
Chapter 5
Critical Phenomena in Darcy and Euler
Flows of Real Gases

Valentin V. Lychagin and Mikhail D. Roop

5.1 Introduction

In this paper, we summarize the results obtained in [1–5] for two important types of
flows of real gases—the flows through porous media [6] and Euler flows.

The first significant results in the field of filtration processes were obtained
in [7] and [8]. In these papers, the Darcy law was suggested to investigate flows
through porous media. This approach appeared to be sufficiently effective. Such
phenomena as phase transitions in filtration processes were studied in a few works,
for instance, in [9] and [10]. In [9], one-dimensional nonstationary filtration of two-
component mixture of hydrocarbons described by the generalized van der Waals
equation was studied, but only one (thermic) equation of state was considered.
In [10], the authors investigated non-equilibrium phase transitions in filtration
of gas-condensate mixtures and provided the comparison with equilibrium phase
transitions. In both works [9] and [10] numerical computations were used.

Comparing with [9] and [10], we consider three-dimensional, stationary, one-
component filtration and provide explicit formulae for finding solutions of the
Dirichlet boundary problem. Some exact solutions for nonstationary filtration
together with the analysis of the symmetry algebra of corresponding equations for
various media are presented in [11].

Navier–Stokes and Euler flows formed by means of source have been of great
interest since the middle of the 20th century, when Landau found a new exact
singular solution of incompressible Navier–Stokes equations [12] called submerged
jet. From the physical viewpoint, this solution is formed by a source that transmits
the momentum to surrounding medium in a certain direction. It has two features
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that are usually said to be the drawbacks of Landau’s solution. The first one is the
triviality of solution in case of ideal (inviscid) fluids, which means that solution of
this type is valid only for highly viscous fluids. The second one is zero mass flux
through a sphere around the source. Landau’s solution was improved by Broman
and Rudenko [13]. By means of symmetry methods [14, 15], they constructed some
exact solutions of incompressible Navier–Stokes system corresponding to flows
with non-zero mass flux and valid for inviscid fluids. It is worth to say that in [12]
and [13], thermodynamics was out of consideration. One of the first authors who
investigated thermodynamical properties of such flows was Squire [16]. Taking into
account the equation of heat balance, he found the distribution of the temperature
in the jet for incompressible fluids. Some singular solutions for incompressible and
compressible fluids invariant with respect to subalgebras of the symmetry algebra
of the Navier–Stokes equations were obtained in [17]. In [18], one-dimensional gas
flow with phase transitions was studied, and the van der Waals equation was chosen
as a model of thermodynamic state.

For modelling flows formed by means of source, we use Euler equations extended
by equations of state of the medium. In case of one point source, we provide a
method of finding corresponding solutions for various gases and thermodynamical
processes.

This paper has the following structure. In Sect. 5.2, we show that thermo-
dynamics is a particular case of measurement of random vectors [19]; namely,
thermodynamics can be considered as a theory of measurement of extensive thermo-
dynamical variables. Such a consideration leads us to the geometric formulation of
thermodynamics previously established, for instance, in [20] an [21], but we decided
to include this part, on the one hand, to show a new approach to thermodynamics
based on measurement, and on the other hand, to make the paper self-contained. In
Sect. 5.3, we discuss thermodynamics of gases and show how methods of contact
and symplectic geometry can help us, in particular, in solution of practical issues
concerning the determination of caloric equation of state for gases if we know
a thermic one and description of phase transitions. In Sect. 5.4, we illustrate the
methods developed on concrete models of real gases, paying special attention
to phase transitions. In Sect. 5.5, we discuss basic equations describing filtration
processes and Euler flows. We provide two theorems that give us solutions for the
corresponding problems that can be applied to any gas as well as any process. In
Sect. 5.6, we provide solutions for gases discussed in Sect. 5.4 and analyze phase
transitions along the corresponding flows. In Sect. 5.7, we discuss the results.

5.2 Measurement and Thermodynamics

In this section, we describe the measurement of random vector procedure and
show that the results can be naturally presented in terms of contact and symplectic
geometries. The more comprehensive discussion can be found in [19].
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5.2.1 Measurement of Random Vectors

Let (Ω,A, p) be a probability space, i.e. Ω is a set, A is a σ -algebra and p is
a probability measure. By a random vector, we shall mean the following map:
X : (Ω,A, p) → W , where W is a vector space, dim(W) = n.

Let us suppose that we have a device that measures random vector X. It is natural
to require that the result produced by such a device will be an expectation

E(X) =
∫

Ω

Xdp,

where the integration is assumed to be coordinate-wise. This is what we mean by a
measurement.

Due to Jensen’s inequality, it is easy to check that in this case, the expectation of
length of vector X − c for some c ∈ W with respect to any metric g on W reaches
its minimal value. Indeed,

E (g(X − c,X − c)) ≥ g(E(X − c),E(X − c)) = g(E(X) − c,E(X) − c) ≥ 0,

and the equality to zero takes place iff c = E(X).

5.2.2 Information Gain

Let us now suppose that we have another probability measure q on our probability
space (Ω,A, p), which has the same set of measure zero sets as p has. Such
measures are called equivalent, and we will denote it by p ∼ q.

Define the so-called «surprise function» s : A � A �−→ s(A) ∈ R by the
following formula:

s(A) = − ln(p(A)).

Note that this function satisfies the following properties:

1. s(Ω) = 0, s(∅) = ∞ and s(A) ≥ 0;
2. if A and B are independent, i.e. p(AB) = p(A)p(B), then s(AB) = s(A) +

s(B);
3. s is a continuous function of p(A).

Properties (1)–(3) may also serve as a definition of the surprise function.
Let Ω = {ω1, . . . , ωn} be a finite set and p = {p1, . . . , pn}, pi = p(ωi) be a

probability measure. In this case, the expectation of the surprise function is
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S(p) = −
n∑

i=1

pi ln pi.

The above formula coincides with Shannon’s definition of entropy. Let q =
{q1, . . . , qn} now be another probability measure equivalent to p. Then, the
changing of the surprise function will be

s(p, q) = s(q) − s(p) =
(

−
n∑

i=1

ln qi

)
−

(
−

n∑
i=1

ln pi

)
=

n∑
i=1

ln

(
pi

qi

)
.

And the average I (p, q) of s(p, q) with respect to the measure p that is called gain
of information will be

I (p, q) =
n∑

i=1

pi ln

(
pi

qi

)
.

If Ω = R = ⋃
i

[xi, xi+1] and dp = f (x)dx, dq = g(x)dx, then I (p, q) takes the

following form:

I (p, q) ≈
∑

i

f (ξi)Δi ln

(
f (ξi)

g(ξi)

)
,

where Δi = xi+1 − xi . Taking limit Δi → 0, i → ∞, one gets

I (p, q) =
∫

R

f (x) ln

(
f (x)

g(x)

)
dx.

In case of arbitrary probability space (Ω,A, p), the gain of information I (p, q) is
defined by the formula

I (p, q) =
∫

Ω

ln

(
dp

dq

)
dp. (5.1)

The function I (p, q) has the property I (p, q) ≥ 0 and I (p, q) = 0 iff p = q almost
everywhere. At the same time, it cannot serve as a distance between measures p and
q since it is not symmetric, i.e. I (p, q) 	= I (q, p) and does not satisfy the triangle
inequality.

In terms of density ρ, such that dp = ρdq, (5.1) can be written as

I (ρ) =
∫

Ω

ρ ln ρdq.
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5.2.3 The Principle of Minimal Information Gain

Let x ∈ W be a fixed vector which is expected to be the result of the measurement
of random vector X : (Ω,A, q) → W , i.e.

E(X) = x.

Obviously, the given measure q may not give us the required vector x. This means
that we should choose another measure p, such that dp = ρdq. In other words, we
are looking for a function ρ such that

∫

Ω

ρdq = 1,

∫

Ω

ρXdq = x. (5.2)

Conditions in (5.2) are not enough to determine ρ. In addition to (5.2), we require
that the new measure p is the closest one to the measure q with respect to the gain
of information I (ρ), i.e.

I (ρ) =
∫

Ω

ρ ln ρdq → min
ρ

. (5.3)

This is exactly what is called the principle of minimal information gain.
Thus, we have the following extremal problem. One needs to find the function ρ

minimizing functional (5.3) under constraints in (5.2).

Theorem 5.1 The solution of (5.2)–(5.3) is given by the following formulae:

ρ = 1

Z(λ)
e〈λ,X〉, Z(λ) =

∫

Ω

e〈λ,X〉dq, (5.4)

where λ ∈ W ∗. The results of the measurement with respect to extremal measure p

belong to a manifold

LH =
{
x = −∂H

∂λ

}
⊂ W × W ∗,

where H(λ) = − ln Z(λ).

Remark 5.1

1. The measure p defined by relations in (5.4) is called the extremal measure.
2. The function Z(λ) is called the partition function and, obviously, exists iff

〈λ,X〉 ≤ 0 almost everywhere.
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3. The integral Z(λ) = ∫
Ω

e〈λ,X〉dq can be expressed in terms of vector space W

only:

Z(λ) =
∫

W

e〈λ,t〉dμ(t),

where μ = X∗(q).

Proof Consider the functional

L =
∫

Ω

ρ ln ρdq − λ0

⎛
⎝

∫

Ω

ρdq − 1

⎞
⎠ −

〈
λ,

∫

Ω

ρXdq − x

〉
.

Since its first variation with respect to ρ should be equal to zero, we get

δL =
∫

Ω

(ln ρ + 1 − λ0 − 〈λ,X〉)δρdq = 0,

from what follows that

ρ = exp(λ0 − 1 + 〈λ,X〉).

Taking into account that
∫
Ω

ρdq = 1, we get

ρ = 1

Z(λ)
e〈λ,X〉, where Z(λ) =

∫

Ω

e〈λ,X〉dq.

Note that

∂Z

∂λ
=

∫

Ω

Xe〈λ,X〉dq =
∫

Ω

XρZ(λ)dq = Z(λ)x,

from what follows that

∂

∂λ
(ln Z(λ)) = x.

Introducing the Hamiltonian H(λ) = − ln Z(λ), we get

x = −∂H

∂λ
. (5.5)
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One can see that the manifold LH ⊂ (Φ, ω) is Lagrangian with respect to
nondegenerate closed 2-form on Φ = W × W ∗

ω = dλ ∧ dx =
n∑

i=1

dλi ∧ dxi,

i.e. ω|LH
= 0.

A pair (Φ, ω) represents the standard model of symplectic space. Moreover, the
Lagrangian manifold LH gives us information about both extreme measure p and
expectation of random vector X; namely, λ is responsible for the corresponding
extremal measure, while x represents the expectation.

Let us introduce a new function

J (λ, x) = H(λ) + 〈λ, x〉.

Using Theorem 5.1, it is easy to show that there is a following relation between I

and J :

J |LH
= I. (5.6)

Let us consider the differential of J :

dJ =
∑

i

(
∂H

∂λi

+ xi

)
dλi +

∑
i

λidxi =
∑

i

(
∂H

∂λi

+ xi

)
dλi + θ,

where 1-form θ has the following structure:

θ =
∑

i

λidxi .

On the surface LH , we have

dJ |LH
= θ |LH

. (5.7)

From (5.6) and (5.7), it follows that

θ |LH
= dI. (5.8)

Now, we construct the contactization Φ̃ of Φ as

Φ̃ = R × Φ = R × W × W ∗ = R
2n+1(u, x, λ)

and equip Φ̃ with the contact 1-form
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θ̃ = du − θ. (5.9)

Thus, (Φ̃, θ̃ ) is a contact space.
Let a = (λ, x) ∈ LH , and let L̃ ⊂ Φ̃ be a submanifold of dimension n such that

L̃ =
{
u = I (a), x = −∂H

∂λ

}
. (5.10)

Note that L̃, being constructed in such a way, becomes a Legendrian submanifold,
i.e.

θ̃ |
L̃

= 0.

Indeed, due to (5.8),

θ̃ |
L̃

= (du − θ)|
L̃

= dI − θ |LH
= 0.

Moreover, the Legendrian manifold L̃ provides the knowledge about not only
extreme measure p and expectation of random vector X but also information gain
I (p, q).

Note that in general, Eq. (5.5), being considered as an equation for λ, may have
a number of roots λ = λ(j)(x). Let us represent vector space W as a union W =⋃
i

Di , such that Eq. (5.5) can be resolved with respect to λ uniquely for any x ∈ Di .

In other words, in each domain Di , the function x may serve as local coordinates on
LH as well as λ. This implies that the Lagrangian manifold LH can be represented
as LH = ⋃

i

Li , where

Li =
{
x ∈ Di | x = −∂H

∂λ
,

}
.

We shall call such domains Li phases.
Thus, the results of the measurement of random vectors obtained by using the

minimal information gain principle can be presented by means of either Legendrian
submanifold in contact space L̃ ⊂ (Φ̃, θ̃ ) or Lagrangian submanifold in symplectic
space LH ⊂ (Φ, ω = −dθ̃), and all necessary functions ρ, Z(λ), H(λ), I (p, q)

can be directly derived from them.

5.2.4 Variance of Random Vectors

First of all, let us recall that the second moment of a random vector X : (Ω,A, p) →
W is a symmetric 2-form μ2(X) ∈ S2(W)
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μ2(X) =
∫

Ω

X(ω) ⊗ X(ω)dp.

Central second moment or variance is a symmetric 2-form σ2(X) ∈ S2(W)

σ2(X) = μ2(X − μ1(X)) = μ2(X) − μ1(X) ⊗ μ1(X).

Let Hess(H) be the Hessian of the Hamiltonian H :

Hess(H) =
∑
i,j

∂2H

∂λi∂λj

dλi ⊗ dλj .

Theorem 5.2 The variance σ2(X) of a random vector X is equal to −Hess(H):

σ2(X) = −Hess(H).

Let us define the differential quadratic form κ on Φ by the following way:

κ = 1

2

∑
i

(dλi ⊗ dxi + dxi ⊗ dλi) = dλ · dx.

This differential quadratic form being restricted onto the manifold LH takes the
form

κ|LH
= 1

2

∑
i

(dλi ⊗ dxi + dxi ⊗ dλi)

∣∣∣∣∣{
x=− ∂H

∂λ

} = −Hess(H) = σ2(X).

Since the variance is non-negative, the differential quadratic form κ|LH
must be

non-negative.
Thus, the manifold Φ = W × W ∗ is equipped with two structures:

• symplectic structure

ω = dλ ∧ dx,

• pseudo-Riemannian structure of signature (n, n)

κ = dλ · dx.

The measurement procedure of a random vector X : (Ω,A, p) → W is presented
by the Lagrangian manifold LH ⊂ (Φ, ω) that has to be Riemannian manifold with
respect to the quadratic differential form κ|LH

. The last requirement leads us to the
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notion of applicable phases, i.e. Riemannian submanifolds of LH , where both x and
λ may serve as coordinates.

5.2.5 Thermodynamics

Here, we show that all above constructions allow us to consider thermodynamics as
a measurement of extensive variables, such as energy, volume and mass.

First of all, one of the basic laws of thermodynamics, the energy conservation
law, claims that the heat is consumed by the physical system for the changing of its
internal energy and work, and particularly for gas-like systems, it has the form (here,
we pretend that we already know the first part of the second law of thermodynamics
δQ = T dS)

dS = T −1dE + pT −1dV − γ T −1dm, (5.11)

where S is the entropy, T is the temperature, p is the pressure, γ is the chemical
potential, E is the energy, V is the volume and m is the mass.

It is absolutely clear from the physical point of view what is written in (5.11).
But mathematically, we can see the identity of two 1-forms, which is possible iff
S = const, V = const, E = const and m = const. Moreover, the second part of the
second law of thermodynamics claims that

dS > 0

for irreversible processes, which means that we can compare differential 1-forms
with zero.

All these issues of mathematical nature, together with a notion that (5.11)
reminds us the similar contact structure appearing in measurement theory, drive
us to consider thermodynamics as a theory of measuring extensive variables
(E, V,m) ∈ W . The fact that W is a vector space corresponds to the additivity
properties of extensives. Then, intensives (−T −1,−pT −1, γ T −1) ∈ W ∗ may
serve as Lagrangian multipliers λ that we have seen in the above discussion.
Once we put n = 3 and assign (x1, x2, x3) = (E, V,m) and (λ1, λ2, λ3) =
(−T −1,−pT −1, γ T −1), we are able to reformulate the laws of thermodynamics
in the following way:

• The first law of thermodynamics
The state of any thermodynamical system described by intensives (p, T , γ ),
extensives (E, V,m) and entropy S is a Legendrian manifold L̃ ⊂ (Φ̃, θ̃ ), where
Φ̃ = R × W × W ∗, i.e. maximal integral manifold of the form

θ̃ = d(−S) − (−T −1)dE − (−pT −1)dV − (γ T −1)dm. (5.12)
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Comparing (5.12) with (5.9) and (5.10), we conclude that the following relation
holds:

dI = −dS. (5.13)

The postulate that the variance of random vectors is positive gives us what we will
mean by the second thermodynamical law, and what in classical thermodynamics
is usually called “conditions of thermodynamical stability”. Below, in Sect. 5.3, we
will show the explanation.

• The second law of thermodynamics
The immersed Lagrangian manifold L ⊂ (Φ,Ω = −dθ̃) obtained by restriction
of natural projection π : Φ̃ → Φ, π(S,E, V,m, p, T , γ ) = (E, V,m, p, T , γ ),
which is a local diffeomorphism, onto the Legendrian manifold L̃ is equipped
with the differential quadratic form

κ = d(−T −1) · dE + d(−pT −1) · dV + d(γ T −1) · dm,

and the only applicable domains on L are those ones where the form κ is positive.

From (5.13), one can conclude that the well-known entropy increasing law for
irreversible processes (for example, the establishment of thermodynamical equilib-
rium between two systems) is the principle of minimal information gain from the
measurement viewpoint.

From (5.13), it also follows that

S = −I + α0.

Since the information gain I is always greater than zero, the entropy has to be S ≤
α0. This can be interpreted as the third law of thermodynamics.

5.3 Thermodynamics of Gases

Now that we have declared that thermodynamic states are Legendrian or Lagrangian
surfaces in the corresponding contact or symplectic space, and we can give a more
accurate description of gases in the form appropriate for further purposes, namely,
the analysis of critical phenomena in filtration processes and Euler flows.

5.3.1 Specific Variables

First of all, we introduce the so-called specific thermodynamic variables by the
following way. Let S = S(E, V ) be a function on the Legendrian surface L̃. Due to



162 V. V. Lychagin and M. D. Roop

additive properties of the entropy S, the function S(E, V ) has to be homogeneous
of degree 1 with respect to the mass of the system, i.e.

S(E, V,m) = mS

(
E

m
,
V

m

)
.

Introduce the notation: e = E/m, v = V/m, S
(

E
m

, V
m

) = s(e, v), and call e the
specific energy, v the specific volume and s(e, v) the specific entropy. Then, in terms
of specific variables, the form θ̃ can be written as

θ̃ =
(
−s + T −1e + pT −1v − γ T −1

)
dm +

(
−ds + T −1de + pT −1dv

)
m.

If a thermodynamic state L̃ is now given by a function s = s(e, v), then

γ = e − T s + pv,
(
−ds + T −1de + pT −1dv

)∣∣∣
L̃

= 0. (5.14)

The differential quadratic form κ on L will take the form

κ = −m
(
d(T −1) · de + d(pT −1) · dv

)
,

and since applicable domains are defined by the positivity of κ and mass m is
assumed to be positive, the applicability condition is formulated as negativity of
the form −m−1κ , which we will continue, denoting by κ:

κ = d(T −1) · de + d(pT −1) · dv. (5.15)

Since G = E − T S + pV is the Gibbs free energy, γ = e − T s + pv is the
specific Gibbs free energy.

5.3.2 Legendrian and Lagrangian Manifolds for Gases

Relation (5.14) allows us to define Legendrian surfaces by means of specific
variables. Indeed, consider the contact space (R5, θ) equipped with coordinates
(s, e, v, p, T ) and contact 1-form

θ = −ds + T −1de + pT −1dv.

Then, a thermodynamic state is a Legendrian manifold L̃, such that θ |
L̃

= 0. For a
given function s = s(e, v), this manifold is defined by relations:
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s = s(e, v), T = 1

se
, p = sv

se
.

In practice, we actually do not have the function s(e, v), because there are no devices
that would allow us to measure the specific entropy s(e, v). This brings us to the
necessity of eliminating s from our consideration. To this end, we introduce the
projection π : R5 → R

4, π(s, e, v, p, T ) = (e, v, p, T ). Its restriction onto the
Legendrian manifold L̃ is an immersed Lagrangian manifold L = π(L̃), while R

4

is equipped with the symplectic form

Ω = dθ = d(T −1) ∧ de + d(pT −1) ∧ dv,

which vanishes on L: Ω|L = 0. The Lagrangian manifold L ⊂ (R4,Ω) is given by
the two functions

f (e, v, p, T ) = 0, g(e, v, p, T ) = 0. (5.16)

The condition that L is Lagrangian is expressed by vanishing of the Poisson bracket
[f, g] on L, i.e. [f, g]|L = 0, where

[f, g]Ω ∧ Ω = df ∧ dg ∧ Ω.

This bracket in coordinates is of the form

[f, g] = 1

2

(
pT

(
fpge − fegp

) + T 2 (fT ge − fegT ) + T
(
fvgp − fpgv

))
.

In thermodynamics of gases, the functions in (5.16) usually have the form

f (e, v, p, T ) = p − A(v, T ), g(e, v, p, T ) = e − B(v, T ). (5.17)

The first equation of state in (5.17) is called thermic, and the second one is called
caloric. From experiments, one can obtain the first state equation, but not the second
one, because we have no devices that measure the specific energy. But having known
the first equation and using the compatibility condition [f, g]|L = 0, one gets the
caloric equation, and therefore the Lagrangian surface for a given gas becomes
completely determined. Then, relations

T = 1

se
, p = sv

se
(5.18)

can be considered as an overdetermined system for s(e, v), which is compatible
due to [f, g]|L = 0. Solving (5.18), we get unknown function s(e, v) and therefore
define the Legendrian manifold L̃ completely.
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Let us take the Poisson bracket between f (e, v, p, T ) and g(e, v, p, T ) in the
form (5.17). Then, we get

(T −2B)v = (T −1A)T ,

from what follows that the following theorem is valid.

Theorem 5.3 The Lagrangian manifold L is given by the Massieu–Planck potential
φ(v, T ):

p = RT φv, e = RT 2φT , (5.19)

and the specific entropy s and Gibbs free energy γ are

s = R(φ + T φT ), γ = RT (vφv − φ), (5.20)

where R = 8.314 J · K−1 · mol−1 is the universal gas constant.

Using (5.19), it is easy to show that the differential quadratic form (5.15) can be
expressed as follows:

R−1κ = −
(
φT T + 2T −1φT

)
dT · dT + φvvdv · dv.

Hence, applicable domains are defined by inequalities

φT T + 2T −1φT > 0, φvv < 0. (5.21)

From (5.21) and (5.19), it follows that applicable states are also given by

eT > 0, pv < 0. (5.22)

It is worth to say that relations in (5.22) are usually called conditions of thermody-
namical stability with respect to thermic and mechanical perturbations, respectively.

5.3.3 Singularities of Lagrangian Manifolds and Phase
Transitions

Let us now explore singularities of projections of the Lagrangian manifold L to
spaces of intensive variables (p, T ) and extensive variables (v, e). The singularities
of the first type occur where the differential form dp∧dT degenerates and coincides
with the set where φvv = 0. The singularities of the second type are the points
where de ∧ dv = 0, or, equivalently, φT T + 2T −1φT = 0. Thus, the set where
the Lagrangian manifold L has singularities is exactly the set where the differential
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quadratic form κ degenerates. We will consider such Lagrangian manifolds that
(e, v) serve as global coordinates on them. This means that L in our consideration
will have no singularities of the second type, and since κ has to be negative, the
inequality φT T + 2T −1φT > 0 holds everywhere on L. Domains of the manifold
L that have no singularities and on which the form κ is negative definite, we have
already called applicable phases. Consequently, if κ is nondegenerate and negative
on the entire manifold L, and therefore L has no singularities of its projections to the
space of intensive variables as well, then a thermodynamical system corresponding
to such a Lagrangian manifold L has only one phase, otherwise it has a number of
phases, separated from one another by the set where κ is non-negative, or, where
φvv ≥ 0. In the last case, thermodynamical system has a remarkable property called
phase transitions of the first type.

Definition 5.1 A jump from one applicable point (e1, v1) ∈ L to another applicable
point (e2, v2) ∈ L, governed by the intensive variables (p, T ) and the specific Gibbs
potential γ conservation law, is called phase transition of the first type.

A set of points where phase transition occurs is a curve on the Lagrangian manifold
L, which is called coexistence or binodal curve. Using (5.19) and (5.20), one gets
the following equations for the coexistence curve Γ ⊂ R

3(p, v, T ) [4]:

φv (v2, T ) = p

RT
, φv (v1, T ) = p

RT
, (5.23)

φ (v2, T ) − φ (v1, T ) − v2φv (v2, T ) + v1φv (v1, T ) = 0. (5.24)

Thus, solving (5.23), we define the location for phases of thermodynamical system
on the corresponding Lagrangian manifold L.

5.4 Examples of Gases

In this section, we discuss various models of real gases and show how above
methods can be applied to the analysis of gases. We provide a detailed description
for models of real gases, which are extremely important for applications—van der
Waals, Peng–Robinson and Redlich–Kwong models.

5.4.1 Ideal Gases

We start with the simplest model of gases—ideal gases. The Lagrangian manifold
L for ideal gases is given by equations

f (e, v, p, T ) = p − Rv−1T , g(e, v, p, T ) = e − nRT

2
, (5.25)
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where n is the degree of freedom. The first equation in (5.25) is called Mendeleev–
Clapeyron equation.

The Legendrian manifold L̃ is defined by (5.25) extended by

s = R ln
(
T n/2v

)
+ Rn

2
.

The Massieu–Planck potential coincides with the specific entropy s (up to a
multiplicative constant R):

φ = ln
(
T n/2v

)
.

And finally, the differential quadratic form κ for ideal gases is

κ = − Rn

2T 2 dT · dT − Rv−2dv · dv.

One can see that κ is negative; therefore, the Lagrangian manifold L for ideal gases
has no singularities, and there are no phase transitions.

5.4.2 Van der Waals Gases

The van der Waals model is historically the first one admitting phase transitions of
gas–liquid type. The thermic equation is of the form:

f (e, v, p, T ) = p − RT

v − b
+ a

v2 ,

where a and b are constants responsible for the interaction between particles and
their volume, respectively. Note that in case a = 0 and b = 0, one gets the ideal gas
state equation.

To find out the second equation of state, we assume that g(e, v, p, T ) =
e − B(v, T ) and take the Poisson bracket [f, g]. Since it should be zero on the
Lagrangian surface, we get the following equation for B(v, T ):

v2Bv − a = 0,

from what follows that B(v, T ) = F(T )− a/v. Putting a = 0 and b = 0, we get an
ideal gas, and the caloric equation for van der Waals gases is of the form

g(e, v, p, T ) = e − nRT

2
+ a

v
.
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Let us now resolve system (5.18) for van der Waals gases. The result will be (up to
additive constant)

s(v, T ) = R ln
(
T n/2(v − b)

)
+ Rn

2
.

The Massieu–Planck potential has the following form:

φ(v, T ) = ln
(
T n/2(v − b)

)
+ a

vRT
.

Finally, the differential quadratic form κ for van der Waals gases is [1, 4]

κ = − Rn

2T 2 dT · dT − v3RT − 2a(v − b)2

v3T (v − b)2 dv · dv.

We can see that the first component of κ is negative, while the second one can
change its sign. Therefore, the Lagrangian manifold has singularities of projections
to the plane of intensive variables (p, T ). The curve in coordinates (T , v) where the
differential quadratic form κ changes its sign, which is also called spinodal curve
given by

T = 2a(v − b)2

Rv3
.

This function has a maximum at point vcrit = 3b, and it equals Tcrit = 8a/27Rb.
The temperature Tcrit is called critical temperature, and if T > Tcrit, the differential
quadratic form κ is negative. The corresponding critical values for pressure pcrit,
energy ecrit and entropy scrit could be found as well. It is more convenient to
work with dimensionless thermodynamic variables. To this end, we introduce the
following contact scale transformation:

T �−→ T

Tcrit
, v �−→ v

vcrit
, p �−→ p

pcrit
, e �−→ e

ecrit
, s �−→ s

scrit
,

where Tcrit, vcrit, pcrit, ecrit and scrit are critical parameters for van der Waals gases:

Tcrit = 8a

27Rb
, vcrit = 3b, pcrit = a

27b2 , ecrit = a

9b
, scrit = 3R

8
;

then, we get the reduced equations of state in new dimensionless coordinates, which
we will continue, denoting by p, T , e and v:

p = 8T

3v − 1
− 3

v2
, e = 4n

3
T − 3

v
.
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One can easily show that the Massieu–Planck potential and the specific entropy for
van der Waals gases take the form:

φ = ln
(
T n/2(3v − 1)

)
+ 9

8vT
+Cφ, s = ln

(
T 4n/3 (3v − 1)8/3

)
+Cs, (5.26)

where constants Cφ and Cs are

Cφ = ln

((
2

3

)3n/2 ( a

bR

)n/2
b

)
, Cs = 4n

3
+ ln

((
2

3

)4n ( a

bR

)4n/3
b8/3

)
.

And the differential quadratic form becomes

κ = −Rn

2

dT 2

T 2
− 9R(4T v3 − 9v2 + 6v − 1)

4T v3(3v − 1)2
dv2.

The spinodal curve together with the coexistence curve in coordinates (p, T ) for van
der Waals gases is presented in Fig. 5.1. The equations for the coexistence curve in
reduced coordinates have the form [4]:

3p

8T
= 3

3v1,2 − 1
− 9

8v2
1,2T

,
(3v1 − 1)(3v2 − 1)(v1 + v2)

v1 − v2
ln

(
3v2 − 1

3v1 − 1

)

= 3(v1 + v2 − 6v1v2),

and the coexistence curve together with the spinodal curve for van der Waals gases
in coordinates (p, v) is presented in Fig. 5.2.

Both curves on the Lagrangian manifold for van der Waals gases are shown in
Fig. 5.3. The area on the left of the coexistence curve corresponds to the liquid
phase, and the right area is the gas phase. The area inside the coexistence curve is a
condensation of the gas, and the area between the coexistence and spinodal curves
corresponds to possible thermodynamic states, but dramatically unstable. On the
left, such states are called overheated liquid, while the right one is overcooled gas.

5.4.3 Peng–Robinson Gases

Another very important model of real gases is Peng–Robinson model proposed
in [22]. It appeared to be effective in description of hydrocarbons. The first state
equation has the following form:

f (p, T , e, v) = p − RT

v − b
+ a

(v + b)2 − 2b2 ,
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Fig. 5.1 Spinodal curve (red)
and coexistence curve (blue)
for van der Waals gases in
coordinates (p, T )

Fig. 5.2 Spinodal curve (red) and coexistence curve (blue) for van der Waals gases in coordinates
(p, v)
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Fig. 5.3 Lagrangian manifold for van der Waals gases together with spinodal (red) and coexis-
tence (blue) curves

where constants a and b are responsible for particles’ interaction and their volume,
respectively, as in the van der Waals model. The compatibility condition leads us to
the following caloric equation of state:

g(p, T , e, v) = e − nRT

2
− a

√
2

4b
ln

(
v + b − √

2b

v + b + √
2b

)
.

As in case of van der Waals gases, let us introduce the contact scale transformation

p �−→ a

b2 p, T �−→ a

bR
T, e �−→ a

b
e, v �−→ bv, s �−→ Rs.

The reduced Peng–Robinson state equations are

p = T

v − 1
− 1

(v + 1)2 − 2
, e = nT

2
+

√
2

4
ln

(
v + 1 − √

2

v + 1 + √
2

)
,

s = ln
(
T n/2(v − 1)

)
+ n

2
+ ln

(( a

bR

)n/2
b

)
.
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The Massieu–Planck potential φ for Peng–Robinson gases is

φ(v, T )= ln
(
T n/2(v−1)

)
−

√
2

4T
ln

(
(3−2

√
2)(v

√
2+v−1)

v
√

2−v+1

)
+ ln

(( a

bR

)n/2
b

)
.

The differential quadratic form κ has the form

R−1κ=− n

2T 2 dT ·dT −T v4+2(2T −1)v3+2(T +1)v2−2(2T −1)v+T −2

T (v−1)2(v2+2v−1)2 dv ·dv.

Therefore, the singular set of the Lagrangian manifold for Peng–Robinson gases can
be found from

T = 2(v + 1)(v − 1)2

(v2 + 2v − 1)2 .

As in case of van der Waals gases, there is a critical point (Tcrit, vcrit), such that if
T > Tcrit, then the differential quadratic form κ is negative for any v.

Theorem 5.4 ([3]) The critical temperature for Peng–Robinson gases Tcrit and the
corresponding critical volume vcrit are defined as follows:

vcrit = 1 + 2(4 + 2
√

2)−1/3 + (4 + 2
√

2)1/3, Tcrit = 2(vcrit + 1)(vcrit − 1)2

(v2
crit + 2vcrit − 1)2

.

The coexistence curve for Peng–Robinson gases in coordinates (p, v, T ) is pre-
sented in Fig. 5.4 and is of similar form as for van der Waals gases.

5.4.4 Redlich–Kwong Gases

The next model of real gases is the Redlich–Kwong model. It was proposed in [23]
and became of wide popularity in filtration processes. The thermic equation of state
for Redlich–Kwong gases is

f (p, T , v, e) = p − RT

v − b
+ a√

T v(v + b)
. (5.27)

If one takes the Poisson bracket [f, g]|L, where g(e, v, p, T ) = e − B(v, T ), one
gets the following equation for B(v, T ):

3a − 2v
√

T (v + b)Bv = 0,

which has solution
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Fig. 5.4 Coexistence curve for Peng–Robinson gases

B(v, T ) = F(T ) + 3a

2b
√

T
ln

(
v

v + b

)
.

Again, F(T ) has to be defined as F(T ) = nRT/2, and the Lagrangian manifold for
Redlich–Kwong gases is given by (5.27) together with [2]

g(p, T , v, e) = e −
(

nRT

2
+ 3a

2b
√

T
ln

(
v

v + b

))
. (5.28)

Resolving the equation for the specific entropy s as described in Sect. 5.2, we get

s(v, T ) = Rn

2
ln T + R ln(v − b) + a

2bT 3/2 ln

(
v

v + b

)
+ Rn

2
. (5.29)

Thus, the Legendrian manifold L̃ is defined by (5.27), (5.28) and (5.29).
The contact scale transformation

p �−→
(

Ra2

b5

)1/3
p, T �−→ (

a
Rb

)2/3
T , v �−→ bv,

e �−→
(

Ra2

b2

)1/3
e, s �−→ Rs

gives us reduced state equations [2]:

p = T

v − 1
− 1√

T v(v + 1)
, e = nT

2
+ 3

2
√

T
ln

(
v

v + 1

)
, (5.30)
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s = ln
(
T n/2(v − 1)

)
+ 1

2T 3/2 ln

(
v

v + 1

)
+ n

2
+ ln

(( a

Rb

)n/3
b

)
. (5.31)

The Massieu–Planck potential is of the form

φ(v, T ) = ln
(
T n/2(v − 1)

)
− 1

T 3/2
ln

(
v

v + 1

)
+ ln

(
b

( a

Rb

)n/3
)

.

The differential quadratic form κ is

κR−1 = −
(

n

2T 2 + 3

4T 7/2 ln(1 + v−1)

)
dT · dT

− v2(v + 1)2T 3/2 − 2v3 + 3v2 − 1

T 3/2(v + 1)2v2(v − 1)2 dv · dv.

Note that in case of Redlich–Kwong gases, the first component of the differential
quadratic form κ depends on the specific volume v. But since pressure p and
temperature T are assumed to be positive, from (5.30), it follows that only v > 1
have sense, and therefore, the component mentioned is negative, and the projection
of the Lagrangian manifold to (e, v) for Redlich–Kwong gases has no singularities.

Spinodal and coexistence curves for Redlich–Kwong gases can be elaborated in
the same way as for van der Waals and Peng–Robinson gases and can be found
in [2].

5.5 Basic Equations

Thermodynamics of real gases discussed in previous sections forms a base for
the analysis of gas dynamics, since, as we will see further, equations describing
dynamics significantly depend on thermodynamical properties. In this section, we
formulate the problem and provide general solutions for stationary Darcy and Euler
flows.

The system of equations describing one-component filtration of gases in porous
media (Darcy flows) or inviscid gas flow (Euler flow) consists of [6–8]

1. The momentum conservation law

• the Darcy law (for filtration processes)

u = − k

μ
∇p, (5.32)



174 V. V. Lychagin and M. D. Roop

where u(x) = (u1, u2, u3) is the velocity field, x ∈ D ⊂ R
3, p(x) is the

pressure, k = k(v, T ) and μ = μ(v, T ) are the coefficients of permeability
and viscosity, respectively, which are the functions of the medium.

• the Euler equation (for inviscid gases)

ρ(u,∇)u = −∇p, (5.33)

where ρ(x) = v−1(x) is the density.

2. The mass conservation law

div(ρu) = 0. (5.34)

In addition to (5.32), (5.33) and (5.34), we assume that the flows of both kinds are
adiabatic, i.e. the specific entropy s is constant along the trajectories of the velocity
field u:

(u,∇s) = 0. (5.35)

One can see that the system (5.32) or (5.33) together with (5.34) and (5.35) is
incomplete. It is quite expectable, since we have not yet specified the medium above
Eqs. (5.32)–(5.35) are written for. It can be done by means of equations of state
(Legendrian manifold)

p = RT φv, e = RT 2φT , s = R(φ + T φT ), (5.36)

where φ(v, T ) is given.
Then, system of equations including (5.32) or (5.33), together with (5.34)–(5.36)

is complete
Using equations of state together with equations describing dynamics not only

makes the system complete but also allows us to investigate how thermodynamic
properties, especially phase transitions, appear in solutions of equations. Indeed,
having solution of basic equations, one gets thermodynamical variables as functions
in D, and therefore coexistence curves for various gases can be moved from the
Lagrangian manifold to D. This allows us to define the location for different phases
of gases and the set of points in D where phase transition occurs.

Suppose that the domain D contains a number of sources located at points
ai ∈ D, having intensities Ji . We will denote the source as a pair (ai, Ji), i = 1, N .
Then, D can be represented as a union of domains D = ∪Dk , where each Dk

contains sources with common specific entropy s0, while filtrations in Dk are
independent [4]. Therefore, we can restrict ourselves on case s(x) = s0. We can
also say that the gas is involved in an adiabatic process.

Geometrically, thermodynamical processes can be understood as contact trans-
formations of (R5, θ) preserving the Legendrian manifold L̃, or, from infinitesimal
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viewpoint, as contact vector fields X tangent to L̃. Integral curve of X is a curve l

on L̃, which we will mean by a thermodynamical process.

5.5.1 Darcy Flows

In case of Darcy flows, the following theorem is valid.

Theorem 5.5 Let the thermodynamic state of the gas be given by L̃ and l ⊂ L̃ be
a thermodynamical process. Then, filtration equations (5.32), (5.34) and (5.36) are
equivalent to the Dirichlet problem

Δ(Q(τ)) = 0, τ |∂D = τ0,

where

Q(τ) = −
∫

v−1(τ )
k(τ )

μ(τ)
p′(τ )dτ,

τ is a parameter on l and Δ is the Laplace operator.

Proof Let τ be a parameter on a given process l. Then, all the thermodynamic
variables can be expressed in terms of τ , in particular,

p = p(τ), v = v(τ), T = T (τ), k = k(τ ), μ = μ(τ). (5.37)

From (5.32) and (5.34), one gets

0 = div(v−1u) = div

(
v−1(τ )

(
− k(τ )

μ(τ)
∇p

))
=div

(
v−1(τ )

(
− k(τ )

μ(τ)
p′(τ )∇τ

))

= div
(
Q′(τ )∇τ

) = div (∇Q(τ)) = Δ(Q(τ)),

where Q(τ) = − ∫
v−1(τ )

k(τ)
μ(τ)

p′(τ )dτ . ��
This theorem is a generalization of that in [1–4]. The result of this theorem gives an
explicit method of finding solutions for the Dirichlet filtration problem. Note that
this result is of general form for all gases and all processes. All we need is to find
the function Q(τ) for a given gas and a given process.

In case of N sources (ai, Ji) and D = R
3, one has

τ(x) = Q−1

(
N∑

i=1

Ji

4π |x − ai | + Q(τ0)

)
.
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By means of (5.37), we have p = p(x), v = v(x), T = T (x) and so on and
therefore get a complete solution for Darcy flows. The conditions for the invertibility
of Q(τ) will be formulated for concrete gases.

5.5.2 Euler Flows

For Euler flows, we analyze in detail the case of one point isotropic source (a, J ) in
D and have the same theorem as for Darcy flows [5].

Theorem 5.6 Let the thermodynamic state of the gas be given by L̃ and l ⊂ L̃ be a
thermodynamical process. Then, the solution for problems (5.33), (5.34) and (5.36)
is given implicitly by the following formula:

v2(τ )

2|x − a|4 +
(

4π

J

)2

Ψ (τ) = 0, (5.38)

where τ is a parameter on l and

Ψ (τ) =
∫

v(τ)p′(τ )dτ.

Proof Let r = |x − a| be a distance from the source, x − a = r, and let n = r/r .
Since the source is isotropic, one has

u = U(r)r, ∇ = n∂r .

The intensity of the source is equal to J , which means that the mass flux through a
sphere Sa of radius r with a centre at a is equal to J :

J =
∫

Sa

v−1(τ (r))(u,n)dS = 4πr3v−1(τ (r))U(r),

from what follows that

U(r) = J

4πr3 v(τ(r)).

Then, Eq. (5.33) due to (5.37) takes the form

v−1(τ )

(
J

4π

)2
v(τ)

r2

d

dr

(
v(τ)

r2

)
= −p′(τ )

dτ

dr
,

which in turn becomes
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d

dr

(
v2(τ )

2r4

)
+

(
4π

J

)2

v(τ)p′(τ )
dτ

dr
= 0,

from what follows the statement of the theorem. ��
Once one computes the function Ψ (τ), one gets a complete solution for the
stationary Euler problem.

In our case, the specific volume v can be chosen as a parameter τ on adiabatic
process ladiab ⊂ L̃. Indeed, due to (5.20), we have the following relation:

s0 = R(φ + T φT ),

which can be considered as an equation for T (v) since the derivative of the right-
hand side is positive in an applicable domain. Therefore, all the thermodynamical
variables can be expressed in terms of v.

5.6 Solutions

In this section, we discuss solutions of Darcy and Euler equations for concrete gases
using the analysis of their thermodynamic properties in Sect. 5.4. For simplicity, the
permeability coefficient k and the viscosity μ are assumed to be constants.

5.6.1 Darcy Flows

5.6.1.1 Ideal Gases

First of all, let us express all the thermodynamic variables in terms of v. For ideal
gases, we have

T (v) = exp

(
2s0

Rn

)
v−2/n, p(v) = R exp

(
2s0

Rn

)
v−2/n−1. (5.39)

Therefore, the function Q(v) equals

Q(v) = −Rk

2μ
exp

(
2s0

Rn

)
n + 2

n + 1
v−2/n−2.

And finally, the solution v(x) has the following form:
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v(x) =
(

Q(v0) − 2μ

Rk
exp

(
−2s0

Rn

)
n + 1

n + 2

N∑
i=1

Ji

4π |x − ai |

)− n
2(n+1)

,

where v0 is the specific volume at infinity.

5.6.1.2 van der Waals Gases

For van der Waals gases, the expressions for T (v) and p(v) are of the form:

T (v) = exp

(
3s0

4n

)
(3v − 1)−1−2/n, p(v) = 8 exp

(
3s0

4n

)
(3v − 1)−1−2/n − 3

v2
.

And the function Q(v) is defined by the relation [4]

−μ

k
Q(v) = − 2

v3 + 8 exp

(
3s0

4n

)
(3v − 1)−α

v
+ 8 exp

(
3s0

4n

) ∫
(3v − 1)−αv−2dv,

where α = 1 + 2/n.
For van der Waals gases, the conditions for invertibility of Q(v) are given by the

following theorem [1, 4].

Theorem 5.7 The function Q(v) is invertible if the specific entropy constant s0
satisfies the following inequality:

exp

(
3s0

4n

)
>

1

4α
(1 + α)1+α(2 − α)2−α.

Thus, if the above condition holds, the solution is uniquely determined, otherwise,
there are a number of possibilities in filtration development. The case of multivalued
solution for one source is considered in detail in [4]. Here, we concentrate on a
uniquely determined solution for a number of sources. As we have said, having
solution for the filtration problem, one can find the location of different phases. It is
presented in Fig. 5.5. We can see that the condensation process is observed in the
neighbourhood of the sources.

5.6.1.3 Peng–Robinson Gases

In case of Peng–Robinson gases, the expressions for T (v) and p(v) have the
following form:

T (v) = exp

(
2s0

n

)
(v−1)−2/n, p(v) = exp

(
2s0

n

)
(v−1)−1−2/n− 1

(v + 1)2 − 2
.



5 Critical Phenomena in Darcy and Euler Flows of Real Gases 179

Fig. 5.5 Distribution of
phases for van der Waals
gases. Coloured domain
corresponds to the
condensation process, and
white domain corresponds to
gas phase

Therefore, the function Q(v) is

−μ

k
Q(v) = 3

√
2

4
ln

(
v + 1 + √

2

v + 1 − √
2

)
+ ln

(
v2

v2 + 2v − 1

)
−

− v + 2

v2 + 2v − 1
− exp

(
2s0

n

)(
1 + 2

n

) ∫
dv

v(v − 1)2+2/n
.

Invertibility conditions for Q(v) in this case can be given by the following
theorem [3].

Theorem 5.8 The function Q(v) is invertible if the specific entropy constant s0
satisfies the inequality:

exp

(
2s0

n

)
>

2n(v0 + 1)(v0 − 1)2+2/n

(n + 2)(v0 + 2v0 − 1)2 ,

where v0 is the root of the equation:

(2 − n)v3 + 3(n + 2)v2 + (3n + 2)v + 3n − 2 = 0. (5.40)

There exists a real root of (5.40), v0 > 1.

The distribution for phases has the same form as in case of van der Waals gases and
can be found in [3].
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5.6.1.4 Redlich–Kwong Gases

For Redlich–Kwong gases, the given level of the specific entropy s0 leads us to the
following relation:

s0 = ln
(
T n/2(v − 1)

)
+ 1

2T 3/2
ln

(
v

v + 1

)
. (5.41)

We cannot get an explicit expression for T (v) from (5.41), but nevertheless, one
can estimate the asymptotic behaviour for p(v), T (v) and Q(v) when v → 1 or
v → ∞ [2].

Theorem 5.9 If v → 1, then asymptotics for T (v), p(v) and Q(v) have the
following form:

T (v) = B2/3

(v − 1)2/3 + O
(
(v − 1)1/3

)
, p(v) = B2/3

(v − 1)5/3 + O

(
1

(v − 1)2/3

)
,

Q(v) = − kB2/3

μ(v − 1)5/3 + O

(
1

(v − 1)2/3

)
,

where B = exp(s0).

Theorem 5.10 If v → +∞, then asymptotics for T (v), p(v) and Q(v) have the
following form:

T (v) = 1

(B∗v)2/3 + O

(
1

v5/3

)
, p(v) = c

v5/3 + O

(
1

v8/3

)
,

Q(v) = − 5kc

8μv8/3 + O

(
1

v11/3

)
,

where B∗ is the root of the equation

−s0 = B/2 + ln B,

and

c = (
B∗)−2/3 − (

B∗)1/3
.

Let us now analyze the invertibility conditions for Q(v). We need to find actually
the conditions for s0 when Q(v) is monotonic for all v that have sense, i.e. v > 1.
In other words, Q′(v) should have no zeroes for v > 1. But since the relations
Q′(v) = 0 and p′(v) = 0 are equivalent, one has to explore p′(v) including s0 as a
parameter. First of all, using equation of state p(T , v), one has
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dp

dv
= ∂p

∂v
+ ∂p

∂T

dT

dv
. (5.42)

The derivative T ′(v) can be obtained by means of (5.41). Once we substitute it
in (5.42), the equation p′(v) = 0 will take the form

AZ2 + BZ + C = 0, (5.43)

where Z = T 3/2 and

A = 2(n + 2)v2(v + 1)2, C = (v − 1)2
(

1 − 3(2v + 1) ln
(

1 + v−1
))

,

B = 3v2(v + 1)2 ln
(

1 + v−1
)

+ 2(v − 1)((v + 1)(2v + n) − 2nv2).

Since A > 0 and C < 0, the discriminant of (5.43) is positive, and therefore,
there are two real roots. But since B > 0, one of them is negative and is out of
consideration. Thus, from equation p′(v) = 0, we have

T (v) =
(

−B + √
B2 − 4AC

2A

)2/3

. (5.44)

Substituting the root (5.44) in (5.41), we get the relation

s0 = H(v). (5.45)

If the specific entropy level s0 is such that (5.45) has no solution v∗ > 1, then
Q(v) is invertible. An example for H(v) in case of n = 3 is presented in Fig. 5.6.
Numerical computation shows that if s0 > −0.5, then Q(v) is invertible [2]. The
distribution of phases is very similar to the case of van der Waals gases and can be
found in [2].

5.6.2 Euler Flows

Here, we discuss the solution for Euler flows of ideal and van der Waals gases.
Peng–Robinson and Redlich–Kwong models can be elaborated in the same way.

First of all, we take D = R
3 assuming that the specific volume is given at infinity

v||x−a|→∞ = v0. Since we take v as a parameter on the process ladiab, the general
formula (5.38) takes the form [5]:

v2

2|x − a|4 +
(

4π

J

)2

Ψ (v) = 0,

where Ψ (v) = ∫
vp′(v)dv.
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Fig. 5.6 Graph of function
H(v)

5.6.2.1 Ideal Gases

Using (5.39), one can show that the function Ψ (v) for ideal gases has the following
form:

Ψ (v) = R(n + 2)

2
exp

(
2s0

Rn

)
v−2/n.

Therefore, the solution for ideal gases has the form (it is more convenient to work
in terms of density ρ = v−1 here):

1

2|x − a|4ρ2 +
(

4π

J

)2

exp

(
2s0

Rn

)
R(n + 2)

2
ρ2/n = C0,

where C0 is a constant depending on ρ||x−a|→∞ = ρ0.

Theorem 5.11 ([5]) If ρ0 = 0, then the asymptotic behaviour of ρ(x) at infinity is
of the form:

ρ(x) = 1√
2C0|x − a|2 + o

(
1

|x − a|2
)

,
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Fig. 5.7 The distribution of
the density for ideal gases

and if ρ0 	= 0, then

ρ(x) =
(

J

4π

)n (
2C0

R(n + 2)
exp

(
−2s0

Rn

))n/2

+
∞∑
i=1

βi

|x − a|4i
.

Thus, the solution obtained is regular at infinity in both cases. The distribution of
the density is shown in Fig. 5.7.

We can see that the solution is multivalued. Moreover, it exists not for any x [5].

Theorem 5.12 The solution ρ(x) exists if

|x − a| >

(
2ρ2∗

(
C0 − R

(
4π

J

)2

exp

(
2s0

Rn

)
(n/2 + 1)ρ

2/n∗

))−1/4

,

where

ρ∗ =
(

J

4π

)n (
exp

(
−2s0

Rn

)
2nC0

R(n + 1)(n + 2)

)n/2

.

5.6.2.2 van der Waals Gases

In case of van der Waals gases, the solution is given by the following formula [5]:

1
2|x−a|4ρ2 +

(
4π
J

)2 ×
(

4 exp
(

3s0
4n

)
(3ρ−1 − 1)−(1+2/n)

(
ρ−1(n + 2) − n

3

) − 6ρ
)

= C0.
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Fig. 5.8 The distribution of
phases for van der Waals
gases. Variable y = 1 is the
liquid phase, and variable
y = 0.5 is the condensation
process

Fig. 5.9 The distribution of
phases for van der Waals
gases. Variable y = 0 is the
gas phase, and variable
y = 0.5 is the condensation
process

We analyze phase transitions in two cases, for “small” and “big” levels of the
specific entropy constant s0. Let us start with the higher branch of solution.

If s0 = 0.5, the distribution of phases is shown in Fig. 5.8. We observe the
condensation process near the source, while far from the source, the medium is in a
liquid phase.

If s0 = 200, the distribution of phases is shown in Fig. 5.9. We again observe
the condensation process near the source, but at large distances from the source, the
medium is in a gas phase.

For the lower branch of solution, in both cases, the gas condensates.
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5.7 Conclusions

In this paper, we presented the analysis of critical phenomena in two types of
stationary gas flows—filtration flows described by the Darcy law and flows of
inviscid gases described by Euler equations. We showed that thermodynamics
plays a crucial role in modelling of gas dynamics, and since taking into account
thermodynamic properties of the medium expressed by state equations, we not
only make the system of continuous media equations complete but also get an
opportunity to investigate how these properties influence the flow. We provided
constructive methods of finding solutions for Darcy and Euler flows, which are of
general form not only for various gases but also for thermodynamical processes
these gases are involved in. We also showed that the solutions of both Darcy and
Euler system are, in general, multivalued, and for Darcy flows, the conditions for
uniquely determined solution can be formulated, while in case of Euler flows, the
solution is always multivalued, but each branch is determined by the conditions
at infinity, and therefore only one of them can be realized physically. Another
important property of solutions is their regularity at infinity, usually accepted in
physics as “correctness”. The analysis of critical phenomena showed that Darcy and
Euler flows have the same distribution of phases in case of “big level” of the specific
entropy.

Further investigations in this field can be connected with the analysis of critical
phenomena in case of, in some sense, distributed sources, i.e. the source is no longer
assumed to be a point but occupies some domain. Another direction could be, on the
one hand, the exploration of gas flows on Riemannian manifolds, and on the other
hand, the investigation of flows for media with more complicated thermodynamics,
namely, phase transitions of the higher order, which requires in turn the more
detailed analysis of geometric structures on the corresponding Legendrian and
Lagrangian manifolds.
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