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Chapter 2
Mechanisms of Lung Cyst Formation

Debbie Clements, Roya Babaei-Jadidi, and Simon R. Johnson

�Introduction

Lung cysts are air-filled spaces with clearly defined walls of less than 2 mm sur-
rounded by lung parenchyma. Cystic lung diseases are characterised by tens to 
many thousands of intrapulmonary cysts which may range in size from millimeters 
to centimeters. Whilst cysts are usually described as round, such as in lymphangi-
oleiomyomatosis (LAM), in other conditions, including pulmonary Langerhans cell 
histiocytosis (PLCH), cysts are irregularly shaped and arise from airways rather than 
in the parenchyma. In this chapter, we shall describe the current thinking around 
mechanisms of cyst formation in four representative diseases, LAM, Birt-Hogg-Dubé 
syndrome (BHD), PLCH and protein deposition-related cystic lung disease. Whilst 
the initiating mechanism of pathologic destruction in LAM, BHD and PLCH is a 
consequence of dysregulation of specific molecular pathways driven by monogenic 
mutations, the mechanisms of parenchymal destruction in complex diseases includ-
ing COPD have been more extensively studied and may help inform our understand-
ing of mechanisms of parenchymal destruction in rare cystic lung diseases.

The lungs are constantly exposed to injurious inhaled stimuli throughout life. 
Loss of lung architecture by abnormally activated extracellular matrix-degrading 
proteases is considered to contribute to lung parenchymal destruction in a number 
of diseases including alpha 1 antitrypsin deficiency (A1ATD) and COPD. Whereas 
unregulated neutrophil elastase activity is the likely cause of degradation of elastin 
containing alveolar septae in A1ATD, the relationship between protease expression, 
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protease activation and parenchymal destruction in other lung diseases is less clear 
[1]. Further, inhibition of proteases in lung diseases, including metalloproteinase 
inhibition in COPD and doxycycline in LAM, has been largely unsuccessful as 
a treatment modality. This is likely due to the complexity of protease substrate 
profiles and interactions in vivo. For example, despite assignment to the family of 
the matrix-degrading proteases, the substrate profile of the macrophage-derived 
protease matrix metalloproteinase-12 (MMP-12) implicated in COPD includes 
a greater number of innate immune proteins, coagulation factors and bioactive 
molecules in addition to extracellular matrix (ECM) substrates [2]. A proteomic 
analysis of protease substrates in the airways of patients with COPD shows that 
during exacerbations, proteases cleave hundreds of non-ECM substrates, includ-
ing a range of protease inhibitors, resulting in alterations in multiple protease 
classes and cleavage of multiple substrates [3]. Thus, inhibiting a single protease 
may have a large number of unpredictable and off-target effects.

Activation of proteases, reactive oxygen species and inflammatory pathways in 
response to a constant, low-level exposure to inhaled toxins and particles has the 
potential to cause lung injury. In healthy individuals, the resulting airway and alveo-
lar damage is countered by homeostatic and repair mechanisms. Lung parenchymal 
loss is likely to be the result of either a large insult exceeding the lung’s repair 
capacity, loss of protective and repair mechanisms or disease-related imbalance of 
injurious stimuli and repair mechanisms. Airway and alveolar progenitor/stem cells 
normally have the capacity to repair low-level insults caused by inhaled toxins. 
Repair mechanisms require the replication of alveolar or airway stem cells, includ-
ing alveolar type II cells, to replace damaged alveolar epithelial type I cells. Alveolar 
repair is associated with the activation of alveolar developmental programs associ-
ated with lung development, particularly including the Wnt and platelet derived 
growth factor receptor (PDGFR) alpha pathways [4]. The replicative capacity of all 
cells, including alveolar stem cells, is limited. Repeated cell division and the cumu-
lative burden of DNA mutations can predispose these cells to malignant transforma-
tion. Senescence, a mechanism which limits the absolute number of divisions made 
by a cell, not only protects against malignancies but also limits the capacity of tissue 
repair. Much of the current thinking around alveolar destruction in diseases includ-
ing COPD is focused around loss of repair mechanisms by the combined impact of 
cell senescence and aging limiting the lungs repair capacity [5]. Senescence may 
occur as a response to multiple stimuli, including multiple cell divisions (replicative 
senescence), inflammation, reactive oxygen species or genetic activation of spe-
cific molecular pathways including the mechanistic target of rapamycin (mTOR) 
pathway. When alveolar epithelial cell replacement programmes are functional, the 
presence of an intact ECM scaffold is required for alveolar cell differentiation, sur-
vival and hence normal tissue repair.

In parenchymal lung destruction, the balance between disease-related lung injury 
and the efficiency of repair mechanisms is likely to maintain a balance between 
health, over-exuberant repair leading to fibrosis and parenchymal destruction result-
ing in cystic lung disease. In complex diseases such as COPD, multiple damage and 
repair pathways interact with each other to cause parenchymal lung damage. In rare 
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diseases with a monogenic molecular etiology, disease mechanisms are likely to 
be more restricted to processes downstream of the molecular abnormality, such as 
mTOR activation in LAM and ERK activation in PLCH (Fig. 2.1).

�Mechanisms of Cyst Formation in Specific Diseases

�Lymphangioleiomyomatosis

Lymphangioleiomyomatosis (LAM) is a rare, multisystem disease that occurs 
predominantly in premenopausal women and involves the lungs and axial lym-
phatic system and is associated with the benign tumor angiomyolipoma [6]. It can 
occur sporadically (S-LAM) or in association with tuberous sclerosis complex 
(TSC-LAM).

The lungs and lymphatics of patients are infiltrated by smooth muscle-like ‘LAM 
cells’ leading to thin-walled pulmonary cysts and fluid-filled masses in the axial 
lymphatics [7]. Although LAM cells have a histologically benign phenotype, LAM 
is considered a low-grade malignant neoplasm by the World Health Organization 
(WHO). LAM cells can break away from the original lesion and spread (metastasize) 
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Fig. 2.1  Mechanisms of parenchymal damage in disease. Alveolar integrity in health is main-
tained by a balance between parenchymal injury and repair mechanisms. In diseases categorized 
by parenchymal destruction, including chronic obstructive pulmonary disease (COPD) or cystic 
lung diseases including pulmonary Langerhans cell histiocytosis (PLCH), Birt-Hogg-Dubé syn-
drome (BHD) or LAM, disease-related mechanisms result in parenchymal damage or impaired 
alveolar repair. In LAM, PLCH and BHD, specific molecular abnormalities result in primary 
derangement in specific processes, whereas polygenic/environmentally driven diseases such as 
COPD affect many injury and repair mechanisms simultaneously
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through the blood vessels or lymphatics [8] and can be detected in chylous fluid, 
blood and urine of patients [8]. The metastatic ability of the LAM cell was origi-
nally noted in patients with S-LAM, with identical TSC2 mutations in the lung 
lesions and angiomyolipomas, and is also supported by the recurrence of LAM in 
the female recipient after transplantation from male donors [9]. Loss of lung func-
tion in patients with LAM is highly variable. The mean decline in forced expiratory 
volume in 1 second (FEV1) is 120–140 ml per year; some progress rapidly, whilst 
others can remain stable for many years [10].

LAM is often misdiagnosed and confused with other respiratory conditions 
[11]. Pulmonary function tests (PFTs) usually show an obstructive defect which 
can be mistaken for COPD or asthma. In 2010, the European Respiratory Society 
(ERS) laid down guidelines for the correct diagnosis of LAM and categorization 
of patients into three groups of definite LAM, probable LAM, and possible LAM 
based on high-resolution computed tomography scan (HRCT), clinical history and 
presentation, including a high level of the ymphangiogenic vascular endothelial vas-
cular endothelial growth factor (VEGF-D) in the serum [12]. A recent study using 
unbiased serum proteomics identified that changes in vitamin D-binding protein 
(VTDB) and its gene, group-specific component (GC), are associated with LAM 
severity and survival [13].

Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase mem-
ber of the phosphoinositide 3-kinase (PI3K)-related kinase family. The protein 
is highly conserved from yeast to mammals [14]. mTOR is a component of two 
complexes: mTOR complex 1 (MTORC1) and mTOR complex 2 (MTORC2). 
mTOR complex 1 signalling regulates and promotes ribosomal biogenesis, pro-
tein synthesis, de novo lipid synthesis, nucleotide synthesis for DNA replication 
and proteasome-dependent proteolysis and suppresses catabolic pathways such 
as autophagy [15]. MTORC2 controls cell growth and survival by phosphorylat-
ing and activating PKA, PKG and other PKC protein kinases, including protein 
kinase B (AKT), which, when activated, facilitates proliferation, growth and cell 
survival [16].

Tuberous sclerosis complex (TSC) proteins 1 and 2 negatively control mTORC1. 
TSC is a heterotrimeric complex comprising TSC1 (hamartin), TSC2 (tuberin) 
and TBC1 domain family member 7 (TBC1D7) [17]. The protein complex is an 
upstream regulator of mTORC1, through GTPase-activating protein (GAP) for the 
Ras homolog enriched in the brain (Rheb) [18]. Mutations in the TSC1 and TSC2 
genes result in the accumulation of active Rheb-GTP, stimulation of mTOR and 
phosphorylation of S6 kinase and eukaryotic initiation factor 4E-binding protein 
which lead to increased translation, cell size and proliferation. TSC-LAM is caused 
by mutations in either TSC1 or TSC2 genes [19]. In patients with TSC-LAM, a 
germline mutation is present in the TSC1 or TSC2 gene; the second mutation in 
the other TSC allele occurs in somatic tissue (‘two-hit’ mechanism) [20]. Although 
TSC-LAM occurs almost exclusively in women, it was also reported in 13%–38% 
of men with TSC [21, 22], albeit with milder severity than in women [22]. LAM 
also occurs in the absence of TSC germline mutation, in a sporadic form, caused 
by a somatic mutation in the TSC2 gene [23] with the second hit occurring after 
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conception in somatic tissues [24]. The pulmonary manifestations of S-LAM and 
TSC-LAM are nearly indistinguishable, although patients with TSC-LAM tend to 
be identified earlier, due to increased recognition of the disease or screening and 
as a consequence with better lung function in comparison to S-LAM [25]. S-LAM 
has only been reported in one male patient so far, and TSC gene mutations were not 
found in the lung tissue [26].

The origin of the LAM cell is unknown; these spindle-shaped cells usually can be 
found in small nodules in the lung in cyst walls and lymphatics. LAM cells express 
markers of both smooth muscle, including α-smooth muscle actin, vimentin and 
desmin, and melanocyte lineages such as gp100, MART-1, CD63 and PNL2 [27]. 
Due to the expression of melanocytic markers, it has been postulated that LAM cells 
originate from the neural crest [27]. LAM cells express estrogen and progesterone 
receptors [28] and belong to the perivascular epithelioid cell (PEC) group of neo-
plasms [29]. The LAM tumor is a complex structure containing TSC null (TSC−/−) 
LAM cells and wild-type cells, including hyperplastic type II pneumocytes (posi-
tive for PE-10 or TTF-1 markers) lining the LAM nodules which appear to have api-
cal microvilli and cytoplasmic projections [30]. Another cell type present in LAM 
lesions is the lymphatic endothelial cell, mostly located in intra-LAM lesion lym-
phatic channels [31]. It was once thought that the stromal cells within LAM nodules 
were primarily composed entirely of a single clone of LAM cells [32]; however, 
it is now believed that the predominant stromal cell is a wild-type fibroblast with 
functional TSC proteins [29] (Fig. 2.2). These LAM-associated fibroblasts (LAF) 
can be recruited by LAM-cell-derived chemokines, including stromal-cell-derived 
factor (SDF/CXCL12) and its cognate receptor, CXC chemokine receptor type 4 
(CXCR4). The LAM cell/LAF association protects both cell types from apopto-
sis [29]. As in other ‘tumor microenvironments’, inflammatory cells are present in 
LAM nodules [33] including macrophages and mast cells [33, 34].

LAM is characterized by progressive lung cyst formation and lymphatic abnor-
malities. Cystic remodelling of the lung parenchyma leads to pneumothorax and 

Fig. 2.2  LAM nodules contain multiple cell types. LAM nodules, identified by expression of 
α-smooth muscle actin (α-SMA), are composed of multiple cell types expressing fibroblast-
specific protein (FSP), lymphatic endothelial cell markers (podoplanin), melanoma antigens 
(PNL2) on LAM cells and dysregulated mTOR signalling shown by phospho-S6 (pS6) staining
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respiratory failure [5]. Lymphatic obstruction leads to chylous pleural effusions, 
chyloptysis and ascites [6, 35]. The mechanism of cyst formation is not fully 
understood, although the infiltrated LAM cells produce degrading proteases, 
including matrix metalloproteinases (MMP), which have been implicated in cyst 
formation [27]. MMPs are a family of zinc-dependent endopeptidases which were 
initially classified by their role in the basement membrane and ECM degradation 
during normal tissue turnover and growth [36]. The MMPs also have roles in 
the regulation of growth factors, chemokines and their ligands, inflammation and 
angiogenesis [37]. LAM nodules express MMP-2, MMP-9, MMP-1, MMP-13 
and MMP-14 and have a reduced level of the MMP inhibitors Tissue Inhibitor 
of Metalloproteinases (TIMPs) 1 and 3 [38, 39]. Women with LAM have higher 
levels of MMP-2 in tissue and higher levels of MMP-9 in serum and urine than 
control women. However, two small clinical trials of the tetracycline antibiotic, 
doxycycline, an inhibitor of several MMPs, showed no benefit on lung function 
despite suppression of urinary MMP-9 [40–42], suggesting that doxycycline is 
not a suitable drug to target MMPs in LAM (or that other proteases are involved 
in the lung destruction) [42]. The serine protease plasmin is also increased in 
LAM lung, and its inhibitor, plasminogen activator inhibitor (PAI)-1, is reduced, 
as a consequence of high expression of serum response factor (SRF), leading to a 
proproteolytic environment [43].

Expression of another protease, cathepsin K, has been reported in LAM 
lesions and together with MMPs could contribute to degradation of collagen and 
elastic fibers [44]. Cathepsin K is a lysosomal cysteine protease predominantly 
expressed in osteoclasts as a bone-remodelling protease [45] and, unlike the 
MMPs and plasmin, is not present in normal lung parenchyma, but it is strongly 
expressed in LAM lung nodules [46]. Cathepsin K is also expressed in other 
PEComas [44], basal-like breast cancers [47] and tumor stromal fibroblasts and 
has been linked with tissue destruction in animal models of emphysema [48]. 
Cathepsin K is a potent elastase and collagenase but also selectively processes 
the inflammatory chemokines CXCL1, CXCL2, CXCL3, CXCL5 and CXCL8 
which contain the ELR motif, enhancing their chemotactic activity and suggest-
ing a potential role in inflammatory cell recruitment [49]. Cathepsin K is pro-
duced as a 329 amino acid proenzyme (pro-cathepsin K), which is cleaved into a 
215 amino acid active form. This cleavage event requires low pH and generally 
occurs in the bone resorption lacunae [50]. In the cell, this usually takes place 
in lysosomes [51]. In tumor stroma, pro-cathepsin K activation is dependent on 
an acidic extracellular pH generated by membrane proton transporters, includ-
ing carbonic anhydrases (CAs), vacuolar-type H+-ATPases and sodium bicar-
bonate co-transporters [52]. In vitro, TSC2−/− cells acidify their environment 
in an mTOR-dependent fashion by utilizing aerobic glycolysis (also known as 
Warburg metabolism), which generates lactic acid, and increasing hydrogen ion 
exporter expression, resulting in low extracellular pH and cathepsin K activa-
tion [46]. Thus cell-cell interactions in the LAM microenvironment generate a 
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proteolytic environment [46]. Inhibition of cathepsin K or extracellular acidifi-
cation may therefore represent a potential therapy for LAM. In bone and LAM 
lung, cathepsin K expression is partially mTOR dependent [53], raising the pos-
sibility that inhibition of mTOR and cathepsin K may have synergistic effects on 
lung destruction in LAM [46].

Whilst the mechanism underlying lung cyst formation in LAM is not completely 
understood, various disease-associated factors suggest that, in addition to mTOR 
activation, sex steroids and wild-type cells – including infiltrating immune cells – 
are involved in cyst formation. The gender and age prevalence of the disease implies 
the involvement of female hormones in LAM development and progression. Large 
epithelioid LAM cells around the periphery of nodules express progesterone and 
estrogen receptors [38]. High levels of estrogen during pregnancy [10] and in those 
using hormone replacement treatment [54] are associated with disease progression 
in LAM, and lower estrogen levels postmenopausally are associated with slower 
progression. In TSC2−/− 621–101 angiomyolipoma (AML)-derived cells, estradiol 
activates ERK2 to stimulate and to increase proliferation, migration and invasion 
[55]. Estrogen stimulation can also decrease apoptosis in vitro, by reducing BCL-2-
interacting mediator of cell death (BIM) [56]. There is, however, no definite benefit 
of estrogen inhibition treatment in LAM [57–59]; two studies have shown no advan-
tage in lung function decline and a significant reduction in the diffusing capacity of 
the lungs for carbon monoxide (DLCO) in the treated patients compared to untreated 
controls [10]. Moreover, the risk of osteoporosis and cardiovascular complication 
was increased by estrogen suppression [60]. A clinical trial of aromatase inhibition 
in postmenopausal women with LAM suggested that aromatase inhibition may be 
associated with slower loss of FEV1 [61].

The mTOR inhibitor rapamycin (sirolimus) has become the standard therapy for 
progressive lung disease in LAM [62]. Rapamycin treatment reduces loss of FEV1 
in those treated although it may be less effective in those who have had the disease 
for longer and have lower pretreatment lung function [62], possibly consistent with 
mTOR-independent wild-type cells progressively accumulating and contributing to 
cyst formation.

Tumor-infiltrating immune cells, such as lymphocytes (TILs), play important 
roles in tumorigenesis [63]. The immune system targets and eliminates early malig-
nant cells, but tumors may escape this immune surveillance by modulating T-cell 
activity. A number of checkpoints allow the immune system to promote protective 
immunity whilst reducing potentially harmful autoimmunity. Tumors can use these 
co-inhibitory pathways to prevent immune attack and elimination [63]. Targeting 
the immune checkpoint proteins or co-inhibitory receptors on T-cells, programmed 
cell death-1 (PD-1), PD-ligand 1 (PD-L1) and cytotoxic T-lymphocyte-associated 
antigen-4 (CTLA-4) is effective in cancer immunotherapy [63]. In models of LAM, 
blocking either PD-1 or CTLA-4 delays tumor growth and increases long-term sur-
vival in animals [64], suggesting a potential role of the immune system in disease 
progression and possibly cyst formation in LAM.
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�Pulmonary Langerhans Cell Histiocytosis

Pulmonary Langerhans cell histiocytosis (PLCH) (previously eosinophilic granu-
loma or histiocytosis X) is a rare interstitial lung disease characterised by peri-
bronchiolar lesions containing activated dendritic cells (DC) known as Langerhans 
cells (LC). PLCH can occur in isolation or, less frequently, as part of a multisystem 
syndrome such as Hand-Schüller-Christian disease or Letterer-Siwe disease. The 
clinical presentation of the disease is variable and can include cough, dyspnea and 
pneumothorax but is sometimes an incidental finding. The disease may progress 
aggressively to respiratory failure although in many cases it exhibits a favorable 
clinical course, sometimes with spontaneous remission [65]. The precise prevalence 
of the disease is unknown because around one-quarter to one-third of affected indi-
viduals are asymptomatic, but it has been estimated at 0.27 and 0.07 per 100,000 in 
males and females, respectively [66].

PLCH can affect both children and adults; in adults, the disease generally affects 
both males and females aged 20–40 years and is almost exclusively associated with 
cigarette smoking or second-hand exposure to cigarette smoke [66–70]. On HRCT, 
nodules and cysts are evident in the upper and middle regions of the lung. The dis-
ease does not generally extend beyond the lung, but some patients develop bone or 
skin lesions or diabetes insipidus due to pituitary involvement. PLCH can be diag-
nosed histologically from a surgical lung biopsy or transbronchial biopsy. Langerin, 
CD1a and S-100 antibodies have been used in the immunohistochemical diagnosis 
of PLCH; langerin/CD207 and CD1a are specifically expressed in LCs [71], which 
also display characteristic cytoplasmic inclusions known as Birbeck granules.

Langerhans cells are a subtype of bone marrow-derived dendritic cell normally 
found in the skin and the bronchial epithelium. Their function in the lung is to process 
and present inhaled antigen followed by migration to the lymph nodes, where they 
mature and interact with T-cells, promoting immunity or tolerance [72]. Smoking 
causes Langerhans cells to accumulate in the lungs, along with T-lymphocytes, 
macrophages, monocytes and eosinophils. Loose nodules of inflammatory cells 
1–10 mm in diameter appear in the lung parenchyma and around the bronchioles 
in the upper-middle portion of the lung. As the disease progresses, localized tissue 
destruction occurs, generating cysts.

Although the clinical presentation of the disease is not typical of cancer, there 
has been controversy as to whether PLCH is a reactive inflammatory disease or a 
neoplasm. Willman et al. and Yu et al. [73–75] demonstrated clonal proliferation of 
Langerhans cells in LCH, supporting the hypothesis that the disease is neoplastic. 
Weintraub et al. [76] subsequently showed elevated expression of p53, which can be 
associated with dysregulated proliferation in cancer.

A number of groups have reported frequent somatic BRAF mutations in LCH 
cells [77–80]. BRAF is a cytoplasmic protein kinase downstream of receptor tyro-
sine kinase signalling (RTK), between RAS and MEK in the MAPK signalling path-
way (Fig. 2.3). The BRAF mutation most commonly found in PLCH (V600E, found 
in 35%–57% of patients [81]) is an activating mutation and causes dysregulated 

D. Clements et al.



29

stimulation of this pathway. The RAS-RAF-MAPK pathway controls cell cycle 
regulation, cell proliferation, cell survival and apoptosis, and BRAF mutations have 
been implicated in several cancers, including melanoma, lymphoma and cancer of 
the lung, thyroid and colon [82–87]. Mutations in other members of the same sig-
nalling pathway have also been noted in PLCH, including ARAF [88], MAP2K1 [89, 
90] and NRAS [91]. In a recent study [91], 50% of PLCH lesions carried BRAFV600E 
mutations, and 40% harbored NRASQ61K/R mutations, but these mutations were found 
in different clones of cells within the lesion. There is still controversy as to whether 
the presence of these mutations in PLCH unequivocally defines the disease as a 
neoplasm, given its ability to remit and resolve, but a neoplastic mechanism is cur-
rently favored.

Unlike systemic LCH, PLCH has a clear trigger, being strongly associated 
with cigarette smoking. Cigarette smoke causes recruitment of dendritic cells into 
the airways: this is an immediate response and has been observed in both mouse 

Fig. 2.3  BRAF/MEK/ERK pathway activation in Langerhans cell histiocytosis (LCH). Activating 
mutations in either BRAF, RAS or MEK result in ERK activation and increased dendritic cell 
survival and inactivation in LCH. The abnormal activation is potentially sensitive to inhibitors of 
BRAF and MEK
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models and human subjects. Cigarette smokers also display increased numbers of 
Langerhans cells in their airways and parenchyma [92]. Soler et al. showed a 30-fold 
increase in the number of Langerhans cells in the alveolar parenchyma of smokers 
compared with nonsmokers [93]. The mechanism by which this rapid recruitment 
occurs is currently unknown but may involve the induction by cigarette smoke of 
cytokines such as TNFα, GM-CSF, TGFβ and CCL20 in the airways.

It is not clear why LCs subsequently accumulate in the airways and parenchyma 
and do not migrate towards lymphoid organs. Cells harboring BRAF mutations 
could have a proliferative advantage leading to exuberant clonal expansion or could 
display decreased apoptosis as has been noted in melanoma and thyroid cancer. 
Consistent with this, Marchal et  al. reported very low levels of apoptosis in the 
PLCH lesions and high levels of expression of the anti-apoptotic protein Bcl-xL 
[94]. Alternatively, trafficking to lymph nodes may be affected by altered expres-
sion of chemokine receptors such as CCR6 and 7. The consequence of this unusual 
behavior is the formation of characteristic PLCH lesions, containing LC, and a vari-
able association of lymphocytes, eosinophils, fibroblasts, neutrophils, plasma cells 
and multinucleated giant cells. The phenotype of the LC in PLCH lesions is more 
typical of mature lymphostimulatory DC, normally found in the lymphoid organs, 
than the immature cells normally found in the airway – these mature cells are capa-
ble of initiating a significant immune response [95], perhaps targeted at the large 
numbers of T-cells expressing CD154 found in these lesions, a ligand expressed 
only transiently after T-cell activation.

As PLCH lesions are centered around bronchioles, the cysts may originate as 
enlarged bronchiolar lumina. However, Fukuda et  al. performed a detailed ultra-
structural study of early- and late-stage PLCH lung tissue and showed that around 
these PLCH lesions, alveolar epithelial cells show loss of attachment, their base-
ment membranes become denuded and there is some evidence of myofibroblast 
recruitment in the alveolar lumen [96]. As the disease progresses, airspace enlarge-
ment and fibrosis continue; however, the contribution of S100-positive LC to the 
lesions appears to diminish (Fig. 2.4). There is evidence of elastin degradation and 
basement membrane fragmentation around the lesions leading to the suggestion that 
dysregulated ECM protease expression by stimulated immune cells is responsible 
for the breakdown of alveolar integrity. Colombat et al. also reported that almost all 
basement membranes had disappeared in the cyst walls and detected expression of 
MMP-1, MMP-2, MMP-9, MMP-12 and MMP-14 in the PLCH lesions [97]. Landi 
et  al. used a proteomic approach to analyse bronchoalveolar lavage fluid protein 
composition of patients with PLCH and of controls and identified proteolytic frag-
ments of plasma proteins (including kininogen-1 N fragments and haptoglobin) in 
PLCH, also suggestive of increased proteolytic activity [98].

As most patients with systemic PLCH carry a somatic activating mutation in one 
of the steps of the RAS-RAF-MEK-ERK signalling axis, this pathway offers an 
attractive target for therapy. Several reports indicate that, for patients with an identi-
fied BRAFV600E mutation, targeted therapy with vemurafenib, an inhibitor of mutated 
BRAF, results in significant clinical improvement. However, for many patients with 
PLCH, rather than systemic LCH, cessation of smoking results in resolution of the 
disease, although lung function may continue to decline as a consequence of other 
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smoking-related diseases, such as COPD. Although no drug is currently approved 
for treatment of PLCH, cladribine, a drug used to treat the childhood form of LCH 
as well as multiple sclerosis and some forms of leukemia, has been reported to lead 
to improvement in some patients with progressive cystic PLCH [99, 100].

�Birt-Hogg-Dubé Syndrome

Birt-Hogg-Dubé syndrome (BHD) is a rare autosomal dominant condition first 
described by Arthur R. Birt, Georgina Hogg and W. James Dubé in 1977 [101]. The 
disease has no gender predisposition and is characterised by fibrofolliculomas (benign 
hair follicle tumors) on the head and neck, pulmonary cysts and spontaneous pneu-
mothorax. Patients with BHD can also develop kidney tumors and have a sevenfold 
higher lifetime risk of renal cell carcinoma than the general population [102, 103].

Pulmonary cysts in BHD are the first manifestation to appear, in early to mid adult-
hood, and can occur in the absence of skin and renal lesions [117]. They affect at least 
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Fig. 2.4  Lung cyst morphology. Cyst characteristics among the DCLDs vary and are related to the 
mechanism of cyst formation. LAM: (i, ii) Cysts are round with smooth, thin walls, probably 
reflecting nodules surrounding cysts. Cysts are surrounded by normal lung parenchyma. (iii) In 
extensive disease, cysts abut each other with little intervening normal lung. PLCH: (i) Inflamed 
small bronchioles form nodules which cavitate. (ii) Cavitating nodules form thick-walled cysts in 
active disease. (iii) Later in the disease, cyst walls become less prominent, leaving irregularly 
shaped lucencies. BHD: (i, ii, iii) Lung cysts tend to be ovoid or lenticular, consistent with the 
concept that shearing mechanical forces tear apart weakened alveolar septae. Heavy chain disease: 
Lung cysts associated with abnormal immunoglobulin deposits have varying morphologies (i) and 
may be round or (ii, iii) multiple, septated and traversed by vessels
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80% of patients, although they do not usually affect lung function and do not appear 
to be correlated with smoking history. The cysts are usually small (<1 cm in diameter), 
bilateral, oval or irregularly shaped and in contact with the pleural surface [118–120]. 
They can contain residual alveolar septa, fibroblasts and lymphocytic infiltration, and 
it has been reported that epithelial cells, including alveolar type 2 (AT2) cells, line the 
cyst wall [121, 122]. Kumasaka et al. studied 229 cysts from 50 patients and noted 
that the cysts are bounded by normal alveolar walls, abut interlobular septa and do not 
contain unusual cells [118] or evidence of neoplasia (Figs. 2.4 and 2.5). In 24%–38% 

Fig. 2.5  Lung cyst distribution in specific diseases. Although speculative, it is likely that cyst 
distribution is related to etiology. LAM: LAM cells metastasize through blood and lymphatics 
resulting in a fairly homogenous distribution, perhaps tending to spare the extreme apices. PLCH: 
Cysts are more profuse in the upper and mid zones, perhaps reflecting the distribution of inhaled 
toxins including cigarette smoke. BHD: Cysts tend to be close to pleural surfaces in the mid and 
lower zones adjacent to the mediastinum where shear forces caused by respiratory motion are 
greater. Heavy chain disease: Lung cysts are randomly distributed in diffusely abnormal lung 
parenchyma consistent with diffuse plasma cell infiltration
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of cases, they can rupture, causing pneumothorax, although the risk of pneumothorax 
decreases with increasing age.

In 2001, the affected locus was mapped by genetic linkage analysis to chro-
mosome 17 and the following year to a novel gene, folliculin (FLCN) [104, 105], 
which encodes a 64 kDa cytoplasmic protein. Most of the over 100 FLCN mutations 
identified in patients with BHD are truncating, resulting in loss of function [106]. 
Folliculin behaves as a tumor suppressor; loss of heterozygosity of folliculin was 
identified in BHD renal lesions [107], and flcn+/− mice develop kidney tumors (but 
do not develop lung cysts) [108–110]. Fibrofolliculomas, however, do not neces-
sarily show loss of heterozygosity of FLCN and may represent a haploinsufficiency 
phenotype [111]. The lung cysts do not appear to harbor any abnormal cells, but the 
high penetrance of this phenotype is also consistent with haploinsufficiency.

FLCN protein interacts with two proteins (folliculin-interacting proteins 1 and 
2), which in turn interact with 5′-AMP-activated protein kinase (AMPK) [112–114]. 
AMPK responds to lowered intracellular ATP levels, for example, when nutrients 
are low, and has multiple downstream targets including the TSC2 protein, tuberin. 
Thus, LAM and BHD potentially share a common dysfunction – activation of the 
mTOR – containing protein complex MTORC1. Medvetz et al. also discovered a 
physical interaction between folliculin and an armadillo repeat-containing protein, 
plakophilin/p0071 [115]. Plakophilin is present in adherens junctions and interacts 
with E-cadherin, implicating loss of FLCN function in cell-cell adhesion [115, 116].

Folliculin has a widespread distribution [123]. In the lung, it is expressed in 
stromal cells, macrophages and alveolar epithelial cells. It has been proposed that 
loss of function of BHD in these cells leads to cyst formation [123], perhaps by 
disrupting interactions between affected epithelial and mesenchymal cells in the 
lung [121]. Goncharova et al. deleted FLCN in AT2 cells in mouse lung and dem-
onstrated AT2 cell death, loss of epithelial integrity and airspace enlargement [124]. 
These effects appear to be mediated by AMPK; the knockout cells had decreased 
phospho-AMPK, and their phenotype was ameliorated by molecular or pharmaco-
logical AMPK activation.

As most cysts in BHD are subpleural, Graham proposed that loss of folliculin 
function specifically in the subpleural growth zone of the lung resulted in a failure 
of repair mechanisms in the lung parenchyma leading to structural fragility and 
cyst formation [117, 125]. Unlike PLCH and LAM, the absence of inflammation, 
unusual cell proliferation or unusual cell type associated with the cysts perhaps sup-
ports a model in which the alveolar septa are affected and rendered more fragile or 
less able to support cell adhesion. The ECM of the lung is deposited and maintained 
by lung fibroblasts, which express FLCN [123, 126], and is essential for attach-
ment and survival of alveolar epithelial cells [127]. Hoshika et al. showed that lung 
fibroblasts from patients with BHD, carrying an identified FLCN mutation, showed 
reduced expression of the ECM protein fibronectin and transforming growth factor 
(TGF) beta, a growth factor which orchestrates tissue repair [126]. Knock down of 
FLCN in normal fetal lung fibroblasts showed a similar reduction in TGF beta and 
fibronectin expression. Both the BHD fibroblasts and the knockdown fibroblasts 
displayed lower chemotaxis and collagen gel contraction activity than wild-type 
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fibroblasts. As the BHD-derived fibroblasts still carried a functional copy of the 
FLCN gene, this is a phenotype associated with haplosufficiency. These data sug-
gest that heterozygous BHD fibroblasts are deficient in key tissue repair functions, 
including the ability to migrate to the repair site and in the synthesis of matrix 
proteins.

There is no evidence that the cystic changes in BHD are a consequence of dys-
regulated proteolytic activity. Johannesma et al. [128] showed that cysts were sta-
ble in a 47-year-old male BHD patient for 44 months, with no increase in size or 
number. Further, most patients maintain normal lung function, and older patients 
are less likely to suffer pneumothorax, observations which are unlikely with a pro-
gressively destructive etiology. Johannesma et al. propose that loss of folliculin in 
the epithelial cells which have been reported to line the cysts increases cell-cell 
adhesion, consistent with the observations of Medvetz et al. [115, 128]. This leaves 
the cells less able to stretch, and under stress, the integrity of the epithelial layer is 
lost at its weakest point causing rupture. In this paradigm, small cysts coalesce into 
larger ones by rupture of the intervening septum, whilst subpleural cysts rupture 
into the pleural space causing pneumothorax. The idea that stretch-induced stress, 
combined with abnormal cell adhesion, is the causative agent in BHD lung cysts 
has been termed the ‘Stretch hypothesis’ [115, 128–130] and is consistent with the 
uneven spatial distribution of the cysts in BHD, where mechanical forces in the 
lungs may be greater in promoting cyst formation in the subpleural region.

�Protein Deposition–Associated Lung Cysts

A number of diseases associated with paraprotein formation have been associated 
with cystic change in the lung, including light chain deposition disease (LCDD), 
myeloma, lymphoma, Waldenstrom macroglobulinemia and heavy chain deposi-
tion (see Figs. 2.4 and 2.5) [131]. LCDD is a rare disease, first described in 1976 
by Randall et al. in two patients with renal disease [132]. LCDD is associated with 
overproduction of immunoglobulin light chains by plasma cells. The disease pre-
dominantly occurs in middle age and is twice as common in men [133], and around 
75% of patients with LCDD have multiple myeloma or less commonly another 
lymphoproliferative disease, such as Waldenstrom macroglobulinemia or B-cell 
lymphoma. Patients with LCDD develop nonfibrillar, amorphous, eosinophilic pro-
teinaceous deposits in multiple organs. Unlike amyloidosis, these protein deposits 
do not stain with Congo red and are composed of monotypic immunoglobulin light 
chains. The kidneys are the most commonly affected organ, but lesions can also 
occur in the liver, heart, small intestine, spleen, skin, nervous system and bone mar-
row; the lung is very rarely affected [134–136].

The initial reports of pulmonary LCDD (PLCDD) [137–142] described nodular 
light chain deposits in the lung. Later reports included other pulmonary features: 
cysts, airway involvement and bronchiectasis. The nodular form of PLCDD can be 
asymptomatic, but PLCDD can also take a more diffuse form, with a poor prognosis. 
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LCDD may rarely occur in an isolated pulmonary form without evidence of sys-
temic B-cell proliferation. Colombat described three patients aged 28–33 years with 
a distinct severe cystic pulmonary phenotype associated with diffuse kappa light 
chain deposits but no renal manifestations of LCDD [143]. These patients were 
younger than typical LCDD patients, and their disease had progressed to respiratory 
failure. The cysts did not recur after the patients received a bilateral lung transplant, 
and blood and bone marrow examinations of these patients did not detect clonal 
plasma cell proliferation. The authors named this manifestation of LCDD cystic 
lung related to LCDD or CL-LCDD, and to date, there have been fewer than ten 
reports of this form of the disease. Colombat et  al. demonstrated degradation of 
elastin fibers in alveoli, small airways and vessels in CL-LCDD and, to a lesser 
extent, loss of fibrillar and basement membrane collagens [97]. The authors pro-
posed that macrophages accumulate in the vicinity of the light chain deposits and 
secrete an array of elastolytic and collagenolytic MMPs. Using in situ zymography, 
a technique which reveals localised proteolytic activity, strong gelatinolytic activity, 
consistent with high expression of MMP-2 and MMP-9, was detected in the vicinity 
of the light chain deposits.

Key Learning Points
•	 Cyst formation occurs when the balance of injurious environmental- and disease-

related stimuli exceeds the repair capacity of the lung parenchyma.
•	 Dysregulation of discrete and specific signalling pathways, usually as a conse-

quence of single gene mutations, induces injurious stimuli in rare cystic lung 
diseases.

•	 Disease-specific mechanisms causing lung damage include activation of the pro-
tease cathepsin K in lymphangioleiomyomatosis (LAM) that likely results in 
loss of extracellular matrix architecture, and defects in extracellular matrix 
attachment and repair capacity downstream of the folliculin gene in Birt-Hogg-
Dubé syndrome (BHD).

•	 Rare diseases may share pathologic mechanisms with common diseases such as 
chronic obstructive pulmonary disease (COPD). mTOR-driven senescence in 
COPD limits alveolar repair, and mTOR-driven senescence may also contribute 
to cyst formation in LAM.
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