiveness in Concurrency and 15th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2018. EPTCS, Beijing, China, 3 Septem-
ber 2018, vol. 276, pp. 69–86 (2018)

16. Jones, N.D.: Computability and Complexity - From a Programming Perspective.
Foundations of Computing Series. MIT Press, Cambridge (1997)

17. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

18. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 44(1), 261–269 (2000). Reprinted from IBM J. Res. Dev. 1961

19. Lutz, C., Derby, H.: Janus: a Time-reversible Language (1986)
20. Mackie, I.: A geometry of interaction machine for Gödel’s system T. In: Kennedy,
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Abstract. Symbolic execution, a well-known and widely studied soft-
ware testing technique, faces scalability issues due to path explosion that
limits its effectiveness. Recent work on chopped symbolic execution intro-
duced the Chopper technique that allows the user to specify uninteresting
parts of code that the symbolic analysis can try to ignore by focusing first
on the essential parts. If necessary, the ignored parts are later explored
once their impact on the main code under analysis becomes unavoid-
able. We introduce a parallel approach to chopped symbolic execution
that integrates path-based partitioning with Chopper. Our tool, called
PChop, speeds up chopped symbolic exploration by allowing multiple
participating workers to explore non-overlapping regions of the code in
parallel. We demonstrate the impact of our technique in a failure repro-
duction scenario, where we use both PChop and Chopper to re-create
security vulnerabilities in the GNU libtasn1. The experimental results
show that PChop is beneficial in situations where Chopper requires more
than a minute to find the vulnerability when using a specific search strat-
egy. For two vulnerabilities, PChop identified a previously undocumented
code location to manifest each of them.

Keywords: Software testing · Symbolic execution · Parallel analysis ·
KLEE

1 Introduction

Symbolic execution, conceptualized, and demonstrated almost 40 years ago
[4,16], is one of the most versatile and influential methodologies for analyzing
software. The core of symbolic execution is a technique that undertakes a struc-
tured exploration of the execution paths which exist in the program being ana-
lyzed. A standard symbolic execution tool comprises of two main components.
The first component constructs the path conditions, which are constraints on
program inputs that cause the execution of a particular path. The second com-
ponent is a mechanism to solve the path conditions and provide concrete values
to the program inputs. Symbolic execution has found widespread application in
test input generation. Solving path conditions for execution paths in a program
yields a capable test suite that provides better code coverage. Advancements in
SAT and SMT solving technology coupled with the rapid rise of computing power
has paved the way for using symbolic execution in a diverse range of real-world
c© Springer Nature Switzerland AG 2020
S.-W. Lin et al. (Eds.): ICFEM 2020, LNCS 12531, pp. 107–125, 2020.
https://doi.org/10.1007/978-3-030-63406-3_7
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software. While symbolic execution presents itself as an attractive software anal-
ysis tool, it suffers from scalability issues. The main reasons for this drawback
are the complexity of path conditions and the state-space explosion as software
becomes more extensive and more expressive. These factors lead to prohibitively
high exploration times, which hinders the adoption of this technology.

There have been several research endeavors to address these bottlenecks.
Concolic execution, introduced in DART [15], combines concrete and symbolic
execution to limit the path explosion problem. In this technique, the program
runs with program inputs having concrete values. The symbolic path conditions
for the execution path are recorded, and the last branch in the path condi-
tion is negated to execute a new path. Several tools extend concolic execution
to target different programming environments and provide additional features
[6,23,24]. DiSE [20], using an incremental approach, symbolically executes only
the modified parts of the code. The compositional approach used in SMART [14]
uses concolic execution for functions in isolation to reduce the number of paths.
Several modern symbolic solvers incorporate the Execution Generated Test [8]
approach where both concrete and symbolic states of a program are maintained.
If an operation involves all concrete values, then it is executed normally, but in
the presence of one or more symbolic variables, symbolic execution takes place.
EXE [9] and KLEE [7] are two well-known tools in this category. KLEE is an
open source symbolic execution tool that works on LLVM [1] generated byte-
code and integrates with the LLVM architecture. KLEE, and tools built on top
of KLEE have been used to test a wide range of software applications like com-
puter vision [12], sensor networks [22], GPUs [19], device drivers [10], and online
gaming [3]. KLEE is also used for automated debugging [29], thread schedul-
ing [13], and exploit generation [2]. The distributed/parallel approach involves
breaking down a sizeable symbolic execution problem into smaller ones and solv-
ing them simultaneously. A common technique to accomplish distribution is to
divide program execution paths amongst several workers [5,11]. These paths are
compactly represented using prefixes, which are bit-vectors that store a history
of branching decisions (a 1 for a taken branch and 0 for a not-taken branch
or vice-versa) from the program entry point up to a certain depth. Such pre-
fixes can be communicated to workers to replay and extend further to explore
deeper paths. Chopped symbolic execution [28] is a novel technique to mitigate
the path-explosion problem. In this scheme, users can identify parts of code that
are unimportant, and the symbolic analysis tries to avoid those parts. Chopper
takes as input a list of function names and their call locations, determined by
the user to be inessential. It skips over the function and continues with execution
of the instruction following the call. To preserve the soundness of the analysis,
Chopper lazily executes the skipped functions when their side-effects are observ-
able by the non-skipped parts of the code. Chopper relies on static analyses to
determine and resolve the side-effects of skipped function calls.

This paper proposes to tackle further the issue of scalability by developing
a parallel version of Chopper called PChop. PChop utilizes a path-prefix based
partitioning scheme to divide the program space into smaller non-overlapping
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regions. These smaller regions can be explored concurrently by multiple workers.
Program regions are identified by prefixes that represent the path taken to reach
them. As a result, a parallel framework requires a robust mechanism to generate
these prefixes. In Chopper, symbolic execution can skip a function only to exe-
cute it at a later stage when its effect can no longer be ignored. This re-ordering
of execution leads to the generation of inaccurate/invalid prefixes. In PChop,
we resolve this issue by devising a new technique to generate valid and accurate
prefixes for the execution paths.

This paper makes the following contributions.

– Parallel Chopped Symbolic Execution. We propose a parallel approach
to Chopped symbolic execution that uses prefix-based partitioning to dis-
tribute work such that workers explore non-overlapping parts of the program
space. We accomplish this by designing a chopping aware prefix generation
scheme that accounts for skipping function calls and executing them out of
program order only when their side-effects are observable.

– Implementation. We implement the proposed technique in our tool called
PChop1, which extends Chopper to enable parallel execution using message-
passing interface(MPI).2 The framework comprises a co-ordinator and several
workers nodes which explore disjoint regions of the code in parallel.

– Evaluation. We evaluate and quantify the performance of the proposed
scheme in the context of failure reproduction, which involves searching for
documented vulnerabilities in GNU libtasn1. This library is used for seri-
alizing and de-serializing data according to Abstract Syntax Notation One
(ASN.1) standard.3 We study the time it takes to find the vulnerabilities
with configurations comprising multiple workers and different search strate-
gies.

2 Background

2.1 Parallel Symbolic Execution

A parallel symbolic execution scheme works by partitioning the program space
and assigning them to the participating workers. A typical symbolic execution
engine uses some kind of data structure to store and process constraints collected
when exploring execution paths. We refer to these structures as states. At every
branch point, two states are spawned, which represent the taken and not-taken
branches. States can also be used to store path-prefix information as a sequence
of bits which represent the branching history for that path. Let us assume that
a 0 indicates the not-taken(false) path and a 1 indicates the taken(true) path.
Path-prefixes grow as exploration goes deeper into the program being analyzed.
These states are assigned to workers, which, extend them by taking the explo-
ration to deeper program paths and generating further states in the process.
1 https://github.com/Shikhar8990/pChop.
2 https://www.open-mpi.org/.
3 https://www.gnu.org/software/libtasn1/.
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The information about a state can be communicated to a node using one of
two ways. The first method involves sending the path-conditions for the path
represented by the state. The worker can then start symbolic execution using
the path conditions as pre-conditions and generating states accordingly. Since
no two distinct states would have identical path-conditions, this ensures no two
workers explore the same regions in the program. A major disadvantage of this
technique is that path constraints can become prohibitively long and complex
for efficient communication. Alternatively, instead of constraints, path-prefixes
representing states can be sent to the workers. In this case, a worker starts exe-
cution from the beginning and replays the path of its assigned prefix and then
starts full symbolic execution. Replaying involves only collecting the constraints
from the entry point and does not require any constraint solving. This scheme
is more efficient as path-prefixes can be compactly represented as bit-vectors,
which incur lower communication overheads.

2.2 Chopping in Symbolic Execution

The primary motivation behind techniques like the one used in Chopped sym-
bolic execution is to make symbolic execution scalable by attempting to alleviate
the path explosion problem. Chopper accomplishes this by focusing on important
parts of the code while avoiding uninteresting parts as much as possible. The user
is responsible for identifying the parts of the code to avoid. These uninteresting
parts are specified as function calls in the program, which the analysis tries to
overlook. Symbolic execution, in such a scenario, explores all possible paths in
parts of the code deemed important and skips over unimportant parts. How-
ever, to make the analysis sound, parts that have been skipped may be executed
lazily as their impact on the main code becomes apparent. Such techniques rely
on static data flow analysis to determine the side-effects of a function. Chopper
relies on a whole program flow-insensitive, context-insensitive, and field-sensitive
points-to analysis to identify every location that may be accessed by a pointer
[28]. A points-to analysis is used for recording all possible memory locations
which may have been modified by a function. If symbolic exploration reaches a
state that accesses (via a load instruction) a memory location whose contents
are modified by a function (via a store instruction) skipped on the path, the
state is suspended, and a recovery state is launched to capture the side-effects
of that function. The state awaiting the results of the blocked load is marked as
being dependent on the recovery state. The recovery state executes the skipped
function call. If a branch causes the execution to fork in the recovery phase,
the dependent state is also forked using the same branch condition. Eventually,
one of the recovery states will execute the store instruction, which blocked the
execution of the load instruction in the dependent state. Once the recovery state
finishes exploring a path in the skipped function, its dependent state is resumed
and can safely execute the load instruction. Algorithm1 shows the basic work-
flow of Chopper. A state maintains its program counter, which points to the next
instruction, a symbolic representation of the heap memory, and the constraints
for the path. The algorithm begins the execution of the initial state, which
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Algorithm 1. Simplified Chopper Loop [28]
1: so ← initial state
2: states ← list of active states
3: skippedFunc ← list of functions to be skipped
4: add so to states
5: while states is not empty or timeout do
6: scurr ← select a state from states
7: inst ← next instruction to execute in scurr

8: if inst is a function call instruction then
9: f ← target function

10: if f is in skippedFunc then
11: snapshot ← create a snapshot
12: store tuple (snapshot, f) to a list snapshots for scurr

13: else
14: execute the function call
15: else if inst is Load then
16: addr ← load address
17: if value at addr may have been modified by one or more

functions skipped by scurr then
18: for each (snapshot, f) recorded by scurr do
19: if (snapshot, f) may modify the value at addr then
20: suspend scurr

21: recoveryState ← create from snapshot
22: link recoveryState to its dependent state scurr

23: add recoveryState to list states

24: else
25: execute the load in scurr

26: else if inst is Store then
27: addr ← store address
28: execute the store in scurr

29: if scurr is a recovery state then
30: update the values at addr in dependent state
31: else
32: add addr to the list of addresses written by scurr

33: else if inst is Return then
34: if scurr is a recovery state and return belongs to a skipped function then
35: terminate the scurr

36: dependentState ← get dependent state of recoveryState
37: resume dependentState
38: add dependentState to list states
39: else
40: execute return
41: else if inst is Branch then
42: if scurr is a recovery state then
43: cond ← branch condition
44: depState ← dependent state of scurr

45: s′
curr ← forked recovery state for taken branch using cond

46: depState′ ← forked dependent state for taken branch using cond
47: if both s′

curr and depState′ are feasible then
48: add s′

curr to states
49: link s′

curr to its dependent state depState′

50: else
51: Discard s′

curr and depState′

52: Do the same for the fall-through branch
53: Remove originating state scurr from states
54: else
55: execute the branch normally

points to the first instruction in the code. As more states are added to the list as
a result of branching, the search strategy determines which states are explored
at every iteration of the loop (line 5). If the inst is a function call (line 8) and
the target is a non-skipped function, normal symbolic execution of the function
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follows (line 14). When the call target is a skipped function, the current state
of execution is stored as a snapshot. This snapshot preserves the symbolic state
of the program right before the skipped function call. The snapshot is added to
the list of snapshots for that state along with the function name (lines 11,12).
On encountering a load instruction (line 15), an analysis of the type presented
in [28] is used to determine if data at the address read by the load instruction
may have been modified by one or more functions previously skipped by the
state. If that is indeed the case, the relevant snapshot and function are retrieved
(lines 18, 19), and the current state is suspended (line 20). A recovery state is
created by cloning the snapshot. This state is added to the list of active states
and is linked to its dependent state (lines 21–23). The recovery state reflects the
program state right before the function call instruction that was overlooked by
the suspended state. The recovery state executes the function call to explore the
skipped function. If the load is not affected by the skipped functions, it is exe-
cuted normally. A store instruction is processed in two steps. First, the memory
is updated to register the store. Secondly, if a recovery state performs the store,
the memory of the dependent state is also updated to reflect the store. In case
scurr is a normal state, the store address is recorded to maintain a list of memory
locations modified by the normal state. Any modifications to these locations by
earlier skipped functions are discarded. A return from a skipped function sig-
nals the end of a recovery phase. The recovery state is terminated, followed by
the retrieval and resumption of its dependent state (lines 35–38). Return from
a non-skipped function does not require any special provisions. A normal state,
upon reaching a branch instruction (line 55), forks the execution to generate two
new states. These new states capture the taken and not-taken paths. Branching
for a recovery state is managed in several steps. First, the dependent state is
retrieved (line 44). Then, both the recovery and the dependent states are forked
to generate states for the taken path (cond is true). If both the newly forked
states have feasible constraints, the forked recovery state (s′

curr) is added to the
list of active states and is linked to its forked dependent state (depState′) (line
45–49). If one or both of the states have unsatisfiable constraints, they are dis-
carded (line 51). The not-taken path is processed similarly. While describing the
algorithm, we elided the details of the data flow analysis methodology and other
features used in [28], as they are not pertinent to the current work.

3 Illustrative Example

This section introduces the core concepts of the proposed technique by working
through a demonstrative example.
1 typede f s t r u c t student {
2 i n t id , f e e sPe rCred i t ;
3 i n t gpa ; // symbol ic
4 i n t s t a t e I d ; // symbol ic
5 i n t c r e d i t s ; // symbol ic
6 } student ;
7 void ca l cu l a t eFee sPe rCred i t ( student ∗ s ) {
8 i f ( s−>s t a t e I d == 11) {
9 s−>f e e sPe rCred i t = 400 ;



Parallel Chopped Symbolic Execution 113

10 } e l s e i f ( s−>s t a t e I d == 34) {
11 s−>f e e sPe rCred i t = 450 ;
12 } e l s e {
13 s−>f e e sPe rCred i t = 600 ;
14 }
15 }
16 i n t c a l cu l a t eFe e s ( student ∗ s1 ) {
17 ca l cu l a t eFee sPe rCred i t ( s1 ) ;
18 i f ( s1−>c r e d i t s > 9) {
19 a s s e r t ( s1−>gpa > 3) ;
20 }
21 i f ( s1−>gpa == 4) {
22 re turn 400 ;
23 } e l s e {
24 i n t t o t a lFe e s = s1−>f e e sPe rCred i t ∗ s1−>c r e d i t s ;
25 re turn to ta lFe e s ;
26 }
27 }
28 i n t main ( ) {
29 student s1 ;
30 // i n i t i a l i z e s1 to some value
31 i n t f e e s = ca l cu l a t eFe e s (&s1 ) ;
32 re turn 0 ;
33 }
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Fig. 1. Standard symbolic execution of the example code

Shown above is a simple C program to compute the tuition fees owed by
a student enrolled in some university. Relevant information about a student is
stored in struct student. The total fees is calculated based on the number of
credits that the student is enrolling for and the fee per credit. The per-credit fee
depends on the residency state of the student, which is identified by a unique
stateId. A student enrolling for more than 9 credits requires a GPA of at least
3. A maximum possible GPA of 4 results in a tuition waiver and a flat fee is
charged. Figure 1 shows the result of the standard symbolic execution of this
program. Each state, shown as a gray box, is identified by its path-prefix. This
execution results in a total of 12 terminal states. In a parallel setting comprising
of n workers, a shallow symbolic exploration can be done to obtain n different
states. Then their corresponding path-prefixes can be sent to the workers to
explore further.
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Fig. 2. Symbolic execution of the example code with Chopper - skipping calculate-
FeesPerCredit

3.1 Prefix Generation in Chopper

Suppose, using Chopper, we wish to skip the execution of the function calcu-
lateFeesPerCredit and only execute it when its side-effects become apparent.
Figure 2 shows the symbolic exploration procedure for such a scenario. Upon
reaching the function call (line 17), the execution skips and does not enter the
function body. Instead, Chopper creates a snapshot to preserve the execution
state right before the function call. The execution moves on to the next branch
and forks (line 18), generating two states. Note that the prefixes associated with
these states are different from the prefixes of the corresponding states in case of
conventional non-skipped execution. The true side of the branch on line 21 can
be executed without having to call the skipped function. However, the not-taken
side requires the execution of calculateFeesPerCredit. As a result, the execution
goes into recovery mode and suspends the state corresponding to the not-taken
side of the branch. The snapshot captured earlier is used to generate a recov-
ery state, which starts at the entry point of calculateFeesPerCredit. Every time
the execution forks in the recovery region, the corresponding dependent states
are replicated. The replicated states inherit the constraints and path-prefixes of
the parent state. Once the recovery states reach the end of the function, the col-
lected constraints are merged with those of the dependent states. The dependent
states are then activated for further exploration. Since there are three unique
paths in the skipped function, the dependent state is replicated twice, result-
ing in a total of 3 states to merge with each of the three recovery states. The
recovery happens for 2 different paths, where memory locations modified by the
calculateFeesPerCredit are accessed.
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Fig. 3. Symbolic execution of the example code with PChop - skipping calculate-
FeesPerCredit

3.2 Prefix Generation in PChop

A prefix based parallel execution scheme relies on the robustness of the path-
prefix generation mechanism - no two states can have identical paths, and a
prefix should represent the actual path taken by the execution. Symbolic execu-
tion with Chopper, when skipping a function call, violates both these conditions.
The replicated dependent states all share the same path-prefixes, which leads to
ambiguity in path-based parallelization. The first recovery state has an empty
prefix since it is created from a snapshot of a state which witnessed no prior
branches. However, this state executes after the exploration has already seen
two branches (lines 18, 21). For recovery states, Chopper does not capture accu-
rate branch histories in the non-recovery regions. In order to distribute states,
path-prefixes should be generated in a way such that they capture execution in
both normal and recovery modes. Figure 3 depicts the prefix generation process
when using PChop on the same program, and skipping the same function. Prefix
construction begins in the standard way with a 0 or 1 being appended to the path
of the parent state for not-taken and taken branch states, respectively. However,
when starting a recovery phase, instead of the first recovery state inheriting the
prefix of the snapshot state, it acquires the prefix of the dependent state trigger-
ing the recovery. In the figure, state 10 triggers recovery, and the first recovery
state gets a prefix of 10. Subsequent recovery states also inherit and extend this
prefix. At the end of the recovery phase, when the constraints of the recovery
states are merged with the dependent states, the dependent states acquire the
path-prefixes of their respective recovery states. As a result, all the states carry
accurate branching histories from both non-recovery and recovery phases.
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4 Approach

This section describes the proposed framework to integrate prefix-based parallel
execution with chopped symbolic execution. We augment the original chopping
algorithm to generate paths which reflect the branches taken to reach a state.
These paths are then used to construct a prefix-based distribution scheme where
multiple workers perform chopped symbolic execution in their allocated program
regions.

4.1 Prefix Generation

Algorithm 2 highlights the modifications, made in PChop, to the Chopper execu-
tion loop described in Algorithm1. The main execution loop is provided a prefix
as an additional input. This prefix is a bit-vector of branching decisions made
up to a certain depth and is used to guide different workers to non-overlapping
regions of program space to explore in parallel.

Starting a Recovery State (Line 18). When execution encounters a load
instruction that may have been previously modified by a skipped function call, a
recovery state gets spawned from the relevant snapshot state. The recovery state,
in this scheme, inherits the path history of the original state that encountered the
blocking load (and is now suspended) and not the path history of the snapshot,
which was the case in the original implementation. As a result, recovery states
have a correct record of the execution path taken to reach them.

Returning from a Skipped Function (Line 27). A recovery state terminates
on reaching the end of the skipped function, and its dependent state is resumed.
The dependent state inherits the path taken by the corresponding recovery state.
As a result, the non-recovery states have a record of the path taken in both
recovery and non-recovery regions.

Branching (Lines 37, 40, 44, 47, 51, 52, 55 and 56). A branch in the
execution results in the generation of two states forked from the parent state,
one for each direction of the branch. These states are checked for feasibility to
ensure that their path conditions are satisfiable. States representing infeasible
program paths are discarded. To enforce non-overlapping execution by worker
nodes, we ensure that every state follows the path restrictions defined by the
prefix assigned to the worker. The function allowBranch takes as input, the
current state depth, the prefix and a branch direction (1/0 for taken/not-taken)
and evaluates to true if the path represented by the branch direction is allowed
by the prefix. The equation below defines allowBranch. The term prefix.length
denotes the length of the prefix (number of branches taken to generate the prefix)
and prefix[n] represents the branch taken by the prefix at a depth of n. For
example, a worker assigned a prefix of 0000 will only explore states representing
not-taken branches up to a depth of 4 and can explore both taken and not-taken
paths for any subsequent branches, provided the path conditions are feasible.
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Algorithm 2. Augmented Chopper Loop to enable distributed execution
1: so ← initial state

2: prefix ← prefix assgined to the worker

3: states ← list of active states
4: skippedFunc ← list of functions to be skipped

5: add so to states

6: while states is not empty or timeout do

7: scurr ← select a state from states

8: inst ← next instruction to execute in scurr

9: if inst is Load then
10: addr ← load address
11: if value at addr may have been modified by one or more functions skipped by scurr then

12: for each (snapshot, f) recorded by scurr do

13: if (snapshot, f) may modify the value at addr then

14: suspend scurr

15: recoveryState ← create from snapshot

16: link recoveryState to its dependent state scurr

17: add recoveryState to list states

18: recoveryState.path ← scurr.path

19: else
20: execute the load in scurr
21: else if inst is Return then
22: if scurr is a recovery state and return belongs to a skipped function then

23: terminate the scurr

24: dependentState ← get dependent state of recoveryState

25: resume dependentState

26: add dependentState to list states

27: dependentState.path ← scurr.path

28: else
29: execute return
30: else if inst is Branch then
31: cond ← branch condition
32: s′

curr ← forked from scurr for taken branch using cond

33: s′′
curr ← forked from scurr for fall − through branch using !cond

34: if scurr is a recovery state then

35: depState ← dependent state of scurr

36: depState′ ← forked from depState for taken branch using cond

37: if both s′
curr and depState′ are feasible and allowBranch(s′

curr.depth, prefix, 1) then

38: add s′
curr to states

39: link s′
curr to its dependent state depState′

40: s′
curr.addToPath(1)

41: else
42: Discard s′

curr and depState′
43: depState′′ ← forked from depState for fall − through branch using !cond

44: if both s′′
curr and depState′′ are feasible and allowBranch(s′′

curr.depth, prefix, 0) then

45: add s′′
curr to states

46: link s′′
curr to its dependent state depState′′

47: s′′
curr.addToPath(0)

48: else
49: Discard s′′

curr and depState′′
50: else
51: if s′

curr is feasible and allowBranch(s′
curr.depth, prefix, 1) then

52: s′
curr.addToPath(1)

53: else
54: Discard s′

curr
55: if s′′

curr is feasible and allowBranch(s′′
curr.depth, prefix, 0) then

56: s′′
curr.addToPath(0)

57: else
58: Discard s′′

curr
59: Remove originating state scurr from states
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allowBranch(depth, prefix, branch) =

⎧
⎪⎨

⎪⎩

true, depth ≥ prefix.length

true, depth < prefix.length and branch == prefix[depth]

false, depth < prefix.length and branch! = prefix[depth]

4.2 Parallel Execution

The parallel framework comprises a coordinator and several worker nodes. The
exploration occurs in two phases. In the first phase, the coordinator begins the
symbolic execution of the given program. Not bound by a prefix, the coordi-
nator is free to explore any feasible path (the prefix in line 2 of the algorithm
is initialized to an empty bit-vector). The coordinator keeps a count of active
states, which represent the leaf nodes of the exploration tree. The execution
halts once an adequate number of active states are available. These active states
act as roots of distinct sub-trees whose union represents the entire unexplored
program space. The second phase begins with the coordinator distributing the
paths corresponding to every active state amongst the workers. The workers
start chopped symbolic execution guided by their assigned prefixes. For individ-
ual workers, states that violate the prefix bound are discarded (allowBranch).
Load balancing happens via work-stealing; when a worker becomes idle, the
coordinator instructs one of the busy workers to offload some of its active states
and sends the corresponding prefixes to the idle worker. PChop allows workers
to handle multiple prefixes at a time and in such cases, allowBranch evaluates
to true if the branch direction is compatible with at least one of the prefixes.

5 Evaluation

The objective of our evaluation is to provide preliminary evidence of the benefits
of our technique in the context of failure reproduction, where we use PChop to
find and generate test cases for documented vulnerabilities. We hypothesize that
using multiple workers can reduce the time it takes to reach the error-causing
state and create a test case for the same.

5.1 Subjects

We use security vulnerabilities in the GNU libtasn1 for our experiments. This
library is used for processing data in Abstract Syntax Notation One (ASN.1)

Table 1. Security vulnerabilities in GNU libtasn1 [28]

Vulnerability Version C SLOC

CVE-2012-1569 2.11 24,448

CVE-2014-3467 3.5 22,091

CVE-2015-2806 4.3 28,115

CVE-2015-3622 4.4 28,109
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Table 2. Search times (hh:mm:ss) to reproduce vulnerabilities in GNU libtasn1

Vulnerability Search Workers

1 2 4 6 8 10

CVE-2014-34671 DFS 00:00:02 00:00:03 00:00:04 00:00:03 00:00:04 00:00:07

RAND 00:03:10 00:00:39 00:00:43 00:00:07 00:00:08 00:00:05

BFS 00:00:02 00:00:03 00:00:03 00:00:04 00:00:04 00:00:07

CVE-2014-34672 DFS 00:00:48 00:00:53 00:00:59 00:01:09 00:01:25 00:01:36

RAND 00:00:01 00:00:01 00:00:01 00:00:01 00:00:02 00:00:02

BFS 00:00:48 00:00:52 00:00:59 00:01:08 00:01:30 00:01:04

CVE-2014-34673 DFS 00:00:04 00:00:05 00:00:05 00:00:04 00:00:04 00:00:07

RAND timeout 00:07:28 00:00:19 00:00:35 00:00:39 00:00:51

BFS 00:00:04 00:00:05 00:00:03 00:00:04 00:00:02 00:00:07

CVE-2015-2806 DFS 00:10:14 00:05:14 00:02:22 00:01:27 00:01:16 00:01:39

RAND 00:01:40 00:01:20 00:01:02 00:00:33 00:00:35 00:00:33

BFS 00:10:14 00:04:16 00:02:28 00:04:32 00:03:42 00:01:32

CVE-2012-15691 DFS 00:00:07 00:00:08 00:00:10 00:00:13 00:00:08 00:00:13

RAND 00:00:42 00:00:17 00:00:15 00:00:08 00:00:10 00:00:10

BFS 00:00:06 00:00:08 00:00:10 00:00:10 00:00:05 00:00:10

CVE-2012-15692 DFS 00:00:16 00:00:18 00:00:14 00:00:18 00:00:09 00:00:19

RAND 00:10:16 00:01:54 00:00:33 00:00:24 00:01:11 00:00:42

BFS 00:00:16 00:00:18 00:00:19 00:00:28 00:00:16 00:00:16

CVE-2015-36221 DFS 00:05:16 00:05:51 00:02:07 00:02:22 00:05:35 00:04:16

RAND 00:00:05 00:00:07 00:00:08 00:00:07 00:00:09 00:00:14

BFS 00:05:19 00:05:54 00:04:00 00:05:22 00:03:28 00:03:41

CVE-2015-36222 DFS 00:05:30 00:06:01 00:04:29 00:02:58 00:06:53 00:04:23

RAND 00:00:05 00:00:07 00:00:08 00:00:08 00:00:10 00:00:14

BFS 00:05:29 00:06:06 00:04:00 00:02:38 00:04:02 00:04:24

format, and Distinguished Encoding Rules (DER) manipulation. GnuTLS uses
libtasn1 to manage X.509 digital certificates. The choice of the library as our
benchmark was motivated by its high usage, rich and complex code, and the fact
that Chopper is capable of symbolically analyzing it. All of the vulnerabilities we
use are due to out-of-bounds memory access. Table 1 provides further details. As
documented in [28], each of these vulnerabilities can be reproduced using a single
failure except CVE-2014-3467, where the failure can occur in three different
code locations. However, using PChop, we discovered one additional way each
to reproduce CVE-2012-1569 and CVE-2015-3622. The two new failures bring
the total number to eight.

5.2 Methodology

We adapt the driver used in [28] to exercise the library. The driver invokes func-
tions in the API, similar to how an application would use the library. We follow
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a methodology similar to the one used in [28] to determine which functions to
skip for each vulnerability. We evaluate our technique using six parallel con-
figurations comprising 1, 2, 4, 6, 8, and 10 workers and employ three search
strategies - depth-first, breadth-first, and random-state search, resulting in a
total of 18 unique configurations for each failure. Running a single worker is
identical to running Chopper. Depth-first strategy, upon reaching a branching
point, forks execution and follows one branch until a termination point is reached
and then backtracks, generating deeper states in the process. Breadth-first search
processes all states at a particular depth before proceeding to the next depth.
Random-state search, as the name suggests, randomly picks a state to execute
from the pool of active states. The execution starts with the master node gen-
erating initial states equal to the number of workers. Each worker is then given
a single state, which is extended to explore deeper states. During work-stealing,
idle workers can receive several states at a time from busy workers. The explo-
ration continues until the vulnerability is found at the specified location or the
search times out after 60 min. The search time for each vulnerability is com-
pared across different configurations. PChop extends Chopper, which is based
on KLEE (commit SHA b2f93ff). This version of KLEE uses LLVM 3.4. We use
STP 2.3.3 as the SMT solver. PChop uses Open MPI version 1.10.2 to enable
parallel execution. All the experiments were carried out on a 12 core Intel(R)
Core(TM) i7-8700K CPU with 32Gb of memory, running Ubuntu 16.04 LTS.

5.3 Results

Table 2 shows search times to discover the vulnerabilities. The efficacy of this
technique depends on the interplay between the prefix communication overheads
and parallelism gained. Vulnerabilities that take longer to discover benefit more
from our scheme than the ones, which Chopper discovers in a short amount
of time. Overall, PChop reduces the search times in all configurations where
Chopper takes more than one minute to locate the vulnerability. PChop espe-
cially benefits cases like CVE-2015-2806, where the search times across all three
search policies are significant enough to justify the overheads of deploying a par-
allel technique like PChop. When detecting this particular vulnerability, PChop
provides a speed-up of 8×, 3× and 6.8× for DFS, random-state search, and
BFS respectively. In cases like CVE-2014-34672 where Chopper can recreate the
vulnerability across all three search strategies in less than a minute, our sys-
tem does not provide any improvement in performance. For the vulnerabilities
examined in this paper, the choice of search strategy had a more dominating
influence on search times as compared to the parallelization of the execution.
For instance, in CVE-2014-34671, using BFS or DFS instead of a random-state
drastically reduces the search time from 3 min to 2 s and no amount of paral-
lelization using PChop could attain such a speed-up. Chopper discovers 7 out of
8 vulnerabilities fairly quickly using one of the three available search strategies.
For such configurations, PChop does not provide any additional benefit. How-
ever, the development of search strategies for efficient exploration of programs is
orthogonal to our proposed technique which enables parallel chopped symbolic
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execution and is agnostic to the search policy. PChop can be used as a stand-
alone tool or as a complement to other means of accelerating the process of
finding defects like the application multiple search strategies. The advantages of
using PChop are evident in situations where a particular search strategy takes a
significant amount of time to identify a vulnerability. For instance, when using a
random-state search in the case of CVE-2012-34671, PChop offers a 38x speed-up
with 10 workers. For CVE-2012 15692, employing a random-state search with
6 cores leads to the discovery of the vulnerability in 24 s as opposed to over
10 min taken by a single-core configuration. When using only DFS, discovering
CVE-2014 36221 with PChop using 4 workers reduces the search time by 60%. In
some cases, increasing the number of workers beyond a certain point lowers the
performance. For instance, we witness an increase in the search time when going
beyond 6 workers for CVE-2014-36222 with a DFS as well as BFS. A prefix pro-
vided to a worker from another worker as a result of work-stealing is beneficial if
it represents a significant enough exploration space. When a substantial number
of prefixes terminate at shallow depth, it causes more prefix transfers as the idle
workers receive more work from busy workers. After a point, the communication
overheads become more pronounced and are unable to be compensated by the
added parallelism, which results in performance degradation.

6 Related Work

There have been several efforts to accomplish symbolic execution in a par-
allel/distributed setting. Cloud9 [5], a well-known framework, defines region
boundaries in terms of fence nodes, and the pool of states to be explored com-
prises the candidate nodes. Participating workers get a part of the execution tree,
and work transfers involve sending explicit paths, represented as bit-vectors, of
candidate of nodes which get added to the sub-tree of the worker receiving these
paths. Our scheme is a variant of one used in tools like Cloud9, which also uses
prefix information to distribute work. However, PChop’s novelty lies in adapting
and extending Chopper to build a prefix-based parallel execution tool, where
user-defined regions of the code can be skipped. Ranged symbolic execution
[25,26] partitions the program space using test inputs. A total ordering on tests
is used to define ranges that start at a particular test τ1 and end at a test
τ2 where τ2 > τ1 according to the ordering. A range comprises paths that lie
between the two bounding tests. This idea is extended to devise a distributed
approach where different workers explore ranges defined by a pair of tests. Sim-
ple Static Partitioning(SSP) [27] applies parallel symbolic execution on Java
bytecode. This technique builds on top of Symbolic PathFinder(SPF) [21] as
the symbolic execution framework. SSP performs a shallow symbolic search and
collects path constraints for the explored paths. These constraints are then dis-
tributed among workers to act as pre-conditions for symbolic execution. Ranged
symbolic execution and SSP represent ways of defining partitions for workers to
explore in a parallel fashion, which is orthogonal to our goal of enabling parallel
chopped symbolic execution. DMC [18] is a distributed approach to model count-
ing, based on the D4 [17] sequential model counter. DMC uses a master-worker
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configuration like PChop to enable multiple workers to compute the number of
models of a given propositional formula.

7 Limitations

Program characteristics have a significant impact on the performance of a tech-
nique like PChop. As discussed in the evaluations, communication overheads can
become prohibitively high if the transferred states terminate at shallow depths.
Different applications exhibit distinct behavior, and it is challenging to make an
assessment of which states to transfer in order to exploit maximum parallelism.
We continue to explore the application of static analysis tools and heuristics
to alleviate this issue. The evaluation presented in this paper used a multi-core
processor with shared memory as the hardware platform. OpenMPI is this con-
figuration, will use shared memory to pass messages between worker nodes. For
the subjects evaluated, the parallelism gained from using up to 10 cores was
sufficient to demonstrate the benefits of PChop. However, further scaling up the
system by employing more workers in a cluster setting would use the network to
exchange information. We plan to study the appropriate benchmarks that justify
scaling to a cluster configuration and gaining insights into PChop’s performance
accounting for network overheads.

8 Conclusions

This paper presents a novel technique to parallelize chopped symbolic execution
using a path-prefix based partitioning scheme. We extend Chopper to incor-
porate our prefix generation technique and develop an MPI based distribution
framework. Our tool realizes chopped symbolic execution in a parallel setting
where multiple worker nodes collaborate to explore a program by working on
non-overlapping regions simultaneously. We evaluate our technique by recreat-
ing documented vulnerabilities in GNU libtasn1 and comparing the time it takes
to find the issue. PChop is beneficial in situations where Chopper requires more
than a minute to find the vulnerability when using a specific search strategy. For
two vulnerabilities, PChop identified a previously undocumented code location
to expose each of them.
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Abstract. We study the problem of learning deterministic one-clock
timed automata in the framework of PAC (probably approximately cor-
rect) learning. The use of PAC learning relaxes the assumption of hav-
ing a teacher that can answer equivalence queries exactly, replacing it
with approximate answers from testing on a set of samples. The frame-
work provides correctness guarantees in terms of error and confidence
parameters. We further discuss several improvements to the basic PAC
algorithm. This includes a special sampling method, and the use of com-
parator and counterexample minimization to reduce the number of equiv-
alence queries. We implemented a prototype for our learning algorithm,
and conducted experiments on learning the TCP protocol as well as a
number of randomly generated automata. The results demonstrate the
effectiveness of our approach, as well as the importance of the various
improvements for learning complex models.

Keywords: Timed automata · Active learning · Automata learning ·
Probably approximately correct learning

1 Introduction

In recent years, model learning [30] is emerging as a highly effective technique
for learning black-box systems from system observations. It generally is divided
into two categories: active learning and passive learning. Active learning under
the L∗ framework [7] can be viewed as an interaction between a learner and
a teacher, where the learner asks membership queries and equivalence queries
to a teacher who holds oracles to answer these queries. This is distinguished
from passive learning, i.e., generating a model consistent with a given data set.
Recently, active learning has been extended to many formal models.
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In previous work [5], we introduced active learning algorithms for determinis-
tic one-clock timed automata (DOTA). There are two variants of the algorithm.
The first variant is based on the assumption of a smart teacher who can provide
clock-reset information along queries. The idea then is to use the reset infor-
mation to convert the learning problem to that of learning the corresponding
reset-logical-timed language, which can be solved following the approaches to
learning symbolic automata [12,20]. The second variant assumes only a normal
teacher who does not provide reset information. The learner then needs to guess
reset information on transitions discovered in the observation table. Due to these
guesses, the second variant has exponential complexity in the size of the learned
automata, while the first variant has polynomial complexity.

In both variants, we assumed that the equivalence queries can be answered
exactly. In the experiments, this is implemented using a decision procedure for
language inclusion. This kind of equivalence queries is difficult to realize in prac-
tical applications, as it essentially require a teacher to have the power to compare
two systems exactly. This problem is addressed in [1] using conformance testing.
Another way is to follow the PAC (probably approximately correct) framework,
which is studied in existing work [7,10,21] for other kinds of models. Under this
framework, for a given error ε and confidence δ, we can determine the number
of test cases needed for each equivalence query. If the current hypothesis passes
all test cases, then with probability 1 − δ, it agrees with the target model on at
least 1 − ε proportion of behaviours.

In this paper, we integrate PAC learning into the framework for learning
DOTAs. This involves replacing the exact equivalence query with PAC-style
equivalence query. To further reduce the number of such equivalence queries, we
also integrate the idea of comparators [9,28] into the learning framework. The
comparator enforces that the quality of intermediate hypotheses obtained during
learning does not decrease, by finding the smallest difference between successive
hypotheses and then perform one membership query. This has the advantage
of replacing some equivalence queries by membership queries, which accelerates
the learning process. Replacing exact equivalence queries with PAC-style equiv-
alence queries also introduces other problems. In particular, the distribution of
inputs from which the test cases are sampled become very important. In general,
sampling from a näıve uniform distribution of action and delay times is unlikely
to yield good results, as too few of the samples are focused on the “interesting”
parts of system behaviors. Hence, we design special sampling techniques adapted
to our setting. Second, in contrast to exact decision procedures for equivalence
which are likely to produce minimal counterexamples, there are no such guaran-
tees for PAC-style testing. While this does not affect theoretical correctness of
the algorithm, it can lead the algorithm to produce unnecessarily large learned
models. Hence, we introduce a method for minimizing counterexamples that
involves only membership queries to the teacher. In summary, the contributions
of this paper are as follows.
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– We describe the PAC learning of deterministic one-clock timed automata. In
this setting, both membership and equivalence queries are conducted via test-
ing, with PAC-style equivalence checking replacing exact equivalence queries.

– We accelerate learning by adding a comparator component to reduce the num-
ber of equivalence queries. We also propose approaches for better sampling
and counterexample minimization to improve learning performance.

– We produce a prototype implementation of our methods, and perform experi-
ments on a number of randomly generated automata, as well as a model of the
functional specification of the TCP protocol. These experiments suggest that
DOTAs can be learned under the more realistic assumptions of this paper.

The rest of the paper is organized as follows. In Sect. 2, we review the learning
algorithm for deterministic one-clock timed automata and PAC learning of DFA.
Section 3 describes the PAC learning framework for DOTA in detail, including
improvements such as comparators, a special sampling method and the coun-
terexample minimization. In Sect. 4, we extend this PAC framework to the case
of normal teachers. The experimental results are reported in Sect. 5. Section 6
discusses related work. Finally, Sect. 7 concludes this paper.

2 Preliminaries

Let N be the natural numbers and R≥0 be the non-negative real numbers. We
use � to stand for true and ⊥ for false. Let B = {�,⊥}.

2.1 Deterministic One-Clock Timed Automata

In this paper, we consider a subclass of timed automata [2] that are deterministic
and contain only a single clock, called Deterministic One-Clock Timed Automata
(DOTA). Let c be the clock variable, denote by Φc the set of clock constraints
of the form φ ::= � | c �� m | φ ∧ φ, where m ∈ N and �� ∈ {=, <,>,≤,≥}.

Definition 1 (One-clock timed automata). A one-clock timed automata is
a 6-tuple A = (Σ,Q, q0, F, c,Δ), where Σ is a finite set of actions, Q is a finite
set of locations, q0 is the initial location, F ⊆ Q is a set of final locations, c is
the unique clock and Δ ⊆ Q × Σ × Φc × B × Q is a finite set of transitions.

A transition δ ∈ Δ is a 5-tuple (q, σ, φ, b, q′), where q, q′ ∈ Q are the source
and target locations, σ ∈ Σ is an action, φ ∈ Φc is a clock constraint, and b is
the reset indicator. Such δ allows a jump from q to q′ by performing an action
σ if the current clock valuation ν satisfies the constraint φ. Meanwhile, clock c
is reset to zero if b = � and remains unchanged otherwise. A clock valuation is
a function ν : c 	→ R>0 that assigns a non-negative real number to the clock.
For t ∈ R≥0, let ν + t be the clock valuation with (ν + t) (c) = ν (c) + t. A timed
state of A is a pair (q, ν), where q ∈ Q and ν is a clock valuation. A timed
action is a pair (σ, t) that indicates the action σ is applied after t time units
since the occurrence of the previous action. A run ρ of A is a finite sequence
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ρ = (q0, ν0)
σ1,t1−→ (q1, ν1)

σ2,t2−→ · · · σn,tn−→ (qn, νn) where ν0 = 0, and for all 1 ≤ i ≤ n
there exists a transitions (qi−1, σi, φi, bi, qi) ∈ Δ such that νi−1 + ti satisfies φi,
and νi(c) = 0 if bi = �, νi(c) = νi−1(c) + ti otherwise. The timed trace of a run
ρ is a timed word trace(ρ) = (σ1, t1) (σ2, t2) . . . (σn, tn).

Since time values ti represent delay times, we call such a timed trace a delay-
timed word, denoted as ω. If ρ is an accepting run of A, trace(ρ) is called an
accepting timed word. The recognized timed language of A is the set of accept-
ing delay-timed words, i.e., L(A) = {trace(ρ) | ρ is an accepting run of A}.
The corresponding reset-delay-timed word can be defined as tracer(ρ) =
(σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn), denoted as ωr, where each bi is the reset
indicator for δi. The recognized reset-timed language Lr(A) is defined as
{tracer(ρ) | ρ is an accepting run of A}.

The delay-timed word ω = (σ1, t1)(σ2, t2) · · · (σn, tn) is observed outside,
from the view of the global clock. On the other hand, the behaviour can also be
observed inside, from the view of the local clock. This results in a logical-timed
word of the form γ = (σ1, μ1)(σ2, μ2) · · · (σn, μn) with μi = ti if i = 1∨ bi−1 = �
and μi = μi−1 + ti otherwise. We will denote the mapping from delay-timed
words to logical-timed words above by Γ . Similarly, we introduce reset-logical-
timed word γr = (σ1, μ1, b1)(σ2, μ2, b2) · · · (σn, μn, bn) as the counterpart of
ωr = (σ1, t1, b1)(σ2, t2, b2) · · · (σn, tn, bn) in terms of the local clock. Without
any substantial change, we can extend the mapping Γ to map reset-delay-timed
words to reset-logical-timed words. The recognized logical-timed language of A
is given as L(A) = {Γ (trace(ρ)) | ρ is an accepting run of A}, and the recognized
reset-logical-timed language of A as Lr(A) = {Γ (tracer(ρ)) | ρ is an accepting
run of A}.

Definition 2 (Deterministic OTA). An OTA is a deterministic one-clock
timed automaton (DOTA) if there is at most one run for a given delay-timed
word.

We say a DOTA A is complete if for any location q and action σ, the con-
straints form a partition of R≥0. Any incomplete DOTA A can be transformed
into a complete DOTA accepting the same timed language by adding a non-
accepting sink location (see more details in [5]).

2.2 Exact Learning Algorithm for DOTAs

In this section, we describe the active learning problem for DOTA and the learn-
ing algorithms. We refer to [5] for more details. Active learning of a DOTA
assumes the existence of a teacher who can answer two kinds of queries: member-
ship and equivalence queries. We will consider two different settings, depending
on whether the teacher also provides clock-reset information along with answers
to queries.

A smart teacher permits a logical -timed word as input to a membership
query, and returns whether the timed-word is accepted, as well as reset informa-
tion at each transition along the trace. Moreover, if the equivalence query yields
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a counterexample, the counterexample is provided as a reset-delay-timed word.
In practical applications, this corresponds to the case where some parts of the
model (information of clock-reset) are known by testing or watchdogs (refer to
the concept of testable system in [13,14]). This also conforms with the idea of
combining black-box learning with white-box techniques, as exploited in [17].

A normal teacher corresponds to the usual case for active learning of
automata. The teacher permits a delay-timed word as input to a membership
query, and only returns whether the timed word is accepted. The equivalence
query returns a delay-timed word as a counterexample in the non-equivalent
case. The active learning problem in both settings is to learn DOTAs by asking
only these two kinds of queries.

The algorithm converts the learning problem to that of learning the reset-
logical-timed language, based on the following theorem in [5].

Theorem 1. Given two DOTAs A and B, if Lr(A) = Lr(B), then L(A) =
L(B).

In the smart teacher setting, the conversion is direct. The problem of learning
the reset-logical-timed language follows existing techniques for learning symbolic
automata. The algorithm maintains a timed observation table T to store answers
from all previous queries. Once the learner has gained sufficient information,
i.e., T is closed and consistent, a hypothesis H is constructed. Then the learner
poses an equivalence query to the teacher to judge the equivalence between the
hypothesis and the target model. If equivalent, the algorithm terminates with
the answer H. Otherwise, the teacher responds with a reset-delay-timed word ωr

as a counterexample. After processing ωr, the algorithm starts a new round of
learning. The whole procedure repeats until the teacher gives a positive answer
for an equivalence query.

In the case of normal teacher, the learner needs to guess the reset informa-
tion on each transition discovered in the observation table. At each iteration,
the learner guesses all needed reset information and forms a number of table
candidates. These table candidates are put into a priority queue, ordered by the
number of needed guesses. Each iteration begins by taking the first table can-
didate from the queue. Operations on the table is then the same as the smart
teacher case. Termination of the algorithm is due to the fact that the learner
will eventually consider the case where all guesses are correct. Due to the needed
guesses, the complexity of the algorithm is exponential in the size of the learned
model.

2.3 PAC Learning of DFA

In reality, even in the case of DFA, it is difficult to implement teachers that
can answer the equivalence query exactly. Hence, Angluin also introduced the
concept of PAC learning for DFA in [7]. We review the basic ideas here.

Assume we are given a probability distribution P over elements of the lan-
guage Σ∗. Fix a target regular language L ⊆ Σ∗. Let LH be the recognized
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regular language of an hypothesis H. The quality of H is defined by its distance
from L, that is, the probability of choosing a mismatched word ω ∈ Σ∗ that
belongs to one language but not the other. The set of all mismatched words is
exactly the symmetric difference of the languages L and LH . Hence, the distance
is defined as P(L ⊕ LH), where L ⊕ LH = L\LH  LH\L.

Definition 3 (PAC-style correctness for DFA). Let ε be the error param-
eter and δ the confidence parameter. We say a learning algorithm is PAC(ε,δ)-
correct if its output DFA hypothesis H satisfies Pr(P(L ⊕ LH) ≤ ε) ≥ 1 − δ,
where Pr represents the probability of the event P(L ⊕ LH) ≤ ε.

Under this setting, we replace exact equivalence checking, i.e, whether
LH = L, with the checking of approximate equivalence. In other words, we
check approximate equivalence by randomly sampling test sequences according
to a certain distribution. The minimum number of tests required for each equiva-
lence query to ensure the above PAC-style correctness depends on the error and
confidence parameters as well as the number of previous equivalence queries.
This number was first introduced in [7] for learning DFA and then used in the
PAC learning of symbolic automata [21].

Theorem 2. The DFA learning algorithm PAC-learns a regular language L if
the i-th equivalence query tests ri = 1

ε

(
ln 1

δ + (i + 1) ln 2
)
random words from a

fixed distribution over Σ∗ without finding a counterexample.

3 PAC Learning of DOTA

In this section, we explain the PAC learning algorithm utilized to obtain a DOTA
approximating the target timed language. In contrast to the learning algorithm
given in [5], where equivalence checking is conducted between a hypothesis and
the target model, here we allow more flexible implementation of the teacher via
testing on the target system. In our PAC learning, membership queries as well
as equivalence queries are conducted by testing on the implementation of the
system.

3.1 PAC-Style Correctness

Let P be a probability distribution over elements of the delay-timed language
(Σ × R≥0)∗. Again, let L ⊆ (Σ × R≥0)∗ be the timed language of the target
system, and L(H) be the timed language of the hypothesis H. As before, the
quality of H is defined as P(L ⊕ L(H)), where L ⊕ L(H) = L\L(H)  L(H)\L.

Definition 4 (PAC-style correctness for DOTA). Let ε be the error param-
eter and δ the confidence parameter. We say a learning algorithm for DOTA is
PAC(ε,δ)-correct if its output timed hypothesis H satisfies:

Pr(P(L ⊕ L(H)) ≤ ε) ≥ 1 − δ, (1)

where Pr represents the probability of the event P(L ⊕ L(H)) ≤ ε.
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As before, PAC-style correctness can be obtained by performing a sufficient
number of tests for each equivalence query. The main result for the DOTA case
is given below, following [23].

Theorem 3. The DOTA learning algorithm PAC-learns a timed language L if
the i-th equivalence query tests

ri =
1
ε

(
ln

1
δ

+ (i + 1) ln 2
)

(2)

random delay-timed words from a fixed distribution over (Σ × R≥0)∗ without
finding a counterexample.

3.2 PAC-Style Equivalence Query

In this section, we present the overall procedure for the PAC-style equivalence
query. The procedure is shown in Algorithm1. Three improvements to the pro-
cedure will be discussed in the next three subsections.

The equivalence query accepts as input the hypothesis H, the count i of the
current query, the error parameter ε, and the confidence parameter δ. We first
compute the number of samples needed according to Eq. (2). Then, we repeatly
draw samples from a distribution. The choice of distribution is significant for
the learning performance, and will be discussed in detail in Sect. 3.3. For each
sample ω (a delay-timed word), we test it on both the target system S and the
hypothesis H (testing on the target system uses a membership query). The test
on S returns a pair v, ωr, where v represents whether ω is an accepted timed word
according S, and ωr is the reset-delay-timed word corresponding to ω. Likewise,
the test on H returns a pair v′, ω′

r. If v �= v′, then ω is a counterexample to the
equivalence between H and S, and is returned directly. Otherwise, if all tests
pass, we conclude H is PAC (ε, δ)-correct, based on Theorem 3.

Algorithm 1: PAC-style equivalence query pac equivalence(H, i, ε, δ)
input : a hypothesis H; the count i of current equivalent query; error parameter ε;

confidence parameter δ.
output: equivalent: a boolean value to identify whether H passes all tests;

ctx: a counterexample.
1 equivalent ← �;
2 counter ← 1;

3 testNum ← 1
ε

(
ln 1

δ + (i + 1) ln 2
)
;

4 while counter < testNum do
5 ω ← sample(P); // P is a distribution over (Σ × R≥0)

∗

6 v, ωr ← test dtw(ω, S); // test a timed word ω on system S
7 v′, ω′

r ← test dtw(ω, H); // test a timed word ω on hypothesis H
8 if v �= v′ then
9 equivalent ← ⊥; ctx ← ωr;

10 return equivalent, ctx;

11 counter ← counter + 1;

12 return equivalent, ctx
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Two further improvements reduce the number of needed equivalence queries
by adding a comparator (Sect. 3.4) and the counterexample minimization
(Sect. 3.5).

3.3 Sampling Mechanism

The choice of the sampling distribution over (Σ×R≥0)∗ is important to whether
PAC learning yields good results in real applications. While the theory guaran-
tees the success of learning under any distribution, an inappropriate choice of
distribution may lead to models that are not useful in practice. In particular,
we observe that a näıve uniform distribution of action and time values is not
useful in our case. The reason is that for many examples, e.g. the TCP proto-
col and the randomly generated automata on which we performed experiments,
the vast majority of timed traces under uniform distribution are invalid for the
automata. Hence, only a very small proportion lead to valid paths and test inter-
esting behaviours of the system. This situation may also occur for other real-life
systems. For many reactive systems and protocols, an input that is completely
randomly generated will most likely be invalid in the current state, and hence
will not test the interesting aspect of the system.

We address this problem by designing a custom sampling mechanism. Our
aim is for one half of the overall distribution to consist of timed words that are
guaranteed to be valid for the system. The other half consists of possibly invalid
timed words, obtained from the valid ones by introducing a random change. In
more detail, for both valid and possibly invalid timed traces, we first choose the
length uniformly between 1 and an upper bound M (i.e. 1.5 times the number of
locations in the experiments). For a given length, we could sample valid timed
traces by repeatedly sampling random timed words, testing each on the system,
and taking only the valid traces. This method is inefficient if the vast majority of
timed words are invalid. We design a more efficient sampling method as follows.
First, we perform a random walk on the locations of the system starting from
the initial location. This gives a sequence of actions and bounds on the logical
time of the timed trace. Next, we uniformly sample the logical time, subject to
the obtained bounds, as well as the constraint that if the previous transition is
not a reset, then the logical time should be greater than or equal to the previous
logical time. To make sure that we will test traces with integer time values, we
actually sample from the allowed regions of logical time, so that about half of
sampled time values are integers. Otherwise, most of the sampled time values
will contain fractions. Finally, the resulting logical-timed word is converted to
delay-timed word, which is guaranteed to be valid. To sample possibly invalid
timed traces of a given length, we first sample a valid timed trace of the same
length using the above procedure, then randomly change one transition to a
timed word with uniformly chosen action and time.

This sampling mechanism yield timed traces that are more likely to reflect
interesting behaviours of the system. We note that while the sampling depends
on the target system, it does not reveal the internal structure of the system
to the learner. It only helps the learner by providing counterexamples that are
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more likely to be relevant. In real applications, this sampling distribution can
be approximated by sampling from user inputs (which are more likely to be
valid) and their slight variations. Another way to approximate the distribution
is to first sample random timed words, then remove most of the invalid ones
as mentioned before. The target system continues to be viewed as a black-box.
In Sect. 5, we will show that while the learning algorithm succeeds with any
sampling distribution, the model learned using the distribution described above
are far more likely to be completely correct (or at least very close to the target
system from a human point of view) than using a näıve uniform distribution.

3.4 Comparator

During the learning process, the aforementioned algorithm generates a series of
hypotheses. Ideally, we would prefer that each successive hypothesis gradually
approaches the target system according to some measure. However, this may
not be the case. As observed in [23] for symbolic automata, processing of coun-
terexamples will generate two kinds of changes to the hypothesis. The first kind
is called expansive modification, which means the latter hypothesis H′ has more
states and/or transitions than the former hypothesis H. The second is called non-
expansive modification, which implies that between the two hypotheses, only the
symbols of the alphabet on the transitions differ. It is noted in [23] that H′ is
closer to the target system than H.

However, in the case of expansive modification, this cannot be guaranteed.
Vaandrager et al. showed in [9,28] that the successive hypothesis is not always
better than the previous one, under a well-known metric based on minimal length
counterexamples. To correct this, they proposed a modification to L∗ to make
sure that each stable hypothesis (see Definition 6) is at least as good as the
previous one. Although the modification is for the DFA setting, we find that it
is still applicable to the DOTA case. The distance metric to measure the quality
of a hypothesis is defined as follows.

Definition 5 (Metric function). Let L(H) and L(H′) be timed languages of
two DOTAs H and H′. The ultrametric function d is

d (L(H),L(H′)) =
{

0 if L(H) = L(H′)
2−n otherwise, (3)

where n is the length of a minimal timed word that distinguishes L(H) and L(H′).

Definition 6 (Stable hypothesis). Let S be the target system, and let H
and H′ be two hypotheses in the learning process. Then H′ is called stable if
d(L(H),L(S)) ≥ d(L(H′),L(S)).

The procedure for finding stable hypotheses with a comparator is shown in
Algorithm 2. For each newly learned hypothesis H′, before asking the teacher
an equivalence query, it is compared with the current stable hypothesis H. This



138 W. Shen et al.

Algorithm 2: Find new stable hypothesis comparator(H,H′)
input : current stable hypothesis H; new hypothesis H′.
output: new stable hypothesis H.

1 compareFlag ← ⊥;
2 repeat

/* obtain minimal timed word ω that distinguishes H and H′. */

3 ω ← min distinguishing dtw(H, H′);
4 v, ωr ← test dtw(ω, S); // test a timed word ω on system S
5 v′, ω′

r ← test dtw(ω, H′); // test a timed word ω on hypothesis H′

6 if v �= v′ then
7 ctx ← ωr; // found a counterexample
8 ctx processing(T, ctx); // handle the counterexample
9 Make table T closed and consistent;

10 Construct new hypothesis H′;

11 else
12 H ← H′; // set H′ as new stable hypothesis
13 compareFlag ← �;

14 until compareFlag = �;
15 return new stable hypothesis H;

involves first generating a minimal-length sequence ω (a delay-timed word) dis-
tinguishing H and H′, which can be achieved via a language equivalence checking
since the model H and H′ are known. Then ω is tested against the target system
S. If the result is inconsistent with that of H′, the comparator found a coun-
terexample to H′ and returns the corresponding reset-delay-timed word ωr to
the learner to construct a new (and bigger) hypothesis. Otherwise (when the
outputs are consistent), we promote H′ to be the new stable hypothesis, and
proceeds to perform a PAC-style equivalence query. This ensures that each sta-
ble hypothesis is at least as good as the previous one according to the metric
function. It also has the practical effect of reducing the number of equivalence
queries (replacing some of them by membership queries). This is particularly sig-
nificant in the PAC learning setting as the number of tests of each equivalence
query increases with the number of previously performed equivalence queries.

Because H and H′ are both explicit DOTAs (in contrast to the target system
which is a black box), finding the minimal distinguishing timed word between
them can use the same timed language inclusion tests in [5,24] (or using the tech-
nique of complementation and intersection of automata). The following theorem
is adapted from [28].

Theorem 4. The execution of Algorithm2 terminates, and each stable hypoth-
esis is at least as good as the previous one according to the metric function.

3.5 Counterexample Minimization

When the equivalence query is answered using a decision procedure, the decision
procedure can usually return counterexamples of small size. In fact, existing
work on symbolic automata [23] introduces the concept of helpful teacher to
indicate the ability of the teacher to return a minimal counterexample (which is a
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counterexample of minimal length and also minimal with respect to lexicographic
order). Under this assumption, the learning algorithm for symbolic automata has
better theoretical properties.

In the case of exact learning of DOTA, the correctness and termination of the
algorithm [5] do not depend on being provided minimal counterexamples. How-
ever, the actual performance of the algorithm can still be significantly affected.
In particular, if the counterexample is not minimal, it can lead to unneces-
sary splitting of edges in the learned model. For example, a guard [5,∞) on a
transition can be unnecessarily split into [5, 7) and [7,∞) on two transitions, if
the learner is provided with a counterexample with time value 7 first, whereas
directly providing a counterexample with time value 5 will not lead to splitting.
This is particularly significant in the case of normal teacher, as its complexity is
exponential in the number of edges in the learned model.

Hence, we propose a simple heuristic for improving a counterexample using
only membership queries. First, when performing PAC-style equivalence queries,
samples are tested in increasing order by length. When a minimal length coun-
terexample (as a delay-timed word) is found, it is minimized according to lex-
icographic order as follows. We first run the timed word on the hypothesis,
obtaining the corresponding logical-timed word. Then, for each transition of the
logical-timed word starting from the beginning, we decrease the logical time
step-by-step, at each step converting back to delay-timed word using the reset
information and send the result as a membership query. The new delay-timed
word is kept only if it is still a counterexample. Note this procedure finds locally
minimal counterexamples, but is not guaranteed to find the globally minimal
one.

3.6 The Whole Procedure

Integrating the previously introduced techniques, the overall learning framework
is summarized in Algorithm 3. As described in Sect. 2.2, the learner performs
several rounds of membership queries to make the observation table T prepared
(closed and consistent) before constructing a new hypothesis. Then, the compara-
tor is used to make sure that the current stable hypothesis always approaches the
target system according to the metric function in Definition 5, which reduces the
number of equivalence queries. On the stable hypothesis, PAC-style equivalence
query is performed by testing. The whole procedure repeats until the PAC-style
equivalence query terminates without finding a counterexample, so the hypoth-
esis is considered correct with some probability of error. Since the new learn-
ing procedure only modifies the equivalence query, the main theoretical results
from [5] still hold. This allows us to state the following main correctness theorem
for the new procedure. Note that in [21,23] for the case of symbolic automata,
termination is only with probability 1 if the alphabet is infinitely divisible. In
our case, the endpoints of guards are integers, hence the algorithm is guaranteed
to terminate.
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Algorithm 3: PAC Learning of DOTAs
input : timed observation table T; error ε; confidence δ.
output: hypothesis H, which is a PAC(ε,δ)-correct output for the target timed language L.

1 Initialize timed observation table T;
2 Make T closed and consistent;

3 Construct a hypothesis H′ from T;

4 H ← H′; // initial stable hypothesis
5 equivalent ← ⊥;
6 i ← 0; // the number of PAC-style equivalence queries
7 while equivalent = ⊥ do
8 if i > 0 then
9 H ← comparator(H, H′); // current stable hypothesis

10 i ← i + 1;
11 equivalent, ctx ← pac equivalence(H, i, ε, δ); // PAC equivalence query
12 if equivalent = ⊥ then
13 ctx processing(T, ctx); // handle counterexample
14 Make table T closed and consistent;

15 Construct a hypothesis H′ from T;

16 return H;

Theorem 5. Algorithm3 terminates after polynomial number of membership
and PAC-style equivalence queries, and learns the target system in a probably
approximately correct manner with error ε and confidence δ.

4 Extending PAC Learning to Normal Teacher

In this section, we extend the algorithm given in [5] for the case of normal teacher
to the PAC learning setting. The needed changes are similar to the smart teacher
case, with each equivalence query for a hypothesis constructed from a prepared
table candidate replaced by a PAC-style equivalence query. It should be noted
that the count i of current equivalence query still increases with each query,
regardless of the tree structure caused by the guesses. This can be justified as
follows: in the derivation of Eq. (3), the number of needed queries is set so that
the total probability of making a mistake (resulting in a model with error greater
than ε) is at most δ, with δ/2i+1 being the bound on the probability of making
a mistake at the i-th equivalence query. In the normal teacher setting, we should
still accumulate the probabilities of making mistakes along different branches
of the tree, so the derivation of Eq. (3) is still the same as before. As for the
improvements reported in Sect. 3, they are still applied to the normal teacher
setting. While in counterexample minimization, we run the timed word on the
hypothesis, obtaining the corresponding logical-timed word based on the guessed
resets.

The theoretical results (following [5]) are similar to the smart teacher case,
except the complexity is now exponential due to the guessing of resets.

Theorem 6. The learning process for the normal teacher terminates after expo-
nential number of membership and PAC-style equivalence queries, and learns the
target system in a probably approximately correct manner with error ε and con-
fidence δ.
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In a variant of the above procedure, we can also group prepared table candi-
dates by level, for example by the number of guesses made. If there are mi tables
at level i, then the number of samples for each PAC-style equivalence query at
level i is modified to be 1

ε (ln 1
δ +(i+1) ln 2+lnmi). We can also consider pruning

the search tree by removing table candidates that appear to be less promising,
for example with lower passing rate at the current iteration (which is similar to
the genetic programming method in [26,29]). With such a pruning method, we
obtain a procedure that is sound but not necessarily complete or terminating.

5 Implementation and Experimental Results

In order to further investigate the efficiency and scalability of the proposed meth-
ods, we implemented a prototype in Python and evaluated it on the functional
specification of the TCP protocol and a set of randomly generated DOTAs. All
of the experiments were carried out on a MacBook Pro with 8 GB RAM, Intel
Core i5 with 2.7 GHz and running macOS Catalina 10.15.3.The tool and exper-
iments are available in the tool page https://github.com/MrEnvision/learning
OTA by testing.

5.1 TCP Protocol

We refer to [5] for a state diagram specifying the state changes in the functional
specification of the TCP protocol. It can be represented as a DOTA A (see
Appendix D of [4]) with |Q| = 11 locations, |Σ| = 10 untimed actions, |F | = 2
final locations, and |Δ| = 19 transitions with appropriately specified timing
constraints including guards and resets. With our sampling method, comparator,
and counterexample minimization, we run the prototype on this example 30
times with the error parameter ε = 0.001 and confidence parameter δ = 0.001 in
the smart teacher setting. Our tool learned out 30 PAC(ε, δ)-correct DOTAs in
which 28 models are exactly correct. In theory, the remaining two models should
have at least 0.999 accuracy with confidence 0.999. In order to further check
the quality of the remaining two models, we test them on 20000 more samples
generated from the same distribution in the learning process. Both models have
a passing rate of at least 0.9999. The minimum, mean and maximum numbers
for membership and PAC equivalence queries are 608, 717.3, 912 and 18, 18.7,
20, respectively. The minimum, mean and maximum numbers of tests in the
PAC equivalence queries are 107925, 122565.2 and 143806. The average time of
learning is 138.9 s.

5.2 Random Experiments

We continue to use the random DOTAs in [5] to evaluate our PAC learning
method. Additionally, we compare the performances with and without each of
our three improvements, i.e. the specific sampling mechanism, the comparator
and the counterexample minimization method.

https://github.com/MrEnvision/learning_OTA_by_testing
https://github.com/MrEnvision/learning_OTA_by_testing
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Evaluation Results on Benchmark. With our specific sampling method,
comparator, and counterexample minimization method, the experimental results
on the benchmark are shown in Table 1. For each case, we run our tool 10 times
and our tool learns all models in the corresponding PAC settings and sometimes
generates a model which is exactly equivalent to the target model. The number
of tests taken is also quite stable across the random trials, with minimum and
maximum numbers usually within 50% of each other in each case.

Table 1. Experimental results on random examples for the smart teacher situation.

With/Without Specific Sampling Method. We evaluated our tool on the
TCP protocol case study and the random examples by replacing the specific
sampling method (Sect. 3.3) with sampling from a näıve uniform distribution.
As expected, the algorithm also returns with models which are PAC(ε, δ)-correct
outputs according to the näıve uniform distribution. However, the learned models
sometimes have big differences with the target model even when choosing high
accuracy and confidence. For example, when we choose ε = δ = 0.001 and
sample testing timed words from the uniform distribution U(1, 2 · |Q|) in the
TCP protocol case, the tool learned out models without some transitions back
to the initial state which is one of the accepting states.

With/Without Comparator. As introduced in Sect. 3.4, the comparator
could reduce the number of equivalence queries, and hence the number of test
cases needed in such queries. We evaluated our tool without the comparator, and
the number of PAC-style equivalence queries and test cases increased by 10% on
average.
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With/Without Counterexample Minimization. Figure 1 shows the exper-
imental results with and without counterexample minimization for some of the
randomly generated examples. We find that the number of PAC-style equiva-
lence queries and tests increased by around 150% and 400% respectively. Hence,
counterexample minimization improves the learning performance significantly
on the random examples.

Evaluation on Random Example in Normal Teacher Setting. Finally,
we evaluate the PAC-style learning method in the normal teacher situation. The
results are shown in Table 2. As the method still depends on the quality of the
provided counterexamples, a few of the cases can no longer be learned within the
time limit of 2 min, compared to the case of exact equivalence query. Overall,
the results still show that our method is effective in the normal teacher setting,
which most importantly, provides a way to implement a teacher in practice.

6 Related Work

Various attempts have been carried out in the literature on learning timed mod-
els, which can be divided into two directions. The first direction is about passive
learning. An algorithm was proposed to learn deterministic real-time automata
in [33]. A passive learning algorithm for timed automata with one clock was
further proposed in [32]. We furthermore refer the readers to [22,25] for learning
specialized forms of practical timed systems in a passive manner. A common
weakness of passive learning is that the generated model merely accepts all pos-
itive traces and rejects all negative ones for the given set of traces, without
guaranteeing that it is a correct model of the target system. As to active learn-
ing, a learning algorithm for event recording automata [3] is proposed in [16].
The underlying learning algorithm has double-exponential complexity. In [19],
Lin et al. proposed an efficient learning method for the same model. Learning
techniques for symbolic automata are introduced in [12,20] and An et al. applied
the techniques to learning real-time automata [6].

Recently, applying the ideas of PAC learning [31] to model learning is receiv-
ing increasing attention. Angluin introduced a PAC learning algorithm of DFA
in [7]. In [21], Maler et al. applied PAC learning to symbolic automata. In [10],
using PAC learning to obtain an approximate regular model of the set of fea-
sible paths in a program, Chen et al. introduced a novel technique for verifica-
tion and model synthesis of sequential programs. Another way to replace exact
equivalence queries is conformance testing [8,18] via a finite number of testing
queries. Well-known methods for conformance testing include W-method [11,15],
UIO-method [27], etc. These methods can also be modified to test timed mod-
els [13,14]. In [29], Aichernig et al. introduced an approach to learn timed
automata based on genetic programming. In subsequent work [26], they com-
bined genetic programming with conformance testing to improve its perfor-
mance.
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Fig. 1. Experimental results with and without counterexample minimization.

Table 2. Experimental results on random examples for the normal teacher situation.

7 Conclusion

In this paper, we presented a PAC learning algorithm for black-box systems
that can be specified by DOTAs. We relax the ideal setting of a teacher that
maintains oracles for both membership queries and exact equivalence queries.
In our new setting, both membership and equivalence queries are conducted via
testing, with PAC-style equivalence query replacing exact equivalence query. In
addition, to reduce the number of equivalence queries, we introduced comparator
into our learning framework. We also discussed the sampling approach, and a
heuristic method to minimize counterexamples. A prototype is implemented in
Python, and is evaluated on the functional specification of the TCP protocol as
well as a set of randomly generated examples. The experiments show the positive
effects of each of the improvements on realistic examples. Possible future work
includes extension to timed automata with multiple clocks.
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Abstract. Cyber Physical Systems (CPSs) comprise sensors and actu-
ators which interact with the physical environment over a computer net-
work to achieve some control objective. Bugs in CPSs can have severe
consequences as CPSs are increasingly deployed in safety-critical appli-
cations. Debugging CPSs is therefore an important real world problem.
Traces from a CPS can be lengthy and are usually linked to different parts
of the system, making debugging CPSs a complex and time-consuming
undertaking. It is challenging to isolate a component without running
the whole CPS. In this work, we propose a model-based approach to
debugging a CPS. For each CPS property, active automata learning is
applied to learn a fault model, which is a Deterministic Finite Automata
(DFA) of the violation of the property. The L* algorithm (L*) will find a
minimum DFA given the queries and counterexamples. Short test cases
can then be easily extracted from the DFA and executed on the actual
CPS for bug rectification.

This is a black-box approach which does not require access to the PLC
source code, making it easy to apply in practice. Where source code is
available, the bug can be rectified. We demonstrate the ease and effective-
ness of this approach by applying it to a commercially supplied miniature
lift controlled by a Programmable Logic Controller (PLC). Two bugs
were discovered in the supplier code. Both of them were patched with
relative ease using the models generated. We then created 20 mutated
versions of the patched code and applied our approach to these mutants.
Our prototype implementation successfully built at least one model for
each mutant corresponding to the property violated, demonstrating its
effectiveness.

Keywords: Debugging · Active automata learning · L* algorithm ·
Programmable logic controllers

Cyber Physical Systems (CPSs), being distributed and embedded systems, are
the drivers of modern applications such as smart buildings, smart healthcare,
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highly automated driving and Industry 4.0. As such, bugs in CPSs can have
severe or fatal consequences. Debugging CPSs is therefore an important real
world problem with ongoing research efforts.

Existing methods for debugging CPSs fall into the category of simulation,
offline debugging, and online debugging. Debugging by simulation works by
injecting suspicious inputs into a CPS simulator and checking the output. Sim-
ulating the CPS generally requires developing a representative digital twin. It is
usually hard to simulate the physical processes accurately. Offline debugging by
log file analysis works by gathering large amounts of log files produced by the
CPS. Normal and buggy traces are then compared to determine which variables
are not changing in the expected way and causing the bug. Usually, the buggy
traces mostly contain information irrelevant to the bug, and filtering them away
can be difficult. Online debugging by setting breakpoints works by instrumenting
a debugger with the CPS in real-time, and setting breakpoints in the CPS’s pro-
gram execution to determine the faulty input. Setting breakpoints may interfere
with the buggy behavior being rectified. Additionally, for effective debugging,
these breakpoints should be set in multiple components of the CPS. Getting
logging to work in a distributed system is hard due to synchronization issues.

We aim to simplify the debugging of a CPS by developing a two-step method-
ology to build fault models of the CPS:

1. For each CPS property, develop an oracle which accepts a buggy sequence of
inputs and rejects a normal one.

2. Apply active automata learning to build one DFA for each CPS property
using its oracle, using suitable parameters, for debugging. Repeat Step 1 if
needed till the fault model evolves into a sufficient representation of the bug.

L* [1] iteratively generates test sequences of inputs to the PLC, which may or
may not lead to an error. The algorithm will automatically and systematically
build a small DFA which generalizes all the various ways that the fault can
be reproduced up to some number of steps. If none of the test sequences end
in an error, then the returned DFA will simply have a single rejecting state.
The returned DFA can provide a concise representation of the bug to the test
engineer - instead of just knowing one sequence to reproduce the bug by testing,
the engineer now knows multiple shorter sequences to do so.

We conducted a case study using a PLC-controlled miniature elevator system
which was delivered with its specifications. Initial testing of this system revealed
that it contained a number of bugs. For example, during some operation, it was
possible for its doors to open while it was moving - a clear safety violation. Due
to the system complexity, both the test engineers and the vendors have struggled
to identify the cause of the bug for months. By specifying just two inputs, which
are calling for levels 1 and 2 from the lift car, we were able to learn a fault model
with only four states for this bug. After recovering the PLC source code from
the PLC, we were able to fix the bug in a day.

In short, we make the following technical contributions:

1. We developed a two-steps model based approach to debugging a CPS. Given a
particular property of the system, an extended L* algorithm is used to build a
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minimum DFA which capture sequences of events which lead to the violation
of this property, up to some number of steps and with suitable parameters.
Bug-relevant short test cases can then be extracted from these models to aid
in debugging the system.

2. We demonstrate the usefulness of this approach by applying it to study and
patch multiple actual bugs in a miniature lift.

3. We demonstrate the effectiveness of our framework via comparison with ran-
dom testing to fix the two actual CPS bugs. The comparison reveals that
our framework consistently provided shorter test cases compared to random
testing. Additionally, we statically analysed the source code of the PLC and
mutated it to generate 20 bugs. Each mutant was created to trigger a viola-
tion of at least one of the ten CPS properties of interest. The expected fault
models were all generated.

4. We share on how to select parameters when performing active automata learn-
ing on real systems.

Organization. The rest of this paper is organized as follows: Sect. 1 describes
the system motivating our study. Section 2 gives an overview of our approach.
Section 3 describes how we implemented our approach on the miniature lift.
Section 4 poses and addresses some research questions. We evaluated our app-
roach by applying it to debug some supplier PLC source code successfully. We
also share the results of applying our approach to 20 mutations of the patched
PLC source code. In Sect. 5 we review related work. Lastly, in Sect. 6 we conclude
and provide some suggestions for further work.

1 System Description

The system under test is a fully functioning miniature lift developed for training
purposes. This system was commercially purchased for the development of smart
lift technologies. The system has four lift levels, a level sensor at each floor, a
slow-down sensor in between each floor, a traction machine, a pulley system, door
motors, buffer stops, and buttons for the lift car and at every floor for user input.
The lift is controlled by a Mitsubishi FX3U-64M PLC and comes programmed
as a double-speed lift. Upon moving off, a default normal speed will be used. If it
reaches a slow-down sensor and if the next floor is to be fulfilled, a default slow
speed shall be used. Each time the lift passes a slow-down sensor, the displayed
floor will also be updated. This PLC has 32 input devices which are named as
X0–X7, X10–X17, X20–X27, and X30 to X37. It has 32 output devices which
are named as Y0–Y7, Y10–Y17, Y20–Y27, and Y30 to Y37.

Our approach does not require the source code. However, source code is
needed for actual bug fixing. A Mitsubishi toolkit was used to extract the ladder
logic source code from the PLC for analysis. This code comprises 1,305 rungs,
Rungs 1 to 309 specifies the application, while the remaining rungs define 39
sub-routines named as P0 to P37, and P42. The comments for the program
were not provided by the suppliers - as is a common practice for suppliers after
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Table 1. PLC inputs of interest

Purpose Logic Purpose Logic

X17 L1 pressed Normally Off X1 Lift car is level with a floor Normally Off

X20 L2 pressed Normally Off X2 Slowdown sensor active Normally Off

X21 L3 pressed Normally Off X10 Lift car is at L4 Normally On, Off at L4

X23 L4 pressed Normally Off X11 Lift car is at L1 Normally On, Off at L1

Table 2. PLC Outputs of Interest

Purpose Purpose

Y2 Commands the doors to open Y12 Switches the car L3 button light

Y3 Commands the doors to close Y13 Switches the car L4 button light

Y6 Commands the lift to rise Y30 Lights and dims the up display

Y7 Commands the lift to lower Y31 Lights and dims the down display

Y4 Commands the lift to move slow Y32 Shows L1 as the current floor

Y5 Commands the lift to move fast Y32, Y33 Shows L3 as the current floor

Y10 Switches the car L1 button light Y33 Shows L2 as the current floor

Y11 Switches the car L2 button light Y34 Shows L4 as the current floor

system delivery, for protection of their intellectual property. Written approval to
use their source code in a research paper was provided by the suppliers.

Table 1 summarizes the input devices, name, purpose and logic of the PLC’s
key inputs of interest, derived from both the system specifications as well as
empirical observations. On the panel representing the lift car buttons, four of
the inputs are for L1 to L4, and two are for door open and close. There is an
“up” button on L1 and a “down” button on L4. There are “up” and “down”
buttons on both L2 and L3, making a total of 12 user buttons. We selected only
the four lift car buttons for L1 to L4 to reduce the experiments’ complexity. Note
that using these four buttons can already move the lift to all the four floors, as
well as open and close the doors.

Table 2 provides a summary of the PLC’s outputs of interest.
The system was originally purchased for the development of smart lifts tech-

nology - which could not proceed for a year due to the discovery of two bugs:

1. Occasionally, the lift doors can open while the lift is moving
2. Occasionally, the lift doors do not open after arriving at a floor

The suppliers were also unable to fix the bug despite extended manual debug-
ging. This work was therefore motivated by actual limitations in debugging
methodologies for CPS.

2 Overview

Figure 1 shows an overview of our approach. A fault model is learnt for each test
oracle developed. Test cases are recovered from the fault model for debugging.
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Fig. 1. Overview of approach Fig. 2. Automata learning setup

2.1 Step 1 - Develop Oracles

Table 3 provides the system properties which we derive from the system speci-
fication and lift standards. The system inputs/outputs of interest are provided
in Tables 1 and 2.

Testing requires a pass criteria, known as an oracle. We apply a derived test
oracle, which categorizes buggy and normal behaviour by reading the outputs of
the CPS. These output signals are systematically processed to evaluate real time
state variables to determine if each oracle passed or failed. The last column of
Table 3 provides the developed oracles corresponding to the system properties.
Although this step is always system specific, it can be generalized to other CPSs
by gathering the correct output signals and processing them according to the
needs of the defined oracles.

2.2 Step 2 - Apply Active Automata Learning

Debugging assumes a fault which is reproducible using a minimal set of inputs.
A key contribution of our work is the development of the framework to apply L*
to a real system to learn a small DFA of the fault, which is beyond a straight-
forward deployment of the algorithm. Issues such as the modular design of the
learning setup, equivalence query approximation, redundant membership queries
and the message passing mechanism were addressed. Figure 2 shows the learning
setup, which comprises three main parts - an Automata Learner, a User Input
Generator, and a System Under Learning (SUL) Adaptor.

L* learns an unknown DFA using examples and counterexamples made up
of an input alphabet Σ. L* will compute and pose membership queries to the
SUL to keep an observation table closed and consistent. Once a closed and
consistent observation table is achieved, L* generates a hypothesis automaton,
for comparison with the actual SUL.

L* requires a Minimally Adequate Teacher (MAT) which knows the specifi-
cation model of the SUL, and is able to exactly answer the equivalence query of
whether the hypothesis automata and the SUL are equivalent. In practice, the
actual system is the MAT. However, checking whether a hypothesis automaton
is equivalent to the actual system is computationally complex. To overcome this,
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Table 3. Identified CPS properties

CPS property Test oracle CPS property Test oracle

1 The lift doors

must never be

opened while

the lift is

moving

(Y 6 ∨ Y 7) ∧ ¬Y 2 6 The correct lift car

buttons are always

shown at most 1s after

an update

Compare Y10, Y11,

Y12, Y13 with emulated

lift displays

2 Lower the lift

must be off at

most 1s after

the lift reached

L1

(X11 ↓ ∧time(≤
1s)) ∧ Y 7 ↓

7 Slow down the lift must

be on at most 1s after

the slow down sensor is

activated, if the current

floor is demanded

((X2 ↑ ∧time(≤ 1s) ∧
curr flr demanded)∧ ↑
Y 4

3 Raise the lift

must be off at

most 1s after

the lift reached

L4

(X10 ↓ ∧time(≤
1s)) ∧ Y 6 ↓

8 Lower or raise the lift

must be off at most 5s

after slow down the lift

is on

(Y 4 ↑ ∧time(≤
5s)) ∧ (Y 6 ↓ ∨Y 7 ↓)

4 The correct

floor is always

shown at most

1s after an

update

Compare Y32, Y33

and Y34 with

emulated lift floor

9 If raise or lower the lift

is off, it is always done

at most 1s after the

level sensor is activated

(Y 6 ↓ ∨Y 7 ↓) ⇒ (X1 ↑
∧time(≤ 1s))

5 The correct

direction of

travel is always

shown at most

1s after an

update

Compare Y30 and

Y31 with emulated

lift direction

10 Open the doors must be

on at most 5s after the

raise or lower the lift is

off

((Y 6 ↓ ∨Y 7 ↓
) ∧ time(≤ 5s)) ∧ Y 2 ↑

we implemented an approximate way of answering equivalence queries based on
depth-bounded search. For each hypothesis automaton, all traces up to a maxi-
mum number of steps, which we denote as N , from the start state are extracted.
In this algorithm, paths which end in an accepting state are not searched any
further for new paths.

The User Input Generator will take the needed query from the learner and
command the SUL Adaptor to execute the inputs one by one over the configured
inter-input duration, τ . This parameter is both SUL and bug dependent. The
value of τ must be realistic for actual CPS operation. Certain bugs, especially
timing-related ones, can be triggered only if a specific sequence of inputs are
injected fast enough. While the query is being executed, at any time, the SUL
Adaptor can report back that the property being tested has been violated. In
this case, subsequent remaining inputs of the query are not sent to the SUL
Adaptor. Otherwise, if no fault has been detected, after the last input of the
query has been executed, the SUL Adaptor will wait for the last I/O timeout
of Ds. If there is still no fault detected, the SUL Adaptor will notify the User
Input Generator that the last query has timed-out without fault.

During development, it was observed that on rare occasions, it is possible for
a membership query to return true (or false) in one run but false (or true) in
another run. This may be due to slight variances in hardware behavior (espe-
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cially timings), or deeper issues in PLC coding, such as double coil syndrome
[2]. We recognize that L* works only for deterministic systems. However, we
observed that the non-deterministic behavior of our system is rarely observed,
and therefore, our approach can still be applied but requires redundant mem-
bership queries for reliable model learning. A mechanism is implemented in the
User Input Generator to provide more reliable membership query executions. All
membership queries are executed at least twice. If both return the same result
(both true or both false), it is fed back to the learner for continued model learn-
ing. However, if the results differ (one true and the other false), a third execution
of the same query is done and its result is fed back to the learner. This reliability
is achieved at the cost of doubling the query execution time, but is deemed to
be worthwhile because L* will build a totally different model even if just one of
the query results is different from a previous run.

The SUL Adaptor implements the actual execution of an input on the PLC,
as well as the emulation of the sensor inputs. Note that the emulation is not
needed if the actual CPS is being used to test the controller. In the running
state, all the PLC outputs are read and the emulated lift states, which are the
lift car and door positions, are updated based on these outputs. The property
specified by the query received from the User Input Generator shall then be
checked for violation. When either events - the needed property violation is
detected or the query timed out - the SUL Adaptor will wait for reset input. It
shall then inform the User Input Generator accordingly and wait for it to issue
a command to execute a reset of the PLC. Once the command has been issued,
the SUL Adaptor will reset the PLC and inform the User Input Generator after
it is completed, so that the User Input Generator can send the next query. All
the SUL Adaptor’s relevant internal variables are reset as well, for a fresh cycle
of query execution. In summary, Table 4 shows the parameters and their default
values used by our framework and all experiments.

2.3 Illustration

We illustrate our framework using the first bug - that occasionally, the lift doors
can open while the lift is moving. Throughout this paper, the default parameter
values are Σ = {a, b, c, d}, N = 3, τ = 0.5 s and D = 8 s, as shown in Table 4.
The overheads incurred are shown in the last row of Table 11. Building these
models required 351 queries which took almost two and a half hours. Table 5
shows the three automata built by L*. These DFAs were learnt by L* maintaining
its membership tables, iteratively keeping it closed and consistent, and coming
up with a hypothesis automaton when this is achieved. The short test cases
generated from this DFA are ba, ca and da. Knowing that the initial state is at
L1, and that the delay between inputs τ = 0.5 s, the bug can be interpreted as
being triggered after an input demanding that the lift move to some floor other
than L1 (inputs b,c or d) is set, wait 0.5 s (the value of τ), and then press L1 (the
input a). It can be inferred that the bug is due to a command to move the lift
(inputs b, c or d) and the command to open the door (input a) being executed
very near in time (0.5 s). A possible bug fix is to provide an interlock on these
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two commands, which was found to fix the bug. Further details about this bug
fix can be found in Sect. 4.

Table 4. Parameters

Parameter Meaning Default

Σ Automata Alphabet(set of inputs) {a,b,c,d}
N Maximum number of steps from

the start state for equivalence
query approximation

3

τ Inter-input duration 0.5 s

D Last I/O timeout 8 s

Table 5. Hypothesis fault models of Bug 1

Hypothesis 1 Hypothesis 2 Fault Model

3 Implementation

This section provides details of the implementation of our approach to fix bugs
found in the miniature lift system.

The overall learning system is run by a mini computer. This device uses the
quad-core 64-bit 1.44 Ghz Intel Atom X5-Z8350 processor with 2 GB of RAM.
Relay switches were used to switch the user and sensor input terminals on the
PLC to 24V (on) and 0V (off), based on the learning traces provided by L*. A
simple switch detection circuit was used to capture the PLC’s outputs.

We adopt LearnLib [11] to implement our approach. LearnLib is a Java-
based framework popular for active automata learning. We built the automata
learner on top of LearnLib using Apache Maven [3] in the Eclipse IDE [4]. The
parameters Σ and N are used by the Automata Learner. Table 6 shows the
implemented alphabet Σ used by the Automata Learner. We have previously
justified the use of these button inputs in the System Description section. The
maximum number of steps from the start state, N , used for our equivalence
query approximation, is 3. This is based on our observation that certain bugs
in the SUL can already be triggered in two steps - we therefore only require the
hypothesis and the unknown automata to be compared up to three steps to be
able to get meaningful fault models.

The parameter τ , which is the inter-input duration, is used by the User Input
Generator and is both SUL and bug dependent. We selected τ as 0.5 s after some
testing, as this value is deemed to be essential to trigger certain bugs in the SUL.
In general this is the minimum sampling duration, and in this case, a reasonable
approximation for reproducing the bug.

The SUL Adaptor parameter D, which is the last I/O timeout, is used by
the SUL Adaptor and is both SUL and bug dependent. We observed that the
longest idling duration in the normal PLC operation, meaning that the PLC is
no getting any input/output, is about 6 s. This is the period of time that the
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door has fully opened, and is waiting for its internal timer to expire, before being
commanded to close the door. We need to set D to be longer than this duration
to prevent cutting off the PLC’s normal operation, and settled on D = 8 s.

The PLC has a pre-programmed reset state which shows only L1, provided
X1, X3, X4, X5, X10, X16 and X22 are active. For L*, we require a means to reset
the PLC before each query and selected the Mitsubishi proprietary MELSEC
Communications Protocol (MC Protocol) [6].

We used MQTT as the transport protocol which delivers messages among
the Automata Learner, User Input Generator and SUL Adaptor. MQTT is a
lightweight protocol designed to be used by Internet-of-Things (IoT) devices.
We selected it due to its ease of implementation and support for publish and
subscribe. The selected MQTT broker is Mosquitto [7].

4 Research Questions and Experiments

In this section, we shall systematically evaluate the effectiveness and efficiency
of our approach. We address the following research questions:

1. How effective is our approach in debugging a real CPS?
2. Does increasing the size of the alphabet Σ increase the time overhead signif-

icantly?
3. Can our approach effectively reduce the length of discovered buggy traces?
4. Can our approach find bugs effectively?

It is important to assess the effectiveness of our debugging framework on a
real CPS, as a comparison with manual debugging. Studying the relationship
between the size of the alphabet and the time overheads provides a practical
bound on how many CPS inputs can be used to build fault models in a realistic
time frame. Studying the reduction in the length of the discovered buggy traces
provides a basis for comparing with normal testing. Finally, the effectiveness
of our approach should be studied to prove that our approach can build fault
models of bugs of a variety of nature.

As an optimization, a basic emulation of the lift sensor inputs to the PLC was
developed to filter away irrelevant inputs caused by reading the actual inputs
directly - therefore the emulation does not have to be very precise. The emulated
lift’s state variables are the car speed and position, door speed and position,
buttons state, current floor and motion state.

4.1 How Effective Is Our Approach in Debugging a Real CPS?

We answer this question by using our framework to debug the two observed bugs
in the lift controller. These bugs violates Properties 1 and 10 respectively. As a
baseline, at least one other property which is not observed to be violated should
be included in this experiment, and we randomly pick Property 2. We need to
test that our framwork can build a “no fault model” for a specified property,
meaning a DFA without any accepting states, if the property is never violated
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in all membership queries. If such a model cannot be built for a property, this
means that the property is falsifiable based on the experimental parameters - at
least one input sequence will cause a property violation.

Table 6. Alphabet Σ

PLC Input Purpose Symbol

X17 Lift car L1 button a

X20 Lift car L2 button b

X21 Lift car L3 button c

X23 Lift car L4 button d

Table 7. Code versions

Code version Representation

“A” Supplier Code

“B” Version “A” patched with the fix for Bug 1
(violation of Property 1)

“C” Version “B” patched with the fix for Bug 2 (the
violation of Property 10)

For this research question, we opted for a reduced alphabet Σ = {a, b} for
simplicity, meaning that we only press the lift car buttons for L1 and L2. This is
deemed to be enough to trigger violations of Properties 1, 2, and 10. For clarity,
we use a notation to represent the version of the code used for debugging, as
shown in Table 7.

We use the notation Mcode version,property to denote the DFA built. For exam-
ple, MA,1 is the DFA built using code version “A” and set with property 1.
Table 8 shows the models built.

Table 8. Fault models from code ver-
sion “A”

MA,1 MA,2 MA,10

Table 9. Fault models from code ver-
sion “B”

MB,1 MB,2 MB,10

The regular expression for MA,1 is ba(a|b)∗. Interpreting this expression
requires knowing that the fixed time interval between inputs, τ , is 0.5 s. This
means that the steps to trigger this violation are: start from the reset state,
press L2, wait for 0.5 s, press L1, and thereafter press 0 or more L1 or L2. The
violation will be triggered after pressing the first L1. Using this knowledge, we
were able to get many relevant, short traces for triggering the violation of Prop-
erty 1. Moreover, by looking at MA,1, it is clear that after the inputs ba, it does
not matter how often or what inputs are provided to the system - the bug will
be triggered. Knowing that the test starts when the lift is at L1, the input b
causes Y6 to be activated (lift rise) while the input a will cause Y2 to be acti-
vated (doors open). The bug is patched by adding a check that the lift is not
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commanded to move up (Y6) or down (Y7) when it is being commanded to open
its doors (Y2). In ladder logic, the symbol -||- represents a check that a device is
switched on. The symbol -|/|- represents that it is switched off. Figure 3 shows
the bug fix.

Fig. 3. Patch for Bug 1 Fig. 4. Patch for Bug 2

The model MA,2 does not have an accepting state and is the “no fault”
model. This is expected as the violation of Property 2 was not observed for code
version “A”. By observation, the controller is in a fault state after the violation
of Property 1, ie after the lift door opens while the lift is in motion. This means
that after the Bug 1 has occurred, L* will learn a model based on Bug 1 occurring
first, followed by Bug 2. Therefore there is no value analysing MA,10 at this stage
- The model built from violating Property 10 should be analysed after Bug 1 is
fixed.

Table 9 shows the models built after applying the patch for Bug 1 (and
therefore getting code version “B”) and running our framework.

Both MB,1 and MB,2 are now the “no fault” model. This confirms that code
version “B” fixes Bug 1. For debugging Bug 2, which is the violation of Property
10, the reading of internal PLC device values is needed and we used MC protocol.
From MB,10, its regular expression is (a+)b(a|b)∗. Bearing in mind that τ = 0.5 s,
the steps to trigger this violation are: start from the reset state, press L1 at least
once, wait 0.5 s, press L2, then press 0 or more L1 or L2. By looking at MB,10, it
is clear that after the inputs ab, the bug will occur no matter how often or what
inputs are provided. There must be some differing occurrence that a, b will cause,
compared to another simple word like b, which is clearly rejected by MB,10. On
deeper analysis, the input a will open the door at L1. The bug happens when b
is input 0.5 s after that. The bug does not happen if a does not occur before b.
Some internal variable must have been set wrongly after a occurred - leading to
the door being unable to open when the lift moved to L2 later on.

We used the discovered test cases to execute buggy runs of the PLC program,
as well as some normal runs. For these runs, we used MC Protocol to log the
PLC variables deemed needed for debugging. Both sets of logs were compared
to identify variances. Analysis of the faulty runs uncovered that the device Y2
(to open the doors) was not activated due to the auxiliary device M104 being
off. This was in turn due to the devices M105 and M106 being off, which was
due to Y3 (door close) remaining active from L1 to L2, turning off only at L2.
We guessed that to fix this bug, we need to add a check that Y3 needs to be off
before the subroutine P42 (which moves the lift up or down) is called. Checking
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Table 10. Fault models built from code version “C”

MC,1 MC,2 MC,10

that Y3 is turned off before lift movement will turn on M105 and M106, which
will turn on M104 and hence allow Y2 to be activated when the lift reaches L2.
Figure 4 shows the bug fix.

Table 10 shows the models built after applying the patch for Bug 2 (and
therefore getting code version “C”) and running our framework:

As can be seen, running our framework on code version “C” yielded MC,1,
MC,2 and MC,10 which are all the “no fault” model. This confirms that code
version “C” fixed Bug 2. From this effort, we are confident that our approach is
able to fix actual CPS bugs.

4.2 Does Increasing the Size of the Alphabet Σ Increase the Time
Overhead Significantly?

In order to answer this question, we ran our framework for the two actual bugs
with varying alphabet sizes. As explained previously, Code version “A” was used
to model Bug 1 while code version “B” was used to model Bug 2. Tables 11 and
12 show the results.

As expected, increasing the alphabet size increases the learning time signif-
icantly. As a rule, the choice of inputs should include only the ones which are
deemed likely to cause the bug.

Table 13 shows the fault model of Bug 1 built from the respective alphabets,
as well as the regular expression representing the model.

4.3 Can Our Approach Effectively Reduce the Length of Discovered
Buggy Traces?

To address this question, we apply normal debugging on the two actual bugs.
This is done by repeatedly sending inputs randomly picked from Σ = {a, b, c, d}
to the system. The interval between sending the inputs is randomly picked from
0.5 s to 30 s in steps of 0.5 s. These values are selected to simulate normal debug-
ging inputs. When a bug is triggered, the system is reset and the process is
repeated. The results of the tests are shown in Table 14.

Comparing these results with the alphabet Σ = {a, b, c, d} in Tables 11 and
12, there is a reduction in the mean length of buggy queries. For Bug 1, normal
debugging had a mean buggy query length of 215.6 while applying our framework
required only 3.6. For Bug 2, the same measure was 55.6 for normal debugging
and 4.1 for our framework. Therefore, while our framework requires upfront effort
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Table 11. Alphabet size and overheads
for actual Bug 1

Σ # of
Queries

# of
States

Mean length
of buggy
queries

Total learning
time

1 {a, b} 29 4 3.71 20.7 min

2 {a, b, c} 64 5 3.57 1 h 4.3 min

3 {a, b, c, d}109 4 3.6 2 h 25.1 min

Table 12. Alphabet size and overheads
for actual Bug 2

Σ # of
Queries

# of
States

Mean Length
of Buggy
Queries

Total
Learning
Time

1 {a, b} 32 4 4.25 30.7 min

2 {a, b, c} 66 4 4.14 1 h 19.7 min

3 {a, b, c, d}118 4 4.1 2 h 51.0 min

Table 13. Fault models of Bug 1 built from various alphabet sizes

Σ = {a, b} Σ = {a, b, c} Σ = {a, b, c, d}
ba(a|b)∗ (b|c|cb)a(a|b|c)∗ (b|c|d)a(a|b|c|d)∗

to be set up and tweaked correctly, it can be seen that the reduction in the mean
length of buggy queries, as compared to normal, can be significant.

4.4 Can Our Approach Find Bugs Effectively?

The best way to measure the effectiveness of our framework is to apply it to
a CPS with many actual bugs which affect the majority of the system require-
ments. However, despite our best efforts, we found only two actual bugs in the
system and they pertained only to the lift and door motion. Therefore, we take
code version “C” and mutated it 20 times. We did basic static analysis to ensure
that each mutation causes at least one of the identified properties to be violated.
This ensures that the mutations affect the majority of system requirements. To
ensure that the mutation actually causes a bug, each mutation was tested on
the actual system and the expected property was observed to be violated.

The static analysis and mutation were done by identifying a device directly
or indirectly related to the bug, and applying some mutation to that device. The
following shows the ways mutation was applied:
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Table 14. Random testing results

Bug 1 Bug 2

Number of buggy queries 9 12

Mean length of buggy queries 215.6 55.6

Total time taken 8 h 7 min 2 h 43min

1. Replacing a device with another device
2. Replacing the “Normally On” device with the “Normally Off” device, i.e.

replace -||- with -|/|-
3. Removing a device
4. Adding a new device in series to an existing device
5. Adding a new device parallel to an existing device
6. Change an operator from comparison for equality to comparison for non-

equality

We applied our methodology to these mutants. Each run built at least one
fault model, making a total of 36 models.

At the minimum, our approach was able to learn the expected fault model of
the mutant, proving the effectiveness of our approach in finding bugs. In some
instances, more than one fault model was learnt by a mutant - this means that
the mutation can trigger more than one violation of the properties. Our approach
therefore works as expected, and can find bugs effectively.

5 Related Work

From [8], the concept of Model Based Debugging assumes the existence of a
system model which precisely captures the specified system behavior. A fault
model is captured by directly observing the system. A comparison of the system
model and the fault model will then yield insights into the explanation of the
bug. Our work deviates slightly from the established concept - in that we do not
have a system model, but rather, for example, a well-known proposition about
the system that the lift doors cannot open while the lift is in motion.

From [9], the authors formulated a two-step framework for model based
debugging of a PLC - In the first step, the desired, sequence of PLC outputs will
be learnt by a Recurrent Neural Network (RNN). From [10], Aral et al. showed
that an RNN can model an finite state machine. The captured buggy PLC out-
put will be learnt by another RNN. In the second step, these two RNNs will then
be used to train an Artificial Neural Network (ANN) which can then be used to
debug the PLC. A small ladder logic diagram representing a clamp, punch and
eject manufacturing system was used to demonstrate the concept. This method-
ology assumes the existence of the correctly specified system model, from which
outputs can be recovered so as to build the specification-based RNN.

Marra et al. [12] reported their experience in applying online debugging of
a CPS. The Pharo debugger [13] and the author’s IDRA [14] remote debuggers
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were used to debug a CPS, which is a simple temperature sensing system built by
the authors. The authors applied online debugging remotely, i.e. from another
machine. They classified remote debugging into “traditional”, represented by
the use of the Pharo debugger, and “out-of-place”, represented by the use of the
IDRA debugger. The authors concluded that for this case study, using IDRA is
faster than Pharo, at the expense of increased network activity.

6 Conclusion

We believe that bug reproduction is an important first step to debugging, espe-
cially for a graphical programming language like ladder logic which makes code
step-through a painful experience due to its lack of familiar programming con-
structs. This paper reports our experience in applying a two-step methodology
to determine the minimum sequence of inputs to reproduce a bug, by building
a fault model of the system under testing. We believe that this methodology is
applicable to other systems of varying nature, provided that the identification
of the system properties of interest and the inputs/outputs is done correctly.

Testing the system for bug reproduction can be done either passively or
actively, although the latter is preferred because system control brings with it the
possibility of triggering the bug faster and expedites data collection. Moreover,
system control is mandatory if the bug causes the system to become inoperable
after occurrence, and such is the case for our miniature lift.

A simulator such as Safety Critical Application Development Environment
(SCADE) with Design Verifier [5] can be explored in future. The combination of
using graphical models to capture system logic and a proof assistant provides the
possibility of exhaustively proving some system propositions. Active automata
learning can also be applied to the system to learn a comprehensive system
model. This allows testers to iteratively refine the system model. The resulting
model can then be put to use for test case generation or system verification. A
comparison of various approaches, such as the use of ANN or graph analysis, to
capture a model of a PLC program should be done as well.
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Abstract. With the large-scale application of machine learning in var-
ious fields, the security of models has attracted great attention. Recent
studies have shown that tree-based models are vulnerable to adversarial
examples. This problem may cause serious security risks. It is important
to verify the safety of models. In this paper, we study the robustness
verification problem of Random Forests (RF) which is a fundamental
machine learning technique. We reduce the verification problem of an
RF model into a constraint solving problem solved by modern SMT
solvers. Then we present a novel method based on the minimal unsat-
isfiable core to explain the robustness over a sample. Furthermore, we
propose an algorithm for measuring Local Robustness Feature Impor-
tance (LRFI). The LRFI builds a link between the features and the
robustness. It can identify which features are more important for pro-
viding robustness of the model. We have implemented these methods
into a tool named VARF. We evaluate VARF on two public datasets,
demonstrating its scalability and ability to verify large models.

Keywords: Formal verification · Random Forests · Robustness

1 Introduction

Machine learning (ML) has been widely used in many domains due to its out-
standing performance. However, some popular machine learning models demon-
strably lack reliability and security. For example, recent studies have proved
that neural network models are susceptible to adversarial perturbations—a small
input perturbation causes the model to produce an incorrect output [12,21,26].
This issue hinders the adoption of machine learning in many application domains.
Therefore, the problem of verification of machine learning models has attracted
the attention of AI and formal verification communities.

Formal methods play a vital role in the field of security verification. Verifica-
tion techniques such as model checking and theorem proving have been success-
fully applied to find bugs in software, analyze hardware systems, and verify the
security-related properties of models. Some ideas and methods have been pro-
posed that address the verification of ML models by formal methods [13,18,25].
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In the same vein, the goal of this work is to verify the robustness of random
forests based on Satisfiability Modulo Theories (SMT) [1].

Random Forests (RF) [2] as an important example of tree-based models has
been used in many security applications [9,15,19,22]. However, it is also vul-
nerable to adversarial perturbations [5,14,24,27]. In this paper, we not only
effectively verify the robustness of RF, but also make a further study on the
factors influencing the robustness. For example, which features have a greater
impact on the robustness? Is there any difference in robustness between different
classes of the model when their accuracy is similar? Through our experiments,
we have discovered that there may be a difference in the robustness for different
classes, which provides a good suggestion for other research related to model
robustness verification [11,18,27]. We implemented our method in a tool named
VARF and evaluated it on public datasets. The contributions of this paper are
summarized as follows:

– We have developed the tool VARF for verifying the robustness of large random
forests models.

– We propose a method for explaining the robustness over a sample by obtaining
the robust feature set.

– We provide a method of measuring local robustness feature importance to
reflect the impact of features on the robustness of classes.

The remainder of this paper is organized as follows. We survey related work
in Sect. 2. Section 3 presents preliminary knowledge about robustness properties
and satisfiability modulo theories. In Sects. 4 and 5, we encode random forests
models and robustness properties into SMT formulas. In Sect. 6, we introduce the
concept of robust feature set and local robustness feature importance in detail.
Section 7 presents applications of our method on two case studies. Finally, we
conclude in Sect. 8, which discusses the implications of our work and some ideas
about future work.

2 Related Work

Security and interpretability of machine learning models are gaining attention
in the research community. In the following, we group the related works in two
categories: those that verify the tree-based models, and those that explain mod-
els.

We first review works related to the verification for tree-based models. The
Silas is introduced by [4] for supporting logical analysis and verification of tree-
based models. The Model Audit module of Silas can formally verify the model
against user specifications. Sato et al. [24] leverage an SMT solver to extract
the violation range in which the input value leads to the failure, then they
create an input filter based on that range for preventing the failure occurring
in the tree-based model. In their study, they focus on addressing the regression
problem, whereas we are focused on classification. In [6], they formulate the
verification problem of tree ensembles as a max-clique problem on a multi-partite
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graph. Then they further propose a multi-level algorithm based the boxicity
of the graph to compute robustness bound. But we are concerned with the
robustness of a given perturbation value. Einziger et al. [11] verify the robustness
of gradient boosting trees using an SMT solver. Törnblom et al. [27] present
a formal verification method for tree ensembles that leverage an abstraction-
refinement approach to verify the robustness. The main disadvantage of their
approach is low scalability.

For the interpretability of machine learning models, the authors of [3] propose
a novel automated reasoning based approach which can extract valuable insights
from machine learning models. Then the user can learn about the reason behind
the decision-making of the models. Several researchers [8,29] try to approximate
the complex model with a simpler model for providing a better understanding.
Several local methods [17,23] try to probe the model’s behaviour without need-
ing to access the internal representation. They learn how the model’s output
changes over a perturbation distribution in the locality and infer the importance
of varying the inputs from the resulting output values. In addition, example-
based explanation methods [16,28] can select particular instances of the dataset
to explain the behavior of machine learning models or to explain the underlying
data distribution.

The goal of our work is not only to verify the robustness of random forests
models but also to obtain more internal influence factors of the robustness.
Notably, because our method is exact and does not rely on any approximations
to the tree structure, the result of the verification is more accurate.

3 Preliminaries

In this section, we give several basic definitions of robustness properties and
introduce some preliminary knowledge about satisfiability modulo theories.

3.1 Robustness Properties

Adversarial inputs enable adversaries to subvert the expected model behavior
that leads to undesired consequences and could pose a security risk when these
models are deployed in the real world. The robustness ensures that the decision
of the model is invariant against small perturbations. More formally, let M(x)
represent the output of a model M on the input x and label(x) be the true class
of x.

Definition 1 (Adversarial Robustness). A model M is (ε, p)−robust for an
input x, if only if there does not exist an adversarial input x′, M(x) = label(x),
||x − x′||p ≤ ε, such that M(x′) �= label(x).

Here, the variable label(x) indicates that we only consider the robustness of
samples which are correctly predicted by model M . ||x − x′||p ≤ ε restricts the
distance between x and x′ according to the norm p. In this paper, we consider the
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case of norm p = ∞, which bounds the maximum perturbation of each feature
between x and x′, has been considered frequently in the literature [5,6,11,18].

Another definition of robustness is proposed by [18]. It is called universal
adversarial robustness. The property captures the robustness over a set of input
values. Let N denote a set of input values, then we can define this similar prop-
erty as follows:

Definition 2 (Universal Adversarial Robustness). A model M is (ρ, ε, p)-
universally robust over N , if it has at least ρ · |N | input values in N for which
the (ε, p) − robust property holds.

3.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) refer to the problem of determining
whether a propositional formula is satisfiable with respect to some logical theory.
A Σ − theory T is a pair (Σ,A) where Σ is a signature and A is a class (in the
sense of set theory) of Σ-models, that is closed under variable reassignment. A Σ-
formula φ is T -satisfiable (resp., T -unsatisfiable) if it is satisfied by some (resp.,
no) interpretations in A. Furthermore, we use the linear real arithmetic theory
in this paper. Then we extend the propositional formula with arithmetic terms
and comparison operators. Let Ψ be an arithmetic term where c is a rational
number constant. A Boolean formula F can be defined below:

Ψ := c | Ψ + Ψ | Ψ − Ψ | Ψ ∗ Ψ | Ψ ÷ Ψ

F := � | ⊥ | Ψ < Ψ | Ψ ≤ Ψ | Ψ = Ψ | Ψ > Ψ | Ψ ≥ Ψ | ¬F |F ∧ F | F ∨ F

A formula F is said to be satisfiable if F evaluates to True for some assign-
ments. If there is no such assignment, we say that F is unsatisfiable.

4 Encoding of Decision Trees and Random Forests

This section provides the essential definitions of decision trees and their ensem-
bles for classification. Then we consider the encoding of RF into Boolean formu-
lae.

4.1 Decision Tree

Definition of Decision Tree. A decision tree T is an input-output model
represented by a tree structure. It can be defined as a function t : Xd → Y m,
from an input vector x ∈ Xd where x = <a1, ..., ad> taking its values to an
output y ∈ Y m. We denote by Xd the feature space and Y m the outcome space.
In this paper, we consider T as a binary classification tree.

The tree is composed of internal nodes and terminal nodes called leaves. Let
N be the set of internal nodes and L be set of leaves. Any internal node n ∈ N
represents a subset of the space Xd, with the root node being Xd itself. Each
node n ∈ N is labeled with a univariate feature-threshold pair (ai, ηi), and it uses
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the binary split sn = (ai ≤ ηi) to divide its subset into two subsets corresponding
to their two children nl and nr (left child nl and right child nr). The leaves are
labeled with the value of the output. The predicted class y for an input x is
determined by the value of the leaf reached by x when it is propagated through
the tree. In general, the value vl of leaf l is a set of probabilities corresponding to
each class such that vl = {pi|0 ≤ i ≤ m,

∑m
i=0 pi = 1}. Each pi is a probability

so it can’t be larger than 1. Let class(max(vl)) denote the class with the highest
probability in vl. Any input vector x is associated with a single leaf l ∈ L,
such that t(x) = y = class(max(vl)). In the tree T , every node has exactly one
predecessor node, except for the root node n0, which has no predecessor.

Boolean Formula of Decision Tree. Based on the structure of a decision
tree T , we can encode it into a Boolean formula. First, we encode a single path
in T , let ω(l) be the leaf formula of a leaf node l and Nl be the internal nodes
set between the root node n0 and the leaf l. Formally, the encoding of ω(l) can
be defined as follows:

ω(l) :
∧

n∈Nl

(sn) ∧ (
o = vl

)
, sn =

{
ai ≤ ηi nc = nl

ai > ηi nc = nr

(1)

The variable o is used to constrain the leaf value vl. The node nc represents
the child of node n, if nc is the left child (resp., right child), the condition of
node n should be sn = (ai ≤ ηi) (resp., sn = (ai > ηi)). Then we can define the
tree’s decision formula Π(T ). It can be defined as follows:

Π(T ) :
∨

l∈L

ω(l) (2)

Intuitively, Π(T ) is a disjunction of leaf formulae, where each clause rep-
resents a concrete path to one of the leaves in T and its value. An important
characteristic of our method is that it is exact and does not rely on any approx-
imations to the tree structure.

4.2 Random Forests Classifier

Random Forests is a combination of decision trees such that each tree depends
on the values of a random vector sampled independently. It uses averaging to
improve the predictive accuracy and control over-fitting.

Definition of Random Forests Classifier. A random forests classifier C is
a collection of k decision trees, that is C = 〈T1, ...Tk〉. The predicted class is
a vote by the trees in the forest. Without loss of generality, we consider the
soft-voting case. For an input x ∈ Xd, the output of each tree is a set of proba-
bilities corresponding to each class, then the ensemble takes predicted class with
the highest mean probability estimate across the trees. We use ti(x) to denote
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predicted output of tree Ti and tji (x) to denote the probability of class j such
that

∑m
j=1 tji (x) = 1 where m is the number of classes. Then we can define the

predicted class of C as follows:

C(x) = argmax
j

1
k

k∑

i=1

tji (x) (3)

CNF Formula of Random Forests. The encoding of RF is a conjunction of
encodings of its trees. We use variable oi to constrain the output ti(x) of a tree
Ti and oji to constrain the probability tji (x) of class j. Let out be the constraint
of the predicted class. The entire RF model can be encoded as a Boolean formula
R(x) as follows:

R(x) :
k∧

i=1

Π(Ti) ∧ (
out = argmax

j

1
k

k∑

i=1

oji
)

(4)

It should be pointed out that the SMT solver can not directly deal with the
argmax function. We realized the argmax through the basic functions provided
by the solver.

5 Encoding of Robustness Properties

In the previous section, we have encoded the RF model into a CNF formula. Cor-
respondingly, we further construct the Boolean formula of robustness property
so that it can be verified on the SMT solver.

5.1 Verifying Adversarial Robustness

By Definition 1, we first encode the ||x − x′||p ≤ ε into a Boolean formula.
Formally, given an input x = <a1, ..., ad>, the maximum perturbation ε, an
adversarial input x′, then the perturbation constraint formula Δ(x, x′, ε) can be
defined as follows:

Δ(x, x′, ε) :
d∧

i=1

|ai − a′
i| ≤ ε (ai ∈ x, a′

i ∈ x′) (5)

We recall that the CNF formula R(x) of RF contains a variable out. The
value of out is the predicted class. So we only need to define out �= label(x) as
the output constraint formula, where label(x) is the true class of x. Then the
robustness verification problem of RF is transformed into finding whether there
exists an assignment x′ for a formula Φ, which is defined as follows:

Φ : R(x′) ∧ Δ(x, x′, ε) ∧ (
out �= label(x)

)
(6)
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Theorem 1 Given a random forests model C = <T1, ..., Tk>, an input sample
x ∈ Xd, its corresponding robustness formula is Φ. If Φ is satisfiable, then its
true assignment x′ ∈ Xd is an adversarial input of the model, and the robustness
property (cf. Definition 1) does not hold for model C and the input x. On the
contrary, if Φ is unsatisfiable, then the model C is robust with respect to x.

Proof Assuming that Φ is satisfiable, then there exist true assignments x′ and
O = {oi|1 ≤ i ≤ k}. By Formula (4) and (6), we can conclude that (out �=
label(x)) holds and every Π(Ti) that appears in R(x′) holds. Without loss of
generality, let us consider the formula Π(T1) of tree T1 evaluates to True, there
is a true assignment o1 ⊂ O. We first need to prove that the predicted result of
the tree T1 for x′ is the assignment o1, that t1(x′) = o1. By formula (2), there is
at least one leaf formula that evaluates to True. Following the definition of the
tree, each internal node has only one precursor node except the root node, so
we can ensure there is only one leaf formula that evaluates to True. Assume the
leaf formula is w(l0) and the value of the leaf l0 is vl0 . Then, let us consider the
decision process for input x′ in the tree T1. When x′ reaches an internal node n,
if the feature a′ ∈ x′ satisfies the condition (sn = (a′ ≤ η)) ∈ w(l0), x′ will be
passed to the left child nl or to the right child otherwise. Starting from the root
node, applying the decision rule recursively from the root node, x′ will end in the
leaf l0, then t1(x′) = vl0 . By Formula (1), we have o1 = vl0 , then we can conclude
that t1(x′) = o1. Similarly, we can conclude t2(x′) = o1, ..., tk(x′) = ok. For
the sake of description, we simplify Formula (3) as C(x′) = argmax(T (x′)). By
Formula (4), we have out = argmax(O), then we can conclude that C(x′) = out.
Since (out �= label(x)) is True, so the assignment x′ is the adversarial input of
the model C. Similarly, if Φ is unsatisfiable indicating there is no such an input
x′, such that the robustness holds. ��

Then we can use the SMT solver to determine whether the formula Φ is satis-
fiable. An UNSAT result means that the property holds. A SAT result indicates
that it does not hold and the solver provides a counterexample x′.

5.2 Verifying Universal Adversarial Robustness

By Definition 2, given an RF model C, a set of inputs N , for each xi ∈ N , we
can construct the formula of the adversarial robustness property Φi, and verify
if at least ρ-fraction of the inputs are robust in N . The property can be encoded
as:

|N |∧

i=1

(Φi ⇔ qi) ∧
|N |∑

i=1

qi ≥ ρ · |N | (7)

6 Robust Feature Set and Local Robustness Feature
Importance

This section is concerned with the relationship between features and the robust-
ness property. Firstly, we introduce the notion of robust feature set (RFS). The
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RFS can be used to explain the robustness over a single sample. Then we pro-
pose an algorithm for computing the local robustness feature importance (LRFI)
which reflects the impact of features on the robustness of classes.

6.1 Robust Feature Set

In the current verification of the robustness of tree-based models, when the
robustness verification fails, the verifier will return a counterexample, but when
the verification succeeds, no explanation information is given. So we purpose a
method to explain why the sample is still identified correctly when features are
permuted. In other words, we identify which features really affect the robustness
of the model. As a similar study, Chen et al. [6] showed that their algorithm
could find unimportant features, where any changes to one of those features alone
cannot alter the prediction. Their findings suggest that for a sample, features
may have different effects on its robustness. Based on our approach, we get a
similar characteristic of features in a sample x by obtaining the robust feature
set (RFS).

SMT solvers can produce minimal unsatisfiable cores (MUC) which is a sub-
set of the original sub-formula. MUC is used to prove unsatisfiability. When we
verify the robustness over sample x, we pass Φ into SMT solver, and an UNSAT
result indicates that a property holds, the solver can return the MUC of Φ.
Formally, we define the robust feature set as follows:

Definition 3 (Minimal Unsatisfiable Core). Let F be a CNF formula and
FC be the set of conjuncts in F , S ⊆ FC is the MUC of F iff whenever F is
unsatisfiable, S is unsatisfiable, and there is not S′′ ⊂ S that is also unsatisfiable.

Definition 4 (Robust Feature Set). Given an RF model C, an input x =
<a1, ..., ad> and the maximum perturbation ε. Let Φ be the robustness formula
and Φc be the set of conjuncts in Φ, Δ(x, x′, ε) ⊂ Φ be the perturbation constraint
formula and Δ be the set of conjuncts in Δ(x, x′, ε). The RFS can be defined as
follows:

1. Φ is unsatisfiable and S ⊆ Φc is the MUC.
2. RFS = {ai| ai is the feature which appears in Δs where Δs ⊆ Δ is the set of

clauses existing in S.}

Theorem 2 Given an RF model C, an input x ∈ Xd and the maximum pertur-
bation ε. If the values of features in the RFS are fixed, the values of any other
features are arbitrarily altered, the prediction result of this model on x will not
change.

Proof By Formula (4), we know that out is determined by R(x′) and Δ(x, x′, ε).
With loss of generality, we can convert formula Φ to a formula Φ′ := R(x′) ∧
Δ(x, x′, ε) ⇒ (out �= label(x)). The formula R(x′) depends on the structure of
model C, when model C is given, R(x′) is fixed. In this case, the satisfiability of
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formula Φ can be considered as related to Δ(x, x′, ε) only, so we do not need to
consider the case of R(x′) in this proof.

Let Φc be the set representation of the formula Φ′. Then Φc can be defined
as follows: Φc = R ∪ Δ ⇒ {o}. R is the set of conjuncts in formula R(x′), Δ
is the set of conjuncts in formula Δ(x, x′, ε) where Δ = {δi|0 ≤ i ≤ d, δi =
|ai − a′

i| ≤ ε} and o = (out �= label(x)). Assume Φc is unsatisfiable and S ⊆ Φc

is the MUC. First, we have Φc\{o} is satisfiable. Obviously, there is at least one
true assignment x′ = x that satisfies it. So o must exist in S, that is, o ∈ S. Let
Rs ⊆ R be the set of clauses existing in S and Δs ⊆ Δ be the set of clauses
existing in S. Then we have S = Rs ∪ Δs ∪ {o} and Φc\S = (Δ\Δs) ∪ (R\Rs).

By Definition 3 and 4, we can get the RFS which is a set of features that
appear in Δs. Each feature as ∈ RFS corresponds to a clause of Δs. Similarly,
each feature ao ∈ Xd\RFS also corresponds to a clause of Δ\Δs. The Formula
(5) represents the perturbation constraints on the features of input x, if δ ∈ Δ
evaluates to True, the perturbation value of the feature a cannot exceed ε. On
the contrary, if δ evaluates to False, the perturbation value exceeds ε. So the
True or False of the clause represents the perturbation range of the feature.
According to the characteristics of MUS, we have every clause corresponding to
each feature ao ∈ Xd\RFS does not participate in the unsatisfiability of Φ. Since
S = Rs ∪Δs ∪{o} is unsatisfiable, we can conclude every δs ∈ Δs holds, that is,
the perturbation value of each feature cannot exceed ε. Here we only consider
the case where the value of feature is fixed such that every δs = |as − a′

s| = 0
evaluates to True. Since Φc = R ∪ Δ ⇒ {o} is unsat, then Φ′

c = R ∪ Δ ⇒ ¬o is
valid, ¬o = (out = label(x)), that is, the predicted result of the model for x is
label(x). ��

According to the Theorem 2, if the values of the features in RFS are fixed,
any perturbation outside the set cannot change the prediction. In other words,
the features in RFS have a greater impact on the robustness over the sample for
a disturbance value of ε. See Fig. 2.

6.2 Local Robustness Feature Importance

Based on the RFS, we can further analyze the influence of features on the robust-
ness of a specific class (e.g. class “0” in the classification task of MNIST dataset),
we introduced the local robustness feature importance (LRFI).

Algorithm 1 shows our process for computing LRFI of class y. As input, the
algorithm takes an RF model C, a robust testing set N of the class y where robust
means the verification results of inputs are UNSAT, the maximum perturbation
ε, the feature set Xd. It returns LRFI of class y, and proceeds in three basic steps:
(1) obtain all the RFS for the samples in testing set N according to Definition
4, then save them into a set S. (2) count the number of occurrences of each
feature a ∈ Xd in S. (3) apply min-max normalization to numbers, then return
LRFI, which are normalized within the range [0,1]. Finally, the LRFI for class y
is computed as the frequency of feature occurrence in the RFS of all the samples
in N .
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Algorithm 1: Local Robust Feature Importance of Class y

Input: An RF model C, a robust testing set N = {xi|0 ≤ i ≤ |N |, C(xi) = y},
the maximum perturbation ε, the feature set Xd = {ai|0 ≤ i ≤ d}.

Output: LRFI of class y.
1 begin
2 S ← ∅ ; // S is a set

3 V ← ∅ ; // V is a set

4 forall x ∈ N do
5 Φx ← R(x′) ∧ Δ(x, x′, ε) ∧ (out = y) ;
6 UNSAT ← solver(Φx) ;
7 RFSx ← get the robust feature set of x using Definition 4 ;
8 add RFSx to S ;

9 end

10 forall a ∈ Xd do
11 na ← 0 ; // na is the number of feature a occurrence in S

12 forall RFSx ∈ S do
13 if a ∈ RFSx then
14 na ← na + 1 ;
15 end

16 end
17 add (a, na) to V ;

18 end
// obtain the minimum/maximum number of feature occurrences

19 minn = MIN(V ) ;
20 maxn = MAX(V ) ;
21 forall (a, na) ∈ V do
22 n′

a ← (na − minn)/(maxn − minn) ;
23 add (a, n′

a) to LRFI ;

24 end
25 return LRFI

26 end

The LRFI reflects the influence of features on the robustness of this class
in the model. The greater the importance value of features is, the greater the
influence of features on the robustness of the class will be, on the contrary, the less
the influence will be. Through our experiments, we find that the features altered
around the basic shape of the class have a greater impact on its robustness.
Compared with the feature located in the shape, the features around the shape
are more likely to affect the robustness of the class. See Fig. 3.

7 Experiments and Analysis

We use the scikit-learn implementation of the random forests to deploy our
method. We evaluate our methods by verifying the robustness property in two
public large scale datasets: MNIST and Fashion-MNIST which can be found
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on OpenML [20]. Each dataset contains 70,000 images. The images are of size
28 × 28 pixels. Experiments were conducted on a machine with an Intel Core
i7-5960X CPU and 32 GB RAM. We have implemented our method in VARF
(Verify and Analysis Random Forests) tool based on Python, and the underlying
SMT solver is z3 [10]. For each dataset, we randomized the dataset and split it
into two subsets: a 80% training set, and a 20% test set. Then we randomly
picked 100 images from the test set for each of the 10 classes, the size of each
robustness test dataset is 1000. The timeout is 120 s for each instance to solve.

Fig. 1. Adversarial examples.

Figure 1 shows two examples that the adversarial robustness property does
not hold for ε = 1. The first column represents the original inputs, and the
second shows the adversarial sample corresponding to the first. The altered pixels
between them are marked in the third column. In the first example, an image
of “8” is misclassified as “3”. The second example, “Trouser” is misclassified as
“Dress”. As can be seen from these pictures, the differences are sometimes so
small that they are indistinguishable for the human eye. So it is necessary to
verify the robustness of RF models.

We show the samples which satisfy the adversarial robustness property with
ε = 3 from the two datasets in Fig. 2. These samples are correctly identified by
the models. The picture on the right shows the RFS of the sample. We mark
pixels of RFS with red rectangles. According to our conclusion, keeping the
pixels in the robust feature set fixed and flipping any other pixels to any valid
value cannot fool the model. According to the characteristic of the RFS, we can
use our method to improve the efficiency of the adversarial sample generation
technique [7].
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Fig. 2. Robust feature set.

Figure 3 shows the LRFI of different classes in two datasets with ε = 1, the
left displays the result of class “0” in MNIST and the right shows the result
of class “Sneaker” in Fashion-MNIST. The more yellow pixels there are, the
greater influence the feature has that affects the robustness of the class. It can
be observed that the more influential features are distributed around the basic
shape of the class. It’s important to note that besides the two classes we present,
the others also have the same characteristics.

The line chart Fig. 4 presents the robustness comparison of classes in the two
datasets. The left part shows the results of MNIST. We can observe that there are
several classes (e.g. class “0”, “2”, “6”, “8”) whose robustness rises slightly with
the increasing number of trees. The results have an obvious fluctuation in the

Fig. 3. Local robustness feature importance.
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Fig. 4. Robustness of classes.

Fig. 5. Verifying time of our method on MNIST.

classes “4”, “5”, “7”, “9”. Besides, the robustness of class “1” always stays at a
very low value. There is a significant difference between class “1” and the others.
The gap is roughly between 40% and 80%. By contrast, the robustness of classes
in the Fashion-MNIST (the right part) remains stable overall. However, the class
“Shirt” is less robust than the others, and there is no such class whose robustness
is very low robustness to pull down the overall robustness. Experimental results
show that it is not accurate to focus on the robustness of the model as a whole.
Furthermore, it indicates that the robustness verification of the model should
be specific to each class to provide model users with a more helpful robustness
testing result.

Table 1 summarizes the results for models trained with different parameters
for the MNIST dataset. Note that for a fixed tree depth, the portion of failure is
negatively correlated with the number of trees and the number of trees does not
have an obvious influence on robustness. The verified portion ρ decreases with
increasing ε because the adversary can leverage the larger ε value to construct
adversarial images.
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Table 1. The robustness of models trained with different parameters for the MNIST
dataset.

Trees Depth Accuracy ε = 1 ε = 3

Verified(ρ) Timeout Failed Verified(ρ) Timeout Failed

25 5 84% 45.71% 0% 54.29% 9.64% 0.12% 90.24%

50 5 85% 54.68% 0% 45.32% 13.58% 2.69% 83.72%

75 5 86% 48.77% 5.61% 45.61% 9.24% 13.68% 77.08%

100 5 86% 54.07% 14.53% 31.40% 13.02% 21.74% 65.23%

25 8 91% 61.47% 0% 38.53% 9.88% 0.11% 90.01%

50 8 93% 61.02% 0% 38.98% 14.36% 3.02% 82.61%

75 8 92% 63.63% 5.32% 31.05% 12.81% 17.05% 70.14%

100 8 93% 63.48% 15.04% 21.48% 16.86% 24.81% 58.32%

25 10 93% 64.34% 0% 35.66% 14.18% 0% 85.82%

50 10 95% 63.21% 0% 36.79% 17.34% 0.53% 82.14%

75 10 94% 75.32% 5.32% 19.36% 13.83% 4.57% 81.60%

100 10 95% 66.84% 8.74% 24.42% 15.16% 14.21% 70.63%

100 32 96% 78.40% 0% 21.60% 11.70% 0% 88.30%

100 64 98% 54.78% 0% 45.22% 6.40% 0% 93.60%

Performance Analysis. In the paper [11], the authors purpose an optimization
method named “safe pruning”. The pruning can trim unreachable part of the
search space to accelerate the verification for SMT solver. During the encoding
of the model, the method removes all unsatisfiable leaf clauses with respect to
the maximum perturbation ε. We adopt the method to enhance the scalability
of VARF. In Fig. 5, it shows the average time of solved sample validation for
different scale models. Solved in this context means that VARF can give a definite
result instead of timeout for a sample. Obviously, with the increase of scale,
the validation time also increases. In Table 1, the verification results of some
samples are timeout, which means that SMT solver cannot give a definite result.
It indicates the limitations of our method.

8 Conclusions and Future Work

By using our method, we can effectively verify the robustness of random forests
models and propose a method to extract the robust feature set of a robust sam-
ple to explain the robustness. An algorithm of computing the local robustness
feature importance is provided to demonstrate that the impact of features is
different based on the robustness of classes. Furthermore, the generated antag-
onistic samples can be added to the training set to train more robust models.

There are some future work that we would like to explore. It should be possi-
ble to combine all the trees into one large tree, and simplify to a slightly smaller
tree. Then we can verify the simplified tree, which may increase the scalability of
our method. In addition, we will try to verify more reliability-related properties,
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such as liveness, whether the model will produce certain predicted results if
certain features of the input are met.
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Abstract. This work provides a study to demonstrate the potential of
using off-the-shelf programming languages and their theories to build
sound language-based-security tools. Our study focuses on informa-
tion flow security encompassing declassification policies that allow us
to express flexible security policies needed for practical requirements.
We translate security policies, with declassification, into an interface for
which an unmodified standard typechecker can be applied to a source
program—if the program typechecks, it provably satisfies the policy. Our
proof reduces security soundness—with declassification—to the mathe-
matical foundation of data abstraction, Reynolds’ abstraction theorem.

1 Introduction

A longstanding challenge for software systems is the enforcement of security
in applications implemented in conventional general-purpose programming lan-
guages. For high assurance, precise mathematical definitions are needed for poli-
cies, enforcement mechanism, and program semantics. The latter, in particular,
is a major challenge for languages in practical use. In order to minimize the
cost of assurance, especially over time as systems evolve, it is desirable to lever-
age work on formal modeling with other goals such as functional verification,
equivalence checking, and compilation.

To be auditable by stakeholders, policy should be expressed in an accessible
way. This is one of several reasons why types play an important role in many
works on information flow (IF) security. For example, Flowcaml [33] and Jif [26]
express policy using types that include IF labels. They statically enforce policy
using dedicated IF type checking and inference. Techniques from type theory are
also used in security proofs such as those for Flowcaml and the calculus DCC [1].

IF is typically formalized as the preservation of indistinguishability rela-
tions between executions. Researchers have hypothesized that this should be an
instance of a celebrated semantics basis in type theory: relational parametric-
ity [36]. Relational parametricity provides an effective basis for formal reasoning
about program transformations (“theorems for free” [49]), representation inde-
pendence and information hiding for program verification [6,25]. The connection
between IF and relational parametricity has been made precise in 2015, for DCC,
by translation to the calculus Fω and use of the existing parametricity theorem
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for Fω [12]. The connection is also made, perhaps more transparently, in a trans-
lation of DCC to dependent type theory, specifically the calculus of constructions
and its parametricity theorem [4].

In this work, we advance the state of the art in the connection between
IF and relational parametricity, guided by three main goals. One of the goals
motivating our work is to reduce the burden of defining dedicated type checking,
inference, and security proofs for high assurance in programming languages. A
promising approach towards this goal is the idea of leveraging type abstraction to
enforce policy, and in particular, leveraging the parametricity theorem to obtain
security guarantees. A concomitant goal is to do so for practical IF policies that
encompass selective declassification, which is needed for most policies in practice.
For example, a password checker program or a program that calculates aggregate
or statistical information must be considered insecure without declassification.

To build on the type system and theory of a language without a priori IF
features, policy needs to be encoded somehow, and the program may need to be
transformed. For example, to prove that a typechecked DCC term is secure with
respect to the policy expressed by its type, Bowman and Ahmed [12] encode
the typechecking judgment by nontrivial translation of both types and terms
into Fω. Any translation becomes part of the assurance argument. Most likely,
complicated translation will also make it more difficult to use extant type check-
ing/inference (and other development tools) in diagnosing security errors and
developing secure code. This leads us to highlight a third goal, needed to achieve
the first goal, namely to minimize the complexity of translation.

There is a major impediment to leveraging type abstraction: few languages
are relationally parametric or have parametricity theorems. The lack of para-
metricity can be addressed by focusing on well behaved subsets and leveraging
additional features like ownership types that may be available for other pur-
poses (e.g., in the Rust language). As for the paucity of parametricity theorems,
we take hope in the recent advances in machine-checked metatheory, such as
correctness of the CakeML and CompCert compilers, the VST logic for C, the
relational logic of Iris. For parametricity specifically, the most relevant work is
Crary’s formal proof of parametricity for the ML module calculus [14].

Contributions. Our first contribution is to translate policies with declassifica-
tion—in the style of relaxed noninterference [24]—into abstract types in a func-
tional language, in such a way that typechecking the original program implies its
security. For doing so, we neither rely on a specialized security type system [12]
nor on modifications of existing type systems [15]. A program that typechecks
may use the secret inputs parametrically, e.g., storing in data structures, but
cannot look at the data until declassification has been applied. Our second con-
tribution is to prove security by direct application of a parametricity theorem.
We carry out this development for the polymorphic lambda calculus, using the
original theorem of Reynolds. We also provide an extended version [29] that
shows this development for the ML module calculus using Crary’s theorem [14],
enabling the use of ML to check security.
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2 Background: Language and Abstraction Theorem

To present our results we choose the simply typed and call-by-value lambda
calculus, with integers and type variables, for two reasons: (1) the chosen lan-
guage is similar to the language used in the paper of Reynolds [36] where the
abstraction theorem was first proven, and (2) we want to illustrate our encoding
approach (Sect. 4) in a minimal calculus. This section defines the language we
use and recalls the abstraction theorem, a.k.a. parametricity. Our language is
very close to the one in Reynolds [36, Sect. 2]; we prove the abstraction theorem
using contemporary notation.1

Language. The syntax of the language is as below, where α denotes a type
variable, x a term variable, and n an integer value. A value is closed when there
is no free term variable in it. A type is closed when there is no type variable in
it.

τ ::= int | α | τ1 × τ2 | τ1 → τ2 Types
v ::= n | 〈v, v〉 | λx : τ.e Values
e ::= x | v | 〈e, e〉 | πie | e1e2 Terms
E ::= [.] | 〈E, e〉 | 〈v,E〉 | πiE | E e | v E Eval. Contexts

We use small-step semantics, with the reduction relation � defined inductively
by these rules.

πi〈v1, v2〉 � vi (λx : τ.e)v � e[x �→ v]
e � e′

E[e] � E[e′]

We write e[x �→ e′] for capture-avoiding substitution of e′ for free occurrences
of x in e. We use parentheses to disambiguate term structure and write �

∗ for
the reflexive, transitive closure of �.

A typing context Δ is a set of type variables. A term context Γ is a mapping
from term variables to types, written like x : int, y : int → int. We write Δ � τ
to mean that τ is well-formed w.r.t. Δ, that is, all type variables in τ are in Δ.
We say that e is typable w.r.t. Δ and Γ (denoted by Δ,Γ � e) when there exists
a well-formed type τ such that Δ,Γ � e : τ . The derivable typing judgments are
defined inductively in Fig. 1. The rules are to be instantiated only with Γ that
is well-formed under Δ, in the sense that Δ � Γ (x) for all x ∈ dom(Γ ). When
the term context and the type context are empty, we write � e : τ .

Logical Relation. The logical relation is a type-indexed family of relations on
values, parameterized by given relations for type variables. From it, we derive a
relation on terms. The abstraction theorem says the latter is reflexive.

1 Some readers may find it helpful to consult the following references for background
on logical relations and parametricity: [22, Chapt. 49], [25, Chapt. 8], [13,31].
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Fig. 1. Typing rules

Let γ be a term substitution, i.e., a finite map from term variables to closed
values, and δ be a type substitution, i.e., a finite map from type variables to
closed types. In symbols:

γ ::= . | γ, x �→ v Term Substitutions
δ ::= . | δ, α �→ τ, where � τ Type Substitutions

We say γ respects Γ (denoted by γ |= Γ ) when dom(γ) = dom(Γ ) and � γ(x) :
Γ (x) for any x. We say δ respects Δ (denoted by δ |= Δ) when dom(δ) = Δ.
Let Rel(τ1, τ2) be the set of all binary relations over closed values of closed
types τ1 and τ2. Let ρ be an environment, a mapping from type variables to
relations R ∈ Rel(τ1, τ2). We write ρ ∈ Rel(δ1, δ2) to say that ρ is compatible
with δ1, δ2 as follows: ρ ∈ Rel(δ1, δ2) � dom(ρ) = dom(δ1) = dom(δ2) ∧ ∀α ∈
dom(ρ). ρ(α) ∈ Rel(δ1(α), δ2(α)). The logical relation is inductively defined in
Fig. 2, where ρ ∈ Rel(δ1, δ2) for some δ1 and δ2. For any τ , [[τ ]]ρ is a relation on
closed values. In addition, [[τ ]]evρ is a relation on terms.

Lemma 1. Suppose that ρ ∈ Rel(δ1, δ2) for some δ1 and δ2. For i ∈ {1, 2}, it
follows that:

– if 〈v1, v2〉 ∈ [[τ ]]ρ, then � vi : δi(τ), and
– if 〈e1, e2〉 ∈ [[τ ]]evρ , then � ei : δi(τ).

We write δ(Γ ) to mean a term substitution obtained from Γ by applying δ
on the range of Γ , i.e.:

dom(δ(Γ )) = dom(Γ ) and ∀x ∈ dom(Γ ). δ(Γ )(x) = δ(Γ (x)).

Suppose that Δ,Γ � e : τ , δ |= Δ, and γ |= δ(Γ ). Then we write δγ(e) to
mean the application of γ and then δ to e. For example, suppose that δ(α) = int,
γ(x) = n for some n, and α, x : α � λy : α.x : α → α, then δγ(λy : α.x) = λy :
int.n. We write 〈γ1, γ2〉 ∈ [[Γ ]]ρ for some ρ ∈ Rel(δ1, δ2) when γ1 |= δ1(Γ ),
γ2 |= δ2(Γ ), and 〈γ1(x), γ2(x)〉 ∈ [[Γ (x)]]ρ for all x ∈ dom(Γ ).
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Fig. 2. The logical relation

Definition 1 (Logical equivalence). Terms e and e′ are logically equivalent
at τ in Δ and Γ (written Δ,Γ � e ∼ e′ : τ) if Δ,Γ � e : τ , Δ,Γ � e′ : τ ,
and for all δ1, δ2 |= Δ, all ρ ∈ Rel(δ1, δ2), and all 〈γ1, γ2〉 ∈ [[Γ ]]ρ, we have
〈δ1γ1(e), δ2γ2(e′)〉 ∈ [[τ ]]evρ .

Theorem 1 (Abstraction [36]). If Δ,Γ � e : τ , then Δ,Γ � e ∼ e : τ .

3 Declassification Policies

Confidentiality policies can be expressed by information flows of confidential
sources to public sinks in programs. Confidential sources correspond to the
secrets that the program receives and public sinks correspond to any results
given to a public observer, a.k.a. the attacker. These flows can either be direct—
e.g. if a function, whose result is public, receives a confidential value as input and
directly returns the secret—or indirect—e.g. if a function, whose result is pub-
lic, receives a confidential boolean value and returns 0 if the confidential value is
false and 1 otherwise. Classification of program sources as confidential or public,
a.k.a. security policy, must be given by the programmer or security engineer: for
a given security policy the program is said to be secure for noninterference if
public resources do not depend on confidential ones. Thus, noninterference for
a program means total independence between public and confidential informa-
tion. As simple and elegant as this information flow policy is, noninterference
does not permit to consider as secure programs that purposely need to release
information in a controlled way: for example a password-checker function that
receives as confidential input a boolean value representing if the system password
is equal to the user’s input and returns 0 or 1 accordingly. In order to consider
such intended dependences of public sinks from confidential sources, we need to
consider more relaxed security policies than noninterference, a.k.a. declassifica-
tion policies. Declassification security policies allow us to specify controlled ways
to release confidential inputs [39].

Declassification policies that we consider in this work map confidential
inputs to functions, namely declassification functions. These functions allow the
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programmer to specify what and how information can be released. The formal
syntax for declassification functions in this work is given below,2 where n is an
integer value, and ⊕ represents primitive arithmetic operators.

τ ::= int | τ → τ Types
e ::= λx : τ.e | e e | x | n | e ⊕ e Terms
f ::= λx : int.e Declass. Functions

The static and dynamic semantics are standard. To simplify the presentation we
suppose that the applications of primitive operators on well-typed arguments
terminates. Therefore, the evaluations of declassification functions on values ter-
minate. A policy simply defines which are the confidential variables and their
authorized declassifications. For policies we refrain from using concrete syntax
and instead give a simple formalization that facilitates later definitions.

Definition 2 (Policy). A policy P is a tuple 〈VP ,FP〉, where VP is a finite
set of variables for confidential inputs, and FP is a partial mapping from vari-
ables in VP to declassification functions.

For simplicity we require that if f appears in the policy then it is a closed term
of type int → τf for some τf . In the definition of policies, if a confidential input
is not associated with a declassification function, then it cannot be declassified.

Example 1 (Policy POE using f). Consider policy POE given by 〈VPOE
,FPOE

〉
where VPOE

= {x} and FPOE
(x) = f = λx : int. xmod 2. Policy POE states that

only the parity of the confidential input x can be released to a public observer.

4 Type-Based Declassification

In this section, we show how to encode declassification policies as standard types
in the language of Sect. 2, we define and we prove our free theorem. We consider
the termination-insensitive [30] information flow security property,3 with declas-
sification, called type-based relaxed noninterference (TRNI) and taken from Cruz
et al. [15]. It is important to notice that our development, in this section, studies
the reuse for security of standard programming languages type systems together
with soundness proofs for security for free by using the abstraction theorem.
In contrast, Cruz et al [15] use a modified type system for security and prove
soundness from scratch, without apealing to parametricity.

Through this section, we consider a fixed policy P (see Definition 2) given
by 〈VP ,FP〉. We treat free variables in a program as inputs and, without loss of
generality, we assume that there are two kinds of inputs: integer values, which are

2 In this paper, the type of confidential inputs is int.
3 Our security property is termination sensitive but programs in the language always

terminate. In the extended version [29], in the development for ML, programs may
not terminate and the security property is also termination sensitive.
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considered as confidential, and declassification functions, which are fixed accord-
ing to policy. A public input can be encoded as a confidential input that can be
declassified via the identity function. We consider terms without type variables
as source programs. That is we consider terms e s.t. for all type substitutions δ,
δ(e) is syntactically the same as e.4

4.1 Views and Indistinguishability

In order to define TRNI we define two term contexts, called the confidential
view and public view. The first view represents an observer that can access
confidential inputs, while the second one represents an observer that can only
observe declassified inputs. The views are defined using fresh term and type
variables.

Confidential View. Let V� = {x | x ∈ VP \ dom(FP)} be the set of inputs that
cannot be declassified. First we define the encoding for these inputs as a term
context:

ΓP
C,� � {x : int | x ∈ V�}.

Next, we specify the encoding of confidential inputs that can be declassified. To
this end, define 〈〈 , 〉〉C as follows, where f : int → τf is in P.

〈〈x, f〉〉C � {x : int, xf : int → τf}
Finally, we write ΓP

C for the term context encoding the confidential view for P.

ΓP
C � ΓP

C,� ∪
⋃

x∈dom(FP)

〈〈x,FP(x)〉〉C .

We assume that, for any x, the variable xf in the result of 〈〈x,FP(x)〉〉C is
distinct from the variables in VP , distinct from each other, and distinct from
xf ′ for distinct f ′. We make analogous assumptions in later definitions.

From the construction, ΓP
C is a mapping, and for any x ∈ dom(ΓP

C ), it follows
that ΓP

C (x) is a closed type. Therefore, ΓP
C is well-formed for the empty set of

type variables, so it can be used in typing judgments of the form ΓP
C � e : τ .

Example 2 (Confidential view). For POE in Example 1, the confidential view is:
ΓPOE

C = x : int, xf : int → int.

Public View. The basic idea is to encode policies by using type variables. First
we define the encoding for confidential inputs that cannot be declassified. We
define a set of type variables, ΔP

P,� and a mapping ΓP
P,� for confidential inputs

that cannot be declassified.

ΔP
P,� � {αx | x ∈ V�} ΓP

P,� � {x : αx | x ∈ V�}
4 An example of a term with type variables is λx : α.x. We can easily check that there

exists a type substitutions δ s.t. δ(e) is syntactically different from e (e.g. for δ s.t.
δ(α) = int, δ(e) = λx : int.x).
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This gives the program access to x at an opaque type.
In order to define the encoding for confidential inputs that can be declassified,

we define 〈〈 , 〉〉P :

〈〈x, f〉〉P � 〈{αf}, {x : αf , xf : αf → τf}〉

The first form will serve to give the program access to x only via function variable
xf that we will ensure is interpreted as the policy function f . We define a type
context ΔP

P and term context ΓP
P that comprise the public view, as follows.

〈ΔP
P , ΓP

P 〉 � 〈ΔP
P,�, ΓP

P,�〉 ∪
⋃

x∈dom(FP)

〈〈x,FP(x)〉〉P ,

where 〈S1, S
′
1〉 ∪ 〈S2, S

′
2〉 = 〈S1 ∪ S2, S

′
1 ∪ S′

2〉.
Example 3 (Public view). For POE, the typing context in the public view has
one type variable: ΔPOE

P = αf . The term context in the public view is ΓPOE

P =
x : αf , xf : αf → int.

From the construction, ΓP
P is a mapping, and for any x ∈ dom(ΓP

P ), it follows
that ΓP

P (x) is well-formed in ΔP
P (i.e. ΔP

P � ΓP
P (x)). Thus, ΓP

P is well-formed in
the typing context ΔP

P . Therefore, ΔP
P and ΓP

P can be used in typing judgments
of the form ΔP

P , ΓP
P � e : τ .

Notice that in the public view of a policy, types of variables for confidential
inputs are not int. Thus, the public view does not allow programs where concrete
declassifiers are applied to confidential input variables even when the applications
are semantically correct according to the policy (e.g. for POE, the program f x
does not typecheck in the public view). Instead, programs should apply named
declassifers (e.g. for POE, the program xf x is well-typed in the public view).

Indistinguishability. The security property TRNI is defined in a usual way, using
partial equivalence relations called indistinguishability. To define indistinguisha-
bility, we define a type substitution δP such that δP |= ΔP

P , as follows:

for all αx, αf in ΔP
P , let δP(αx) = δP(αf ) = int. (1)

The inductive definition of indistinguishability for a policy P is presented
in Fig. 3, where αx and αf are from ΔP

P . Indistinguishability is defined for τ
s.t. ΔP

P , ΓP
P � τ . The definitions of indistinguishability for int and τ1 × τ2 are

straightforward. We say that two functions are indistinguishable at τ1 → τ2 if
on any indistinguishable inputs they generate indistinguishable outputs. Since
we use αx to encode confidential integer values that cannot be declassified, any
integer values v1 and v2 are indistinguishable, according to rule Eq-Var1. Notice
that δP(αx) = int. Since we use αf to encode confidential integer values that
can be declassified via f where � f : int → τf , we say that 〈v1, v2〉 ∈ IV [[αf ]]
when 〈f v1, f v2〉 ∈ IE [[τf ]].



Type-Based Declassification for Free 189

Fig. 3. Indistinguishability

Example 4 (Indistinguishability). For POE (of Example 1), two values v1 and v2
are indistinguishable at αf when both of them are even numbers or odd numbers.

IV [[αf ]] = {〈v1, v2〉 | � v1 : int, � v2 : int, (v1 mod 2) =int (v2 mod 2)}.

We write e1 =int e2 to mean that e1 �
∗ v and e2 �

∗ v for some integer value v.

Term substitutions γ1 and γ2 are called indistinguishable w.r.t. P (denoted
by 〈γ1, γ2〉 ∈ IV [[P]]) if the following hold.

– γ1 |= δP(ΓP
P ) and γ2 |= δP(ΓP

P ),
– for all xf ∈ dom(ΓP

P ), γ1(xf ) = γ2(xf ) = f ,
– for all other x ∈ dom(ΓP

P ), 〈γ1(x), γ2(x)〉 ∈ IV [[ΓP
P (x)]].

Note that each γi maps xf to the specific function f in the policy. Input variables
are mapped to indistinguishable values.

We now define type-based relaxed noninterference w.r.t. P for a type τ well-
formed in ΔP

P . It says that indistinguishable inputs lead to indistinguishable
results.

Definition 3. A term e is TRNI(P, τ) provided that ΓP
C � e, and ΔP

P � τ , and
for all 〈γ1, γ2〉 ∈ IV [[P]] we have 〈γ1(e), γ2(e)〉 ∈ IE [[τ ]].

Notice that if a term is well-typed in the public view then by replacing all type
variables in it with int, we get a term which is also well-typed in the confidential
view (that is, if ΔP

P , ΓP
P � e : τ , then ΓP

C � δ(e) : δ(τ) where δ maps all type
variables in ΔP

P to int). However, Definition 3 also requires that the term e is
itself well-typed in the confidential view. This merely ensures that the definition
is applied, as intended, to programs that do not contain type variables.

The definition of TRNI is indexed by a type for the result of the term. The
type can be interpreted as constraining the observations to be made by the public
observer. We are mainly interested in concrete output types, which express that
the observer can do whatever they like and has full knowledge of the result. Put
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differently, TRNI for an abstract type expresses security under the assumption
that the observer is somehow forced to respect the abstraction. Consider the
policy POE (of Example 1) where x can be declassified via f = λx : int.xmod 2.
As described in Example 3, ΔPOE

P = αf and ΓPOE

P = x : αf , xf : αf → int. We
have that the program x is TRNI(POE, αf ) since the observer cannot do anything
to x except for applying f to x which is allowed by the policy. This program,
however, is not TRNI(POE, int) since the observer can apply any function of
the type int → τ ′ (for some closed τ ′), including the identity function, to x and
hence can get the value of x.

Example 5. The program xf x is TRNI(POE, int). Indeed, for any arbitrary
〈γ1, γ2〉 ∈ IV [[P]], we have that γ1(xf ) = γ2(xf ) = f = λx : int.x mod 2, and
〈v1, v2〉 ∈ IV [[αf ]], where γ1(x) = v1 and γ2(x) = v2 for some v1 and v2. When
we apply γ1 and γ2 to the program, we get respectively v1 mod 2 and v2 mod 2.
Since 〈v1, v2〉 ∈ IV [[αf ]], as described in Example 4, (v1 mod 2) =int (v2 mod 2).
Thus, 〈γ1(xf x), γ2(xf x)〉 ∈ IE [[int]]. Therefore, the program xf x satisfies the
definition of TRNI.

4.2 Free Theorem: Typing in the Public View Implies Security

In order to prove security “for free”, i.e., as consequence of Theorem 1, we define
ρP as follows:

– for all αx ∈ ΔP
P , ρP(αx) = IV [[αx]],

– for all αf ∈ ΔP
P , ρP(αf ) = IV [[αf ]].

It is a relation on the type substitution δP defined in Eq. (1).

Lemma 2. ρP ∈ Rel(δP , δP).

From Lemma 2, we can write [[τ ]]ρP or [[τ ]]evρP for any τ such that ΔP
P � τ .

We next establish the relation between [[τ ]]evρ and IE [[τ ]]: under the interpreta-
tion corresponding to the desired policy P, they are equivalent. In other words,
indistinguishability is an instantiation of the logical relation.

Lemma 3. For any τ such that ΔP
P � τ , we have 〈v1, v2〉 ∈ [[τ ]]ρP iff 〈v1, v2〉 ∈

IV [[τ ]], and also 〈e1, e2〉 ∈ [[τ ]]evρP iff 〈e1, e2〉 ∈ IE [[τ ]].

By analyzing the type of ΓP
P (x), we can establish the relation of γ1 and γ2

when 〈γ1, γ2〉 ∈ IV [[P]].

Lemma 4. If 〈γ1, γ2〉 ∈ IV [[P]], then 〈γ1, γ2〉 ∈ [[ΓP
P ]]ρP .

The main result of this section is that a term is TRNI at τ if it has type τ
in the public view that encodes the policy.

Theorem 2. If e has no type variables and ΔP
P , ΓP

P � e : τ , then e is
TRNI(P, τ).
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Proof. From the abstraction theorem (Theorem 1), for all δ1, δ2 |= ΔP
P , for all

〈γ1, γ2〉 ∈ [[ΓP
P ]]ρ, and for all ρ ∈ Rel(δ1, δ2), it follows that

〈δ1γ1(e), δ2γ2(e)〉 ∈ [[τ ]]evρ .

Consider 〈γ1, γ2〉 ∈ IV [[P]]. Since 〈γ1, γ2〉 ∈ IV [[P]], from Lemma 4, we have
that 〈γ1, γ2〉 ∈ [[ΓP

P ]]ρP . Thus, we have that 〈δPγ1(e), δPγ2(e)〉 ∈ [[τ ]]evρP . Since e
has no type variable, we have that δPγi(e) = γi(e). Therefore, 〈γ1(e), γ2(e)〉 ∈
[[τ ]]evρP . Since 〈γ1(e), γ2(e)〉 ∈ [[τ ]]evρP , from Lemma 3, it follows that 〈γ1(e), γ2(e)〉 ∈
IE [[τ ]]. In addition, since e has no type variable and ΔP

P , ΓP
P � e : τ , we have

that δP(ΓP
P ) � e : δP(τ) and hence, ΓP

C � e. Therefore, e is TRNI(P, τ).

Example 6 (Typing implies TRNI). Consider the policy POE. As described in
Examples 2 and 3, the confidential view ΓPOE

C is x : int, xf : int → int and the
public view ΔPOE

P , ΓPOE

P is αf , x : αf , xf : αf → int. We look at the program
xf x. We can easily verify that ΓPOE

C � xf x : int and ΔPOE

P , ΓPOE

P � xf x : int.
Therefore, by Theorem 2, the program is TRNI(POE, int).

Example 7. If a program is well-typed in the confidential view but not
TRNI(P, τ) for some τ well-formed in the public view of P, then the type of the
program in the public view is not τ or the program is not well-typed in the public
view. In policy POE, from Example 6, the public view is αf , x : αf , xf : αf → int.
We first look at the program x that is not TRNI(POE, int) since x itself is con-
fidential and cannot be directly declassified. In the public view of the policy,
the type of this program is αf which is not int. We now look at the program
x mod 3 that is not TRNI(POE, αf ) since it takes indistinguishable inputs at αf

(e.g. 2 and 4) and produces results that are not indistinguishable at αf (e.g.
2 = 2 mod 3, 1 = 4 mod 3, and 〈2, 1〉 ∈ IV [[αf ]]). We can easily verify that this
program is not well-typed in the public view since the type of x in the public
view is αf , while mod expects arguments of the int type.

Remark 1 (Extension). Our encoding can be extended to support richer policies
(details in appendix). To support policies where an input x can be declassified
via two declassifiers f : int → τf and g : int → τg for some τf and τg, we use
type variable αf,g as the type for x and use αf,g → τf and αf,g → τg as types for
xf and xg. To support policies where multiple inputs can be declassified via a
declassifier, e.g. inputs x and y can be declassified via f = λz : int× int.(π1z +
π2z)/2, we introduce a new term variable z which is corresponding to a tuple
of two inputs x and y and we require that only z can be declassified. The type
of z is αf and two tuples 〈v1, v2〉 and 〈v′

1, v
′
2〉 are indistinguishable at αf when

f 〈v1, v2〉 = f 〈v′
1, v

′
2〉.

5 Related Work

Typing Secure Information Flow. Pottier and Simonet [32] implement Flow-
Caml [33], the first type system for information flow analysis dealing with a
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real-sized programming language (a large fragment of OCaml), and they prove
soundness. In comparison with our results, we do not consider any imperative
features; they do not consider any form of declassification, their type system sig-
nificantly departs from ML typing, and their security proof is not based on an
abstraction theorem. An interesting question is whether their type system can be
translated to system F or some other calculus with an abstraction theorem. Flow-
Caml provides type inference for security types. Our work relies on the Standard
ML type system to enforce security. Standard ML provides type inference, which
endows our approach with an inference mechanism. Barthe et al. [9] propose a
modular method to reuse type systems and proofs for noninterference [40] for
declassification. They also provide a method to conclude declassification sound-
ness by using an existing noninterference theorem [37]. In contrast to our work,
their type system significantly departs from standard typing rules, and does
not make use of parametricity. Tse and Zdancewic [46] propose a security-typed
language for robust declassification: declassification cannot be triggered unless
there is a digital certificate to assert the proper authority. Their language inher-
its many features from System F<: and uses monadic labels as in DCC [1]. In
contrast to our work, security labels are based on the Decentralized Label Model
(DLM) [27], and are not semantically unified with the standard safety types of
the language. The Dependency Core Calculus (DCC) [1] expresses security poli-
cies using monadic types indexed on levels in a security lattice with the usual
interpretation that flows are only allowed between levels in accordance with the
ordering. DCC does not include declassification and the noninterference theo-
rem of [1] is proved from scratch (not leveraging parametricity). While DCC is
a theoretical calculus, its monadic types fit nicely with the monads and monad
transformers used by the Haskell language for computational effects like state
and I/O. Algehed and Russo [5] encode the typing judgment of DCC in Haskell
using closed type families, one of the type system extensions supported by GHC
that brings it close to dependent types. However, they do not prove security.
Compared with type systems, relational logics can specify IF policy and prove
more programs secure through semantic reasoning [8,10,21,28], but at the cost
of more user guidance and less familiar notations. Aguirre et al [2] use rela-
tional higher order logic to prove soundness of DCC essentially by formalizing
the semantics of DCC [1].

Connections Between Secure IF and Type Abstraction. Tse and Zdancewic [45]
translate the recursion-free fragment of DCC to System F. The main theorem for
this translation aims to show that parametricity of System F implies noninterfer-
ence. Shikuma and Igarashi identify a mistake in the proof [41]; they also give a
noninterference-preserving translation for a version of DCC to the simply-typed
lambda calculus. Although they make direct use of a specific logical relation, their
results are not obtained by instantiating a parametricity theorem. Bowman and
Ahmed [12] finally provide a translation from the recursion-free fragment of DCC
to System Fω, proving that parametricity implies noninterference, via a correct-
ness theorem for the translation (which is akin to a full abstraction property).
Bowman and Ahmed’s translation makes essential use of the power of System
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Fω to encode judgments of DCC. Algehed and Bernardy [4] translate a label-
polymorphic variant DCC (without recursion) into the calculus of constructions
(CC) and prove noninterference directly from a parametricity result for CC [11].
The authors note that it is not obvious this can be extended to languages with
nontermination or other effects. Their results have been checked in Agda and the
presentation achieves elegance owing to the fact that parametricity and nonin-
terference can be explicitly defined in dependent type theory; indeed, CC terms
can represent proof of parametricity [11]. Our goals do not necessitate a system
like DCC for policy, raising the question of whether a simpler target type sys-
tem can suffice for security policies expressed differently from DCC. We answer
the question in the affirmative, and believe our results for polymorphic lambda
(and for ML) provide transparent explication of noninterference by reduction to
parametricity. The preceding works on DCC are “translating noninterference to
parametricity” in the sense of translating both programs and types. The impli-
cation is that one might leverage an existing type checker by translating both
a program and its security policy into another program such that it’s typability
implies the original conforms to policy. Our work aims to cater more directly
for practical application, by minimizing the need to translate the program and
hence avoiding the need to prove the correctness of a translation. Cruz et al. [15]
show that type abstraction implies relaxed noninterference. Similar to ours, their
definition of relaxed noninterference is a standard extensional semantics, using
partial equivalence relations. This is in contrast with Li and Zdancewic [24]
where the semantics is entangled with typability.

Protzenko et al. [34] propose to use abstract types as the types for secrets
and use standard type systems for security. This is very close in spirit to our
work. Their soundness theorem is about a property called “secret independence”,
very close to noninterference. In contrast to our work, there is no declassifica-
tion and no use of the abstraction theorem. Rajani and Garg [35] connect fine-
and coarse-grained type systems for information flow in a lambda calculus with
general references, defining noninterference (without declassification) as a step-
indexed Kripke logical relation that expresses indistinguishability. Further afield,
a connection between security and parametricity is made by Devriese et al [16],
featuring a negative result: System F cannot be compiled to the the Sumii-Pierce
calculus of dynamic sealing [43] (an idealized model of a cryptographic mech-
anism). Finally, information flow analyses have also been put at the service of
parametricity [50].

Abstraction Theorems for Other Languages. Parametricity remains an active
area of study [42]. Vytiniotis and Weirich [48] prove the abstraction theorem for
Rω, which extends Fω with constructs that are useful for programming with type
equivalence propositions. Rossberg et al [38] show another path to parametricity
for ML modules, by translating them to Fω. Crary’s result [14] covers a large
fragment of ML but without references and mutable state. Abstraction theorems
have been given for mutable state, based on ownership types [6] and on more
semantically based reasoning [3,7,17,44].
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6 Discussion and Conclusion

In this work, we show how to express declassification policies by using standard
types of the simply typed lambda calculus. By means of parametricity, we prove
that type checking implies relaxed noninterference, showing a direct connection
between declassification and parametricity. Our approach should be applicable
to other languages that have an abstraction theorem (e.g [3,7,17,44]) with the
potential benefit of strong security assurance from off-the-shelf type checkers.
In particular, we demonstrate (in an extended version [29]) that the results can
be extended to a large fragment of ML including general recursion. Although in
this paper we demonstrate our results using confidentiality and declassification,
our approach applies as well to integrity and endorsement, as they have been
shown to be information flow properties analog to confidentiality [18–20,23].

The simple encodings in the preceding sections do not support computa-
tion and output at multiple levels. For example, consider a policy where x is
a confidential input that can be declassified via f and we also want to do the
computation x + 1 of which the result is at confidential level. Clearly, x + 1
is ill-typed in the public interface. We provide (in the extended version) more
involved encodings supporting computation at multiple levels. To have an encod-
ing that support multiple levels, we add universally quantified types ∀α.τ to the
language presented in Sect. 2. However, this goes against our goal of minimiz-
ing complexity of translation. Observe that many applications are composed
of programs which, individually, do not output at multiple levels; for example,
the password checker, and data mining computations using sensitive inputs to
calculate aggregate or statistical information. For these the simpler encoding
suffices.

Vanhoef et al. [47] and others have proposed more expressive declassification
policies than the ones in Li and Zdancewic [24]: policies that keep state and can
be written as programs. We speculate that TRNI for stateful declassification
policies can be obtained for free in a language with state—indeed, our work
provides motivation for development of abstraction theorems for such languages.
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Abstract. The use of runtime verification has led to interest in decid-
ing whether a property is monitorable: whether it is always possible for
the satisfaction or violation of the property to be determined after a
finite future continuation during system execution. However, classical
two-valued monitorability suffers from two inherent limitations, which
eventually increase runtime overhead. First, no information is available
regarding whether only one verdict (satisfaction or violation) can be
detected. Second, it does not tell us whether verdicts can be detected
starting from the current monitor state during system execution.

This paper proposes a new notion of four-valued monitorability for
ω-languages and applies it at the state-level. Four-valued monitorabil-
ity is more informative than two-valued monitorability as a property
can be evaluated as a four-valued result, denoting that only satisfaction,
only violation, or both are active for a monitorable property. We can also
compute state-level weak monitorability, i.e., whether satisfaction or vio-
lation can be detected starting from a given state in a monitor, which
enables state-level optimizations of monitoring algorithms. Based on a
new six-valued semantics, we propose procedures for computing four-
valued monitorability of ω-regular languages, both at the language-level
and at the state-level. Experimental results show that our tool imple-
mentation Monic can correctly, and quickly, report both two-valued and
four-valued monitorability.
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1 Introduction

Runtime Verification (RV) [6,29,32] is a lightweight formal technique in which
program or system execution is monitored and analyzed. RV uses information
extracted from an execution to check whether certain properties are satisfied or
violated after a finite number of steps, possibly leading to online responses. In
RV, properties are usually expressed using formalisms [26] such as Linear Tem-
poral Logic (LTL) formulas [10,17,33,36], Nondeterministic Büchi Automata
(NBAs), and ω-regular expressions, which represent ω-regular languages [7,15].
RV tools automatically synthesize monitors (i.e., code fragments) from formal
specifications and then weave the code into the system through instrumenta-
tion [24,25,28]. The inserted code typically maintains a set of monitor objects
that can detect property satisfaction or violation during system execution. Such
approaches have been extended to parametric RV, in which properties are
checked over every parameter instance (i.e., a combination of parameter values)
by maintaining a monitor object for every parameter instance [11–13,27,34,38].

Figure 1 shows a monitor specification, written in the Movec language [13],
for the parametric RV of an event-driven system that dispatches a variety of
events (e.g., sensor status, keystrokes, program loadings etc.) to components
(e.g., libraries, mobile apps, microservices etc.). Similar specifications can be
written for other tools such as JavaMOP [11,34] and TraceMatches [4,5]. This
specification defines a parametric monitor, named priority, which takes two
parameters: a component ID c and an event ID e that should be instantiated
with the values (i.e., actual arguments) generated by system execution. The
specification body begins with four actions, which extract information regarding
function calls: r records a component being registered to an event (it also creates
a monitor object by instantiating the monitor parameters with the arguments
of the call), u records an unregister, b records the broadcast of an event (the
argument of the call) to all components, and n records a certain component being
notified of a specific event. This specification is used to monitor system execution
to check whether the property, specified as LTL formula φ1 := (r∧Fu) → ((¬b∧
¬u)Un)Uu, is satisfied or violated after a finite number of steps, i.e., any infinite
future continuation makes the property satisfied or violated, respectively. The
property requires that if a component c registers to an event e and unregisters
later, then before the unregister, the event e cannot be broadcasted until c has
been notified (i.e., c has a higher priority than unregistered components).

In practice, if the satisfaction or violation of a property is detected by a
monitor object then an associated handler (i.e., a piece of code) is automati-
cally triggered to perform some online response [11,13,34]. For example, Fig. 1
includes two handlers for the satisfaction (i.e., validation) and violation of the
LTL formula: if the property is satisfied then a message is logged; if it is vio-
lated then an alarm is signaled and this prints the IDs of the component and
the event. The two handlers may also be extended to more advanced operations,
e.g., profiling and error recovery.

We may also monitor the system against other properties, e.g., φ2 := Fr →
GFn that a component should receive notifications infinitely often after its
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monitor priority(c,e) {

creation action r(c,e) after call(% reg_component(% %:c, % %:e));

action u(c,e) after call(% unreg_component(% %:c, % %:e));

action b(e) before execution(% broadcast(% %:e));

action n(c,e) after execution(% notify(% %:c, % %:e));

ltl: (r && <>u) -> ((!b && !u) U n) U u;

@validation {

log("Priority applied: component %lu registers to event %lu.\n",

monitor->c, monitor->e); }

@violation {

printf("Priority violated: component %lu registers to event %lu.\n",

monitor->c, monitor->e); }

};

Fig. 1. A monitor specification with an LTL formula.

registration, φ3 := r → Fu that a component unregisters after its registra-
tion, and φ4 := G(r → ¬uUn) that a registered component receives at least one
notification before its deregistration. The developer may also write handlers for
the satisfaction and violation of each property.

When specifying properties, the developer is usually concerned with their
monitorability [7,10,16,37], i.e., after any number of steps, whether the satis-
faction or violation of the monitored property can still be detected after a finite
future continuation. When writing handlers for these properties, the developer
might consider the following question: “Can the handlers for satisfaction and
violation be triggered during system execution?” We say that a verdict and its
handler are active if there is some continuation that would lead to the ver-
dict being detected and thus its handler being triggered. This question can
be partly answered by deciding monitorability (with the traditional two-valued
notion). For example, φ2 (above) is non-monitorable, i.e., there is some finite
sequence of steps after which no verdict is active. Worse, φ2 is also weakly non-
monitorable [14], i.e., no verdict can be detected after any number of steps.
Thus writing handlers for φ2 is a waste of time as they will never be triggered.
More seriously, monitoring φ2 at runtime adds no value but increases runtime
overhead. In contrast, φ1, φ3 and φ4 are monitorable, i.e., some verdicts are
always active. Thus their handlers must be developed as they may be triggered.
However, this answer is still unsatisfactory, as the existing notion of monitora-
bility suffers from two inherent limitations: limited informativeness and coarse
granularity.

Limited Informativeness. The existing notion of monitorability is not suffi-
ciently informative, as it is two-valued, i.e., a property can only be evaluated
as monitorable or non-monitorable. This means, for a monitorable property, we
only know that some verdicts are active, but no information is available regard-
ing whether only one verdict (satisfaction or violation) is active. As a result, the
developer may still write unnecessary handlers for inactive verdicts. For example,
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φ1, φ3 and φ4 are monitorable. We only know that at least one of satisfaction
and violation is active, but this does not tell us which ones are active and thus
which handlers are required. As a result, the developer may waste time in han-
dling inactive verdicts, e.g., the violation of φ3 and the satisfaction of φ4. Thus,
the existing answer is far from satisfactory.

Limited informativeness also weakens the support for property debugging.
For example, when writing a property the developer may expect that both ver-
dicts are active but a mistake may lead to only one verdict being active. The
converse is also the case. Unfortunately, these kinds of errors cannot be revealed
by two-valued monitorability, as the expected property and the written (erro-
neous) property are both monitorable. For example, the developer may write
formula φ4 while having in mind another one φ5 := r → ¬uUn, i.e., what
she/he really wants is wrongly prefixed by one G. These two formulas cannot be
discriminated by deciding two-valued monitorability as both are monitorable.

Coarse Granularity. The existing notion of monitorability is defined at the
language-level, i.e., a property can only be evaluated as monitorable or not as
a whole, rather than a notion for (more fine-grained) states in a monitor. This
means that we do not know whether satisfaction or violation can be detected
starting from the current state during system execution. As a result, every mon-
itor object must be maintained during the entire execution, again increasing
runtime overhead. For example, φ6 := GFr ∨ (¬n → X¬b) is weakly moni-
torable, thus all its monitor objects (i.e., instances of the Finite State Machine
(FSM) in Fig. 2), created for every pair of component and event, are maintained.

Fig. 2. A monitor for LTL formula
φ6 := GFr ∨ (¬n → X¬b). Each
transition is labeled with a proposi-
tional formula denoting a set of satis-
fying states. For example, “!n” denotes
{∅, {r}, {b}, {r, b}} and “true” denotes
all states.

Note that parametric runtime verifi-
cation is NP-complete for detecting viola-
tions and coNP-complete for ensuring sat-
isfaction [12]. This high complexity pri-
marily comes from the large number of
monitor objects maintained for all param-
eter instances [12,13,34]. For state-level
optimizations of monitoring algorithms, if
no verdict can be detected starting from
the current state of a monitor object, then
the object can be switched off and safely
removed to improve runtime performance.
For example, in Fig. 2, only satisfaction
can be detected starting from states P1,
P2 and T, whereas no verdict can be detected starting from state N. Thus a mon-
itor object can be safely removed when it enters N. Unfortunately, the existing
notion does not support such optimizations.

Our Solution. In this paper, we propose a new notion of four-valued moni-
torability for ω-languages, and apply it at the state-level, overcoming the two
limitations discussed above. First, the proposed approach is more informative
than two-valued monitorability. Indeed, a property can be evaluated as a four-
valued result, denoting that only satisfaction, only violation, or both are active
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for a monitorable property. Thus, if satisfaction (resp. violation) is inactive, then
writing handlers for satisfaction (resp. violation) is not required. This can also
enhance property debugging. For example, φ4 and φ5 can now be discriminated
by their different monitorability results, as φ4 can never be satisfied but φ5 can
be satisfied and can also be violated. Thus, additional developer mistakes can be
revealed. Second, we can compute state-level weak monitorability, i.e., whether
satisfaction or violation can be detected starting from a given state in a monitor.
For example, in Fig. 2, N is weakly non-monitorable, thus a monitor object can
be safely removed when it enters N, achieving a state-level optimization.

In summary, we make the following contributions.1

– We propose a new notion of four-valued monitorability for ω-languages
(Sect. 3), which provides more informative answers as to which verdicts are
active. This notion is defined using six types of prefixes, which complete the
classification of finite sequences.

– We propose a procedure for computing four-valued monitorability of ω-regular
languages, given in terms of LTL formulas, NBAs or ω-regular expressions
(Sect. 4), based on a new six-valued semantics.

– We propose a new notion of state-level four-valued weak monitorability and
its computation procedure for ω-regular languages (Sect. 5), which describes
which verdicts are active for a state. This can enable state-level optimizations
of monitoring algorithms.

– We have developed a new tool, Monic, that implements the proposed pro-
cedure for computing monitorability of LTL formulas. We evaluated its effec-
tiveness using a set of 97 LTL patterns and formulas φ1 to φ6 (above). Exper-
imental results show that Monic can correctly report both two-valued and
four-valued monitorability (Sect. 6).

2 Preliminaries

Let AP be a non-empty finite set of atomic propositions. A state is a complete
assignment of truth values to the propositions in AP . Let Σ = 2AP be a finite
alphabet, i.e., the set of all states. Σ∗ is the set of finite words (i.e., sequences of
states in Σ), including the empty word ε, and Σω is the set of infinite words. We
denote atomic propositions by p, q, r, finite words by u, v, and infinite words
by w, unless explicitly specified. We write a finite or infinite word in the form
{p, q}{p}{q, r} · · · , where a proposition appears in a state iff it is assigned true.
We drop the brackets around singletons, i.e., {p, q}p{q, r} · · · .

An ω-language (i.e., a linear-time infinitary property) L is a set of infinite
words over Σ, i.e., L ⊆ Σω. Linear Temporal Logic (LTL) [33,36] is a typical
representation of ω-regular languages. LTL extends propositional logic, which
uses boolean connectives ¬ (not) and ∧ (conjunction), by introducing temporal
connectives such as X (next), U (until), R (release), F (future, or eventually) and

1 A longer version of this paper (with all proofs) is available at https://arxiv.org/abs/
2002.06737.

https://arxiv.org/abs/2002.06737
https://arxiv.org/abs/2002.06737
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G (globally, or always). Intuitively, Xφ says that φ holds at the next state, φ1Uφ2

says that at some future state φ2 holds and before that state φ1 always holds.
Using the temporal connectives X and U, the full power of LTL is obtained.
For convenience, we also use some common abbreviations: true, false, standard
boolean connectives φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2) and φ1 → φ2 ≡ ¬φ1 ∨ φ2, and
additional temporal connectives φ1Rφ2 ≡ ¬(¬φ1U¬φ2) (the dual to U), Fφ ≡
trueUφ (φ eventually holds), and Gφ ≡ ¬F¬φ (φ always holds). We denote by
L(φ) the ω-language accepted by a formula φ.

Let us recall the classification of prefixes that are used to define the three-
valued semantics and two-valued monitorability of ω-languages.

Definition 1 (Good, bad and ugly prefixes [8,31]). A finite word u ∈ Σ∗ is
a good prefix for L if ∀w ∈ Σω.uw ∈ L, a bad prefix for L if ∀w ∈ Σω.uw 	∈ L,
or an ugly prefix for L if no finite extension makes it good or bad, i.e., 	 ∃v ∈
Σ∗.∀w ∈ Σω.uvw ∈ L and 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

In other words, good and bad prefixes satisfy and violate an ω-language in some
finite number of steps, respectively. We denote by good(L), bad(L) and ugly(L)
the set of good, bad and ugly prefixes for L, respectively. Note that they do not
constitute a complete classification of finite words. For example, any finite word
of the form p · · · p is neither a good nor a bad prefix for pUq, and also is not an
ugly prefix as it can be extended to a good prefix (ended with q) or a bad prefix
(ended with ∅).

Definition 2 (Three-valued semantics [10]). Let B3 be the set of three truth
values: true �, false ⊥ and inconclusive ?. The truth value of an ω-language
L ⊆ Σω wrt. a finite word u ∈ Σ∗, denoted by [u |= L]3, is � or ⊥ if u is a good
or bad prefix for L, respectively, and ? otherwise.

Note that the inconclusive value does not correspond to ugly prefixes. Although
an ugly prefix always leads to the inconclusive value, the converse does not hold.
For example, [p · · · p |= L(pUq)]3 = ? but p · · · p is not an ugly prefix.

Bauer et al. [10] presented a monitor construction procedure that trans-
forms an LTL formula φ into a three-valued monitor, i.e., a deterministic FSM
that contains �, ⊥ and ? states, which output �, ⊥ and ? after reading over
good, bad and other prefixes respectively. For example, in Fig. 2, state T is a �
state, whereas the remaining states are all ? states. This construction procedure
requires 2ExpSpace. It has been shown that the three-valued monitor can be
used to compute the truth value of an ω-language wrt. a finite word [10], which
is the output of the corresponding monitor after reading over this word.

Lemma 1. Let M = (Q, Σ, δ, q0, B3, λ3) be a three-valued monitor for an
ω-language L ⊆ Σω, where Q is a finite set of states, Σ is a finite alphabet,
δ : Q × Σ �→ Q is a transition function, q0 ∈ Q is an initial state, B3 is an
output alphabet and λ3 : Q → B3 is an output function. For any u ∈ Σ∗,
[u |= L]3 = λ3(δ(q0, u)).
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Definition 3 (Two-valued monitorability [7,10,37]). An ω-language L ⊆
Σω is u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗ s.t. uv is a good or bad prefix, and
monitorable if it is u-monitorable for every u ∈ Σ∗.

In other words, L is u-monitorable if u has a good or bad extension. L is moni-
torable if every finite word has a good or bad extension. Note that an ugly prefix
can never be extended to a good or bad prefix. Thus, L is non-monitorable iff
there exists an ugly prefix for L.

3 Four-Valued Monitorability

In this section, we propose a new notion of four-valued monitorability, to pro-
vide more informative answers to monitorability checking. As we promised, it
can indicate whether only satisfaction, only violation, or both are active for a
monitorable property. Two-valued monitorability cannot achieve this because
its definition only requires that all finite words (i.e., u in Definition 3) can be
extended to good or bad prefixes (which witness satisfaction or violation, respec-
tively), but does not discriminate between them on the types and number of the
verdicts that the extensions of each finite word can witness. To address this
limitation, our approach aims to discriminate accordingly these finite words by
inspecting which types of prefixes they can be extended to.

To achieve this objective, we first need to propose a new classification of
prefixes, as the traditional classification (as the good, the bad and the ugly) is
not satisfactory due to incompleteness, i.e., it does not include the finite words
that are neither good nor bad but can be extended to good or bad prefixes. Thus
we introduce the notions of positive, negative and neutral prefixes, in addition
to good, bad and ugly prefixes, to complete the classification.

Definition 4 (Positive, negative and neutral prefixes). A finite word u is

– a positive prefix for L if it is not good, but some finite extension makes it
good but never bad, i.e., ∃w ∈ Σω.uw 	∈ L, ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L, and
	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L,

– a negative prefix for L if it is not bad, but some finite extension makes it
bad but never good, i.e., ∃w ∈ Σω.uw ∈ L, ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L, and
	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L, or

– a neutral prefix for L if some finite extension makes it good and some makes
it bad, i.e., ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L and ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

We denote by posi(L), nega(L) and neut(L) the set of positive, negative and
neutral prefixes for L, respectively. It is easy to see that the three new sets of
prefixes and the three traditional sets of good, bad and ugly prefixes are mutually
disjoint. An interesting fact, as shown by the following theorem, is that the six
sets of prefixes exactly constitute the complete set of finite words. Furthermore,
the six types of prefixes directly correspond to the six-valued semantics (cf.
Definition 5). This completes the classification of prefixes.
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Theorem 1. good(L) ∪ bad(L) ∪ posi(L) ∪ nega(L) ∪ neut(L) ∪ ugly(L) = Σ∗.

The traditional three-valued semantics can identify only good and bad pre-
fixes with the truth values � and ⊥ respectively, whereas all the prefixes of the
other four types are given the same value ?. To discriminate them, we further
divide the value ? into four truth values.

Definition 5 (Six-valued semantics). Let B6 be the set of six truth values:
true �, false ⊥, possibly true ∓, possibly false ±, possibly conclusive + and
inconclusive ×. The truth value of an ω-language L ⊆ Σ∗ wrt. a finite word
u ∈ Σ∗, denoted by [u |= L]6, is �, ⊥, ∓, ±, + or × if u is a good, bad, positive,
negative, neutral or ugly prefix for L, respectively.

Note that the six-valued semantics models a rigorous correspondence between
truth values and prefix types. Unlike the three-valued semantics, the inconclusive
value now exactly corresponds to ugly prefixes.

The definition of four-valued monitorability is built on the following notion
of four-valued u-monitorability which is used to discriminate finite words by
inspecting which types of prefixes they can be extended to.

Definition 6 (Four-valued u-monitorability). An ω-language L ⊆ Σω is

– weakly positively u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗, s.t. uv is a good
prefix.

– weakly negatively u-monitorable for u ∈ Σ∗, if ∃v ∈ Σ∗, s.t. uv is a bad
prefix.

– positively u-monitorable if it is weakly positively, but not weakly negatively,
u-monitorable. (u has only good extensions, thus u is a good/positive prefix.)

– negatively u-monitorable if it is weakly negatively, but not weakly positively,
u-monitorable. (u has only bad extensions, thus u is a bad/negative prefix.)

– neutrally u-monitorable if it is both weakly positively and weakly negatively
u-monitorable. (u has both good and bad extensions, thus u is a neutral prefix.)

– not u-monitorable if it is neither weakly positively nor weakly negatively u-
monitorable. (u has neither good nor bad extension, thus u is an ugly prefix.)

In other words, the traditional u-monitorability is split into two parts, i.e., weakly
positive and weakly negative u-monitorability. As a result, L is u-monitorable
iff L is positively, negatively or neutrally u-monitorable.

Definition 7 (Four-valued monitorability). An ω-language L ⊆ Σω is

– positively monitorable if it is positively u-monitorable for every u ∈ Σ∗.
– negatively monitorable if it is negatively u-monitorable for every u ∈ Σ∗.
– neutrally monitorable if it is u-monitorable for every u ∈ Σ∗, and is neutrally

ε-monitorable for the empty word ε.
– non-monitorable if it is not u-monitorable for some u ∈ Σ∗.
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In other words, the set of monitorable ω-languages is divided into three classes,
i.e., positively, negatively and neutrally monitorable ones. Note that the def-
inition of neutral monitorability consists of two conditions, of which the first
ensures that L is monitorable while the second ensures that both of satisfaction
and violation can be detected after some finite sequences of steps. We denote
the four truth values (positively, negatively, neutrally and non-monitorable) by
M�, M⊥, M+ and M×, respectively.

We can validate that four-valued monitorability indeed provides the informa-
tiveness we require, as described in Sect. 1, by showing the following theorem,
that the truth values M�, M⊥, and M+ indicate that only satisfaction, only vio-
lation, and both can be detected after some finite sequences of steps, respectively.
This theorem can be proved by Definitions 7 and 6, in which u is substituted by
the empty word ε.

Theorem 2. If an ω-language L ⊆ Σω is

– M� then ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L and 	 ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L.
– M⊥ then ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L and 	 ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L.
– M+ then ∃u ∈ Σ∗.∀w ∈ Σω.uw ∈ L and ∃u ∈ Σ∗.∀w ∈ Σω.uw 	∈ L.

Let us consider some simple but essential examples regarding basic tempo-
ral connectives. More examples, such as the formulas used in Sect. 1, will be
considered in Sect. 6.

– Formula Fp is positively monitorable, as any finite word can be extended to
a good prefix (ended with p) but never a bad prefix. This means that only
satisfaction, but no violation, of the property can be detected after some finite
sequences of steps.

– Formula Gp is negatively monitorable, as any finite word can be extended to
a bad prefix (ended with ∅) but never a good prefix. This means that only
violation, but no satisfaction, of the property can be detected after some finite
sequences of steps.

– Formula pUq is neutrally monitorable, as it is monitorable and ε (more gen-
erally, any finite word of the form p · · · p) can be extended to both a good
prefix (ended with q) and a bad prefix (ended with ∅). This means that both
of satisfaction and violation of the property can be detected after some finite
sequences of steps.

– Formula GFp is non-monitorable, as any finite word can never be extended
to a good or bad prefix, due to the infinite continuations ∅∅ · · · and pp · · ·
respectively. This means that neither satisfaction nor violation of the property
can be detected.

4 Computing Four-Valued Monitorability

In this section, we propose a procedure for computing the four-valued monitora-
bility of ω-regular languages, based on the six-valued semantics.
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The first step is a monitor construction procedure that transforms an LTL
formula into a six-valued monitor, i.e., a deterministic FSM which outputs �,
⊥, ∓, ±, + and × after reading over good, bad, positive, negative, neutral and
ugly prefixes respectively. For example, in Fig. 2, states P1, P2 and N are all ?
states under the three-valued semantics. After refining the output function with
the six-valued semantics, states P1 and P2 become ∓ states, whereas state N
becomes a × state.

The construction procedure first constructs a three-valued monitor, using the
traditional approach which requires 2ExpSpace [10]. Then we refine its output
function, assigning new outputs to ? states. Specifically, our procedure traverses
all the states in the monitor, and for each state, starts another nested traversal
to check whether a � state or a ⊥ state is reachable. A ? state is assigned output
∓ if � states are reachable but no ⊥ state is, ± if ⊥ states are reachable but no �
state is, + if both � and ⊥ states are reachable, or × if neither is reachable. This
refinement step can be done in polynomial time and NLSpace (using the three-
valued monitor as the input). Thus, constructing a six-valued monitor requires
also 2ExpSpace. Let us formalize the above construction procedure.

Definition 8. Let M = (Q, Σ, δ, q0, B3, λ3) be a three-valued monitor for an
ω-language L ⊆ Σω. The corresponding six-valued monitor M ′ = (Q, Σ, δ, q0,
B6, λ) is obtained by refining the output function λ3 of M as in Fig. 3.

Fig. 3. The output function λ.

We can show the following lemma, that the six-valued monitor can be used
to compute the truth value of an ω-language wrt. a finite word. This lemma can
be proved by Definitions 5 and 2, Lemma 1 and Definition 8.

Lemma 2. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. For any u ∈ Σ∗, [u |= L]6 = λ(δ(q0, u)).
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As a property of the six-valued monitor, the following theorem shows that
each state in a monitor can be reached by exactly one type of prefixes (by
Lemma 2 and Definition 5).

Theorem 3. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. For a state q ∈ Q, λ(q) equals �, ⊥, ∓, ±, + or ×, iff it can
be reached by good, bad, positive, negative, neutral or ugly prefixes, respectively.

Based on the six-valued monitor, the second step determines the four-valued
monitorability of an ω-language L by checking whether its monitor has some
specific reachable states. The monitorability of L is M� iff neither × nor ⊥
states are reachable (thus neither ± nor + states are reachable), M⊥ iff neither
× nor � states are reachable (thus neither ∓ nor + states are reachable), M+

iff no × state is reachable but a + state is reachable (thus both � and ⊥ states
are reachable), and M× iff a × state is reachable. These rules can be formalized:

Theorem 4. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an
ω-language L ⊆ Σω. The monitorability of L, denoted by η(L), is:

η(L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M�, iff ∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= × ∧ λ(q′) 	= ⊥
M⊥, iff ∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= × ∧ λ(q′) 	= �
M+, iff

{∀u ∈ Σ∗. δ(q0, u) = q′ → λ(q′) 	= ×, and
∃u ∈ Σ∗. δ(q0, u) = q′ ∧ λ(q′) = +

M×, iff ∃u ∈ Σ∗. δ(q0, u) = q′ ∧ λ(q′) = ×
The above checking procedure can be done in linear time and NLSpace by

traversing all the states of monitor. However, note that this procedure is per-
formed after constructing the monitor. Thus, when an ω-regular language L is
given in terms of an LTL formula, the four-valued monitorability of L can be
computed in 2ExpSpace; the same complexity as for two-valued monitorability.
As we will see in Sect. 6, the small size of standard LTL patterns means that
four-valued monitorability can be computed in very little time

Now consider other representations of ω-regular languages. If L is given in
terms of a Nondeterministic Büchi Automata (NBA), we first explicitly com-
plement the NBA, and the rest of the procedure stays the same. However, the
complement operation also involves an exponential blowup. If L is given in terms
of an ω-regular expression, we first build an NBA for the expression, which can
be done in polynomial time, and the rest of the procedure is the same as for
NBA. Hence, independent of the concrete representation, four-valued monitora-
bility of an ω-regular language can be computed in 2ExpSpace, by using the
monitor-based procedure.

5 State-Level Four-Valued Weak Monitorability

In this section, we apply four-valued monitorability at the state-level, to predict
whether satisfaction and violation can be detected starting from a given state
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in a monitor. Recall that the notions of monitorability (cf. Definitions 3 and 7)
are defined using the extensions to good and bad prefixes. However, good and
bad prefixes are defined for an ω-language, not for a state. Thus such definitions
cannot be directly applied at the state-level. Instead, we define state-level moni-
torability using the reachability of � and ⊥ states, which are equivalent notions
to good and bad prefixes according to Theorem3.

Another note is that the resulting state-level monitorability is too strong
to meet our requirements, because it places restrictions on all the states reach-
able from the considered state. For example, in Fig. 2, we require discriminating
states P1 and P2 from state N, as satisfaction can be detected starting from P1
and P2, but neither satisfaction nor violation can be detected starting from N.
However, P1, P2 and N are all non-monitorable as neither � states nor ⊥ states
are reachable from N (in turn, reachable from P1 and P2). To provide the required
distinction, we should use a weaker form of state-level monitorability as follows.

Definition 9 (State-level four-valued weak monitorability). Let M =
(Q,Σ, δ, q0,B6, λ) be a six-valued monitor. A state q ∈ Q is

– weakly M� if a � state but no ⊥ state is reachable from q.
– weakly M⊥ if a ⊥ state but no � state is reachable from q.
– weakly M+ if both a � state and a ⊥ state are reachable from q.
– weakly M× if neither � states nor ⊥ states are reachable from q.

A state is weakly monitorable, iff it is weakly positively, negatively or neutrally
monitorable. For example, in Fig. 2, states P1, P2 and T are all weakly positively
monitorable as T is a reachable � state, while state N is weakly non-monitorable.
Thus, states P1 and P2 can now be discriminated from state N.

We can validate that state-level four-valued weak monitorability can indeed
predict whether satisfaction and violation can be detected starting from a given
state, as anticipated in Sect. 1, by showing the following theorem, that the truth
values M�, M⊥, M+ and M× indicate that only satisfaction, only violation,
both and neither can be detected, respectively. This theorem can be proved by
Definition 9 and Theorem 3.

Theorem 5. Let M = (Q,Σ, δ, q0,B6, λ) be a six-valued monitor. Suppose a
state q ∈ Q can be reached from q0 by reading u ∈ Σ∗, i.e., δ(q0, u) = q. If q is

– weakly M� then ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.
– weakly M⊥ then ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L.
– weakly M+ then ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.
– weakly M× then 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw ∈ L ∧ 	 ∃v ∈ Σ∗.∀w ∈ Σω.uvw 	∈ L.

The four truth values can be used in state-level optimizations of monitoring
algorithms:

– If a state is weakly positively (resp. negatively) monitorable, then a mon-
itor object can be safely removed when it enters this state, provided that
only violation (resp. satisfaction) handlers are specified, as no handler can be
triggered.
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– If a state is weakly neutrally monitorable, then a monitor object must be
preserved if it is at this state as both satisfaction and violation can be detected
after some continuations.

– If a state is weakly non-monitorable, then a monitor object can be safely
removed when it enters this state as no verdict can be detected after any
continuation.

Besides, a monitor object can also be removed when it enters a � state or a ⊥
state, as any finite or infinite continuation yields the same verdict.

Let us consider the relationship between the language-level monitorability
and the state-level weak monitorability. The following lemma shows that the
monitorability of an ω-language depends on the weak monitorability of all the
reachable states of its monitor. This means, if an ω-language is non-monitorable,
then its monitor contains a reachable weakly non-monitorable state.

Lemma 3. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an ω-
language L ⊆ Σω. L is monitorable iff every reachable state of M is weakly
monitorable.

Let us consider how one can compute the state-level four-valued weak mon-
itorability for each state in a six-valued monitor. We first formalize a mapping
from truth values to weak monitorability, and then show that the state-level
weak monitorability can be quickly computed from the output of the state.

Definition 10 (Value-to-weak-monitorability). Let vtom : B6 �→ M4 be
the value-to-weak-monitorability operator that converts a truth value in B6 into
the corresponding result of weak monitorability in M4 = {M�,M⊥,M+,M×},
defined as follows: vtom(�) = vtom(∓) = M�, vtom(⊥) = vtom(±) = M⊥,
vtom(+) = M+ and vtom(×) = M×.

Theorem 6. Let M = (Q, Σ, δ, q0, B6, λ) be a six-valued monitor for an
ω-language L ⊆ Σω. The four-valued weak monitorability of q ∈ Q equals
vtom(λ(q)).

6 Implementation and Experimental Results

We have developed a new tool, Monic, that implements the proposed procedure
for computing four-valued monitorability of LTL formulas. Monic also supports
deciding two-valued monitorability. We have evaluated its effectiveness using a
set of LTL formulas, including formulas φ1 to φ6 (used in Sect. 1) and Dwyer et
al.’s 97 LTL patterns [10,18]. The tool implementation Monic and the dataset of
LTL formulas are available at https://github.com/drzchen/monic. The evalua-
tion was performed on an ordinary laptop, equipped with an Intel Core i7-6500U
CPU (at 2.5GHz), 4GB RAM and Ubuntu Desktop (64-bit).

The result on formulas φ1 to φ6 shows that: φ1 is neutrally monitorable, φ2 is
non-monitorable, φ3 is positively monitorable, φ4 is negatively monitorable, φ5

is neutrally monitorable, and φ6 is non-monitorable (but weakly monitorable).

https://github.com/drzchen/monic
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Thus, the violation of φ3 and the satisfaction of φ4 can never be detected, whereas
both verdicts are active for φ1 and φ5. Further, φ4 and φ5 can be discriminated
by their different monitorability results.

We also ran Monic on Dwyer et al.’s specification patterns [10,18], of which
97 are well-formed LTL formulas. The result shows that 55 formulas are moni-
torable and 42 are non-monitorable. For those monitorable ones, 6 are positively
monitorable, 40 are negatively monitorable and 9 are neutrally monitorable. Our
result disagrees with the two-valued result reported in [10] only on the 6th LTL
formula listed in the Appendix of [10]. More precisely, Monic reports negatively
monitorable, whereas the result in [10] is non-monitorable. The formula is as
follows (! for ¬, & for ∧, | for ∨, -> for →, U for U, <> for F, [] for G):

[](("call" & <>"open") ->
((!"atfloor" & !"open") U
("open" | (("atfloor" & !"open") U

("open" | ((!"atfloor" & !"open") U
("open" | (("atfloor" & !"open") U
("open" | (!"atfloor" U "open"))))))))))

A manual inspection of its monitor (in Fig. 4) shows that our result is correct.
Indeed, state F is a ⊥ state, and states N1 to N7 are all ± states that can reach
the ⊥ state F.

Fig. 4. The monitor of an LTL pattern.

Finally, the above results for φ1 to φ6 and the 97 LTL patterns were computed
in 0.03 and 0.07 s, with 16 MB and 20 MB memory consumed, respectively (all
reported by GNU time). To conclude, the results show that Monic can correctly
report both two-valued and four-valued monitorability of typical formulas in very
little time.

7 Related Work

Monitorability is a principal foundational question in RV because it delineates
which properties can be monitored at runtime. The classical results on mon-
itorability have been established for ω-languages, especially for LTL [7,10,37].
Francalanza and Aceto et al. have studied monitorability for the Hennessy-Milner
logic with recursion, both with a branching-time semantics [1,21–23] and with
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a linear-time semantics [2]. There exist some variants of monitorability as well.
For example, monitorability has been considered over unreliable communication
channels which may reorder or lose events [30]. However, all of the existing works
only consider two-valued notions of monitorability at the language-level.

Monitorability has been studied in other contexts. For example, a topologi-
cal viewpoint [16] and the correspondence between monitorability and the clas-
sifications of properties (e.g., the safety-progress and safety-liveness classifica-
tions) [19,20,35] have been established. A hierarchy of monitorability definitions
(including monitorability and weak monitorability [14]) has been defined wrt.
the operational guarantees provided by monitors [3].

A four-valued semantics for LTL [8,9] has been proposed to refine the three-
valued semantics [10]. It divides the inconclusive truth value ? into two values:
currently true and currently false, i.e., whether the finite sequence observed
so far satisfies the property based on a finite semantics for LTL. Note that it
provides more information on what has already been seen, whereas our six-valued
semantics describes what verdicts can be detected in the future continuation.

8 Conclusion

We have proposed four-valued monitorability and the corresponding computa-
tion procedure for ω-regular languages. Then we applied the four-valued notion
at the state-level. To our knowledge, this is the first study of multi-valued moni-
torability, inspired by practical requirements from RV. We believe that our work
and implementation can be integrated into RV tools to provide information at
the development stage and thus avoid the development of unnecessary handlers
and the use of monitoring that cannot add value, enhance property debugging,
and enable state-level optimizations of monitoring algorithms.
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Abstract. We introduce a formal framework for analyzing trades in
financial markets. These days, all big exchanges use computer algorithms
to match buy and sell requests and these algorithms must abide by cer-
tain regulatory guidelines. For example, market regulators enforce that
a matching produced by exchanges should be fair, uniform and individ-
ual rational. To verify these properties of trades, we first formally define
these notions in a theorem prover and then develop many important
results about matching demand and supply. Finally, we use this frame-
work to verify properties of two important classes of double sided auction
mechanisms. All the definitions and results presented in this paper are
completely formalized in the Coq proof assistant without adding any
additional axioms to it.

1 Introduction

In this paper, we introduce a formal framework for analyzing trades in financial
markets. Trading is a principal component of all modern economies. Over the
past few centuries, more and more complex instruments are being introduced for
trade in the financial markets. All big stock exchanges use computer algorithms
to match buy requests (demand) with sell requests (supply) of traders. Computer
algorithms are also used by traders to place orders in the markets (known as
algorithmic trading). With the arrival of computer assisted trading, the volume
and liquidity in the markets have increased drastically, and as a result, the
markets have become more complex.

Software programs that enable the whole trading process are extremely com-
plex and have to meet high efficiency criteria. Furthermore, to increase the con-
fidence of traders in the markets, the market regulators set stringent safety and
fairness guidelines for these software. Traditionally, to meet such criteria, soft-
ware development has extensively relied on testing the programs on large data
sets. Although testing is helpful in identifying bugs, it cannot guarantee the
absence of bugs. Even small bugs in the trading software can have a catastrophic
effect on the overall economy. An adversary might exploit a bug to his benefit
and to the disadvantage of other genuine traders. These events are certainly
undesirable in a healthy economy.

Recently, there have been various instances [17,19,20] of violation of the
trading rules by the stock exchanges. For example, in [20], a regulator noted:
c© Springer Nature Switzerland AG 2020
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“NYSE Arca failed to execute a certain type of limit order under specified mar-
ket conditions despite having a rule in effect that stated that NYSE Arca would
execute such orders”1. This is an instance of a program not meeting its specifi-
cation. Here the program is a matching algorithm used by the exchange and the
regulatory guidelines are the broad specifications for the program. Note that,
in most of the cases, the guidelines stated by the regulators are not a complete
specification of the program. Moreover, there is no formal guarantee that these
guidelines are consistent. These are some serious issues potentially compromising
the safety and integrity of the markets.

Recent advances in formal methods in computer science can be put to good
use in ensuring safe and fair financial markets. During the last few decades, for-
mal method tools have been increasingly successful in proving the correctness
of large software and hardware systems [7,9,10,12]. While model checking tools
have been used for the verification of hardware, the use of interactive theorem
provers have been quite successful in the verification of large software. A formal
verification of financial algorithms using these tools can be helpful in the rigor-
ous analysis of market behavior at large. The matching algorithms used by the
exchanges (venues) are at the core of the broad spectrum of algorithms used in
financial markets. Hence, a formal framework for verifying matching algorithms
can also be useful in verifying other algorithms used in financial markets. This
need has also been recognized by Passmore and Ignatovich [15]. They state

Indeed, if venues are not safe, fair and correct, e.g., if one can exploit
flaws in the venue matching logic to jump the queue and have their orders
unfairly prioritized over others, then “all bets are off” as one ascends the
stack to more complex algorithms.

In this work, we make significant progress in addressing this need, including
completely formalizing the matching algorithm used in the pre-markets. Before
we describe our full contribution, we first briefly describe trading at an exchange.

1.1 An Overview of Trading at an Exchange

An exchange is an organized financial market. There are various types of
exchanges: stock exchange, commodity exchange, foreign exchange etc. An
exchange facilitates trading between buyers and sellers for the products which
are registered at the exchange. A potential trader, a buyer or a seller, places
orders in the markets for a certain product. These orders are matched by the
stock exchange to execute trades. Most stock exchanges hold trading in two main
sessions: pre-market (or call auction session) and continuous market (or regular
trading session) (See [6] for details on the market microstructure).

The pre-market session reduces uncertainty and volatility in the market by
discovering an opening price of the product. During the pre-market session, an
exchange collects all the buy requests (bids) and sell requests (asks) for a fixed
1 The New York Stock Exchange and the Archipelago Exchange merged together to

form NYSE Arca, which is an exchange where both stocks and options are traded.
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duration of time. At the end of this duration the exchange matches these buy
and sell requests at a single price using a matching algorithm. In the continuous
market session, the incoming buyers and sellers are continuously matched to
each other. An incoming bid (ask), if matchable, is immediately matched to the
existing asks (bids). Otherwise, if the bid (ask) is not matchable, it is placed in
a priority queue prioritized first by price and then by time. A trader can place
orders of multiple quantity of each product to trade during both the sessions. In
the continuous market session, unless otherwise specified, an order of multiple
units of a product can be partially executed, that too potentially at different
trade prices. In the pre-market session, an order of multiple units can always be
partially executed and all trades occur at a single price, namely the opening price.
In this work, we will be concerned primarily with the pre-market session where
orders can always be partially executed, which is also the case for most orders
in the continuous market session. Hence, for simplicity of analysis, it suffices to
assume that each order is of a single unit of a single product; a multiple quantity
order can always be treated as a bunch of orders each with a single quantity and
the analysis for a single product will apply for all the products individually.
As a result, note that a single trader who places an order of multiple units is
seen as multiple traders ordering a single unit each. In both sessions of trades
multiple buyers and sellers are matched simultaneously. A mechanism used to
match multiple buyers and sellers is known as a double sided auction [5].

In double sided auctions, an auctioneer (e.g. exchanges) collects buy and sell
requests over a period of time. Each potential trader places the orders with a
limit price: below which a seller will not sell and above which a buyer will not
buy. The exchange at the end of this time period matches these orders based on
their limit prices. This entire process is completed using a double sided auction
matching algorithm. Designing algorithms for double sided auctions is well stud-
ied topic [13,14,21]. A major emphasis of many of these studies have been to
either maximize the number of matches or maximize the profit of the auctioneer.
In the auction theory literature, the profit of an auctioneer is defined as the differ-
ence between the limit prices of matched bid-ask pair. However, most exchanges
today earn their profit by charging transaction costs to the traders. Therefore,
maximizing the number of matches increases the profit of the exchange as well as
the liquidity in the markets. There are other important properties, like fairness,
uniformity and individual rationality, besides the number of matches which are
considered while evaluating the effectiveness of a matching algorithm. However,
it is known that no single algorithm can possess all of these properties [13,21].

1.2 Our Contribution

Our main goal through this work is to show effectiveness of formal methods
in addressing real needs in financial markets and hopefully, along with subse-
quent works, this will lead to fully-verified real trading systems. In this work, we
formally define various notions from auction theory relevant for the analysis of
trades in financial markets. We define notions like bids, asks and matching in the
Coq proof assistant. The dependent types of Coq turn out to be very useful in
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giving concise representation to these notions, which also reflects their natural
definitions. After preparing the basic framework, we define important proper-
ties of matching in a double sided auction: fairness, uniformity and individual
rationality. These properties reflect various regulatory guidelines for trading.
Furthermore, we formally prove some results on the existence of various com-
binations of these properties. For example, a maximum matching always exists
which is also fair. These results can also be interpreted as consistency proofs for
various subsets of regulatory guidelines. We prove all these results in the con-
structive setting of the Coq proof assistant without adding any additional axioms
to it. These proofs are completed using computable functions which computes
the actual instances (certificate). We also use computable functions to represent
various predicates on lists. Finally, we use this setting to verify properties of two
important classes of matching algorithms: uniform price and maximum matching
algorithms.

We briefly describe the main results formalized in this work. To follow the
discussion below, recall that each bid and each ask is of a single quantity, and
hence the problem of pairing bids and asks can be seen as a matching problem
between all bids and all asks with additional price constraints.

Upper Bound on Matching Size: After formalizing the various notions, we
first show that these definitions are also useful in formalizing various theorems on
double sided auctions by formalizing a combinatorial result (Theorem 1) which
gives a tight upper bound on the total number of possible trades (size of a
maximum matching). For a given price, the demand (supply) is the total number
of buyers (sellers) willing to trade at that price. Theorem1 states that for any
price p, the total number of trades is at most the sum of the demand and supply
at price p. To prove Theorem 1, we first formalize Lemmas 1–3.

Properties of Matchings: We next formalize theorems relating to three impor-
tant properties of matchings: fairness, uniformity and individual rationality.
Before explaining the theorems, we first explain these terms.

A matching is unfair if there exists two buyers who had different bids and
the lower bid buyer gets matched but not the higher bid one. Similarly, it could
be unfair if a more competitive seller is left out. If a matching is not unfair, then
it is fair.

A matching is uniform if all trades happen at the same price and is individ-
ually rational if for each matched bid-ask pair the trade price is between the bid
and ask limit prices. In the context of formal markets, the trade price is always
between the limit prices of the matched bid-ask pair. Note that, during the pre-
market session, a single price is discovered, and thus the exchange is required to
produce a uniform matching for this session of trading.

Theorem 2 states that there exists an algorithm that can convert any match-
ing into individual rational. This can be achieved by assigning the trade prices
as the middle values between the limit prices of matched bid-ask pairs.

Theorem 3 states that given a matching there exists a fair matching of the
same cardinality. We use two functions Make_FOB and Make_FOA which suc-
cessively makes the matching fair on the bids and then the asks, thus resulting in
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a fair matching. The proof of Theorem 3, which is based on induction, uses Lem-
mas 4–9 and is quite technically subtle, as induction fails when we try to use it
directly (see the discussion below Lemma 4), and we need to first prove interme-
diate Lemmas 4 and 5 before we can use induction. In addition, we exhibit (see
Fig. 4) individual rational matchings to show that they cannot be both uniform
and maximum simultaneously.

Matching Algorithms: Finally, we formalize two important matching algo-
rithms: produce_MM and produce_UM.

Theorem 4 shows that produce_MM always outputs a maximum matching.
Composing Make_FOB, Make_FOA (from Theorem3) and produce_MM (The-
orem4), we can show that there exists an algorithm that outputs a maximum
matching which is also fair (Theorem 5).

The produce_UM algorithm is implemented by the exchanges for opening
price discovery, and Theorem 6 states that produce_UM outputs a maximum-
cardinality matching amongst all uniform matchings. We can compose
Make_FOA, Make_FOB (Theorem 5) and produce_UM (Theorem 6) to get an
algorithm that produces a maximum matching amongst all uniform matchings
that is also fair. Instead, we directly prove that the matching produced by pro-
duce_UM is also fair by first proving Lemmas 11 and 10. This completely for-
malizes the matching algorithm used by the exchanges during the pre-market
session of trading.

Finally we observe that while our work is useful for continuous markets, it
does not completely formalize trades during the continuous market session. This
requires further work as the lists continuously get updated during this session
of trading and the order types are also more involved. See the discussion in
Conclusion and Future Works (Sect. 4).

1.3 Related Work

There is no prior work known to us which formalizes double-sided auction mech-
anism used by the exchanges. Passmore and Ignatovich in [15] highlight the
significance, opportunities and challenges involved in formalizing financial mar-
kets. Their work describes in detail the whole spectrum of financial algorithms
that need to be verified for ensuring safe and fair markets. Matching algorithms
used by the exchanges are at the core of this whole spectrum. Another important
work in formalization of trading using model checking tools is done by Iliano et
al. [4]. They use concurrent linear logic (CLF) to outline two important proper-
ties of a trading system: the market is never in a locked-or-crossed state, and the
trading always take place at best bid or best ask limit price. They also highlight
the limitation of CLF in stating and proving properties of trading systems.

On the other hand, there are quite a few works formalizing various concepts
from auction theory [3,11,18]. Most of these works focus on the Vickrey auction
mechanism. In a Vickrey auction, there is a single seller with different items
and multiple buyers with valuations for each subset of item. Each buyer places
bids for every combination of the items. At the end of the bidding, the aim of
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the seller is to maximize the total value of the items by suitably assigning the
items to the buyers. Financial derivatives and other type of contracts are also
formalized in [2,8].

1.4 Organization of the Paper

In Sect. 2, we formally define the essential components of trading at an exchange.
In particular, we define some important properties of matchings and prove Theo-
rems 1–3. In Sect. 3, we present a maximum matching algorithm (produce_MM )
which produces a maximum matching which is fair. We also present an equilib-
rium price matching algorithm (produce_UM ) which is used for price discovery
in financial markets. We also specify and prove some correctness properties for
these algorithms (Theorems 4–7). We summarize the work in Sect. 4 with an
overview of future works. The Coq code for this work is available at [1], which
can be compiled on the latest version of Coq (8.10.1).

2 Modeling Trades at Exchanges

An auction is a competitive event, where goods and services are sold to the most
competitive participants. The priority among participating traders is determined
by various attributes of the bids and asks (e.g. price, time etc). This priority can
be finally represented by ordering them in a list.

2.1 Bid, Ask and Limit Price

In any double sided auction multiple buyers and sellers place their orders to buy
or sell a unit of an underlying product. The auctioneer matches these buy-sell
requests based on their limit prices. While the limit price for a buy order (i.e.
bid) is the price above which the buyer does not want to buy the item, the limit
price of a sell order (i.e. ask) is the price below which the seller does not want
to sell the item. If a trader wishes to buy or sell multiple units, he can create
multiple bids or asks with different ids. We can express bids as well asks using
records containing two fields.

Record Bid: Type:= Mk_bid { bp:> nat; idb: nat }.
Record Ask: Type:= Mk_ask { sp:> nat; ida: nat }.

For a bid b, (bp b) is the limit price and (idb b) is its unique identifier. Similarly
for an ask a, (sp a) is the limit price and (ida a) is the unique identifier of a. Note
that the limit prices are natural numbers when expressed in the monetary unit
of the lowest denomination (like cents in USA). Also note the use of coercion :>
in the first field of Bid which declares bp as an implicit function that is applied
to any term of type Bid appearing in a context requiring a natural number.
Hence from now on we can simply use b instead of (bp b) for the limit price of b.
Similarly, we use a for the limit price of an ask a.
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Since equality for both the fields of Bid as well as Ask is decidable (i.e.
nat: eqType), the equality on Bid as well as Ask can also be proved to be
decidable. This is achieved by declaring two canonical instances bid_eqType and
ask_eqType which connect Bid and Ask to the eqType.

2.2 Matching Demand and Supply

All the buy and sell requests can be assumed to be present in list B and list
A, respectively. At the time of auction, the auctioneer matches bids in B to
asks in A. We say a bid-ask pair (b, a) is matchable if b ≥ a (i.e. bp b ≥ sp a).
Furthermore, the auctioneer assigns a trade price to each matched bid-ask pair
which results in a matching M . We define a matching as a list whose entries are
of type fill_type.

Record fill_type: Type:= Mk_fill {bid_of: Bid; ask_of: Ask; tp: nat}

In a matching M , a bid or an ask appears at most once. There might be some
bids in B which are not matched to any asks in M and some asks in A which
are not matched to any bids in M . The list of bids present in M is denoted by
BM and the list of asks present in M is denoted by AM . For example in Fig. 1
the bid with limit price 37 is not present in BM .

Fig. 1. Bids in B and asks in A are represented using close and open brackets respec-
tively, and a matched bid-ask pair in M is assigned the same colors. (Color figure
online)

More precisely, for a given list of bids B and list of asks A, M is a matching
iff, (1) All the bid-ask pairs in M are matchable, (2) BM is duplicate-free, (3)
AM is duplicate-free, (4) BM ⊆ B, and (5) AM ⊆ A.

Definition 1. matching_in B A M := All_matchable M ∧ NoDup BM ∧
NoDup AM ∧ BM ⊆ B ∧ AM ⊆ A.

The term NoDup BM in the above definition indicates that each bid is a
request to trade one unit of the item and the items are indivisible. We use the
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term BM ⊆ B to express that each element in the list BM comes from the list
B.

Let B(≥ p) represents the bids in B whose limit price is greater than or
equal to a given price p. In other words, the quantity |B(≥ p)| represents the
total demand of the product at a given price p in the market. Similarly, we can
use A(≤ p) to represent all the asks in A whose limit price is less than or equal
to the given price p. Hence, the quantity |A(≤ p)| represents the total supply of
the product at the given price p.

Although, in general we can not say much about the relationship between
the total demand (i.e. |B(≥ p)|) and supply (i.e. |A(≤ p)|) at an arbitrary price
p, we can certainly prove the following important result about the matched bid
ask pairs.

Lemma 1. buyers_above_ge_sellers (M: list fill_type) (B: list Bid) (A: list
Ask): ∀p, matching_in B A M → |BM (≥ p)| ≥ |AM (≥ p)|.

Lemma 1 claims that in any valid trade output M and for a given price p, the
total volume of bids willing to buy at or above the price p is equal to or higher
than the total volume of asks willing to sell at a limit price at least p.

Similarly, we prove Lemma2 which states that, In a matching M , the total
volume of bids willing to buy at or below a price p is equal to or smaller than
the total volume of asks willing to sell at a limit price at most p.

Lemma 2. sellers_below_ge_buyers (M: list fill_type) (B: list Bid) (A: list
Ask): ∀p, matching_in B A M → |BM (≤ p)| ≤ |AM (≤ p)|.

Additionally, we have the following lemma which provides an upper bound
on the cardinality of a matching M using |BM (≥ p)| and |AM (≤ p)| at a price
p.

Lemma 3. maching_buyer_right_plus_seller_left (M: list fill_type) (B:list
Bid) (A:list Ask): ∀p, (matching_in B A M) → |M | ≤ |BM (≥ p)| + |AM (≤ p)|.

It is important to note that the total demand at a certain price p in the
market is always greater or equal to the matched demand at a price p or above
(i.e. |B(≥ p)| ≥ |BM (≥ p)|). Similarly, for total supply at a price p we have
|A(≤ p)| ≥ |AM (≤ p)|. These facts when put together with Lemma 3 can help
us prove the following result.

Theorem 1. bound_on_M (M: list fill_type) (B:list Bid) (A:list Ask): ∀p,
(matching_in B A M) → |M | ≤ |B(≥ p)| + |A(≤ p)|.
It states that no matching M can achieve a trade volume higher than the sum
of the total demand and supply in the market at any given price.

2.3 Individually Rational Trades

An auctioneer assigns a trade price to each matched bid-ask pair. Since the limit
price for a buyer is the price above which she does not want to buy, the trade
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price for this buyer is expected to be below her limit price. Similarly, the trade
price for the seller is expected to be above his limit price. Therefore, in any
matching it is desired that the trade price of a bid-ask pair lies between their
limit prices. A matching which has this property is called an individual rational
(IR) matching.

Definition 2. Is_IR M := ∀m, m ∈ M → ((bid_of m) ≥ tp m) ∧ (tp m ≥
(ask_of m)).

Note that any matching can be converted to an IR matching without altering
its bid-ask pair (See Fig. 2). Hence we have the following result,

Theorem 2. exists_IR_matching: ∀M B A, matching_in B A M → (∃ M ′,
BM = B′

M ∧ AM = A′
M ∧ matching_in B A M ′ ∧ Is_IR M ′).

Fig. 2. The colored dots represent trade prices for matched bid-ask pairs. Matching
M2 is not IR but M1 is IR, even though both the matchings contain exactly the same
bid-ask pairs. (Color figure online)

2.4 Fairness in Competitive Markets

A bid with higher limit price is considered more competitive compared to bids
with lower limit prices. Similarly, an ask with lower limit price is considered
more competitive compared to asks with higher limit prices. In a competitive
market, more competitive traders are prioritized for matching. A matching which
prioritizes more competitive traders is called a fair matching.

Definition 3. fair_on_bids M B := ∀b b′, b ∈ B ∧ b′ ∈ B → b > b′ → b′ ∈ BM

→ b ∈ BM .

Definition 4. fair_on_asks M A := ∀s s′, s ∈ A ∧ s′ ∈ A → s < s′ →
s′ ∈ AM → s ∈ AM .

Definition 5. Is_fair M B A := fair_on_asks M A ∧ fair _on_bids M B.
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Here, the predicate fair_on_bids M B states that the matching M is fair for
the list of buyers B. Similarly, the predicate fair_on_asks M A states that the
matching M is fair for the list of sellers A. A matching which is fair on bids as
well as asks is expressed using the predicate Is_fair M B A. Now we can state
and prove the following result which states that a fair matching can always be
achieved without compromising the cardinality of the matching.

Theorem 3. exists_fair_matching (Nb: NoDup B) (Na: No Dup A): match-
ing_in B A M → (∃ M ′, matching_in B A M ′ ∧ Is_fair M ′ B A ∧
|M | = |M ′|).
Proof Idea. We prove this statement by converting a matching into a fair match-
ing without changing its cardinality. In order to achieve this we use functions
make_FOB and make_FOA (See Fig. 3). The function make_FOB produces
a matching which is fair on bids from an input matching M and a list of bids
B both of which are sorted in decreasing order of their bid prices (Lemma 8).
Moreover, since make_FOB does not change any of the asks in M, it results in
a matching of size |M |. Once we get a fair matching on bids, we use a similar
function make_FOA to produce a matching which is fair on the asks. Finally, the
correctness proofs of make_FOB and make_FOA can be composed to complete
the proof of the present theorem. �

Fig. 3. The dotted lines represent matched bid-ask pairs. The function make_FOB
changes M1 into a fair matching on bids M2, whereas make_FOA changes M2 into a
fair matching on asks M3.

The functions make_FOB and make_FOA are both recursive in nature and
have identical definitions. Therefore, it is sufficient to discuss the properties of
make_FOB which is defined recursively as follows.

Fixpoint Make_FOB (M) (B):= match (M,B) with
|(nil,_) => nil
|(m::M',nil) => nil
|(m::M',b::B') => (Mk_fill b (ask_of m) (tp m))::(Make_FOB M' B')
end.

In each step the function make_FOB picks the top bid-ask pair, say (b, a) in
M1 and replaces b with the most competitive bid available in B, resulting in a
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matching M2 (See Fig. 3). Note that make_FOB does not change any of the asks
in M. Moreover, due to the recursive nature of make_FOB on B, a bid is not
repeated in the process of replacement (i.e., BM2 is duplicate-free). Therefore,
we would like to have the following lemma.

Lemma 4. ∀M B, (Sorted ↓bp M) → (Sorted ↓bp B) → matching_in B A M
→ fair_on_bids (Make_FOB M B) B.

Induction Failure: The function make_FOB is recursive on both B and M ,
and hence a proof of this lemma is expected using an inductive argument on
the structure of B. Although the theorem is true, an attempt to prove it using
induction on B will fail. Let M = (b1, a1) :: (b2, a2) :: M ′′ and B = b2 :: b1 :: B′′,
where both B and M are sorted by decreasing bid prices and (bp b1) = (bp b2).
After the first iteration, the make_FOB will calls itself on M ′ = (b2, a2) :: M ′′

and B′ = (b1 :: B′′). In the inductive proof, in order to use the induction
hypothesis we need to prove that M ′ is a matching for the list of bids in B′. This
is clearly not true since BM ′ is not a subset of B′ since b2 /∈ B′ but b2 ∈ BM ′ . This
complication arises because we are dealing with all the information contained in
the bids while the proof requires reasoning only based on their limit prices. We
resolve this difficulty by systematically mapping the properties of M , B and A
to the properties of their corresponding price columns. For example, we have the
following result on the prices of B.

Lemma 5. sorted_nodup_is_sublistB: ∀B1 B2, NoDup B1 → NoDup B2 →
Sorted ↓bp B1 → Sorted ↓bp B2 → B1 ⊂ B2 → sublist PB1 PB2 .

Here, PB is projection of the limit prices of bids in B. The term (sublist PB1

PB2) represents the sub-sequence relation between the lists PB1 and PB2 . Fur-
thermore, we have the following lemmas specifying the sub-list relation between
lists.

Lemma 6. sublist_intro1: ∀a, sublist l s → sublist l (a::s).

Lemma 7. sublist_elim3a: ∀a e, sublist (a::l) (e::s) → sublist l s.

Note the recursive nature of the sublist relation on both its arguments, as
evident in Lemma 7. It makes inductive reasoning feasible for the statements
where sublist is in the antecedent. Hence, we use the sublist relation to state
and prove the following result.

Lemma 8. mfob_fair_on_bid M B: (Sorted ↓bp M) → (Sorted ↓bp B) → sub-
list PBM

PB → fair_on_bids (Make_FOB M B) B.

Similarly, we can state and prove the following result which specifies the
function make_FOA.

Lemma 9. mfob_fair_on_ask M A: (Sorted ↑sp M) → (Sorted ↑sp A) → sub-
list PAM

PA → fair_on_asks (Make_FOA M A) A.

Since the fair matching is obtained by composing the functions Make_FOA
and Make_FOB, we can combine the proofs of Lemma 9 and Lemma 8 to obtain
the complete proof of Theorem 3.
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2.5 Liquidity and Perceived-Fairness in the Markets

The liquidity in any market is a measure of how quickly one can trade in the
market without much cost. One way to increase the liquidity is to maximize the
number of matched bid-ask pairs. For a given list of bids B and list of asks A
we say a matching M is a maximum matching if no other matching M ′ on the
same B and A contains more matched bid-ask pairs than M .

Definition 6. Is_MM M B A := (matching_in B A M) ∧ (∀M ′, matching_in
B A M ′ → |M ′| ≤ |M |).

Designing a mechanism for a maximum matching is an important aspect of
a double sided auction. In certain situations, to produce a maximum matching,
bid-ask pairs must be assigned different trade prices (Fig. 4). However, different
prices simultaneously for the same product leads to dissatisfaction amongst some
of the traders. A mechanism which clears all the matched bid-ask pairs at a single
trade price is called a uniform matching (or perceived-fairness).

80
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B A B A
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Fig. 4. The only individually rational matching of size two is not uniform.

3 Optimizing Trades in Financial Markets

In Sect. 2.5, we observed that a maximum matching may not be a uniform match-
ing. In this Section, we present two broad classes of double sided auction mecha-
nisms: a maximum matching mechanism and a uniform price mechanism. While
the maximum matching mechanism tries to maximize the overall volume of the
trade, the uniform price mechanism tries to obtain a uniform matching of max-
imum possible cardinality.

3.1 A Maximum Matching Mechanism

We will now discuss a matching mechanism which produces maximum trade
volume while maintaining the fairness criterion. This scheme produces the same
output as the one proposed in [14]. However, there are some important differences
in both mechanisms. The algorithm suggested in [14] is a non recursive method
which generates the final trade in two steps; the algorithm first determines the
cardinality n of a maximum matching on the given set of bids and asks and
then in the next step it produces a fair matching of cardinality n. On the other
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hand, we use a recursive function produce_MM on the lists of bids and asks
to produce a maximum matching which is then converted into a fair matching
using the already defined function make_FOA (See Fig. 5(a)). We follow this
approach because it allows us to easily compose the correctness proof of these
individual functions to validate the properties of the final trade generated by the
whole mechanism.

Fig. 5. (a) At each iteration produce_MM selects a most competitive available bid
and then pairs it with the largest matchable ask. The output of this function is already
fair on bids. In the second step, the function make_FOA converts this output into fair
matching. (b) Maximum matching amongst uniform. Note that, the size of both the
matchings are different.

Fixpoint produce_MM (B) (A) := match (B, A) with
|(nil, _) => nil
|(b::B', nil) => nil
|(b::B', a::A') => match (a <= b) with

|true => {|bid_of:=b; ask_of:=a; tp:=(bp b)|}::(produce_MM B' A')
|false => produce_MM B A'
end

end.

The correctness proof of produce_MM is obtained using an inductive argu-
ment on the structure of the input lists. At each iteration produce_MM generates
a matchable bid-ask pair (See Fig. 5(a)). Due to the recursive nature of function
produce_MM on both B and A, it never pairs any bid with more than one
ask. This ensures that the list of bids in matching (i.e. BM ) is duplicate-free.
Note that produce_MM tries to match a bid until it finds a matchable ask. The
function terminates when either all the bids are matched or it encounters a bid
for which no matchable ask is available. The following theorem states that the
function produce_MM produces a maximum matching when both B and A are
sorted in a decreasing order of the limit prices.

Theorem 4. produce_MM_is_MM (Nb: NoDup B) (Na: NoDup A): Sorted
↓bp B → Sorted ↓sp A → Is_MM (produce_MM B A) B A.

The detailed proof of the above theorem can be found at [16].
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Now that we proved the maximality property of produce_MM we can pro-
duce a fair as well as maximum matching by applying the functions Make_FOA
and Make_FOB to the output of produce_MM. More precisely, for a given list
of bids B and list of asks A, we have the following result stating that there exists
a matching which is both maximum and fair.

Theorem 5. exists_fair_maximum (B: list Bid)(A: list Ask): ∃ M , (Is_fair
M B A ∧ Is_MM M B A).

3.2 Trading at Equilibrium Price

An important aspect of the opening session of a market is to discover a single
price (equilibrium price) at which maximum demand and supply can be matched.
Most exchanges execute trade during this session at an equilibrium price. An
equilibrium price determined at exchanges is usually the limit price of a bid or
ask from a bid-ask pair such that the uniform matching produced in this session
remains individual rational. We will now describe a function produce_UM which
produces an individually rational matching which is fair and maximum among
all uniform matchings.

Fixpoint pair_uniform (B:list Bid) (A:list Ask):= match (B,A) with
|(nil, _) => nil
|(_,nil)=> nil
|(b::B',a::A') => match (a <= b) with

|false => nil
|true =>{|bid_of:= b;ask_of:= a; tp:=(bp b)|}::pair_uniform B' A'
end

end.
Definition uniform_price B A := bp (bid_of (last (pair_uniform B A))).
Definition produce_UM B A:=
replace_column (pair_uniform B A) (uniform_price B A).

The function pair_uniform output bid-ask pairs, uniform_price computes
the uniform price and finally produce_UM produces a uniform matching. The
function pair_uniform is recursive and matches the largest available bid in B
with the smallest available ask in A at each iteration (See Fig. 5(b)). This func-
tion terminates when the most competitive bid available in B is not matchable
with any available ask in A.

The following theorem states that the function produce_UM produces a max-
imum matching among all uniform matchings when the list of bids B is sorted
in a decreasing order of the limit prices and the list of asks A is sorted in an
increasing order of the limit prices.

Theorem 6. UM_is_maximal_Uniform (B: list Bid) (A:list Ask): Sorted ↓bp
B → Sorted ↑sp A → ∀M , Is_uniform M → |M | ≤ |produce_UM B A|.

The detailed proof of the above theorem can be found at [16].
Next, we prove that the produce_UM generates a maximum matching among

all uniform matchings which is also fair when the list of bids B is sorted in a
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decreasing order of the limit prices and the list of asks A is sorted in an increasing
order of the limit prices. In order to prove this, we first prove the following two
lemmas.

Lemma 10. UM_pair_fair_on_asks (B: list Bid) (A:list Ask): Sorted ↓bp B
→ Sorted ↑sp A → fair_on_asks (pair_uniform B A) A.

Lemma 11. UM_pair_fair_on_bids (B: list Bid) (A:list Ask): Sorted ↓bp B
→ Sorted ↑sp A → fair_on_bids (pair_uniform B A) B.

Theorem 7. UM_fair (B: list Bid) (A:list Ask)(m:fill_type): Sorted ↓bp B →
Sorted ↑sp A → Is_fair (produce_UM B A) B A.

The proof of Theorem 7 is similar to the proof of Theorem3 once we use
Lemmas 10 and 11.

4 Conclusion and Future Works

In this work, we developed a formal framework to verify important properties of
matching algorithms used by the exchanges. These algorithms use double sided
auctions to match multiple buyers with multiple sellers during different sessions
of trading. We presented correctness proofs for two important classes of double
sided auction mechanisms: uniform price algorithms and maximum matching
algorithms.

An important direction of future work is the individual analysis of various
orders types which are important for the continuous markets (e.g. limit orders,
market orders, stop-loss orders, iceberg orders, fill or kill (FOK), immediate or
cancel (IOC) etc.). This would require maintaining a priority queue based on
the various attributes of these orders. A formal analysis of these order attributes
together with the verification of trading mechanisms can provide a formal foun-
dation which will be useful in the rigorous analysis of other market behaviors at
large. Also for continuous markets, due to the various order types, it becomes
important to consider multiple unit orders which requires more work. Moreover,
the insights gained from these attempts to formalize the overall trading mecha-
nism can be helpful in developing robust as well as efficient trading systems of
the future which can be used directly at the exchanges.
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Abstract. Blockchains leverage the synergy of technologies from net-
working, cryptography, distributed protocols, security policies, and com-
puter programming, to provide guarantees such as distributed consensus
and tamper-resistance over records of data and activities. The interac-
tion of diverse technical elements in a blockchain could create obstacles in
precisely understanding the workings of it, and the guarantees delivered
by it. We help overcome these obstacles in the case of the transaction flow
process of the Hyperledger Fabric blockchain, through theorem-proving
techniques. The transaction flow process is an overarching architectural
component for the handling of transactions in Hyperledger Fabric. We
formalize the transaction flow, and prove that it preserves distributed
consensus, in the Coq proof assistant. Our development complements
existing formalizations of consensus mechanisms for blockchain systems.

1 Introduction

A blockchain is a globally shared, distributed digital ledger [24]. The ledger
typically contains a chain of blocks holding records of data and activities. A
series of properties are typically enforced about the ledger: distributed consen-
sus, tamper-resistance, repudiation-resistance, traceable provenance of data and
activities, etc. These properties make the blockchain an ideal choice for trust-
worthily managing the relations of production in the information era.

Despite the simplicity of the blockchain concept as a distributed data struc-
ture, the enforcement of the blockchain properties is really achieved through
a fusion of diverse technological elements – computer networks, cryptographic
algorithms, distributed protocols, security policies, computer programs, etc. The
need for proper synergy between all these technological elements renders the
blockchain arguably one of the most sophisticated IT innovations ever made.
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Hyperledger Fabric [8] is the prototypical example of permissioned blockchain
system – the permission to participate in the blockchain network is obtained
through explicit authentication. Hyperledger Fabric features a novel execute-
order-validate paradigm in the handling of tasks. This parallelizes the execu-
tion of tasks and the recording of executed tasks in the blockchain, which
increases efficiency while maintaining consensus. Hyperledger Fabric has been
widely adopted and adapted by businesses throughout the world for blockchain-
enabled applications [1].

The aforementioned execute-order-validate paradigm manifests itself in the
transaction flow process – the process by which the transactions (roughly the
tasks) are proposed, executed, ordered, entered into blocks, and recorded on
the network nodes. The transaction flow process threads through almost all the
major technical elements of Hyperledger Fabric. Hence, a precise grasp of the
transaction flow is key to understanding how the main technical elements of this
system play together, and how the key blockchain properties (e.g., consensus)
emerge out of this interplay. However, due to the conceptual complexity involved,
and the occasional vagueness of natural languages for the documentation [6], it
is non-trivial to achieve the desired precision level in the understanding.

It is well-known that the use of formal methods often helps articulate the
design of IT systems (e.g., [18]). For blockchain systems specifically, there have
been several efforts formalizing a core part of the architecture – the consensus
mechanism. P̂ırlea and Sergey [19] formalize a generic model of blockchain con-
sensus. Fernández Anta et al. [12] formalize distributed ledger objects and their
implementations, establishing several consistency guarantees. Wilcox et al. [21]
and Woos et al. [23] formalize the Raft protocol and prove that it achieves state
machine replication across the network. Buterin and Griffith [11], as well as
Hirai [3], formalize the Casper protocol and prove its key safety and liveness
properties. Maung Maung Thin et al. [17] formally analyze the safety proper-
ties of the Tendermint protocol. The focus of these existing developments is
on consensus mechanisms, rather than blockchain architectures in which these
mechanisms are employed (together with other technical ingredients).

In this work, we formalize the transaction flow process of Hyperledger Fab-
ric through theorem-proving techniques. Our formalization articulates how the
major technical elements of this blockchain system are brought together by this
process, in the handling and recording of tasks. These technical elements include:
a heterogeneously structured network with nodes in different roles, policies gov-
erning the validity of executions, summaries of the effects of code execution, and
mechanisms for ordering and validating transactions. We illustrate the formal-
ization using an application scenario where the pricing information about cars
is managed using the Hyperledger Fabric blockchain. In addition, we formally
prove that the distributed consensus over the ledger is preserved under the trans-
action flow. Last but not least, we mechanize our development [5] in the Coq
proof assistant [2]. Our concrete technical contributions thus include:

– a formalization of the transaction flow process of Hyperledger Fabric;
– a formal proof that the transaction flow preserves distributed consensus;
– a mechanization of the formal model and proof in the Coq proof assistant.
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In this paper, our formalization is presented in a set-theoretic language. No
prior knowledge about a specific formalism is needed to understand it. The
mechanization in Coq provides strong evidence on the sanity of this formalization
and the correctness of the formal proof.

Other Related Work. Apart from the formalization of mechanisms for block-
chain consensus, there are mainly two other classes of existing work related to
ours. One is on formal models about the timing aspect of the Hyperledger Fabric
transaction flow. Stochastic Reward Nets and Generalised Stochastic Petri Nets
are used to help analyze the main factors affecting the transaction throughput,
and optimize the performance [20,25]. The other class is on the formalization
and verification of blockchain programs. The specific developments here include
the formal verification of chaincode (e.g., [10]) in Hyperledger Fabric, and of
smart contracts (e.g., [7,9,13–16]) in Ethereum [22].

Structure. In Sect. 2, we introduce the central architectural concepts, and the
transaction flow process of Hyperledger Fabric. In Sect. 3, we formalize the archi-
tectural entities of Hyperledger Fabric, including transactions, blocks, network
nodes, etc. In Sect. 4, we present the formalization of the transaction flow process
as a transition system. In Sect. 5, we formalize the preservation of the consensus
over the ledger under the transaction flow, and briefly discuss our development
in Coq. In Sect. 6, we conclude our development.

2 The Architecture of Hyperledger Fabric

2.1 The Central Concepts

The network of Hyperledger Fabric is formed by peer nodes and orderers. A
peer node (or peer in short) holds a copy of the distributed ledger. This ledger
consists of the blockchain, and the world state that maps the variables relevant
to any business logics executed to their values. The business logics are expressed
in smart contracts, and a group of smart contracts fulfilling a common purpose
is wrapped in a chaincode that is deployed on peers [6]. The execution of an
operation in a smart contract, and its outcome, are represented as a transaction.
The transactions are proposed by clients via interactions with the peers. These
transactions are recorded in the blocks of the blockchain, in some order. This
order is determined by the ordering service run by the orderers.

2.2 The Transaction Flow

The transaction flow process in Hyperledger Fabric is illustrated in Fig. 1. The
figure is adapted from similar illustrations in [8] and [6].

A client proposing a transaction first sends a number of transaction proposals
– each to a peer. For the first peer, this is depicted by A → B in Fig. 1. A transac-
tion proposal contains the operation of a smart contract that the client intends to
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invoke. A peer receiving a transaction proposal may execute the operation, and
respond to the client with an endorsement on the transaction proposal and the
execution result (B → C → D). After the client collects enough endorsements
on its transaction proposal (as per a policy called the endorsement policy), it
may create a transaction (at E). The transaction is sent to the ordering service
(E → F ), which places the transaction in a block (F → G). The block can
then be integrated into the ledger of any peer, after the peer validates the block
(G → H → J and G → I → K).

Fig. 1. The transaction flow of
hyperledger fabric

This process is coined as execute-order-
validate. It allows for the concurrent execu-
tion of different transactions (in the form of
transaction proposals) at different subsets of
peers, and for the execution and ordering of
transactions to be performed concurrently.
Below, we explain the individual stages of
this process.

A Client Proposes a Transaction. A client
proposing a transaction submits a transac-
tion proposal to a number of peers (repre-
sented for one of the peers by A → B in Fig. 1). These peers will check the
validity of the transaction proposal and respond correspondingly to the client.

The Peers Endorse on the Transaction Proposal. A peer receiving the transac-
tion proposal executes the operation of the target smart contract in the world
state local to the peer. If nothing goes wrong in the execution, the peer gener-
ates an endorsement on the proposal. This endorsement contains a readset that
records which variables are read in the execution, and which versions of them
are read. Here, the version number of a variable increases with updates of the
variable. The endorsement also contains a writeset that records which variables
are updated in the execution, and the new values of these variables. Hence, the
readset and the writeset constitute a summary of the execution of the invoked
operation. That is, if the operation is executed with each variable at the version
according to the readset, then the execution updates each variable to the value
according to the writeset, incrementing the version number of the variable. If
the peer decides to endorse on the transaction proposal, it responds to the client
sending the proposal with its endorsement (C → D in Fig. 1).

The Client Generates a Transaction. The client waits for enough endorsements
(according to the endorsement policy of the smart contract invoked) to be
received for its transaction proposal. The client then composes and sends a
transaction to the ordering service (E → F in Fig. 1). This transaction carries
information about its original proposal, and all the endorsements by the peers.
The readsets and writesets in the endorsements need to agree. The values on
which they agree are used as the readset and the writeset of the overall trans-
action.
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The Orderers Enter the Transaction into a Block. The ordering service puts
the transaction received from the client into a block, along with a number of
other transactions received from any clients (F → G in Fig. 1). In doing so,
the ordering service implements a system-wide order among transactions. The
block contains the hash of the list of transactions in it, and the hash of the list
of transactions in the previous block. The block is eventually delivered to the
peers.

The Peers Validate and Integrate the Block. Upon receiving a block created
by the ordering service, a peer validates the transactions in the block, appends
the block to its copy of the blockchain (if the block header contains proper
hash values), and updates its local record of the world state by integrating the
effects of the valid transactions in the block. In validating a transaction, it is
checked whether the endorsements in the transaction satisfy the endorsement
policy for the smart contract invoked. Although the check is supposed to be
already performed by the client generating the transaction, this client is not
trusted in doing it properly. It is also checked whether the variables in the local
world state have equal version numbers to those in the readset of the transaction.
This is to ensure that there have not been further updates to the world state
after the initial execution of the invoked operation by the peers (as represented
by B → C). Such potential updates would invalidate the writeset. A transaction
passing both checks is valid, and the writeset of the transaction is used to update
the world state. Invalid transactions get marked in the block and their effects
are discarded.

3 Formalizing the Architectural Entities

We formalize the main entities involved in the transaction flow of Hyper-
ledger Fabric, including different kinds of network nodes, transaction proposals,
endorsements, transactions, ledgers, blocks, world states, etc.

3.1 Sets and Elements for the Entities

We start by introducing the sets and meta-variables that constitute the basis
of our formalization. These include client identifiers cid ∈ CId, peer identifiers
pid ∈ PId, chaincode identifiers ccid ∈ CcId, public keys pk ∈ PK, hash values
h ∈ H, and keys k ∈ K that are mapped to values in world states. In addition,
we use t to range over the set T := {tt,ff} of truth values, and n to range over
the set N of natural numbers.

We present the definitions modeling the main entities involved in the transac-
tion flow in Table 1. If an entity is modeled by a tuple, we give the name of each
component that can be used to refer to the component. This name may differ
from the meta-variable ranging over the domain of the component in general.

The definitions given in Table 1 are explained as follows. A client (c) is mod-
eled by a timestamp ts counting the number of transactions proposed, a list txps
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Table 1. The main entities involved in the transaction flow

Sets Elements

Clients C := TS × TxP∗ × (H → Ed∗) c := (ts, txps, edm)

Peers P := PK × (CcId → (EP × Op∗)⊥) ×
Lg × TxP∗ × (Op → Σ → (R × W )⊥)

p := (pk, ep cc, lg, txps, op sem)

Ordering services O := BS × BN × H × Tx∗ × (BN→B⊥) o := (bsz, lbn,lbh,txs,bm)

Trans. proposals TxP := CId × CcId × Op × TS txp := (cid, ccid, op, ts)

Endorsements Ed := Ed0 × Sig ed := (ed0, sig)

Endorsed data Ed0 := PId × CcId × Op × R × W ed0 := (pid, ccid, op, r, w)

Transactions Tx := CcId × Op × R × W × Ed∗ tx := (ccid, op, r, w, eds)

Ledgers Lg := B∗ × (CcId → Σ⊥) lg := (blks,wss)

Blocks B := BH × Tx∗ × T ∗ b := (bh, txs,flags)

Block headers BH := BN × H × H bh := (bn, cbh, pbh)

Endors. policies EP := Sig∗ → T ep ∈ EP

Signatures Sig := PK × H sig := (pk, h)

World states Σ := K → (V × Vr)⊥ σ ∈ Σ

Values V := N ∪ (K → V⊥) v ∈ V

Read sets R := K → Vr⊥ r ∈ R

Write sets W := K → ({ff} ∪ {tt} × V⊥) w ∈ W

Hash functions HF := (TxP ∪ Ed0 ∪ Tx∗) → H hf ∈ HF

Timestamps TS := N ts ∈ TS

Block sizes BS := N bsz ∈ BS

Block numbers BN := N bn ∈ BN

Version numbers Vr := N vr ∈ Vr

of transaction proposals sent but not yet endorsed on by enough peers, and a
function edm from each hash value of a transaction proposal to a list of endorse-
ments that have been received for the proposal. A peer (p) is modeled by a public
key pk identifying the peer, a function ep cc mapping each chaincode identifier
to an optional pair consisting of the endorsement policy for the chaincode and
the list of operations in the chaincode, a ledger lg, a list txps of transaction pro-
posals not yet processed by the peer, and a function op sem that interprets each
operation of a smart contract in a given world state as a readset and a writeset.
The ordering service (o) is modeled by the size bsz of each block to be formed,
the block number lbn for the last block formed, the hash value lbh of the transac-
tions in the last block formed, a list txs of pending transactions to be assembled
into blocks, and a function bm mapping each block number to an optional block
having that block number. A transaction proposal (txp) is modeled by a client
identifier cid for the client generating the proposal, a chaincode identifier ccid
for the chaincode to be invoked in the transaction, the operation op invoked,
and the timestamp ts of the client when it sends the transaction proposal. An
endorsement (ed) is modeled by the endorsed data ed0, and a signature sig on
the endorsed data by the endorsing peer. The endorsed data (ed0) consists of the



Formalizing the Transaction Flow Process of Hyperledger Fabric 239

peer identifier pid for the endorsing peer, the chaincode identifier ccid for the
chaincode invoked, the operation op invoked, and the readset r and writeset w
generated by executing (or simulating) the operation. A transaction (tx) is mod-
eled by a chaincode identifier ccid for the chaincode invoked in the transaction,
the operation op in the chaincode that is invoked, a readset r and a writeset w
constituting a summary of the executional effects of the chaincode, and a list
eds of endorsements that made the transaction possible. A ledger (lg) is modeled
by a list blks of blocks (i.e., a blockchain), and a function wss mapping each
chaincode identifier to the world state of the chaincode. A block (b) is modeled
by a block header bh, a list txs of transactions contained in the block, and a
list flags of truth values indicating the validity of the individual transactions.
A block header (bh) is modeled by a block number bn, a hash value cbh for the
list of transactions in the current block, and a hash value pbh for the previous
block. An endorsement policy (ep) is modeled by a function mapping each list of
signatures produced by endorsing peers to a truth value indicating whether these
endorsing peers are enough to qualify a transaction. A signature (sig) is modeled
by a public key pk that can be used to verify the signature, and a hash value h
representing the data that is signed. A world state (σ) is modeled by a function
mapping each key to an optional pair of the value and version number for the
key. A value (v) may be a natural number, or a function mapping each key to
an optional value. A readset (r) is modeled as a function mapping each key to
an optional version number. A writeset (w) is modeled as a function mapping a
key to ff if the key is unaffected, to a pair of the form (tt, v) if the key is updated
to v, or to a pair of the form (tt,⊥) if the key is deleted.

3.2 Inspection and Update of the Entities

We make extensive use of lists, tuples, and functions in our formalization. We
introduce the notation used in the presentation for the inspection and manipu-
lation of these structures.

For a list as ∈ A∗, we write |as| for the length of as, and (abuse notation to)
write a ∈ as for the membership of a in as, and as \ a for the list as′ obtained
by removing the first occurence of a in as. We write firstn(as, n) (where n ∈
{0, . . . , |as|}) for the list consisting of the first n elements of as, in their original
order. We write skipn(as, n) (where n ∈ {0, . . . , |as|}) for the list obtainable
by removing the first n elements from as. For two lists as1 and as2 in A∗, we
write as1∧as2 for the concatenation of as1 and as2. For a tuple τ = (ν1, . . . , νn)
where ν1, . . . , νn are the meta-variables for the components of τ (see Table 1),
we write τ.νi (where i ∈ {1, . . . , n}) for the i-th component of τ . For a function
f ∈ A → A′, we write f a for the application of f on a. We sometimes represent
a function f by the λ-expression λa.f a.

We use path expressions to help specify the update of entities with nested
functions and tuples. The update of the part of the entity e referred to by the
path expression ξ to a is denoted by e[ξ := a]. Here, ξ is given by

ξ ::= .ν ξ | d ξ | ε
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In the above, d is a meta-variable ranging over the domain of some function,
and ν is the name of a tuple component. Neither d nor ν contains any function
application or component referencing in itself. For example, o[.bm bn := b] repre-
sents the ordering service that is like o, except that the block mapped to from bn
by the component named bm is b. Formally, e[ξ := a] gives the entity e′ that is
the same as e, except that e′�ξ� has the value a. Here, e�ξ� represents the result
of interpreting the path expression ξ relative to e. This interpretation is given
by e�.ν ξ� := (e.ν)�ξ�, e�d ξ� := (e d)�ξ�, and e�ε� := e. We have the example
derivation o�.bm bn� = (o.bm)�bn ε� = ((o.bm) bn)�ε� = (o.bm) bn. The update
expression e[ξ := a] is used in Sect. 4.2 where the dynamics of the transaction
flow is formalized.

3.3 Illustrative Examples

To help with the understanding of our formalization, we use a running example
for illustration. In this example, the information about the pricing of cars is
managed on a blockchain. For simplicity, we consider a single type of cars from
a single producer, with the price of the cars recorded on a single peer node, and
operated on by a single client. Through proposed transactions, this client may
set the price of the cars to some fixed value, or to a discount price.

Example 1 (Endorsement policy). For the aforementioned scenario, we consider
the endorsement policy ep� ∈ EP given by ep� sigs := (∃h : (pk�, h) ∈ sigs).
Here, pk� is the public key of the (only) peer. Hence, the endorsement by the
peer is required on each transaction proposal, under this endorsement policy. ��
Example 2 (Operations). The operations setting the price of the cars and apply-
ing deductions on the prices are captured by the list ops� := [set op, dc op]. The
operation set op sets the price to 6000$. The operation dc op applies a 10%
deduction to the price. The intuitive meanings of the two operations are cap-
tured by the function op sem� ∈ Op → Σ → (R × W )⊥, given by

op sem� := (λop.λσ.⊥)[ set op := (λσ.(rs, ws)), dc op := (λσ.(rd, wd)) ]

Here, rs = λk.⊥, ws = (λk.⊥)[price := (tt, 6000)], rd = (λk.⊥)[price :=
(σ price).vr], and wd = (λk.⊥)[price := (tt, (σ price).v ∗ 0.9)]. Interpreting each
operation in a world state yields a pair of a readset and a writeset. The operation
set op involves no reading of the world state. This is captured by the readset rs
mapping each key to ⊥. The writeset ws yielded by this operation indicates that
the value for the key price is affected (tt), and is set to 6000. The operation dc op
reads the current price of the cars. This is captured by the readset rd mapping
price to its version number in the given world state σ. The writeset wd for this
operation reflects that the value for the key price is set to 90% of its original
value in the given world state σ. ��
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Example 3 (Transaction). Consider a transaction tx1 invoking the operation
set op. Then, tx1 is of the form (ccid�, set op, rs, ws, [ed1]), where ed1 = (ed10,
(pk�, hf� ed10)), ed10 = (pid�, ccid�, set op, rs, ws), pid� is the identifier of the
only peer, ccid� ∈ CcId is the identifier for the car-pricing chaincode, and ed1 is
the endorsement by the peer on the transaction. ��
Example 4 (Peer). Consider the situation where one single block b1 containing
the single transaction tx1 has been created by the ordering service, and integrated
into the ledger on the peer. The state of the peer can be modeled as

p� := (pk�, ep cc�, lg�, [], op sem�)

where ep cc� = (λccid.⊥)[ccid� := (ep�, ops�)], lg� = ([b1], (λccid.λk.⊥)[ccid�:=
(λk.⊥)[price := (6000, 1)]]), and b1 = ((0, hf� [tx1], hf� []), [tx1], [tt]). Here, the
ledger lg� contains the blockchain [b1]. The list [tt] in b1 reflects that tx1 is valid.
The ledger lg� also contains a mapping giving the world state of the chaincode.
This world state maps the key price to the value 6000 and the version 1. ��
Example 5 (Ordering service). The state of the ordering service is modeled as

o� := (1, 0, hf� [tx1], [], (λbn.⊥)[0 := ((0, hf� [tx1], hf� []), [tx1], [])])

Hence, the block size is 1, the block number of the last block is 0, the last
block hash is hf� [tx1], the list of pending transactions is the empty list and
the block number 0 is mapped to the only block that has been created, i.e.,
((0, hf� [tx1], hf� []), [tx1], []). This block is the same as b1 in Example 4 except
that the list of validity flags is empty. This is because the validity flags are
generated after the validation of the block at the peer, while the block recorded
in the ordering service is not yet processed by the peer. ��
Example 6 (Client). The state of the client is modeled by c� := (1, [], λh.[]).
Hence, the timestamp of the client is currently 1, after the increment when
proposing the first transaction, tx1. The list of pending transaction proposals is
empty, for the only generated proposal has been handled, with its corresponding
transaction created. Finally, the only endorsement on the transaction proposal
has been cleared after the transaction is created. This is reflected by λh.[] that
maps each transaction proposal hash to the empty list of endorsements. ��

4 Formalizing the Transaction Flow

In this section, we formalize the dynamics of the transaction flow process of
Hyperledger Fabric as a transition system.

4.1 Specification of the Transition Relation

We formally model a processing step in the transaction flow with a transi-
tion relation. It is represented using the notation hf 	 〈κ, ρ, o〉 α−→ 〈κ′, ρ′, o′〉.
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This notation says: The network state 〈κ, ρ, o〉 is updated to the network state
〈κ′, ρ′, o′〉 after a transition step performing the action α, and using hf for the
hashing operations potentially involved. Here, κ, κ′ ∈ CId → C⊥ capture the
states of the clients, ρ, ρ′ ∈ PId → P⊥ capture the states of the peers, and
o, o′ ∈ O capture the states of the ordering service. The set Act of actions is
given by

Act := {cli prop(cid, pids) | cid ∈ CId ∧ pids ∈ PId∗} ∪
{peer resp(pid,cid) | pid∈PId ∧ cid∈CId} ∪ {peer dprop(pid) | pid∈PId} ∪
{cli trans(cid) | cid ∈ CId} ∪ {cli dprop(cid) | cid ∈ CId} ∪
{os blk()} ∪ {peer blk(pid) | pid ∈ PId}

With cli prop(cid, pids), we model the action of a client sending a transaction
proposal to a number of peers. The client has client identifier cid, and the trans-
action proposal is sent to all peers with peer identifiers in the list pids. With
peer resp(pid, cid), we model the action of a peer responding to a transaction pro-
posal with an endorsement. The peer has the peer identifier pid, and the response
is sent to the client with the client identifier cid. With peer dprop(pid), we model
the action of a peer not endorsing a transaction proposal, and dropping the trans-
action proposal correspondingly. With cli trans(cid), we model the action of a
client sending a transaction to the ordering service, after having collected enough
endorsements on one of its transaction proposals. With cli dprop(cid), we model
the action of a client dropping a transaction proposal due to the inability to col-
lect enough endorsements on the transaction proposal. With os blk(), we model
the action of the ordering service forming a new block. With peer blk(pid), we
model the action of a peer validating a block and incorporating the block into
the ledger on the peer.

4.2 Conditions for the Transitions

We specify the sufficient conditions for the different kinds of transitions to take
place, i.e., conditions for hf 	 〈κ, ρ, o〉 α−→ 〈κ′, ρ′, o′〉 to hold with different values
for α. When multiple conditions hold simultaneously, any of the corresponding
transitions may happen, reflecting the nondeterminism of the transaction flow.

The condition for the transition representing a client sending a transaction
proposal is specified as

∃cid ∈ CId, c ∈ C, pids ∈ PId∗, ccid ∈ CcId, op ∈ Op, txp ∈ TxP :

c = κ cid ∧ txp = (cid, ccid, op, c.ts) ∧
κ′ = κ[cid.txps := c.txps∧[txp], cid.ts := c.ts + 1] ∧
ρ′ = ρ[pid.txps := (ρ pid).txps∧[txp]]pid∈pids ∧ o′ = o ∧ α = cli prop(cid, pids)

Hence, a client with client identifier cid may send a transaction proposal txp
to the peers with peer identifiers in pids, if txp contains the current timestamp
c.ts of the client. In addition, txp contains some chaincode identifier ccid for the
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chaincode to be invoked, and some operation op in the chaincode. The transac-
tion proposal txp is entered into the list of pending transaction proposals of the
client, and into the lists of the pending transaction proposals of all the targeted
peers when the transaction proposal arrives at these peers. Finally, the times-
tamp of the client is incremented to signal the proposal of a new transaction.

The condition for the transition representing a peer responding to a transac-
tion proposal with an endorsement is specified as

∃cid ∈ CId, pid ∈ PId, p ∈ P, txp ∈ TxP, r ∈ R,w ∈ W,

ep ∈ EP, ops ∈ Op∗, h ∈ H, ed0 ∈ Ed0, sig ∈ Sig :

ρ pid = p ∧ txp ∈ p.txps ∧ txp.cid = cid ∧ h = hf txp ∧
p.ep cc txp.ccid = (ep, ops) ∧ txp.op ∈ ops ∧
p.op sem txp.op (p.lg.wss txp.ccid) = (r, w) ∧
ed0 = (pid, txp.ccid, txp.op, r, w) ∧ sig = (p.pk, hf ed0) ∧
κ′ = κ[cid.edm h := ((κ cid).edm h)∧[(ed0, sig)] ] ∧
ρ′ = ρ[pid.txps := p.txps \ txp] ∧ o′ = o ∧ α = peer resp(pid, cid)

Hence, a peer with peer identifier pid may respond (with an endorsement) to
a transaction proposal txp from the client with client identifier cid, if txp is in
the peer’s list of pending transaction proposals (p.txps), the operation requested
in txp (i.e., txp.op) is supported by the chaincode, and the execution of the
operation in the local world state for the chaincode yields the readset r and the
writeset w. The peer then signs on the data relevant to txp and the outcome of
the execution consisting of r and w. Essentially, it produces a signature that can
be verified by the public key of the peer. Finally, txp is removed from the peer’s
pending list, and the endorsement (ed0, sig) is added to the list of endorsements
kept for the hash value of txp by the client. The client may check this list to see
if enough endorsements have been collected for a transaction proposal.

The condition for the transition representing a client composing and sending
a transaction after having collected enough endorsements is specified as

∃pid ∈ PId, p ∈ P, cid ∈ CId, c ∈ C, txp ∈ TxP, h ∈ H,

ep ∈ EP, ops ∈ Op∗, eds ∈ Ed∗, tx ∈ Tx :

κ cid = c ∧ txp ∈ c.txps ∧ h = hf txp ∧
ρ pid = p ∧ p.ep cc txp.ccid = (ep, ops) ∧
c.edm h = eds ∧ ep (map λed.(ed.sig) eds) = tt ∧
(∃r, w : (∀ed ∈ eds : ed.r = r ∧ ed.w = w) ∧ tx = (txp.ccid, txp.op, r, w, eds) ) ∧
κ′ = κ[ cid.txps := (κ cid).txps \ txp, cid.edm h := [] ] ∧
ρ′ = ρ ∧ o′ = o[ .txs := o.txs∧[tx] ] ∧ α = cli trans(cid)

Hence, a client with client identifier cid may compose and send a transaction
to the ordering service if it has collected enough endorsements on a transaction
proposal txp (with hash value h), such that the endorsement policy ep for the
chaincode invoked in txp is satisfied. This endorsement policy is kept on some
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peer. Furthermore, all the endorsements that lead to the satisfaction of ep have
the same readset and writeset. Moreover, the transaction tx is formed to contain
the readset and writeset, as well as the endorsements. Finally, the txp that is
the basis of the new transaction is removed from the pending list in the client,
the corresponding list of endorsements is emptied, and the new transaction tx is
added into the list of pending transactions in the ordering service.

The condition for the transition representing the ordering service creating a
block from a sequence of transactions is specified as

∃bh ∈ BH, bn ∈ BN, h, h′ ∈ H, b ∈ B :

|o.txs| ≥ o.bsz ∧ bn = o.lbn + 1 ∧ o.bm bn = ⊥ ∧
h = hf firstn(o.txs, o.bsz) ∧ h′ = o.lbh ∧
bh = (bn, h, h′) ∧ b = (bh,firstn(o.txs, o.bsz), []) ∧
o′ = o[ .lbn := o.lbn + 1, .lbh := h, .txs := skipn(o.txs, o.bsz), .bm bn := b ] ∧
κ′ = κ ∧ ρ′ = ρ ∧ α = os blk()

Hence, the ordering service may create a new block if the number of pending
transactions |o.txs| has exceeded the block size o.bsz, and the ordering service
has not recorded any block with some block number bn that is greater than that
of the last block by one. The new block b contains the first o.bsz transactions in
the list of pending transactions recorded in the ordering service. Furthermore,
b contains in its header the new block number bn, the hash h of the list of
transactions in b, and the hash h′ of the last block. The new block b has an empty
list of validity flags upon creation. Finally, the last block number is incremented
in the ordering service, the last block hash is updated to the hash for b, the
transactions that have been added into b are removed from the pending list, and
b is mapped from its block number in the ordering service.

The condition for the transition representing a peer integrating a block into
its ledger is specified as

∃pid ∈ PId, p ∈ P, b′, b′′ ∈ B, epmp ∈ (CcId → EP⊥),flags ∈ T ∗,wss′ ∈ (CcId → Σ⊥) :

ρ pid = p ∧ b′ = o.bm b′.bh.bn ∧[
p.lg.blks = [] ∧ b′.bh.bn = 0 ∨
∃b, blks′ : p.lg.blks = blks′∧[b] ∧ b′.bh.bn = b.bh.bn + 1 ∧ b′.bh.pbh = b.bh.cbh

]
∧

epmp = ep-of(p.ep cc) ∧ txs validate(b′.txs, epmp, p.lg.wss) = (flags,wss′) ∧
b′′ = (b′.bh, b′.txs,flags) ∧
κ′ = κ ∧ ρ′ = ρ[pid.lg := ((p.lg.blks)∧[b′′],wss′)] ∧ o′ = o ∧ α = peer blk(pid)

where ep-of(ep cc) ccid :=

{
ep if ep cc ccid = (ep, ops)
⊥ if ep cc ccid = ⊥

Hence, a peer with identifier pid may integrate a new block into its ledger, if some
block b′ is mapped from its block number in the ordering service, its block number
is greater than the block number of the current last block in the ledger of the
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peer by one, and b′ contains a previous block hash that is equal to the block hash
of the current last block. The list of transactions in b′ is validated, generating a
list of truth values as the validity flags for these transactions. Finally, the new
block with these validity flags (b′′) is appended to the blockchain of the peer,
and the local record of world states on the peer are updated to those resulting
from the validation. In the above, the function txs validate is in Tx∗ × (CcId →
EP⊥)×(CcId → Σ⊥) → (T ∗×(CcId → Σ⊥)). It models the validation of a list of
transactions under an initial series of endorsement policies and world states for
the chaincodes. The function yields a sequence of validity flags for the validated
transactions, and a final series of world states for the chaincodes.

For space reasons, the definition of txs validate, and the conditions for the
transitions with the actions peer dprop(pid) and cli dprop(cid) are omitted. All
these technical elements are covered by the Coq development [5].

We remark that the transition system captures the concurrency in the han-
dling of transactions through an interleaving semantics. For instance, after a
transition for the proposal of a transaction, and before the corresponding tran-
sitions for the endorsement of this proposal, there can be other transitions for
the endorsement of other transaction proposals, the creation of new blocks, etc.

4.3 Illustrative Examples

We elaborate on the car-pricing scenario discussed in Sect. 3.3, to illustrate the
formalization of the transaction flow process. In Sect. 3.3, the network modeled is
in a state where the blockchain contains a single block with a single transaction.
In this section, we consider the proposal and processing of a second transaction
that attempts to set the price of the cars to the discount price.

Example 7 (Proposal of transaction). The client sends a transaction proposal
to the peer, invoking the operation dc op. This is captured by the transition

hf� 	 〈κ1, ρ1, o1〉 cli prop(cid�,[pid�])−−−−−−−−−−−−−→ 〈κ2, ρ2, o2〉. Here, κ1, ρ1 and o1 are such
that κ1 cid� = c�, ρ1 pid� = p�, and o1 = o� (see Example 4, Example 5, and
Example 6 for the definitions of p�, o�, and c�). The transaction proposal sent is
of the form (cid�, ccid�, dc op, 1). ��
Example 8 (Response to proposal). The peer responds to the transaction pro-
posal with an endorsement. This is captured by the transition hf� 	 〈κ2, ρ2, o2〉
peer resp(pid�,cid�)−−−−−−−−−−−−−→ 〈κ3, ρ3, o3〉 for some κ3, ρ3, and o3. The response of the peer
is of the form (ed20, (pk�, hf� ed20)) where ed20 is the tuple

(pid�, ccid�, dc op, (λk.⊥)[price := 1], (λk.⊥)[price := (tt, 5400)])

Here, the readset (λk.⊥)[price := 1] reflects that the execution of the opera-
tion dc op in the local world state of the peer reads version 1 of the key price.
The writeset reflects that the execution of this operation writes the value 5400
(the discount price) to the key price. ��
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Example 9 (Sending of transaction). The client creates and sends a trans-
action after making sure that the endorsement policy for the chaincode con-
taining the operation dc op is satisfied. This is captured by the transition

hf� 	 〈κ3, ρ3, o3〉 cli trans(cid�)−−−−−−−−−→ 〈κ4, ρ4, o4〉 for some κ4, ρ4, and o4. This transition
takes place because the endorsement policy ep� (see Example 1) is evaluated to
tt on the list of signatures extracted from the list of endorsements [(ed20, (pk�, hf�
ed20))]. The transaction created, denoted by tx2, is

(ccid�, dc op, (λk.⊥)[price := 1], (λk.⊥)[price := (tt, 5400)], [(ed20, (pk�, hf� ed20))])

Furthermore, o4.txs is the singleton list [tx2] – the transaction tx2 is entered
into the pending list of transactions of the ordering service, after this transition.

��
Example 10 (Block creation). The ordering service creates a new block after
receiving the new transaction. This is captured by the transition hf� 	
〈κ4, ρ4, o4〉 os blk()−−−−−→ 〈κ5, ρ5, o5〉, for some κ5, ρ5, and o5. This transition takes
place because o4.bsz = 1 and |o4.txs| = 1 ≥ o4.bsz. That is, there are sufficiently
many pending transactions in the ordering service to form a new block. The
block formed is b20 = ((1, hf� [tx2], hf� [tx1]), [tx2], []). The block header contains
the block number 1, the hash value for the transactions [tx2] in the block, and
the hash value for the transactions [tx1] in the previous block. The list of validity
flags is empty, for the block is not yet validated. After this transition, o5.lbn is 1
– the block number of the last generated block. In addition, o5.lbh is hf� [tx2] –
the block hash for the last generated block. Moreover, the list o5.txs of pending
transactions is empty. Lastly, o5.bm maps block number 1 to b20. ��
Example 11 (Block validation). The peer incorporates the new block into its
ledger after validating the new block. This is captured by the transition hf� 	
〈κ5, ρ5, o5〉 peer blk(pid�)−−−−−−−−−→ 〈κ6, ρ6, o6〉 for some κ6, ρ6, and o6. The transition takes
place because o5.bm maps 1 to some block b20, b20 has a block number that is
greater than the current last block in the ledger of the peer by 1, and b20 has a
previous block hash that equals the block hash of the last block in the ledger.

The version number of price is 1 in the peer state (ρ5 pid�). This is in accor-
dance with the readset of tx2. Hence, tx2 is found to be valid. A new series
wss′ of world states is generated after the validation of tx2 – the only trans-
action in the block. After this transition, we have (ρ6 pid�).lg = ([b1, b2],wss′),
where b2 = ((1, hf� [tx2], hf� [tx1]), [tx2], [tt]). This reflects that the new block is
integrated into the ledger on the peer, and the transaction in this block is valid.

��
Now, the process involving the execution, ordering, and validation of the new

transaction is completed. In the ledger of the peer, the world state records the
new price for the cars, 5400$. The corresponding key is updated to version 2.
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5 Proving Preservation of Consensus

We show that the consistency of the ledgers on the different peers is preserved
by the evolvement of the network state, as is driven by the transaction flow.

The consistency of the ledgers on the peers is captured by the predicate
cl ∈ HF × (CId → C⊥) × (PId → P⊥) × O → T . This predicate is given by

cl(hf, κ, ρ, o) :=

∀pid1, pid2 ∈ PId, p1, p2 ∈ P :

pid1 
= pid2 ∧ ρ pid1 = p1 ∧ ρ pid2 = p2 ⇒⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ep-of(p1.ep cc) = ep-of(p2.ep cc)

∧

⎡
⎢⎢⎢⎢⎢⎣

|p1.lg.blks| ≤ |p2.lg.blks| ⇒⎡
⎢⎢⎣

p1.lg.blks = firstn(p2.lg.blks, |p1.lg.blks|)

∧
[ ∃ρ′, κ′, o′, p′

1, k = |p2.lg.blks| − |p1.lg.blks| :

hf  〈κ, ρ, o〉 peer blk(pid1)−−−−−−−−→k 〈κ′, ρ′, o′〉 ∧ ρ′ pid1 = p′
1 ∧ p′

1.lg = p2.lg

]
⎤
⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, the notation hf  〈κ, ρ, o〉 peer blk(pid1)−−−−−−−−→k 〈κ′, ρ′, o′〉 represents a transition
sequence of length k, where each transition performs the action peer blk(pid1).
Hence, the ledgers on different peers (with identifiers pid1 and pid2) are con-
sistent in a network state 〈κ, ρ, o〉, if the following conditions are met. Firstly,
the endorsement policies kept on the peers for the same chaincode are the same.
Secondly, of the blockchains on the two peers, the shorter one is a prefix of the
other. Thirdly, the peer with the shorter chain is able to catch up with the other
peer on the ledger by performing k transition steps integrating further blocks.
Here, k is the difference in the length of the two blockchains.

The preservation of ledger consistency is captured by the following theorem.

Theorem 1. If cl(hf, κ, ρ, o) holds, and hf 	 〈κ, ρ, o〉 α−→ 〈κ′, ρ′, o′〉 holds, then
cl(hf, κ′, ρ′, o′) holds.

The proof [5] of this theorem is by a case analysis on the action α. The the-
orem demonstrates that the interaction of the diverse technical artifacts, such
as endorsement policies, summaries of code execution in terms of readsets and
writesets, hash-connected blocks, and versioned key-value stores, really fulfills
the basic requirement of maintaining consensus in a blockchain system. In the
case of Hyperledger Fabric, the transaction flow builds on the order of transac-
tions delivered by the ordering service, to provide system-level consensus guar-
antees.

Mechanization in Coq. We mechanize Theorem 1 and its proof in Coq 8.9.0.
This is based on our mechanization of the formal model for the Hyperledger
Fabric transaction flow. Here, the basic entities such as transaction proposals,
transactions, and network nodes, are mechanized using the inductive datatypes
and records of Coq. The transition system for the transaction flow is mechanized
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as an inductive proposition. The proof itself is mechanized by establishing 41
lemmas on the preservation of the states of peers and the ordering service under
different kinds of transition steps, and the preservation of the similarity between
these states. A more elaborate version of the illustrative example with two peers
is covered in the mechanization. The overall mechanization [5] totals about 3.2k
LoCs (excluding comments, and imported infrastructure definitions, lemmas and
tactics [4]). It greatly raises the confidence level on the sanity of the formal model,
and of its link to distributed consensus.

6 Conclusion

Hyperledger Fabric is the prototypical permissioned blockchain system exten-
sively adopted for commercial applications. The transaction flow process is an
overarching architectural component of Hyperledger Fabric. It embodies the
execute-order-validate paradigm of this system. It also shows how different tech-
nical components, such as policies, protocols, cryptographic mechanisms, and
code execution, are jointly employed in the handling of transactions in a het-
erogeneously structured network. The conceptual complexity in the transaction
flow process, together with the lack of formal description, leads to obstacles
in precisely understanding how the process works, and renders it non-trivial to
confidently assert the satisfaction of key blockchain properties such as consensus.

In this paper, we formalize the transaction flow process of Hyperledger Fab-
ric, prove that the process preserves distributed consensus, and mechanize the
development in the Coq proof assistant. The formalized transaction flow process
is shared between the most recent versions of Hyperledger Fabric (2.x) and older
versions of this system (1.4.x). The formalization rigorously describes how the
different types of network nodes (i.e., peers, orderers, and clients) participate
in a multi-stage process involving hashing, timestamping, policy checking and
code execution, to handle transactions concurrently, and to maintain consensus
over the distributed ledger. Our formalization is illustrated with a rich series of
examples in a scenario where pricing information about cars is managed on a
blockchain. Our mechanization of the formal model in Coq significantly increases
the confidence level on the sanity of the formalization and the proofs. Poten-
tial directions for future work include the establishment of further properties
of the formal model, and the provision of a formal account on the relationship
between our development and existing formalizations of consensus mechanisms
for blockchain systems, e.g., in terms of refinement.
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Abstract. Hybrid systems consist of a discrete part (controller) that
interacts with a continuous physical part (plant). Formal verification of
such systems is complex and challenging in order to handle both the
discrete objects and continuous objects, such as functions and differen-
tial equations for modelling the physical part, for synthesising hybrid
controllers. In many cases, where the continuous component model uses
complex differential equations, a well-defined approximation operation
involves simplifying it. The aim of this approximation is to ease the devel-
opment of the controller, which would not be feasible with the actual dif-
ferential equation. We claim this approximation operation can be treated
as an extension of the discrete refinement operation, as long as all the
necessary mathematical concepts are formalised. This paper extends the
Event-B’s refinement which is capable of expressing an approximation
between two hybrid systems as a refinement relation. We encode this
approximate refinement relationship in Event-B, relying on its deduc-
tive reasoning enhanced by the theory of approximation based on the
notion of approximate (bi-)simulation. New proof obligations resulting
from this approximate refinement are highlighted. Finally, we illustrate
how it applies to a case study borrowed from literature.

1 Introduction

Hybrid systems consist of both discrete and continuous dynamic behaviour,
where discrete elements interact with physical environment [3]. Due to this dual
nature, the verification of such systems is complex; it requires the capability to
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handle and reason on continuous behaviour defined as functions and differen-
tial equations for modelling the physical part, in addition to the usual discrete
behaviour of the controller.

Many formal approaches for hybrid systems design and verification have
been developed. The most popular methods are hybrid automata [3], hybrid
programs [21,22], hybrid model checking [4,13,14,18], proof and refinement
approaches using continuous action systems [5], Event-B [23], hybrid Event-B [6]
and hybrid CSP [8,19]. These approaches model both discrete and continuous
behaviours in a single integrated modelling language.

Such methods are generally based on concurrently modelling a discrete con-
troller component and a plant’s continuous dynamics, i.e. the regulated phenom-
ena. The controller usually encodes a mode automaton with discrete state vari-
ables, describing changes and controller decisions. On the other side, the physics
of the controlled plant is expressed using continuous state variables evolving
according to differential equations.

Motivation of the Paper. In many cases where the continuous part involves
complex differential equations, the design of such systems requires additional
engineering steps because the continuous behaviour needs to be approximated.
The objective of this approximation is to ease the verification of the developed
hybrid system or to implement the controller, which would not be feasible nor
verifiable with the actual complex differential equation. Linearisation is one such
case of approximation. The complex differential equations are refined using a
well-defined approximation operation. Indeed, when a linear differential equa-
tion is available, many useful mathematical results can be applied and verifica-
tion techniques (e.g. model checking) can be used. Nowadays, in many formal
method settings, the preliminary steps leading to the approximated system are
mathematically well-founded, but not formally handled by the underlying formal
modelling language. This activity remains a mathematical development.

State of the Art. The proposed approach relies on the work of Girard and Pappas
in [15,17] where the notion of approximate (bi-)simulation has been introduced.
In this study, rather than using classical simulation relations [20], the authors
weakened this definition by introducing a relation between safely approximated
versions of the observed state variables. The main purpose of this work is to
enable the use of hybrid model checkers to perform formal verification. In order
to be handled by the intended hybrid model checker, the complex differential
equations of the original hybrid system are reformulated (simplified) using an
approximation. The safety of the defined approximation guarantees that the
properties checked on the obtained approximated hybrid system are also the
properties of the original one. Although the defined approximation is mathe-
matically sound, the method did not explicitly formalise the properties of the
given approximation or the properties of the original hybrid system.

Our Claim. We claim that this approximation operation, its properties and the
corresponding design steps can be explicitly handled as an extension of the exact
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refinement operation, provided that all the required mathematical concepts are
also explicitly formalised. We show that the Event-B method and its associated
integrated development environment Rodin is capable to handle this formalisa-
tion. The defined approximate refinement relationship weakens the exact rela-
tionship available in many state-based formal methods like ASM, Z, VDM and
Event-B. Moreover, this formalisation offers other capabilities such as checking
other properties like invariants preservation and guard strengthening.

Objective of the Paper. In the same state of mind as our previous work [10,11], we
propose an extension of Event-B’s refinement capable of expressing an approx-
imation between two hybrid systems as a refinement relation. We encode, in a
generic framework, this approximate refinement relation in Event-B, relying on
its deductive reasoning enhanced by a theory of approximation we defined, and
on the notion of approximate (bi-)simulation of [15,17]. New proof obligations
resulting from this approximate refinement are highlighted. Finally, we show how
it applies to a case study borrowed from literature.

Organisation of this Paper. Next section gives a short presentation of Event-B
(completed in Appendix A). The hybrid systems modelling features we formalise
are presented in Sect. 3 and the generic hybrid systems Event-B model, relying
on these features, is sketched in Sect. 4. Our framework for approximated refine-
ment, formalised in Event-B, is presented in Sect. 5. A case study showing how
our approach applies is developed in Sect. 6. Finally, a conclusion and future
research directions are described in the last section.

2 Event-B: A Refinement and Proof State Based Method

In this section, we recall basic notions of Event-B [1]. The approach we follow in
this work is state-based and relies on a set of events that describe state changes.
The Event-B method [1] supports the development of correct-by-construction
complex systems. First order logic and set theory are used as the core modelling
language. The design process consists of a series of refinements of an abstract
model (specification) leading to the final concrete model. Refinement progres-
sively contributes to add system design decisions.

Event-B Machines formalise models described as state-transitions systems
and a set of proof obligations are automatically generated for each model. A
proof system is associated to it, with proof rules for each concept.

In the following, superscripts A and C denote abstract and concrete features
respectively.

Contexts (Table 1.a). Contexts are the static part of a model. They set up all
the definitions, axioms and theorems needed to describe the required concepts.
Carrier sets s, constants c, axioms A and theorems Tctx are introduced.

Machines (Table 1.b). Machines describe the dynamic part of a model as a tran-
sition system, where a set of guarded events modifies a set of variables (states).
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Table 1. Model structure

Variables x, invariants I(x), theorems Tmch(x), variants V (x) and events evt
(possibly guarded by G and/or parameterised by α) are defined in a machine.
They use Before-After Predicates (BAP), expressed in first order logic, to record
variable changes. Invariants and theorems formalise system safety while variants
define convergence properties (reachability).

Refinements (Table 1.c). A system is gradually designed by introducing proper-
ties (functionality, safety, reachability) at various abstraction levels. A Refine-
ment decomposes a machine, a state-transitions system, into a less abstract one,
with more design decisions (refined states and events), moving from an abstract
level to a less abstract one (simulation relationship). Property preservation is
ensured by a gluing invariant relating abstract and concrete variables.

Proof Obligations (PO) and Property Verification. To establish the correctness
of an Event-B model (machine or Refinement) POs are automatically generated,
that need to be proved.

Extensions with Mathematical Theories. In order to handle theories beyond set
theory and first order logic, an Event-B extension to support externally defined
mathematical theories has been proposed in [2]. It offers the capability to intro-
duce new datatypes through the definition of new types, sets operators, theorems
and associated rewrite and inference rules all packed in so-called theories.

Event-B and its IDE Rodin. It offers resources for model edition, automatic PO
generation, project management, refinement and proof, model checking, model
animation and code generation. Several provers, like SMT solvers, are plugged
into Rodin. A useful extension with theories is available as a plug-in [7].
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3 Hybrid Systems Modelling Features

Modelling hybrid systems requires to handle continuous behaviours. We thus
need to access specific mathematical objects and properties, not natively avail-
able in Event-B. These concepts such as differential equations and their associ-
ated properties have been modelled through an intensive use of Event-B theories
and have been used to model various case studies found in [9–11].

Below, we recall some basic features of these theories and introduce the new
theory of approximation needed to formalise approximate refinement.

3.1 A Theory of Continuous Mathematics

In order to deal with continuous objects, theories have been defined for contin-
uous functions, (ordinary) differential equations as well as for their properties.
They are used throughout the defined models. Some of those concepts as they
are used in this paper are recalled below.

Time. A notion of time is needed to define continuous behaviours. We thus
introduce dense time t ∈ R

+, modelled as a continuously evolving variable.

System state. According to the architecture of hybrid systems, we have identified
two types of states.

– Discrete state xs ∈ STATES is a variable that represents the controller’s
internal state. It evolves in a point-wise manner with instantaneous changes.

– Continuous state xp ∈ R
+ → S represents the plant’s state and evolves

continuously. It is modelled as a function of time with values in space S.
In the following, we use x to denote the union of discrete and continuous state
variables.

– Continuous gluing invariant is defined with the generic form xA
p ∈ O ◦xC

p

where O ∈ SC ↔ SA is a relation linking abstract and continuous state-
spaces. This invariant glues the abstract xA

p and concrete xC
p continuous vari-

ables. It is qualified as exact since it maps concrete values in SC to abstract
values in SA using the ∈ operator. Definition of an approximate gluing invari-
ant, extending exact one, is presented later in this paper.

Hybrid Modelling Features. Modelling hybrid systems requires to introduce mul-
tiple basic operators and primitives defined below.

– Feasible(xs, xp,D,P, I), the feasible predicate states that, given xs and xp,
there exists x′

p ∈ D → S such that P(xs, xp, x
′
p) holds and ∀t∗ ∈ D,x′

p(t
∗) ∈

I. In state xs, the predicate P holds for xp and its next value x′
p on time

interval D fulfils the constraint I. It defines the feasibility condition of a
continuous state change, i.e. continuous before-after predicate defined below.

– DE(S) type for differential equations, the solutions of which evolve in set S
– ode(f, η0, t0) is the ODE1 η̇(t) = f(η(t), t) with initial condition η(t0) = η0

1 Ordinary Differential Equation.
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– solutionOf(D, η, E) is the predicate stating that function η is a solution of
equation E on subset D

– Solvable(D, E , I) is the predicate stating that equation E has a solution
defined on subset D so that the solution satisfies the constraint I

Continuous Assignment. Continuous variables are essentially functions of time
and are at least defined on [0, t] (where t is the current time). Updating such
variables, thus, requires to (1) make the time progress from t to t′ > t, and
(2) to append to the already existing function a new piece corresponding to its
extended behaviour (on [t, t′]) while ensuring its “past” (i.e. whatever happened
on [0, t]) remains unchanged.

Similarly to the classic Event-B’s before-after predicate (BAP), we define a
continuous before-after predicate (CBAP) operator, denoted :|t→t′ , as follows2:

xp :|t→t′ P(xs, xp, x
′
p) & I ≡ [0, t] � x′ = [0, t] � x (PP)

∧ P(xs, [t, t′] � xp, [t, t′] � x′
p) (PR)

∧ ∀t∗ ∈ [t, t′], x′
p(t

∗) ∈ I (LI )

We note CBAP(xs, xp, x
′
p) ≡ PP (xp, x

′
p) ∧ PR(xs, xp, x

′
p) ∧ LI(xp, x

′
p). The

operator consists of 3 parts: past preservation and coherence at assignment point
(PP), before-after predicate on the added section (PR), and local invariant
preservation (LI ). The discrete state variables xs do not change in the inter-
val [t, t′] but the predicate P may use it for control purposes.

For convenience, we introduce the following shortcut derived from the above
definition, and that represents continuous evolution along a solvable differential
equation E ∈ DE(S): x :∼t→t′ E & I ≡ x :|t→t′ solutionOf([t, t′], x′, E) & I.

3.2 A Theory of Approximation

In addition to the continuous mathematical objects of Sect. 3.1, a theory of
approximation is required to implement approximate refinement in Event-B.

Formal Definitions. In the following, we introduce the necessary concepts
and operators related to approximation and used throughout this paper. Let us
assume (E, d) to be a metric space with distance d.

Approximation (≈δ). Let x, y ∈ E and δ ∈ R
+. We say that x approximately

equals to y by δ (or x is a δ-approximation of y) iff x ≈δ y ≡ d(x, y) ≤ δ.

δ-expansion. Let S ⊆ E and δ ∈ R
+. The δ-expansion of S, noted Eδ(S), is

defined as Eδ(S) = {y ∈ E | ∃x ∈ S, x ≈δ y} = {y ∈ E | ∃x ∈ S, d(x, y) ≤ δ}.

δ-membership (∈δ). Let δ ∈ R
+, S ⊆ E and x ∈ E. x belongs to S up to δ,

denoted x ∈δ S, iff x belongs to the δ-expansion of S. We write x ∈δ S ≡ x ∈
Eδ(S) ≡ ∃y ∈ S, d(x, y) ≤ δ.
2 The � operator denotes the domain restriction operator; e.g.: A � f is the function

defined at most on A, with the same values as f .
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Operators Extensions. For convenience, this definition is extended as follows.

– Let f ∈ F → E and X ⊆ F , then f ∈δ
X S ≡ ∀x ∈ X, f(x) ∈δ S

– Let Σ ∈ F → P(E) (multivalued function), then f ∈δ
X Σ ≡ ∀x ∈ X,

f(x) ∈δ Σ(x)

Note that, when X is not given, the operator is applied on the function’s
domain of definition (i.e., X = dom(f)).

Table 2. Approximation theory excerpt

Note: δ-approximation (≈δ) (resp. δ-membership (∈δ)) is a weak version of
equality (resp. set membership). Indeed, when δ = 0, by the separation property
of distance d, we obtain x ≈0 y ≡ d(x, y) ≤ 0 ≡ x = y. It follows that for any
S ⊆ E, E0(S) = S and thus x ∈0 S ≡ x ∈ S.

Implementation Using Theories. The above defined operators and con-
cepts have been implemented in two Event-B theories (ApproximationBase and
Approximation) from which an excerpt is given in Table 2. Typically, approxi-
mation (≈δ) is expressed algebraically through the DeltaApproximation opera-
tor, while its function-lifted version is implemented as the FDeltaApproximation
operator.

All the theories presented above can be accessed from https://irit.fr/
∼Guillaume.Dupont/models.php

4 Modelling Hybrid Systems Using Event-B

Fig. 1. Generic hybrid system
representation

In our previous work [11], we proposed a
generic approach to model hybrid systems
within Event-B. This approach relies strongly
on modelling features presented in Sect. 3 and it
is based on a generic model, instantiated using
refinement.

This generic model is based on the classi-
cal hybrid system architecture pattern shown
in Fig. 1. In this model, controllers are

https://irit.fr/~Guillaume.Dupont/models.php
https://irit.fr/~Guillaume.Dupont/models.php


258 G. Dupont et al.

characterised by discrete state variables while plants (the continuous phe-
nomenon being controlled) are modelled using continuous state variables, which
evolution is described using differential equations. Sensors are able to deter-
mine the plant’s state and influence the controller’s state according to it; con-
versely, actuators are able to temper the plant’s state following a controller order.
Besides, user commands or internal calculus may also change the controller’s
state. Similarly, the plant’s environment may impact its evolution.

Below, we recall the generic model at the heart of our approach. More details
as well as various case studies can be found in [9–11] and all the developed models
are accessible at https://irit.fr/∼Guillaume.Dupont/models.php.

4.1 Generic Model and Its Refinement

As mentioned in Sect. 3.1, the generic model defines three variables: time, dis-
crete state and continuous state. Following the architecture pattern of Fig. 1,
it revolves around 4 events, modelling the different aspects of a hybrid system.
This model and its refinement are presented below. Due to space limitations,
only sensing and actuation events are presented. They are representative of the
two other categories of events (transitions in the controller and environment
changes). More details can be found in [9–11].

Machine Header. The abstract machine is defined in a quite straightforward
way. Time (t), discrete xs and continuous xp states are introduced in inv1-inv3.
Invariant inv4 expresses the continuous state to be defined (at least) always on
[0, t]. inv5 shows additional safety properties regarding the continuous state.

When refining machine MA by MC , gluing invariants (inv6 and inv7) relate
abstract and concrete state variables. Discrete state variables are glued as in tra-
ditional discrete refinement (inv7 gluing invariant Js(xC

s , xA
s )), and the continu-

ous variables, following the definition of Sect. 3.1, are glued using an observation
relation O ∈ SC ↔ SA. In addition, event guards GA(xA

s ) and GA(xA
p ) may be

strengthened as GC(xC
s ) and GC(xC

p ).

Transition and Sense Events. These events model changes in the controller
induced either as a result of an internal calculus or a user command (transi-
tions) or as a result of changes in the plant, generally detected via a sensor
(sense). They only modify the discrete state xs.

Sensing events are guarded by a predicate on the current continuous state
(xp(t) ∈ G) representing the actual sensing.

https://irit.fr/~Guillaume.Dupont/models.php
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Behave and Actuate Events. These events model changes in the plant, either
caused by the environment (behave) or induced by actuators to which the con-
troller issued a command (actuate) depending on its state (guard grd1).

An actuation typically occurs after a sense or transition event has been
triggered. They update the behaviour of the continuous state using the CBAP
operator defined in Sect. 3.1.

Transition and Sense are discrete events: they are instantaneous, while Actu-
ate and Behave are continuous events: they represent a continuous phenomenon
that lasts from time t to tp, a time during which no other event can occur while
time progresses. Note that because t and tp are reals, they can be infinitely
close from each other, meaning the constraint that nothing happens on this time
interval can always be satisfied (provided we find tp close enough to t).

4.2 Proof Obligations

The proof obligations related to the defined generic model and to the refinement
operation are defined in Table 3. For the continuous events, the CBAP predicates
(PP , PR and LI ) are involved in the proof obligations of the simulation and
invariant preservation.

Note that, based on the definition of the gluing invariant, a witness is explic-
itly defined in the refinement for each continuous event as xA′

p ∈ O◦xC′
p . Because

the abstract variable xA′
p is no more available in the refinement, this witness

ensures the second part of the invariant preservation PO’s right hand side (as
xA′

p ∈ O ◦ xC′
p appears on both sides of the implication).

4.3 Instantiation of the Generic Model

The generic model is instantiated using refinement: the concrete system’s
behaviour is modelled with events that refine one of the four generic events
and variables are substituted using gluing invariants and witnesses.
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Table 3. Refinement POs for the generic model: case of Exact refinement

Exact refinement for continuous variables has been successfully used in the
development of complex systems including automatic car stop [11], signalized
left turn assist [9] or water tank control [10].

5 Our Framework

5.1 Limitations: Exact vs Approximate Refinement

The refinement presented above relies on an exact set-membership as the core
of its gluing invariant (i.e. xA

p ∈ O ◦ xC
p ). There is no deviation nor any approx-

imation. Abstract and concrete variables are linked by relation O.
However, it becomes really restrictive in the case where an exact gluing invari-

ant is not available. Usually this is the case when approximations are introduced
i.e. when transforming a complex differential equation into a linear one or when
reducing its order, solutions are close enough but not equal; it prohibits the use
of exact refinement.

We claim that such development can be handled by specifying a weaker gluing
invariant in relation with approximation.

5.2 Approximate Refinement

When introducing approximation, it is important to guarantee that the proper-
ties of the original system are preserved in the approximate one. The definition
of a weaker gluing invariant involving a relation with approximation will handle
such a preservation using re-defined refinement POs.

We propose to weaken the defined refinement relationship introduced in
Sect. 4. For this, we strongly rely on the seminal work of Girard and Pappas [15–
17], who defined the notion of approximate simulation.

We define a gluing invariant of the form J(xA
p , xC

p ) ∧ xA
p ∈δ O ◦ xC

p . Here
xA ∈δ O ◦ xC links safely abstract xA

p and concrete xC
p continuous variables
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by an approximation relation and J is a predicate defining additional gluing
properties.

In addition to formalising in Event-B the approximate simulation, we show
that the proposed approach offers two additional capabilities 1) strengthening
event transitions and 2) defining gluing invariants ensuring properties preserva-
tion. Note that these two capabilities are not explicitly handled in Girard and
Pappas definitions. Moreover, the proof obligations associated to these capabil-
ities are also produced.

5.3 Formalising Approximate Refinement in Event-B

Relying on the theory of approximation presented in Sect. 3.2, we design an
approximate refinement of the generic model of hybrid systems (recalled in
Sect. 4). This refinement consists of refining the abstract variable xA

p with an
approximated concrete variable xC

p ; events are neither added nor removed.

Machine Header. Both abstract and concrete machines define their own state
variables, including time t. The only difference here is the gluing invariant
for continuous variables (inv6) which follows the approximate gluing invariant
xA

p ∈δ O ◦ xC
p defined previously.

Sense Event. Sensing event is similar to the one of exact refinement. Extra care
should be taken to handle continuous state variables in the guard. Indeed, we
need to make sure that the concrete constraint xC

p ∈ GC is strong enough to
imply xA

p ∈ GA, taking the approximation into account (GS proof obligation).
It needs a guard that is stronger than it would be for exact refinement, so that
it still holds when the modelled system drifts away from a realistic state.

Actuate Events. Actuation events are also similar to the exact refinement ones.
The main difference is the witness for xA′

p , which is updated using the gluing
invariant xA

p ∈δ O ◦xC
p . As mentioned before, this witness ensures gluing invari-

ant preservation (INV proof obligation).
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Again, due to space limitation, the whole event-B models are not given, but
they are accessible at https://irit.fr/∼Guillaume.Dupont/models.php.

5.4 Proof Obligations: Revisited for Approximate Refinement

The POs associated to the generic model described in Sect. 5.3 related to approx-
imate refinement are presented in Table 4. These POs are close to those in Table
3 obtained for the exact refinement.

Table 4. Refinement POs for the generic model: case of approximate refinement

All the POs of Table 4 use the gluing invariant xA
p ∈δ O ◦xC

p as hypothesis.
The INV invariant PO states that the invariant is preserved. Note that the
definitions, by the system designer, of the suited approximation δ and of the
observation relation O are key issues. Indeed, the whole proof process relies on
these definitions.

5.5 Exact Refinement as a Particular Case of Approximate
Refinement

Remind that approximation as given in Sect. 3.2 with δ = 0 becomes x ≈0 y,
which is equivalent to d(x, y) ≤ 0. As a distance is positive and definite, this
actually entails x = y. In other words, “0-approximation” is equality.

https://irit.fr/~Guillaume.Dupont/models.php
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Moreover, for any S ⊆ E, E0(S) = S, and it follows that x ∈δ S ≡ x ∈ S.
Table 5 shows that exact refinement is derived from approximate refinement
when δ = 0. In particular, as mentioned by Girard and Pappas in [15–17] classical
simulation is obtained when δ = 0 (SIM proof obligation in Table 3).

Table 5. Exact and approximate refinement

Exact Approximate

Observation map O ∈ SC ↔ SA

Gluing invariant xA
p ∈ O ◦ xC

p xC
p ∈δ O ◦ xC

p

Pointwise predicate xA
p (t) ∈ O[{xC

p (t)}] xA
p (t) ∈δ O[{xC

p (t)}]

6 Case Study

As a way to validate our approach and as a red wire through the paper, we
propose to solve a case study. This problem was first presented by [12] and [15].

6.1 Problem Statement

Initial Problem. The system is a robot identified by its 2-dimension position pC

and speed vC corresponding to two state variables evolving in R × R equipped
with some norm ‖ · ‖. The robot can move in any direction of the plane. Its
goal is to visit multiple targets (a set of points Ti in the space) while remaining
in the specified area. The robot controls its speed and direction, modelled as a
vector uC ∈ R × R. The actual physics of the robot follows a 4th order, linear
differential equation with a complex control.

If we consider ηC =
[

vC
x vC

y pC
x pC

y

]� as system’s continuous state, then
the equation η̇C = fC(ηC , uC), where fC is a linear function, describes the
behaviour of the robot.

Approximation. Although previous equation η̇C = fC(ηC , uC) describes the
actual behaviour of the robot, this system is quite complicated to deal with.
However, to prove that the robot visits target points and remains in the specified
area, it is actually sufficient to consider the approximated system described by
ṗA = uA, where pA is the approximated position of the robot.

The obtained 2nd order linear system assumes that the robot directly controls
its speed modelled as uA ∈ R × R. It is possible to write this equation as a
controlled ODE η̇A(t) = fA(ηA(t), uA(t)) with ηA =

[
pA

x pA
y

]
.

In [12], the authors proved that the two defined systems are actually δ-
bisimilar provided that δ = 2ν, ‖uC‖ ≤ ν and ‖uA‖ ≤ μ with μ, ν such that
ν
2 (1 + 4K + 2

√
1 + 4K) ≤ μ (with K a coefficient used in fC).
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6.2 System Requirements

Let us consider a given target point T ∈ R
2 and a control uA, then the robot

shall fulfill the following requirements. The robot shall be able to

REQ1 move toward the current target point T .
REQ2 sense that its position is close to target point T up to τ > 0 written as

‖T − pA(t)‖ < τ in which case the target is considered to be visited
REQ3 obtain a new target point and to replay the same process to reach it
SAF1 remain in the designated circular area of radius A > 0 and centred around

(0, 0), i.e. ∀t∗ ∈ [0, t], ‖pA(t)‖ < A.

Note that, in order for the robot to be able to visit target T , it must initially
be within the designated area close enough but not outside (‖T‖ < A − τ).

6.3 Refinement Strategy

We have formalised this problem using the approximate refinement relationship
defined in Sect. 5. We first consider the approximated system and prove that
it fulfils the requirements. Then, another refinement introduces the complex
dynamics. When this refinement is proved then the robot still behaves correctly.

Starting from the generic model (Sect. 4.1), the second step is a first (exact)
refinement of the generic model where the system (robot) is modelled and basic
requirements are handled. It defines the continuous state xA

p = pA, which evolves
according to the simple differential equation ṗA = uA.

The third step introduces approximate refinement as a second refinement.
It enriches the simple model, of the previous refinement, to make it closer to
reality. It defines the continuous state xC

p = (pC , vC) and the gluing invariant
pA ≈δ pC ≡ xA

p ∈δ O ◦xC
p where δ and ≈δ are respectively defined in Sects. 6.1

and 3.2. Here, O = prj1 is the first canonical projection operator used to observe
pc.

6.4 Event-B Development

This case study has been entirely developed in Event-B using Rodin with the
help of the theories defined in Sect. 4 and based on the generic model recalled
in the same section. We show below the Actuation event and its refinement.
The witness WITH clause ensures the correctness of the refinement. A concrete
position pC approximating the abstract one pA is given as witness. In addition,
act1 introduces a different differential equation defining the evolution of pC .
This differential equation maintains the approximation relation, which is proved
via the PO 7 (INV) of Table 4.
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The proofs entailed by approximate refinement are not a lot more complicated
than for hybrid systems that use exact refinement. The hardest POs are event
simulation (SIM) and feasibility i.e. existence of a witnesses (see Table 4).

Due to space limitation, we do not show the whole Event-B model. The com-
plete Event-B model corresponding to this case study can be found at https://
irit.fr/∼Guillaume.Dupont/models.php.

7 Conclusion

After defining a generic model for the stepwise development of hybrid systems
models using an exact refinement relationship, this paper presented an exten-
sion of this approach. This extension consists of formalising another refinement
relation relying on a safe approximation between abstract and refined states.
The introduction of this approximate refinement relation expands the range of
hybrid systems that can be developed within our approach. Moreover, the exact
refinement is directly entailed by this approximate refinement.

The approach we followed consists in producing a generic model, completely
formalised and proved. As shown is Sect. 6, this generic model can be instantiated
for specific case studies. Many of the proofs already completed at the generic
level are preserved, and only the proofs related to the instantiations need to be
achieved, by providing witnesses.

This work has opened several new research directions and questions. First,
the definition of a library of generic models refining the one presented in this
paper can be defined with particular differential equation patterns along with
the corresponding approximation to be used for specific systems. It will reduce
the proof effort from the user side. Another research direction is to develop
theory for handling multi-dimensional state-space. This notion of approximate
refinement may be applied in other areas and state based systems where states
are approximately observed, in particular for data oriented models.

https://irit.fr/~Guillaume.Dupont/models.php
https://irit.fr/~Guillaume.Dupont/models.php
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Abstract. Intel has recently offered third-party attestation services,
called Data Center Attestation Primitives (DCAP), for a data center to
create its own attestation infrastructure. These services address the avail-
ability concerns and improve the performance as compared to the remote
attestation based on Enhanced Privacy ID (EPID). Practical develop-
ments, such as Hyperledger Avalon, have already planned to support
DCAP in their roadmap. However, the lack of formal proof for DCAP
leads to security concerns. To fill this gap, we propose an automated, rig-
orous, and sound formal approach to specify and verify the remote attes-
tation based on Intel SGX DCAP under the assumption that there are
no side-channel attacks and no vulnerabilities inside the enclave. In the
proposed approach, the data center configuration and operational poli-
cies are specified to generate the symbolic model, and security goals are
specified as security properties to produce verification results. The eval-
uation of non-Quoting Verification Enclave-based DCAP indicates that
the confidentiality of secrets and integrity of data is preserved against
a Dolev-Yao adversary in this technology. We also present a few of the
many inconsistencies found in the existing literature on Intel SGX DCAP
during formal specification.

Keywords: Remote attestation · Data centers · Formal verification ·
Trusted execution environment · Intel SGX · Data center attestation
primitives

1 Introduction

Public cloud environments offer a cost-effective solution to deploy application
services. However, today’s real-world applications often deal with sensitive data
that must be protected, such as highly valued intellectual property. The adop-
tion of public clouds is limited due to the uncertainty of the adequate protec-
tion of such data and application execution [4]. Trusted Execution Environments
(TEEs) [43] with enhanced security measures have recently emerged as a promis-
ing approach to increase the confidence of the security of the data and the exe-
cution in the cloud. Several TEE implementations with varying scope have been
c© Springer Nature Switzerland AG 2020
S.-W. Lin et al. (Eds.): ICFEM 2020, LNCS 12531, pp. 268–283, 2020.
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developed, such as Intel Software Guard Extensions (SGX) [16], AMD Secure
Processor [33] and ARM TrustZone [42]. Intel SGX is one of the most widely
used TEEs in practice. It enables an application to create secure containers,
called enclaves, to run computations on the cloud with hardware-enforced con-
fidentiality and integrity guarantees. The data and computation inside enclaves
are inaccessible to untrusted entities, including the operating system and other
low-level software [36].

In order to enhance confidence that the intended software is securely running
inside an enclave on a fully updated Intel SGX enabled platform at the latest
security level, Intel SGX provides an attestation mechanism [3]. There are two
types of enclave attestation in Intel SGX: Local or intra-platform attestation and
remote or inter-platform attestation [3]. Local attestation allows an enclave to
prove its identity to another enclave on the same platform. If an enclave proves
its identity to a remote party, it is referred to as remote attestation (RA). In
a nutshell, the remote host creates a cryptographic report (i.e., Quote) that is
signed by a hardware-specific key. The report contains information about the
enclave creation, including software, hardware, and configurations of the remote
host.

Intel currently offers two types of RA, i.e., Enhanced Privacy ID (EPID) [32]
and Data Center Attestation Primitives (DCAP) [45]. In RA based on EPID,
the relying party verifies the Quote at runtime by contacting Intel Attestation
Service (IAS), which confirms that the enclave runs a particular piece of code on
a genuine Intel SGX enabled platform. Recently, third-party attestation, called
DCAP [45], has been supported by Intel SGX to provide an architecture to ben-
efit from RA without having Intel to validate the attestations at runtime. Thus,
a data center can create its attestation infrastructure using classical public-key
algorithms, such as the Elliptic Curve Digital Signature Algorithm (ECDSA) or
Rivest-Shamir-Adleman (RSA) algorithm. DCAP has many benefits over EPID.
For instance, by caching the verification data in a data center caching service,
internet-based services are not required at runtime. This alone leads to improved
availability and performance compared to EPID. Moreover, it improves privacy
by making trust decisions in-house [45].

The security analysis of a TEE that supports attestation is typically per-
formed informally using testing for a specific adversary model. Although such
an analysis is suitable to show the presence of security errors, it cannot be used
to prove their absence [50]. If left in the system, these errors may have serious
consequences, for instance, significant damage to the finances and reputation of
a company, and even deaths. To overcome this limitation of testing, rigorous
and sound formal methods have been utilized to analyze the security goals on
an abstract model. For instance, Intel developed formal tools, namely Deductive
Verification Framework (DVF) [21], iPave [19] and Accordion [36], for establish-
ing formal correctness of SGX. However, the verification using these tools does
not cover the attestation process, which is a crucial part of Intel SGX for prac-
tical use [3]. Intel also provides formal proofs for EPID [11,12]. Subramanyan
et al. [46] presented a formalization of attestation for an idealized abstract plat-
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form and semi-automated verification approach to establish the identity of the
enclave. Specifically, the authors assume axioms about the correctness of Intel
SGX RA. We complemented these works by focusing on the symbolic verification
of the cryptographic protocol in the RA based on EPID in our recent work [44].

To the best of our knowledge, there is no publicly available formal proof for
RA based on Intel SGX DCAP. The proof is crucially essential for safety-critical
use cases, where the availability of cloud services is indispensable. With this
motivation, our work presents the specification and fully automated verification
of RA based on Intel SGX DCAP using a popular automatic symbolic protocol
verifier, ProVerif [9]. Intel SGX does not include defense against the software
side-channel adversary as the security objective [31], so we do not consider side-
channel attacks in this work, and assume that there are no vulnerabilities inside
the enclave. In our approach, the data center configuration and operational poli-
cies are specified to create a symbolic model. The security goals are specified as
security properties. The cryptographic protocol verification may result in proof
of security goals or detection of an attack.

The rest of the paper is organized as follows: We present the existing
approaches for the formal verification of Intel SGX in Sect. 2. Section 3 expounds
on our proposed approach for the specification of the system model and security
goals. Next, we analyze confidentiality and integrity properties for attestation in
the non-Quoting Verification Enclave (non-QVE) based Intel SGX DCAP [25],
as an industrial case study in Sect. 4. We also point out a few discrepancies dis-
covered in the literature of Intel SGX DCAP during specification. Finally, we
conclude the paper in Sect. 5 with some future directions of research.

2 Related Work

In this section, we present the formal verification efforts related to Intel SGX in
general. In Sect. 2.1, we give an overview of the formalization of secure remote
execution by a group of researchers at the University of California, Berkeley
and Massachusetts Institute of Technology, Cambridge [46]. Then we present
the formalizations by Intel in Sect. 2.2. Finally, we summarize the discussion in
Sect. 2.3.

2.1 Secure Remote Execution

Subramanyan et al. [46] presented a formal definition for secure remote execution
of enclaves and its decomposition into three main properties, namely confiden-
tiality, integrity, and secure measurement. The proposed verification method-
ology is based on an idealized abstraction of enclave platforms, called Trusted
Abstract Platform (TAP), along with a parameterized adversary model. Using
an intermediate verification language, Boogie [6], the authors prove that TAP
satisfies the requirements for secure remote execution. Additionally, they utilize
the stuttering simulation [13] to prove that Intel SGX and MIT Sanctum [17]
implementations refine TAP under certain parameterizations of the adversary.
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Thus, the results can be used to compare security guarantees of different enclave
platforms.

However, this verification approach is semi-automated, as the user has to find
the correct inductive invariants manually to prove the properties. In this case,
935 such annotations were required. This manual effort to re-prove each time a
software policy is updated makes it difficult for runtime verification. Specifically,
for Intel SGX, the authors ignore the details of RA and instead assume various
axioms.

Compared with this work, our proposed approach is based on a fully auto-
mated verification, where new updates in the operational policies of RA can
be proved to be secure without the need for inductive invariants. Moreover, we
complement the work by providing proofs of RA in Intel SGX.

2.2 Formalizations by Intel

To the best of our knowledge, Intel has not published any work on the formal
verification of RA based on DCAP. However, Intel has described some works,
e.g., [27], on the formal verification of Intel SGX focusing on the enclave page
management and page table translations tracking [39]. Intel addresses the ver-
ification in two steps: first, to prove the sequential correctness, and second, to
prove that SGX is linearizable [36]. Some undiscovered bugs were identified in
both steps [27].

Intel verifies the correctness of Intel SGX in the sequential (or single-
threaded) setting by using DVF, which is a language and Satisfiability Modulo
Theories (SMT)-based deductive verification tool developed at Intel [21]. DVF
models a system as a transition system consisting of states and transitions. An
execution is an interleaving of transitions [47]. DVF supports Hoare-style and
assume-guarantee reasoning. It maps proof obligations into the multisorted first-
order logic supported by modern SMT solvers [21], e.g., Yices SMT solver. The
properties verified are SGX invariants, security properties for enclave confiden-
tiality and enclave data integrity, and lifecycle properties. Critical bugs were
identified during this verification [27].

DVF has a couple of limitations. First, it does not model concurrency,
whereas SGX has 22 instructions that share the concurrent data structure, some
of which contain as many as 50 interleaving points [36]. Second, the verification
is semi-automated and includes a painful process of manually generating the
auxiliary invariants [15].

To address concurrency issues, Intel considers linearizability [22] as a correct-
ness condition. Intel uses iPave [19] to prove SGX linearizability, and finds the
linearization point using heuristics [36]. The properties, such as system invari-
ants or per-state assertion, can be specified [27]. The graphical iFlow model is
converted to XML representation. iPave contains two compilers. The first com-
piler translates XML representation to a new logical formalism, called a Logic
Sequence Diagram (LSD) [19]. The second compiler translates the LSD to a
symbolic finite state machine (FSM) with guarded transitions between states.
Bounded model checking [7,8] for task-reachability and termination analysis can
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then be performed on the resulting FSM. However, Intel provides no information
about k-bound used for this verification.

Intel identified critical security bugs in SGX using iPave, proving the lineariz-
ability of SGX instructions using the assertion analysis and proving some SGX
invariants, e.g., a pending page is never cached [27]. However, the framework has
some limitations. Non-determinism cannot be modeled in iPave since disjunctive
transitions are not currently supported due to performance reasons [19]. More-
over, the graphical input leads to a heavy translation burden which is frequently
a source of modeling errors. Finally, because of the lack of abstraction mechanism,
it is not easy to experiment with it using various SGX configurations [36].

To address the last two issues mentioned above, a compiler, known as Accor-
dion [36], was developed at Intel to verify linearizability automatically via model
checking. Accordion is implemented as an embedded domain-specific language
[20] in Haskell [38]. Each SGX instruction is specified as a function with neces-
sary arguments. The syntax is close to the informal specification language used
by the SGX architects. Intel reports that the bugs previously found by iPave
could be replicated in Accordion. However, no new bugs were discovered.

Accordion, like iPave, does not support non-determinism. DVF, on the other
hand, supports non-determinism but not concurrency. In comparison to Intel
approaches, our proposed approach supports non-determinism as well as con-
currency. Finally, Intel is secretive about their validation processes, as neither
proofs nor tools are available to the public, which limits the confidence of the
user. ProVerif, used in our proposed approach, is an open-source tool. Our ver-
ification results are available within seconds, making it suitable for deployment
in an untrusted setting, such as a public cloud. The trade-off that our proposed
approach makes is the relatively low implementation details because the focus is
on the symbolic protocol verification. The comparison is summarized in Table 1.

2.3 Discussion

The focus of the verification in all of Intel’s works is on the enclave page manage-
ment and page table translations tracking [39], whereas the important process of
RA remains unverified. Subramanyan et al. [46] present a semi-automated app-
roach towards RA for single-threaded enclaves where they use various axioms
for RA in Intel SGX. Other formalizations of RA also exist, e.g., [14,37,40], but
these are not in the context of hardware-based TEE. The verification of trusted
hardware-based RA in Intel SGX poses new challenges. We complemented these
verification efforts by providing automated symbolic verification of RA based

Table 1. Comparison of the proposed approach with Intel’s related work

Tool Concurrency Non-determinism Open-source Implementation details

DVF [21] No Yes No High

iPave [19] Yes No No High

Accordion [36] Yes No No High

Proposed Yes Yes Yes Low
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on EPID in our previous work [44]. In this work, we focus on the symbolic
verification of RA based on DCAP.

3 Proposed Approach

In this section, we present our formal framework in detail. Fig. 1 shows the high-
level workflow of our approach, which is based on ProVerif [9]. A data center
configuration captures the behavior of the entities in Intel SGX DCAP. Oper-
ational policies represent the cryptographic protocols used for communication
among the entities. Based on the data center configuration and operational poli-
cies, we specify the attestation protocol in the ProVerif’s specification language,
a dialect of the applied pi-calculus [1,2]. ProVerif automatically translates the
protocol into a set of Horn clauses [48]. Horn clauses are first-order logical for-
mulas of the form F1 ∧ ... ∧ Fn ⇒ F , where F1, ..., Fn and F are facts.

We specify the security goals, e.g., confidentiality and integrity, as security
properties in ProVerif. ProVerif automatically translates these properties into
derivability queries on the Horn clauses. ProVerif uses a sound and complete (see
[9] for a proof) algorithm based on resolution with free selection [5] to determine
whether a fact is derivable from the clauses. If the fact is not derivable, then
the desired security property is proved. If the fact is derivable, then ProVerif
attempts to reconstruct an attack at the pi-calculus level. If this attack recon-
struction succeeds, the attack against the considered property is detected. If the
attack reconstruction fails because of the abstractions in the Horn clause repre-
sentation, ProVerif cannot decide whether the property is satisfied or not. The
main abstraction done by ProVerif is that clauses can be applied any number of
times, so the repetitions (or not) of actions are ignored.

3.1 Symbolic Model

A formal model for a data center with Intel SGX is generated by producing a
parallel composition of the replication of communicating processes. Each process
models a core entity involved in RA. The replication allows each process to
produce an unbounded number of sessions with other processes. The entities
involved are defined in the data center configuration. For RA based on DCAP, we
describe the data center model as the tuple: (App, Enc, QE, PCE, RP, DCS),
where App refers to the SGX application, Enc represents an SGX application
enclave, which is an isolation environment provided by Intel SGX to perform
some security-critical operation in an encrypted area of the memory. QE and
PCE represent Intel provided architecture enclaves, called Quoting Enclave (QE)
and Provisioning Certification Enclave (PCE), respectively. QE generates the
attestations to be verified, and PCE is the local certificate authority that issues
certificates for QE. QE and PCE are provided as Quote Generation Library based
on ECDSA. The user platform consists of the entities Enc, App, QE, and PCE, as
shown in Fig. 2. RP represents the relying party that performs the attestation
verification. The data center can have a caching service, represented by DCS,
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Data Center
Configuration

Operational
Policies

Security Goals

Symbolic Model Security Properties

Automatic Translation and
Resolution

Attack reconstruction

True False Don't know

Derivation
No

Derivation

Yes No

ProVerif

Fig. 1. The workflow of the proposed approach.

which provides the data required for attestation generation and verification,
such as certificates, revocation lists for certificates, and Trusted Computing Base
(TCB) information.

Operational policies capture both computations and communication done
by all core entities defined in the data center configuration. The computations
are modeled using constructors [9], and the communications are modeled using
channels. Both constructors and channels are public by default. However, a con-
structor can optionally be defined as private if the adversary is unable to perform
the computation done by the constructor. Similarly, a channel can optionally be
defined as private to model a secure channel.

3.2 Adversary Model

ProVerif considers a very powerful symbolic adversary with Dolev-Yao [18] capa-
bilities, i.e., an adversary has full control of the communication channels. It can
read, modify, delete, and inject messages. It can also manipulate data, e.g., com-
pute the ith element of a tuple; and decrypt messages if it has the necessary
keys. Initially, all variables and constructors that are not declared private are
also in the knowledge of the adversary. ProVerif assumes the cryptographic prim-
itives to be perfect. However, the proposed approach can be extended to consider
cryptographic primitives by integrating with tools such as CryptoVerif [10].
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SGX Application
Enclave

SGX Application
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Data Center
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Quoting Enclave
Provisioning
Certification

Enclave

User Platform

Fig. 2. The remote attestation for Intel SGX DCAP.

We use the non-determinism in ProVerif to model different choices of actions
available to the adversary, so all possible combinations of actions are covered.
Exhaustive analysis of such non-determinism is impractical in functional testing-
based analysis and is one of our approach’s strengths.

3.3 Security Properties

In the context of RA in a data center, confidentiality and integrity are gen-
erally the most critical security goals. We use reachability and correspondence
assertions [49] to formalize these proof obligations.

Confidentiality. Confidentiality is the state of being secret from the attacker
[35]. In the context of RA, one can analyze whether secret keys and data in
plaintext remain out of knowledge of the attacker. Similar to [44], this can be
formalized in ProVerif as a reachability property of the form:

query (attacker (s)). (1)

In (1), s represents a free name or a term in plaintext built by a constructor
application to the variables.

Integrity. Integrity is the state of being unmodified by an attacker [35]. In
the context of RA, one can analyze the integrity of the messages sent among the
various entities. This can be formalized using injective correspondence assertions
[9], which are of the form:

query x1 : t1, ..., xn : tn;
event (e(M1, ...,Mj))==>inj-event (e′(N1, ..., Nk)).

(2)

In (2), M1, ...,Mj , N1, ..., Nk are optional terms built by the application of con-
structors to the variables x1, ..., xn of types t1, ..., tn and e, e′ are declared as
events. These events do not affect on attacker capabilities. The query is satisfied
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if, for each execution of the event e(M1, ...,Mj), there is a distinct earlier execu-
tion of the event e′(N1, ..., Nk). In this case, all variables that occur as arguments
to the event e are universally quantified, whereas those that occur only in the
event e′ are existentially quantified [9].

Let the event e represent that the message is accepted by the receiver, and
the event e′ represent that the message is unchanged. Then, such an injective
correspondence assertion could guarantee whether, for each accepted message
by the receiver, the message was unmodified. By placing the event e′ just before
accepting the message, one can ensure that there is no more option for an attacker
to change the message.

Additionally, we verify that the event e is actually reachable. This is because
if the event e is not executed, the injective assertions would still return true. In
this case, it is due to the reason that the event was never executed.

4 Industrial Case Study: Non-QVE Based DCAP

There are two main types of RA based on DCAP, i.e., QVE based and non-
QVE based DCAP [25]. In this section, we present the formalization of the
non-QVE based DCAP. For a symbolic model generation, we elaborate on the
data center configuration and operational policies in Sect. 4.1. Then we specify
confidentiality and integrity as the security goals of the data center in Sect. 4.2.

4.1 Symbolic Model Generation

We combine various Intel documentation, mainly [3,16,24–26,28–31,34,45], to
extract the operational policies of non-QVE based DCAP. An abstracted form of
these policies for Quote generation is depicted in Fig. 3. RA in Intel SGX is done
in two phases. The first phase is the local attestation in the user platform. An
SGX application requests QE for the target information. This is formalized as
a function of arity zero. QE responds by sending the Provisioning Certification
Key (PCK) certificate ID structure pck cert id to the Quote Provider Library,
which sends back the TCB and QE certification data. QE obtains the QE Seal
key from the hardware using EGETKEY instruction [28] and uses this along
with the TCB received to derive an ECDSA key, called Attestation Key (AK).
QE sends public part of AK pk AK, its identity QE ID and TCB to the PCE
for certification. PCE uses the TCB to derive its key, called PCK. PCE signs
the information received from QE with PCK to form a certificate-like structure
cert and sends it along with the public key pk PCK back to QE. Next, QE forms
its target information structure qe target info and sends it to the requesting
SGX application. The application forwards it to its enclave.

The SGX application enclave calls the EREPORT instruction to create a
cryptographic Report, which consists of report body, value for key wear-out pro-
tection, and Message Authentication Code (MAC) [41] over report body. The
structure of the Report is similar to that of RA based on EPID, presented in [44].
The report body comprises the security version number (SVN) of the processor
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(CPUSVN), enclave information from SGX Enclave Control Structure (SECS),
and the data provided by the user (REPORTDATA). The enclave information
from SECS includes its identity, i.e., MRENCLAVE. The Report also includes
the value for key wear-out protection. Finally, the Report has a MAC over the
report body. AES128-CMAC, a block cipher-based MAC based on 128-bit AES,
is used as the MAC algorithm [3]. The key used for this MAC computation is
derived using parameters, such as value for key wear-out protection, and infor-
mation of target enclave from the so-called TARGETINFO structure [28].

The application enclave sends the Report to the SGX application. The SGX
application forwards the Report to QE, which receives a cryptographic key, called
report key, by calling the EGETKEY instruction. It then verifies the Report
using the report key. Since QE and SGX application enclaves are on the same
platform, this attestation is referred to as local attestation.

Quote Provider
Library

PCE
PCK

QE
AK

SGX Application
Enclave SGX Application

Quote Generation Library

sgx_get_target_info()

pk(AK), QE_ID, TCB

Generate PCK, pk(PCK)

cert, pk(PCK)

Generate AK, pk(AK)

qe_target_info

qe_target_info

Report

Create Report

Report

Verify Report

Sign Report body with AK

c_qe_app

c_enc_app

Generate Quote

Quote

pck_cert_id

TCB, QE certification data

c_qpl_pce

c_pce_qe

Fig. 3. Channels and process flow of the Quote generation for Intel SGX DCAP.

If the local attestation succeeds, QE signs report body with AK and creates a
so-called Quote, which can be verified by the relying party in the second phase.
The structure of Quote, depicted in Fig. 4, is based on the description given
in Intel’s ECDSA Quote Library API [25]. An abstracted implementation in
ProVerif’s specification language is as follows:

out(c app,((TCB,QE ID),rptbody,sig len(sign data),

(sign(rptbody,AK),Pub AK,QE auth data,QE cert data))).
(3)
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In (3), out represents a keyword for sending a message over the channel c app
between SGX application and its enclave. The variable TCB represents the cur-
rent TCB (QE SVN and PCE SVN) and QE ID represents the identity of QE
sent in the user data field. The variable rptbody represents the report body of
ISV enclave. The function sig len takes as input the signature data sign data,
and generates its length. The function sign(rptbody,AK) generates the signa-
ture over report body using the attestation key AK. Pub AK is the public part of
AK. The variables QE auth data and QE cert data represent the variable-length
QE authentication and certification data structures, respectively. The variable
QE cert data consists of certification data type, size, and certification data. For
brevity, QE Report and QE Report signature are omitted in (3). For our imple-
mentation in ProVerif, all communication channels are considered untrusted and
all constructors are taken as public.

Quote Header Quote Sign Data LengthISV Enclave Report Body Quote Sign Data

...... QE SVN PCE SVN ...... User Data

ISV Enclave Report
Signature

Public Part of ECDSA
Attestation Key

QE Report QE Report Signature
QE Authentication

Data
QE Certification Data

Certification Data Type Certification DataSize

Fig. 4. The Quote structure generated by Quoting Enclave in Intel SGX DCAP.

The Quote is then sent back to the SGX application, which forwards it to
the relying party. The relying party requests the verification collateral from
the Quote Provider Library. Then the relying party uses the Quote Verification
Library to verify the integrity of the signature chain, revocation of keys, TCB
in chain, QE source, and ISV enclave identity [29,45].

One of the biggest challenges in the formalization is the presence of vari-
ous discrepancies in the explanation of Intel SGX literature. An exhaustive list
of inconsistencies discovered is out of the scope of this paper. Since the remote
attestation based on DCAP also uses the same Report structure as that of EPID,
it includes the same discrepancies as mentioned in [44]. Notably, the most cited
document on Intel SGX [16] also contains inconsistencies. Additionally, we pro-
vide a couple of instances specific to DCAP:

1. The description of QE certification data structure in the Quote is inconsistent,
e.g., QE ID is missing (for reference, see Appendix A.4) in [25].
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2. The literature contains some ambiguous statements, such as “The QE Report
is a report when the QE Report is certified.” in [25].

Such discrepancies clearly advocate the need for a precise and unambiguous
description of RA. Such a description would help formalize RA in more detail.

4.2 Formalization and Verification of Properties

We use the formalization presented in Sect. 3.3 to represent the security proper-
ties of non-QVE based DCAP.

Confidentiality. The side-channel software attacks are not considered part of
the security objectives of Intel SGX DCAP [31]; therefore, we do not consider
it in this work. Similar to EPID-based RA in Intel SGX [44], we verify the
following two important confidentiality properties for non-QVE based RA in the
Intel SGX DCAP:

1. We analyze whether the secret sent by the relying party is leaked to the adver-
sary in plaintext. This is formalized by replacing s in (1) by the free name
representing the secret sent by the remote challenger in plaintext. Verification
results from ProVerif confirm that only the encrypted contents of the secret
are visible to the adversary.

2. We consider whether the adversary can get the report key. This is formal-
ized by replacing s in (1) by the term constructor for the report key with
the arguments of specification of QE and value for key wear-out protection.
ProVerif results confirm that the adversary cannot access the report key.

Integrity. We analyze the following two integrity properties with injective cor-
respondence assertions [9], utilizing the formalizations presented in Sect. 3.3:

1. We analyze whether the Report’s integrity is maintained when it reaches
its destination, i.e., QE (See Fig. 3). We utilize (2) with the variables of
report body, value for key wear-out protection, report key, and MAC. The
event e(M1, ...,Mj) in (2) is replaced by the event ReportAccepted with
the arguments report body, value for key wear-out protection, report key
and MAC. The event ReportAccepted is executed whenever QE accepts a
Report. Moreover, the event e′(N1, ..., Nk) in (2) is replaced by the event
ReportBodyCorrect with the argument report body. The event ReportBody-
Correct is executed whenever the contents of the report body are unmod-
ified just before the acceptance. Thus, we analyze whether, for each occur-
rence of ReportAccepted, there is a distinct earlier occurrence of the event
ReportBodyCorrect with the same report body. Here, the arguments report
body, value for key wear-out protection, report key, and MAC are universally
quantified. ProVerif results confirm that the Report’s integrity is preserved,
and an adversary is unable to get a modified Report to be accepted by QE.
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2. We analyze whether the Quote’s integrity is maintained when it reaches its
destination, i.e., the relying party. In this case, we utilize (2) with the variables
of the report body. The events e(M1, ...,Mj) and e′(N1, ..., Nk) in (2) are
replaced by the events QuoteVerified and QuoteCorrect with the argument
report body, respectively. The event QuoteVerified is executed whenever the
relying party verifies a Quote. The event QuoteCorrect is executed when a
Quote remains unmodified just before the verification by the relying party.
Thus, we analyze whether, for each occurrence of QuoteVerified, there is a
distinct earlier occurrence of the QuoteCorrect event with the same report
body. Here, the argument report body is universally quantified. Thus, the
property ensures that for every Quote that is verified, there is a distinct
corresponding Quote with correct contents. ProVerif results confirm that the
Quote’s integrity is preserved, and an adversary is unable to get a modified
Quote to be accepted by the relying party.

As mentioned in Sect. 3.3, we also verify that the events ReportAccepted
and QuoteVerified are actually reachable. ProVerif returns a counter-example
in each case showing the trace in which these events are reached. This confirms
that these events are executable, and queries for integrity are valid.

The verification is performed using ProVerif version 2.01 on Ubuntu 18.04
LTS on an Intel Core i7-6700 quad-core machine with a processor base frequency
of 3.40 GHz with 32 GB of RAM. The average verification time to prove all the
above properties in this experimental setup is 50 ms. This shows the scalability
of the proposed approach, and the convenience to schedule the verification task
in the design process.

5 Conclusion

The remote attestation process in Intel SGX is a critical process in which a
relying party establishes trust in a remote platform and enclave. We propose
a formal approach for the specification and symbolic verification of third-party
attestation based on Intel SGX DCAP. We adopt Intel SGX threat model which
does not consider side-channel attacks [31] and assume that there are no vul-
nerabilities inside the enclave. Under these assumptions, we prove in a popular
symbolic protocol verifier, ProVerif, that the remote attestation based on Intel
SGX DCAP preserves the confidentiality of secrets and integrity of the verify-
ing data (Report and Quote), against a Dolev-Yao adversary. The specification
helped discover various inconsistencies in the existing literature of Intel SGX
DCAP. For the future, it will be interesting to formally evaluate the effective-
ness of the mitigation mechanism for Intel SGX in the presence of side-channels
for practical applications, such as Hyperledger Avalon [23].

Acknowledgments. We would like to thank Do Le Quoc for his feedback on this
work.
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Abstract. The Nervos CKB (Common Knowledge Base) is the base
layer of a new kind of blockchain. The CKB block synchronization pro-
tocol provides a set of rules that participating nodes must obey while
synchronizing their blocks. This protocol mainly consists of three parts:
connecting header, downloading block and accepting block. In this paper,
we model the CKB block synchronization protocol in Coq and verify the
correctness of the protocol. Our model takes the communication between
nodes and the reliability of implementation into consideration to reflect
a more realistic environment faced by the blockchain. We prove the
soundness and the completeness of the protocol under several reliabil-
ity and consistency assumptions. We also prove that without some of
these assumptions, the protocol may fail to guarantee the correctness of
block synchronization. Our formal verification can ensure the security of
the protocol and provide ways to prevent potential attacks.

Keywords: Blockchain · Block synchronization protocol ·
Verification · Coq

1 Introduction

First introduced in 2008, Bitcoin [8] is the first public permissionless blockchain.
Although it has been successfully applied in various domains, Bitcoin suffers
from the problem of scalability. To alleviate this problem, people have proposed
many solutions in recent years such as Bitcoin Lightning [10], Polkadot [12] and
Bitcoin Cash [3]. These solutions can be roughly divided into two categories: on-
chain scaling and off-chain scaling. On-chain scaling focuses on increasing the
supply of block space, but it has to compromise on security and decentralization.
Off-chain scaling solutions use two layers: Layer 1 guarantees the security of the
blockchain and layer 2 brings nearly unlimited space for transactions.

The Nervos Network [11] is a new blockchain ecosystem using off-chain scaling
to address the challenges faced by blockchains like Bitcoin and Ethereum. CKB
is layer 1 of the Nervos Network and it contains a collection of protocols. An
application of blockchains can contain many nodes. When a node generates new
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blocks, it may push an announcement to other nodes. Upon receiving the message
from peers, the node will perform a round of block synchronization to update
the status of newly generated blocks. The CKB block synchronization protocol
[4] contains the rules that describe the steps of synchronization.

The correctness of a protocol is of vital importance. Many protocols are
error-prone, and people have found vulnerabilities on protocols that have been
considered to be correct for many years [2]. The model checking approach models
protocols as transition systems and uses graph algorithms to check all branches
automatically. There are many works on verifying protocols by model checking
such as [5–7]. However, the number of blocks in a blockchain has no upper bound,
and commonly used model checkers sometimes can only provide very limited
results for that. These results usually cannot reflect the unbounded properties of
protocols. On the other hand, theorem proving can yield precise results even for
potentially unbounded models, which makes it suitable for verifying blockchain-
related protocols. For example, the consistency of a blockchain-based distributed
consensus protocol is verified in [9] using Coq.

In this paper, we use Coq to model and verify the CKB block synchronization
protocol. This protocol mainly consists of three parts: connecting header, down-
loading block and accepting block. Because the protocol simply behaves as the
sequence of these three parts, we can model and verify the three parts separately.
We use List in the Coq standard library to model the chain of blocks and a chain
of blocks can be modeled as a list of numbers in Coq, where different numbers
denote different status. Because the protocol may be deployed in quite complex
environments, we take the reliability of communication and implementation into
consideration. This protocol is a relatively abstract description rather than a
concrete implementation, where the details of communication and implemen-
tation are unspecified, so we use Prop in Coq to represent abstract characters
like the reliability of communication. Then we use axioms to model the concrete
behavior of these abstract characters. A chain is defined to be valid if it should be
accepted by the protocol, and accepted if it would be accepted by the protocol.
We prove that under some reliability and consistency assumptions, the protocol
is both sound and complete, that is, a chain is valid if and only if it is accepted.
Furthermore, we simulate potential attacks under which some of the reliability
assumptions may be violated. We prove that without these assumptions, the
protocol may accept invalid chains and reject valid chains, thus unreliable.

This paper is organized as follows. After this general introduction, we give a
brief description of the block synchronization and the CKB block synchroniza-
tion protocol in Sect. 2. Section 3 presents the modeling and verification of the
protocol in Coq. In Sect. 4 we simulate potential attacks on the protocol. Finally,
Sect. 5 concludes the paper with some further research directions.
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Alice Bob

Fig. 1. Local status trees of two nodes.

2 Preliminaries

2.1 The Block Synchronization

Blocks in a blockchain may have different status, for simplicity, we assume that a
block can be valid, invalid or unknown. An application of blockchains can contain
a lot of nodes, and due to the asynchrony of nodes, the same block may have
different status in different nodes. Each node has its local status tree to record
the status of blocks in the blockchain. Figure 1 shows the local status trees of
two nodes named Alice and Bob, and we use the color red, green and grey to
denote the status invalid, valid and unknown respectively.

A chain is valid if all its blocks are valid, and we use best chain to denote
the valid chain with the most accumulated PoW (Proof of Work). When a node
generates new blocks and its best chain changes, it pushes an announcement to
other nodes. When a node receives a block synchronization message, it performs
synchronization with all other nodes which have changed their best chains since
the last synchronization. The purpose of block synchronization is to compare
the best chains of other nodes with its own, and the chain with the most PoW
will become its new best chain.

2.2 The CKB Block Synchronization Protocol

The CKB block synchronization protocol is divided into three parts: connecting
header, downloading block and accepting block. These three parts are executed
one by one and a chain can enter the next stage only if it passes the current
stage.

The connecting header stage is the first stage and headers of all blocks in the
candidate best chain will be downloaded and verified. If a block has already been
valid in the local status tree, it will not be downloaded and verified again. The
format of received headers will be checked first, then the contents of headers.

In the downloading block stage, complete blocks in the candidate best chain
will be downloaded. Earlier blocks will be downloaded and verified first, and if
a block is verified to be invalid, the chain will be rejected without downloading
or verifying later blocks.

The accepting block stage is the last stage. Blocks of the candidate best chain
will be verified one by one until all blocks are verified to be valid or any invalid
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block is found. If a block is verified to be invalid, only the PoW before the first
invalid block can be calculated. If none of the candidates has more PoW than
the best chain before, the best chain remains unchanged. Otherwise, the one
with the most PoW becomes the new best chain.

3 Modeling and Verifying the Protocol in Coq

In this section, we model and verify the three parts of the block synchronization
protocol respectively. For simplicity, we name two nodes Alice and Bob, and
Alice will download Bob’s best chain and verify it. We use numbers 1, 2 and 3
to denote the invalid, unknown and valid block respectively. The complete Coq
specification of the protocol and detailed proofs of theorems can be found in [1].

3.1 Connecting Header Stage

In the connecting header stage, Bob sends the headers of his best chain to Alice.
Those blocks which are already valid in Alice’s local status tree will not be sent
and only the unique part is sent. In this stage, a block is valid means that its
header is valid. The verification of the received message is divided into two parts.
First the format will be checked:

1. The blocks in the message are continuous.
2. All blocks in the message and the parent block of the first block are not invalid

in Alice’s local status tree.
3. The status of the parent block of the first block is not unknown in Alice’s

local status tree.

After that, the contents of headers will be checked by a checker. The chain is
accepted if the format and the contents are both valid.

As Bob may be a malicious attacker, the block in Bob’s valid chain may be
invalid actually. The global status tree is introduced to record the real status of
blocks. Every block in the global status tree is either valid or invalid.

AA

BB

Alice

AliceAA

CC Bob

Global

Fig. 2. Alice’s local status tree and the global status tree.

Figure 2 shows Alice’s local status tree and the global status tree. The chain
ends with “Alice” denotes Alice’s best chain and the chain ends with “Bob”
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denotes Bob’s best chain. The blocks marked with “A” are the overlap part of
two chains. The blocks with “B” and “C” denote the unique part of Bob’s best
chain in Alice’s local status tree and the global status tree respectively. In the
above algorithm, Bob sends blocks with “C” to Alice.

To prove the algorithm, we need to make some assumptions first. For exam-
ple, we assume that all valid blocks in the global status tree are not invalid in
Alice’s local status tree. Otherwise, Alice’s local status tree conflicts with the
global, which means Alice is an illegal node. We are not interested in illegal
nodes as their behavior is unpredictable. The consistency between Alice and the
global can be captured by the following axiom:

Axiom consistent_chain: valid_list list_C ->
valid_or_unknown_list list_B.

The following axiom models the checker of the algorithm. If the checker is
reliable, the output result should be valid if and only if the input message is
valid. The communication between nodes can be modeled in a similar way.

Axiom reliable_output: reliable_checker ->
(valid_list input <-> valid_list output).

Bob’s best chain is valid if both list A and list C are valid. If the format
is correct and the output of the checker is valid, the chain will be accepted.

Definition B_valid:= valid_list list_A /\ valid_list list_C.
Definition B_accepted:= correct_format /\ (valid_list output).

Now we can formally prove the soundness and completeness of the algorithm
under the reliability assumptions by proving the following theorem. It states that
Bob’s best chain is accepted by the algorithm if and only if it is valid.

Theorem correctness_of_connecting_header:
reliable_communication /\ reliable_checker ->
(B_valid <-> B_accepted).

3.2 Downloading Block Stage

After the headers are downloaded and verified to be valid, Alice will request
complete blocks of Bob’s best chain. Earlier blocks will be downloaded and
verified first. The latter block will be verified only after the former block has
been verified to be valid. In this stage, a block is valid means that its content is
valid. The algorithm has three possible results:

– ACCEPT: All blocks are downloaded and verified to be valid, then the
candidate best chain is accepted and can enter the next stage.
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– REJECT: There is a block which is downloaded and verified to be invalid,
then later blocks in the chain will be ignored. The candidate best chain will
be rejected and will not enter the next stage.

– TIMEOUT: The download of a block times out. In this situation, the valid-
ity of the candidate best chain cannot be decided and the node will try later
again.

Similar to the previous stage, we are interested in Bob’s best chain in both
Alice’s local status tree and the global status tree. Alice’s local status tree will
update following the execution of the algorithm and Fig. 3 is a snapshot of Bob’s
best chain in the two status trees when the algorithm terminates.

Alice

BAAA B B

DCCC D D

Global

Fig. 3. Bob’s best chain in two status trees.

In Fig. 3, the fourth block is found to be invalid, so the fifth and sixth blocks
will not be verified and the candidate best chain is rejected. The blocks marked
with “A” and “C” stand for those that have been downloaded and verified to be
valid when the algorithm terminates, and the blocks with “B” and “D” stand
for those that have not been verified to be valid. We use list A to list D to
represent these chains and we use list 0 to represent Bob’s best chain in the
global status tree.

We use several axioms to represent the consistency of these lists. For example,
as list 0 is the join of list A and list B, we can derive the following axiom.

Axiom consistent_list0AB: (list_0 = list_A <-> list_B = nil) /\
(valid_list list_0 <-> valid_list list_A /\ valid_list list_B).

We model the implementation and the checker of the algorithm in a similar
way to the previous stage. For example, if the checker is reliable, the validity of
list C should be the same as list A’s.

Axiom reliable_listAC: reliable_checker -> list_A = list_C.

We then formally define the three possible results of the algorithm:

Definition ACCEPT:= list_D = nil.
Definition REJECT:= ~list_D = nil /\ hd 0 list_D = 1.
Definition TIMEOUT:= ~list_D = nil /\ hd 0 list_D = 2.
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Bob’s best chain is valid if list 0 is valid. When the result of the algorithm
is ACCEPT, the chain is accepted.

Definition B_valid:= valid_list list_0.
Definition B_accepted:= ACCEPT.

We can now prove the soundness of the algorithm.

Theorem soundness_of_downloading_block: reliable_checker /\
reliable_implement -> (B_accepted -> B_valid).

This theorem states that if the algorithm accepts a chain, then we can be sure
this chain is valid, under the assumptions that the checker and implementation
are reliable. However, we cannot promise that a valid chain will actually be
accepted by the algorithm. It is because the download of blocks may time out,
in which case the algorithm cannot decide the validity of the input chain.

To prove the completeness of the algorithm, we need to assume the termina-
tion of the algorithm.

Axiom one_of_three: algorithm_termination ->
(ACCEPT /\ ~TIMEOUT /\ ~REJECT)\/(~ACCEPT /\ TIMEOUT /\ ~REJECT)
\/(~ACCEPT /\ ~TIMEOUT /\ REJECT).

Moreover, we assume that the node can successfully download the block even-
tually, even if it may encounter some TIMEOUT before. With these assumptions,
we can prove the completeness of the algorithm.

Theorem completeness_of_downloading_block: reliable_checker /\
reliable_implement /\ algorithm_termination /\ ~TIMEOUT ->
(B_valid -> B_accepted).

3.3 Accepting Block Stage

In this stage, the verification will be performed from earlier blocks to later blocks
one by one. If a block is found to be invalid, the blocks after it will not be verified.
However, unlike the previous stage, we do not reject a chain immediately when
we find an invalid block in it. Instead, blocks before the first invalid block can
still constitute a candidate best chain.

AAA

Fig. 4. Bob’s best chain in Alice’s local status tree.

Figure 4 shows Bob’s best chain in Alice’s local status tree. The fourth block
is the first invalid one, so the fifth and sixth blocks are ignored without verifying.
The first three blocks with “A” constitute the candidate best chain of Bob.
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As the synchronization is performed with all other nodes which have changed
their best chains since the last synchronization, there may be more than one node
synchronizing with Alice. Therefore, there may be several candidate best chains
passing all the verification before. If none of these candidates contains more PoW
than Alice’s original best chain, Alice’s best chain will remain unchanged and
all candidates are rejected. Otherwise, the one with the most PoW contained
becomes Alice’s new best chain.

We use an ensemble to represent the PoW of all candidates, and we declare
init to be the PoW of Alice’s original best chain. Without loss of generality, we
assume that Bob contains the most PoW among all candidates.

Parameter L: Ensemble nat.
Parameter init: nat.
Axiom B_is_max_in_L: max_num B L.

We declare the proposition reliable checker and we assume when it holds,
the above algorithm will be faithfully implemented.

Axiom correct_implement: reliable_checker ->
(REJECT_ALL <-> forall x,L x -> x <= init) /\
(ACCEPT_B <-> L B /\ B > init /\
forall x, (L x /\ ~x = B -> x < B)) /\
(ACCEPT_OTHER <-> exists x, (L x /\ ~x = B /\
x > init /\ forall y, (L y /\ ~x = y) -> y < x)).

We can prove the correctness of the algorithm.

Theorem correctness_of_accepting_block: reliable_checker ->
(init >= B -> REJECT_ALL) /\ (init < B -> ACCEPT_B).

We can also prove that if the algorithm is implemented correctly, all candi-
dates except Bob will be rejected.

Theorem reject_other: reliable_checker -> ~ACCEPT_OTHER.

4 Attack Simulation

In this section we simulate potential attacks on the protocol. Many assumptions
have been used in Sect. 3, which mainly include the reliability of the checker,
communication and implementation as well as the consistency between chains.
We have proved the protocol is correct under these assumptions.

However, in practical applications, the situation is much more complicated.
The implementation may contain flaws and malicious attackers may tamper the
communication. In this section, we simulate these potential attacks and observe
the behavior of the protocol under attacks.
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We have mentioned in Sect. 3 that the behavior of Alice will be unpredictable
if it is not consistent with the global. To formally prove it, we remove the con-
sistency assumption between list B and list C. Furthermore, we make some
technical modification to several definitions in Sect. 3.

Now we can prove that although the checker and communication are still
reliable, the algorithm without the consistency assumption is no longer correct.
Specifically, it may reject a valid chain.

Theorem error_without_consistent_between_listBC:
reliable_communication /\ reliable_checker ->
exists list_B, (B_valid -> ~(B_accepted list_B)).

AA

BB

Alice

AliceAA

CC Bob

Global

Fig. 5. A counterexample where the algorithm cannot perform correctly.

The proof of this theorem is constructive and can be intuitively illustrated by
Fig. 5. Because Alice is not necessarily consistent with the global, a globally valid
block can be invalid in Alice’s local status tree. Under this condition, although
Bob’s best chain is valid, it cannot pass the format check and will be rejected.

Similarly, if the communication is not reliable, the message Bob sends may
be distorted and different from the message Alice receives. If the checker is not
reliable, it may decide an invalid block to be valid, thus making the protocol unre-
liable. Their formal statements are similar to the previous one and are omitted
here.

These reliability and consistency assumptions rely on concrete implemen-
tation of the algorithm, which is beyond the scope of this abstract protocol.
Therefore, the above potential attacks cannot be avoided by simply modifying
the protocol. When we actually deploy the protocol into applications, we should
carefully verify the implementation and ensure these assumptions to be met.

5 Conclusion and Future Work

In this paper we formally model the CKB block synchronization protocol in
Coq. To reflect the complicated environment where the protocol is deployed, we
integrate the reliability of implementation and communication into our model.
The protocol is just an abstract description of block synchronization and does
not include concrete implementation, therefore, we use Prop in Coq to repre-
sent the reliability and consistency properties involved and we use axioms to
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model the behavior of these properties. We then strictly prove the soundness
and completeness of the protocol in Coq, which means the protocol is correct
under several reliability and consistency assumptions. Furthermore, we simulate
potential attacks by removing some of these assumptions. We prove that without
these assumptions, the protocol may fail to correctly perform the block synchro-
nization. The proofs of attack simulations are constructive and can therefore be
used to test the concrete implementation of the protocol.

The CKB block synchronization protocol also contains some parallel algo-
rithm optimization to make full use of resource. We have only modeled and
verified the original algorithm in this paper. In the future, we plan to model and
verify the optimized algorithm to provide enhanced security assurance. In addi-
tion, we are also planning to extend this approach to investigate other protocols
in CKB, such as the transaction filter protocol and the CKB consensus protocol.
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Abstract. Abstraction-Based Controller Synthesis (ABCS) is an emerg-
ing field for automatic synthesis of correct-by-design controllers for non-
linear dynamical systems in the presence of bounded disturbances. Exist-
ing ABCS techniques assume a global (state-independent) and uniform
upper bound on disturbances. This can be overly pessimistic, resulting in
a failure to find a controller. In this paper, we extend ABCS to accurately
compute abstractions for system models with state and input-dependent
non-uniform disturbances. This requires a subtle assume-guarantee style
computation of the state evolution and the estimation of the error. We
empirically show the benefit of our approach with significantly smaller
amount of non-determinism in the abstract transitions.

1 Introduction

Abstraction-based controller synthesis (ABCS) is a fully automated controller
synthesis technique for non-linear, continuous dynamical systems with respect
to temporal control objectives [4,8,9,14,16,18]. In ABCS, first, the original non-
linear dynamical system, under a sampled-time semantics, is approximated by
a simpler finite-state system, called the abstraction. Second, using automata-
theoretic algorithms for reactive synthesis [11], an appropriate two-player game
is solved on the abstraction to compute an abstract controller. Finally, the
abstract controller is refined to a sampled-time controller for the original con-
tinuous system. The correctness of the refinement process, and thus correctness
of ABCS, depends on an alternating refinement or feedback refinement relation
[1,10,14,16] between the original continuous system and the abstraction.

A simple and effective abstraction procedure is to partition the state and the
input spaces using disjoint hypercubes, which form the state and input spaces
of the finite-state abstraction. For every abstract state and input pair, the (non-
deterministic) transitions of the abstraction provides an over-approximation of
the possible states that can be reached under the effect of the continuous dynam-
ics in the presence of disturbances. This algorithm has been implemented in
several tools [9,12,17].
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Existing abstraction techniques work on systems whose dynamics can be
modeled as the differential inclusion

ẋ ∈ f(x, u) + �−d, d�,

where d represents a constant upper-bound on the disturbances which the sys-
tem may experience. One important shortcoming of such techniques is the use of
a global, state-independent, uniform upper bound on the disturbances. In real-
world applications, such a global worst-case view often leads to an unnecessarily
pessimistic abstraction, which could result in failure of controller synthesis. Con-
sider for example a simple path planning problem for a robot in a space filled
with obstacles (Fig. 1). Assume that the disturbance models how slippery the
floor is. If it is observed that the floor is very slippery in some part (e.g. the
cross-hatched region in Fig. 1) of the state space, even if this part is less critical
and obstacle-free, the present state-of-the-art would assume that the floor is very
slippery everywhere. This pessimism might cause a significant reduction in the
size of the controller domain, especially in the critical obstacle-filled parts of the
state space.

In this paper, we extend ABCS to system models with state and input-
dependent disturbance:

ẋ ∈ f(x, u) + �−d(x, u), d(x, u)�.

The advantage of this generalization is two fold: First, it increases the accu-
racy of ABCS and the chances of a successful controller synthesis, even when
the existing approaches fail. For example, in Fig. 1 the small purple region is
the domain of the controller obtained using one of the existing approaches,
whereas the large green region is the domain of the controller obtained using
our proposed abstraction method. Second, our generalization enables localized
incremental updates of the existing abstraction when the underlying disturbance
model either changes locally over time, or is updated during runtime through
learning-based exploration of the state space. The problem of exploration has
recently gained popularity in the context of machine-learning and robotics appli-
cations, as it turns out that in most cases only approximate models of the system
and the environment are known apriori, and a more precise model is learnt dur-
ing runtime [5–7,13]. Existing ABCS techniques are not suitable for dynamic
changes in the underlying model. Thus, any change in the model involves a com-
plete re-computation of the whole abstraction and the associated controller. We
show in a companion paper [3] how the method presented in this paper is instru-
mental for locally adapting an existing abstraction under changing disturbances.
The adaptation algorithm propagates the effect of changes backwards, and selec-
tively re-computes transitions only for those abstract states which might have
been affected by this change. We do not discuss this application of adaptive
re-computation of abstractions any further in this paper.

Technically, for construction of abstraction, the extension to state- and input-
dependent disturbances is non-trivial for the following reason. The key step in



Accurate Abstractions for Controller Synthesis 299

the abstraction process is the estimation of a growth bound which is an upper-
bound on the maximum perturbation of a nominal trajectory under the influence
of disturbance. When the disturbance does not depend on the system’s state, the
growth bound can be computed independently of the system’s state trajectories
by solving the initial value problem for an auxiliary linear ordinary differential
equation [10,16].

Fig. 1. State space of a vehicle (descrip-
tion in [2]) assigned with a reach-avoid
task. The goal and the obstacles are
indicated using the hatched region in
the bottom right and the gray rectan-
gles, respectively. The region in cross-
hatch has higher disturbance (d = 0.1)
than the rest (d = 0.05). The purple and
the green region represent the controller
domains due to a uniform worst case dis-
turbance (existing approaches) and state-
dependent disturbances (our algorithm),
respectively.

However, for state-dependent distur-
bances, the dynamics of the growth
bound is non-linear, and is coupled with
the state trajectories of the system.
We show a new algorithm that jointly
computes state trajectories and growth
bounds. The joint evolution means that
there is a cyclic dependency between
the size of the initial hyper-rectangle
from which the trajectory starts and
the size of the growth bound. A sim-
ple numerical integration procedure can
be unsound unless the disturbance on
the dynamics between two integration
points is estimated soundly. We show
how the cycle can be broken by locally
approximating the disturbance by an
upper bound in an assume-guarantee
fashion and provide an algorithm to
approximate the growth bound to any
desired accuracy. Due to space limita-
tion we omit all the proofs; the proofs
can be found in the extended version of
this paper [2].

We have implemented our algorithm on top of SCOTS v0.2 [17]. We empir-
ically show, through a number of case studies, that a state-dependent model of
disturbances can lead to more precise abstractions. In fact, in our examples, the
global upper bound was too conservative to find a controller.

2 Preliminaries

2.1 Notation

We use the notation R, R>0, and N to denote the set of reals, the set of positive
reals, and the set of natural numbers (excluding 0) respectively. Given a set A
and an n ∈ N, we use An to denote the cartesian product ×n

A. Given any
vector x ∈ An, we use xi to denote the element in the i-th dimension of x. For
any function f : A → B, we write dom f to denote the domain of f .
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2.2 Systems and Refinement

A system S = (X,U, F ) consists of a state space X, an input space U , and a
transition relation F ⊆ X × U × X. A system is called finite if X and U are
finite sets. A run of a system is a finite or infinite sequence ξ = x0x1 . . . such
that for every i-th element in the sequence, with i ≥ 0, there is an ui ∈ U
such that (xi, ui, xi+1) ∈ F . The set of runs of S is denoted B(S) and the
set of runs of S starting from a state x ∈ X is denoted B(S)(x). A controller
C : X → U is a function mapping states to inputs which restricts the set of
behaviors of a system: a run ξ = x0x1 . . . is compatible with C if for every i, we
have (xi, C(xi), xi+1) ∈ F .

For ABCS to work, we need a suitable notion of abstraction. Feedback Refine-
ment Relations (FRR) provide such a notion [1,16]. Here we omit the details of
how an abstraction computed using FRR can be used in ABCS, which can be
found in the original paper on FRR-based symbolic control [16].

Definition 1 (Feedback Refinement Relations). Let Si = (Xi, U, Fi) for
i ∈ {1, 2} be two systems on the same set of inputs. Let πi : Xi → 2U be the
mapping πi(x) = {u ∈ U | ∃x′ ∈ Xi · (x, u, x′) ∈ Fi} giving the set of allowed
inputs in state x of Si. A feedback refinement relation from S1 to S2 is a relation
Q ⊂ X1×X2 such that for all x1 ∈ X1 there is an x2 ∈ X2 such that (x1, x2) ∈ Q,
and for all (x1, x2) ∈ Q, the following holds:

(i) π2(x2) ⊆ π1(x1) and
(ii) for all u ∈ π2(x2) and for all x′

1 ∈ X1 such that (x1, u, x′
1) ∈ F1, there is an

x′
2 ∈ X2 such that (x2, u, x′

2) ∈ F2 and (x′
1, x

′
2) ∈ Q.

We use S1 �Q S2 to represent that Q from S1 to S2 is an FRR. We say S2 is
an abstraction of S1 if there is an FRR Q such that S1 �Q S2. It is well known
that if S1 �Q S2 then any controller C : X2 → U solving a (suitably projected)
control problem on S2 can be refined to a controller solving the control problem
on S1 [1]. In this paper we focus on computing an abstraction; we refer to
the standard reactive synthesis literature [11,15] for the details of the synthesis
algorithms.

2.3 Time-Sampled Control Systems

We consider continuous-time control systems Σ = (X,U, d, f), where X = R
n

is the state space, U ⊂ R
m is the input space, d : X × U → X is a function

having continuous first order derivative in the first argument which models the
upper-bound of the state dependent disturbances, and f : X × U → X is the
unperturbed system dynamics. The overall dynamics is expressed by the follow-
ing differential inclusion:

ẋ ∈ f(x, u) + �−d(x, u), d(x, u)�. (1)

Since the set of disturbances �−d(x, u), d(x, u)� at any given state x ∈ X and
input u ∈ U is symmetric about the origin, hence without loss of generality we
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assume that d(x, u) is positive for all x ∈ X and input u ∈ U . We assume that
f is explicitly known and is continuously differentiable in x for all u ∈ U . The
set �−d(x, u), d(x, u)� represents the set of all possible disturbances capturing
the unmodeled dynamics and environmental uncertainties. Given an initial state
x0 ∈ X, a constant control input1 u ∈ U for time τ ∈ R+ and any interval
I ⊂ [0, τ ], the evolution of Σ in I is given by the continuous trajectory ξu : I → X
which satisfies ξ̇u(t) ∈ f(ξu(t), u)+�−d(ξu(t), u), d(ξu(t), u)�. Moreover we define
the nominal trajectory ϕx0u : I → X, which satisfies the unperturbed differential
equation ϕ̇x0u(t) = f(ϕx0u(t), u) and ϕx0u(0) = x0.

Given a fixed time sampling parameter τ > 0, we define a system Στ =
(X,U, fτ ) that represents the sampled-time representation of a control system
Σ, where fτ ⊆ X × U × X is the transition relation such that for all (x, u, x′) ∈
X × U × X, we have (x, u, x′) ∈ fτ if and only if there is a solution of (1) for
the constant input u such that ξ(0) = x and ξ(τ) = x′. The state space of Στ is
still infinite; our goal is to obtain a finite-state abstraction ̂Σ of Στ .

3 Computation of Abstraction

3.1 A Generic Construction

Fix a control system Σ = (X,U, d, f) and its sampled-time representation Στ =
(X,U, fτ ) for a fixed sampling time τ > 0. Our goal is to compute a finite-state
abstraction ̂Σ = ( ̂X, ̂U, ̂f). We work in the usual setting of ABCS, where an
abstraction is obtained by first partitioning the state space and input space of
Στ into finitely many hypercubes, and then over-approximating the transitions
to obtain the desired finite-state abstraction ̂Σ.

We consider abstract state spaces defined by hyper-rectangular covers. A
hyper-rectangle �a, b� with a, b ∈ (R ∪ {±∞})n defines the set {x ∈ R

n | ai ≤
xi ≤ bi for i ∈ {1, . . . , n}}; it is non-empty if a < b. For η ∈ R

n
>0, we say that a

hyper-rectangle �a, b� has diameter η ∈ (R>0∪{±∞})n if for each i ∈ {1, . . . , n},
we have |bi − ai| = ηi. The center of a non-empty hyper-rectangle �a, b�, written
ctr(�a, b�), is the point (12 (b1 − a1), 1

2 (b2 − a2), . . . , 1
2 (bn − an)).

A set C of hyper-rectangles is called a cover of the state space X if every
x ∈ X belongs to some hyper-rectangle in C.

In the following, we make the standard assumption that there is a compact
subset X ′ ⊆ X of the state space that is of interest to the control problem. Given
a discretization parameter η ∈ R

n
>0, the abstract state space ̂X is a (finite) cover

of the compact set X ′ with hyper-rectangles of diameter η together with a finite
number of hyper-rectangles (some are unbounded) which cover X \ X ′.

The abstract transition relation ̂f is defined as an over-approximation of the
reachable states in a single time sampling period τ . The over-approximation is
formalized by a growth bound.

1 We restrict our notation to piecewise constant control inputs as more general control
inputs will be unnecessary for the later part.
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Definition 2 (Growth bound). Let Σ = (X,U, d, f) be a control system.
Given a fixed sampling time τ > 0 and sets K ⊂ X and U ′ ⊂ U , a growth
bound is a map βτ : Rn × R

n
>0 × U ′ → R

n
>0 satisfying the following conditions:

(i) βτ (p, r, u) ≥ βτ (p, r′, u) whenever r ≥ r′ and u ∈ U ′;
(ii) for all p ∈ K and u ∈ U ′, [0, τ ] ⊂ domϕpu, and if ξu is a trajectory of (1)

on [0, τ ] with ξu(0) ∈ K then

| ξu(τ) − ϕpu(τ) |≤ βτ (p, | ξu(0) − p |, u) (2)

holds component-wise. Recall that ϕpu(t) denotes the nominal trajectory
starting from state p.

Definition 2 is an adaptation of the growth bound introduced by Resissig et
al. [16]; the difference is that our growth bound also depends on the initial state
of the nominal trajectory. The intuition behind this extra requirement is that
the deviation of the actual trajectory from the nominal trajectory may not be
independent of the path of the state trajectory in our case. This will be clear in
the subsequent development.

Given the notion of state space partition and growth bound, we can now
define the finite-state abstraction as follows:

Definition 3. Let Σ = (X,U, d, f) be a control system, let τ > 0 be a sampling
time, η ∈ R

n
>0 a discretization parameter, and βτ : R

n × R
n
>0 × ̂U → R

n
>0 a

growth bound. A finite-state abstraction ̂Σ = ( ̂X, ̂U, ̂f) of Στ consists of a finite
set ̂X which forms a cover of X with hyper-rectangles of diameter η, a finite set
̂U ⊆ U of inputs, and a transition relation ̂f ⊆ ̂X × ̂U × ̂X which satisfies, for
all x̂, x̂′ ∈ ̂X and û ∈ ̂U , (x̂, û, x̂′) ∈ ̂f if and only if

(

ϕctr(x̂)û(τ) + �−γ, γ�
) ∩ x̂′ �= ∅, (3)

where γ = βτ (ctr(x̂), 1
2η, û).

The following theorem is adapted from [16, Theorem VIII.4].

Theorem 1. For every control system Σ = (X,U, d, F ), for every sampling
time τ , state discretization η, and growth bound β, we have Στ �Q

̂Σ, through
the Feedback Refinement Relation (x, x̂) ∈ Q if and only if x ∈ x̂.

Thus, given parameters τ and η, in order to compute an abstraction, we have
to show how to compute a suitable growth bound.

3.2 Growth Bound Computation

We now present a specific way of computing the growth bound βτ (·, ·, ·), which is
motivated by the growth bound used in [16] for the case of uniform disturbance.

Given that f is continuously differentiable, we can define a certain upper
bound on the speed of deviation of two perturbed trajectories of the system Σ,
which is formalized in the following definition. We use Djfi to denote the partial
derivative with respect to the j-th component of the first argument of fi.
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Definition 4. For a given control system Σ = (X,U, d, f), let K ⊆ K ′ ⊆ X
be sets, where K ′ is convex, such that for all u ∈ U ′ and for all t ∈ [0, τ ],
ξu(0) ∈ K implies ξu(t) ∈ K ′. Define the parametrized matrix L : U ′ → R

n×n

which satisfies

Li,j(u) ≥
{

supx∈K′ Djfi(x, u) if i = j,

supx∈K′ |Djfi(x, u)| otherwise.
(4)

In the following, we use the maximum disturbance functions w(t; p, u, z(t)) :=
sup{d(x′, u) | x′ ∈ [ϕpu(t) − z(t), ϕpu(t) + z(t)]} and wmax(u) = sup{d(x, u) |
x ∈ X}. Note that we use semicolon in the function argument to separate vari-
ables (symbols preceding the semicolon) from parameters (symbols following the
semicolon). The following theorem establishes a way of sound computation of
the growth bound.

Theorem 2. Fix a time-sampling parameter τ > 0. Let Σ = (X,U, d, f) be a
control system, and z : R>0 → X be a solution to the initial value problem:

ż(t) = L(u)z(t) + w(t;u), z(0) = r (5)

where for all t ∈ [0, τ ], w(t;u) ≥ w(t; p, u, z(t)). Then any trajectory ξu(·) of Σ
with |ξu(0) − p| ≤ r is continuable to [0, τ ], and |ξu(t) − ϕpu(t)| ≤ z(t) holds for
all t ∈ [0, τ ]. In particular, βτ (p, r, u) = z(τ) is a growth bound of (1) on K, U ′

associated with τ .

t = 0 t = t′ t′ + δ

ϕ(t)

zmax

zmax

z(0) = r

z(t′)

z(t′)

z(t′ + δ)

z(t′ + δ)

v

v

Fig. 2. Growth bound computation. The dashed line
shows the nominal trajectory and the solid lines show
the ideal growth bound z∗. The dotted lines show
the upper bound zmax. Having computed z̄ at time
t′, we want to compute z̄ at time t′ + δ. The green
lines show that it is unsound to use z̄(t′) to compute
a bound on the disturbance in the interval [t′, t′ +δ).
Instead, we compute v̄ using the estimate z̄(t′) and
the upper bound wmax on the error (the red lines).
Using v̄(t′ + δ), we estimate z̄(t′ + δ) soundly.

In the following, we write
zmax(·; r, u) for the solu-
tion of the IVP (5) when
w(·;u) = wmax(u) and
write z∗(·; p, r, u) for the
solution when w(·;u) =
w(·; p, u, z(·)). Note that in
either case, existence and
uniqueness of the solution is
guaranteed by the continu-
ity of both the r.h.s. and
the first order partial deriva-
tive of the r.h.s. w.r.t. z(t);
the non-trivial latter case fol-
lows from the fact that the
function d(·, u) has continu-
ous first order derivative.

Unfortunately, when w
(t;u) = w(t; p, u, z(t)), (5)
is a highly non-linear ODE,
and it is difficult to obtain a
closed form solution for z(t),
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if it exists at all. On the other hand, numerical computation of z(t) will be
unsound due to the unavoidable time-discretization: At any given time-step k,
w will be estimated based on the disturbances seen upto the previous time-step
k − 1, which could be smaller than the actual disturbances seen in the interval
((k − 1)h, kh], where h is the step size of the numerical solver (see Fig. 2).

For these reasons, we only give an algorithm that approximates the value
of z∗(t; p, r, u) by z(t; p, r, u, δ) for a fixed parameter δ ∈ (0, τ ], such that the
approximation z(τ ; p, r, u, δ) is a sound growth bound of (1) and the approxima-
tion error can be made arbitrarily small. (Soundness of z(τ ; p, r, u, δ) as a growth
bound essentially prove that the numerical solution that we present later is also
sound.) We introduce a conservative over-approximation of w(t; p, u, z(t)) that
does not depend on z(t), and the conservatism can be made arbitrarily small
by tuning δ. This is based on an an assume-guarantee style decomposition of
the computation of w(t; p, u, z(t)). For any t ≥ 0, define t− := max{0, t − δ}.
Assume that for any given t ≥ 0, the value of z(t−; p, r, u, δ) is already known,
and in particular, z(0; p, r, u, δ) = r. Then we can guarantee that the over-
approximation of the maximum disturbance seen at time t is v(t; p, r, u, δ) :=
sup{d(x′) | ϕpu(t) − ε ≤ x′ ≤ ϕpu(t) + ε}, where ε = zmax(δ−; z(t−; p, r, u, δ), u)
and δ− = min{t, δ}. Figure 2 shows the calculations.

We write z(·; p, r, u, δ) for the solution of the IVP (5) when w(·;u) is set
to v(·; p, r, u, δ). Note that existence and uniqueness of the solution is guaran-
teed, because the right hand side is both continuous and has continuous first
order partial derivative with respect to z(t): the proof is trivial when we note
that v(t; ·, ·, ·, δ) is independent of z(t; ·, ·, ·, δ). For every δ > 0, the solution
z(τ ; p, r, u, δ) is a growth bound, and the smaller the value of δ, the tighter is
the growth bound, and hence the less conservative (i.e. less non-determinism) is
the abstract transition system. This is formalized using the following theorem.

Theorem 3. Using the notation as in Theorem2, for all δ > 0 and for all
t ∈ [0, τ ], v(t; p, r, u, δ) ≥ w(t; p, u, z∗(t)). Moreover, for all t ∈ [0, τ ] and for all
ε > 0, there exists a δ > 0, s.t. |z(t; p, r, u, δ) − z∗(t; p, r, u)| < ε.

It is easy to see from Theorem 3 that by fixing t = τ , we can always find
a small enough δ > 0 to get an arbitrarily tight and sound growth bound
βτ (p, r, u) = z(τ ; p, r, u, δ). Moreover, it can be shown that if L(u) is a non-
negative matrix, then a δ corresponding to t = τ and ε > 0 ensures that
|z(t; p, r, u, δ) − z∗(t; p, r, u)| < ε for all t ∈ [0, τ ].

3.3 ComputeAbs: Abstraction Algorithm

The abstraction algorithm ComputeAbs iterates over all the abstract state-
input pairs (x̂, û) ∈ ̂X × ̂U . For each pair, it computes the set of transitions
(x̂, û, x̂′) using an ODE solver in the following way.

First, for all (x̂, û), the disturbance function d is over-approximated using a
piecewise constant function ̂d : ̂X × ̂U → R

n defined as

̂d(x̂, û) := sup
x′∈x̂

{d(x′, û)}. (6)
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Second, a numerical ODE solver is used to jointly solve the IVP for the
dynamics and the growth bound:

ẋ(t) = f(x(t), u), x(0) = ctr(x̂) (7)

ż(t) = L(u)z(t) + ŵ(t;u), z(0) =
1
2
η (8)

where ŵ(t;u) approximates w(t;u) as described below.
The numerical algorithm used in our implementation is based on 4th order

Runge-Kutta method. The ODE solver uses a fixed step size h > 0. For sound-
ness, we need to make sure that the distance between two consecutive intermedi-
ate points obtained during the numerical solution of the IVP are not separated
by a distance more than the discretization η. The following condition ensures
this property:

η ≥ sup
x,u

|f(x, u)| × h. (9)

Using the notation used in Theorem 3 we set δ = h. This sets δ− = δ = h,
t− = t − δ = t − h (note that each time point t equals kh for some k ∈ N) and
ε = zmax(δ−; z∗(t − h; p, r, u), u). Finally, we define

ŵ(t;u) = sup
x̂′

{̂d(x̂′, u) | x̂′ ∈ ̂X s.t. x̂′ ∩ (x(t) + �−r(t) − ε, r(t) + ε�) �= ∅}

Table 1. Experimental results for four different system models described in the
extended version [2]: Comparison of SCOTSv0.2 and ComputeAbs in terms of number
of transitions (top) and computation time (bottom).

Case Study SCOTSv0.2 ComputeAbs relative

Vehicle (3d) # transitions 3.123 × 107 2.921 × 107 55%

time (sec.) 16.81 24.64 0.7×
Manipulator(4d) # transitions 1.244 × 109 1.048 × 109 84%

time (sec.) 735.65 1012.34 0.7×
Cancer treatment(3d) # transitions 8.301 × 108 7.263 × 108 88%

time (sec.) 28.28 78.56 0.4×
Aircraft landing (3d) # transitions 5.530 × 109 2.047 × 109 37%

time (sec.) 264.099 528.62 0.5×

Based on the solution (x(τ), z(τ)) returned by the ODE solver, the abstrac-
tion algorithm adds transitions (x̂, û, x̂′) for every x̂, x̂′ ∈ ̂X and every û ∈ ̂U
such that x̂′ ∩ [x(τ) + −z(τ), x(τ) + z(τ)] �= ∅.
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4 Experimental Results

We implemented ComputeAbs as an extension of SCOTSv0.2 [17], and eval-
uated the algorithms on 4 benchmark examples to show the effectiveness of
our method. A performance comparison between ComputeAbs and the orig-
inal SCOTSv0.2 is summarized in Table 1; the details of the systems’ models
can be found in the extended version [2]. All the experiments were performed
on an Intel(R) Xeon(R) Processor E7-8857 v2 (3.00 GHz) with 16 GB memory.
Since we focus on the abstraction step of ABCS in this paper, no data related
to synthesis is presented. However, we emphasize that the number of abstract
transitions is a good indicator for the chances of successful synthesis. More tran-
sitions indicates a less accurate abstraction making the synthesis harder.
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Abstract. Microservices is an architectural style that promotes struc-
turing an application as a collection of loosely coupled fine-grained ser-
vices. Since each microservice typically accesses different data, while com-
posing complex applications it is hard to monitor which data are getting
accessed in the entire application workflow. This raises a serious con-
cern over the privacy protection especially in such a domain as health
care. In this paper, we propose a formal Event-B based approach to
analysing privacy preservation constraints in the applications developed
in the microservices architectural style.
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1 Introduction

In accordance to the General Data Protection Regulation (GDPR) [4], companies
require to preserve privacy while handling personal user information. This is an
especially important issue in the healthcare domain, which inherently handles a
lot of sensitive personal data.

In this paper, we propose a formal approach to verifying privacy-preservation
constraints in the microservices-based development. Microservices [6] is a pop-
ular architectural style that promotes building applications as an orchestration
of loosely coupled fine-grained services. The approach supports modularity, con-
tinuous integration and parallel independent work by multiple developers. Typ-
ically an application – an orchestrated complex service – is composed of several
microservices. It might access a large variety of data. Therefore, ensuring pri-
vacy protection in complex workflows inherent to microservices architectures
constitutes a serious technical challenge.

In this paper, we rely on a formal modelling in Event-B [2] with the associ-
ated prover and model checker provided by the Rodin platform [10] to formally
define and verify the privacy preservation constraints. In the static part of the
Event-B specification, we define both – the microservices in terms of their data
access and the intended overall structure of the microservices architecture. In the
c© Springer Nature Switzerland AG 2020
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dynamic part, we defined privacy preservation constraints and verified whether
the scenarios that the analysed application intends to support, preserve privacy
constraints. Model checking is used then to generate all feasible scenario execu-
tion traces under the constraints defined in the context. Each scenario can either
preserve or violate privacy constraints, where a breach of privacy is defined as a
reachability problem. As a result, we can explicitly identify the causes of poten-
tial privacy breaches, as well as propose and verify corrective solutions.

2 Privacy Issues in Modern Software Design

MicroService Architecture (MSA) [6] (sometimes referred to as fine-grained
service-oriented architecture) – is a new architectural style, which quickly grows
in popularity. MSA advocates development of applications as an orchestration
of loosely-coupled services of small granularity. MSA supports continuous inte-
gration and shorter development cycles. Among other benefits is a flexibility in
programming language selection and enhanced service scalability.

Fig. 1. Example: electronic health records handling with disclosures

Companies from different domains, including healthcare, have started to
adopt MSA to respond more rapidly to the ever-changing demands of the busi-
ness. However, even though MSA style offers many benefits in terms of flexibility
and agility, it inevitable possesses the problem associated with its distributed and
data-intensive nature – privacy protection of handled data, which is especially
acute in the healthcare sector.

The applications developed for the healthcare domain have stringent require-
ments imposed on the patient’s privacy, personal data protection and their mis-
use. Each patient should be able to individually make a decision about which
data can be disclosed to which party. Any application or a company that handles
such data should guarantee that these constrains are preserved.
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Next we present an example, adopted from [18] which illustrates privacy
protection issues in the healthcare domain. First, we give a high level description
of the workflow and then discuss it from the MSA point of view.

We assume that a patient needs a medical treatment abroad. A clinic in the
homeland has taken an x-ray image of the patient and has shared it (disclosed to)
the data center collecting EHRs. The data center collects EHRs from different
organisations. Moreover, it also shares, i.e., discloses, them with other organisa-
tions, such as clinics, health insurance agencies, and pharmaceutical companies.

An interaction of a patient with an organisation starts from the verification
of patient’s digital identity and selection of data privacy protection policy. For
instance, since the x-ray should be taken in the clinic in the homeland but the
treatment to be received at a hospital and clinic abroad, a patient agrees that the
clinic in the homeland discloses the digital identity, history of disease and x-ray
image to the clinic and hospital abroad. The disclose is agreed to be handled by a
datacenter in the homeland. Any other additional disclosures are not permitted.

Figure 1 illustrates the possible interactions with different organisations,
which might be involved in our example. It shows the authorized disclosures
between the clinic in the homeland, the hospital and clinic abroad via the data
center provider. Moreover, Fig. 1 also depicts two possible non-authorized disclo-
sures. The first violation is caused by the data center – it discloses the data to a
pharmaceutical company. The second violation is performed by the clinic abroad,
which after the treatment also discloses data to a non-authorized pharmaceutical
company.

Each organisation in our example handles patient’s data using a number of
different microservices. All manipulations with the data are performed on mul-
tiple platforms and using various web applications. Though the unauthorized
disclosure is not intentional, the given architecture does not have means to mon-
itor satisfaction of privacy constraints and prevent their violation.

To tackle this problem, we formalise privacy constraints and identify scenarios
violating them using Event-B – the framework which we overview next.

3 Background: Event-B and ProB

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development and formal verification by theorem proving [2]. In Event-B,
a system model is specified as an abstract state machine. An abstract state
machine encapsulates the model state, represented as a collection of variables,
and defines the events – the operations over the states, i.e., it describes the
dynamic system behaviour. The variables are strongly typed by the constraining
predicates that, together with other important system properties, are defined as
model invariants. Usually, a machine has an accompanying component, called a
context, which includes user-defined sets, constants and their properties given as
a list of model axioms.



Formalising Privacy-Preserving Constraints in Microservices Architecture 311

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, Ge is the event guard,
and Re is the event action. The guard is a predicate over the local variables of
the event and the state variables of the system. The guard defines the conditions
under which the event is enabled. If several events are enabled at the same time,
any of them can be chosen for execution nondeterministically.

Modelling, refinement and verification in Event-B is supported by an auto-
mated tool – Rodin platform [10]. The platform provides the designers with an
integrated extendable modelling environment, supporting automatic generation
and proving of the proof obligations. The ProB extension [7] of Rodin supports
automated consistency checking of Event-B machines via model checking, con-
straint based checking, and animation. In the next section, we formulate the
main steps of the verification process and demonstrate its application to the
EHR example.

4 Verification of Privacy-Preserving Constrains in MSA
Using Event-B

Event-B offers a convenient separation of models of static and dynamic aspects
of system behaviour within the unified and hence, semantically coherent speci-
fication. This allows us to represent the static and dynamic concepts within the
same specification in a consistent way.

In the static part of the specification – context – we aim at defining the
mathematical constructs required to represent the microservices architecture
under study. An excerpt from the specification pattern of the context is shown in
Fig. 2. We define the set of all microservices names (ids) as an abstract constant
set MS. The abstract types of data, to be handled by the desired application,
are defined by the abstract set DATA TYPE. Similarly, the names of all the
relevant organisations are defined in the abstract set ORG.

In the CONSTANTS clause, we have an opportunity to explicitly define the
static relationships between the abstract sets as the corresponding constants
that are defined in as the axioms in the AXIOMS clause. We adopt Consumer-
Producer pattern for modelling a microservice. Hence, for each microservice we
define an abstract relation Cons Data, which maps the microservice name to the
set of data types in the abstract set DATA TYPE, which the microservice can
consume, i.e., define which data are disclosed to this microservice. Similarly, we
define the abstract relation Prod Data, which maps the microsevice name to the
set of data types, which the microservice exposes to the other microservices.

The abstract constant DOMAIN defines the association between the (names
of) organisation and the microservices. The abstract relation O PERM defines
the permissions for a certain subset of data – a subset of DATA TYPE, to be
exposed to each particular organisation.
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CONTEXT MSA context

SETS MS, DATA TYPE, ORG, ...
CONSTANTS Cons Data, Prod Data, DOMAIN, O PERM, ...
AXIOMS
axm1: MS �= ∅

axm2: DATA TYPE �= ∅

axm3: ORG �= ∅

axm4: Cons Data ∈ MS → P(DATA TYPE)
axm5: Prod Data ∈ MS → P(DATA TYPE)
axm6: DOMAIN ∈ ORG → P(MS)
axm7: O PERM ∈ ORG → P(DATA TYPE)
axm8: ScenarioSeq = {...}
...

END

Fig. 2. The excerpt of context MSA context

The introduced definitions formally specify the microservices architectures
and privacy constraints. As a result of development or verification, new microser-
vices might be introduced, existing modified or privacy policy changed.

To enable a lightweight verification process, in the context, we also statically
define the scenario, which should run in our microservices architecture. It is
defined as a sequence of (names of) microservices.

In the machine, we define the variables representing the scenarios as a
sequence of microservices, progress of a scenario execution as well as the “accu-
mulated” knowledge – the subset of data that is getting exposed to each microser-
vice in the scenario. The types of the introduced variables are defined in the
INVARIANTS clause. The most interesting part of the invariants is our privacy
preservation condition (3), which now can be checked for each scenario that we
intend to verify.

The verification process relies on proofs and model checking. Proofs allow us
to verify consistency of the introduced constants and correctness of the specifica-
tion as such. Model checking is used to iteratively check the desired scenarios. We
aim at verifying that none of the scenarios modelled as a sequence of microser-
vices violates the invariant. The summary of the proposed verification process
in Event-B is given below.

4.1 Approach Description

The proposed approach consists of the following steps:

– Step 1. Define (or subsequently modify) the corresponding Event-B context
component, containing the (types of) involved data elements (in SETS and
CONSTANTS clauses) and the involved static relationships between them
(in AXIOMS clause). The generic pattern for specifying microservices archi-
tecture in the context given in Fig. 2.

– Step 2. In the dynamic part, create an abstract Event-B machine that defines
the dynamic part of the model. Define the desired privacy preservation con-
straints as a part of the model invariant. Explicitly model the progress of
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execution of the chosen scenario by defining the events that modify the vari-
ables representing the current step and the name of the microservice involved
into execution of this step. In the model context, define (or modify the def-
inition of) the scenario to be verified as a sequence of microservices. Verify
consistency and correctness of the specification by invoking the prover inte-
grated into the Rodin platform.

– Step 3. Simulate an execution of a chosen scenario in Event-B machine part
by invoking model checker ProB integrated into the Rodin platform. Each
scenario can either preserve or violate privacy constraints, where a breach
of privacy is defined as a reachability problem. Any violations of the privacy
constraints lead to deadlocking the model. If a deadlock is found then diagnose
the problem by exploring the found counterexample: the execution step of the
scenario and the name of the corresponding microservice. Otherwise, go to
Step 5.

– Step 4: Propose a solution to rectify the found problem. It would require to
make some changes in the data access rights of some microservices. Feasibil-
ity and effectiveness of such changes can be immediately checked using the
modified specification. Return to the Step 2 for necessary modifications of
one or several definitions.

– Step 5: The verified scenario preserves the defined privacy preservation policy.
If all the desired scenarios associated with a given application have been veri-
fied then the current specification of the data access of the involved microser-
vices preserves the desired privacy constraints and the current version of the
application can be safely (from the privacy point of view) deployed. Other-
wise, go to Step 2 to define and verify another scenario.

Next we further elaborate on the proposed approach by applying it to the
example – handling EHRs.

4.2 Application of the Approach to the EHR Example

To illustrate our approach, we take our EHR example discussed in Sect. 2.
The involved workflow and possible interactions with different organisations are
depicted in Fig.1.

Let us consider the following scenario defined as a sequence of microservices:

(WebP App,HC Adm,DCP Mng,PCU PA) (1)

Here WebP App stands for a patient Web application service, HC Adm is a
patient administrative service associated with a home patient’s clinic, DCP Mng
is a data collection service of a data center provider organisation, and PCU DA
denotes a data analytic service associated with a pharmaceutical company.

To verify whether this scenario satisfies the privacy-preserving constraints
(defined as axm4 and inv6), we follow the steps of the approach described in
Sect. 4.1. First, we define the static part of our Event-B model – the context
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CONTEXT EHR context

SETS MS, DATA TYPE, ORG, S
CONSTANTS Cons Data, Prod Data, DOMAIN, O PERM, ScenarioSeq, ScenarioCur...
AXIOMS
axm1: MS = {WebP App, HC Adm, DCP Mng, HA Mng, PCU DA, CA Mng, ...}
axm2: DATA TYPES = {UPRI CR, LabResUs, ImgUs, IdUss, ... }
axm3: ORG = {Pat, HC, DCP, CA, HA, PCU}
axm4: O PERM = {Pat {→� UPRI CR, LabResUs, ImgUs},HC {→� UPRI CR, LabResUs, ...}, ...}
...
axm7: ScenarioSeq ∈ S → (N �→MS)
axm8: ScenarioSeq = {s1 {→� 1 �→ WebP App, 2 �→ HC Adm, 3 �→ DCP Mng, 3 �→ PCU DA}, ...}
axm9: ScenarioCur ∈ N �→MS
axm10: ScenarioCur = {1 �→ WebP App, 2 �→ HC Adm, 3 �→ DCP Mng, 3 �→ PCU DA}
...

Fig. 3. Case study: context definition

component (see Fig. 3). The involved structures (sets of microservices, organisa-
tions, data types, etc.) are defined (by axm1–axm3) by instantiating with the
example-specific details the generic specification pattern presented in Fig. 3.

Then we create an abstract Event-B machine model (see Fig. 4). Here we
define the artefacts required to model the dynamic aspect, e.g., accumulated
data elements Cons Data Known, a current scenario sequence SimScenarioCur,
etc. We introduce them as model variables and formulate their properties in the
INVARIANTS clause.

Next, we define the scenario sequence to be checked as a constant Scenar-
ioCur in the model context (see Fig. 3). In the machine part of the Event-B
specification of EHR, we simulate this scenario execution by storing a scenario
steps in SimScenarioCur variable as well as saving the consumed data for every
involved in a scenario microservice in Cons Data Known variable.

To verify a scenario in a traceable manner and facilitate diagnosing the prob-
lems, we define a number of events – start, next, compl – that simulate the scenario
execution (see Fig. 4). The sequence of microservices is built by starting from
the first microservices (modelled by the event start) and simulating the execu-
tion sequence leading to the last microservices (modelled by the event next). The
scenario execution process is completed when the last (in the current scenario
sequence) microservice is executed (modelled by the event compl).

The invariant property inv7: finish = TRUE ⇒
SimScenarioCur=ScenarioCur states that if the scenario execution has been
completed then the scenario contains all the steps (i.e., is equal to the exe-
cuted steps). In the case when the resulting command sequence SimScenarioCur
does not match to the required sequence, a violation is found by model checking.
Consequently, the found scenario sequence becomes an input for the analysis in
Step 4.

For instance, in our example, while checking a scenario (1), we have found
a deadlock – the scenario deadlocks on the execution of the last miscroservice
of a pharmaceutical company, where microservice ms c=PCU DA. The analysis
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MACHINE EHR machine 1

SEES EHR context

VARIABLES Cons Data Known, SimScenarioCur, finish, num
INVARIANTS
...

inv4: Cons Data Known ∈ MS → P(DATA TYPE) // stores accumulated data elements

inv5: SimScenarioCur ∈ N �→MS // stores a current scenario sequence

inv6: ∀ms. ms ∈ ran(ScenarioCur)⇒Cons Data Known(ms) �⊆ O PERM(DOMAIN−1({ms})
inv7: finish=TRUE ⇒ SimScenarioCur=ScenarioCur
...

EVENTS
...

start =̂
any ms p,ms c, org c, data
where num=0 ∧ ms p = ScenarioCur(1) ∧ ms c = ScenarioCur(2) ∧

ms c ∈ DOMAIN(org c) ∧ data ⊆ Prod Data(ms p) ∧
Cons Data(ms c) ⊆ O PERM(org c) ∧ ...

then
SimScenarioCur := {1 �→ ms p, 2 �→ ms c}
Cons Data Known(ms c) := data
num := num + 1
finish := bool(num = card(ScenarioCur))

end

next =̂
any ms p,ms c, org c, data
where finish = FALSE ∧ num > 0 ∧

ms p = ScenarioCur(num+1) ∧ ms c = ScenarioCur(num+1) ∧
ms c ∈ DOMAIN(org c) ∧ data ⊆ Prod Data(ms p) ∧
Cons Data(ms c) ⊆ O PERM(org c) ∧
Cons Data(ms c) ⊆ Prod Data(ms p) ∧ ...

then
SimScenarioCur := SimScenarioCur ∪ {num + 1 �→ ms p}
Cons Data Known(ms c) := Cons Data(ms c) ∪ data
num := num + 1
finish := bool(num = card(ScenarioCur))

end
...

END

Fig. 4. Case study: excerpt of the machine EHR machine 1

discovered that a pharmaceutical company gets access to the data type ImgUs,
which is not allowed by the privacy-preserving constraints.

At the current stage, we assume that the changes in the data access rely on the
manual inspection of the identified disclosures. However, model animation can
significantly facilitate this process by allowing us to replay the identified disclo-
sures scenario and considering consumed and produces data of each microservice
individually.

5 Related Work and Conclusions

A comprehensive overview of the state-of-the-art in privacy research is presented
in [11]. Various aspects of reasoning about privacy have been also actively studied
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within the formal methods community. Agrafiotis et al. [3] rely on Hoare logic to
detect and resolve ambiguities in privacy requirements. In particular, they also
consider the problem of inconsistency with the privacy constraints caused by an
aggregation of data. Abe and Simpson [1] use Z to model system–environment
interactions and ProZ to verify whether such interactions can trigger a transition
to an undesired privacy-violating state. Privacy is addressed from the “data in
the system” perspective, which allows the authors to specify privacy preservation
constraints as the model invariant. In our work, we also define privacy as an
invariant property of the model.

A data-flow oriented approach to graphical and formal modelling of privacy
and security constraints has been proposed in [12–14,17]. These works use the
graphical modelling to represent system architecture and the data flow. The
diagrams are translated into a formal modelling framework Event-B, to verify
the impact of privacy violations and security attacks on the behaviour of the
system.

A role-based access control (RBAC) is a popular mechanism for privacy
assurance. A contract-based approach to modelling and verification of RBAC
for cloud was proposed in [8]. An approach to integrating UML modelling and
formal modelling in Event-B to reason about behaviour and properties of web-
services was proposed in [9]. A domain-specific language for modelling role-based
access control and translating graphical models in Event-B was proposed in [15]
and formalised in [16]. A similar approach for service-oriented architectures was
proposed in [5].

In the approach discussed in this paper, we focus on representing a microser-
vices architecture and the privacy policy in connection to the organisational
domain, to which a microservice belongs. It enables a more straightforward anal-
ysis of the required privacy constraints in the development process.

In this paper, we proposed a formal approach to verifying privacy-
preservation constraints in the applications developed in the microservices archi-
tectural style. We demonstrated how to formally specify microservices and the
overall architecture to enable lightweight but rigorous analysis of privacy pol-
icy preservation. Our approach supports a clear traceability between the high
level privacy description – the user’s consent to disclose particular data to certain
organisations – and the formal specification of the privacy preserving constraints.

The automated tool support – the Rodin platform – have been critical for
implementing our approach. The provers have been used to verify consistency
of the architectures and Pro-B model checker to verify scenarios. As a future
work, we are planning to investigate the idea of integrating different privacy
enhancing mechanisms into the specifications of microservices architectures to
enable a formal verification of privacy of the resultant solutions.
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S., Duquenoy, P., Hansen, M., Leenes, R., Zhang, G. (eds.) Privacy and Identity
2010. IAICT, vol. 352, pp. 271–282. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20769-3 22

4. European Commission: Proposal for a General Data Protection Regulation. Code-
cision legislative procedure for a regulation 2012/0011 (COD), European Commis-
sion. Brussels, Belgium, January 2012

5. Laibinis, L., Troubitsyna, E., Leppänen, S.: Service-oriented development of fault
tolerant communicating systems: refinement approach. IJERTCS 1(2), 61–85
(2010)

6. Fowler, M., Lewis, J.: Microservices: a definition of this new architectural term.
https://martinfowler.com/articles/microservices.ml. Accessed 01 Apr 2019

7. ProB. Animator and Model Checker. https://www3.hhu.de/stups/prob/index.
php/. Accessed 01 Apr 2019

8. Rauf, I., Troubitsyna, E.: Generating cloud monitors from models to secure clouds.
In: DSN 2018, IEEE Computer Society (in print, 2018)

9. Rauf, I., Vistbakka, I., Troubitsyna, E.: Formal verification of stateful services with
REST APIs using Event-B. In: IEEE ICWS 2018. IEEE (in print, 2018)

10. Rodin. Event-B platform. http://www.event-b.org/
11. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Softw. Eng.

35(1), 67–82 (2009)
12. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Formal modelling and verification of

service-oriented systems in probabilistic event-B. In: Derrick, J., Gnesi, S., Latella,
D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 237–252. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30729-4 17

13. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.:
Towards security-explicit formal modelling of safety-critical systems. In: Skavhaug,
A., Guiochet, J., Bitsch, F. (eds.) SAFECOMP 2016. LNCS, vol. 9922, pp. 213–
225. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45477-1 17

14. Troubitsyna, E., Vistbakka, I.: Deriving and formalising safety and security require-
ments for control systems. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFE-
COMP 2018. LNCS, vol. 11093, pp. 107–122. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-99130-6 8

15. Vistbakka, I., Barash, M., Troubitsyna, E.: Towards creating a DSL facilitating
modelling of dynamic access control in event-B. In: Butler, M., Raschke, A., Hoang,
T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 386–391. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91271-4 28

16. Vistbakka, I., Troubitsyna, E.: Modelling and verification of dynamic role-based
access control. In: Atig, M.F., Bensalem, S., Bliudze, S., Monsuez, B. (eds.) VECoS
2018. LNCS, vol. 11181, pp. 48–63. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00359-3 4

17. Vistbakka, I., Troubitsyna, E., Kuismin, T., Latvala, T.: Co-engineering safety
and security in industrial control systems: a formal outlook. In: Romanovsky, A.,
Troubitsyna, E.A. (eds.) SERENE 2017. LNCS, vol. 10479, pp. 96–114. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-65948-0 7

18. Wohlgemuth, S., Echizen, I., Sonehara, N., Müller, G.: Tagging disclosures of per-
sonal data to third parties to preserve privacy. In: Rannenberg, K., Varadharajan,
V., Weber, C. (eds.) SEC 2010. IAICT, vol. 330, pp. 241–252. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15257-3 22

https://doi.org/10.1007/978-3-642-20769-3_22
https://doi.org/10.1007/978-3-642-20769-3_22
https://martinfowler.com/articles/microservices.ml
https://www3.hhu.de/stups/prob/index.php/
https://www3.hhu.de/stups/prob/index.php/
http://www.event-b.org/
https://doi.org/10.1007/978-3-642-30729-4_17
https://doi.org/10.1007/978-3-319-45477-1_17
https://doi.org/10.1007/978-3-319-99130-6_8
https://doi.org/10.1007/978-3-319-99130-6_8
https://doi.org/10.1007/978-3-319-91271-4_28
https://doi.org/10.1007/978-3-030-00359-3_4
https://doi.org/10.1007/978-3-030-00359-3_4
https://doi.org/10.1007/978-3-319-65948-0_7
https://doi.org/10.1007/978-3-642-15257-3_22


Algebraic Approach for Confidence
Evaluation of Assurance Cases

Yoriyuki Yamagata1(B) and Yutaka Matsuno2

1 National Institute of Advanced Industrial Science and Technology (AIST),
1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

yoriyuki.yamagata@aist.go.jp
2 College of Science and Technology, Nihon University,
Chiba 7-24-1, Narashinodai, Funabashi 274-8501, Japan

matsuno.yutaka@nihon-u.ac.jp

Abstract. This paper presents a preliminary study on a method to eval-
uate the confidence of assurance cases using an abstract algebra mapped
to a partial order. Unlike conventional quantitative methods for con-
fidence evaluation, our approach is purely qualitative and employs a
small number of axioms. It does not rely on numerical parameters that
are difficult to determine in practice. Furthermore, our method can be
regarded as an abstraction over numerical methods that use probabil-
ity. To illustrate that our method provides a rigorous foundation for the
qualitative evaluation of assurance cases, we give a sufficient condition
for a multi-legged argument to improve confidence. Finally, we use our
method to evaluate a concrete goal structuring notation (GSN) diagram
that argues that a computer simulation of a biological system is reliable.
These findings suggest that methods based on abstract axioms are viable
approaches for confidence evaluation of assurance cases.

Keywords: Assurance case · Goal structuring notation (GSN) ·
Confidence · Formal semantics

1 Introduction

Creating and evaluating assurance cases are challenging tasks. The concept of
assurance cases is given an abstract definition such as “A reasoned and com-
pelling argument, supported by a body of evidence, that a system, service or
organization will operate as intended for a defined application in a defined envi-
ronment” [2]. By such an abstract definition, virtually all artifacts of the target
system could be parts of the assurance case. In an automotive assurance case
guideline [10], it is noted that “the question of when to stop adding further detail
to an assurance case is not one that can be easily answered.” An important issue
is understanding how much confidence one can have in the claim and how dif-
ferent arguments contribute to such confidence, given a claim and a supporting
argument [6].
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Goal structuring notation (GSN) [2] is a widely used graphical notation for
assurance cases. A GSN diagram starts with a top goal of a claim to be argued,
such as “System X is safe.” Each goal is decomposed into sub-goals via a strategy
node, which explains why the sub-goals are sufficient to support the goal, and
finally, into directly verifiable evidence. A GSN diagram also documents the
assumptions and contexts for an assurance case. This study uses GSN diagrams
for presenting assurance cases.

Previous studies on the confidence of assurance cases were mostly based on
numerical evaluations. A drawback of numerical evaluations is that the results
depend on the numerical parameters used in the evaluation, whose appropriate-
ness is difficult to verify. Thus, a widely applicable quantitative method for the
confidence evaluation of assurance cases remains to be established.

This paper proposes a method to evaluate the confidence of assurance cases
using an abstract algebra mapped to a partial order. This method has several
advantages over numerical methods. First, the proposed method is defined using
a small number of axioms without numerical parameters; thus, the results have a
clear meaning. Second, the proposed method is based on weaker assumptions and
is more general than numerical methods. Finally, the proposed framework can
be regarded as an abstraction over (previously proposed) probability methods
of confidence evaluation. Although our axioms are still weak for fine confidence
evaluation, we believe that the method based on abstract axioms is shown to be
a viable research direction.

The remainder of this paper is organized as follows. Section 2 reviews related
studies. Section 3 gives the definition of GSN diagrams. Section 4 defines an
abstract algebra of “states” and introduces our evaluation method. Section 5
relates our method to probabilistic evaluation. Section 6 describes the applica-
tion of our method to multi-legged arguments [3] and gives a sufficient condition
for a multi-legged argument to improve confidence. Section 7 analyzes a con-
crete GSN diagram that argues the correctness of a computer simulation of a
biological process, namely lymphoid tissue formation. Finally, Sect. 8 states the
conclusions and explores possible extensions of our framework.

2 Related Work

Developing an evaluation method for an assurance case is a current research
objective, and various approaches have been proposed for this purpose. Stud-
ies on evaluating assurance cases are mainly concerned with the term confi-
dence, i.e., how stakeholders gain sufficient confidence for the dependability of
the system from the assurance cases. In [4], probability was used to calculate
the confidence in assurance cases. Using the probabilistic framework, Bloomfield
et al. [3] showed that independent multi-legged arguments increase the confidence
of assurance cases. Other approaches include using Baconian probability [14]
and the Dempster–Shafer theory (DST) [13]. The Baconian approach considers
the doubts eliminated by the claims and evidence in a case with eliminative
induction. DST supports the assignment of weights (i.e., mass) to a combina-
tion of possible events, rather than only assigning weights (probabilities) to each
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event, as is done in standard probability theory. In [9], Rushby noted that the
interpretation of assurance cases could be “inductive,” i.e., the conjunction of
sub-claims strongly suggests that the claim is true, or it could be “deductive,”
i.e., the conjunction implies (or entails or proves) the claim, and he emphasized
that for evaluating assurance cases, the inductive nature of assurance cases must
be considered.

The method proposed in this paper is based on an abstract algebra and a
partial order; thus, it is purely qualitative. We do not regard the qualitative
nature of our method as a drawback, because the reasoning of assurance cases
is inherently qualitative: assurance cases are written in natural language (even
using graphical notations) and thus exhibit a qualitative nature. Our method
provides a rigorous theoretical foundation for the qualitative evaluation of assur-
ance cases. Furthermore, it can be regarded as an abstraction of other methods.
In Sect. 5, we show that all evaluation methods based on probability are special
cases of our method if they obey the axioms of probability and certain weak
conditions.

3 Goal Structuring Notation (GSN)

GSN is a graphical notation for representing an informal argument. The argu-
ment is constructed in a top-down manner, in which a “goal,” i.e., a final claim,
is gradually elaborated as sub-goals and directly verifiable evidence.

Fig. 1. GSN components

A GSN diagram is constructed with the following types of nodes. A goal is
a claim to be demonstrated. A strategy is a method for deriving a goal, which
decomposes the goal into several sub-goals (premises). A (sub-)goal may be
demonstrated by direct evidence (solution). A context indicates an environment
that specifies how a goal is interpreted. An assumption and a justification are



Algebraic Approach for Confidence Evaluation of Assurance Cases 321

underlying reasons why a strategy is correct and taken for granted. We use the
notation �, which indicates an “undeveloped” argument, i.e., an argument that
is not completed.

To facilitate the formal analysis, we introduce a term notation for GSN dia-
grams. In the definition, we omit the context and assumption nodes for simplicity
of presentation.

Definition 1 (Term notations for GSN diagrams D, modified from [8]).

D ::= 〈g, �〉 (1)
| 〈g, e〉 (2)
| 〈g,OR, (D1, . . . , Dn)〉 (3)
| 〈g, st, (D1, . . . , Dn)〉 (4)

〈g, �〉 is an undeveloped argument, and 〈g, e〉 is an argument directly derived
from an evidence e. 〈g,OR, (D1, . . . , Dn)〉 is a multi-legged argument, in which
the same conclusion is obtained using different diagrams D1, . . . , Dn. We discuss
multi-legged arguments in Sect. 6. 〈g, st, (D1, . . . , Dn)〉 is an argument derived
from D1, . . . , Dn using a strategy st.

4 Truthmaker Semantics and Confidence

4.1 Truthmakers

Classical logic assumes the principle of bivalence: the statement either holds or
not, and there is no middle ground. However, the goals of GSN may not be
interpreted to have just two truth values because we may not have sufficient
information to determine the truth values. To interpret the goals of GSN, we
adopt a radically different approach called truthmaker semantics [5], which has
recently been developed in the field of logic.

Truthmaker semantics assumes that the world consists of objects called truth-
makers that make a statement true. For example, the truthmaker of the state-
ment “New York is rainy” is the rain in New York.

Truthmakers have a mereological structure [11], which represents a part-
whole relation between two truthmakers. For example, the rain in New York is
a part of the rain and wind in New York. The part-whole relation between the
truthmakers forms an order relation. Further, we may amalgamate two truth-
makers, say, the rain in New York and the wind in New York. The amalgamation
of two truthmakers is represented by a binary operation ⊕.

Depending on their mereological structure, truthmakers obey different sets
of axioms. In this study, we employ a small set of axioms to interpret a wide
variety of confidence evaluations. Let S (a state-space) be a set of truthmakers
that we consider.

Definition 2. Let S be a state space. Then, S has the element 0, the binary
operator ⊕, and the order relation � such that
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1. (Unit) 0 ⊕ s = s ⊕ 0 = s.
2. (Commutativity) s1 ⊕ s2 = s2 ⊕ s1, s1, s2 ∈ S.
3. (Mereological order) s1 � s2 ⇐⇒ ∃s3 ∈ S, s1 ⊕ s3 = s2.
4. (Common part) there is a minimum s1 � s2 for s1, s2 ∈ S.
We often call truthmakers states, because truthmakers represent “the state of
affairs” in the world.

There is a natural model of axioms in Definition 2 as sets of evidence. Let E
be a set (of evidence).

Proposition 1 (Semantics of evidence). Let S be the power set of E. Let 0
be the empty set ∅, ⊕ be the set-theoretic union ∪, � be the inclusion ⊆, and �
be the intersection ∩. Then, S satisfies the axioms in Definition 2.

Proof. (Axiom 1.) ∅∪ s = s∪∅ = s. (Axiom 2.) s1 ∪ s2 = s2 ∪ s1. (Axiom 3.) Let
s2\s1 be the set subtraction s2 ∩ sc

1. Then, s1 ∪ (s2\s1) = s2. (Axiom 4.) s1 ∩ s2
is the minimum of s1 and s2 with respect to the order ⊆.

In particular, the axioms of Definition 2 are consistent, because they have a
model.

4.2 Frame, Interpretation, and Confidence

A frame determines how a GSN diagram is interpreted as an inference on truth-
makers (in the state space S). First, we define when two states are orthogonal.

Definition 3. Two states s1 and s2 are orthogonal if s1 �� s2 and s2 �� s1. If
all the elements of S are mutually orthogonal, S is said to be orthogonal as well.

Let the set of evidence E ⊆ S be orthogonal. Note that E is different from E in
Proposition 1

Definition 4. A tuple 〈S, E , st〉 is called a frame.

– S is a state space.
– E ⊆ S is the set of evidence.
– st is a set of strategies, which are monotone functions from S to S.
We assume the following properties.

1. For any evidence e, strategy st, and state s, e � st(s) only when e � s.
2. st contains a special strategy id called the identity strategy. id is the identity

function on the state space S.
Independence of evidence means that all the evidence must be independently

verified. We use this property to show that having multiple evidence increases
confidence. Property 1 states that no strategy can infer the evidence unless that
evidence is already verified.

Using a frame, we interpret a GSN diagram and its validity.
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Definition 5 (Interpretation of a GSN diagram). We assume that a goal
g is an element of S such that g �= 0 and evidence e is an element of E.

[[〈g, �〉]]ρ := 0 (5)
[[〈g, e〉]]ρ := e ∈ E (6)

[[〈g,OR, (D1, . . . , Dn)〉]] := [[D1]] � · · · � [[Dn]] (7)
[[〈g, st, (D1, . . . , Dn)〉]] := st([[D1]] ⊕ · · · ⊕ [[Dn]]) (8)

Definition 6 (Validity of a GSN diagram). Let D be a diagram. For a state
s ∈ S, we say that D justifies s whenever s � [[D]]. D is valid if the goal g of D
is justified by D.

The distinction between inductive and deductive inferences [9] can be defined
as follows.

Definition 7 (Inductive and deductive strategies). If a strategy st ∈ st
satisfies st(s) � s for all s ∈ S, st is said to be inductive. If st ∈ st satisfies
st(s) � s for all s ∈ S, st is said to be deductive.

Definition 8. Confidence C is any partial order. Confidence evaluation θ is a
mapping from S to C such that for any s1, s2 ∈ S, if s1 � s2, then θ(s2) ≤ θ(s1).
If, for any s1 � s2, θ(s2) < θ(s1) holds, then θ is said to be strict.

If s1 � s2, s2 has less confidence because it states more details about the
state of the world compared to s1.

Theorem 1. If D is a valid GSN diagram and g is a goal of D, then θ(g) ≥
θ([[D]]).

Proof. Since g � [[D]].

5 Relation to Probabilistic Evaluation

Probability is widely used for the confidence evaluation of GSN diagrams [3,4,
6,13,14]. Although different methods and assumptions have been used to assign
probability in the literature, they all satisfy the axioms of probability.

In this section, we show that our axioms are satisfied with any probabilis-
tic evaluation with natural assumptions. Therefore, our axioms can be used to
analyze the properties that hold for any probabilistic evaluation.

Theorem 2. Let 〈Ω,F , P 〉 be a probability space, where Ω is the set of all sam-
ples, F the set of all possible samples and P a probability measure on them. Then,
F can be regarded as a state space by X � Y ⇐⇒ X ⊇ Y , X ⊕ Y := X ∩ Y
0 := Ω.

Proof. We check only axiom 3 in Definition 2. If X � Y , then X ⊇ Y . Then,
X ⊕Y = X ∩Y = Y . Conversely, if X ∩Z = Y , then Y ⊆ X. Therefore, X � Y .
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Theorem 3. A probability measure P : F → [0, 1] is a confidence evaluation.
If, for non-empty X, P (X) > 0 holds, then P is a strict confidence evaluation.

Proof. If X � Y , then X ⊇ Y . Therefore, P (X) ≥ P (Y ). Further, if X � Y ,
then X ⊃ Y . Therefore, there is a non-empty set Z such that Y ∪ Z = X and
Y ∩ Z = ∅. By the axiom of probability, P (Y ) + P (Z) = P (X). If P (Z) > 0,
then P (Y ) < P (X).

We say that P is strict if, for any non-empty X, P (X) > 0.

Theorem 4. Let E1, . . . , En be independent (in the sense of probability theory)
events that are not equal to Ω. If P is strict, then E = {E1, . . . , En} forms a set
of evidence.

Proof. Let A\B = A ∩ Bc be a set subtraction. First, note that P (Ei) �= 1
because Ω\Ei is non-empty. Assume that E1 � E2. Then, E1 ⊇ E2 holds. There-
fore, P (E1 ∩ E2) = P (E2) �= P (E1)P (E2) because P (E2) �= 1. This contradicts
the independence of E1 and E2.

Theorem 5. Let st be a set of monotone functions over 2Ω such that st ∈ st
satisfies X ⊇ st(X) and P (st(X) | E) ≤ P (X | E) for any evidence E. Then,
〈Ω, E , st〉 is a frame.

Proof. We only need to prove that E � st(X) only when E ⊆ X. Assume that
E � st(X). Then, P (st(X) | E) = 1 because E ⊇ st(X). Because P (st(X) |
E) ≤ P (X | E) = 1, E � X.

6 Multi-legged Argument

Bloomfield et al. [3] argued that multi-legged arguments can increase confidence.
In this section, we present a sufficient condition for multi-legged arguments to
increase confidence.

A multi-legged argument can be written using the OR construct, as shown
in Fig. 2.

Theorem 6. If [[D1]] and [[D2]] are independent and a confidence evaluation θ
is strict, having a multi-legged argument increases confidence.

Proof.
θ([[D]]) = θ([[D1]] � [[D2]]) > θ([[D1]]), θ([[D2]]) (9)

because [[D1]] � [[D2]] � [[D1]], [[D2]].

The next theorem gives sufficient conditions of D1 and D2, which makes
Theorem 6 hold.

Theorem 7. Suppose that the following conditions hold:

– D1 and D2 contain only inductive inferences.
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Fig. 2. Multi-legged argument D

– For set E(D1) of the evidence of D1 and E(D2) of the evidence of D2, neither
E(D1) ⊆ E(D2) nor E(D2) ⊆ E(D1) holds.

– D1 and D2 do not use a multi-legged argument.

Then, the multi-legged argument using D1 and D2 increases confidence.

Proof. There is evidence that e �∈ E(D1) whereas e �∈ E(D2). By induction on
D1, e1 � [[D1]]. Here, we use the fact that D1 has no multi-legged argument.
If D1 has a multi-legged argument, e � [[D1]] may not hold. By property 1
of Definition 4, we can show that e �� [[D2]] by induction on D2. Therefore,
[[D1]] �� [[D2]]. By a similar argument, [[D2]] �� [[D1]]. Therefore, [[D1]] and [[D2]]
are independent. By Theorem 6, we obtain the conclusion of the theorem.

7 Concrete Example

In this section, we analyze a part of the concrete GSN diagram shown in Fig. 3,
which argues the correctness of a computer simulation of a biological process,
namely lymphoid tissue formation. Using our framework, we can clarify the
nature of arguments and suggest further improvement.

Figure 3 shows the argument for claim 1.1.4: “simulation captures cell aggre-
gation emergent behavior at 72 h.” Claim 1.1.4 is derived from three strategies;
thus, we can regard the argument as a multi-legged argument. As discussed in
Sect. 6, if each argument is based on different sets of evidence, contains only
inductive strategies, and does not contain another multi-legged argument, then
a multi-legged argument improves confidence.

However, claim 1.1.4.3.1 in Fig. 3 uses the opinions of domain experts as the
only evidence. Because claim 1.1.4.1.1 also uses the opinions of domain experts,
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snapshots verified
by domain experts

calibration results
(evidence: [15])

experiments
replicated in [15],
fig. 5

simulation has been calibrated
to produce a representative
number of PP

1. Calibration is based
on setting the number of
stromal cells (LTo)
that can express RET
ligand (and thus mediate
PP development)

claim 1.1.4.1.1:

simulation captures cell aggregation
emergent behaviour at 72 h

claim 1.1.4:

comparison can be drawn
between PP generated
in silico and those in vivosnapshots verified

by domain experts

claim 1.1.4.3.1:

representative: similar to that
observed in six mice, as shown
in [15]

definitions

assumptions:

1. There are no quantitative data
available on which simulation PP
size can be compared to in vivo
patch sizes. Thus patches are
identified by eye by collaborating
experimental immunologists
2. An analysis of the patches
identified by eye has been used
as a basis for what a patch is,
and from this a lower two-dimensional
area limit estimated. From this an
automated method of detecting
patches has been developed

justifications:

argue that a representative
number of PP are formed at
the end of 72 h period

strategy 1.1.4.1:
argue over the simulation’s ability
to reproduce previously published
experimental results

strategy 1.1.4.2:

argue that the simulation captures
spatial characteristics of PP

strategy 1.1.4.3:

simulation reproduces experimental
results showing patch formation
under different conditions in
[31,39,41,42]

claim 1.1.4.2.1:

Fig. 3. GSN used for justification of a biological simulation (claim 1.1.4) [1] (Licensed
under the Creative Commons Attribution 4.0 International License)

the evidence used in claim 1.1.4.3.1 might be contained in that of claim 1.1.4.1.1,
which violates the condition presented in Sect. 6. Therefore, the multi-legged
argument based on claims 1.1.4.1.1 and 1.1.4.3.1 may not increase the confidence
of claim 1.1.4. An explicit description of the opinion of domain experts would
increase the confidence of the argument by differentiating the evidence used by
claims 1.1.4.1.1 and 1.1.4.3.1.

8 Conclusion and Future Work

This paper presented a framework for interpreting and evaluating assurance
cases in an abstract manner. Unlike numerical evaluation methods, our method
is purely qualitative, which we consider an advantage because the reasoning
of assurance cases is inherently qualitative. We demonstrated that our method
can provide a rigorous theoretical foundation for the qualitative evaluation of
assurance cases, using multi-legged arguments (Sect. 6) and a concrete case study
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(Sect. 7) as examples. Furthermore, we showed that probabilistic evaluations are
special cases of our method in Sect. 5.

In the future, we plan to investigate additional axioms to realize a finer
confidence evaluation. Further, we plan to investigate the relation of our method
to other methods, especially the Dempster–Shafer theory.
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Abstract. Space embedded operating system is a typical safety-critical system.
Due to the harsh environment outside the space, its system resources are very
limited. Memory is a basic resource for system program operation. Therefore,
effective memory management is a very important module. In the early space
embedded system, the program is simple to run. At the same time, in order to
ensure the certainty of system operation, static memory management methods are
mostly used, which leads to the system not being flexible enough and the
memory usage rate is relatively low. Therefore, it is necessary to use dynamic
memory management to manage memory, but the uncertainty of its execution
makes it less used in embedded systems. This paper uses formal verification to
prove a dynamic memory algorithm implemented in a space embedded system
Management—the correctness of the TLSF algorithm.

Keywords: Memory management � TLSF algorithm � Formal verification

1 Background

The TLSF algorithm [1] adopts the principle of better matching, combining the two
mechanisms of packet free linked list and bitmap matching to quickly locate the
appropriate memory block. Because its execution time is O(1) level of order of
magnitude, it has been widely used in the resource-constrained embedded field.
However, for a safety-critical system, safety and reliability are the most critical
considerations. At present, there are many verification works [2, 3] for the TLSF
algorithm, but there is no verification work designed for requirements. If the design of
an algorithm starting from the wrong requirements, then even if the code is
implemented correctly, problems will occur at a certain moment. Therefore, this paper
prove the requirements of the memory management module is correct, which is apply
algorithm of TLSF in the space embedded system.

The allocation and de-allocation of memory in the TLSF algorithm is based on
area-based memory allocation and recovery. Each allocated object is a continuous area
in memory, and the memory is recovered by destroying the area and releasing all
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objects in it. This continuous memory area is also called a memory block. The block
header of the memory block fully contains the information of the memory block.
Considering the related operations of memory allocation, a memory block is
represented by the following five-tuple: mb, hbst; bad; bsi; pbl; fbli. Bst refers to the
state of the memory block, bad refers to the start address of the memory block, bsi
refers to the size of the memory block, pbl refers to the physical previous memory
block of the memory block, and fbl refers to the adjacent block of relative value on the
free block list.

The TLSF algorithm uses a 32-bit bitmap to quickly determine the range of the
memory block size to be found, and then uses the corresponding memory block list to
quickly find the memory block that meets the requirements. Given the size of a required
memory block, the algorithm quickly locates a memory block list through a two-level
32-bit bitmap, and then returns the first memory block of the memory block list to the
application for use. The index structure of a TLSF algorithm uses the quadruple
S, hbBS; fl; sl;BLi, where bBS is the size of the largest block in memory, BL is the list
of free memory blocks, fl and sl are the secondary positioning of the system 32-level
bitmap. The fl is a 32-bit number, and the sl is an array composed of multiple 32-bit
numbers.

Therefore, after executing any function of the memory management module, the
memory index structure S can be used to represent all the free memory of the system at
this time. Based on this observation, the function of the memory management module
can be abstracted as a change to S. This article verify an implemented of TLSF
algorithm to prove its correctness.

2 Verification
The two main functions of the memory management algorithm are allocation and
release. Allocation refers to the allocation of appropriate memory blocks to the
application program according to the requirements of the application program. Release
refers to free the memory block used by the application program which has been used
up, and the block will be used for other applications. This section takes the allocation
and release functions of the TLSF algorithm as examples to prove the correctness of its
function design.

2.1 Global Nature
The operation of memory management behavior for memory blocks should satisfy the
following properties:

– inv1: The memory block whose status is occupied cannot be reallocated.
– inv2: The memory block that is free cannot be released.
– inv3: Any two adjacent memory blocks cannot overlap.
– inv4: There is at least one non-free block between two free blocks.
– inv5: There is no adjacent free blocks.
– inv6: If there is a continuous address space of N bytes in the memory area, any
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allocation request with a memory size of less than or equal to N bytes can be
satisfied.

– inv7: The difference between the memory block allocated to the application and the
memory size required by the application will not exceed a certain fixed value.

– inv8: Any memory space that has been freed can be allocated.
– inv9: The size of the smallest free block of memory is greater than or equal to a
certain fixed value.

– inv10: Any allocated memory space can be released.

The above properties must be met during the implementation of the memory
management TLSF algorithm. One of the memory blocks b directly represents its
memory block address, sta(b) represents the state of the memory block, and size(b)
refers to the size of the memory block. M refers to the size of the smallest memory
block allowed by the system, alloc(s) and free(b) represent the memory block of the
allocated size s and the released memory block b, and right(b) refers to the next
memory of the physical memory. Block, left(b) refers to the previous memory block of
b in physical memory.

The above properties must be met during the implementation of the memory
management TLSF algorithm. One of the memory blocks b directly represents its
memory block address, sta(b) represents the state of the memory block, and size(b)
refers to the size of the memory block. M refers to the size of the smallest memory
block allowed by the system, alloc(s) and free(b) represent the memory block of the
allocated size s and the released memory block b, and right(b) refers to the next
memory of the physical memory. Block, left(b) refers to the previous memory block of
b in physical memory.

2.2 The Function of Allocate
In the process of allocating memory, in addition to satisfying the global properties of
Sect. 3.1, there are also some local properties that need to be satisfied.

Among them, updateGe means that the size after the update process must be greater
than the original size. In the search process, checkFL refers to the property that the
value of the secondary index calculated according to the application program satisfies,
and slGrow and flGrow refer to the calculation according to the application program
After the secondary index has no suitable free blocks, it is the property that is satisfied
when searching for free blocks in a higher range. blsize and bl2nil refer to the local
properties that the size of the free block list satisfies in the process remove.
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2.3 The Function of Release
In the process of releasing the memory block, in addition to satisfying the global
properties of Sect. 3.1, there are also some local properties that need to be satisfied.

Among them, noFreeAdB means that after the memory block b is merged, the
memory before and after the new memory block b’must be occupied. InBblsize and
nil2bl, after inserting a free memory block in a free memory block list, the number of
nodes in the free memory block list is increased by 1.

3 Conclusion and Future Work

Each function of the memory management module is verified at the design layer. While
satisfying the global properties of the memory management module proposed in
Sect. 3.1, it also satisfies the local properties of some functions. All verification work is
performed in the interactive theorem proving tool Coq.

Aiming at the key embedded operating system, this paper proposes a three-layer
verification and development framework for requirements, design, and code based on
the actual needs of the space field. Future considerations This verification development
framework will be more widely promoted and applied to the development of systems in
other critical areas, and related verification strategies will be abstracted, and the
common parts of verification will be extracted and encapsulated as a verification
framework to facilitate verification in other fields.
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