
Oldweb.today: Browsing the Past Web
with Browsers from the Past

Dragan Espenschied and Ilya Kreymer

Abstract Webpages have long stopped being just static “documents”. Since the
introduction of inline graphics and JavaScript, they have moved towards becoming
executable code dependent on specific browsers and feature sets. On the basis of
examples from the history of net art and the legacy browser service oldweb.today,
this chapter presents the value of preserving browser software along with web
archives.

1 The Longevity of Web Archives

Webpages have long stopped being just static “documents”. Since the introduction
of JavaScript with Netscape version 2 in 1995, webpages have increasingly devel-
oped towards becoming executable code that is dependent on the right software
environment—the browser—not only to “render” correctly but to “perform” cor-
rectly. Only when combined with the right browser from the past will a webpage
from the past appear as it used to.

However, so far, the established practice of web archiving is mainly concerned
with static resources, such as HTML pages, JPEG images, and so on, which are first
captured from the live Web and then stored in a collection to be accessed later.

As for other digital preservation practices, the storage format specifically devel-
oped for web archiving, WARC,1 has been designed to abstract certain complicated

1WARC is standardised by ISO; the specification can be found on the International Inter-
net Preservation Consortium’s GitHub at https://iipc.github.io/warc-specifications/specifications/
warc-format/warc-1.1/

D. Espenschied (�)
Rhizome at the New Museum, New York, USA
e-mail: dragan.espenschied@rhizome.org

I. Kreymer
Lead Developer Webrecorder and oldweb.today, San Francisco, USA

© Springer Nature Switzerland AG 2021
D. Gomes et al. (eds.), The Past Web,
https://doi.org/10.1007/978-3-030-63291-5_20

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63291-5_20&domain=pdf
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
mailto:dragan.espenschied@rhizome.org
https://doi.org/10.1007/978-3-030-63291-5_20


254 D. Espenschied and I. Kreymer

technical and organisational issues to increase a collection’s usefulness as far as
possible into the future. Microsoft Word documents are often converted to PDF for
archival purposes so as not to have to deal with a complicated legacy Office software
stack in the future. Similarly, web archiving is not about copying a remote web
server, including all of its software such as databases, scripting languages, or any
other components that might be involved in producing a live website. The WARC
format describes the requests and responses exchanged with web hosts. Essentially,
it preserves information at the level of HTTP, the standardised communication
protocol that underlies the Web.

When accessing a web archive, a user requests content referenced by URL at a
point in time, and a “Wayback Machine” or similar mechanism selects the closest
matching resources from a collection’s WARC files and sends them to the user’s
browser. As long as the WARC files are carefully stored and the Wayback Machine2

works, the archived websites should stay available in perpetuity. However, looking
back on more than 25 years of web archiving shows that this is not true. The farther
away in the past websites were captured, the higher the likelihood of their looking
odd, missing critical elements or behaving differently, even if all resources are still
stored in the WARC files. This effect is most obvious with now deprecated browser
plug-ins like Flash or discontinued integrations like Microsoft’s ActiveX but can
also appear in other areas. While this feels like some force of nature is at work and
data is “rotting” or “degrading” in the archive, the data is not changing at all—it
remains immutable. What is changing is the software on the user’s end, since the
final stage of assembling and performing an archived webpage is not handled by the
Wayback Machine but by the user’s browser. Even when considering very recent
history, a website captured in 2015 was probably created with Chrome version 42
in mind; in 2020, it might be accessed with Firefox version 72. A lot of things
changed in browsers within just 5 years: JavaScript engines were stripped of some
functions, autoplay of audio and video was disabled by default, and new options
such as blocking social media widgets or adopting “dark mode” became available to
users, allowing them to influence how a website looks and behaves. At some point,
the sum of changes in browsers over time will inevitably affect how sites captured
in the past appear at the time of access. While the above example of two mainstream
browsers released 5 years apart already highlights considerable differences, looking
at a 2003 website optimised for Internet Explorer 6 in the latest Chrome browser
two decades later (see Fig. 1) results in a heavily distorted view: an empty space
filled with clouds divides the landscape like a ravine, with a palm tree hovering
above. Users have no way of knowing or reasoning that a Java applet3 is supposed

2A software system providing archived web resources to users is typically called a “Wayback
Machine”, after the first of its kind made accessible by the Internet Archive in 2001. In the
meantime, additional tools have been created to “replay” web archives, such as the open source
fork of the original Wayback Machine, OpenWayback, or new open-source projects like pywb and
wabac.js that originated from the Webrecorder project.
3Java applets were small, platform-independent programs to be executed in the browser via an
embedded Java virtual machine and initially designed for rich interactions beyond the Web’s



Oldweb.today: Browsing the Past Web with Browsers from the Past 255

Fig. 1 Dragan Espenschied, Bridging The Digital Divide, 2003, as shown in Google Chrome
version 80 on Linux in 2020

to be displayed in this gap. The browser simply ignores the applet without giving
any notice in the user interface.

2 Characteristics of Browsers

The history of web browsers is usually told as a story of constant technical
progress: in the 1990s, browser back and forward buttons took up half of the typical
screen space; they choked on even basic, cranky GIF animations and plastered the
screen with popup windows. Thanks to today’s browsers we no longer need to
download software, instead we can use smooth web applications, stream video, and
communicate at lightning speed.4

However, the reality is more complex: from a software preservation perspective,
not all changes in browser software have made each version “better” than the

original idea of interlinked documents. Browsers stopped supporting the plugins required for Java
applets to run due to concerns about frequent crashes, slow performance, security problems, legal
issues, and the availability of better-performing alternatives like Flash and JavaScript.
4The blog posts about the releases of new versions for Google Chrome or Microsoft Edge
provide plenty of examples; see https://blog.google/products/chrome/ and https://blogs.windows.
com/msedgedev/

https://blog.google/products/chrome/
https://blogs.windows.com/msedgedev/
https://blogs.windows.com/msedgedev/


256 D. Espenschied and I. Kreymer

previous one—just different. Central elements of a legacy site might be dependent
on the capability that legacy browsers used to offer and which were later removed
for a variety of reasons. Even if this was done with the best of intentions, archived
websites will not be able to perform actions such as spawning a new window with a
QuickTime movie playing and therefore might not make much sense at all anymore.

A classic example is the deprecation of the Flash plugin. Even in 2015, Adobe
boasted that “More than 500 million devices are addressable today with Flash
technology”.5 In 2020, Flash is just a faint memory. Websites based on the plugin
display error messages or warnings (see Fig. 2).

Even features that are not usually considered in relation to the “rendering” of
content can affect how it is perceived. Many web authors used to put meaningful
messages in their pages’ source (see Fig. 3), and the “View Source” function
introduced with Tim Berners-Lee’s first browser used to be heralded as one of the
key factors for spreading knowledge about how to create webpages among users.6

With powerful “developer tools” being offered in today’s browsers, their ability just
to show the basic HTML source code of a webpage is not getting as much attention
from vendors as it used to. Functions for viewing source code are removed from
menus or may even display garbled characters.

Ideally, archived websites should be accessed via a software environment that
is contemporaneous with their creation. The project oldweb.today with its remote
browser framework is offering exactly that.

3 Oldweb.today

On the website https://oldweb.today users can browse the past Web using browsers
from the past, instantly and without any previous configuration necessary. The site is
hosted by the digital art and culture non-profit Rhizome in New York and was started
as an interim experimental software development project by Ilya Kreymer just
before he joined Rhizome as an official employee. Rhizome’s preservation director
Dragan Espenschied designed the site’s user interface and the online promotional
campaign.

To get going, users have to pick a browser from a list (Fig. 4), provide a URL, and
select a point in time (Fig. 5), before hitting the button “Surf the old web!” Users
who do not have a clear interest here and just want to enter the past Web quickly
can hit the button “I’m feeling random!” to be transported to a curated setting pulled
from a list.

5See Adobe, Statistics, captured on 31 July 2015, https://arquivo.pt/wayback/20150408120146/
http://www.adobe.com/products/flashruntimes/statistics.html
6One of many possible quotes: “The ‘View Source’ menu item migrated from Tim Berners-
Lee’s original browser, to Mosaic, and then on to Netscape navigator and even Microsoft’s
Internet Explorer. Though no one thinks of HTML as an open-source technology, its openness
was absolutely key to the explosive spread of the web”. (O’Reilly, 2005)

https://oldweb.today
https://arquivo.pt/wayback/20150408120146/http://www.adobe.com/products/flashruntimes/statistics.html
https://arquivo.pt/wayback/20150408120146/http://www.adobe.com/products/flashruntimes/statistics.html


Oldweb.today: Browsing the Past Web with Browsers from the Past 257

Fig. 2 Miltos Manetas, Jesusswimming.com, 2001, prompts Google Chrome version 80 (top) to
display a warning in the user interface. In Mozilla Firefox version 49 with Adobe Flash plugin
enabled (bottom) the work is displayed correctly. (Via oldweb.today.)

On the following screen (Fig. 6), oldweb.today establishes a video connection to
a “remote browser”, a carefully prepared, fully interactive software environment
running the selected browser on a cloud computer. That remote browser is tied
to a web archive aggregator that locates and pulls the requested materials from
publicly available web archives, like the Portuguese web-archive (Arquivo.pt), the
UK Web Archive, Rhizome’s own web archive, and of course the Internet Archive.
Information on all currently connected web archives is listed on the oldweb.today

https://Jesusswimming.com


258 D. Espenschied and I. Kreymer

Fig. 3 Source view of JODI, %20Location, 1995, in Google Chrome version 80 (top) shows
seemingly random characters. In Netscape Navigator Gold 3.04 for Windows (bottom), the source
view of the same piece shows the schematics of an atomic bomb as ASCII graphics. (Via
oldweb.today.)



Oldweb.today: Browsing the Past Web with Browsers from the Past 259

Fig. 4 The expanded
browser selector available at
oldweb.today



260 D. Espenschied and I. Kreymer

Fig. 5 The date picker on
oldweb.today shows a graph
of how many mementos of
the requested URL are
available across all connected
public web archives

home page, and, with some more technical details, in a GitHub repository.7

Provenance information for each accessed webpage is displayed on the side (see
Fig. 7).

The oldweb.today site was launched with a set of 13 browsers, on 30 November
2015, running on Amazon Web Services, and “went viral” shortly afterwards, seeing
over one million users in a few weeks of operation. For every user, a separate copy
of a browser is launched. Since running a browser is much more computationally
intensive than offering a typical web service, and cloud resources are billed by
reserved computing capacity, oldweb.today features a time limit per session and
a waiting queue to control the amount of concurrent usage and therefore cost.

7See https://github.com/webrecorder/public-web-archives

https://github.com/webrecorder/public-web-archives


Oldweb.today: Browsing the Past Web with Browsers from the Past 261

Fig. 6 Oldweb.today providing access to a legacy GeoCities website in Netscape 4.8 for Apple
Macintosh

Rhizome promoted the free service with Jan Robert Leegte’s net art piece
untitled[scrollbars],8 a webpage created in 2000 that mainly consists of default
scrollbars, consciously creating a drastically different look depending on the
browser with which it is accessed (see Fig. 8).

In addition to oldweb.today’s novelty and accuracy in reproducing what might
too easily be dismissed as retro aesthetics, it offers significant digital preservation
use cases. For example, the first US website published by Stanford University used
the image format X-Bitmap, which was only supported in the Mosaic browser. Other
browsers could render the HTML, but not this particular image (See Fig. 9).

Using a framework like oldweb.today effectively makes file format migration
work redundant: legacy file formats like images and videos do not have to be
transcoded to more current formats, and no intervention has to happen with the
materials stored in web archives just so they can stay accessible. Instead, work can
focus on a small number of browsers to remain available as running software.

8In 2010, the artist retitled the piece as Scrollbar Composition, http://www.scrollbarcomposition.
com/. Discussed here is the version as found in Rhizome’s collection.

http://www.scrollbarcomposition.com/
http://www.scrollbarcomposition.com/


262 D. Espenschied and I. Kreymer

Fig. 7 Detail of the
oldweb.today interface
showing some provenance
information for different
resources and web archives
being used to assemble the
currently visible page

4 Technical Excourse: Oldweb.today and Remote Browsers

It is possible to keep legacy software available for use in an archival setting
(Suchodoletz et al. 2013). This can be confirmed by everyone who ever played a
video game for a legacy system like the Nintendo Gameboy on their laptop using an
emulator. Emulating early console games is comparatively simple, as the systems
themselves had very few moving parts: the hardware of consoles did not change
significantly during their time on the market, and the games were delivered on
standard media like cartridges and CDs that only needed to be placed into the device
to start a game. Console emulators mirror this architecture: a piece of software,
the emulator, mimics the console device; an “image file” contains all the data that
would be present on a game medium. Browsers are much more complex: they need
an operating system that supports window management, Internet connectivity, font
rendering, media playback, and much more. Running a legacy browser requires
more than just storing an installer file for the software; instead, a complete software
environment is needed. Such an environment usually requires expert knowledge to
set up, using a general emulator or virtualisation tool.



Oldweb.today: Browsing the Past Web with Browsers from the Past 263

Fig. 8 Jan Robert Leegte, untitled[scrollbars], 2000, accessed via Microsoft Internet Explorer
version 4.0 for Windows (top left), Google Chrome version 5 for Linux (top right), Netscape
Navigator 4.8 for MacOS 7.5 (bottom left), and Apple Safari version 3.2.3 for Windows (bottom
right)

Oldweb.today packages these software environments in such a way that com-
bining a web archive with a suitable browser is as easy as plugging a virtual
game cartridge into a Gameboy emulator. This is in general possible because
of two foundational features of the Web that have not changed very much: the
HTTP protocol and connecting to the Web via a “proxy”. Regarding HTTP, even
major updates such as encrypted HTTPS or speed-optimised HTTP/2 are just new
wrappers around the same data being transmitted. Proxy server settings supported
since the first browsers were released are still in use today. Within institutional
settings, in particular, it remains common that the browser connects to the outside
Internet via an intermediary computer. Hence, a web archival system that allows
connection via proxy and can talk in HTTP will be able to serve almost any browser,
past, present, and future.

Oldweb.today browsers themselves are running inside Linux containers. Con-
tainers are isolated configurations that allow very specific versions of software to
be executed on a Linux operating system without clashing with other software that



264 D. Espenschied and I. Kreymer

Fig. 9 The 1994 SLAC home page accessed via the Stanford Web Archive’s Wayback Machine,
with the logo image missing (top). The same resource accessed via oldweb.today using an
appropriate contemporaneous browser, Mosaic 2.2, correctly rendering the logo image (bottom)



Oldweb.today: Browsing the Past Web with Browsers from the Past 265

might need a very different configuration to perform.9 There are many frameworks
freely available to handle containers. Oldweb.today uses Docker because it has
been designed to efficiently package, distribute, and run preconfigured software
environments and provides sophisticated networking features to connect these
environments on demand—and because Docker is extremely popular among web
developers and supported by major IT companies such as Google, Amazon, and
IBM.

Several historic browsers such as Mosaic and Netscape are able to run directly
in Linux containers because Linux versions of them were released in the 1990s.
Supporting the much more widely used Windows and MacOS browsers required an
extra step to be containerised. Old Macintosh browsers were installed in Linux ver-
sions of Basilisk II and SheepShaver,10 the two free emulators most popular among
classic Macintosh enthusiasts. Both of them can run MacOS version 7.5.3, which
had been distributed by Apple free of charge, and subsequently provide versions
of Netscape and Internet Explorer. A control panel to change the appearance of
the operating system’s default widgets was used to simulate the look of the later
MacOS 8 where appropriate.

For Windows browsers, oldweb.today made use of WINE, an open-source
software layer that imitates functions of the Windows operating system on Linux.
WINE11 is very popular among Linux users because it allows them to play Windows
games or to use commercially released programs like Photoshop without having
to purchase a Windows licence—but it can also run browsers. In the case of
oldweb.today, the browsers deployed are several versions of Netscape and Internet
Explorer and the Windows version that Apple released of their browser Safari,
featuring the famous “brushed metal” design.

The browsers were chosen based on their public availability in archives (such as
from the Evolt Browser Archive),12 their historical significance, and their ability
to replay legacy formats in a container setting. A few configurations took quite
some effort to figure out, but since they are now packaged and released on the
public Docker registry in one container per browser, this process will not have to be
repeated. The whole stack is based on either open-source or free-of-charge software.
If it can run on Linux, it can be squeezed into a container.

9Containers are based on core features of the Linux kernel and are used to set up server components
on cloud services, distribute Android applications, run development environments, and much more.
Organisations like the Open Container Initiative, https://www.opencontainers.org/, aim to create
high-level specifications to increase interoperability between different container frameworks.
10Basilisk and SheepShaver are two popular open-source emulators of legacy Apple Macintosh
platforms originally created by Christian Bauer. The source code is available on GitHub at https://
github.com/cebix/macemu
11The WINE project provides a compatibility layer enabling Windows software to run on POSIX
systems. See https://www.winehq.org/
12See https://browsers.evolt.org/

https://www.opencontainers.org/
https://github.com/cebix/macemu
https://github.com/cebix/macemu
https://www.winehq.org/
https://browsers.evolt.org/


266 D. Espenschied and I. Kreymer

The web archive aggregator to which these remote browsers connect is based on
the project “Memento Reconstruct”13 which Ilya Kreymer previously implemented
with the team at Los Alamos National Laboratory (LANL) (Sompel et al. 2009).

5 Using Remote Browsers to Capture Websites

Oldweb.today specifically focuses on historical browsers, bringing a new quality of
access to historical materials in public web archives. Web archives of sites created
today will soon become historical as well and face similar challenges of being
optimised for outdated browsers. How can what we have learned from oldweb.today
be fully integrated into common web archiving practice?

Oldweb.today is stewarded by the same team at Rhizome as the integrated web
archiving platform Webrecorder.io,14 which allows users to create a free account
and capture web resources interactively by just browsing sites. Oldweb.today and
Webrecorder.io are built using the same set of open-source software components;
hence, it makes sense to offer users of Webrecorder.io remote browsers for capturing
and accessing their own collections. Initially, Webrecorder.io only supported capture
and access via whatever browser the user happens to visit the web service with.
However, we noticed quickly that, for example, certain websites captured today
using Chrome would already not be accessible in another browser such as Firefox.
Websites operated by Google, in particular, might use experimental Chrome features
like certain image formats, compression algorithms, or JavaScript extensions. On
access, a browser other than Chrome would request other data, which would not
be part of the collection. And, of course, there are also still plenty of websites on
the live Web which are at risk of being abandoned and in need of saving precisely
because they use plugins declared obsolete, mainly Flash and Java applets.

Under this premise, in October 2016, the remote browser framework powering
oldweb.today was made into a separate component that could be integrated into
the Webrecorder.io stack. Contemporary versions of Chrome and Firefox were
preconfigured with Flash—and in the case of Firefox, with a Java 6 VM—and
offered to users when starting a capture session. That session would be marked
as being created with that browser, and, on access, the same configuration would be
launched again (Fig. 10).

For example, this integration allows a user running Safari on their native machine
to launch a version of Chrome to interactively capture in Webrecorder.io a particular
site that contains Flash. Later, when another user running Firefox on their machine

13See https://github.com/ikreymer/memento-reconstruct
14Editor’s note: At the time of publication, the web service Webrecorder.io had been renamed
to Conifer and moved to https://conifer.rhizome.org. A new entity stewarding the software
components was created as Webrecorder at https://webrecorder.net. The whole process is explained
in a blog post at https://rhizome.org/editorial/2020/jun/11/introducing-conifer/

https://github.com/ikreymer/memento-reconstruct
https://conifer.rhizome.org
https://webrecorder.net
https://rhizome.org/editorial/2020/jun/11/introducing-conifer/


Oldweb.today: Browsing the Past Web with Browsers from the Past 267

Fig. 10 Before starting a capture session in Webrecorder.io, users can pick from a list of browsers
with their special capabilities listed. To not overwhelm users, a small selection is presented for
capture: current versions of Chrome and Firefox as well as browsers prepared with plugins. For
access, any browser that was used for capture will stay available

accesses the collection, the same version of Chrome will launch remotely and run
Flash. This works regardless of what the “local” browser might be (Fig. 11).

6 Looking Back and Looking Ahead

Using a browser released in 1996 cannot bring back resources that were not archived
in 1996 but can make accessible resources available from that time in a much more
authentic way (Espenschied et al. 2013). It has become more viable to use real
browsers to capture content from the live Web for archiving using for instance
Browsertrix.15 As a result, it is hoped that web archives created today will appear
more complete when accessed a decade from now, than web archives that have been
built using custom crawlers that could never imitate all the features of a full-on
browser.

The collecting, storing, and running of browsers will become easier in the future:
as browser vendors use tightly structured and standardised release and installation
processes, and Linux has become a common target platform, new browser versions
could be “containerised” on the day they are released. It might be possible to execute

15https://github.com/webrecorder/browsertrix

https://github.com/webrecorder/browsertrix


268 D. Espenschied and I. Kreymer

Fig. 11 A copy Dragan Espenschied, Bridging The Digital Divide, 2003, captured and accessed
with remote browser Mozilla Firefox version 49 on Linux including the Java plugin, integrated into
Webrecorder.io

browsers that are old enough not to require much computing power via emulators
delivered in JavaScript, running on a user’s local computer rather than in the cloud—
a browser itself being the host for one its ancestors, with the possibility of reducing
the costs of bandwidth usage and computing. It is likely, however, that a powerful
cloud computer would be required to run more recent browsers, making the remote
browser concept pretty universal.

Over the past 5 years, remote browsers have demonstrated the possibility and
benefits of accessing web archives in an alternative context: through stabilised,
emulated browser environments contemporaneous with the archived web content,
instead of the traditional “Wayback Machine” style replay. As the Web ages, and
once common software like Flash becomes obsolete, running older browser software
in emulators may be the only way to correctly view and interact with the old Web.

Preserving browser software is thus as important as preserving the Web itself to
ensure future access. The still largely separate discipline of software preservation
has to become an integral part of web archiving; not only because historic browsers
need to remain available for sentimental purposes but also because the Web itself is
transmitting software, not static documents.



Oldweb.today: Browsing the Past Web with Browsers from the Past 269

References

Espenschied D, Rechert K, von Suchodoletz D, Valizada I, Russler N (2013) Large-scale curation
and presentation of CD-ROM Art

O’Reilly T (2005) The open source paradigm shift. In: Wynants M, Cornelis J (eds) How open is
the future? Vubpress, Bruxelles, p 102

Sompel H, Nelson M, Sanderson R, Balakireva L, Ainsworth S, Shankar H (2009) Memento: time
travel for the web

Suchodoletz Dv, Rechert K, Valizada I, Strauch A (2013) Emulation as an alternative preservation
strategy – use-cases, tools and lessons learned. In: Horbach, M. (Hrsg.), INFORMATIK 2013 –
Informatik angepasst an Mensch, Organisation und Umwelt. Gesellschaft für Informatik e.V.,
Bonn (S. 592–606)


	Oldweb.today: Browsing the Past Web with Browsers from the Past
	1 The Longevity of Web Archives
	2 Characteristics of Browsers
	3 Oldweb.today
	4 Technical Excourse: Oldweb.today and Remote Browsers
	5 Using Remote Browsers to Capture Websites
	6 Looking Back and Looking Ahead
	References


