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Abstract. We study an isomorphism between the group of rigid body
displacements and the group of dual quaternions modulo the dual num-
ber multiplicative group from the viewpoint of differential geometry in a
projective space over the dual numbers. Some seemingly weird phenom-
ena in this space have lucid kinematic interpretations. An example is
the existence of non-straight curves with a continuum of osculating tan-
gents which correspond to motions in a cylinder group with osculating
vertical Darboux motions. We also look at the set of osculating conics of
a curve in projective space, suggest geometrically meaningful examples
and briefly discuss and illustrate their corresponding motions.

1 Introduction

The eight-dimensional real algebra DH of dual quaternions provides a well-known
model for the group SE(3) of rigid body displacements. Dual quaternions with
non-zero real norm represent elements of SE(3) and are uniquely determined
up to real scalar multiplies. In the projectivization P(DH) ∼= P

7(R) they cor-
respond to points of the Study quadric S minus an exceptional subspace E of
dimension three.

The Study quadric model provides a rich geometric and algebraic environ-
ment for investigating questions of space kinematics. However, its “curved”
nature poses serious problems in numerous applications. One way of getting
around this is to consider dual quaternions modulo multiplication by dual num-
bers instead of just real numbers. The locus of the ensuing geometry is then not
the set S \E ⊂ P

7(R) but the projective space P
3(D) of dimension three over the

dual numbers (minus a low dimensional subset.) It provides now a linear model
of space kinematics which is certainly a big advantage. However, it also comes
with some rather counter-intuitive properties: The connecting straight line of
two points is no longer unique and there exist curves with an osculating tangent
in any of their points.

What seems rather strange from a traditional geometric viewpoint becomes
much more natural in a kinematic interpretation where straight lines in P

3(D)
correspond to vertical Darboux motions. Two poses may be interpolated by
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an infinity of vertical Darboux motions [5] and motions in cylinder groups, for
example helical motions, admit osculating Darboux motions at any instance. We
demonstrate and illustrate this in Sect. 3.

In Sect. 4 we present some preliminary results on osculating conics/motions.
Generically, there exists a four dimensional set of osculating conics in every curve
point. Among them we find the well-known Bennett motions but we also suggest
another type of osculating conic with geometric significance. Its construction is
based on the construction of osculating circles in elliptic geometry.

2 Preliminaries

A dual number is an element of the factor ring D := R[ε]/〈ε2〉. It is uniquely
represented by a linear polynomial a+εb in the indeterminate ε with coefficients
a, b ∈ R. Sum and product of two dual numbers as implied by this definition are

(a + εb) + (c + εd) = a + c + ε(b + d), (a + εb)(c + εd) = ac + ε(ad + bc).

Multiplication obeys the rule ε2 = 0. The multiplicative inverse of a + εb exists
if a �= 0 and is then given by (a + εb)−1 = a−1 − εba−2. We denote the set of
invertible dual numbers by D

×.

2.1 Projective Geometry over Dual Numbers

Similar to the common projective geometry over the real or complex numbers, we
can study projective geometry over the dual numbers. We focus on the projective
space P

3(D) of dimension three over the dual numbers as this will be the relevant
case for doing rigid body kinematics. The elements of P

3(D) are equivalence
classes of elements of D

4\{0} where two vectors x and y are considered equivalent
if there exists an invertible dual number a+εb such that (a+εb)x = y. We denote
equivalence classes by square brackets as [x] where x ∈ D

4 or as [x0, x1, x2, x3]
where x0, x1, x2, x3 ∈ D.

In spite of its formal similarity with P
3(R) or P

3(C), the space P
3(D) exhibits

some rather unusual properties. Let us consider the connecting straight line of
two points [a] and [b]. Already for its definition we have two choices. It can be
considered as point set

{[αa + βb] | (α, β) ∈ F
2, (α, β) �= (0, 0)} (1)

where F = R or F = D, respectively. We will reserve the word straight line for
the case F = R. There are two reasons for this preference: Firstly, it seems to be
the common notion in projective geometry over rings. Secondly, a straight line
in this sense has real dimension one (while it has real dimension two otherwise).
With regard to kinematics, this means that a straight line describes a more
common one-parametric motion.

A first, possibly surprising, geometric property of P
3(D) refers to the connect-

ing straight lines of two points. In contrast to geometry over the real numbers,
it is no longer unique.
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Proposition 1. Any two different points [c] and [d] ∈ P
3(D) with invertible c

and d have infinitely many connecting straight lines. The real dimension of the
set of all connecting straight lines is two.

Proof. We may parameterize any straight line connecting the given points by
(1) where a = γc, b = δd and γ, δ ∈ D

×. This gives four real parameters—
the coefficients of γ and δ. But multiplying c and d simultaneously with the
same invertible dual number yields identical lines. Thus, only two essential real
parameters remain. �	

2.2 Space Kinematics

A quaternion is an element of the algebra H generated by basis elements 1, i, j,
k with generating relations i2 = j2 = k2 = ijk = −1 over the real numbers. A
dual quaternion q is an element of the algebra DH with the same basis elements
and generating relations but over the dual numbers. Thus, we may write q =
q0 + q1i+ q2j+ q3k with q0, q1, q2, q3 ∈ D or, separating primal and dual parts,
q = p + εd where p = p0 + p1i + p2j + p3k and d = d0 + d1i + d2j + d3k are
elements of H.

The conjugate dual quaternion is q� = q0−q1i−q2j−q3k = p�+εd�, the dual
quaternion norm is qq�. In terms of (coefficients of) p and d it may be written
as qq� = pp� + ε(pd� + dp�) = p20 + p21 + p22 + p23 + 2ε(p0d0 + p1d1 + p2d2 + p3d3).
It is thus a dual number. The unit norm conditions reads as

pp� = 1, pd� + dp� = 0.

Because the norm is multiplicative, the unit dual quaternions form a multiplica-
tive group DH

×
0 . We embed R

3 into DH via (x1, x2, x3) ↪→ 1+ε(x1i+x2j+x3k)
and define the action of q = p + εd ∈ DH

×
0 on points of R

3 via

1 + ε(x1i + x2j + x3k) �→ 1 + ε(y1i + y2j + y3k) = (p − εd)x(p� + εd�). (2)

This action provides us with an isomorphism between the groups DH
×
0

and SE(3), the group of rigid body displacements.
A slight modification of (2) extends the action to points [x0, x1, x2, x3] in the

projective extension P
3(R) of R

3:

[x0 + ε(x1i+x2j+x3k)] �→ [y0 + ε(y1i+ y2j+ y3k)] = [(p− εd)x(p� + εd�)]. (3)

This gives an isomorphism between the dual quaternions of non-zero real norm
modulo R

×, the real multiplicative group, and SE(3). The unit norm condition
of (2) is replaced by the condition that the norm of q be real but non-zero:

pd� + dp� = 0, pp� �= 0. (4)

This means that [q] = [p + εd] is a point of the quadric given by the quadratic
form pd� + dp�—the so-called Study quadric S—minus the null cone N given
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by the singular quadratic form pp�. The only real points of N are those of its
three-dimensional vertex space E. We call it the exceptional generator.

A crucial observation for this article is that even the real norm requirement
(4) can be abandoned: As long as qq� is invertible, (3) will describe a valid
action on P

3(R) and provide a homomorphism from the group DH
× of invertible

dual quaternions modulo R
× to SE(3) or even isomorphism between DH

×/D
×

and SE(3).

Proposition 2. The groups DH
×/D

× and SE(3) are isomorphic via the
action (3).

Proof. It is easy to see that DH
× is homomorphic to SE(3) via (3). In order to

see that DH
×/D

× is isomorphic, we have to show that dual multiples yield the
same action and that identical action implies a dual factor.

Using the notation qε := p−εd for the ε-conjugate of q = p+εd we can write
the right-hand side of (3) as qεxq�. Multiplying q with a dual number a yields
(aq)εxaq� = aεqεxaq� = (aεa)qεxq�. Because aεa equals the primal part of a
squared, this does not change the action on P

3(R). Existence of a dual factor
from identical action follows from equal dimension of DH

×/D
× and SE(3) and

the fact that these groups have only one connected component.

Since all elements of DH
×/D

× are points of P
3(D), it is natural to study

space kinematics via the projective geometry of P
3(D). This point of view is not

new. It played a role in [2] or [3]. From an old paper by C. Segre [6] we even infer
that probably already E. Study and his disciples were aware of these connections
in the first decades of the 20th century.

2.3 Straight Lines

Via the action (3), a curve in P
3(D) corresponds to a one-parametric rigid body

motion. In particular, polynomial curves yield motions with polynomial trajecto-
ries in homogeneous coordinates, that is, rational motions. The simplest example
of such motions comes from straight lines in P

3(D) which correspond to verti-
cal Darboux motions [3,4]. A vertical Darboux motion is the composition of a
unit speed rotation about a fixed axis with a harmonic oscillation along the axis
such that one full rotation corresponds to one oscillation period. Its trajectories
are bounded rational curves of degree two (ellipses). Rotations and translations
are considered as special cases of vertical Darboux motions with zero or infinite
oscillation amplitude, respectively.

We illustrate a vertical Darboux motion in Fig. 1. This figure also helps us
explain a generally useful concept: Motions obtained as composition of rotation
around an axis and translation along the same axis have trajectories on a right
circular cylinder. Any curve γ on such a cylinder can be used to completely
specify the motion by adding a Cartesian frame consisting of cylinder normal,
cylinder generator and horizontal cylinder tangent. Instead of the curve on the
cylinder, we may equally well consider its image when developing the cylinder
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Fig. 1. Vertical Darboux motion with some elliptic trajectories, right circular cylinder,
and development

surface. In case of a vertical Darboux motion, γ is an ellipse. Its development
is a suitable positioned sine curve which is scaled in direction of the developed
cylinder generators in order to adapt to the oscillation’s amplitude.

3 Osculating Lines

In this section we demonstrate that a helical motion and a vertical Darboux
motion can have second order contact at any parameter value. Since vertical
Darboux motions correspond to straight lines in P

3(D) this amounts to saying
that a curve corresponding to a helical motions has an osculating tangent at any
point. This is a remarkable difference to classical differential geometry over the
real numbers where this property characterizes straight lines.

A rotation about axis k with rotation angle ω is given by the dual quaternion
r = cos ω

2 + sin ω
2 k, a translation with oriented distance δ in direction of k is

given by t = 1 − 1
2εδk. Thus, a helical motion h with pitch p and a Darboux

motion d are obtained by substituting pω and p sin ω, respectively, for δ in the
product rt:

h = cos
(

ω
2

)
+ sin

(
ω
2

)
k +

p

2
ωε(sin

(
ω
2

) − cos
(

ω
2

)
k),

d = cos
(

ω
2

)
+ sin

(
ω
2

)
k +

p

2
sinωε(sin

(
ω
2

) − cos
(

ω
2

)
k)

(5)

With this, we compute

dh

dω
(0) =

dd

dω
(0) =

1
2
k − 1

2
pεk and

d2h

dω2
(0) =

d2d

dω2
(0) = −1

4
+

1
2
pε,
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P

Fig. 2. Geometric interpretation of osculating lines

while
d3h

dω3
(0) = −1

8
k +

3
8
pεk �= −1

8
k +

7
8
pεk =

d3d

dω3
(0).

Thus, the motions (5) have second order contact at ω = 0. Since this parameter
value has no particular meaning for a helical motion, we may state that for any
instance of a helical motion there exists a vertical Darboux motion with second
order contact.

Let us also verify that d is actually a straight line in P
3(D) by multiplying

its parametric representation (5) with a suitable dual number valued function.
Indeed, we have

(1 + pε cos2
(

ω
2

)
)d = cos

(
ω
2

)
(1 + pε) + sin

(
ω
2

)
k

which is a parametric representation of the straight line spanned by 1 + pε and
k. Summarizing, we can thus state

Theorem 1. At any instance in time any helical motion, viewed as a curve in
kinematic space P

3(D), has second order contact with a straight line. Yet, it is
not a straight line itself.

This seemingly strange behavior allows a clear geometric interpretation that
also gives additional insight. Figure 2 displays helical motion and osculating Dar-
boux motion via the cylinder model we discussed earlier. In the development,
the helical motion corresponds to a straight line while the Darboux motion is a
sine curve with this line as inflection tangent. Obviously, it is possible to deter-
mine uniquely a suitable sine function in every point. It gives rise to the unique
osculating vertical Darboux motion in a point of the helical motion.



Space Kinematics and Projective Differential Geometry 21

Helical motions are not the only curves in P
3(D) susceptible to second order

approximation by straight lines in every point. An arbitrary motion in the cylin-
der group C corresponds to a curve in the development. There, an osculating
sine function can be drawn in any sufficiently smooth point and gives rise to an
osculating vertical Darboux motion. The possibility to do so is a direct conse-
quence of the following lemma: Among all candidate sine functions there exist
one with prescribed slope and curvature.

Lemma 1. Given two real numbers k, κ ∈ R, there exists a ∈ R such that some
point on the graph of the function ϕ �→ a sin ϕ has slope k and curvature κ.

Proof. The subgraphs corresponding to parameter intervals [iπ
2 , (i + 1)π

2 ] for
i ∈ {0, 1, 2, 3} are congruent and, up to respective signs, have points of equal
slope and curvature. Thus, we may restrict to the case i = 0, k ≥ 0, κ ≤ 0 and
search for a > 0. Slope and curvature are given by

k = a cos ϕ and κ = − a sin ϕ

(1 + a2 cos2 ϕ)3/4

Because of ϕ ∈ [0, π
2 ] we may substitute c for cos ϕ and

√
1 − c2 for sin ϕ. With

this, a = k/c and the formula for κ reduces to an even quartic equation for a
with discriminant 4κ

4(1+k2)3 ≥ 0. Thus, solutions for a in R do exist. Because
of our assumptions on ϕ, k and κ, it must necessarily be positive. �	
Corollary 1. Any sufficiently smooth motion in the group generated by all rota-
tions around a fixed axis and all translations in direction of this axis has an
osculating Darboux motion in any of its points (at any instance).

4 Osculating Conics

We now turn our attention to conic sections in P
3(D). We study them as rational

curves of degree two. A parametric representation is simply a polynomial C of
degree two in one indeterminate t that serves as a real parameter. We assume
that C has no scalar polynomial factor of positive degree, as otherwise it would be
a linear parametric representation in disguise, and also that the coefficients are
independent, as otherwise it would be a quadratic parametrization of a straight
line. A conic parameterizes a rational motion with trajectories of degree at most
four.

In line with the general philosophy we should consider a polynomial C up to
multiplication with a dual number valued function but in the context of this arti-
cle it is be sufficient to consider only dual number multiples, that is, polynomial
representations of minimal degree. In projective differential geometry over the
real numbers, a generic smooth space curve admits a two parametric set of oscu-
lating conics in a generic point. In projective geometry over the dual numbers,
a further degree of freedom is added:
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For the case of interpolating conics for three finitely separated points [c0], [c1],
[c2] ∈ P

3(D), this is easy to see. An interpolating conic may be parameterized
as [c(t)] where

c(t) = c0 + (c1 − c0 − c2)t + c2t
2.

The points [c0], [c1], [c2] correspond to parameter values t = 0, t = 1, and
t = ∞, respectively. Obviously, different dual number multiples of c0, c1 and c2
yield different conics, unless the dual factor is the same for all three points. We
may use this freedom to have the dual factor 1 for c1 whence a general parametric
representation for interpolating conics can be written as

c(t) = γ0c0 + (c1 − γ0c0 − γ2c2)t + γ2c2t
2 (6)

where γ0 and γ2 are invertible dual numbers.
In view of Sect. 3 it is natural to ask for space curves that admit a conic with

even higher order contact in every point. We will not pursue this question any
further at this place. Instead, we present two examples of osculating conics in
this set with a special meaning for space kinematics.

4.1 Bennett Motions

The Bennett motion is a well-known example of a quartic space motion whose
kinematic image in the “classical” sense is a conic section on the Study quadric
S and which is determined by three general finitely separated or infinitesimally
neighboring points in the Study quadric. In fact, we may simply define it as
a regular conic in the Study quadric that does not intersect the exceptional
generator E. In our context, we can re-derive the motion from the following
observation:

Lemma 2. Given an invertible dual quaternion p there exists an invertible dual
number a such that ap has real norm. The dual number a is determined up to a
real multiple.

Proof. Write p = p′ + εp′′ and a = a′ + εa′′ with quaternions p′, p′′ and real
numbers a′, a′′. The dual part of the norm of ap then reads as a′2(p′p′′� +
p′′p′�) + 2a′a′′p′p′�. Both, p′p′′� + p′′p′� and p′p′� are real numbers and the
latter is different from zero (because p is invertible). We divide by a′ (because
we want to find an invertible dual number a) so that ultimately a = a′ + εa′′

is determined, up to a real multiple, by one non-vanishing homegeneous linear
equation. A solution with a′ = 0 is not possible because p is invertible whence
p′p′� �= 0. �	

Returning to (6), we may assume [c0], [c1], [c2] ∈ S as otherwise we can mul-
tiply with suitable dual numbers by Lemma2. Now we are still free to multiply
c0, c1, and c2 with real numbers and it is well-known (c. f. for example [1]) that
this freedom is enough to ensure that [c(t)] lies on the Study quadric S.

Bennett motions are rational motions with entirely circular trajectories of
degree four. They appear as coupler motions of Bennett linkages, that is, spatial
four-bar linkages with exceptional mobility [1]. An example can be found later
in Fig. 4.
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Fig. 3. Circles through three points (left and middle) and osculating circle in elliptic
geometry (right)

4.2 Motions Based on Osculating Circles of Elliptic Geometry

An important object for the kinematic geometry in P
3(D) is the null cone N .

It consists of points represented by non-invertible dual quaternions—a property
that does not change under coordinate changes and thus makes N a geometric
invariant. With this in mind, it is thus natural to look for osculating conics in
special position with respect to N . For a general parametric representation of
the shape (6) it is possible to determine the dual factors γ0, γ2 ∈ D in such a way
that the conic parameterized by [c(t)] is tangent to N in two points. In fact, if
we only consider real factors, this amounts to determining a circle through three
points in the real elliptic plane with absolute conic N ∩ ϕ where ϕ is the conic’s
plane. For three finitely separated points this problem has four solutions as can
be seen in the spherical model of elliptic geometry (Fig. 3). But this property

Fig. 4. A Bennet motion (orange) and an osculating null cone motion (blue)



24 H.-P. Schröcker et al.

does not translate to three infinitesimally neighboring points as in the limit three
of the four circle converge to the curve tangent so that the osculating circle is
unique. This is also visualized in Fig. 3.

In lack of a better name, we refer to the motions in question as quadratic
null cone motions. The four-dimensional set of osculating conics contains a two-
dimensional set of these motions. Their generic trajectories are rational of degree
four, not circular in general but tangent to the plane at infinity in a pair of
conjugate complex points and hence bounded (Fig. 4).

Figure 4 actually displays a null cone motion and a Bennett motion that
osculate at one pose which is drawn a little larger.

5 Conclusion

We have related space kinematics to the geometry of the projective space P
3(D)

over the ring of dual numbers. This interpretation seems well suited for kinematic
visualization of certain differential geometric aspects and it also provides the
proper mathematical framework for the systematic study of osculating motions.
We presented results for ordinary and osculating tangents and some preliminary
ideas about osculating conics that shall be deepened in the future.
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