
Chapter 3
Symmetries and Integrals

Valentin V. Lychagin

3.1 Preface

In these lectures, I want to illustrate an application of symmetry ideas to integration
of differential equations. Basically, we will consider only differential equations of
finite type, i.e. equations with finite-dimensional space Sol of (local) solutions. Ordi-
nary differential equations make up one of the main examples of such equations. The
symmetry Lie algebra Sym induces an action on manifold Sol. In the case when this
action is transitive, we expect to get more detailed information on solutions. Here,
we are going to realize this expectation; namely, we will show that in the case when
the Lie algebra Sym is solvable, integration of the differential equation can be done
by quadratures due to the Lie–Bianchi theorem (see, for example, [4] or [6]). In
the case when the Lie algebra Sym contains simple subalgebras, integration shall
use quadratures (for radical of the Lie algebra) and integration of some differential
equations, which we will call model equations [6, 10]. The model equations depend
on the type of the simple Lie subalgebras and are natural generalizations of the well-
known Riccati differential equations. They possess nonlinear Lie superposition,
and all their solutions could be obtained by nonlinear superposition of a finite set
of solutions (the so-called fundamental solutions). Once more, the form of this
superposition and the number of fundamental solutions are dictated by the symmetry
Lie algebra. In order to give a more “practical” reader a feeling of the power of
the geometrical approach to differential equations, we included in these lectures a
number of examples on the formula level.

The paper is organized as follows. First, we consider symmetries of two types
of distributions: Cartan distributions and completely integrable distributions. We
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show how to integrate completely integrable distributions possessing a symmetry
Lie algebra that acts in a transitive way on the space of (local) integral manifolds.
We begin with the most trivial (but also the more applicable) case of a commutative
symmetry Lie algebra and show how to get quadratures. As an example of
application of this case, we discuss the famous Liouville–Arnold theorem on
integrable Hamilton systems. We propose also the general reduction principle that
allows to split integration for pair (J ,Sym) , where J ⊂ Sym is an ideal in
the symmetry Lie algebra, into two separate cases with symmetry algebra J and
Sym/J . Application of this principle to solvable Lie algebras gives us the Lie–
Bianchi theorem (together with a constructive method of finding quadratures), as
well as integration of cases with general symmetry algebra Sym by means of
model equations. We conclude these lectures by showing applications to ordinary
differential equations and especially to the “toy” case of Schrödinger type equations:
y′′ + W(x)y = 0. We show that (nontrivial) geometries on the line are hidden in
these equations and how symmetries allow us to write explicit solutions of these
equations.

I consider these lectures as an invitation to the wonderful world of symmetries
and differential equations. More details, results, and methods can be found in more
advanced expositions (see, for example, the cited books at the end of the lectures).

3.2 Distributions

Let M be an (n + m)-dimensional smooth manifold, and let τ : T M → M be the
tangent bundle. Then, a distribution P on M is a smooth field

P : a ∈ M �−→ P (a) ⊂ TaM

of m-dimensional subspaces of the tangent spaces. The number m is called the
dimension of the distribution, m = dimP , and the number n is called a codimension
of P , n = codimP .

The statement that P is a smooth family could be formulated in two different
ways:

1. For any point a ∈ M , there are vector fields 〈X1, . . . , Xm〉 defined in a
neighborhood O of a such that the vectors Xi,b ∈ TbM, i = 1, . . . , m belong
to and form a basis in P(b) for every b ∈ O.

2. There are differential 1-forms 〈ω1, .., ωn〉, such that

P (b) = kerω1,b ∩ · · · ∩ kerωn,b

in the neighborhood O.
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For the first definition, let us introduce C∞ (M)-module

D(P ) = {X ∈ Vect(M),Xa ∈ P (a) ,∀a ∈ M}

of all smooth vector fields lying in (or tangent to) the distribution P.

Then, (1) states that this module is locally free (=projective) and that the sets
〈X1, . . . , Xm〉 give us local bases for D(P ). In a similar way, let us introduce
another C∞ (M)-module

Ann (P ) =
{
ω ∈ Ω1 (M) , ω (X) = 0,∀X ∈ D (P )

}

of all smooth differential 1-forms vanishing on vector fields from P . Then, (2) states
that this module is also locally free and that the sets 〈ω1, .., ωn〉 are local bases for
this module.

Example 3.1 Consider M = R
3 with coordinates (x, y, z), and let ω = dz − ydx.

This form does not vanish at any point of M and therefore defines a distribution P

on M of dimension 2 and codimension 1. The vector fields

X1 = ∂

∂y
, X2 = ∂

∂x
+ y

∂

∂z
(3.1)

give us a basis in the module D(P ).

A submanifold N ⊂ M is said to be integral for the distribution P if

TaN ⊂ P (a) , (3.2)

for all a ∈ N . This condition is better to formulate in terms of the differential 1-
forms 〈ω1, .., ωn〉. Then, N is integrable if their restrictions to N are equal to zero:

ωi |N = 0, i = 1, . . . , n.

An integral manifold is maximal if it is not contained in an integral manifold of
greater dimension.

Example 3.2 The distribution (3.1) has 1-dimensional integral submanifolds.
Namely, assume that x is a coordinate on N, i.e.

N = {z = A(x), y = B(x)} ,

for some smooth functions A and B. Then,

ω|N = dA − Bdx = (
A′ − B

)
dx,

and N is integral if and only if B = A′, and
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N = {
z = A(x), y = A′(x)

}
. (3.3)

On the other hand, if N is a 2-dimensional integral manifold, then the vector field
∂/∂z is not tangent to N , because ∂/∂z /∈ D (P ) . Therefore, we can represent

N = {z = A (x, y)} .

Then, ω|N = dA − ydx = (Ax − y) dx + Aydy = 0 if and only if

Ax = y, Ay = 0, (3.4)

which is impossible.
Two observations should be made from this example: (1) maximal integral

manifolds can have dimension less than dimP and (2) finding of integral manifolds
is equivalent to finding of solutions of some differential equations.

A distribution is said to be completely integrable if the dimension of every
maximal integral manifold is exactly the dimension of the distribution itself, and
if for any point of M , there is a maximal integral manifold containing this point.
For such distributions, the entire manifold can be presented as the disjoint union of
maximal integral manifolds of the distribution, which are the leaves of a foliation,
so that the notion of a completely integrable distribution is equivalent to that of a
foliation.

Theorem 3.1 (Frobenius) A distribution P is completely integrable if and only if
the module D (P ) is closed with respect to commutator of vector fields

X, Y ∈ D (P ) �⇒ [X, Y ] ∈ D (P ) . (3.5)

Moreover, if the distribution P is completely integrable, and if N1 and N2 are
integral submanifolds of P, passing through a point a ∈ N1 ∩ N2, then N1 = N2 in
a neighborhood of the point.

Example 3.3 Consider the distribution given by (3.1). As we have seen, the
maximal integral manifolds for this distribution have dimension 1, and therefore
this distribution is not completely integrable. On the other hand, the module D (P )

for this distribution is generated by the vector fields

X1 = ∂

∂y
, X2 = ∂

∂x
+ y

∂

∂z
,

and we have

[X1, X2] = ∂

∂z
/∈ D (P ) .
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The condition (3.5) can be reformulated in terms of differential forms generating
the module Ann (P ) . Namely, using the formula

dω (X, Y ) = X (ω (Y )) − Y (ω (X)) − ω ([X, Y ]) ,

we get

dω (X, Y ) = −ω ([X, Y ]) ,

for all X, Y ∈ D (P ) and ω ∈ Ann (P ) . Therefore, the condition (3.5) is equivalent
to

dω (X, Y ) = 0,

for all X, Y ∈ D (P ). In other words, the restriction of the differential 2-form dω|P
on the distribution P vanishes for all forms ω ∈ Ann (P ) .

In terms of local bases 〈X1, . . . , Xm〉 for the module D (P ) or 〈ω1, .., ωn〉 for
the module Ann (P ), the conditions for complete integrability can be reformulated
in the following equivalent forms:

1.

[Xi,Xj ] =
∑

k

ck
ijXk, (3.6)

for all i, j = 1, . . . ., m and some smooth functions ck
ij .

2.

dωi =
∑
j

γij ∧ ωj , (3.7)

for all i, j = 1, . . . ., n and some differential 1-forms γij .

3.3 Distributions and Differential Equations

3.3.1 Cartan Distributions (ODEs)

Let Jk be the space of all k-jets of functions in one variable x. Then, the k-jet of
a smooth function f (x) at point a ∈ R, denoted by [f ]ka , is given by its set of
derivatives:

[f ]ka =
(
f (a) , f ′ (a) , . . . ., f (k) (a)

)
.
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We denote by (x, u0, u1, . . . , uk) the coordinates on Jk satisfying

ui

(
[f ]ka

)
= f (i) (a) ,

for all i = 0, 1, . . . k, and x
([f ]ka

) = a.

The differential 1-forms

ωi = dui − ui+1dx, (3.8)

on Jk, where i = 0, . . . , k − 1, we call Cartan forms, and the distribution

Ck = kerω0 ∩ · · · ∩ kerωk−1

we call the Cartan distribution on the jet-space.
We have dim Jk = k + 2, codimCk = k, and therefore dimCk = 2, i.e. Ck is a

distribution of planes.
It is easy to see that a basis in the module D (Ck) of vector fields tangent to Ck

is formed by vector fields

X1 = ∂

∂uk

, (3.9)

X2 = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
,

and

[X1, X2] = ∂

∂uk−1
/∈ D (Ck) .

Therefore, Ck is a non-integrable distribution, and its maximal integral manifolds
have dimension 1.

To find these curves, we remark that trajectories of the vector fieldX1 are integral
curves for Ck and, similarly to (3.1), integral curves N on which x is a coordinate
have the special form

N = L
(k)
A =

{
u0 = A(x), u1 = A′(x), . . . ., uk = A(k)(x)

}
.

By an ordinary differential equation (ODE) of order k, we mean a relation that
connects components of k-jets [f ]ka of unknown functions f (x) , i.e. a relation of
the form

F (x, u0, . . . , uk) = 0, (3.10)

which is valid when ui are coordinates of solutions.
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Geometrically, it means that we consider a submanifold (possibly with singular-
ities)

EF = {F (x, u0, . . . , uk) = 0} ⊂ Jk,

and solutions are curves

L
(k)
A ⊂ EF .

Assuming that EF is a smooth submanifold of Jk, we say that solutions of the ODE
EF are integral curves of the Cartan distribution Ck lying in EF , or, in other words,
they are integral curves of the restriction of the distribution Ck on EF :

CF : a ∈ EF → Ck (a) ∩ Ta (EF ) .

Remark that dimCF (a) = 1 if Ck (a) is not a subspace of Ta (EF ) and that
dimCF (a) = 2 if Ck (a) ⊂ Ta (EF ) . In the last case, we say that point a ∈ EF is
a singular point.

Therefore, on the complement EF \ Sing (EF ), we have a 1-dimensional distri-
bution CF . This is obviously a completely integrable distribution, and its integral
curves L ⊂ EF \ Sing (EF ) are smooth solutions of the equation if and only if
function x is a coordinate on L.

To find a basis X in the module D (CF ), we write down vector field X in the
form

X = a(x)X1 + b(x)X2,

where X1 and X2 form basis in Ck . Then, X ∈ D (CF ) if and only if X is tangent
to EF or if

X (F) = 0,

on EF . Thus,

a
∂F

∂uk

+ bDk (F ) = 0

on EF . Here, we denoted by

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
(3.11)

the vector field X2 in (3.9).
Remark that Sing (EF ) is given by equations
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∂F

∂uk

= 0, Dk (F ) = 0, F = 0

and in general defines a submanifold Sing (EF ) ⊂ EF of codimension 2.
Equations EF , where ∂F

∂uk
�= 0, are called equations of principal type, and for

such equations, a basis in D (CF ) has the form

D = ∂F

∂uk

Dk − Dk (F )
∂

∂uk

,

and x is a coordinate on integral curves.
Thus, for principal type equations, solutions are smooth functions, and in all other

cases, they are singular and multivalued functions (see [7] for more such examples).
To simplify the formulae in what follows, we will consider only principal type

equations of the form

uk = F (x, u0, . . . , uk−1) . (3.12)

Then, EF is diffeomorphic to Jk−1, (x, u0, . . . , uk−1) are coordinates on EF , and
the basic vector field in D (CF ) has the form

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + F

∂

∂uk−1
.

The distribution CF can also be defined by the following Cartan forms:

ω0 = du0 − u1dx, (3.13)

..............

ωk−2 = duk−2 − uk−1dx,

ωk−1 = duk−1 − Fdx.

When working with algebraic equations, we use different algebraic manipula-
tions in order to simplify them. For differential equations, the class of possible
manipulations can be essentially extended by adding the operation of differentiation
or prolongation.

Take, for example, system (3.4)

∂A

∂x
= y,

∂A

∂y
= 0,

which we investigated above. Then, by differentiating, the first and second equations
in x and y, we get the following system:
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∂A

∂x
= y,

∂2A

∂x2
= 0,

∂2A

∂x∂y
= 1,

∂A

∂y
= 0,

∂2A

∂x∂y
= 0,

∂2A

∂y2
= 0,

which is obviously contradictory and therefore has no solutions.
To apply the prolongation procedure to the ordinary differential equations, we

introduce the formal derivation (the total derivative in x)

D = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
+ uk+1

∂

∂uk

+ · · · .

Then, the prolongation of Eq. (3.10) is the following system E (1)
F ⊂ Jk+1 :

F (x, u0, . . . , uk) = 0,

D (F ) = Dk (F ) + uk+1
∂F

∂uk

= 0.

Applying in series this procedure, we get l-th prolongations E (l)
F ⊂ Jk+l given by

relations

F = 0, D (F ) = 0, D2 (F ) = 0, . . . , Dl (F ) = 0. (3.14)

The advantage of using prolongations E (l)
F and their inverse limit E (∞)

F ⊂ J∞
comes from the fact that these equations contain information on all derivatives of
solutions up to order l or ∞.

It is easy to see that the Cartan distributions C on the prolongations are still 1-
dimensional at regular points and generated by the restrictions of the total derivative
D on E (l)

F .

3.3.2 Cartan Distributions (PDEs)

For the case of functions of n variables x = (x1, . . . , xn), and corresponding partial
differential equations, the above constructions can be repeated, practically word by
word.

Namely, denote by Jk (n) the space of all k-jets of functions in n variables. Then,
the k-jet [f ]ka of a smooth function f (x1, . . . , xn) at a point a ∈ R

n is given by the
values of its derivatives

∂σ f

∂xσ
(a)
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at the point. Here, σ = (σ1, . . . , σn) are multi-indices of order 0 � |σ | � k, where
|σ | = σ1 + · · · + σn.

Denote by (x, uσ , 0 � |σ | � k) the standard coordinates on Jk (n), where

uσ

(
[f ]ka

)
= ∂σ f

∂xσ
(a) .

Define also the Cartan forms

ωσ = duσ −
∑

i

uσ+1i
dxi

and the Cartan distribution

Ck =
⋂

0�|σ |�k−1

kerωσ .

We have dim Jk = n + (
n+k
k

)
, codimCk = (

n+k−1
k−1

)
, and therefore dimCk =

n + (
n+k−1

k

)
.

The following vector fields make up a basis in the module D (Ck):

Xσ = ∂

∂uσ

, |σ | = k,

Yi = ∂

∂xi

+
∑

|σ |�k−1

uσ+1i

∂

∂uσ

.

We have [Xσ , Yi] = ∂
∂uσ−1i

/∈ D (Ck) if σi � 1, and therefore the Cartan

distribution is not completely integrable.
Similarly to the 1-dimensional case, this distribution has two types maximal

integral manifolds:

1.

L
(k)
A =

{
u0 = A(x), uσ = ∂ |σ |A

∂xσ

}
,

where A(x) is a smooth function, and
2. integral manifolds of the completely integrable distribution generated by all

vector fields Xσ .

Remark that the dimension of the first type of integral manifolds equals n, while the
dimension for the second type of integral manifolds equals

(
n+k−1

k

)
, and

(
n+k−1

k

)
>

n if n � 1 and k � 2. For the complete description of various maximal integral
manifolds (and their dimensions) for the Cartan distributions, see [11].
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As above, we will consider differential equations (PDEs in this case) as
submanifolds

EF = {F (x, uσ ) = 0} ⊂ Jk (n)

and their smooth solutions as submanifolds L
(k)
A ⊂ EF .

In the more general case, we will by solution mean any such n-dimensional
submanifold L of the Cartan distribution that L ⊂ EF , i.e. n-dimensional integral
submanifold L of the restriction of the Cartan distribution on EF .

By using the total derivations

Di = ∂

∂xi

+
∑

uσ+1i

∂

∂uσ

,

where i = 1, .., n, we define prolongations

E (l)
F = {

F (x, uσ ) = 0, Dσ (F ) = 0, |σ | � l
} ⊂ Jk+l (n) ,

which contains all information about (k + l)-jets of solutions.

3.4 Symmetry

By a (finite) symmetry of the distribution P on the manifold M , we understand a
(possibly local) diffeomorphism φ : M → M , which takes P into itself, i.e. such
that φ∗ (Pa) = Pφ(a), for all points a ∈ M , or, in short, φ∗ (P ) = P.

A vector field X is said to be (an infinitesimal) symmetry of the distribution if the
flow generated by X consists of finite symmetries.

The infinitesimal approach turns out to be much more constructive and more
algebraic than its finite counterpart, so in what follows the word symmetry will
always mean infinitesimal symmetry unless otherwise explicitly specified.

Assume that distribution P is generated by differential 1-forms ω1, . . . , ωm,
where m = codimP . We write P = 〈ω1, . . . , ωm〉. Then, the condition φ∗ (P ) =
P means that the differential 1-forms φ∗ (ω1) , . . . , φ∗ (ωm) determine the same
distribution P and therefore can be expressed in terms of the basis forms

φ∗ (ω1) = a11ω1 + · · · + a1mωm,

..................

φ∗ (ωm) = am1ω1 + · · · + ammωm,

for some smooth functions aij , or in the equivalent form

φ∗ (ω1) ∧ ω1 ∧ · · · ∧ ωm = 0, . . . , φ∗ (ωm) ∧ ω1 ∧ · · · ∧ ωm = 0. (3.15)
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These conditions take the form

LX (ω1) = a11ω1 + · · · + a1mωm,

....................

LX (ωm) = am1ω1 + · · · + ammωm,

or

LX (ω1) ∧ ω1 · · · ∧ ωm = 0, . . . , LX (ωm) ∧ ω1 · · · ∧ ωm = 0, (3.16)

for infinitesimal symmetries X.

Let us denote by Sym (P ) the set of all infinitesimal symmetries of the
distribution P . Then, the above formulae show that the following conditions are
equivalent:

• X ∈ Sym (P ) ,

• Y ∈ D (P ) �⇒ [X, Y ] ∈ D (P ) ,

• ω ∈ Ann (P ) �⇒ LX (ω) ∈ Ann (P ) .

It follows that Sym (P ) is a Lie algebra over R with respect to the commutator
of vector fields.

3.4.1 Symmetries of the Cartan Distributions

Let us now consider symmetries of the Cartan distributions first on Jk .

Lemma 3.1 We have

df = Dk (f ) dx + ∂f

∂uk

duk mod 〈ω0, . . . , ωk−1〉 ,

for any smooth function f on Jk.

Proof Indeed, we have

dui = ui+1dx + ωi,

for all i = 0, . . . , k − 1. Therefore,

df = ∂f

∂x
dx +

k∑
i=0

∂f

∂ui

dui = ∂f

∂x
dx +

k−1∑
i=0

ui+1
∂f

∂ui

dx + ∂f

∂uk

duk +
k−1∑
i=0

∂f

∂ui

ωi

= Dk (f ) dx + ∂f

∂uk

duk mod 〈ω0, . . . , ωk−1〉 .

��
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Now, let X ∈ Sym (Ck) and

X = a
∂

∂x
+

k∑
i=0

Ai

∂

∂ui

,

where a and Ai are smooth functions on Jk. Then, by using the above lemma, we
get

LX (ωi) = dAi − ui+1da − Ai+1dx =

(Dk (Ai) −ui+1Dk (a)−Ai+1) dx+
(

∂Ai

∂uk

−ui+1
∂a

∂uk

)
duk mod 〈ω0, . . . , ωk−1〉 ,

for i = 0, . . . , k − 1. Therefore,

Ai+1 = Dk (Ai) − ui+1Dk (a) , (3.17)

∂Ai

∂uk

− ui+1
∂a

∂uk

= 0,

for i � k − 1.
Let us introduce the functions

φi = Ai − ui+1a,

for all i � k − 1. Then, the system (3.17) takes the form:

φi+1 = Dk (φi) ,

∂φi

∂uk

= 0,

for i � k − 2, and

Ak = Dk (φk−1) ,

a = −∂φk−1

∂uk

.

Therefore,

φi = Di
k (φ0) ,

for i � k − 2, and the condition ∂φk−2
∂uk

= 0 implies that φ0 = φ (x, u0, u1) , and



86 V. V. Lychagin

a = −∂φk−1

∂uk

= − ∂φ

∂u1
.

Moreover,

Ai = Di
k (φ) + ∂φ

∂u1
ui+1,

for i � k − 1, and

Ak = Dk
k (φ) .

Summarizing, we get the following description of symmetries of the Cartan
distribution.

Theorem 3.2 (Bäcklund–Lie) Any symmetry X ∈ Sym (Ck) has the form

X =
k∑

i=0

Di
k (φ)

∂

∂ui

− ∂φ

∂u1
Dk, (3.18)

for some smooth function φ = φ (x, u0, u1) .

Remark 3.1

1. We call the function φ, which defines the symmetry, the generating function, and
the corresponding vector field X will be denoted by Xφ. Thus,

φ = ω0
(
Xφ

)
.

2. The commutator of two symmetries Xφ and Xψ is also a symmetry. Denote its
generating function by [φ,ψ], then

[φ,ψ] = ω0
([Xφ,Xψ ]) ,

and the bracket [φ,ψ] (called the Lagrange bracket) defines a Lie algebra
structure on C∞ (

J1
)
.

Moreover, a straightforward computation shows that

[φ,ψ] = Xφ (ψ) − X1 (φ) ψ. (3.19)

3. The Cartan distribution C1 defines the contact structure on J1. The elements of
Sym (C1) are called contact vector fields, and they also have form (3.18)

Xφ = φ
∂

∂u0
+ D1 (φ)

∂

∂u1
− ∂φ

∂u1
D1, (3.20)
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where

D1 = ∂

∂x
+ u1

∂

∂u0
.

4. Vector fields (3.18) are prolongations of (3.20).

Similar results are valid for symmetries of Cartan distributions in the jet spaces
Jk (n) .

Theorem 3.3 (Lie–Bäcklund) Any symmetry X ∈ Sym (Ck) on Jk (n) has the
form

Xφ =
∑

|σ |�k

Dσ
k (φ)

∂

∂uσ

−
n∑

i=1

∂φ

∂ui

Di,k, (3.21)

where φ (x1, . . . , xn, u0, u1, . . . , un) = ω0
(
Xφ

)
is the generating function, and

Di,k = ∂

∂xi

+ ui

∂

∂u0
+ · · · + uσ+1i

∂

∂uσ

+ · · · , |σ | � k − 1,

Dσ
k = D

σ1
1,k ◦ · · · ◦ D

σn

n,k.

The Lagrange bracket [φ,ψ] = Xφ (ψ)−X1 (φ)ψ defines the Lie algebra structure
on C∞ (

J1 (n)
)
, and, as above, [φ,ψ] = ω0

([Xφ,Xψ ]) .

3.4.2 Symmetries of Completely Integrable Distributions

Let X ∈ Sym (P ) be a symmetry of a completely integrable distribution P , and let
At : M → M be the corresponding flow. Then, for any integral manifold L ⊂ M ,
the submanifolds At (L) are also integral.

In other words, a symmetry X generates a flow on the set Sol (P ) of all maximal
integral manifolds. There is, however, a distinguished class of symmetries (they
are called characteristic symmetries) which generate trivial flows, i.e. they leave
invariant every integral manifold. Namely, we have [D(P ),D(P )] ⊂ D(P ),
because P is a completely integrable distribution, and therefore D(P ) ⊂ Sym (P ).

Moreover, the vector fields X ∈ D(P ) are tangent to any maximal integral
manifold of P and therefore generate the trivial flow on Sol (P ). The relation
[Sym (P ) ,D(P )] ⊂ D(P ) shows that D(P ) is an ideal in the Lie algebra Sym (P ).
We call elements of the quotient Lie algebra

Shuf (P ) = Sym (P ) /D (P )

shuffling symmetries of the distribution P.
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The name reflects the fact that flows on Sol (P ) corresponding to different
representatives of a class X mod D (P ) rearrange, or shuffle, the set of maximal
integral manifolds of P in the some way.

3.5 The Lie–Bianchi Theorem

Let P be a completely integrable distribution, codimP = m, generated by the
differential 1-forms ω1, . . . , ωm, and let g ⊂ Shuf (P ) be a Lie subalgebra with
dim g = m. Let X1, . . . , Xm be a basis of g, where Xi = Xi mod D (P ) for
Xi ∈ Sym (P ) , i = 1, . . . , m).

Suppose that g is transversal to the distribution in the sense that the natural
mappings

g →Ta (M) /Pa

are isomorphisms for all points a ∈ M.

The problem of integration of a distribution consists of describing its maximal
integral manifolds. For completely integrable distributions, this is equivalent to
finding a complete set of first integrals.

A function H ∈ C∞ (M) is called a first integral of the distribution P if
every integral manifold of P lies entirely in some level surface Mc = H−1 (c)

or, equivalently, if Z (H) = 0 for every vector field Z ∈ D (P ) or, equivalently, if
dH ∈ Ann (P ) .

A complete set of first integrals of the distribution P is a set of functions
H1, . . . , Hm with the property that

Mc1,...,cm = H−1
1 (c1) ∩ · · · ∩ H−1

m (cm)

represent the set of all maximal integral manifolds of P in some dense domain
of M . In this section, we discuss a method to find such integrals when we have a
transversal shuffling algebra of symmetries.

3.5.1 Commutative Lie Algebra Symmetries

Assume that the transversal shuffling algebra of symmetries g is commutative. The
matrix

Ξ =

∥∥∥∥∥∥∥

ω1 (X1) · · · ω1 (Xm)
...

...
...

ωm (X1) · · · ωm (Xm)

∥∥∥∥∥∥∥

is nondegenerate: det (Ξ) �= 0.
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Let us choose another basis ω′
1, .., ω

′
m in the module Ann(P ) such that

ω′
i

(
Xj

) = δij . (3.22)

Indeed, we have relations

ω′
1 = a11ω1 + · · · + a1mωm,

.......................

ω′
m = am1ω1 + · · · + ammωm,

where the matrix A = ∥∥aij

∥∥ is also nondegenerate.
The condition (3.22) is equivalent to AΞ = 1, or A = Ξ−1. In other words, the

differential forms ω′
1, .., ω

′
m, where

∥∥∥∥∥∥∥

ω′
1
...

ω′
m

∥∥∥∥∥∥∥
= Ξ−1

∥∥∥∥∥∥∥

ω1
...

ωm

∥∥∥∥∥∥∥
,

satisfy condition (3.22). To simplify notation, let us assume that the basis ω1, .., ωm

is normalized from the very beginning, i.e. satisfies condition (3.22).
Then, we have

dωi (Xk,Xl) = Xk (ωi (Xl)) − Xl (ωi (Xk)) − ωi ([Xk,Xl]) = 0,

because of the commutativity of Lie algebra g and condition (3.22).
We also have

dωi (Xk, Z) = Xk (ωi (Z)) − Z (ωi (Xk)) − ωi ([Xk,Z]) = 0,

for all vector fields Z ∈ D (P ) , because ωi (Z) = 0 and [Xk,Z] ∈ D (P ) .

And finally

dωi (Z1, Z2) = Z1 (ωi (Z2)) − Z2 (ωi (Z1)) − ωi ([Z1, Z2]) = 0,

for all pairs of vector fields Z1, Z2 ∈ D (P ) because of complete integrability P ,
[Z1, Z2] ∈ D (P ).

Theorem 3.4 Let g = 〈
X1, . . . , Xm

〉
be a transversal commutative Lie algebra of

shuffling symmetries, and let 〈ω1, .., ωm〉 be a normalized basis in Ann (P ) . Then,
all differential 1-forms ωi are closed:

dωi = 0,

for i = 1, . . . , m.
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Corollary 3.1 Under conditions of the above theorem and H 1 (M,R) = 0, the
complete set of first integrals can be found by quadratures:

H1 =
∫

ω1, . . . , Hm =
∫

ωm.

Example 3.4 Example (Distributions of Codimension 1) Let P = kerω be a
completely integrable distribution of codimension one, and let X be a transversal
symmetry of P , i.e. ω (X) �= 0. Then, the differential 1-form

ω

ω (X)

is closed, and
∫

ω

ω (X)

is a first integral.

Example 3.5 Let M = R × R × (0, 2π) , with coordinates x ∈ R, y ∈ R, φ ∈
(0, 2π). The 1-form

ω = 2 sin2
φ

2
dx + sinφ dy − y dφ

defines the so-called oricycle distribution, and the vector field

X = ∂

∂x

is a shuffling symmetry. The 1-form

ω = ω

ω (X)
= dx + sinφ

1 − cosφ
dy − y

1 − cosφ
dφ

is closed, and the function

H =
∫

ω = x + y cot
φ

2

is a first integral.

Example 3.6 (Liouville–Arnold) Let
(
M2n,Ω

)
be 2n-dimensional symplectic

manifold with structure 2-form Ω , and let the functions (H1, .., Hn) be independent
and in involution, i.e.

dH1 ∧ · · · ∧ dHn �= 0,

and the Poisson brackets vanish: [Hi,Hj ] = 0 for i, j = 1, . . . , n.
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Then, the level surfaces

Lc = {H1 = c1, . . . , Hn = cn} ⊂ M2n

are Lagrangian submanifolds, and the Hamiltonian vector fields XHi
, i = 1, . . . , n

are tangent to Lc.

These vector fields are independent, and the involutivity conditions mean that
they commute. We have dimLc = n and, as we have seen, there exist such differ-
ential 1-forms ωc

1, .., ω
c
n that ωc

i

(
XHj

) = δij , which are closed. Then, integrals
Fc

i = ∫
Lc ωc

i give us (multivalued) functions on Lc with linearly independent
differentials. The submanifolds Lc give us a foliation of M , and we define functions
Fi, i = 1, . . . , n on M by the requirement that their restrictions on Lc equal Fc

i .

Differentials of the functions H1, . . . , Hn, F1, . . . , Fn are linearly Independent,
and therefore, in simply connected domains, they are coordinates.

We have [Hi,Hj ] = 0, and [Hi, Fj ] = δij , and the flows along Hamiltonian
vector fields XHi

in these coordinates take the form

·
Hj = 0,

·
Fj = δij .

Therefore, the equations for flows of Hamiltonian vector fields XHi
are integrated

in quadratures.

3.5.2 Symmetry Reduction

Let P be a completely integrable distribution, g ⊂ Sym (P ) a Lie algebra of
shuffling symmetries, and j ⊂ g an ideal in the Lie algebra. For any point a ∈ M ,
define a subspace Pj (a) ⊂ TaM formed by the space P (a) and the space generated
by values of vector fields from j at the point. Assume that dimPj (a) is constant, so
that Pj ⊃ P is a distribution. Then, the following result is valid.

Theorem 3.5

1. The distribution Pj ⊃ P is completely integrable, and
2. the quotient Lie algebra g�j is a shuffling symmetry Lie algebra of the

distribution Pj.

Proof We have

• [D (P ) ,D (P )] ⊂ D (P ) , because P is completely integrable.
• [j,D (P )] ⊂ D (P ) , because j is symmetry ideal.
• [j, j] ⊂ j, because j is an ideal.
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• Therefore, [D (Pj) ,D (Pj)] ⊂ D (Pj) and Pj is completely integrable.
• [g,D (P )] ⊂ D (P ) and [g, j] ⊂ j. Therefore, g is a symmetry algebra of Pj, and

g�j is a shuffling symmetry algebra.

��
Remark 3.2 This theorem shows that integration of P with symmetry algebra g
could be done in two steps:

1. Integration of the completely integrable distribution with symmetry algebra g�j.
2. Integration of the restrictions of distribution P on integral manifolds of distribu-

tion Pj by symmetry algebra j.

Assume now that algebra g�j is commutative. Then, the first step could be
done by quadratures due to theorem (3.4). The next step involves integration
of distributions with symmetry algebra j, and if this algebra possesses an ideal
j2 ⊂ j1 = j, such that j1�j2 is commutative, we could reduce it by quadratures.
There is a special class of Lie algebras that can be exhausted by this procedure.

Let g be a Lie algebra. A Lie algebra g is said to be solvable if there is chain of
subalgebras ji

g ⊃ j1⊃ · · · ⊃ ji⊃ ji+1⊃ · · · ⊃ jk = 0,

such that ji+1 is an ideal in ji and the quotient Lie algebra ji�ji+1 is commutative
for every i.

A more constructive, but equivalent, definition uses the chain of derived subal-
gebras. Namely, the derived Lie algebra g(1) = [g, g] is the subalgebra of g that
consists of all linear combinations of Lie brackets of pairs of elements of g, and
derived series of the Lie algebra is given by g(i) = [g(i−1), g(i−1)], for i = 1, 2, . . . .

We have chain of Lie subalgebras

g ⊃ g(1) ⊃ · · · ⊃ g(i) ⊃ g(i+1) ⊃ · · · ,

with commutative Lie algebras g(i)
�g(i+1), and the Lie algebra g is solvable if

g(k) = 0, for some k.
Assume now that g is a solvable Lie algebra of shuffling symmetries which is

transversal to the completely integrable distribution P. Let g(1) be the first derived
subalgebra and let l = codimgg

(1) > 0. We choose a basis X1, . . . , Xl, . . . , Xm in
the Lie algebra g in such a way that X1, . . . , Xl /∈ g(1), but Xi ∈ g(1), for i � l + 1.
We also choose a basis ω1, . . . , ωm in Ann (P ) such that ωi

(
Xj

) = δij . Then,

dωi (Xs,Xt ) = −ωi ([Xs,Xt ]) = 0

for all i = 1, . . . , l and s, t = 1, . . . , m.

Therefore, the differential 1-forms ωi, i � l, are closed and
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Hi =
∫

ωi

are (in general multivalued) first integrals of the distribution P.

Moreover, the submanifolds

Mc = H−1
1 (c1) ∩ · · · ∩ H−1

l (cl)

are g(1)-invariant because

Xi

(
Hj

) = dHj (Xi) = ωj (Xi) = 0,

if j � l, i � l + 1.
Let Pc be the restriction of distribution P on the submanifold Mc. Then, Pc is

a completely integrable distribution of the same dimension dimP and codimension
dim g(1). Applying the above procedure in series to derived subalgebras g(i), we find
the complete sequence of first integrals by integration of closed differential 1-forms,
and the integral manifolds of P are given by quadratures:H−1

1 (c1)∩· · ·∩H−1
m (cm).

Theorem 3.6 (Lie–Bianchi) Let P be a completely integrable distribution, and let
g be a solvable symmetry Lie algebra transversal to P , dim g = codimP . Then, the
distribution P is integrable by quadratures.

3.5.3 Quadratures and Model Equations

In this section, we consider in more detail the case when the symmetry Lie algebra
g ⊂ Sym (P ) of a completely integrable distribution P acts in a transitive way
on the set Sol (P ) of all maximal integral manifolds of P. In general, this set has
very complicated structure, which is why we restrict ourselves to only consider the
set Solloc (P ) of local maximal integral submanifolds or (better to say) germs. In
a small neighborhood of a point a ∈ M , this set is an open domain in R

m, where
m = codimP.

So, we assume that dim g � m, and the value maps ξa : g →TaM�Pa are
surjections. The case when ξa are isomorphisms and g is a solvable Lie algebra is
completely covered by the Lie–Bianchi theorem.

To proceed with the general case, we take a homogeneous space G�H of a
simply connected Lie group G, where Lie(G) = g and Lie(H) = ker ξa. The left
action of the Lie group G on the homogeneous space G�H gives us the embedding
λ of the Lie algebra g into Lie algebra Vect (G�H) of vector fields on G�H.

Let us consider a distribution P̂ on M × G�H generated at point (a, b) ∈
M×G�H by vectors of Pa and vectors Xa +λ (X)b , where X ∈ g. In other words,
the module D(P̂ ) is generated by D (P ) and vector fields of the form X + λ (X) ,

where X ∈ g.



94 V. V. Lychagin

This distribution is completely integrable, because [D (P ) ,D (P )] ⊂ D (P )

and [g,D (P )] ⊂ D (P ) . Moreover, codim P̂ = dimG�H and maximal integral
manifolds of P̂ are graphs of some maps h : M → G�H , which we call integral.

Assume that we have an integral map h. Then, the tangent space to the graph at a
point (a, h (a)) equals to P̂(a,h(a)), the image of differential h∗,a at a point a ∈ M,

Imh∗,a = Th(a) (G�H) , and therefore h∗,a is a surjection. Consider a submanifold
Mb = h−1 (b) ⊂ M, b ∈ G�H. Then, codimMb = dimG�H = codimP and
T Mb ⊂ P. Therefore, Mb are maximal integral manifolds of P and to find them, if
the integral map h is known, we should solve functional equations h(x) = b.

To construct an integral map h, we will use the following lifting method. Assume
that the value of h at a point a0 ∈ M is fixed, h (a0) = b0, and M is a connected
manifold. Then, to find value h (a1) at a point a1 ∈ M, we take a path α (t) , with
α(t0) = a0, α(t1) = a1, and lift it to a path α(t) on M × G�H in such a way that
the curve α(t) is an integral curve for the distribution P̂ . Assume that the tangents
·
α (t) to the curve do not lie in the distribution P. Then, we can present them as
linear combinations of values of vector fields in g, say

·
α (t) = q1(t) X1,α(t) + · · · + qk(t) Xk,α(t), (3.23)

for some functions q1(t), . . . , qk(t), where X1, . . . , Xk is a basis in the Lie
algebra g.

The path α(t) on M ×G�H is a lift of the path α(t) on M , and integral curve for
distribution P̂ , if and only if α(t) satisfies the following equation, similar to (3.23):

·
α (t) = q1(t) λ(X1)α(t) + · · · + qk(t) λ(Xk)α(t). (3.24)

In other words, in order to lift the path α(t) to the path α(t), we have to find integral
curves of a vector field of the form

∂

∂t
+

k∑
i=1

qi (t) λ (Xi) (3.25)

on R×G�H , which correspond to paths X(t) = ∑k
i=1 qi (t) Xi on the Lie algebra

g. We call equations of form (3.24) model differential equations.
Summarizing, we get the following generalization of the Lie–Bianchi theorem.

Theorem 3.7 Let g be a symmetry Lie algebra of a completely integrable distri-
bution P on a connected manifold M such that the value maps ξa : g →TaM�Pa

are surjective. Then, integration of the distribution can be done by using solutions
of model differential equations, corresponding to the Lie algebra symmetry, and
solutions of a number of functional equations.

We begin with the main properties of the model differential equations.
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Theorem 3.8 For any system of model ordinary differential equations associated
with a path Xt on the Lie algebra g and the vector field

Z = ∂

∂t
+ λ (Xt ) ,

there is a path g(t) on the group G with g(0) = e, such that any trajectory y(t) of
Z has the form

y(t) = g(t)y(0). (3.26)

Moreover, this property defines the class of model equations completely.

Proof If the path g(t) is given, then the path Xt is defined as follows:

Xt = g∗ (t)−1
( ·
g (t)

)
, (3.27)

and from (3.26), we get
·
y (t) = λ (Xt ). On the other hand, if the path Xt is given,

then the path g(t) is found from equation (3.27). ��
Let us analyze one-dimensional models.

Theorem 3.9 (Lie) Let a finite-dimensional Lie algebra g act on R in a transitive
way. Then, dim g � 3, and locally the action is one of the following:

1. dim g = 1, g = 〈
∂
∂x

〉
,

2. dim g = 2, g = 〈
∂
∂x

, x ∂
∂x

〉
, and

3. dim g = 3, g = 〈
∂
∂x

, x ∂
∂x

, x2 ∂
∂x

〉
.

A proof of this theorem can be found, for example, in [6]. The theorem shows
that vector fields for model equations in the 1-dimensional case have the following
forms:

1. ∂
∂t

+ a (t) ∂
∂x

,

2. ∂
∂t

+ a (t) ∂
∂x

+ b (t) x ∂
∂x

, and
3. ∂

∂t
+ a (t) ∂

∂x
+ b (t) x ∂

∂x
+ c (t) x2 ∂

∂x
.

The corresponding model equations are

1.
·
x (t) = a (t) ,

2.
·
x (t) = a (t) + b (t) x (t) , and

3.
·
x (t) = a (t) + b (t) x (t) + c (t) x (t)2 .

Let functions a(t) and b(t) be given. To find solutions of model equations of
types 1 and 2, we should add to our set of functions

1. the function
∫

a(t)dt and
2. the functions exp

(∫
b(t)dt

)
and

∫
a(t) exp

(− ∫
b(t)dt

)
dt ,

respectively.
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This observation explains the idea of Liouville (1833) to introduce the field of
elementary functions as the result of a series of Liouvillian extensions of the field of
rational functions, i.e. extension by adding integrals and exponents of integrals, in
other words, by adding solutions of model equations of the first and second types.

Model equations of the type 3 are known as Riccati equations and, as we will
see later, they are related to linear ordinary equations of the second order as well as
projective structures on the line.

More information on model equations corresponding to simple Lie groups can
be found in [6].

3.5.4 The Lie Superposition Principle

Here, we use Theorem 3.8 to get more information about solutions of model
equations.

As we have seen, finding solution y(t) of the model equation is equivalent to
finding a path g(t) on the Lie group G, and y(t) = g(t)y(0). Assume that we know
k solutions, say y1(t), . . . , yk(t), then yi(t) = g(t)yi(0), for all i = 1, . . . , k.

From a geometrical point of view, this means that points (y1(t), . . . , yk(t)) ∈
(G�H)k = (G�H) × · · · × (G�H) and (y1(0), . . . , yk(0)) ∈ (G�H)k can be
transformed by a single transformation g(t) ∈ G, for any k = 1, 2, . . ..

To analyze this situation, consider diagonal G-actions on direct products
(G�H)k , g : a = (a1, . . . , ak) → ga = (ga1, . . . , gak) . Then, the stationary
group Ga is the intersection Ga1 ∩ · · · ∩ Gak

of stationary subgroups Gai
of points

ai ∈ G�H.

By the stiffness of a homogeneous manifold, we mean a number k such that the
stationary groups Ga for general points a = (a1, . . . , ak) ∈ (G�H)k are trivial.
We call such points regular. Given two regular points a, b ∈ (G�H)k , there is a
unique element γ (a, b) ∈ G such that a = γ (a, b) b.

A set of solutions (y1(t), . . . , yk(t)) is said to be fundamental solution of the
model equation if k is the stiffness of G�H and (y1(0), . . . , yk(0)) is a regular
point. Then, we define the path g(t) as

g (t) = γ ((y1(t), . . . , yk(t)), (y1(0), . . . , yk(0))) ,

and all solutions of the model equation have the form

y(t) = γ ((y1(t), . . . , yk(t)), (y1(0), . . . , yk(0)) y(0). (3.28)

The last formula is called the Lie superposition principle.

Example 3.7 Example (1D model equations)
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1. Consider the case G�H = R, g = 〈
∂
∂x

〉
. Then, γ (a, b) = a − b. The

fundamental solution is a solution of equation
·
y(t) = A(t), and the superposition

principle says that all solutions of the equation
·
x(t) = A(t) have the form

x(t) = x(0) + (y(t) − y(0)) .

2. Let G�H = R, g = 〈
∂
∂x

, x ∂
∂x

〉
and G be the group of all affine transformations

of the line. The stiffness is k = 2 and

γ ((a1, a2) , (b1, b2)) x = (x − b2) a1 − (x − b1) a2

b1 − b2
.

The fundamental solution of the model equation
·
x(t) = A(t) + B(t)x(t) is pair

of solutions y1(t), y2(t) such that y1(0) �= y2(0), and the superposition principle
says that the general solution has the form

x(t) = (x(0) − y2(0)) y1(t) − (x(0) − y1(0)) y2(t)

y1(0) − y2(0)
.

3. Consider G�H = RP1, g = 〈
∂
∂x

, x ∂
∂x

, x2 ∂
∂x

〉
with the group G = SL2 (R) of

projective transformations

A : x → a11x + a12

a21x + a22
,

where A = ∥∥aij

∥∥ ∈ SL2 (R). It is known that any projective transformation of
the projective line is completely determined by images of three distinct points.
Therefore, the stiffness of RP1 equals 3. It is also known that the cross-ratio

x − a1

x − a2

a3 − a2

a3 − a1

is a projective invariant. Therefore, the element γ (a, b) ∈ SL2 (R) such that
y = γ ((x1, x2, x3) , (y1, y2, y3)) x can be found from the equation:

y − y1

y − y2

y3 − y2

y3 − y1
= x − x1

x − x2

x3 − x2

x3 − x1
.

Thus, a fundamental solution for the Riccati equation
·
x(t) = A(t) + B(t)x(t) +

C(t)x(t)2 is a triple of solutions (y1(t), y2(t), y3(t)) with distinct initial values
y1(0), y2(0), y3(0), and the general solution y(t) can be found from the equation

y(0) − y1(0)

y(0) − y2(0)

y3(0) − y2(0)

y3(0) − y1(0)
= y(t) − y1(t)

y(t) − y2(t)

y3(t) − y2(t)

y3(t) − y1(t)
.
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3.6 Ordinary Differential Equations

As we have seen above, the ordinary differential equation

F
(
x, y(x), y′(x), . . . , y(k)(x)

)
= 0 (3.29)

of order k, for functions y(x) in one variable x, is represented as a submanifold EF

in the space of k-jets Jk:

EF = {F (x, u0, u1, . . . , uk) = 0} ⊂ Jk.

Its solutions y(x) are represented by curves

Ly =
{
u0 = y(x), u1 = y′(x), . . . , uk = y(k)(x)

}
⊂ EF ⊂ Jk.

These curves are integral for the restriction CF of the Cartan distribution

Ck = kerω0 ∩ · · · ∩ kerωk−1

on EF . Here,

ωi = dui − ui+1dx

are the Cartan forms.
As we have seen, the Cartan distribution Ck has dimension 2, and therefore the

spaces of the distribution CF are intersections

T EF ∩ Ck = ker dF ∩ kerω0 ∩ · · · ∩ kerωk−1,

which are of dimension 2 or 1. The points xk ∈ EF where the intersection has
dimension 2 we call singular and the points where the dimension equals 1 we call
regular.

Since we have

dF = Dk (F ) dx + ∂F

∂uk

duk mod Ck,

where

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
,

points are singular if and only if
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Dk (F ) = 0,
∂F

∂uk

= 0. (3.30)

At regular points, we have dimCF = 1 and the vector field

ZF = ∂F

∂uk

Dk − Dk (F )
∂

∂uk

(3.31)

is a basis in the distribution.
Thus, solutions Ly of (3.29) are trajectories of ZF . However, there are trajecto-

ries of ZF , which does not have the form Ly since the function x, in general, is not
a coordinate on the trajectory. This situation appears every time when ∂F

∂uk
= 0 on

the trajectory.
Thus, we have two alternatives. Either we continue to consider solutions of (3.29)

as smooth functions on the line, or we start to consider solutions as integral curves of
distribution CF . We shall follow the second alternative, and then we get solvability
of our equation at regular points for free. Also, if L ⊂ EF is an integral curve of
CF , then we can remove from L the points where ∂F

∂uk
= 0. Then, we get

L �

(
∂F

∂uk

)−1

(0) =
⋃
i

Li,

where each curve Li has the form

Li = Lyi(x),

for some functions yi(x), each defined on its own interval. In this case, we call
integral curves L multivalued solutions of (3.29).

There are also exceptional cases, when ∂F
∂uk

= 0 at all points of L. Then, L has
the form

L = {x = const, u0 = const0, . . . , uk−1 = constk−1} ,

where constants are chosen in such a way that

F (const, const0, . . . , constk−1, uk) = 0.

Example 3.8 Consider the Lissajous equation (see [7]):

(
1 − x2

)
y′′ − xy′ + a2

b2
y = 0, (3.32)

where a �= 0 and b �= 0 are some constants. Here,
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F =
(
1 − x2

)
u2 − xu1 + a2

b2
u0,

and

EF =
{

u0 =
(
x2 − 1

)
u2 + xu1

a2
b2

}
⊂ J2

is a smooth 3-dimensional submanifold in J2 with coordinates (x, u1, u2) .

We have

∂F

∂u2
= 1 − x2,

D2 (F ) = −3xu2 + a2 − b2

b2
u1,

and therefore the two curves

x = ±1, u1 = ±a2

b2
u0, u2 = a2

(
a2 − b2

)

3b4
u0

consist of singular points of the equation.
Also, ∂F

∂u2
= 1 − x2, which implies that all integral curves that contain points

(x = ±1, u0, u1, u2) are multivalued solutions. To find these solutions, we represent
them in parametric forms

x = cos (bt) ,

y = f (t) ,

for −1 < x < 1, and in the form

x = ± cosh (bt) ,

y = g (t) ,

for x > 1 or x < −1. Then, our equation in the first case takes the form

f ′′ + a2f = 0,

and the form

g′′ − a2g = 0,

in the second case. Therefore, the solutions have the form
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Fig. 3.1 The solution to
(3.32) given by x = cos(5t)
and y = sin(3t)

x = cos (bt) ,

y = c1 cos (at) + c2 sin (at) ,

on intervals |x| < 1 and

x = ± cosh (bt) ,

y = c1 cosh (at) + c2 sinh (at) ,

on intervals |x| > 1. We plot the first type of solutions for c1 = 0 and c2 = 1 in
the cases where a

b
= 3

5 and a
b

= 3
5π , respectively. The first picture (Fig. 3.1) gives

exactly what we expect from multivalued solutions, but the second one (Fig. 3.2) is
very far from the standard image.

3.7 ODE Symmetries

To simplify our exposition, we will assume that Eq. (3.29) is resolved with respect
to the highest derivative and therefore has the form

E = {uk = F (x, u0, .., uk−1)} . (3.33)

Then, functions (x, u0, .., uk−1) are coordinates on E , and the Cartan distribution
CE on E is given by forms
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Fig. 3.2 The solution to
(3.32) given by x = cos(5πt)

and y = sin(3t)

ω0 = du0 − u1dx, . . . ., ωk−2 = duk−2 − uk−1dx, ωk−1 = duk−1 − Fdx

and generated by the truncated total derivative

D = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk−1

∂

∂uk−2
+ F

∂

∂uk−1
.

Similarly to what we had in the general case, we have now the following expression
for differentials of functions on E modulo the Cartan forms:

df = D (f ) dx mod 〈ω0, .., ωk−1〉 ,

where f = f (x, u0, .., uk−1).

We have dimCE = 1, and therefore this distribution is completely integrable,
and the vector field D is obviously characteristic. We present shuffling symmetries
in the form

X = a0
∂

∂u0
+ · · · + ak−1

∂

∂uk−1
,

where ai are functions on E .

This vector field is a symmetry of CE , or of E , if

LX (ωi) = 0 mod 〈ω0, . . . , ωk−1〉 ,

for all i = 0, . . . , k − 1.



3 Symmetries and Integrals 103

We have

LX (ωi) = dai − ai+1dx = (D (ai) − ai+1) dx mod 〈ω0, . . . , ωk−1〉 , (3.34)

for i = 0, . . . , k − 2, and

LX (ωk−1) = dak−1 −X (F) dx = (D (ak−1) − X (F)) dx mod 〈ω0, . . . , ωk−1〉 .

(3.35)

Therefore, if we put a0 = φ (x, u0, .., uk−1), then the formulae (3.34) and (3.35)
give us

ai = Di (φ) ,

for i = 0, . . . , k − 1 and

Dk (φ) − X (F) = 0.

Therefore,

X = Xφ = φ
∂

∂u0
+ D (φ)

∂

∂u1
· · · + Dk−1 (φ)

∂

∂uk−1
, (3.36)

and the last formula gives us condition on φ (Lie equation):

Dk (φ) − ∂F

∂uk−1
Dk−1 (φ) − · · · − ∂F

∂u1
D (φ) − ∂F

∂u0
φ = 0. (3.37)

Summarizing, we get the following result.

Theorem 3.10 Let Sym (E) be the Lie algebra of shuffling symmetries of ODE
(3.33). Then, formula (3.36) gives the isomorphism of this Lie algebra with the space
of smooth solutions to the Lie equation (3.37). The Lie algebra structure in Sym (E)

in terms of solutions (3.37), we call them generating functions, has the following
form:

[Xφ,Xψ ] = X[φ,ψ],

where

[φ,ψ] = Xφ (ψ) − Xψ (φ) . (3.38)

Proof To prove (3.38), we remark that φ = Xφ (u0) .

Therefore,

[φ,ψ] = X[φ,ψ] (u0) = [Xφ,Xψ ] (u0) = Xφ (ψ) − Xψ (φ) .

��
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Remark 3.3

1. If we compare formula (3.36) with description of symmetries of the general
Cartan distribution, we see that when the generating function has the form φ =
φ (x, u0, u1), then the symmetries Xφ are restrictions of the contact symmetry of
Ck on our differential equation. Moreover, symmetries with generating function
φ, depending on u2, ..uk−1, are not anymore classical contact symmetries, and
this can happen only when the order of the differential equation k � 3.

2. Contact symmetries with generating functions φ = b (x, u0) + a (x, u0) u1 are
called point symmetries. They correspond to transformations given by vector
fields

−a
∂

∂x
+ b

∂

∂u0

on the plane J0 of the 0-jets (see [6] for more details).
3. Point symmetries, with generating functions φ = b(x)u0 + a (x) u1, correspond

to transformations, which are linear automorphisms of the line bundle π0 : J0 →
R. We call them linear symmetries.

3.7.1 Integration of ODEs with Commutative Symmetry
Algebras

In this section, we will discuss an application of symmetries to integration of ODEs.
Assume that Eq. (3.33) has k linearly independent (in some domain) commuting

symmetries Xφ0 , . . . , Xφk−1 , [φi, φj ] = 0.
Remark that all symmetries Xφi

preserve the Cartan distribution, and therefore

[Xφi
,D] = λiD,

for some functions λi, i = 0, . . . , k − 1.
Applying both sides of this relation to the function x and using the relations

Xφi
(x) = 0, D(x) = 1, we get λi = 0, i.e. k + 1 vector fields D,Xφ0 , . . . , Xφk−1

commute and are linearly independent.
Consider differential forms

ω−1 = dx, ω0, . . . , ωk−1

on E , then ω−1 (D) = 1, ωi (D) = 0, for i � 0, and ωi

(
Xφj

) = Di
(
φj

)
, for

i, j � 0.
Therefore, the matrix Ξ that we used in Sect. 3.5.1 has the form



3 Symmetries and Integrals 105

Ξ =

∥∥∥∥∥∥∥∥∥∥∥∥

1 0 · · · · · · 0
0 φ1 · · · · · · φk−1
...

...
... · · · ...

...
...

... · · · ...

0 Dk−1φ1 · · · · · · Dk−1 (φk−1)

∥∥∥∥∥∥∥∥∥∥∥∥

=
∥∥∥∥
1 0
0 W

∥∥∥∥ ,

where

W =
∥∥∥∥∥∥

φ1 · · · φk−1

· · · · · · · · ·
Dk−1φ1 · · · Dk−1 (φk−1)

∥∥∥∥∥∥
.

Therefore, the differential forms

Ξ−1

∥∥∥∥∥∥∥∥∥

dx

ω0
...

ωk−1

∥∥∥∥∥∥∥∥∥
=

∥∥∥∥
dx

W−1ω

∥∥∥∥ =
∥∥∥∥
dx

θ

∥∥∥∥ ,

where

ω =

∥∥∥∥∥∥∥

ω0
...

ωk−1

∥∥∥∥∥∥∥
, θ = W−1ω, (3.39)

give us the dual coframe: θi

(
Xφi

) = δij , and they are closed dθi = 0.
Let

fi =
∫

θi, (3.40)

then the functions (x, f0, .., fk−1) are coordinates on E and since

D (fi) = θi (D) = 0,

they are first integrals. In other words, solutions of E are given by relations

f0 (x, u0, . . . , uk−1) = const0, . . . ., fk−1 (x, u0, . . . , uk−1) = constk−1,

(3.41)
and the explicit dependency u0 on x could be found by the elimination u1, . . . , uk−1
from the above equations.
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Theorem 3.11 Solutions of ODE (3.33) of order k with k linearly independent
commuting symmetries Xφ0 , . . . , Xφk−1 can be found by quadrature (3.39, 3.40,
3.41).

Example 3.9 Example (k = 1) Consider the first-order ODE

y′ = F(x, y).

Its symmetries have the form

Xφ = φ (x, u0)
∂

∂u0
,

where the function φ is a solution of the Lie equation

D (φ) − Fu0φ = φx + Fφu0 − Fu0φ = 0,

and

θ = ω0

ω0
(
Xφ

) = du0 − Fdx

φ
.

If we consider the Lie equation as equation on F given φ, we get

F = φ (x, u0)

(
h(x) +

∫
φx

φ2 du0

)
,

and

θ = du0

φ
−

(
h(x) +

∫
φx

φ2 du0

)
dx,

for arbitrary functions h(x) and φ (x, u0) .

Example 3.10 Example (k = 2) Consider the second-order ODE

y′′ = F(y, y′).

Symmetries of this equation are vector fields of the form

Xφ = φ
∂

∂u0
+ (

φx + u1φu0 + Fφu1

) ∂

∂u1
,

where generating function φ = φ (x, u0, u1) satisfies the Lie equation

D2φ − ∂F

∂u1
D (φ) − ∂F

∂u0
φ = 0,
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with

D = ∂

∂x
+ u1

∂

∂u0
+ F (u0, u1)

∂

∂u1
.

Remark that the equation is invariant with respect to translations in x, and
therefore φ = u1 is a solution of the Lie equation. In order to get a commutative
algebra of symmetries, we assume that the generating function for the second
symmetry is of the form φ (u0). For this type of symmetry, the Lie equation takes
the form

φu0u0u
2
1 − φFu0 − φu0

(
u1Fu1 − F

) = 0.

For example, equations with function F quadratic in u1 have the form

F (u0, u1) = φu0 + c1

φ
u21 + c2u1 + c3φ, (3.42)

and φ = φ (u0) is the symmetry of the equation.
Let us take the representative with c1 = 0, c2 = 0, c3 = 1, φ = exp (u0):

u2 = u21 + exp(u0).

It has commutative symmetry algebra (φ1 = u1, φ2 = exp(u0)). Then,

W =
∥∥∥∥

φ1 φ2

Dφ1 Dφ2

∥∥∥∥ =
∥∥∥∥

u1 exp (u0)

u21 + exp(u0) u1 exp (u0)

∥∥∥∥ ,

and

θ1 = −u1 exp (−u0) ω0 + exp (−u0) ω1

θ2 = exp (−2u0)
(
u21 + u0

)
ω0 − u1 exp (−2u0) ω1

are closed 1-forms. We have

θ1 = dH1, θ2 = dH2,

where

H1 = −x + exp (−u0) u1 + c1,

H2 = −1

2
u21 exp (−2u0) − exp (−u0) + c2,

and solutions of the equation are given by
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y(x) = ln

(
2

2c2 − c21 − x2 + 2c1x

)
,

where c1 and c2 are constants.

3.8 Schrödinger Type Equations

3.8.1 Actions of Diffeomorphisms on Schrödinger Type
Equations

In this part, we consider linear second-order equations of the form

y′′ + W(x)y = 0, (3.43)

with the potential W(x), and we study the cases when W is integrable, i.e. the
Eq. (3.43) can be solved by quadratures. Because of linearity (3.43), we will restrict
ourselves to linear symmetries φ = a(x)u0 + b(x)u1.

Then, the Lie equation takes the form

D2 (φ) + W(x)φ = 0, (3.44)

where

D = ∂

∂x
+ u1

∂

∂u0
− W(x)u0

∂

∂u1
,

or

(
b′′ + 2a′) u1 + (

a′′ − 2Wb′ − W ′b
)
u0 = 0

in explicit form. Therefore,

a = −1

2
b′ + c,

φ = cu0 + φb,

φb = bu1 − b′

2
u0,

where the function b(x) satisfies the following third-order differential equation:

b(3) + 4Wb′ + 2W ′b = 0. (3.45)
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To understand the meaning of this equation, consider the action of point
transformations on equations of type (3.43). If these transformations preserve the
class of linear equations, they have to be of the following form:

T : (x, u0) → (y = Y (x),A(x)u0) .

Then, the image of (3.43) under this transformation is the following equation:

K2u2 + K1u1 + K0u0 = 0,

where

K2 = A

(Y ′)2
,

K1 = 2A′Y ′ − AY ′′

(Y ′)3
,

K0 = −A′Y ′′ + Y ′A′′ − AW (Y)
(
Y ′)3

(Y ′)3
.

Therefore, to get transformations preserving the class of Schrödinger type equations,
we should require that K1 = 0, and this requirement gives us the following class of
transformations (up to a constant scaling of u0):

T : (x, u0) →
(
Y (x),

√
Y ′u0

)
, Y ′ > 0. (3.46)

Then, Eq. (3.43) will be transformed to the same type of equation with potential
W̃ equal to

W̃ (x) = (
Y ′)2 W (Y) + Y (3)

2Y ′ − 3

4

(
Y ′′)2
(Y ′)2

. (3.47)

Notice that if we consider symmetric differential forms

gW = Wdy2,

then the last equation takes the following form:

gW̃ = Y ∗ (gW ) − S (Y ) ,

where

S (Y ) =
(

−Y (3)

2Y ′ + 3

4

(
Y ′′)2
(Y ′)2

)
dx2

is the Schwarzian derivative.
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It is easy to check that S (Y ) = 0 if and only if Y is a projective transformation:

Y (x) = ax + b

cx + d
,

where

∥∥∥∥
a b

c d

∥∥∥∥ ∈ SL2 (R) .

Therefore, the SL2 (R)-action on the set of Schrödinger equations is equivalent to
the SL2 (R)-action on the space of quadratic differential forms.

3.8.2 Actions of the Diffeomorphism Group on Tensors

To understand the geometrical meaning of solutions of Schrödinger type equations,
we reconsider actions of the diffeomorphism group on tensors.

Let M and N be manifolds, and let φ : M → N be a diffeomorphism. We define
action φ∗ of φ on tensors in such a way that

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, (φ∗)−1 =
(
φ−1

)
∗ . (3.48)

Functions For f ∈ C∞ (M), we define φ∗ (f ) ∈ C∞ (N) as follows:

φ∗ (f ) = f ◦ φ−1.

Remark that the difference of φ∗ (f ) from the more standard φ∗ (h) = h ◦ φ,
where h ∈ C∞ (N) and φ∗ (h) ∈ C∞ (M), is the following:

• We define φ∗ (f ) for diffeomorphisms φ only but φ∗ (h) defined for all smooth
mappings φ.

• Since we have (φ ◦ ψ)∗ = ψ∗ ◦ φ∗, instead of (3.48), the correspondence
φ �−→ φ∗ is not a group homomorphism, but φ �−→ φ∗ is.

Vector fields Let V ∈ Vect (M) be a vector field on M, we define φ∗ (V ) by

φ∗ (V ) (h) = φ∗
(
V

(
φ−1∗ (h)

))
,

where h ∈ C∞ (N) or, in operator form,

φ∗ (V ) = φ∗ ◦ V ◦ φ−1∗ .

Then, once more, we have property (3.48), and
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φ∗ (f V ) = φ∗ (f ) φ∗ (V ) ,

for all f ∈ C∞ (M) .

Differential Forms Let ω ∈ Ω1 (M) be a differential 1-form on M, and then we
define φ∗ (ω) ∈ Ω1 (N) as follows:

〈φ∗ (ω) , Z〉 = φ∗
〈
ω, φ−1∗ (Z)

〉
,

for all vector fields Z ∈ Vect (N). For exterior differential forms of higher
degree, we define

φ∗ (ω1 ∧ · · · ∧ ωk) = φ∗ (ω1) ∧ · · · ∧ φ∗ (ωk) ,

where ω1 ∈ Ω1 (M) , . . . , ωk ∈ Ω1 (M) and ω1 ∧ · · · ∧ ωk ∈ Ωk (M) . In a
similar way, we define images of the symmetric differential forms and general
tensors.
Once more, we have property (3.48) for maps of differential forms and tensors.

Coordinates Let x = (x1, .., xn) be local coordinates on M and let y =
(y1, .., yn) be local coordinates on N. Assume that diffeomorphism φ has the
following form in these coordinates:

φ : x → y = Y (x),

φ−1 : y → x = X (y) .

Then,

f (x) �⇒ φ∗ (f ) (y) = f (X (y)) ,

h (y) �⇒ φ−1∗ (h) (x) = h (Y (x)) .

Let V = ∂
∂xi

∈ Vect (M). Then, φ∗ (V ) ∈ Vect (N) has the form

φ∗ (V ) =
n∑

j=1

aj (y)
∂

∂yj

,

and

aj (y) = φ∗ (V )
(
yj

) = φ∗
(
V

(
φ−1∗

(
yj

)))

= φ∗
(
V

(
Yj (x)

)) = φ∗
(

∂Yj

∂xi

)
= ∂Yj

∂xi

(X (y)) .

Therefore,
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φ∗
(

∂

∂xi

)
=

n∑
j=1

∂Yj

∂xi

(X (y))
∂

∂yj

. (3.49)

Let ω = dxi ∈ Ω1 (M) be a differential 1-form. Then,

φ∗ (dxi) =
n∑

j=1

bj (y) dyj ,

and

bj (y) = φ∗
(〈

dxi, φ
−1∗

(
∂

∂yj

)〉)
= ∂Xi

∂yj

(X (y)) .

Therefore,

φ∗ (dxi) =
n∑

j=1

∂Xi

∂yj

(X (y)) dyj .

Solutions As we have seen, the natural type of transformations for solutions
of Eq. (3.43) is very similar to transformation of vector fields, with only one
difference: instead of the multiplier ∂Y

∂x
that we used for transformations of vector

fields, we have to use multiplier
√

∂Y
∂x

, i.e. solutions of the Schrödinger type

equations behave like “12−vector fields.” To check this hypothesis, we substitute
square b(x) = y(x)2 of a solution y(x) of equation (3.43) in symmetry Eq. (3.45)
and get zero.

Therefore, any product of solutions b(x) = y1(x)y2(x) of the Schrödinger
equation also satisfies equation (3.45). In other words, if 〈y1 (x) , y2(x)〉 is a
fundamental set of solutions of Eq. (3.43), then

〈
y1(x)2, 2y1(x)y2(x), y2

2(x)
〉
is a

fundamental set of solutions of Eq. (3.45).
These functions represent vector fields

A = y1(x)2
∂

∂x
, H = 2y1 (x) y2(x)

∂

∂x
, B = y2(x)2

∂

∂x
.

Assume that the Wronskian of y1 and y2 equals 1. Then,

[A,B] = H, [H,A] = −2A, [H,B] = 2B;

i.e. these vector fields satisfy the structure equations of the Lie algebra sl (2,R).
To summarize, we have the following result.
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Theorem 3.12

1. The solution space of Eq. (3.45) is formed by pairwise products of solutions of
Eq. (3.43), i.e. Eq. (3.45) is a symmetric square of Eq. (3.43).

2. The solution space of Eq. (3.45) is the sl (2,R) Lie algebra with respect to
bracket [z1, z2] = z1z

′
2 − z′

1z2.

3. The Lie equation on symmetries of Schrödinger equation (3.43) defines a
projective structure on the line: sl (2,R) ⊂ Vect (R) .

Remark 3.4 By a projective structure on R, we mean a covering R by intervals
(Uα, tα) with coordinates tα such that on intersections Uα ∩ Uβ , these coordinates
are connected by projective transformations

tβ = a
βα
11 tα + a

βα
12

a
βα
21 tα + a

βα
22

, (3.50)

where
∥∥∥∥∥
a

βα
11 a

βα
12

a
βα
21 a

βα
22

∥∥∥∥∥ ∈ SL2 (R) . (3.51)

It is easy to check with formula (3.47) that locally any Schrödinger equation (3.43)
could be transformed to the equation y′′ = 0. The Lie algebra, corresponding to this
equation, has the form

sl (2,R) =
〈

∂

∂x
, x

∂

∂x
, x2 ∂

∂x

〉
. (3.52)

In particular, any realization sl (2,R) ⊂ Vect (R) is locally equivalent to model
(3.52), and any two such realizations are connected by a projective transformation
(3.50).

In other words, to define a projective structure on R is equivalent to have a
representation of Lie algebra sl (2,R) in Lie algebra of vector fields Vect (R), and
it is also equivalent to have a Schrödinger equation (3.43).

Example 3.11 To the Schrödinger equation, y′′ + ω2y = 0 corresponds the Lie
algebra

sl (2,R) =
〈
sin2 (ωx)

∂

∂x
, sin (2ωx)

∂

∂x
, cos2 (ωx)

∂

∂x

〉
, (3.53)

which is not equivalent to (3.52) on R because any nonvanishing vector field in
(3.53) has an infinite number of zeroes, while those in (3.52) have not more than
two.
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3.8.3 Integration of Schrödinger Type Equations with
Integrable Potentials

As we have seen, the Schrödinger type equations (3.43) have linear symmetries of
the form φ0 = u0 and φb = bu1 − 1

2b
′u0, where the function b = b(x) is a solution

of the Lie equation

b(3) + 4Wb′ + 2W ′b = 0.

They do commute [φ0, φb] = 0, and therefore the Schrödinger equation can be
integrated in quadratures if we know a nontrivial symmetry φb. In this case, we call
potential W integrable.

Moreover, integrating the Lie equation with respect to W with given function b,
we get the relation

W = cb

b2
+ 1

4

(
b′

b

)2

− 1

2

b′′

b
, (3.54)

where cb is a constant.
Remark that the solution space of the Lie equation is a Lie algebra, which is

isomorphic to sl2, and the constant cb is proportional to the value of the Killing
form on sl2 on the vector b ∈ sl2.

The relation (3.54) shows that if two potentials W and W̃ have the same
symmetry φb, then

W̃ − W = c

b2
,

for some constant c.
This observation can also be used in the opposite way: if W is an integrable

potential with symmetry φb, then the potential W + c
b2

is also integrable with the
same symmetry φb.

Example 3.12 The potentials
c(

c2x2 + 2c1x + c0
)2 ,

ω2 + c

(c1 sin (2ωx) + c2 cos (2ωx) + c0)
2 ,

and

1 + 1

(sin (2x) + 1)2

are integrable (Figs. 3.3 and 3.4).
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Fig. 3.3 w = 1

(x2+1)
2

Fig. 3.4
w = 1 + 1(

sin2(2x)+1
)2
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3.8.3.1 Integration by Symmetries

To integrate the Schrödinger equation with given symmetry φb, we will use the
following observation:

Lemma 3.2 Let φ and ψ be symmetries of the Schrödinger equation. Then, the
function

H = φD (ψ) − ψD (φ)

is a first integral.

Proof The conditions that ψ and φ are symmetries mean that D2 (ψ) + Wψ = 0
and D2 (φ) + Wφ = 0. Therefore,

D (H) = D (φ) D (ψ) − D (ψ)D (φ) = 0.

��
By applying this lemma to the symmetries ψ = φ0 = u0 and φ = φb, we get that

H = cb

b
φ2
0 + 1

b
φ2

b

is a first integral of the equation.
Assume that cb = c20 > 0, and let y be a solution. Let

z = y√|b| ,

then

H = c0z
2 + b2z′2 = c2.

Let

z = c

c0
sin (γ ) , z′ = c

b
cos (γ ) ,

for some function γ . Then,

γ ′ = c0

b
,

and therefore solutions y have the form

y = c

c0

√|b| sin
(

c0

∫
dx

b

)
.
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In a similar way, we get

y = c

c0

√|b| sinh
(

c0

∫
dx

b

)

for the case cb = −c20 < 0, and

y = c
√|b|

∫
dx

b

for the case cb = 0.
Finally, we conclude that knowledge of a single nontrivial linear symmetry φb

gives us

• Potential function

W = cb

b2
+ 1

4

(
b′

b

)2

− 1

2

b′′

b
.

• Fundamental solution (if cb = c20 > 0 )

y1 = √|b| sin
(

c0

∫
dx

b

)
, y2 = √|b| cos

(
c0

∫
dx

b

)
.

• Linear symmetries

b1 = b, b2 = b sin

(
2c0

∫
dx

b

)
, b3 = b cos

(
2c0

∫
dx

b

)
.

• Integrable potentials

W +
∑

i

ki

(c1ib1 + c2ib2 + ci3b3)
2 , etc.

Example 3.13 For the case

W = 1 + 2

(2 + sin 2x)2
, b = 2 + sin 2x, cb = 5,

we have (Fig. 3.5)

y1 = √
2 + sin 2x sin

(
2√
3
arctan

(
2 tan x + 1√

3

))
,

y2 = √
2 + sin 2x cos

(
2√
3
arctan

(
2 tan x + 1√

3

))
.
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Fig. 3.5 w = 1 + 2
(2+sin 2x)2

3.8.3.2 Lame Equation

Let us consider the case when the potential function W generates linear symmetry
φW = Wu1 − 1

2W
′u0 for the corresponding Schrödinger equation.

In other words, the lift of the vector field

W(x)
∂

∂x

in the bundle of 1
2 -vector fields is a symmetry of the Schrödinger equation.

Putting b = W in the Lie equation gives us differential equation for potential:

W(3) + 6WW ′ = 0,

or

W ′′ + 3W 2 + c1 = 0

for some constant c1. Therefore,

1

2
W ′2 + W 3 + c1W + c2 = 0,

for some constant c2, and
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W = −2℘,

where ℘ is the Weierstrass p-function with invariants g2 = −c1 and g3 = c2/2.
Therefore, the Lame equation

y′′ − 2℘y = 0

has linear symmetry

φ℘ = ℘u1 − 1

2
℘′u0,

with constant c℘ = −g3.

The fundamental solution (in the case, g3 < 0) has the form

y1 = √|℘| sin
(√−g3

∫
dx

℘

)
, y2 = √|℘| cos

(√−g3

∫
dx

℘

)
,

and all linear symmetries are generated by

b1 = ℘, b2 = ℘ sin

(
2
√−g3

∫
dx

b

)
, b3 = ℘ cos

(
2
√−g3

∫
dx

b

)
,

and the potentials

−2℘ +
∑

i

ki

℘2
(
c1i + c2i sin

(
2
√−g3

∫
dx
b

) + ci3 cos
(
2
√−g3

∫
dx
b

))2

are integrable.

3.8.3.3 Eigenvalue Problem

Here, we consider equations of the form

y′′ + (W − λ)y = 0. (3.55)

At first, we consider equations that have symmetries that are linear in λ:

b = b0 + λb1.

Collecting terms with λ2, λ, and λ0, we get the following relations: b1 =
const, b0 = −W

2 , and b0 is a symmetry of W. Therefore, we get the discussed
case of the Lame equation:
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y′′ − (λ + 2℘) y = 0,

with symmetry

b = λ + ℘.

Then, the functions

y = C1
√|℘ + λ| sin

(√−g3

∫
dx

℘ + λ

)
+ C2

√|℘ + λ| cos
(√−g3

∫
dx

℘ + λ

)

satisfy equation (3.55).
Assume that we are looking for eigenvalues for the boundary value problem

y (a) = y (b) = 0 on the interval [a, b], where the function ℘ has no singularities.
Then, the boundary value problem gives us a linear system for the coefficients

C1 and C2 of the solution

y(x) = C1
√|℘(x) + λ| sin

(√−g3

∫ x

a

dx

℘ + λ

)

+ C2
√|℘(x) + λ| cos

(√−g3

∫ x

a

dx

℘ + λ

)
.

We have

C2
√|℘ (a) + λ| = 0,

at the point x = a and

C1
√|℘ (b) + λ| sin

(
√−g3

∫ b

a

dx

℘ + λ

)
+ C2

√|℘ (b) + λ| cos
(

√−g3

∫ b

a

dx

℘ + λ

)
= 0

at the point x = b.

Therefore, solutions of the equation

√|℘ (a) + λ|√|℘ (b) + λ| sin
(√−g3

∫ b

a

dx

℘ + λ

)
= 0

are eigenvalues for given boundary problem, or

λ = −℘ (a) , λ = −℘ (b) ,

∫ b

a

dx

℘ + λ
= πk√−g3

, k = 0,±1,±2, . . . .

are the eigenvalues.
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Similar results are valid for eigenvalue problems with symmetries that are
polynomial in λ (see [8]).
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