
Chapter 1
Poisson and Symplectic Structures,
Hamiltonian Action, Momentum
and Reduction

Vladimir Roubtsov and Denys Dutykh

1.1 Introduction

These lectures have been delivered by the first author in the Summer School
“Differential Geometry, Differential Equations, and Mathematical Physics” at
Wisła, Poland from 19th to 29th of August 2019. The second author took the notes
of these lectures.

As the title suggests, the material covered here includes the Poisson and symplec-
tic structures (Poisson manifolds, Poisson bi-vectors, and Poisson brackets), group
actions and orbits (infinitesimal action, stabilizers, and adjoint representations),
moment maps, Poisson and Hamiltonian actions. Finally, the phase space reduction
is also discussed. The Poisson structures are a particular instance of Jacobi structures
introduced by A. Lichnerowicz back in 1977 [7]. Several capital contributions to this
field were made by A. Weinstein, see e.g. [13].

The text below does not pretend to provide any new scientific results. However,
we believe that this point of view and exposition will be of some interest to our
readers. As other general (and excellent) references on this topic include:

• R. Abraham and J.E. Marsden. Foundations of Mechanics, second edn.,
Addison–Wesley Publishing Company, Redwood City, CA, 1987 [1]
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• V.I. Arnold. Mathematical methods of classical mechanics, second edn.,
Springer, New York, 1997 [2]

• A.M. Vinogradov and B.A. Kupershmidt. The structures of Hamiltonian mechan-
ics, Russ. Math. Surv., 32(4), 177–243, 1977 [12]

We can mention also another set of recent lecture notes on the symplectic and
contact geometries [11]. We mention also the classical review of this topic [14].

Our presentation remains at quite elementary level of exposition. We restricted
deliberately ourselves to the presentation of basic notions and the state of the art as
it was in 1990–2000. Nevertheless, we hope that motivated students will be inspired
to find more advanced and modern material which is inevitably based on these
elementary notes.

In the following text each Section corresponds to a separate lecture. This text
is organized as follows. The Poisson and symplectic structures are presented in
Sect. 1.2. The group actions and orbits are introduced in Sect. 1.3. The moment map,
Poisson and Hamiltonian actions are described in Sect. 1.4. Finally, the manuscript
is ended with the description of the phase space reduction in Sect. 1.5. The very
last Sect. 1.6 is a brief (and essentially incomplete) introduction to Poisson–Lie
structures and some related notions. An excellent account of the last topic can be
found in the survey paper by Y. Kossmann-Schwarzbach (1997) [6].

1.2 Poisson and Symplectic Structures

Hamiltonian systems are usually introduced in the context of the symplectic
geometry [5, 10]. However, the use of Poisson geometry emphasizes the Lie algebra
structure, which underlies the Hamiltonian mechanics.

1.2.1 Poisson Manifolds

Let M be a smooth manifold with a bracket

{ − , −} : C∞ (M ) × C∞ (M ) �−→ C∞ (M ) ,

which verifies the following properties:

• Bi-linearity { − , −} is real-bilinear.
• Anti-symmetry { F , G } = − { G, F } .
• Jacobi identity { { F , G } , H } + { { G, H } , F } + { { H , F } , G } = 0 .
• Leibniz identity { FG , H } = F { G, H } + { F , H } G .

Then, the bracket { − , −} is a Poisson bracket and the pair
(
M; { − , −} )

will
be called a Poisson manifold. A Poisson algebra is defined as the following pair
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(
C∞ (M; R ); { − , −} )

. Thanks to the first three properties of the Poisson
bracket, it is not difficult to see that

(
C∞ (M; R ); { − , −} )

is also a Lie algebra.
The last property of the Poisson bracket (i.e. the Leibniz identity) implies that it is
also a derivative in each of its arguments.

Let
(
M; { − , −} )

be a Poisson manifold and H ∈ C∞ (M; R ) , then there
exists a unique vector field XH such that

XH (G) = { G, H } , ∀G ∈ C∞ (M; R ) .

The vector field XH is called the Hamiltonian vector field with respect to the Pois-
son structure with H being the Hamiltonian function. Let X (M ) denote the space
of all vector fields on M . Then, the just constructed mapping C∞ (M; R ) −→
X (M ) is a Lie algebra morphism, i.e. X {F ,G } = [XF , XG ] .

Definition 1.1 A Casimir function on a Poisson manifold
(
M; { − , −} )

is a
function F ∈ C∞ (M; R ) such that for all G ∈ C∞ (M; R ) one has

{ F , G } = 0 , ∀G ∈ C∞ (M; R ) .

1.2.2 Poisson Bi-vector

If
(
M; { − , −} )

is a Poisson manifold, then there exists a contravariant anti-
symmetric two-tensor π ∈ Λ2 (TM) or equivalently

π : T∗M × T∗M −→ R

such that

〈 π , dF ∧ dG 〉 ( z ) = π ( z )
(

dF ( z ); dG( z )
) = { F , G } ( z ) .

In local coordinates ( z1, z2, . . . , zn ) we have the following expression for the
Poisson bracket:

{ F , G } =
∑

i, j

πij ∂F

∂zi

∂G

∂zj

,

where πij def:= {
zi , zj

}
are called the elements of the structure matrix or the

Poisson bi-vector of the underlying Poisson structure. For the vector field we have
the corresponding expression in coordinates:

XH =
∑

i, j

πij ∂H

∂zi

∂

∂zj

, or X j
H =

∑

i

π ij ∂H

∂zi

.
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1.2.2.1 Hamilton Map and Jacobi Identity

Let π = ( πij ) be a Poisson bi-vector on M , then there exists a
C∞ (M; R )−linear map π� : T∗M �−→ TM given by

π� ( α ) ⌟ β = { π , α ∧ β } ( z ) = π ( z )
(
α( z ), β( z )

)
,

where ⌟ denotes the usual interior product or the substitution of a vector field into a
form.

If α = df for some f ∈ C∞ (M; R ) , then π� ( dH ) = XH . It is not
difficult to see how the map π� acts on the basis elements of co-vectors:

π� ( dzi ) = {
zi , zj

} ∂

∂zj

.

Finally, we also have the following Jacobi identity:

πil ∂πjk

∂zl

+ πjl ∂πki

∂zl

+ πkl ∂πij

∂zl

= 0 . (1.1)

1.2.3 Symplectic Structures on Manifolds

Definition 1.2 A symplectic form on a real manifold M is a non-degenerate closed

2−form ω ∈ Ω 2 (M )
def:= Λ 2 (T ∗M ) . Such a manifold is called a symplectic

manifold and it is denoted by a couple (M; ω ) .

Let
(
M; { − , −} )

be a Poisson manifold with non-degenerate Poisson structure
bi-vector ( πij ) and the Hamiltonian isomorphism π� such that π� ( α ) = X .
Then, there is the inverse map ( π� )−1 : TM −→ T ∗M is defined by the
following relation:

Y ⌟ ( π� )−1(X ) = α (Y ) .

Moreover, the inverse operator ( π� )−1 defines a 2−form ωπ as follows:

ωπ (X , Y ) =
〈
( π� )−1 (X ) , Y

〉
.

1.2.3.1 Darboux Theorem and Hamiltonian Vector Fields

The following Lemma describes some important properties of the just defined form
ωπ along with the underlying manifold M :



1 Poisson and Symplectic Structures, Hamiltonian Action, Momentum and Reduction 5

Lemma 1.1 The real manifold M always has an even dimension. The form ωπ is
a symplectic 2−form on M . The Jacobi identity (1.1) is equivalent to d ωπ = 0 .

Proof Left to the reader as an exercise. ��
Theorem 1.1 (G. Darboux) Let (M; ω ) be a symplectic manifold. There exists

a local coordinate system (q1, q2, . . . , qn, p1, p2, . . . , pn)
def=: (q, p) such that

ω = ∑n
i = 1 d qi ∧ dpi . Such coordinates are called canonical or Darboux

coordinates.

Lemma 1.2 Let (M; ω ) be a symplectic manifold and H ∈ C∞ (M; R) the
Hamiltonian function. Then, there is a unique vector field XH (i.e. the Hamiltonian
vector field associated with the Hamiltonian H ) on M such that

XH ⌟ ω = dH .

The Hamiltonian vector fieldXH can be written in the canonical coordinates (q, p )

on M as

XH =
∑

i

(
∂H

∂p i

∂

∂qi

− ∂H

∂qi

∂

∂p i

)
.

The Poisson bracket in these coordinates looks like

{ F , G } = XF (G) =
∑

i, j

(
∂F

∂p i

∂G

∂qi

− ∂F

∂qi

∂G

∂p i

)
.

Proof Left to the reader as an exercise. ��

1.2.3.2 Example

Let S 2 def:= {
(x, y, z) ∈ R3

∣∣ x2 + y2 + z2 = 1
}

be the 2−sphere, which can
be naturally injected in R3 : ı : S 2 ↪−→ R3 . The 2−form ω̄ ∈ Λ2 (R3 ) is given
by

ω̄ = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

and ω ∈ Λ2 (S 2 ) is defined as ω = ı∗ ( ω̄ ) .

Lemma 1.3 The form ω gives a symplectic structure on S 2 , i.e. d ω = 0 and this
2−form is non-degenerate on S 2 .

Proof First of all, we observe that the closedness of the 2−form ω is a straightfor-
ward conclusion in view of



6 V. Roubtsov and D. Dutykh

d ω = d
(
ı∗( ω̄ )

) = ı∗
(

d ω̄
) = 0 ,

since Λ3(S 2 ) = 0 . To check that it is non-degenerate, we make a choice of the
following charts:

φN : S 2 \ { N } −→ R2 ,

(x, y, z) �−→
( x

1 − z
,

y

1 − z

)
,

φS : S 2 \ { S } −→ R2 ,

(x, y, z) �−→
( x

1 + z
,

y

1 + z

)
.

It is not difficult to see that their inverses are given by the following maps:

φ −1
N : (u, v) �−→

( 2 u

1 + u 2 + v 2
,

2 v

1 + u 2 + v 2
,

u 2 + v 2 − 1

1 + u 2 + v 2

)
,

φ −1
S : (u, v) �−→

( 2 u

1 + u 2 + v 2
,

2 v

1 + u 2 + v 2
, − u 2 + v 2 − 1

1 + u 2 + v 2

)
.

In both coordinate charts (u, v) induced by φN, S we obtain

ı∗ ( ω̄ ) = (x◦ı) d (y◦ı)∧d (z◦ı) + (y◦ı) d (z◦ı)∧d (x◦ı) + (z◦ı) d (x◦ı)∧d (y◦ı)

= − 4

1 + u 2 + v 2 d u ∧ d v �= 0 .

1.2.4 Co-tangent Bundle: Liouville Form

Let M be a smooth n−dimensional manifold and � : T∗M −→ M is the
projection map whose differential map is T� : TT∗M −→ TM .

Definition 1.3 A differential 1−form ρ on T∗M , which is defined by σρ :
T∗M −→ T∗T∗M as follows:

〈
σρ , X 〉 = 〈

ρ , T�ρ (X )
〉
, X ∈ T�ρ (T∗M )

is called the Liouville (or action) form.

If (q, p) is a local coordinate system on T∗M , then the form ρ can be written as
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ρ = p dq =
n∑

i=1

pi d qi .

The 2−form ω ∈ Ω2 (T∗M ) , ω = dρ = dp ∧ dq = ∑n
i=1 dpi ∧ d qi is the

canonical symplectic form.

1.2.5 Non-Symplectic Poisson Structures

Let g be a real finite-dimensional Lie algebra and g∗ be its dual (as a vector space).
If we suppose that dim g = n , then g∗ is isomorphic as a real smooth manifold to
Rn .

Theorem 1.2 There exists a (non-symplectic) Poisson structure on g∗ .

1.2.6 Poisson Brackets on Dual of a Lie Algebra

A bracket can be defined on C∞ ( g∗ ) by the identification:

g � g∗∗ ≡ C∞
lin( g

∗ ) ⊂ C∞ ( g∗ ) , X �−→ FX

FX (ξ) = 〈 ξ , X 〉 = ξ (X ) .

One has
{
FX , FY

} = F [X ,Y ] . Let { ei }ni = 1 be a base of g and
{

C k
ij

}
be

structure constants of the Lie algebra g , i.e.

[ ei , ej ] =
n∑

k = 1

C k
ij ek .

Let { Fi }ni = 1 be a dual basis of g∗ and {Xi }ni = 1 be the coordinate system of g∗ , i.e.

ξ = Xi ( ξ )Fi , Xi ( Fj ) = δij , Xi = Fei
.

Now, it is not difficult to see that

{Xi , Xj

} = F [ ei , ej ] =
∑

k

C k
ij Fek

=
∑

k

C k
ij Xk .

Finally, we can write the coordinate expression of the Poisson bracket on the dual
of a Lie algebra:
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{ F , G } =
∑

i, j, k

C k
ij

∂F

∂Xi

∂G

∂Xj

Xk .

1.2.6.1 Definition via Gradient Operator

We define the gradient operator

∇ : C∞ ( g∗ ) −→ C∞ ( g∗ )

as follows:

〈 η , ∇F ( ξ ) 〉 def:= d

dt
F ( ξ + t η )

∣∣∣
t = 0

, ∀F ∈ C∞ ( g∗ ) .

In coordinates one simply has

∇F = ∂F

∂Xi

ei .

Using the gradient operator, the bracket is defined as

{ F , G } ( ξ )
def:= 〈 ξ , [ ∇ F ( ξ ) , ∇ G( ξ ) ] 〉

and in coordinates we obtain

{Xi , Xj

}
(Fk) = 〈

Fk , [ ∇Xi (Fk) , ∇Xj (Fk) ] 〉 = 〈
Fk , [ ei , ej ] 〉 = C k

ij .

1.2.6.2 Definition via Canonical Structure on T∗(G)

Let g be a Lie algebra, then there exists a unique (connected and simply connected
up to an isomorphism) Lie group G such that TeG � g . Let Lg ∈ Aut (G) be
the translation by g , i.e. ∀h ∈ G :

Lg : G
�−→ G

h �−→ g h .

Then, we define

λg (h)
def:= (

TLg (h)
)∗ : T∗

gh (G) −→ T∗
h (G) ,
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which gives rise to the isomorphism λg : T∗(G) −→ T∗(G) with the inverse
λ−1

g . Define a map

λ : G × g∗ −→ T∗G

(g, ξ) �−→ λ−1
g (g) (ξ) ,

which is a diffeomorphism in the following commutative diagram:

The co-tangent bundle T∗G � G × g∗ is a trivial vector bundle with the fiber g∗ .
The Liouville form ρ ∈ Ω1 (T∗G) defines by the section σρ : T∗G −→ T∗T∗G
similar to Sect. 1.2.4:

〈
σρ( ξ ) , X 〉 = 〈

ρ , Tπξ (X )
〉
, X ∈ Tπξ (T∗G) , ξ ∈ T∗

hG .

Let g ∈ G , ξ ∈ T∗
ghG , X ∈ Tπλg( ξ )

(T∗G) , then we have

〈
σρ ◦ λg( ξ ) , X 〉 =

〈
λg( ξ ) , Tπλg( ξ )

〉
= 〈

(ThLg)
∗ξ , Tλg( ξ )

〉 =
〈
ξ , (ThLg)Tλg( ξ )X

〉 = 〈
ξ , Tλg( ξ )(Lg ◦ π)X 〉

.

We can make two observations:

• (Lg ◦ π) (h, ξ) = gh ,
• π ◦ λg−1 = gh .

Henceforth, Lg ◦ π ≡ π ◦ λg−1 . The Liouville form becomes

〈
σρ ◦ λg( ξ ) , X 〉 =

〈
ξ , Tλg( ξ )( π ◦ λg−1 )X 〉 =

〈
ξ , Tξπ ◦ Tλg( ξ )λ

g−1 (X )

〉
=

〈
ρ( ξ ) , Tλg( ξ )λg−1( ξ )X 〉 =

〈
λ∗

g−1 ◦ ρ( ξ ) , X
〉
.

We have ω = d ρ as the canonical symplectic form on T∗G . We observe also
that

• σρ ◦ λg = λ∗
g−1( σρ ) ,

• ω ◦ λg = λ∗
g−1( ω ) .
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We recall that a Poisson bracket { F , G } for F , G ∈ C∞ (T∗G) can be defined

via { F , G } def:= XF (G ) , where XF is the unique vector field on T∗G such that
XF ⌟ ω = dF .

Lemma 1.4 Let g ∈ G and F , G ∈ C∞ (T∗G) , then

{
F ◦ λg , G ◦ λg

} = { F , G } ◦ λg .

Proof Left to the reader as an exercise. ��
Let C∞ (T∗G)G denote a subspace of stable or invariant functions with respect

to the mapping λg , i.e.

C∞ (T∗G)G
def:= {

F ∈ C∞ (T∗G)
∣∣ F ◦ λg = F

}
, g ∈ G .

Lemma 1.4 shows that the set C∞ (T∗G)G is closed with respect to the Poisson
bracket.

Let the linear mapping Φ be defined as

Φ : C∞ ( g∗ ) −→ C∞ (T∗G)

F �−→ F ◦ pr2 ,

where pr2 : T∗G ≡ G × g∗ −→ g∗ is the canonical projection on the second
argument. Let ı : g∗ −→ T∗G be the canonical embedding. Then,

Ψ : C∞ (T∗G)G −→ g∗

F �−→ F ◦ ı

is linear and inverse to Φ , i.e. Ψ ≡ Φ −1 .

Lemma 1.5 The bracket { F , G } def:= Φ −1
( { Φ(F) , Φ(G) } )

is a Poisson
bracket on C∞ ( g∗ ) coinciding with two previous definitions.

Proof Left to the reader as an exercise. ��

1.3 Group Actions and Orbits

Let G be a Lie group and M is a smooth manifold.

Definition 1.4 A left action of G on M is a smooth map μ : G×M −→ M such
that

• μ ( e, m ) = m , ∀m ∈ M ,
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• μ
(
g, μ ( h, m )

) = μ ( gh, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Definition 1.5 A right action of G on M is a smooth map ρ : M × G −→ M

such that

• ρ (m, e ) = m , ∀m ∈ M ,
• ρ

(
ρ (m, h ), g

) = ρ ( hg, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Left and right actions of G and M are in one-to-one correspondence by the following
relation:

ρ (m, g−1 ) = μ ( g, m ) .

From now on we shall denote the left Lie group action μ ( g, m ) simply by g · m .
We can define several important action types:

Effective or Faithful ∀ g ∈ G , g �= e �⇒ ∃ m ∈ M such that g ·m �= m .
Free If g is a group element and ∃ m ∈ M such that g · m = m

(that is, if g has at least one fixed point), �⇒ g = e. Note
that a free action on a non-empty M is faithful.

Transitive If ∀m, n ∈ M , ∃ g ∈ G such that g ·m = n . In this case
the smooth manifold M is called homogeneous.

Important examples of group actions include:

Example 1.1 Example G acts on itself by left multiplication:

G × G −→ G

(g, h) �−→ gh .

This action is effective and transitive. Indeed, g·h = h �⇒ g = e and if g·m = n

�⇒ g = n · m−1 .

Example 1.2 Example G acts on itself by conjugation:

G × G −→ G

(g, h) �−→ g · h · g−1 .

Generally, this action is not free, transitive, or effective.

Example 1.3 Example GL n(R ) acts on R n \ { 0 } by matrix multiplication on the
left:

GL n(R ) × R n \ { 0 } −→ R n \ { 0 }
(A, x) �−→ Ax .

This is an example of an effective and transitive action.
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1.3.1 Stabilizers and Orbits

Let G be a Lie group which acts on a smooth manifold M . The orbit of a point
m ∈ M is

G · m
def:= { g ∈ G | g · m } ⊆ M .

A stabilizer of a point m ∈ M is

Gm
def:= { g ∈ G | g · m = m } ⊆ G .

Proposition 1.1 The stabilizer Gm is a closed sub-group of G and Gg·m = g ·
Gm · g−1 , ∀ g ∈ G .

Proof Left to the reader as an exercise. ��
We mention here two technical theorems regarding the orbits and stabilizers:

Theorem 1.3 Let G be a Lie group which acts on a smooth manifold M and m ∈
M . There is a manifold structure on the orbit G · m such that the map

G −→ G · m

g �−→ g · m

is a submersion and the embedding ı : G · m ↪→ M is an immersion.

Theorem 1.4 The Lie algebra gm of the stabilizer Gm for a point m ∈ M

coincides with kerTeΦ , where the mapping Φ is defined as

Φ : G −→ M

g �−→ g · m .

1.3.2 Infinitesimal Action

Let μ : G × M −→ M be a Lie group action on M and g = Lie (G) be its Lie
algebra.

Definition 1.6 Let X ∈ g and φ : R −→ G its exponential flow, i.e. φ (t) =
exp( t X ) . Then, there exists the unique vector field XM ∈ X (M ) with the flow
φm : R −→ M defined by φm (t) = φ (t) ·m . The vector field XM is defined by

XM(m ) ( f )
def:= d

dt

(
f ◦ φ( t ) · m

) ∣∣
∣
t = 0

.



1 Poisson and Symplectic Structures, Hamiltonian Action, Momentum and Reduction 13

The mapping μ∗ : g −→ X (M ) is called the infinitesimal action of g on M .

Proposition 1.2 The mapping μ∗ : g −→ X (M ) is a Lie algebra
(anti-)homomorphism (and it is in particular a linear mapping):

μ∗
( [X , Y ] ) = −[ μ∗(X ) , μ∗(Y ) ] .

Proof Left to the reader as an exercise. ��
Remark 1.1 One can see that μ∗(X )m ( f ) = X (f ◦ Φm) . In other words,
μ∗(X )m = TeΦm(X ) .

Proposition 1.3 Let m ∈ M , then

TmG · m = {X ∈ g | μ∗(X )m } .

Proof Left to the reader as an exercise. ��
The following difficult result is left without the proof:

Theorem 1.5 (R. Palais) Let G be a simply connected Lie group with the Lie
algebra g = Lie (G) andM be a smooth compact manifold such that there exists a
homomorphism of Lie algebras ρ : g −→ X (M ) . Then, there is a unique action
μ : G × M −→ M such that μ∗ = ρ .

Proposition 1.4 Let μ : G ×M −→ M be an action of G on a smooth manifold
M and m ∈ M . Then, the following diagram commutes:

or, in other words:

∀X ∈ g : μm( e t X ) = e t μ∗(X )m .

1.3.3 Lie Group and Lie Algebra Representations

Let G be a Lie group, g = Lie (G) be its Lie algebra and V be a real vector space.

Definition 1.7 A representation of the Lie group G in the vector space V is a
homomorphism of Lie groups (i.e. a smooth group morphism) ϕ : G −→
GL (V ) .
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Definition 1.8 A representation of the Lie algebra g in the vector space V is a Lie
algebra homomorphism φ : g −→ End (V ) .

Here End (V ) is enabled with the Lie algebra structure given by the endomor-
phisms commutator:

∀A, B ∈ End (V ) [ A , B ] def:= A · B − B · A .

If ϕ : G −→ GL (V ) is a Lie group representation, then

φ
def:= Teϕ : TeG = g −→ Tid

(
GL (V )

) = End (V )

is a representation of the Lie algebra g .

1.3.3.1 Adjoint Representations

Let g ∈ G , V = g , then the composition Lg ◦Rg−1 : G −→ G induces a linear

mapping Te ( Lg ◦ Rg−1 )
def:= Ad ( g ) : g −→ g and, hence, a group morphism

Ad : G −→ GL ( g ) . Then, the following Lemma holds:

Lemma 1.6 The group morphismAd is a smooth map which gives a representation
of G in g , which is called the adjoint Lie group representation.

Proof Left to the reader as an exercise. ��
Let ad

def:= Te (Ad ) : g −→ End( g ) . Then, ad is also called the adjoint
Lie group representation.

Lemma 1.7

ad (X ) (Y ) = [X , Y ] , ∀X , Y ∈ g .

Proof Left to the reader as an exercise. ��

1.3.3.2 Co-Adjoint Representations

Let g ∈ G , V ∈ g∗ and f ∗ ∈ End ( g∗ ) is defined by f ∗ (ξ)
def:= ξ ◦ f for any

element f ∈ End ( g ) . Then, we can write down the following

Definition 1.9 The following smooth map

Ad ∗ : G −→ GL ( g ∗ ) ,

g �−→ Ad ( g−1 ) ∗ ,
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which gives a representation of G in g∗ is called the co-adjoint Lie group
representation.

The last definition makes sense because Ad ∗ = F ◦ Ad and F (f ) = f ∗ ,
where the map F : End ( V ) −→ End ( V ∗ ) . Similarly, we can also define

ad ∗ : g −→ End ( g∗ ) ,

X �−→ −ad ∗ (X ) ,

where

ad ∗ (X ) ( ξ ) (Y ) = −〈 ξ , [X , Y ] 〉 .

Then, ad ∗ is also called the co-adjoint Lie algebra representation in g∗ .

Lemma 1.8

[ad ∗ (X ) , ad ∗ (Y ) ] = ad ∗ ( [X , Y ] ) , ∀X ,Y ∈ g , ∀ξ ∈ g∗ .

Proof Left to the reader as an exercise. ��
Proposition 1.5 The co-adjoint representation Ad ∗ of a Lie group G gives rise to
a co-adjoint left action of G on g∗ :

G × g∗ −→ g∗ ,

(g, ξ) �−→ Ad ∗ ( ξ ) .

Let X ∈ g and FX ∈ C∞ ( g∗ ) be the evaluation function defined by

FX ( ξ )
def:= ξ (X ) . Then, the following Propositions hold:

Proposition 1.6

d

dt
F

(
Ad ∗

exp ( t X ) ( ξ )
) ∣∣∣

t = 0
= { F , FX } ( ξ ) .

Proposition 1.7 A function F ∈ C∞ ( g∗ ) is a Casimir function for the Lie–
Poisson structure on g∗ if and only if

{ F , FX } = 0 , ∀X ∈ g .

Finally, we can state without the proof the following important

Theorem 1.6 (Lie–Berezin–Kirillov–Kostant–Souriau)

Cas
(
C∞ ( g∗ )

) = C∞ ( g∗ )Ad
∗
G ,
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where

C∞ ( g∗ )Ad
∗
G

def:=
{

F ∈ C∞ ( g∗ )

∣∣
∣ F ◦ Ad ∗

g = F , ∀g ∈ G
}

.

Denote by O ξ
def:= G · ξ ⊆ g∗ a co-adjoint orbit of a co-vector ξ ∈ g∗ . Recall

that these orbits are manifolds such that O ξ admits a submersion φ : G −→ O ξ

and an immersion ı : O ξ ↪→ g∗ . Define a g−valued 1−form ω on G as

ωg (X ) = Tg Lg−1 (X ) ∈ g .

Then, L ∗
h ( ω ) = ω . In other words, the 1−form ω is G−invariant. Here we take

g, h ∈ G and X ∈ g . By Maurer–Cartan formula we have that

dω = − 1

2
[ ω , ω ] .

Let us define also the 1−form ωξ ∈ Λ1 (G ) by

ωξ ( g ) (X )
def:= 〈

ξ , ωg (X )
〉
.

Then, the following result can be shown:

Theorem 1.7 (Kirillov–Kostant–Souriau) There exists a unique 2−form Ωξ ∈
Λ2 (O ξ ) such that φ∗ (Ωξ ) = dωξ . This form is symplectic on the co-adjoint
orbit O ξ .

1.4 Moment Map, Poisson and Hamiltonian Actions

1.4.1 Introductory Motivation

Let R3 be a basic configuration space with coordinate or position vectors r =
( q1, q2, q3 ) and velocity vectors:

ṙ = ( q̇1, q̇2, q̇3 )
def=: p

def:= ( p1, p2, p3 ) .

ET
def:= 〈 ṙ , ṙ 〉

2
+ U ( r )

and the equation of motion is r̈ = −∇r U ( r ) . The total mechanical energy

is conserved, i.e.
dET

dt
≡ 0 . The angular momentum is also constant along a

trajectory. It implies that
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dL
dt

= ṙ × ṙ + r × r̈ = − r × ∇r U = 0 ,

which is equivalent to say that r = λ ∇r U for some λ ∈ R .
Let so ( 3 ) be the Lie algebra of skew-symmetric 3×3 matrices with real entries.

This is a three-dimensional vector space with the basis { X1, X2, X3 } given by three
following matrices:

X1 =
⎛

⎝
0 1 0

−1 0 0
0 0 0

⎞

⎠ , X2 =
⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠ , X3 =
⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ .

The Lie brackets in the Lie algebra so ( 3 ) are given by

[ Xi , Xj ] = Xk , ( i, j, k ) = ( 1, 2, 3 ) ,

with all circular permutations. The Killing form κ (−, −) defined as

κ : so ( 3 ) × so ( 3 ) −→ R

(X, Y ) �−→ tr (X Y )

is symmetric, bi-linear and non-degenerate. Here tr (− ) is the trace form of a square
matrix. This form identifies so ( 3 ) and so ( 3 )∗ by the interior product rule X ⌟ κ .

The Lie–Poisson structure on so ( 3 )∗ in the coordinates ( x1, x2, x3 ) on so ( 3 )

can be expressed as

{ F , G } ( x1, x2, x3 ) =
3∑

i, j, k = 1

ck
ij

( ∂F

∂xi

∂G

∂xj

− ∂F

∂xj

∂G

∂xi

)
xk .

Here ck
ij is the structure constant tensor of the Lie algebra so ( 3 ).

The angular momentum L s defined as a map

T∗R3 � R6 −→ so ( 3 )∗

(q, p ) �−→ q × p =
∑

i, j, k

( q i pj − pi qj )Xk .

The angular momentum map L : T∗R3 −→ so ( 3 )∗ is a Poisson morphism.

Definition 1.10 Let μ : G × M −→ M be a Lie group action on a Poisson
manifold

(
M; { − , −} )

. This action is called a Poisson action if the map

μ∗
g : C∞ (M, R ) −→ C∞ (M, R )
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defined by μ∗
g ( F ) (m )

def:= F
(
μg (m )

)
satisfies the following condition:

μ∗
g

( { F , G } )
(m ) =

{
μ∗

g ( F ) , μ∗
g (G )

}
(m ) , ∀F, G ∈ C∞ (M, R ) .

Let a Poisson structure (M, π ) be symplectic.1 In this case this Poisson action can
be called the Hamiltonian action.

1.4.2 Momentum Map

Definition 1.11 Let g be a Lie algebra and
(
M, { − , −} )

be a Poisson manifold.
A momentum map is a Poisson morphism μ : M −→ g∗ . In other words, it is a
smooth map μ such that for ∀F, G ∈ C∞ ( g∗ ) :

μ∗ ( { F , G } g∗
) = {

μ∗ ( F ) , μ∗ (G )
}
M

.

Let λ̄ : g −→ C∞ (M, R ) be a smooth linear map. Then, there is a unique map
λ : M −→ g∗ defined by λ̄ :

{ λ (m ) , X } = λ̄ (X ) (m ) , ∀m ∈ M , ∀X ∈ g .

Proposition 1.8 Let
(
M, { − , −} )

be a Poisson manifold and μ : M −→ g∗
is a smooth map. Then, μ is a momentum map if and only if the associated map
μ̄ : g −→ C∞ (M, R ) is a Lie algebra homomorphism:

μ̄
( [X , Y ] ) = { μ̄ (X ) , μ̄ (Y ) } M , ∀X , Y ∈ g .

Recall that the map χ : C∞ (M, R ) −→ X (M ) such that

χ (F ) = XF = { F , −}

is a Lie algebra morphism. We take the composition Θ
def:= χ ◦μ̄ : g −→ X (M ) ,

where μ̄ : g −→ C∞ (M, R ) and g = Lie (G ) with a simply connected Lie
group G . For compact manifolds M , Theorem 1.5 ensures the existence of an action
λ : G × M −→ M with λ∗ = −Θ .

Proposition 1.9 If G is connected, then λ∗ = −Θ gives a Poisson morphism
λ∗

g : C∞ (M, R ) −→ C∞ (M, R ) for ∀ g ∈ G and ∀u, v ∈ C∞ (M, R ) :

1Here we mean that the bi-vector π is non-degenerate, i.e. π is invertible when it is seen as a banal
matrix.
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{
λ∗

g ( u ) , λ∗
g ( v )

}
= λ∗

g

( { u , v } )
.

Proposition 1.10 Let M be a compact manifold and G is connected and simply
connected. Then, the action λ is G−equivariant:

1.4.3 Moment and Hamiltonian Actions

Let
(
M, ω

)
be a symplectic manifold and the corresponding Poisson brackets are

defined by a pair of Hamiltonian vector fields:

{ u , v } = X u ( v ) = ω
(X v, X u

)
, X u ⌟ ω = du .

Lemma 1.9 If H 1 (M, R ) = 0 andX ∈ X (M ) “infinitesimally” preserves the
symplectic form ω , i.e. LX ( ω ) = 0 , then there exists a unique u ∈ C∞ (M, R )

such that X = X u .

Here we should remark that the function u is uniquely defined only modulo a locally
constant function on M (which is usually identified with an element of H 0 (M, R ).

Lemma 1.10 Let λ : G×M −→ M be an action of a Lie groupG on a symplectic
manifold

(
M, ω

)
. The action λ is a Poisson (more precisely, in this case we may

call it a Hamiltonian) action if and only if λ∗
g = ω .

Proposition 1.11 Let λ : G×M −→ M be a Hamiltonian action on a symplectic
manifold

(
M, ω

)
and λ∗ : g −→ X (M ) is the corresponding Lie algebra

homomorphism. Then, ∀X ∈ g :

L λ∗ (X ) ( ω ) = 0 .

Definition 1.12 Let λ : G×M −→ M be an action of G on M and
(
T∗M, Ω

)
is

the co-tangent bundle with the canonical symplectic form Ω = dρ , where ρ is the
Liouville 1−form. This action can be lifted to an action Λ : G×T∗M −→ T∗M
defined by

Λ( g, ξm )
def:= (Tg·m λ∗

g−1 ) ( ξm ) .
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Theorem 1.8 The action Λ is Hamiltonian and the induced momentum map μΛ :
T∗M −→ g∗ is defined by

{ μΛ ( ξm ) , X } = { ξm , T e λm (X ) } .

1.4.3.1 Examples

Example 1.4 Lifting of the left G−action on G to T∗G :

λ : G × G −→ G,

( g, h ) �−→ g · h .

Then, we obtain the required lifting:

Λ : G × T∗G � G × g∗ −→ T∗G � G × g∗ ,
(
g, ( h, ξ )

) �−→ ( g · h, ξ ) .

The associated momentum can be also easily computed:

μ ( ξh ) = − (TeRh )∗( ξ h ) , μ ( h, ξ ) = Ad ∗
h ( ξ ) .

Similarly, we can consider lifting of the right G−action on G to T∗G :

λ : G × G −→ G,

( g, h ) �−→ h · g−1 .

Then, we obtain the required lifting:

Λ : G × T∗G � G × g∗ −→ T∗G � G × g∗ ,

(
g, ( h, ξ )

) �−→ ( h · g−1, Ad ∗
g ξ ) .

The associated momentum can be also easily computed:

μ ( ξh ) = − (T eLh )∗( ξ h ) , μ ( h, ξ ) = − ξ .

Example 1.5 Let us consider also the action of S1 on C :

C � R2 � T∗R1 , Ω = dq ∧ dp .



1 Poisson and Symplectic Structures, Hamiltonian Action, Momentum and Reduction 21

The action is given by

λ : S1 × C −→ C ,

(
e i θ , z

) �−→ e i θ z ,

for some θ ∈ [ 0, 2 π [ . Above i is the complex imaginary unit, i.e. i2 = − 1 .
Then, one can easily obtain the expression for λ∗ : TeS

1 −→ C :

λ∗
( d

dθ

)
(q, p) = Te ( λq, p )

( d

dθ

)
= −p

∂

∂q
+ q

∂

∂p
.

The interior product with the symplectic form can be also easily obtained:

λ∗
( d

dθ

)
⌟Ω = − ( pdp + qdq ) = − 1

2
d( p2 + q2 ) .

The momentum map is given by

μ ( z ) = μ ( q + i p ) = p2 + q2

2
.

The last construction can be easily generalized to C n :

λ : S1 × C n −→ C n ,

(
e i θ , ( z1, z2, . . . , zn )

) �−→ (
e i θ z1, e i θ z2, . . . , e i θ zn

)
.

Then, the associated momentum map is given by

μ ( z1, z2, . . . , zn ) =
n∑

i = 1

| zi |2 .

Example 1.6 Let us consider the action of S1 on S2 . The manifold S2 is equipped
with local coordinates ( z, φ ) and Ω = dz ∧ dφ . The action of S1 is given by
rotation in z−planes:

λ : S1 × S2 −→ S2 ,

(
e i θ , ( z, φ )

) �−→ ( z, φ + θ ) .

It is not difficult to see that

λ∗
( d

dθ

)
( z, φ ) = ∂

∂φ
, λ∗

( d

dθ

)
⌟Ω = dz .
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Finally, the momentum map is

μ ( z, φ ) = z .

Example 1.7 We consider now the action of S1 on the torus T2 def:= S1 × S1 . The
torus T2 is equipped with local coordinates ( φ1, φ2 ) and the symplectic form is
Ω = dφ1 ∧ dφ2 . The action is defined as

λ : S1 × T2 −→ T2 ,
(

e i θ ,
(

e i φ1 , e i φ2
) )

�−→
(

e i φ1 , e i ( φ1 + θ )
)

.

Then, we have

λ∗
( d

dθ

)
(Ω ) = dφ1 ∧ d( θ + φ2 ) = Ω

and

λ∗
( d

dθ

)
⌟Ω = − dφ1 .

Since the coordinate function φ1 is defined only locally, the momentum map μ and
the morphism μ̄ do not exist.

Example 1.8 In this example we consider the action of SU ( n ) on T∗( su ( n )
)

.
We remind that SU ( n ) is the Lie group of special unitary matrices with complex
coefficients:

SU ( n )
def:= {

A ∈ Mat n(C )
∣∣ AA∗ = I , det (A) = 1

}
,

where I is the identity matrix and A∗ is the conjugate (or Hermitian) transpose of
A . The corresponding Lie algebra is defined as

Lie
(
SU ( n )

) = su ( n )
def:= {A ∈ Mat n(C ) | A∗ = −A , tr (A ) = 0 } .

The Lie algebra su ( n ) is an example of a semi-simple Lie algebra with a Killing
form κ (X, Y ) = 2 n tr (X Y ) and su ( n ) � su ( n )∗ . The action is defined as

λ : SU ( n ) × T∗( su ( n )
) −→ T∗( su ( n )

)
,

(
g, (X, L )

) �−→ (
g X g−1, g L g−1 )

.

Then, Ω = tr ( dX ∧ dL) and the momentum map is given by

μ (X, L ) = [ X , L ] .
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1.5 Reduction of the Phase Space

Let (M, ω ) be a symplectic manifold and λ : G × M −→ M is a Hamiltonian
action, i.e.

λ ∗
g ( ω ) = ω , ∀ g ∈ G .

We justify the terminology by the following observation:

Lemma 1.11 Assume that there exists a momentum map μ : M −→ g∗ , one
necessarily obtains that

λ∗ (Y ) = −X μ̄ (Y ) , ∀Y ∈ g .

Definition 1.13 An element c ∈ g∗ is called a regular if M c
def:= μ−1 ( c ) is a

sub-manifold in M and if

ker (Tm μ ) = Tm M c , ∀ c ∈ M c .

Lemma 1.12 Let Gc
def:=

{
g ∈ G

∣∣∣ Ad ∗
g ( c ) = c

}
. If G is connected and

simply connected, then ∀m ∈ M c and ∀ g ∈ Gc :

g · m ∈ M c .

Proof Left to the reader as an exercise. ��
Remark 1.2 In the case when c is a regular element and G is connected and simply
connected, the action of G on M induces an action of the Lie sub-group Gc ⊆ G

on the sub-manifold M c ⊆ M .

1.5.1 The Main Results

Theorem 1.9 If G is connected and simply connected and, in addition:

• c is a regular element;
• Gc is compact;
• Gc acts on M c by free and transitive action.

Then, there exists a natural smooth structure on M c /Gc such that the mapping
πc : M c −→ M c /Gc is a submersion.

Remark 1.3 The quotient space M c /Gc is called in this case the reduced phase
space.
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Theorem 1.10 (Marsden–Weinstein) If G is connected and simply connected
and, in addition:

• c is a regular element;
• Gc is compact;
• Gc acts on M c by free and transitive action.

Then, there exists a unique symplectic 2−form ωc on M c /Gc such that

π ∗
c ( ω c ) = ı ∗

c ( ω ) ,

where πc : M c −→ M c /Gc is the canonical submersion and ı c : M c ↪−→ M

is the canonical embedding.

The proof of this Theorem is based on the following

Lemma 1.13 Let m ∈ M c . Then, TmM c = (TmG · m)⊥ . In other words,

TmM c = {X ∈ TmM | ωm (X , Y ) = 0 , ∀Y ∈ TmG · m } .

Proof Left to the reader as an exercise. ��
Remark 1.4 Observe that TmM c

⋂
TmG · m �= ∅ . More precisely,

TmM c

⋂
TmG · m = TmGc · m .

Corollary 1.1 Let X1, X2, Y1, Y2 ∈ TmM c ⊆ TmM such that

Tmπc (X1 ) = Tmπc (X2 ) ,

Tmπc (Y1 ) = Tmπc (Y2 ) ,

then, ωm (X1, Y1 ) = ωm (X2, Y2 ) .

Lemma 1.14 Let m, n ∈ M c such that πc (m ) = πc ( n ) and
X1, X2, Y1, Y2 ∈ TmM c ⊆ TnM c ⊆ TnM such that

Tmπc (X1 ) = Tnπc (X2 ) ,

Tmπc (Y1 ) = Tnπc (Y2 ) ,

then, ωm (X1, Y1 ) = ωn (X2, Y2 ) .

Proof Left to the reader as an exercise. ��
Lemma 1.15 Let c be a regular element and O c

def:= G · c be its co-adjoint orbit.
Then, μ−1 (O c ) is a sub-manifold inM .

Proof Left to the reader as an exercise. ��
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Theorem 1.11 The mapping

φ : O c −→ M c /Gc ,

m �−→ πc ( g−1m) ,

where μ (m ) = Ad ∗
g ( c ) is correctly defined, induces a diffeomorphism:

Φ : π
(
μ−1 (O c )

) −→ M c /Gc .

1.5.2 Example

In this Section we consider again the action of S1 on C n , which is defined as

λ : S1 × C n −→ C n ,

(
e i θ , q + ip

) �−→ e i θ q + i e i θ p ,

where p, q ∈ Rn . The momentum map is

μ : C n −→ Lie (S1 ) ,

q + ip �−→ −
n∑

i = 1

q 2
i + p 2

i

2
.

Then, M c = {
z ∈ C n

∣∣ ∑n
i = 1 | zi | 2 = 2 c

} � S n , c > 0 . It is also clear
that Gc � S1 and S1 is an Abelian group. Thus, we have

LgRg−1 = I �⇒ Ad g = Ad ∗
g = I .

Henceforth,

M c /Gc = S n /S1 � P n − 1 .

1.6 Poisson–Lie Groups

A Lie group G is called Poisson–Lie group if it is a Poisson manifold such that the
multiplication m : G × G −→ G is a morphism of Poisson manifolds. Let g be
Lie algebra, g∗ be dual vector space to g .
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Definition 1.14 We say that g is a Lie bi-algebra if there is a Lie algebra structure
[ − , − ] ∗ on g∗ such that the map δ : g −→ Λ2 g (called the co-bracket), dual to
the bracket [ − , − ] ∗ : Λ2 g∗ −→ g∗ is a 1−cocycle with respect to the adjoint
action of g on Λ2 g .

1.6.1 Modified Classical Yang–Baxter Equation

Let G be connected and a simply connected Lie group, and let g be its Lie algebra.
Then there is one-to-one correspondence between Poisson–Lie group structures on
G and Lie bi-algebra structures on g .

As V. Drinfel’d showed [3], every structure on a semi-simple connected G has
the following form:

π ( g ) = Λ2
(

(L g ) ∗
)

( r ) − Λ2
(

(R g ) ∗
)

( r ) , (1.2)

where (L g ) ∗ and (R g ) ∗ denote tangent maps of left and right translations by
g ∈ G . The element r ∈ Λ2 g satisfies the following condition:

� r, r �
def:= [ r 12 , r 13 ] + [ r 12 , r 23 ] + [ r 13 , r 23 ] ∈ Λ3 g , (1.3)

where the right-hand side is invariant under the adjoint action of g . The condi-
tion (1.3) is called a modified Yang–Baxter equation and the bracket

�−, − � : Λ2 g ⊗ Λ2 g −→ Λ3 g

is a so-called Schouten–Nijenhuis bracket. This is the natural graded (or super-) Lie
algebra structure on the exterior algebra

Λ• g =
⊕

k

Λk g .

Here r 12, to give an example, denotes an element r 12 = r ⊗ I 3 ∈ ( g ⊗ k )⊗ 3 ;
k ∈ {R, C } and r being usually called a classical r−matrix.

The condition (1.3) ensures that the bracket { − , −}∗ on g∗ satisfies the Jacobi
identity. The corresponding Lie bi-algebra structure is calculated in the obvious
way. Namely, the co-bracket δ is given by

δ ( x ) = d e π ( x ) = Lx̄ π ( e ) = d

dt
r ( e −t x ) ∗ π ( e t x )

∣
∣∣
t = 0

= ad x ( r ) ,

where d e π is the intrinsic derivative of a poly-vector field on G with π ( e ) = 0 ,
x̄ is any vector field on G with x̄ ( e ) = x, and L x̄ denotes the Lie derivative [8].
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The Poisson structures of the form (1.2) are called co-boundary or r−matrix
structures. Since for a connected semi-simple or a compact Lie group G every
1−cocycle is a co-boundary, one has the following

Proposition 1.12 . The Poisson–Lie structures on a connected semi-simple or a
compact Lie groupG are in one-to-one correspondence with the solutions r ∈ Λ2 g
of the modified Yang–Baxter equation.

1.6.2 Manin Triples

Let g be a Lie bi-algebra. There is a unique Lie algebra structure on the vector space
g ⊕ g∗ such that

1. g and g∗ are Lie sub-algebras.
2. The symmetric bi-linear form on g ⊕ g∗ given by the relation

〈X + ξ , Y + ηY 〉 = 〈X , η 〉 + 〈Y , ξ 〉 , ∀X , Y ∈ g , ∀ ξ, η ∈ g∗

is invariant.

This structure is given by

{X , ξ } = −ad ∗
X ( ξ ) + ad ∗

ξ (X ) ,

for X ∈ g and ξ ∈ g∗ , where ad ∗ is the co-adjoint action. This Lie algebra
is denoted by g �� g∗ and ( g �� g∗, g, g∗ ) is an example of a Manin triple. In
general, a Manin triple is a decomposition of a Lie algebra g with a non-degenerate
invariant scalar product 〈 , 〉 into direct sum of isotropic with respect to 〈 , 〉 vector
spaces, g = g+ ⊕ g− such that g± are Lie sub-algebras of g . It is well-known
that there is one-to-one correspondence between Lie bi-algebras and Manin triples.
These triples were introduced by V. Drinfel’d [4] and named after Yu. I. Manin.

1.6.3 Poisson–Lie Duality

Let G be a connected and simply connected Poisson–Lie group, g = Lie (G ) its
Lie algebra and

(
g �� g∗, g, g∗ )

the Manin triple. By duality,
(
g∗ �� g, g∗, g

)

is also a Manin triple. Then g∗ is a Lie bi-algebra. This enables us to consider a
connected and simply connected Lie group G∗ with a Poisson–Lie structure π∗ and
with the tangent Lie bi-algebra g∗ . The Poisson–Lie group (G∗, π∗ ) is called the
Poisson–Lie dual to (G, π ) .
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1.6.4 Example of Non-Hamiltonian Action

Let G be a Poisson–Lie group with a multiplicative Poisson tensor πg and M be a
smooth Poisson manifold with a Poisson structure given by πM . Then, the product
G × M can be considered as a Poisson manifold with the direct sum structure π̃ .

Proposition 1.13 An action σ : G × M −→ M of a Poisson–Lie group G on a
Poisson manifold M is a Poisson–Lie action if and only if

πM ( g · m ) = Λ2 (
( σg ) ∗

) (
πM (m )

) + Λ2 (
(σm ) ∗

) (
πG ( g )

)
.

Remark 1.5 One can consider any Lie group G as a Poisson–Lie group with πG ≡
0 then the action σ is a Poisson (action) if it gives a Poisson morphism πM ( g·m ) =
( σg ) ∗

(
πM (m )

)
.

Definition 1.15 The action σ : G × M −→ M is called a Poisson–Lie action if
π∗ : C∞ (M ) −→ C∞ (G × M ) is a Poisson morphism:

π∗ ( { F , H } πM

) = {
π∗ ( F ) , π∗ (H )

}
π̃

.

Infinitesimally, a Poisson–Lie action of a Lie bi-algebra g on a Poisson manifold
(M, { − , −} ) is given by an action

ρ : g −→ X (M ) ,

X �−→ VX ,

with X ∈ g such that

VX { f , g } (m ) = { VX f , g } (m) + { f , VX g } (m )

− {X ,
[
ρ∗ d f (m ) , ρ∗ d g (m )

] }
,

where ρ∗ df (m ) ∈ g∗ and 〈X , ρ∗ df (m ) 〉 = VX f (m ) . In other words,

〈X ,
[
ρ̃ ( dF ) (m ) , ρ̃ ( dG) (m )

]
∗ 〉 = 〈 dF , dG 〉 (

ρ (X )
)
(m )

define a Lie algebroid structure on T∗M .

Example 1.9 There are natural left and right actions of dual Poisson–Lie group G∗
on G . These actions are called left (right) dressing transformations. The dressing
transformations are not Hamiltonian as Semenov-Tian-Shansky proved but these
actions are genuine Poisson–Lie actions [9].
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