
Large-Scale Neural Solvers for Partial
Differential Equations

Patrick Stiller1,2(B), Friedrich Bethke1,2, Maximilian Böhme3,
Richard Pausch1, Sunna Torge2, Alexander Debus1, Jan Vorberger1,

Michael Bussmann1,3, and Nico Hoffmann1

1 Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
p.stiller@hzdr.de

2 Technische Universität Dresden, Dresden, Germany
3 Center for Advanced Systems Understanding (CASUS), Görlitz, Germany

Abstract. Solving partial differential equations (PDE) is an indispens-
able part of many branches of science as many processes can be modelled
in terms of PDEs. However, recent numerical solvers require manual dis-
cretization of the underlying equation as well as sophisticated, tailored
code for distributed computing. Scanning the parameters of the underly-
ing model significantly increases the runtime as the simulations have
to be cold-started for each parameter configuration. Machine Learn-
ing based surrogate models denote promising ways for learning com-
plex relationship among input, parameter and solution. However, recent
generative neural networks require lots of training data, i.e. full sim-
ulation runs making them costly. In contrast, we examine the appli-
cability of continuous, mesh-free neural solvers for partial differential
equations, physics-informed neural networks (PINNs) solely requiring
initial/boundary values and validation points for training but no simula-
tion data. The induced curse of dimensionality is approached by learning
a domain decomposition that steers the number of neurons per unit vol-
ume and significantly improves runtime. Distributed training on large-
scale cluster systems also promises great utilization of large quantities of
GPUs which we assess by a comprehensive evaluation study. Finally, we
discuss the accuracy of GatedPINN with respect to analytical solutions-
as well as state-of-the-art numerical solvers, such as spectral solvers.

1 Introduction

Scientific neural networks accelerate scientific computing by data-driven meth-
ods such as physics-informed neural networks. One such prominent application is
surrogate modelling which is e.g. used in particle physics at CERN [1]. Enhanc-
ing neural networks by prior knowledge about the system makes the predic-
tion more robust by regularizing either the predictions or the training of neural
networks. One such prominent approach is a physics-informed neural network
(PINN) which makes use of either learning [2] or encoding the governing equa-
tions of a physical system into the loss function [3] of the training procedure.

c© Springer Nature Switzerland AG 2020
J. Nichols et al. (Eds.): SMC 2020, CCIS 1315, pp. 20–34, 2020.
https://doi.org/10.1007/978-3-030-63393-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63393-6_2&domain=pdf
https://doi.org/10.1007/978-3-030-63393-6_2

Large-Scale Neural Solvers for Partial Differential Equations 21

Surrogate models based on PINN can be seen as a neural solvers as the trained
PINN predicts the time-dependent solution of that system at any point in space
and time. Encoding the governing equations into the training relies on automatic
differentiation (AD) as it is an easy computing scheme for accessing all partial
derivatives of the system. However, AD also constrains the neural network archi-
tecture to use Ck+1 differentiable activation functions provided the highest order
of derivatives in the governing system is k. Furthermore, the computational cost
increases with the size of the neural network as the whole computational graph
has to be evaluated for computing a certain partial derivative. The main con-
tribution of this paper is three-fold. First, we introduce a novel 2D benchmark
dataset for surrogate models allowing precise performance assessment due to
analytical solutions and derivatives. Second, we improve the training time by
incorporating and learning domain decompositions into PINN. Finally, we con-
duct a comprehensive analysis of accuracy, power draw and scalability on the
well known example of the 2D quantum harmonic oscillator.

2 Related Works

Accelerated simulations by surrogate modelling techniques are carried out in
two main directions. Supervised learning methods require full simulation data
in order to train some neural network architecture, e.g. generative adversarial
networks [1] or autoencoders [4], to reproduce numerical simulations and might
benefit from interpolation between similar configurations. The latter basically
introduces a speedup with respect to numerical simulations, however generaliza-
tion errors might challenge this approach in general. In contrast, self-supervised
methods either embed neural networks within numerical procedures for solv-
ing PDE [5], or incorporate knowledge about the governing equations into the
loss of neural networks, so called physics-informed neural networks (PINN) [3].
The latter is can be seen as variational method for solving PDE. Finally, [2]
demonstrated joint discovery of a system (supervised learning) and adapting to
unknown regimes (semi-supervised learning). Recently, [6] proved convergence
of PINN-based solvers for parabolic and hyperbolic PDEs. Parareal physics-
informed neural networks approach domain decomposition by splitting the com-
putational domain into temporal slices and training a PINN for each slice [7]. We
are going to generalize that idea by introducing conditional computing [8] into
the physics-informed neural networks framework, hereby enabling an arbitrary
decomposition of the computational domain which is adaptively tuned during
training of the PINN.

22 P. Stiller et al.

3 Methods

The governing equations of a dynamic system can be modeled in terms of non-
linear partial differential equations

ut + N (u;λ) = 0 ,

with ut = ∂u
∂t being the temporal derivative of the solution u of our system while

N denotes a non-linear operator that incorporates the (non-)linear effects of our
system. One example of such a system is the quantum harmonic oscillator,

i
∂ψ(r, t)

∂t
− Ĥψ(r, t) = 0 ,

where ψ(r, t) denotes the so-called state of the system in the spatial base and
Ĥ is the Hamilton-operator of the system. The systems state absolute square
|ψ(r, t)|2 is interpreted as the probability density of measuring a particle at a
certain point r in a volume V. Thus, |ψ(r, t)|2 has to fulfill the normalization
constraint of a probability density

∫
V

d3r |ψ(r, t)|2 = 1.

The Hamilton operator of a particle in an external potential is of the form

Ĥ = −1
2
Δ + V (r, t),

where Δ is the Laplace operator and V (r, t) is a scalar potential. The first term is
the kinetic energy operator of the system and V (r, t) its potential energy. In this
work, we use the atomic unit system meaning that � = me = 1. Ĥ is a Hermitian
operator acting on a Hilbertspace H. In this work we are focusing on the 2D
quantum harmonic oscillator (QHO), which is described by the Hamiltonian

Ĥ = −1
2

(
∂2

∂x2
+

∂2

∂y2

)
+

ω2
0

2
(x2 + y2) = Ĥx + Ĥy.

where x ∈ R and y ∈ R denote spatial coordinates. The solution of the QHO
can be determined analytically and is the basis for complicated systems like the
density function theory (DFT). Therefore the QHO is very well suited as a test
system which allows a precise evaluation of the predicted results. In addition, the
QHO can also be used as a test system for evaluating the results. Furthermore,
the QHO is classified as linear parabolic PDE, which guarantees the functionality
of the chosen PINN approach according to Shin et al. [6]. Figure 1 shows the
analytic solution of the quantum harmonic oscillator over time.

Large-Scale Neural Solvers for Partial Differential Equations 23

Fig. 1. Analytic solution of the quantum harmonic oscillator

3.1 Physics-Informed Quantum Harmonic Oscillator

The solution ψ(x, y, t) of our quantum harmonic oscillator at some position x, y
and time t is approximated by a neural network f : R

3 → C, i.e.

ψ̂(x, y, t) = f(x, y, t) .

In this work, we model f by a simple multilayer perceptron (MLP) of 1 ≤ l ≤ m
layers, a predetermined number of neurons per layer kl and respective weight
matrices W l ∈ R

kl×kl

yl = g(W lyl−1) ,

with y0 = (x, y, t) and ym = ψ̂(x, y, t). The training of Physics-informed neural
networks relies on automatic differentiation which imposes some constraints on
the architecture. In our case, the network has to be 3 times differentiable due
to the second-order partial derivatives in our QHO (Eq. 3). This is achieved by
choosing at least one activation function g which fulfills that property (e.g. tanh).
The training of the neural network is realized by minimizing the combined loss
L defined in Eq. (2). The three terms of L relate to the error of representing the
initial condition L0, the fulfillment of the partial differential equation Lf as well
as boundary condition Lb.

L = αL0(T0) + Lf (Tf) + Lb(Tb) (1)

L0 is the summed error of predicted real- u = real(ψ) and imaginary- v =
imag(ψ) of the initial state with respect to groundtruth real- ui and imaginary
part vi at points T′. We introduce a weighting term α into L allowing us to
emphasize the contribution of the initial state.

L0(T0) =
1

|T0|

|T0|∑
i=1

∣∣u (
ti0, x

i
0, y

i
0

)
− ui

∣∣2 +
1

|T0|

|T0|∑
i=1

∣∣v (
ti0, x

i
0, y

i
0

)
− vi

∣∣2

24 P. Stiller et al.

The boundary conditions (Eq. 3) are modelled in terms of Lb at predeter-
mined spatial positions Tb at time t.

Lb (Tb, t) = 1 −
(∫∫

Tb

(
u(t, x, y)2 + v(t, x, y)2

)
dxdy

)2

Lf is divided into real- and imaginary part, such that fu represents the
correctness of the real- and fv the correctness of imaginary part of the predicted
solution. This loss term is computed on a set Tf of randomly distributed residual
points that enforce the validity of the PDE at residual points Tf .

Lf (Tf) =
1

|Tf |

|Tf |∑
i=1

∣∣fu

(
tif , xi

f , yi
f

)∣∣2 +
1

|Tf |

|Tf |∑
i=1

∣∣fv

(
tif , xi

f , yi
f

)∣∣2

fu = −ut − 1
2
vxx − 1

2
vyy +

1
2
x2v +

1
2
y2v

fv = −vt +
1
2
uxx +

1
2
uyy − 1

2
x2u − 1

2
y2u

3.2 GatedPINN

Numerical simulations typically require some sort of domain decomposition in
order to share the load among the workers. physics-informed neural networks
basically consist of a single multilayer perceptron network f which approximates
the solution of a PDE for any input (x, y, t). However, this also implies that
the capacity of the network per unit volume of our compute domain increases
with the size of the compute domain. This also implies that the computational
graph of the neural network increases respectively meaning that the time and
storage requirements for computing partial derivatives via automatic differenti-
ation increases, too. This limits the capacity of recent physics-informed neural
network.

We will be tackling these challenges by introducing conditional computing
into the framework of physics-informed neural networks. Conditional Computing
denotes an approach that activate only some units of a neural network depending
on the network input [9]. A more intelligent way to use the degree of freedom
of neural networks allows to increase the network capacity (degree of freedom)
without an immense blow up of the computational time [8]. [7] introduced a
manual decomposition of the compute domain and found that the capacity of
the neural network per unit volume and thus the training costs are reduced.
However, this approach requires another coarse-grained PDE solver to correct
predictions. A decomposition of the compute domain can be learned by utilizing
the mixture of expert approach [8] based on a predetermined number of so-called
experts (neural networks). A subset k of all N experts are active for any point
in space and time while the activation is determined by gating network which
introduces an adaptive domain decomposition. The combination of mixture of
experts and physics-informed neural networks leads to a new architecture called
GatedPINN.

Large-Scale Neural Solvers for Partial Differential Equations 25

Architecture. The architecture comprises of a gating network G(x, y, t) that
decides which expert Ei(x, y, t) to use for any input (x, y, t) in space and time
(see Fig. 2). Experts Ei with 1 ≤ i ≤ N are modelled by a simple MLP con-
sisting of linear layers and tanh activation functions. The predicted solution ψ̂
of our quantum harmonic oscillator (QHO) becomes a weighted sum of expert
predictions Ei

ψ̂(x, y, t) =
N∑

i=1

G(x, y, t)i · Ei(x, y, t) .

GatedPINN promise several advantages compared to the baseline PINN:
First, the computation of partial derivatives by auto differentiation requires
propagating information through a fraction k/N of the total capacity of all
experts. That allows to either increase the computational domain and/or increase
the overall capacity of the neural network without a blow up in computational
complexity.

Fig. 2. Visualization of the Gated-PINN architecture

Similarly to [8], an importance loss LI = wI ·CV (I(x, y, t))2 penalizes uneven
distribution of workload among all N experts:

L(T , θ) = L0(T0, θ) + Lf (Tf , θ) + Lb(Tb, θ) +
∑

(x,y,t)∈T

LI(X) , (2)

given T = T0 ∪ Tb ∪ Tf . The importance loss LI(X) requires the computation
of an importance measure I(X) =

∑
x∈X G(x, y, t). The coefficient of variation

CV (z) = σ(z)/μ(z) provided I(X) quantifies the sparsity of the gates and thus
the utilization of the experts. Finally, coefficient wI allows us to weight the
contribution of our importance loss with respect to the PDE loss. The importance
loss is defined as follows:

LI(X) = wI · CV (I(X))2 .

26 P. Stiller et al.

Adaptive Domain Decomposition. A trainable gating network G allows us
to combine the predictions of k simple neural networks for approximating the
solution of our QHO at any point in space x, y and time t. Hereby, we restrict
the size of the computational graph to k-times the size of each individual neural
network Ei with 0 ≤ i ≤ k.

G(x, y, t) = Softmax(KeepTopK(H(x, y, t, ω)))

and basically yields a N dimensional weight vector with k non-zero elements
[8]. The actual decomposition is learnt by the function H:

H(x, y, t) = ([x, y, t] · Wg) + StandardNormal() · Softplus(([x, y, t]T · Wnoise)) .

The noise term improves load balancing and is deactivated when using the
model. Obviously, this gating results in a decomposition into linear subspaces due
to Wg. Non-linear domain decomposition can now be realized by replacing the
weight matrix Wg by a simple MLP NNg, i.e. ([x, y, t]·Wg) becomes NNg(x, y, t).
This allows for more general and smooth decomposition of our compute domain.

4 Results

All neural networks were trained on the Taurus HPC system of the Technical
University of Dresden. Each node consists of two IBM Power9 CPUs and is
equipped with six Nvidia Tesla V-100 GPUs. We parallelized the training of the
neural networks using Horovod [10] running on MPI communication backend.
Training of the Physics-informed neural network, i.e. solving our QHO, was
done on batches consisting of 8.500 points of the initial condition (i.e. |T0|),
2.500 points for the boundary condition (i.e. |Tb|) and 2 million residual points
(i.e. |Tf |).

4.1 Approximation Quality

Training of physics-informed neural networks can be seen as solving partial dif-
ferential equations in terms of a variational method. State-of-the-art solvers for
our benchmarking case, the quantum harmonic oscillator, make us of domain
knowledge about the equation by solving in Fourier domain or using Hermite
polynomials. We will be comparing both, state-of-the-art spectral method [11] as
well as physics-informed neural networks, to the analytic solution of our QHO.
This enables a fair comparison of both methods and allows us to quantify the
approximation error.

For reasons of comparison, we use neural networks with similar capacity.
The baseline model consists of 700 neurons at 8 hidden layer. The GatedPINN
with linear and nonlinear gating consists of N = 10 experts while the input
is processed by one expert (k = 1). The experts of the GatedPINN are small
MLP with 300 neurons at 5 hidden layers. Furthermore, the gating network for

Large-Scale Neural Solvers for Partial Differential Equations 27

the nonlinear gating is also a MLP. It consists of a single hidden layer with 20
neurons and the ReLu activation function.

The approximation error is quantified in terms of the infinity norm:

err∞ = ||ψ̂ − ψ||∞ , (3)

which allow us to judge the maximum error while not being prone to sparseness
in the solution. The relative norm is used for quantifying the satisfaction of the
boundary conditions. The relative norm is defined with the approximated surface
integral and the sampling points from dataset Tb as follows

errrel = ||1 −
∫∫

Tb

ψ dxdy|| · 100% . (4)

Table 1. Real part statistics of the infinity norm

Approach err∞ Min Max

Spectral solver 0.01562± 0.0023 5.3455e−7 0.0223

PINN 0.0159± 0.0060 0.0074 0.0265

Linear GatedPINN 0.0180± 0.0058 0.0094 0.0275

Nonlinear GatedPINN 0.0197± 0.0057 0.0098 0.0286

Table 2. Imaginary part statistics of the infinity norm

Approach err∞ Min Max

Spectral solver 0.01456± 0.0038 0.0000 0.0247

PINN 0.0144± 0.0064 0.0034 0.0269

Linear GatedPINN 0.0164 ± 0.0069 0.0043 0.0296

Nonlinear GatedPINN 0.0167± 0.0066 0.0046 0.0291

Physics-informed neural networks as well as GatedPINN are competitive in
quality to the spectral solver for the quantum harmonic oscillator in the chosen
computational domain as can be seen in Fig. 3. The periodic development in the
infinity norm relates to the rotation of the harmonic oscillator which manifests
in the real as well as imaginary at different points in time (see Fig. 1).

28 P. Stiller et al.

Fig. 3. Quality of the real part and imaginary part predictions over time in comparison
to the spectral solver in reference to the analytically solution

Figure 4 and Fig. 5 show the time evolution of the PINN predictions. The
prediction of the baseline model and the GatedPINN models show the same
temporal evolution as in Fig. 1.

Fig. 4. Real Part predictions of the Baseline and the GatedPINN models

Large-Scale Neural Solvers for Partial Differential Equations 29

Fig. 5. Imaginary Part predictions of the Baseline and the GatedPINN models

4.2 Domain Decomposition

Table 3. Training time of physics-informed neural networks is significantly reduced by
incorporating a domain decomposition into the PINN framework.

Model Parameters L Training time

PINN 3,438,402 2.51e−4 29 h 19 min

Linear GatedPINN 3,627,050 2.115e−4 17 h 42min

Nonlinear GatedPINN 3,627,290 2.270e−4 18 h 08 min

Table 3 shows the convergence of the PINN-Loss of the baseline, the GatedPINN
with linear and nonlinear gating. The Baseline model and the GatedPINN mod-
els are trained with 2 million residual points and with the same training setup
in terms of batch size, learning rate. Both, the GatedPINN with linear and
nonlinear gating have converged to a slightly lower PINN-Loss as the baseline
model. However, the training times of the Gated PINN are significantly shorter
although the GatedPINN models have more parameters than the baseline model.
These results show the efficient usage of the model capacity and automatic dif-
ferentiation of the GatedPINN architecture. However, both the training time of
the PINN and the GatedPINN approach is not competitive to the solution time
of the spectral solver (1 min 15 sec). The full potential of PINN can only be

30 P. Stiller et al.

used when they learn the complex relationship between the input, the simula-
tion parameters and the solution of the underlying PDE and thus restarts of the
simulation can be avoided.

In Table 1 and 2 we see that the approximation quality of the baseline model
is slightly better than the GatedPINN models although the GatedPINN models
have converged to a slightly smaller loss L. However, the GatedPINN (linear:
0.329%, nonlinear: 0.268%) satisfies the boundary condition better than the
baseline model (1.007%). This result could be tackled by introducing another
weighting constant similarly to α to Eq. 2.

The learned domain decomposition of the proposed GatedPINN can be seen
in Fig. 6. The nonlinear gating, which is more computationally intensive, shows
an more adaptive domain decomposition over time than the model with linear
gating. The linear gating converges to a fair distribution over the experts. The
nonlinear approach converges to a state where the experts are symmetrically
distributed in the initial state. This distribution is not conserved in the time
evolution.

Fig. 6. Learned domain decomposition by the GatedPINN with linear and non-linear
gating. The squared norm of the solution ψ is visualized as a contour plot

4.3 Scalability and Power Draw

Training of neural solvers basically relies on unsupervised learning by validating
the predicted solution ψ on any residual point (Eq. 2). This means that we only
need to compute residual points but do not have to share any solution data. We
utilize the distributed deep learning framework Horovod [10]. The scalability
analysis was done during the first 100 epochs on using 240 batches consisting of
35000 residual points each and 20 epochs for pretraining. The baseline network
is a 8-layer MLP with 200 neurons per layer. Performance measurements were
done by forking one benchmark process per compute node.

Large-Scale Neural Solvers for Partial Differential Equations 31

Fig. 7. Speedup comparison

Figure 7 compares the optimal with the actual speedup. The speedup S(k)
for k-GPUs was computed by

S(k) = tk/t1 ,

provided the runtime for 100 epochs of a single GPU t1 compared to the run-
time of k GPUs: tk. We found almost linear speedup, though the difference to
the optimum is probably due to the latency of the communication between the
GPUs and the distribution of residual points and gradient updates. The training
achieved an average GPU utilization of 95% ± 0.69% almost fully utilizing each
GPU. Memory utilization stays relatively low at an average of 65% ± 0.48%
while most of the utilization relates to duplicates of the computational graph
due to automatic differentiation.

Fig. 8. Power draw comparison

We also quantified the power draw relating to the training in terms of the
average hourly draw of all GPUs (See Fig. 8). Note that this rough measure omits

32 P. Stiller et al.

the resting-state power draw of each compute node. We found an almost linear
increase in power draw when increasing the number of GPUs. This correlates
with the already mentioned very high GPU utilization as well as speedup. These
findings imply that total energy for training our network for 100 epochs stays the
same - no matter how many GPUs we use. Summarizing, Horovod has proven
to be an excellent choice for the distributed training of physics-informed neural
networks since training is compute bound. Note that the linear scalability has
an upper bound caused by the time needed to perform the ring-allreduce and
the splitting of the data.

4.4 Discussion

The experimental results of this paper agree with theoretical results on conver-
gence of PINNs for parabolic and elliptic partial differential equations [6] even
for large two-dimensional problems such as the quantum harmonic oscillator.
This benchmark dataset1 provides all means for a comprehensive assessment of
approximation error as well as scalability due to the availability of an analytic
solution while the smoothness of the solution can be altered by frequency ω
of the QHO. The approximated solution of Physics-informed neural networks
approached the quality of state-of-the-art spectral solvers for the QHO [11].
The training time of PINN or GatedPINN is not competitive to the runtime
of spectral solvers for one 2D simulation. However, PINN enable warm-starting
simulations by transfer learning techniques, integrating parameters (e.g. ω in our
case) or Physics-informed solutions to inverse problems [12] making that app-
roach more flexible than traditional solvers. The former two approaches might
tackle that challenge by learning complex relationships among parameters [13]
or adapting a simulation to a new configuration at faster training time than
learning it from scratch while the latter might pave the way for future experi-
mental usage. The GatedPINN architecture finally allows us to approach higher
dimensional data when training physics-informed neural networks by training
k sub-PINN each representing a certain fraction of the computational domain
at 1/k of the total PINN capacity. GatedPINN preserve the accuracy of PINN
while the training time was reduced by 40% (Table 3). This effect will become
even more evident for 3D or higher dimensional problems. Limiting the com-
putational blowup of PINN and retaining linear speedup (see Fig. 7) are crucial
steps towards the applications of physics-informed neural networks on e.g. three-
dimensional or complex and coupled partial differential equations.

5 Conclusion

Physics-informed neural networks denote a recent general purpose vehicle for
machine learning assisted solving of partial differential equations. These neural
1 The PyTorch implementations of the benchmarking dataset as well as the neural

solvers for 1D and 2D Schrodinger equation and pretrained models are available
online: https://github.com/ComputationalRadiationPhysics/NeuralSolvers.

https://github.com/ComputationalRadiationPhysics/NeuralSolvers

Large-Scale Neural Solvers for Partial Differential Equations 33

solvers are solely trained on initial conditions while the time-dependent solution
is recovered by solving an optimization problem. However, a major bottleneck
of neural solvers is the high demand in capacity for representing the solution
which relates to the size, dimension and complexity of the compute domain.
In this work, we approach that issue by learning a domain decomposition and
utilizing multiple tiny neural networks. GatedPINNs basically reduce the number
of parameters per unit volume of our compute domain which reduces the training
time while almost retaining the accuracy of the baseline neural solver. We find
these results on a novel benchmark based on the 2D quantum harmonic oscillator.
Additionally, GatedPINN estimate high-quality solutions of the physical system
while the speedup is almost linear even for a large amount of GPUs.

Acknowledgement. This work was partially funded by the Center of Advanced Sys-
tems Understanding (CASUS) which is financed by Germany’s Federal Ministry of
Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and
Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon
State Parliament. The authors gratefully acknowledge the GWK support for funding
this project by providing computing time through the Center for Information Services
and HPC (ZIH) at TU Dresden on the HPC-DA.

References

1. Vallecorsa, S.: Generative models for fast simulation. J. Phys. Conf. Ser. 1085(2),
022005 (2018)

2. Raissi, M.: Deep hidden physics models: deep learning of nonlinear partial differ-
ential equations. J. Mach. Learn. Res. 19, 1–24 (2018)

3. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics Informed Deep Learn-
ing (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
(Part I), pp. 1–22 (2017)

4. Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep
fluids a generative network for parameterized fluid simulations. Comput. Graph.
Forum (Proc. Eurograph.) 38(2), 59–70 (2019)

5. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.: Accelerating Eulerian fluid
simulation with convolutional networks. In: Proceedings of the 34th International
Conference on Machine Learning (2017)

6. Shin, Y., Darbon, J., Karniadakis, G.E.: On the Convergence and generalization
of Physics Informed Neural Networks, vol. 02912, pp. 1–29 (2020)

7. Meng, X., Li, Z., Zhang, D., Karniadakis, G.E.: PPINN: Parareal physics-informed
neural network for time-dependent PDEs (2019)

8. Shazeer, N., et al.: The sparsely-gated mixture-of-experts layer, Outrageously large
neural networks (2017)

9. Bengio, E., Bacon, P.L., Pineau, J., Precup, D.: Conditional computation in neural
networks for faster models (2015)

10. Sergeev, A., Del Balso, M.: Horovod: fast and easy distributed deep learning in
TensorFlow (2018)

11. Feit, M.D., Fleck Jr., J.A., Steiger, A.: Solution of the schrödinger equation by a
spectral method. J. Comput. Phys. 47(3), 412–433 (1982)

34 P. Stiller et al.

12. Chen, Y., Lu, L., Karniadakis, G.E., Negro, L.D.: Physics-informed neural networks
for inverse problems in nano-optics and metamaterials. Opt. Exp. 28(8), 11618
(2020)

13. Michoski, C., Milosavljevic, M., Oliver, T., Hatch, D.: Solving irregular and data-
enriched differential equations using deep neural networks. CoRR 78712, 1–22
(2019)

	Large-Scale Neural Solvers for Partial Differential Equations
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Physics-Informed Quantum Harmonic Oscillator
	3.2 GatedPINN

	4 Results
	4.1 Approximation Quality
	4.2 Domain Decomposition
	4.3 Scalability and Power Draw
	4.4 Discussion

	5 Conclusion
	References

