
An Inspection and Logging System
for Complex Event Processing in Bosch’s

Industry 4.0 Movement

Carina Andrade(&) , Maria Cardoso , Carlos Costa ,
and Maribel Yasmina Santos

ALGORITMI Research Centre, University of Minho, Guimarães, Portugal
{carina.andrade,carlos.costa,maribel}@dsi.uminho.pt,

a78439@alunos.uminho.pt

Abstract. Currently, it is possible to have machines producing relevant data to
be processed in real-time, facilitating the organizational decision-making. In
recent works, we proposed a system that integrates Complex Event Processing
(CEP) in the Big Data era, trying to make Industry 4.0 systems more pro-active.
Due to its complexity when running in industrial contexts, appropriate moni-
toring mechanisms need to be ensured to prevent the uncontrolled growth of the
system. In this context, this work focuses on proposing a system architecture
that will enable an innovative monitoring strategy based on graph analysis,
namely the Intelligent Event Broker (IEB) Mapping and Drill-down System. In
this work, it is proposed an inspection and logging strategy for the IEB that
allows to not only continuously inspect the codebase of the system and fuel an
ever-growing Graph Database, but also to strategically store log occurrences to
know what is continuously happening. For demonstrating the architecture and
design rules, we use a context from Bosch Portugal presenting a flowchart and a
graph data model, being the latter a mirror of all the implemented IEB com-
ponents and the relationships between them. This work helps researchers and
practitioners in the design and development of CEP systems for Big Data
contexts and, especially, the monitoring component of such a complex system.

Keywords: Big data � Complex event processing � Monitoring � Graph
database

1 Introduction

Nowadays, several industries are pursuing the adoption of Big Data and Real-time con-
cepts in their enterprises. This need arose, for example, from the current technological
evolution that results on a huge amount of data being produced every day by various types
of machines inside the shop floor. Once the data is available, the challenge is how to use it
to improve the organizations’performance by acting intelligently andwithout need towait
for human analysis and approvals. The Complex Event Processing (CEP) concept has
existed since the 90s, always linked to the need to process various events in a real-time
fashion. Nowadays, CEP is being integrated into Big Data contexts due to the need to

© Springer Nature Switzerland AG 2020
M. Themistocleous et al. (Eds.): EMCIS 2020, LNBIP 402, pp. 49–62, 2020.
https://doi.org/10.1007/978-3-030-63396-7_4

http://orcid.org/0000-0001-8783-9412
http://orcid.org/0000-0003-2204-7785
http://orcid.org/0000-0003-0011-6030
http://orcid.org/0000-0002-3249-6229
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63396-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63396-7_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63396-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-63396-7_4

process events resulting from real-time data streams that are more frequently available in
the organizations.

The Intelligent Event Broker (IEB) is proposed in [1] as an innovative system that
integrates the CEP and Big Data concepts using a Rules Engine embedded into Spark1.
The architecture considers the existence of several types of data sources and a component
(Producers) dedicated to the standardization of the connection to all of them. The events
arriving at the system are serialized into classes representing the business entities (Broker
Beans) that will be subscribed by the Event Processor (Spark Consumers). This last
component can send event data to be aggregated for further Key Performance Indicators
(KPIs) calculation in the Event Aggregator (supported by Druid2). Consumers are also
directly related to the Rules Engine (implemented in Drools3) where all the business
requirements are defined as strategical, tactical, or operationalRules. These three types of
Rules are translated at runtime by theConsumers. TheTriggers component represents the
connection to all theDestination Systems, and they will perform certain actions based on
the results of the rules verification (e.g., stop a productionmachine if the last three products
registered a failure). ThePredictors andRecommenders is the component responsible for
the application of previously trained Machine Learning models, which are stored in the
Lake of Machine Learning Models.

Furthermore, it is considered that this kind of system needs closer and rich mon-
itoring capabilities. In this context, a Mapping and Drill-down System was previously
included in the IEB architecture [1], considering a Graph Database and a Web
Visualization Platform to perform the system monitorization. This Graph Database
will store the data related to the IEB codebase that is continuously and automatically
inferred, as well as the relationships between them and the logs from the system
components that are continuously running. The collected data will be analyzed in a
Web Visualization Platform already proposed in [2]. Therefore, this work aims to
detail this system by proposing an architecture and a set of design rules that will ensure
the adequate data collection to feed the Mapping and Drill-down System, ensuring the
efficient inspection and logging of the IEB.

This paper is structured as follows: Sect. 2 presents the related work identified in
the literature; Sect. 3 presents the inspection and logging system architecture and a set
of design rules; Sect. 4 presents the demonstration case to highlight how the inspection
component of the system was implemented, using the Bosch Portugal context; Sect. 5
presents the conclusions and future work.

2 Related Work

Being this a very specific topic inside what is already a very specific research context
(i.e., CEP on Big Data contexts), there is a lack of relevant literature and related works.
Regarding the existence of systems that integrate the CEP concept in Big Data contexts,

1 https://spark.apache.org/.
2 https://druid.apache.org/.
3 https://www.drools.org/.

50 C. Andrade et al.

https://spark.apache.org/
https://druid.apache.org/
https://www.drools.org/

few works were found in the literature. The work of [3] proposes an architecture
(BiDCEP) for a system that integrates the CEP capabilities in the Big Data world. For
that, the authors idealized a mixed Big Data Streaming architecture based on the rec-
ognized Lambda and Kappa architectures for Big Data. This proposal is summarized as
being the extension of these architectures with components that represent the CEP
system. The work of [4] presents a prototype named FERARI that aims to process a
large number of event streams in a multi-cloud environment. Their proposal is based on
four components, each one with distinct goals: a web-based graphical user interface to
define CEP concepts; a component to plan the latency and communication between the
instances of the inter-cloud; a component responsible for the events processing and a
web-based dashboard with reports regarding the processed events. Another architecture
to integrate CEP and Big Data using only open source technologies is discussed in [5],
using an electronic coupon distribution centre as a demonstration case and giving focus
to the technologies selection (uses Apache Kafka as a message broker, HDFS to store
the data and a CEP system based on If-Then-Else rules to process the data).

During the analysis of the related work, when looking for the need of systems to
monitor a CEP in Big Data contexts, works only revealed the possible use of CEPs to
monitor other systems [6, 7]. In this context, proper logging was considered since logs
are widely used to indicate the state of the system at runtime, providing the details of
the transactions that occur and containing useful information (e.g., name, date, and time
of the occurrence [8]), which helps to understand the behaviour of the system. The
work of [9] mentions that a log must be recorded in an orderly and controlled manner
so that it is human-readable. Nevertheless, its usefulness depends on how the log is
applied, proposing much more than debug information and being of considerable value
when analyzing the performance of an application [9].

Regarding the monitorization of this kind of systems, this concern was only
identified in the FERARI project, with a dashboard component that provides reports
about some metadata of the system (e.g., daily events or for the last 4 h) [10], being the
focus on the data flows of the system and apparently leaving aside the drill-down into
the insights and behaviour from the individual components of the system.

3 The Inspection and Logging System as a IEB Mapping
and Drill-Down Feeder

Considering the complexity that can arise with the evolution of a system like the IEB
proposed in [1], especially when running it in industrial contexts, a dedicated system
must work in parallel to guarantee the constant and long-term monitoring of the IEB’s
daily operations, ensuring its sustainable and controlled growth.

Taking this into consideration, the Mapping and Drill-down System was included
in [1] and considers the implementation of two components: i) a Graph Database
(considered the most adequate database due to the need to deal with the constant
evolution of the IEB and its potential growth when running with several subjects
simultaneously); and, ii) a Web Visualization Platform to enable the drill-down over
the data, as discussed in [2]. This work is focused on the design of the system that will
allow the fueling of the Graph Database, to operate as the data source for the Web

An Inspection and Logging System 51

Visualization Platform, allowing the IEB stakeholders and operators to establish rel-
evant relationships and drill-down operations into several occurrences within the
system and its components.

3.1 System Architecture

As briefly highlighted in [1], the inspection and logging system architecture present
here must ensure the following goals: G1) the proper analysis and indexing of the IEB
codebase; G2) appropriate runtime logging mechanisms, to guarantee the storage of all
the relevant data about the system components that are constantly working; G3) the
analysis of the system functionality, recording what happened and when; and, G4) the
analysis of the system performance (e.g., how many events were produced in Producer
X, or consumed by Consumer Y). To ensure that all these defined goals are considered,
the system architecture presented in Fig. 1 is divided into two parts:

1. The first part is dedicated to code inspection. For that, the IEB codebase (System
Code Repository) is used as the source for analysis, exploring the folders and files
that compose the system and using the Code Inspector component to collect data to
feed the Graph Database (e.g., collect data to create graph labels, graph nodes,
graph nodes’ properties and relationships between graph nodes). To collect all the
relevant data that will allow the definition of the Graph Data Model (GDM), a set of
design rules were defined and are presented in Subsect. 3.2. The implementation of
these rules will guarantee the creation of the GDM regardless of how the system is
implemented and addressing the previously presented goal G1);

2. The second part is related to logging mechanisms. Here, the IEB components
already implemented are considered as data sources to provide useful data when
they are running. The Logger component should be embedded in the IEB com-
ponents, logging the time, the events flowing through the system, and the system
components execution. The time logs are the key point since time will be a property
in the relationships between graph nodes, representing when something happened in
the system. Secondary storage is proposed for historical and analytical purposes due
to the dimension that the Graph Database can achieve.
a. In the Historical Storage, all the raw data history will be available for analytical

purposes, when ad hoc queries involving the use of complex interactions and
calculations is needed. Here, analytical tools like Hive4 or Spark can be used to
explore the data in the Hadoop Distributed File System (HDFS), and data
exploration tools like Zeppelin5 or Tableau6 can be used to interact visually with
all the raw historical data.

b. In Interactive Storage, a graph database has the most recent data to drill-down
over it and take advantage of the analysis that can be done on graphs. The time
frame defined for the data stored in the graph database depends on three factors:

4 https://hive.apache.org/.
5 https://zeppelin.apache.org/.
6 https://www.tableau.com/.

52 C. Andrade et al.

https://hive.apache.org/
https://zeppelin.apache.org/
https://www.tableau.com/

i) the business requirements; ii) the amount of data generated by the system; and,
iii) the capacity of the neo4j infrastructure. The Logs Processor component will
pick up the data from the Historical Storage (at predefined periods) to load it
into the graph database (Interactive Storage). This will guarantee the achieve-
ment of the previously presented goals G2), G3) and G4).

The architecture presented in Fig. 1 already proposes technologies that can be used for
each component (e.g., Spark for the Logs Processor component), considering the tech-
nological stack already proposed in [1] for the remaining system. Regarding the Logger
component, Log4j7 was proposed considering that is an open-source structure, flexible,
written in Java and currently commonly used [11]. However, practitioners are free to
choose other technologies for their specific implementation of a similar system tomonitor
their CEP system in Big Data contexts, as the conceptual proposal still holds true.

3.2 Design Rules for the Code Inspector Component

Related to the repository code inspection, several design rules are defined to guarantee
that all the relevant IEB components are identified and tracked appropriately, as well as

Fig. 1. System architecture

7 http://logging.apache.org/log4j/2.x/.

An Inspection and Logging System 53

http://logging.apache.org/log4j/2.x/

their relationships. These design rules take into consideration that the result of the code
inspection should be a GDM to be implemented in a graph database. Once these design
rules are implemented in a piece of software dedicated to inspecting the IEB, in any
programming language practitioners choose to (ours is in Java due to the codebase of
the IEB), all the relevant inspection data will be captured to create the graph (namely
the inspection part of the graph) for the Mapping and Drill-down System. The defined
design rules (DR) are presented as follow:

DR1: The IEB components are the 1st level labels. This will guarantee that all the
implemented components from the IEB (mentioned in Sect. 1) are categorized by their
type of component in the architecture, facilitating the future exploration of the graph
database (e.g., Producers, Rules or Triggers).

DR2: The folders’ name, where the components were found, are 2nd level
labels, if it defines a specific subject for the IEB. Considering the variety of subjects
that can be implemented in the IEB, a clear separation by folders should be made
during the implementation. The collection of this information will enable the differ-
entiation between the several topics implemented in the system (e.g., “/producers/alr”
or “/consumers/shop-floor-incidents”).

DR3: The files’ name that reflects the implementation of IEB components are
the names of the graph nodes. The graph nodes will be the several instantiations of
the system components already implemented for the various IEB contexts (e.g., Pro-
ducers or Rules for a subject).

DR4: The labels defined in DR1 and DR2 must be associated to the graph
nodes identified in DR3. This will guarantee that all the created graph nodes will have
at least one label associated, identifying the system component and (in some cases) the
subject related to their implementation.

DR5: In the Broker Beans’ files, their variables and data types are their graph
nodes’ properties. Considering the importance of this component when representing
the data that will flow throughout the system, it is relevant that the Broker Beans
variables and respective data types are collected.

DR6: In the Broker Beans’ files, if the variable data type is another Broker
Bean, a relationship between the first identified Broker Bean graph node (BB1)
and the one identified in the variable data type (BB2) should be created as “BB1
composed_of BB2”. Since the Broker Beans represent the business entities flowing in
the system and, in some cases, a business entity can be composed of other business
entities, this relationship should be identified.

DR7: In the IEB components’ files, a relationship between graph nodes should
be created when Inheritance or Implementation relationships are identified. For
some components (e.g., Producers or Consumers), the collection of data representing
the Inheritance and Implementation between the files that define them is relevant and
must be ensured.

DR8: For any system component that instantiates another one, a relationship
between the component (Cp1) and the one identified as being instantiated (Cp2)
should be created as “Cp1 instantiates Cp2”. This step will ensure that all the
relationships between the components are stored to generate knowledge about the
interaction of the components.

54 C. Andrade et al.

DR9: For the Consumers, it should be identified if they verify certain Rules,
creating a relationship between the Consumer (C1) and the Rules Session that is
executed (RS1) as “C1 runs RS1” and which Rule (Ru1) is verified as “C1 verifies
Ru1”. With this design rule, it is guaranteed that the Consumers running the Rules
Session (a set of Rules within all the defined Rules) and therefore verifying certain
Rules, are identified, and properly stored in the graph.

DR10: For each Consumer, it should be identified if it queries or stores data in
the Event Aggregator component. A relationship between the Consumer (C1) and
the used Event Aggregator (EA1) should be created as “C1 queries EA1”.
Moreover, a relationship between the Consumer and the Event Aggregator where
it stores new data (EA2) should be created as “C1 stores_data_in EA2”. This
design rule identifies an interaction between a Consumer and the Event Aggregator in
both directions: querying and storing data on it.

DR11: For the identified Triggers, it should be created a relationship between
the Trigger (T1) and the Destination System (DS1) that will receive the data sent by
the Trigger as “T1 propagates_data_to DS1”. The actions defined in the Triggers
can send data to different Destination Systems identified in the system architecture
presented in [1], the reason why each Trigger should have a relationship with the graph
node that represents the Destination System being used in that action.

DR12: Regarding the rules’ repository, it should be collected the Rule’s name
and the Trigger fired by the Rule, as well as the Broker Beans used for the Rule
verification and to trigger the action. The Rule’s names should be saved as graph
name nodes and the Trigger and Broker Beans identified are used for design rules
DR13 and DR14. Depending on the Rules Engine being used, different ways for the
rules definition can exist (i.e., Drools as a way of defining rules, while other business
rules systems may have others). Nevertheless, the Rules must be identified and stored
in the graph, as well as the Triggers and the Broker Beans used by them.

DR13: For the Rules identified in DR12, it should be created a relationship
between the Rule graph node (Ru1) and the Broker Bean (BB1) used for the Rule
verification as “Ru1 uses BB1”. Moreover, it should be created a relationship
between the Rule and the graph node that represents the Trigger (T1) fired by the
Rule as “Ru1 fires T1”. These relationships will ensure the tracking of which Broker
Beans are used by the Rules verification and which Triggers are fired by which Rule.

DR14: For the Triggers identified in DR12, it should be created a relationship
between the Trigger graph node (T1) and the Broker Beans (BB1) used to take any
action as “T1 uses_to_trigger BB1”. It is necessary to identify which specific Broker
Beans are used for the system’s actions ensuring the identification of the data that are
propagated to the Destination Systems (e.g., IoT Gateways or a database to feed
Analytical Applications, as identified in [1]).

4 Demonstration Case

In this section, it is presented a demonstration case for the Code Inspector component
of the architecture proposed in Sect. 3. First, it is presented a flowchart that reflects the
implementation of the set of design rules defined in Subsect. 3.2, using the IEB

An Inspection and Logging System 55

implementation in the Bosch Portugal ALR8 data context. Then, for the obtained
flowchart, a part of the GDM is demonstrated and explained, resulting from the
implementation of the steps in the flowchart. Although the Logger and Logs Processor
components are already being developed, for this paper, this component is defined at
the conceptual level, and its demonstration is identified as future work.

4.1 Code Inspector Flowchart

The flowchart (Fig. 2) that represents the implementation of the design rules defined in
Subsect. 3.2 is based on the IEB system already presented in [1]. To properly interpret
this diagram, remember that the IEB was implemented using Java and Drools (this last
one, as Rules Engine).

In this context, each package represents the implementation of one of the IEB
components and to save this data, the Code Inspector seeks throughout the packages to
analyze the implemented code, storing the package name as 1st level label (DR1).
When inside a package, it searches for.java and.drl files (Drools files) and for each file,
its directory name is saved (if it does not exist yet) as 2nd level label (DR2). After that,
the file name is saved as the graph node, representing the class that is part of the system
implementation (DR3). The identified labels are then linked to the created node (DR4).
All these steps are executed until there are no more packages and no more.java or.drl
files to identify. This will guarantee that the graph nodes and labels needed for the
creation of the relationships already exist.

With all the graph nodes already created, the Code Inspector starts exploring the
files again in the first package. If the selected file is from the Broker Beans package,
the private variables names and properties are saved as node properties for the graph
node previously defined with the same name as the file name being analyzed (DR5). If
some of the variable’s types represent other nodes identified in the Broker Beans
package, a relationship between the file/graph node being analyzed and the graph node
representing the variable type is saved as shown in Fig. 2 (DR6 - composed_of
relationship).

For the rest of the.java files identified in the packages, if they include a string
“extends” or “implements” followed by another graph name node previously identi-
fied, a relationship between the file/graph node being analyzed and the one identified
after the mentioned strings are saved as identified in the flowchart (DR7 - extends and
implements relationships). The string “new” followed by another graph name node
previously identified will allow the identification of instantiations being carried out by
the file under analysis. A relationship is saved as a file/graph node that instantiates
another graph node (DR8). The same happens for the identification of which Con-
sumers run the RulesSession. In this case, searching for the string “getStatelessSession”
and saving a relationship as the graph node representing the file being analyzed runs
the “ruleSessionName” (the getStatelessSession parameter) identified.

Furthermore, the type of the parameter from the “executeRules” method will allow
the identification of the Rules verified in that session (all the Rules waiting for a

8 A system that verifies if a lot can be shipped to the customer.

56 C. Andrade et al.

Fig. 2. Application of the design rules in the IEB

An Inspection and Logging System 57

specific parameter type inside a session will be verified by the Consumer - DR9).
Regarding the Event Aggregator component, this one can be queried, and the data can
be stored on it. If the file contains the string “querying/” or the “consumerType”
equals “Druid”, Event Aggregator is saved as 1st level label. For the ones in which the
“consumerType” equals “Druid”: i) the “appName” (that represents the Event
Aggregator) is saved as graph name node; ii) the 1st level label is defined as a label for
the created node; and, iii) a relationship is created as the node representing the file
being analyzed stores_data_in node representing the Event Aggregator.

The same happens when the “querying/” string is found, being the relationship
defined as queries instead of stores_data_in (DR10). On the other hand, if the file
name contains the “Trigger” string: i) Destination Systems is saved as 1st level label;
ii) the name before “Trigger” is saved as graph name node; iii) the 1st level label is
defined for the created node; and, iv) a relationship is created between the node
representing the file being analyzed (Trigger) and the node created as being the
Destination System (“Trigger propagates_data_to Destination System”) (DR11).

Concerning the Rules defined in.drl files (Drools files), a file exploration process is
executed to collect: i) the Rules that are in quotes after the “rule” string; ii) the Broker
Beans used for the verification of the rules; iii) the Trigger to be fired by the rule; and,
iv) the Broker Bean to be fired by the Trigger. With this data, are created: i) the graph
node with the Rule name (DR12); ii) a relationship between the Rule graph node and
the Broker Bean used for its verification (DR13); iii) a relationship between the Rule
graph node and the Trigger that is fired (DR13); and, iv) a relationship between the
Trigger and the Broker Bean that was flowing when the Trigger was fired (DR14).

With the definition of the flowchart, it is possible to understand that the design rules
presented in Subsect. 3.2 are easily transformed into small tasks to be coded and
applied to the implemented system. Although the system is implemented using Java
and Drools, other technologies can be used if the main guidelines are followed, as the
application of the design rules returns the data needed to be monitored.

4.2 Graph Data Model

In Fig. 3, it can be seen the representation of the GDM that was obtained from the Code
Inspector component to support the Mapping and Drill-down System (see Sub-
sect. 3.2). Due to the difficulty of presenting here the whole GDM created during this
work, this figure only shows an example of the relationships between the possible types
of graph nodes. Nevertheless, the whole data model contains sixteen labels, more than
fifty nodes and more than sixty relationships.

Before starting the explanation of the nodes (circles) and relationships (edges) of
the GDM in Fig. 3, it should be considered that the nodes’ backgrounds represent the
packages’ name (1st level label mentioned in DR1), and the lines around the nodes
represent the folders’ names (2nd level label mentioned in DR2) as shown in the figure
legend. DR3 and DR4 are explicit in the GDM since the nodes are clearly identified
and all of them have a specific colour.

Considering this, the different types of graph nodes and relationships between them
are described as follow:

58 C. Andrade et al.

• The ALRProducer extends a generic implementation of a producer developed using
Apache Kafka (KafkaEventProducer), which by itself implements the Producer
interface (DR7). This aims to standardize the implementation of the Producers,
creating a generic class and an interface that reflects the behaviour of every pro-
ducer in the system.

• Three types of Broker Beans can be seen: i) Broker Beans representing the
business entities that arrive at the system through the events (ALR, Lot and
PickCoordinate); ii) Broker Beans representing the KPIs calculated by the system
(MultiValueKpi); and, iii) Broker Beans created during the verification of the Rules
to be later used by the Triggers (LineEvent). Regarding the Broker Beans that
represent the business entities, these are instantiated by Producers and Consumers

Fig. 3. GDM resulting from the application of the set of proposed design rules (Color figure
online)

An Inspection and Logging System 59

(DR8). They can also be composed of other Broker Beans (an ALR Broker Bean is
composed of a Lot Broker Bean which subsequently is composed of a
PickCoordinate Broker Bean - DR6). The KPIs Broker Beans (MultiValueKpi) are
instantiated by Consumers with analytical purposes (AlrAnalyticalKpisConsumer)
(DR8) and they are used by the Rules dedicated to the same analytical goals (%
Invalids Lots by day is bigger than a threshold) (DR13). The third type of Broker
Beans (LineEvent) is used by the Triggers that propagate them to the Destination
Systems (DR14). For every Broker Bean, their variables and data types are iden-
tified as node’s properties (DR5).

• The operational or analytical Consumers (AlrOperationalConsumer and AlrAna-
lyticalKpisConsumer) instantiate (DR8) a specific class (AlrKafkaSparkConsumer)
that extends the KafkaSparkConsumer (DR7), being this a specific code design
strategy in the IEB. Both of them run the RulesStatelessSession and verify the
defined Rules in the GDM (DR9). Furthermore, Consumers have two types of
interactions with the Event Aggregator presented in the GDM (e.g., relationship
stores_data_in between the AlrOperationalConsumer and the RealTimePal-
letsByDay, and relationship queries between the AlrAnalyticalKpisConsumer and
the AnalyticalKpiInvalidLotsByDay - DR10). Finally, Consumers instantiate the
Triggers (e.g., CassandraTrigger) that can be fired after the verification of the
Rules (DR8).

• Two Rules are defined in the GDM (% Invalids Lots by day is bigger than a
threshold and Rule and Lot is Invalid - DR12) with a relationship to the Trigger
node reflecting that a Rule fires a Trigger (DR13).

• Regarding the Triggers component, the CassandraTrigger implements the Trigger
interface (DR7) and propagates_data_to the Cassandra Destination System
(DR11).

The detailed GDM (Fig. 3) as well as the design rules identified in the description
of the GDM, reflect the successful application of the design rules in the IEB system
being demonstrated in the Industry 4.0 movement of Bosch Portugal. The codebase of
the system was thoroughly analyzed by the authors, comparing it to the generated
GDM. With this validation, it was possible to conclude that, as an initial prototype, the
data needed to monitor the continuous growth of the system (e.g., new Producers or
Consumers) is adequately identified and captured by the design rules proposed.

Regarding the Logger component, the experimental work in progress is currently
focused on logging the execution of the ALRProducer and the AlrOperationalCon-
sumer. The logs are being stored and processed as described in Sect. 3 and the Web
Visualization Platform [2] is used (with a new design) for the data analysis. In the
analysis presented in Fig. 4, it can be seen the ALRProducer, the AlrOpera-
tionalConsumer and the CassandraTrigger nodes (green, red and yellow nodes) con-
nected to all the ALR Broker Beans nodes (blue). In the future, we will work on
extending the GDM presented here with the processed logging information from the
IEB system.

60 C. Andrade et al.

5 Conclusions

Given the potential complexity of the IEB running in industrial contexts, we consider
that adequate monitoring of this system is essential. This monitoring was conceptually
considered in the IEB system [1] with the proposal of the Mapping and Drill-down
System supported by graph storage and analysis technologies.

In this paper, the architecture for the whole feeding system that will fuel the Graph
Database was presented and discussed considering two main parts: i) the Code
Inspector; and, ii) the Logger. This feeding system is responsible for generating the
ever-growing graph mentioned above, addressing innovative monitoring capabilities
for a CEP in Big Data contexts.

For the Code Inspector component, the main focus of this work, a set of design
rules was defined to ensure that the IEB components are continuously and automati-
cally inferred from the codebase, as well the relationships between them. The design
rules were applied in a Bosch Portugal demonstration case using the ALR data,
showing a flowchart on how to properly inspect the IEB codebase, and highlighting the
results in a detailed GDM. The design rules were successfully applied to the IEB
system returning all the useful graph data (labels, nodes, relationships) that is needed to
feed the IEB Mapping and Drill-down System.

Despite the focus on the IEB system being demonstrated in the Bosch Portugal
context, we believe that the artefacts and insights provided here, which complement the
ones in [1, 2], are conceptually, technically and technologically relevant for several
researchers and practitioners in the area. No other system similar to the IEB considers the
relevance ofmonitoring using consistent strategies that focus on the evolution and growth
of the systemwhenworking in production contexts, being this a key point to guarantee the
adequate maintenance of the system in many contexts like the industry 4.0 movement.

Fig. 4. Data from the Logger component presented in the 3D graph explorer of the IEB Web
visualization Platform (Color figure online)

An Inspection and Logging System 61

Acknowledgements. This work has been supported by FCT – Fundação para a Ciência e
Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, the Doctoral scholarship
PD/BDE/135101/2017 and by European Structural and Investment Funds in the FEDER com-
ponent, through the Operational Competitiveness and Internationalization Programme (COM-
PETE 2020) [Project nº 039479; Funding Reference: POCI-01-0247-FEDER-039479].

References

1. Andrade, C., Correia, J., Costa, C., Santos, M.Y.: Intelligent event broker: a complex event
processing system in big data contexts. In: AMCIS 2019 Proceedings. Cancun (2019)

2. Rebelo, J., Andrade, C., Costa, C., Santos, M.Y.: An Immersive web visualization platform
for a big data context in bosch’s industry 4.0 movement. Presented at the european,
mediterranean and middle eastern conference on information systems (EMCIS), Dubai, Dec
2019

3. Hadar, E.: BIDCEP: A vision of big data complex event processing for near real time data
streaming. In: CAiSE Industry Track (2016)

4. Flouris, I., Manikaki, V., Giatrakos, N., Deligiannakis, A., Garofalakis, M., Mock, M., et al.:
FERARI: a prototype for complex event processing over streaming multi-cloud platforms.
In: Proceedings of the 2016 International Conference on Management of Data. pp. 2093–
2096. ACM, New York (2016)

5. Jha, S., Jha, M., O’Brien, L., Singh, P.K.: Architecture for complex event processing using
open source technologies. In: 2016 3rd Asia-Pacific World Congress on Computer Science
and Engineering (APWC on CSE), pp. 218–225 (2016)

6. Nguyen, F., Pitner, T.: Information system monitoring and notifications using complex event
processing. In: Proceedings of the Fifth Balkan Conference in Informatics. pp. 211–216.
Association for Computing Machinery, Novi Sad, Serbia (2012)

7. Jayan, K., Rajan, A.K.: Sys-log classifier for Complex Event Processing system in network
security. In: 2014 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), pp. 2031–2035 (2014)

8. Nguyen, H.T.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving quality
of process event logs. Expert Syst. Appl. 131, 132–147 (2019)

9. Gupta, S.: Introduction to Application Logging. In: Gupta, S. (ed.) Logging in Java with the
JDK 1.4 Logging API and Apache log4j, pp. 1–9. Apress, Berkeley (2003)

10. Ćurin, T., Bogadi, D., Volarević, M., Štajcer, M., Mihalić, A., Mock, M.: Final Application
Scenarios and Description of Test Environment. Hrvatski Telekom (2016)

11. Dickey, D.A., Dorter, B.S., German, J.M., Madore, B.D., Piper, M.W., Zenarosa, G.L.:
Evaluating Java PathFinder on Log4J. vol. 15, Carnegie Mellon University (2011)

62 C. Andrade et al.

	An Inspection and Logging System for Complex Event Processing in Bosch’s Industry 4.0 Movement
	Abstract
	1 Introduction
	2 Related Work
	3 The Inspection and Logging System as a IEB Mapping and Drill-Down Feeder
	3.1 System Architecture
	3.2 Design Rules for the Code Inspector Component

	4 Demonstration Case
	4.1 Code Inspector Flowchart
	4.2 Graph Data Model

	5 Conclusions
	Acknowledgements
	References

