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Abstract. Accurate simulation of wave motion for the modeling and
inversion of seismic wave propagation is a classical high-performance
computing (HPC) application using the finite difference, the finite ele-
ment methods and spectral element methods to solve the wave equations
numerically. The paper presents a new method to improve the perfor-
mance of the seismic wave simulation and inversion by integrating the
deep learning software platform and deep learning models with the HPC
application. The paper has three contributions: 1) Instead of using tradi-
tional HPC software, the authors implement the numerical solutions for
the wave equation employing recently developed tensor processing capa-
bilities widely used in the deep learning software platform of PyTorch. By
using PyTorch, the classical HPC application is reformulated as a deep
learning recurrent neural network (RNN) framework; 2) The authors cus-
tomize the automatic differentiation of PyTorch to integrate the adjoint
state method for an efficient gradient calculation; 3) The authors build a
deep learning model to reduce the physical model dimensions to improve
the accuracy and performance of seismic inversion. The authors use the
automatic differentiation functionality and a variety of optimizers pro-
vided by PyTorch to enhance the performance of the classical HPC appli-
cation. Additionally, methods developed in the paper can be extended
into other physics-based scientific computing applications such as com-
putational fluid dynamics, medical imaging, nondestructive testing, as
well as the propagation of electromagnetic waves in the earth.
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1 Introduction

Physical simulation and inversion are classical scientific computing applications
to discover the physical phenomenon and reveal the underlying properties. The
simulation solves the partial differential equations (PDE) that governs the phys-
ical phenomenon using numerical approximation methods, while the inversion
applies the gradient-based optimizations to find the underlying properties by
minimizing the observed data and the simulated results. The entire process takes
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significant computing resources to achieve the satisfied accuracy. However, the
inverse problem is naturally challenging since it is ill-posed and nonlinear for
most cases.

Recent advances in high-performance tensor processing hardware and soft-
ware are providing new opportunities for accelerated linear algebra calculations
as used in machine learning, especially for deep learning neural networks, that
contributes significantly to the success of data science. Such calculations are
also at the heart of many simulations of physical systems such as wave propa-
gation. The use of tensor processing in neural networks, with its need for back-
propagation through multi-layered networks, has led to capabilities for automatic
differentiation [1] for gradient calculations in deep learning software.

Motivations: The motivations of the work have twofold. The first one is to
understand the new deep learning software package such as PyTorch and Ten-
sorFlow, and their capacity of solving a scientific computational problem. Espe-
cially, we are interested in how to model the traditional partial differential equa-
tions (PDEs) used in the scientific computational problem with a deep learning
model. The other is to study how to integrate the machine learning models that
are data-driven into the scientific computational model that are physics-driven.
The differentiable programming has the potential to smoothly integrate them
together with a global optimization. The authors believe the study will lead to
more interesting research findings in the topic of Scientific Machine Learning
(SciML) and to find an efficient way to combine the power of these two different
methods to facilitate scientific discovery.

In this paper, we study how to use the tensor-based machine learning soft-
ware to formulate the physical simulation and to compute the gradients for
optimizations to solve the inverse problem. We use the seismic wave propaga-
tion simulation and the Full Wave Inversion (FWI) as the physical case study.
We have adapted the techniques of others in this area of wave propagation [2,3]
to demonstrate how direct finite difference integration can be implemented via a
deep learning software platform, allowing the gradients calculated by automatic
differentiation to be used for the FWI of seismic reflection survey data as an
augmentation to the well-known PySIT [4] seismic research platform.

We summarize the paper’s contributions in the following:

i) We formulate the PDE solver in the seismic forward model using the Recur-
rent Neural Network (RNN) implemented with the deep learning software
package PyTorch, which allows us to take advantages of the tensor process-
ing software and its accelerator implementation.

ii) We apply the automatic differentiation implemented in PyTorch to solve the
seismic inverse problem to uncover the earth’s interior physical properties.

iii) We improve the automatic differentiation efficiency by creating a hybrid
back propagation method with the adjoint-state method to calculate the
gradients.

iv) We implement an AutoEncoder network to reduce the dimensions of the
inverted parameters to argument the convergence process and get more
accurate results for the ill-posed problem.
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2 Wave Equations and RNN

2.1 'Wave Equations

The wave motion is governed by physical rules that can be expressed in the
following partial differential equation (PDE) (1) and the boundary conditions
(2) and (3). We use the 1D scalar wave equation for simplicity purpose in this

paper:
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where c(x) is the spatial velocity distribution, u(z, t) is the wave field distribution
in space and time, and f(z,t) is the energy source distribution in space and time.
The Eq. (1) can be solved numerically using a finite difference approximation:

u(x — Az, t) — 2u(z, t), +u(x + Az, t)

f(xat) = - A2
1 w(z,t — At) — 2u(z, t) + u(z, t + At) )
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After factoring, the Eq. (4) can be expressed as

u(z,t + At) = f(x,t)P A2 + (2u(x,t) — u(z,t — At))
At ()

+C2P(u(x — Az, t) — 2u(x,t) + u(z + Az, t))

x
which shows that the next wave field in time u(z,t+ At) can be calculated based
on the current and prior wave fields, as well as spatial neighbors in the current
wave field. The wave motion simulation follows the time sequence to produce
the next state based on the prior ones, which is similar to the Recurrent Neural
Network (RNN) in deep learning to model a time sequence function.

2.2 Recurrent Neural Network

Recurrent Neural Network (RNN) is used to model the pattern in a sequence of
data, mostly in time sequence. In recent years, RNN and its variants have been
applied successfully to problems such as speech recognition, machine translation,
and text-to-speech rendering. It has an internal cell that repeatedly processes an
input, carries a hidden state, and produces an output at each step. The RNN cell
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can be designed to be simple or complex to model a problem with a forgettable
memory mechanism (Long Short-Term Memory (LSTM) [5]) or/and a gating
mechanism (Gated Recurrent Unit (GRU) [6]).

© oo

Wx Wx Wx
(a) A simple RNN Model (b) An unrolled simple RNN Model

Fig. 1. A Simple RNN Model (a) with feedback loop, and (b) with loop unfolded

Figure 1(a) shows a typical RNN structure that repeatedly takes an input,
updates its hidden state, and produces an output at every step. The RNN model
can be unfolded as shown in Fig. 1(b) that learns the recurrence relationship from
a sequence of data. The hidden state h; remembers the prior state of the process
and is updated at each step. The hidden state enables RNN to learn the temporal
relationships among the inputs since most of the time sequence data do contain
temporal patterns. LSTM allows RNN to forget long-term relationships built up
in the hidden state and emphasizes the short-term relationships, which can be
useful for many cases.

A simple RNN can be expressed in the Eq. (6):

hy = opn(Whae + Wrhe—1 + by)

yn = 0y (Wyhe +b,) (©)
where x; is the input, h; is the hidden state, W is the weights, b is the bias, and
o is the activation function.

Looking back to the Eq. (5), there are two hidden states u(z,t) and u(x,t —
At) if we can restructure the finite difference method using an RNN. There is
also a spatial stencil relationship of neighboring velocity distribution. We define
a new function F' with input of f(z,t), two hidden states u(z,t) and u(z,t — 1),
and the constant velocity distribution c:
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F(f(x,t),u(z,t),u(z,t —1),¢)

= f(x,t) P A% + 2u(x,t) — u(z, t — 1)) (7)
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Then, the Eq. (5) can be restructured as an RNN format:

hiyr = U(F(f(t)v h(t), h(t - 1),0))
Y41 = P(hes1)

+

(8)

where P is the projection function to get the sample of a trace from a receiver.
The Eq. (8) is then a non-learnable, deterministic physical solution represented
as the deep learning RNN model. Figure2 shows the RNN model we designed
that solves the wave equation with four inputs f(x,t), h(t), h(t — 1), and ¢, the
velocity distribution which is constant in the equation. The output y; is the trace
sample of a receiver at each time step.

(h1) Lhn P(ht+1)
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hi=F(fhoh1,C) h=F(fhi,heC) | hy hea [Pea=F(EheheC) | he
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Fig. 2. A RNN model for wave equation

o5

2.3 PyTorch RNN Implementation

The wave equation RNN model we designed in Fig.2 enables us to utilize the
deep learning software platform to solve the wave equations. The benefits of using
a deep learning model to represent an HPC application include: (1) we will be
able to leverage the HPC implementation of the deep learning model exploiting
the advantages of GPUs/multicores and vectorization for better performance;
(2) have an automatic gradients calculation using the built-in automatic differ-
entiation package in deep learning; (3) utilize the variety of built-in optimizers
to apply the gradients to find the global/local optimums; (4) use the data- and
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model- parallelism framework implemented in deep learning package to run the
application on a HPC cluster.

The following shows a code snippet of our RNN-similar implementa-
tion of wave equation using PyTorch. There are two classes derived from
torch.nn.Module for RNN cell and RNN driver respectively. We called them
Wave_PGNNcell and Wave_Propagator in our code. The Wave_PGNNcell imple-
mented a cell function in RNN that computes the wavefield at a time step. The
Wave_Propagator iterates over all time steps and takes the Ricker source wave-
form sample as the input at each time step. The hidden state (self.H) contains
the next and current wavefields, which are fed into the cell for the next iteration.
The trace is collected by projecting the current wavefield based on the receiver
location. The program returns the simulated wavefield and sampled trace at the
end.

class Wave PGNNcell(torch.nn.Module):
def forward(self , H, src ):
uC,uP = [ H[0], H[1] ]

return [uN,uC]

class Wave_Propagator(torch.nn.Module):

self.cell = Wave_.PGNNcell(C, config)

def forward(self):
us = [] # list of output wavefields
traces = []
rcv = self.rcvrs

for it in range(self.nt):
self . H = self.cell.forward(self.H, self.ws[it])
us.append( self .H[0].detach ().numpy() )
# Extract wavefield sample at each receiver
samps = rcv.sample( self . H[0].clone() )
traces.append( samps )

trc = torch.stack(traces ,dim=1)

return us, trc

2.4 Seismic Wave Simulation

For seismic wave simulation, we use our RNN model to simulate the acoustic
wave propagation for the scalar wave equation. We create a “true” synthetic
model and an initial model, which can be a smoothed version of the true model
or some other separately chosen function. We use the Ricker wavelet as a wave-
form for one or more energy sources (shots) and create an array of receivers for
collecting traces. We assume the constant density in these models.

As we stated earlier, one benefit of using deep learning software is to take
advantage of its multiple CPUs and GPUs implementation. We only need to spec-
ify which devices the code will operate on and define tensors to these devices. All
remaining device-specific implementation and optimizations are done internally
by PyTorch. We do not need to use CUDA or OpenACC to port the code to
these devices.

Another benefit is to use the data-parallelism implemented in PyTorch. We
can parallelize the code by the number of the sources/shots to run the code on
multiple GPUs and distributed clusters.
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In our implementation, we use PyTorch! 1.5 to build the RNN model.
PyTorch is an open source machine learning framework developed by Face-
book by merging Torch and Caffe2, which supports a variety of hardware plat-
forms including multiple CPUs, GPUs, distributed systems, and mobile devices.
Besides the machine learning and deep learning functions, one unique feature
of PyTorch is that it contains a just-in-time compiler to optimize the code if it
complies with TorchScript, which is a subset of Python. It has a built-in auto-
matic differentiation package for calculating derivatives, as well as a distributed
training module to train a model on a HPC cluster. PyTorch has both Python
and C++ frontends.

Figure 3 shows a 1D seismic Velocity Inversion case applying our physics-
ruled RNN implementation. The Fig. 3(a) shows a true synthetic velocity model
and an initial model; Fig. 3(b) shows the inverted model comparing with the
true model (up) and a slightly smoothed final inverted model (down); Fig. 3(c)
shows the comparison of the true traces and the inverted traces; and Fig. 3(d)
shows the wavefield on how the seismic wave propagates with respect to space
and time.
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Fig. 3. Applying RNN for 1D seismic velocity inversion

! https://pytorch.org/.
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The 1D inversion experiment finds a close-to the true model solution after 100
iterations. We use Adam optimizer [7] with L2 regularization. We are currently
working on 2D cases by revising PySIT package. We continue performing more
testing cases to evaluate the performance with both data and model parallelism
provided by PyTorch on a CPU cluster and multiple GPUs.

3 Differentiable Programming

3.1 Awutomatic Differentiation and Adjoint-State Method

The automatic differentiation (AD) is also called algorithmic differentiation that
calculates the derivatives of any arbitrary differentiable program. Unlike using
the numerical differentiation of the adjoint state method that is an approxi-
mation to calculate the derivatives, the automatic differentiation returns the
exact answer of the derivatives, though subject to the intrinsic rounding error.
Machine learning software such as TensorFlow and Pytorch all have the built-in
implementation of AD as the core functionality of backpropagation to optimize
machine learning models. Accurate gradients are critical to the gradient-based
optimizations used in both scientific computing and machine learning.

In order to calculate the derivatives of any differentiable programs, AD needs
to store all operations on the execution path along with the intermediate results.
It then propagates derivatives backward from the final output for every single
operation connected with the chain rule. For large scale application, AD faces
the challenge of meeting the demands of fast-growing storage in proportion to
the executed operations. Furthermore, the individual derivative function for each
operation also slows down the computation with intrinsic sequential execution.
More work needs to be done if AD can be directly applied to a real scientific
application.

Computationally expensive scientific applications typically use the adjoint
state method to calculate the gradient of a function with much better compu-
tation efficiency, although it is a numerical approximation. In FWI, the adjoint
state method calculates the derivative of a forward function J(m) that depends
on u(m). The forward function J can be defined using h, as following [8]:

J(m) = h(u(m),m) 9)

where m is the model parameter, which belongs to the model parameter space
M and u belongs to the state variable space, U. The state variables, u follow
the state equations outlined with the mapping function, F, which is also known
as the forward problem or forward equation [8]:

F(u(m),m) =0. (10)

The mapping function F is mapping from U * M to U and is satisfied by the
state variable w. If the condition F(u, m) = 0 is satisfied, the state variable u
becomes a physical realization. Then, the adjoint state equation can be given as
following, where X is the adjoint state variable and @ is any element of U [8]:
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This adjoint-state gradient calculation involves computing the reverse-time
propagated residual wavefield, combining with the saved forward-propagated
wavefield snapshots at specified time intervals to provide adjustments to the
medium properties (the gradient) at each spatial mesh point. In summary, the
forward propagation computes data observations representing the response of
the model, and the residual between the model response and actual observed
data is backward propagated and combined with the forward model response to
compute adjustments to the current model estimate.

Intervening in the calculation of the gradient in this manner allows for man-
agement of the required computational resources by saving the forward wave-
fields only as often as numerically required, explicitly managing data resources
through staging to disk or check-pointing as needed, implementing shot-level
parallelism, and other specially tailored techniques.

3.2 Extended Automatic Differentiation

A difficulty with the auto-differentiation (AD) procedure is that memory require-
ments for the back-propagation graph can become excessive, as noted by
Richardson [2]. Applying chain-rule differentiation on elemental network nodes
over thousands of RNN time steps for a large mesh of physical parameter val-
ues is a reasonably-sized task for 1D problems, but the graph quickly becomes
intractable for 2D and 3D models. This issue renders impractical the use of pure
AD for such model inversion problems.

In order to solve the problem, we extended the AD backward process using
PyTorch AD workflow to integrate the adjoint-state method for the more efficient
gradient calculation. In PyTorch, we can customize the AD workflow by provid-
ing a backward function to calculate the gradients of any function. We need to
pass the required parameters of the forward function, the model parameters and
loss function to allow the backward function to pick up these parameters for the
adjoint-state calculation.

Control over this auto-differentiation process is available through use of a
PyTorch extension to the Autograd feature pictured conceptually in Fig.4,
wherein the RNN layer of the network can be replaced by a forward propa-
gation loop and corresponding adjoint back-propagation loop for an equivalent
gradient calculation provided by the user. This alternative gradient calculation
can take advantage of well-known techniques in seismic inversion processing,
enabling existing performance enhancements to be applied using the extended
PyTorch capability for specially designed back-propagation.

In the present case, the physical medium properties to be optimized are pro-
vided to the “forward” wave propagation problem implemented using the pub-
licly available PySIT seismic inversion toolkit [4], creating a simulated seismic
response. The corresponding “backward” propagation consists in using the resid-
ual wavefield represented by the difference between the simulated data and the
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Fig. 4. Adjoint gradient: Automatic differentiation vs. Adjoint gradient calculation.
Differentiation respect to model parameters are replaced by gradients from adjoint
state in the backward automatic differentiation.

observed seismic trace data from the corresponding actual field data recording
(or recordings from a “true” model in our synthetic studies), and implement-
ing the “adjoint-state” solution to provide the required gradient of the model
parameters. Other implementations of wave propagation solutions may also be
used in this framework, such as spectral-element methods [9] for 2D, 3D and
spherical 3D wave propagation.

The beneficial end result is that traditional adjoint-state solution methods
are incorporated into the AD workflow, so that seismic inversion calculations can
be integrated within the broader deep learning process with efficient calculation.

4 Seismic Inversion

4.1 Seismic Inversion

Seismic Inversion [10] is the method to reconstruct the earth subsurface image
by inverting seismic data observed via the multiple distributed sensors on the
surface. It is typically implemented using the adjoint state method [8] to cal-
culate the gradients. As described in Sect.2 and Sect. 3, by reconstructing the
forward problem using deep learning software, the seismic inversion problem can
be solved by the automatic differentiation package, a variety of optimizers pro-
vided by PyTorch, and a customized loss function. The automatic differentiation
package in PyTorch implements the methodology of automatic differentiation
by recording all the forward operations in sequence and performing backward
derivative computation based on the chain rule.

Figure 5 shows the workflow of seismic inversion. The initial model MO0 is a
guess of the true model M that needs to be inverted. In these early experiments
using several shots of a synthetic seismic reflection survey over a small 2D Earth
model, we used for convenience an initial model guess that is a smoothed version
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Fig. 5. The full waveform inversion workflow

of the true model. The seismic traces are either observed via distributed sensors
on top of the earth surface in the real-world application or are simulated using
the seismic wave forward function in this paper. The residual is obtained by
comparing the synthetic data and observed data. The gradient 63—]3[ is calculated
based on the residual with respect to the initial model. The gradients are used
by a gradient-based optimizer to update the initial model to get a step close
to the real model. The entire process ends when the initial model and the true

model are converged or exceeded the specified number of iterations.

4.2 AutoEncoder for Dimensionality Reduction

The seismic inversion process needs to uncover the physical properties at every
point represented in the geological space, which quickly leads to a large number
of model parameters to optimize in the traditional FWI process. The nature of
the nonlinear and ill-posed inverse problem often falls into the local minimum
traps. It is a sound solution to apply the dimensionality-reduction technique to
reduce the optimization parameters to improve the optimization accuracy by
engaging with machine learning models.

Since we have customized the automatic differentiation workflow by integrat-
ing the adjoint state method for the FWI gradients (described in Sect. 3), it is
now feasible to integrate the machine learning models into the FWI workflow
and keep the program differentiable. Since the AutoEncoder A(z) is differentiable
and the forward model F(z) is differentiable, the composition of the F(A(x))
is differentiable. We choose the AutoEncoder as the dimensionality-reduction
method and apply it before the forward model as shown in Fig. 6.

The AutoEncoder contains 743,938 parameters as shown in Fig. 7a and b. The
AutoEncoder is an unsupervised learning model that compresses the information
representation of the input data to a sparse latent variable with less dimensions
at the middle of the encoded layer. It then reconstructs the data from the encoded
latent variable to the original or enhanced data. The compression process is
called encoder and the reconstruction is called decoder. The encoder learns how
to compress the input data and describes it with the latent variable, while the
decoder learns how to reconstruct the data from the latent variable.
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Fig. 6. The full waveform inversion workflow

Layer (type) Output Shape Param #
Conv2d-1 [-1, 64, 30, 40] 640
RelU-2 [-1, 64, 30, 40] 0
Conv2d-3 [-1, 128, 15, 20] 73,856
RelLU-4 [-1, 128, 15, 20] 0
Conv2d-5 [-1, 256, 8, 10] 295,168
Tanh-6 [-1, 256, 8, 10] 0
Conv2d-7 [-1,1,8,10] 2,305
ConvTranspose2d-8  [-1, 256, 15, 20] 2,560
RelU-9 [-1, 256, 15, 20] 0
ConvTranspose2d-10  [-1, 128, 30, 40] 295,040
RelU-11 [-1, 128, 30, 40] 0
ConvTranspose2d-12  [-1, 64, 60, 80] 73,792
RelLU-13 [-1, 64, 60, 80] 0
ConvTranspose2d-14  [-1, 1, 60, 80] 577

Total params: 743,938

Trainabls : 743,938
(a) The AutoEncoder Network Structure yentramssle params:o

(b) The AutoEncoder Model Parameters

Fig. 7. Traditional seismic velocity inversion

We start the AutoEncoder training by generating a large number of random
seismic velocity models. In this work, we are using some simple and flat velocity
layers representing the velocities of different earth interiors including water and
rocks. Specifically, these models contain one or more low velocity layers in the
middle or bottom of these layers that is challenging for the low velocity inversion.
All of these models have the fixed dimensions of 60 x 80. As indicated in Fig. 7a,
the AutoEncoder has two components: a encoder and a decoder. The encoder
compresses the input model with dimension of 60 x 80 to an encoded latent
variable with dimension of 8 x 10, which is 1/60 of the original dimension. The
latent variable is then decompressed by the decoder to restore to its original
dimension.

The loss function we used to train the AutoEncoder is the mean-square-error
(MSE) loss and the optimizer is Adam with learning rate of 0.001. The batch
size used is 128. The loss values during the training process is shown in Fig. 8.
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AutoEncoder Training Accuracy vs. Number of Training Epochs

10t —— Training

Training Accuracy
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Fig. 8. The autoEncoder training loss

Figure 6 shows the AutoEncoder enhanced FWI process, where the AutoFEn-
coder is inserted before the forward function simulation starts. Note that the
encoder is only applied to the first iteration to get the encoded latent variable.
For the rest of optimization iterations, the decoder is applied to decompress the
encoded latent variable to get a new velocity model with the original dimension.
During the gradient-based optimization process, the gradients are calculated
with respected to the encoded latent variable, instead of the original model,
which reduced the dimensionality of the optimization search space to 1/60. We
use the MSE loss and Adam optimizer during the process.

4.3 Results

PyTorch has a list of optimizers including Adam [7], RMSprop [11], stochastic
gradient descent (SGD), Adadelta [12], Adagrad [13], LBFGS, and their vari-
ants. The learning rate, scheduler and regularizations can be specified to fit
different optimization problems. There are also multiple regression and classifi-
cation loss functions implemented in PyTorch. All of these packages provide a
rich environment to solve inverse problems.

In our implementation, we have demonstrated how to invoke the extended
automatic gradient calculation for the velocity model. We choose the Adam
optimizer and the MSE loss function to compare the misfit of the simulated
traces and observed traces after each iteration of the forward model. The partial
derivative (the gradient) of the loss function with respect to the initial model
and the encoded latent variable is calculated by the automatic differentiation
process, which is applied by the optimizer to minimize the misfit. These iterations
gradually find an approximation of the true velocity distribution.

Figure9 and Fig.10 show the differences of the traditional FWI and the
AutoEncoder enhanced FWT results. Fig. 9(a) shows the initial model, the true
model, and the inverted model; the loss graph Fig.9(b) shows the loss values
(at different scales) after each optimization iteration, and Fig.9(c) shows the
difference between the inverted model and the initial model (top), as well as
the difference between the inverted model and the true model. It appears that
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Fig. 9. Traditional seismic velocity inversion

the traditional FWI does not optimize well in the low velocity layer case after
40 iterations ended with a high loss value, which falls into a local trap. The
AutoEncoder-enhanced FWI discovers the low velocity layer very well and con-
tinues to optimize the misfit for all 100 iterations. The difference graphs also con-
firm that the AutoEncoder case identifies all layers well showing less structured
misfits. Noticeably, there are also less artifacts introduced in the AutoEncoder
enhanced FWI compared with the traditional FWI.

As described in Sect. 3, the automatic differentiation provided by the PyTorch
software does not provide sufficient efficiency to solve the FWI 2D problem. The
gradients calculated for the whole program takes too long and too much space
to store them. We use the hybrid method describe in Sect. 3.2 to overcome the
problem by incorporating the adjoint state method. As the result, the gradient
calculation using the hybrid approach achieves both accuracy and efficiency,
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Fig. 10. The AutoEncoder enhanced seismic velocity inversion

which is feasible to be used for a large scale scientific computation problem
integrating with machine learning models.

5 Discussion

There are a few of points that worth noting for the work. The first is that the
automatic differentiation is key for differentiable programming, which can bridge
the physics-based scientific computing with the machine learning (ML) /artificial
intelligence (AI) technologies. ML/AI methods do not have physics principles
built in that may create an infeasible solution given the fact that most of the sci-
entific inverse problems may be ill-posed. In our prior work [14], the convergence
of ML with a scientific application without differentiable programming may not
find a generalized solution since optimizations of the two different methods are
disconnected.
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The second point we would like to make is that the automatic differentiation
needs additional improvements to make it feasible to other applications. In our
method, we integrate the adjoint-state method to make it feasible to solve a large
case, however the solution is an approximation. If the automatic differentiation
method can be more memory-efficient and parallelizable, it can be much more
useful to compute the exact gradients for the large complex problems.

The last point is the deep learning model AutoEncoder requires a revisit
to reduce the loss during decoding. Although it reduces the dimension by com-
pressing the input data into a sparse latent variable, the reconstruction is not
lossless. There are some errors introduced during the reconstruction process that
may hinder the optimization process. There is a trade-off to take into the con-
sideration when designing the convergence of ML/AT with scientific computing.
The good news is that there are many options to integrate them waiting for us
to explore.

6 Conclusion and Future Work

We have successfully demonstrated two case studies of restructuring the wave
equation using finite difference method in a deep learning RNN model framework
and an AutoEncoder enhanced FWI process. The benefits of the work include
fully utilizing the high-performance tensor processing and optimization capabil-
ities implemented in the deep learning package PyTorch, as well as the deep
integration of machine learning models with the inverse problem. By integrating
an HPC application with a deep learning framework with differential program-
ming, we can explore a large number of combinations of machine learning models
with physical numerical solutions to achieve better accuracy and efficiency.

Acknowledgment. This research work is supported by the US National Science Foun-
dation (NSF) awards ##1649788, #1832034 and by the Office of the Assistant Secre-
tary of Defense for Research and Engineering (OASD(R&E)) under agreement number
FA8750-15-2-0119. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the US NSF, or the Office of the Assistant Secretary of Defense
for Research and Engineering (OASD(R&E)) or the U.S. Government. The authors
would also like to thank the XSEDE for providing the computing resources.

References

1. Baydin, A.G., Pearlmutter, B.A., Radul, A.A., Siskind, J.M.: Automatic differ-
entiation in machine learning: a survey. J. Mach. Learn. Res. 18(1), 5595-5637
(2017)

2. Richardson, A.: Seismic full-waveform inversion using deep learning tools and tech-
niques (2018). https://arxiv.org/pdf/1801.07232v2.pdf


https://arxiv.org/pdf/1801.07232v2.pdf

10.
11.
12.
13.

14.

Seismic Simulation, Inversion and Deep Learning 19

Hughes, T.W., Williamson, I.A.D., Minkov, M., Fan, S.: Wave physics as an analog
recurrent neural network (2019). https://arxiv.org/pdf/1904.12831v1.pdf
Hewett, R.J., Demanet, L., The PySIT Team: PySIT: Python seismic imaging
toolbox (January 2020). https://doi.org/10.5281/zenodo.3603367

Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735-1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recur-
rent neural networks on sequence modeling (2014)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
Plessix, R.-E.: A review of the adjoint-state method for computing the gradient
of a functional with geophysical applications. Geophys. J. Int. 167(2), 495-503
(2006). https://doi.org/10.1111/j.1365-246X.2006.02978 x

Tromp, J., Komatitsch, D., Liu, Q.: Spectral-element and adjoint methods in seis-
mology. Commun. Comput. Phys. 3(1), 1-32 (2008)

Schuster, G.: Seismic Inversion. Society of Exploration Geophysicists (2017).
https://library.seg.org/doi/abs/10.1190/1.9781560803423

Ruder, S.: An overview of gradient descent optimization algorithms (2016)

Zeiler, M.D.: ADADELTA: an adaptive learning rate method (2012)

Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159 (2011)

Huang, L., Polanco, M., Clee, T.E.: Initial experiments on improving seismic data
inversion with deep learning. In: 2018 New York Scientific Data Summit (NYSDS),
August 2018, pp. 1-3 (2018)


https://arxiv.org/pdf/1904.12831v1.pdf
https://doi.org/10.5281/zenodo.3603367
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1111/j.1365-246X.2006.02978.x
https://library.seg.org/doi/abs/10.1190/1.9781560803423

	Improving Seismic Wave Simulation and Inversion Using Deep Learning
	1 Introduction
	2 Wave Equations and RNN
	2.1 Wave Equations
	2.2 Recurrent Neural Network
	2.3 PyTorch RNN Implementation
	2.4 Seismic Wave Simulation

	3 Differentiable Programming
	3.1 Automatic Differentiation and Adjoint-State Method
	3.2 Extended Automatic Differentiation

	4 Seismic Inversion
	4.1 Seismic Inversion
	4.2 AutoEncoder for Dimensionality Reduction
	4.3 Results

	5 Discussion
	6 Conclusion and Future Work
	References




