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Preface

The Summer School Wisla 19: Differential Geometry, Differential Equations, and
Mathematical Physics was organized by the Baltic Institute of Mathematics and took
place on August 19–29, 2019, in the beautiful mountain region of Wisła, Poland.

The school was devoted to symplectic and Poisson geometry, tractor calculus,
and integration of ordinary differential equations. There were three series of
main lectures, given by Vladimir Roubtsov, Jan Slovák, and Valentin Lychagin,
respectively:

• Introduction to Symplectic and Poisson Geometry of Integrable Systems
• Tractor Calculi
• How to Integrate Differential Equations

The corresponding lecture notes make up the first three chapters of this book. It is
our pleasure to share these inspiring lectures, given by experts in their fields, with
an audience greatly exceeding that of those who were fortunate to be in Wisła when
they were given.

The subsequent chapters continue the tradition of the previous three by intro-
ducing the reader to different topics at the intersection of differential geometry,
differential equations, and mathematical physics. They are written in a pedagogical
style while simultaneously bringing to attention recent advances made by their
authors. The book is aimed at students and researchers who are looking for a concise
introduction to the topics covered here. Since all six chapters are written from a
geometric perspective, the reader is expected to have some basic knowledge of
differential geometry. Below is a summary of each chapter:

Poisson and Symplectic Structures, Hamiltonian Action, Momentum and Reduc-
tion is written in a concise form and gives a brief review of well-known material.
It covers Poisson and symplectic structures, group actions and orbits, moment
maps, and Poisson and Hamiltonian actions. In the end, phase space reduction and
Poisson–Lie structures are discussed.

Notes on Tractor Calculi presents an elementary introduction to tractors based
on classical examples, together with glimpses toward modern invariant differential
calculus related to a vast class of Cartan geometries, the so-called parabolic
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vi Preface

geometries. The exposition aims at a quick understanding of basic principles,
omitting many proofs or at least their details. Some knowledge in representation
theory is assumed.

Symmetries and Integrals is an invitation to the world of symmetries and
differential equations. It starts with an introduction to distributions and moves
quickly to the challenge of finding explicitly, in quadratures, integral manifolds of
completely integrable distributions. While these lecture notes rely heavily on the
insight that a geometric understanding of distributions and symmetries gives, they
simultaneously focus on the practical aspects of finding, and writing down, exact
solutions of differential equations.

Finite Dimensional Dynamics of Evolutionary Equations with Maple uses geo-
metric methods to find exact solutions to partial differential equations appearing in
physics, mathematical biology, and mathematical finance. The authors emphasize
the computational aspect and provide detailed Maple code. This makes the chapter
an excellent introduction to the subject of finite dimensional dynamics by allowing
the reader to start using the methods instantaneously.

Critical Phenomena in Darcy and Euler Flows of Real Gases is a survey article
on recent results obtained by its authors concerning gas flows through porous media
and flows of inviscid gases. Thermodynamics is formulated in terms of contact
and symplectic geometry, and the link to measurement theory is emphasized. The
methods provided by the geometric formulation of thermodynamics are applied to
the analysis of various models of real gases, and special attention is paid to phase
transitions. The thermodynamics of the gases under consideration emerges along the
gas flow. Explicit methods for finding solutions to the Dirichlet filtration problem
and Euler flows are provided. In particular, the locations for different phases of the
medium are found.

Differential Invariants for Flows of Fluids and Gases summarizes several of the
authors’ earlier results while simultaneously improving them by taking into account
additional structure on the thermodynamic states. Similar to the previous chapter,
it relies on the symplectic and contact-geometric formulation of thermodynamics.
After adding thermodynamic equations of state to the Navier–Stokes and Euler
equations, the authors compute point symmetries of the equations. The symmetry
Lie algebra depends, in general, on the equations of state, and an analysis of possible
symmetry Lie algebras is made before the corresponding differential invariants are
computed.

We hope that this book will function as a good entry point to the topics covered
here and that it will aid the reader with motivation and competence to dive deeper
into the world of differential geometry and mathematical physics.

Warszawa, Poland Maria Ulan

Warszawa, Poland into Hradec Králové, The Czech Republic Eivind Schneider
July 2020
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Sunset over the mountains surrounding Wisła, August 2019
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Chapter 1
Poisson and Symplectic Structures,
Hamiltonian Action, Momentum
and Reduction

Vladimir Roubtsov and Denys Dutykh

1.1 Introduction

These lectures have been delivered by the first author in the Summer School
“Differential Geometry, Differential Equations, and Mathematical Physics” at
Wisła, Poland from 19th to 29th of August 2019. The second author took the notes
of these lectures.

As the title suggests, the material covered here includes the Poisson and symplec-
tic structures (Poisson manifolds, Poisson bi-vectors, and Poisson brackets), group
actions and orbits (infinitesimal action, stabilizers, and adjoint representations),
moment maps, Poisson and Hamiltonian actions. Finally, the phase space reduction
is also discussed. The Poisson structures are a particular instance of Jacobi structures
introduced by A. Lichnerowicz back in 1977 [7]. Several capital contributions to this
field were made by A. Weinstein, see e.g. [13].

The text below does not pretend to provide any new scientific results. However,
we believe that this point of view and exposition will be of some interest to our
readers. As other general (and excellent) references on this topic include:

• R. Abraham and J.E. Marsden. Foundations of Mechanics, second edn.,
Addison–Wesley Publishing Company, Redwood City, CA, 1987 [1]

V. Roubtsov
LAREMA UMR 6093, CNRS and Université d’Angers, Angers, France
IGAP (Institute of Geometry and Physics), Trieste, Italy
e-mail: vladimir.roubtsov@univ-angers.fr

D. Dutykh (�)
University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LAMA, Chambéry, France
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2 V. Roubtsov and D. Dutykh

• V.I. Arnold. Mathematical methods of classical mechanics, second edn.,
Springer, New York, 1997 [2]

• A.M. Vinogradov and B.A. Kupershmidt. The structures of Hamiltonian mechan-
ics, Russ. Math. Surv., 32(4), 177–243, 1977 [12]

We can mention also another set of recent lecture notes on the symplectic and
contact geometries [11]. We mention also the classical review of this topic [14].

Our presentation remains at quite elementary level of exposition. We restricted
deliberately ourselves to the presentation of basic notions and the state of the art as
it was in 1990–2000. Nevertheless, we hope that motivated students will be inspired
to find more advanced and modern material which is inevitably based on these
elementary notes.

In the following text each Section corresponds to a separate lecture. This text
is organized as follows. The Poisson and symplectic structures are presented in
Sect. 1.2. The group actions and orbits are introduced in Sect. 1.3. The moment map,
Poisson and Hamiltonian actions are described in Sect. 1.4. Finally, the manuscript
is ended with the description of the phase space reduction in Sect. 1.5. The very
last Sect. 1.6 is a brief (and essentially incomplete) introduction to Poisson–Lie
structures and some related notions. An excellent account of the last topic can be
found in the survey paper by Y. Kossmann-Schwarzbach (1997) [6].

1.2 Poisson and Symplectic Structures

Hamiltonian systems are usually introduced in the context of the symplectic
geometry [5, 10]. However, the use of Poisson geometry emphasizes the Lie algebra
structure, which underlies the Hamiltonian mechanics.

1.2.1 Poisson Manifolds

Let M be a smooth manifold with a bracket

{− , −} : C∞ (M )× C∞ (M ) �−→ C∞ (M ) ,

which verifies the following properties:

• Bi-linearity {− , −} is real-bilinear.
• Anti-symmetry {F , G } = − {G, F } .
• Jacobi identity { {F , G } , H } + { {G, H } , F } + { {H , F } , G } = 0 .
• Leibniz identity {FG , H } = F {G, H } + {F , H }G .

Then, the bracket {− , −} is a Poisson bracket and the pair
(
M; {− , −} ) will

be called a Poisson manifold. A Poisson algebra is defined as the following pair
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(
C∞ (M; R ); {− , −} ) . Thanks to the first three properties of the Poisson

bracket, it is not difficult to see that
(
C∞ (M; R ); {− , −} ) is also a Lie algebra.

The last property of the Poisson bracket (i.e. the Leibniz identity) implies that it is
also a derivative in each of its arguments.

Let
(
M; {− , −} ) be a Poisson manifold and H ∈ C∞ (M; R ) , then there

exists a unique vector field XH such that

XH (G) = {G, H } , ∀G ∈ C∞ (M; R ) .

The vector field XH is called the Hamiltonian vector field with respect to the Pois-
son structure with H being the Hamiltonian function. Let X (M ) denote the space
of all vector fields on M . Then, the just constructed mapping C∞ (M; R ) −→
X (M ) is a Lie algebra morphism, i.e. X {F ,G } = [XF , XG ] .

Definition 1.1 A Casimir function on a Poisson manifold
(
M; {− , −} ) is a

function F ∈ C∞ (M; R ) such that for all G ∈ C∞ (M; R ) one has

{F , G } = 0 , ∀G ∈ C∞ (M; R ) .

1.2.2 Poisson Bi-vector

If
(
M; {− , −} ) is a Poisson manifold, then there exists a contravariant anti-

symmetric two-tensor π ∈ Λ2 (TM) or equivalently

π : T∗M × T∗M −→ R

such that

〈π , dF ∧ dG 〉 ( z ) = π ( z )
(

dF ( z ); dG( z )
) = {F , G } ( z ) .

In local coordinates ( z1, z2, . . . , zn ) we have the following expression for the
Poisson bracket:

{F , G } =
∑

i, j

πij ∂F

∂zi

∂G

∂zj
,

where πij def:= {
zi , zj

}
are called the elements of the structure matrix or the

Poisson bi-vector of the underlying Poisson structure. For the vector field we have
the corresponding expression in coordinates:

XH =
∑

i, j

πij ∂H

∂zi

∂

∂zj
, or X j

H =
∑

i

π ij ∂H

∂zi
.
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1.2.2.1 Hamilton Map and Jacobi Identity

Let π = ( πij ) be a Poisson bi-vector on M , then there exists a
C∞ (M; R )−linear map π� : T∗M �−→ TM given by

π� ( α ) ⌟ β = {π , α ∧ β } ( z ) = π ( z )
(
α( z ), β( z )

)
,

where ⌟ denotes the usual interior product or the substitution of a vector field into a
form.

If α = df for some f ∈ C∞ (M; R ) , then π� ( dH ) = XH . It is not
difficult to see how the map π� acts on the basis elements of co-vectors:

π� ( dzi ) =
{
zi , zj

} ∂

∂zj
.

Finally, we also have the following Jacobi identity:

πil ∂π
jk

∂zl
+ πjl ∂π

ki

∂zl
+ πkl ∂π

ij

∂zl
= 0 . (1.1)

1.2.3 Symplectic Structures on Manifolds

Definition 1.2 A symplectic form on a real manifold M is a non-degenerate closed

2−form ω ∈ Ω 2 (M )
def:= Λ 2 (T ∗M ) . Such a manifold is called a symplectic

manifold and it is denoted by a couple (M; ω ) .

Let
(
M; {− , −} ) be a Poisson manifold with non-degenerate Poisson structure

bi-vector ( πij ) and the Hamiltonian isomorphism π� such that π� ( α ) = X .
Then, there is the inverse map ( π� )−1 : TM −→ T ∗M is defined by the
following relation:

Y ⌟ ( π� )−1(X ) = α (Y ) .

Moreover, the inverse operator ( π� )−1 defines a 2−form ωπ as follows:

ωπ (X , Y ) =
〈
( π� )−1 (X ) , Y

〉
.

1.2.3.1 Darboux Theorem and Hamiltonian Vector Fields

The following Lemma describes some important properties of the just defined form
ωπ along with the underlying manifold M :
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Lemma 1.1 The real manifold M always has an even dimension. The form ωπ is
a symplectic 2−form on M . The Jacobi identity (1.1) is equivalent to dωπ = 0 .

Proof Left to the reader as an exercise. ��
Theorem 1.1 (G. Darboux) Let (M; ω ) be a symplectic manifold. There exists

a local coordinate system (q1, q2, . . . , qn, p1, p2, . . . , pn)
def=: (q, p) such that

ω = ∑n
i= 1 d qi ∧ dpi . Such coordinates are called canonical or Darboux

coordinates.

Lemma 1.2 Let (M; ω ) be a symplectic manifold and H ∈ C∞ (M; R) the
Hamiltonian function. Then, there is a unique vector field XH (i.e. the Hamiltonian
vector field associated with the Hamiltonian H ) on M such that

XH ⌟ ω = dH .

The Hamiltonian vector fieldXH can be written in the canonical coordinates (q, p )

on M as

XH =
∑

i

(
∂H

∂p i

∂

∂qi
− ∂H

∂qi

∂

∂p i

)
.

The Poisson bracket in these coordinates looks like

{F , G } = XF (G) =
∑

i, j

(
∂F

∂p i

∂G

∂qi
− ∂F

∂qi

∂G

∂p i

)
.

Proof Left to the reader as an exercise. ��

1.2.3.2 Example

Let S 2 def:= {
(x, y, z) ∈ R3

∣∣ x2 + y2 + z2 = 1
}

be the 2−sphere, which can
be naturally injected in R3 : ı : S 2 ↪−→ R3 . The 2−form ω̄ ∈ Λ2 (R3 ) is given
by

ω̄ = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

and ω ∈ Λ2 (S 2 ) is defined as ω = ı∗ ( ω̄ ) .

Lemma 1.3 The form ω gives a symplectic structure on S 2 , i.e. dω = 0 and this
2−form is non-degenerate on S 2 .

Proof First of all, we observe that the closedness of the 2−form ω is a straightfor-
ward conclusion in view of
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dω = d
(
ı∗( ω̄ )

) = ı∗
(

d ω̄
) = 0 ,

since Λ3(S 2 ) = 0 . To check that it is non-degenerate, we make a choice of the
following charts:

φN : S 2 \ {N } −→ R2 ,

(x, y, z) �−→
( x

1 − z
,

y

1 − z

)
,

φS : S 2 \ { S } −→ R2 ,

(x, y, z) �−→
( x

1 + z
,

y

1 + z

)
.

It is not difficult to see that their inverses are given by the following maps:

φ−1
N : (u, v) �−→

( 2u

1 + u 2 + v 2
,

2 v

1 + u 2 + v 2
,
u 2 + v 2 − 1

1 + u 2 + v 2

)
,

φ−1
S : (u, v) �−→

( 2u

1 + u 2 + v 2
,

2 v

1 + u 2 + v 2
, − u 2 + v 2 − 1

1 + u 2 + v 2

)
.

In both coordinate charts (u, v) induced by φN, S we obtain

ı∗ ( ω̄ ) = (x◦ı) d (y◦ı)∧d (z◦ı)+ (y◦ı) d (z◦ı)∧d (x◦ı)+ (z◦ı) d (x◦ı)∧d (y◦ı)

= − 4

1 + u 2 + v 2 du ∧ d v �= 0 .

1.2.4 Co-tangent Bundle: Liouville Form

Let M be a smooth n−dimensional manifold and � : T∗M −→ M is the
projection map whose differential map is T� : TT∗M −→ TM .

Definition 1.3 A differential 1−form ρ on T∗M , which is defined by σρ :
T∗M −→ T∗T∗M as follows:

〈
σρ , X

〉 = 〈
ρ , T�ρ (X )

〉
, X ∈ T�ρ (T

∗M )

is called the Liouville (or action) form.

If (q, p) is a local coordinate system on T∗M , then the form ρ can be written as
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ρ = p d q =
n∑

i=1

pi d qi .

The 2−form ω ∈ Ω2 (T∗M ) , ω = dρ = dp ∧ d q = ∑n
i=1 dpi ∧ d qi is the

canonical symplectic form.

1.2.5 Non-Symplectic Poisson Structures

Let g be a real finite-dimensional Lie algebra and g∗ be its dual (as a vector space).
If we suppose that dim g = n , then g∗ is isomorphic as a real smooth manifold to
Rn .

Theorem 1.2 There exists a (non-symplectic) Poisson structure on g∗ .

1.2.6 Poisson Brackets on Dual of a Lie Algebra

A bracket can be defined on C∞ ( g∗ ) by the identification:

g � g∗∗ ≡ C∞lin( g∗ ) ⊂ C∞ ( g∗ ) , X �−→ FX

FX (ξ) = 〈 ξ , X 〉 = ξ (X ) .

One has
{
FX , FY

} = F [X ,Y ] . Let { ei }ni= 1 be a base of g and
{
C k

ij

}
be

structure constants of the Lie algebra g , i.e.

[ ei , ej ] =
n∑

k= 1

C k
ij ek .

Let {Fi }ni= 1 be a dual basis of g∗ and {Xi }ni= 1 be the coordinate system of g∗ , i.e.

ξ = Xi ( ξ )Fi , Xi ( Fj ) = δij , Xi = Fei .

Now, it is not difficult to see that

{
Xi , Xj

} = F [ ei , ej ] =
∑

k

C k
ij Fek =

∑

k

C k
ij Xk .

Finally, we can write the coordinate expression of the Poisson bracket on the dual
of a Lie algebra:
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{F , G } =
∑

i, j, k

C k
ij

∂F

∂Xi

∂G

∂Xj

Xk .

1.2.6.1 Definition via Gradient Operator

We define the gradient operator

∇ : C∞ ( g∗ ) −→ C∞ ( g∗ )

as follows:

〈 η , ∇F ( ξ ) 〉 def:= d

dt
F ( ξ + t η )

∣∣∣
t = 0

, ∀F ∈ C∞ ( g∗ ) .

In coordinates one simply has

∇F = ∂F

∂Xi

ei .

Using the gradient operator, the bracket is defined as

{F , G } ( ξ ) def:= 〈 ξ , [∇ F ( ξ ) , ∇G( ξ ) ] 〉

and in coordinates we obtain

{
Xi , Xj

}
(Fk) =

〈
Fk , [∇Xi (Fk) , ∇Xj (Fk) ]

〉 = 〈
Fk , [ ei , ej ]

〉 = C k
ij .

1.2.6.2 Definition via Canonical Structure on T∗(G)

Let g be a Lie algebra, then there exists a unique (connected and simply connected
up to an isomorphism) Lie group G such that TeG � g . Let Lg ∈ Aut (G) be
the translation by g , i.e. ∀h ∈ G :

Lg : G
�−→ G

h �−→ g h .

Then, we define

λg (h)
def:= (

TLg (h)
)∗ : T∗gh (G) −→ T∗h (G) ,
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which gives rise to the isomorphism λg : T∗(G) −→ T∗(G) with the inverse
λ−1
g . Define a map

λ : G × g∗ −→ T∗G

(g, ξ) �−→ λ−1
g (g) (ξ) ,

which is a diffeomorphism in the following commutative diagram:

The co-tangent bundle T∗G � G × g∗ is a trivial vector bundle with the fiber g∗ .
The Liouville form ρ ∈ Ω1 (T∗G) defines by the section σρ : T∗G −→ T∗T∗G
similar to Sect. 1.2.4:

〈
σρ( ξ ) , X

〉 = 〈
ρ , Tπξ (X )

〉
, X ∈ Tπξ (T

∗G) , ξ ∈ T∗hG .

Let g ∈ G , ξ ∈ T∗ghG , X ∈ Tπλg( ξ )
(T∗G) , then we have

〈
σρ ◦ λg( ξ ) , X

〉 =
〈
λg( ξ ) , Tπλg( ξ )

〉
= 〈

(ThLg)
∗ξ , Tλg( ξ )

〉 =
〈
ξ , (ThLg)Tλg( ξ )X

〉 = 〈
ξ , Tλg( ξ )(Lg ◦ π)X

〉
.

We can make two observations:

• (Lg ◦ π) (h, ξ) = gh ,
• π ◦ λg−1 = gh .

Henceforth, Lg ◦ π ≡ π ◦ λg−1 . The Liouville form becomes

〈
σρ ◦ λg( ξ ) , X

〉 =
〈
ξ , Tλg( ξ )( π ◦ λg−1 )X

〉 =
〈
ξ , Tξπ ◦Tλg( ξ )λg−1 (X )

〉
=

〈
ρ( ξ ) , Tλg( ξ )λg−1( ξ )X

〉 =
〈
λ∗
g−1 ◦ ρ( ξ ) , X

〉
.

We have ω = d ρ as the canonical symplectic form on T∗G . We observe also
that

• σρ ◦ λg = λ∗
g−1( σρ ) ,

• ω ◦ λg = λ∗
g−1( ω ) .
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We recall that a Poisson bracket {F , G } for F , G ∈ C∞ (T∗G) can be defined

via {F , G } def:= XF (G ) , where XF is the unique vector field on T∗G such that
XF ⌟ ω = dF .

Lemma 1.4 Let g ∈ G and F , G ∈ C∞ (T∗G) , then

{
F ◦ λg , G ◦ λg

} = {F , G } ◦ λg .

Proof Left to the reader as an exercise. ��
Let C∞ (T∗G)G denote a subspace of stable or invariant functions with respect

to the mapping λg , i.e.

C∞ (T∗G)G
def:= {

F ∈ C∞ (T∗G)
∣∣ F ◦ λg = F

}
, g ∈ G .

Lemma 1.4 shows that the set C∞ (T∗G)G is closed with respect to the Poisson
bracket.

Let the linear mapping Φ be defined as

Φ : C∞ ( g∗ ) −→ C∞ (T∗G)

F �−→ F ◦ pr2 ,

where pr2 : T∗G ≡ G × g∗ −→ g∗ is the canonical projection on the second
argument. Let ı : g∗ −→ T∗G be the canonical embedding. Then,

Ψ : C∞ (T∗G)G −→ g∗

F �−→ F ◦ ı

is linear and inverse to Φ , i.e. Ψ ≡ Φ −1 .

Lemma 1.5 The bracket {F , G } def:= Φ −1
( {Φ(F) , Φ(G) } ) is a Poisson

bracket on C∞ ( g∗ ) coinciding with two previous definitions.

Proof Left to the reader as an exercise. ��

1.3 Group Actions and Orbits

Let G be a Lie group and M is a smooth manifold.

Definition 1.4 A left action of G on M is a smooth map μ : G×M −→ M such
that

• μ ( e, m ) = m , ∀m ∈ M ,
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• μ
(
g, μ ( h, m )

) = μ ( gh, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Definition 1.5 A right action of G on M is a smooth map ρ : M × G −→ M

such that

• ρ (m, e ) = m , ∀m ∈ M ,
• ρ

(
ρ (m, h ), g

) = ρ ( hg, m ) , ∀ g, h ∈ G and ∀m ∈ M .

Left and right actions of G and M are in one-to-one correspondence by the following
relation:

ρ (m, g−1 ) = μ ( g, m ) .

From now on we shall denote the left Lie group action μ ( g, m ) simply by g · m .
We can define several important action types:

Effective or Faithful ∀ g ∈ G , g �= e �⇒ ∃m ∈ M such that g ·m �= m .
Free If g is a group element and ∃m ∈ M such that g · m = m

(that is, if g has at least one fixed point), �⇒ g = e. Note
that a free action on a non-empty M is faithful.

Transitive If ∀m, n ∈ M , ∃ g ∈ G such that g ·m = n . In this case
the smooth manifold M is called homogeneous.

Important examples of group actions include:

Example 1.1 Example G acts on itself by left multiplication:

G×G −→ G

(g, h) �−→ gh .

This action is effective and transitive. Indeed, g·h = h�⇒ g = e and if g·m = n

�⇒ g = n ·m−1 .

Example 1.2 Example G acts on itself by conjugation:

G×G −→ G

(g, h) �−→ g · h · g−1 .

Generally, this action is not free, transitive, or effective.

Example 1.3 Example GL n(R ) acts on R n \ { 0 } by matrix multiplication on the
left:

GL n(R )×R n \ { 0 } −→ R n \ { 0 }
(A, x) �−→ Ax .

This is an example of an effective and transitive action.
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1.3.1 Stabilizers and Orbits

Let G be a Lie group which acts on a smooth manifold M . The orbit of a point
m ∈ M is

G ·m def:= { g ∈ G | g ·m } ⊆ M .

A stabilizer of a point m ∈ M is

Gm
def:= { g ∈ G | g ·m = m } ⊆ G .

Proposition 1.1 The stabilizer Gm is a closed sub-group of G and Gg·m = g ·
Gm · g−1 , ∀ g ∈ G .

Proof Left to the reader as an exercise. ��
We mention here two technical theorems regarding the orbits and stabilizers:

Theorem 1.3 Let G be a Lie group which acts on a smooth manifold M and m ∈
M . There is a manifold structure on the orbit G ·m such that the map

G −→ G ·m
g �−→ g ·m

is a submersion and the embedding ı : G ·m ↪→ M is an immersion.

Theorem 1.4 The Lie algebra gm of the stabilizer Gm for a point m ∈ M

coincides with kerTeΦ , where the mapping Φ is defined as

Φ : G −→ M

g �−→ g ·m .

1.3.2 Infinitesimal Action

Let μ : G×M −→ M be a Lie group action on M and g = Lie (G) be its Lie
algebra.

Definition 1.6 Let X ∈ g and φ : R −→ G its exponential flow, i.e. φ (t) =
exp( t X ) . Then, there exists the unique vector field XM ∈ X (M ) with the flow
φm : R −→ M defined by φm (t) = φ (t) ·m . The vector field XM is defined by

XM(m ) ( f )
def:= d

dt

(
f ◦ φ( t ) ·m ) ∣∣

∣
t = 0

.
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The mapping μ∗ : g −→ X (M ) is called the infinitesimal action of g on M .

Proposition 1.2 The mapping μ∗ : g −→ X (M ) is a Lie algebra
(anti-)homomorphism (and it is in particular a linear mapping):

μ∗
( [X , Y ] ) = −[μ∗(X ) , μ∗(Y ) ] .

Proof Left to the reader as an exercise. ��
Remark 1.1 One can see that μ∗(X )m ( f ) = X (f ◦ Φm) . In other words,
μ∗(X )m = TeΦm(X ) .

Proposition 1.3 Let m ∈ M , then

TmG ·m = {X ∈ g | μ∗(X )m } .

Proof Left to the reader as an exercise. ��
The following difficult result is left without the proof:

Theorem 1.5 (R. Palais) Let G be a simply connected Lie group with the Lie
algebra g = Lie (G) andM be a smooth compact manifold such that there exists a
homomorphism of Lie algebras ρ : g −→ X (M ) . Then, there is a unique action
μ : G×M −→ M such that μ∗ = ρ .

Proposition 1.4 Let μ : G×M −→ M be an action ofG on a smooth manifold
M and m ∈ M . Then, the following diagram commutes:

or, in other words:

∀X ∈ g : μm( e t X ) = e t μ∗(X )m .

1.3.3 Lie Group and Lie Algebra Representations

Let G be a Lie group, g = Lie (G) be its Lie algebra and V be a real vector space.

Definition 1.7 A representation of the Lie group G in the vector space V is a
homomorphism of Lie groups (i.e. a smooth group morphism) ϕ : G −→
GL (V ) .
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Definition 1.8 A representation of the Lie algebra g in the vector space V is a Lie
algebra homomorphism φ : g −→ End (V ) .

Here End (V ) is enabled with the Lie algebra structure given by the endomor-
phisms commutator:

∀A, B ∈ End (V ) [A , B ] def:= A · B − B · A .

If ϕ : G −→ GL (V ) is a Lie group representation, then

φ
def:= Teϕ : TeG = g −→ Tid

(
GL (V )

) = End (V )

is a representation of the Lie algebra g .

1.3.3.1 Adjoint Representations

Let g ∈ G , V = g , then the composition Lg ◦Rg−1 : G −→ G induces a linear

mapping Te ( Lg ◦ Rg−1 )
def:= Ad ( g ) : g −→ g and, hence, a group morphism

Ad : G −→ GL ( g ) . Then, the following Lemma holds:

Lemma 1.6 The group morphismAd is a smooth map which gives a representation
of G in g , which is called the adjoint Lie group representation.

Proof Left to the reader as an exercise. ��
Let ad

def:= Te (Ad ) : g −→ End( g ) . Then, ad is also called the adjoint
Lie group representation.

Lemma 1.7

ad (X ) (Y ) = [X , Y ] , ∀X , Y ∈ g .

Proof Left to the reader as an exercise. ��

1.3.3.2 Co-Adjoint Representations

Let g ∈ G , V ∈ g∗ and f ∗ ∈ End ( g∗ ) is defined by f ∗ (ξ) def:= ξ ◦ f for any
element f ∈ End ( g ) . Then, we can write down the following

Definition 1.9 The following smooth map

Ad ∗ : G −→ GL ( g ∗ ) ,

g �−→ Ad ( g−1 ) ∗ ,
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which gives a representation of G in g∗ is called the co-adjoint Lie group
representation.

The last definition makes sense because Ad ∗ = F ◦ Ad and F (f ) = f ∗ ,
where the map F : End ( V ) −→ End ( V ∗ ) . Similarly, we can also define

ad ∗ : g −→ End ( g∗ ) ,

X �−→ −ad ∗ (X ) ,

where

ad ∗ (X ) ( ξ ) (Y ) = −〈 ξ , [X , Y ] 〉 .

Then, ad ∗ is also called the co-adjoint Lie algebra representation in g∗ .

Lemma 1.8

[ad ∗ (X ) , ad ∗ (Y ) ] = ad ∗ ( [X , Y ] ) , ∀X ,Y ∈ g , ∀ξ ∈ g∗ .

Proof Left to the reader as an exercise. ��
Proposition 1.5 The co-adjoint representation Ad ∗ of a Lie group G gives rise to
a co-adjoint left action of G on g∗ :

G× g∗ −→ g∗ ,

(g, ξ) �−→ Ad ∗ ( ξ ) .

Let X ∈ g and FX ∈ C∞ ( g∗ ) be the evaluation function defined by

FX ( ξ )
def:= ξ (X ) . Then, the following Propositions hold:

Proposition 1.6

d

dt
F

(
Ad ∗exp ( t X ) ( ξ )

) ∣∣∣
t = 0

= {F , FX } ( ξ ) .

Proposition 1.7 A function F ∈ C∞ ( g∗ ) is a Casimir function for the Lie–
Poisson structure on g∗ if and only if

{F , FX } = 0 , ∀X ∈ g .

Finally, we can state without the proof the following important

Theorem 1.6 (Lie–Berezin–Kirillov–Kostant–Souriau)

Cas
(
C∞ ( g∗ )

) = C∞ ( g∗ )Ad
∗
G ,
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where

C∞ ( g∗ )Ad
∗
G

def:=
{
F ∈ C∞ ( g∗ )

∣∣
∣ F ◦ Ad ∗g = F , ∀g ∈ G

}
.

Denote by O ξ
def:= G · ξ ⊆ g∗ a co-adjoint orbit of a co-vector ξ ∈ g∗ . Recall

that these orbits are manifolds such that O ξ admits a submersion φ : G −→ O ξ

and an immersion ı : O ξ ↪→ g∗ . Define a g−valued 1−form ω on G as

ωg (X ) = Tg Lg−1 (X ) ∈ g .

Then, L ∗
h ( ω ) = ω . In other words, the 1−form ω is G−invariant. Here we take

g, h ∈ G and X ∈ g . By Maurer–Cartan formula we have that

dω = − 1

2
[ω , ω ] .

Let us define also the 1−form ωξ ∈ Λ1 (G ) by

ωξ ( g ) (X )
def:= 〈

ξ , ωg (X )
〉
.

Then, the following result can be shown:

Theorem 1.7 (Kirillov–Kostant–Souriau) There exists a unique 2−form Ωξ ∈
Λ2 (O ξ ) such that φ∗ (Ωξ ) = dωξ . This form is symplectic on the co-adjoint
orbit O ξ .

1.4 Moment Map, Poisson and Hamiltonian Actions

1.4.1 Introductory Motivation

Let R3 be a basic configuration space with coordinate or position vectors r =
( q1, q2, q3 ) and velocity vectors:

ṙ = ( q̇1, q̇2, q̇3 )
def=: p

def:= ( p1, p2, p3 ) .

ET
def:= 〈 ṙ , ṙ 〉

2
+ U ( r )

and the equation of motion is r̈ = −∇r U ( r ) . The total mechanical energy

is conserved, i.e.
dET

dt
≡ 0 . The angular momentum is also constant along a

trajectory. It implies that
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dL
dt

= ṙ × ṙ + r × r̈ = − r × ∇r U = 0 ,

which is equivalent to say that r = λ∇r U for some λ ∈ R .
Let so ( 3 ) be the Lie algebra of skew-symmetric 3×3 matrices with real entries.

This is a three-dimensional vector space with the basis {X1, X2, X3 } given by three
following matrices:

X1 =
⎛

⎝
0 1 0
−1 0 0
0 0 0

⎞

⎠ , X2 =
⎛

⎝
0 0 −1
0 0 0
1 0 0

⎞

⎠ , X3 =
⎛

⎝
0 0 0
0 0 1
0 −1 0

⎞

⎠ .

The Lie brackets in the Lie algebra so ( 3 ) are given by

[Xi , Xj ] = Xk , ( i, j, k ) = ( 1, 2, 3 ) ,

with all circular permutations. The Killing form κ (−, −) defined as

κ : so ( 3 )× so ( 3 ) −→ R

(X, Y ) �−→ tr (X Y )

is symmetric, bi-linear and non-degenerate. Here tr (− ) is the trace form of a square
matrix. This form identifies so ( 3 ) and so ( 3 )∗ by the interior product rule X ⌟ κ .

The Lie–Poisson structure on so ( 3 )∗ in the coordinates ( x1, x2, x3 ) on so ( 3 )
can be expressed as

{F , G } ( x1, x2, x3 ) =
3∑

i, j, k= 1

ckij

( ∂F

∂xi

∂G

∂xj
− ∂F

∂xj

∂G

∂xi

)
xk .

Here ckij is the structure constant tensor of the Lie algebra so ( 3 ).
The angular momentum L s defined as a map

T∗R3 � R6 −→ so ( 3 )∗

(q, p ) �−→ q × p =
∑

i, j, k

( q i pj − pi qj )Xk .

The angular momentum map L : T∗R3 −→ so ( 3 )∗ is a Poisson morphism.

Definition 1.10 Let μ : G ×M −→ M be a Lie group action on a Poisson
manifold

(
M; {− , −} ) . This action is called a Poisson action if the map

μ∗g : C∞ (M, R ) −→ C∞ (M, R )
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defined by μ∗g ( F ) (m )
def:= F

(
μg (m )

)
satisfies the following condition:

μ∗g
( {F , G } ) (m ) =

{
μ∗g ( F ) , μ∗g (G )

}
(m ) , ∀F, G ∈ C∞ (M, R ) .

Let a Poisson structure (M, π ) be symplectic.1 In this case this Poisson action can
be called the Hamiltonian action.

1.4.2 Momentum Map

Definition 1.11 Let g be a Lie algebra and
(
M, {− , −} ) be a Poisson manifold.

A momentum map is a Poisson morphism μ : M −→ g∗ . In other words, it is a
smooth map μ such that for ∀F, G ∈ C∞ ( g∗ ) :

μ∗
( {F , G } g∗

) = {
μ∗ ( F ) , μ∗ (G )

}
M

.

Let λ̄ : g −→ C∞ (M, R ) be a smooth linear map. Then, there is a unique map
λ : M −→ g∗ defined by λ̄ :

{ λ (m ) , X } = λ̄ (X ) (m ) , ∀m ∈ M , ∀X ∈ g .

Proposition 1.8 Let
(
M, {− , −} ) be a Poisson manifold and μ : M −→ g∗

is a smooth map. Then, μ is a momentum map if and only if the associated map
μ̄ : g −→ C∞ (M, R ) is a Lie algebra homomorphism:

μ̄
( [X , Y ] ) = { μ̄ (X ) , μ̄ (Y ) }M , ∀X , Y ∈ g .

Recall that the map χ : C∞ (M, R ) −→ X (M ) such that

χ (F ) = XF = {F , −}

is a Lie algebra morphism. We take the composition Θ
def:= χ ◦μ̄ : g −→ X (M ) ,

where μ̄ : g −→ C∞ (M, R ) and g = Lie (G ) with a simply connected Lie
group G . For compact manifolds M , Theorem 1.5 ensures the existence of an action
λ : G×M −→ M with λ∗ = −Θ .

Proposition 1.9 If G is connected, then λ∗ = −Θ gives a Poisson morphism
λ∗g : C∞ (M, R ) −→ C∞ (M, R ) for ∀ g ∈ G and ∀u, v ∈ C∞ (M, R ) :

1Here we mean that the bi-vector π is non-degenerate, i.e. π is invertible when it is seen as a banal
matrix.
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{
λ∗g ( u ) , λ∗g ( v )

}
= λ∗g

( { u , v } ) .

Proposition 1.10 Let M be a compact manifold and G is connected and simply
connected. Then, the action λ is G−equivariant:

1.4.3 Moment and Hamiltonian Actions

Let
(
M, ω

)
be a symplectic manifold and the corresponding Poisson brackets are

defined by a pair of Hamiltonian vector fields:

{ u , v } = X u ( v ) = ω
(
X v, X u

)
, X u ⌟ ω = du .

Lemma 1.9 IfH 1 (M, R ) = 0 andX ∈ X (M ) “infinitesimally” preserves the
symplectic form ω , i.e. LX ( ω ) = 0 , then there exists a unique u ∈ C∞ (M, R )

such that X = X u .

Here we should remark that the function u is uniquely defined only modulo a locally
constant function on M (which is usually identified with an element of H 0 (M, R ).

Lemma 1.10 Let λ : G×M −→ M be an action of a Lie groupG on a symplectic
manifold

(
M, ω

)
. The action λ is a Poisson (more precisely, in this case we may

call it a Hamiltonian) action if and only if λ∗g = ω .

Proposition 1.11 Let λ : G×M −→ M be a Hamiltonian action on a symplectic
manifold

(
M, ω

)
and λ∗ : g −→ X (M ) is the corresponding Lie algebra

homomorphism. Then, ∀X ∈ g :

L λ∗ (X ) ( ω ) = 0 .

Definition 1.12 Let λ : G×M −→ M be an action of G on M and
(
T∗M, Ω

)
is

the co-tangent bundle with the canonical symplectic form Ω = dρ , where ρ is the
Liouville 1−form. This action can be lifted to an action Λ : G×T∗M −→ T∗M
defined by

Λ( g, ξm )
def:= (Tg·m λ∗

g−1 ) ( ξm ) .
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Theorem 1.8 The action Λ is Hamiltonian and the induced momentum map μΛ :
T∗M −→ g∗ is defined by

{μΛ ( ξm ) , X } = { ξm , T e λm (X ) } .

1.4.3.1 Examples

Example 1.4 Lifting of the left G−action on G to T∗G :

λ : G×G −→ G,

( g, h ) �−→ g · h .

Then, we obtain the required lifting:

Λ : G×T∗G � G× g∗ −→ T∗G � G× g∗ ,
(
g, ( h, ξ )

) �−→ ( g · h, ξ ) .

The associated momentum can be also easily computed:

μ ( ξh ) = − (TeRh )
∗( ξ h ) , μ ( h, ξ ) = Ad ∗h ( ξ ) .

Similarly, we can consider lifting of the right G−action on G to T∗G :

λ : G×G −→ G,

( g, h ) �−→ h · g−1 .

Then, we obtain the required lifting:

Λ : G×T∗G � G× g∗ −→ T∗G � G× g∗ ,
(
g, ( h, ξ )

) �−→ ( h · g−1, Ad ∗g ξ ) .

The associated momentum can be also easily computed:

μ ( ξh ) = − (T eLh )
∗( ξ h ) , μ ( h, ξ ) = − ξ .

Example 1.5 Let us consider also the action of S1 on C :

C � R2 � T∗R1 , Ω = dq ∧ dp .
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The action is given by

λ : S1 × C −→ C ,

(
e i θ , z

) �−→ e i θ z ,

for some θ ∈ [ 0, 2π [ . Above i is the complex imaginary unit, i.e. i2 = − 1 .
Then, one can easily obtain the expression for λ∗ : TeS

1 −→ C :

λ∗
( d

dθ

)
(q, p) = Te ( λq, p )

( d

dθ

)
= −p

∂

∂q
+ q

∂

∂p
.

The interior product with the symplectic form can be also easily obtained:

λ∗
( d

dθ

)
⌟Ω = − ( pdp + qdq ) = − 1

2
d( p2 + q2 ) .

The momentum map is given by

μ ( z ) = μ ( q + ip ) = p2 + q2

2
.

The last construction can be easily generalized to C n :

λ : S1 × C n −→ C n ,

(
e i θ , ( z1, z2, . . . , zn )

) �−→ (
e i θ z1, e i θ z2, . . . , e i θ zn

)
.

Then, the associated momentum map is given by

μ ( z1, z2, . . . , zn ) =
n∑

i= 1

| zi |2 .

Example 1.6 Let us consider the action of S1 on S2 . The manifold S2 is equipped
with local coordinates ( z, φ ) and Ω = dz ∧ dφ . The action of S1 is given by
rotation in z−planes:

λ : S1 × S2 −→ S2 ,

(
e i θ , ( z, φ )

) �−→ ( z, φ + θ ) .

It is not difficult to see that

λ∗
( d

dθ

)
( z, φ ) = ∂

∂φ
, λ∗

( d

dθ

)
⌟Ω = dz .
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Finally, the momentum map is

μ ( z, φ ) = z .

Example 1.7 We consider now the action of S1 on the torus T2 def:= S1 × S1 . The
torus T2 is equipped with local coordinates ( φ1, φ2 ) and the symplectic form is
Ω = dφ1 ∧ dφ2 . The action is defined as

λ : S1 ×T2 −→ T2 ,
(

e i θ ,
(

e iφ1 , e iφ2
) ) �−→

(
e iφ1 , e i ( φ1 + θ )

)
.

Then, we have

λ∗
( d

dθ

)
(Ω ) = dφ1 ∧ d( θ + φ2 ) = Ω

and

λ∗
( d

dθ

)
⌟Ω = − dφ1 .

Since the coordinate function φ1 is defined only locally, the momentum map μ and
the morphism μ̄ do not exist.

Example 1.8 In this example we consider the action of SU ( n ) on T∗
(
su ( n )

)
.

We remind that SU ( n ) is the Lie group of special unitary matrices with complex
coefficients:

SU ( n )
def:= {

A ∈ Mat n(C )
∣∣ AA∗ = I , det (A) = 1

}
,

where I is the identity matrix and A∗ is the conjugate (or Hermitian) transpose of
A . The corresponding Lie algebra is defined as

Lie
(

SU ( n )
) = su ( n )

def:= {A ∈ Mat n(C ) | A∗ = −A , tr (A ) = 0 } .

The Lie algebra su ( n ) is an example of a semi-simple Lie algebra with a Killing
form κ (X, Y ) = 2 n tr (X Y ) and su ( n ) � su ( n )∗ . The action is defined as

λ : SU ( n )×T∗
(
su ( n )

) −→ T∗
(
su ( n )

)
,

(
g, (X, L )

) �−→ (
g X g−1, g L g−1 ) .

Then, Ω = tr ( dX ∧ dL) and the momentum map is given by

μ (X, L ) = [X , L ] .
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1.5 Reduction of the Phase Space

Let (M, ω ) be a symplectic manifold and λ : G ×M −→ M is a Hamiltonian
action, i.e.

λ ∗g ( ω ) = ω , ∀ g ∈ G .

We justify the terminology by the following observation:

Lemma 1.11 Assume that there exists a momentum map μ : M −→ g∗ , one
necessarily obtains that

λ∗ (Y ) = −X μ̄ (Y ) , ∀Y ∈ g .

Definition 1.13 An element c ∈ g∗ is called a regular if M c
def:= μ−1 ( c ) is a

sub-manifold in M and if

ker (Tm μ ) = TmM c , ∀ c ∈ M c .

Lemma 1.12 Let Gc
def:=

{
g ∈ G

∣∣∣ Ad ∗g ( c ) = c
}
. If G is connected and

simply connected, then ∀m ∈ M c and ∀ g ∈ Gc :

g ·m ∈ M c .

Proof Left to the reader as an exercise. ��
Remark 1.2 In the case when c is a regular element and G is connected and simply
connected, the action of G on M induces an action of the Lie sub-group Gc ⊆ G

on the sub-manifold M c ⊆ M .

1.5.1 The Main Results

Theorem 1.9 If G is connected and simply connected and, in addition:

• c is a regular element;
• Gc is compact;
• Gc acts on M c by free and transitive action.

Then, there exists a natural smooth structure on M c /Gc such that the mapping
πc : M c −→ M c /Gc is a submersion.

Remark 1.3 The quotient space M c /Gc is called in this case the reduced phase
space.
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Theorem 1.10 (Marsden–Weinstein) If G is connected and simply connected
and, in addition:

• c is a regular element;
• Gc is compact;
• Gc acts on M c by free and transitive action.

Then, there exists a unique symplectic 2−form ωc on M c /Gc such that

π ∗
c ( ω c ) = ı ∗c ( ω ) ,

where πc : M c −→ M c /Gc is the canonical submersion and ı c : M c ↪−→ M

is the canonical embedding.

The proof of this Theorem is based on the following

Lemma 1.13 Let m ∈ M c . Then, TmM c = (TmG ·m)⊥ . In other words,

TmM c = {X ∈ TmM | ωm (X , Y ) = 0 , ∀Y ∈ TmG ·m } .

Proof Left to the reader as an exercise. ��
Remark 1.4 Observe that TmM c

⋂
TmG · m �= ∅ . More precisely,

TmM c

⋂
TmG ·m = TmGc ·m .

Corollary 1.1 Let X1, X2, Y1, Y2 ∈ TmM c ⊆ TmM such that

Tmπc (X1 ) = Tmπc (X2 ) ,

Tmπc (Y1 ) = Tmπc (Y2 ) ,

then, ωm (X1, Y1 ) = ωm (X2, Y2 ) .

Lemma 1.14 Let m, n ∈ M c such that πc (m ) = πc ( n ) and
X1, X2, Y1, Y2 ∈ TmM c ⊆ TnM c ⊆ TnM such that

Tmπc (X1 ) = Tnπc (X2 ) ,

Tmπc (Y1 ) = Tnπc (Y2 ) ,

then, ωm (X1, Y1 ) = ωn (X2, Y2 ) .

Proof Left to the reader as an exercise. ��
Lemma 1.15 Let c be a regular element and O c

def:= G · c be its co-adjoint orbit.
Then, μ−1 (O c ) is a sub-manifold inM .

Proof Left to the reader as an exercise. ��
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Theorem 1.11 The mapping

φ : O c −→ M c /Gc ,

m �−→ πc ( g
−1m) ,

where μ (m ) = Ad ∗g ( c ) is correctly defined, induces a diffeomorphism:

Φ : π
(
μ−1 (O c )

) −→ M c /Gc .

1.5.2 Example

In this Section we consider again the action of S1 on C n , which is defined as

λ : S1 × C n −→ C n ,

(
e i θ , q + ip

) �−→ e i θ q + i e i θ p ,

where p, q ∈ Rn . The momentum map is

μ : C n −→ Lie (S1 ) ,

q + i p �−→ −
n∑

i= 1

q 2
i + p 2

i

2
.

Then, M c = {
z ∈ C n

∣∣ ∑n
i= 1 | zi | 2 = 2 c

} � S n , c > 0 . It is also clear
that Gc � S1 and S1 is an Abelian group. Thus, we have

LgRg−1 = I �⇒ Ad g = Ad ∗g = I .

Henceforth,

M c /Gc = S n /S1 � P n− 1 .

1.6 Poisson–Lie Groups

A Lie group G is called Poisson–Lie group if it is a Poisson manifold such that the
multiplication m : G × G −→ G is a morphism of Poisson manifolds. Let g be
Lie algebra, g∗ be dual vector space to g .
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Definition 1.14 We say that g is a Lie bi-algebra if there is a Lie algebra structure
[− , − ] ∗ on g∗ such that the map δ : g −→ Λ2 g (called the co-bracket), dual to
the bracket [− , − ] ∗ : Λ2 g∗ −→ g∗ is a 1−cocycle with respect to the adjoint
action of g on Λ2 g .

1.6.1 Modified Classical Yang–Baxter Equation

Let G be connected and a simply connected Lie group, and let g be its Lie algebra.
Then there is one-to-one correspondence between Poisson–Lie group structures on
G and Lie bi-algebra structures on g .

As V. Drinfel’d showed [3], every structure on a semi-simple connected G has
the following form:

π ( g ) = Λ2
(
(L g ) ∗

)
( r ) − Λ2

(
(R g ) ∗

)
( r ) , (1.2)

where (L g ) ∗ and (R g ) ∗ denote tangent maps of left and right translations by
g ∈ G . The element r ∈ Λ2 g satisfies the following condition:

� r, r �
def:= [ r 12 , r 13 ] + [ r 12 , r 23 ] + [ r 13 , r 23 ] ∈ Λ3 g , (1.3)

where the right-hand side is invariant under the adjoint action of g . The condi-
tion (1.3) is called a modified Yang–Baxter equation and the bracket

�−, − � : Λ2 g⊗Λ2 g −→ Λ3 g

is a so-called Schouten–Nijenhuis bracket. This is the natural graded (or super-) Lie
algebra structure on the exterior algebra

Λ• g =
⊕

k

Λk g .

Here r 12, to give an example, denotes an element r 12 = r ⊗ I 3 ∈ ( g ⊗ k )⊗ 3 ;
k ∈ {R, C } and r being usually called a classical r−matrix.

The condition (1.3) ensures that the bracket {− , −}∗ on g∗ satisfies the Jacobi
identity. The corresponding Lie bi-algebra structure is calculated in the obvious
way. Namely, the co-bracket δ is given by

δ ( x ) = d e π ( x ) = Lx̄ π ( e ) = d

dt
r ( e−t x ) ∗ π ( e t x )

∣
∣∣
t = 0

= ad x ( r ) ,

where d e π is the intrinsic derivative of a poly-vector field on G with π ( e ) = 0 ,
x̄ is any vector field on G with x̄ ( e ) = x, and L x̄ denotes the Lie derivative [8].
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The Poisson structures of the form (1.2) are called co-boundary or r−matrix
structures. Since for a connected semi-simple or a compact Lie group G every
1−cocycle is a co-boundary, one has the following

Proposition 1.12 . The Poisson–Lie structures on a connected semi-simple or a
compact Lie groupG are in one-to-one correspondence with the solutions r ∈ Λ2 g
of the modified Yang–Baxter equation.

1.6.2 Manin Triples

Let g be a Lie bi-algebra. There is a unique Lie algebra structure on the vector space
g⊕ g∗ such that

1. g and g∗ are Lie sub-algebras.
2. The symmetric bi-linear form on g⊕ g∗ given by the relation

〈X + ξ , Y + ηY 〉 = 〈X , η 〉 + 〈Y , ξ 〉 , ∀X , Y ∈ g , ∀ ξ, η ∈ g∗

is invariant.

This structure is given by

{X , ξ } = −ad ∗X ( ξ ) + ad ∗ξ (X ) ,

for X ∈ g and ξ ∈ g∗ , where ad ∗ is the co-adjoint action. This Lie algebra
is denoted by g �� g∗ and ( g �� g∗, g, g∗ ) is an example of a Manin triple. In
general, a Manin triple is a decomposition of a Lie algebra g with a non-degenerate
invariant scalar product 〈 , 〉 into direct sum of isotropic with respect to 〈 , 〉 vector
spaces, g = g+ ⊕ g− such that g± are Lie sub-algebras of g . It is well-known
that there is one-to-one correspondence between Lie bi-algebras and Manin triples.
These triples were introduced by V. Drinfel’d [4] and named after Yu. I. Manin.

1.6.3 Poisson–Lie Duality

Let G be a connected and simply connected Poisson–Lie group, g = Lie (G ) its
Lie algebra and

(
g �� g∗, g, g∗

)
the Manin triple. By duality,

(
g∗ �� g, g∗, g

)

is also a Manin triple. Then g∗ is a Lie bi-algebra. This enables us to consider a
connected and simply connected Lie group G∗ with a Poisson–Lie structure π∗ and
with the tangent Lie bi-algebra g∗ . The Poisson–Lie group (G∗, π∗ ) is called the
Poisson–Lie dual to (G, π ) .
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1.6.4 Example of Non-Hamiltonian Action

Let G be a Poisson–Lie group with a multiplicative Poisson tensor πg and M be a
smooth Poisson manifold with a Poisson structure given by πM . Then, the product
G×M can be considered as a Poisson manifold with the direct sum structure π̃ .

Proposition 1.13 An action σ : G ×M −→ M of a Poisson–Lie group G on a
Poisson manifold M is a Poisson–Lie action if and only if

πM ( g ·m) = Λ2 ( ( σg ) ∗
) (

πM (m )
) + Λ2 ( (σm ) ∗

) (
πG ( g )

)
.

Remark 1.5 One can consider any Lie group G as a Poisson–Lie group with πG ≡
0 then the action σ is a Poisson (action) if it gives a Poisson morphism πM ( g·m) =
( σg ) ∗

(
πM (m )

)
.

Definition 1.15 The action σ : G×M −→ M is called a Poisson–Lie action if
π∗ : C∞ (M ) −→ C∞ (G×M ) is a Poisson morphism:

π∗
( {F , H } πM

) = {
π∗ ( F ) , π∗ (H )

}
π̃
.

Infinitesimally, a Poisson–Lie action of a Lie bi-algebra g on a Poisson manifold
(M, {− , −} ) is given by an action

ρ : g −→ X (M ) ,

X �−→ VX ,

with X ∈ g such that

VX { f , g } (m ) = {VX f , g } (m) + { f , VX g } (m )

− {
X ,

[
ρ∗ d f (m ) , ρ∗ d g (m )

] }
,

where ρ∗ df (m ) ∈ g∗ and 〈X , ρ∗ df (m ) 〉 = VX f (m ) . In other words,

〈X ,
[
ρ̃ ( dF ) (m ) , ρ̃ ( dG) (m )

]
∗ 〉 = 〈 dF , dG 〉 ( ρ (X )

)
(m )

define a Lie algebroid structure on T∗M .

Example 1.9 There are natural left and right actions of dual Poisson–Lie group G∗
on G . These actions are called left (right) dressing transformations. The dressing
transformations are not Hamiltonian as Semenov-Tian-Shansky proved but these
actions are genuine Poisson–Lie actions [9].
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Chapter 2
Notes on Tractor Calculi

Jan Slovák and Radek Suchánek

This is a survey article based on the lectures given by the first author at the Summer
School Wisła 19, 19–29 August 2019, captured by the second author. The exposition
aims at quick understanding of basic principles, omitting many proofs or at least
their details. The reader might find a lot of further information in the cited sources
throughout the text. In particular, our approach has been heavily inspired by Curry
and Gover [12], while the general background on Cartan geometries including the
tractors can be found in [11].

The six sections of the article roughly correspond to the six lectures (about
100 min each). We first introduce some elements of the tractor calculus in quite
general situation. Then we focus rather on the overall structure of the invariant linear
differential operators and we do not present much of the tractor calculus itself. In
this sense, these lecture notes are complementary to [12], where the reader should
look for the genuine calculus.

The audience was assumed to have basic knowledge of differential geometry as
well as some representation theory (Lie groups and algebras, their representations,
principal and associated bundles, connections, tensors, etc.). All this background
can be found, e.g., in [17] and [11].
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2.1 Tracy Thomas’ Conformal Tractors

Let us start with a quick review of the two very well known geometries, the
Riemannian and the conformal Riemannian ones.

2.1.1 Riemannian Sphere

There are many ways how to view the standard sphere

Sn = {x ∈ R
n | ‖x‖ = 1}

as a homogeneous space. Perhaps the most common one is to consider the
orthogonal group G = O(n+1) which keeps Sn invariant and its subgroup H of the
maps fixing a given point o ∈ Sn, isomorphic to O(n). Clearly Sn = O(n+1)/O(n).
The Lie algebras g = LieG and h = LieH enjoy the nice matrix (1, n) block
structure

g =
(

0 −vT

v X

)
, h =

(
0 0
0 X

)
.

The tangent spaces are TxS
n = {y ∈ R

n+1| 〈x, y〉 = 0} and the action of G on
R
n+1, x �−→ Ax, preserves both Sn and T Sn, i.e., y �−→ Ay maps TxS

n �−→
TAxS

n. Moreover, they preserve the scalar products on the tangent spaces and thus
Sn enjoys O(n+ 1) as isometries of the natural structure of a Riemannian manifold
(Sn, g).

Observation 1 There are no other isometries of Sn apart from O(n+ 1).

The standard way to see the above observation holds true is the following.
Consider a unit vector e1 ∈ R

n+1 and an isometry φ ∈ Isom(Sn, g). Then
φ(e1) ∈ Sn and φ(e1) = A(e1) for some A ∈ O(n+ 1). Moreover, elements of
the form A−1 ◦ φ are in the isotropy group of e1. As well known the Riemannian
isometries are (on connected components) uniquely determined by their differential
in one point. Thus the latter map coincides with its differential at e1 and we are
finished.

Another possibility is based on the Maurer–Cartan form. It is more complicated,
but much more conceptual.

Consider the principal H -bundle G
p−→ G/H over Sn ∼= G/H equipped with the

Maurer–Cartan form ω ∈ Ω1 (G, g). Since g splits as g = h⊕ n (as h-module), the
Maurer–Cartan form also splits as ω = ωh⊕ωn, where the first part is the principal
connection ωh on G and the second part is the soldering form ωn. The soldering
form provides for all A ∈ G isomorphisms
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ωn : TAG/VAG
∼=−→ Tp(A)S

n ∼= R
n ,

where VAG := kerωn is the vertical subspace. This means ωn makes G→ Sn into
a reduction of the linear frame bundle P 1Sn to H .

Now any isometry φ lifts to the level of frame bundles and can be restricted to G

and thus we have a lift φ̃ : G −→ G such that φ̃∗ωn = ωn. Because ωh is principal
connection preserving the metric we also have φ̃∗ωh = ωh. We see that φ̃∗ω = ω,
i.e., φ̃ preserves the Maurer–Cartan form.

Notice that in this setting, ωh must be the only torsion free metric connection on
Sn. Thus, we arrived at the canonical Cartan connection on Sn in the sense of the
so-called Cartan geometry as defined below.

For any principal fiber bundle G with structure group P , we shall write rg for the
principal right action of elements in P and ζX means the fundamental vector field,
ζX(u) = d

dt |0r
exp tX(u).

Definition 2.1 For a pair H ⊂ G of a Lie group and its Lie subgroup, a Cartan
geometry is a principal H -bundle p : P → M endowed with a g-valued 1-form
ω ∈ Ω1(P, g) satisfying for all h ∈ H,X ∈ h, u ∈ P the following three properties

Ad(h−1) ◦ ω = (rh)∗ω, (2.1)

ω(ζX(u)) = X, (2.2)

ω(u) : TuP
∼=−→ g. (2.3)

Now, our observation follows from a general result:

Theorem 2.1 (Fundamental Theorem of Calculus) Let ωG be the Maurer–
Cartan form of a Lie groupG with the Lie algebra g,M a smooth manifold endowed
with a 1-form ω ∈ Ω1(M, g). Then for each x ∈ M there is a neighborhood U � x

and f : U → G such that f ∗ωG = ω, if and only if

dω + 1

2
[ω,ω] = 0. (2.4)

IfM is connected and f1, f2 : M → G with f ∗1 ωG = f ∗2 ωG onM , then there exists
a unique c ∈ G such that f2 = cf1 on M .

Under the additional requirement that Tf : TxM → Tf (x)G is a linear
isomorphism for each point x, the theorem shows that the local Lie group structure
is uniquely determined by the Maurer–Cartan form satisfying (2.4).

The theorem is proved by building the graph of the mapping f , see [11, section
1.2.4]. Notice, in dimension one the condition is empty and so with the additive
group G = R we obtain just the existence of primitive functions up to a constant. If
G was the multiplicative group R+, the theorem would show how the logarithmic
derivatives prescribe the functions, up to a constant multiple.
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In our case each isomorphism φ : Sn → Sn lifts to the unique map f : G →
G satisfying f ∗ω = ω. The Maurer–Cartan forms on all Lie groups satisfy the
condition in (2.4) and thus, even locally, f can differ from the identity map only by
an element of G.

2.1.2 Conformal Riemannian Sphere

A conformal Riemannian manifold (M, [g]) is a manifold M with a conformal class
of metrics. Two metrics g, g̃ are representatives of the same conformal class if they
differ by some positive function, g̃ = Ω2g, Ω ∈ C∞(M). Conformal isometry is a
diffeomorphism, whose differentials at all points belong to the conformal orthogonal
group CO(n) for the given structures on the tangent spaces.

The conformal sphere is (Sn, [g]) where [g] includes the standard round
metric. Let us discuss the following question: What is the group of all conformal
isomorphisms on Sn making it into a homogeneous space G/P?

Option 1 We can go the “brutal force” way. Take R
n with the conformal class

containing the Euclidean metric and write down the PDEs for an arbitrary locally
defined conformal isomorphism φ, i.e., we request the differentials of φ are in the
Lie algebra co(n) at all points. There is the famous Liouville theorem saying that
each such φ is generated by the Euclidean motions, the dilations, and the sphere
inversions. An elementary (but tricky) proof can be found in [20, section 5.4]. In
particular, if we compactify R

n by the one point at infinity, we can extend all such
local diffeomorphisms to globally defined conformal maps on Sn.

Let us try to do it in a smart way. Consider R
n+2 with the pseudo-Euclidean

metric Q(x, x) = 2x0xn+1 + x2
1 + · · · + x2

n of signature (n + 1, 1) and define C

to be the null-cone of this metric. Now, we may identify the sphere Sn with the
projectivization PC of this cone and write down the action of all the latter maps
in projective coordinates on PR

n+2. We can represent the null-vectors of the affine
R
n ⊂ Sn as (1 : x : − 1

2‖x‖2), while the remaining infinite point in Sn as (0 : 0 :
1). Now we may easily identify the above conformal maps as actions of particular
matrices in O(n+ 1, 1) on the projectivized cone PC.

⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ �−→
⎛

⎝
a−1 0 0

0 A 0
0 0 a

⎞

⎠

⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ (2.5)

⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ �−→
⎛

⎝
1 0 0
v E 0

− 1
2‖v‖2 −vT 1

⎞

⎠

⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ (2.6)
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⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ �−→
⎛

⎝
0 0 −2
0 E 0
− 1

2 0 0

⎞

⎠

⎛

⎝
1
x

− 1
2‖x‖2

⎞

⎠ (2.7)

Notice in the last line that the sphere inversion σ ∈ O(n + 1, 1) is in a different
component than the unit, while the non-trivial maps fixing the origin and having
the identity as differential there are obtained by composing σ ◦ τv ◦ σ , with the
translation τv ∈ O(n+ 1, 1) from (2.6), cf. [20, section 5.10].

Option 2 Similarly to the Riemannian case, we first choose the right homogeneous
space Sn = G/P with G = O(n + 1, 1), P the isotropy group of one fixed point
in Sn, and show that G is just the group of all conformal isomorphisms. Again,
we can achieve that by building a reasonably normalized Cartan geometry for each
conformal Riemannian manifold. Then the Maurer–Cartan form ωG of G will be
preserved by all conformal morphisms and thus the Theorem 2.1 applies.

We shall come back to such normalizations of Cartan geometries later in the fifth
lecture.

At the level of Lie algebras, g = LieG decomposes as g = g−1 ⊕ p, where g−1
are the infinitesimal translations with matrices

g−1 =
{⎛

⎝
0 0 0
v 0 0
0 −vT 0

⎞

⎠
}

while

p = g0 ⊕ g1 =
{⎛

⎝
−a 0 0
0 A 0
0 0 a

⎞

⎠

︸ ︷︷ ︸
co(n)

⊕
⎛

⎝
0 w 0
0 0 −wT

0 0 0

⎞

⎠

︸ ︷︷ ︸
Rn

}
.

Clearly, g1 is a p-submodule (actually an ideal), while g0 is identified with the p-
module p/g1 with the trivial action of g1. This is the well known decomposition of
p into the reductive quotient and the nilpotent submodule.

At the level of Lie groups, this corresponds to the splitting of the isotropy group
P into the semi-direct product of CO(n) containing the conformal isomorphisms
fixing the origin and determined by their first derivatives, and the nilpotent normal
subgroup P+ ⊂ P of those conformal isomorphisms fixing the origin with trivial
first differential and determined by the second order derivatives. We shall also write
G0 = P/P+ and this reductive group decomposes further into the semisimple part
O(n) and the center R \ {0}.
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2.1.3 Towards Tractors

The conformal Riemannian structure on Sn can be read off the standard metric Q on
R
n+2 as follows. Any choice of a non-zero section of the null-cone C (e.g., we may

choose one of the non-zero components C+ of C and consider sections there), seen
as line bundle over its projectivization Sn, provides the identification of the tangent
bundle TpS

n with the quotient of

TpC+ = {z ∈ R
n+2 |Q(z, p) = 0} = 〈p〉⊥

by the line 〈p〉 (notice p is null, so this line is in the tangent space). Clearly
〈p〉⊥/〈p〉 is linearly isomorphic to TpS

n and since p is null, Q induces a positive
definite metric on TpS

n. If we multiply p by a constant a �= 0, then the induced
metric will change by the positive multiple a2. By the very construction, this
conformal structure is invariant with respect to the natural action of O(n + 1, 1)
on the cone C. Thus, we may also view C+ as the square root of the line bundle of
the conformal metrics in this class.

Of course, there is no preferred affine connection on Sn in this picture. But if
we consider the flat affine connection ∇ on R

n+2, then we can consider the parallel
(constant) vector fields in the trivial vector bundle C ×R

n+2 along the null-lines in
C and view them as fields in the trivial vector bundle T Sn = Sn × R

n+2.
The slight problem with this point of view is that we should expect that the fibers

of T Sn split into the “vertical part” along the null-lines in C, the “tangent part” to
Sn and the complementary 1-dimensional part in R

n+2. While the vertical part is
well defined, such a splitting clearly depends on the choice of the identification of
Sn with a section of C → Sn. Moreover, we should hope to inherit an invariant
connection from the flat connection ∇ on R

n+2. Before answering these questions,
we are going to indicate a much simpler abstract description of such objects and we
come back to these functorial objects and constructions in the fourth lecture.

Let H ⊂ G be a Lie subgroup and G → G/H the corresponding Klein
geometry. Notice that G → G/H is a principal H -bundle. Consider any linear
representation V of G and the associated bundle V = G ×H V, i.e., the classes of
the equivalence relations on G× V given by (u, v) ∼ (u · h, h−1 · v).1

In particular, we may identify the class [[u, v]] with the couple (u · H,u · v).
Indeed, taking another representative, we arrive at

((u · h) ·H,u · h · (h−1 · v)) = (u ·H,u · v)

and thus V is the trivial bundle on M

V = G/H × V.

1Here u · h is multiplication in G and h−1 · v is the left-action of H or G on V given by the chosen
representation.
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Moreover, there is the Maurer–Cartan form ω on G. Extending G → G/H to
the principle G-bundle G̃ = G ×H G → G/H , the form ω uniquely extends
to a principal connection form ω̃ on G̃. Finally, we can further identify V as the
associated space V = G̃×G V. Thus we see that there is the induced connection ∇
on all such bundles V .

2.1.4 Tracy Thomas’ Tractors T

Now we come back to the conformal sphere and we apply the above abstract
construction. Thus, G = O(n + 1, 1), and H = P ⊂ G is the isotropy group
of the fixed origin (1 : 0 : 0), i.e., the Poincare subgroup in G with the Lie algebra p
as discussed above. Further, we may take T = R

n+2 with the standard action of G.
The final ingredients we need are the weights of line bundles or more general

tensor bundles on conformal manifolds. Consider R[w] as the representation of P
such that P+ and O(n) act trivially, while the central element λ = exp(aE) ∈ G0
acts as λ · x = e−aw x. Here E is the so-called grading element in g, i.e.,

λ = exp

⎛

⎝
a 0 0
0 0 0
0 0 −a

⎞

⎠ =
⎛

⎝
ea 0 0
0 Idn 0
0 0 e−a

⎞

⎠ .

Now, the line bundles of weights w are defined as

E[w] = G×P R[w].

At the level of the infinitesimal action, the central element aE ∈ g0 will act as
a · x = −wax. Notice the minus sign convention—this is because we want the line
bundle of the conformal metrics to get the weight two.

Taking tensor products with line bundles, we arrive at the general weighted
bundles V[w] = V ⊗ E[w] for any representation V of P or even G.

Now, look at the action (2.5) on the components of T. We see immediately that
the representation space T = R

n+2 splits as G0-module into

T = R[1] ⊕ R
n[−1] ⊕ R[−1],

where the right ends are P -submodules. In particular, R[−1] is a P -submodule,
while R[1] is the projecting component. Thus, the trivial bundle T splits (once a
section of C+ and thus one of the metrics in the class is fixed):

T = E[1] ⊕ T Sn[−1] ⊕
VC+
E[−1]

T C+

.
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As mentioned above, the bundle T comes equipped with the canonical metric
induced by Q and T C+ = (V C+)⊥. Thus, there is the positive definite metric
g : T Sn[−1] × T Sn[−1] → E , i.e., g is a section of S2(T ∗Sn)[2]. This is the
conformal class of metrics on Sn viewed as the section of a weighted metric bundle
and it allows us to raise and lower tensor indices of arbitrary tensors exactly as in
the Riemannian case, but at the expense of adding or subtracting the weight 2. For
example, we may write T = E[1] ⊕ T ∗Sn[1] ⊕ E[−1].

Finally, any non-zero section σ of the projecting part E[1] provides the Rieman-
nian metric g = σ−2g.

2.2 Conformal to Einstein and the Tractor Connection

Tracy Thomas came across his conformal tractors in [22], when constructing basic
invariants of conformal geometry via a linear connection on a suitable vector bundle
(instead of building an absolute parallelism in the Cartan’s approach). He succeeded
in finding the simplest of such vector bundles, together with an invariant linear
connection. He also worked out the necessary transformation properties based on
the so-called Schouten tensor.

All these objects were reinvented in [1] and here the authors also discussed
the following question: Given a conformal class [g] on a manifold, is there a
representative of the class which is an Einstein metric? We shall follow this
development and thus we shall find the Thomas’ tractors when prolonging a
conformally invariant geometric PDE (also following [12]).

In the sequel, we shall use the abstract index formalism. Moreover we shall
mostly not distinguish between the bundles VM and the spaces of their sections
Γ (VM). Thus, we shall talk about vector fields in Ea or one-forms in Ea . Similarly,
ηab is either a two-form in Eab or a Ea-valued one-form. As usual, repeated indices
at different positions (lower versus upper) mean the relevant trace.

2.2.1 The Einstein Scales

Recall that the curvature Rab
c
d of the unique torsion free metric connection ∇

decomposes into the trace-free Weyl tensor Wab
c
d and the Ricci tensor Rab. We

shall see later why a trace-adjusted version of Rab, the so-called Schouten tensor,

Pab = 1

n− 2

(
Rab − 1

2(n− 1)
Rgab

)
,

where R = gabRab is the scalar curvature, is very useful. (Notice, here we use the
opposite sign convention for the Schouten tensor P than in [11], i.e. it is the same
as in [12].)
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Of course, we should believe there is an overdetermined distinguished PDE
system on the scales, i.e., the choices of the metrics in the class, whose solutions
correspond to the Einstein scales. We can write down all such PDEs with the help
of any of the metrics in the class and, as a matter of fact, the equation must be
independent of our choice, i.e., conformally invariant. A straightforward check
reveals (we shall come to such techniques later) that the following equation on (the
square roots of) the scales σ in E[1] is invariant

∇(a∇b)0σ + P(ab)0σ = 0 (2.8)

Now, if σ is a nowhere zero solution, we may write the equation using the metric
connection corresponding to σ and thus, σ is parallel and we arrive at P(ab)0 = 0.
This is exactly the condition to be Einstein, i.e., the trace-free part of Ricci vanishes
and σ−2gab is Einstein.

We are going to apply the classical method of prolongation of overdetermined
systems of PDEs to show that solutions of (2.8) are equivalent to parallel tractors
in T .

First, we add trace part ρg to the Eq. (2.8), i.e., ρ is a new (−1)-weighted quantity
ρ ∈ E[−1] and the new equation becomes

∇(a∇b)σ + P(ab)σ + gabρ = 0. (2.9)

Moreover, we know that the Ricci curvature is symmetric for all scales, i.e., the
Levi-Civita connections of the metrics in the class, and thus the Schouten tensor
is symmetric too. Finally, the antisymmetric part of the second order derivative is
given by the action of the curvature Rab

c
d as a 2-form valued in the Lie algebra

so(n,R) and these values have no central component to act on the densities E[w].
Thus our equation becomes

∇a∇bσ + Pabσ + gabρ = 0. (2.10)

In the next step, we give the derivative ∇aσ the new name μa = ∇aσ ∈ Ea[1].2
Thus the latter Eq. (2.10) can be rewritten as the system of two first order equations

∇aσ − μa = 0

∇aμb + Pabσ + gabρ = 0
(2.11)

This system is not yet closed since there is still the uncoupled variable ρ. Thus
we have to prolong the system and we need some computational preparation first.

2We know that μa must be of weight 1 because covariant differentiation does not alter weights and
σ is already of weight 1.



40 J. Slovák and R. Suchánek

Recall the invariant conformal metric g is covariantly constant in all scales and
differentiate (2.10):

∇a∇b∇cσ + gbc∇aρ + (∇aPbc)σ + Pbc∇aσ = 0 . (2.12)

Contract (2.12) by hitting it with gab and gbc, respectively:

Δ(∇cσ )+ ∇cρ +∇aPacσ + Pa
c∇aσ = 0, (2.13)

∇a(Δσ)+ n∇aρ + ∇aPσ + P∇aσ = 0, (2.14)

where P is the trace of Pab. Next, contracting the Bianchi identity and some
straightforward computations lead to

∇aPac = ∇cP (2.15)

[∇c,Δ] = Rcb
b
d∇d . (2.16)

Subtracting (2.13) from (2.14) and using (2.15) and (2.16) we arrive at

(n− 1)∇cρ + P∇cσ − Pa
c∇aσ + Rcb

b
d∇dσ = 0. (2.17)

Further notice

Rcb
b
d∇dσ = −Rca∇aσ = (2− n)Pc

a∇aσ − ∇cPσ

which together with (2.17) yields, up to the constant factor n− 1

∇cρ − Pc
aμa = 0 (2.18)

and our system of equations closes up. Summarizing, the Einstein scales correspond
to nowhere zero solutions of our system of three first order equations coupling σ ,
μa , and ρ and all this should be understood in terms of conformally invariant objects
and operations.

Indeed, this is the content of the following theorem. For now, we formulate it
only for the solutions to our equations on the sphere Sn, although our discussion on
the equations has concerned general conformal Riemannian manifolds.

Theorem 2.2 Let T = E[1] ⊕ T ∗Sn[1] ⊕ E[−1] be the bundle of the Thomas’
tractors on the conformal sphere. Define the following operator on T

∇T
a

⎛

⎝
σ

μa

ρ

⎞

⎠ =
⎛

⎝
∇aσ − μa

∇aμb + gabρ + Pabσ

∇aρ − Pabμ
b

⎞

⎠ , (2.19)
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where ∇a on the right-hand side refers to the Levi-Civita connection of the metric
σ−2g.

The operator ∇T is a linear connection on T which is conformally invariant.
Moreover, solutions to (2.8) are in bijective correspondence with parallel tractors,
i.e., with sections t ∈ Γ (T ) such that ∇T t = 0.

Notice that on the sphere, T is the trivial bundle Sn×T and we shall see soon that
∇T is the flat connection there which we mentioned earlier. So we also postpone
the proof of this theorem. (Actually, we see immediately that this is a connection,
but we should check its curvature and, in particular, how it depends on the choice of
the fixed metric.)

Obviously, all the parallel tractors are determined uniquely by their values in
T in the origin. In particular, we managed to compute all Einstein metrics on the
conformal sphere.

2.2.2 Conformal Invariance

What do we really mean when saying that objects or operations are conformally
invariant?

The intuitively obvious answer should be that they are independent of our choice
of the metric in the conformal class. So we should start to look how the covariant
derivative changes if we change the scale. Consider the change of our metric by
taking ĝ = Ω2g with a positive smooth function Ω , and write Υa = Ω−1∇aΩ .

Lemma 2.1 Let ∇̂ be the Levi-Civita connection for the rescaled metric ĝ. Then
for all v ∈ Ea , α ∈ Ea , ρ ∈ E[w]

∇̂av
b = ∇av

b + Υav
b − Υ bva + Υ cvcδ

b
a (2.20)

∇̂aαb = ∇aαb − Υaαb − Υbαa + Υ cαcgab (2.21)

∇̂aρ = ∇aρ + wΥa. (2.22)

Proof Recall the Christoffel symbols of Levi-Civita connection are expressed in
any coordinates via the derivative of the metric coefficients (we write ∇i for the
partial derivatives here)

Γ i
jk = 1

2
gi�(∇kg�j +∇j g�k − ∇�gjk) . (2.23)

Conformal rescaling of the metric g �−→ ĝ = Ω2g affects all other objects derived
from metric, e.g., the new inverse metric is ĝ−1 = Ω−2g−1. Thus, the Christoffels
(2.23) change
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Γ̂ i
jk = Γ i

jk + 1

Ω

(
δij∇kΩ + δik∇jΩ − gjk∇iΩ

)

= Γ i
jk + δijΥk + δikΥj − gjkΥ

i.

(2.24)

Now recall, the covariant derivative is in coordinates given as the directional
derivative modified by the action of the Christoffels viewed as o(n)-valued one-
form. Thus the latter formula provides exactly the three formulae in the statement.

��
The formulae from the lemma allow to compute easily the changes of conformal

derivatives on all weighted tensor bundles.
For example, considering possible first order operators on weighted forms Ea[w],

we get

∇̂aαb = ∇aαb + (w − 1)Υaαb − Υbαa + Υ cαcgab,

and we immediately see that the antisymmetric part ∇[aαb] is invariant for the
weight w = 0 (this is the exterior differential on one-forms), the trace-free part
of the symmetrization ∇(aαb)0 is invariant for w = 2 (we may view this as the
operator on the vector fields in Ea = Ea[2] and the kernel describes the conformal
Killing vector fields), and finally the trace ∇aαa is invariant for w = 2 − n (this is
the divergence of vector fields with weight −n).

Let us look at the geometric objects next. On the conformal sphere Sn, the
category of natural objects was defined in 2.1.3—those are the homogeneous
bundles G ×P V corresponding to any representation of P . If the representation
comes from a representation of G0 = CO(n), extended by the trivial representation
of P+ = exp g1, the corresponding bundles extend to all conformal Riemannian
manifolds. Indeed, since general conformal Riemannian manifolds are given as
reduction of the linear frame bundles to the structure group G0, such bundles are
well defined on all of them.

If we deal with more general P -representations, then we arrive at sums of the
latter bundles as soon as we fix a metric g in the conformal class, but the components
are not given invariantly. We shall explain the general procedure in the next lecture
and, in particular, we shall see how this behavior extends and defines such bundles
on all conformal Riemannian manifolds. For now, just believe that in the case of the
Thomas’ tractor bundles we face the following transformation rule

⎛

⎝
σ̂

μ̂a

ρ̂

⎞

⎠ =
⎛

⎝
σ

μa + σΥa

ρ − Υ cμc − 1
2Υ

cΥcσ

⎞

⎠ (2.25)

Of course, a straightforward (and really tedious) computation can reveal that
considering the formulae for the transformations of covariant derivatives from
the above Lemma and (2.25), the linear tractor connection ∇T

a is a well defined
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conformally invariant operator on the tractors. Fortunately, we do not have to check
this the pedestrian way and can wait for general reasons.

2.3 Parabolic Geometries

We met the general Cartan geometries with the model G/H in the Definition 2.1.
If the Lie group G is semisimple and the subgroup H is a parabolic subgroup in G,
we talk about the parabolic geometries. This class of Cartan geometries includes
many very important examples and provides a unified theory for all of them. In this
lecture we shall introduce some basic features and clarify many phenomena in the
conformal case on the way. Detailed exposition of the background, including the
necessary representation theory, is available in [11].

In general, the definition of the parabolic subgroups is a little subtle. For us,
the simplest approach is via their Lie algebras. The parabolic ones are those
which contain a Borel subalgebra and the choices of parabolic subalgebras p ⊂ g
correspond to graded decompositions of the semisimple Lie algebras

g = g−k ⊕ · · · ⊕ gk.

This means that Lie brackets respect the grading, [gi , gj ] ⊂ gi+j , and p = g0 ⊕
p+ = g0 ⊕ g1 ⊕ · · · ⊕ gk is the decomposition into the reductive quotient g0 and
nilpotent subalgebra p+. Moreover, there always is the unique grading element E in
the center of g0 with the property [E,X] = jX for all X ∈ gj .

The closed Lie subgroups P ⊂ G are called parabolic if their algebras p = LieP
are parabolic.

If G is a complex semisimple Lie subgroup, then there is a nice geometric
description: P ⊂ G is parabolic if and only if G/P is a compact manifold (and
then it is a compact Kähler projective variety), see, e.g., [24, Section 1.2]. In the real
setting, the so-called generalized flag varieties G/P with parabolic P are always
compact.

2.3.1 |1|-graded Parabolic Geometries

For the sake of simplicity, we shall restrict ourselves to the so-called |1|-graded
cases here, i.e., k = 1. Thus we shall deal with Lie groups with the algebras

g = g−1 ⊕ g0 ⊕ g1

p

, (2.26)

where p refers to the parabolic subalgebra.
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Now, we consider Cartan geometries modelled on G → G/P , i.e., principal P -
bundles G → M with Cartan connections ω ∈ Ω1(G, p). Such a connection ω splits
due to (2.26) as

ω = ω−1 ⊕ ω0 ⊕ ω1.

We shall further consider all reductions of the principal bundles G to the structure
group G0 = P/ exp g1, i.e., we are interested in all equivariant mappings

σ : G0 = G/ exp g1 → G

with respect to the right principal actions. The diagram below summarizes our
situation (notice we are also fixing the subgroup G0 in the semi-direct product
P = G0 � exp g1, following the splitting of the Lie algebra)

G0 ⊂ P � G G0 M.
σ

The Cartan connection ω allows us to identify the cotangent bundle T ∗M with
G ×P g1, where the action of P+ is trivial. Similarly TM � G ×P g/p, where
g/p � g−1, again with trivial action of P+. The duality is provided by the Killing
form on g.

Recall that all sections φ of associated bundles G ×P V are identified with
equivariant functions f : G → V, i.e., φ(x) = [[u(x), f (u(x))]] and so

f (u · p) = p−1 · f (u).

Once we restrict the structure group to the reductive part of P , the pullback of
the Cartan connection along σ splits into the so-called soldering form valued in
g−1, principal connection form valued in g0, and the one-form valued one-form P
(which we shall see as the general analog of the Schouten tensor Pab from conformal
geometry)

σ ∗ω = θ ⊕ σ ∗ω0 ⊕ P.

We can also take the other way round—since P+ is contractible (as the exponential
image of a nilpotent algebra), we may start with G = G0 × P+, fix one of the
(reasonably normalized) pullbacks σ ∗ω0 and use some suitable P to define the
Cartan connection on the entire G. We shall see later, the Schouten tensor (with the
opposite sign, see the comment in the beginning of the second lecture) is the right
choice to get the normalized Cartan connection in the case of conformal Riemannian
geometries, taking one of the Levi-Civita connections for σ ∗ω0. But we shall stay
at the level of general Cartan connections now, so P is just the relevant pullback.

Two such reductions differ by a one-form Υ , viewed as equivariant function Υ :
G0 → g1:
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σ̂ = σ · expΥ.

2.3.2 Natural Bundles and Weyl Connections

For each representation V of P there is the functorial construction of the bundles
V = G×P V and the morphisms of the Cartan geometries act on them in the obvious
way.

Actually we do not need the Cartan connection for this definition, but notice that
the morphisms of the principal bundles respecting the Cartan connections are rather
rigid in the following sense. If we fix their projection to the base manifolds, the
freedom in covering them is described by the kernel K of the homogeneous models,
i.e., the subgroup of P acting trivially on G/P , see [11, section 1.5.3]. This means
two such morphisms may differ only by right principal action of elements from K .
Usually K is trivial or discrete.

Consider now a representation V of P and its decomposition as a G0-module.
The action of the grading element E ∈ g0 provides the splitting

V = V0 ⊕ · · · ⊕ Vk,

where the action of g1 moves elements from Vi to Vi+1. Clearly, any section v of V
decomposes into the components vi : G0 → Vi as soon as we fix our reduction.

Further, fixing our reduction σ we have the affine connection ωσ = σ ∗(ω�0)

(which is a Cartan connection, i.e., an absolute parallelism, on the linear frame
bundle obtained as the sum of the soldering form and connection form). As well
known, the corresponding covariant derivative is obtained via the constant vector
fields:

∇σ
ξ v(u) = ω−1

σ (X) · v(u),

where X ∈ g−1 corresponds to the vector ξ in a frame u ∈ G0, i.e., we simply
differentiate a function in the direction of a vector (the horizontal lift of ξ to G0).
Notice that this connection ∇σ always respects the decomposition of V given by the
same reduction. We call all these connections the Weyl connections (and we obtain
the genuine Weyl connections in the conformal case with the Schouten tensor −P,
i.e., all the torsion free connections preserving the conformal Riemannian structure).

Our next theorem says, how the splitting of V, the covariant derivative, and also
the one-form P change if we change the reduction σ .

In order to formulate the results, let us introduce some further conventions.
Recall, tangent vectors ξ ∈ TxM can be identified with right-equivariant functions
X on the frames over x valued in g−1 = g/p. This identification can be written
down with the help of the Cartan connection, X = ω−1(u)(ξ̃ ) for any lift ξ̃ of ξ to
TuG. By abuse of notation we shall write the same symbol ξ for the vector in TM

and the corresponding element X in g−1. Similarly we shall deal with the one-forms
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Υ represented by elements in g1, and also the endomorphisms of TM represented
by elements in g0.

For instance, adΥ (ξ) · v means we take the Lie algebra valued functions Υ and
ξ , take the Lie bracket of their values and act by the result on the value of the
function v via the representation of g0 in question. Of course, we may use only
such operations which ensure the necessary equivariance (which is guaranteed when
taking the adjoint action within the Lie algebra).

Theorem 2.3 Consider σ̂ = σ · expΥ and use the hat to indicate all the
transformed quantities. For every section v = v0 ⊕ · · · ⊕ vk in the representation
space of the representation λ : p→ gl(V), and vector ξ in the tangent bundle,

v̂� = (λ(exp(−Υ ))(v))� =
∑

i+j=�

(−1)i

i! λ(Υ )i(vj ). (2.27)

If λ is a completely reducible P -representation, then

∇̂ξ v = ∇ξ v − adΥ (ξ) · v. (2.28)

Finally, the one-form ρ transforms

ρ̂ = ρ(ξ)+∇ξΥ + 1

2
(adΥ )2(ξ). (2.29)

Proof The formula (2.27) is just a direct consequence of our definitions and reflects
the fact that by changing the reduction σ , the equivariant function v : G → V is
restricted to another subset, shifted by the right action of exp(Υ ). Thus, the values
have to get corrected by the action of (expΥ )−1 = exp(−Υ ). The formula then
follows by collecting the terms with the right homogeneities.

The transformation of the derivative is also not too difficult. Consider a section
v : G0 → V and recall ∇ξ v is given with the help of any lift ξ̃ to G0:

∇ξ v = ξ̃ · v(u)− ω0(Tuσ · ξ̃ ) · v(u). (2.30)

Writing rp = r( , p) and ru = r(u, ) for the right action,

Tuσ̂ · ξ̃ = Tσ(u)r
expΥ (u) · Tuσ · ξ̃ + TexpΥ (u)rσ(u) · TuexpΥ · ξ̃ . (2.31)

The second term in (2.31) is vertical in G → G0 and thus

ω0(Tuσ̂ · ξ̃ ) = ω0(Tσ(u)r
expΥ (u) · Tuσ · ξ̃ ).

By equivariancy of the Cartan connection ω, this equals to the g0 component of
Ad((expΥ (u))−1)(ω(Tuσ · ξ̃ )). Now, notice ω−1(Tuσ · ξ̃ ) is exactly the coordinate
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function representing the vector ξ . Thus, the only g0 component of the latter
expression is ad(−Υ (u))(ξ) and this has to act on v in our transformation formula.

The transformation of the P tensor is also deduced from (2.31), but it is more
technical and we refer to the detailed proof in [11, section 5.1.8]. ��

Similar formulae are available for general parabolic geometries and their Weyl
connections. Just the non-trivial gradings of TM and T ∗M make them much more
complicated. The complete exposition can be read from [11, sections 5.1.5 through
5.1.9].

Notice also that we are allowing all reductions σ . But some of them are nicer
than others—we may reduce the structure group to the semisimple part Gss

0 of G0.
These further reductions correspond to sections of the line bundle L = G0/G

ss
0 ,

which can be viewed as the associated bundle G0×G0 exp{wE} carrying the natural
structure of a principal bundle with structure group R+. This is the line bundle of
scales and its sections correspond to Weyl connections inducing flat connections on
L. In the conformal case, these are just the choices of metrics in the conformal class.
The induced connection on L has got the antisymmetric part of P as its curvature
and thus, we can recognize such more special reductions by the fact that for these
the Rho-tensor is symmetric.

2.3.3 Higher Order Derivatives

Notice, in Theorem 2.3 we provided the formula for the change of the Weyl
connections for completely reducible P -modules only. This is because the formulae
get very nasty for modules with non-trivial g1 actions. But even dealing with
tensorial bundles, iterating the derivatives always leads to such modules.

In order to avoid at least part of these hassles, we should seek for better linear
connections related to our reductions σ and the fixed Cartan connection ω. An
obvious choice seems to be the following one. Fixing a reduction σ consider the
principal connections G with the connection form γ σ ∈ Ω1(G, p),

γ σ (σ (u) · g)(ξ) = ωp(σ (u))(T r
g−1 · ξ)

for all u ∈ G0, ξ ∈ Tσ(u)·g , g ∈ P+. In other words, we restrict the p-component of
ω to the image of σ and extend it the unique way to a principal connection form.

Clearly, this connection form defines the associated linear connections on all
natural bundles, we call them the Rho-corrected Weyl connections ∇P. They were
perhaps first introduced in [21] and exploited properly in [6]. In the case of
conformal Riemannian structures, these concepts are closely related to the so-called
Wünsch’s conformal calculus, cf. [23].

Theorem 2.4 Consider natural bundle V = G ×P V and a reduction with the Weyl
connection ∇ and its Rho-corrected derivative ∇P. Then
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∇P
ξ v = ∇ξ v + P(ξ) · v (2.32)

∇̂P
ξ v = ∇P

ξ v +
∑

i≥1

(−1)i

i! (adΥ )i(ξ) · v. (2.33)

Proof In order to see the difference between ∇ and ∇P, we can inspect the
expression (2.30) with the choice of the horizontal vector field ξ̃ lifting ξ . Thus
∇ξ v = ξ̃ · v. On the other hand, choosing the lift T σ · ξ̃ on G, we obtain
ω0(T σ · ξ̃ ) = 0 and ω1(T σ · ξ̃ ) represents P(ξ). Equivariancy of v then implies
our formula (2.32) along the entire image of σ .

Let us now consider the horizontal lift ξ̃ of ξ on G with respect to γ σ . Then ∇P
ξ v

is represented by ξ̃ ·v, while ξ̃ ·v+γ σ̂ (ξ̃ ) ·v represents ∇̂ξ v. By the very definition,
ω(σ(u))(ξ̃ ) ∈ g−1. Thus,

γ σ̂ (σ (u))(ξ̃ ) = ωp(T r
expΥ (u) · ξ̃ (σ (u))),

which is just the p-component of Ad((expΥ (u))−1)(ω(σ (u))(ξ̃ )). Now, notice that
ω(σ(u))(ξ̃ ) represents ξ by values in g−1 and the requested formula follows. ��

We should notice that the Weyl connections and the Rho corrected ones coincide
on bundles coming from representations with trivial action of P+. Of course, the
transformation formulae coincide in this case, too.

2.3.4 A Few Examples

We shall go through a few homogeneous models and comment on the general
“curved” situations. In all cases the actual geometric structures are given by the
reductions of the linear frame bundles and the construction of the right Cartan
geometry is a separate issue. We shall come back to this in the fifth lecture and
work with the general choices of the Cartan connections ω here.

Conformal Riemannian Geometry The relevant Cartan geometry can be mod-
elled by the choice G = O(n + 1, 1) (there is some freedom in the choice of the
group with the given graded Lie algebra g) and the parabolic subgroup P as we saw
in detail in the first lecture.

It is a simple exercise now to recover the formulae from Lemma 2.1 by
computing the brackets in the Lie algebra. In our conventions using the coordinate
functions instead of fields, we can rewrite them as (notice α is valued in g1, while
η, ξ have got values in g−1, and s sits in R[w])

∇̂ξ η = ∇ξ η − [Υ, ξ ] · η (2.34)

∇̂ξα = ∇ξα − [Υ, ξ ] · α (2.35)
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∇̂ξ s = ∇ξ s − (−Υ (ξ))ws, (2.36)

where we have picked up just the central component of the bracket in the last line,
viewed as the multiple of the grading element.

Another, but still much more tedious exercise would be to check the conformal
invariance of the tractor connection on T . We shall develop much better tools for
that in the next lecture.

We shall also enjoy much better tools to discuss second or higher order operators.
For example, considering second order operators on densities s ∈ E[w], we may
iterate the Rho-corrected derivative to obtain

gab∇P
a ∇P

b s = ∇a∇as − wgabPabs

and check that this gets an invariant operator for w = 1 − n
2 , which is the famous

conformally invariant Laplacian, the so-called Yamabe operator

Y : E[1− n

2
] → E[−1− n

2
].

Projective Geometry The choice of the homogeneous model is obtained from the
algebra of trace-free real matrices g = sl(n+ 1,R) with the grading

(
z R

n∗
R
n gl(n,R)

)
1
n

Here z = R is the center, the grading element E corresponds to n
n+1 and − 1

n+1 idRn

on the diagonal. We may take G = SL(n + 1,R) and P the subgroup of block
upper triangular matrices. The homogeneous model is then the real projective space
G/P = RP

n. On the homogeneous model, the Weyl connections transform as

∇̂ξ η = ∇ξ η + Υ (η)ξ + Υ (ξ)η

and so they clearly share the geodesics.

For general projective structures on manifolds M , the space of Weyl connections
has to be chosen as a class of all affine connections sharing geodesics with a given
one and they transform then the same way. We shall see that projective geometries
are rare exceptions of parabolic geometries not given by a first order structure on
the manifold.

The analog of the Thomas’ tractors is the natural bundle corresponding to the
standard representation of SL(n+1,R) on T = R

n+1. The injecting part of T is the
line bundle T 1 with the action of the grading element by n

n+1 . The usual convention
says this is the line bundle E[−1]. Then the projecting component is the weighted
tangent bundle TM[−1].
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Almost Grassmannian Geometry This is essentially a continuation of the pre-
vious example. We take G = SL(p, q) and the splitting of the matrices into
blocks of sizes p and q, say 2 ≤ p ≤ q. Unlike the projective case, here the
geometry is determined by reducing the structure group of the tangent bundle to
R× SL(p,R)× SL(q,R). This corresponds to identifying the tangent bundle with
the tensor product of the auxiliary bundles V∗ and W of dimensions p and q,
together with the identification of their top degree forms ΛpV � ΛqW∗.

Thus, we may use the abstract indices and write V = EA, W = EA′ . Then
the tangent bundle is EA′

A and the formula for the brackets in the Lie algebra says
[[Υ, ξ ], η]A′A = −ξA′B Υ B

B ′η
B ′
A −ξB

′
A Υ B

B ′η
A′
B . The Weyl connections are tensor products

of connections on V∗ and W (but not all of them). The right formula for the change
of the Weyl connections is

∇̂A
A′η

B ′
B = ∇A

A′η
B ′
B + δB

′
A′Υ

A
C′η

C′
B + δABΥ

C
A′η

B ′
C .

The analog to the Thomas’ tractors comes from the standard representation of G
on T = R

p+q = V ⊕W . Thus, fixing a Weyl connection, we get the tractors as
couples (vA,wA′) with the transformation rules

v̂A = vA − Υ A
B ′w

B ′ , ŵA′ = wA′ .

Notice the special case p = q = 2 which provides (the split real form of)
the Penrose’s spinor presentation of tangent bundle and the two-component four-
dimensional twistors T . Indeed, so(6,C) = sl(4,C) and so(4,C) splits into sum of
two sl(2,C) components. Thus, up to the choice of the right real form, the almost
Grassmannian geometries with p = q = 2 correspond to the four-dimensional
conformal Riemannian geometries.

The twistor parallel transport (connection) is then given by the formula

(∇T )AA′

(
vB

wB ′

)
=

(∇A
A′v

B + PAB
A′C′w

C′

∇A
A′w

B ′ + δB
′

A′ v
A

)

and we shall see that this is the right formula for the standard tractor connection for
the almost Grassmannian geometries in all dimensions.

The reader can find many further explicit examples in the last two chapters of
[11], including those with non-trivial gradings on TM .

2.4 Elements of Tractor Calculus

In order to show how simple and general the basic functorial constructions and
objects are, we shall focus for a while on general Cartan geometries with Klein
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models G→ G/H without any further assumptions. But we shall come back to the
parabolic and, in particular, conformal geometries in the end of this lecture.

2.4.1 Natural Bundles and Tractors

Let us come back to the functorial constructions on homogeneous spaces G →
G/H mentioned in the first lecture. As always, h ⊂ g are the Lie algebras of H and
G.

For any Klein geometry G/H , there is the category of the homogeneous
vector bundles, where the objects are the associated bundles V = G ×H V. All
morphisms on G/H are the actions of elements of G and these are mapped to the
obvious actions on V . Further morphisms in this category are the linear mappings
intertwining the actions of the elements of G.

Clearly, there is the functor from the category of H -modules mapping the mod-
ules V to the associated bundles V = G ×H V, while any module homomorphism
φ : V→W provides the morphisms [[u, v]] �−→ [[u, φ(v)]] between these bundles.

The latter functorial construction extends obviously to the entire category CG/H

of all Cartan geometries modelled on G/H . The morphisms have to respect the
Cartan connections ω on the principal fiber bundles.

In this setting, a natural bundle is a functor V : CG/H → VB valued in the
category of vector bundles. The functor sends every Cartan geometry (G → M,ω)

to the vector bundle VM → M over the same base (so it is a special case of the so-
called gauge-natural bundles, see [17]). Moreover, V has the property that whenever
there is a morphism between objects of CG/H , Φ : (G → M,ω) → (G̃ → M̃, ω̃)

covering f : M → M̃ , then there is the corresponding vector bundle morphism
VΦ : VM → VM̃ covering f . This is just an explicit description of the functoriality
property with respect to the category of Cartan geometries. The main point is that
each representation of H produces such a functor for all general Cartan geometries
of the given type G/H .

At the same time, the Maurer–Cartan equation dω + 1
2 [ω,ω] = 0, valid on the

homogeneous model, is no more true in general and we obtain the definition of the
curvature κ of the Cartan geometries (G → M,ω) instead:

κ = dω + 1

2
[ω,ω]. (2.37)

The fundamental Theorem 2.1 immediately reveals that a general Cartan geom-
etry is locally isomorphic to its homogeneous model, if and only if its curvature
vanishes identically.

We should also notice that there is the projective component of the curvature in
g/h which we call the torsion. Thus, the Cartan geometry is torsion free if the values
of its curvature κ are in h. We shall see later that the normalizations of Cartan
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geometries consist in prescribing more complicated curvature restrictions, which
always depend on the algebraic features of the Klein models.

As already mentioned, we are interested in specific functors on Cartan geometries
(G, ω) of the form G×H −, referring to the associated bundle construction given for
each fixed representation of H . See [11, section 1.5.5] for a detailed discussion on
the topic of natural bundles on Cartan geometries. Specializing to representations of
H which come as restrictions of representations of the whole group G leads to the
following definition of tractor bundles below.

Recall the sections v of natural bundles V are identified with equivariant
functions v : G → V, i.e., v(u · g) = g−1 · v(u). In particular, consider
V = g/h = R

n with the truncated adjoint action of H (i.e., the induced action
on the quotient). The Cartan connection ω allows us to identify every tangent vector
ξ ∈ TxM with the equivariant function v : G → V, u �−→ ω(ξ̃(u)) for an arbitrary
lift ξ̃ of ξ . This is the identification of the tangent bundle TM � VM . (And it
completely justifies our earlier quite sloppy usage of elements in g−1 instead of
tangent vectors, etc.)

So in this way, the Cartan connection provides soldering of the tangent bundle,
i.e., each element u ∈ G in the fiber over x ∈ M can be viewed as a frame of
TxM . In general, different elements u may represent the same frame, depending on
whether the truncated adjoint action of H on g/h has got a non-trivial kernel.

Definition 2.2 The tractor bundles are natural vector bundles associated with
the Cartan geometry (G → M,ω) of type G → G/H , via restrictions of a
representations of G to the subgroup H .

The unique principal connection form ω̃ ∈ Ω1(G̃)→ g on the extended principal
G-bundle G̃ = G ×H G extending the Cartan connection ω on G induces the so-
called tractor connections ∇V on all tractor bundles VM .

Notice that G̃ is indeed a G-principal fiber bundle with the action of G defined
by the right multiplication on the standard fiber G. Moreover, u �−→ [[u, e]]
provides the canonical inclusion of the principal fiber bundles G ⊂ G̃. The requested
invariance of ω̃, together with the reproduction of the fundamental vector fields,
define the values of ω̃ completely from its restriction ω̃ = ω on T G.

In fact, we can equivalently define the tractor connections on the tractor bundles
directly (by specifying their special properties), instead of referring to the Cartan
connections on G. This was also the approach by Thomas in [22]. The equivalence
of such approaches for |1|-graded parabolic geometries was noticed and exploited
in [14]. In full generality, the construction, normalization, and properties of tractor
connections were derived in [8] (see also [11, Sections 1.5 and 3.1.22]).

2.4.2 Adjoint Tractors

A prominent example of tractor bundles arises when considering the Ad represen-
tation of the Lie group G on its Lie algebra g and restricting it to H . Applying the
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corresponding associated bundle construction G ×H − on the following short exact
sequence of Lie algebras (with the obvious Ad actions)

0 → h→ g→ g/h→ 0

we obtain

0 → G ×H h→ AM π−→ TM → 0 , (2.38)

where we have identified TM ∼= G ×H g/h. The middle term AM := G ×H g is
called the adjoint tractor bundle.

Let us come back to the curvature (2.37) of the Cartan geometry now. Clearly
we may evaluate κ on the so-called constant vector fields ω−1(X) for all X ∈ g.
Consider X ∈ h and any Y ∈ g. Then ω−1(X) is the fundamental vector field ζX
and dω(ζx,−) = iζX dω = LζXω = − ad(X) ◦ ω, by the equivariancy of ω. Thus,

κ(ω−1(X), ω−1(Y )) = κ(ω−1(X), ω−1(Y )) = − ad(X)(Y )+ [X, Y ] = 0.

We have concluded that, actually, the curvature is a horizontal 2-form which can be
represented by the equivariant curvature function

κ : G → Λ2(g/h)∗ ⊗ g,

κ(X, Y )(u) = −ω([ω−1(X), ω−1(Y )](u))+ [X, Y ].
(2.39)

In particular, we understand that the curvature descends to a genuine 2-form on the
base manifold M valued in the adjoint tractors, i.e., κ ∈ Ω2(M,AM).

There is much more to say about the adjoint tractors, we shall summarize several
observations in the following two theorems (both were derived in [8], see also [11]).

Theorem 2.5

1. There is the (algebraic) Lie bracket { , } : AM × AM → AM inherited from
the Lie bracket on g.

2. The adjoint tractors are in bijective correspondence with the right-equivariant
vector fields in X (G)H , and the Lie bracket of vector fields on G equipsAM with
the differential Lie bracket [ , ], which is compatible with the Lie bracket on the
tangent bundle TM , i.e., π [ζ, η] = [πζ, πη].3

3. If V is a tractor bundle, then there is the natural map •: AM × VM → VM,
corresponding to the action of g given by the G-representation V. Moreover,
{s1, s2} • t = s1 • s2 • t − s2 • s1 • t .

4. The bracket { , } and the actions • are parallel with respect to the tractor
connections ∇A, ∇V , i.e., for s ∈ AM and v ∈ VM we know

3Recall that π : AM→ TM is the projection from sequence (2.38).
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∇A
ξ {s1, s2} = {∇A

ξ s1, s2} + {s1,∇A
ξ s2},

∇V
ξ (s • v) = (∇A

ξ s) • v + s • (∇V
ξ v).

5. For every tractor bundle V , the value of the curvature RV of the tractor
connection ∇V is (for all vector fields ξ , η on M and sections v of VM)

RV (ξ, η)(v) = κ(ξ, η) • v,

where κ ∈ Ω2(M,AM) is the curvature of the Cartan connection.

Proof The first claim is obvious just by definition. The Lie bracket on the Lie
algebra is Ad-equivariant.

The adjoint tractors are smooth equivariant functions G → g. At the same time
ω makes T G trivial. Now all ξ ∈ T G correspond to ω ◦ ξ : G → g and the right-
invariant fields ξ correspond just to the adjoint tractors. Since the Lie brackets of
related fields are again related (here with respect to the principal actions of the
elements in H ), the Lie bracket restricts to X (G)H . Moreover, the right-invariant
fields are projectable onto vector fields on M , and the same argument applies to
brackets of the projections.

The third claim also follows directly from the definitions. Indeed, writing λ for
the representation λ : H → GL(V), and λ′ for its differential at the unit, we recall
exp(t Ad(g)(X)) = g exp(tX)g−1 and thus, differentiating we arrive at

λ′(Ad(g)(X))(λ(g)(v)) = λ(g)(λ′(X)(v)).

Consequently, the bilinear map g×V→ V defined by λ′ is G equivariant, it induces
the map • : AM×VM → VM and the bracket formula is just the defining property
of a Lie algebra representation, in this picture.

The next claim is a straightforward consequence of the fact that both { , } and •
are operations induced by G-equivariant maps. Thus we may view them as living on
the associated bundles to the extended G-principal fiber bundle G̃. The formulae are
just simple properties of the induced linear connections associated with a principal
connection.

The same argument holds true for the last claim as well. ��
Notice also the definition of the operation • extends to all natural bundles V , if

we restrict the tractors only to the natural subbundle kerπ ⊂ AM of all vertical
right invariant vector fields on G, including the bracket compatibility property.
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2.4.3 Fundamental Derivative

Consider the natural bundle V := G ×H V associated with an H -representation λ

on V. Then, viewing the adjoint tractors as right-invariant vector fields on G, we can
define the differential operator D : AM× VM → VM by the formula

Ds v = s · v,

where s ∈ AM is any tractor in X (G)H differentiating the function v : G → V. A
simple check,

s(u · h) · v = (T rh · s(u)) · v = s(u) · (v ◦ rh) = s(u) · (λh−1 · v) = λh−1(s(u) · v),

reveals that the result is again a smooth V-valued H -equivariant mapping on G. We
call this operator D the fundamental derivative.

Notice that extending the tangent bundle to the adjoint tractors, we always have a
canonical way of “differentiating” on all natural bundles for all Cartan geometries.
As we may expect, there will be a lot of redundancy in such differentiation, since the
vertical tractors in the kernel of the projection AM → TM must act in an algebraic
way due to the equivariance of the functions v.

Let us summarize some simple but very useful consequences of our definitions:

Theorem 2.6

1. The fundamental derivative on the smooth functions (i.e., we consider the trivial
representation V = R) is just the derivative in the direction of the projection:

Dsf = π(s) · f .

2. If the adjoint tractor s is vertical, i.e., π(s) = 0, then for every section v of a
natural bundle VM ,

Ds v = −s • v.

3. The fundamental derivative D is compatible with all natural operations on
natural bundles (i.e., those coming from H -invariant maps between the corre-
sponding representation spaces). For example, having sections v, v∗, and w of
natural bundles V , V∗,W , and a function f

Ds(f v) = (π(s) · f )v + f Ds v

Ds(v ⊗ w) = Ds v ⊗ w + v ⊗ Ds w

π(s) · v∗(v) = (Ds v
∗)(v)+ v∗(Ds v).

4. If V is a G-representation, i.e., V is a tractor bundle, then
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∇V
π(s)v = Ds v + s • v.

Proof The equivariant functions G → R are just the compositions of functions f

on the base manifold M with the projection p : G → M . Thus the first property is
obvious, s · (f ◦ p) = (Tp · s) · f = π(s) · f .

If s is vertical, then s(u) = ζZ(u), where ζZ is a fundamental vector field given
by Z ∈ h. Thus,

s(u) · v = d

dt
|0rexp tZ(u) · v = −λ′(Z)(v(u)) = (−s • v)(u).

The third property is again obvious—as long as the natural operations come from
(multi)linear H -invariant maps, these will be compatible with the differentiations of
functions valued in those spaces, in the directions of the right-invariant vector fields.

In order to see the last formula, consider a vector ξ ∈ TuG ⊂ TuG̃, covering a
vector τ ∈ TxM . Then the horizontal lift of τ at the frame u ∈ G ⊂ G̃ is ξ − ζω̃(ξ) =
ξ − ζω(ξ). But the tractor connection is defined as the derivative of the equivariant
function v in any frame of G̃ in the direction of the horizontal lift and we obtain
exactly the requested formula interpreting ξ as the value of the right-invariant vector
field s (i.e., the adjoint tractor viewed as the equivariant function at u is expressed
just via ω(ξ)). ��

If we leave the slot for the adjoint tractor in the fundamental derivative free, we
obtain the operator D : VM → A∗M ⊗ VM , and this can be obviously iterated,

Dk : VM →⊗kA∗M ⊗ VM.

Of course, there is a lot of redundancy in these higher order operators compared
to standard jet spaces of the sections. In the case of the first order, we can identify the
first jet prolongations J 1V of natural bundles as the natural bundles associated with
the representations J 1

V which are much smaller H -submodules in the modules
V ⊕ Hom(g,V) corresponding to the values of the fundamental derivative. This
is a useful observation because it implies that all invariant first order differential
operators on the homogeneous models extend naturally to the entire category of the
Cartan geometries with this model.

Before returning to the parabolic special cases, let us remark two more facts. The
proofs are using similar arguments as above and the reader can find them in [11,
sections 1.5.8, 1.5.9].

Expanding the formula for the exterior differential in the defining equation of the
curvature κ , we can express the differential bracket on AM:

[s1, s2] = Ds1 s2 − Ds2 s1 − κ(π(s1), π(s2))+ {s1, s2}
= ∇A

π(s1)
s2 −∇A

π(s2)
s1 − κ(π(s1), π(s2))− {s1, s2}.

(2.40)
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There is the generalization of the well known Bianchi identities for curvature in
the general Cartan geometry setting:

∑

cyclic

(
∇A
ξ1
(κ(ξ2, ξ3))− κ([ξ1, ξ2], ξ3)

)
= 0 (2.41)

for all vector fields ξ1, ξ2, ξ3, or its equivalent form for triples of adjoint tractors:

∑

cyclic

({s1, κ(s2, s3)} − κ({s1, s2}, s3)+ κ(κ(s1, s2), s3)+ (Ds1 κ)(s2, s3)
) = 0.

(2.42)
Similarly, the Ricci identity has got the general form for every section v of a natural
bundle V:

(D2 v)(s1, s2)− (D2 v)(s2, s1) = −Dκ(s1,s2) v + D{s1,s2} v. (2.43)

Notice, how easy we can read the classical identities for the affine connec-
tions from the latter two. Since the Cartan geometry is modelled on R

n =
Aff(n,R)/GL(n,R) and the Lie algebra decomposes into direct sum of gl(n,R)-
modules g−1 = R

n and g0 = gl(n,R), all the formulae decompose by homo-
geneities, AM = TM ⊕ P 1M (here P 1M is the linear frame bundle of TM), the
bracket { , } becomes trivial on TM , while the mixed bracket is just the evaluation.
Thus, the Bianchi identity can be evaluated on tangent vectors and it decomposes
into the two classical Bianchi identities for the torsion free connections, while it
gets the more complex quadratic form in general. Similarly for Ricci, evaluated on
s1 and s2 in TM . If the torsion is zero, κ has got only vertical values and thus the
first term on the right-hand side is the algebraic action of the curvature (with plus
sign), while the other one vanishes.

2.4.4 Back to Parabolic Geometries

Recall the parabolic cases always come with the splitting

g = g− ⊕ p,

where g− is a subalgebra (but only a g0 submodule). As before, we shall restrict
ourselves to the |1|-graded case, although the below formulae easily extend to the
general case.

Consider the category of parabolic geometries with the model G/P and a P -
representation V which decomposes with respect to the action of the grading
element E ∈ g0 into V = V0 ⊕ · · · ⊕ Vk . The adjoint tractor bundle has got the
composition series
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AM = TM ⊕ End TM ⊕ T ∗M,

where the middle term is a subbundle in T ∗M ⊗ TM corresponding to the group
G0 = P/P+. Again, T ∗M is the injecting part while TM is the projecting part, and
the algebraic bracket { , } maps T ∗M × TM → End TM .

Once we fix a Weyl connection ∇, the Rho-tensor becomes a one-form valued in
T ∗M ⊂ AM , we get the Rho-corrected derivative ∇P, all P -modules get split into
G0-irreducible components which can be grouped according to the actions of the
grading element in g0, etc.

Theorem 2.7 The fundamental derivative D on V is given in terms of any choice of
Weyl connection by

(Ds v)i = (∇P
π(s)v)i− s0 •vi− s1 •vi−1 = ∇π(s)vi− s0 •vi+ (P (π(s))− s1)•vi−1,

where s = (π(s), s0, s1) and we indicate the splitting V = V0 ⊕ · · · ⊕ Vk with
respect to the action of the grading element by the extra lower indices.

If V is a tractor bundle, then the tractor connection is given by

(∇V
ξ v)i = (∇P

ξ v)i + ξ • vi+1 = ∇ξ vi + P(ξ) • vi−1 + ξ • vi+1.

Proof Both formulae are direct consequences of the general formulae and the
definitions. The reader may also consult [11, section 5.1.10]. ��

2.4.5 Towards Effective Calculus for Conformal Geometry

Now, with the general concepts and formulae at hand, it is obvious that the
Thomas’ tractors come equipped with the nice tractor connection on all conformal
Riemannian manifolds in the sense of Cartan geometries and the connection will
be always given by the formulae in Theorem 2.2, which are manifestly invariant.
Moreover, we know that the curvature of the Thomas’ tractor connection on the
sphere (with the Maurer–Cartan form ω) is zero.

But we still cannot be happy enough, for at least two reasons. First, we want to
define the geometries by a structure on the tangent bundle and we shall come to
that question in the next lecture. Second, we need some more effective manifestly
natural operators than the fundamental derivative.

We shall only briefly comment on the latter problem and advise the readers to
look at [12] for much more information.

Already Tracy Thomas constructed the differential operator D which is invariant
for σ ∈ E[1], with values in T (we follow the usual convention of [12] and write
the projecting part in the top, while the injecting part is in the bottom of the column
vector). We may follow our prolongation of the “conformal to Einstein” equation
from the second lecture. Starting with σ in E[1], we first put μa = ∇aσ in Ea[1] and
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then, contracting the equation ∇a∇bσ +Pabσ +gabρ = 0 we see−nρ = ∇a∇aσ +
Pa

aσ . Thus, adjusting the 1/n factor, we arrive at the operator D : E[1] → T

σ
D−→

⎛

⎝
nσ

n∇aσ

−(∇a∇a + Pa
a)σ

⎞

⎠ . (2.44)

This Thomas’ D-operator extends to all densities E[w]. For f ∈ E[w] we define
Df in T [w − 1] as

Df =
⎛

⎝
(n+ 2w − 2)wf
(n+ 2w − 2)∇af

−(∇a∇a + wPa
a)f

⎞

⎠ . (2.45)

In particular, we should notice the following facts. For w = 0, the first non-zero
slot in the column is (n− 2)∇af . Thus, this operator must be invariant and we have
recovered the usual differential of functions.

A much more interesting choice is w = 1 − n
2 since this kills the first two

components and the third one gets manifestly invariant. This way we get the
second order operator ∇a∇a + 2−n

2 Pa
a and we recognize the celebrated Yamabe

operator mentioned already in the third lecture. (Just checking the pedestrian way
the invariance of this operator shows that the general theory was worth the effort!)

This example indicates where the genuine tractor calculus goes with the aim to
construct manifestly invariant operators in an effective way.

2.5 The (Co)homology and Normalization

We shall continue with parabolic P ⊂ G and the Klein model G → G/P , mainly
restricting to |1|-graded g. Thus g = g− ⊕ g0 ⊕ p+ = g−1 ⊕ g0 ⊕ g1.

Recall that any choice of the reduction σ : G0 = G/ exp g1 → G of the structure
group of a Cartan geometry (G → M,ω) provides the pullback σ ∗(ω) which splits
into the soldering form θ ∈ Ω1(G0, g−1) (independent of the choice of σ ), the Weyl
connection ∇a , and the Rho-tensor Pab, which is a T ∗M valued one-form on M .
Moreover, the adjoint tractor bundle splits as

AM = TM ⊕A0M ⊕ T ∗M.

Our aim is now to find some suitable normalization allowing to construct a
natural Cartan connection from the data on G0. Once we succeed, the tractor
calculus related to this Cartan connection will become a natural part of the geometry
defined on G0. We shall see that the crucial tool at our disposal is related to the
cohomological properties of the Lie algebras in question. There are two equivalent
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ways: either to normalize the curvature of the Cartan connection or to normalize the
curvature of a suitable tractor connection. We shall show the first one, the other one
was first achieved in [8], and both are explained in full generality in [11, chapter 3].

2.5.1 Deformations of Cartan Connections

The obvious idea is to quest for normalizations which will make the curvatures of
the Cartan connections as small as possible. In particular, this will ensure that the
right Cartan connections on homogeneous models will be the Maurer–Cartan forms.

Consider two Cartan connections on the same principal bundle G → M , ω and
ω̃. Then their difference Φ = ω̃ − ω clearly vanishes on all vertical vectors and is
right-invariant. Thus, we deal with a one-form Φ ∈ Ω1(M,AM).

In the |1|-graded case, let us understand the “geometry” on M as the choice of the
G0-principal bundle G0 together with the soldering form θ , i.e., we adopt the most
classical concept of a G-structure as a reduction of the first order linear frame bundle
P 1M to the structure group G0. (We already mentioned in the examples in lecture
3 that the projective geometries are different.) It is obvious from our definitions that
the two Cartan connections will define the same structure in the latter sense if and
only if their difference has got values in p. Thus, in our |1|-graded cases, Φ should
be in Ω1(M,A0M ⊕ T ∗M).

In the general situation with longer gradings, we have to be much more careful
with the definition of the G0-structure which has to be generalized to the filtered
manifolds. In brief, the tangent space inherits the filtration by p-submodules of g−
and a full analog of the classical G-structure has to be considered on the associated
graded vector bundle Gr TM . We shall not go to any details here, the reader can find
a detailed exposition in [11, chapter 3].

As we know, the curvature can be also viewed as the curvature function κ : G →
Λ2(g/p)∗ ⊗ g, and (g/p)∗ = p+ via the Killing form on g. Thus, we should like to
know how κ changes if we deform the Cartan connection by Φ in Ω1(M,A0M ⊕
T ∗M).

Let us write κ� for the component of the curvature function of homogeneity �,
i.e., κ� ∈ Λ2g∗−1 ⊗ g�−2 for the |1|-graded parabolic geometries.

Lemma 2.2 Assume Φ ∈ Ω1(M,A0M ⊕ T ∗M) is of homogeneity � = 1 or
� = 2. Then the components of the curvature of homogeneities lower than � remain
unchanged, while the corresponding change of the g−1 or g0 component of the
curvature, viewed as function valued in Λ2g∗−1 ⊗ gi with i = −1 or 0, respectively,
is given by the formula

(κ̃ − κ)i(X, Y ) = [X,φ(Y )] − [Y, φ(X)],

where φ is the equivariant function G → g∗−1 ⊗ (g0 ⊕ g1) representing Φ.



2 Notes on Tractor Calculi 61

Proof Considering vector fields ξ , η ∈ T G,

ω̃(ξ) = ω(ξ)+ φ(ω(ξ)).

Thus, hitting the equation with the exterior derivative, we obtain

d ω̃(ξ, η) = dω(ξ, η)+ dφ(ξ)(ω(η))− dφ(η)(ω(ξ))+ φ(dω(ξ, η)),

while

[ω̃(ξ), ω̃(η)] = [ω(ξ), ω(η)] + [φ(ω(ξ)), ω(η)] + [ω(ξ), φ(ω(η))] + [φ(ω(ξ)), φ(ω(η))].

Comparing the curvatures (as g-valued two forms on G),

(κ̃ − κ)(ξ, η) = dφ(ξ)(ω(η))− dφ(ω(η))(ξ)+ φ(dω(ξ, η))

− [φ(ω(ξ)), ω(η)] + [ω(ξ), φ(ω(η))] + [φ(ω(ξ)), φ(ω(η))].

Now, inspecting the homogeneities for φ valued in gi (i = 0 corresponds to
homogeneity 1, while i = 1 yields homogeneity 2), the first three terms will land
in gi , while the very last term is either zero (if i = 1) or sits in gi again (if i = 0).
Thus only the two remaining brackets have got the values in gi−1 and we obtain just
the requested result if we write the vector fields as functions on G with the help of
ω. ��

2.5.2 Homology and Cohomology

The formula for the lowest homogeneity deformation of the curvature is a special
instance of a general algebraic construction, which works for arbitrary Lie algebra
g and g-module V. We define the k-chains Ck(g,V) as

Ck(g,V) := Λkg⊗ V.

For each k > 0 we define the linear operator δk : Ck → Ck−1

δk(X1 ∧ · · · ∧Xk ⊗ v) =
∑

i

(−1)i X1 ∧ · · · ∧Xk︸ ︷︷ ︸
omit i-th

⊗Xi · v

+
∑

i<j

(−1)i+j [Xi,Xj ] ∧X1 ∧ · · · ∧Xk︸ ︷︷ ︸
omit i-th, j -th

⊗v .

Then δ2 = 0 and thus δ acts on the chain complex C(g,V) as a boundary operator.
A direct check reveals that δ is always a g-module homomorphism. Therefore we
can define the homology groups
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Hk(g,V) = ker δk
im δk+1

and they are again g-modules.

Note that C0(g,V) = V and C1(g,V)
δ1−→ C0(g,V) is given by δ1(X⊗v) = X ·v

which implies H0(g,V) = V/〈X · v〉 = V/g · V.
In particular, considering the adjoint representation, H0(g, g) = g/[g, g].
Similarly to the homology, we can consider the dual construction for cochains

Ck(g,V) = Λkg∗ ⊗ V and coboundaries ∂k : Ck(g,V)→ Ck+1(g,V) given by

∂kϕ(X0, . . . , Xk ⊗ v) =
∑

i

(−1)iXiϕ(X0, . . . , Xk︸ ︷︷ ︸
omit i-th

)⊗Xi · v

+
∑

i<j

(−1)i+j ϕ([Xi,Xj ],X1, . . . , Xk︸ ︷︷ ︸
omit i-th and j -th

)⊗ v .

Then ∂ provides a coboundary operator on the complex of cochains, i.e., ∂2 = 0.
The operators ∂ are again g-module homomorphisms and we define the cohomology
groups

Hk(g,V) = ker ∂k
im ∂k−1

.

Again, the zero cohomology is easy to compute. Clearly ∂0(v)(X0) = X0 · v,
while

∂1ψ(X, Y ) = X · ψ(Y )− Y · ψ(X)− ψ([X, Y ]).

Thus, H 0(g,V) = V
g ⊂ V is the kernel of the g-action. If we choose V = g with

the adjoint action, then H 1(g, g) = {all derivatives}/{inner derivatives}.
Now, the crucial observation is that Lemma 2.2 expresses the lowest homo-

geneity of the deformation of the curvature of our Cartan geometries, caused by
φ ∈ g∗−1 ⊗ gi , via the coboundary differential ∂φ (the third term is not there in our
case since we deal with |1|-graded geometries).

For general parabolic geometries we also consider the curvature as an equivariant
function κ : G → C2(g− ⊗ g) and g is a g−-module with the adjoint action. Even
in full generality, the Lemma 2.2 holds true, i.e., the lowest homogeneity of the
curvature deformation caused by φ is given by ∂φ, see [11, section 3.1.10].
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2.5.3 Normalization of Parabolic Geometries

We should be interested in the cohomologies Hk(g−, g), in particular in the second
degree since the curvature has got the values in the second degree cochains. Recall
Lemma 2.2 which discussed how all possible deformations of the Cartan curvature
(with positive homogeneities) impact the curvature. In particular, we learned there
that the available deformation of the curvature fills the image of ∂ in the second
degree cochains (in the lowest non-trivial homogeneity).

Now the crucial moment comes. Consider parabolic geometries with the homo-
geneous model G/P , g = g− ⊕ g0 ⊕ p+ and a g-module V. Recall (g/p)∗ ∼= g∗− ∼=
p+. Thus, the dual of the space of cochains Ck(g−,V) is Ck(p+,V∗) and there is
the dual mapping ∂∗ : Ck+1(p+,V∗) → Ck(p+,V∗). It was Kostant who noticed
in his celebrated paper [18] that there always is a scalar product 〈 , 〉 on the space of
cochains Ck(p+,V∗) such that, identifying Ck(p+,V∗) with Ck(g−,V), the latter
dual map ∂∗ becomes the adjoint operator to ∂ . Moreover its formula then coincides
with the boundary operator δ. We shall follow the (confusing) convention by many
authors and call this adjoint ∂∗ the codifferential. In particular, ∂∗ is a P -module
homomorphism.

Now, we equivalently consider

Hk(g−,V) = Hk(p+,V∗) = ker ∂∗

im ∂∗

and, applying the standard algebraic Hodge theory, we get the decompositions (of
G0-modules)

Ck(g−,V) = im ∂∗ ⊕ ker ∂ = ker ∂∗ ⊕ im ∂ = im ∂∗ ⊕ ker�⊕ im ∂, (2.46)

where � ≡ ∂∂∗ + ∂∗∂ (thus the intersection of the kernels of ∂ and ∂∗). This means
that the cohomology Hk(p+,V∗) = Hk(g−,V) equals to the kernel of the algebraic
Hodge Laplacian operator �.

Further, we see that ker ∂∗ is always the complementary subspace to im ∂ and in
view of Lemma 2.2 we adopt the following normalization.

Notice ∂∗ is a P -module homomorphism and so it induces natural transfor-
mations between the corresponding natural bundles. In particular, it makes sense
to apply ∂∗ to the curvatures of our Cartan connections, i.e., there is the natural
algebraic operator

∂∗ : Λ2T ∗M ⊗AM → T ∗M ⊗AM

which preserves the homogeneities.

Definition 2.3 Let (G → M,ω) be a parabolic geometry with the homogeneous
model G → G/P , g = g−k ⊕ · · · ⊕ gk . We say that ω is a regular parabolic
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geometry, if its curvature κ has got only positive homogeneities. The geometry is
called normal, if its curvature is co-closed, i.e., ∂∗κ = 0.

Let us stress the following observation. The curvature of any normal parabolic
geometry lies in the kernel of ∂∗ and thus it projects to the natural bundle defined by
the cohomology H 2(g−, g). This is the so-called harmonic curvature κH ∈ G ×P

H 2(g−, g).
Let us restrict again our attention to |1|-graded geometries. First notice, the

regularity condition is empty in this case. Indeed, the decomposition of κ into
its homogeneity components coincides with the decomposition by its values, i.e.,
values in gi are of homogeneity i + 2, i = −1, 0, 1.

Further, there is a nice consequence of the Bianchi identity (2.42). Consider
the component κi of the lowest homogeneity �. Then the four terms in (2.42) are
of homogeneity at least, � − 1, � − 1, �, �, respectively. But each homogeneity
component in (2.42) has to vanish independently. Finally, the first two terms
represent exactly the differential ∂κ .

We conclude that the lowest homogeneity non-zero component of the curvature
should be closed and thus, for normal geometries it must coincide with its harmonic
projection. Moreover, if all these harmonic components are zero, then we conclude
(by induction using the previous result) that the entire curvature κ must vanish,
too. These results hold true even for general parabolic geometries, the reader may
consult [11, section 3.1.12].

Now we are ready to manage the normalization of the |1|-graded parabolic
geometries with g = g−1 ⊕ g0 ⊕ g1. Given any G0-principal bundle G0 → M

with the soldering form θ ∈ Ω1(M, g−1), i.e., a classical G0-structure, we consider
the fiber bundle G = G0 × exp g1 and equip it with the obvious principal action of
P = G0 � exp g1.

If we choose any principal connection γ on G0, then θ⊕γ is a Cartan connection
on G0 ⊂ G and choosing any P ∈ Ω1(M, T ∗M), there is exactly one Cartan
connection ω on G coinciding with θ ⊕ γ ⊕ P on T G0 ⊂ T G.

The connection is automatically regular and the lowest component of its curva-
ture can have homogeneity 1. It is a simple exercise to see that this component will
coincide with the torsion T of the connection γ (e.g., viewed as the torsion part of
the curvature of the Cartan connection θ ⊕ γ ). Moreover, changing the inclusion of
G0 → G, i.e., choosing a Weyl connection for ω, this torsion part does not change
at all.

We know that for the normal Cartan connections, this torsion has to coincide
with its harmonic part. Moreover, Lemma 2.2 says that we can modify the Cartan
connection ω by a homogeneity one deformation Φ so that this condition will be
satisfied.

In fact, this only recovers the very classical results about the distinguished
connections with special torsions on G-structures.

For example, in conformal Riemannian geometry, there is no cohomology in
homogeneity one and thus we may always find torsion free connections. This is,
of course, no surprise since we may take any Levi-Civita connection of one of
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the metrics in the class. But for the almost Grassmannian geometries with p ≥
q ≥ 3, all the cohomology appears in homogeneity one only (with two irreducible
components) and thus connections with torsions are unavoidable in general, unless
we deal with the homogeneous models.

Next, we may assume that we have chosen the above connection γ in such a
way that its torsion is harmonic. In order to see the link between the curvature of
γ and the curvature κ of ω, consider the Cartan connection ω̃ on G which would
be given by the choice P = 0. The Cartan connections θ ⊕ γ and ω̃ are related by
the inclusion G0 → G and thus the curvature κ̃ , restricted to G0 coincides with the
curvature T +R of θ⊕γ . Thus, Lemma 2.2 says (with the deformation P = ω− ω̃)
that the homogeneity two component of the curvature of ω is

κ0 = R + ∂P.

Hitting this equality by ∂∗ gives

∂∗κ0 = ∂∗R + ∂∗∂P.

But by homogeneity argument, ∂∗P would have values in g2 and thus vanishes
automatically. Thus, the second term in the latter equation equals �P and the
normalization condition will be satisfied if we choose P such that

�P = −∂∗R. (2.47)

The final crucial observation is that the Laplacian acts by non-zero constant
multiples on all irreducible components, except the harmonic ones. But we want
to invert � on im ∂∗, which cannot include any harmonic components. The final
formula for P is

P = −�−1∂∗R. (2.48)

Summarizing, in order the construct the normal Cartan connection ω on a
manifold equipped with the relevant G0-structure, we first choose any connection
γ with harmonic torsion. Then we consider its curvature R, apply the codifferential
and compute the right coefficients for each of its irreducible components. There are
effective tools in the representation theory allowing to compute them easily via the
so-called Casimir operators. We have no space to go into details here.

Finally, there is the question about the uniqueness of our construction. The
answer is again hidden in cohomologies. If there are no positive homogeneity
components in H 1(g−1, g), all our choices of the deformations in both steps were
unique. This is the case for nearly all |1|-graded geometries. The only exceptions are
the projective geometries (and their complex versions), where we have to choose one
of the connections in the first step to define the structure. Then the Cartan connection
is already given uniquely via the next step in our construction.
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In the categorical language, there is the subcategory of the regular and normal
Cartan geometries, and this subcategory is equivalent to the category of the
infinitesimal G0-structures on manifolds, up to some rare exceptions due to the
existence of positive homogeneities in first cohomologies in some examples (where
a similar equivalence exists, too).

In conformal Riemannian geometry, i.e., g = so(n + 1, 1), there is no positive
homogeneity first cohomology, while the entire second cohomology is concentrated
in homogeneity two (except of dimension n = 3, where it is homogeneity three).
The operator ∂∗ is just the trace, so the image on the curvature of a Levi-Civita
connection is the Ricci tensor. The formula for P reflects the right choices of the
constants in the action of �, while the invariant Weyl part of the curvature (shared
by all Weyl connections) is R + ∂P, the harmonic component in all dimensions
n > 3. Of course, the geometry is locally isomorphic to the conformal sphere if and
only if this Weyl curvature vanishes.

We do not have space in this lecture to inspect further examples and detailed
computations. The readers may look up many of them in [11], a few hundreds of
pages of examples and details for general parabolic geometries are there in chapters
3 through 5.

2.6 The BGG Machinery

As well known, the linearized theories in Physics usually appear as locally
exact complexes of differential operators. A lot of attention was devoted to this
phenomenon in Mathematics, too. Already in the early days people around Gelfand
or Kostant knew that on the Klein models, the existence of such complexes is
an algebraic phenomenon related to homomorphisms of Verma modules (which
were understood as topological duals of the infinite jet prolongations of the natural
bundles), cf. [4, 19].

The main message of this series of lectures is to show how remarkably the
algebraic features and phenomena from the Klein models extend to the categories
of Cartan geometries. The so-called BGG machinery does exactly this—extends the
complexes of the differential operators from the homogeneous models to sequences
on all Cartan geometries of the given type.

In this last lecture we comment on this exciting development and we shall also
come back to the solutions of the “conformal to Einstein” equation (2.8) in terms
of constant tractors. On the way we shall touch the general construction of the
latter sequences of operators and identify Eq. (2.8) as one of the so-called 1st BGG
operators.
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2.6.1 The Twisted de-Rham Complexes

Denote by Hk
V
M the natural bundle associated with the P -module Hk(g−,V) of

cohomologies with coefficients in a G-module V. Notice that by the Kostant’s
complete description of the cohomologies [18], the latter cohomology module is
a G0 module with trivial action of P+ and thus, it is completely reducible. In
particular, H 0

V
M is the bundle coming from the projecting part of V which can be

viewed as the orbit of the lowest weight vector in V under the g0-action. Our goal is
to come to the following diagram of operators

Ω0(M,VM) Ω1(M,VM) . . .

H0
V
M H1

V
M . . .

dV

π π

dV

D

L L

D

(2.49)

where all the arrows have to be yet explained. As usual, we write VM for the tractor
bundle over the manifold M corresponding to V, and notice that ∂∗ is the adjoint of
∂ which is a P -module homomorphism and thus, it gives rise to the natural algebraic
operator ∂∗ : Ωk(M,VM) → Ωk−1(M,VM). Clearly, the projections π are well
defined only on the kernel of ∂∗. We shall have to be careful about this.

The ideas presented below go back to [2] and [3], and they were further
developed in [10].

Let us discuss the upper line in (2.49) now. First, restrict to the parabolic Klein
model G → G/P . Together with the G-module V, consider a P -module W. Then
there is the following identification of the sections of the tensor product should
appear in the opposite order: W ⊗ V . For any section s of W , i.e., an equivariant
mapping s : G →W, and v ∈ V consider the map

s ⊗ v �−→ (g �−→ s(g)⊗ g−1 · v
︸ ︷︷ ︸

equivariant G→W⊗V
),

which provides a natural isomorphism of the G-modules of sections

Γ (W)⊗ V ∼= Γ (W ⊗ V). (2.50)

Thus, if F : W1 → W2 is an arbitrary differential operator between the
homogeneous vector bundles, then F ⊗ idV = FV provides the twisted operator
FV : W1 ⊗ V →W2 ⊗ V .

Considering the exterior differential d : ΛkT ∗M → Λk+1T ∗M , this explains
the whole first line in (2.49), at least on the homogeneous model. On zero-degree
forms, the exterior differential is just the covariant derivative of the sections.

Let us look more carefully on this example. At the level of first order jets, we can
express the twisted operator by means of the algebraic P -homomorphism
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J 1(Λkp+⊗V)→ Λk+1p+⊗V, (f0, Z⊗f1) �−→ ∂f0+(k+1)Z∧f1. (2.51)

In general, if we write J r(W) and J̄ r (W) for the standard fibers of the holonomic
and semi-holonomic jet prolongations J r(W), J̄ r (W),4 then the isomorphism
(2.50) must hold true at the jet level, e.g., J̄ r (W)⊗ V ∼= J̄ (W⊗ V).

Now the crucial observation comes: Although the jet prolongations J rW are no
more natural bundles associated with G in general, there is still no problem with the
first jets. Thus, J 1(W) = G×P J

1(W) and iterating this procedure, we conclude that
the semi-holonomic jet prolongations are natural bundles again, i.e., J̄ r (WM) =
G ×P J̄ r (W) for the relevant P -module J̄ r (W) (the standard fiber over the origin
in G/P as the module with the action of the isotropy group P ). Moreover, we can
construct a universal differential operator WM → J̄ r (WM) based on the iterated
fundamental derivative, which allows one to extend many invariant operators from
the homogeneous model to all Cartan geometries of this type.

Therefore, the so-called strongly invariant operators, i.e., those coming from
algebraic P -module homomorphisms J̄ r (W1) → W2, enjoy a canonical extension
to all Cartan geometries by means of the formulae obtained on the homogeneous
model.

A careful exposition of the algebraic structure of the semi-holonomic jets and
their links to the strongly invariant operators can be found in [13].

This in particular applies for all first order operators and we are done with the
first line in (2.49), which is called the twisted de-Rham sequence. Obviously, there
are many other ways for twisting the de-Rham. For example, we could take the
covariant exterior differential dω of the tractor valued k-forms with respect to the
tractor connection on V . A straightforward computation reveals

dω ϕ = dV ϕ + ικ−ϕ , (2.52)

where κ− is the torsion part of the curvature κ = dω + 1
2 [ω,ω].

2.6.2 BGG Machinery

Next, let us focus on the vertical arrows in (2.49). We already know about the
projections π , so we have to deal with L’s.

4We iterate the first jet prolongation. Considering the first jets of sections of a bundle W , the jets
in a fiber of J 1(J 1W) look in coordinates as 4-tuples (yp, y

p
i , Y

p
j , Y

p
ij ) were Y

p
ij do not need to

be symmetric. These are the non-holonomic 2-jets. The semi-holonomic ones remove part of the
redundancy by requesting that the two natural projections to 1-jets coincide, i.e., ypi = Y

p
i . This

construction extends to all orders and the semi-holonomic jets look in coordinates nearly as the
holonomic ones, just losing the symmetry of the derivatives. See, e.g., [17] for detailed exposition.
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Ω0(M,V) Ω1(M,V) . . .

H0
V
M H1

V
M

dV

π π

dV

L L

The quite straightforward idea is to seek for differential operators L, such that
dV ◦L are requested to be algebraically co-closed. Then the composition with the
projection π makes sense and we could arrive at operators D

Hk
V
M Hk+1

V
M.

D=π dV L

The most important (and demanding) step in the original construction of the
sequence of those operators in (2.49) was the following lemma in [10]. Notice [5]
suggests a different and more efficient construction of these operators.

Lemma 2.3 On each irreducible component of Hk
V
M , there is the unique strongly

invariant operator L with values in ker ∂∗ and splitting the projection π ,

Hk
V
M Ωk(M,V) ,

L

π

such that dV ◦L ∈ ker ∂∗.

The proof in [10] is very technical and there are many later improvements in the
literature, starting with [5].

The resulting sequence of operators

H0
V
M H1

V
M H2

V
M . . .

D0 D1 D2

is called the BGG sequence associated with the tractor bundle V .

Theorem 2.8 For each G-module V, the BGG sequence is well defined on each
Cartan geometry modelled onG/P and it restricts to the celebrated BGG resolution
on the homogeneous model.

If the twisted de-Rham sequence on a Cartan geometry is a complex, then also
the BGG sequence is a complex, and they both compute the same cohomology of the
underlying manifold.

A good example is the case when the Cartan geometry is torsion free and the
curvature values act trivially on V. Then the comparison (2.52) of the twisted
exterior differential and the covariant exterior differential implies that the twisted
de-Rham sequence will be exact.

Often only a part of the whole BGG sequence is exact and many celebrated
complexes known in differential geometry can be recovered this way.
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2.6.3 The First BGG Operators

Finally, we are coming to the first operators in BGG sequences. They are always
overdetermined operators D : H 0

V
M → H 1

V
M . Moreover, by the very construction,

its space of solutions is in bijection with the space of the parallel tractors on the
homogeneous model. Unfortunately, this is not true in general and the so-called
normal solutions are those sections in the kernel of D which correspond to parallel
tractors. See [9] for interesting results on the normal solutions. Because of lack of
space in this last lecture, we shall just report briefly on the available results.

As carefully explained in [16], the normalization condition on the canonical
tractor connections can be written as ∂∗(RV ) = 0, considered on the space of
2-forms valued in endomorphisms V ⊗ V∗. At the same time, the normalization
necessary for keeping the 1-1 correspondence between the solutions and the parallel
tractors is rather ∂∗

V
RV = 0, where the codifferential is modified, see [16].

So, although the values of our operator L on the harmonic curvature are always
algebraically co-closed, this is not enough.

The paper [16] answers positively the question: Can we modify the Cartan
connection so that ∂∗

V
◦ dV ◦L(κ) = 0 and thus the 1-1 correspondence will hold

true for all Cartan geometries?
The first useful observation is the fact that the BGG machinery construction

survives without any changes if we restrict the deformations to the class of
connections:

C = {∇̃ = ∇ +Φ | Φ ∈ ker ∂∗
V
⊗ idV, Φ has homogeneity � 1}.

The main theorem of [16] says:

Theorem 2.9 There is precisely one ∇̃ ∈ C providing the 1-1 correspondence
between ker D0 and ∇̃-parallel tractors.

At the very end, let us look again at the case of the “conformal to Einstein”
Eq. (2.8), which is the first BGG operator for the choice of V equal to the conformal
standard tractors T .

Clearly, H 0
T
M is the projecting part E[1] of the tractors. Further, a straightforward

check reveals that the operator (2.44) satisfies the conditions on L : H 0
T
M →

Ω1(TM, T M). Indeed, the entire space of zero-forms is in the kernel of ∂∗,
the exterior derivative dω is just the covariant derivative (2.19) of the tractor, its
projecting slot vanishes, ∂∗ maps the injecting slot to zero by the homogeneity, and
∂∗ is given by the trace in the middle slot, which vanishes, too. Since the geometry
is torsion free, the exterior covariant derivative coincides with the twisted derivative,
see (2.52). Finally, the projection of dT ◦L to the harmonic component provides just
the right operator (2.8) on E[1].

In this very special case, there is no need to modify the tractor connection in the
above sense and thus there always is the 1-1 correspondence between the solutions
and the parallel tractors, which is again realized directly by the operator L.
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As already mentioned, many of important overdetermined operators appear as
the first BGG operators. A vast supply of interesting examples of the first order ones
appear in relation with the generalization of the classical problem of metrizability of
a projective geometry into the realm of filtered manifolds and parabolic geometry.
The projective case goes back to nineteenth century, the generalization was recently
worked out in [7].
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16. M. Hammerl, P. Somberg, V. Souček, J. Šilhan, On a new normalization for tractor covariant
derivatives, J. Eur. Math. Soc. (JEMS) 14 (2012), no. 6, 1859–1883.
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Chapter 3
Symmetries and Integrals

Valentin V. Lychagin

3.1 Preface

In these lectures, I want to illustrate an application of symmetry ideas to integration
of differential equations. Basically, we will consider only differential equations of
finite type, i.e. equations with finite-dimensional space Sol of (local) solutions. Ordi-
nary differential equations make up one of the main examples of such equations. The
symmetry Lie algebra Sym induces an action on manifold Sol. In the case when this
action is transitive, we expect to get more detailed information on solutions. Here,
we are going to realize this expectation; namely, we will show that in the case when
the Lie algebra Sym is solvable, integration of the differential equation can be done
by quadratures due to the Lie–Bianchi theorem (see, for example, [4] or [6]). In
the case when the Lie algebra Sym contains simple subalgebras, integration shall
use quadratures (for radical of the Lie algebra) and integration of some differential
equations, which we will call model equations [6, 10]. The model equations depend
on the type of the simple Lie subalgebras and are natural generalizations of the well-
known Riccati differential equations. They possess nonlinear Lie superposition,
and all their solutions could be obtained by nonlinear superposition of a finite set
of solutions (the so-called fundamental solutions). Once more, the form of this
superposition and the number of fundamental solutions are dictated by the symmetry
Lie algebra. In order to give a more “practical” reader a feeling of the power of
the geometrical approach to differential equations, we included in these lectures a
number of examples on the formula level.

The paper is organized as follows. First, we consider symmetries of two types
of distributions: Cartan distributions and completely integrable distributions. We
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show how to integrate completely integrable distributions possessing a symmetry
Lie algebra that acts in a transitive way on the space of (local) integral manifolds.
We begin with the most trivial (but also the more applicable) case of a commutative
symmetry Lie algebra and show how to get quadratures. As an example of
application of this case, we discuss the famous Liouville–Arnold theorem on
integrable Hamilton systems. We propose also the general reduction principle that
allows to split integration for pair (J ,Sym) , where J ⊂ Sym is an ideal in
the symmetry Lie algebra, into two separate cases with symmetry algebra J and
Sym/J . Application of this principle to solvable Lie algebras gives us the Lie–
Bianchi theorem (together with a constructive method of finding quadratures), as
well as integration of cases with general symmetry algebra Sym by means of
model equations. We conclude these lectures by showing applications to ordinary
differential equations and especially to the “toy” case of Schrödinger type equations:
y′′ + W(x)y = 0. We show that (nontrivial) geometries on the line are hidden in
these equations and how symmetries allow us to write explicit solutions of these
equations.

I consider these lectures as an invitation to the wonderful world of symmetries
and differential equations. More details, results, and methods can be found in more
advanced expositions (see, for example, the cited books at the end of the lectures).

3.2 Distributions

Let M be an (n + m)-dimensional smooth manifold, and let τ : TM → M be the
tangent bundle. Then, a distribution P on M is a smooth field

P : a ∈ M �−→ P (a) ⊂ TaM

of m-dimensional subspaces of the tangent spaces. The number m is called the
dimension of the distribution, m = dimP , and the number n is called a codimension
of P , n = codimP .

The statement that P is a smooth family could be formulated in two different
ways:

1. For any point a ∈ M , there are vector fields 〈X1, . . . , Xm〉 defined in a
neighborhood O of a such that the vectors Xi,b ∈ TbM, i = 1, . . . , m belong
to and form a basis in P(b) for every b ∈ O.

2. There are differential 1-forms 〈ω1, .., ωn〉, such that

P (b) = kerω1,b ∩ · · · ∩ kerωn,b

in the neighborhood O.
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For the first definition, let us introduce C∞ (M)-module

D(P ) = {X ∈ Vect(M),Xa ∈ P (a) ,∀a ∈ M}

of all smooth vector fields lying in (or tangent to) the distribution P.

Then, (1) states that this module is locally free (=projective) and that the sets
〈X1, . . . , Xm〉 give us local bases for D(P ). In a similar way, let us introduce
another C∞ (M)-module

Ann (P ) =
{
ω ∈ Ω1 (M) , ω (X) = 0,∀X ∈ D (P )

}

of all smooth differential 1-forms vanishing on vector fields from P . Then, (2) states
that this module is also locally free and that the sets 〈ω1, .., ωn〉 are local bases for
this module.

Example 3.1 Consider M = R
3 with coordinates (x, y, z), and let ω = dz − ydx.

This form does not vanish at any point of M and therefore defines a distribution P

on M of dimension 2 and codimension 1. The vector fields

X1 = ∂

∂y
, X2 = ∂

∂x
+ y

∂

∂z
(3.1)

give us a basis in the module D(P ).

A submanifold N ⊂ M is said to be integral for the distribution P if

TaN ⊂ P (a) , (3.2)

for all a ∈ N . This condition is better to formulate in terms of the differential 1-
forms 〈ω1, .., ωn〉. Then, N is integrable if their restrictions to N are equal to zero:

ωi |N = 0, i = 1, . . . , n.

An integral manifold is maximal if it is not contained in an integral manifold of
greater dimension.

Example 3.2 The distribution (3.1) has 1-dimensional integral submanifolds.
Namely, assume that x is a coordinate on N, i.e.

N = {z = A(x), y = B(x)} ,

for some smooth functions A and B. Then,

ω|N = dA− Bdx = (
A′ − B

)
dx,

and N is integral if and only if B = A′, and
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N = {
z = A(x), y = A′(x)

}
. (3.3)

On the other hand, if N is a 2-dimensional integral manifold, then the vector field
∂/∂z is not tangent to N , because ∂/∂z /∈ D (P ) . Therefore, we can represent

N = {z = A (x, y)} .

Then, ω|N = dA− ydx = (Ax − y) dx + Aydy = 0 if and only if

Ax = y, Ay = 0, (3.4)

which is impossible.
Two observations should be made from this example: (1) maximal integral

manifolds can have dimension less than dimP and (2) finding of integral manifolds
is equivalent to finding of solutions of some differential equations.

A distribution is said to be completely integrable if the dimension of every
maximal integral manifold is exactly the dimension of the distribution itself, and
if for any point of M , there is a maximal integral manifold containing this point.
For such distributions, the entire manifold can be presented as the disjoint union of
maximal integral manifolds of the distribution, which are the leaves of a foliation,
so that the notion of a completely integrable distribution is equivalent to that of a
foliation.

Theorem 3.1 (Frobenius) A distribution P is completely integrable if and only if
the module D (P ) is closed with respect to commutator of vector fields

X, Y ∈ D (P ) �⇒ [X, Y ] ∈ D (P ) . (3.5)

Moreover, if the distribution P is completely integrable, and if N1 and N2 are
integral submanifolds of P, passing through a point a ∈ N1 ∩N2, then N1 = N2 in
a neighborhood of the point.

Example 3.3 Consider the distribution given by (3.1). As we have seen, the
maximal integral manifolds for this distribution have dimension 1, and therefore
this distribution is not completely integrable. On the other hand, the module D (P )

for this distribution is generated by the vector fields

X1 = ∂

∂y
, X2 = ∂

∂x
+ y

∂

∂z
,

and we have

[X1, X2] = ∂

∂z
/∈ D (P ) .
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The condition (3.5) can be reformulated in terms of differential forms generating
the module Ann (P ) . Namely, using the formula

dω (X, Y ) = X (ω (Y ))− Y (ω (X))− ω ([X, Y ]) ,

we get

dω (X, Y ) = −ω ([X, Y ]) ,

for all X, Y ∈ D (P ) and ω ∈ Ann (P ) . Therefore, the condition (3.5) is equivalent
to

dω (X, Y ) = 0,

for all X, Y ∈ D (P ). In other words, the restriction of the differential 2-form dω|P
on the distribution P vanishes for all forms ω ∈ Ann (P ) .

In terms of local bases 〈X1, . . . , Xm〉 for the module D (P ) or 〈ω1, .., ωn〉 for
the module Ann (P ), the conditions for complete integrability can be reformulated
in the following equivalent forms:

1.

[Xi,Xj ] =
∑

k

ckijXk, (3.6)

for all i, j = 1, . . . ., m and some smooth functions ckij .
2.

dωi =
∑

j

γij ∧ ωj , (3.7)

for all i, j = 1, . . . ., n and some differential 1-forms γij .

3.3 Distributions and Differential Equations

3.3.1 Cartan Distributions (ODEs)

Let Jk be the space of all k-jets of functions in one variable x. Then, the k-jet of
a smooth function f (x) at point a ∈ R, denoted by [f ]ka , is given by its set of
derivatives:

[f ]ka =
(
f (a) , f ′ (a) , . . . ., f (k) (a)

)
.
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We denote by (x, u0, u1, . . . , uk) the coordinates on Jk satisfying

ui

(
[f ]ka

)
= f (i) (a) ,

for all i = 0, 1, . . . k, and x
([f ]ka

) = a.

The differential 1-forms

ωi = dui − ui+1dx, (3.8)

on Jk, where i = 0, . . . , k − 1, we call Cartan forms, and the distribution

Ck = kerω0 ∩ · · · ∩ kerωk−1

we call the Cartan distribution on the jet-space.
We have dim Jk = k + 2, codimCk = k, and therefore dimCk = 2, i.e. Ck is a

distribution of planes.
It is easy to see that a basis in the module D (Ck) of vector fields tangent to Ck

is formed by vector fields

X1 = ∂

∂uk
, (3.9)

X2 = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
,

and

[X1, X2] = ∂

∂uk−1
/∈ D (Ck) .

Therefore, Ck is a non-integrable distribution, and its maximal integral manifolds
have dimension 1.

To find these curves, we remark that trajectories of the vector field X1 are integral
curves for Ck and, similarly to (3.1), integral curves N on which x is a coordinate
have the special form

N = L
(k)
A =

{
u0 = A(x), u1 = A′(x), . . . ., uk = A(k)(x)

}
.

By an ordinary differential equation (ODE) of order k, we mean a relation that
connects components of k-jets [f ]ka of unknown functions f (x) , i.e. a relation of
the form

F (x, u0, . . . , uk) = 0, (3.10)

which is valid when ui are coordinates of solutions.
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Geometrically, it means that we consider a submanifold (possibly with singular-
ities)

EF = {F (x, u0, . . . , uk) = 0} ⊂ Jk,

and solutions are curves

L
(k)
A ⊂ EF .

Assuming that EF is a smooth submanifold of Jk, we say that solutions of the ODE
EF are integral curves of the Cartan distribution Ck lying in EF , or, in other words,
they are integral curves of the restriction of the distribution Ck on EF :

CF : a ∈ EF → Ck (a) ∩ Ta (EF ) .

Remark that dimCF (a) = 1 if Ck (a) is not a subspace of Ta (EF ) and that
dimCF (a) = 2 if Ck (a) ⊂ Ta (EF ) . In the last case, we say that point a ∈ EF is
a singular point.

Therefore, on the complement EF \ Sing (EF ), we have a 1-dimensional distri-
bution CF . This is obviously a completely integrable distribution, and its integral
curves L ⊂ EF \ Sing (EF ) are smooth solutions of the equation if and only if
function x is a coordinate on L.

To find a basis X in the module D (CF ), we write down vector field X in the
form

X = a(x)X1 + b(x)X2,

where X1 and X2 form basis in Ck . Then, X ∈ D (CF ) if and only if X is tangent
to EF or if

X (F) = 0,

on EF . Thus,

a
∂F

∂uk
+ bDk (F ) = 0

on EF . Here, we denoted by

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
(3.11)

the vector field X2 in (3.9).
Remark that Sing (EF ) is given by equations
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∂F

∂uk
= 0, Dk (F ) = 0, F = 0

and in general defines a submanifold Sing (EF ) ⊂ EF of codimension 2.
Equations EF , where ∂F

∂uk
�= 0, are called equations of principal type, and for

such equations, a basis in D (CF ) has the form

D = ∂F

∂uk
Dk −Dk (F )

∂

∂uk
,

and x is a coordinate on integral curves.
Thus, for principal type equations, solutions are smooth functions, and in all other

cases, they are singular and multivalued functions (see [7] for more such examples).
To simplify the formulae in what follows, we will consider only principal type

equations of the form

uk = F (x, u0, . . . , uk−1) . (3.12)

Then, EF is diffeomorphic to Jk−1, (x, u0, . . . , uk−1) are coordinates on EF , and
the basic vector field in D (CF ) has the form

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + F

∂

∂uk−1
.

The distribution CF can also be defined by the following Cartan forms:

ω0 = du0 − u1dx, (3.13)

..............

ωk−2 = duk−2 − uk−1dx,

ωk−1 = duk−1 − Fdx.

When working with algebraic equations, we use different algebraic manipula-
tions in order to simplify them. For differential equations, the class of possible
manipulations can be essentially extended by adding the operation of differentiation
or prolongation.

Take, for example, system (3.4)

∂A

∂x
= y,

∂A

∂y
= 0,

which we investigated above. Then, by differentiating, the first and second equations
in x and y, we get the following system:
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∂A

∂x
= y,

∂2A

∂x2
= 0,

∂2A

∂x∂y
= 1,

∂A

∂y
= 0,

∂2A

∂x∂y
= 0,

∂2A

∂y2
= 0,

which is obviously contradictory and therefore has no solutions.
To apply the prolongation procedure to the ordinary differential equations, we

introduce the formal derivation (the total derivative in x)

D = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
+ uk+1

∂

∂uk
+ · · · .

Then, the prolongation of Eq. (3.10) is the following system E (1)
F ⊂ Jk+1 :

F (x, u0, . . . , uk) = 0,

D (F ) = Dk (F )+ uk+1
∂F

∂uk
= 0.

Applying in series this procedure, we get l-th prolongations E (l)
F ⊂ Jk+l given by

relations

F = 0, D (F ) = 0, D2 (F ) = 0, . . . , Dl (F ) = 0. (3.14)

The advantage of using prolongations E (l)
F and their inverse limit E (∞)

F ⊂ J∞
comes from the fact that these equations contain information on all derivatives of
solutions up to order l or ∞.

It is easy to see that the Cartan distributions C on the prolongations are still 1-
dimensional at regular points and generated by the restrictions of the total derivative
D on E (l)

F .

3.3.2 Cartan Distributions (PDEs)

For the case of functions of n variables x = (x1, . . . , xn), and corresponding partial
differential equations, the above constructions can be repeated, practically word by
word.

Namely, denote by Jk (n) the space of all k-jets of functions in n variables. Then,
the k-jet [f ]ka of a smooth function f (x1, . . . , xn) at a point a ∈ R

n is given by the
values of its derivatives

∂σ f

∂xσ
(a)
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at the point. Here, σ = (σ1, . . . , σn) are multi-indices of order 0 � |σ | � k, where
|σ | = σ1 + · · · + σn.

Denote by (x, uσ , 0 � |σ | � k) the standard coordinates on Jk (n), where

uσ

(
[f ]ka

)
= ∂σ f

∂xσ
(a) .

Define also the Cartan forms

ωσ = duσ −
∑

i

uσ+1i dxi

and the Cartan distribution

Ck =
⋂

0�|σ |�k−1

kerωσ .

We have dim Jk = n + (
n+k
k

)
, codimCk =

(
n+k−1
k−1

)
, and therefore dimCk =

n+ (
n+k−1

k

)
.

The following vector fields make up a basis in the module D (Ck):

Xσ = ∂

∂uσ
, |σ | = k,

Yi = ∂

∂xi
+

∑

|σ |�k−1

uσ+1i
∂

∂uσ
.

We have [Xσ , Yi] = ∂
∂uσ−1i

/∈ D (Ck) if σi � 1, and therefore the Cartan

distribution is not completely integrable.
Similarly to the 1-dimensional case, this distribution has two types maximal

integral manifolds:

1.

L
(k)
A =

{
u0 = A(x), uσ = ∂ |σ |A

∂xσ

}
,

where A(x) is a smooth function, and
2. integral manifolds of the completely integrable distribution generated by all

vector fields Xσ .

Remark that the dimension of the first type of integral manifolds equals n, while the
dimension for the second type of integral manifolds equals

(
n+k−1

k

)
, and

(
n+k−1

k

)
>

n if n � 1 and k � 2. For the complete description of various maximal integral
manifolds (and their dimensions) for the Cartan distributions, see [11].
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As above, we will consider differential equations (PDEs in this case) as
submanifolds

EF = {F (x, uσ ) = 0} ⊂ Jk (n)

and their smooth solutions as submanifolds L(k)
A ⊂ EF .

In the more general case, we will by solution mean any such n-dimensional
submanifold L of the Cartan distribution that L ⊂ EF , i.e. n-dimensional integral
submanifold L of the restriction of the Cartan distribution on EF .

By using the total derivations

Di = ∂

∂xi
+

∑
uσ+1i

∂

∂uσ
,

where i = 1, .., n, we define prolongations

E (l)
F = {

F (x, uσ ) = 0, Dσ (F ) = 0, |σ | � l
} ⊂ Jk+l (n) ,

which contains all information about (k + l)-jets of solutions.

3.4 Symmetry

By a (finite) symmetry of the distribution P on the manifold M , we understand a
(possibly local) diffeomorphism φ : M → M , which takes P into itself, i.e. such
that φ∗ (Pa) = Pφ(a), for all points a ∈ M , or, in short, φ∗ (P ) = P.

A vector field X is said to be (an infinitesimal) symmetry of the distribution if the
flow generated by X consists of finite symmetries.

The infinitesimal approach turns out to be much more constructive and more
algebraic than its finite counterpart, so in what follows the word symmetry will
always mean infinitesimal symmetry unless otherwise explicitly specified.

Assume that distribution P is generated by differential 1-forms ω1, . . . , ωm,
where m = codimP . We write P = 〈ω1, . . . , ωm〉. Then, the condition φ∗ (P ) =
P means that the differential 1-forms φ∗ (ω1) , . . . , φ

∗ (ωm) determine the same
distribution P and therefore can be expressed in terms of the basis forms

φ∗ (ω1) = a11ω1 + · · · + a1mωm,

..................

φ∗ (ωm) = am1ω1 + · · · + ammωm,

for some smooth functions aij , or in the equivalent form

φ∗ (ω1) ∧ ω1 ∧ · · · ∧ ωm = 0, . . . , φ∗ (ωm) ∧ ω1 ∧ · · · ∧ ωm = 0. (3.15)



84 V. V. Lychagin

These conditions take the form

LX (ω1) = a11ω1 + · · · + a1mωm,

....................

LX (ωm) = am1ω1 + · · · + ammωm,

or

LX (ω1) ∧ ω1 · · · ∧ ωm = 0, . . . , LX (ωm) ∧ ω1 · · · ∧ ωm = 0, (3.16)

for infinitesimal symmetries X.

Let us denote by Sym (P ) the set of all infinitesimal symmetries of the
distribution P . Then, the above formulae show that the following conditions are
equivalent:

• X ∈ Sym (P ) ,

• Y ∈ D (P ) �⇒ [X, Y ] ∈ D (P ) ,

• ω ∈ Ann (P ) �⇒ LX (ω) ∈ Ann (P ) .

It follows that Sym (P ) is a Lie algebra over R with respect to the commutator
of vector fields.

3.4.1 Symmetries of the Cartan Distributions

Let us now consider symmetries of the Cartan distributions first on Jk .

Lemma 3.1 We have

df = Dk (f ) dx + ∂f

∂uk
duk mod 〈ω0, . . . , ωk−1〉 ,

for any smooth function f on Jk.

Proof Indeed, we have

dui = ui+1dx + ωi,

for all i = 0, . . . , k − 1. Therefore,

df = ∂f

∂x
dx +

k∑

i=0

∂f

∂ui
dui = ∂f

∂x
dx +

k−1∑

i=0

ui+1
∂f

∂ui
dx + ∂f

∂uk
duk +

k−1∑

i=0

∂f

∂ui
ωi

= Dk (f ) dx + ∂f

∂uk
duk mod 〈ω0, . . . , ωk−1〉 .

��
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Now, let X ∈ Sym (Ck) and

X = a
∂

∂x
+

k∑

i=0

Ai

∂

∂ui
,

where a and Ai are smooth functions on Jk. Then, by using the above lemma, we
get

LX (ωi) = dAi − ui+1da − Ai+1dx =

(Dk (Ai)−ui+1Dk (a)−Ai+1) dx+
(
∂Ai

∂uk
−ui+1

∂a

∂uk

)
duk mod 〈ω0, . . . , ωk−1〉 ,

for i = 0, . . . , k − 1. Therefore,

Ai+1 = Dk (Ai)− ui+1Dk (a) , (3.17)

∂Ai

∂uk
− ui+1

∂a

∂uk
= 0,

for i � k − 1.
Let us introduce the functions

φi = Ai − ui+1a,

for all i � k − 1. Then, the system (3.17) takes the form:

φi+1 = Dk (φi) ,

∂φi

∂uk
= 0,

for i � k − 2, and

Ak = Dk (φk−1) ,

a = −∂φk−1

∂uk
.

Therefore,

φi = Di
k (φ0) ,

for i � k − 2, and the condition ∂φk−2
∂uk

= 0 implies that φ0 = φ (x, u0, u1) , and
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a = −∂φk−1

∂uk
= − ∂φ

∂u1
.

Moreover,

Ai = Di
k (φ)+

∂φ

∂u1
ui+1,

for i � k − 1, and

Ak = Dk
k (φ) .

Summarizing, we get the following description of symmetries of the Cartan
distribution.

Theorem 3.2 (Bäcklund–Lie) Any symmetry X ∈ Sym (Ck) has the form

X =
k∑

i=0

Di
k (φ)

∂

∂ui
− ∂φ

∂u1
Dk, (3.18)

for some smooth function φ = φ (x, u0, u1) .

Remark 3.1

1. We call the function φ, which defines the symmetry, the generating function, and
the corresponding vector field X will be denoted by Xφ. Thus,

φ = ω0
(
Xφ

)
.

2. The commutator of two symmetries Xφ and Xψ is also a symmetry. Denote its
generating function by [φ,ψ], then

[φ,ψ] = ω0
([Xφ,Xψ ]

)
,

and the bracket [φ,ψ] (called the Lagrange bracket) defines a Lie algebra
structure on C∞

(
J1

)
.

Moreover, a straightforward computation shows that

[φ,ψ] = Xφ (ψ)−X1 (φ)ψ. (3.19)

3. The Cartan distribution C1 defines the contact structure on J1. The elements of
Sym (C1) are called contact vector fields, and they also have form (3.18)

Xφ = φ
∂

∂u0
+D1 (φ)

∂

∂u1
− ∂φ

∂u1
D1, (3.20)
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where

D1 = ∂

∂x
+ u1

∂

∂u0
.

4. Vector fields (3.18) are prolongations of (3.20).

Similar results are valid for symmetries of Cartan distributions in the jet spaces
Jk (n) .

Theorem 3.3 (Lie–Bäcklund) Any symmetry X ∈ Sym (Ck) on Jk (n) has the
form

Xφ =
∑

|σ |�k

Dσ
k (φ)

∂

∂uσ
−

n∑

i=1

∂φ

∂ui
Di,k, (3.21)

where φ (x1, . . . , xn, u0, u1, . . . , un) = ω0
(
Xφ

)
is the generating function, and

Di,k = ∂

∂xi
+ ui

∂

∂u0
+ · · · + uσ+1i

∂

∂uσ
+ · · · , |σ | � k − 1,

Dσ
k = D

σ1
1,k ◦ · · · ◦Dσn

n,k.

The Lagrange bracket [φ,ψ] = Xφ (ψ)−X1 (φ)ψ defines the Lie algebra structure
on C∞

(
J1 (n)

)
, and, as above, [φ,ψ] = ω0

([Xφ,Xψ ]
)
.

3.4.2 Symmetries of Completely Integrable Distributions

Let X ∈ Sym (P ) be a symmetry of a completely integrable distribution P , and let
At : M → M be the corresponding flow. Then, for any integral manifold L ⊂ M ,
the submanifolds At (L) are also integral.

In other words, a symmetry X generates a flow on the set Sol (P ) of all maximal
integral manifolds. There is, however, a distinguished class of symmetries (they
are called characteristic symmetries) which generate trivial flows, i.e. they leave
invariant every integral manifold. Namely, we have [D(P ),D(P )] ⊂ D(P ),
because P is a completely integrable distribution, and therefore D(P ) ⊂ Sym (P ).

Moreover, the vector fields X ∈ D(P ) are tangent to any maximal integral
manifold of P and therefore generate the trivial flow on Sol (P ). The relation
[Sym (P ) ,D(P )] ⊂ D(P ) shows that D(P ) is an ideal in the Lie algebra Sym (P ).
We call elements of the quotient Lie algebra

Shuf (P ) = Sym (P ) /D (P )

shuffling symmetries of the distribution P.
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The name reflects the fact that flows on Sol (P ) corresponding to different
representatives of a class X mod D (P ) rearrange, or shuffle, the set of maximal
integral manifolds of P in the some way.

3.5 The Lie–Bianchi Theorem

Let P be a completely integrable distribution, codimP = m, generated by the
differential 1-forms ω1, . . . , ωm, and let g ⊂ Shuf (P ) be a Lie subalgebra with
dim g = m. Let X1, . . . , Xm be a basis of g, where Xi = Xi mod D (P ) for
Xi ∈ Sym (P ) , i = 1, . . . , m).

Suppose that g is transversal to the distribution in the sense that the natural
mappings

g→Ta (M) /Pa

are isomorphisms for all points a ∈ M.

The problem of integration of a distribution consists of describing its maximal
integral manifolds. For completely integrable distributions, this is equivalent to
finding a complete set of first integrals.

A function H ∈ C∞ (M) is called a first integral of the distribution P if
every integral manifold of P lies entirely in some level surface Mc = H−1 (c)

or, equivalently, if Z (H) = 0 for every vector field Z ∈ D (P ) or, equivalently, if
dH ∈ Ann (P ) .

A complete set of first integrals of the distribution P is a set of functions
H1, . . . , Hm with the property that

Mc1,...,cm = H−1
1 (c1) ∩ · · · ∩H−1

m (cm)

represent the set of all maximal integral manifolds of P in some dense domain
of M . In this section, we discuss a method to find such integrals when we have a
transversal shuffling algebra of symmetries.

3.5.1 Commutative Lie Algebra Symmetries

Assume that the transversal shuffling algebra of symmetries g is commutative. The
matrix

Ξ =

∥∥∥∥∥∥
∥

ω1 (X1) · · · ω1 (Xm)
...

...
...

ωm (X1) · · · ωm (Xm)

∥∥∥∥∥∥
∥

is nondegenerate: det (Ξ) �= 0.
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Let us choose another basis ω′1, .., ω′m in the module Ann(P ) such that

ω′i
(
Xj

) = δij . (3.22)

Indeed, we have relations

ω′1 = a11ω1 + · · · + a1mωm,

.......................

ω′m = am1ω1 + · · · + ammωm,

where the matrix A = ∥∥aij
∥∥ is also nondegenerate.

The condition (3.22) is equivalent to AΞ = 1, or A = Ξ−1. In other words, the
differential forms ω′1, .., ω′m, where

∥∥∥∥
∥∥∥

ω′1
...

ω′m

∥∥∥∥
∥∥∥
= Ξ−1

∥∥∥∥
∥∥∥

ω1
...

ωm

∥∥∥∥
∥∥∥
,

satisfy condition (3.22). To simplify notation, let us assume that the basis ω1, .., ωm

is normalized from the very beginning, i.e. satisfies condition (3.22).
Then, we have

dωi (Xk,Xl) = Xk (ωi (Xl))−Xl (ωi (Xk))− ωi ([Xk,Xl]) = 0,

because of the commutativity of Lie algebra g and condition (3.22).
We also have

dωi (Xk, Z) = Xk (ωi (Z))− Z (ωi (Xk))− ωi ([Xk,Z]) = 0,

for all vector fields Z ∈ D (P ) , because ωi (Z) = 0 and [Xk,Z] ∈ D (P ) .

And finally

dωi (Z1, Z2) = Z1 (ωi (Z2))− Z2 (ωi (Z1))− ωi ([Z1, Z2]) = 0,

for all pairs of vector fields Z1, Z2 ∈ D (P ) because of complete integrability P ,
[Z1, Z2] ∈ D (P ).

Theorem 3.4 Let g = 〈
X1, . . . , Xm

〉
be a transversal commutative Lie algebra of

shuffling symmetries, and let 〈ω1, .., ωm〉 be a normalized basis in Ann (P ) . Then,
all differential 1-forms ωi are closed:

dωi = 0,

for i = 1, . . . , m.
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Corollary 3.1 Under conditions of the above theorem and H 1 (M,R) = 0, the
complete set of first integrals can be found by quadratures:

H1 =
∫

ω1, . . . , Hm =
∫

ωm.

Example 3.4 Example (Distributions of Codimension 1) Let P = kerω be a
completely integrable distribution of codimension one, and let X be a transversal
symmetry of P , i.e. ω (X) �= 0. Then, the differential 1-form

ω

ω (X)

is closed, and
∫

ω

ω (X)

is a first integral.

Example 3.5 Let M = R × R × (0, 2π) , with coordinates x ∈ R, y ∈ R, φ ∈
(0, 2π). The 1-form

ω = 2 sin2 φ

2
dx + sinφ dy − y dφ

defines the so-called oricycle distribution, and the vector field

X = ∂

∂x

is a shuffling symmetry. The 1-form

ω = ω

ω (X)
= dx + sinφ

1− cosφ
dy − y

1− cosφ
dφ

is closed, and the function

H =
∫

ω = x + y cot
φ

2

is a first integral.

Example 3.6 (Liouville–Arnold) Let
(
M2n,Ω

)
be 2n-dimensional symplectic

manifold with structure 2-form Ω , and let the functions (H1, .., Hn) be independent
and in involution, i.e.

dH1 ∧ · · · ∧ dHn �= 0,

and the Poisson brackets vanish: [Hi,Hj ] = 0 for i, j = 1, . . . , n.



3 Symmetries and Integrals 91

Then, the level surfaces

Lc = {H1 = c1, . . . , Hn = cn} ⊂ M2n

are Lagrangian submanifolds, and the Hamiltonian vector fields XHi
, i = 1, . . . , n

are tangent to Lc.

These vector fields are independent, and the involutivity conditions mean that
they commute. We have dimLc = n and, as we have seen, there exist such differ-
ential 1-forms ωc

1, .., ω
c
n that ωc

i

(
XHj

) = δij , which are closed. Then, integrals
Fc
i = ∫

Lc ω
c
i give us (multivalued) functions on Lc with linearly independent

differentials. The submanifolds Lc give us a foliation of M , and we define functions
Fi, i = 1, . . . , n on M by the requirement that their restrictions on Lc equal Fc

i .

Differentials of the functions H1, . . . , Hn, F1, . . . , Fn are linearly Independent,
and therefore, in simply connected domains, they are coordinates.

We have [Hi,Hj ] = 0, and [Hi, Fj ] = δij , and the flows along Hamiltonian
vector fields XHi

in these coordinates take the form

·
Hj = 0,

·
Fj = δij .

Therefore, the equations for flows of Hamiltonian vector fields XHi
are integrated

in quadratures.

3.5.2 Symmetry Reduction

Let P be a completely integrable distribution, g ⊂ Sym (P ) a Lie algebra of
shuffling symmetries, and j ⊂ g an ideal in the Lie algebra. For any point a ∈ M ,
define a subspace Pj (a) ⊂ TaM formed by the space P (a) and the space generated
by values of vector fields from j at the point. Assume that dimPj (a) is constant, so
that Pj ⊃ P is a distribution. Then, the following result is valid.

Theorem 3.5

1. The distribution Pj ⊃ P is completely integrable, and
2. the quotient Lie algebra g�j is a shuffling symmetry Lie algebra of the

distribution Pj.

Proof We have

• [D (P ) ,D (P )] ⊂ D (P ) , because P is completely integrable.
• [j,D (P )] ⊂ D (P ) , because j is symmetry ideal.
• [j, j] ⊂ j, because j is an ideal.
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• Therefore, [D (Pj) ,D (Pj)] ⊂ D (Pj) and Pj is completely integrable.
• [g,D (P )] ⊂ D (P ) and [g, j] ⊂ j. Therefore, g is a symmetry algebra of Pj, and

g�j is a shuffling symmetry algebra.

��
Remark 3.2 This theorem shows that integration of P with symmetry algebra g
could be done in two steps:

1. Integration of the completely integrable distribution with symmetry algebra g�j.
2. Integration of the restrictions of distribution P on integral manifolds of distribu-

tion Pj by symmetry algebra j.

Assume now that algebra g�j is commutative. Then, the first step could be
done by quadratures due to theorem (3.4). The next step involves integration
of distributions with symmetry algebra j, and if this algebra possesses an ideal
j2 ⊂ j1 = j, such that j1�j2 is commutative, we could reduce it by quadratures.
There is a special class of Lie algebras that can be exhausted by this procedure.

Let g be a Lie algebra. A Lie algebra g is said to be solvable if there is chain of
subalgebras ji

g ⊃ j1⊃ · · · ⊃ ji⊃ ji+1⊃ · · · ⊃ jk = 0,

such that ji+1 is an ideal in ji and the quotient Lie algebra ji�ji+1 is commutative
for every i.

A more constructive, but equivalent, definition uses the chain of derived subal-
gebras. Namely, the derived Lie algebra g(1) = [g, g] is the subalgebra of g that
consists of all linear combinations of Lie brackets of pairs of elements of g, and
derived series of the Lie algebra is given by g(i) = [g(i−1), g(i−1)], for i = 1, 2, . . . .

We have chain of Lie subalgebras

g ⊃ g(1) ⊃ · · · ⊃ g(i) ⊃ g(i+1) ⊃ · · · ,

with commutative Lie algebras g(i)�g(i+1), and the Lie algebra g is solvable if
g(k) = 0, for some k.

Assume now that g is a solvable Lie algebra of shuffling symmetries which is
transversal to the completely integrable distribution P. Let g(1) be the first derived
subalgebra and let l = codimgg

(1) > 0. We choose a basis X1, . . . , Xl, . . . , Xm in
the Lie algebra g in such a way that X1, . . . , Xl /∈ g(1), but Xi ∈ g(1), for i � l+ 1.
We also choose a basis ω1, . . . , ωm in Ann (P ) such that ωi

(
Xj

) = δij . Then,

dωi (Xs,Xt ) = −ωi ([Xs,Xt ]) = 0

for all i = 1, . . . , l and s, t = 1, . . . , m.

Therefore, the differential 1-forms ωi, i � l, are closed and
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Hi =
∫

ωi

are (in general multivalued) first integrals of the distribution P.

Moreover, the submanifolds

Mc = H−1
1 (c1) ∩ · · · ∩H−1

l (cl)

are g(1)-invariant because

Xi

(
Hj

) = dHj (Xi) = ωj (Xi) = 0,

if j � l, i � l + 1.
Let Pc be the restriction of distribution P on the submanifold Mc. Then, Pc is

a completely integrable distribution of the same dimension dimP and codimension
dim g(1). Applying the above procedure in series to derived subalgebras g(i), we find
the complete sequence of first integrals by integration of closed differential 1-forms,
and the integral manifolds of P are given by quadratures: H−1

1 (c1)∩· · ·∩H−1
m (cm).

Theorem 3.6 (Lie–Bianchi) Let P be a completely integrable distribution, and let
g be a solvable symmetry Lie algebra transversal to P , dim g = codimP . Then, the
distribution P is integrable by quadratures.

3.5.3 Quadratures and Model Equations

In this section, we consider in more detail the case when the symmetry Lie algebra
g ⊂ Sym (P ) of a completely integrable distribution P acts in a transitive way
on the set Sol (P ) of all maximal integral manifolds of P. In general, this set has
very complicated structure, which is why we restrict ourselves to only consider the
set Solloc (P ) of local maximal integral submanifolds or (better to say) germs. In
a small neighborhood of a point a ∈ M , this set is an open domain in R

m, where
m = codimP.

So, we assume that dim g � m, and the value maps ξa : g→TaM�Pa are
surjections. The case when ξa are isomorphisms and g is a solvable Lie algebra is
completely covered by the Lie–Bianchi theorem.

To proceed with the general case, we take a homogeneous space G�H of a
simply connected Lie group G, where Lie(G) = g and Lie(H) = ker ξa. The left
action of the Lie group G on the homogeneous space G�H gives us the embedding
λ of the Lie algebra g into Lie algebra Vect (G�H) of vector fields on G�H.

Let us consider a distribution P̂ on M × G�H generated at point (a, b) ∈
M×G�H by vectors of Pa and vectors Xa+λ (X)b , where X ∈ g. In other words,
the module D(P̂ ) is generated by D (P ) and vector fields of the form X + λ (X) ,

where X ∈ g.
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This distribution is completely integrable, because [D (P ) ,D (P )] ⊂ D (P )

and [g,D (P )] ⊂ D (P ) . Moreover, codim P̂ = dimG�H and maximal integral
manifolds of P̂ are graphs of some maps h : M → G�H , which we call integral.

Assume that we have an integral map h. Then, the tangent space to the graph at a
point (a, h (a)) equals to P̂(a,h(a)), the image of differential h∗,a at a point a ∈ M,

Imh∗,a = Th(a) (G�H) , and therefore h∗,a is a surjection. Consider a submanifold
Mb = h−1 (b) ⊂ M, b ∈ G�H. Then, codimMb = dimG�H = codimP and
TMb ⊂ P. Therefore, Mb are maximal integral manifolds of P and to find them, if
the integral map h is known, we should solve functional equations h(x) = b.

To construct an integral map h, we will use the following lifting method. Assume
that the value of h at a point a0 ∈ M is fixed, h (a0) = b0, and M is a connected
manifold. Then, to find value h (a1) at a point a1 ∈ M, we take a path α (t) , with
α(t0) = a0, α(t1) = a1, and lift it to a path α(t) on M ×G�H in such a way that
the curve α(t) is an integral curve for the distribution P̂ . Assume that the tangents
·
α (t) to the curve do not lie in the distribution P. Then, we can present them as
linear combinations of values of vector fields in g, say

·
α (t) = q1(t) X1,α(t) + · · · + qk(t) Xk,α(t), (3.23)

for some functions q1(t), . . . , qk(t), where X1, . . . , Xk is a basis in the Lie
algebra g.

The path α(t) on M×G�H is a lift of the path α(t) on M , and integral curve for
distribution P̂ , if and only if α(t) satisfies the following equation, similar to (3.23):

·
α (t) = q1(t) λ(X1)α(t) + · · · + qk(t) λ(Xk)α(t). (3.24)

In other words, in order to lift the path α(t) to the path α(t), we have to find integral
curves of a vector field of the form

∂

∂t
+

k∑

i=1

qi (t) λ (Xi) (3.25)

on R×G�H , which correspond to paths X(t) =∑k
i=1 qi (t) Xi on the Lie algebra

g. We call equations of form (3.24) model differential equations.
Summarizing, we get the following generalization of the Lie–Bianchi theorem.

Theorem 3.7 Let g be a symmetry Lie algebra of a completely integrable distri-
bution P on a connected manifold M such that the value maps ξa : g→TaM�Pa

are surjective. Then, integration of the distribution can be done by using solutions
of model differential equations, corresponding to the Lie algebra symmetry, and
solutions of a number of functional equations.

We begin with the main properties of the model differential equations.
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Theorem 3.8 For any system of model ordinary differential equations associated
with a path Xt on the Lie algebra g and the vector field

Z = ∂

∂t
+ λ (Xt ) ,

there is a path g(t) on the group G with g(0) = e, such that any trajectory y(t) of
Z has the form

y(t) = g(t)y(0). (3.26)

Moreover, this property defines the class of model equations completely.

Proof If the path g(t) is given, then the path Xt is defined as follows:

Xt = g∗ (t)−1
( ·
g (t)

)
, (3.27)

and from (3.26), we get
·
y (t) = λ (Xt ). On the other hand, if the path Xt is given,

then the path g(t) is found from equation (3.27). ��
Let us analyze one-dimensional models.

Theorem 3.9 (Lie) Let a finite-dimensional Lie algebra g act on R in a transitive
way. Then, dim g � 3, and locally the action is one of the following:

1. dim g = 1, g = 〈
∂
∂x

〉
,

2. dim g = 2, g = 〈
∂
∂x
, x ∂

∂x

〉
, and

3. dim g = 3, g = 〈
∂
∂x
, x ∂

∂x
, x2 ∂

∂x

〉
.

A proof of this theorem can be found, for example, in [6]. The theorem shows
that vector fields for model equations in the 1-dimensional case have the following
forms:

1. ∂
∂t
+ a (t) ∂

∂x
,

2. ∂
∂t
+ a (t) ∂

∂x
+ b (t) x ∂

∂x
, and

3. ∂
∂t
+ a (t) ∂

∂x
+ b (t) x ∂

∂x
+ c (t) x2 ∂

∂x
.

The corresponding model equations are

1.
·
x (t) = a (t) ,

2.
·
x (t) = a (t)+ b (t) x (t) , and

3.
·
x (t) = a (t)+ b (t) x (t)+ c (t) x (t)2 .

Let functions a(t) and b(t) be given. To find solutions of model equations of
types 1 and 2, we should add to our set of functions

1. the function
∫
a(t)dt and

2. the functions exp
(∫

b(t)dt
)

and
∫
a(t) exp

(− ∫
b(t)dt

)
dt ,

respectively.
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This observation explains the idea of Liouville (1833) to introduce the field of
elementary functions as the result of a series of Liouvillian extensions of the field of
rational functions, i.e. extension by adding integrals and exponents of integrals, in
other words, by adding solutions of model equations of the first and second types.

Model equations of the type 3 are known as Riccati equations and, as we will
see later, they are related to linear ordinary equations of the second order as well as
projective structures on the line.

More information on model equations corresponding to simple Lie groups can
be found in [6].

3.5.4 The Lie Superposition Principle

Here, we use Theorem 3.8 to get more information about solutions of model
equations.

As we have seen, finding solution y(t) of the model equation is equivalent to
finding a path g(t) on the Lie group G, and y(t) = g(t)y(0). Assume that we know
k solutions, say y1(t), . . . , yk(t), then yi(t) = g(t)yi(0), for all i = 1, . . . , k.

From a geometrical point of view, this means that points (y1(t), . . . , yk(t)) ∈
(G�H)k = (G�H) × · · · × (G�H) and (y1(0), . . . , yk(0)) ∈ (G�H)k can be
transformed by a single transformation g(t) ∈ G, for any k = 1, 2, . . ..

To analyze this situation, consider diagonal G-actions on direct products
(G�H)k , g : a = (a1, . . . , ak) → ga = (ga1, . . . , gak) . Then, the stationary
group Ga is the intersection Ga1 ∩ · · · ∩Gak of stationary subgroups Gai of points
ai ∈ G�H.

By the stiffness of a homogeneous manifold, we mean a number k such that the
stationary groups Ga for general points a = (a1, . . . , ak) ∈ (G�H)k are trivial.
We call such points regular. Given two regular points a, b ∈ (G�H)k , there is a
unique element γ (a, b) ∈ G such that a = γ (a, b) b.

A set of solutions (y1(t), . . . , yk(t)) is said to be fundamental solution of the
model equation if k is the stiffness of G�H and (y1(0), . . . , yk(0)) is a regular
point. Then, we define the path g(t) as

g (t) = γ ((y1(t), . . . , yk(t)), (y1(0), . . . , yk(0))) ,

and all solutions of the model equation have the form

y(t) = γ ((y1(t), . . . , yk(t)), (y1(0), . . . , yk(0)) y(0). (3.28)

The last formula is called the Lie superposition principle.

Example 3.7 Example (1D model equations)
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1. Consider the case G�H = R, g = 〈
∂
∂x

〉
. Then, γ (a, b) = a − b. The

fundamental solution is a solution of equation
·
y(t) = A(t), and the superposition

principle says that all solutions of the equation
·
x(t) = A(t) have the form

x(t) = x(0)+ (y(t)− y(0)) .

2. Let G�H = R, g = 〈
∂
∂x
, x ∂

∂x

〉
and G be the group of all affine transformations

of the line. The stiffness is k = 2 and

γ ((a1, a2) , (b1, b2)) x = (x − b2) a1 − (x − b1) a2

b1 − b2
.

The fundamental solution of the model equation
·
x(t) = A(t) + B(t)x(t) is pair

of solutions y1(t), y2(t) such that y1(0) �= y2(0), and the superposition principle
says that the general solution has the form

x(t) = (x(0)− y2(0)) y1(t)− (x(0)− y1(0)) y2(t)

y1(0)− y2(0)
.

3. Consider G�H = RP1, g = 〈
∂
∂x
, x ∂

∂x
, x2 ∂

∂x

〉
with the group G = SL2 (R) of

projective transformations

A : x → a11x + a12

a21x + a22
,

where A = ∥∥aij
∥∥ ∈ SL2 (R). It is known that any projective transformation of

the projective line is completely determined by images of three distinct points.
Therefore, the stiffness of RP1 equals 3. It is also known that the cross-ratio

x − a1

x − a2

a3 − a2

a3 − a1

is a projective invariant. Therefore, the element γ (a, b) ∈ SL2 (R) such that
y = γ ((x1, x2, x3) , (y1, y2, y3)) x can be found from the equation:

y − y1

y − y2

y3 − y2

y3 − y1
= x − x1

x − x2

x3 − x2

x3 − x1
.

Thus, a fundamental solution for the Riccati equation
·
x(t) = A(t)+ B(t)x(t)+

C(t)x(t)2 is a triple of solutions (y1(t), y2(t), y3(t)) with distinct initial values
y1(0), y2(0), y3(0), and the general solution y(t) can be found from the equation

y(0)− y1(0)

y(0)− y2(0)

y3(0)− y2(0)

y3(0)− y1(0)
= y(t)− y1(t)

y(t)− y2(t)

y3(t)− y2(t)

y3(t)− y1(t)
.
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3.6 Ordinary Differential Equations

As we have seen above, the ordinary differential equation

F
(
x, y(x), y′(x), . . . , y(k)(x)

)
= 0 (3.29)

of order k, for functions y(x) in one variable x, is represented as a submanifold EF
in the space of k-jets Jk:

EF = {F (x, u0, u1, . . . , uk) = 0} ⊂ Jk.

Its solutions y(x) are represented by curves

Ly =
{
u0 = y(x), u1 = y′(x), . . . , uk = y(k)(x)

}
⊂ EF ⊂ Jk.

These curves are integral for the restriction CF of the Cartan distribution

Ck = kerω0 ∩ · · · ∩ kerωk−1

on EF . Here,

ωi = dui − ui+1dx

are the Cartan forms.
As we have seen, the Cartan distribution Ck has dimension 2, and therefore the

spaces of the distribution CF are intersections

T EF ∩ Ck = ker dF ∩ kerω0 ∩ · · · ∩ kerωk−1,

which are of dimension 2 or 1. The points xk ∈ EF where the intersection has
dimension 2 we call singular and the points where the dimension equals 1 we call
regular.

Since we have

dF = Dk (F ) dx + ∂F

∂uk
duk mod Ck,

where

Dk = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk

∂

∂uk−1
,

points are singular if and only if
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Dk (F ) = 0,
∂F

∂uk
= 0. (3.30)

At regular points, we have dimCF = 1 and the vector field

ZF = ∂F

∂uk
Dk −Dk (F )

∂

∂uk
(3.31)

is a basis in the distribution.
Thus, solutions Ly of (3.29) are trajectories of ZF . However, there are trajecto-

ries of ZF , which does not have the form Ly since the function x, in general, is not
a coordinate on the trajectory. This situation appears every time when ∂F

∂uk
= 0 on

the trajectory.
Thus, we have two alternatives. Either we continue to consider solutions of (3.29)

as smooth functions on the line, or we start to consider solutions as integral curves of
distribution CF . We shall follow the second alternative, and then we get solvability
of our equation at regular points for free. Also, if L ⊂ EF is an integral curve of
CF , then we can remove from L the points where ∂F

∂uk
= 0. Then, we get

L�

(
∂F

∂uk

)−1

(0) =
⋃

i

Li,

where each curve Li has the form

Li = Lyi(x),

for some functions yi(x), each defined on its own interval. In this case, we call
integral curves L multivalued solutions of (3.29).

There are also exceptional cases, when ∂F
∂uk

= 0 at all points of L. Then, L has
the form

L = {x = const, u0 = const0, . . . , uk−1 = constk−1} ,

where constants are chosen in such a way that

F (const, const0, . . . , constk−1, uk) = 0.

Example 3.8 Consider the Lissajous equation (see [7]):

(
1− x2

)
y′′ − xy′ + a2

b2 y = 0, (3.32)

where a �= 0 and b �= 0 are some constants. Here,
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F =
(

1− x2
)
u2 − xu1 + a2

b2
u0,

and

EF =
{

u0 =
(
x2 − 1

)
u2 + xu1

a2 b2

}

⊂ J2

is a smooth 3-dimensional submanifold in J2 with coordinates (x, u1, u2) .

We have

∂F

∂u2
= 1− x2,

D2 (F ) = −3xu2 + a2 − b2

b2 u1,

and therefore the two curves

x = ±1, u1 = ±a2

b2 u0, u2 = a2
(
a2 − b2

)

3b4 u0

consist of singular points of the equation.
Also, ∂F

∂u2
= 1 − x2, which implies that all integral curves that contain points

(x = ±1, u0, u1, u2) are multivalued solutions. To find these solutions, we represent
them in parametric forms

x = cos (bt) ,

y = f (t) ,

for −1 < x < 1, and in the form

x = ± cosh (bt) ,

y = g (t) ,

for x > 1 or x < −1. Then, our equation in the first case takes the form

f ′′ + a2f = 0,

and the form

g′′ − a2g = 0,

in the second case. Therefore, the solutions have the form
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Fig. 3.1 The solution to
(3.32) given by x = cos(5t)
and y = sin(3t)

x = cos (bt) ,

y = c1 cos (at)+ c2 sin (at) ,

on intervals |x| < 1 and

x = ± cosh (bt) ,

y = c1 cosh (at)+ c2 sinh (at) ,

on intervals |x| > 1. We plot the first type of solutions for c1 = 0 and c2 = 1 in
the cases where a

b
= 3

5 and a
b
= 3

5π , respectively. The first picture (Fig. 3.1) gives
exactly what we expect from multivalued solutions, but the second one (Fig. 3.2) is
very far from the standard image.

3.7 ODE Symmetries

To simplify our exposition, we will assume that Eq. (3.29) is resolved with respect
to the highest derivative and therefore has the form

E = {uk = F (x, u0, .., uk−1)} . (3.33)

Then, functions (x, u0, .., uk−1) are coordinates on E , and the Cartan distribution
CE on E is given by forms
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Fig. 3.2 The solution to
(3.32) given by x = cos(5πt)
and y = sin(3t)

ω0 = du0 − u1dx, . . . ., ωk−2 = duk−2 − uk−1dx, ωk−1 = duk−1 − Fdx

and generated by the truncated total derivative

D = ∂

∂x
+ u1

∂

∂u0
+ · · · + uk−1

∂

∂uk−2
+ F

∂

∂uk−1
.

Similarly to what we had in the general case, we have now the following expression
for differentials of functions on E modulo the Cartan forms:

df = D (f ) dx mod 〈ω0, .., ωk−1〉 ,

where f = f (x, u0, .., uk−1).

We have dimCE = 1, and therefore this distribution is completely integrable,
and the vector field D is obviously characteristic. We present shuffling symmetries
in the form

X = a0
∂

∂u0
+ · · · + ak−1

∂

∂uk−1
,

where ai are functions on E .
This vector field is a symmetry of CE , or of E , if

LX (ωi) = 0 mod 〈ω0, . . . , ωk−1〉 ,

for all i = 0, . . . , k − 1.
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We have

LX (ωi) = dai − ai+1dx = (D (ai)− ai+1) dx mod 〈ω0, . . . , ωk−1〉 , (3.34)

for i = 0, . . . , k − 2, and

LX (ωk−1) = dak−1−X (F) dx = (D (ak−1)−X (F)) dx mod 〈ω0, . . . , ωk−1〉 .
(3.35)

Therefore, if we put a0 = φ (x, u0, .., uk−1), then the formulae (3.34) and (3.35)
give us

ai = Di (φ) ,

for i = 0, . . . , k − 1 and

Dk (φ)−X (F) = 0.

Therefore,

X = Xφ = φ
∂

∂u0
+D (φ)

∂

∂u1
· · · +Dk−1 (φ)

∂

∂uk−1
, (3.36)

and the last formula gives us condition on φ (Lie equation):

Dk (φ)− ∂F

∂uk−1
Dk−1 (φ)− · · · − ∂F

∂u1
D (φ)− ∂F

∂u0
φ = 0. (3.37)

Summarizing, we get the following result.

Theorem 3.10 Let Sym (E) be the Lie algebra of shuffling symmetries of ODE
(3.33). Then, formula (3.36) gives the isomorphism of this Lie algebra with the space
of smooth solutions to the Lie equation (3.37). The Lie algebra structure in Sym (E)
in terms of solutions (3.37), we call them generating functions, has the following
form:

[Xφ,Xψ ] = X[φ,ψ],

where

[φ,ψ] = Xφ (ψ)−Xψ (φ) . (3.38)

Proof To prove (3.38), we remark that φ = Xφ (u0) .

Therefore,

[φ,ψ] = X[φ,ψ] (u0) = [Xφ,Xψ ] (u0) = Xφ (ψ)−Xψ (φ) .

��
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Remark 3.3

1. If we compare formula (3.36) with description of symmetries of the general
Cartan distribution, we see that when the generating function has the form φ =
φ (x, u0, u1), then the symmetries Xφ are restrictions of the contact symmetry of
Ck on our differential equation. Moreover, symmetries with generating function
φ, depending on u2, ..uk−1, are not anymore classical contact symmetries, and
this can happen only when the order of the differential equation k � 3.

2. Contact symmetries with generating functions φ = b (x, u0) + a (x, u0) u1 are
called point symmetries. They correspond to transformations given by vector
fields

−a ∂

∂x
+ b

∂

∂u0

on the plane J0 of the 0-jets (see [6] for more details).
3. Point symmetries, with generating functions φ = b(x)u0 + a (x) u1, correspond

to transformations, which are linear automorphisms of the line bundle π0 : J0 →
R. We call them linear symmetries.

3.7.1 Integration of ODEs with Commutative Symmetry
Algebras

In this section, we will discuss an application of symmetries to integration of ODEs.
Assume that Eq. (3.33) has k linearly independent (in some domain) commuting

symmetries Xφ0 , . . . , Xφk−1 , [φi, φj ] = 0.
Remark that all symmetries Xφi preserve the Cartan distribution, and therefore

[Xφi ,D] = λiD,

for some functions λi, i = 0, . . . , k − 1.
Applying both sides of this relation to the function x and using the relations

Xφi (x) = 0, D(x) = 1, we get λi = 0, i.e. k + 1 vector fields D,Xφ0 , . . . , Xφk−1

commute and are linearly independent.
Consider differential forms

ω−1 = dx, ω0, . . . , ωk−1

on E , then ω−1 (D) = 1, ωi (D) = 0, for i � 0, and ωi

(
Xφj

) = Di
(
φj

)
, for

i, j � 0.
Therefore, the matrix Ξ that we used in Sect. 3.5.1 has the form
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Ξ =

∥∥∥∥
∥∥∥∥∥
∥∥∥

1 0 · · · · · · 0
0 φ1 · · · · · · φk−1
...

...
... · · · ...

...
...

... · · · ...

0 Dk−1φ1 · · · · · · Dk−1 (φk−1)

∥∥∥∥
∥∥∥∥∥
∥∥∥

=
∥∥∥∥

1 0
0 W

∥∥∥∥ ,

where

W =
∥
∥∥∥∥∥

φ1 · · · φk−1

· · · · · · · · ·
Dk−1φ1 · · · Dk−1 (φk−1)

∥
∥∥∥∥∥
.

Therefore, the differential forms

Ξ−1

∥∥∥∥∥
∥∥∥∥

dx

ω0
...

ωk−1

∥∥∥∥∥
∥∥∥∥

=
∥∥∥
∥

dx

W−1ω

∥∥∥
∥ =

∥∥∥
∥
dx

θ

∥∥∥
∥ ,

where

ω =

∥∥∥∥∥
∥∥

ω0
...

ωk−1

∥∥∥∥∥
∥∥
, θ = W−1ω, (3.39)

give us the dual coframe: θi
(
Xφi

) = δij , and they are closed dθi = 0.
Let

fi =
∫

θi, (3.40)

then the functions (x, f0, .., fk−1) are coordinates on E and since

D (fi) = θi (D) = 0,

they are first integrals. In other words, solutions of E are given by relations

f0 (x, u0, . . . , uk−1) = const0, . . . ., fk−1 (x, u0, . . . , uk−1) = constk−1,

(3.41)
and the explicit dependency u0 on x could be found by the elimination u1, . . . , uk−1
from the above equations.
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Theorem 3.11 Solutions of ODE (3.33) of order k with k linearly independent
commuting symmetries Xφ0 , . . . , Xφk−1 can be found by quadrature (3.39, 3.40,
3.41).

Example 3.9 Example (k = 1) Consider the first-order ODE

y′ = F(x, y).

Its symmetries have the form

Xφ = φ (x, u0)
∂

∂u0
,

where the function φ is a solution of the Lie equation

D (φ)− Fu0φ = φx + Fφu0 − Fu0φ = 0,

and

θ = ω0

ω0
(
Xφ

) = du0 − Fdx

φ
.

If we consider the Lie equation as equation on F given φ, we get

F = φ (x, u0)

(
h(x)+

∫
φx

φ2 du0

)
,

and

θ = du0

φ
−

(
h(x)+

∫
φx

φ2 du0

)
dx,

for arbitrary functions h(x) and φ (x, u0) .

Example 3.10 Example (k = 2) Consider the second-order ODE

y′′ = F(y, y′).

Symmetries of this equation are vector fields of the form

Xφ = φ
∂

∂u0
+ (

φx + u1φu0 + Fφu1

) ∂

∂u1
,

where generating function φ = φ (x, u0, u1) satisfies the Lie equation

D2φ − ∂F

∂u1
D (φ)− ∂F

∂u0
φ = 0,



3 Symmetries and Integrals 107

with

D = ∂

∂x
+ u1

∂

∂u0
+ F (u0, u1)

∂

∂u1
.

Remark that the equation is invariant with respect to translations in x, and
therefore φ = u1 is a solution of the Lie equation. In order to get a commutative
algebra of symmetries, we assume that the generating function for the second
symmetry is of the form φ (u0). For this type of symmetry, the Lie equation takes
the form

φu0u0u
2
1 − φFu0 − φu0

(
u1Fu1 − F

) = 0.

For example, equations with function F quadratic in u1 have the form

F (u0, u1) = φu0 + c1

φ
u2

1 + c2u1 + c3φ, (3.42)

and φ = φ (u0) is the symmetry of the equation.
Let us take the representative with c1 = 0, c2 = 0, c3 = 1, φ = exp (u0):

u2 = u2
1 + exp(u0).

It has commutative symmetry algebra (φ1 = u1, φ2 = exp(u0)). Then,

W =
∥∥
∥∥
φ1 φ2

Dφ1 Dφ2

∥∥
∥∥ =

∥∥
∥∥

u1 exp (u0)

u2
1 + exp(u0) u1 exp (u0)

∥∥
∥∥ ,

and

θ1 = −u1 exp (−u0) ω0 + exp (−u0) ω1

θ2 = exp (−2u0)
(
u2

1 + u0

)
ω0 − u1 exp (−2u0) ω1

are closed 1-forms. We have

θ1 = dH1, θ2 = dH2,

where

H1 = −x + exp (−u0) u1 + c1,

H2 = −1

2
u2

1 exp (−2u0)− exp (−u0)+ c2,

and solutions of the equation are given by
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y(x) = ln

(
2

2c2 − c2
1 − x2 + 2c1x

)

,

where c1 and c2 are constants.

3.8 Schrödinger Type Equations

3.8.1 Actions of Diffeomorphisms on Schrödinger Type
Equations

In this part, we consider linear second-order equations of the form

y′′ +W(x)y = 0, (3.43)

with the potential W(x), and we study the cases when W is integrable, i.e. the
Eq. (3.43) can be solved by quadratures. Because of linearity (3.43), we will restrict
ourselves to linear symmetries φ = a(x)u0 + b(x)u1.

Then, the Lie equation takes the form

D2 (φ)+W(x)φ = 0, (3.44)

where

D = ∂

∂x
+ u1

∂

∂u0
−W(x)u0

∂

∂u1
,

or

(
b′′ + 2a′

)
u1 +

(
a′′ − 2Wb′ −W ′b

)
u0 = 0

in explicit form. Therefore,

a = −1

2
b′ + c,

φ = cu0 + φb,

φb = bu1 − b′

2
u0,

where the function b(x) satisfies the following third-order differential equation:

b(3) + 4Wb′ + 2W ′b = 0. (3.45)
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To understand the meaning of this equation, consider the action of point
transformations on equations of type (3.43). If these transformations preserve the
class of linear equations, they have to be of the following form:

T : (x, u0)→ (y = Y (x),A(x)u0) .

Then, the image of (3.43) under this transformation is the following equation:

K2u2 +K1u1 +K0u0 = 0,

where

K2 = A

(Y ′)2 ,

K1 = 2A′Y ′ − AY ′′

(Y ′)3 ,

K0 = −A′Y ′′ + Y ′A′′ − AW (Y)
(
Y ′

)3

(Y ′)3
.

Therefore, to get transformations preserving the class of Schrödinger type equations,
we should require that K1 = 0, and this requirement gives us the following class of
transformations (up to a constant scaling of u0):

T : (x, u0)→
(
Y (x),

√
Y ′u0

)
, Y ′ > 0. (3.46)

Then, Eq. (3.43) will be transformed to the same type of equation with potential
W̃ equal to

W̃ (x) = (
Y ′

)2
W (Y)+ Y (3)

2Y ′
− 3

4

(
Y ′′

)2

(Y ′)2 . (3.47)

Notice that if we consider symmetric differential forms

gW = Wdy2,

then the last equation takes the following form:

gW̃ = Y ∗ (gW )− S (Y ) ,

where

S (Y ) =
(

−Y (3)

2Y ′
+ 3

4

(
Y ′′

)2

(Y ′)2

)

dx2

is the Schwarzian derivative.
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It is easy to check that S (Y ) = 0 if and only if Y is a projective transformation:

Y (x) = ax + b

cx + d
,

where

∥∥∥∥
a b

c d

∥∥∥∥ ∈ SL2 (R) .

Therefore, the SL2 (R)-action on the set of Schrödinger equations is equivalent to
the SL2 (R)-action on the space of quadratic differential forms.

3.8.2 Actions of the Diffeomorphism Group on Tensors

To understand the geometrical meaning of solutions of Schrödinger type equations,
we reconsider actions of the diffeomorphism group on tensors.

Let M and N be manifolds, and let φ : M → N be a diffeomorphism. We define
action φ∗ of φ on tensors in such a way that

(ψ ◦ φ)∗ = ψ∗ ◦ φ∗, (φ∗)−1 =
(
φ−1

)

∗ . (3.48)

Functions For f ∈ C∞ (M), we define φ∗ (f ) ∈ C∞ (N) as follows:

φ∗ (f ) = f ◦ φ−1.

Remark that the difference of φ∗ (f ) from the more standard φ∗ (h) = h ◦ φ,
where h ∈ C∞ (N) and φ∗ (h) ∈ C∞ (M), is the following:

• We define φ∗ (f ) for diffeomorphisms φ only but φ∗ (h) defined for all smooth
mappings φ.

• Since we have (φ ◦ ψ)∗ = ψ∗ ◦ φ∗, instead of (3.48), the correspondence
φ �−→ φ∗ is not a group homomorphism, but φ �−→ φ∗ is.

Vector fields Let V ∈ Vect (M) be a vector field on M, we define φ∗ (V ) by

φ∗ (V ) (h) = φ∗
(
V

(
φ−1∗ (h)

))
,

where h ∈ C∞ (N) or, in operator form,

φ∗ (V ) = φ∗ ◦ V ◦ φ−1∗ .

Then, once more, we have property (3.48), and
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φ∗ (f V ) = φ∗ (f ) φ∗ (V ) ,

for all f ∈ C∞ (M) .

Differential Forms Let ω ∈ Ω1 (M) be a differential 1-form on M, and then we
define φ∗ (ω) ∈ Ω1 (N) as follows:

〈φ∗ (ω) , Z〉 = φ∗
〈
ω, φ−1∗ (Z)

〉
,

for all vector fields Z ∈ Vect (N). For exterior differential forms of higher
degree, we define

φ∗ (ω1 ∧ · · · ∧ ωk) = φ∗ (ω1) ∧ · · · ∧ φ∗ (ωk) ,

where ω1 ∈ Ω1 (M) , . . . , ωk ∈ Ω1 (M) and ω1 ∧ · · · ∧ ωk ∈ Ωk (M) . In a
similar way, we define images of the symmetric differential forms and general
tensors.
Once more, we have property (3.48) for maps of differential forms and tensors.

Coordinates Let x = (x1, .., xn) be local coordinates on M and let y =
(y1, .., yn) be local coordinates on N. Assume that diffeomorphism φ has the
following form in these coordinates:

φ : x → y = Y (x),

φ−1 : y → x = X (y) .

Then,

f (x) �⇒ φ∗ (f ) (y) = f (X (y)) ,

h (y) �⇒ φ−1∗ (h) (x) = h (Y (x)) .

Let V = ∂
∂xi

∈ Vect (M). Then, φ∗ (V ) ∈ Vect (N) has the form

φ∗ (V ) =
n∑

j=1

aj (y)
∂

∂yj
,

and

aj (y) = φ∗ (V )
(
yj

) = φ∗
(
V

(
φ−1∗

(
yj

)))

= φ∗
(
V

(
Yj (x)

)) = φ∗
(
∂Yj

∂xi

)
= ∂Yj

∂xi
(X (y)) .

Therefore,
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φ∗
(

∂

∂xi

)
=

n∑

j=1

∂Yj

∂xi
(X (y))

∂

∂yj
. (3.49)

Let ω = dxi ∈ Ω1 (M) be a differential 1-form. Then,

φ∗ (dxi) =
n∑

j=1

bj (y) dyj ,

and

bj (y) = φ∗
(〈

dxi, φ
−1∗

(
∂

∂yj

)〉)
= ∂Xi

∂yj
(X (y)) .

Therefore,

φ∗ (dxi) =
n∑

j=1

∂Xi

∂yj
(X (y)) dyj .

Solutions As we have seen, the natural type of transformations for solutions
of Eq. (3.43) is very similar to transformation of vector fields, with only one
difference: instead of the multiplier ∂Y

∂x
that we used for transformations of vector

fields, we have to use multiplier
√

∂Y
∂x

, i.e. solutions of the Schrödinger type

equations behave like “ 1
2−vector fields.” To check this hypothesis, we substitute

square b(x) = y(x)2 of a solution y(x) of equation (3.43) in symmetry Eq. (3.45)
and get zero.

Therefore, any product of solutions b(x) = y1(x)y2(x) of the Schrödinger
equation also satisfies equation (3.45). In other words, if 〈y1 (x) , y2(x)〉 is a
fundamental set of solutions of Eq. (3.43), then

〈
y1(x)

2, 2y1(x)y2(x), y
2
2(x)

〉
is a

fundamental set of solutions of Eq. (3.45).
These functions represent vector fields

A = y1(x)
2 ∂

∂x
, H = 2y1 (x) y2(x)

∂

∂x
, B = y2(x)

2 ∂

∂x
.

Assume that the Wronskian of y1 and y2 equals 1. Then,

[A,B] = H, [H,A] = −2A, [H,B] = 2B;

i.e. these vector fields satisfy the structure equations of the Lie algebra sl (2,R).
To summarize, we have the following result.
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Theorem 3.12

1. The solution space of Eq. (3.45) is formed by pairwise products of solutions of
Eq. (3.43), i.e. Eq. (3.45) is a symmetric square of Eq. (3.43).

2. The solution space of Eq. (3.45) is the sl (2,R) Lie algebra with respect to
bracket [z1, z2] = z1z

′
2 − z′1z2.

3. The Lie equation on symmetries of Schrödinger equation (3.43) defines a
projective structure on the line: sl (2,R) ⊂ Vect (R) .

Remark 3.4 By a projective structure on R, we mean a covering R by intervals
(Uα, tα) with coordinates tα such that on intersections Uα ∩ Uβ , these coordinates
are connected by projective transformations

tβ = a
βα
11 tα + a

βα
12

a
βα
21 tα + a

βα
22

, (3.50)

where
∥∥∥∥∥
a
βα
11 a

βα
12

a
βα
21 a

βα
22

∥∥∥∥∥
∈ SL2 (R) . (3.51)

It is easy to check with formula (3.47) that locally any Schrödinger equation (3.43)
could be transformed to the equation y′′ = 0. The Lie algebra, corresponding to this
equation, has the form

sl (2,R) =
〈
∂

∂x
, x

∂

∂x
, x2 ∂

∂x

〉
. (3.52)

In particular, any realization sl (2,R) ⊂ Vect (R) is locally equivalent to model
(3.52), and any two such realizations are connected by a projective transformation
(3.50).

In other words, to define a projective structure on R is equivalent to have a
representation of Lie algebra sl (2,R) in Lie algebra of vector fields Vect (R), and
it is also equivalent to have a Schrödinger equation (3.43).

Example 3.11 To the Schrödinger equation, y′′ + ω2y = 0 corresponds the Lie
algebra

sl (2,R) =
〈
sin2 (ωx)

∂

∂x
, sin (2ωx)

∂

∂x
, cos2 (ωx)

∂

∂x

〉
, (3.53)

which is not equivalent to (3.52) on R because any nonvanishing vector field in
(3.53) has an infinite number of zeroes, while those in (3.52) have not more than
two.
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3.8.3 Integration of Schrödinger Type Equations with
Integrable Potentials

As we have seen, the Schrödinger type equations (3.43) have linear symmetries of
the form φ0 = u0 and φb = bu1 − 1

2b
′u0, where the function b = b(x) is a solution

of the Lie equation

b(3) + 4Wb′ + 2W ′b = 0.

They do commute [φ0, φb] = 0, and therefore the Schrödinger equation can be
integrated in quadratures if we know a nontrivial symmetry φb. In this case, we call
potential W integrable.

Moreover, integrating the Lie equation with respect to W with given function b,
we get the relation

W = cb

b2 +
1

4

(
b′

b

)2

− 1

2

b′′

b
, (3.54)

where cb is a constant.
Remark that the solution space of the Lie equation is a Lie algebra, which is

isomorphic to sl2, and the constant cb is proportional to the value of the Killing
form on sl2 on the vector b ∈ sl2.

The relation (3.54) shows that if two potentials W and W̃ have the same
symmetry φb, then

W̃ −W = c

b2 ,

for some constant c.
This observation can also be used in the opposite way: if W is an integrable

potential with symmetry φb, then the potential W + c
b2 is also integrable with the

same symmetry φb.

Example 3.12 The potentials
c

(
c2x2 + 2c1x + c0

)2 ,

ω2 + c

(c1 sin (2ωx)+ c2 cos (2ωx)+ c0)
2 ,

and

1+ 1

(sin (2x)+ 1)2

are integrable (Figs. 3.3 and 3.4).
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Fig. 3.3 w = 1

(x2+1)
2

Fig. 3.4
w = 1+ 1

(
sin2(2x)+1

)2



116 V. V. Lychagin

3.8.3.1 Integration by Symmetries

To integrate the Schrödinger equation with given symmetry φb, we will use the
following observation:

Lemma 3.2 Let φ and ψ be symmetries of the Schrödinger equation. Then, the
function

H = φD (ψ)− ψD (φ)

is a first integral.

Proof The conditions that ψ and φ are symmetries mean that D2 (ψ) +Wψ = 0
and D2 (φ)+Wφ = 0. Therefore,

D (H) = D (φ)D (ψ)−D (ψ)D (φ) = 0.

��
By applying this lemma to the symmetries ψ = φ0 = u0 and φ = φb, we get that

H = cb

b
φ2

0 +
1

b
φ2
b

is a first integral of the equation.
Assume that cb = c2

0 > 0, and let y be a solution. Let

z = y√|b| ,

then

H = c0z
2 + b2z′2 = c2.

Let

z = c

c0
sin (γ ) , z′ = c

b
cos (γ ) ,

for some function γ . Then,

γ ′ = c0

b
,

and therefore solutions y have the form

y = c

c0

√|b| sin

(
c0

∫
dx

b

)
.
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In a similar way, we get

y = c

c0

√|b| sinh

(
c0

∫
dx

b

)

for the case cb = −c2
0 < 0, and

y = c
√|b|

∫
dx

b

for the case cb = 0.
Finally, we conclude that knowledge of a single nontrivial linear symmetry φb

gives us

• Potential function

W = cb

b2
+ 1

4

(
b′

b

)2

− 1

2

b′′

b
.

• Fundamental solution (if cb = c2
0 > 0 )

y1 =
√|b| sin

(
c0

∫
dx

b

)
, y2 =

√|b| cos

(
c0

∫
dx

b

)
.

• Linear symmetries

b1 = b, b2 = b sin

(
2c0

∫
dx

b

)
, b3 = b cos

(
2c0

∫
dx

b

)
.

• Integrable potentials

W +
∑

i

ki

(c1ib1 + c2ib2 + ci3b3)
2 , etc.

Example 3.13 For the case

W = 1+ 2

(2+ sin 2x)2
, b = 2+ sin 2x, cb = 5,

we have (Fig. 3.5)

y1 =
√

2+ sin 2x sin

(
2√
3

arctan

(
2 tan x + 1√

3

))
,

y2 =
√

2+ sin 2x cos

(
2√
3

arctan

(
2 tan x + 1√

3

))
.
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Fig. 3.5 w = 1+ 2
(2+sin 2x)2

3.8.3.2 Lame Equation

Let us consider the case when the potential function W generates linear symmetry
φW = Wu1 − 1

2W
′u0 for the corresponding Schrödinger equation.

In other words, the lift of the vector field

W(x)
∂

∂x

in the bundle of 1
2 -vector fields is a symmetry of the Schrödinger equation.

Putting b = W in the Lie equation gives us differential equation for potential:

W(3) + 6WW ′ = 0,

or

W ′′ + 3W 2 + c1 = 0

for some constant c1. Therefore,

1

2
W ′2 +W 3 + c1W + c2 = 0,

for some constant c2, and
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W = −2℘,

where ℘ is the Weierstrass p-function with invariants g2 = −c1 and g3 = c2/2.
Therefore, the Lame equation

y′′ − 2℘y = 0

has linear symmetry

φ℘ = ℘u1 − 1

2
℘′u0,

with constant c℘ = −g3.

The fundamental solution (in the case, g3 < 0) has the form

y1 =
√|℘| sin

(√−g3

∫
dx

℘

)
, y2 =

√|℘| cos

(√−g3

∫
dx

℘

)
,

and all linear symmetries are generated by

b1 = ℘, b2 = ℘ sin

(
2
√−g3

∫
dx

b

)
, b3 = ℘ cos

(
2
√−g3

∫
dx

b

)
,

and the potentials

−2℘ +
∑

i

ki

℘2
(
c1i + c2i sin

(
2
√−g3

∫
dx
b

)+ ci3 cos
(
2
√−g3

∫
dx
b

))2

are integrable.

3.8.3.3 Eigenvalue Problem

Here, we consider equations of the form

y′′ + (W − λ)y = 0. (3.55)

At first, we consider equations that have symmetries that are linear in λ:

b = b0 + λb1.

Collecting terms with λ2, λ, and λ0, we get the following relations: b1 =
const, b0 = −W

2 , and b0 is a symmetry of W. Therefore, we get the discussed
case of the Lame equation:
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y′′ − (λ+ 2℘) y = 0,

with symmetry

b = λ+ ℘.

Then, the functions

y = C1
√|℘ + λ| sin

(√−g3

∫
dx

℘ + λ

)
+ C2

√|℘ + λ| cos

(√−g3

∫
dx

℘ + λ

)

satisfy equation (3.55).
Assume that we are looking for eigenvalues for the boundary value problem

y (a) = y (b) = 0 on the interval [a, b], where the function ℘ has no singularities.
Then, the boundary value problem gives us a linear system for the coefficients

C1 and C2 of the solution

y(x) = C1
√|℘(x)+ λ| sin

(√−g3

∫ x

a

dx

℘ + λ

)

+ C2
√|℘(x)+ λ| cos

(√−g3

∫ x

a

dx

℘ + λ

)
.

We have

C2
√|℘ (a)+ λ| = 0,

at the point x = a and

C1
√|℘ (b)+ λ| sin

(
√−g3

∫ b

a

dx

℘ + λ

)

+ C2
√|℘ (b)+ λ| cos

(
√−g3

∫ b

a

dx

℘ + λ

)

= 0

at the point x = b.

Therefore, solutions of the equation

√|℘ (a)+ λ|√|℘ (b)+ λ| sin

(√−g3

∫ b

a

dx

℘ + λ

)
= 0

are eigenvalues for given boundary problem, or

λ = −℘ (a) , λ = −℘ (b) ,

∫ b

a

dx

℘ + λ
= πk√−g3

, k = 0,±1,±2, . . . .

are the eigenvalues.
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Similar results are valid for eigenvalue problems with symmetries that are
polynomial in λ (see [8]).
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Chapter 4
Finite Dimensional Dynamics of
Evolutionary Equations with Maple

Alexei G. Kushner and Ruslan I. Matviichuk

4.1 Introduction

The theory of finite dimensional dynamics is a natural development of the theory
of dynamical systems. Dynamics make it possible to find families that depend
on a finite number of parameters among all solutions of evolutionary differential
equations.

The basic ideas and methods of this theory were formulated in [7, 13]. In the same
papers, finite dynamics were constructed for the Kolmogorov–Petrovsky–Piskunov
and the Korteweg–de Vries equations.

Second-order dynamics of the Burgers–Huxley equation were constructed in
[10].

Dynamics of third order were found for equations of the Rapoport–Leas type
arising in the theory of two-phase filtration. These dynamics were used for
constructing attractors [2, 3].

The paper is devoted to the finite dimensional dynamics of some evolution
equations that arise in physics, mathematical biology, and mathematical economics.
Among them are the Fisher–Kolmogorov–Petrovsky–Piskunov [21] equation and its
generalization and the Black–Scholes equation [4].

When finding dynamics, we have to carry out calculations in jet spaces. This
leads to cumbersome formulas. To facilitate calculations and avoid mistakes, we
use the packages DifferentialGeometry and JetCalculus of the system of symbolic
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calculations Maple. A description of the basics of working with these packages can
be found in [20].

Examples of dynamics calculations are considered and the program codes are
given. These codes, with minor modifications, can be used to compute dynamics
and find exact or approximate solutions to other evolutionary equations.

The structure of this paper is as follows.
In the first two sections, we give basic definitions and describe methods of the

theory. The details can be found in [5, 7, 11, 13].
In the third section, we calculate first- and second-order dynamics of the Fisher–

Kolmogorov–Petrovsky–Piskunov (FKPP) equation

ut = uxx + f (u)

and apply them to construct approximate solutions.
Note that in the considered example, the dynamics equation is solved exactly, but

the group of shifts along the evolutionary vector field was found only approximately.
In the fourth section, we consider the reaction–diffusion equation with a con-

vection term. This equation differs from the FKPP equation by the presence of a
first-order derivative with respect to x (see [16, 18, 19]):

ut +H(u)x = uxx + f (u).

It is proved that this equation has first-order dynamics for any smooth functions H
and f , but second-order dynamics exist only when the function H is quadratic and
the function f is cubic (see Theorem 4.3).

The fifth section is devoted to the Black–Scholes equation that came from
mathematical finance theory. We construct two series of its exact solutions.

Some Maple files can be found on the website, d-omega.org.

4.2 Symmetries of ODEs

Any ordinary differential equation

y(k+1) = h
(
x, y, y′, y′′, . . . , y(k)

)
(4.1)

can be considered as a one-dimensional distribution P on the jet space J k(R). This
distribution is generated by the vector field

D = ∂

∂x
+ y1

∂

∂y0
+ · · · + yk

∂

∂yk−1
+ h

∂

∂yk
.

Here, x, y0, y1, . . . , yk are canonical coordinates on J k(R) [9].

www.d-omega.org
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Integral curves of P are prolongations of trajectories of Eq. (4.1) into the space
J k(R).

Definition 4.1 A vector field X on J k(R) is called an infinitesimal symmetry of
Eq. (4.1) if translations along X preserve P.

All infinitesimal symmetries form the Lie algebra with respect to the Lie bracket.
We denote this algebra by SymmP.

Definition 4.2 An infinitesimal symmetry is called characteristic if translations
along it preserve each integral curve of the distribution P.

Characteristic symmetries form an ideal in SymmP, which we denote by
CharP.

Definition 4.3 The quotient Lie algebra

Shuff P := SymmP / CharP

is called the Lie algebra of shuffling symmetries.

Each shuffling symmetry can be identified with a vector field of the form

Sφ = φ
∂

∂y0
+D(φ)

∂

∂y1
+D2(φ)

∂

∂y2
+ · · · +Dk(φ)

∂

∂yk
,

where φ is a function on J k(R) that is called a generating function of the
corresponding shuffling symmetry.

If the function h does not depend on x, then y1 is a generating function of a
symmetry of Eq. (4.1).

4.3 Flows on ODE’s Solution Spaces

Consider the following evolutionary partial differential equation:

∂u

∂t
= φ

(
x, u,

∂u

∂x
, . . . ,

∂ku

∂xk

)
. (4.2)

Let φ = φ(x, y0, . . . , yk) be a generating function of some shuffling symmetry of
Eq. (4.1), and let Φt be the translation along the vector field Sφ from t = 0 to t . Let
Ly(x) = {y0 = y(x)} be the graph of some solution y = y(x) of Eq. (4.1), and let

L
(k)
y(x) = {y0 = y(x), y1 = y′(x), . . . , yk = y(k)(x)} (4.3)
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be its prolongation into the space J k(R). Shifting the curve L
(k)
y(x) along the

trajectories of the vector field Sφ , we get the surface

Φt

(
L
(k)
y(x)

)
⊂ J k(R2)

that is a prolongation of the graph of a solution of evolution equation (4.2). Here,
J k(R2) is the k-jet space of functions with two independent variables t and x.
Describe two methods for constructing solutions of equation (4.2).

Method 1 The space of solutions of equation (4.1) can be identified with the space
R
k+1 by indicating the initial data of solutions at a fixed point x = x0. Then, the shift

transformation Φt defines the transformation of the space R
k+1 with coordinates

y0, y1, . . . , yk . Therefore, we can consider transformations of this space instead of
transforming curves. Such transformations are given by shifts Φt along the vector
field

Eφ = φ
∂

∂y0
+D(φ)

∂

∂y1
+D2(φ)

∂

∂y2
+ · · · +Dk(φ)

∂

∂yk
,

where φ is a restriction of the function φ to Eq. (4.1).
Let y = y(x; a) be the solution of equation (4.1) with initial data

y(x0) = a0, y
′(x0) = a1, . . . , y

(k)(x0) = ak.

Applying the transformation Φt to the point a = (a0, . . . , ak), we obtain a one-
parameter family y(x;Φt(a)) of solutions of equation (4.1). Then, the function

u(t, x) = y(x,Φt (a))

is a solution of the evolutionary Eq. (4.2) with the initial data u(0, x) = y(x; a).

Method 2 The transformation Φt acting on the jet space J k(R) generates a
transformation Φ∗

t acting on functions. Let Φ−1
t be the inverse transformation for

Φt . Curve (4.3) is generated by the system of equalities

y0 − y(x) = 0, y1 − y′(x) = 0, . . . , yk − y(k)(x) = 0. (4.4)

Applying the transformation
(
Φ−1

t

)∗
to (4.4), we obtain the following systems:

Ψ 0(t, x, y0, . . . , yk) = 0, Ψ 1(t, x, y0, . . . , yk) = 0, . . . , Ψ k(t, x, y0, . . . , yk)=0.

Solving it with respect to y0, . . . , yk , we find a coordinate representation of the

curve Φt

(
L
(k)
y(x)

)
:
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y0 = Y0(t, x), y1 = Y1(t, x), . . . , yk = Yk(t, x). (4.5)

The function u(t, x) = Y0(t, x) is a solution of equation (4.2). The remaining
functions in (4.5) correspond to the partial derivatives:

∂ju

∂xj
= Yj (t, x), j = 1, . . . , k.

The first method is convenient when the solution of equation (4.1) or the shift
transformation Φt can be found only approximately. The second method, on the
contrary, is applicable in the case when the solution and shift transformation can be
found explicitly.

Definition 4.4 If φ is a generating function of a shuffling symmetry of Eq. (4.1),
then Eq. (4.1) is called a (finite dimensional) dynamics of Eq. (4.2). The number
k + 1 is called the order of the dynamics.

Thus, an evolutionary equation determines a flow on the solution space of an
ordinary differential equation.

The following theorem (see [2]) provides a method for calculating finite dimen-
sional dynamics of evolutionary equations.

Theorem 4.1 The ordinary differential equation

F = yk+1 − h(x, y0, y1, . . . , yk) = 0

is a dynamics of evolutionary equation (4.2) if and only if

[φ, F ] = 0 mod DF, (4.6)

where DF = 〈F,D(F),D2(F ), . . . 〉 is the differential ideal generated by the
function F ,

D = ∂

∂x
+ y1

∂

∂y0
+ y2

∂

∂y1
+ · · ·

is the operator of total derivative, and

[φ, F ] =
∑

i�0

(
∂φ

∂yi
Di(F )− ∂F

∂yi
Di(φ)

)

is the Poisson–Lie bracket.

The Poisson–Lie bracket is a prolongation of the classical Poisson bracket into
the jet space (see, for example, [11]). Note that the Poisson–Lie bracket is skew-
symmetric R-bilinear and satisfies the Jacobi identity. From the skew-symmetric
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property, it follows that [φ, φ] = 0, and therefore the equation φ = 0 is a dynamics
of Eq. (4.2).

4.4 The Fisher–Kolmogorov–Petrovsky–Piskunov Equation

The equation

ut = uxx + f (u) (4.7)

is known as the Fisher–Kolmogorov–Petrovsky–Piskunov equation or the reaction–
diffusion equation.

It describes processes of heat and mass transfer, propagation of a dominant gene
[6, 8], propagation of flame [21], reaction–diffusion [14], and ferroelectric domain
wall motion in an electric field [17]. For example, Eq. (4.7) with

f (u) = (1− u2)(m− u),

−1 < m � 0, describes active transmission of an electric impulse in neuron, and it
is known as Nagumo’s equation [15].

B. Kruglikov and O. Lychagina [7] presented an analysis of finite dimensional
dynamics of Eq. (4.7).

4.4.1 Second-Order Dynamics

Equation (4.7) admits second-order dynamics if the function f (u) is cubic (see [7]):

f (u) = f3u
3 + f2u

2 + f1u+ f0,

where f0, . . . , f3 ∈ R. Then,

φ = y2 + f3y
3
0 + f2y

2
0 + f1y0 + f0.

Find second-order dynamics in the form of the Liénard equation [12], i.e. put

F := y2 − A(y0)y1 − B(y0), (4.8)

where A and B are some smooth functions. Consider two cases.

Case 1: f3 > 0 Then, we can put f3 = 2q2. The restriction of the Poisson–Lie
bracket to dynamics (4.8) gives us the following system of equations:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fB ′ − Bf ′ = 0,

(2B − f )A′ = 0,

A′′ = 0,

B ′′ + 2AA′ + 12q2y0 + 2f2 = 0.

Solving this system, we get

A(y0) = A1y0 + A0

and

B(y0) = −1

3
(A2

1 + 6q2)y3
0 − (A0A1 + f2)y

2
0 + B1y0 + B0,

where A0, A1, B0, and B1 are constants that we find from the first two equations:
A0 is arbitrary, and

A1 = 0, B0 = −f0, B1 = −f1.

Then, dynamics (4.8) has the form

F = y2 + 2q2y3
0 + f2y

2
0 − A0y1 + f1y0 + f0 = φ − A0y1. (4.9)

Therefore, the restriction φ to equation F = 0 is

φ = A0y1.

Case 2: f3 < 0 We can put f3 = −2q2, and we get the equation

B ′′ + 2AA′ − 12q2y0 + 2f2 = 0

instead of the last equation in system (4.4.1). Then, A(y0) = A1y0 + A0 and

B(y0) = −1

3
(A2

1 − 6q2)y3
0 − (A0A1 + f2)y

2
0 + B1y0 + B0,

and we get three solutions:

1. A0 is arbitrary, A1 = 0, B0 = −f0, B1 = −f1;

2. A0 = − f2

2q
, A1 = 3q, B0 = f0

2
, B1 = f1

2
;

3. A0 = f2

2q
, A1 = −3q, B0 = f0

2
, B1 = f1

2
.

So, we get the following dynamics:



130 A. G. Kushner and R. I. Matviichuk

F1 =y2 − A0y1 − 2q2y3
0 + f2y

2
0 + f1y0 + f0, (4.10)

F2 =y2 −
(

3qy0 − f2

2q

)
y1 + q2y3

0 −
f2

2
y2

0 −
f1

2
y0 − f0

2
, (4.11)

F3 =y2 +
(

3qy0 − f2

2q

)
y1 + q2y3

0 −
f2

2
y2

0 −
f1

2
y0 − f0

2
. (4.12)

The restrictions φ to this dynamics are

φ1 =A0y1,

φ2 =
1

2q

(
−6q3y3

0 + 6q2y1y0 + 3q(f2y
2
0 + f1y0 + f0)− f2y1

)
,

φ3 =
1

2q

(
−6q3y3

0 − 6q2y1y0 + 3q(f2y
2
0 + f1y0 + f0)+ f2y1

)
,

respectively.

As a result, we obtain the following theorem.

Theorem 4.2 The FKPP equation

ut = uxx + f3u
3 + f2u

2 + f1u+ f0, (4.13)

with nonzero f3, admits the following second-order dynamics of the form:

F = y2 − A(y0)y1 − B(y0).

– If f3 > 0, i.e. f3 = 2q2, then the dynamics has form (4.9);
– If f3 < 0, i.e. f3 = −2q2, then the dynamics have forms (4.10)–(4.12).

Here, q is a nonzero number.

4.4.2 Integration of the Dynamics

Consider, for example, dynamics (4.12). Corresponding differential equation has the
form

y′′ +
(

3qy − f2

2q

)
y′ + q2y3 − f2

2
y2 − f1

2
y − f0

2
= 0. (4.14)

The distribution P is generated by the vector field
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D = ∂

∂x
+ y1

∂

∂y0
−

((
3qy0 − f2

2q

)
y1 + q2y3

0 −
f2

2
y2

0 −
f1

2
y0 − f0

2

)
∂

∂y1
(4.15)

or by the differential 1-forms

ω1 = dy0 − y1dx,

ω2 = dy1 +
((

3qy0 − f2

2q

)
y1 + q2y3

0 −
f2

2
y2

0 −
f1

2
y0 − f0

2

)
dx.

This distribution has two shuffling symmetries:

S1 =φ ∂

∂y0
+D(φ)

∂

∂y1

=
(
−3q2y3

0 +
3

2
f2y

2
0 +

(
−3qy1 + 3

2
f1

)
y0 + 1

2q
f2y1 + 3

2
f0

)
∂

∂y0
(

3q3y4
0 − 2qf 2y3

0 +
1

4q2
(−6q3f1 + qf 2

2 )y
2
0 +

1

4q2
(qf1f2 − 6q3f0)y0

−3qy2
1 +

1

4q2 (6f1q
2 + f 2

2 )y1 + 1

4q
f0f2

)
∂

∂y1

and

S2 =Sy1 = y1
∂

∂y0
+D(y1)

∂

∂y1

=y1
∂

∂y0
+

(
−q2y3

0 +
1

2
f2y

2
0 +

(
−3qy1 + 1

2
f1

)
y0 + 1

2q
f2y1 + 1

2
f0

)
∂

∂y1
.

The vector fields S1 and S2 define commutative symmetry Lie algebra:

[S1, S2] = 0.

According to the Lie–Bianchi theorem [5, 11], the ordinary differential equation
F = 0 is integrable by quadratures. In order to construct its first integrals, we
construct two differential 1-forms �1 and �2 instead of the forms ω1 and ω2.
We choose them so that they form a dual basis for the vector fields S1 and S2, i.e.
�i(Sj ) = δij , where δij is the Kronecker delta. Compose the matrix

W =
∥∥
∥∥
ω1(S1) ω1(S2)

ω2(S1) ω2(S2)

∥∥
∥∥ .

Determinant of the matrix is
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detW = 1

4q

(
12q5y6

0 + 36y1q
4y4

0 − 12y2
0(y

3
0f2 + f1y

2
0 + f0y0 − 3y2

1)q
3

− 18

(
−2

3
y2

1 + f1y
2
0 + f0y0 + 4

3
y3

0f2

)
q2y1

+
(

3f 2
2 y

4
0 + 6f1y

3
0f2 + (3f 2

1 + 6f0f2)y
2
0 + (6f0f1 − 12y2

1f2)y0

+3f 2
0 − 6y2

1f1)q + 3y1f2(f2y
2
0 + f1y0 + f0)

)
.

In the domain of the plane (y0, y1) where detW �= 0, there exists the inverse matrix
W−1. Define differential 1-forms �1 and �2:

∥∥
∥∥
�1

�2

∥∥
∥∥ = W−1

∥∥
∥∥
ω1

ω2

∥∥
∥∥ .

Since the Lie bracket [S1, S2] = 0, we get

d�i (S1, S2) = S1(�i(S2))− S2(�i(S1))−�([S1, S2]) = 0.

This means that the forms �1 and �2 are closed. Due to the Poincaré lemma, there
exist functions H1 and H2 such that �1 = dH1 and �2 = dH2. These functions are
first integrals of the ordinary differential equation F = 0. Integrating the forms �1
and �2 along an arbitrary path in the space J 1(R), we find these integrals. We do
not write them for general case because of their bulkiness.

4.4.3 Construction Solutions of the FKPP Equation by
Dynamics

To construct solutions of equation (4.13), we use Method 1 (see page 126).
Let y(x; a), where a = (a0, a1), be the solution of ordinary differential

equation (4.14) with initial conditions y(x0) = a0 and y′(x0) = a1. Let Φt be
the shift transformation along the vector field S1 from t = 0 to t . Since Φt is a
symmetry of Eq. (4.14), the function y(x;Φt(a)) is a solution of this equation too.

The transformation Φt is defined by the solution of the ordinary equations
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy0

dt
= −3q2y3

0 +
3

2
f2y

2
0 +

(
−3qy1 + 3

2
f1

)
y0 + 1

2q
f2y1 + 3

2
f0,

dy1

dt
= 3q3y4

0 − 2qf 2y3
0 +

1

4q2
(−6q3f1 + qf 2

2 )y
2
0

+ 1

4q2 (qf1f2 − 6q3f0)y0 − 3qy2
1 +

1

4q2 (6f1q
2 + f 2

2 )y1 + 1

4q
f0f2

(4.16)
with initial conditions y0(0) = y0 and y1(0) = y1.

Therefore, if we manage to solve this system and find the flow of the vector field
S1 in explicit form, then we can construct an exact solution of the FKPP equation.
Otherwise, we can use numerical methods to system (4.16). As a result, we obtain
approximate solutions of equation (4.13).

Example 4.1 Consider the equation

ut = uxx − 2u3 + 1. (4.17)

Then, φ = y2 − 2y3
0 + 1, and we have three dynamics:

F1 = y2 + 3y0y1 + y3
0 −

1

2
; (4.18)

F2 = y2 − 3y0y1 + y3
0 −

1

2
; (4.19)

F3 = y2 − αy1 − 2y3
0 + 1, (4.20)

where α is a constant.
Consider dynamics (4.18), for example, i.e. suppose that F = F1. The restriction

of the function φ to the equation F = 0 is

φ = −3y3
0 − 3y0y1 + 3

2
.

The distribution P is generated by the differential 1-forms

ω1 = dy0 − y1dx, (4.21)

ω2 = dy1 +
(

3y0y1 + y3
0 −

1

2

)
dx. (4.22)

The vector fields of shuffling symmetries are

S1 = −
(

3y3
0 + 3y0y1 − 3

2

)
∂

∂y0
+

(
−3y2

1 + 3y4
0 −

3

2
y0

)
∂

∂y1
, (4.23)
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Fig. 4.1 The vector field S1

S2 = y1
∂

∂y0
−

(
3y0y1 + y3

0 −
1

2

)
∂

∂y1
. (4.24)

Remark 4.1 The vector field S1 has a stable focus at the point y0 = 1
3
√

2
, y1 = 0

(see Fig. 4.1).

The matrix W is

W =

∥∥∥∥∥
∥∥

−3y3
0 − 3y1y0 + 3

2
y1

3y4
0 − 3y2

1 −
3

2
y0

1

2
− 3y1y0 − y3

0

∥∥∥∥∥
∥∥
.

It is nondegenerate if

detW = 9y2
0y

2
1 − 3y3

0 + 9y4
0y1 + 3y6

0 −
9

2
y1y0 + 3y3

1 +
3

4
�= 0.

The differential 1-forms �1 and �2 are

�1 = − (6y0y1 + 2y3
0 − 1)dy0 + 2y1dy1

2 detW
, (4.25)

�2 = −dx −
3
(
(4y2

1 − 4y4
0 + 2y0)dy0 − 4

(
y0y1 + y3

0 − 1
2

)
dy1

)

4 detW
. (4.26)
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Fig. 4.2 Sections of the
graph of u(t, x) for t = 0
(red), 0.05 (blue), and 0.15
(green)

After integrating them, we get first integrals of the equation F = 0. However, these
integrals are cumbersome and we do not give them here. Fortunately, a general
solution of equation

y′′ + 3yy′ + y3 − 1

2
= 0 (4.27)

can be constructed directly using Maple. Below we give the corresponding program
code. As a result, we obtain the general solution of equation (4.27):

y(x) =
C1e

2√
3
χ − 1

2e
− 1√

3
χ
(√

3C2 + 1
)

cos χ + 1
2e
− 1√

3
χ
(
C2 −

√
3
)

sin χ

3
√

2

(
C1e

2√
3
χ − C2e

− 1√
3
χ

sin χ + e
− 1√

3
χ

cos χ

) ,

(4.28)
where C1 and C2 are arbitrary constants and χ =

√
3

3√16
x.

An example of calculations in Maple is given below.

Maple Code: Second-order dynamics for the equation ut = uxx − 2u3 + 1

1. Load libraries:

with(DifferentialGeometry):
with(JetCalculus):
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with(Tools):
with(PDETools):
with(LinearAlgebra):

2. Set jet notation, declare coordinates on the manifold M , and generate coordi-
nates on the 3-jet space:

Preferences("JetNotation", "JetNotation2"):
DGsetup([x], [y], M, 3):

3. Define the Poisson–Lie bracket on the space J 3(R):

Poisson:= proc (A, B)
local i, P;
P:=0:
for i from 0 to 3 by 1 do
P:=P+(diff(A, y[i])*TotalDiff(B, [i])-
diff(B, y[i])*TotalDiff(A, [i]))
end do:
return P:
end proc:

4. Define the function φ and a second-order dynamics F :

f(y[0]) := -2*y[0]^3+1:
phi := y[2]+f(y[0]):
F:=y[2]-A(y[0])*y[1]-B(y[0]):

5. The Poisson–Lie bracket calculation:

eq0:=collect(Poisson(phi,F),{y[1],y[2]}):

6. Substitution of the second derivative:

sub_y2:=y[2]=solve(F,y[2]):

7. Restriction of the Poisson–Lie bracket to the dynamics F = 0:

eq1:=[coeffs(collect(eval(eq0,sub_y2),y[1]),y[1])]:

8. Printing the resulting equations [φ, F ] = 0 :

for i from 1 to nops(eq1) by 1 do
print(simplify(eq1[i]))
end do;

9. Solve the resulting system [φ, F ] = 0 with respect to the functions A and B:

dsolve(eq1);

10. We get dynamics (4.18)–(4.20). Choose dynamics (4.18):

F:=y[2]+3y[0]*y[1]+y[0]^3-1/2:
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11. Convert the function F to a differential operator (equation)

ode:=convert(F,DGdiff):

12. This equation can be solved by quadratures. Construct a solution of the Cauchy
problem for this equation:

Y:=simplify(unapply(rhs(dsolve({ode,y(0)=a1,
(D(y))(0) = a2})),x,a1,a2)):

13. Restriction of φ to the dynamic F = 0:

sub_y2:=y[2]=solve(F,y[2]):
phi_F:=eval(phi, sub_y2):

14. Define vector field (4.15):

Z:=evalDG(D_x+y[1]*D_y[0]+(rhs(sub_y2))*D_y[1]):

15. Define vector field (4.23):

S1:=evalDG(phi_F*D_y[0]+LieDerivative(Z,phi_F)*D_y[1]):

16. To find the shifts Φt along the vector field S1, we compose a system of
differential equations

z1:=diff(q(t),t)=eval(Hook(S1,dy[0]),
{y[0]=q(t),y[1]=p(t)});

z2:=diff(p(t),t)=eval(Hook(S1,dy[1]),
{y[0]=q(t),y[1]=p(t)});

Here, q = y0 and p = y1.
17. Choose the solution of equation (4.27) with initial data

q(0) = a0 = 4, p(0) = a1 = 2,

and compose a system to calculate the shift of the point (a0, a1):

ind:=q(0) = 4, p(0) = 2;
dsys:={z1,z2,ind};

18. Numerically solve this system:

dsn := dsolve(dsys, numeric);

19. Load the library:

with(plots):

20. Form the image of sections of the solution of the equation at t = 0; 0.05; 0.15:

r1:=plot(Y(x,rhs(dsn(0)[3]),rhs(dsn(0)[2])),
x=-3..4,color="RED");
r2:=plot(Y(x,rhs(dsn(0.05)[3]),rhs(dsn(0.1)[2])),



138 A. G. Kushner and R. I. Matviichuk

x=-3..4,color="Blue");
r3:=plot(Y(x,rhs(dsn(0.15)[3]),rhs(dsn(0.15)[2])),
x=-3..4,color="GREEN");

21. Display images on the screen:

display([r1,r2,r3],numpoints=1500,
resolution=3000,
thickness=2,axes = framed,
axesfont = ["TIMES", "ROMAN", 12],
labelfont = ["TIMES","ITALIC", 14],
labels = ["x", "y"],color="BLACK");

As a result, we obtain slices of the solution of the equation at moments t =
0, 0.05, 0.15 (see Fig. 4.2).

4.5 The Reaction–Diffusion Equation with a Convection
Term

The reaction–diffusion equation with a nonlinear convection flow H(u) in the
positive direction of the x-axis has the form [14]

ut +H(u)x = uxx + f (u). (4.29)

Write this equation in the form

ut = uxx + g(u)ux + f (u), (4.30)

which is more convenient for calculations. Here, g(u) = −H ′(u). Then,

φ(y0, y1, y2) = y2 + g(y0)y1 + f (y0).

Below we suppose that

g′ �= 0. (4.31)

4.5.1 First-Order Dynamics

Construct first-order dynamics of Eq. (4.30) in the following form:
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F := y1 − h(y0) = 0, (4.32)

where h is some smooth function.
The restriction of the Poisson–Lie bracket to Eq. (4.32) is

[φ, F ] = h′f − hf ′ − h2(g′ + h′′).

Equation [φ, F ] = 0 has the trivial solution h = 0, which corresponds to x-
independent solutions of equation (4.30). Consider the case when h �= 0. Then,
the function h satisfies the Abel differential equation of second kind (see [1] )

hh′ + (g(y0)+ α)h+ f (y0) = 0, (4.33)

where α is a constant. Due to (4.33), the evolutionary vector field has the form

S = (
hh′ + gh+ f

) ∂

∂y0
= αh

∂

∂y0
.

4.5.2 Second-Order Dynamics

We will look for second-order dynamics in the form of the Liénard equation too (see
(4.8)). The Poisson–Lie bracket is

[φ, F ] = −(g′′+A′′)y3
1−(f ′′+B ′′)y2

1−
(
2(g′ + A′)y2 − g′B + A′f

)
y1+B ′f−f ′B.

Since its restriction to Eq. (4.8) is a polynomial in y1, Eq. (4.6) implies the
following system of ordinary differential equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(f − 2B)A′ − 3g′B = 0,

2(A′ + g′)A+ f ′′ + B ′′ = 0,

B ′f − Bf ′ = 0,

g′′ + A′′ = 0.

Solving this system, we find that the functions g and f should be linear and cubic,
respectively:

f (y0) =f3y
3
0 + f2y

2
0 + f1y0 + f0, (4.34)

g(y0) =g1y0 + g0, (4.35)

where f0, . . . , f3, g0, g1 ∈ R. From inequality (4.31), it follows that g1 �= 0.
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Theorem 4.3 1. Equation (4.30) has second order finite dimensional dynamics in
the form of the Liénard equation (4.8) if and only if the function f is a polynomial
of third degree and the function g is linear.

2. Suppose that the functions f and g have forms (4.34) and (4.35), respectively,
where f3 �= 0, g1 �= 0. Then Eq. (4.30) has the finite dimensional dynamics

F = y2 + (g1y0 + α)y1 + f3y
3
0 + f2y

2
0 + f1y0 + f0,

where α is a constant. In addition, if the condition g2
1 − 8f3 ≥ 0 holds, then

Eq. (4.30) has one more finite dimensional dynamics

F =y2 − (A1y0 + A0)y1 + 1

3
(A2

1 + g1A1 + 3f3)y
3
0

+ (A1A0 + f2 + g1A0)y
2
0 − B1y0 − B0,

where

A0 = f2β

f3
, A1 = 3β, B0 = f0(f3 + g1β)

2f3
,

B1 = f1(f3 + g1β)

2f3
, β =

−g1 ±
√
g2

1 − 8f3

4
.

Example 4.2 Consider the equation

ut = uxx − (u+ 1)ux + 1

8
u3. (4.36)

Then,

φ = y2 − (y0 + 1)y1 + 1

8
y3

0

and

F = y2 − 3

4
y0y1 + 1

16
y3

0 .

Restrict φ to the equation F = 0:

φ = −1

4
y0y1 + 1

16
y3

0 − y1.

The vector field is
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Fig. 4.3 The graph of
solution (4.38)
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(
−1

4
y0y1 + 1

16
y3

0 − y1

)
∂

∂y0
+

(
−1

4
y2

1 −
3

4
y0y1 + 1

64
y4

0 +
1

16
y3

0

)
∂

∂y1
.

The shift transformation Φt corresponding to this field is

x �−→ x,

y0 �−→ 8(ty2
0 − 4y1t + 4y0)

(t2 − 2t)y2
0 + 8ty0 + 32+ (8t − 4t2)y1

,

y1 �−→ 8((2t+t2)y4
0+8ty3

0−8ty1(2+ t)y2
0−32ty0y1+128y1 + 16t2y2

1 + 32ty2
1)

(
(t2 − 2t)y2

0 + 8ty0 − 4t2y1 + 8y1t + 32
)2

.

The equation F = 0 has the following general solution:

y(x) = − 8(C1x + C2)

C1x2 + 2C2x + 2
, (4.37)

where C1 and C2 are arbitrary constants. Applying the inverse transformation Φ−1
t

to these functions, we get a solution of equation (4.36):

u(t, x) = − 8(C1(x − t)+ C2)

2+ ((x − t)2 − 2t)C1 + (2(x − t))C2
. (4.38)
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The graph of this solution with C1 = C2 = 1 is shown in Fig. 4.3.
Below we give the part of the code responsible for the shift of solutions (4.37)

along the trajectories of the vector field S.

Maple Code: Second-order dynamics for Eq. (4.36)

4. Define the function φ and a second-order dynamics F :

phi:=y[2]-(y[0]+1)*y[1]+(1/8)*y[0]^3:
F := y[2]-(3/4)*y[0]*y[1]+(1/16)*y[0]^3:

5. Restriction of φ to the dynamic F = 0:

phi_F:= phi-F:

6. Construct the vector field D:

Z:=evalDG(D_x+y[1]*D_y[0]+(A(y[0])*y[1]+
B(y[0]))*D_y[1]):

7. Construct the vector field S:

S:=evalDG(phi_F*D_y[0]+
LieDerivative(Z,phi_F)*D_y[1]):

8. The transformation Φt and its inverse transformation Φ−1
t :

Phi:=Flow(S,t):
Xi:=InverseTransformation(Phi):

9. Solution (4.37) and its derivative:

ode:=convert(F1,DGdiff): v:=rhs(dsolve(ode));
w:=diff(v,x);

10. Apply the transformation Φ−1
t to solution (4.37):

eq:=Pullback(Xi,[y[0]-v,y[1]-w]);

11. Find the explicit form of the solution:

sol:=solve(eq,{y[0],y[1]}):
q:=rhs(sol[1]);

12. Checking:

U:=diff(u(t,x),t)-eval(convert(phi,DGdiff),
y(x)=u(t,x));
simplify(eval(U,u(t,x)=q));
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4.6 The Black–Scholes Equation

The Black–Scholes equation

ut = −1

2
σ 2x2uxx − rxux + ru (4.39)

is a well-known linear partial differential equation of financial mathematics [4].
It describes the price of the option over time. Here, u is the price of the option
as a function of stock price x and time t , r is the risk-free interest rate, and σ is
the volatility of the stock. Note that, unlike the equations considered above, this
equation depends on the variable x. For this equation,

φ = −1

2
σ 2x2y2 − rxy1 + ry0.

4.6.1 First-Order Dynamics

Since the equation is linear, we will seek its linear dynamics:

F = y1 − A(x)y0 − B(x). (4.40)

Then,

[φ, F ] =
(
σ 2x2

2
A′′y0 + rxA′

)
y0 +

(
r + σ 2x2A′

)
y1

+ σ 2xy2 + σ 2x2

2
B ′′ + rxB ′ − rB.

The restriction [φ, F ] of this bracket in Eq. (4.40) is a linear function with respect
to y0. Therefore, the equation [φ, F ] = 0 is equivalent to the following system of
two ordinary differential equations:

⎧
⎪⎨

⎪⎩

1

2
A′′σ 2x2 + (Aσ 2x + σ 2 + r)xA′ + A2σ 2x + Ar = 0,

1

2
B ′′σ 2x + (σ 2 + r)B ′ + σ 2(xA′ + A)B = 0.

The first equation can be solved:

A(x) = 1

2σ 2x

(
σ 2 − 2r − C1 tan

(
C1 ln x − C2

2σ 2

))
,
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where C1 and C2 are arbitrary constants. After substituting into the second equation,
we obtain the equation for B:

4x

(
σ 2x

2
B ′′ + (σ 2 + r)B ′

)
σ 2 cos2

(
C1 ln x − C2

2σ 2

)
− BC2

1 = 0. (4.41)

It is quite difficult to construct a general solution of this equation. But if we put
C1 = 0, then it can be easily solved:

B(x) = C3x
− σ2+2r

σ2 + C4,

where C3 and C4 are arbitrary constants. Then, we get the following dynamics:

F = y1 − 1

2σ 2x
(σ 2 − 2r)y0 − C3x

− σ2+2r
σ2 − C4. (4.42)

The general solution of the corresponding equation is

y(x) = C5x
σ2−2r

2σ2 − 2σ 2(C3x
− 2r

σ2 − C4x)

σ 2 + 2r
, (4.43)

where C5 is an arbitrary constant. A zero solution B(x) = 0 of Eq. (4.41) gives
another dynamics:

F = y1 − 1

2σ 2x

(
σ 2 − 2r − C1 tan

(
C1 ln x − C2

2σ 2

))
y0. (4.44)

Its general solution is

y(x) = C3x
σ2−2r

2σ2 cos

(
C1 ln x − C2

2σ 2

)
. (4.45)

4.6.2 Construction Solutions of the Black–Scholes Equation by
Dynamics

At first, consider dynamics (4.44). Restrict the function φ to dynamics (4.44):

φ = C2
1 + (σ 2 + 2r)2

8σ 2 y0.

Construct the vector field
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S = φ
∂

∂y0
,

and find its shift transformation:

Φt : (x, y0) �−→
(

x, e
C2

1+(σ2+2r)2

8σ2 t
y0

)

.

The inverse transformation is

Φ−1
t : (x, y0) �−→

(

x, e
−C2

1+(σ2+2r)2

8σ2 t
y0

)

.

Acting by this transformation on function (4.45), we obtain the following exact
solution of equation (4.39):

u(t, x) = C3x
σ2−2r

2σ2 cos

(
C1 ln x − C2

2σ 2

)
e
−C2

1+(σ2+2r)2

8σ2 t
. (4.46)

Here, C1, C2, and C3 are arbitrary constants.
For example, the function

u(t, x) = e
3
2 t√
2x

√
sin(

√
3 ln x)+ 1 (4.47)

is a solution of equation (4.39) with σ = r = 1 (see Figs. 4.4 and 4.5).
Now, consider dynamics (4.42). In this case,

φ = 1

8σ 2

(
2r + σ 2

)(
(2r + σ 2)y0 + 2σ 2C3x

− 2r
σ2 − 2C4σ

2x

)
.

Omitting cumbersome calculations, we write the final result. The function

u(t, x) = B1x + B2x
− 2r

σ2 + B3x
σ2−2r

2σ2 e
(σ2+2r)2

8σ2 t

is a solution of equation (4.39). Here, B1, B2, and B3 are arbitrary constants.
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Fig. 4.4 Sections of the
graph of solution (4.47) for
t = 0 (red), 0.1 (orange), 0.2
(green), and 0.3 (blue)

Fig. 4.5 The graph of
solution (4.47)
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Maple Code: First-order dynamics for the Black–Scholes equation

The first three items are the same as in the Maple code on page 135. We start at
the fourth one.

4. Define the function φ and a second-order dynamics F :

phi := -sigma^2*x^2*y[2]/2-r*x*y[1]+r*y[0]:
F := y[1]-A(x)*y[0]-B(x):

5. The Poisson–Lie bracket calculation:

eq0:=simplify(Poisson(phi,F),size);

6. Substitution of the derivatives:

sub:=solve([F,TotalDiff(F,x)],{y[1],y[2]}):

7. Restriction of the Poisson–Lie bracket to the dynamics:

eq1:=simplify(eval(eq0,sub),size):
eq2:=[coeffs(collect(eq1,y[0],distributed),y[0])];

8. Print the resulting equations [φ, F ] = 0:

for i from 1 to nops(eq2) by 1 do
print(simplify(eq2[i],size))
end do;

9. Next, the resulting system of equations is solved with respect to the function A

and B in a semi-manual mode. As a result, we get dynamics (4.44):

F:=y[1]-(1/2)*(sigma^2-2*r
-tan((1/2)*C1*(ln(x)-C2)/sigma^2)*C1)*y[0]/
(sigma^2*x):

10. Restriction of φ to the dynamic F = 0:

phi_F:=simplify(eval(phi,sub),size):

11. Construct the vector field S:

S:=evalDG(phi_F*D_y[0]):

12. The transformation Φt and its inverse transformation Φ−1
t :

Phi:=Flow(S,t):
Xi:=InverseTransformation(Phi):

13. Apply the transformation Φ−1
t to solution (4.45):

Xi_y:=Pullback(Xi,y[0]-(C3*x^((1/2)

*(sigma^2-2*r)/sigma^2)*cos((C1*ln(x)-C2)
/(2*sigma^2)))):
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14. Find solution (4.46):

q:=solve(Xi_y,y[0]);

15. Check this solution:

BSch:=diff(u(t,x),t)-eval(convert(phi,DGdiff),
y(x)=u(t,x)):
simplify(eval(BSch,u(t,x)=q));

It should be zero.
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Chapter 5
Critical Phenomena in Darcy and Euler
Flows of Real Gases

Valentin V. Lychagin and Mikhail D. Roop

5.1 Introduction

In this paper, we summarize the results obtained in [1–5] for two important types of
flows of real gases—the flows through porous media [6] and Euler flows.

The first significant results in the field of filtration processes were obtained
in [7] and [8]. In these papers, the Darcy law was suggested to investigate flows
through porous media. This approach appeared to be sufficiently effective. Such
phenomena as phase transitions in filtration processes were studied in a few works,
for instance, in [9] and [10]. In [9], one-dimensional nonstationary filtration of two-
component mixture of hydrocarbons described by the generalized van der Waals
equation was studied, but only one (thermic) equation of state was considered.
In [10], the authors investigated non-equilibrium phase transitions in filtration
of gas-condensate mixtures and provided the comparison with equilibrium phase
transitions. In both works [9] and [10] numerical computations were used.

Comparing with [9] and [10], we consider three-dimensional, stationary, one-
component filtration and provide explicit formulae for finding solutions of the
Dirichlet boundary problem. Some exact solutions for nonstationary filtration
together with the analysis of the symmetry algebra of corresponding equations for
various media are presented in [11].

Navier–Stokes and Euler flows formed by means of source have been of great
interest since the middle of the 20th century, when Landau found a new exact
singular solution of incompressible Navier–Stokes equations [12] called submerged
jet. From the physical viewpoint, this solution is formed by a source that transmits
the momentum to surrounding medium in a certain direction. It has two features
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that are usually said to be the drawbacks of Landau’s solution. The first one is the
triviality of solution in case of ideal (inviscid) fluids, which means that solution of
this type is valid only for highly viscous fluids. The second one is zero mass flux
through a sphere around the source. Landau’s solution was improved by Broman
and Rudenko [13]. By means of symmetry methods [14, 15], they constructed some
exact solutions of incompressible Navier–Stokes system corresponding to flows
with non-zero mass flux and valid for inviscid fluids. It is worth to say that in [12]
and [13], thermodynamics was out of consideration. One of the first authors who
investigated thermodynamical properties of such flows was Squire [16]. Taking into
account the equation of heat balance, he found the distribution of the temperature
in the jet for incompressible fluids. Some singular solutions for incompressible and
compressible fluids invariant with respect to subalgebras of the symmetry algebra
of the Navier–Stokes equations were obtained in [17]. In [18], one-dimensional gas
flow with phase transitions was studied, and the van der Waals equation was chosen
as a model of thermodynamic state.

For modelling flows formed by means of source, we use Euler equations extended
by equations of state of the medium. In case of one point source, we provide a
method of finding corresponding solutions for various gases and thermodynamical
processes.

This paper has the following structure. In Sect. 5.2, we show that thermo-
dynamics is a particular case of measurement of random vectors [19]; namely,
thermodynamics can be considered as a theory of measurement of extensive thermo-
dynamical variables. Such a consideration leads us to the geometric formulation of
thermodynamics previously established, for instance, in [20] an [21], but we decided
to include this part, on the one hand, to show a new approach to thermodynamics
based on measurement, and on the other hand, to make the paper self-contained. In
Sect. 5.3, we discuss thermodynamics of gases and show how methods of contact
and symplectic geometry can help us, in particular, in solution of practical issues
concerning the determination of caloric equation of state for gases if we know
a thermic one and description of phase transitions. In Sect. 5.4, we illustrate the
methods developed on concrete models of real gases, paying special attention
to phase transitions. In Sect. 5.5, we discuss basic equations describing filtration
processes and Euler flows. We provide two theorems that give us solutions for the
corresponding problems that can be applied to any gas as well as any process. In
Sect. 5.6, we provide solutions for gases discussed in Sect. 5.4 and analyze phase
transitions along the corresponding flows. In Sect. 5.7, we discuss the results.

5.2 Measurement and Thermodynamics

In this section, we describe the measurement of random vector procedure and
show that the results can be naturally presented in terms of contact and symplectic
geometries. The more comprehensive discussion can be found in [19].
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5.2.1 Measurement of Random Vectors

Let (Ω,A, p) be a probability space, i.e. Ω is a set, A is a σ -algebra and p is
a probability measure. By a random vector, we shall mean the following map:
X : (Ω,A, p)→ W , where W is a vector space, dim(W) = n.

Let us suppose that we have a device that measures random vector X. It is natural
to require that the result produced by such a device will be an expectation

E(X) =
∫

Ω

Xdp,

where the integration is assumed to be coordinate-wise. This is what we mean by a
measurement.

Due to Jensen’s inequality, it is easy to check that in this case, the expectation of
length of vector X − c for some c ∈ W with respect to any metric g on W reaches
its minimal value. Indeed,

E (g(X − c,X − c)) ≥ g(E(X − c),E(X − c)) = g(E(X)− c,E(X)− c) ≥ 0,

and the equality to zero takes place iff c = E(X).

5.2.2 Information Gain

Let us now suppose that we have another probability measure q on our probability
space (Ω,A, p), which has the same set of measure zero sets as p has. Such
measures are called equivalent, and we will denote it by p ∼ q.

Define the so-called «surprise function» s : A � A �−→ s(A) ∈ R by the
following formula:

s(A) = − ln(p(A)).

Note that this function satisfies the following properties:

1. s(Ω) = 0, s(∅) = ∞ and s(A) ≥ 0;
2. if A and B are independent, i.e. p(AB) = p(A)p(B), then s(AB) = s(A) +

s(B);
3. s is a continuous function of p(A).

Properties (1)–(3) may also serve as a definition of the surprise function.
Let Ω = {ω1, . . . , ωn} be a finite set and p = {p1, . . . , pn}, pi = p(ωi) be a

probability measure. In this case, the expectation of the surprise function is
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S(p) = −
n∑

i=1

pi lnpi.

The above formula coincides with Shannon’s definition of entropy. Let q =
{q1, . . . , qn} now be another probability measure equivalent to p. Then, the
changing of the surprise function will be

s(p, q) = s(q)− s(p) =
(

−
n∑

i=1

ln qi

)

−
(

−
n∑

i=1

lnpi

)

=
n∑

i=1

ln

(
pi

qi

)
.

And the average I (p, q) of s(p, q) with respect to the measure p that is called gain
of information will be

I (p, q) =
n∑

i=1

pi ln

(
pi

qi

)
.

If Ω = R = ⋃

i

[xi, xi+1] and dp = f (x)dx, dq = g(x)dx, then I (p, q) takes the

following form:

I (p, q) ≈
∑

i

f (ξi)Δi ln

(
f (ξi)

g(ξi)

)
,

where Δi = xi+1 − xi . Taking limit Δi → 0, i →∞, one gets

I (p, q) =
∫

R

f (x) ln

(
f (x)

g(x)

)
dx.

In case of arbitrary probability space (Ω,A, p), the gain of information I (p, q) is
defined by the formula

I (p, q) =
∫

Ω

ln

(
dp

dq

)
dp. (5.1)

The function I (p, q) has the property I (p, q) ≥ 0 and I (p, q) = 0 iff p = q almost
everywhere. At the same time, it cannot serve as a distance between measures p and
q since it is not symmetric, i.e. I (p, q) �= I (q, p) and does not satisfy the triangle
inequality.

In terms of density ρ, such that dp = ρdq, (5.1) can be written as

I (ρ) =
∫

Ω

ρ ln ρdq.
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5.2.3 The Principle of Minimal Information Gain

Let x ∈ W be a fixed vector which is expected to be the result of the measurement
of random vector X : (Ω,A, q)→ W , i.e.

E(X) = x.

Obviously, the given measure q may not give us the required vector x. This means
that we should choose another measure p, such that dp = ρdq. In other words, we
are looking for a function ρ such that

∫

Ω

ρdq = 1,
∫

Ω

ρXdq = x. (5.2)

Conditions in (5.2) are not enough to determine ρ. In addition to (5.2), we require
that the new measure p is the closest one to the measure q with respect to the gain
of information I (ρ), i.e.

I (ρ) =
∫

Ω

ρ ln ρdq → min
ρ

. (5.3)

This is exactly what is called the principle of minimal information gain.
Thus, we have the following extremal problem. One needs to find the function ρ

minimizing functional (5.3) under constraints in (5.2).

Theorem 5.1 The solution of (5.2)–(5.3) is given by the following formulae:

ρ = 1

Z(λ)
e〈λ,X〉, Z(λ) =

∫

Ω

e〈λ,X〉dq, (5.4)

where λ ∈ W ∗. The results of the measurement with respect to extremal measure p
belong to a manifold

LH =
{
x = −∂H

∂λ

}
⊂ W ×W ∗,

where H(λ) = − lnZ(λ).

Remark 5.1

1. The measure p defined by relations in (5.4) is called the extremal measure.
2. The function Z(λ) is called the partition function and, obviously, exists iff
〈λ,X〉 ≤ 0 almost everywhere.
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3. The integral Z(λ) = ∫

Ω

e〈λ,X〉dq can be expressed in terms of vector space W

only:

Z(λ) =
∫

W

e〈λ,t〉dμ(t),

where μ = X∗(q).

Proof Consider the functional

L =
∫

Ω

ρ ln ρdq − λ0

⎛

⎝
∫

Ω

ρdq − 1

⎞

⎠−
〈

λ,

∫

Ω

ρXdq − x

〉

.

Since its first variation with respect to ρ should be equal to zero, we get

δL =
∫

Ω

(ln ρ + 1− λ0 − 〈λ,X〉)δρdq = 0,

from what follows that

ρ = exp(λ0 − 1+ 〈λ,X〉).

Taking into account that
∫

Ω

ρdq = 1, we get

ρ = 1

Z(λ)
e〈λ,X〉, where Z(λ) =

∫

Ω

e〈λ,X〉dq.

Note that

∂Z

∂λ
=

∫

Ω

Xe〈λ,X〉dq =
∫

Ω

XρZ(λ)dq = Z(λ)x,

from what follows that

∂

∂λ
(lnZ(λ)) = x.

Introducing the Hamiltonian H(λ) = − lnZ(λ), we get

x = −∂H

∂λ
. (5.5)
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One can see that the manifold LH ⊂ (Φ, ω) is Lagrangian with respect to
nondegenerate closed 2-form on Φ = W ×W ∗

ω = dλ ∧ dx =
n∑

i=1

dλi ∧ dxi,

i.e. ω|LH
= 0.

A pair (Φ, ω) represents the standard model of symplectic space. Moreover, the
Lagrangian manifold LH gives us information about both extreme measure p and
expectation of random vector X; namely, λ is responsible for the corresponding
extremal measure, while x represents the expectation.

Let us introduce a new function

J (λ, x) = H(λ)+ 〈λ, x〉.

Using Theorem 5.1, it is easy to show that there is a following relation between I

and J :

J |LH
= I. (5.6)

Let us consider the differential of J :

dJ =
∑

i

(
∂H

∂λi
+ xi

)
dλi +

∑

i

λidxi =
∑

i

(
∂H

∂λi
+ xi

)
dλi + θ,

where 1-form θ has the following structure:

θ =
∑

i

λidxi .

On the surface LH , we have

dJ |LH
= θ |LH

. (5.7)

From (5.6) and (5.7), it follows that

θ |LH
= dI. (5.8)

Now, we construct the contactization Φ̃ of Φ as

Φ̃ = R×Φ = R×W ×W ∗ = R
2n+1(u, x, λ)

and equip Φ̃ with the contact 1-form
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θ̃ = du− θ. (5.9)

Thus, (Φ̃, θ̃ ) is a contact space.
Let a = (λ, x) ∈ LH , and let L̃ ⊂ Φ̃ be a submanifold of dimension n such that

L̃ =
{
u = I (a), x = −∂H

∂λ

}
. (5.10)

Note that L̃, being constructed in such a way, becomes a Legendrian submanifold,
i.e.

θ̃ |
L̃
= 0.

Indeed, due to (5.8),

θ̃ |
L̃
= (du− θ)|

L̃
= dI − θ |LH

= 0.

Moreover, the Legendrian manifold L̃ provides the knowledge about not only
extreme measure p and expectation of random vector X but also information gain
I (p, q).

Note that in general, Eq. (5.5), being considered as an equation for λ, may have
a number of roots λ = λ(j)(x). Let us represent vector space W as a union W =⋃

i

Di , such that Eq. (5.5) can be resolved with respect to λ uniquely for any x ∈ Di .

In other words, in each domain Di , the function x may serve as local coordinates on
LH as well as λ. This implies that the Lagrangian manifold LH can be represented
as LH =⋃

i

Li , where

Li =
{
x ∈ Di | x = −∂H

∂λ
,

}
.

We shall call such domains Li phases.
Thus, the results of the measurement of random vectors obtained by using the

minimal information gain principle can be presented by means of either Legendrian
submanifold in contact space L̃ ⊂ (Φ̃, θ̃ ) or Lagrangian submanifold in symplectic
space LH ⊂ (Φ, ω = −dθ̃), and all necessary functions ρ, Z(λ), H(λ), I (p, q)
can be directly derived from them.

5.2.4 Variance of Random Vectors

First of all, let us recall that the second moment of a random vector X : (Ω,A, p)→
W is a symmetric 2-form μ2(X) ∈ S2(W)
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μ2(X) =
∫

Ω

X(ω)⊗X(ω)dp.

Central second moment or variance is a symmetric 2-form σ2(X) ∈ S2(W)

σ2(X) = μ2(X − μ1(X)) = μ2(X)− μ1(X)⊗ μ1(X).

Let Hess(H) be the Hessian of the Hamiltonian H :

Hess(H) =
∑

i,j

∂2H

∂λi∂λj
dλi ⊗ dλj .

Theorem 5.2 The variance σ2(X) of a random vector X is equal to −Hess(H):

σ2(X) = −Hess(H).

Let us define the differential quadratic form κ on Φ by the following way:

κ = 1

2

∑

i

(dλi ⊗ dxi + dxi ⊗ dλi) = dλ · dx.

This differential quadratic form being restricted onto the manifold LH takes the
form

κ|LH
= 1

2

∑

i

(dλi ⊗ dxi + dxi ⊗ dλi)

∣
∣∣∣∣{
x=− ∂H

∂λ

}
= −Hess(H) = σ2(X).

Since the variance is non-negative, the differential quadratic form κ|LH
must be

non-negative.
Thus, the manifold Φ = W ×W ∗ is equipped with two structures:

• symplectic structure

ω = dλ ∧ dx,

• pseudo-Riemannian structure of signature (n, n)

κ = dλ · dx.

The measurement procedure of a random vector X : (Ω,A, p) → W is presented
by the Lagrangian manifold LH ⊂ (Φ, ω) that has to be Riemannian manifold with
respect to the quadratic differential form κ|LH

. The last requirement leads us to the
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notion of applicable phases, i.e. Riemannian submanifolds of LH , where both x and
λ may serve as coordinates.

5.2.5 Thermodynamics

Here, we show that all above constructions allow us to consider thermodynamics as
a measurement of extensive variables, such as energy, volume and mass.

First of all, one of the basic laws of thermodynamics, the energy conservation
law, claims that the heat is consumed by the physical system for the changing of its
internal energy and work, and particularly for gas-like systems, it has the form (here,
we pretend that we already know the first part of the second law of thermodynamics
δQ = T dS)

dS = T −1dE + pT −1dV − γ T −1dm, (5.11)

where S is the entropy, T is the temperature, p is the pressure, γ is the chemical
potential, E is the energy, V is the volume and m is the mass.

It is absolutely clear from the physical point of view what is written in (5.11).
But mathematically, we can see the identity of two 1-forms, which is possible iff
S = const, V = const, E = const and m = const. Moreover, the second part of the
second law of thermodynamics claims that

dS > 0

for irreversible processes, which means that we can compare differential 1-forms
with zero.

All these issues of mathematical nature, together with a notion that (5.11)
reminds us the similar contact structure appearing in measurement theory, drive
us to consider thermodynamics as a theory of measuring extensive variables
(E, V,m) ∈ W . The fact that W is a vector space corresponds to the additivity
properties of extensives. Then, intensives (−T −1,−pT −1, γ T −1) ∈ W ∗ may
serve as Lagrangian multipliers λ that we have seen in the above discussion.
Once we put n = 3 and assign (x1, x2, x3) = (E, V,m) and (λ1, λ2, λ3) =
(−T −1,−pT −1, γ T −1), we are able to reformulate the laws of thermodynamics
in the following way:

• The first law of thermodynamics
The state of any thermodynamical system described by intensives (p, T , γ ),
extensives (E, V,m) and entropy S is a Legendrian manifold L̃ ⊂ (Φ̃, θ̃ ), where
Φ̃ = R×W ×W ∗, i.e. maximal integral manifold of the form

θ̃ = d(−S)− (−T −1)dE − (−pT −1)dV − (γ T −1)dm. (5.12)
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Comparing (5.12) with (5.9) and (5.10), we conclude that the following relation
holds:

dI = −dS. (5.13)

The postulate that the variance of random vectors is positive gives us what we will
mean by the second thermodynamical law, and what in classical thermodynamics
is usually called “conditions of thermodynamical stability”. Below, in Sect. 5.3, we
will show the explanation.

• The second law of thermodynamics
The immersed Lagrangian manifold L ⊂ (Φ,Ω = −dθ̃) obtained by restriction
of natural projection π : Φ̃ → Φ, π(S,E, V,m, p, T , γ ) = (E, V,m, p, T , γ ),
which is a local diffeomorphism, onto the Legendrian manifold L̃ is equipped
with the differential quadratic form

κ = d(−T −1) · dE + d(−pT −1) · dV + d(γ T −1) · dm,

and the only applicable domains on L are those ones where the form κ is positive.

From (5.13), one can conclude that the well-known entropy increasing law for
irreversible processes (for example, the establishment of thermodynamical equilib-
rium between two systems) is the principle of minimal information gain from the
measurement viewpoint.

From (5.13), it also follows that

S = −I + α0.

Since the information gain I is always greater than zero, the entropy has to be S ≤
α0. This can be interpreted as the third law of thermodynamics.

5.3 Thermodynamics of Gases

Now that we have declared that thermodynamic states are Legendrian or Lagrangian
surfaces in the corresponding contact or symplectic space, and we can give a more
accurate description of gases in the form appropriate for further purposes, namely,
the analysis of critical phenomena in filtration processes and Euler flows.

5.3.1 Specific Variables

First of all, we introduce the so-called specific thermodynamic variables by the
following way. Let S = S(E, V ) be a function on the Legendrian surface L̃. Due to
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additive properties of the entropy S, the function S(E, V ) has to be homogeneous
of degree 1 with respect to the mass of the system, i.e.

S(E, V,m) = mS

(
E

m
,
V

m

)
.

Introduce the notation: e = E/m, v = V/m, S
(
E
m
, V
m

) = s(e, v), and call e the
specific energy, v the specific volume and s(e, v) the specific entropy. Then, in terms
of specific variables, the form θ̃ can be written as

θ̃ =
(
−s + T −1e + pT −1v − γ T −1

)
dm+

(
−ds + T −1de + pT −1dv

)
m.

If a thermodynamic state L̃ is now given by a function s = s(e, v), then

γ = e − T s + pv,
(
−ds + T −1de + pT −1dv

)∣∣∣
L̃
= 0. (5.14)

The differential quadratic form κ on L will take the form

κ = −m
(
d(T −1) · de + d(pT −1) · dv

)
,

and since applicable domains are defined by the positivity of κ and mass m is
assumed to be positive, the applicability condition is formulated as negativity of
the form −m−1κ , which we will continue, denoting by κ:

κ = d(T −1) · de + d(pT −1) · dv. (5.15)

Since G = E − T S + pV is the Gibbs free energy, γ = e − T s + pv is the
specific Gibbs free energy.

5.3.2 Legendrian and Lagrangian Manifolds for Gases

Relation (5.14) allows us to define Legendrian surfaces by means of specific
variables. Indeed, consider the contact space (R5, θ) equipped with coordinates
(s, e, v, p, T ) and contact 1-form

θ = −ds + T −1de + pT −1dv.

Then, a thermodynamic state is a Legendrian manifold L̃, such that θ |
L̃
= 0. For a

given function s = s(e, v), this manifold is defined by relations:
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s = s(e, v), T = 1

se
, p = sv

se
.

In practice, we actually do not have the function s(e, v), because there are no devices
that would allow us to measure the specific entropy s(e, v). This brings us to the
necessity of eliminating s from our consideration. To this end, we introduce the
projection π : R5 → R

4, π(s, e, v, p, T ) = (e, v, p, T ). Its restriction onto the
Legendrian manifold L̃ is an immersed Lagrangian manifold L = π(L̃), while R

4

is equipped with the symplectic form

Ω = dθ = d(T −1) ∧ de + d(pT −1) ∧ dv,

which vanishes on L: Ω|L = 0. The Lagrangian manifold L ⊂ (R4,Ω) is given by
the two functions

f (e, v, p, T ) = 0, g(e, v, p, T ) = 0. (5.16)

The condition that L is Lagrangian is expressed by vanishing of the Poisson bracket
[f, g] on L, i.e. [f, g]|L = 0, where

[f, g]Ω ∧Ω = df ∧ dg ∧Ω.

This bracket in coordinates is of the form

[f, g] = 1

2

(
pT

(
fpge − fegp

)+ T 2 (fT ge − fegT )+ T
(
fvgp − fpgv

))
.

In thermodynamics of gases, the functions in (5.16) usually have the form

f (e, v, p, T ) = p − A(v, T ), g(e, v, p, T ) = e − B(v, T ). (5.17)

The first equation of state in (5.17) is called thermic, and the second one is called
caloric. From experiments, one can obtain the first state equation, but not the second
one, because we have no devices that measure the specific energy. But having known
the first equation and using the compatibility condition [f, g]|L = 0, one gets the
caloric equation, and therefore the Lagrangian surface for a given gas becomes
completely determined. Then, relations

T = 1

se
, p = sv

se
(5.18)

can be considered as an overdetermined system for s(e, v), which is compatible
due to [f, g]|L = 0. Solving (5.18), we get unknown function s(e, v) and therefore
define the Legendrian manifold L̃ completely.
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Let us take the Poisson bracket between f (e, v, p, T ) and g(e, v, p, T ) in the
form (5.17). Then, we get

(T −2B)v = (T −1A)T ,

from what follows that the following theorem is valid.

Theorem 5.3 The Lagrangian manifoldL is given by the Massieu–Planck potential
φ(v, T ):

p = RT φv, e = RT 2φT , (5.19)

and the specific entropy s and Gibbs free energy γ are

s = R(φ + T φT ), γ = RT (vφv − φ), (5.20)

where R = 8.314 J ·K−1 ·mol−1 is the universal gas constant.

Using (5.19), it is easy to show that the differential quadratic form (5.15) can be
expressed as follows:

R−1κ = −
(
φT T + 2T −1φT

)
dT · dT + φvvdv · dv.

Hence, applicable domains are defined by inequalities

φT T + 2T −1φT > 0, φvv < 0. (5.21)

From (5.21) and (5.19), it follows that applicable states are also given by

eT > 0, pv < 0. (5.22)

It is worth to say that relations in (5.22) are usually called conditions of thermody-
namical stability with respect to thermic and mechanical perturbations, respectively.

5.3.3 Singularities of Lagrangian Manifolds and Phase
Transitions

Let us now explore singularities of projections of the Lagrangian manifold L to
spaces of intensive variables (p, T ) and extensive variables (v, e). The singularities
of the first type occur where the differential form dp∧dT degenerates and coincides
with the set where φvv = 0. The singularities of the second type are the points
where de ∧ dv = 0, or, equivalently, φT T + 2T −1φT = 0. Thus, the set where
the Lagrangian manifold L has singularities is exactly the set where the differential
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quadratic form κ degenerates. We will consider such Lagrangian manifolds that
(e, v) serve as global coordinates on them. This means that L in our consideration
will have no singularities of the second type, and since κ has to be negative, the
inequality φT T + 2T −1φT > 0 holds everywhere on L. Domains of the manifold
L that have no singularities and on which the form κ is negative definite, we have
already called applicable phases. Consequently, if κ is nondegenerate and negative
on the entire manifold L, and therefore L has no singularities of its projections to the
space of intensive variables as well, then a thermodynamical system corresponding
to such a Lagrangian manifold L has only one phase, otherwise it has a number of
phases, separated from one another by the set where κ is non-negative, or, where
φvv ≥ 0. In the last case, thermodynamical system has a remarkable property called
phase transitions of the first type.

Definition 5.1 A jump from one applicable point (e1, v1) ∈ L to another applicable
point (e2, v2) ∈ L, governed by the intensive variables (p, T ) and the specific Gibbs
potential γ conservation law, is called phase transition of the first type.

A set of points where phase transition occurs is a curve on the Lagrangian manifold
L, which is called coexistence or binodal curve. Using (5.19) and (5.20), one gets
the following equations for the coexistence curve Γ ⊂ R

3(p, v, T ) [4]:

φv (v2, T ) = p

RT
, φv (v1, T ) = p

RT
, (5.23)

φ (v2, T )− φ (v1, T )− v2φv (v2, T )+ v1φv (v1, T ) = 0. (5.24)

Thus, solving (5.23), we define the location for phases of thermodynamical system
on the corresponding Lagrangian manifold L.

5.4 Examples of Gases

In this section, we discuss various models of real gases and show how above
methods can be applied to the analysis of gases. We provide a detailed description
for models of real gases, which are extremely important for applications—van der
Waals, Peng–Robinson and Redlich–Kwong models.

5.4.1 Ideal Gases

We start with the simplest model of gases—ideal gases. The Lagrangian manifold
L for ideal gases is given by equations

f (e, v, p, T ) = p − Rv−1T , g(e, v, p, T ) = e − nRT

2
, (5.25)
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where n is the degree of freedom. The first equation in (5.25) is called Mendeleev–
Clapeyron equation.

The Legendrian manifold L̃ is defined by (5.25) extended by

s = R ln
(
T n/2v

)
+ Rn

2
.

The Massieu–Planck potential coincides with the specific entropy s (up to a
multiplicative constant R):

φ = ln
(
T n/2v

)
.

And finally, the differential quadratic form κ for ideal gases is

κ = − Rn

2T 2 dT · dT − Rv−2dv · dv.

One can see that κ is negative; therefore, the Lagrangian manifold L for ideal gases
has no singularities, and there are no phase transitions.

5.4.2 Van der Waals Gases

The van der Waals model is historically the first one admitting phase transitions of
gas–liquid type. The thermic equation is of the form:

f (e, v, p, T ) = p − RT

v − b
+ a

v2 ,

where a and b are constants responsible for the interaction between particles and
their volume, respectively. Note that in case a = 0 and b = 0, one gets the ideal gas
state equation.

To find out the second equation of state, we assume that g(e, v, p, T ) =
e − B(v, T ) and take the Poisson bracket [f, g]. Since it should be zero on the
Lagrangian surface, we get the following equation for B(v, T ):

v2Bv − a = 0,

from what follows that B(v, T ) = F(T )− a/v. Putting a = 0 and b = 0, we get an
ideal gas, and the caloric equation for van der Waals gases is of the form

g(e, v, p, T ) = e − nRT

2
+ a

v
.
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Let us now resolve system (5.18) for van der Waals gases. The result will be (up to
additive constant)

s(v, T ) = R ln
(
T n/2(v − b)

)
+ Rn

2
.

The Massieu–Planck potential has the following form:

φ(v, T ) = ln
(
T n/2(v − b)

)
+ a

vRT
.

Finally, the differential quadratic form κ for van der Waals gases is [1, 4]

κ = − Rn

2T 2 dT · dT −
v3RT − 2a(v − b)2

v3T (v − b)2 dv · dv.

We can see that the first component of κ is negative, while the second one can
change its sign. Therefore, the Lagrangian manifold has singularities of projections
to the plane of intensive variables (p, T ). The curve in coordinates (T , v) where the
differential quadratic form κ changes its sign, which is also called spinodal curve
given by

T = 2a(v − b)2

Rv3
.

This function has a maximum at point vcrit = 3b, and it equals Tcrit = 8a/27Rb.
The temperature Tcrit is called critical temperature, and if T > Tcrit, the differential
quadratic form κ is negative. The corresponding critical values for pressure pcrit,
energy ecrit and entropy scrit could be found as well. It is more convenient to
work with dimensionless thermodynamic variables. To this end, we introduce the
following contact scale transformation:

T �−→ T

Tcrit
, v �−→ v

vcrit
, p �−→ p

pcrit
, e �−→ e

ecrit
, s �−→ s

scrit
,

where Tcrit, vcrit, pcrit, ecrit and scrit are critical parameters for van der Waals gases:

Tcrit = 8a

27Rb
, vcrit = 3b, pcrit = a

27b2 , ecrit = a

9b
, scrit = 3R

8
;

then, we get the reduced equations of state in new dimensionless coordinates, which
we will continue, denoting by p, T , e and v:

p = 8T

3v − 1
− 3

v2
, e = 4n

3
T − 3

v
.
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One can easily show that the Massieu–Planck potential and the specific entropy for
van der Waals gases take the form:

φ = ln
(
T n/2(3v − 1)

)
+ 9

8vT
+Cφ, s = ln

(
T 4n/3 (3v − 1)8/3

)
+Cs, (5.26)

where constants Cφ and Cs are

Cφ = ln

((
2

3

)3n/2 ( a

bR

)n/2
b

)

, Cs = 4n

3
+ ln

((
2

3

)4n ( a

bR

)4n/3
b8/3

)

.

And the differential quadratic form becomes

κ = −Rn

2

dT 2

T 2
− 9R(4T v3 − 9v2 + 6v − 1)

4T v3(3v − 1)2
dv2.

The spinodal curve together with the coexistence curve in coordinates (p, T ) for van
der Waals gases is presented in Fig. 5.1. The equations for the coexistence curve in
reduced coordinates have the form [4]:

3p

8T
= 3

3v1,2 − 1
− 9

8v2
1,2T

,
(3v1 − 1)(3v2 − 1)(v1 + v2)

v1 − v2
ln

(
3v2 − 1

3v1 − 1

)

= 3(v1 + v2 − 6v1v2),

and the coexistence curve together with the spinodal curve for van der Waals gases
in coordinates (p, v) is presented in Fig. 5.2.

Both curves on the Lagrangian manifold for van der Waals gases are shown in
Fig. 5.3. The area on the left of the coexistence curve corresponds to the liquid
phase, and the right area is the gas phase. The area inside the coexistence curve is a
condensation of the gas, and the area between the coexistence and spinodal curves
corresponds to possible thermodynamic states, but dramatically unstable. On the
left, such states are called overheated liquid, while the right one is overcooled gas.

5.4.3 Peng–Robinson Gases

Another very important model of real gases is Peng–Robinson model proposed
in [22]. It appeared to be effective in description of hydrocarbons. The first state
equation has the following form:

f (p, T , e, v) = p − RT

v − b
+ a

(v + b)2 − 2b2 ,
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Fig. 5.1 Spinodal curve (red)
and coexistence curve (blue)
for van der Waals gases in
coordinates (p, T )

Fig. 5.2 Spinodal curve (red) and coexistence curve (blue) for van der Waals gases in coordinates
(p, v)
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Fig. 5.3 Lagrangian manifold for van der Waals gases together with spinodal (red) and coexis-
tence (blue) curves

where constants a and b are responsible for particles’ interaction and their volume,
respectively, as in the van der Waals model. The compatibility condition leads us to
the following caloric equation of state:

g(p, T , e, v) = e − nRT

2
− a

√
2

4b
ln

(
v + b −√2b

v + b +√2b

)

.

As in case of van der Waals gases, let us introduce the contact scale transformation

p �−→ a

b2 p, T �−→ a

bR
T, e �−→ a

b
e, v �−→ bv, s �−→ Rs.

The reduced Peng–Robinson state equations are

p = T

v − 1
− 1

(v + 1)2 − 2
, e = nT

2
+
√

2

4
ln

(
v + 1−√2

v + 1+√2

)

,

s = ln
(
T n/2(v − 1)

)
+ n

2
+ ln

(( a

bR

)n/2
b

)
.
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The Massieu–Planck potential φ for Peng–Robinson gases is

φ(v, T )= ln
(
T n/2(v−1)

)
−
√

2

4T
ln

(
(3−2

√
2)(v

√
2+v−1)

v
√

2−v+1

)

+ ln

(( a

bR

)n/2
b

)
.

The differential quadratic form κ has the form

R−1κ=− n

2T 2 dT ·dT−
T v4+2(2T−1)v3+2(T+1)v2−2(2T−1)v+T−2

T (v−1)2(v2+2v−1)2 dv ·dv.

Therefore, the singular set of the Lagrangian manifold for Peng–Robinson gases can
be found from

T = 2(v + 1)(v − 1)2

(v2 + 2v − 1)2 .

As in case of van der Waals gases, there is a critical point (Tcrit, vcrit), such that if
T > Tcrit, then the differential quadratic form κ is negative for any v.

Theorem 5.4 ([3]) The critical temperature for Peng–Robinson gases Tcrit and the
corresponding critical volume vcrit are defined as follows:

vcrit = 1+ 2(4+ 2
√

2)−1/3 + (4+ 2
√

2)1/3, Tcrit = 2(vcrit + 1)(vcrit − 1)2

(v2
crit + 2vcrit − 1)2

.

The coexistence curve for Peng–Robinson gases in coordinates (p, v, T ) is pre-
sented in Fig. 5.4 and is of similar form as for van der Waals gases.

5.4.4 Redlich–Kwong Gases

The next model of real gases is the Redlich–Kwong model. It was proposed in [23]
and became of wide popularity in filtration processes. The thermic equation of state
for Redlich–Kwong gases is

f (p, T , v, e) = p − RT

v − b
+ a√

T v(v + b)
. (5.27)

If one takes the Poisson bracket [f, g]|L, where g(e, v, p, T ) = e − B(v, T ), one
gets the following equation for B(v, T ):

3a − 2v
√
T (v + b)Bv = 0,

which has solution
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Fig. 5.4 Coexistence curve for Peng–Robinson gases

B(v, T ) = F(T )+ 3a

2b
√
T

ln

(
v

v + b

)
.

Again, F(T ) has to be defined as F(T ) = nRT/2, and the Lagrangian manifold for
Redlich–Kwong gases is given by (5.27) together with [2]

g(p, T , v, e) = e −
(
nRT

2
+ 3a

2b
√
T

ln

(
v

v + b

))
. (5.28)

Resolving the equation for the specific entropy s as described in Sect. 5.2, we get

s(v, T ) = Rn

2
ln T + R ln(v − b)+ a

2bT 3/2 ln

(
v

v + b

)
+ Rn

2
. (5.29)

Thus, the Legendrian manifold L̃ is defined by (5.27), (5.28) and (5.29).
The contact scale transformation

p �−→
(
Ra2

b5

)1/3
p, T �−→ (

a
Rb

)2/3
T , v �−→ bv,

e �−→
(
Ra2

b2

)1/3
e, s �−→ Rs

gives us reduced state equations [2]:

p = T

v − 1
− 1√

T v(v + 1)
, e = nT

2
+ 3

2
√
T

ln

(
v

v + 1

)
, (5.30)
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s = ln
(
T n/2(v − 1)

)
+ 1

2T 3/2 ln

(
v

v + 1

)
+ n

2
+ ln

(( a

Rb

)n/3
b

)
. (5.31)

The Massieu–Planck potential is of the form

φ(v, T ) = ln
(
T n/2(v − 1)

)
− 1

T 3/2
ln

(
v

v + 1

)
+ ln

(
b
( a

Rb

)n/3
)
.

The differential quadratic form κ is

κR−1 = −
(

n

2T 2 +
3

4T 7/2 ln(1+ v−1)

)
dT · dT

− v2(v + 1)2T 3/2 − 2v3 + 3v2 − 1

T 3/2(v + 1)2v2(v − 1)2 dv · dv.

Note that in case of Redlich–Kwong gases, the first component of the differential
quadratic form κ depends on the specific volume v. But since pressure p and
temperature T are assumed to be positive, from (5.30), it follows that only v > 1
have sense, and therefore, the component mentioned is negative, and the projection
of the Lagrangian manifold to (e, v) for Redlich–Kwong gases has no singularities.

Spinodal and coexistence curves for Redlich–Kwong gases can be elaborated in
the same way as for van der Waals and Peng–Robinson gases and can be found
in [2].

5.5 Basic Equations

Thermodynamics of real gases discussed in previous sections forms a base for
the analysis of gas dynamics, since, as we will see further, equations describing
dynamics significantly depend on thermodynamical properties. In this section, we
formulate the problem and provide general solutions for stationary Darcy and Euler
flows.

The system of equations describing one-component filtration of gases in porous
media (Darcy flows) or inviscid gas flow (Euler flow) consists of [6–8]

1. The momentum conservation law

• the Darcy law (for filtration processes)

u = − k

μ
∇p, (5.32)
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where u(x) = (u1, u2, u3) is the velocity field, x ∈ D ⊂ R
3, p(x) is the

pressure, k = k(v, T ) and μ = μ(v, T ) are the coefficients of permeability
and viscosity, respectively, which are the functions of the medium.

• the Euler equation (for inviscid gases)

ρ(u,∇)u = −∇p, (5.33)

where ρ(x) = v−1(x) is the density.

2. The mass conservation law

div(ρu) = 0. (5.34)

In addition to (5.32), (5.33) and (5.34), we assume that the flows of both kinds are
adiabatic, i.e. the specific entropy s is constant along the trajectories of the velocity
field u:

(u,∇s) = 0. (5.35)

One can see that the system (5.32) or (5.33) together with (5.34) and (5.35) is
incomplete. It is quite expectable, since we have not yet specified the medium above
Eqs. (5.32)–(5.35) are written for. It can be done by means of equations of state
(Legendrian manifold)

p = RT φv, e = RT 2φT , s = R(φ + T φT ), (5.36)

where φ(v, T ) is given.
Then, system of equations including (5.32) or (5.33), together with (5.34)–(5.36)

is complete
Using equations of state together with equations describing dynamics not only

makes the system complete but also allows us to investigate how thermodynamic
properties, especially phase transitions, appear in solutions of equations. Indeed,
having solution of basic equations, one gets thermodynamical variables as functions
in D, and therefore coexistence curves for various gases can be moved from the
Lagrangian manifold to D. This allows us to define the location for different phases
of gases and the set of points in D where phase transition occurs.

Suppose that the domain D contains a number of sources located at points
ai ∈ D, having intensities Ji . We will denote the source as a pair (ai, Ji), i = 1, N .
Then, D can be represented as a union of domains D = ∪Dk , where each Dk

contains sources with common specific entropy s0, while filtrations in Dk are
independent [4]. Therefore, we can restrict ourselves on case s(x) = s0. We can
also say that the gas is involved in an adiabatic process.

Geometrically, thermodynamical processes can be understood as contact trans-
formations of (R5, θ) preserving the Legendrian manifold L̃, or, from infinitesimal
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viewpoint, as contact vector fields X tangent to L̃. Integral curve of X is a curve l

on L̃, which we will mean by a thermodynamical process.

5.5.1 Darcy Flows

In case of Darcy flows, the following theorem is valid.

Theorem 5.5 Let the thermodynamic state of the gas be given by L̃ and l ⊂ L̃ be
a thermodynamical process. Then, filtration equations (5.32), (5.34) and (5.36) are
equivalent to the Dirichlet problem

Δ(Q(τ)) = 0, τ |∂D = τ0,

where

Q(τ) = −
∫

v−1(τ )
k(τ )

μ(τ)
p′(τ )dτ,

τ is a parameter on l and Δ is the Laplace operator.

Proof Let τ be a parameter on a given process l. Then, all the thermodynamic
variables can be expressed in terms of τ , in particular,

p = p(τ), v = v(τ), T = T (τ), k = k(τ ), μ = μ(τ). (5.37)

From (5.32) and (5.34), one gets

0 = div(v−1u) = div

(
v−1(τ )

(
− k(τ )

μ(τ)
∇p

))
=div

(
v−1(τ )

(
− k(τ )

μ(τ)
p′(τ )∇τ

))

= div
(
Q′(τ )∇τ) = div (∇Q(τ)) = Δ(Q(τ)),

where Q(τ) = − ∫
v−1(τ )

k(τ)
μ(τ)

p′(τ )dτ . ��
This theorem is a generalization of that in [1–4]. The result of this theorem gives an
explicit method of finding solutions for the Dirichlet filtration problem. Note that
this result is of general form for all gases and all processes. All we need is to find
the function Q(τ) for a given gas and a given process.

In case of N sources (ai, Ji) and D = R
3, one has

τ(x) = Q−1

(
N∑

i=1

Ji

4π |x − ai | +Q(τ0)

)

.
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By means of (5.37), we have p = p(x), v = v(x), T = T (x) and so on and
therefore get a complete solution for Darcy flows. The conditions for the invertibility
of Q(τ) will be formulated for concrete gases.

5.5.2 Euler Flows

For Euler flows, we analyze in detail the case of one point isotropic source (a, J ) in
D and have the same theorem as for Darcy flows [5].

Theorem 5.6 Let the thermodynamic state of the gas be given by L̃ and l ⊂ L̃ be a
thermodynamical process. Then, the solution for problems (5.33), (5.34) and (5.36)
is given implicitly by the following formula:

v2(τ )

2|x − a|4 +
(

4π

J

)2

Ψ (τ) = 0, (5.38)

where τ is a parameter on l and

Ψ (τ) =
∫

v(τ)p′(τ )dτ.

Proof Let r = |x − a| be a distance from the source, x − a = r, and let n = r/r .
Since the source is isotropic, one has

u = U(r)r, ∇ = n∂r .

The intensity of the source is equal to J , which means that the mass flux through a
sphere Sa of radius r with a centre at a is equal to J :

J =
∫

Sa

v−1(τ (r))(u,n)dS = 4πr3v−1(τ (r))U(r),

from what follows that

U(r) = J

4πr3 v(τ(r)).

Then, Eq. (5.33) due to (5.37) takes the form

v−1(τ )

(
J

4π

)2
v(τ)

r2

d

dr

(
v(τ)

r2

)
= −p′(τ )dτ

dr
,

which in turn becomes
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d

dr

(
v2(τ )

2r4

)
+

(
4π

J

)2

v(τ)p′(τ )dτ
dr

= 0,

from what follows the statement of the theorem. ��
Once one computes the function Ψ (τ), one gets a complete solution for the
stationary Euler problem.

In our case, the specific volume v can be chosen as a parameter τ on adiabatic
process ladiab ⊂ L̃. Indeed, due to (5.20), we have the following relation:

s0 = R(φ + T φT ),

which can be considered as an equation for T (v) since the derivative of the right-
hand side is positive in an applicable domain. Therefore, all the thermodynamical
variables can be expressed in terms of v.

5.6 Solutions

In this section, we discuss solutions of Darcy and Euler equations for concrete gases
using the analysis of their thermodynamic properties in Sect. 5.4. For simplicity, the
permeability coefficient k and the viscosity μ are assumed to be constants.

5.6.1 Darcy Flows

5.6.1.1 Ideal Gases

First of all, let us express all the thermodynamic variables in terms of v. For ideal
gases, we have

T (v) = exp

(
2s0

Rn

)
v−2/n, p(v) = R exp

(
2s0

Rn

)
v−2/n−1. (5.39)

Therefore, the function Q(v) equals

Q(v) = −Rk

2μ
exp

(
2s0

Rn

)
n+ 2

n+ 1
v−2/n−2.

And finally, the solution v(x) has the following form:
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v(x) =
(

Q(v0)− 2μ

Rk
exp

(
−2s0

Rn

)
n+ 1

n+ 2

N∑

i=1

Ji

4π |x − ai |

)− n
2(n+1)

,

where v0 is the specific volume at infinity.

5.6.1.2 van der Waals Gases

For van der Waals gases, the expressions for T (v) and p(v) are of the form:

T (v) = exp

(
3s0

4n

)
(3v − 1)−1−2/n, p(v) = 8 exp

(
3s0

4n

)
(3v − 1)−1−2/n − 3

v2
.

And the function Q(v) is defined by the relation [4]

−μ

k
Q(v) = − 2

v3 + 8 exp

(
3s0

4n

)
(3v − 1)−α

v
+ 8 exp

(
3s0

4n

)∫
(3v− 1)−αv−2dv,

where α = 1+ 2/n.
For van der Waals gases, the conditions for invertibility of Q(v) are given by the

following theorem [1, 4].

Theorem 5.7 The function Q(v) is invertible if the specific entropy constant s0
satisfies the following inequality:

exp

(
3s0

4n

)
>

1

4α
(1+ α)1+α(2− α)2−α.

Thus, if the above condition holds, the solution is uniquely determined, otherwise,
there are a number of possibilities in filtration development. The case of multivalued
solution for one source is considered in detail in [4]. Here, we concentrate on a
uniquely determined solution for a number of sources. As we have said, having
solution for the filtration problem, one can find the location of different phases. It is
presented in Fig. 5.5. We can see that the condensation process is observed in the
neighbourhood of the sources.

5.6.1.3 Peng–Robinson Gases

In case of Peng–Robinson gases, the expressions for T (v) and p(v) have the
following form:

T (v) = exp

(
2s0

n

)
(v−1)−2/n, p(v) = exp

(
2s0

n

)
(v−1)−1−2/n− 1

(v + 1)2 − 2
.
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Fig. 5.5 Distribution of
phases for van der Waals
gases. Coloured domain
corresponds to the
condensation process, and
white domain corresponds to
gas phase

Therefore, the function Q(v) is

−μ

k
Q(v) = 3

√
2

4
ln

(
v + 1+√2

v + 1−√2

)

+ ln

(
v2

v2 + 2v − 1

)
−

− v + 2

v2 + 2v − 1
− exp

(
2s0

n

)(
1+ 2

n

)∫
dv

v(v − 1)2+2/n
.

Invertibility conditions for Q(v) in this case can be given by the following
theorem [3].

Theorem 5.8 The function Q(v) is invertible if the specific entropy constant s0
satisfies the inequality:

exp

(
2s0

n

)
>

2n(v0 + 1)(v0 − 1)2+2/n

(n+ 2)(v0 + 2v0 − 1)2 ,

where v0 is the root of the equation:

(2− n)v3 + 3(n+ 2)v2 + (3n+ 2)v + 3n− 2 = 0. (5.40)

There exists a real root of (5.40), v0 > 1.

The distribution for phases has the same form as in case of van der Waals gases and
can be found in [3].
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5.6.1.4 Redlich–Kwong Gases

For Redlich–Kwong gases, the given level of the specific entropy s0 leads us to the
following relation:

s0 = ln
(
T n/2(v − 1)

)
+ 1

2T 3/2
ln

(
v

v + 1

)
. (5.41)

We cannot get an explicit expression for T (v) from (5.41), but nevertheless, one
can estimate the asymptotic behaviour for p(v), T (v) and Q(v) when v → 1 or
v →∞ [2].

Theorem 5.9 If v → 1, then asymptotics for T (v), p(v) and Q(v) have the
following form:

T (v) = B2/3

(v − 1)2/3 +O
(
(v − 1)1/3

)
, p(v) = B2/3

(v − 1)5/3 +O

(
1

(v − 1)2/3

)
,

Q(v) = − kB2/3

μ(v − 1)5/3 +O

(
1

(v − 1)2/3

)
,

where B = exp(s0).

Theorem 5.10 If v → +∞, then asymptotics for T (v), p(v) and Q(v) have the
following form:

T (v) = 1

(B∗v)2/3 +O

(
1

v5/3

)
, p(v) = c

v5/3 +O

(
1

v8/3

)
,

Q(v) = − 5kc

8μv8/3 +O

(
1

v11/3

)
,

where B∗ is the root of the equation

−s0 = B/2+ lnB,

and

c = (
B∗

)−2/3 − (
B∗

)1/3
.

Let us now analyze the invertibility conditions for Q(v). We need to find actually
the conditions for s0 when Q(v) is monotonic for all v that have sense, i.e. v > 1.
In other words, Q′(v) should have no zeroes for v > 1. But since the relations
Q′(v) = 0 and p′(v) = 0 are equivalent, one has to explore p′(v) including s0 as a
parameter. First of all, using equation of state p(T , v), one has
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dp

dv
= ∂p

∂v
+ ∂p

∂T

dT

dv
. (5.42)

The derivative T ′(v) can be obtained by means of (5.41). Once we substitute it
in (5.42), the equation p′(v) = 0 will take the form

AZ2 + BZ + C = 0, (5.43)

where Z = T 3/2 and

A = 2(n+ 2)v2(v + 1)2, C = (v − 1)2
(

1− 3(2v + 1) ln
(

1+ v−1
))

,

B = 3v2(v + 1)2 ln
(

1+ v−1
)
+ 2(v − 1)((v + 1)(2v + n)− 2nv2).

Since A > 0 and C < 0, the discriminant of (5.43) is positive, and therefore,
there are two real roots. But since B > 0, one of them is negative and is out of
consideration. Thus, from equation p′(v) = 0, we have

T (v) =
(
−B +√B2 − 4AC

2A

)2/3

. (5.44)

Substituting the root (5.44) in (5.41), we get the relation

s0 = H(v). (5.45)

If the specific entropy level s0 is such that (5.45) has no solution v∗ > 1, then
Q(v) is invertible. An example for H(v) in case of n = 3 is presented in Fig. 5.6.
Numerical computation shows that if s0 > −0.5, then Q(v) is invertible [2]. The
distribution of phases is very similar to the case of van der Waals gases and can be
found in [2].

5.6.2 Euler Flows

Here, we discuss the solution for Euler flows of ideal and van der Waals gases.
Peng–Robinson and Redlich–Kwong models can be elaborated in the same way.

First of all, we take D = R
3 assuming that the specific volume is given at infinity

v||x−a|→∞ = v0. Since we take v as a parameter on the process ladiab, the general
formula (5.38) takes the form [5]:

v2

2|x − a|4 +
(

4π

J

)2

Ψ (v) = 0,

where Ψ (v) = ∫
vp′(v)dv.
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Fig. 5.6 Graph of function
H(v)

5.6.2.1 Ideal Gases

Using (5.39), one can show that the function Ψ (v) for ideal gases has the following
form:

Ψ (v) = R(n+ 2)

2
exp

(
2s0

Rn

)
v−2/n.

Therefore, the solution for ideal gases has the form (it is more convenient to work
in terms of density ρ = v−1 here):

1

2|x − a|4ρ2 +
(

4π

J

)2

exp

(
2s0

Rn

)
R(n+ 2)

2
ρ2/n = C0,

where C0 is a constant depending on ρ||x−a|→∞ = ρ0.

Theorem 5.11 ([5]) If ρ0 = 0, then the asymptotic behaviour of ρ(x) at infinity is
of the form:

ρ(x) = 1√
2C0|x − a|2 + o

(
1

|x − a|2
)
,
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Fig. 5.7 The distribution of
the density for ideal gases

and if ρ0 �= 0, then

ρ(x) =
(

J

4π

)n ( 2C0

R(n+ 2)
exp

(
−2s0

Rn

))n/2

+
∞∑

i=1

βi

|x − a|4i .

Thus, the solution obtained is regular at infinity in both cases. The distribution of
the density is shown in Fig. 5.7.

We can see that the solution is multivalued. Moreover, it exists not for any x [5].

Theorem 5.12 The solution ρ(x) exists if

|x − a| >
(

2ρ2∗

(

C0 − R

(
4π

J

)2

exp

(
2s0

Rn

)
(n/2+ 1)ρ2/n∗

))−1/4

,

where

ρ∗ =
(

J

4π

)n (
exp

(
−2s0

Rn

)
2nC0

R(n+ 1)(n+ 2)

)n/2

.

5.6.2.2 van der Waals Gases

In case of van der Waals gases, the solution is given by the following formula [5]:

1
2|x−a|4ρ2 +

(
4π
J

)2 ×
(

4 exp
(

3s0
4n

)
(3ρ−1 − 1)−(1+2/n)

(
ρ−1(n+ 2)− n

3

)− 6ρ
)
= C0.
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Fig. 5.8 The distribution of
phases for van der Waals
gases. Variable y = 1 is the
liquid phase, and variable
y = 0.5 is the condensation
process

Fig. 5.9 The distribution of
phases for van der Waals
gases. Variable y = 0 is the
gas phase, and variable
y = 0.5 is the condensation
process

We analyze phase transitions in two cases, for “small” and “big” levels of the
specific entropy constant s0. Let us start with the higher branch of solution.

If s0 = 0.5, the distribution of phases is shown in Fig. 5.8. We observe the
condensation process near the source, while far from the source, the medium is in a
liquid phase.

If s0 = 200, the distribution of phases is shown in Fig. 5.9. We again observe
the condensation process near the source, but at large distances from the source, the
medium is in a gas phase.

For the lower branch of solution, in both cases, the gas condensates.



5 Critical Phenomena in Darcy and Euler Flows of Real Gases 185

5.7 Conclusions

In this paper, we presented the analysis of critical phenomena in two types of
stationary gas flows—filtration flows described by the Darcy law and flows of
inviscid gases described by Euler equations. We showed that thermodynamics
plays a crucial role in modelling of gas dynamics, and since taking into account
thermodynamic properties of the medium expressed by state equations, we not
only make the system of continuous media equations complete but also get an
opportunity to investigate how these properties influence the flow. We provided
constructive methods of finding solutions for Darcy and Euler flows, which are of
general form not only for various gases but also for thermodynamical processes
these gases are involved in. We also showed that the solutions of both Darcy and
Euler system are, in general, multivalued, and for Darcy flows, the conditions for
uniquely determined solution can be formulated, while in case of Euler flows, the
solution is always multivalued, but each branch is determined by the conditions
at infinity, and therefore only one of them can be realized physically. Another
important property of solutions is their regularity at infinity, usually accepted in
physics as “correctness”. The analysis of critical phenomena showed that Darcy and
Euler flows have the same distribution of phases in case of “big level” of the specific
entropy.

Further investigations in this field can be connected with the analysis of critical
phenomena in case of, in some sense, distributed sources, i.e. the source is no longer
assumed to be a point but occupies some domain. Another direction could be, on the
one hand, the exploration of gas flows on Riemannian manifolds, and on the other
hand, the investigation of flows for media with more complicated thermodynamics,
namely, phase transitions of the higher order, which requires in turn the more
detailed analysis of geometric structures on the corresponding Legendrian and
Lagrangian manifolds.
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Chapter 6
Differential Invariants for Flows of Fluids
and Gases

Anna Duyunova, Valentin V. Lychagin, and Sergey Tychkov

6.1 Introduction

The paper is an extended overview of the papers [10–16]. The main extension is a
detailed analysis of thermodynamic states, symmetries, and differential invariants.
This analysis is based on consideration of Riemannian structure [7] naturally
associated with Lagrangian manifolds that represent thermodynamic states. This
approach radically changes the description of the thermodynamic part of the
symmetry algebra as well as the field of differential invariants.

The paper is organized as follows.
In Sect. 6.2 we discuss thermodynamics in terms of contact and symplectic

geometries. The main part of this approach is a presentation of thermodynamic
states as Lagrangian manifolds equipped with an additional Riemannian structure.
Application of this approach to fluid motion is new, though the relationship
between contact geometry and thermodynamics was well-known since Gibbs [2]
and Carathéodory [3]. For some modern studies see also [4] and [5].

In Sect. 6.3 the motion of inviscid media is considered. We discuss flows of
inviscid fluids on different Riemannian manifolds: a plane, sphere, and a spherical
layer. Such flows are governed by a generalization of the Euler equation system. For
each of these cases, we find a Lie algebra of symmetries, provide a classification
of symmetry algebras depending on a thermodynamic state admitted by media, and
describe the field of differential invariants for the Euler system.

In Sect. 6.4 the motion of viscid media on Riemannian manifolds is studied.
First, we discuss a generalization of the Navier–Stokes equations for an arbitrary
oriented Riemannian manifold. Then for the cases of a plane, space, sphere, and
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a spherical layer, we provide classification of symmetry algebras with respect to
possible thermodynamic states and give full description for the field of differential
invariants.

6.2 Thermodynamics

Here we consider the media with thermodynamics described by two types of
quantities. The first are extensive quantities: the specific entropy s, the specific
volume ρ−1, the specific internal energy ε; and the second are intensive quantities:
the absolute temperature T > 0 and the pressure p.

A thermodynamic state of such media is a two-dimensional Legendrian manifold
L ⊂ R

5(ε, ρ, p, T , s), a maximal integral manifold of the differential 1-form

θ = dε − T ds − pρ−2dρ,

i.e. a manifold such that the first law of thermodynamics θ
∣∣
L
= 0 holds.

Following [7] a point (ε, ρ, p, T , s) on the Legendrian manifold can be consid-
ered as a triplet: the expected value (ε, ρ−1) of a stochastic process of measurement
of internal energy and volume, the probabilistic measure corresponding to (p, T )

and the information (−s), which is given up to a constant.
Since the information I is a positive quantity, the entropy s satisfies the inequality

s � s0 for a certain constant s0, which, generally speaking, depends on the nature
of a process under consideration.

Let us denote the variance of the stochastic process by (−κ). In terms of the
given probabilistic measure and expected values it has the form [7]:

κ = d(T −1) · dε − ρ−2d(pT −1) · dρ.

Thus, by a thermodynamic state we mean a two-dimensional Legendrian
submanifold L of the contact manifold (R5, θ), such that the quadratic differential
form κ on the surface L is negative definite, i.e.

κ
∣∣
L
< 0.

Because the energy can be excluded from the conservation laws that govern
medium motion, we also eliminate it from our geometrical interpretation of the
thermodynamics.

Consider the projection

ϕ : R5 → R
4, ϕ : (ε, ρ, p, T , s) �−→ (ρ, p, T , s) .

The restriction of the map ϕ on the state surface L is a local diffeomorphism on
the image L̃ = ϕ(L) and the surface L̃ is an immersed Lagrangian manifold in the
symplectic space R

4 equipped with the structure form
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Ω = ds ∧ dT + ρ−2dρ ∧ dp.

Therefore, the first law of thermodynamics is equivalent to the condition that
L̃ ⊂ R

4 is a Lagrangian manifold.
The two-dimensional surface L̃ in the four-dimensional space can be defined by

two equations

f (p, ρ, s, T ) = 0, g(p, ρ, s, T ) = 0 (6.1)

and the condition for the surface L̃ to be Lagrangian means vanishing of the Poisson
bracket of these functions

[f, g]∣∣
L̃
= 0, (6.2)

that in the coordinates (p, ρ, s, T ) takes the form

[f, g] = ρ2 (fρgp − fpgρ
)+ fsgT − fT gs.

Thus, the thermodynamic state can be defined as Lagrangian surface (6.1) in
the four-dimensional symplectic space, such that the condition (6.2) holds and the
symmetric differential form κ is negative definite on this surface.

Note, if the equation of state is given in the form ε = ε(ρ, s), then the two-
dimensional Legendrian manifold L can be defined by the structure equations

ε = ε(ρ, s), T = εs, p = ρ2ερ, (6.3)

and the restriction of the form κ gives

κ
∣∣
L
= −ε−1

s

((
ερρ + 2ρ−1ερ

)
dρ2 + 2ερsdρ · ds + εssds

2
)
.

The condition of negative definiteness for this form leads us to the following
additional relations

⎧
⎨

⎩

ερρ + 2ρ−3p > 0,

εss

(
ερρ + 2ρ−3p

)
− ε2

ρs > 0

on the function ε(ρ, s) or

{
pρ > 0,

Tspρ − ρ2T 2
ρ > 0.
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6.3 Compressible Inviscid Fluids or Gases

In this section we study differential invariants of compressible inviscid fluids or
gases.

The system of differential equations (the Euler system) describing flows on an
oriented Riemannian manifold (M, g) consists of the following equations (see [1]
for details):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρ(ut +∇uu) = − gradp + gρ,

∂(ρ Ωg)

∂t
+ Lu

(
ρ Ωg

) = 0,

T (st + ∇us)− k

ρ
ΔgT = 0,

(6.4)

where the vector field u is the flow velocity, p, ρ, s, T are the pressure, density,
entropy, temperature of the fluid respectively, k is the thermal conductivity, which
is supposed to be constant, and g is the gravitational acceleration.

Here ∇X is the directional covariant Levi–Civita derivative with respect to a
vector field X, LX is the Lie derivative along a vector field X, Ωg is the volume
form on the manifold M , Δg is the Laplace–Beltrami operator corresponding to the
metric g.

The first equation of system (6.4) represents the law of momentum conservation
in the inviscid medium, the second is the continuity equation, and the third is the
equation representing the effect of heat conduction in the medium.

We consider the following examples of manifold M: a plane, sphere and a
spherical layer.

Note that in all these cases the number of unknown functions is greater than the
number of system equations by 2, i.e. the system (6.4) is incomplete. We get two
additional equations taking into account the thermodynamics of the medium.

Thus, by the Euler system of differential equations we mean the system (6.4)
extended by two equations of state (6.1), such that the functions f and g satisfy the
additional relation (6.2) and the form κ is negative definite.

Geometrically, we represent this system in the following way. Consider the
bundle of rank (dimM + 4)

π : R× TM × R
4 −→ R×M,

where (t, x,u, ρ, p, T , s) → (t, x̄) and t ∈ R, x ∈ M , u ∈ TxM . Then the Euler
system is a system of differential equations on sections of the bundle π .

Note that system (6.1) defines the zeroth order system E0 ⊂ J 0π .
Denote by E1 ⊂ J 1π the system of order � 1 obtained by the first prolongation

of the system E0 and by the first 2 equations of system (6.4) (Euler’s and the
continuity equations).
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Let also E2 ⊂ J 2π be the system of differential equations of order � 2 obtained
by the first prolongation of the system E1 and the last equation of system (6.4).

For the case k � 3, we define Ek ⊂ J kπ to be the (k − 2)-th prolongation of the
system E2.

Note that due to the relations (6.1) the system E∞ = lim←− Ek is a formally

integrable system of differential equations, which we also call the Euler system.

6.3.1 2D-Flows

Consider Euler system (6.4) on a plane M = R
2 equipped with the coordinates

(x, y) and the standard flat metric g = dx2 + dy2.
The velocity field of the flow has the form u = u(t, x, y) ∂x + v(t, x, y) ∂y , the

pressure p, the density ρ, the temperature T and the entropy s are the functions of
time and space with the coordinates (t, x, y).

Here we consider the flow without any external force field, so g = 0.

6.3.1.1 Symmetry Lie Algebra

The symmetry algebra of the Euler system has been found in [10], here we observe
the main statements.

First of all, by a symmetry of the PDE system we mean a point symmetry, i.e. a
vector field X on the jet space J 0π such that its second prolongation X(2) is tangent
to the submanifold E2 ⊂ J 2π .

To describe the Lie algebra of symmetries of the Euler system, we consider the
Lie algebra g generated by the following vector fields on the space J 0π :

X1 = ∂x, X4 = t ∂x + ∂u,

X2 = ∂y, X5 = t ∂y + ∂v,

X3 = y ∂x − x ∂y + v ∂u − u ∂v, X6 = ∂t ,

X7 = ∂s, X10 = t ∂t + x ∂x + y ∂y − s ∂s,

X8 = ∂p, X11 = t ∂t − u ∂u − v ∂v − 2p ∂p + s ∂s,

X9 = T ∂T , X12 = p ∂p + ρ ∂ρ − s ∂s .

Note that this symmetry algebra consists of pure geometric and thermodynamic
parts.

The geometric part gm is generated by the fields X1, . . . , X6. Transformations
corresponding to the elements of this algebra are generated by the motions, Galilean
transformations and the time shift.
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In order to describe the pure thermodynamic part of the system symmetry
algebra, consider the Lie algebra h generated by the vector fields

Y1 = ∂s, Y3 = ρ ∂ρ, Y5 = p ∂p,

Y2 = ∂p, Y4 = s ∂s, Y6 = T ∂T .

Denote by ϑ : g �−→ h the following Lie algebras homomorphism:

ϑ(X) = X(ρ)∂ρ +X(s)∂s +X(p)∂p +X(T )∂T , (6.5)

where X ∈ g.
Note that, the kernel of the homomorphism ϑ is the ideal gm ⊂ g.
Let also ht be the Lie subalgebra of the algebra h that preserves the thermody-

namic state (6.1).

Theorem 6.1 ([10]) A Lie algebra gsym of symmetries of the Euler system of
differential equations on a plane coincides with

ϑ−1(ht).

Note that, for the general equation of state, the algebra ht = 0, and the symmetry
algebra coincides with the Lie algebra gm.

Observe that, usually, the equations of state are neglected, and vector fields like
f (t) ∂p and g(t)T ∂T , where f and g are arbitrary functions, are considered as
symmetries of the Euler system.

6.3.1.2 Symmetry Classification of States

In this section we classify the thermodynamic states or the Lagrangian surfaces L̃

depending on the dimension of the symmetry algebra ht ⊂ h.
We consider one- and two-dimensional symmetry algebras only, because the

requirement on the thermodynamic state to have a three or more dimensional
symmetry algebra is very strict and leads to the trivial solutions.

States with a One-Dimensional Symmetry Algebra

Let dim ht = 1 and let Z =
6∑

i=1
λiYi be a basis vector in this algebra.

The state L̃ ⊂ R
4 is Lagrangian, i.e. Ω|

L̃
= 0, and therefore the vector field Z

is tangent to the surface L̃, if and only if the differential 1-form
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ιZΩ = λ3

ρ
dp − λ5p + λ2

ρ2 dρ − λ6T ds + (λ4s + λ1) dT

vanishes on the surface L̃.
In other words, the surface L̃ is the solution of the following system of differential

equations:

{
Ω|

L̃
= 0,

(ιZΩ)|
L̃
= 0.

In terms of specific energy (6.3) the last system has the following form:

⎧
⎪⎨

⎪⎩

λ3ρ ερρ + (λ4s + λ1)ερs + (2λ3 − λ5) ερ − λ2

ρ2 = 0,

(λ4s + λ1)εss + λ3ρ ερs − λ6 εs = 0.

It is easy to check that the bracket of these last two equations (see [8]) vanishes,
and therefore the system is formally integrable and compatible.

In order to solve the last system we reduce its order and get the equivalent system

⎧
⎪⎨

⎪⎩

λ3ρ ερ + (λ4s + λ1)εs + (λ3 − λ5)ε + λ2

ρ
+ f (s) = 0,

λ3ρ ερ + (λ4s + λ1)εs − (λ6 + λ4)ε + g(ρ) = 0,

where f (s) and g(ρ) are some differentiable functions.
Below we list solutions of the system under the assumption of parameters λ

generality. The more detailed description can be found in [10].
In the general case, when λ6+λ4−λ5+λ3 �= 0, solving the last system we find

p = C1ρ
λ5
λ3 − λ2

λ5
, T = C2(λ4s + λ1)

λ6
λ4 ,

where C1, C2 are constants.
Moreover, the negative definiteness of the quadratic differential form κ on the

surface L̃ leads to the relations

λ4s + λ1

λ6
> 0,

C1λ5

λ3
> 0

for all s ∈ (−∞, s0].
Theorem 6.2 The thermodynamic states admitting a one-dimensional symmetry
algebra have the form
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p = C1ρ
λ5
λ3 − λ2

λ5
, T = C2(λ4s + λ1)

λ6
λ4 ,

where the constants defining the symmetry algebra satisfy inequalities

s0 < −λ1

λ4
, C1 > 0,

λ5

λ3
> 0,

λ2

λ5
< 0,

and besides they must meet one of the following conditions:

1. if λ6
λ4

is irrational, then λ4 < 0, λ6 > 0, C2 > 0;

2. if λ6
λ4

is rational, then λ6
λ4

< 0 (i.e. λ6
λ4
= −m

k
) and

a. if k is even, then λ4 < 0, C2 > 0;
b. if k is odd and m is even, then C2 > 0;
c. if k is odd and m is odd, then C2λ4 < 0.

States with a Two-Dimensional Non-commutative Symmetry Algebra

Let ht ⊂ h be a non-commutative two-dimensional Lie subalgebra. Then [h, h] ⊃
[ht, ht] = 〈Y1, Y2〉. Therefore, any non-zero vector A = α0Y1 + β0Y2 ∈ ht can be
chosen as one of the basis vectors. The second basis vector B in the subalgebra may

be chosen such that [A,B] = A. Let B =
6∑

i=1
γiYi , then the condition [A,B] = A

gives two relations

α0(γ4 − 1) = 0, β0(γ5 − 1) = 0.

Restriction of the forms ιAΩ and ιBΩ on the surface L leads us to the following
system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

α0εss = 0,

α0ρ
2ερs − β0 = 0,

γ3ρερs + (γ4s + γ1) εss − γ6εs = 0,

γ3
(
ρερρ + 2ερ

)+ (γ4s + γ1) ερs − γ5ε∂ρ − γ2

ρ2 = 0.

Note that from the first two equations of this system follows that α0 �= 0.
Computing brackets [8] we get that this system is integrable if

β0(γ4 − γ5) = 0, β0(γ3γ5 + γ4γ6) = 0.



6 Differential Invariants for Flows of Fluids and Gases 195

Then solving this system for the case β0 = 0 and γ4 = 1 we have T = 0 which
is not sensible from the physical point of view.

For the case γ4 = 1 and γ5 = 1 we get

p = Cρ
1
γ3 + β0

α0
(s + γ1)− γ2, T = − β0

α0ρ
,

but the condition on the form κ gives

C

γ3
> 0, − 1

ρ2 > 0.

So there are no thermodynamic states that admit a two-dimensional non-
commutative symmetry algebra.

States with a Two-Dimensional Commutative Symmetry Algebra

Let now ht ⊂ h be a commutative two-dimensional Lie subalgebra, and let A =
6∑

i=1
αiYi , B =

6∑

i=1
βiYi be basis vectors in the algebra ht.

Then the condition [A,B] = 0 gives the following relations on α’s and β’s:

α1β4 − α4β1 = 0, α2β5 − α5β2 = 0. (6.6)

Then, as above, restriction of the forms ιAΩ and ιBΩ on the state surface L̃ leads
us to the following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α3ρ ερρ + (α4s + α1)ερs + (2α3 − α5) ερ − α2

ρ2
= 0,

β3ρ ερρ + (β4s + β1)ερs + (2β3 − β5) ερ − β2

ρ2
= 0,

(α4s + α1)εss + α3ρ ερs − α6 εs = 0,

(β4s + β1)εss + β3ρ ερs − β6 εs = 0.

The formal integrability condition for this system has the form

(β5 − 5β3)(α2β5 − α5β2) = 0,

which is satisfied due to relations (6.6).
Therefore, this system is integrable, and for all α’s and β’s. In most of cases this

system has the “nonphysical” solution of the form ε = C1ρ
−1+C2. For the special

case, for example,
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α1 = α4β1

β4
, α2 = α5β2

β5
and

{
α3 = α5 − α4 − α6,

β3 = β5 − β4 − β6
(6.7)

we have the following expressions for the pressure and the temperature:

p=C1ρ
ς2

ς1+ς2 (β4s+β1)
ς3+ς2
ς1+ς2 − β2

β5
, T=C2ρ

ς2
ς1+ς2 (β4s+β1)

ς3+ς2
ς1+ς2 ρ−1(β4s+β1)

−1,

where

ς1 = α6β4 − α4β6, ς2 = α4β5 − α5β4, ς3 = α6β5 − α5β6.

And negative definiteness of the form κ leads to the relations

ς2(β4s + β1)

ς3β4
> 0,

−ς1

(ς1 + ς2)(ς2 + ς3)
> 0.

Theorem 6.3 In the general case, there are no physically applicable thermody-
namic states, which admit a two-dimensional commutative symmetry algebra.

For the special case (6.7), the thermodynamic states admitting a two-dimensional
commutative symmetry algebra have the form

p = C1ρ
ς2

ς1+ς2 (β4s + β1)
ς3+ς2
ς1+ς2 − β2

β5
, T = C2ρ

−ς1
ς1+ς2 (β4s + β1)

ς3−ς1
ς1+ς2 ,

where the constants defining the symmetry algebra satisfy inequalities

s0 < −β1

β4
,

β2

β5
< 0,

ς2

ς3
< 0,

ς1

(ς1 + ς2)(ς2 + ς3)
< 0,

and besides they must meet one of the conditions:

1. if ς3+ς2
ς1+ς2

is irrational, then β4 < 0, C1 > 0, C2 > 0;

2. if ς3+ς2
ς1+ς2

is rational (i.e. ς3+ς2
ς1+ς2

= ±m
k
), then

a. if k is even, then β4 < 0, C1 > 0, C2 > 0;
b. if k is odd and m is even, then C1β4 < 0, C2 > 0;
c. if k is odd and m is odd, then C2β4 < 0, C1 > 0.

6.3.1.3 Differential Invariants

We consider two group actions on the Euler equation E. The first one is the
prolonged action of the group generated by the action of the Lie algebra gm. The
second action is the action generated by the prolongation of the action of the Lie
algebra gsym.
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First of all, observe that fibers of the projection Ek → E0 are irreducible algebraic
manifolds.

Then we say that a function J on the manifold Ek is a kinematic differential
invariant of order � k if

1. J is a rational function along fibers of the projection πk,0 : Ek → E0,
2. J is invariant with respect to the prolonged action of the Lie algebra gm, i.e.

X(k)(J ) = 0, (6.8)

for all X ∈ gm.

Here we denote by X(k) the k-th prolongation of a vector field X ∈ gm.
We say also that the kinematic invariant is an Euler invariant if condition (6.8)

holds for all X ∈ gsym.
We say that a point xk ∈ Ek and the corresponding orbit O(xk) (gm or gsym-orbit)

are regular, if there are exactly m = codimO(xk) independent invariants (kinematic
or Euler) in a neighborhood of this orbit.

Thus, the corresponding point on the quotient Ek/gm or Ek/gsym is smooth, and
these independent invariants (kinematic or Euler) can serve as local coordinates in
a neighborhood of this point.

Otherwise, we say that the point and the corresponding orbit are singular.
It is worth to note that the Euler system together with the symmetry algebras gm

or gsym satisfies the conditions of Lie–Tresse theorem (see [9]), and therefore the
kinematic and Euler differential invariants separate regular gm and gsym orbits on
the Euler system E correspondingly.

By a gm or gsym-invariant derivation we mean a total derivation

∇ = A
d

dt
+ B

d

dx
+ C

d

dy

that commutes with prolonged action of algebra gm or gsym. Here A, B, C are
rational functions on the prolonged equation Ek for some k � 0.

The Field of Kinematic Invariants

First of all, observe that the functions

ρ, s

(as well as p and T ) on the equation E0 are gm-invariants.
Straightforward computations using DifferentialGeometry package by I. Ander-

son [6] in Maple show that the following functions are the first order kinematic
invariants:
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J1 = ux + vy, J5 = ρxsy − ρysx,

J2 = uy − vx, J6 = st + sxu+ syv,

J3 = ρ2
x + ρ2

y , J7 = ρx(ρxux + ρyuy)+ ρy(ρxvx + ρyvy),

J4 = s2
x + s2

y , J8 = sx(ρxux + ρyuy)+ sy(ρxvx + ρyvy).

It is easy to check that the codimension of the regular gm-orbits on E1 is equal to
10.

Proposition 6.1 The singular points belong to the union of two sets:

Υ1 = { ux − vy = 0, uy + vx = 0, ut = vt = ρx = ρy = sx = sy = 0 },

Υ2 = { J3J5(J3J4 − J 2
5 ) = 0 }.

The set Υ1 contains singular points that have five-dimensional singular orbits. The
set Υ2 contains points where differential invariants J1, J2, . . . , J8 are dependent.

The proofs of the following theorems can be found in [10].

Theorem 6.4 ([10]) The field of the first order kinematic invariants is generated
by the invariants ρ, s, J1, J2, J3, . . . , J8. These invariants separate the regular gm-
orbits.

Theorem 6.5 ([10]) The derivations

∇1 = d

dt
+ u

d

dx
+ v

d

dy
, ∇2 = ρx

d

dx
+ ρy

d

dy
, ∇3 = sx

d

dx
+ sy

d

dy

are gm-invariant. They are linearly independent if

ρxsy − ρysx �= 0.

The bundle π2,1 : E2 → E1 has rank 14, and by applying the derivations
∇1,∇2,∇3 to the kinematic invariants J1, J2, . . . , J8 we get 24 kinematic invariants.
Straightforward computations show that among these invariants 14 are always
independent (see https://d-omega.org).

Moreover, starting with the order k = 1 dimensions of regular orbits are equal to
dim gm = 6 and all equations Ek , k � 3, are the prolongations of E2.

Therefore, if we denote by H(k) the Hilbert function of the gm-invariants field,
i.e. H(k) is the number of independent invariants of pure order k (see [9] for details),
then H(k) = 5k + 4 for k � 2, and H(0) = 2, H(1) = 8.

The corresponding Poincaré function is equal to

P(z) = 2+ 4z− z3

(1− z)2 .

https://d-omega.org
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Summarizing, we get the following result.

Theorem 6.6 ([10]) The field of the kinematic invariants is generated by the
invariants ρ, s of order zero, by the invariants J1, J2, . . . , J8 of order one, and by
the invariant derivations ∇1,∇2,∇3. This field separates the regular orbits.

The Field of Euler Invariants

Let us consider the case when the thermodynamic state admits a one-dimensional
symmetry algebra generated by the vector field

A = ξ1X7 + ξ2X8 + ξ3X9 + ξ4X10 + ξ5X11 + ξ6X12.

Note that, the gm-invariant derivations ∇1, ∇2, ∇3 do not commute with the
thermodynamic symmetry A.

Moreover, the action of the thermodynamic vector field A on the field of
kinematic invariants is given by the following derivation:

ξ6ρ∂ρ + (ξ1 − s(ξ4 − ξ5 + ξ6)) ∂s − J1(ξ4 + ξ5)∂J1 − J2(ξ4 + ξ5)∂J2−

2J3(ξ4 − ξ6)∂J3 − 2J4(2ξ4 − ξ5 + ξ6)∂J4 − J5(3ξ4 − ξ5)∂J5 − J6(2ξ4 + ξ6)∂J6−

J7(3ξ4 + ξ5 − 2ξ6)∂J7 − 4ξ4J8∂J8 .

Therefore, finding the first integrals of this vector field we get the basic Euler
invariants of the first order.

Theorem 6.7 ([10]) The field of the Euler differential invariants for thermody-
namic states admitting a one-dimensional symmetry algebra is generated by the
differential invariants

J1

J6

(
s − ξ1

ξ4 − ξ5 + ξ6

)
, J1ρ

ξ4+ξ5
ξ6 ,

J2

J1
,

J3

ρ3J6
,

J4J
2
1

ρJ 3
6

,
J5J1

J8
, J6ρ

2ξ4
ξ6
+1

,
J7

J1J3
,

J8

ρ2J 2
6

of the first order and by the invariant derivations

ρ
ξ4+ξ5
ξ6 ∇1, ρ

2ξ4
ξ6
−1∇2, ρ

3ξ4−ξ5
ξ6

+1∇3.

This field separates the regular orbits.
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Now consider the case when the thermodynamic state admits a commutative two-

dimensional symmetry algebra generated by the vector fields A =
6∑

i=1
μiXi+6 and

B =
6∑

i=1
ηiXi+6 such that μ’s and η’s satisfy relations

{
η1μ4 − η4μ1 − η1μ5 + η5μ1 + η1μ6 − η6μ1 = 0,

2η2μ5 − 2η5μ2 − η2μ6 + η6μ2 = 0.

Using similar computations we get the following result.

Theorem 6.8 ([10]) The field of the Euler differential invariants for thermo-
dynamic states admitting a commutative two-dimensional symmetry algebra is
generated by differential invariants

J1ρ
ς1+ς2−2ς3

ς2−ς1 ((μ4−μ5+μ6)s−μ1)
ς2+ς1
ς2−ς1 ,

J2

J1
,

J3

ρ3J1((μ4 − μ5 + μ6)s − μ1)
,

ρ8J 2
1 J4

J 3
3

,
ρ4J1J5

J 2
3

,
ρ3J6

J3
,

ρ4J7

J 2
3

,
J8

J1J3

of the first order and by the invariant derivations

ρ
ς1+ς2−2ς3

ς2−ς1 ((μ4−μ5+μ6)s−μ1)
ς2+ς1
ς2−ς1∇1, ρ

3ς1−ς2−2ς3
ς2−ς1 ((μ4−μ5+μ6)s−μ1)

2ς1
ς2−ς1∇2,

ρ
2ς1−2ς3
ς2−ς1 ((μ4 − μ5 + μ6)s − μ1)

3ς1−ς2
ς2−ς1∇3,

where

ς1 = η4μ6 − η6μ4, ς2 = η5μ6 − η6μ5, ς3 = η4μ5 − η5μ4.

This field separates the regular orbits.

Note that these theorems are valid for general ξ ’s. The special cases are
considered in [10].

6.3.2 Flows on a Sphere

In this section we consider Euler system (6.4) on a two-dimensional unit sphere
M = S2 with the metric g = sin2 y dx2 + dy2 in the spherical coordinates.
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The velocity field of the flow has the form u = u(t, x, y) ∂x + v(t, x, y) ∂y , the
pressure p, the density ρ, the temperature T , and the entropy s are the functions of
time and space with the coordinates (t, x, y).

Here we consider the flow without any external force field, so g = 0.

6.3.2.1 Symmetry Lie Algebra

As in the previous section, to describe the Lie algebra of symmetries, we consider
the Lie algebra g generated by the following vector fields on the manifold J 0π :

X1 = ∂t , X2 = ∂x,

X3 = cos x

tan y
∂x + sin x ∂y −

(
sin x

tan y
u+ cos x

sin2 y
v

)
∂u + u cos x ∂v,

X4 = sin x

tan y
∂x − cos x ∂y +

(
cos x

tan y
u− sin x

sin2 y
v

)
∂u + u sin x ∂v,

X5 = ∂s, X6 = ∂p, X7 = T ∂T ,

X8 = t ∂t − u ∂u − v ∂v + 2ρ ∂ρ − s ∂s,

X9 = p ∂p + ρ ∂ρ − s ∂s .

Consider the pure geometric and thermodynamic parts of this symmetry algebra.
The geometric part gm = 〈X1, X2, X3, X4〉 represents by the symmetries with

respect to a group of sphere motions and time shifts, i.e. gm = so(3,R) ⊕ R, and
gm = kerϑ .

To describe the thermodynamic part of the symmetry algebra, we denote by h the
Lie algebra generated by the vector fields

Y1 = ∂s, Y2 = ∂p, Y3 = T ∂T ,

Y4 = 2ρ ∂ρ − s ∂s, Y5 = p ∂p − ρ ∂ρ.

This is a solvable Lie algebra with the following structure:

[Y1, Y4] = −Y1, [Y2, Y5] = Y2.

As above, let ht be the Lie subalgebra of algebra h that preserves thermodynamic
state (6.1).

Theorem 6.9 ([11]) The Lie algebra gsym of point symmetries of the Euler system
of differential equations on a two-dimensional unit sphere coincides with

ϑ−1(ht).
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6.3.2.2 Symmetry Classification of States

In this section we classify the thermodynamic states or Lagrangian surfaces L̃

(compare with the previous section) depending on the dimension of the symmetry
algebra ht ⊂ h.

We consider one- and two-dimensional symmetry algebras only.

States with a One-Dimensional Symmetry Algebra

Let dim ht = 1 and let Z =
5∑

i=1
λiYi be a basis vector in this algebra, then the

differential 1-form ιZΩ has the form

ιZΩ = 2λ4 − λ5

ρ
dp − λ5p + λ2

ρ2 dρ − λ3T ds + (λ1 − λ4s) dT ,

and the surface L̃ can be found from the following PDE system:

⎧
⎪⎨

⎪⎩

(2λ4 − λ5)ρ ερρ + (λ1 − λ4s)ερs + (4λ4 − 3λ5) ερ − λ2

ρ2
= 0,

(λ1 − λ4s)εss + (2λ4 − λ5)ρ ερs − λ3 εs = 0.

(6.9)

It is easy to check that the bracket of these two equations (see [8]) vanishes, and
therefore the system is formally integrable and compatible.

Below we list solutions of this system under the assumption of parameters λ

generality. A more detailed description may be found in [10, 11].
Solving the last system in case λ3 + λ4 − 2λ5 �= 0, we find the following

expressions for the pressure and the temperature:

p = C1ρ
λ5

2λ4−λ5 − λ2

λ5
, T = C2(λ1 − λ4s)

− λ3
λ4 ,

where C1, C2 are constants.
The admissibility conditions (the negative definiteness of the form κ) have the

form

λ3

λ1 − λ4s
> 0,

λ5C1

2λ4 − λ5
> 0

for all s ∈ (−∞, s0].
Theorem 6.10 The thermodynamic states admitting a one-dimensional symmetry
algebra have the form
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p = C1ρ
λ5

2λ4−λ5 − λ2

λ5
, T = C2(λ1 − λ4s)

− λ3
λ4 ,

where the constants defining the symmetry algebra satisfy inequalities

s0 <
λ1

λ4
, C1 > 0,

λ2

λ5
< 0,

λ5

2λ4 − λ5
> 0,

and besides they must meet one of the following conditions:

1. if λ3
λ4

is irrational, then λ3 > 0, λ4 > 0, C2 > 0;

2. if λ3
λ4

is rational, then λ3
λ4

> 0 (i.e. λ3
λ4
= m

k
) and

a. if k is even, then λ4 > 0, C2 > 0;
b. if k is odd and m is even, then C2 > 0;
c. if k is odd and m is odd, then C2λ4 > 0.

States with a Two-Dimensional Symmetry Algebra

As in the plane case there are no thermodynamic states that admit a two-dimensional
non-commutative symmetry algebra.

States with a Two-Dimensional Commutative Symmetry Algebra

Let now ht ⊂ h be a commutative two-dimensional Lie subalgebra, and let A =
5∑

i=1
αiYi , B =

5∑

i=1
βiYi be basis vectors in this algebra.

Then the condition [A,B] = 0 gives the following relations on α’s and β’s:

α1β4 − α4β1 = 0, α2β5 − α5β2 = 0. (6.10)

Then, as above, restriction of the forms ιAΩ and ιBΩ on the state surface L̃ leads
us to the four differential equations of the form (6.9), and the formal integrability
condition for obtained system has the form

(α2β5 − α5β2)(5β4 − 3β5) = 0,

which is satisfied due to relations (6.10).
Solving this system for the general parameters α and β we get only the

“nonphysical” solution of the form ε = C1ρ
−1 + C2.

For the special case, for example,

α3 = α4β3

β4
, α5 = α4β5

β4
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we get

p = C1ρ
β5

2β4−β5 − β2

β5
, T = C2

(
s − β1

β4

)− β3
β4

.

And the admissibility condition leads to the relations

β3

β1 − β4s
> 0,

C1β5

2β4 − β5
> 0.

Theorem 6.11 In the general case, there are no physically applicable thermody-
namic states, which admit a two-dimensional commutative symmetry algebra.

For the special case α3 = α4β3
β4

and α5 = α4β5
β4

, the thermodynamic states
admitting a two-dimensional commutative symmetry algebra have the form

p = C1ρ
β5

2β4−β5 − β2

β5
, T = C2

(
s − β1

β4

)− β3
β4

,

where the constants defining the symmetry algebra satisfy inequalities

s0 <
β1

β4
, C1 > 0,

β2

β5
< 0,

β5

2β4 − β5
> 0,

β3

β4
= m

k
> 0,

i.e. β3
β4

is rational positive number, and the following cases are possible:

1. if k is odd and m is even, then C2 > 0;
2. if k is odd and m is odd, then C2λ4 > 0.

6.3.2.3 Differential Invariants

As in the previous section, we consider two group actions on the Euler equation
E, i.e. the prolonged action of the group generated by the action of the Lie algebra
gm and the action generated by the prolongation of the action of the Lie algebra
gsym. So we get two types of differential invariants—the kinematic and the Euler
invariants.

The Field of Kinematic Invariants

First of all, the functions

ρ, s, g(u,u)

(as well as p and T ) generate all gm-invariants of order zero.
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Consider two vector fields u and ũ such that g(u, ũ) = 0 and g(u,u) = g(ũ, ũ).
Writing the covariant differential d∇u with respect to the vectors u and ũ as the sum
of its symmetric and antisymmetric parts we obtain the 4 invariants of the first order:

J1 = ux + vy + v cot y, J2 = uy sin y − vx

sin y
+ 2u cos y,

J3 = (u(uxv − vxu)+ v(uyv − vyu)) sin y + u cos y(u2 sin2 y + 2v2),

J4 = v(uxv − vxu)− u(uyv − vyu) sin2 y + v3 cot y.
(6.11)

The proof of the following theorem can be found in [11].

Theorem 6.12 ([11]) The following derivations

∇1 = d

dt
, ∇2 = ρx

sin2 y

d

dx
+ ρy

d

dy
, ∇3 = sx

sin2 y

d

dx
+ sy

d

dy

are gm-invariant. They are linearly independent if

ρxsy − ρysx �= 0.

It is easy to check that the codimension of regular gm-orbits is equal to 12. The
Rosenlicht theorem [17] gives us the following result.

Theorem 6.13 ([11]) The field of the first order kinematic invariants is generated
by the invariants ρ, s, g(u,u) of order zero and by the invariants (6.11) and

∇1ρ, ∇1s, ∇2ρ, ∇2s, ∇3s (6.12)

of order one. These invariants separate regular gm-orbits.

The bundle π2,1 : E2 → E1 has rank 14, and by applying the derivations
∇1,∇2,∇3 to the kinematic invariants (6.11) and (6.12) we get 27 kinematic
invariants. Straightforward computations show that among these invariants 14 are
always independent (see https://d-omega.org).

Therefore, starting with the order k = 1 dimensions of regular orbits are equal to
dim gm = 4.

The Hilbert function (the number of independent invariants) of the gm-invariants
field has form H(k) = 5k + 4 for k � 1 and H(0) = 3, and the corresponding
Poincaré function is equal to

P(z) = 3+ 3z− z3

(1− z)2
.

Summarizing, we get the following result.

https://d-omega.org
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Theorem 6.14 ([11]) The field of the kinematic invariants is generated by the
invariants ρ, s, g(u,u) of order zero, by the invariants (6.11) and (6.12) of order
one, and by the invariant derivations ∇1,∇2,∇3. This field separates regular orbits.

The Field of Euler Invariants

Let us consider the case when the equations of thermodynamic state L̃ admit a one-
dimensional symmetry algebra generated by the vector field

A = ξ1X5 + ξ2X6 + ξ3X7 + ξ4X8 + ξ5X9.

Using a similar computation as in the plane case we get the following result.

Theorem 6.15 ([11]) The field of the Euler differential invariants on a sphere for
thermodynamic states admitting a one-dimensional symmetry algebra is generated
by the differential invariants

J1ρ

(
s − ξ1

ξ4 + ξ5

)
, J1ρ

ξ4
2ξ4+ξ5 ,

g(u,u)

J 2
1

,

J2

J1
,

J3

J 3
1

,
J4

J 3
1

,
∇1ρ

J1ρ
,

∇2ρ

ρ2 , ρ∇1s, J1∇2s, J 2
1 ρ

2∇3s

of the first order and by the invariant derivations

ρ
ξ4

2ξ4+ξ5 ∇1, ρ−1∇2, ρ
ξ4+ξ5
2ξ4+ξ5 ∇3.

This field separates regular orbits.

The last formulas are valid for general ξ ’s. All details and the special cases are
considered in [11].

Now let the thermodynamic state admit a commutative two-dimensional symme-

try algebra generated by the vector fields A =
5∑

i=1
μiXi+4, B =

5∑

i=1
ηiXi+4 such

that μ’s and η’s satisfy relations

{
η1μ4 − η4μ1 + η1μ5 − η5μ1 = 0,

η2μ5 − η5μ2 = 0.

Theorem 6.16 ([11]) The field of Euler differential invariants for the thermo-
dynamic states admitting a commutative two-dimensional symmetry algebra is
generated by differential invariants
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J1ρ((μ4 + μ5)s − μ1),
g(u,u)

J 2
1

,
J2

J1
,

J3

J 3
1

,
J4

J 3
1

,

∇1ρ

J1ρ
, ρ∇1s,

∇2ρ

ρ2 , J1∇2s, J 2
1 ρ

2∇3s

of the first order and by the invariant derivations

ρ((μ4 + μ5)s − μ1)∇1, ρ−1∇2, ((μ4 + μ5)s − μ1)
−1∇3.

This field separates regular orbits.

6.3.3 Flows on a Spherical Layer

Consider Euler system (6.4) on a spherical layer M = S2 × R with the coordinates
(x, y, z), where (x, y) are the stereographic coordinates on the sphere, and the
metric

g = 4

(x2 + y2 + 1)2
(dx2 + dy2)+ dz2.

The velocity field of the flow has the form u = u(t, x, y, z) ∂x+v(t, x, y, z) ∂y+
w(t, x, y, z) ∂z, the pressure p, the density ρ, the temperature T , and the entropy s

are the functions of time and space with the coordinates (t, x, y, z).
The vector of gravitational acceleration is of the form g = (0, 0, g).

6.3.3.1 Symmetry Lie Algebra

Consider the Lie algebra g generated by the following vector fields on the manifold
J 0π :

X1 = ∂t , X3 = t ∂z + ∂w,

X2 = ∂z, X4 = y ∂x − x ∂y + v ∂u − u ∂v,

X5 = xy ∂x − 1

2
(x2 − y2 − 1)∂y + (xv + yu) ∂u − (xu− yv)∂v,

X6 = 1

2
(x2 − y2 + 1)∂x + xy ∂y + (xu− yv)∂u + (xv + yu)∂v,

X7 = ∂s, X10 = t ∂t + gt2 ∂z − u ∂u − v ∂v + (2gt − w)∂w + 2ρ ∂ρ − s ∂s,

X8 = ∂p, X11 = p ∂p + ρ ∂ρ − s ∂s,

X9 = T ∂T .
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The pure geometric part gm generated by the vector fields X1, X2, . . . , X6.
Transformations corresponding to the elements of the Lie group generated by the
algebra gm are compositions of sphere motions, Galilean transformations, and shifts
along the z direction, time shifts.

To describe thermodynamic part of the symmetry algebra, we consider the Lie
algebra h generated by the vector fields

Y1 = ∂s, Y2 = ∂p, Y3 = T ∂T ,

Y4 = 2ρ ∂ρ − s ∂s, Y5 = p ∂p − ρ ∂ρ.

This is a solvable Lie algebra with the following structure:

[Y1, Y4] = −Y1, [Y2, Y5] = Y2.

Let also ht be the Lie subalgebra of algebra h that preserves thermodynamic state
(6.1). Then the following result is valid.

Theorem 6.17 ([12]) The Lie algebra gsym of point symmetries of the Euler system
of differential equations on a spherical layer coincides with

ϑ−1(ht).

6.3.3.2 Symmetry Classification of States

The Lie algebra generated by the vector fields Y1, . . . , Y5 coincides with the Lie
algebra of the thermodynamic symmetries of the Euler system on a sphere.

Thus the classification of the thermodynamic states or Lagrangian surfaces L̃

depending on the dimension of the symmetry algebra ht ⊂ h is the same as the
classification presented in the previous section.

6.3.3.3 Differential Invariants

The Field of Kinematic Invariants

First of all, the functions ρ, s, g(u,u) − w2 (as well as p and T ) generate all gm-
invariants of order zero.

The proofs of the following theorems can be found in [12].

Theorem 6.18 ([12]) The following derivations

∇1 = d

dz
, ∇2 = d

dt
+ w

d

dz
, ∇3 = u

d

dx
+ v

d

dy
, ∇4 = v

d

dx
− u

d

dy
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are gm-invariant. They are linearly independent if

u2 + v2 �= 0.

Theorem 6.19 ([12]) The field of the first order kinematic invariants is generated
by the invariants ρ, s, g(u,u)− w2 of order zero and by the invariants

∇1ρ, ∇2ρ, ∇3ρ, ∇4ρ, ∇1s, ∇2s, ∇3s, ∇4s,

∇1(g(u,u)− w2), ∇3(g(u,u)− w2), ∇4(g(u,u)− w2),

∇1w, ∇3w, ∇4w, J1 = uzwx + vzwy, J2 = utvz − uzvt

u2
z + v2

z

(6.13)

of order one. These invariants separate regular gm-orbits.

The bundle π2,1 : E2 → E1 has rank 33, and by applying the derivations ∇i ,
i = 1, . . . , 4 to the first order kinematic invariants (6.13) we get 64 kinematic
invariants. Straightforward computations show that among these invariants 33 are
always independent.

Therefore, starting with the order k = 1 dimensions of the regular orbits are
equal to dim gm = 6.

Moreover, the number of independent invariants (the Hilbert function) is equal
to H(k) = 3k2 + 8k + 5 for k � 1 and H(0) = 3.

The corresponding Poincaré function has the form

P(z) = 3+ 7z− 6z2 + 2z3

(1− z)3
.

Theorem 6.20 ([12]) The field of the kinematic invariants is generated by the
invariants ρ, s, g(u,u) − w2 of order zero, by the invariants (6.13) of order one,
and by the invariant derivations∇i , i = 1, . . . , 4. This field separates regular orbits.

The Field of Euler Invariants

At first we consider the case when the thermodynamic state L̃ admits a one-
dimensional symmetry algebra generated by the vector field

A = ξ1X7 + ξ2X8 + ξ3X9 + ξ4X10 + ξ5X11.

Then for general values of the parameters ξ ’s we have the following result. The
special cases are considered in [12].

Theorem 6.21 ([12]) The field of the Euler differential invariants for thermody-
namic states admitting a one-dimensional symmetry algebra is generated by the
differential invariants
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wzρ

(
s − ξ1

ξ4 + ξ5

)
, w−2

z

(
g(u,u)− w2

)
,

∇1ρ

ρ
,

∇2ρ

wzρ
,

∇3ρ

wzρ
,

∇4ρ

wzρ
,

wzρ∇1s, ρ∇2s, ρ∇3s, ρ∇4s,

w−2
z ∇1

(
g(u,u)− w2

)
, w−3

z ∇3

(
g(u,u)− w2

)
, w−3

z ∇4

(
g(u,u)− w2

)
,

wzρ
ξ4

2ξ4+ξ5 , w−2
z ∇3w, w−2

z ∇4w, w−2
z J1, w−1

z J2,

of the first order and by the invariant derivatives

∇1, w−1
z ∇2, w−1

z ∇3, w−1
z ∇4.

This field separates regular orbits.

Now, let the thermodynamic state admit a commutative two-dimensional sym-

metry algebra generated by the vector fields A =
5∑

i=1
μiXi+6, B =

5∑

i=1
ηiXi+6, then

μ’s and η’s satisfy relations

{
η1μ4 − η4μ1 + η1μ5 − η5μ1 = 0,

η2μ5 − η5μ2 = 0.

Theorem 6.22 ([12]) The field of Euler differential invariants for thermodynamic
states admitting a commutative two-dimensional symmetry algebra is generated by
differential invariants

w−2
z

(
g(u,u)− w2

)
,

∇1ρ

ρ
,

∇2ρ

wzρ
,

∇3ρ

wzρ
,

∇4ρ

wzρ
,

wzρ∇1s, ρ∇2s, ρ∇3s, ρ∇4s,

w−2
z ∇1

(
g(u,u)− w2

)
, w−3

z ∇3

(
g(u,u)− w2

)
, w−3

z ∇4

(
g(u,u)− w2

)
,

wzρ((μ4 + μ5)s − μ1), w−2
z ∇3w, w−2

z ∇4w, w−2
z J1, w−1

z J2

of the first order and by the invariant derivatives

∇1, w−1
z ∇2, w−1

z ∇3, w−1
z ∇4.

This field separates regular orbits.
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6.4 Compressible Viscid Fluids or Gases

In this section we study differential invariants of compressible viscid fluids or gases.
The system of differential equations (the Navier–Stokes system) describing flows

on an oriented Riemannian manifold (M, g) consists of the following equations (see
[1] for details):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ(ut +∇uu)− div σ − gρ = 0,

∂(ρ Ωg)

∂t
+ Lu

(
ρ Ωg

) = 0,

ρT (st + ∇us)−Φ + k(ΔgT ) = 0.

(6.14)

Here the divergence operator div : S2T ∗M → TM is given by

(div σ)l = (d∇σ)ijkgjkgil,

where d∇ is the covariant differential.
The fluid under consideration is assumed to be Newtonian and isotropic.

Therefore, the fluid stress tensor σ is symmetric, and it depends on the rate of
deformation tensor D = 1

2Lu (g) linearly. These two conditions give the following
form of the stress tensor: σ = −pg+σ ′, where the viscous stress tensor σ ′ is given
by

σ ′ = 2η

(

D − 〈D, g〉g
〈g, g〉g

g

)

+ ζ 〈D, g〉gg.

The quantity Φ = 〈
σ ′,D

〉
g

represents the rate of dissipation of mechanical
energy [1].

The first equation of system (6.14) is the Navier–Stokes equation, the second one
is the continuity equation, and the third one is the general equation of heat transfer.

In this section we consider the following examples of manifold M: a plane, a
three-dimensional space, a sphere, and a spherical layer.

Note that in all these cases the number of unknown functions is greater than the
number of system equations by 2, i.e. the system (6.14) is incomplete. As above we
get two additional equations using the thermodynamics of the medium.

Thus, by the Navier–Stokes system of differential equations we mean the
system (6.14) extended by two equations of state (6.1), where functions f and g

satisfy the additional relation (6.2) and the form κ is negative definite.
Geometrically, we represent this system in the following way. Consider the

bundle

π : R× TM × R
4 −→ R×M
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of rank (dimM + 4).
Then the Navier–Stokes system is a system of differential equations on sections

of the bundle π .
Note that system (6.1) defines the zeroth order system E0 ⊂ J 0π .
Denote by E1 ⊂ J 1π the system of order � 1 obtained by the first prolongation

of the system E0 and by the continuity equation of system (6.14).
Let also E2 ⊂ J 2π be the system of differential equations of order � 2 obtained

by the first prolongation of the system E1 and all equations of system (6.14).
For the case k � 3, we define Ek ⊂ J kπ to be the (k − 2)-th prolongation of the

system E2.
Note that the system E∞ = lim←− Ek is a formally integrable system of differential

equations, which we also call the Navier–Stokes system.

6.4.1 2D-Flows

Consider Navier–Stokes system (6.14) on a plane M = R
2 equipped with the

coordinates (x, y) and the standard flat metric g = dx2 + dy2.
The velocity field of the flow has the form u = u(t, x, y) ∂x + v(t, x, y) ∂y , the

pressure p, the density ρ, the temperature T , and the entropy s are the functions of
time and space with the coordinates (t, x, y).

Here we also consider the flow without any external force field, so g = 0.

6.4.1.1 Symmetry Lie Algebra

To describe the Lie algebra of symmetries of the Navier–Stokes system we consider
a Lie algebra g generated by the following vector fields on space J 0π :

X1 = ∂x, X4 = t ∂x + ∂u,

X2 = ∂y, X5 = t ∂y + ∂v,

X3 = y ∂x − x ∂y + v ∂u − u ∂v, X6 = ∂t ,

X7 = ∂s, X8 = ∂p,

X9 = x ∂x + y ∂y + u ∂u + v ∂v − 2ρ ∂ρ + 2T ∂T ,

X10 = t ∂t − u ∂u − v ∂v + ρ ∂ρ − p ∂p − 2T ∂T .

In general the symmetry algebra of system (6.14) consists of pure geometric and
thermodynamic parts.

The geometric part is represented by the algebra gm = 〈X1, X2, . . . , X6〉 with
respect to the group of motions, Galilean transformations, and time shifts.
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Moreover, the kernel of homomorphism ϑ (6.5) is an ideal gm in the Lie algebra
g.

The thermodynamic part strongly depends on the symmetries of the thermody-
namic state. In order to describe it, denote by h a Lie algebra generated by the vector
fields

Y1 = ∂s, Y2 = ∂p, Y3 = ρ ∂ρ − T ∂T , Y4 = p ∂p + T ∂T .

Let also ht be a Lie subalgebra of the algebra h which preserves the thermody-
namic state (6.1).

Theorem 6.23 ([13]) A Lie algebra gsym of symmetries of the Navier–Stokes
system of differential equations on a plane coincides with

ϑ−1(ht).

Note that, usually, the equations of state are neglected and the vector fields like
f (t) ∂p, where f is an arbitrary function, considered as symmetries of the Navier–
Stokes system.

For the general equation of state ht = 0 and the symmetry algebra coincides with
the algebra gm.

6.4.1.2 Symmetry Classification of States

In this section we classify thermodynamic states or Lagrangian surfaces L̃ depend-
ing on the dimension of the symmetry algebra ht ⊂ h.

We consider one- and two-dimensional symmetry algebras only. One can easily
check that there are no physically valuable thermodynamic states with three or more
dimensional symmetry algebras.

States with a One-Dimensional Symmetry Algebra

Let dim ht = 1 and let Z =
4∑

i=1
λiYi be a basis vector in this algebra, then the

differential 1-form ιZΩ has the form

ιZΩ = −λ3

ρ
dp + λ4p + λ2

ρ2 dρ + (λ3 − λ4)T ds − λ1dT ,

and, in terms of specific energy ε(ρ, s), the Lagrangian surface L̃ can be found as a
solution of the following PDE system:
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⎧
⎪⎨

⎪⎩

λ1εss + λ3ρεsρ + (λ3 − λ4)εs = 0,

λ3ρερρ + λ1εsρ + (2λ3 − λ4)ερ − λ2

ρ2
= 0.

It is easy to check that the bracket of these two equations (see [8]) vanishes and
therefore the system is formally integrable and compatible.

Solving this system for general values of parameters λ, all special cases are
considered in [13], we get expressions for the presser and the temperature

T = ρ
λ4
λ3
−1

F ′, p = ρ
λ4
λ3

((
λ4

λ3
− 1

)
F − λ1

λ3
F ′

)
−λ2

λ4
, F = F

(
s − λ1

λ3
ln ρ

)
,

where F is a smooth function.
Negative definiteness of the quadratic form κ gives the following relations on the

function F and the parameters λ:

λ2
1ρ

λ4
λ3 F ′′ + λ1(λ3 − λ4)ρT + λ3(λ4p + λ2) > 0,

ρ
λ4−2λ3

λ3 F ′′ (λ1(λ3 − λ4)ρT − λ3(λ4p + λ2))+ T 2(λ3 − λ4)
2 < 0.

Theorem 6.24 The thermodynamic states admitting a one-dimensional symmetry
algebra have the form

T = ρ
λ4
λ3
−1

F ′, p = ρ
λ4
λ3

((
λ4

λ3
− 1

)
F − λ1

λ3
F ′

)
−λ2

λ4
, F = F

(
s − λ1

λ3
ln ρ

)
,

where F is a smooth function, F ′ is positive, and

λ2
1F

′′ + λ1(λ3 − 2λ4)F
′ + λ4(λ4 − λ3)F > 0,

F ′′(λ4(λ4 − λ3)F − λ1λ3F
′)− (F ′)2(λ4 − λ3)

2 > 0.

States with a Two-Dimensional Non-commutative Symmetry Algebra

Let ht ⊂ h be a non-commutative two-dimensional Lie subalgebra. It is easy to
check that two vectors of the form A = Y2, B = αY1 + βY3 + Y4 are the basis
vectors in the non-commutative algebra ht.

Then, as above, the restrictions of forms ιAΩ and ιBΩ on the state surface L̃

lead us to the solution ρ = const .
Since we consider thermodynamic states such that the variables ρ and s are local

coordinates then we do not consider the case of the non-commutative subalgebra.
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States with a Two-Dimensional Commutative Symmetry Algebra

Let now ht ⊂ h be a commutative two-dimensional Lie subalgebra, and let A =
4∑

i=1
αiYi , B =

4∑

i=1
βiYi be the basis vectors in the algebra ht.

Then condition [A,B] = 0 gives the following relations on α’s and β’s:

α2β4 − α4β2 = 0. (6.15)

Then the restrictions of forms ιAΩ and ιBΩ on the state surface L̃ lead us to the
following system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1εss + α3ρεsρ + (α3 − α4)εs = 0,

α3ρερρ + α1εsρ + (2α3 − α4)ερ − α2

ρ2 = 0,

β1εss + β3ρεsρ + (β3 − β4)εs = 0,

β3ρερρ + β1εsρ + (2β3 − β4)ερ − β2

ρ2 = 0.

The formal integrability condition for this system has the form

(5β3 − β4)(α2β4 − β2α4) = 0,

which is satisfied due to relations (6.15).
Solving this PDE system we get the following expressions for the pressure and

the temperature:

p = C(β − 1)eαsρβ − β2

β4
, T = Cαeαsρβ−1, (6.16)

where

α = α4β3 − α3β4

α1β3 − α3β1
, β = α1β4 − β1α4

α1β3 − α3β1
,

and the admissibility conditions have the form α > 0, β > 1.

Theorem 6.25 The thermodynamic states admitting a two-dimensional commuta-
tive symmetry algebra have the form

p = C(β − 1)eαsρβ − β2

β4
, T = Cαeαsρβ−1,

where
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α = α4β3 − α3β4

α1β3 − α3β1
> 0, β = α1β4 − β1α4

α1β3 − α3β1
> 1, C > 0,

β2

β4
< 0.

Observe that, the expressions for the temperature and the pressure for an ideal
gas

T = 1

γ
ρke

s
γ , p = kρk+1e

s
γ ,

where k and γ are constant depending on a gas, can be obtained from the equations
(6.16) by choosing appropriate values of the constants.

6.4.1.3 Differential Invariants

As in the case of compressible inviscid fluids or gases (the Euler system), we
consider two group actions on the Navier–Stokes equation E.

The first one is the prolonged action of the group generated by the action of
Lie algebra gm. The differential invariants with respect to this action are called
kinematic differential invariants.

The second one is the prolonged action of the group generated by the action of
Lie algebra gsym. The corresponding differential invariants are called Navier–Stokes
invariants.

Also we say that a point xk ∈ Ek and the corresponding orbit O(xk) (gm or gsym-
orbit) are regular, if there are exactly m = codimO(xk) independent invariants
(kinematic or Navier–Stokes) in a neighborhood of this orbit.

Thus, the corresponding point on the quotient space Ek/gm or Ek/gsym is
smooth, and these independent invariants (kinematic or Navier–Stokes) can serve
as local coordinates in a neighborhood of this point.

Otherwise, we say that the point and the corresponding orbit are singular.
It is worth to note that the Navier–Stokes system together with the symmetry

algebras gm or gsym satisfies the conditions of the Lie–Tresse theorem (see [9]),
and therefore the above differential invariants separate regular gm or gsym orbits on
the Navier–Stokes system E.

The Field of Kinematic Invariants

First of all observe that the density ρ and the entropy s (as well as the pressure p

and the temperature T ) on the equation E0 are gm-invariants.
Moreover, the following functions are the kinematic invariants of the first order

(see [13]):
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J1 = ux + vy, J5 = ρxsy − ρysx,

J2 = uy − vx, J6 = st + sxu+ syv,

J3 = ρ2
x + ρ2

y , J7 = ρx(ρxux + ρyuy)+ ρy(ρxvx + ρyvy),

J4 = s2
x + s2

y , J8 = sx(ρxux + ρyuy)+ sy(ρxvx + ρyvy),

J9 = sx(ut + uux + vuy)+ sy(vt + uvx + vvy),

J10 = ρx(ut + uux + vuy)+ ρy(vt + uvx + vvy).

Proposition 6.2 The singular points belong to the union of two sets:

Υ1 = { ux − vy = 0, uy + vx = 0, ut = vt = ρx = ρy = sx = sy = 0 },

Υ2 = { J3J
2
5 (J3J4 − J 2

5 ) = 0 }.

The set Υ1 contains singular points that have five-dimensional orbits. The set Υ2
contains points where differential invariants J1, J4, . . . , J10 are dependent.

It is easy to check that codimension of regular gm-orbits is equal to 12. The
proofs of the following theorems can be found in [13].

Theorem 6.26 ([13]) The field of the first order kinematic invariants is generated
by invariants ρ, s, J1, . . . , J10. These invariants separate regular gm-orbits.

Theorem 6.27 ([13]) The following derivations

∇1 = d

dt
+ u

d

dx
+ v

d

dy
, ∇2 = ρx

d

dx
+ ρy

d

dy
, ∇3 = sx

d

dx
+ sy

d

dy

are gm-invariant. They are linear independent if

ρxsy − ρysx �= 0.

The bundle π2,1 : E2 → E1 has rank 18 and by applying derivations ∇1,∇2,∇3
to the kinematic invariants J1, J2, . . . , J10 we get 30 kinematic invariants. Straight-
forward computations show that among these invariants 18 are always independent
(see https://d-omega.org).

Therefore, beginning with order k = 1 dimensions of regular orbits are equal to
dim gm = 6.

Moreover, the number of independent invariants of pure order k (the Hilbert
function) is equal to H(k) = 7k + 4 for k � 2, and H(0) = 2, H(1) = 10.

The corresponding Poincaré function is equal to

P(z) = 2+ 6z− z3

(1− z)2
.

https://d-omega.org
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Theorem 6.28 ([13]) The field of kinematic invariants is generated by the invari-
ants ρ, s of order zero, invariants J1, J2, . . . , J10 of order one, and by the invariant
derivations ∇1,∇2,∇3. This field separates regular orbits.

The Field of Navier–Stokes Invariants

Here we consider the case when the thermodynamic state admits a one-dimensional
symmetry algebra generated by the vector field

A = ξ1X7 + ξ2X8 + ξ3X9 + ξ4X10.

Note that, the gm invariant derivations ∇1, ∇2, ∇3 do not commute with the
thermodynamic symmetry A. Moreover, the action of the thermodynamic vector
field A on the field of kinematic invariants is given by the following derivation:

(ξ4 − 2ξ3)ρ∂ρ + ξ1∂s − ξ4J1∂J1 − ξ4J2∂J2 − 2J3(3ξ3 − ξ4)∂J3−

−2ξ3J4∂J4 + J5(ξ4 − 4ξ3)∂J5 − ξ4J6∂J6−

−4ξ3J7∂J7 + J8(ξ4 − 6ξ3)∂J8 − 2ξ4J9∂J9 − (ξ4 + 2ξ3)J10∂J10 .

Finding the first integrals of this vector field we get the basic Navier–Stokes
invariants of the first order. The following result is valid for general ξ ’s and the
special cases can be found in [13].

Theorem 6.29 ([13]) The field of the Navier–Stokes differential invariants for the
thermodynamic states admitting a one-dimensional symmetry algebra is generated
by the differential invariants

ξ1

2ξ3 − ξ4
ln ρ + s, J1ρ

ξ4
ξ4−2ξ3 ,

J2

J1
,

J3

ρ3J1
,

J4

ρJ1
,

J5

ρ2J1
,

J6

J1
,

J7

ρ3J 2
1

,
J8

ρ2J 2
1

,
J9

J 2
1

,
J10

ρJ 2
1

of the first order and by the invariant derivations

ρ
ξ4

ξ4−2ξ3 ∇1, ρ
2ξ3

ξ4−2ξ3
−1∇2, ρ

2ξ3
ξ4−2ξ3 ∇3.

This field separates regular orbits.
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Consider the case when the thermodynamic state admits a commutative two-

dimensional symmetry algebra generated by the vector fields A =
6∑

i=1
μiXi+6, B =

6∑

i=1
ηiXi+6, then μ’s and η’s satisfy relation

η2μ4 − η4μ2 = 0.

Performing the same computation as before we get the following theorem.

Theorem 6.30 ([13]) The field of Navier–Stokes differential invariants for the
thermodynamic states admitting a commutative two-dimensional symmetry algebra
is generated by the differential invariants

J1ρ
ς1eς2s ,

J2

J1
,

J3

ρ3J1
,

J4

ρJ1
,

J5

ρ2J1
,

J6

J1
,

J7

ρ3J 2
1

,
J8

ρ2J 2
1

,
J9

J 2
1

,
J10

ρJ 2
1

of the first order and by the invariant derivations

ρς1eς2s ∇1, ρς1−2eς2s ∇2, ρς1−1eς2s ∇3,

where

ς1 = η4μ1 − η1μ4

2(η1μ3 − η3μ1)+ η4μ1 − η1μ4
, ς2 = (η4μ3 − η3μ4)

2(η1μ3 − η3μ1)+ η4μ1 − η1μ4
.

This field separates regular orbits.

6.4.2 3D-Flows

Consider the Navier–Stokes system (6.14) in a space M = R
3 equipped with the

coordinates (x, y, z) and the standard metric g = dx2 + dy2 + dz2.
The velocity field of the flow has the form u = u(t, x, y, z) ∂x+v(t, x, y, z) ∂y+

w(t, x, y, z) ∂z, the pressure p, the density ρ, the temperature T and the entropy s

are the functions of time and space with the coordinates (t, x, y, z).
The vector of gravitational acceleration is of the form g = g ∂z.

6.4.2.1 Symmetry Lie Algebra

First of all we consider the Lie algebra g generated by the following vector fields on
the manifold J 0π :
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X1 = ∂x, X4 = −y ∂x + x ∂y − v ∂u + u ∂v,

X2 = ∂y, X5 =
(
gt2

2
− z

)
∂x + x ∂z + (gt − w) ∂u + u ∂w,

X3 = ∂z, X6 =
(
gt2

2
− z

)
∂y + y ∂z + (gt − w) ∂v + v ∂w,

X7 = t ∂x + ∂u, X10 = ∂t ,

X8 = t ∂y + ∂v, X11 = ∂s,

X9 = t ∂z + ∂w, X12 = ∂p,

X13 = x ∂x + y ∂y −
(
gt2

2
− z

)
∂z + u ∂u + v ∂v − (gt − w) ∂w − 2ρ ∂ρ + 2T ∂T ,

X14 = t ∂t + gt2∂z − u ∂u − v ∂v + (2gt − w) ∂w + ρ ∂ρ − p ∂p − 2T ∂T

and the Lie algebra h generated by the vector fields

Y1 = ∂s, Y2 = ∂p, Y3 = ρ ∂ρ − T ∂T , Y4 = p ∂p + T ∂T .

The pure geometric part is represented by the algebra gm = 〈X1, X2, . . . , X10〉
with respect to the group of motions, Galilean transformations, and time shifts.

In order to describe the pure thermodynamic part, we consider the Lie subalgebra
ht of the algebra h that preserves the thermodynamic state (6.1).

Theorem 6.31 ([14]) A Lie algebra gsym of symmetries of the Navier–Stokes
system of differential equations in 3-dimensional space coincides with

ϑ−1(ht).

6.4.2.2 Symmetry Classification of States

The Lie algebra generated by the vector fields Y1, . . . , Y4 coincides with the Lie
algebra of the thermodynamic symmetries of the Navier–Stokes system on a plane.

Thus the classification of the thermodynamic states or Lagrangian surfaces L̃

depending on the dimension of the symmetry algebra ht ⊂ h is the same as the
classification presented in the previous section (2D-flows).
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6.4.2.3 Differential Invariants

The Field of Kinematic Invariants

First of all, we observe that the functions ρ and s (as well as p and T ) generate all
gm-invariants of order zero.

Let us consider the point (0, . . . , 0) ∈ J 0π and its isotropy group. It is easy to
check that this group is isomorphic to the rotation group SO(3).

Then consider the following elements:

ag =
⎛

⎝
ut

vt

wt − g

⎞

⎠ , ∇ρ =
⎛

⎝
ρx

ρy

ρz

⎞

⎠ , ∇s =
⎛

⎝
sx

sy

sz

⎞

⎠ , V =
⎛

⎝
ux uy uz

vx vy vz

wx wy wz

⎞

⎠

and suppose that first three vectors are linearly independent.
Note that, the group SO(3) acts on the matrix V by conjugacy: V → RVR−1,

where R ∈ SO(3).
Moreover, the action of the rotation group SO(3) preserves the dot products of

the vectors ag, ∇ρ, and ∇s.
Let H = (ag,∇ρ,∇s) be a matrix with det H �= 0, then the elements of the

product H−1VH are 9 functions, which are invariant under the action of the rotation
group.

Therefore, we have 15 independent invariants of the first order at the point
(0, . . . , 0).

Denote by τ the following transformation:

t → t − t0, x → x − x0 − u0(t − t0), u→ u− u0,

ρ → ρ, y → y − y0 − v0(t − t0), v → v − v0,

s → s, z→ z− z0 − w0(t − t0), w → w − w0.

Obviously, τ is a symmetry of the equation E, which maps the point (t0, x0, y0, z0
u0, v0, w0, ρ0, s0) to the point 0.

Applying the prolongation of τ to the invariants (to the dot products and the
elements of the matrix H−1VH) we get 15 kinematic invariants of the first order.

The proofs of the following two theorems can be found in [14].

Theorem 6.32 ([14]) The field of the first order kinematic invariants is generated
by the invariants ρ, s and by the invariants

st + sxu+ syv + szw,

(∇ρ)2, (∇s)2, ∇ρ · ∇s, (ag)
2, ∇ρ · ag, ∇s · ag,

(H−1VH)ij ,

(6.17)
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transformed by τ , if det H �= 0. These invariants separate regular gm-orbits.

Theorem 6.33 ([14]) The following derivations

∇1 = d

dt
+ u

d

dx
+ v

d

dy
+ w

d

dz
,

∇2 = ρx
d

dx
+ ρy

d

dy
+ ρz

d

dz
, ∇3 = sx

d

dx
+ sy

d

dy
+ sz

d

dz
,

∇4 = (ρysz − ρzsy)
d

dx
− (ρxsz − ρzsx)

d

dy
+ (ρxsy − ρysx)

d

dz

are gm-invariant. They are linearly independent if

∣∣∣
∣∣∣

ρx ρy ρz

sx sy sz

ρysz − ρzsy ρxsz − ρzsx ρxsy − ρysx

∣∣∣
∣∣∣
�= 0.

The bundle π2,1 : E2 → E1 has rank 42 and by applying the derivations ∇i ,
i = 1, . . . , 4 to the kinematic invariants (6.17) we get 64 kinematic invariants.
Straightforward computations show that among these invariants 42 are always
independent (see https://d-omega.org).

Therefore, starting with the order k = 1 dimensions of regular orbits are equal to
dim gm = 10.

The Hilbert function of the gm-invariants field (the number of independent
invariants of pure order k) is equal to

H(k) = 9

2
k2 + 19

2
k + 5

for k � 2, and H(0) = 2, H(1) = 16.
The corresponding Poincaré function has the form

P(z) = 2+ 10z− 6z3 + 3z4

(1− z)3
.

Summarizing, we get the following result.

Theorem 6.34 ([14]) The field of kinematic invariants is generated by the invari-
ants ρ, s of order zero, by the invariants (6.17) of order one (with transformation τ ),
and by the invariant derivations ∇i , i = 1, . . . , 4. This field separates the regular
orbits.

https://d-omega.org
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The Field of Navier–Stokes Invariants

Consider the case when the equations of thermodynamic state admit a one-
dimensional symmetry algebra generated by the vector field

A = ξ1X11 + ξ2X12 + ξ3X13 + ξ4X14.

For general ξ ’s we have the following result. The particular cases are considered
in [14].

Theorem 6.35 ([14]) The field of the Navier–Stokes differential invariants for the
thermodynamic states admitting a one-dimensional symmetry algebra is generated
by the differential invariants

ξ1

2ξ3 − ξ4
ln ρ + s, ρ

ξ4
ξ4−2ξ3 ∇1 s,

(∇ρ)2

ρ3 ∇1s
,

(∇s)2

ρ ∇1s
,

∇ρ · ∇s
ρ2 ∇1s

,

ρ (ag)
2

(∇1s)
3 ,

∇ρ · ag

ρ (∇1s)2 ,
∇s · ag

(∇1s)2 ,
J11

∇1s
,

J12

ρ2 ,
J13

ρ
,

ρ2J21

(∇1s)2
,

J22

∇1s
,

ρJ23

∇1s
,

ρJ31

(∇1s)2
,

ρJ32

ρ ∇1s
,

ρJ3

∇1s

of the first order and by the invariant derivations

ρ
ξ4

ξ4−2ξ3 ∇1, ρ
− ξ4−4ξ3

ξ4−2ξ3 ∇2, ρ
2ξ3

ξ4−2ξ3 ∇3, ρ
− ξ4−5ξ3

ξ4−2ξ3 ∇4,

here we denote by Jij the elements of the matrix H−1VH. This field separates the
regular orbits.

Consider the case when the thermodynamic state admits a commutative two-

dimensional symmetry algebra generated by the vector fields A =
6∑

i=1
μiXi+10,

B =
6∑

i=1
ηiXi+10.

Theorem 6.36 ([14]) The field of the Navier–Stokes differential invariants for the
thermodynamic states admitting a commutative two-dimensional symmetry algebra
is generated by the differential invariants
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ρς1eς2s∇1s,
(∇ρ)2

ρ3 ∇1s
,

(∇s)2

ρ ∇1s
,

∇ρ · ∇s
ρ2 ∇1s

,

ρ(ag)
2

(∇1s)3 ,
∇ρ · ag

ρ(∇1s)2 ,
∇s · ag

(∇1s)2 ,
J11

∇1s
,

J12

ρ2 ,
J13

ρ
,

ρ2J21

(∇1s)2 ,
J22

∇1s
,

ρ J23

∇1s
,

ρ J31

(∇1s)2 ,
J32

ρ ∇1s
,

J33

∇1s

of the first order and by the invariant derivations

ρς1eς2s ∇1, ρς1−2eς2s ∇2, ρς1−1eς2s ∇3, ρ
3
2 ς1− 5

2 e
3
2 ς2s ∇4

where Jij are the elements of the matrix H−1VH and

ς1 = η4μ1 − η1μ4

2(η1μ3 − η3μ1)+ η4μ1 − η1μ4
, ς2 = 2(η4μ3 − η3μ4)

2(η1μ3 − η3μ1)+ η4μ1 − η1μ4
.

This field separates the regular orbits.

6.4.3 Flows on a Sphere

Consider Navier–Stokes system (6.4) on a two-dimensional unit sphere M = S2

with the metric g = sin2 y dx2 + dy2 in the spherical coordinates.
The velocity field of the flow has the form u = u(t, x, y) ∂x + v(t, x, y) ∂y , the

pressure p, the density ρ, the temperature T , and the entropy s are the functions of
time and space with the coordinates (t, x, y).

Here we consider the flow without any external force field, so g = 0.

6.4.3.1 Symmetry Lie Algebra

To describe the Lie algebra of symmetries of the Navier–Stokes system we consider
the Lie algebra g generated by the following vector fields on the manifold J 0π :
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X1 = ∂t , X2 = ∂x,

X3 = cos x

tan y
∂x + sin x ∂y −

(
sin x

tan y
u+ cos x

sin2 y
v

)
∂u + u cos x ∂v,

X4 = sin x

tan y
∂x − cos x ∂y +

(
cos x

tan y
u− sin x

sin2 y
v

)
∂u + u sin x ∂v,

X5 = ∂s, X6 = ∂p,

X7 = t ∂t − u ∂u − v ∂v − p ∂p + ρ ∂ρ − 2T ∂T ,

and denote by h the Lie algebra generated by the vector fields

Y1 = ∂s, Y2 = ∂p, Y3 = p ∂p − ρ ∂ρ + 2T ∂T .

Transformations corresponding to elements of the algebra gm = 〈X1, X2, X3, X4〉
(the pure geometric part) are generated by sphere motions and time shifts:
gm = so(3,R)⊕ R.

For describing the pure thermodynamic part we consider the Lie subalgebra ht
of algebra h that preserves the thermodynamic state (6.1).

Theorem 6.37 ([15]) The Lie algebra gsym of point symmetries of the Navier–
Stokes system of differential equations on a sphere coincides with

ϑ−1(ht).

6.4.3.2 Symmetry Classification of States

Here we consider the thermodynamic states or Lagrangian surfaces L̃ (compare with
the plane case) with a one-dimensional symmetry algebra ht ⊂ h .

Cases when the thermodynamic states admit two or three-dimensional symmetry
algebra are not interesting or have no physical meaning.

Let dim ht = 1 and let Z =
3∑

i=1
λiYi be a basis vector in this algebra.

Then the thermodynamic state or the surface L̃ is the solution of the PDE system

⎧
⎪⎨

⎪⎩

λ3ρ ερρ − λ1ερs + 3λ3ερ + λ2

ρ2 = 0,

λ1εss − λ3ρ ερs − 2λ3 εs = 0,

that is formally integrable and compatible.
Solving this system for general parameters λ (some special cases can be found

in [15]) we find expressions for the pressure and the temperature. Adding the
admissibility conditions for this case we get the following result.
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Theorem 6.38 The thermodynamic states admitting a one-dimensional symmetry
algebra have the form

p = 1

ρ

(
λ1

λ3
F ′ − 2F

)
− λ2

λ3
, T = F ′

ρ2
, F = F

(
s + λ1

λ3
ln ρ

)
,

where F is an arbitrary function and

F ′ > 0,

(
λ1

λ3

)2

F ′′ − 3
λ1

λ3
F ′ + 2F > 0, F ′′

(
λ1

λ3
F ′ + 2F

)
− 4(F ′)2 > 0.

6.4.3.3 Differential Invariants

The Field of Kinematic Invariants

First of all, the pressure ρ, the entropy s, and g(u,u) (as well as p and T ) generate
all gm-invariants of order zero.

Consider two vector fields u and ũ such that g(u, ũ) = 0 and g(u,u) = g(ũ, ũ).
Writing the acceleration vector with respect to the vectors u and ũ we obtain two
invariants of the first order. Further writing the operator d∇u with respect to these
vectors as the sum of its symmetric and antisymmetric parts we obtain another four
invariants of the first order. Thus we get six invariants:

J1 = (uvt − vut ) sin y, J2 = uut sin2 y + vvt ,

J3 = ux + vy + v cot y, J4 = uy sin y − vx

sin y
+ 2u cos y,

J5 = (u(uxv − vxu)+ v(uyv − vyu)) sin y + u cos y(u2 sin2 y + 2v2),

J6 = v(uxv − vxu)− u(uyv − vyu) sin2 y + v3 cot y.
(6.18)

The proofs of the following theorems can be found in [15].

Theorem 6.39 ([15]) The following derivations

∇1 = d

dt
, ∇2 = ρx

sin2 y

d

dx
+ ρy

d

dy
, ∇3 = sx

sin2 y

d

dx
+ sy

d

dy

are gm-invariant. They are linearly independent if

ρxsy − ρysx �= 0.

Theorem 6.40 ([15]) The field of the first order kinematic invariants is generated
by the invariants ρ, s, g(u,u), (6.18) and
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∇1ρ, ∇1s, ∇2ρ, ∇2s, ∇3s. (6.19)

These invariants separate regular gm-orbits.

The bundle π2,1 : E2 → E1 has rank 18, and by applying derivations ∇1,∇2,∇3
to the kinematic invariants (6.18) and (6.19) we get 33 kinematic invariants.
Straightforward computations show that among these invariants 18 are independent
(see https://d-omega.org).

Therefore, starting with the order k = 1 dimensions of regular orbits are equal to
dim gm = 4.

Moreover, the number of independent invariants of pure order k (the Hilbert
function) is equal H(k) = 7k + 4 for k � 1, and H(0) = 3.

The corresponding Poincaré function is

P(z) = 3+ 5z− z2

(1− z)2 .

Theorem 6.41 ([15]) The field of the kinematic invariants is generated by the
invariants ρ, s, g(u,u) of order zero, by the invariants (6.18) and (6.19) of order
one, and by the invariant derivations ∇1,∇2,∇3. This field separates regular orbits.

The Field of Navier–Stokes Invariants

Now, we find differential invariants of the Navier–Stokes system in the case when
the thermodynamic state L̃ admits a one-dimensional symmetry algebra generated
by the vector field

A = ξ1X5 + ξ2X6 + ξ3X7.

Theorem 6.42 ([15]) The field of the Navier–Stokes differential invariants for
thermodynamic states admitting a one-dimensional symmetry algebra is generated
by the differential invariants

s − ξ1

ξ3
ln ρ, ρ2g(u,u), ρ3J1, ρ3J2, ρJ3, ρJ4,

ρ3J5, ρ3J6, ∇1ρ, ρ∇1s,
∇2ρ

ρ2 ,
∇2s

ρ
, ∇3s

of the first order and by the invariant derivations

ρ∇1, ρ−1∇2, ∇3.

This field separates regular orbits.

https://d-omega.org
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This theorem is valid for general ξ ’s. For special cases see [15].

6.4.4 Flows on a Spherical Layer

Consider the Navier–Stokes system (6.14) on a spherical layer M = S2 × R with
the coordinates (x, y, z) and the metric

g = 4

(x2 + y2 + 1)2
(dx2 + dy2)+ dz2.

The velocity field of the flow has the form u = u(t, x, y, z) ∂x+v(t, x, y, z) ∂y+
w(t, x, y, z) ∂z, the pressure p, the density ρ, the temperature T , and the entropy s

are the functions of time and space with the coordinates (t, x, y, z).
The vector of gravitational acceleration is of the form g = g ∂z.

6.4.4.1 Symmetry Lie Algebra

Consider the Lie algebra g generated by the following vector fields on the manifold
J 0π :

X1 = ∂t , X2 = ∂z, X3 = t ∂z + ∂w,

X4 = y ∂x − x ∂y + v ∂u − u ∂v,

X5 = xy ∂x − 1

2
(x2 − y2 − 1)∂y + (xv + yu) ∂u − (xu− yv)∂v,

X6 = 1

2
(x2 − y2 + 1)∂x + xy ∂y + (xu− yv)∂u + (xv + yu)∂v,

X7 = ∂s, X8 = ∂p,

X9 = t ∂t + gt2 ∂z − u ∂u − v ∂v + (2gt − w)∂w − p ∂p + ρ ∂ρ − 2T ∂T ,

and denote by h the Lie algebra generated by the vector fields

Y1 = ∂s, Y2 = ∂p, Y3 = p ∂p − ρ ∂ρ + 2T ∂T .

Transformations corresponding to the elements of the algebra gm =
〈X1, . . . , X6〉 (the pure geometric part) are compositions of sphere motions,
Galilean transformations along the z direction, and time shifts.

Let also ht be the Lie subalgebra of algebra h that preserves the thermodynamic
state (6.1).
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Theorem 6.43 ([16]) The Lie algebra gsym of point symmetries of the Navier–
Stokes system of differential equations on a spherical layer coincides with

ϑ−1(ht).

6.4.4.2 Symmetry Classification of States

The Lie algebra generated by the vector fields Y1, Y2, Y3 coincides with the Lie
algebra of thermodynamic symmetries of the Navier–Stokes system on a sphere.

Thus the classification of thermodynamic states or Lagrangian surfaces L̃

depending on the dimension of the symmetry algebra ht ⊂ h is the same as the
classification presented in the previous section.

6.4.4.3 Differential Invariants

The Field of Kinematic Invariants

First of all, the following functions ρ, s, g(u,u)−w2 (as well as p and T ) generate
all gm-invariants of order zero.

The proofs of the following theorems can be found in [16].

Theorem 6.44 ([16]) The following derivations

∇1 = d

dz
, ∇2 = d

dt
+ w

d

dz
, ∇3 = u

d

dx
+ v

d

dy
, ∇4 = v

d

dx
− u

d

dy

are gm-invariant. They are linearly independent if

u2 + v2 �= 0.

Theorem 6.45 ([16]) The field of the first order kinematic invariants is generated
by the invariants ρ, s, g(u,u)− w2 of order zero and by the invariants

∇iρ, ∇i s, ∇i (g(u,u)− w2), ∇iw,

J1 = uzwx + vzwy, J2 = (ux − vy)
2 + (uy + vx)

2, J3 = utvz − uzvt

(x2 + y2 + 1)2

(6.20)

of order one, where i = 1, . . . , 4. These invariants separate regular gm-orbits.

The bundle π2,1 : E2 → E1 has rank 42, and by applying derivations ∇i ,
i = 1, . . . , 4 to the kinematic invariants (6.20) we get 88 kinematic invariants.
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Straightforward computations show that among these invariants 42 are independent
(see https://d-omega.org).

Therefore, starting with the order k = 1 dimensions of regular orbits are equal to
dim gm = 6.

The number of independent invariants of pure order k (the Hilbert function) is
equal to

H(k) = 5+ 19

2
k + 9

2
k2

for k � 1, and H(0) = 3.
The corresponding Poincaré function has the form

P(z) = 3+ 10z− 6z2 + 2z3

(1− z)3 .

Theorem 6.46 ([16]) The field of the kinematic invariants is generated by the
invariants ρ, s, g(u,u)−w2 of order zero, by the invariants (6.20) of order one and
by the invariant derivations ∇i , i = 1, . . . , 4. This field separates regular orbits.

6.4.5 The Field of Navier–Stokes Invariants

Consider the case when the thermodynamic state L̃ admits a one-dimensional
symmetry algebra generated by the vector field

A = ξ1X7 + ξ2X8 + ξ3X9.

We do not consider cases of a two- or three-dimensional symmetry algebra
because they are not interesting from the physical point of view.

For general ξ ’s we have the following theorem. For the case ξ3 = 0 we have
basic invariants ρ, g(u,u)− w2, (6.20) and invariant derivatives ∇i , i = 1, . . . , 4.

Theorem 6.47 ([16]) The field of the Navier–Stokes differential invariants for
thermodynamic states admitting a one-dimensional symmetry algebra is generated
by the differential invariants

s − ξ1

ξ3
ln ρ, ρ2(g(u,u)− w2),

∇1ρ

ρ
, ∇j ρ, ∇1s, ρ∇j s,

ρ2∇1(g(u,u)− w2), ρ3∇j (g(u,u)− w2),

ρ∇1w, ρ2(∇2w − g), ρ2∇3w, ρ2∇4w,

ρ2J1, ρ2J2, ρ3J3

https://d-omega.org
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of the first order, here j = 2, 3, 4, and by the invariant derivations

∇1, ρ∇2, ρ∇3, ρ∇4.

This field separates regular orbits.
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