
Chapter 4
Finite Dimensional Dynamics of
Evolutionary Equations with Maple

Alexei G. Kushner and Ruslan I. Matviichuk

4.1 Introduction

The theory of finite dimensional dynamics is a natural development of the theory
of dynamical systems. Dynamics make it possible to find families that depend
on a finite number of parameters among all solutions of evolutionary differential
equations.

The basic ideas and methods of this theory were formulated in [7, 13]. In the same
papers, finite dynamics were constructed for the Kolmogorov–Petrovsky–Piskunov
and the Korteweg–de Vries equations.

Second-order dynamics of the Burgers–Huxley equation were constructed in
[10].

Dynamics of third order were found for equations of the Rapoport–Leas type
arising in the theory of two-phase filtration. These dynamics were used for
constructing attractors [2, 3].

The paper is devoted to the finite dimensional dynamics of some evolution
equations that arise in physics, mathematical biology, and mathematical economics.
Among them are the Fisher–Kolmogorov–Petrovsky–Piskunov [21] equation and its
generalization and the Black–Scholes equation [4].

When finding dynamics, we have to carry out calculations in jet spaces. This
leads to cumbersome formulas. To facilitate calculations and avoid mistakes, we
use the packages DifferentialGeometry and JetCalculus of the system of symbolic
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calculations Maple. A description of the basics of working with these packages can
be found in [20].

Examples of dynamics calculations are considered and the program codes are
given. These codes, with minor modifications, can be used to compute dynamics
and find exact or approximate solutions to other evolutionary equations.

The structure of this paper is as follows.
In the first two sections, we give basic definitions and describe methods of the

theory. The details can be found in [5, 7, 11, 13].
In the third section, we calculate first- and second-order dynamics of the Fisher–

Kolmogorov–Petrovsky–Piskunov (FKPP) equation

ut = uxx + f (u)

and apply them to construct approximate solutions.
Note that in the considered example, the dynamics equation is solved exactly, but

the group of shifts along the evolutionary vector field was found only approximately.
In the fourth section, we consider the reaction–diffusion equation with a con-

vection term. This equation differs from the FKPP equation by the presence of a
first-order derivative with respect to x (see [16, 18, 19]):

ut + H(u)x = uxx + f (u).

It is proved that this equation has first-order dynamics for any smooth functions H

and f , but second-order dynamics exist only when the function H is quadratic and
the function f is cubic (see Theorem 4.3).

The fifth section is devoted to the Black–Scholes equation that came from
mathematical finance theory. We construct two series of its exact solutions.

Some Maple files can be found on the website, d-omega.org.

4.2 Symmetries of ODEs

Any ordinary differential equation

y(k+1) = h
(
x, y, y′, y′′, . . . , y(k)

)
(4.1)

can be considered as a one-dimensional distribution P on the jet space J k(R). This
distribution is generated by the vector field

D = ∂

∂x
+ y1

∂

∂y0
+ · · · + yk

∂

∂yk−1
+ h

∂

∂yk

.

Here, x, y0, y1, . . . , yk are canonical coordinates on J k(R) [9].

www.d-omega.org
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Integral curves of P are prolongations of trajectories of Eq. (4.1) into the space
J k(R).

Definition 4.1 A vector field X on J k(R) is called an infinitesimal symmetry of
Eq. (4.1) if translations along X preserve P.

All infinitesimal symmetries form the Lie algebra with respect to the Lie bracket.
We denote this algebra by SymmP.

Definition 4.2 An infinitesimal symmetry is called characteristic if translations
along it preserve each integral curve of the distribution P.

Characteristic symmetries form an ideal in SymmP, which we denote by
CharP.

Definition 4.3 The quotient Lie algebra

Shuff P := SymmP / CharP

is called the Lie algebra of shuffling symmetries.

Each shuffling symmetry can be identified with a vector field of the form

Sφ = φ
∂

∂y0
+ D(φ)

∂

∂y1
+ D2(φ)

∂

∂y2
+ · · · + Dk(φ)

∂

∂yk

,

where φ is a function on J k(R) that is called a generating function of the
corresponding shuffling symmetry.

If the function h does not depend on x, then y1 is a generating function of a
symmetry of Eq. (4.1).

4.3 Flows on ODE’s Solution Spaces

Consider the following evolutionary partial differential equation:

∂u

∂t
= φ

(
x, u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
. (4.2)

Let φ = φ(x, y0, . . . , yk) be a generating function of some shuffling symmetry of
Eq. (4.1), and let Φt be the translation along the vector field Sφ from t = 0 to t . Let
Ly(x) = {y0 = y(x)} be the graph of some solution y = y(x) of Eq. (4.1), and let

L
(k)
y(x) = {y0 = y(x), y1 = y′(x), . . . , yk = y(k)(x)} (4.3)
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be its prolongation into the space J k(R). Shifting the curve L
(k)
y(x) along the

trajectories of the vector field Sφ , we get the surface

Φt

(
L

(k)
y(x)

)
⊂ J k(R2)

that is a prolongation of the graph of a solution of evolution equation (4.2). Here,
J k(R2) is the k-jet space of functions with two independent variables t and x.
Describe two methods for constructing solutions of equation (4.2).

Method 1 The space of solutions of equation (4.1) can be identified with the space
R

k+1 by indicating the initial data of solutions at a fixed point x = x0. Then, the shift
transformation Φt defines the transformation of the space R

k+1 with coordinates
y0, y1, . . . , yk . Therefore, we can consider transformations of this space instead of
transforming curves. Such transformations are given by shifts Φt along the vector
field

Eφ = φ
∂

∂y0
+ D(φ)

∂

∂y1
+ D2(φ)

∂

∂y2
+ · · · + Dk(φ)

∂

∂yk

,

where φ is a restriction of the function φ to Eq. (4.1).
Let y = y(x; a) be the solution of equation (4.1) with initial data

y(x0) = a0, y
′(x0) = a1, . . . , y

(k)(x0) = ak.

Applying the transformation Φt to the point a = (a0, . . . , ak), we obtain a one-
parameter family y(x;Φt(a)) of solutions of equation (4.1). Then, the function

u(t, x) = y(x,Φt (a))

is a solution of the evolutionary Eq. (4.2) with the initial data u(0, x) = y(x; a).
Method 2 The transformation Φt acting on the jet space J k(R) generates a
transformation Φ∗

t acting on functions. Let Φ−1
t be the inverse transformation for

Φt . Curve (4.3) is generated by the system of equalities

y0 − y(x) = 0, y1 − y′(x) = 0, . . . , yk − y(k)(x) = 0. (4.4)

Applying the transformation
(
Φ−1

t

)∗
to (4.4), we obtain the following systems:

Ψ 0(t, x, y0, . . . , yk) = 0, Ψ 1(t, x, y0, . . . , yk) = 0, . . . , Ψ k(t, x, y0, . . . , yk)=0.

Solving it with respect to y0, . . . , yk , we find a coordinate representation of the

curve Φt

(
L

(k)
y(x)

)
:
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y0 = Y0(t, x), y1 = Y1(t, x), . . . , yk = Yk(t, x). (4.5)

The function u(t, x) = Y0(t, x) is a solution of equation (4.2). The remaining
functions in (4.5) correspond to the partial derivatives:

∂ju

∂xj
= Yj (t, x), j = 1, . . . , k.

The first method is convenient when the solution of equation (4.1) or the shift
transformation Φt can be found only approximately. The second method, on the
contrary, is applicable in the case when the solution and shift transformation can be
found explicitly.

Definition 4.4 If φ is a generating function of a shuffling symmetry of Eq. (4.1),
then Eq. (4.1) is called a (finite dimensional) dynamics of Eq. (4.2). The number
k + 1 is called the order of the dynamics.

Thus, an evolutionary equation determines a flow on the solution space of an
ordinary differential equation.

The following theorem (see [2]) provides a method for calculating finite dimen-
sional dynamics of evolutionary equations.

Theorem 4.1 The ordinary differential equation

F = yk+1 − h(x, y0, y1, . . . , yk) = 0

is a dynamics of evolutionary equation (4.2) if and only if

[φ, F ] = 0modDF, (4.6)

where DF = 〈F,D(F),D2(F ), . . . 〉 is the differential ideal generated by the
function F ,

D = ∂

∂x
+ y1

∂

∂y0
+ y2

∂

∂y1
+ · · ·

is the operator of total derivative, and

[φ, F ] =
∑
i�0

(
∂φ

∂yi

Di(F ) − ∂F

∂yi

Di(φ)

)

is the Poisson–Lie bracket.

The Poisson–Lie bracket is a prolongation of the classical Poisson bracket into
the jet space (see, for example, [11]). Note that the Poisson–Lie bracket is skew-
symmetric R-bilinear and satisfies the Jacobi identity. From the skew-symmetric
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property, it follows that [φ, φ] = 0, and therefore the equation φ = 0 is a dynamics
of Eq. (4.2).

4.4 The Fisher–Kolmogorov–Petrovsky–Piskunov Equation

The equation

ut = uxx + f (u) (4.7)

is known as the Fisher–Kolmogorov–Petrovsky–Piskunov equation or the reaction–
diffusion equation.

It describes processes of heat and mass transfer, propagation of a dominant gene
[6, 8], propagation of flame [21], reaction–diffusion [14], and ferroelectric domain
wall motion in an electric field [17]. For example, Eq. (4.7) with

f (u) = (1 − u2)(m − u),

−1 < m � 0, describes active transmission of an electric impulse in neuron, and it
is known as Nagumo’s equation [15].

B. Kruglikov and O. Lychagina [7] presented an analysis of finite dimensional
dynamics of Eq. (4.7).

4.4.1 Second-Order Dynamics

Equation (4.7) admits second-order dynamics if the function f (u) is cubic (see [7]):

f (u) = f3u
3 + f2u

2 + f1u + f0,

where f0, . . . , f3 ∈ R. Then,

φ = y2 + f3y
3
0 + f2y

2
0 + f1y0 + f0.

Find second-order dynamics in the form of the Liénard equation [12], i.e. put

F := y2 − A(y0)y1 − B(y0), (4.8)

where A and B are some smooth functions. Consider two cases.

Case 1: f3 > 0 Then, we can put f3 = 2q2. The restriction of the Poisson–Lie
bracket to dynamics (4.8) gives us the following system of equations:
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f B ′ − Bf ′ = 0,

(2B − f )A′ = 0,

A′′ = 0,

B ′′ + 2AA′ + 12q2y0 + 2f2 = 0.

Solving this system, we get

A(y0) = A1y0 + A0

and

B(y0) = −1

3
(A2

1 + 6q2)y3
0 − (A0A1 + f2)y

2
0 + B1y0 + B0,

where A0, A1, B0, and B1 are constants that we find from the first two equations:
A0 is arbitrary, and

A1 = 0, B0 = −f0, B1 = −f1.

Then, dynamics (4.8) has the form

F = y2 + 2q2y3
0 + f2y

2
0 − A0y1 + f1y0 + f0 = φ − A0y1. (4.9)

Therefore, the restriction φ to equation F = 0 is

φ = A0y1.

Case 2: f3 < 0 We can put f3 = −2q2, and we get the equation

B ′′ + 2AA′ − 12q2y0 + 2f2 = 0

instead of the last equation in system (4.4.1). Then, A(y0) = A1y0 + A0 and

B(y0) = −1

3
(A2

1 − 6q2)y3
0 − (A0A1 + f2)y

2
0 + B1y0 + B0,

and we get three solutions:

1. A0 is arbitrary, A1 = 0, B0 = −f0, B1 = −f1;

2. A0 = − f2

2q
, A1 = 3q, B0 = f0

2
, B1 = f1

2
;

3. A0 = f2

2q
, A1 = −3q, B0 = f0

2
, B1 = f1

2
.

So, we get the following dynamics:
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F1 =y2 − A0y1 − 2q2y3
0 + f2y

2
0 + f1y0 + f0, (4.10)

F2 =y2 −
(
3qy0 − f2

2q

)
y1 + q2y3

0 − f2

2
y2
0 − f1

2
y0 − f0

2
, (4.11)

F3 =y2 +
(
3qy0 − f2

2q

)
y1 + q2y3

0 − f2

2
y2
0 − f1

2
y0 − f0

2
. (4.12)

The restrictions φ to this dynamics are

φ1 =A0y1,

φ2 = 1

2q

(
−6q3y3

0 + 6q2y1y0 + 3q(f2y
2
0 + f1y0 + f0) − f2y1

)
,

φ3 = 1

2q

(
−6q3y3

0 − 6q2y1y0 + 3q(f2y
2
0 + f1y0 + f0) + f2y1

)
,

respectively.

As a result, we obtain the following theorem.

Theorem 4.2 The FKPP equation

ut = uxx + f3u
3 + f2u

2 + f1u + f0, (4.13)

with nonzero f3, admits the following second-order dynamics of the form:

F = y2 − A(y0)y1 − B(y0).

– If f3 > 0, i.e. f3 = 2q2, then the dynamics has form (4.9);
– If f3 < 0, i.e. f3 = −2q2, then the dynamics have forms (4.10)–(4.12).

Here, q is a nonzero number.

4.4.2 Integration of the Dynamics

Consider, for example, dynamics (4.12). Corresponding differential equation has the
form

y′′ +
(
3qy − f2

2q

)
y′ + q2y3 − f2

2
y2 − f1

2
y − f0

2
= 0. (4.14)

The distribution P is generated by the vector field
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D = ∂

∂x
+ y1

∂

∂y0
−

((
3qy0 − f2

2q

)
y1 + q2y3

0 − f2

2
y2
0 − f1

2
y0 − f0

2

)
∂

∂y1
(4.15)

or by the differential 1-forms

ω1 = dy0 − y1dx,

ω2 = dy1 +
((

3qy0 − f2

2q

)
y1 + q2y3

0 − f2

2
y2
0 − f1

2
y0 − f0

2

)
dx.

This distribution has two shuffling symmetries:

S1 =φ
∂

∂y0
+ D(φ)

∂

∂y1

=
(

−3q2y3
0 + 3

2
f2y

2
0 +

(
−3qy1 + 3

2
f1

)
y0 + 1

2q
f2y1 + 3

2
f0

)
∂

∂y0(
3q3y4

0 − 2qf 2y3
0 + 1

4q2
(−6q3f1 + qf 2

2 )y2
0 + 1

4q2
(qf1f2 − 6q3f0)y0

−3qy2
1 + 1

4q2 (6f1q
2 + f 2

2 )y1 + 1

4q
f0f2

)
∂

∂y1

and

S2 =Sy1 = y1
∂

∂y0
+ D(y1)

∂

∂y1

=y1
∂

∂y0
+

(
−q2y3

0 + 1

2
f2y

2
0 +

(
−3qy1 + 1

2
f1

)
y0 + 1

2q
f2y1 + 1

2
f0

)
∂

∂y1
.

The vector fields S1 and S2 define commutative symmetry Lie algebra:

[S1, S2] = 0.

According to the Lie–Bianchi theorem [5, 11], the ordinary differential equation
F = 0 is integrable by quadratures. In order to construct its first integrals, we
construct two differential 1-forms �1 and �2 instead of the forms ω1 and ω2.
We choose them so that they form a dual basis for the vector fields S1 and S2, i.e.
�i(Sj ) = δij , where δij is the Kronecker delta. Compose the matrix

W =
∥∥∥∥
ω1(S1) ω1(S2)

ω2(S1) ω2(S2)

∥∥∥∥ .

Determinant of the matrix is
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detW = 1

4q

(
12q5y6

0 + 36y1q
4y4

0 − 12y2
0(y

3
0f2 + f1y

2
0 + f0y0 − 3y2

1)q
3

− 18

(
−2

3
y2
1 + f1y

2
0 + f0y0 + 4

3
y3
0f2

)
q2y1

+
(
3f 2

2 y4
0 + 6f1y

3
0f2 + (3f 2

1 + 6f0f2)y
2
0 + (6f0f1 − 12y2

1f2)y0

+3f 2
0 − 6y2

1f1)q + 3y1f2(f2y
2
0 + f1y0 + f0)

)
.

In the domain of the plane (y0, y1) where detW �= 0, there exists the inverse matrix
W−1. Define differential 1-forms �1 and �2:

∥∥∥∥
�1

�2

∥∥∥∥ = W−1
∥∥∥∥
ω1

ω2

∥∥∥∥ .

Since the Lie bracket [S1, S2] = 0, we get

d�i (S1, S2) = S1(�i(S2)) − S2(�i(S1)) − �([S1, S2]) = 0.

This means that the forms �1 and �2 are closed. Due to the Poincaré lemma, there
exist functions H1 and H2 such that �1 = dH1 and �2 = dH2. These functions are
first integrals of the ordinary differential equation F = 0. Integrating the forms �1
and �2 along an arbitrary path in the space J 1(R), we find these integrals. We do
not write them for general case because of their bulkiness.

4.4.3 Construction Solutions of the FKPP Equation by
Dynamics

To construct solutions of equation (4.13), we use Method 1 (see page 126).
Let y(x; a), where a = (a0, a1), be the solution of ordinary differential

equation (4.14) with initial conditions y(x0) = a0 and y′(x0) = a1. Let Φt be
the shift transformation along the vector field S1 from t = 0 to t . Since Φt is a
symmetry of Eq. (4.14), the function y(x;Φt(a)) is a solution of this equation too.

The transformation Φt is defined by the solution of the ordinary equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy0

dt
= −3q2y3

0 + 3

2
f2y

2
0 +

(
−3qy1 + 3

2
f1

)
y0 + 1

2q
f2y1 + 3

2
f0,

dy1

dt
= 3q3y4

0 − 2qf 2y3
0 + 1

4q2
(−6q3f1 + qf 2

2 )y2
0

+ 1

4q2 (qf1f2 − 6q3f0)y0 − 3qy2
1 + 1

4q2 (6f1q
2 + f 2

2 )y1 + 1

4q
f0f2

(4.16)
with initial conditions y0(0) = y0 and y1(0) = y1.

Therefore, if we manage to solve this system and find the flow of the vector field
S1 in explicit form, then we can construct an exact solution of the FKPP equation.
Otherwise, we can use numerical methods to system (4.16). As a result, we obtain
approximate solutions of equation (4.13).

Example 4.1 Consider the equation

ut = uxx − 2u3 + 1. (4.17)

Then, φ = y2 − 2y3
0 + 1, and we have three dynamics:

F1 = y2 + 3y0y1 + y3
0 − 1

2
; (4.18)

F2 = y2 − 3y0y1 + y3
0 − 1

2
; (4.19)

F3 = y2 − αy1 − 2y3
0 + 1, (4.20)

where α is a constant.
Consider dynamics (4.18), for example, i.e. suppose that F = F1. The restriction

of the function φ to the equation F = 0 is

φ = −3y3
0 − 3y0y1 + 3

2
.

The distribution P is generated by the differential 1-forms

ω1 = dy0 − y1dx, (4.21)

ω2 = dy1 +
(
3y0y1 + y3

0 − 1

2

)
dx. (4.22)

The vector fields of shuffling symmetries are

S1 = −
(
3y3

0 + 3y0y1 − 3

2

)
∂

∂y0
+

(
−3y2

1 + 3y4
0 − 3

2
y0

)
∂

∂y1
, (4.23)
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Fig. 4.1 The vector field S1

S2 = y1
∂

∂y0
−

(
3y0y1 + y3

0 − 1

2

)
∂

∂y1
. (4.24)

Remark 4.1 The vector field S1 has a stable focus at the point y0 = 1
3
√
2
, y1 = 0

(see Fig. 4.1).

The matrix W is

W =

∥∥∥∥∥∥∥
−3y3

0 − 3y1y0 + 3

2
y1

3y4
0 − 3y2

1 − 3

2
y0

1

2
− 3y1y0 − y3

0

∥∥∥∥∥∥∥
.

It is nondegenerate if

detW = 9y2
0y

2
1 − 3y3

0 + 9y4
0y1 + 3y6

0 − 9

2
y1y0 + 3y3

1 + 3

4
�= 0.

The differential 1-forms �1 and �2 are

�1 = − (6y0y1 + 2y3
0 − 1)dy0 + 2y1dy1

2 detW
, (4.25)

�2 = −dx −
3
(
(4y2

1 − 4y4
0 + 2y0)dy0 − 4

(
y0y1 + y3

0 − 1
2

)
dy1

)

4 detW
. (4.26)
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Fig. 4.2 Sections of the
graph of u(t, x) for t = 0
(red), 0.05 (blue), and 0.15
(green)

After integrating them, we get first integrals of the equation F = 0. However, these
integrals are cumbersome and we do not give them here. Fortunately, a general
solution of equation

y′′ + 3yy′ + y3 − 1

2
= 0 (4.27)

can be constructed directly using Maple. Below we give the corresponding program
code. As a result, we obtain the general solution of equation (4.27):

y(x) =
C1e

2√
3
χ − 1

2e
− 1√

3
χ

(√
3C2 + 1

)
cos χ + 1

2e
− 1√

3
χ

(
C2 − √

3
)
sin χ

3
√
2

(
C1e

2√
3
χ − C2e

− 1√
3
χ
sin χ + e

− 1√
3
χ
cos χ

) ,

(4.28)
where C1 and C2 are arbitrary constants and χ =

√
3

3√16
x.

An example of calculations in Maple is given below.

Maple Code: Second-order dynamics for the equation ut = uxx − 2u3 + 1

1. Load libraries:

with(DifferentialGeometry):
with(JetCalculus):
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with(Tools):
with(PDETools):
with(LinearAlgebra):

2. Set jet notation, declare coordinates on the manifold M , and generate coordi-
nates on the 3-jet space:

Preferences("JetNotation", "JetNotation2"):
DGsetup([x], [y], M, 3):

3. Define the Poisson–Lie bracket on the space J 3(R):

Poisson:= proc (A, B)
local i, P;
P:=0:
for i from 0 to 3 by 1 do
P:=P+(diff(A, y[i])*TotalDiff(B, [i])-
diff(B, y[i])*TotalDiff(A, [i]))
end do:
return P:
end proc:

4. Define the function φ and a second-order dynamics F :

f(y[0]) := -2*y[0]^3+1:
phi := y[2]+f(y[0]):
F:=y[2]-A(y[0])*y[1]-B(y[0]):

5. The Poisson–Lie bracket calculation:

eq0:=collect(Poisson(phi,F),{y[1],y[2]}):

6. Substitution of the second derivative:

sub_y2:=y[2]=solve(F,y[2]):

7. Restriction of the Poisson–Lie bracket to the dynamics F = 0:

eq1:=[coeffs(collect(eval(eq0,sub_y2),y[1]),y[1])]:

8. Printing the resulting equations [φ, F ] = 0 :

for i from 1 to nops(eq1) by 1 do
print(simplify(eq1[i]))
end do;

9. Solve the resulting system [φ, F ] = 0 with respect to the functions A and B:

dsolve(eq1);

10. We get dynamics (4.18)–(4.20). Choose dynamics (4.18):

F:=y[2]+3y[0]*y[1]+y[0]^3-1/2:
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11. Convert the function F to a differential operator (equation)

ode:=convert(F,DGdiff):

12. This equation can be solved by quadratures. Construct a solution of the Cauchy
problem for this equation:

Y:=simplify(unapply(rhs(dsolve({ode,y(0)=a1,
(D(y))(0) = a2})),x,a1,a2)):

13. Restriction of φ to the dynamic F = 0:

sub_y2:=y[2]=solve(F,y[2]):
phi_F:=eval(phi, sub_y2):

14. Define vector field (4.15):

Z:=evalDG(D_x+y[1]*D_y[0]+(rhs(sub_y2))*D_y[1]):

15. Define vector field (4.23):

S1:=evalDG(phi_F*D_y[0]+LieDerivative(Z,phi_F)*D_y[1]):

16. To find the shifts Φt along the vector field S1, we compose a system of
differential equations

z1:=diff(q(t),t)=eval(Hook(S1,dy[0]),
{y[0]=q(t),y[1]=p(t)});

z2:=diff(p(t),t)=eval(Hook(S1,dy[1]),
{y[0]=q(t),y[1]=p(t)});

Here, q = y0 and p = y1.
17. Choose the solution of equation (4.27) with initial data

q(0) = a0 = 4, p(0) = a1 = 2,

and compose a system to calculate the shift of the point (a0, a1):

ind:=q(0) = 4, p(0) = 2;
dsys:={z1,z2,ind};

18. Numerically solve this system:

dsn := dsolve(dsys, numeric);

19. Load the library:

with(plots):

20. Form the image of sections of the solution of the equation at t = 0; 0.05; 0.15:
r1:=plot(Y(x,rhs(dsn(0)[3]),rhs(dsn(0)[2])),
x=-3..4,color="RED");
r2:=plot(Y(x,rhs(dsn(0.05)[3]),rhs(dsn(0.1)[2])),
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x=-3..4,color="Blue");
r3:=plot(Y(x,rhs(dsn(0.15)[3]),rhs(dsn(0.15)[2])),
x=-3..4,color="GREEN");

21. Display images on the screen:

display([r1,r2,r3],numpoints=1500,
resolution=3000,
thickness=2,axes = framed,
axesfont = ["TIMES", "ROMAN", 12],
labelfont = ["TIMES","ITALIC", 14],
labels = ["x", "y"],color="BLACK");

As a result, we obtain slices of the solution of the equation at moments t =
0, 0.05, 0.15 (see Fig. 4.2).

4.5 The Reaction–Diffusion Equation with a Convection
Term

The reaction–diffusion equation with a nonlinear convection flow H(u) in the
positive direction of the x-axis has the form [14]

ut + H(u)x = uxx + f (u). (4.29)

Write this equation in the form

ut = uxx + g(u)ux + f (u), (4.30)

which is more convenient for calculations. Here, g(u) = −H ′(u). Then,

φ(y0, y1, y2) = y2 + g(y0)y1 + f (y0).

Below we suppose that

g′ �= 0. (4.31)

4.5.1 First-Order Dynamics

Construct first-order dynamics of Eq. (4.30) in the following form:
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F := y1 − h(y0) = 0, (4.32)

where h is some smooth function.
The restriction of the Poisson–Lie bracket to Eq. (4.32) is

[φ, F ] = h′f − hf ′ − h2(g′ + h′′).

Equation [φ, F ] = 0 has the trivial solution h = 0, which corresponds to x-
independent solutions of equation (4.30). Consider the case when h �= 0. Then,
the function h satisfies the Abel differential equation of second kind (see [1] )

hh′ + (g(y0) + α)h + f (y0) = 0, (4.33)

where α is a constant. Due to (4.33), the evolutionary vector field has the form

S = (
hh′ + gh + f

) ∂

∂y0
= αh

∂

∂y0
.

4.5.2 Second-Order Dynamics

We will look for second-order dynamics in the form of the Liénard equation too (see
(4.8)). The Poisson–Lie bracket is

[φ, F ] = −(g′′+A′′)y3
1−(f ′′+B ′′)y2

1−
(
2(g′ + A′)y2 − g′B + A′f

)
y1+B ′f −f ′B.

Since its restriction to Eq. (4.8) is a polynomial in y1, Eq. (4.6) implies the
following system of ordinary differential equation:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(f − 2B)A′ − 3g′B = 0,

2(A′ + g′)A + f ′′ + B ′′ = 0,

B ′f − Bf ′ = 0,

g′′ + A′′ = 0.

Solving this system, we find that the functions g and f should be linear and cubic,
respectively:

f (y0) =f3y
3
0 + f2y

2
0 + f1y0 + f0, (4.34)

g(y0) =g1y0 + g0, (4.35)

where f0, . . . , f3, g0, g1 ∈ R. From inequality (4.31), it follows that g1 �= 0.
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Theorem 4.3 1. Equation (4.30) has second order finite dimensional dynamics in
the form of the Liénard equation (4.8) if and only if the function f is a polynomial
of third degree and the function g is linear.

2. Suppose that the functions f and g have forms (4.34) and (4.35), respectively,
where f3 �= 0, g1 �= 0. Then Eq. (4.30) has the finite dimensional dynamics

F = y2 + (g1y0 + α)y1 + f3y
3
0 + f2y

2
0 + f1y0 + f0,

where α is a constant. In addition, if the condition g2
1 − 8f3 ≥ 0 holds, then

Eq. (4.30) has one more finite dimensional dynamics

F =y2 − (A1y0 + A0)y1 + 1

3
(A2

1 + g1A1 + 3f3)y
3
0

+ (A1A0 + f2 + g1A0)y
2
0 − B1y0 − B0,

where

A0 = f2β

f3
, A1 = 3β, B0 = f0(f3 + g1β)

2f3
,

B1 = f1(f3 + g1β)

2f3
, β =

−g1 ±
√

g2
1 − 8f3

4
.

Example 4.2 Consider the equation

ut = uxx − (u + 1)ux + 1

8
u3. (4.36)

Then,

φ = y2 − (y0 + 1)y1 + 1

8
y3
0

and

F = y2 − 3

4
y0y1 + 1

16
y3
0 .

Restrict φ to the equation F = 0:

φ = −1

4
y0y1 + 1

16
y3
0 − y1.

The vector field is
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Fig. 4.3 The graph of
solution (4.38)

8

6

4

2

0

-2

-4

-6

-8

-4
-3

-2
-1

0
1

2
3

0.4

0.3

0.2

0.1

0

x

u

t

S =
(

−1

4
y0y1 + 1

16
y3
0 − y1

)
∂
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64
y4
0 + 1

16
y3
0

)
∂

∂y1
.

The shift transformation Φt corresponding to this field is

x �−→ x,

y0 �−→ 8(ty2
0 − 4y1t + 4y0)

(t2 − 2t)y2
0 + 8ty0 + 32 + (8t − 4t2)y1

,

y1 �−→ 8((2t+t2)y4
0+8ty3

0−8ty1(2 + t)y2
0−32ty0y1+128y1 + 16t2y2

1 + 32ty2
1)(

(t2 − 2t)y2
0 + 8ty0 − 4t2y1 + 8y1t + 32

)2 .

The equation F = 0 has the following general solution:

y(x) = − 8(C1x + C2)

C1x2 + 2C2x + 2
, (4.37)

where C1 and C2 are arbitrary constants. Applying the inverse transformation Φ−1
t

to these functions, we get a solution of equation (4.36):

u(t, x) = − 8(C1(x − t) + C2)

2 + ((x − t)2 − 2t)C1 + (2(x − t))C2
. (4.38)
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The graph of this solution with C1 = C2 = 1 is shown in Fig. 4.3.
Below we give the part of the code responsible for the shift of solutions (4.37)

along the trajectories of the vector field S.

Maple Code: Second-order dynamics for Eq. (4.36)

4. Define the function φ and a second-order dynamics F :

phi:=y[2]-(y[0]+1)*y[1]+(1/8)*y[0]^3:
F := y[2]-(3/4)*y[0]*y[1]+(1/16)*y[0]^3:

5. Restriction of φ to the dynamic F = 0:

phi_F:= phi-F:

6. Construct the vector field D:

Z:=evalDG(D_x+y[1]*D_y[0]+(A(y[0])*y[1]+
B(y[0]))*D_y[1]):

7. Construct the vector field S:

S:=evalDG(phi_F*D_y[0]+
LieDerivative(Z,phi_F)*D_y[1]):

8. The transformation Φt and its inverse transformation Φ−1
t :

Phi:=Flow(S,t):
Xi:=InverseTransformation(Phi):

9. Solution (4.37) and its derivative:

ode:=convert(F1,DGdiff): v:=rhs(dsolve(ode));
w:=diff(v,x);

10. Apply the transformation Φ−1
t to solution (4.37):

eq:=Pullback(Xi,[y[0]-v,y[1]-w]);

11. Find the explicit form of the solution:

sol:=solve(eq,{y[0],y[1]}):
q:=rhs(sol[1]);

12. Checking:

U:=diff(u(t,x),t)-eval(convert(phi,DGdiff),
y(x)=u(t,x));
simplify(eval(U,u(t,x)=q));
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4.6 The Black–Scholes Equation

The Black–Scholes equation

ut = −1

2
σ 2x2uxx − rxux + ru (4.39)

is a well-known linear partial differential equation of financial mathematics [4].
It describes the price of the option over time. Here, u is the price of the option
as a function of stock price x and time t , r is the risk-free interest rate, and σ is
the volatility of the stock. Note that, unlike the equations considered above, this
equation depends on the variable x. For this equation,

φ = −1

2
σ 2x2y2 − rxy1 + ry0.

4.6.1 First-Order Dynamics

Since the equation is linear, we will seek its linear dynamics:

F = y1 − A(x)y0 − B(x). (4.40)

Then,

[φ, F ] =
(

σ 2x2

2
A′′y0 + rxA′

)
y0 +

(
r + σ 2x2A′) y1

+ σ 2xy2 + σ 2x2

2
B ′′ + rxB ′ − rB.

The restriction [φ, F ] of this bracket in Eq. (4.40) is a linear function with respect
to y0. Therefore, the equation [φ, F ] = 0 is equivalent to the following system of
two ordinary differential equations:

⎧⎪⎨
⎪⎩

1

2
A′′σ 2x2 + (Aσ 2x + σ 2 + r)xA′ + A2σ 2x + Ar = 0,

1

2
B ′′σ 2x + (σ 2 + r)B ′ + σ 2(xA′ + A)B = 0.

The first equation can be solved:

A(x) = 1

2σ 2x

(
σ 2 − 2r − C1 tan

(
C1 ln x − C2

2σ 2

))
,
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where C1 and C2 are arbitrary constants. After substituting into the second equation,
we obtain the equation for B:

4x

(
σ 2x

2
B ′′ + (σ 2 + r)B ′

)
σ 2 cos2

(
C1 ln x − C2

2σ 2

)
− BC2

1 = 0. (4.41)

It is quite difficult to construct a general solution of this equation. But if we put
C1 = 0, then it can be easily solved:

B(x) = C3x
− σ2+2r

σ2 + C4,

where C3 and C4 are arbitrary constants. Then, we get the following dynamics:

F = y1 − 1

2σ 2x
(σ 2 − 2r)y0 − C3x

− σ2+2r
σ2 − C4. (4.42)

The general solution of the corresponding equation is

y(x) = C5x
σ2−2r
2σ2 − 2σ 2(C3x

− 2r
σ2 − C4x)

σ 2 + 2r
, (4.43)

where C5 is an arbitrary constant. A zero solution B(x) = 0 of Eq. (4.41) gives
another dynamics:

F = y1 − 1

2σ 2x

(
σ 2 − 2r − C1 tan

(
C1 ln x − C2

2σ 2

))
y0. (4.44)

Its general solution is

y(x) = C3x
σ2−2r
2σ2 cos

(
C1 ln x − C2

2σ 2

)
. (4.45)

4.6.2 Construction Solutions of the Black–Scholes Equation by
Dynamics

At first, consider dynamics (4.44). Restrict the function φ to dynamics (4.44):

φ = C2
1 + (σ 2 + 2r)2

8σ 2 y0.

Construct the vector field
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S = φ
∂

∂y0
,

and find its shift transformation:

Φt : (x, y0) �−→
(

x, e
C2
1+(σ2+2r)2

8σ2
t
y0

)
.

The inverse transformation is

Φ−1
t : (x, y0) �−→

(
x, e

− C2
1+(σ2+2r)2

8σ2
t
y0

)
.

Acting by this transformation on function (4.45), we obtain the following exact
solution of equation (4.39):

u(t, x) = C3x
σ2−2r
2σ2 cos

(
C1 ln x − C2

2σ 2

)
e
− C2

1+(σ2+2r)2

8σ2
t
. (4.46)

Here, C1, C2, and C3 are arbitrary constants.
For example, the function

u(t, x) = e
3
2 t

√
2x

√
sin(

√
3 ln x) + 1 (4.47)

is a solution of equation (4.39) with σ = r = 1 (see Figs. 4.4 and 4.5).
Now, consider dynamics (4.42). In this case,

φ = 1

8σ 2

(
2r + σ 2

) (
(2r + σ 2)y0 + 2σ 2C3x

− 2r
σ2 − 2C4σ

2x

)
.

Omitting cumbersome calculations, we write the final result. The function

u(t, x) = B1x + B2x
− 2r

σ2 + B3x
σ2−2r
2σ2 e

(σ2+2r)2

8σ2
t

is a solution of equation (4.39). Here, B1, B2, and B3 are arbitrary constants.
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Fig. 4.4 Sections of the
graph of solution (4.47) for
t = 0 (red), 0.1 (orange), 0.2
(green), and 0.3 (blue)

Fig. 4.5 The graph of
solution (4.47)
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Maple Code: First-order dynamics for the Black–Scholes equation

The first three items are the same as in the Maple code on page 135. We start at
the fourth one.

4. Define the function φ and a second-order dynamics F :

phi := -sigma^2*x^2*y[2]/2-r*x*y[1]+r*y[0]:
F := y[1]-A(x)*y[0]-B(x):

5. The Poisson–Lie bracket calculation:

eq0:=simplify(Poisson(phi,F),size);

6. Substitution of the derivatives:

sub:=solve([F,TotalDiff(F,x)],{y[1],y[2]}):

7. Restriction of the Poisson–Lie bracket to the dynamics:

eq1:=simplify(eval(eq0,sub),size):
eq2:=[coeffs(collect(eq1,y[0],distributed),y[0])];

8. Print the resulting equations [φ, F ] = 0:

for i from 1 to nops(eq2) by 1 do
print(simplify(eq2[i],size))
end do;

9. Next, the resulting system of equations is solved with respect to the function A

and B in a semi-manual mode. As a result, we get dynamics (4.44):

F:=y[1]-(1/2)*(sigma^2-2*r
-tan((1/2)*C1*(ln(x)-C2)/sigma^2)*C1)*y[0]/
(sigma^2*x):

10. Restriction of φ to the dynamic F = 0:

phi_F:=simplify(eval(phi,sub),size):

11. Construct the vector field S:

S:=evalDG(phi_F*D_y[0]):

12. The transformation Φt and its inverse transformation Φ−1
t :

Phi:=Flow(S,t):
Xi:=InverseTransformation(Phi):

13. Apply the transformation Φ−1
t to solution (4.45):

Xi_y:=Pullback(Xi,y[0]-(C3*x^((1/2)

*(sigma^2-2*r)/sigma^2)*cos((C1*ln(x)-C2)
/(2*sigma^2)))):
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14. Find solution (4.46):

q:=solve(Xi_y,y[0]);

15. Check this solution:

BSch:=diff(u(t,x),t)-eval(convert(phi,DGdiff),
y(x)=u(t,x)):
simplify(eval(BSch,u(t,x)=q));

It should be zero.
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