
Külli Kori
Mart Laanpere (Eds.)

LN
CS

 1
25

18

13th International Conference, ISSEP 2020
Tallinn, Estonia, November 16–18, 2020
Proceedings

Informatics in Schools
Engaging Learners in Computational Thinking

Lecture Notes in Computer Science 12518

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Külli Kori • Mart Laanpere (Eds.)

Informatics in Schools
Engaging Learners in Computational Thinking

13th International Conference, ISSEP 2020
Tallinn, Estonia, November 16–18, 2020
Proceedings

123

Editors
Külli Kori
Tallinn University
Tallinn, Estonia

Mart Laanpere
Tallinn University
Tallinn, Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-63211-3 ISBN 978-3-030-63212-0 (eBook)
https://doi.org/10.1007/978-3-030-63212-0

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-9853-9965
https://doi.org/10.1007/978-3-030-63212-0

Preface

This volume contains papers presented at the 13th International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP 2020). The
conference was held at Tallinn University, Estonia, during November 16–18, 2020.
Due to COVID-19 related traveling restrictions for the majority of participants, the
conference had to be switched to a partly online format.

ISSEP is a forum for researchers and practitioners in the area of informatics edu-
cation, in both primary and secondary schools. The conference provides an opportunity
for educators and researchers to reflect upon the goals and objectives of this subject
matter, its curricula, various teaching and learning paradigms and topics, as well as the
connections to everyday life, including the various ways of developing informatics
education in schools.

This conference also focuses on teaching/learning materials, various forms of
assessment, traditional and innovative educational research designs, the contribution of
informatics to the preparation of individuals for the 21st century, motivating compe-
titions, and projects and activities supporting informatics education in schools.
The ISSEP series started in 2005 in Klagenfurt, Austria, with subsequent meetings held
in Vilnius, Lithuania (2006), Torun, Poland (2008), Zurich, Switzerland (2010),
Bratislava, Slovakia (2011), Oldenburg, Germany (2013), Istanbul, Turkey (2014),
Ljubljana, Slovenia (2015), Münster, Germany (2016), Helsinki, Finland (2017),
St. Petersburg, Russia (2018), and Larnaca, Cyprus (2019). The 13th ISSEP conference
was hosted by Tallinn University in Estonia.

The conference received 53 submissions. Each submission was reviewed by up to
four Program Committee members who evaluated the quality, originality, and rele-
vance to the conference of all the submissions. Overall, the Program Committee wrote
132 reviews. The committee selected 18 papers for inclusion in the LNCS proceedings,
leading to an acceptance rate of 34%. The decision process was made electronically
using the EasyChair conference management system.

The previous ISSEP conferences attracted contributions in various topics ranging
from informatics teacher education to methods of teaching informatics. While these
topics were also present in ISSEP 2020, this time the main focus was on informatics
competitions and computational thinking.

We would like to thank all the authors who responded to the call for papers and all
the members of the Program Committee.

October 2020 Külli Kori
Mart Laanpere

Organization

General Chair

Mart Laanpere Tallinn University, Estonia

Program Chair

Külli Kori Tallinn University, Estonia

Local Organizers

Maia Lust Tallinn University, Estonia
Katrin Kuus Tallinn University, Estonia

Steering Committee

Erik Barendsen Radboud University and Open University,
The Netherlands

Andreas Bollin University of Klagenfurt, Austria
Valentina Dagiene Vilnius University, Lithuania
Yasemin Gulbahar Ankara University, Turkey
Juraj Hromkovič ETH Zurich, Switzerland
Ivan Kalas Comenius University, Slovakia
Sergei Pozdniakov Saint Petersburg Electrotechnical University, Russia

Program Committee

Mikko Apiola University of Helsinki, Finland
Erik Barendsen Radboud University and Open University,

The Netherlands
Andrej Brodnik University of Ljubljana, Slovenia
Špela Cerar University of Ljubljana, Slovenia
Valentina Dagiene Vilnius University, Lithuania
Christian Datzko Wirtschaftsgymnasium und Wirtschaftsmittelschule

Basel, Switzerland
Vladimiras Dolgopolovas VU MIF, Lithuania
Gerald Futschek Vienna University of Technology, Austria
Juraj Hromkovič ETH Zurich, Switzerland
Mile Jovanov Ss. Cyril and Methodius University, North Macedonia
Kaido Kikkas Tallinn University of Technology, Estonia
Kati Mäkitalo University of Oulu, Finland
Dennis Komm ETH Zurich, Switzerland

Külli Kori Tallinn University, Estonia
Marge Kusmin Tallinn University, Estonia
Mart Laanpere Tallinn University, Estonia
Peter Larsson University of Turku, Finland
Marina Lepp University of Tartu, Estonia
Inggriani Liem Sekolah Teknik Elektro dan Informatika, Indonesia
Michael Lodi University of Bologna, Italy, and Inria, France
Birgy Lorenz Tallinn University of Technology, Estonia
Piret Luik University of Tartu, Estonia
Maia Lust Tallinn University, Estonia
Mattia Monga Università degli Studi di Milano, Italy
Tauno Palts University of Tartu, Estonia
Arnold Pears KTH Royal Institute of Technology, Sweden
Hans Põldoja Tallinn University, Estonia
Sergei Pozdniakov Saint Petersburg Electrotechnical University, Russia
Andrus Rinde Tallinn University, Estonia
Ralf Romeike Freie Universität Berlin, Germany
Joze Rugelj University of Ljubljana, Slovenia
Giovanni Serafini ETH Zurich, Switzerland
Tomas Šiaulys Vilnius University, Lithuania
Gabrielė Stupurienė Vilnius University, Lithuania
Reelika Suviste University of Tartu, Estonia
Maciej M. Syslo UMK Torun, Poland
Michael Weigend Universität Münster, Germany

viii Organization

Contents

Tasks for Informatics Competitions

Difficulty of Bebras Tasks for Lower Secondary Blind Students 3
L’udmila Jašková and Natália Kostová

Bebras Based Activities for Computer Science Education: Review
and Perspectives . 15

Sébastien Combéfis and Gabrielė Stupurienė

Assessing the Agreement in the Bebras Tasks Categorisation 30
Žan Ternik, Ljupčo Todorovski, and Irena Nančovska Šerbec

A Two-Dimensional Classification Model for the Bebras Tasks
on Informatics Based Simultaneously on Subfields and Competencies 42

Valentina Dagiene, Juraj Hromkovic, and Regula Lacher

Participants’ Perception of Tasks in an Informatics Contest 55
Jiří Vaníček and Václav Šimandl

Engagement and Gender Issues in School Informatics

Upper- and Lower-Secondary Students’ Motivation to Study
Computer Science . 69

Külli Kori and Piret Luik

Tips and Tricks for Changing the Way Young People Conceive
Computer Science . 79

Cécile Lombart, Anne Smal, and Julie Henry

Engagement Taxonomy for Introductory Programming Tools:
Failing to Tackle the Problems of Comprehension. 94

Tomas Šiaulys

Ready for Computing Science? A Closer Look at Personality, Interests
and Self-concept of Girls and Boys at Secondary Level 107

Andreas Bollin, Max Kesselbacher, and Corinna Mößlacher

Factors Influencing Lower Secondary School Pupils’ Success
in Programming Projects in Scratch . 119

Miroslava Černochová, Hasan Selcuk, and Ondřej Černý

Informatics Teacher Education

Design- and Evaluation-Concept for Teaching and Learning Laboratories
in Informatics Teacher Education . 133

Bernhard Standl, Anette Bentz, Mattias Ulbrich, Annika Vielsack,
and Ingo Wagner

A Case of Teaching Practice Founded on a Theoretical Model 146
Sylvia da Rosa, Marcos Viera, and Juan García-Garland

In-Service Teacher Training and Self-efficacy . 158
Jørgen Thorsnes, Majid Rouhani, and Monica Divitini

Computational Thinking in Small Packages . 170
Dennis Komm, Ulrich Hauser, Bernhard Matter, Jacqueline Staub,
and Nicole Trachsler

Curriculum and Pedagogical Issues

Identification of Dependencies Between Learning Outcomes in Computing
Science Curricula for Primary and Secondary Education – On the Way
to Personalized Learning Paths . 185

Yelyzaveta Chystopolova, Stefan Pasterk, Andreas Bollin,
and Max Kesselbacher

Computing in Pre-primary Education . 197
Daniela Bezáková, Andrea Hrušecká, and Roman Hrušecký

ePortfolio Introduction: Designing a Support Process 209
Hege Annette Olstad

Student-Centered Graduate STEM Education Integrated by Computing:
An Insight into the Experiences and Expectations of Doctoral Students 221

Vladimiras Dolgopolovas, Valentina Dagienė, and Tatjana Jevsikova

Author Index . 233

x Contents

Tasks for Informatics Competitions

Difficulty of Bebras Tasks for Lower Secondary
Blind Students

L’udmila Jašková(B) and Natália Kostová

Comenius University, Bratislava, Slovakia
jaskova@fmph.uniba.sk, kostova17@uniba.sk

Abstract. A special category for blind lower secondary students has been in the
Bebras challenge since 2013. During its existence we have adapted 63 tasks for
blind students. But in many cases their difficulty was not correctly determined.
We have analysed the influence of various factors on the real difficulty of tasks.
We have discovered a significant influence of affiliation to the thematic area. It is
also important what cognitive operations the competitor must perform to solve the
task. We also observed a lower success rate of younger blind students. It has not
been confirmed that the length of the assignment would have a significant effect
on the difficulty.

Keywords: Contest · Difficulty · Blind · Tasks · Factors

1 Introduction

The main goal of the Bebras challenge is to motivate students to be interested in infor-
matics topics and to promote thinking that is algorithmic, logical, operational, and based
on informatics fundamentals [1]. The idea is to encourage children to learn informatics
concepts, and to support development of computational thinking [2]. Carey [3] claims,
that tests and quizzes are an effective way of learning if students in a relatively short
time get feedback and have opportunity to learn the right solutions. The Bebras contest
fulfils this condition. Contestants know their score immediately and sample solutions
with explanations are ready in few weeks. The archive of tasks from previous years also
contributes to effective preparation of participants.

The competition is not only a tool for learning, but it is also a tool for researching and
evaluating students’ competencies, as it allows data from large number of respondents
be obtained.

In keeping with the UN Convention on the Rights of Persons with Disabilities [4],
learning is a basic right of every individual. It is therefore important to enable blind
pupils to participate in the Bebras contest as well. Suggested adaptations of rules and
tasks for blind students were presented in several surveys [5, 6]. These adaptations we
will describe in the following section.

In Sect. 3, we provide an overview of several studies aimed at analysing the difficulty
ofBebras tasks for able-bodied students. Our research focused on the influence of various
factors on the difficulty of tasks is described in Sects. 4 and 5. In the last section we
compare our findings with the findings of other authors and present the conclusions.

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-63212-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_1

4 L’. Jašková and N. Kostová

2 Bebras Contest for Blind

Blind studentswork with computer using a screen reader and the only information they
can work with is text and sound. They cannot use a mouse to control the computer, but
they enter input only using the keyboard. As regards the Bebras contest for mainstream
students, they cannot participate at all, despite of the fact that they achieve comparable
results with intact students in computer science classes. Bebras tasks contain elements
inaccessible to the blind, such as images, colours, interactive features, and so on. To
enable blind students to enter the competition, it was necessary to make some changes
of rules [7]. We created a separate category for lower secondary blind students (aged
11 to 15) and another one for upper secondary blind students (aged 15 to 18). As a
rule, able-bodied students of the same age can solve 15 tasks (5 easy, 5 medium and
5 hard) within 45 min. An average time for solving one task is 3 min. When testing
blind students, the time is usually increased according to their individual needs. RNIB
[8] suggests increasing the time by 25% to 100%. According to the recommendations of
RNIB, the time should be extended by 50%. Since a standard school lesson lasts 45 min,
we decided to set this as a limit for solving 9 tasks (3 easy, 3 medium and 3 hard). An
average time for solving one task is 5 min. This means that blind students were given
60% more time than the able-bodied students.

Further we will focus only on the category of lower secondary blind students. The
competition for them was held for the first time in 2013. The tasks were presented in a
text document on the computer because lower secondary students were able to use a text
editor smoothly. This could not be said about their experience with a web browser. Since
2017, the tasks have been presented in a web browser, as students who have learned to
use a web browser at primary level have reached lower secondary level. But they could
also use a text editor to write notes and process steps to solve tasks. In addition, they
could use a pencil and foil to draw relief pictures and a relief table (see Fig. 1).

Fig. 1. Foil with relief image, drawn by blind student solving the task and relief table.

Tasks for these participants [9] were obtained by slight adapting the tasks originally
intended for able-bodied students of the same age (Benjamin and Cadet category [10]).
When modifying tasks, we tried to keep the essence of the tasks and make only the
necessary adjustments. Some tasks could be used without any modification. But most
tasks required minor or larger modifications of the following character.

• Replace images containing relevant information by text.

Difficulty of Bebras Tasks for Lower Secondary Blind Students 5

• Avoid colour references.
• Use tables with correct linear order or replace them with lists or text.
• Do not use interactive tasks that can be solved using the mouse only.
• Use shorter sequences of objects or elements because blind participants must
remember the sequence.

• Change the level of difficulty if the students must remember a lot of information in
the solution.

3 Related Work

As mentioned in the previous section, students solve tasks with different levels of diffi-
culty - easy, medium, and hard. Tasks with different levels of difficulty are evaluatedwith
different scores. It is therefore important that the authors of the tasks correctly estimate
their difficulty. Many studies on the difficulty of the tasks for able-bodied students were
carried out during the existence of the Bebras challenge. We will mention some of them
in this section.

Degiene an Futschek [1] presented the list of criteria for good tasks. These are
general criteria that are used by the International Bebras Organizing Committee. In
terms of difficulty, it is required, that the tasks are adequate for the age of contestants.
Authors emphasize that the tasks should be interesting and provoke some excitement.
In some cases, a suitable story may make a presentation of a task much easier so that
also younger participants may solve the problem.

Lonati and her colleagues [11] observed how a few changes in some computational
thinking tasks proposed during the Bebras challenge 2016 affected the solvers’ perfor-
mance. A clear indication from their study warns about the use of examples and figures
that must be chosen and designed with much care, since their effect can be distracting
or distortionary instead of useful for understanding and addressing the question.

Five authors from five universities [2] collected and analysed performance data on
Bebras tasks from 115 400 students in grades 3–12 in seven countries. Their study
provides further insight into a range of questions addressed in smaller-scale inquiries
about the possible impact of school’s systems and gender on students’ success rate. They
realized that to estimate the difficulty of new tasks is an open issue. It is necessary to better
understand and characterize the range of algorithmic strategies used in the challenge,
and the factors that caused large task performance variations among countries. Authors
claim that the computational thinking conceptual content does not seem to play a major
role in assessing how difficult a task is.

Van der Wegt with his colleagues have analysed the real difficulty of the tasks in
the Dutch Bebras challenge and published the results in several studies [12–14]. They
used several tools to predict the difficulty level of tasks. Specifically, they mentioned two
questionnaires, a rubric and a procedure. They also tried to analyse the ratio between
content difficulty, stimulus difficulty and task difficulty. They concluded that content
difficulty is the most unclear item in predicting difficulty. They further claim that more
research is needed on the use of taxonomies, especially for questions that do not use
any previous knowledge, or other systematic approaches to identify content difficulty.
Another tool was the Dutch contest system Cuttle that has a new module for analysis.

6 L’. Jašková and N. Kostová

Using quantitative methods, they were able to confirm a relation between answer types
and difficulty and a tendency that tasks on data, data structures and representation are
better answered than tasks on algorithms and programming.

Vaníček [15, 16] writes about factors, which demonstrably increase the difficulty of
tasks for students. According to him, presence of formalised description, structuring,
optimization and demands of assignment reading comprehension are substantial factors
making a task more difficult. On the other hand, length of the text, use of technical ter-
minology, algorithms, diagrams, negative questions did not prove to affect the difficulty
of tasks.

Močarníková [17] found that the algorithmic tasks were most challenging. On the
contrary, the tasks about principles of ICT and information society proved to be the
simplest for students.

Tomcsányi [18] found that it is difficult for students to solve tasks that use a com-
mand sequence in an unconventional, fictional “programming language”. Tasks related
to everyday life and tasks in which students ought to find out the original information
based on an encryption key proved to be the simplest.

Tomcsányi and Tomcsányiová [19] emphasize that students should read the assign-
ment with understanding and be careful not to make mistakes when solving tasks.

Gujberová [20] found that the difficulty of the task can be influenced by several
factors and even a small change in the assignment can affect the difficulty of the task
[21]. She concluded that the form of the answer is also an important factor. It is more
difficult for younger students to enter a specific answer without a choice or without an
interactive tool than to enter one of four answers. She also examined the impact of the
use of the image in the assignment, based on an analysis carried out by Tomcsányiová
and Kabátová [22]. In addition, she examined the effect of text length on a task difficulty.
However, she did not find any significant connection.

All the studies mentioned above are a valuable inspiration for us in finding factors
influencing the difficulty of tasks for the blind.

4 Research Design

During the seven years ofmonitoring the results of blind students in theBebras challenge,
we observed that the real difficulty of the tasks was different as expected. On average
more than 50% of the tasks (see Fig. 2, green dotted line) had a different difficulty than
expected. We can also notice that the number of tasks that had a lower real difficulty
than expected slightly increased (blue dotted line). On the contrary, the number of tasks
that had a higher real difficulty than expected slightly decreased (red dotted line).

In order, to better estimate the difficulty of the tasks in the future, we decided to
observe the influence of some factors on the difficulty of the tasks [23]. We were looking
for answers to the following research questions.

Q1: What is the relationship between the length of the assignment and difficulty of the
task?
Q2: What is the relationship between task’s affiliation to the thematic area and the
difficulty of the task?

Difficulty of Bebras Tasks for Lower Secondary Blind Students 7

0

2

4

6

8

2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f t
as

ks

Real difficulty: Easier Real difficulty: Harder Real difficulty: Different

Fig. 2. Graph illustrating the number of tasks with different real difficulty as expected. (Color
figure online)

Q3: What is the relationship between the required skills and difficulty of the task?
Q4: What is the relationship between the age of students and the difficulty of the tasks?

We used a case study research strategy. The 63 tasks used in the competition for the
blind were observed cases. For each task, we found its real difficulty Q as a percentage
of incorrect answers and all responses [18, 24]. Tasks with a Q value less than 30 were
easy, tasks with difficulty of 30 to 70 were medium and tasks with difficulty over 70
were hard.

We observed the success rate of blind students of one school. In selected school we
had the opportunity to directly observe the students while they were solving the tasks
during the real Bebras challenge.We obtained valuable data in the form of field notes and
interviewswith students and computing teachers.We also knew that students in computer
science classes covered all the thematic areas according to the valid curriculum. They
also dealt with algorithms and problem solving, which is not common in all schools.
The average number of blind students who took part in the competition each year ranged
from 6 to 8 students (see Fig. 3) from fifth (age of 10 to 11) to nineth grade (age of 15
to 16).

0

5

10

2013 2014 2015 2016 2017 2018 2019N
um

be
r o

f s
tu

de
nt

s

5.-6. graders 7.-9. graders

Fig. 3. Number of blind students solving the Bebras tasks.

8 L’. Jašková and N. Kostová

5 Results

We divided all 63 tasks into three groups according to the value of Q. We obtained
26 easy tasks, 20 medium tasks and 17 hard tasks. Within each group we evaluated the
average number of words in the task assignment, the affiliation of the task to the thematic
area and skills needed to solve the task.

5.1 The Task Assignment Length

The number of words in the assignment could be a problem for blind students, as they
use a screen reader. The reader does not read all texts clearly, such as a sequence of
characters that do not form words. Students must read some passages more than once
and or character by character. Blind students also cannot use the information represented
by the image to understand the problem. We therefore considered it very important to
thoroughly examine the relationship between the length of the task and its real difficulty.

The graph on Fig. 4 illustrates the number of words of each task. We see that the
shortest task was 18 words and the longest was 130 words. Both belonged to a group of
tasks with easy real difficulty. The average length of the assignment in the group of easy
tasks was 70.8 words, in the group of medium-difficult tasks it was 65.6 words and in the
group of difficult tasks it was 82.1words. Although the trend line has a slightly increasing
tendency, it cannot be said that the length of the assignment has a significant effect
on the real difficulty of task (answer to Q1).

0

50

100

150

W
or

d
co

un
t

Easy Medium Hard

Fig. 4. Number of words in task assignments.

Based on interviews with students and teachers, we can say that students do not mind
a longer assignment if the task concerns an issue they have already encountered and if
the task is interesting for students.

5.2 The Affiliation of the Task to the Thematic Area

According to the valid curriculum in our country, informatics as a separate specialized
subject includes five main thematic areas: (1) data structures and tools - DST, (2) algo-
rithms and problem solving - APS, (3) communication via internet, (4) principles of
hardware and software, (5) social aspects of using ICT.

Difficulty of Bebras Tasks for Lower Secondary Blind Students 9

We have assigned tasks to these thematic areas. Some tasks could be assigned to two
thematic areas. As there were not many tasks from areas (3), (4) and (5), in this article
we merged them into one group called Other. The most tasks in individual years (see
Fig. 5) belonged to area (1) and (2), or both. Likewise, most of the tasks, up to 84%,
used in the competition for 7 years belonged to area (1) and (2), or both (see Fig. 6).
Each task is counted only once, either in a group for one area or for two areas.

0%
20%
40%
60%
80%

100%

2013 2014 2015 2016 2017 2018 2019

DST APS Other DST+APS DST+Other APS+Other

Fig. 5. Affiliation of tasks to thematic areas in individual years.

38%

31%

15%

11%
3%2%

DST APS DST+APS Other DST+Other APS+Other

Fig. 6. Affiliation of all tasks to the thematic area.

For each level of real difficulty of the tasks, we analysed the affiliation of the tasks
to thematic areas (see Fig. 7). We can conclude that easy tasks are mostly belonging to
the thematic area of DST. It is up to 65% of the tasks. Only 19% of tasks belong to the
APS area. Among the medium-difficult tasks, there is a higher percentage of tasks from
the thematic area of APS than in the group of easy tasks. Even the most tasks are from
this area. But the differences between the DST and APS areas are very small. Compared
to easy tasks, the percentage of tasks included in the DST thematic area is 35% lower.
The group of hard tasks is dominated by tasks from the thematic area of APS. Only 18%
of the tasks belong to the thematic area of DST. Up to 29% of the tasks fall into both
thematic areas. Tasks from other areas are not in the group of hard tasks. It is therefore
evident that belonging to a thematic area has an impact on the difficulty of the tasks
(answer to Q2).

10 L’. Jašková and N. Kostová

Fig. 7. Affiliation of tasks with different levels of difficulty to the thematic area.

5.3 Required Skills and Knowledge

Several authors (Van der Wegt, Vaníček) consider the knowledge and skills needed to
solve the task to be an important factor influencing its difficulty. It is also important
what information is given and what is the goal of the task. By analysing these assign-
ment properties, we found several groups of tasks with common characteristics for each
difficulty level.

The following knowledge and skills were required to solve easy tasks:

– knowledge of the rules for safe use of technology,
– knowledge of the use of peripheral devices,
– identifying an object that meets specific requirements,
– determining relationships in the hierarchical arrangement of objects (maximum three
levels of the hierarchy),

– finding the shortest path (between linearly arranged objects with a maximum of five
objects),

– repetition of a sequence of commands without parameters controlling the movement
of an object over a small square grid (without rotating the object in place, grid is up
to 3 × 3 fields),

– edit input text using key sequence (to fix one error),
– rearrange the elements of the input sequence as required (one exchange is required),
– create combinations of objects thatmeet the given requirements (maximumfour values
and the sum is up to fifteen).

The following knowledge and skills were required to solve medium-difficult tasks:

– determining relationships in the hierarchical arrangement of objects (more than three
levels of the hierarchy),

– text encryption if given input text and modification procedure (the modification is
backward rotation and a maximum of two modifications are required),

– arrange the elements of the linear input sequence according to the requirements (it is
necessary to determine the number of pair exchanges),

Difficulty of Bebras Tasks for Lower Secondary Blind Students 11

– create combinations of objects thatmeet the given requirements (more than four values
and the sum is greater than twenty).

The following knowledge and skills were required to solve hard tasks:

– text encryption if given input text and modification procedure (the modification is
backward rotation and the shift of letters in the alphabet),

– repetition of a sequence of commands controlling the movement of an object over a
square grid (with rotating the object in place),

– repetition of a sequence of commands with parameters controlling the movement of
an object over a square grid (grid is more than 3 × 3 fields),

– arrange the elements of the linear input sequence according to the requirements (it is
necessary to determine the number of moves to an empty space).

We can see that very similar skills are needed to solve tasks with different levels of
difficulty. We could give many examples of tasks with different difficulty and similar
skills needed to solve them. However, the scope of the article does not allow us to do it.
These examples would illustrate that not only required skills, but other factors also
have an impact on the difficulty of the tasks (answer to Q3). These are, for example,
the following factors:

– the number of objects in the sequence,
– the number of levels in the object hierarchy,
– the number of steps to solve the task,
– the size of the grid along which the programmed object moves,
– the presence of a parameter in the command,
– whether the sequence of actions needs to be performed (easier) or their number needs
to be determined (more difficult), or calculations need to be made when performing
actions (the most difficult).

5.4 Age of Students

The category for blind lower secondary students is intended for students in the 5th to 9th
grade. Age differences between students are relatively large. We therefore considered to
find out whether the age of the students has an impact on the real difficulty of the tasks.

We determined the real difficulty of the tasks separately for the group of younger
students - 5th to 6th graders and for older students - 7th to 9th graders. We found that
only 46% of tasks had the same real difficulty for both groups (see Fig. 8). Almost half of
the tasks (48%) were more difficult for younger students (in the sense that the category
of the difficulty should be changed). Only 6% of tasks were easier for younger students
(as mentioned above). It is therefore clear that the age of students has an impact on
the real difficulty of the tasks (answer to Q4).

12 L’. Jašková and N. Kostová

48%

6%

46%

More difficult Less difficult Equal

Fig. 8. Comparison of real difficulty of tasks for younger and older students.

6 Conclusions

In this article, we analysed the impact of some factors on the difficulty of Bebras tasks
for blind lower secondary students. We determined the real difficulty of all 63 tasks
used in Bebras challenge in the period 2013–2019. We divided the tasks into three
groups according to the real difficulty (easy, medium, hard) and we analysed whether
the difficulty is influenced by the length of the assignment, belonging to the thematic
area, skills needed to solve the task and the age of the participants.

We found that the difficulty is influenced by the affiliation of the task to the thematic
area. Tasks from the thematic area Data structures and tools are easier than tasks from
the thematic area of Algorithms and problem solving. This result seems to be similar as
what other authors have described about able-bodied students [14, 17].

Next we found that it is important not only what cognitive operations the competitor
must perform to solve the task, but also the number of actions required, the number of
objects in the sequence, the size of the grid when programming the movement of the
object and the like.

It was not confirmed that the length of the assignment would have a significant effect
on the difficulty of the task.

We also noticed clear difference in success rate between younger and older students.
Therefore, we think that in the future it is necessary to divide the category for Blind
lower secondary students into two separate categories, one for younger students and the
other for older students.

We are aware of the fact, that our findings cannot be generalized, as we focused only
on the results of students in one school. This was because we could observe the students
during the Bebras challenge. We were also able to obtain detailed information about the
students, as well as about their computing lessons.

The weakness of our research is the low number of monitored blind students. In
future we consider using of item response functions to measure the overall performance
of each contestant. We would also appreciate the opportunity to verify our findings with
a larger group of blind students from other schools in our country and abroad.

Difficulty of Bebras Tasks for Lower Secondary Blind Students 13

Acknowledgment. This paper was created as part of a project funded by KEGA grant (Kega
018UK-4/2019). Special thanks to the teachers and students at the school for students with visual
impairment where we conducted our research.

References

1. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In:Mittermeir, R.T., Sysło,M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 19–30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69924-8_2

2. Izu, C., et al.: Exploring Bebras tasks content and performance: a multinational study. Inform.
Educ. 16(1), 39–59 (2017). Vilnius University

3. Carey, B.: How We Learn. Random House, New York (2014)
4. UN Convention on the Rights of Persons with Disabilities. United Nations. http://www.un.

org/disabilities/documents/convention/convoptprot-e.pdf. Accessed 02 July 2020
5. Jašková, Ľ., Kováčová, N.: Bebras contest for blind pupils. In: Proceedings of the 9th Work-

shop in Primary and Secondary Computing Education, London, UK. ACM DL, New York
(2015)

6. Jašková, Ľ., Kováčová, N.: Contest for blind pupils – universal design of tasks. In: Proceedings
of the Conference Universal Learning Design, Linz, pp. 79–97. Masaryk University, Brno
(2016)

7. Allman, C.B.: Test Access. Making Tests Accessible for Students with Visual Impairments:
A Guide for Test Publishers, Test Developers, and State Assessment Personnel, 4th edn.
American Printing House for the Blind, Louisville (2009)

8. Overview of exam access arrangements. http://www.rnib.org.uk/sites/default/files/Overview_
of_exam_access_arrangements_May_2014.doc. Accessed 02 July 2020

9. Beaver contest for blind – localwebpage. http://vin.edu.fmph.uniba.sk/iBobor.html.Accessed
02 July 2020

10. Bebras contest – local webpage. http://www.ibobor.sk. Accessed 02 July 2020
11. Lonati, V., et al.: How presentation affects the difficulty of computational thinking tasks:

an IRT analysis. In: Koli Calling 2017: Proceedings of the 17th Koli Calling International
Conference on Computing Education Research, November 2017, pp. 60–69 (2016)

12. Van der Vegt, W.: Predicting the difficulty level of a Bebras task. In: Olympiads in Informat-
ics. Vilnius University, (2013). https://ioinformatics.org/journal/INFOL127.pdf. Accessed 02
July 2020

13. Van der Vegt, W.: How hard will this task be? Developments in analyzing and predicting
question difficulty in the Bebras challenge. In: Olympiads in Informatics. Vilnius University
(2018). https://ioinformatics.org/journal/v12_2018_119_132.pdf. Accessed 02 July 2020

14. Van der Vegt, W., et al.: Analysing task difficulty in a Bebras contest using cuttle. In:
Olympiads in Informatics, pp. 145–165 (2019)

15. Vaníček, J.: Bebras informatics contest: criteria for good tasks revised. In: Gülbahar, Y.,
Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09958-3_3

16. Vaníček, J.: What makes situational informatics tasks difficult? In: Brodnik, A., Tort, F. (eds.)
ISSEP 2016. LNCS, vol. 9973, pp. 90–101. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46747-4_8

17. Močarníková, K.: Difficulty of tasks in the Bebras challenge. Master theses. FMFI UK,
Bratislava (2014). (in Slovak)

18. Tomcsányi, P.: Difficulty of tasks in the informatics Bebras contest. In: DidInfo 2009.
Univerzita Mateja Bela, Banská Bystrica (2009). (in Slovak)

https://doi.org/10.1007/978-3-540-69924-8_2
http://www.un.org/disabilities/documents/convention/convoptprot-e.pdf
http://www.rnib.org.uk/sites/default/files/Overview_of_exam_access_arrangements_May_2014.doc
http://vin.edu.fmph.uniba.sk/iBobor.html
http://www.ibobor.sk
https://ioinformatics.org/journal/INFOL127.pdf
https://ioinformatics.org/journal/v12_2018_119_132.pdf
https://doi.org/10.1007/978-3-319-09958-3_3
https://doi.org/10.1007/978-3-319-46747-4_8

14 L’. Jašková and N. Kostová

19. Tomcsányiová, M., Tomcsányi, P.: Analysis of solving the Bebras tasks in the Benjamin cat-
egory in the school year 2012/13. In: DidInfo 2013. Univerzita Mateja Bela, Banská Bystrica
(2013). (in Slovak)

20. Gujberová, M.: Development of algorithmic thinking of students in primary education.
Doctoral theses. FMFI UK, Bratislava (2014). (in Slovak)

21. Gujberová, M., Kalaš, I.: Designing productive gradations of tasks in primary programming
education. In: The 8th Workshop in Primary and Secondary Computing Education (2013)

22. Tomcsányiová, M., Kabátová, M.: Categorization of pictures in tasks of the Bebras contest.
In: Diethelm, I., Mittermeir, Roland T. (eds.) ISSEP 2013. LNCS, vol. 7780, pp. 184–195.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36617-8_16

23. Kostová, N.: Difficulty of tasks in the Bebras contest for the blind. Master theses. FMFI UK,
Bratislava (2020). (in Slovak)

24. Chráska, M.: Methods of Pedagogical Research: Basics of Quantitative Research. Grada
Publishing, Prague (2008). (in Czech)

https://doi.org/10.1007/978-3-642-36617-8_16

Bebras Based Activities for Computer
Science Education: Review

and Perspectives

Sébastien Combéfis1(B) and Gabrielė Stupurienė2

1 Computer Science and IT in Education ASBL, 1348 Louvain-la-Neuve, Belgium
sebastien@combefis.be

2 Vilnius University, DMSTI, 08412 Vilnius, Lithuania
gabriele.stupuriene@mif.vu.lt

Abstract. The Bebras international challenge on informatics and com-
putational thinking (CT), targeted to pupils in primary and secondary
schools, is being run in more than 50 countries yearly. Tasks used in
this challenge are created by an international community that meets
once a year to improve them. In addition to a large amount of work
done on tasks, this community is also conducting research on different
aspects of Bebras, from the study of good task criteria to analyses of
the organisational structure of the community. This paper presents a
review of research aiming at building activities based on Bebras mate-
rial to serve computer science (CS) education. They include classroom
activities, workshops, games development, and design of tests to evalu-
ate CT skills. The paper also presents the results of a survey conducted
among the Bebras community to identify existing activities using Bebras
tasks and ideas for future ones. The results are summarised as a guide-
line with perspectives aiming at fostering teachers to spread CS and CT
related competencies to their pupils. The paper concludes by proposing
new research directions and experiments that may be led in schools.

Keywords: Computer science education · Informatics education ·
Computational thinking · Bebras challenge · Bebras based activities

1 Introduction

Bebras is an international informatics and CT challenge born in Lithuania in
2004. In 2019, it attracted about three million pupils (from primary and sec-
ondary education) from all over the world1. The challenge is based on tasks
that pupils have to solve [17]. They are created by an international community
made of Bebras enthusiasts from participating countries. They then improve and
polish the proposed tasks once a year during an international workshop [14].

In addition to a large amount of work done on tasks, Bebras community
members are also active in conducting research related to various aspects of the
1 Based on the Bebras challenge website: https://www.bebras.org/?q=countries.

c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 15–29, 2020.
https://doi.org/10.1007/978-3-030-63212-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_2&domain=pdf
https://www.bebras.org/?q=countries
https://doi.org/10.1007/978-3-030-63212-0_2

16 S. Combéfis and G. Stupurienė

Bebras challenge. During the past five years, research about the design of activ-
ities based on Bebras materials and tasks to serve computer science education is
being led. These activities include the development of classroom activities and
workshops, the creation of games, and the design of tests to evaluate CT skills.

The research presented in this paper has two goals. The first one is to review
the literature to find the existing research about activities based on Bebras
materials and tasks, built for CS education. Based on the review, the second
goal is to identify research directions for the development of relevant activities,
thanks to a survey conducted among Bebras community members.

Instead of the term “computer science”, many countries use other words
such as computing or informatics, especially in multilingual Europe. The terms
“informatics”, “computing” and “computer science” are used interchangeably in
this paper, to refer to the same subject, that is, the entire discipline.

The remainder of the paper is organised as follows. Section 2 reviews the liter-
ature on Bebras based activities design. Section 3 presents the research method-
ology. Section 4 draws up the detailed results of the survey. Section 5 discusses the
results of the presented research and gives several recommendations. Section 6
concludes the paper with further work and future perspectives.

2 Literature Review

The literature review highlighted five main categories of activities, created based
on Bebras tasks, and that are used to support CS education.

The first kind of activity is the creation of task books or textbooks to use
in classrooms with pupils. Several countries do create annual books with tasks
used in their national challenge. In addition to the task itself, they are typically
enriched with detailed explanations about the correct answer and about what
they have to do with informatics. The goal of these books is, in the end, to
provide teachers materials to delve into computer science concepts with their
pupils. No specific research has been carried out about the design of such books.

The second category is related to task creation activities. Teachers can learn
about informatics concepts in two ways: by creating tasks and by analysing and
solving them and explaining why it is informatics [10]. Therefore, creating tasks
is an interesting activity for people willing to learn informatics concepts, should
it be pupils or their teachers. One approach is to ask pupils to create Bebras-like
problems during an activity in classrooms [19]. These problems are evaluated by
teachers according to three criteria: quality, originality, and understandability.
The materials used by teachers to help their pupils creating tasks are existing
Bebras tasks and a booklet for beginners in informatics.

The third category is about the development of games based on Bebras tasks
and materials. Games provide learners with the most interactive experience and
increased motivation thanks to elements such as goals, scoreboards, competi-
tions, etc. compared to other kinds of resources [7]. They are one important kind
of resource to teach and learn CS concepts [8]. A quick search in the Google Play
Store reveals several game apps, either made of a collection of tasks to solve or

Bebras Based Activities for CS Education: Review and Perspectives 17

as standalone games built from a single Bebras task. In the literature review,
two different kinds of game-related activities have been found: tangible games
and game design process workshops.

The first kind of activity related to games is the creation of tangible ones,
such as a card game for high school students to discover algorithms and CS
concepts unplugged [9,12]. The content of the cards is inspired by Bebras tasks,
shortened to only contain the task formulation and a short explanation about
why it is informatics. They are used to start the problem-solving process leading
to the learning of new computer science concepts [11].

Another approach involving games is the development of classroom activities
where pupils are asked to imagine and design games based on Bebras tasks.
For example, an experiment asked groups of pupils to think about and design a
tangible game based on Bebras tasks they first solved and understood [3]. In this
latter experiment, the 6th-grade pupils who created the games also had to train
3rd-grade pupils to play the games they designed. This activity is an example
of situated learning whose content is built based on Bebras tasks.

The fourth category consists of tests to assess computational thinking (CT)
skills. The goal is to measure CT abilities or skills using Bebras tasks, which is
possible by analysing the answers given by pupils according to some research [1,
16]. These tests have also been shown to be complementary to others such as CTt
and Dr. Scratch [20]. Based on these observations, tests used to assess acquired
CT skills either targeted to pupils [5,6,18] or teachers [2] have been developed in
different contexts. The goal of these various researches is to assess quantitatively
whether the targeted public has acquired CT abilities.

The fifth category consists of activities developed to train pupils’ CT skills [22]
or to build pieces of training for teachers with workshops, for example [13]. The
activities from the two last categories show the close relation between Bebras tasks
and CT skills, even if it is not always clear whether some tasks do contribute to a
better understanding of CT skills or not. Bebras tasks can surely be used as part
of a larger activity meant to work on and train CT skills.

According to this literature review, there is an interest in building activities
based on Bebras tasks to serve CS education. Although research in this direction
is quite recent, five categories of developed activities have been identified. The
four main characteristics of Bebras tasks, highlighted in the literature, that make
them relevant to develop such activities are the following:

– The close relation between Bebras tasks and CT abilities make them suitable
to design activities to acquire CT skills and to measure their mastery level.

– Bebras tasks typically having visual graphics and fun stories make them suit-
able to work with younger pupils, fostering soft skills such as their imagination
and creativity and making these tasks relevant for game development.

– Both the task solving and task creation processes can be used to design activi-
ties related to CS education, either on their own or as part of larger activities,
typically as workshops or other in-classroom activities.

– Metadata associated with Bebras tasks (answer explanation, ‘It’s Informatics’
section, category and difficulty level by age groups, etc.) make them useful
for various kinds of activity that can be targeted to several age groups.

18 S. Combéfis and G. Stupurienė

Finally, Bebras tasks are also used to teach some concepts of CS-related
to other fields, such as mathematics. The literature review revealed research
highlighting the fact that Bebras tasks can be used to teach the concept of
graphs and their properties to younger pupils [4,15,21].

3 Research Methodology

This mixed-methods research uses qualitative and quantitative data collection
methods. A literature review of designed Bebras based activities is used as a
qualitative one. As a quantitative data collection instrument, a questionnaire
survey has been designed based on the results of the literature review.

A web-based questionnaire has been used and data collection was performed
from July 5 to July 18, 2020. Participants of this study consisted of 24 repre-
sentatives from different countries belonging to the Bebras community (out of
67 countries). Countries are volunteers to do any additional activity in addition
to run the annual Bebras challenge. Respondents were the only ones who vol-
unteered to take part in the survey. The questionnaire consists of 23 questions:
18 open-ended questions, two five-level Likert-scale questions, and three
multiple-choices questions. Data collected from both the literature review and
the survey have been used to provide answers to the goals addressed in this
paper.

4 Survey Results

Table 1 shows the list of participating countries, including 14 from the Euro-
pean region and ten non-European countries. They have been divided into three
groups: (I) old-timer countries, (II) experienced countries, and (III) newcomers,
depending on how long they are involved with the Bebras community.

Table 1. Period at which surveyed countries started to be involved with Bebras.

Period Countries

(I) 2004–2010 Austria, Canada, Estonia, Latvia, Lithuania, The Netherlands,
Switzerland, Ukraine

(II) 2011–2015 Australia, Belarus, Belgium, Hungary, Singapore, South Africa,
Turkey

(III) 2016–2020 Croatia, India, Indonesia, Ireland, Portugal, Serbia, Syria,
South Korea, Uzbekistan

The first set of questions of the survey is about annual brochures, with tasks
and solutions, of national Bebras challenges. These brochures are sometimes
used as the base to build textbooks. The vast majority of surveyed countries
(22 of 24) prepare such brochures. They aim to provide more details on the
Bebras challenge as a way to learn informatics and CT. As reported by the
representatives, more attention is paid to teachers, mainly to explain the correct

Bebras Based Activities for CS Education: Review and Perspectives 19

answer and the relation with CT, for them to explain it to their pupils. For
some countries, brochures are dedicated to students to help them understand
the task and the correct answer. They also are a resource for pupils that did
not get the opportunity to participate in the challenge or want to train off-
contest. To write the brochures, 71% of representatives need more information
than what can be found in the original task. Almost 42% of countries create
additional information: improvements (graphics, explanations), lesson ideas, or
other technical information (authors and contributors). Some countries also add
mappings to their schools’ curriculum or educational goals (see AppendixA).

The next set of questions is about the use of eleven identified activities from
the five main categories identified in the literature review, for different target
groups. Table 2 shows the mapping between the activities and the categories.

Table 2. List of activities organised following the five main categories.

Category Activities

1 – Textbooks A1. Textbooks for schools

2 – Task creation A8. Classroom workshops with pupils
A10. Teacher training activities for higher CT/CS skills
(in/pre-service)

3 – Games A2. Games development (for unplugged activities)
A3. Games development (for mobile/online activities)

4 – Tests A4. Tests to evaluate pupils’ CT skills
A5. Tests to evaluate teachers’ CT skills
A6. Tests to evaluate high school students CT skills

5 – CT skills training A7. Workshops for classrooms with pupils
A9. Teacher training activities to train school teachers for
higher CT/CS skills (in/pre-service)
A11. Workshops for public targets (for parents,
communities, sponsors, journalists, etc.)

Figure 1 summarises the relevance of the activities for their country and fol-
lowing their personal opinion. Data analysis reveals that the most relevant activ-
ities for countries are A7 and A9 (average score of 4.4) and the less relevant are
A5 and A11 (average 3.7). According to personal opinions, the most relevant is
A1 (average 4.1) and the less relevant is A11 (average 3.5). Figure 2 shows the
activities’ relevance grouped by countries’ experience with the Bebras commu-
nity. For old-timer countries, the most relevant is A7 (average 4.5) and the less
relevant are A3 and A11 (average 3.4). For experienced ones, the most relevant
is A10 (average 4.4) and the less relevant is A1 (average 3.6). For newcomers,
the most relevant is A9 (average 4.6) and the less relevant is A8 (average 3.7).

Grouping the results according to the five main categories results in the
following orders, starting with the most relevant one:

– CT skills training, games, task creation, textbooks, tests (for countries),
– textbooks, CT skills training, games, tests, task creation (personal opinion).

20 S. Combéfis and G. Stupurienė

Fig. 1. Relevance of activities for the country and according to the personal opinion.

Fig. 2. Relevance of activities by country experience with Bebras.

Looking at the results from the countries’ experience perspective gives the
following relevance order for the five main categories:

– CT skills training, tests, games, textbooks, task creation (newcomers),
– task creation, games, CT skills training, tests, textbooks (experienced),
– textbooks, CT skills training, task creation, games, tests (old-timer).

The next questions of the survey are specific to the five activity categories.
Respondents were asked to describe in detail the activities using Bebras tasks
that are run in their country. They were asked to give the goal, continuity (one
time or periodic), organiser (lecture, teacher, researcher, etc.), and whether the

Bebras Based Activities for CS Education: Review and Perspectives 21

activity is an extra activity out of school or scheduled at school. The results are
grouped following the five main categories and detailed in AppendixB:

Textbooks for schools based on Bebras tasks are written in 25% of coun-
tries. In South Korea, textbooks’ content is aligned with the national curriculum.
In Lithuania, Bebras-like tasks are included in textbooks for primary schools, but
not for secondary schools because their textbooks are focused on special topics.
Switzerland is a champion with 13 books, those for primary schools using the
challenges approach to introduce/train a topic. Their annual brochures serve
as a kind of textbook since they are designed to be used by pupils and their
teachers. Turkey also wrote a book targeted to higher education students.

Task creation activities can be workshops for classrooms with pupils or
teacher training activities. In Hungary, a CT course exists for university students
where they create and solve Bebras-like tasks. Also, part of a teacher training
university course is based on Bebras tasks and activities with robotics. In South
Korea, they both focus on problem-solving and making, in the teaching training
process. Lithuania started with in-service teacher workshops and is now working
on pre-service ones, in particular for task creation. Switzerland also organises
similar workshops, to prepare teachers to create Bebras tasks for their pupils.

Games for unplugged activities are developed in almost 16% of countries.
In Australia, they are a resource for learning rather than explicit games. They
created downloadable and printable cards to encourage pupils to develop CT
skills as well as teamwork, collaboration, and critical thinking. Hungary pro-
vides two types of challenges. In the shorter version, pupils have to solve four
Bebras tasks to obtain a code to open a treasure box. The longer version is a
challenge game with ten stations where different activities with physical game-
parts like board games, robots, etc. are organised. Lithuania created three dif-
ferent sets of “Bebras cards” for pupils from 7 to 13 years old, based on Bebras
tasks. Switzerland designed postcard-sized descriptions of activities and riddles
based on Bebras tasks, for primary school teachers. Ireland is preparing dynamic
instances of Bebras tasks, with difficulty level based on player’s ability and South
Korea has a plan to realise an online game.

Assessment tools to evaluate pupils’, teachers’ or high school students’
CT skills are in the beginning stage. Hungary created a test for first-year stu-
dents and a course to improve CT skills. There are also some attempts from
PhD students in Austria to do this. Turkey is also currently developing such an
assessment tool, focused on the design of a self-efficacy perception scale for CT.

CT skills training is organised in classrooms for pupils in 29% of countries.
India does this during school visits. South Korea ran an offline Bebras camp.
In Indonesia, the training is conducted by universities collaborating with the
National Bebras Organiser. In Canada, the Centre for Education in Mathematics
and Computing runs workshops in classrooms, from grades 7 to 12.

Training targeted to teachers is organised in 50% of countries. South Korea
organises teacher training sessions, introducing Bebras tasks in the pre-teacher
training course. In Lithuania, there are workshops and seminars for teachers, in
different places. They like hands-on activities when something to play and to

22 S. Combéfis and G. Stupurienė

discuss is provided. South Africa runs in-service two-hour workshops for teach-
ers, especially in non-urban/rural communities. Turkey wrote two books and
prepared online training for the Ministry of National Education. Ireland brings a
“Computational Thinking Obstacle Course” to schools where pupils solve Bebras
tasks in small groups. They then discuss their strategies and researchers explain
alternative strategies if needed. They also host workshops for primary and sec-
ondary teachers, both in- and pre-service, to learn about CT using Bebras tasks
and help them creating lesson plans. These activities take place at school if sev-
eral teachers from the same school request it, or at university. Australia organises
webinars to discuss CT skills, how relevant they are to the Australian Curricu-
lum, and how Bebras can be used in the classroom to teach and learn these skills.
Bebras unplugged and CT in Action activities, which draw on the CT skills but
in contexts outside of Bebras, are also offered. These sessions are open to pri-
mary and secondary teachers, should they be pre-service or substitute teachers.
In Switzerland, workshops were offered at the central CS teachers meetings once
or twice a year, when asked for by the meeting offerers. In the context of pilot
projects to introduce CS education in primary schools, they also organised a few
workshops for teachers to make them discover the contest and other resources
of Bebras, like the annual brochure.

The survey also revealed that task solving workshops are also organised for
public targets (parents, communities, sponsors, journalists, etc.) Ireland con-
tributes to a “pub quiz” for parents and teachers from a local school, supplying
one round of questions using Bebras tasks, once a year. South Korea also has a
future project for public targets.

The next question reveals that 54% of countries have events where Bebras-
based tasks are used. In Ireland, they have summer camps for 13–18 years old,
the “DojoMor” computer science event (Scratch, Raspberry Pi, Web, audio and
video tutorials), and the “Science Week”, a science and engineering showcase
for the public. In Austria, Bebras tasks are used during the “Abenteuer Infor-
matik Workshops” at TU Wien or Teacher Days. Some year, Belgium organises
a second round of the Bebras challenge which takes place during a “Computer
Science Day” where other activities are organised for the pupils (a CS Escape
Game, unplugged activities workshops, conferences, robot programming activi-
ties, etc.). South Korea organises government-led online software coding parties,
offline software festivals, and more. Participants solve tasks online and receive
certificates, or participate in offline camps to collaborate and solve tasks. Lithua-
nia has had a summer campus together with Kangaroo for many years, it means
mathematics and informatics together. Bebras tasks are also used in national
education exhibitions and for kids’ TV shows (as part of a quiz). In Portugal,
“TreeTree2” organises a Summer Academy for young and gifted students, where
Bebras is part of their CS introduction. In South Africa, Bebras is introduced
as part of the “Programming and Application Olympiad” workshops. Switzer-
land uses Bebras tasks in central CS teachers meetings and “Schweizer Tag für
Informatik Unterricht”, an annual half-day teacher training. Syria uses them in
training sessions for the kids and adolescents’ programming marathon.

Bebras Based Activities for CS Education: Review and Perspectives 23

Bebras based activities are not limited to CS and CT. Syria uses them for
mathematics activities. Bebras unplugged in Australia is mostly marketed to
Digital Technology/STEM teachers, but with an emphasis on Critical Thinking,
which can be integrated by schools in other disciplines. They encourage teachers
from a broad range of disciplines to attend.

5 Discussions and Recommendations

Following the purpose of the study, the literature about activities serving CS
education and based on Bebras tasks has been reviewed. Five main categories of
activities have been identified. Adding the results from the survey lead to several
observations detailed below.

Textbooks for schools are created and used in 25% of the surveyed
countries. This category is also very important to representatives according to
their personal opinion about each activity. Also, this category is emphasised
by old-timer countries, otherwise than for experienced countries. In Switzerland
(involved in Bebras since 2010), there will be 20 available textbooks (for a spiral
curriculum) based on Bebras tasks. Lithuania (involved since 2004) uses Bebras-
like tasks in primary school textbooks.

Researchers and educators see Bebras tasks as a way of engagement in com-
puter science and CT. Materials based on Bebras tasks could find a place in
curriculums. But more data should be provided on curriculum issues, in the
original Bebras tasks, such as the related CT concepts or in which other dis-
ciplines/contexts they can be integrated. Also, no research on the design of
textbooks based on Bebras materials and tasks seems to exist.

Task creation activities were mainly highlighted by experienced countries
of the Bebras community. The opinion of newcomers is on the opposite, with
the lowest scores as well for the relevance for the country as for the personal
opinion. Such activities are not easy to create and organise, because participants
in workshops should first understand the principles of CS and CT. In countries,
this kind of activity is more applicable for in- and pre-service teachers to help
them acquire not only problem-solving but also problem making skills.

More methodology about how to create good Bebras tasks should be pro-
vided. Existing research about this is mainly targeted to the Bebras commu-
nity members but should be extended to reach teachers. Such a methodology
would also be useful for new countries that are interested in starting the Bebras
challenge in their country. They have indeed to provide task proposals for the
international workshop.

Games development is the second most relevant category of activities for
countries. Games are indeed a good way to motivate people to learn, especially
for younger ones. But in practice, there are very few examples of such activities
developed. Only 16% of countries are involved in games creation (such as card
games) for unplugged activities. Ireland and Hungary would find physical ver-
sions of selected Bebras tasks very engaging for young pupils, such as made of
wood/plastic/magnets and using marbles/water or board games. Also, Ireland
is preparing dynamic instances of Bebras tasks.

24 S. Combéfis and G. Stupurienė

Bebras tasks being tightly related to CT skills, games targeted at learning
these skills should be developed, should it be physical tangible ones or virtual
ones. Then, studies about the effectiveness and efficiency of these games should
be conducted. Of course, developing games takes time, so they may be designed
to be easily translated so that to reach as many people as possible.

Assessment tools are the second most relevant category for newcomer coun-
tries while other countries do not pay attention to them. This is the most sci-
entific research consuming activity. As found in the literature review, Bebras
tasks can be a complementary part of other tests to evaluate CT abilities. More
research should be done on how to design such assessment tools and how they
can be linked to curriculums. Identifying which psychometric methods could be
used to build such assessment tools would also be a promising research direction.

CT skills training activities are almost the most popular and relevant cat-
egory for all countries, especially for newcomers. Workshops for classrooms with
pupils are organised in 29% of countries and workshops for teacher training in
50% of them. Countries’ representatives highlighted two concrete activities as the
most relevant ones: workshops for pupils and teachers. This is probably because
they are easy to directly organise from Bebras tasks and because they are per-
ceived as the most effective kind of event to promote the Bebras challenge. Only
part of in- and pre-service teachers are familiar with CS and CT, which may
also explain the success of these workshops. They are very important, especially
for primary school teachers. Solving Bebras tasks helps them understand more
about CS and CT. Workshops targeted at the public were decided as least rel-
evant. Although workshops are organised in many countries, very few research
about how to design and structure them does exist. Another possible research
direction would be to study how effective they are to make pupils and teachers
learn CS and CT. This is of course related to the fourth category of activities.

Suggestions about what should be further developed were also asked in the
survey. A first element raised by South Korea is the possibility to run tracks and
sessions at academic conferences. They also think that Bebras could be linked to
the International Olympiad in Informatics and, at a local scale, with the Korean
Education Broadcasting. Singapore highlighted the fact that more online training
materials based on Bebras tasks should be made available. Explaining to students
how CT is helping them for programming would also be valuable. According to
Lithuania, it would be good to systemise Bebras tasks that teachers can use
to teach concrete topics. For example, it would be good to have a set of tasks
to introduce algorithms on graphs. Switzerland thinks about how they could
implement a database with all the necessary information in an easily usable form
for teachers and educators. Making such a database free to use may help teachers
to pick individual tasks or even to develop their own task sets. Of course, issues
may arise concerning the maintenance and upgrade of such a database system.

6 Conclusion

Results from the qualitative research revealed that there are five main cate-
gories of activities based on international Bebras challenge tasks in the scientific

Bebras Based Activities for CS Education: Review and Perspectives 25

literature (textbooks, task creation, games, assessments, task solving). Results
from the quantitative study supplement the meaning of these categories and
show that countries are developing concrete activities from them. Countries have
been grouped into three groups according to their experience with Bebras. For
old-timer countries, the most relevant activity is task-solving workshops for class-
rooms with pupils. For experienced countries, it is teacher training activities on
task creation for higher CS/CT skills. For newcomers, it is teacher training activ-
ities on task solving. The survey also put in light that the Bebras community is
very active, but there is still room for more collaboration and the production of
easily shareable and translatable materials.

This paper also shows a gap between the number of organised activities and
the percentage of them subject to objective research. This observation highlights
a big potential for research about Bebras based activities serving CS education.
Systemising Bebras tasks for wider use in CS/CT education also needs further
investigation and is one of the directions for future work.

Acknowledgment. We acknowledge all the international representatives who took
part in the survey on Bebras based activities for their active participation and collab-
oration.

A Detailed Results About Annual Brochures

The vast majority of surveyed countries regard the annual brochures as a resource
mainly targeted to teachers:

– “We develop a solutions guide each year which is aimed at teachers. It includes
how to get the correct answer as well as computational thinking explanations”
(Australia)

– “For teachers: to develop children’s logical thinking and increase their interest
in CS” (Belarus)

– “The aim is to introduce for teachers and students how informatics tasks can
look like. Also it is important for teachers especially primary school teachers
to get explanations of each task that they can discuss with students and be
sure about informatics content. Many teachers like tasks and use them to
motivate students to start some informatics topics” (Lithuania)

– “For teachers to use as classroom resources. For students for their own under-
standing” (Canada)

– “Teachers who want to reuse this as additional teaching material or explain
the past competition’s task to the student” (Switzerland)

– “After the 1st part of the challenge we offer access to all the tasks (with
answers) for teachers so they can use it to help prepare students for the final
challenge and for the next year” (Latvia).

Some countries put the accent on the pupils when building their brochures:

– “To share tasks with those who did not participate in the challenge, did not
achieve good results to pass to the 2nd round or a pupil had no opportunity
to participate in the challenge (no responsible teacher at a school)” (Estonia)

26 S. Combéfis and G. Stupurienė

– “Pupils who want to train more off-contest” (Switzerland).

Several countries need or produce additional information about tasks in order
to write their annual brochures:

– “Sometimes images for the solutions or the solutions need to be reworded to
improve the explanation for teachers” (Australia)

– “Sometimes we add more information about ‘It’s Informatics‘especially for
primary school teachers” (Lithuania)

– “We always had to hunt down information to complete the meta sections.
Authors and contributors names as well as comments were usually all over
the place and had to be searched. This includes the complete data set of the
authors and contributors: full name, email address and country” (Switzer-
land)

– “We map CT themes to those used by our program” (India)
– “Links to Ireland schools curriculum” (Ireland)
– “Educational goals related to Informatics, teaching and learning methods,

etc.” (South Korea)
– “Sometimes we give lesson ideas” (The Netherlands).

B Detailed Results About Activities Using Bebras Tasks

This appendix gives the detailed answers from respondents to the survey about
the activities they are organising in their country, for the five main categories of
activities identified from the literature review.

B.1 Textbooks for Schools

– There is in Hungary the CT course for university students where they create
and solve such tasks and also they have a part of a university course in teacher
training (based on bebras tasks and activities with robotics)

– “The national curriculum was analyzed so that informatics teachers can teach
using Bebras tasks, and textbooks were developed and published based on
this. For this, we conducted relevant educational researches” (South Korea)

– “There are some tasks similar for bebras tasks used in primary school text-
books. For secondary schools usually textbooks concentrate on special topics
and not include small tasks (as bebras tasks are)” (Lithuania)

– “A spiral curriculum of textbooks is available in Switzerland comprising cur-
rently of 13 books, further are being written, so the total will be 20 books from
Kindergarten to Maturity (University entrance). Books for primary schools -
where not related to programming - are using the approach of challenges to
introduce and/or train a topic. Also, our brochures serve as a kind of text-
book. They can be used in class and are prepared to be used by students and
teachers. In 2019/2020 we also prepared special A5 cards with a task on the
front side and the explanation and ?It?s Informatics? part on the back side.
They were received very well” (Switzerland)

Bebras Based Activities for CS Education: Review and Perspectives 27

– “We wrote a book named - from computational thinking to programming (for
higher education students and graduates)” (Turkey)

– “We applied to be part of a new series of textbooks on Informatics in our
country” (Uzbekistan).

B.2 Task Creation

– “When introducing tasks in our teacher training process, not only problem
solving but also problem making is used as an important learning activity.
This draws a lot of consent from teachers” (South Korea)

– “We did several times with in-service, it was great but it takes time. Now
we are doing with pre-service teachers (teacher students), they like to create
similar Bebras tasks” (Lithuania)

– “In the years before we had a national workshop in preparation of the submis-
sion of task proposals to the international workshop where every submitter
was invited. In the context of professional development for future high school
teachers, we organized some workshops to first make them discover the con-
test and the activities, then help them create Bebras tasks for their pupils.
Also the online environment (which is free for anybody) allows to create new
tasks and to publish them to anyone by assigning a small key, which can be
sent to those who you wish to solve the tasks.” (Switzerland).

B.3 Games

– “Bebras unplugged is a resource for learning, rather than an explicit game.
It is a series of downloadable and printable cards that encourage students to
develop CT skills as well as team work, collaboration and critical thinking.
They are free to access on our website, and we have sets developed for each
of the main age bands, except the oldest as it is least connected to the cur-
riculum. While we provide guidance and additional worksheets to use these
cards, it is up to the teachers as to how they want to implement them in a
classroom” (Australia).

– Hungary provides two types of challenges. Shorter version (Treasure hunting)
solving of 4 Bebras-tasks (handouts) - then with the code they can open a
treasure box. Longer version: challenge game with 10 stations. In each station
different activities - with physical game-parts (like board games, robots).

– “We created three different sets of “Bebras cards” for students from 7 to 13+
age. It is based on the idea of Bebras tasks. (Lithuania). “Bebras cards” are
postcard-sized descriptions of activities and riddles based on Bebras tasks.
They are meant for primary school teachers” (Switzerland).

– Ireland are preparing dynamic instances of Bebras tasks (multiple instances of
the same task generated automatically, with difficulty level based on player’s
ability). Planned as periodic (weekly activity). Not running yet (under devel-
opment) but the plan is for use at school with the teacher in charge.

– South Korea has not yet realized a game (online), but has a plan to do so.

28 S. Combéfis and G. Stupurienė

B.4 Assessment Tools

– Hungary created a test for first year students, and a course for improving CT
skills.

– Also there are some attempts from PhD students in Austria to do this.
– “We developed an assessment tool” (Turkey).

B.5 CT Skills Training

– India does this during school visits.
– South Korea ran an offline Bebras camp.
– In Indonesia the training is conducted by Bebras Biro (universities that col-

laborate with NBO).
– In Canada the Centre for Education in Mathematics and Computing runs

workshops in classrooms, from grades 7 to 12.

References

1. Araujo, A.L.S.O., Andrade, W.L., Guerrero, D.D.S., Melo, M.R.A.: How many
abilities can we measure in computational thinking? A study on Bebras challenge.
In: Proceedings of the 50th ACM Technical Symposium on Computer Science Edu-
cation (SIGCSE 2019), pp. 545–551 (2019)

2. Bavera, F., Quintero, T., Daniele, M., Buffarini, F.: Computational thinking skills
in primary teachers: evaluation using Bebras. In: Pesado, P., Arroyo, M. (eds.)
CACIC 2019. CCIS, vol. 1184, pp. 405–415. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-48325-8 26

3. Bellettini, C., Lonati, V., Monga, M., Morpurgo, A., Palazzolo, M.: Situated learn-
ing with Bebras tasklets. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2019.
LNCS, vol. 11913, pp. 225–239. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-33759-9 18

4. Budinská, L., Mayerová, K.: From Bebras tasks to lesson plans – graph data struc-
tures. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2019. LNCS, vol. 11913, pp.
256–267. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33759-9 20

5. Chen, J.-M., Wu, T.-T., Sandnes, F.E.: Exploration of computational thinking
based on Bebras performance in Webduino programming by high school students.
In: Wu, T.-T., Huang, Y.-M., Shadieva, R., Lin, L., Starčič, A.I. (eds.) ICITL 2018.
LNCS, vol. 11003, pp. 443–452. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99737-7 47

6. Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., Tosto, C.: Educational robotics
in primary school: measuring the development of computational thinking skills
with the Bebras tasks. Informatics 6(4), 43 (2019)

7. Combéfis, S., Beresnevičius, G., Dagienė, V.: Learning programming through
games and contests: overview, characterisation and discussion. Olympiads Inform.
10, 39–60 (2016)

8. Combéfis, S., de Moffarts, G., Jovanov, M.: TLCS: a digital library with resources
to teach and learn computer science. Olympiads Inform. 13, 3–20 (2019)

9. Dagienė, V., Futschek, G., Koivisto, J., Stupurienė, G.: The card game of Bebras-
like tasks for introducing informatics concepts. In: ISSEP 2017 Online Proceedings.
Helsinki, 13–15 November 2017 (2017)

https://doi.org/10.1007/978-3-030-48325-8_26
https://doi.org/10.1007/978-3-030-48325-8_26
https://doi.org/10.1007/978-3-030-33759-9_18
https://doi.org/10.1007/978-3-030-33759-9_18
https://doi.org/10.1007/978-3-030-33759-9_20
https://doi.org/10.1007/978-3-319-99737-7_47
https://doi.org/10.1007/978-3-319-99737-7_47

Bebras Based Activities for CS Education: Review and Perspectives 29

10. Dagienė, V., Futschek, G., Stupurienė, G.: Teachers’ constructionist and decon-
structionist learning by creating Bebras tasks. In: Proceedings of the 2016 Con-
structionism Conference, pp. 257–264 (2016)

11. Dagienė, V., Futschek, G., Stupurienė, G.: Creativity in solving short tasks for
learning computational thinking. Constr. Found. 14(3), 382–396 (2019)

12. Dagienė, V., Stupurienė, G.: Algorithms unplugged: a card game of the Bebras-like
tasks for high schools students. In: Poster Presented at the 10th International Con-
ference on Informatics in Schools: Situation, Evolution, and Perspectives (ISSEP
2017) (2017)

13. Dagienė, V., Vinikienė, L., Stupurienė, G.: Teaching informatics: activities-based
model. In: Poster Presented at the 9th International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives (ISSEP 2016) (2016)

14. Datzko, C.: The genesis of a Bebras task. In: Pozdniakov, S.N., Dagienė, V. (eds.)
ISSEP 2019. LNCS, vol. 11913, pp. 240–255. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-33759-9 19

15. Erdősné Németh, A.: Teaching graphs for contestants in lower-secondary-school-
age. Olympiads Inform. 11, 41–53 (2017)

16. Hubwieser, P., Mühling, A.: Investigating the psychometric structure of Bebras
contest: towards measuring computational thinking skills. In: Proceedings of the
2015 International Conference on Learning and Teaching in Computing and Engi-
neering (LaTiCe 2015), pp. 62–69. IEEE (2015)

17. Izu, C., Mirolo, C., Settle, A., Mannila, L., Stupurienė, G.: Exploring Bebras tasks
content and performance: a multinational study. Inform. Educ. 16(1), 39–59 (2017)

18. Lockwood, J., Mooney, A.: Developing a computational thinking test using Bebras
problems. In: Joint Proceedings of the 1st Co-Creation in the Design, Develop-
ment and Implementation of Technology-Enhanced Learning Workshop (CC-TEL
2018) and Systems of Assessments for Computational Thinking Learning Work-
shop (TACKLE 2018), vol. 2190 (2018)

19. Manabe, H., Tani, S., Kanemune, S., Manabe, Y.: Creating the original Bebras
tasks by high school students. Olympiads Inform. 12, 99–110 (2018)

20. Román-González, M., Moreno-León, J., Robles, G.: Complementary tools for com-
putational thinking assessment. In: Proceedings of the International Conference on
Computational Thinking Education (CTE 2017), pp. 154–159 (2017)

21. Sys�lo, M.M., Kwiatkowska, A.B.: Playing with computing at a children’s univer-
sity. In: Proceedings of the 9th Workshop in Primary and Secondary Computing
Education (WiPSCE 2014), pp. 104–107 (2014)

22. Zamzami, E.M., Tarigan, J.T., Zendrato, N., Muis, A., Yoga, A., Faisal, M.: Exer-
cising the students computational thinking ability using Bebras challenge. J. Phys.:
Conf. Ser. 1566(1), 012113 (2020)

https://doi.org/10.1007/978-3-030-33759-9_19
https://doi.org/10.1007/978-3-030-33759-9_19

Assessing the Agreement in the Bebras Tasks
Categorisation

Žan Ternik1(B) , Ljupčo Todorovski2,3 , and Irena Nančovska Šerbec4(B)

1 Gymnasium Ledina, Resljeva cesta 12, Ljubljana, Slovenia
zan.ternik@gmail.com

2 Faculty of Public Administration, University of Ljubljana, Gosarjeva 5, Ljubljana, Slovenia
3 Department of Knowledge Technologies, Jožef Stefan Institute,

Jamova 39, Ljubljana, Slovenia
4 Faculty of Education, University of Ljubljana, Kardeljeva ploščad 14, Ljubljana, Slovenia

irena.nancovska@pef.uni-lj.si

Abstract. The participants of the Bebras competitions solve tasks that involve
informatics concepts and require computational thinking (CT) skills for general
problem solving. The recent popularity of Bebras is closely related to the increas-
ing interest in development of the CT skills among the school students of all ages.
Despite the increase in interest, we still lack a consensual, unambiguous defini-
tion and/or categorization of CT skills. In this paper, we provide an empirical
evidence for the ambiguity of the current categorization of CT skills by assessing
the agreement among experts when annotating five tasks of the Slovene Bebras
competition in 2019. The empirical data include the annotations of the selected
tasks by six experts, where each of them was required to annotate a given task
with one to three categories of CT skills required to solve it. The categorization
of the CT skills used in the experiment include the five categories of the well-
known categorization Dagiené, Sentance and Stupuriene: algorithmic thinking,
decomposition, generalization, evaluation and abstract thinking. To narrow down
the broad scope of the first category of algorithmic thinking, we introduced a
new, sixth category of modelling and simulation. Despite this specialization of
the categorization scheme, the measurement of the Fleiss’ Kappa statistics on the
empirical data, shows a weak agreement among the experts, especially for the
general category of abstract thinking. This result confirms the lack of consensus
among experts about the delineation between different categories of CT skills. A
possible explanation of this results is that reaching a consensus about the defini-
tion and categorization of the CT skills within the heterogeneous group of experts
involving teachers, programmers and computer scientists, is a challenging task.
The result also calls for further effort in reaching such a consensus that would lead
to deeper understanding and better teaching of the CT skills.

Keywords: Computational thinking skills · Bebras contest · Task
categorization · Fleiss’ kappa statistics · Reliability of agreement

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 30–41, 2020.
https://doi.org/10.1007/978-3-030-63212-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_3&domain=pdf
http://orcid.org/0000-0003-4190-210X
http://orcid.org/0000-0003-0037-9260
http://orcid.org/0000-0003-0934-3125
https://doi.org/10.1007/978-3-030-63212-0_3

Assessing the Agreement in the Bebras Tasks Categorisation 31

1 Introduction

The Bebras (Beaver) competition promotes computing and computational thinking [1].
It is especially important in Slovenia and other countries, where computing is not a
compulsory subject in the primary school curricula. Bebras competitions helps teachers
of closely related subjects to present school students in various age groups with tasks
that require skills and knowledge related to computing. Due to the popularity of the
competition, they are one of the few resources that reflect the way students of different
ages think when solving computational problems. These skills are commonly referred
as computational thinking skills and are not only important for solving computational
problems but are also considered crucial “21st century” skills.

Note that thinking about the “big ideas of computer science” follows the tradition
of Seymour Papert and Marvin Minsky, established long before 2006, when the skills
of computational thinking became popular. As part of the K-12 education, Papert in the
1980s pioneered the idea that children develop algorithmic thinking through LOGO pro-
gramming [17]. Themore recent “21st century” perspective on the topic is a logical start-
ing point for our critical examination of the current interpretation of the computational
thinking skills required by the Bebras tasks [10].

Computational thinking is a set of problem-solving methods in which problems and
their solutions are expressed in a way that an information-processing agent (a com-
puter) could be deployed [21]. It includes the mental skills and practices for designing
calculations that make computers perform tasks for us as well as explaining and inter-
preting the world as a complex of information processes [9]. They include a wide range
of basic, intermediate and advanced skills that allow educators to assemble tasks of
varying difficulty targeting different age groups [19]. The Bebras challenge promotes
problem-solving skills and computer science concepts in accordance to the definition by
the International Society for Technology in Education (ISTE): the ability to break down
complex tasks into simpler components, algorithm design, pattern recognition, pattern
generalization and abstraction [1]. Note that the definition provides a categorization of
the CT skills. However, various authors define CT skills in different ways and propose
different categorization schemes [8, 15].

In this paper, we conjecture that the various definitions and categorizations of CT
skills lack clarity and unambiguity that would allow for better planning appropriate com-
petition tasks and teaching exercises. We empirically test the validity of this conjecture
by assessing the degree of agreement among experts on the set of CT skills categories
that are necessary to solve a given task. The empirical data include the annotations of
five tasks included in the Slovene Bebras competition in 2019 by six experts, i.e., aca-
demics, members of the contest Program Council and participant mentors. We required
each expert to follow a fixed, six-category scheme and annotate a given task with one
to three categories of CT skills required to solve it. In turn, we use the collected data to
calculate the Fleiss’ Kappa statistics that measure the agreement among the annotations
provided by different experts. Weak agreement among the annotations would confirm
the validity of our conjecture.

The paper is organized as follows. Section 2 provides an overview of recent categori-
sations of CT skills used for different competition categories and in different countries

32 Ž. Ternik et al.

and introduces the categorisation scheme to be used in the experiments. Section 3 intro-
duces the experimental setup, the Fleiss’ Kappa statistics for measuring the degree of
agreement among the annotators, and, finally, reports and discusses the experimental
results. Section 4 summarizes the contributions of the paper and outlines venues for
further research.

2 Theoretical Background

2.1 Development of Categorization

Categorization is an activity that consists in placing tasks into categories based on their
similarities or with regard to expected solutions. It allows us to organise tasks or analyse
the skills needed to solve them, or to reflect on the concepts behind the tasks and facilitate
their understanding. Through the history of the Bebras contest, we can find different
ways to categorize tasks. While some authors of tasks from certain countries face the
obstacle of specifying the difficulty of competition tasks or problems [20], others try to
characterize the tasks and their solutions taking into account objective and subjective
factors, e.g. national curricula and/or the age, gender and other personal characteristics
of the participants etc. [3, 5, 6]. The identification of key characteristics of the tasks
is essential for modelling and predicting the success of the participants and could also
influence the curriculum content of a particular country.

At the beginning of the competition in 2006, Opmanis, Dagienė and Truu proposed
a categorisation of the tasks: general logic, ICT in everyday life, practical and techni-
cal issues, information comprehension, algorithms and programming, mathematics un-
derlying computer science and history and trivia [16]. In 2008, Dagiene and Futschek
analysed the competition tasks and defined criteria for the selection of the tasks. They cor-
responded to the new categorisation, which was introduced by Bebras Organizing Com-
mittee: Information comprehension, INF–representation (symbolic, numerical, visual),
coding, encryption; Algorithmic thinking, ALG–including programming aspects; Using
computer systems, USE–e.g., search engines, email or spread sheets; Structures, patterns
and arrangements, STRUC–combinatorics and discrete structures (such as graphs); Puz-
zles, PUZ–logical puzzles, games (e.g., mastermind and minesweeper); SOC ICT and
Societ–social, ethical, cultural, international, legal issues [7].

Vaniček discusses indicators and their combinations that influence a contest task
difficulty [20]. He considered the following indicators: length of the text, reading com-
prehension requirements, task formulation, formulation of the answer, use of an explana-
tory picture, use of an illustrative example; topic-specific factors: area, way of solution,
situation, existence of a formal description, expertise in task assignment. He examined
which of the indicators are correlated and concluded that the comparison of different
indicators does not alwaysmatchwith other indicators and that the indicator “no answer”
describes a task difficulty very well.

Kalaš and Tomcsanyiova characterised tasks for categories Benjamins (10–12 years
old) and Cadets (12–14 years old) into four categories of informatics education: digital
literacy, programming, problem solving and data handling. They emphasized the impor-
tance of the programming category and found that the students’ interest in programming
has been confirmed and that the attractiveness of education in lower secondary education

Assessing the Agreement in the Bebras Tasks Categorisation 33

is pleasingly high. It is of crucial importance to provide support for them through various
strategies [12, 13]. Budinská, Mayerová and Veselovská proposed a new categorisation
of tasks for the Little Beaver category: digital literacy tasks, logical tasks subdivided
into graph tasks and statement tasks, algorithmic tasks and programming tasks [5]. They
compared the results of competition with respect to the competitors’ gender and country.
The qualitative analysis revealed several factors among the tasks that may have led to
very similar tasks differing in difficulty, such as: different wording of tasks, different
distractors, different accompanying graphics and different ways of formulating answers.

The researchers conducted international research on difficulties, gender differences
and CT skills reflected in Bebras problem solving. They use their own categorisation
for the tasks. They analysed performance data on Bebras tasks of 115,400 students in
grades 3–12, using categorization based on CSTA/ISTE categories: data collection DC,
data analysis DA, data representation DR, problem decomposition PD, abstraction ABS,
algorithms&proceduresALG, automationAU, parallelization PARand simulation SIM.
Algorithms and data representation dominated the challenge, and accounted for 75–
90% of the tasks, while other categories such as abstraction, parallelization and problem
decomposition were sometimes represented by one or two questions in different age
groups. Overall, they found that students from different school systems had comparable
CT skills. In particular, CT skills did not play a major role in assessing the difficulty of
a task, but they were reflected in the students’ willingness to solve tasks and understand
the core concepts of computer science [11].

Broad international qualitative research conducted prior to the research described
above, which focused on CT skills in Bebras challenge for K-9 students, also con-
firmed the predominance of ALG and DR tasks (Fig. 1). They suggested using CT skill
tuples (pairs or triples) to classify certain tasks and defined subcategories in ALG cate-
gories such as: Constraint, Formula,Optimization, Procedures,Verification, Sequencing,
Ordering and Identification. They used an inductive method (analytical coding) when
looking at the structure of Bebras tasks that include pure algorithmic concepts. A mem-
ber of the team read each task in the corresponding years and created a classification for
the questions, including a description for the classification. The classification scheme
was discussed with other team members. The classification of each relevant task was
completed by one team member and then reviewed by at least one other team member.
Conflicts were resolved during a discussion phase before the final classification for the
task was established [4].

2.2 Categorization Used in Tagging Bebras Tasks

In the previous section we saw that there is no general categorization of concepts of
CT skills. In our empirical research, we used a CT model that consists of concepts in
cross section. Asmain categorization we used a categorization byDagiene, Sentance and
Stupuriene [8], which we modified according to the categorization of ACARA [15]. The
new categorization consists of six CT skills - five skills from Dagiene’s categorization,
which are also in the cross section to ACARA categorization, and one additional skill,
Modelling and Simulation. The new categorization includes six CT skills: Algorithmic
thinking, Generalization, Decomposition, Evaluation, Abstraction and Modelling and

34 Ž. Ternik et al.

Fig. 1. Percentage of the seven categories of CT skills ALG, DR, ABS, SIM, DA, PD and PAR
(see the text) assigned to the Bebras tasks over different age groups (colours). Source: [10].

Table 1. The categorization of CT skills used in this paper

CT skill name Description

Algorithmic thinking Thinking in terms of sequences and rules; Executing an algorithm;
Creating an algorithm

Modelling and simulation Making a model or system to illustrate a process in a computer;
System testing; Algorithm-based modelling

Decomposition Breaking down tasks → thinking about problems in terms of
component parts; Making decisions about dividing into sub-tasks
with integration in mind, e.g. deduction

Generalization Pattern recognition, simulations and links from data collected;
Solving new problems on the basis of already known solutions to
similar problems; Inductive reasoning

Evaluation Finding best solution; Making decisions about whether good use
of resources; Fitting to purpose

Abstract thinking Removing unnecessary details; Spotting key elements in problem;
Choosing a representation of a system

Simulation. Skill of Modelling and Simulation allowed us to achieve a greater spread of
CT skills between the Bebras tasks.

3 Empirical Research and Analysis

3.1 Examples of Task Categorization

In the empirical research we wanted to find out how high the degree of agreement is
among the experts annotating the Bebras tasks with the categories of CT skills needed
to solve them. The annotating questionnaire consisted of five tasks from Slovene Bebras
competition in 2019 [18]. The tasks were selected from different competition and age

Assessing the Agreement in the Bebras Tasks Categorisation 35

groups from 6th grade to 9th grade of elementary school and 1st to 2nd year of high school.
The results from the questionnaire were compared with the categorization of the Bebras
tasks we had undertaken. Each annotator selected one to three of the most important
CT skills that we believe the child should know when solving a certain task. To better
understand our way of annotating the Bebras tasks with categories, let us consider a few
examples.

First, let us analyse the example task of Roundabout city, depicted in Fig. 2. To
solve the task, we think the child should have knowledge in modelling and simulation.
We have chosen modelling and simulation because the task illustrates the sequence of
command execution. Just as the computer executes commands sequentially, the child
had to execute the sequence of exports in a roundabout to find a solution to the task.
There may be some other CT skills, but the skill of Modelling and Simulation takes
precedence over the others.

Fig. 2. Bebras task roundabout city

In the Bebras task of Colouring inn, depicted in Fig. 3, the competitors are asked
to colour the pattern with as few colours as possible. One of the characteristics of the
evaluation skill is to find the best solution. Since the pupils should find as few colours as
possible, knowledge for evaluation is necessary. However, another skill that is important
for the solution of this task is the skill of Modelling and simulation. We can present
the task as a system test if the system is looking for the best solution. Another skill is
a skill of Abstract thinking. In order to solve the task, the students have to identify key
elements in the problem and remove unnecessary details.

36 Ž. Ternik et al.

Fig. 3. Bebras task colouring inn

We have to be aware that despite clear definitions, the annotation of a given Bebras
tasks with CT skills necessary to solve it can be very subjective. That is why we wanted
to assess the validity of the CT skills categorization scheme. We checked this with a
questionnaire in which 5 university employees, mentors of the Bebras competition and
members of the competition’s program council participated. The questionnaire contained
more detailed descriptions of individual CT skills. Participantswere given five tasks from
the Bebras contest, each task being categorized according to CT skills. To perform this
analysis, we used the Fleiss’ Kappa statistics introduced below.

3.2 Fleiss’ Kappa Statistics

In many research areas, the analysis of the agreement among annotators often provides
a useful tool for assessing the reliability of an annotating (in our case, categorization)
scheme.A typical examplewould include physicians (annotators) that categorize patients
to those who need and those who do not need a therapy. To assess the reliability of
the diagnostic procedure followed by the physicians, we can examine the degree of
agreement between the physicians’ categorizations of the fixed set of patients [2].

Commonly used method for measuring the inter-annotator agreement is Scott’s Pi
statistics, which was later generalized by Cohen kappa. Both are based on the basic idea
of the kappa statistics (also kappa coefficient), which assumes that some of the actually
observed cases of inter-annotator agreement (P) are due to pure chance (Pe), i.e.,

κ = P − Pe

1 − Pe
.

While Scott’s Pi statistic assumes that the responses of the annotators have the same
distribution, this assumption is reversed in Cohen’s Kappa. Both statistics are limited on
measuring the degree of agreement among two annotators. Since our experiment involve
six annotators, we use Fleiss’ kappa statistics, a generalization of Scott’s Pi that can be
used to assess the agreement among an arbitrary number of annotators.

Assessing the Agreement in the Bebras Tasks Categorisation 37

The proportions of the agreement P observed in the experiment and the expected
random agreement Pe are estimated using the contingency table (see the example in
Table 2). Each column in the contingency table corresponds to one of the N subjects
(patients in the example in the first paragraph or Bebras tasks in our case), while the k
rows correspond to the subject categories (the same example includes two categories of
antibiotic and non-antibiotic patients, in our case, we have two possible decisions of the
annotator). Each cell in the table, nij, takes into account the number of annotators that
assign the j-th subject (Bebras task) to the i-th category (of CT skills).

Table 2. Example of the contingency table used to calculate the Fleiss’ Kappa statistics for the
inter-annotator agreement when categorizing five Bebras tasks into the category of Algorithmic
thinking.

Task (1) Task (2) Task (3) Task (4) Task (5) 5∑

i=1
Task(i)

pi

Algorithmic thinking
(YES)

4 2 0 4 1 11 0.44

Algorithmic thinking
(NO)

1 3 5 1 4 14 0.56

Pj 0.60 0.40 1.00 0.60 0.60

Furthermore, for each subject (column in the contingency table), we first calculatePj ,

the extent to which the annotators agree for j-th subject as Pj = 1
n(n−1)

[(
k∑

i=1
n2ij

)

− n

]

,

where n =
k∑

i=1
nij is the total number of ratings per subject. Next, we calculate pi, the

proportion of all assignments to the i-th category as pi = 1
N ·n

N∑

j=1
nij. Finally, the values

of P and Pe are calculated as:

P = 1

N
·

N∑

j=1

Pj

and

Pe =
k∑

i=1

(pi)
2.

Note that both values are in the range between 0 and 1, which means that the extreme
values of kappa are −1 and 1. The kappa value of −1 corresponds to the case of total
disagreement between the annotators (note that in that case P = 0 and Pe = 1), while
the value of 1 indicates perfect agreement among them (i.e., P = 1 and Pe = 0). In

38 Ž. Ternik et al.

light of the running example, the value of κ = 1 would mean that all the experts agree
on the annotation of the Bebras tasks with a certain category of CT skills. Landis and
Koch [14] have proposed a guide for interpreting the intermediate Fleiss’ kappa values,
summarized in Table 3.

Table 3. A guide for interpretation of the values of the Fleiss’ kappa statistics

κ value Interpretation

<0 Poor agreement

0.01–0.20 Slight agreement

0.21–0.40 Fair agreement

0.41–0.60 Moderate agreement

0.61–0.80 Substantial agreement

0.81–1.00 Almost perfect agreement

3.3 Results

When determining the categorical designations according to the skills, the participants
in the questionnaire were asked to annotate each task with one to three categories of CT
skills. Thus, we calculate the Fleiss’ Kappa statistics for each CT skill separately, the
results being shown in Table 4. The mid column in the table reports the values of the
statistics for the five participants in the experiment, while the right-most column reports
the values of Fleiss’ Kappa when our own annotation was added to the experimental
data as a categorization provided by a sixth annotator.

Table 4. Fleiss’ kappa statistics for the six categories of CT skills from Table 1.

Category of CT skills Five annotators Six annotators

Algorithmic thinking κ = 0.27 κ = 0.29

Modelling and simulation κ = 0.19 κ = 0.21

Decomposition κ = 0.17 κ = 0.23

Generalization κ = 0.03 κ = 0.03

Evaluation κ = 0.17 κ = 0.27

Abstract thinking κ = −0.14 κ = −0.06

Firstly, if we look at the values for each skill, we can see that by adding our cat-
egorization, the value of Fleiss’ Kappa increases consistently for all categories of CT
skills. For example, the value of Fleiss’ Kappa for the five annotators is κ = 0.19, indi-
cating a slight agreement between them. By adding our own categorization, the Fleiss’

Assessing the Agreement in the Bebras Tasks Categorisation 39

Kappa value increases to κ = 0.21. The increased value of κ tells us that our catego-
rization bears more similarities than differences when compared to the categorizations
(annotations) of the five participants in the experiment.

Furthermore, it is obvious that the degree of agreement among the five annotators is
mostly poor or slight at reach a fair level only for the category of algorithmic thinking.
On the other hand, the agreement among the annotators becomes poor for the category of
abstract thinking, where the value of Fleiss’ Kappa is κ = −0, 14. The weak agreement
for the same category is observed also when we add our own categorization as the sixth
annotator. The result shows that there are many different perceptions of the category
abstract thinking, which means that we should reconsider its definition.

The highest value of agreement was achieved by the CT skill of algorithmic thinking,
which was expected because it is tangible, clearly defined, easy to understand, not only
for experts but also for laymen. An important observation is also the higher degree
of agreement for the category of Modelling and simulation. The result might be due
our decision to separate the latter category from the (formerly too general) category of
algorithmic thinking skills.

Finally, let us note that the results confirm our central conjecture that the various
definitions and categorizations of CT skills lack clarity and unambiguity that would
allow for better planning appropriate competition tasks and teaching exercises. Over-
all, the results show that we should consider reformulating the definitions for most of
the categories of CT skills. Especially those where the level of agreement among the
annotators is poor or slight, i.e., have the values under 0.20. Most critical categories
include generalization and abstract thinking, while the categories of decomposition and
evaluation might be considered close to critical.

4 Conclusions

In Slovenia, as in other countries without compulsory computing curricula at the primary
level, the results of Bebras competition present important source of evidence of the
development of the computational thinking of students. In order to gain substantial
insight, we need a valid and reliable categorization of Bebras tasks based on CT skills.

Based on the empirical analysis of the reliability of the current schemes for annotating
Bebras tasks with categories of skills necessary to solve them, we can conclude that we
still lack valid, consensual and generally accepted categorization scheme. Our attempt to
separate the category modelling and simulation from the previously too general category
of algorithmic thinking seem to be a step in a right direction towards more complex, but
clearer categorization scheme. Our results suggest that abstract thinking is another too
general and vaguely defined category of CT skills.

While the empirical results show clear need for improvement of the categorization
schemes, they do not reveal the reasons for disagreement among the annotators. The
origin of the observed disagreements might be due to different understanding of the
problem-solving processes between the two types of annotators participating our study:
teachers and academics. We hypothesise that mentors (primary and secondary school
teachers) categorize the tasks based on their own practical experience, while academics
probably categorised the tasks according to learning theories, knowledge and skills from

40 Ž. Ternik et al.

the field of problem-solving CS or by simulating the problem-solving process. Checking
the validity of this hypothesis is out of scope of the experiment performed in this paper. In
further studies, one would consider different, homogenous groups of annotators to check
whether the reason for disagreement is the heterogenicity of the annotators participating
our study.

Another important challenge to be talked by further studies is to explore the use
of additional tools that would allow for a more reliable categorisation of certain tasks.
Perhaps it would bemost appropriate to involve children of different ages in the problem-
solving process.We can then use paper-based tests with selected competitors of different
ages, which allows detailed monitoring of the solution process, or we can consider
using the method of “thinking aloud” during the processes of task reading and solving.
Both hold a potential to contribute to the further clarification of the current ambiguous
definitions and categorizations of the CT skills.

Acknowledgements. We would like to acknowledge the financial support of the Slovenian
Research Agency, via the grants P5-0093, V5-1930 and N2-0056, as well as the University of
Rijeka, via the grant uniri-drustv-18-20.

References

1. Bebras – International Challenge on Informatics and Computational Thinking. https://www.
bebras.org/, Accessed 22 May 2020

2. Banerjee, M., Capozzoli, M., McSweeney, L., Sinha, D.: Beyond kappa: a review of interrater
agreement measures. Can. J. Stat. 27(1), 3–23 (1999)

3. Bollin, A., Demarle-Meusel, H., Kesselbacher, M., Mößlacher, C., Rohrer, M., Sylle, J.: The
bebras contest in Austria–do personality, self-concept and general interests play an influ-
ential role? International Conference on Informatics in Schools: Situation. Evolution, and
Perspectives, pp. 283–294. Springer, Cham (2018)

4. Barendsen, E., et al.: Concepts in K-9 computer science education. In: Proceedings of the
2015 ITiCSE on Working Group Reports, pp. 85–116 (2015)

5. Budinská, L., Mayerová, K., Veselovská, M.: Bebras task analysis in category little beavers
in Slovakia. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 91–101.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7_8

6. Budinská, L., Mayerová, K., Šimandl, V.: Differences between 9–10 years old pupils’ results
from Slovak and Czech bebras contest. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018.
LNCS, vol. 11169, pp. 307–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02750-6_24

7. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In:Mittermeir, R.T., Sysło,M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 19–30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69924-8_2

8. Dagienė, V., Sentance, S., Stupurienė, G.: Developing a two-dimensional categorization
system for educational tasks in informatics. Informatica 28(1), 23–44 (2017)

9. Denning, P.J., Tedre, M.: Computational Thinking. The MIT Press, Cambridge (2019)
10. Grover, S., Pea, R.: Computational thinking in K–12: a review of the state of the field. Educ.

Res. 42(1), 38–43 (2013)
11. Izu, C., Mirolo, C., Settle, A., Mannila, L., Stupuriene, G.: Exploring bebras tasks content

and performance: a multinational study. Inf. Educ. 16(1), 39–59 (2017)

https://www.bebras.org/
https://doi.org/10.1007/978-3-319-71483-7_8
https://doi.org/10.1007/978-3-030-02750-6_24
https://doi.org/10.1007/978-3-540-69924-8_2

Assessing the Agreement in the Bebras Tasks Categorisation 41

12. Kabatova, M., Kalaš, I., Tomcsanyiova, M.: Programming in Slovak primary schools.
Olympiads Inf. 10, 125–159 (2016)

13. Kalas, I., Tomcsanyiova, M.: Students’ attitude to programming in modern informatics. In:
Proceedings of the 9th WCCE 2009, Education and Technology for a Better World (2009)

14. Landis, J.R.,Koch,G.G.:An application of hierarchical kappa-type statistics in the assessment
of majority agreement among multiple observers. Biometrics 33, 363–374 (1977)

15. NSW Government: coding and computational thinking: what is the evidence? https://edu
cation.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/
media/documents/future-frontiers-education-for-an-ai-world/Coding-and-Computational-
Report_A.pdf. Accessed 5 Nov 2019

16. Opmanis, M., Dagiene, V., Truu, A.: Task types at “Beaver” contests. In: Information
Technologies at School, pp. 509–519 (2006)

17. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, New York
(1980)

18. Tekmovanja Bober, ACM. Naloge in rešitve (2015/16; 16/17; 17/18; 18/19). https://tekmov
anja.acm.si/?q=bober/naloge-re%C5%A1itve. Accessed 22 May 2020

19. Ternik, Ž.: Analiza rezultatov tekmovanja Bober skozi prizmo razumevanja konceptov
računalništva ter računalniškega mišljenja = Analysis of the results of the Beaver contest
based on the understanding of the computer science concepts and on computational thinking:
MSc thesis, Ljubljana (2019)

20. Vaníček, J.: What makes situational informatics tasks difficult? In: Brodnik, A., Tort, F. (eds.)
ISSEP 2016. LNCS, vol. 9973, pp. 90–101. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46747-4_8

21. Wing, J.: Computational thinking. Commun. ACM 49(3), 33–36 (2006)

https://education.nsw.gov.au/our-priorities/innovate-for-the-future/education-for-a-changing-world/media/documents/future-frontiers-education-for-an-ai-world/Coding-and-Computational-Report_A.pdf
https://tekmovanja.acm.si/%3fq%3dbober/naloge-re%25C5%25A1itve
https://doi.org/10.1007/978-3-319-46747-4_8

A Two-Dimensional Classification Model
for the Bebras Tasks on Informatics Based

Simultaneously on Subfields and Competencies

Valentina Dagiene1(B) , Juraj Hromkovic2(B) , and Regula Lacher2(B)

1 Institute of Data Science and Information Technologies, Vilnius University, Vilnius, Lithuania
valentina.dagiene@mif.vu.lt

2 ETH Zürich, Zurich, Switzerland
{juraj.hromkovic,regula.lacher}@inf.ethz.ch

Abstract. The Bebras challenge on informatics originated 15 years ago, by now
involves over 60 countries, and consists of short problem-solving tasks based
on informatics (computing, computer science) and computational thinking. This
paper deals with learning taxonomies and models that do not focus merely on par-
titioning computer science into its subareas, but rather on competencies that the
learners can reach by working with information, data, algorithms, and automation
processes. The contribution of this paper is a new concept for classifying tasks
that also offers new ideas for generating tasks and which is used for creating spi-
ral curricula for teaching informatics. One advantage of our approach is that the
classes are not mutually exclusive, which reflects the fact that a task can support
the development of different competencies in several areas. This allows to specify
the benefits of working on a given task much more precisely and can thus help
teachers to design and choose adequate tasks. Another advantage of this approach
is the inclusion of important competencies that are not subject specific but are nev-
ertheless important for the holistic development of school education. In addition,
the proposed model can be used to develop informatics tasks (assignments), that
are not only described by the topics to be covered, but also in competencies for
the learners to reach.

Keywords: Bebras challenge · Classification · Competence · Competency
model · Computational thinking · Informatics education · Learning taxonomy

1 Introduction

Recently, the importance of computer science education in primary and secondary
schools has received more and more attention. Children’s and students’ interests and
motivation in computing related fields are highly influenced by their educators.

While the term “Computer Science” (CS) (or “computing”,mainly settled in England
in recent years) are used in a very similar way internationally, the term “Informatics”
(respectively the German “Informatik” or the French “Informatique”) is understood

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 42–54, 2020.
https://doi.org/10.1007/978-3-030-63212-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_4&domain=pdf
http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0001-9754-7042
http://orcid.org/0000-0002-7571-7298
https://doi.org/10.1007/978-3-030-63212-0_4

A Two-Dimensional Classification Model for the Bebras Tasks 43

differently, depending on the country or the social or cultural background. In this paper
we will use the mentioned terms synonymously.

During the last decade Computational Thinking (CT) has been actively promoted
through K-12 curriculum as a part of an informatics subject or in an integrated way.
CT encompasses a set of concepts from informatics that aid in formulating problems
and solving in different fields [1]. However, CT has its roots in early years of human
society. It “evolved from ancient origins over 4,500 years ago to its present, highly
developed, professional state” as Denning and Tedre summarized in their deep-thought
book [2, p. 19] and Hromkovic and Lacher pointed it out in [3]. CT is based on involving
fundamental informatics components, such as data collection and analysis, data represen-
tation, logical reasoning, abstraction, algorithm design, decomposition, parallelization,
automation, pattern recognition, generalization, simulation, and defining algorithms as
part of a detailed solution [4, 5].

To introduce informatics to schools, both formal and non-formal education contribute
to build the necessary foundations in knowledge and skills. Visual gaming environments
and tangible interfaces provide tools to learn informatics in early years [6], computer
science unplugged activities [7–9] provide possibilities to develop CTwithout computer,
and Bebras international challenge [10] inspires students to discover informatics con-
cepts and foster computational thinking, which involves systematical information pro-
cessing needed to solve tasks (problems). Problem solving is one of the most important
components for developing CT and the Bebras model [10].

In this paper we discuss learning taxonomies and competency models with the inten-
tion of developing a combined subject-based and competence-based classification sys-
tem (a model) for Bebras tasks. The aim is not to present a complete list of informatics
subfields and related keywords or to offer a final classification for Bebras tasks. What
we offer is a classification strategy for tasks that can be helpful in designing Bebras
competitions (designing tasks and tasks sequences, choosing the right formulations) and
even in developing textbooks based on sequences of short challenging tasks.

We suggest a model for a new classification that can be updated and extended going
forward. This classification model has two levels (dimensions), namely “subject” and
“competency”. The first dimension branches informatics into fields and subfields. The
second dimension presents a list of competencies which the pupils can reach in this
subfield, and additionally these competencies are presentedwith respect to their hardness
according to the revised Bloom’s taxonomy [11]. In this way one can simultaneously
see which informatics topic and which competency with respect to CT a concrete task
approaches and how it fits the Bloom’s hierarchy.

2 Reviewing of Existing Classification Models of Learning

2.1 Research Methodology

Our research is a part of long going mixed methods research. After more than a decade
of active involvement in creating and reviewing Bebras tasks, the various learning tax-
onomies as well as models are discussed. We have reviewed a number of taxonomies
described in the educational literature and studies in the computer science education
research literature that use of one or more taxonomies as an analytic tool. In addition,

44 V. Dagiene et al.

we have looked at the practice of developing assignments (exercises, tasks) in informatics
both for formal and non-formal education, drawing on our and colleagues’ experience.

We have kept in mind the methodology of Mayring [12], who had combined several
techniques for systematic text analysis to a very systematic process by (1) either using
deductive strategy when the category system is derived from suitable existing theories or
(2) using inductive strategy when the category system is developed during the analysis
from the text corpus. Our reasoning is based on combining both strategies.

In order to improve the Bebras task classification, we have reviewed a number of
learning taxonomies described in the educational literature as well as studies in the
informatics education research area. We reviewed hundreds of Bebras tasks developed
by various countries during the last decade.We have used this evidence to propose a new
informatics-specific model based on competency. Our attention is focused essentially
on cognitive domain in informatics.

2.2 Existing Learning Taxonomies and Competency Models

A taxonomy is a classification system that is ordered in some way. Learning taxonomies
and models describe and categorize the stages in cognitive, affective and other dimen-
sions of a learner during the learning process. Learning taxonomies are widely used in a
variety of educational contexts, i.e., to describe the learning stages at which a learner is
operational in a certain topic. Of these taxonomies, the most widely cited is the Bloom’s
taxonomy [11] which describes the cognitive domain. The SOLO taxonomy uses a set
of categories that describe a mixture of quantitative and qualitative differences at the
performance of students [13]. Both Bloom’s taxonomy and the SOLO taxonomy are
increasingly used in the design and assessment of courses in informatics.

Shifting attention to the outcomesof the educational process has increased the interest
in defining competencies in terms of what makes students successful in their future
endeavors, irrelevant whether this success relates to personal development, employment,
or participation in society. Since CT has become a part of computing school curricula
in many countries, the paradigm of competence orientation has led to very detailed
curricula which describe a large variety of detailed competencies.

Competencies describe what the individual is or should be able to do, behavior
however is always shaped and constrained by the environment. We can only observe
‘manifested competence’, i.e., competence as it becomes manifest in a situation and
in an environment. Competence integrates knowledge, skills, and dispositions and is
context-situated. These integral components of competence manifest in observable and
tangible form within a work context.

Existing competence frameworks provide insights into different types of compe-
tencies and different ways of their modelling. Competence models are the foundation
of assessment and evaluation in terms of educational goals and thereby provide major
information for revision and improvement of education [14].

Frezza et al. [15] have discussed a competence based approach thatwaswell suited for
constructing learning environments challenged by developing, describing and including
competencies relevant to informatics education.

In order to be able to represent competencies more strictly, Schlüter and Brinda
have defined a competence as an integrative function consisting of a set of knowledge

A Two-Dimensional Classification Model for the Bebras Tasks 45

elements, a set of skill elements, and a set of disposition elements [16]. These three sets
have represented the knowledge, skills, and dispositions associated with performing the
competence in a context.

PISA (the Program for International Student Assessment) together with OECD (The
Organisation for EconomicCo-operation andDevelopment) has prioritized education for
global citizenship and global competencies and proposed an assessment framework for
which they introduced the notion of global competence as a multidimensional capacity
[17]. Structurally, global competency in the PISA OECD framework is composed of
knowledge, cognitive skills, and social skills and attitudes.

In Germany, a three-dimensional competence model was designed a decade ago for
use in K-12 informatics education [18]. It is argued that learners develop competency by
engaging with content in different processes. Content and skills are seen as interwoven,
the content can be identified from analyzing a skill and vice-versa. The third dimension
describes a quality of engaging with content and skill, how much the learner makes the
content and skills his or her own, which relates to dispositions. Hereby, the informatics
related topics and methods of the competencies cover a broad range of subject areas of
informatics.

The persistently challenging problem of transferring learning to new situations cou-
pled with the move from knowledge to learning has created favorable conditions for the
popularity of the terms competence and competency. Kramer et al. have identified five
dimensions that are common to many competence models [19]. Furthermore, they have
excluded the context factor and came out with a four dimensional competency model
that can be applied to informatics education: (1) Knowledge structure, (2) Content rep-
resentation, (3) Cognitive processes, and (4) Metacognitive processes. This competency
model has structural similarities with amodel proposed byHavenga et al. [20] that aimed
to measure the students’ abilities in an introductory programming course.

3 Bebras Challenge

3.1 What Is a Bebras Task

Since the beginning of the Bebras challenge in 2004, development of new questions
(tasks) based on informatics concepts is the crucial point [10]. The initial motiva-
tion to develop short challenging tasks was to introduce main computing concepts and
principles in schools. Short tasks and small problem-solving activities should develop
computational thinking skills and promote the creativity of students aswell as of teachers.

Over the years, the Bebras community has developed thousands of tasks. Most of
them are proposed as interactive and/or open-ended questions. However, even when
answers have to be chosen from a list, there is no unique way of getting to the solution.
The tasks can be used in the annual contests, but they can also be the starting point for
in-depth educational activities [21, 22].

The tasks are related to concepts such as algorithms (sequential and concurrent); data
structures (heaps, stacks and queues, trees, and graphs); modelling of states, control flow
and data flow; human-computer interaction; and graphics. Students do not formally study
these topics, instead, the topics are introduced implicitly by letting the students think

46 V. Dagiene et al.

about interesting problems. A “narrative cover story” is used to relate the tasks to an
underlying topic.

We need to design suitable short tasks based on informatics concepts and aimed
to develop CT. A Bebras task should be related to at least one informatics concept,
attract children’s attention with a story, picture, interactivity, or challenge and not require
specific technical knowledge. The tasks should be short (fit on a computer screen), and the
solving time should be set according to pupils’ age. Bebras-like tasks are no longer than
15 lines and can be solved in 3–5 min. The short tasks support the idea of addressing
a wider audience of, for example, varying background and knowledge. The attribute
“short” does not necessarily mean that the short tasks are easy to solve. However, a short
task should have an easy-to-understand problem statement. The short tasks should be
complex enough to allow creativity in the solution process.

The Bebras community has approved a basic definition [23] whereby a good task
proposal: (1) introduces or reinforces a topic in computer science, (2) is quick and easy
to understand, but (3) is challenging to solve, and (4) is usable after the contest as a good
example.

Besides this internal definition there have been some attempts to define or at least
hint at what a good task proposal is. Vanícek [24] tried to provide a closer definition by
refining the four criteria and relating them to some formal and practical aspects.

3.2 Bebras Tasks Categorization

ClassifyingBebras tasks is important in twoways: (1) to organize the tasks collected each
year, and (2) to guide countries in creating new tasks and thereby influencing informatics
education over the world. Since the Bebras challenge began, there has been an interest in
classifying and categorizing tasks. Early on in the project, the following seven categories
were used [25]: (1)General logic; (2) ICT (Information andCommunicationTechnology)
in everyday life; (3) Practical and technical issues; (4) Information comprehension;
(5) Algorithms and programming; (6) Mathematics underlying computer science; (7)
History and trivia.

These categories were also used for developing new tasks as the main criteria to
know which informatics topics and concepts need to be covered. Few years later the
Bebras tasks’ categories were revised and a modified system was proposed [23]:

1. Information comprehension (representation, coding, encryption)
2. Algorithmic thinking (including programming aspects)
3. Structures, patterns and arrangements (discrete structures: graphs, trees)
4. Puzzles (logical puzzles, games)
5. Using computer systems
6. ICT and Society (social, ethical, cultural, international, legal issues).

Since then there have been several attempts to refine these categories [26–28]. One
category of task proposals, “Using computer systems”, has been debated again and
again. Many typical task proposals for this category require pre-knowledge that is not
available to students of most participating countries, and therefore it has been not used
for task proposals in the recent years. This criticism, together with the fact that almost all

A Two-Dimensional Classification Model for the Bebras Tasks 47

tasks are related to data and algorithms (the first two categories), shows that the current
categories are not state of the art.

A further reason to renew the Bebras task categorization system is the demand for a
combination of computational thinking skills with areas of “content competences” used
to define educational standards for computer science education in school. Incorporating
both described categorization systems a two-dimensional system was proposed [29].

4 The Proposed Two-Dimensional Classification Model
of the Bebras Tasks Based on Subfields and Competency

4.1 Basic Concept of Classification

The choice of Bebras tasks and the strategy of building informatics curricula for schools
are not based on splitting computer science into many subfields as in research and
university studies. The central point is the development of the fundamentals that are the
commoncore andunavoidable prior knowledge for all these subfields and simultaneously
the fundament of computer scientists’ way of thinking. Because of this, we follow the
historical approach of three roots (information and data, automation and algorithms,
technology) of informatics as presented in [3, 8, 9]. Another reason for taking this
approach is to follow the concept of constructionism of S. Papert merged with critical
thinking. We want to follow the history of developing computer science concepts and
enable pupils to re-discover them by “learning by getting things to work”.

Additionally, our classification has to be able to help us to design sequences of tasks
that fit school curricula in such a way that we can follow the deepening in particular
topics by learning taxonomies.

4.2 The Resulting Model of the Bebras Tasks

The following implementation of our classification strategy is not a final product. The
main idea is to motivate and encourage colleagues to extend it appropriately by further
subjects and related competencies that are available in a corresponding age group in
school education.

All competencies listed below start with “Pupils can” and so we omit to write this
at the beginning of the sentences here (Table 1).

One very important advantage of this classification model is that with a task or
sequence of tasks (teaching material) one is encouraged to approach as many different
competencies as doable, i.e., this classification is not exclusive, but the opposite of it.

Our approach takes care on competences and Bloom taxonomy, and we believe that
this way of thinking is the best starting point to create good training and textbooks and
tasks for pupils. This enables also to relate teaching informatics to other subjects as math
and other discipline and taking care of cognitive load over all subjects and see everything
in a broad context.

48 V. Dagiene et al.

Table 1. Two dimensional classification model of the Bebras tasks based on Competency of
informatics and Bloom’s taxonomy

Subfields of informatics R U Ap An E C

Data 1.1 Information and data representation by symbols

Recognize patterns in sequences +

Classify sequences with respect to some attributes + + + +

Use recognized patterns to prolong sequences or
filling in missing items

+ +

Discover principles used to create a sequence and
apply these principles

+ +

Understand concepts of different number
representations and transform them into decimal
system

+ +

Particularly transform number representations
between binary and decimal numbers

+ +

Count and execute addition in different number
representation system

+ +

Understand different systems for creating
self-verifying and self-correcting codes and use
them by coding data

+ + +

Communicate with given sequences of symbols
that represent messages (in advance agreed codes
for different messages)

+ +

Choose alphabets (symbols, signals) and use them
to create coding for a given collection of words or
messages and apply them in communication

+ + +

Compare two number representations with
respect to different attributes (length,
understandability, efficient computing)

+ +

Apply fundamental principles in order to design
new systems for number representations and to
work with the new systems

+

Compare different self-verifying (self-correcting)
codes with respect to the number of additional
control bits and create new codes by optimizing
their length

+ +

1.2 Data representation and visualization by graphs and drawings

Understand the process of abstraction by reducing
the complexity of drawings that represent the real
world tasks

+ + +

Use graphs for model networks of different kinds + + +

Use graphs to represent relations between objects + + +

Visualize data in different ways and compare the
usefulness of the different approaches

+ + + +

Estimate the saved information and the lost
information for different graphical representations

+

Use matrices to represent graphs in a symbolic
way

+ +

1.3 Data protection and security

(continued)

A Two-Dimensional Classification Model for the Bebras Tasks 49

Table 1. (continued)

Subfields of informatics R U Ap An E C

Use secret writings based on exchanging the
position of particular symbols

+ +

Use secret writings and cryptosystems based on
coding letters by other symbols of sequences of
symbols

+ +

Analyze crypto-texts and cryptosystems with
stochastic methods to break them

+ + +

Create new original cryptosystems based on
known principles, use them, and judge their
strengths and weaknesses

+ + +

Understand and apply statistical methods for
designing and for breaking cryptosystems

+ + +

Understand the requirements for the choice of
passwords and judge whether a password is good
or not

+ +

Create appropriate passwords +

1.4 Organization of data collections and search

Use trees with subfolders to organize data
collections

+ +

Use hashing (for classification into groups) to
organize data collections

+ +

Understand and use sorting and binary search in
sorted sequences

+ +

Analyze and compare the efficiency of different
approaches of data organization with respect to
searching

+ +

Create own hashing strategies for given data and
compare them

+ + +

Compare different tree (subfolders) strategies for
a given data collection

+ +

Analyze the computational complexity of
different searching strategies

+ +

Analyze the amount of work needed to organize
data

+ +

Reorganize data collections after updates + + + +

1.5 Compression

Understand and apply simple algorithms for
compressions of texts (symbol sequences)

+ + +

Understand the digital representations of pictures
by pixels

+ +

Apply simple algorithms for picture compressions + +

Combine different strategies for text compression
to develop better ones

+ + + +

Algorithms 2.1 Description of computing problems

Recognize symbolic and visual tools (matrices,
graphs, etc.) for describing problems

+

(continued)

50 V. Dagiene et al.

Table 1. (continued)

Subfields of informatics R U Ap An E C

Understand the descriptions of an instance of a
computing problem and interpreting them
correctly

+

Decide for a problem description and whether a
solution candidate is a feasible solution

+

Search for a feasible solution by experiment (trial
and error)

+ +

Understand the language of logic in describing
computing problems

+ + +

Apply different criteria to assign costs to feasible
solutions

+

2.2 Solving problems by Brute-force strategies

Classify objects with respect to their properties +

Count the number of objects with given properties + + +

Use tables or trees to list all feasible solutions of
concrete problem instances

+ +

Compare different feasible solutions with respect
to a cost measure

+

Apply the brute-force strategy to find optimal
solutions of concrete problem instances

+ +

Compare different criteria for assigning values to
feasible solutions

+ +

Create new criteria for evaluating feasible
solutions that better capture the reality (our
optimization goals)

+ +

2.3 Automata and describing processes

Understand the model of automata as an acceptor
or as a generator of symbol sequences

+ +

Recognize whether a symbol sequence is
accepted/generated by a given automaton

+ +

Execute/simulate computations by a finite
automaton

+

Recognize the equivalence of two finite automata + +

2.4 Data structures in data processing

Understand the concept of arrays and lists + +

Recognize stack or queue in a data structure in
real processes

+

Apply stacks and queues to different solutions
and for casting the results of running processes

+ + +

Use trees for object classification + +

Use trees for data organization + +

2.5 Solving strategies for algorithmic problems

Understand concrete algorithms as strategies for
solving successfully infinitely many instances of
a problem

+ + + +

Verify and test algorithms + + + +

(continued)

A Two-Dimensional Classification Model for the Bebras Tasks 51

Table 1. (continued)

Subfields of informatics R U Ap An E C

Prove the correctness of algorithms + +

Understand the concepts: divide and conquer,
recursion, local search, and dynamic
programming for algorithm design

+ + +

Recognize the design method of a presented
algorithm

+ +

Apply algorithm design to solve concrete
problem instances

+ + + +

2.6 Sorting and searching

Find a minimum, maximum or medium in
unsorted sequences

+ + +

Understand and apply binary search to any sorted
sequence of objects with a linear index

+ +

Analyze the computational complexity of binary
search

+ +

Understand and apply different sorting algorithms + +

Analyze and compare the efficiency of different
sorting strategies

+ + +

2.7 Parallel processes

Recognize parallel processes in real situations +

Understand the modelling of parallel processes + +

Solve instances of scheduling tasks + +

Simulate the execution of parallel processes
following given description

+ + +

Recognize and analyze conflicts that can occur in
parallel processing

+ + +

Plan and control parallel processes + + + +

2.8 Artificial intelligence

Understand heuristics and apply them in order to
solve instances of concrete problems

+ + +

Analyze the work of heuristics on concrete
problem instances and recognize why they fail

+ + +

Compare the success of different heuristics for a
concrete problem and choose an appropriate one

+ + +

Simulate learning processes of simple models of
machine learning

+ + +

Use machine learning for classifying data +

Evaluate the statistics success of concrete
machine learning approaches for concrete
classification tests

+ + +

Technology: programming, robotics, networks 3.1 Programming

Execute programs as sequences of instructions + + +

Design programs for describing the movement in
two dimensional space or drawing pictures

+ + + + +

Understand and apply the concept of repeat-loop + +

(continued)

52 V. Dagiene et al.

Table 1. (continued)

Subfields of informatics R U Ap An E C

Understand and apply the concept of modular
program design

+ + + + +

Understand and apply the concept of variables + + +

Test programs and search for syntactic and logical
errors

+ + + +

Understand and apply conditional instruction as
if-then-else and while-loop

+ + +

Formalize constraints and conditions in the
language of logic and apply them by conditional
instructions

+ + +

Develop programs solving given problems + + + +

Building robots from different components and
program them

+ + + +

3.2 Robotics

Navigate robots along a given path or trajectory + + +

Execute or simulate robot’s activities by
following sequences of instructions

+ +

Understand processes as transformations between
states

+ + +

3.3 Networks

Recognize and understand the abstract
representations of networks by graphs

+ +

Find path for information transmission or goods
delivery

+ + +

Broadcast information or goods in parallel in
concrete networks

+ +

Measure the time needed to broadcast,
accumulate or gossip information in networks

+ +

Design strategies for broadcasting information in
concrete networks

+ + + +

R – Remember, U – Understand, Ap – Apply, An – Analyze, E – Execute, C – Create

5 Discussion and Further Work

In the process of developing spiral curricula for schools and corresponding textbooks,
we applied this classification model in school projects with more than 550 schools and
15 000 pupils. This broad experience was the base for teaching and deepening different
computer science topics in the right order. More detailed comments on this effort can be
found in textbooks for teachers in the series “Einfach Informatik” [8].

But this experience is not enough to validate completely our classification model.
We have a large amount of data that is awaiting evaluation, and we are starting research
projects measuring the knowledge transfer with respect to different competencies. We
also plan to classify a large sample of Bebras tasks to find out how well the tasks fit to
our model. Last but not least, this in an invitation to the community to join us in the
validation of our classification as well as to try to refine or revise it.

A Two-Dimensional Classification Model for the Bebras Tasks 53

References

1. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
2. Denning, P.J., Tedre, M.: Computational Thinking. The MIT Press, Cambridge (2019)
3. Hromkovic, J.: Homo informaticus – why computer science fundamentals are an unavoidable

part of human culture and how to teach them. Olympiads Inform. 10, 99–109 (2016)
4. Grover, S., Pea, R.: Computational thinking in K-12: a review of the state of the field. Educ.

Res. 42(1), 38–43 (2013)
5. Heintz, F., Mannila, L., Färnqvist, T.: A review of models for introducing computational

thinking, computer science and computing inK-12 education. In: IEEEFrontiers in Education
Conference (FIE) (2016)

6. Garneli, V., Giannakos, M., Chorianopoulos, K.: Computing education in K-12 schools: a
review of the literature. In: IEEE Global Engineering Education Conference, pp. 543–551
(2015)

7. Bell, T.,Alexander, J., Freeman, I.,Grimley,M.:Computer science unplugged: school students
doing real computing without computers. New Zealand J. Appl. Comput. Inf. Technol. 13(1),
20–29 (2009)

8. Hromkovic, J., Lacher, R., et al.: Einfach Informatik. Series of 19 textbooks for teaching
informatics from kindergarten to high school. Klett and Balmer (2018–2021) (in German)

9. Hromkovič, J., Lacher, R.: The computer science way of thinking in human history and
consequences for the design of computer science curricula. In: Dagiene, V., Hellas, A. (eds.)
ISSEP 2017. LNCS, vol. 10696, pp. 3–11. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71483-7_1

10. Dagiene, V., Stupuriene, G.: Bebras – a sustainable community buildingmodel for the concept
based learning of informatics and computational thinking. Inform. Educ. 15(1), 25–44 (2016)

11. Anderson, L.W., et al.: A Taxonomy for Learning and Teaching and Assessing: A Revision
of Bloom’s Taxonomy of Educational Objectives. Addison Wesley Longman, Inc., Boston
(2001)

12. Mayring P.: Qualitative content analysis. Forum: Qual. Soc. Res. 1(2). Retrieved from http://
www.qualitative-research.net/index.php/fqs/article/view/1089. Accessed Sept 2020

13. Biggs, J.B., Collis, K.F.: Evaluating the Quality of Learning: The SOLOTaxonomy (Structure
of the Observed Learning Outcome). Academic Press, New York (1982)

14. Klieme, E., Hartig, J., Rauch, D.: The concept of competence in educational contexts. In: Har-
tig, J., Klieme, E., Leutner, D. (eds.) Assessment of Competencies in Educational Contexts,
pp. 3–22. Hogrefe, Göttingen (2008)

15. Frezza, S., et al.:Modelling competencies for computing education beyond 2020. In: Proceed-
ings of the Companion of the 23rd Annual ACM Conference on Innovation and Technology
in Computer Science Education, pp. 148–174. ACM (2018)

16. Schlüter, K., Brinda, T.: From exercise characteristics to competence dimensions exemplified
by theoretical computer science in secondary education. In: Proceedings of the Joint Open
and Working IFIP Conference on ICT and Learning for the Net Generation, Malaysia (2008)

17. PISAOrganization for Economic Co-operation andDevelopment: PreparingOurYouth for an
Inclusive and Sustainable World: The OECDPISA Global Competency Framework (2018).
Retrieved from http://www.oecd.org/pisa/pisa-2018-global-competence.htm

18. Gesellschaft für Informatik (GI): Bildungsstandards Informatik fürdie Sekundarstufe II
(2016). Retrieved from https://dl.gi.de/bitstream/handle/20.500.12116/2350/57-GI-Empfeh
lung-Bildungsstandards-Informatik-SekII.pdf . Accessed Sept 2020

19. Kramer, M., Hubwieser, P., Brinda, T.: A competency structure model of object-oriented
programming. In: International Conference on Learning and Teaching in Computing and
Engineering (LaTICE). IEEE-CS, Mumbai, India, pp. 1–8 (2016)

https://doi.org/10.1007/978-3-319-71483-7_1
http://www.qualitative-research.net/index.php/fqs/article/view/1089
http://www.oecd.org/pisa/pisa-2018-global-competence.htm
https://dl.gi.de/bitstream/handle/20.500.12116/2350/57-GI-Empfehlung-Bildungsstandards-Informatik-SekII.pdf

54 V. Dagiene et al.

20. Havenga,M.,Mentz, E.,DeVilliers, R.:Knowledge, skills and strategies for successful object-
oriented programming: a proposed learning repertoire. South Afr. Comput. J. SACLA, Spec.
Ed. 42, 1–8 (2008)

21. Dagienė, V., Sentance, S.: It’s computational thinking! Bebras tasks in the curriculum. In:
Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46747-4_3

22. Dagiene, V., Futschek, G., Stupuriene, G.: Teachers’ constructionist and deconstruction-
ist learning by creating Bebras tasks. In: Sipitakiat, A., Tutiyaphuengprasert, N. (eds.)
Constructionism in Action, pp. 257–264. Suksapattana Foundation, Bangkok (2016)

23. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In:Mittermeir, R.T., Sysło,M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 19–30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69924-8_2

24. Vaníček, J.: Bebras informatics contest: criteria for good tasks revised. In: Gülbahar, Y.,
Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09958-3_3

25. Opmanis, M., Dagiene, V., Truu, A.: Task types at “Beaver” contests. Inf. Technol. Sch.
509–519 (2006). DOI:ISIP:BFP69-509

26. Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Bebras as a teaching resource: classi-
fying the tasks corpus using computational thinking skills. In: Proceedings of the 2017 ACM
Conference on Innovation and Technology in Computer Science Education, pp. 366–366,
ACM (2017)

27. Pohl, W., Westmeyer, J.: Content categories for informatics tasks. LNCS, vol. 9378, p. 61
(2015)

28. Tomcsányiová, M., Tomcsányi, P.: Little beaver – a new Bebras contest category for children
aged 8–9. In: Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS, vol. 7013, pp. 201–212.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24722-4_18

29. Dagiene, V., Sentance, S., Stupurienė, G.: Developing a two-dimensional categorization
system for educational tasks in informatics. Informatica 28(1), 23–44 (2017)

https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-319-09958-3_3
https://doi.org/10.1007/978-3-642-24722-4_18

Participants’ Perception of Tasks
in an Informatics Contest

Jiří Vaníček(B) and Václav Šimandl

University of South Bohemia, České Budějovice, Czech Republic
{vanicek,simandl}@pf.jcu.cz

Abstract. Bebras is a contest organized for schools to promote computational
thinking and new tasks are developed for it every year. The contest is held online
in over 50 countries around the world and its results provide a great deal of infor-
mation regarding difficulty levels of particular tasks and factors influencing par-
ticipants’ success in the contest. Our paper brings an analysis of such hard data in
relation to statements of those participants who expressed their opinion on the dif-
ficulty of particular tasks and whose statements could be matched with their actual
academic performance in the contest. Questionnaires were voluntarily completed
by contestants participating in the Senior category (for the oldest participants aged
over 16) from the Czech Republic.

Statistical analysis of contest results and perceived task difficulty provided
new findings. There is no relationship between the proportion of participants with
wrong answers to tasks and participants’ subjective perception of task difficulty.
Subjective difficulty is more aptly expressed in terms of the proportion of par-
ticipants who did not answer the task. The contest was perceived as being easier
by those participants who achieved higher scores in it. Male participants demon-
strate a higher level of self-esteem in terms of IT skills than female participants.
However, female participants’ self-perceptions of their IT skills are slightly more
accurate than males’. Results presented in the article could help the authors of
the contest to improve compilation of contest tasks and have them included in the
Informatics curriculum.

Keywords: Bebras · Informatics contest · Task difficulty · Participant
perception · Self-esteem

1 Introduction

The situational informatics tasks used in the Bebras contest [1, 2] can be viewed from
various angles. One view sees them as practical problems, developing various elements
of computational thinking such as algorithmization, abstraction, decomposition and eval-
uation. From another angle, they can be seen as tasks involving various parts of com-
puter science like programming, optimization, data representation, structures, processes,
hardware, coding, cryptography, robotics and social aspects [3–6].

Bebras tasks are examined in a large number of studies. Some of them deal with
creating good informatics tasks [7–9] or criteria influencing task difficulty [10–13].Other

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 55–65, 2020.
https://doi.org/10.1007/978-3-030-63212-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_5&domain=pdf
http://orcid.org/0000-0002-2092-6260
http://orcid.org/0000-0002-0652-2446
https://doi.org/10.1007/978-3-030-63212-0_5

56 J. Vaníček and V. Šimandl

papers deal with the use of Bebras tasks - in assessing levels of computational thinking
[14], bringing change into the classroom [6, 15] or preparing teachers as curriculum
makers [16, 17]. School course books include Bebras tasks [18] or similar situational
tasks that are adapted to a particular method of teaching [19].

A considerable proportion of research focuses on the difficulty of particular tasks or
their types [13, 20–22]. As stated by Lonati et al. [13], predicting task difficulty is far
from being an exact science and understanding difficulties andmistakes afterwards is not
that easy either. Bellettini et al. [22] point out that in one third of the cases the tasks were
either easier or more difficult than expected. According to van der Vegt and Schrijvers
[20], category data structures and representations seem to be easier than algorithmization
and programming tasks, while combining these categories increases the difficulty even
further. Moreover, open ended tasks turned out to be the hardest as opposed to interactive
or multiple choice tasks [20].

Other studies explore the issue of age suitability [22] and gender balance of contest
tasks [23–26]. Hubwieser et al. [24] and Izu et al. [26] inquire into motivating younger
girls to solve informatics tasks. Stupurienė et al. [25] point out that girls from the 3rd
to 8th grades are as interested in solving informatics problems as boys. However, the
proportion of 11th and 12th grade girls in the contest drops. Izu et al. [26] state that a
declining performance trend of girls vs. boys can be recognized from primary to high
school level, with boys outperforming girls in all countries in the Senior category. Other
studies focus on international and long-term comparisons of tasks [25, 27, 28].

Given the online nature of the contest, it is not difficult to acquire data that measures
achievement. As long as personal data protection rules are complied [29], an online
contest can provide a large amount of data on how participants coped with various tasks.
Statistical analysis of such data can indeed enable us to ascertain which type of task is
difficult.

However, such data cannot ascertain how participants perceive contest tasks, their
difficulty, and the motivational effect or “discouraging effect” of task settings. Very
few studies actually inquire into this issue. One exception is Lonati et al. [13], who
used interviews to uncover difficulties that participants encountered while completing
tasks. Our paper is focused on participants’ feedback, providing their retrospective self-
perceptions of contest tasks and a comparison of that feedback with their actual results.
The aim of our study is to shed light on participants’ perceptions of contest tasks. The
following research questions (RQ) were formulated on the basis of the research aim:

• Is there a relationship between perceived difficulty of a task and the proportion of
participants who did not answer (RQ1a), gave the correct answer (RQ1b) or gave the
wrong answer (RQ1c)?

• Is there a relationship between perceived difficulty of the test as a whole and
performance in it (RQ2)?

• Is there a relationship between respondents’ self-perceptions of IT ability and their
performance in the test (RQ3) or their perception of tasks difficulty (RQ4)?

• Are self-perceptions of IT ability higher (RQ5) and more accurate (RQ6) for male or
for female participants?

Participants’ Perception of Tasks in an Informatics Contest 57

2 Methodology and Design

2.1 Bebras Contest and Questionnaire Survey

In the Bebras contest, participants take an online test, comprising of situational infor-
matics tasks. In a situational task, solvers emerge into a described situation in which
they must grasp, get to understand the used concepts and terms, find an informatics
principle the task is based on, solve the problem using cognitive and thinking skills and
select the right answer from the options [12]. The Senior category for students aged 16
to 19 consists of 15 tasks. These are completed by selecting the correct answer from a
number of options or by typing a number or some text. In interactive tasks, objects are
to be checked or moved with a mouse. Participants have 40 min to complete the test.
For correct answers, participants are awarded a varying number of points according to
predefined task difficulty levels. For incorrect answers, a proportional number of points
are deducted. Points are not deducted for unanswered tasks (this rule has an impact on
deciding whether to answer a task if a participant is not sure about the correct answer).
As soon as the test is over, participants can see their points total but cannot see which
tasks they got right and where they made mistakes. Such feedback could have an impact
on their perception of the difficulty of the test as a whole.

In order to determine how participants perceive the difficulty of contest tasks, we
compiled an anonymous online questionnaire. This comprised of questions concerning
issues such as pupils’ self-perceptions of their IT ability and their opinion on the difficulty
of particular tasks in the contest.Where participants agreed, their questionnaire responses
were correlated with their test score.

In the research, we used the term IT ability instead of informatics/computer science
ability because a school subject known by research participants is called IT. This subject
is based on digital technology handling and rarely contains topics from informatics, such
as algorithmization. Since most Czech pupils might not properly understand the term
informatics, asking a question about their informatics ability could bring unclear results.

The self-perceptions of IT ability and perceived difficulty of contest task variables
express participants’ subjective opinion in the six-point Likert scales, whose extreme
endswere “I knownothing” and “I amvery good at it”, or “Easy” and “Hard”. Participants
also had the possibility of indicating that they are “unable to say”.

2.2 Research Sample

All Senior category participants in the 2018 contest were notified with a request to com-
plete a questionnaire. In that year 5898 participants took part in that category designated
for pupils aged over 16 and our questionnaire was completed by 595 of them. 565 of the
questionnaires were sent shortly after completing the test at a time when participants had
already been informed of the scores they had achieved in the test but had not yet been
given the correct answers to particular tasks and did not know whether their answers
were right or wrong. The remaining 30 questionnaires were sent at a time when this
information had been made available to them. 294 participants gave their consent to
having their questionnaire answers correlated with their contest test scores (for details
see Table 1).

58 J. Vaníček and V. Šimandl

Table 1. Numbers of participants and received questionnaires according to gender. Some
respondents did not state their gender in the questionnaire.

Men Women Total

Total number of participants 4093 1805 5898

Number of questionnaires received 385 131 595

Number of participants agreeing to have their responses correlated with
their test scores

220 74 294

2.3 Data Analysis

Toanswer the abovementioned research questions,wedeveloped research hypotheses, as
presented in the Appendix to the paper available at https://www.ibobr.cz/papers/ISSEP2
020.pdf. Data analysis was carried out using the following statistical methods: Pearson’s
correlation coefficient, Spearman’s rank correlation coefficient and Mann–Whitney U
test.

Pearson’s correlation coefficient was used for linear expression of the relationship
between two variables as per Cohen [30]. According to Chráska [31], a test value of
0 indicates a statistical independence between the two variables, while a value of+1 (or
−1) indicates a perfect correlation between the two variables.

As perKing andEckersley [32],we could not use Pearson’s correlation coefficient for
data that are not discrete or continuous and are not normally distributed. For such cases
we used Spearman’s rank correlation coefficient, which is used to calculate a measure
of correlation and works on the ranked values of the data.

As per Chráska [31], we used the nonparametric Mann–Whitney U test to verify
whether two samples can come from the same basic set. This test is used to analyze two-
sample unpaired data [33] and is based on pooling all original sample values and then
ranking them. The following null hypothesis is used: The two populations have identical
distributions. The following alternative hypothesis is stated: The two populations have
different medians, but otherwise are identical.

Some items acquired from the questionnaire survey were unsuitable for analysis in
certain respects as they did not include all the required information. Consequently, they
were eliminated, as detailed in the Appendix.

The statistical software R was used for data analysis.

3 Results

3.1 Relationship Between Perceived Difficulty of a Task and Type of Answer
Participants Gave

We used the variable average perceived difficulty of a particular task to answer research
questions RQ1a to RQ1c. We also used the proportion of a certain type of answer (did
not answer, gave the correct answer, gave the wrong answer) within the total number of
participants. For the observed variables, the Anderson-Darling test and the Shapiro-Wilk

https://www.ibobr.cz/papers/ISSEP2020.pdf

Participants’ Perception of Tasks in an Informatics Contest 59

test for normality failed to reject the null hypothesis of normal sample distribution. Con-
sequently, we treated that data as data from a normal distribution. Pearson’s correlation
coefficient was used for testing.

To answer RQ1a, we verified the hypothesis whether the average perceived difficulty
and proportion of no answers variables are independent. Pearson’s correlation coefficient
is equal toR= 0.91. There is a relationship between the variables at a significance level of
0.05. It can therefore be said that the proportion of no answers does express participants’
perceptions of their difficulty (Fig. 1).

Fig. 1. Relationship between average perceived difficulty of a task and proportion of respondents
who did not answer

To answer RQ1b, we tested whether the average perceived difficulty and proportion
of correct answers variables are independent. Pearson’s coefficient is equal to R=−0.89
and there is negative relationship between the variables at a significance level of 0.05. It
can therefore be said that the proportion of correct answers also expresses participants’
perceptions of the difficulty of contest tasks – tasks which are perceived by participants
as more difficult have fewer correct answers (Fig. 2).

Fig. 2. Relationship between average perceived difficulty of a task and proportion of correct
answers

To answer RQ1c, we tested whether the average perceived difficulty and proportion
of incorrect answers variables are independent. Pearson’s coefficient is equal to R =
0.27. We cannot reject the null hypothesis at a significance level of 0.05 so we cannot

60 J. Vaníček and V. Šimandl

claim to have evidence of any relationship between these two variables. This can lead us
to infer that the proportion of wrong answers does not express participants’ perceptions
of the difficulty of contest tasks (Fig. 3).

Fig. 3. Relationship between average perceived difficulty of a task and proportion of wrong
answers

3.2 Relationship Between Perceived Difficulty of the Test as a Whole
and Performance in It

In research question RQ2, we use the points scored and perceived difficulty of the test
variables, for which all implemented tests (Shapiro-Wilk, Anderson-Darling, Kruskal-
Wallis) rejected normality. We used Spearman’s coefficient to calculate correlation,
which is equal to ρs = −0.37. Its result at a significance level of 0.05 clearly rejects the
null hypothesis of no relationship between the variables. There is indirect rank correlation
between number of points scored in the test and perception of its difficulty. This can be
interpreted to mean that the test was perceived as being more difficult by participants
with lower scores in the test (Fig. 4).

Fig. 4. Comparison of points scored in the test and perceived difficulty of the test

3.3 Self-perceptions of IT Ability and Performance

The following two research questions concern respondents’ self-perceptions of IT ability,
their test score and perception of test difficulty:

Participants’ Perception of Tasks in an Informatics Contest 61

• RQ3: Is there a relationship between respondents’ self-perceptions of IT ability and
their performance in the test?

• RQ4: Is there a relationship between respondents’ self-perceptions of IT ability and
their perception of tasks difficulty?

To answer these questions, we used the self -perception variable, which is an ordinal
variable that cannot have normal distribution, even asymptotically. For that reason, we
used Spearman’s coefficient of rank correlation.

To answerRQ3,we used points scored as the second variable, Spearman’s coefficient
being equal to ρs= 0.26. The null hypothesis of no rank correlation between the variables
was rejected at a significance level of 0.05. A certain weak correlation between self-
perceptions of IT ability and number of points scored is identified.

To answerRQ4,we used the variable perceived difficulty of the test. Spearman’s coef-
ficient being equal to ρs =−0.27, identifying almost the same weak negative correlation
as in the previous research question RQ3. The test again rejected the null hypothesis of
no correlation, indicating a certain weak negative correlation between these variables.

To a certain extent, this confirms expectations that participants who perceive them-
selves as having above-average IT ability actually achieve higher scores in the test
and perceive the test as being rather easy. However, this is not a particularly strong
corroboration.

3.4 Gender Differences in Self-perceptions of IT Ability

Participants provided data regarding their gender both in the contest and the question-
naire, the collected data enabling us to answer research questions concerning male and
female participants’ self-perceptions:

• RQ5: Do male or female participants have higher self-perceptions of IT ability?
• RQ6: Are self-perceptions of IT ability more accurate for male or for female
participants?

To answer RQ5, we used the gender and self -perception variables. The self -
perception variable being of an ordinal type, we cannot compare the expected value.
We can only compare the median of self -perception, the male median equaling MM
= 3.86 and the female median equaling MF = 3.11. The result of the nonparametric
Mann–Whitney U test rejected the null hypothesis of both genders having the same
self-perceptions of IT ability at a significance level of 0.05.

To answer RQ6, we used a comparison of the self -perception and points scored
variables. To be able to test which gender perceives their IT ability more accurately,
we transformed the points scored continuous variable into an ordinal variable called
categorized points by dividing the interval of 0–240 points into 6 equal intervals of
40 points. The median of the absolute value of the difference between self -perception
and categorized pointswas calculated at: ρsM= 1.25 formen, ρsF= 1.04 for women. The
Mann–Whitney U test does not reject the null hypothesis of both genders self-perceiving
their IT ability with equal accuracy at a significance level of 0.05 but does reject it at a
significance level of 0.1.

62 J. Vaníček and V. Šimandl

These results can be interpreted to mean that male participants have higher self-
perceptions of IT ability than female participants. Contrarily, female participants’ self-
perceptions of their IT ability are slightly more accurate than male participants’, the
difference being negligible (Fig. 5).

Fig. 5. Stacked chart showing distribution of female (dark grey) andmale (light grey) participants’
self-perceptions of IT ability.

4 Discussion and Conclusion

By comparing participants’ statements with their actual score, it was discovered that
perceived difficulty of a particular task is not expressed by the proportion of participants
who answered incorrectly. Perceived difficulty of a task is expressed by the proportion
of those participants who did not answer and also of those who gave the correct answer.
This result corresponds to findings of Vaníček [12] that the no answer indicator describes
task difficulty very well. The perceived difficulty of contest tasks can be considered an
important parameter, as per Keller and Landhäußer [34] a perceived fit of skills and
task demands is a prerequisite for emergence of flow, which means the state in which
according to Engeser and Schiepe-Tiska [35] an individual is completely immersed in
an activity without self-consciousness but with a deep sense of control.

Our research also shows that participants who achieved higher scores in the test
do actually perceive it as being easier. Moreover, participants who have higher self-
perceptions of IT ability perceive the test as being easier and achieve higher scores in it.
These conclusions correspond to findings of Li et al. [36], Mangos and Steele-Johnson
[37] that self-perceptions of ability are negatively related to perceptions of task difficulty;
self-perceptions of ability have a positive correlation with performance; and perceptions
of task difficulty are negatively associated with performance.

In addition, our research identifies findings relating to gender differences. Male
participants of this age were found to have higher self-perceptions of their IT ability
than female participants but female participants’ self-perceptions of their IT ability are
slightly more accurate than male participants’. The finding that men have higher self-
perceptions of IT ability than women corresponds to earlier research of Cussó-Calabuig
et al. [38] andBirol et al. [39] relating to self-perception in IT.AsVekiri claims, perceived
teacher expectations aremore strongly associatedwith girls’ thanwith boys’ self-efficacy
beliefs in IT [40], thus there seems to be a need to encourage and support girls to cope

Participants’ Perception of Tasks in an Informatics Contest 63

with informatics problems. This is a particularly important task as self-confidence and
perceived self-efficacy seem to play a big role for students’ choice of further studies, as
Dagienė et al. quote Ashcraft et al. [41].

The limit of our study is that someparticipants could have based their self-perceptions
of IT ability on the score they had achieved in the test that they had just taken. In a
certain way, time delay between the test and the questionnaire could have influenced
perceived difficulty of contest tasks. While some responded to the questionnaire shortly
after completing the test, other responses were delayed or sent after being provided with
the correct answers, knowing whether their answers to particular tasks were right or
wrong. As only 5% of respondents completed the questionnaire after finding out which
questions they had got wrong, this aspect has a negligible influence on the results.

Further studies should focus on identifying factors that make participants perceive
contest tasks as being more difficult, features that have a positive impact on task pop-
ularity and the relationship between task popularity and perceived task difficulty. Such
factors could be connection of the story of the task with the world of a child, including
gender aspects, or connection of the theme of the task with a part of informatics or
elements of computational thinking. Other factors could be the attractiveness of interac-
tive tasks (in terms of visual aspect or user-friendliness) and potential laboriousness, for
example the assumption that a number of variations will have to be tested to determine
an answer or the need to fully understand the task instructions before anything else.

If we can understand the factors that cause participants to perceive task difficulty or
popularity in differentways,wewill be able to improve thewayweclassify task difficulty.
We will also be able to design or modify tasks to increase participant motivation and to
include the more useful ones in the school curriculum.

References

1. Bebras website. http://bebras.org. Accessed 21 May 2020
2. Dagienė, V.: Information technology contests – introduction to computer science in an

attractive way. Inf. Educ. 5(1), 37–46 (2006)
3. Wing, J.M.: Research notebook: computational thinking: what and why? In: The Link.

Carneige Mellon, Pittsburgh (2010)
4. Selby, C.,Woollard, J.: Computational thinking: the developing definition. In: Special Interest

Group on Computer Science Education (SIGCSE) 2014. ACM, Atlanta (2014)
5. ISTE, CSTA: Operational Definition of Computational Thinking for K-12 Education

(2011). https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-
flyer.pdf

6. Dagienė, V., Sentance, S.: It’s computational thinking! Bebras tasks in the curriculum. In:
Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46747-4_3

7. van derVegt,W.: Predicting the difficulty level of aBebras task.Olympiads Inform.7, 132–139
(2013)

8. van der Vegt, W.: How hard will this task be? Developments in analyzing and predicting
question difficulty in the Bebras challenge. Olympiads Inform. 12, 119–132 (2018). https://
doi.org/10.15388/ioi.2018.10

http://bebras.org
https://id.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
https://doi.org/10.1007/978-3-319-46747-4_3
https://doi.org/10.15388/ioi.2018.10

64 J. Vaníček and V. Šimandl

9. Pohl,W.,Hein,H.-W.:Aspects of quality in the presentation of informatics challenge tasks. In:
Jekovec,M. (ed.) The Proceedings of International Conference on Informatics in Schools: Sit-
uation, Evolution andPerspectives, ISSEP2015, pp. 21–32.University ofLjubljana, Ljubljana
(2015)

10. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In:Mittermeir, R.T., Sysło,M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 19–30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69924-8_2

11. Vaníček, J.: Bebras informatics contest: criteria for good tasks revised. In: Gülbahar, Y.,
Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-09958-3_3

12. Vaníček, J.: What makes situational informatics tasks difficult? In: Brodnik, A., Tort, F. (eds.)
ISSEP 2016. LNCS, vol. 9973, pp. 90–101. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46747-4_8

13. Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: How presentation affects the difficulty
of computational thinking tasks: an IRT analysis. In: Proceedings of the 17th Koli Calling
International Conference on Computing Education Research, pp. 60–69. ACM, New York
(2017). https://doi.org/10.1145/3141880.3141900

14. Chiazzese, G., Arrigo, M., Chifari, A., Lonati, V., Tosto, C.: Educational robotics in primary
school: measuring the development of computational thinking skills with the Bebras tasks.
Informatics 6(4), 43 (2019). https://doi.org/10.3390/informatics6040043

15. Černochová, M., Vaníček, J.: Informatics education: current state and perspectives of devel-
opment within the system of field didactics in the Czech Republic. Int. J. Inform. Commun.
Technol. Educ. 4(3), 14–31 (2015). https://doi.org/10.1515/ijicte-2015-0011

16. Dagienė, V., Futschek, G., Stupurienė, G.: Teachers’ constructionist and deconstruction-
ist learning by creating Bebras tasks. In: Sipitakiat, A., Tutiyaphuengprasert, N. (eds.)
Constructionism in Action 2016, pp. 257–264. Suksapattana Foundation, Bangkok (2016)

17. Manabe, H., Tani, S., Kanemune, S., Manabe, Y.: Creating the original Bebras tasks by high
school students. Olympiads Inform. 12, 99–110 (2018). https://doi.org/10.15388/ioi.2018.08

18. Berki, J., Drábková, J.: Základy informatiky pro 2. stupeň ZŠ. Textbook. Technical University
of Liberec, Liberec (2020)

19. Hromkovič, J., Lacher, R.: Einfach informatik. Lösungen finden. Textbook. Klett und Balmer,
Baar (2019)

20. van der Vegt, W., Schrijvers, E.: Analyzing task difficulty in a Bebras contest using cuttle.
Olympiads Inform. 13, 145–156 (2019). https://doi.org/10.15388/ioi.2019.09

21. Yagunova, E., Podznyakov, S., Ryzhova, N., Razumovskaia, E., Korovkin, N.: Tasks classifi-
cation and age differences in task perception. Case study of international on-line competition
“Beaver”. In: Jekovec, M. (ed.) The Proceedings of International Conference on Informat-
ics in Schools: Situation, Evolution and Perspectives, ISSEP 2015, pp. 33–43. University of
Ljubljana, Ljubljana (2015)

22. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.: How chal-
lenging are Bebras tasks?: an IRT analysis based on the performance of Italian students. In:
Proceedings of the 2015 ACM Conference on Innovation and Technology in Computer Sci-
ence Education, pp. 27–32. ACM, New York (2015). https://doi.org/10.1145/2729094.274
2603

23. Tort, F., Drot-Delange, B., Mano,M.: Filles et informatique: qu’en est-il du concours Castor?.
In: Henry, J., Aude, N., Vandeput, E. (eds.) L’informatique et le numérique en classe. Qui,
quoi, comment?, pp. 69–84. Presses Universitaires Namur, Namur (2017)

24. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-specific perfor-
mance and motivation in the Bebras challenge. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016.
LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-467
47-4_4

https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-319-09958-3_3
https://doi.org/10.1007/978-3-319-46747-4_8
https://doi.org/10.1145/3141880.3141900
https://doi.org/10.3390/informatics6040043
https://doi.org/10.1515/ijicte-2015-0011
https://doi.org/10.15388/ioi.2018.08
https://doi.org/10.15388/ioi.2019.09
https://doi.org/10.1145/2729094.2742603
https://doi.org/10.1007/978-3-319-46747-4_4

Participants’ Perception of Tasks in an Informatics Contest 65

25. Stupurienė, G., Vinikienė, L., Dagienė, V.: Students’ success in the Bebras challenge in
Lithuania: focus on a long-term participation. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016.
LNCS, vol. 9973, pp. 78–89. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-467
47-4_7

26. Izu, C., Mirolo, C., Settle, A., Mannila, L., Stupurienė, G.: Exploring Bebras tasks content
and performance: a multinational study. Inform. Educ. 16(1), 39–59 (2017). https://doi.org/
10.15388/infedu.2017.03

27. Budinská, L., Mayerová, K., Šimandl, V.: Differences between 9–10 years old pupils’ results
from Slovak and Czech Bebras contest. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018.
LNCS, vol. 11169, pp. 307–318. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02750-6_24

28. Tomcsányi, P., Vaníček, J.: International comparison of problems from an informatic contest.
In: Mechlová, E., Valchař, A. (eds.) Proceedings of the Information and Communication
Technology in Education 2009, pp. 219–223. University of Ostrava, Ostrava (2009)

29. Šimandl, V.: Ochrana osobních údajů podle GDPR v soutěži Bobřík informatiky. In: DidInfo
2019, pp. 146–151. Univerzita Mateja Bela, Banská Bystrica (2019)

30. Cohen, J.: Statistical PowerAnalysis for theBehavioral Sciences, 2nd edn. Lawrence Erlbaum
Associates, New Jersey (1988)

31. Chráska, M.: Metody pedagogického výzkumu, 2nd edn. Grada, Praha (2016)
32. King, A.P., Eckersley, R.J.: Descriptive statistics II: bivariate and multivariate statistics. In:

Statistics for Biomedical Engineers and Scientists, pp. 23–56. Academic Press (2019). https://
doi.org/10.1016/b978-0-08-102939-8.00011-6

33. King, A.P., Eckersley, R.J.: Inferential statistics III: nonparametric hypothesis testing. In:
Statistics for Biomedical Engineers and Scientists, pp. 119–145. Academic Press (2019).
https://doi.org/10.1016/b978-0-08-102939-8.00015-3

34. Keller, J., Landhäußer, A.: The flow model revisited. In: Engeser, S. (ed.) Advances in Flow
Research. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-2359-1_3

35. Engeser, S., Schiepe-Tiska, A.: Historical Lines and an overview of current research on flow.
In: Engeser, S. (ed.) Advances in Flow Research. Springer, New York (2012). https://doi.org/
10.1007/978-1-4614-2359-1_1

36. Li, W., Lee, A., Solmon, M.: The role of perceptions of task difficulty in relation to self-
perceptions of ability, intrinsic value, attainment value, and performance. Eur. Phys. Educ.
Rev. 13(3), 301–318 (2007). https://doi.org/10.1177/1356336X07081797

37. Mangos, P.M., Steele-Johnson, D.: The role of subjective task complexity in goal orientation,
self-efficacy, and performance relations. Hum. Perform. 14(2), 169–185 (2001). https://doi.
org/10.1207/S15327043HUP1402_03

38. Cussó-Calabuig, R., Farran, X.C., Bosch-Capblanch, X.: Are boys and girls still digitally
differentiated? The case of Catalonian teenagers. J. Inf. Technol. Educ. Res. 16(1), 411–435
(2017). https://doi.org/10.28945/3879

39. Birol, C., Bekirogullari, Z., Etci, C., Dagli, G.: Gender and computer anxiety, motivation,
self-confidence, and computer use. Eurasian J. Educ. Res. 34, 185–198 (2009)

40. Vekiri, I.: Boys’ and girls’ ICT beliefs: do teachers matter? Comput. Educ. 55(1), 16–23
(2010). https://doi.org/10.1016/j.compedu.2009.11.013

41. Dagiene,V.,Mannila, L., Poranen, T., Rolandsson, L., Stupuriene,G.: Reasoning on children’s
cognitive skills in an informatics contest: findings and discoveries from Finland, Lithuania,
and Sweden. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 66–77.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09958-3_7

https://doi.org/10.1007/978-3-319-46747-4_7
https://doi.org/10.15388/infedu.2017.03
https://doi.org/10.1007/978-3-030-02750-6_24
https://doi.org/10.1016/b978-0-08-102939-8.00011-6
https://doi.org/10.1016/b978-0-08-102939-8.00015-3
https://doi.org/10.1007/978-1-4614-2359-1_3
https://doi.org/10.1007/978-1-4614-2359-1_1
https://doi.org/10.1177/1356336X07081797
https://doi.org/10.1207/S15327043HUP1402_03
https://doi.org/10.28945/3879
https://doi.org/10.1016/j.compedu.2009.11.013
https://doi.org/10.1007/978-3-319-09958-3_7

Engagement and Gender Issues
in School Informatics

Upper- and Lower-Secondary Students’
Motivation to Study Computer Science

Külli Kori1(B) and Piret Luik2

1 Tallinn University, Tallinn, Estonia
kulli.kori@tlu.ee

2 University of Tartu, Tartu, Estonia

Abstract. There is a growing need for upper- and lower-secondary education
institutions to provide computer science (CS) knowledge and skills to learners. As
learners’ motivation plays an important role in their learning and female students
have shown to be less motivated to study CS, the current study focuses on devel-
oping a scale for measuring lower- and upper-secondary students’ motivation to
study CS and investigating the motivation of female and male students.

Datawas collected from740Estonian students from9th and12th grade (55.1%
female) by online questionnaire, which was based on value-expectancy theory.
Nine factors of student’s motivation to study CS were differentiated by Confirma-
tory Factor Analysis: value of future work, importance, altruistic motivation, posi-
tive learning experiences from school, self-efficacy, positive learning experiences,
social pressure, perceived abilities, interest. Multivariate analyses of variance with
the Bonferroni adjustment for multiple comparisons revealed that the factor ‘value
of future work’ was the highest and factor ‘interest’ was ranked the lowest among
motivational factors. Multivariate test between-subjects’ effects with Bonferroni
adjustment indicated that in all of these factors, boys showed higher motivation
to study CS than girls.

The results are valuable for teachers who teach CS in school. When planning
CS lessons, the teachers should consider the type of motivation that drives the
students and put more effort on motivating the girls as the boys are generally more
motivated to study CS. E.g., the teacher can raise students’ interest towards CS
by bringing in real life CS problems and linking the tasks with possible future
work, encouraging girls to participate in CS competition and giving them more
recognition to increase girls’ self-efficacy and interest, which were more highly
rated by boys than girls.

Keywords: Motivation · Computer science · Gender differences

1 Introduction

Increasingly, all countries need people with computer science (CS) skills for various
occupations [1], and there is a growing need for educational institutions, including upper-
and lower-secondary education institutions, to provide CS knowledge and skills to learn-
ers. However, students’ motivation plays an important role in their learning, performing

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 69–78, 2020.
https://doi.org/10.1007/978-3-030-63212-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_6

70 K. Kori and P. Luik

(e.g., [2, 3]) and effectiveness [4]. Motivation is described as being either intrinsic or
extrinsic [5] and can be explained with various aspects based on different motivation
theories [6]. This paper bases on the expectancy-value model of motivation [7, 8], which
involves task value and ability beliefs i.e. expectancies for success.

Historically, the field ofCSwas considered to be amale-dominated profession [9] and
low numbers of females in CS courses from high school to graduate school diminishes
[10]. The same problem is in Estonia. For example, there are 22.7% of women studying
CS on bachelor and 24.6% onmaster level in the University of Tartu in the academic year
2019/2020 (http://www.ut.ee/oppijate-arv/). One reason for such a result might be lack
of role models and encouragement, gender stereotyping, and lack of self-esteem among
females [10], but also different misconceptions of CS such as CS is only programming,
CS is difficult, careers in CS consist of little human interaction [11]. Yukselturk and
Bulut [9] point out that men’s and women’s experiences in learning vary besides other
aspects also by motivation including goal orientation, task value, self-efficacy. Using
the expectancy-value model of motivation, the present paper seeks to understand more
about the motivation to study CS on lower- and upper-secondary education levels and
compare the motivation of female and male students.

2 Previous Studies

Many studies have focused on investigating higher education students’ motivation to
study CS, but less studies can be found about lower- and upper-secondary students. As
student retention is an issue in higher education CS studies, a group of studies have
focused on students’ motivation to find solutions for dropout [12–14]. In addition, a
group of studies have looked into teaching methods used in higher education to motivate
students. For example, different gaming methods have been found to have a positive
impact on students’ motivation to learn programming concepts [15] and students’ learn-
ing on CS courses [16], and organizing teaching around small groups have found to
have benefit on students’ achievement motivation, desire to pursue their studies, self-
confidence etc. [17]. Also, a group of studies have focused on the reasons why students
choose to study CS in higher education. For the first year higher education CS students
in Estonia it has been found that interest in the topic with perceived abilities in CS and
usefulness in the future were the main motivators for choosing CS studies [18]. This
interest in CS formsmostlywhen students are in upper secondary school and have hands-
on experience of doing something related to computers [19]. These activities include
solving computer-related issues, building a computer, trying programming or making
a computer game or web-page. These activities happened both at home and at school.
Therefore, CS lessons in school have a potential of causing students’ interest in CS and
even have an effect on students to choose CS as a career.

On lower- or upper-secondary level several activities are done to motivate students
to study CS. Teachers propose interesting real world CS-related problems, implement
computer games and other graphical applications to the lessons [20], students interest is
increased through using educational robots [21] and games that support the development
of computational thinking skills (e.g., AutoThinking [22]), schools and students are
invited to participate in informatics competitions (e.g., Bebras [23]) to increase the

http://www.ut.ee/oppijate-arv/

Upper- and Lower-Secondary Students’ Motivation to Study Computer Science 71

motivation to study CS and to develop students’ CS skills; and even escape games have
been developed for introducing CS through problem solving in attractive and motivating
environment [24].

As female students are a minority in higher education CS studies, many studies have
looked into this problem. For example, Spieler et al. [25] conducted literature review
and concluded that when female teenagers between 12–15 years decide their future
careers, many factors steer them away from a CS, e.g., stereotypes, preconceptions about
coding, absence of female role models, cultural and social factors, non-supportive CS
classroom, inequality in CS education. Also, males have reported higher motivation and
perceived-usefulness than females among10thgradehigh school students [26].However,
integrating art and animation in teaching computer programming have increased high
school girls’ interest in programming and in pursuing a degree in CS after graduation,
while among boys this change has not been significant [27]. An interesting result has
been found by Papastergiou [11] who declared that there were no gender differences in
motivation for or against studying CS, but girls’ motivation towards studying CS was
more extrinsic than intrinsic, while for boys those two motivational aspects were almost
the same. Also, there were gender differences in perceptions of CS: girls perceived CS
as more hardware- and programming-oriented, but boys perceived it as more human-
and application-oriented [11]. In addition, interesting results have been presented by
Pedaste et al. [14] who found on higher education level that the female students who
have chosen to enroll in CS curricula show higher motivation than the male students in
the same studies. This suggests that the small amount of females who choose CS as a
career are very motivated.

However, when looking at young children, the gender differences do not appear
clearly. A study carried out in Estonia showed that in kindergarten and primary education
both boys and girls are equally interested in the digital world, but the change happens
when students are 10 to 13 years old [28]. At this age, boys become more interested in
CS and girls may lose their interest. Moreover, upper- and lower secondary students who
have special interest in CS often study it independently outside the school because school
lessons are not sophisticated enough for these students. Some studies have also focused
on increasing the opportunities for females in the CS field. For example, Kindsiko,
Türk and Kantšukov [29] found that the obstacles in the way of increasing the role of
females in CS include cultural-gender attitudes, CS studies in general education level,
individual and extra-individual barriers related to CS. In regard to general education
schools, a problem presents itself where in some schools, the boys are encouraged to
take programming lessons and the girls are recommended to take drawing, photography,
etc. classes. Students also may have false understanding that CS is only programming
and they lack the picture of the broad opportunities available in the CS field.

As many studies have looked into students’ motivation to study CS, several instru-
ments have been used. Tomeasure lower- and upper-secondary students’ ICTmotivation,
a scale has been developed and validated for 13–17 years old students in Germany [30].
However, the authors did not find the scale to be useful for measuringmotivation to study
CS in Estonian schools. Still, increasing the number of students who want to pursue CS
profession after graduation from high school is important. Therefore, this study aims

72 K. Kori and P. Luik

to (1) develop the scale measuring motivation to study CS among lower- and upper-
secondary students and to validate it in Estonian context; (2) describe the motivation of
students at the end of lower- and upper-secondary education and to compare motivation
of female and male students. Tho research questions will be answered: (1) What are the
motivational orientations toward CS of 9th and 12th grade students in specially recog-
nised Estonian schools? (2)What gender differences can be found in motivation to study
CS among 9th and 12th grade students in specially recognised Estonian schools?

3 Methodology

3.1 Sample

The sample consisted of 740 students from 9th (age 15–16) and 12th (age 18–19) grade.
The students were studying in 25 schools in Estonia which have shown positive expe-
riences of teaching CS (e.g., have received golden recognition from Information Tech-
nology Foundation for Education or have a field of study in CS for upper-secondary
students). 156 of the participants were studying in 9th grade and 584 were studying in
12th grade. 55.1% of the participants were female. We chose to look at the 9th and 12th
grade students together and not separate them because they both soon have to face a
choice whether to continue studying, and if so, what to study.

3.2 Instrument

The data was collected with an online questionnaire based on expectancy-value the-
ory [7, 8]. The developed questionnaire was based on the FIEM scale [31] measuring
motivation for enrolment in programming MOOC and was developed in cooperation by
university experts in educational theory and CS. Expectations were divided into different
constructs: Positive experiences (e.g., My experiences related to studying IT (e.g. pro-
gramming, robotics, etc.) have been positive), self-efficacy (e.g., I am sure that if I would
study IT, I would be successful in my studies) and Perceived ability (e.g., I have good
programming skills.). Expectancy-value components - intrinsic, subjective attainment
and utility values - were represented following constructs: Interest (e.g., IT is interesting
to me.), Importance (e.g., Studying IT and working in IT gives me a chance to develop
myself), Social utility value (e.g., IT skills give me a chance to make people’s lives
easier) and Personal utility value (e.g., IT skills will get me a good salary in the future.).
As in FIEM scale, we added items describing social influence (e.g., My parents direct
me to pursue activities related to IT). All motivational items were on a 5-point Likert
scale ranging from 1 (totally disagree) to 5 (totally agree). The prefacing statement to
all motivational items was ‘Assess the extent to which you agree with the following
statements?’.

According to thismodel 32 itemswere created and questions about demographic data
(gender, grade, etc.) were added. The questionnaire was piloted with 9th and 12th grade
of students (all together 19 students). In the pilot study respondents wrote comments
about how they understood each item. Items, whichweremisunderstood, were corrected.

Upper- and Lower-Secondary Students’ Motivation to Study Computer Science 73

3.3 Procedure

Initially, the schools who had shown positive experience in teaching CS (e.g., who had
received golden recognition from Information Technology Foundation for Education or
had a field of study in CS for upper secondary students) were contacted. If the school
agreed to participate in the study, then online questionnaires were sent to the schools and
they organized how and when the students filled in the questionnaires. Some schools did
it during a lesson and some asked the students to answer the questionnaire at home. It is
possible that the less motivated students did not answer the questionnaire if they were
asked to do it at home, and this can be considered as one limitation of the procedure.

3.4 Data Analysis

Exploratory and confirmatory factor analyses were performed with Mplus 7.31 program
to analyze the items of motivation and validate the scale. IBM SPSS Statistics 25 was
used for descriptive statistics and comparing the motivation of male and female students.
Multivariate analyses of variance with the Bonferroni adjustment was used for multiple
comparisons.

4 Results

4.1 Validation of the Scale Measuring Students’ Motivation to Study CS

To confirm whether the items divide into factors in this manner, a confirmatory factor
analysis was carried out. The results of the confirmatory factor analysis showed that
the items do not divide into 11 factors in this manner, as the model fit indices were not
good enough (especially in the case of TLI and CFI). To find a fitting model that would
characterize the responses of students, an exploratory factor analysis was carried out.
Based on this, a 9-factor model was chosen as having the best fit (TLI = 0.956, CFI =
0.977, RMSEA = 0.041, SRMR = 0.017).

The 9 factors were:

1. Factor ‘Positive learning experience’ (Cronbach’s alpha 0.717) contained three items
and the standardized factor loadings ranged from 0.57 to 0.74 (estimated residual
variance from 0.389 to 0.566),

2. Factor ‘Self-efficacy’ (Cronbach’s alpha 0.890) contained three items with the stan-
dardized factor loadings from 0.78 to 0.92 (estimated residual variance from 0.158
to 0.303),

3. Factor ‘Value of future work’ (Cronbach’s alpha 0.896) contained two items with the
standardized factor loadings 0.90 and 0.91 (estimated residual variance from 0.174
to 0.194),

4. Factor ‘Interest’ (Cronbach’s alpha 0.915) contained four items and the standardized
factor loadings ranged from 0.75 to 0.94 (estimated residual variance from 0.089 to
0.324),

5. Factor ‘Importance’ (Cronbach’s alpha 0.836) contained four items and the stan-
dardized factor loadings ranged from 0.59 to 0.87 (estimated residual variance from
0.232 to 0.550),

74 K. Kori and P. Luik

6. Factor ‘Perceived abilities’ (Cronbach’s alpha 0.860) contained five items with stan-
dardized factor loadings from 0.51 to 0.85 (estimated residual variance from 0.239
to 0.391),

7. Factor ‘Altruistic motivation’ (Cronbach’s alpha 0.877) contained three items and
standardized factor loadings ranged from 0.72 to 0.91 (estimated residual variance
from 0.170 to 0.403),

8. Factor ‘Social influence’ (Cronbach’s alpha 0.720) contained six items with stan-
dardized factor loadings from 0.43 to 0.66 (estimated residual variance from 0.232
to 0.508),

9. Factor ‘Positive learning experiences from school’ (Cronbach’s alpha 0.801) con-
tained four items and standardized factor loadings ranged from 0.53 to 0.86
(estimated residual variance from 0.242 to 0.564)

All standardized factor loadings and item reliabilities were moderate or high.

4.2 Students’ Motivation to Study CS

An average rating of each factor on a 5-point scale is represented in Table 1. All the
factors were statistically significantly different from each other (F (1,717)= 14,470.226,
p < 0.01; multiply comparison with Bonferroni adjustment all p < 0.05). The results
showed that students’ motivation was highest in relation to the factor ‘value of future
work’ (average rating 3.82). This factor comprised the items related to good job position
and good pay in the CS field and clearly shows the importance of extrinsic variables. This
was followed by factor ‘importance’, which put together items related to the usefulness
of CS skills and to the opportunities of self-realization and self-development (average
rating 3.55). This factor comprised items related to mostly intrinsic variables. These
factorswere followedby factors ‘altruisticmotivation’ (average rating 3.39) and ‘positive
learning experiences from school’ (average rating 3.34). The lowest rated factors were
‘interest’ (average rating 2.72) and ‘perceived abilities’ (average rating 2.86). However,
all factors were evaluated higher than the neutral point of the scale (2.5).

The male students rated all the factors statistically significantly higher than female
students. Comparing ratings of male and female students using multivariate analyses of
variance with the Bonferroni adjustment for multiple comparisons revealed that there
were statistically significant differences between the males and females in all motiva-
tional factors (see Table 1). The greatest differences betweenmales and females emerged
in factors ‘self-efficacy’ and ‘interest’, where the values of F statistics were over 90. F-
value comparing factors ‘social influence’ and ‘perceived abilities’ was also greater than
60 indicating a bigger difference. Smaller gender differences were in factors ‘value of
future work’ and ‘positive learning experiences from school’, where F value was less
than 10.

Upper- and Lower-Secondary Students’ Motivation to Study Computer Science 75

Table 1. Students’ average rating of factors related to motivation.

Factor Overall average
rating (SD)

Female students’
average rating (SD)

Male students’
average rating
(SD)

F statistic
(p-value)

Value of future
work

3.82 (1.00) 3.74 (1.02) 3.93 (0.95) 6.958
(<0.001)

Importance 3.55 (0.92) 3.42 (0.92) 3.72 (0.89) 19.220
(<0.001)

Altruistic
motivation

3.39 (1.01) 3.28 (0.99) 3.53 (1.01) 11.210
(<0.001)

Positive learning
experiences from
school

3.34 (0.94) 3.25 (0.91) 3.44 (0.97) 7.456
(<0.001)

Self-efficacy 3.01 (1.05) 2.69 (1.00) 3.41 (0.96) 97.613
(<0.001)

Positive learning
experiences

2.98 (1.03) 2.76 (0.97) 3.24 (1.04) 39.566
(<0.001)

Social influence 2.88 (0.72) 2.67 (0.65) 3.13 (0.73) 77.332
(<0.001)

Perceived abilities 2.86 (0.75) 2.67 (0.68) 3.09 (0.76) 60.085
(<0.001)

Interest 2.72 (0.75) 2.49 (0.66) 3.00 (0.75) 94.140
(<0.001)

5 Discussion and Conclusion

The study aimed to develop a scale for measuring motivation to study CS among lower-
and upper-secondary students and to validate it in Estonian context. The aim was also to
describe the motivation of students at the end of lower- and upper-secondary education
and to compare the motivation of female and male students.

Scale for measuring motivation to study CS was created and tested with 9th and
12th grade students. The 9-factor model was found to be the best for the scale. Four
of these factors represented expectancies: 1) self-efficacy, 2) perceived abilities; and
positive experiences which splitted into two factors: 3) positive learning experiences
and 4) positive learning experiences from school. Four factors represented expectancy-
value components: 5) interest, 6) importance, 7) value of future work as personal utility
value and 8) altruistic motivation as social utility value. The ninth factor described was
9) social influence. The factors accorded to the theoretical model based on the value-
expectancy theory [7, 8] and the model showed sufficient indices in CFA. Therefore, we
can conclude that the instrument is validated in Estonian schools which have received
special recognition for CS teaching and the instrument can be used in future studies as
well.

76 K. Kori and P. Luik

Based on the results we can answer the first research question “What are the moti-
vational orientations toward CS of 9th and 12th grade students in specially recognised
Estonian schools?”. In general, Estonian students’ motivation to study CS was rather
high. This supports the facts that there is a high competition every year for CS related
curricula in Estonian higher education institutions [32] and a lot of people in Estonia
choose to enroll in CS related MOOCs where the completion rates are unusually high
[33]. The lower- and upper-secondary students who participated in the study evaluated
the highest ‘value of future work’, and ‘importance’ among the motivational factors. The
lowest rated motivational factor was ‘interest’. This differs from the results that have
previously been found while investigating higher education students. For the first year
CS students in Estonia ‘interest in a topic with perceived abilities in CS’ and ‘usefulness
in the future’ were the main motivators for choosing CS studies [18].

AsCS is consideredmale-dominated profession [9], gender differences inmotivation
to study CS were seeked and the answer to the second research question “What gender
differences can be found in motivation to study CS among 9th and 12th grade students
in specially recognised Estonian schools?” was found. Male students showed higher
motivation than females in all the factors. The greatest differences emerged in the factors
‘self-efficacy’ and ‘interest’, also high differences emerged in ‘social influence’ and
‘perceived abilities’. The students who participated in the study were over 15 years
old and as it was concluded previously [28] boys between age 10 to 13 become more
interested in CS and girls at the same age may lose their interest.

Differences between male and female students were the smallest in factors ‘value
of future work’ and ‘positive learning experiences from school’. This suggests that
both male and female students see similarly the value of CS skills at future work and
have got positive CS related learning experiences from school. This result does not
support findings by Papastergiou [11] who found that there are no gender differences
in motivation for or against studying CS. Also, we can’t conclude that female students’
motivation towards studying CSwas more extrinsic than intrinsic and in the case of male
students’ these aspects were almost the same as was found previously [11].

The results of the current study are valuable for teachers who teach CS in lower- or
upper-secondary level as the teacher should consider the type of motivation that drives
students.When planning theCS lessons, the teacher should putmore effort onmotivating
girls to studyCSas boys are generallymoremotivated than girls. For example, the teacher
can raise students’ interest towards CS by bringing in real life CS problems and linking
the tasks with possible future work, encouraging girls to participate in CS competition
and giving them more recognition to increase girls’ self-efficacy and interest, which
were more highly rated by boys than girls.

Acknowledgements. This research was partnered with TransferWise to research the technology
skills gap in Estonian schools and how to fix it.

References

1. OECD: Education at a Glance 2018: OECD Indicators. OECD Publishing, Paris (2018)

Upper- and Lower-Secondary Students’ Motivation to Study Computer Science 77

2. Anderman, E., Wolters, C.: Goal, values, and affect. In: Alexander, P., Winne, P. (eds.)
Handbook of Educational Psychology, 2nd edn., pp. 369–389. Erlbaum Publishers, Mahwah
(2006)

3. Munoz-Merino, P.J., Fernandez,M.,Munoz-Organero,M., Delgado, C.:Motivation and emo-
tions in competition systems for education: an empirical study. IEEE Trans. Educ. 57(3),
82–187 (2014)

4. Cerasoli, C.P., Ford, M.T.: Intrinsic motivation, performance, and the mediating role of
mastery goal orientation: a test of self-determination theory. J. Psychol. 148(3), 267–286
(2014)

5. Ryan, R.M., Deci, E.L.: Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being. Am. Psychol. 55(1), 68–78 (2000)

6. Schunk, D.H., Pintrich, P.R., Meece, J.L.: Motivation in Education: Theory, Research, and
Applications, 4th edn. Boston Pearson (2014)

7. Eccles, J.S., Wigfield, A.: Motivational beliefs, values, and goals. Annu. Rev. Psychol. 53,
109–132 (2002)

8. Wigfield, A., Eccles, J.S.: Expectancy-value theory of achievement motivation. Contemp.
Educ. Psychol. 25, 68–81 (2000)

9. Yukselturk, E., Bulut, S.: Gender differences in self-regulated online learning environment.
Educ. Technol. Soc. 12(3), 12–22 (2009)

10. Cantwell Wilson, B.: A study of factors promoting success in computer science including
gender differences. Comput. Sci. Educ. 12(1–2), 141–164 (2002)

11. Papastergiou, M.: Are computer science and information technology still masculine fields?
High school students’ perceptions and career choices. Comput. Educ. 51(2), 594–608 (2008)

12. Peteranetz, M.S., Flanigan, A.E., Shell, D.F., Soh, L.K.: Future-oriented motivation and
retention in computer science. In: Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, pp. 350–355 (2018)

13. Kori, K., Pedaste, M., Altin, H., Tõnisson, E., Palts, T.: Factors that influence students’ moti-
vation to start and to continue studying information technology in Estonia. IEEE Trans. Educ.
59(4), 225–262 (2016)

14. Pedaste, M., et al.: How do cognitive ability and study motivation predict the academic
performance of IT students? In:GómezChova, L., LópezMartínez, A., Candel Torres, I. (eds.)
ICERI2015, 8th International Conference of Education, Research and Innovation, pp. 7167
− 7176. IATED Academy (2015)

15. Barnes, T., Powell, E., Chaffin, A., Lipford, H.: Game2Learn: improving the motivation of
CS1 students. In: Proceedings of the 3rd International Conference on Game Development in
Computer Science Education, pp. 1–5 (2008)

16. Borrego, C., Fernández, C., Blanes, I., Robles, S.: Room escape at class: escape games
activities to facilitate the motivation and learning in computer science. JOTSE 7(2), 162–171
(2017)

17. López-Fernández, D., Tovar, E., Raya, L., Marzal, F., Garcia, J.J.: Motivation of com-
puter science students at universities organized around small groups. In: 2019 IEEE Global
Engineering Education Conference (EDUCON), pp. 1120–1127. IEEE (2019)

18. Säde, M., Suviste, R., Luik, P., Tõnisson, E., Lepp, M.: Factors that influence students’ moti-
vation and perception of studying computer science. In: SIGCSE 2019 Proceedings of the
50th ACM Technical Symposium on Computer Science Education, pp. 873–878 (2019)

19. Kori, K., Altin, H., Pedaste, M., Palts, T., Tõnisson, E.: What influences students to study
information and communication technology? In: L. Gómez Chova, A. López Martínez, I.
Candel Torres (eds.) INTED2014 Proceedings, pp. 1477 − 1486. IATED Academy (2014)

20. Scapin, E., Mirolo, C.: An exploration of teachers’ perspective about the learning of iteration-
control constructs. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2019. LNCS, vol. 11913,
pp. 15–27. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33759-9_2

https://doi.org/10.1007/978-3-030-33759-9_2

78 K. Kori and P. Luik

21. Altin, H., Pedaste, M.: Learning approaches to applying robotics in science education. J. Balt.
Sci. Educ. 12(3), 365–377 (2013)

22. Hooshyar, D., Lim, H., Pedaste, M., Yang, K., Fathi, M., Yang, Y.: AutoThinking: an adaptive
computational thinking game. In: Rønningsbakk, L., Wu, T.-T., Sandnes, F.E., Huang, Y.-M.
(eds.) ICITL 2019. LNCS, vol. 11937, pp. 381–391. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-35343-8_41

23. Dagienė, V., Futschek, G.: Bebras international contest on informatics and computer literacy:
criteria for good tasks. In:Mittermeir, R.T., Sysło,M.M. (eds.) ISSEP 2008. LNCS, vol. 5090,
pp. 19–30. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69924-8_2

24. Hacke, A.: Computer science problem solving in the escape game “Room-X”. In: Pozdniakov,
S.N., Dagienė, V. (eds.) ISSEP 2019. LNCS, vol. 11913, pp. 281–292. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33759-9_22

25. Spieler, B., Oates-Indruchova, L., Slany,W.: Female teenagers in computer science education:
understanding stereotypes, negative impacts, and positive motivation. J. Woman Minor. Sci.
Eng. (2019)

26. Chen,M.: The effects of prior computer experience and gender on high school students’ learn-
ing of computer science concepts from instructional simulations. In: 10th IEEE International
Conference on Advanced Learning Technologies, Sousse, pp. 610–612 (2010)

27. Jawad,H.M.,Tout, S.,Abualkibash,M.,Xie,Y.: Integrating art and animation in teaching com-
puter programming for high school students experimental study. In: 2018 IEEE International
Conference on Electro/Information Technology (EIT), pp. 0311–0317 (2018)

28. Tuleviku tegija teekond startup ökosüsteemi. Uuringu raport. Rakendusliku Antropoloogia
Keskus (2018). https://media.voog.com/0000/0037/5345/files/Raport%2015.11.18.pdf.
Accessed 02 May 2020

29. Kindsiko, E., Türk, K. Kantšukov, M.: Naiste roll ja selle suurendamise võimalused Eesti IKT
sektoris: müüdid ja tegelikkus 1-27 (2015). https://majandus.ut.ee/sites/default/files/www_
ut/naiste_roll_ikt._tu_mj-skype_uuring_2015.pdf. Accessed 02 May 2020

30. Senkbeil, M.: Development and validation of the ICTmotivation scale for young adolescents.
Results of the international school assessment study ICILS 2013 in Germany. Learn. Individ.
Differ. 67, 167–176 (2018)

31. Luik, P., et al.: What motivates enrolment in programming MOOCs? Br. J. Educ. Technol.
50(1), 153–165 (2019)

32. Kori, K., et al.: Why do students choose to study Information and Communications
Technology? Procedia Soc. Behav. Sci. 191, 2867–2872 (2015)

33. Lepp, M., et al.: MOOC in programming: a success story. In: Proceedings of the International
Conference on e-Learning, pp. 138–147 (2017)

https://doi.org/10.1007/978-3-030-35343-8_41
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-030-33759-9_22
https://media.voog.com/0000/0037/5345/files/Raport%2015.11.18.pdf
https://majandus.ut.ee/sites/default/files/www_ut/naiste_roll_ikt._tu_mj-skype_uuring_2015.pdf

Tips and Tricks for Changing the Way
Young People Conceive Computer Science

Cécile Lombart, Anne Smal, and Julie Henry(B)

Namur Digital Institute, Computer Science Department,
University of Namur, Namur, Belgium
{school-it,julie.henry}@unamur.be

Abstract. Many youths have an incomplete perception of what com-
puter science is, which leads to a lack of interest in studies on informa-
tion and communication technologies. However, there is a large gap to
be filled in terms of jobs in this field. It is therefore important to make
young people aware of what computer science is about and of the jobs
associated with it, specifically at this age as they do not yet have a pre-
cise vision of their future career. To meet this challenge, workshops have
been organized to expose 12 to 15-year-olds to the basic concepts of com-
puter science and its subfields, such as programming, robotics, computer
networking, artificial intelligence, and cybersecurity. Over three years,
data were collected to measure the influence of hands-on workshops con-
ducted in the classroom on young people’s conceptions. The workshops
offered an introduction to a field of computer science poorly understood
by most young people. Analysis of the data collected from more than
200 pupils across six different schools shows the important role played
by both the themes addressed and the teacher’s discourse. In particular,
comparisons with workshops conducted by experts highlight the problem
of the lack of teacher training.

Keywords: Computer science education · K12 · Didactic · Workshops

1 Introduction

In the French-speaking part of Belgium (Wallonia), computer science, including
computational thinking, is almost missing from compulsory education, namely
for 5 to 18-year-old students [16,22]. Because no specific computing course is
organized, few solutions are available to introduce children to computer science
within their school curriculum. Moreover, teachers are not trained [15] to teach
digital skills [17]. However, Belgian education has been undergoing a major and
complete reform1 that stipulates that “from primary school, an introduction to
digital logic can be achieved by programming simple machines” and also evokes
a “minimum mastery of tool logic - program or be programmed.” A forthcom-
ing polytechnic education curriculum between 3 and 15 years is also envisioned,
1 “Le Pacte pour un Enseignement d’Excellence”.

c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 79–93, 2020.
https://doi.org/10.1007/978-3-030-63212-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_7&domain=pdf
http://www.enseignement.be/index.php?page=28280
https://doi.org/10.1007/978-3-030-63212-0_7

80 C. Lombart et al.

including digital literacy. Despite the desire to develop digital skills from an early
age, the content of such education has yet to be defined [18], and currently only
algorithms and programming are mentioned with regard to computer science.

Companies cite a lack of workers trained in digital skills and experts in various
fields related to information and communication technologies. Although enrol-
ments in computer-related studies are increasing, they are still insufficient and
the “gender gap” is still not being bridged. But how can Walloon teenagers enrol
in a discipline they do not understand? One solution could be short workshops
that can be directly integrated into an existing technology-related course, and
which could be integrated into the future digital literacy course. That is what
the school-IT project2 is all about.

This project was started in September 2017, partly funded by a plan for
digital equipment in schools3. It promotes digital literacy for K12 students with
three objectives: teach computer science as a fundamental discipline, modify the
conceptions of computer science among teenagers to encourage their integration
into recruitment channels, and aim at a civic education to enable them to be
autonomous and reflective in their digital practices.

The workshops developed in this context4 give priority to variety in the fields
covered (communication, network, human-machine interaction, artificial intelli-
gence, etc.), in the processes highlighted (analysis, coding, testing, etc.), and
in the equipment used (unplugged activities, micro:bit5, Makeblock6, thymio7,
Bee-Bot, etc.). The goal of such workshops is to increase teenagers’ interest in
computer science in the hope that they realize the richness and diversity that
characterize this discipline. But changing the teenagers’ conceptions is not sim-
ple and undesired conceptions can appear. In consequence, attention must be
paid to the design of such workshops.

This paper proposes to inform future workshops designs by answering the
following research question: How can workshops aimed at discovering computer
science change the children’s conceptions of computer science and computer sci-
entists?. In order to provide insights into this question, we have been conducting
workshops under real conditions with children aged 12 to 15 for two years.

2 Related Work

It is not easy for learners to discard their existing conceptions and adopt new
ones [8], especially if these conceptions are fuelled by the media. Existing con-
ceptions are sometimes incorrect, and thus called misconceptions.

According to Ben-Ari [1], the constructivism theory “claims that knowledge
is actively constructed by the learner (. . .). Since the construction builds recur-
sively on knowledge that the learner already has, each learner will construct an
2 https://school-it.info.unamur.be/.
3 “École Numérique”.
4 Available on the school-IT website.
5 http://microbit.org/.
6 https://www.makeblock.com/.
7 https://www.thymio.org/.

https://school-it.info.unamur.be/
http://microbit.org/
https://www.makeblock.com/
https://www.thymio.org/

Tricks for Changing the Way Young People Conceive Computer Science 81

idiosyncratic version of knowledge. To the extent that such knowledge is not
identical with ‘standard’ scientific knowledge, the learner is said to have miscon-
ceptions.”

According to Maier [24], the way to resolve or prevent misconceptions is
to directly confront the learner with an experience that causes an imbalance.
Challenging learners’ existing ideas encourages them to detect problems in their
understanding and to motivate them to build appropriate understandings [29].
Generally, a cognitive conflict teaching strategy involves three steps: investigat-
ing learners’ prior knowledge and existing conceptions; challenging learners with
contradictory information; evaluating the conceptual change between learners’
prior ideas and current ones [23]. Thus, because learners have to be confronted
with their misconceptions, these are a prime source of material for teachers to
build teaching resources.

In this section, related work is organized under three main topics: conceptions
of computers, computer science and computer scientists.

2.1 Children’s Conceptions of Computers

Children grow up surrounded by computers and interact with them. As a con-
sequence, children start forming conceptions of how computers work and what
their basic capabilities are. Rücker [26] presented five distinct conceptions iden-
tified from a literature review.

First, “the computer is often anthropomorphized and seen as some kind of
living entity that is better understood in terms of psychology rather than tech-
nology”. Children attribute to the computer “some form of mind or brain as
well as various mental states like motivations, intentions or even emotions”. Sec-
ond, the computer is an omniscient database: it knows everything (unlimited
storage of data) and knows everything by heart (by providing access to infor-
mation). Consequently, the computer does not really compute anything at all.
Third, the computer is mechanical because of how it is built. The computer is
seen as an intricate clockwork, where data and processes are physical entities.
Fourth, the computer is a network of different components connected together
because it is a very complex electronic device. “what exactly is wired to what
initially remains a complete mystery”. Last but not least, the computer is pro-
grammable: their “behaviour and capabilities are determined by humans and
can be changed by humans”. According to Rücker [26], not all of these concep-
tions appear to be equally persistent over time: intrinsic capabilities are more
tenacious while the conceptions related to hardware are logically more influenced
by technological developments. Moreover, a child may hold several conceptions
simultaneously, which may or may not be selected in a given context or situ-
ation”. For Rücker [26], “education needs to take this into account and make
children aware of such advantages and limitations”.

Investigating children’s current conceptions of computers is essential, as is
communicating the results of such research to teachers in charge of introductory
computer courses.

82 C. Lombart et al.

2.2 Children’s Conceptions About Computer Science

In the past decade, there have been a number of studies on 12–18-year-old stu-
dents’ misconceptions about the nature of computer science, and related career
prospects. These studies suggest that students are unaware of what computer
science is. Their misconceptions impact both their interest in computer science
and their affinity for this specific academic field.

In 1998, Greening [9] asked a fundamental question: “Is it the case that
many students who enroll for a first computer science course do so with some
very limiting misconceptions of what the discipline entails?”. He considered that
“students might also not be enrolling in computer science courses due to mis-
conceptions”. This belief that students choose not to major in computer science
because they have an incorrect or inadequate conception of the field (or none
at all) is supported by several studies [2,5,6,27]. For Brinda [5], pupils develop
inadequate beliefs in computer science because they often only have experiences
in information and communication technology.

The solution is to be found in the introduction to computer science which
is proposed from the earliest age. Greening [9] proposed “a basis for evolving
coursework in such a way that it increases the likelihood that students become
excited about their learning”. Yardi and Bruckmann [32] suggested that “there
is an opportunity to increase interest in computing among teenagers by bridging
the gap between their conceptions of programming and the actual opportunities
that are offered in computing disciplines”. He proposed a curriculum “to prepare
and motivate teenagers for careers in today’s expanding, Internet-based, global
economy”. Taub [31] suggested additions to unplugged activities to increase the
shift in students’ conceptions of computer science. More recently, Grover [10]
presented the results of “a curricular intervention that aims to show computer
science to [12–14 year-old] students in a new light–in real world contexts and as
a creative and problem-solving discipline; as something bigger and broader than
the computer-centric view that many students are known to harbor”. Two years
later, she reported on middle and high school students’ engagement with an
understanding of the question “what is a computer?” [11]. She urged “educators
to shift the initial focus of introductory courses to the deeper ideas of computing,
computation and computability”.

According to the constructivist perspective on learning [1], the suggestions
made by these experts all point in the same direction: teaching resources must be
written with an awareness of students’ existing conceptions of computer science.

But that seems easier said than done. According to Hewner [21], teaching
teenagers about computer science with introductory courses designed to be engag-
ing, relevant to student interests, and focused on the practice of programming do
not have a significant effect on the students’ attitude about computing. For him,
it is not a viable way to significantly increase interest in computer science as a
major [21]. Taub is slightly more optimistic [31]. His results show that “computer
science unplugged activities did start a process of changing the students’ views,
but that this process was partial”. Among the difficulties in overcoming, Taub
cites “students’ difficulties in identifying relationships between computer science

Tricks for Changing the Way Young People Conceive Computer Science 83

unplugged activities and central ideas in computer science”. This optimistic vision
is shared by Henry [17]. She developed workshops to expose children aged 12–14
to core concepts in programming by letting them manipulate widespread tangible
embedded systems and measured its influence on children’s conceptions of com-
puter science. Among the lessons to be drawn from this study, the meaning of the
workshops and their objectives must be well thought out, governed by the vision
of computer science to be transmitted to children.

2.3 Children’s Conceptions of Computer Scientists

For many years, the draw-a-“something” technique is used to determine atti-
tudes and beliefs about whatever the “something” is. According to Martin [25],
children most often depict computer scientists as “white males in various degrees
of geekiness” (described as including features such as glasses, pocket protectors,
acne, messy hair, eyes glued to a computer monitor, overweight, eating junk food,
wearing t-shirt with obscure computer code, etc.). These results are similar to
those described by Hansen. She used a Draw-A-Scientist-Test [13] with children
(ages 9–10) before and after a computer science curriculum [14]. After the cur-
riculum, more female students drew female computer scientists than before, and
the featured actions were more specific to computer science (not to technology
in general: typing, printing, etc.).

So, understanding children’s conceptions helps to identify when stereotypes
begin and taking into account these conceptions is essential to counter these
stereotypes.

3 Methodology

In order to measure the impact of short workshops on children’s conceptions of
computer science and computer scientists, a study was conducted in a real-world
setting, extended over two years (between September 2017 and June 2019).

3.1 Sample and Workshops

The workshops were given in five schools. For each school, one teacher volun-
teered. These teachers were responsible for a course entitled “education through
technology” (ETT) in which it is common practice to introduce students to office
software. Eleven classes took part in the study, i.e. 232 students between 12 and
15 aged.

In 2017–2018, the workshops were given by one of the authors (Anne Smal),
a computer scientist by training. In 2018–2019, the workshops were given by the
teachers in charge of the classes. They did not have computer science training. In
total, 134 students (Sample 1) were given by the expert in computer science, and
98 students (Sample 2) followed the workshops with their regular ETT teachers.
However, it should be noted that the teachers observed, during the first year,
the workshops given by the expert.

84 C. Lombart et al.

The students had between four and eight periods of classes dedicated to
workshops. Not all students had the same workshops, depending on the time
available in each school and the teacher affinity. However, two workshops were
mandatory: a 2-period one introducing digitization, and a 1-period one explain-
ing the working of a computer through the discovery of the inputs and outputs
of a tangible device (laptop, micro:bit, thymio, tablet, or smartphone). Then,
it was suggested to choose among the workshops introducing the programming
concepts and implemented them with a tangible device (micro:bit or makeblock).

3.2 Data Collection and Analysis

During the study, a survey was set up to collect data, inspired by pretest-post-
test design [28]. This survey was administered to the children before and after
all the workshops given. A period of up to four months elapsed between the two
tests.

The survey consists of open-ended questions: What is computer science?
What is a computer? What can it do? What can it not do? Then, the children
were asked to list the positive and negative points of computer jobs.

Survey responses were manually coded to identify key concepts and to count
the most frequently cited words. A comparison was then made between the
results obtained in the first year (workshops given by the expert) and the results
of the second year (workshops given by the teachers).

4 Results

The results of the study are structured in four sections, taking into account the
questions from the tests administered to the children: the view of the computer
science, the view of the computer, the view of its capabilities, and the view of
computer jobs. The full results are presented in tables in the appendix and only
the most striking observations are included in the text.

4.1 Students’ View of Computer Science

For the sentence to be completed “For you, computer science is . . .” (Table 1),
before the workshops, 50.0% of the Sample 1 pupils mentioned the word “com-
puter” at least once. After the workshops, that number drops to 41.8%. Consid-
ering Sample 2 pupils, the number of times the word “computer” is mentioned is
almost constant changing from 39.4% to 38.8%. In French, “computer” translates
to “informatique”, so the word computer does not appear in the question.

Whereas pupils talk about hardware (mouse, keyboard) before the work-
shops, this is mostly no longer the case afterwards. However, after the expert’s
intervention, more of the pupils in Sample 1 talk about input/output (+7.5%).

Sample 2 pupils talk more about robots after the workshops (+11.8% vs.
+3.8% for Sample 1 pupils). In both samples, the pupils mention the word

Tricks for Changing the Way Young People Conceive Computer Science 85

“code” more after the workshops (+16.2% for Sample 2 and +5.9% for Sample
1 pupils).

The association between computer science and the Internet is more present
in 2017–2018, but it decreases with the impact of the workshops (−5.3%). The
following year, a small increase is observed in Sample 2 after the teachers’ inter-
vention (+2.2%).

For software, the trends are reversed. Whereas in 2017–2018 they were men-
tioned by nearly 9% of pupils before the workshops, this was the case for only 1%
of the pupils in Sample 2. However, after the workshops, only 1.5% of the pupils
in Sample 1 talk about software, compared to 9.5% of the pupils in Sample 2.
The same pattern is observed for video games.

Finally, artificial intelligence is evoked by more Sample 2 pupils after the
workshops (+5.4%).

4.2 Pupils’ View of Computer

To the question on what a computer is (Table 2), before the workshops, the
Sample 1 pupils mostly talk about a machine, with a screen, a keyboard and a
mouse, having a memory and capable of acting alone. They also talk about a
very common use, the search for information. After the workshops, these pupils
talk more about input/output, always referring to memory, but associate it to
the processor.

When a teacher gives the workshops, the observations differ. Sample 2 pupils
describe the computer from a hardware point of view (screen, mouse, keyboard)
before and after the workshops. Few pupils mentioned the component aspect
(processor, memory) before the workshops, this number decreases after the work-
shops. Furthermore, the number of pupils describing the uses of the computer
(communication, research) increases slightly. Finally, nearly 12.8% of the Sample
2 pupils (+9.8%) mention artificial intelligence after workshops.

4.3 Pupils’ View of Computer Capacity

Pupils had to answer two questions: “What can a computer do?” and “What
can’t a computer do?” (Table 3 and 4).

Results highlight that pupils think first of all about the computer being able
to do research, to go online, and to store data. After the workshops, use for
research is still cited by more than one third of the pupils.

The evoking of video games decreases strongly after the workshops for both
samples.

There is an increase in the number of pupils thinking that a computer can
do everything (+7.3% for Sample 1 and +2.4% for Sample 2) before and after
the workshops. These results are confirmed by the results of what the computer
can’t do question, with some pupils answering “nothing” (+4.5% for Sample 1
and +7.5% for Sample 2).

When the workshops are given by the expert, 6.0% of the pupils think after
the workshops that the computer cannot do anything without the human.

86 C. Lombart et al.

Finally, after the workshops, Sample 2 pupils talk more about “coding”
(+15.6%).

4.4 Pupils’ View of Computer Jobs

Pupils were asked what they found positive and negative about working in com-
puter science (Table 5 and 6).

Concerning the positive aspects of computer jobs, there is an increase in the
number of children who find them useful for society. This increase is the same
for the workshops presented by the expert and by the teachers. Sample 1 pupils
think that computer science helps people.

The pupils in Sample 1 move away from the idea that a computer job requires
the use of a computer, while this idea is reinforced among the pupils in Sample 2.

The fun side decreases for all pupils, while creativity only increases for the
pupils in Sample 1.

For the negative aspects of computer jobs, Sample 1 pupils’ responses
decrease in almost all points except for the attractiveness. When the workshops
are presented by the teachers, negative health aspects and the static side of jobs
are mentioned by more pupils after the workshops.

5 Discussion

A first observation to be made is the confusion that is always present among
children between computers, the computer jobs, and the computer in its most
classic form (with a screen, keyboard, and mouse). Although distinct, the ques-
tions asked suffered from this confusion. However, lessons can be learned from
the responses.

In general, the computer scientist was more careful to keep the child away
from the computer (in its classic form) to make him/her understand its internal
functioning, including the functioning of its components (memory, processor).
This is not surprising since this study is part of a project aimed at changing
children’s conceptions of computer science. The computer scientist aims at a
better view of computing. Given the mandatory workshops, the teachers also
had to delve into these ideas (computing, computation and computability). The
measured difference between the two samples could be explained by the teacher’s
lack of training, by a lack of confidence in the teaching to be imparted, or by
the fact that the teacher probably insisted less on these ideas, which the expert
considered crucial.

Teachers seem to draw inspiration from the media to develop their knowledge
of the computer field. This certainly explains the evocation, by their pupils, of
robots and artificial intelligence, notions not present in the workshops given, but
which are regularly in the media headlines. The evocation of software and video
games, more cited by the pupils of Sample 2 also shows that the teachers rely
on their knowledge and frequent uses.

Tricks for Changing the Way Young People Conceive Computer Science 87

The increase in discussions around programming is logically due to the con-
tent of the workshops. However, it is much more pronounced among Sample
2. Once again, this can be explained by the expert’s attention to showing the
variety that exists in computer jobs.

The capacities of the computer are limited to current use or extrapolated
(capable of anything). Here again, the expert tried to give back to the human
what is due to him/her, i.e. the intentions of the computer. Teachers seem to
have been less insisting on this point.

The reactions concerning the jobs once again highlight the precaution taken
by the expert to enhance the value of her job. The intervention of the teachers
seems to have a relatively weak, even rather negative impact.

In concluding this study, it appears that it is difficult to change children’s
conceptions if certain conditions are not met. But what are those conditions?

– Being clear about the message to be conveyed: don’t teach computer science to
only teach computer science. Whereas the expert is aware of what she has to
bring, things are different for the teachers who are struggling in a field they
do not master.

– Becoming as much as possible a role model or promote inspiring role models.
The expert becomes a role model for the pupils who then have in front of
them someone who should work daily in front of a computer (according to
their conceptions) but who says she does much more than that. If it is not
possible for teachers to be role models themselves, they can make their pupils
discover inspiring ones through personal stories. Accessible role model should
be preferred to rare cases of success [30].

– Taking sufficient time. It is clear that it is difficult to change deeply rooted
conceptions, especially if the time devoted is short. Unfortunately, it seems
that the solution will not be a one-shot introduction to computer science.

– Being careful what is said. Teachers have to be informed of existing stereo-
types in order to deconstruct them and not feed them. This would also allow
them to take a critical look at the media and the metaphors commonly
used [4].

– Discovering different sub-fields of computer science. It is important to show
different sub-fields of computer science (AI, cybersecurity, human-machine
interface, etc.) to avoid reinforcing stereotypes and changing the way young
people view it.

– Training to master. If it is necessary to play on the themes addressed (AI,
cybersecurity, human-machine interface, etc.), this forces teachers to master
more than the skills increasingly demanded in teaching, which are algorithmic
and programming. Mastering the material means mastering the basic concepts
and mastering the associated vocabulary, being confident, and being able to
detach oneself from the material itself, but also from the media in order to
take a step back. This step back is essential if pupils are to be encouraged to
take a critical stance with regard to computer science.

– Detaching from the computer in its most classic form (screen, mouse, and
keyboard). As pupils mainly talk about computers when referring to computer

88 C. Lombart et al.

science, the ideal is to get as far away from them as possible to develop their
view and to show them other aspects and devices (micro:bit, makeblock,
thymio, etc.). An unplugged activity can be just as effective in changing
mentalities.

6 Conclusion

In an increasingly digital world, there is a lack of human resources in the com-
puter job market. The misconceptions that teenagers have of what computer
science is and what it implies in terms of jobs is a possible cause. Therefore,
we are interested in the following research question: How can workshops aimed
at discovering computer science change the children’s conceptions of computer
science and computer scientists?.

Short workshops have been developed to introduce teenagers to computer
science. During two years, these workshops were organized in 5 schools with
over 200 pupils aged 12–15 years. The first year, the workshops were given by a
computer scientist, and the second year, by the regular teachers of the pupils. To
collect data, a survey was conducted before and after each sequence of workshops,
following a pretest-post-test design. The purpose of the survey was to identify
changes in teenagers’ conceptions of computer, computer science, and computer
scientist.

Several elements were highlighted by this study. The most important is that
there is a big difference in impact between workshops given by a computer scien-
tist and the same workshop given by a teacher. The computer scientist with an
in-depth knowledge of stereotypes knows how to orient the workshops because
he/she has the time to make some research about those stereotypes. It is also
logically easier for him/her to convey key concepts. Special attention should
be paid to deconstructing the erroneous stereotypes that teenagers have about
computers. The idea is to start from the representations that teenagers have
and to propose workshops asking them to revise their knowledge by confronting
them with the reality of people working in this field. This action is not possible
without a training, unfortunately often absent or incomplete among teachers.

Another insight we can draw from this study is that the choice of workshops
proposed is also very important. It is important to enrich the vision of teenagers
by avoiding to propose only workshops that present sub-fields already known to
computer science (programming, among others). It is important to target sub-
fields that people think less of when they think about computer science (often
because of stereotypes and the vision diffused by the media), such as human-
machine interaction, cybersecurity, modelling, etc.

Finally, particular attention must also be paid to the choice of the equipment
used. It is at the price of respecting these conditions that we can hope to improve
teenagers’ view of computers, computer science, and computer scientist.

Tricks for Changing the Way Young People Conceive Computer Science 89

A Results Tables

Table 1. What is computer sciences?

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

Computer 50.0 41.8 39.4 38.9

Screen/Mouse/Keyboard 6.7 0.0 8.1 2.1

Smartphone 14.2 4.5 6.1 3.2

Television 2.2 0.7 1.0 3.2

Electronic machine 10.4 8.2 13.1 10.5

Robot 0.7 4.5 7.1 18.9

Internet 7.5 2.2 2.0 4.2

Communication 1.5 0.0 3.0 0.0

Networks 2.2 1.5 1.0 1.1

Video games 5.2 0.7 0.0 4.2

Code/program 7.5 13.4 10.1 26.3

Technology 21.6 9.7 13.1 8.4

AI 2.2 1.5 3.0 0.0

Data 10.4 0.0 5.1 3.2

Software 8.2 1.5 1.0 9.5

Job 11.2 6.0 0.0 0.0

Input/Output 0.0 7.5 0.0 0.0

Table 2. What is a computer?

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

Machine 27.9 18.0 21.0 27.7

“Box” 12.0 10.5 2.0 13.8

Screen/Mouse/Keyboard 25.3 6.0 16.0 19.1

Input/Output 0.0 36.1 3.0 1.1

Processor 2.7 13.5 3.0 1.1

Memory 20.0 24.1 3.0 2.1

Code/program 4.0 2.3 3.0 6.4

Internet 9.3 1.5 6.0 6.4

Communication 6.7 0.0 0.0 1.1

Research 27.9 5.3 3.0 8.5

Software 6.7 6.0 4.0 6.4

AI 5.3 6.0 3.0 12.8

Following orders 6.7 3.0 7.0 8.5

Doing things on its own 23.9 3.0 4.0 8.5

90 C. Lombart et al.

Table 3. What can a computer do?

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

To do research 31.6 30.8 36.0 35.5

To go online 13.5 5.3 12.0 12.9

To program 2.3 3.0 7.0 22.6

To store date 13.5 4.5 12.0 9.7

To do word processing 3.8 3.0 8.0 5.4

To communicate 5.3 5.3 7.0 4.3

To play 8.3 1.5 11.0 1.1

Everything 12.8 20.3 3.0 5.4

Nothing without human action 0.8 6.0 0.0 1.1

Table 4. What can’t a computer do?

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

To move 14.3 12.0 22.0 29

To talk 14.3 12.8 19.0 18.3

To mundane tasks (eat, drink,. . .) 10.0 15.0 31.0 33.3

To think like a human 7.5 5.3 3.0 1.1

Nothing 4.5 9.0 0.0 7.5

Table 5. Positive points of computer jobs

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

Static 0.8 3.0 5.0 3.0

Helping people 3.8 6.0 1.0 1.0

Useful 15.8 24.1 22.0 35.0

Computer use 10.5 6.8 4.0 6.0

Continual learning 11.3 8.3 13.0 11.0

Fun 6.0 3.0 9.0 4.0

A job with a future 8.2 8.9 4.0 6.0

Creativity 4.5 5.3 2.0 1.0

Tricks for Changing the Way Young People Conceive Computer Science 91

Table 6. Negative points of computer jobs

Sample 1 Sample 2

Pretest(%) Post-Test(%) Pretest(%) Post-Test(%)

Bad for your eyesight 31.9 16.5 10.0 25.0

Bad for your health
(addiction, migraine, etc.)

14.6 7.5 6.0 6.0

Static 37.2 21.1 16.0 21.0

Loneliness 10.6 7.5 2.0 2.0

Not attractive 5.3 6.8 15.0 5.0

Difficult 16.0 6.8 11.0 8.0

Scary 1.3 0.0 3.0 4.0

References

1. Ben-Ari, M.: Constructivism in computer science education. J. Comput. Math. Sci.
Teach. 20(1), 45–73 (2001)

2. Biggers, M., Brauer, A., Yilmaz, T.: Student perceptions of computer science: a
retention study comparing graduating seniors with cs leavers. ACM SIGCSE Bull.
40(1), 402–406 (2008)

3. Olivier, B., Smal, A., Frenay, B., Henry, J.: Intelligence Artificielle: Éduquer pour
modifier la représentation qu’en ont les jeunes. In: Une école numérique pour
émanciper? Colloque scientifique, Actes de la conférence, pp. 34–37 (March 2018)

4. Boraita, F., Henry, J., Collard, A.-S.: Developing a critical robot literacy for young
people from conceptual metaphors analysis. In: Proceedings of the 2020 IEEE
Frontiers in Education Conference (FIE) (2020)

5. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: educational stan-
dards for computer science in lower secondary education. ACM SIGSE Bull. 41(3),
288–292 (2009)

6. Carter, L.: Why students with an apparent aptitude for computer science don’t
choose to major in computer science. ACM SIGCSE Bull. 38(1), 27–31 (2006)

7. Collard, A.S., Henry, J., Hernalesteen, A., Jacques, J.: Déconstruire les
représentations médiatiques sur l’intelligence artificielle en jouant à ”Qui est-ce?”.
In: Actes du Colloque International TICEMED (2020)

8. Davis, J.: Conceptual change. In: Emerging Perspectives on Learning, Teaching,
and Technology, vol. 19 (2001)

9. Greening, T.: Computer science: through the eyes of potential students. In: Pro-
ceedings of the 3rd Australasian Conference on Computer Science Education, pp.
145–154 (1998)

10. Grover, S., Pea, R., Cooper, S.: Remedying misperceptions of computer science
among middle school students. In: Proceedings of the 45th ACM Technical Sym-
posium on Computer Science Education, pp. 343–348 (2014)

11. Grover, S., Rutstein, D., Snow, E.: “What is a computer” what do secondary
school students think? In: Proceedings of the 47th ACM Technical Symposium on
Computer Science Education, pp. 564–569 (2016)

92 C. Lombart et al.

12. Gutierrez, F.J., Simmonds, J., Casanova, C., Sotomayor, C., Hitschfeld, N.: Cod-
ing or hacking? Exploring inaccurate views on computing and computer scientists
among K-6 learners in Chile. In: Proceedings of the 49th ACM Technical Sympo-
sium on Computer Science Education, pp. 993–998 (2018)

13. Hansen, A.K., Dwyer, H., Harlow, D.B., Franklin, D.: What Is a Computer Scien-
tist? Developing the Draw-A-Computer-Scientist-Test for Elementary School Stu-
dents. AERA Online Paper Repository (2016)

14. Hansen, A.K., et al.: Assessing children’s understanding of the work of computer
scientists: the draw-a-computer-scientist test. In: Proceedings of the 2017 ACM
(SIGCSE) Technical Symposium on Computer Science Education, pp. 279–284
(2017)

15. Henry, J., Joris, N.: Mâıtrise et usage des TIC: la situation des enseignants en Bel-
gique francophone (2013). https://edutice.archives-ouvertes.fr/edutice-00875643/.
Accessed 6 July 2020

16. Henry, J., Joris, N.: Informatics at secondary schools in the French-speaking region
of Belgium: myth or reality. In: International Conference on Informatics In Schools
Situation, Evolution and Perspective, vol. 2016, p. 13 (2016)

17. Henry, J., Dumas, B.: Perceptions of computer science among children after a
hands-on activity: a pilot study. In: 2018 IEEE Global Engineering Education
Conference (EDUCON), pp. 1811–1817 (2018)

18. Henry, J., Hernalesteen, A., Dumas, B., Collard, A.S.: Que signifie éduquer au
numérique? Pour une approche interdisciplinaire. In: Didapro 7 - DidaSTIC. De 0
à 1 ou l’heure de l’informatique à l’école (2018)

19. Henry, J., Smal, A.: Et si demain je devais enseigner l’informatique? Le cas
des enseignants de Belgique francophone. In Didapro: De 0 à 1 ou l’heure de
l’informatique à l’école, p. 129 (2018)

20. Henry, J., Hernalesteen, A., Collard, A.S.: Designing digital literacy activities: an
interdisciplinary and collaborative approach. In: 2020 IEEE Frontiers in Education
Conference (FIE) (2020)

21. Hewner, M., Guzdial, M.: Attitudes about computing in postsecondary gradu-
ates. In: Proceedings of the 4th International Workshop on Computing Education
Research, pp. 71–78 (2008)

22. Joris, N., Henry, J.: L’enseignement de l’informatique en Belgique francophone:
état des lieux. 1024: Bulletin de la Société Informatique de France 2, 107–116
(2014)

23. Limón, M.: On the cognitive conflict as an instructional strategy for conceptual
change: a critical appraisal. Learn. Instr. 11(4–5), 357–380 (2001)

24. Maier, S.: Misconception research and Piagetian models of intelligence. In: Proceed-
ings of the 2004 Oklahoma Higher Education Teaching and Learning Conference
(2004)

25. Martin, C.D.: Draw a computer scientist. ACM SIGCSE Bull. 36(4), 11–12 (2004)
26. Rücker, M.T., Pinkwart, N.: Review and discussion of children’s conceptions of

computers. J. Sci. Educ. Technol. 25(2), 274–283 (2016)
27. Ruslanov, A.D., Yolevich, A.P.: College student views of computer science: opinion

survey. J. Comput. Sci. Coll. 25(4), 142–148 (2010)
28. Shuttleworth, M.: Pretest-Posttest Designs (2009). https://explorable.com/

pretest-posttest-designs. Accessed 7 July 2020
29. Scott, P.H., Asoko, H.M., Driver, R.H.: Teaching for conceptual change: a review

of strategies. In: Research in Physics Learning: Theoretical Issues and Empirical
Studies, pp. 310–329 (1992)

https://edutice.archives-ouvertes.fr/edutice-00875643/
https://explorable.com/pretest-posttest-designs
https://explorable.com/pretest-posttest-designs

Tricks for Changing the Way Young People Conceive Computer Science 93

30. Spieler, B., Oates-Indruchova, L., Slany, W.: Female Teenagers in Computer Sci-
ence Education: Understanding Stereotypes, Negative Impacts, and Positive Moti-
vation (2019). arXiv preprint arXiv:1903.01190

31. Taub, R., Ben-Ari, M., Armoni, M.: The effect of CS unplugged on middle-school
students’ views of CS. ACM SIGCSE Bull. 41(3), 99–103 (2009)

32. Yardi, S., Bruckman, A.: What is computing? Bridging the gap between teenagers’
perceptions and graduate students’ experiences. In: Proceedings of the 3rd Inter-
national Workshop on Computing Education Research, pp. 39–50 (2007)

http://arxiv.org/abs/1903.01190

Engagement Taxonomy for Introductory
Programming Tools: Failing to Tackle

the Problems of Comprehension

Tomas Šiaulys(B)

Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
tomas.siaulys@mif.vu.lt

Abstract. A large number of introductory programming environments for K-12
education have becomewidely used across theworld.One of themain ideas behind
these environments is introducing basic programming concepts more effectively
by incorporating different visualization strategies. There have been attempts to
classify introductory programming tools, however, certain critical aspects have
not yet been discussed within the existing classifications, especially those related
to user engagement in the programming environment. In this paper we introduce
an engagement taxonomy for introductory programming tools (ETIP) built on a
concept of engagement taxonomy for software visualization and previous clas-
sifications of programming learning tools. The new taxonomy is then used to
inclusively review introductory programming environments for secondary educa-
tion used today with a focus on user engagement in a learning environment. Our
review illustrates how majority of introductory programming tools do not fully
explore the ways visualizations could help with tackling the problems of beginner
programming comprehension. There is still a lack of knowledge about the impor-
tance of the level of engagement in visual introductory programming tools and
the suggested taxonomy could be used for future research of computer science
education.

Keywords: Introductory programming · Software visualization · Engagement
taxonomy

1 Introduction

Since the introduction of Logo programming language and turtle graphics in 1967, as
well as the new vision for computer science education (Papert 1980), there has been
a huge interest of educators, scientists and engineers in designing introductory pro-
gramming tools for school-age children. At present there are hundreds of introductory
programming environments employing different strategies for easing the access to the
world of programming, which would otherwise be out of reach for the children. Robots,
tangible programing, virtual worlds, e-textiles, music composition, visualizations, 3D
models are just a few ways to help students understand the basic programming concepts,
motivate and engage children of all ages. This study focuses on the role of visualization

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 94–106, 2020.
https://doi.org/10.1007/978-3-030-63212-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_8

Engagement Taxonomy for Introductory Programming Tools 95

in improving student comprehension of the basic concepts and practices of programming
in introductory programming environments for K-12 education.

It is important to note that visual programming environments that are widely used
across the secondary education, employ both visualization types - programming code
visualizations as well as visualizations of program execution. While the role of code
visualization has been extensively studied (Xu et al. 2019,Weintrop andWilensky 2019),
the impact of execution-time visualizations on students’ comprehension is less clear.

Previous works of Sorva et al. (2013) and Hidalgo-Céspedes (2016) made exten-
sive reviews of generic program visualization systems for introductory programming
with a focus on higher education and professional programming languages. This work
covers the visualization systems for K-12 education including visual programming
environments. The following research questions were addressed:

RQ1: What levels of engagement in visual programming learning environments could
be defined based on their design?
RQ2: What levels of engagement do the introductory programming tools for K-12
support?

To answer the first research question we briefly discuss engagement taxonomies for
software visualization and previous classifications of programming learning environ-
ments (Sect. 2). Then a new, revised engagement taxonomy for program visualization
is presented (Sect. 3). To answer the second research question we inclusively review
70 introductory programming environments for K-12 education (Sects. 4 and 5). The
results are discussed in Sect. 6.

2 Related Work

Recently there has been an increasing amount of research about introductory program-
ming tools for higher education (Luxton-Reilly et al. 2018). While some of this work
is relevant to K-12 education as well, there are factors that require special considera-
tion when approaching secondary education. Firstly, environments for higher education
mostly focus on professional programming or make a transition from educational lan-
guages to professional programming languages at some point during introductory pro-
gramming course with a final goal of mastering professional programming languages.
Secondly, it is important to take into consideration student mental development, since
concepts of computer science are of an abstract nature, and abstract thinking might not
be developed to the same extent when considering most of K-12 age groups (Mlade-
nović et al. 2018, Rijke et al. 2018) In this section we briefly touch upon the subject
of misconceptions that novice programmers have about programming and discuss the
previous classifications of introductory programming environments and software visu-
alization tools forming a clearer picture of what might be the key factors in creating
visualizations for learner engagement in learning.

2.1 Misconceptions of Novice Programmers

According to literature review by Qian and Lehman (2017) novice programmers tend to
havemisconceptions about most of the basic programming concepts including variables,

96 T. Šiaulys

conditionals, parameters, loops and even the idea of states and sequential execution. Trac-
ing programs step by step is probably the most important strategy to overcome these
misconceptions, however, Lister et al. (2004) and Simon (2011) show that it’s the ability
that most of the novices struggle with. Grover and Basu (2017) show that even students,
who completed introductory visual programming courses, keep misconceptions about
the basic programming concepts. Authors argue, that even though visual programming
environments like Scratch, do help learners with the syntactic aspects of programming,
conceptual and strategic aspects of programming require additional effort. Role of ped-
agogy in overcoming these misconceptions also leaves many unknowns as instructors
tend to show weak understanding about students’ mistakes (Brown and Altadmri 2014).
One of the most popular approaches in trying to tackle the problems of student compre-
hension is visualization. Visualizations can make abstract programming concepts and
hidden automatic runtime processes visible and controllable.

2.2 Taxonomies of Programming Learning Tools

Taxonomy of programming environments and languages for novice programmers by
Kelleher and Pausch (2005) is the most cited attempt to classify introductory program-
ming tools. While proposed taxonomy could be criticized for vague descriptions and
overlapping categories, it provides an overall view of the key aspects inmaking program-
ming accessible for novices (K-12 as well as higher education). Taxonomy suggested
the category of code visualization with an emphasis of avoiding syntax errors, as well
as the category for visualizing program execution, including examples of strategies that
programming environments use for visualization. Authors argue that different visualiza-
tion techniques are similar to “the supports found in many debuggers”. Article provides
brief descriptions of 86 systems, some dating back to 1960’s.

Built upon the work of Kelleher and Pausch, Taxonomy of programming learning
tools (Saito et al. 2017) attempts to describe each learning tool across 11 categories.
However, due to the lack of clarity in category definitions, it is not fully clear what
certain categories of the taxonomy represent. While taxonomy doesn’t explicitly focus
on visualization of execution, support to understand programs category provides some
information about visualization strategies of the learning tools. Proposed taxonomy is
then used to classify 43 introductory programming environments designed for kids.

João et al. (2019) used similar approach analyzing 26 most popular block-based and
visual programming apps across 27 categories with a focus on pedagogical usefulness.
As with the previous classifications, some categories are vaguely defined, particularly
those concerning the execution environment.

Different approach was taken by Duncan et al. (2014) in loose classification of 47
tools for introductory programming according to the difficulty level, concepts being
introduced, as well as student age, without focusing on visualization. Authors intro-
duce heuristics to classify introductory programming tools into 5 approximately defined
categories leaving the classification rather subjective.

2.3 Engagement Taxonomies

Meta-analysis of visualization systems by Hundhausen et al. (2002) concludes that visu-
alization proved to be effective in only 13 out of 28 studies and that different learner

Engagement Taxonomy for Introductory Programming Tools 97

engagement forms were connected to the effectiveness of visualizations. Following this
work Naps et al. (2002) introduced original engagement taxonomy (OET) for program
visualization, which defined six different forms of learner engagement in the context of
using visualization tools: no viewing, viewing, responding, changing, constructing and
presenting. It has been hypothesized that increasing level of engagement would result
in better learning outcomes and that the mix of different forms of engagement would
be more beneficial than a single engagement form. A survey partially supporting OET
was carried out by Urquiza-Fuentes and Velázquez-Iturbide (2009) regarding program
visualization and algorithm animation systems.

Building upon the original engagement taxonomyMyller et al. (2009) andSorva et al.
(2013) attempted to improve the categorization of engagement levels. Hypothesizing
that collaborative activities of the students and engagement levels are correlated, Myller
et al. introduced an extended engagement taxonomy (EET) defining 10 engagement
levels: no viewing, viewing, controlled viewing, entering input, responding, changing,
modifying, constructing, presenting and reviewing. Sorva et al. (2013) criticized OET
and EET for mixing different engagement forms and introduced a revised 2-dimentional
engagement taxonomy (2DET) differentiating between direct engagement dimension:
no viewing, viewing, controlled viewing, responding, applying, presenting, creating; and
content ownership dimension: given content, own cases, modified content, own content.
Then 22 systems were classified into categories according to 2DET.

3 Engagement Taxonomy for Introductory Programming Tools
(ETIP)

Previously defined taxonomies of engagement in software visualization, even though
have theoretical basis, are still problematic in using them practically for classification
and research of program visualization systems. Attempts to classify programming envi-
ronments tend to distribute all the systems across two or three groups and for the further
analysis other factors have to be chosen. Sorva et al. (2013) found that 18 out of 22
generic program visualization systems fall under controlled viewing engagement level
and own content in ownership dimension of 2DET. Hence understanding what is meant
by controlled viewing may be the key in explaining user engagement in using visualiza-
tion tools. This is especially relevant when discussing introductory programming tools
for K-12 since these tools tend to employ visualizations different from the ones used in
higher education that were analyzed using previous taxonomies.

Another argument for introducing a new taxonomy for introductory programming is
that most of the visualizations cannot be categorized as specially designed for presenting
(Sorva 2013) and even if they were, this would give us more information about the
use of visualization in social interactions rather than about individual interaction with
the visualization. This remark is consistent with the survey of Urquiza-Fuentes and
Velázquez-Iturbide (2009) classifying all the systems that support changing level of
OET, as well supporting presenting level of engagement.

Wepropose a new engagement taxonomy for introductory programming tools (ETIP)
focusing on student engagement in studying the visual execution of programs (Table 1).
The lower levels of engagement (no viewing and viewing) in our proposed taxonomy are

98 T. Šiaulys

the same as in 2DET. Following is added and controlled viewing is split into three levels
of engagement in respect to tracing the execution of a program in visual environment.
Highlighting the code during executionwas suggested byNaps et al. (2002) in the context
of algorithm visualization. Nevertheless, this might not be enough to engage learners
into tracing the visualization, especially when the certain steps being executed are too
complex or the bugs are present. Tracing the execution of visualization can be partially
helped by changing the speed. Finally, engagement levels of executing step-by-step and
rewinding are adapted from the requirements for the algorithm visualization systems
(Karavirta and Shaffer 2016). For the reasons described above, presenting level was
not included. Creating, responding and applying levels were omitted as well for being
not consistent with the concept of visual student-written program execution. Given that
all of the introductory programming environments involving program visualization are
expected to promote content ownership of the students, content ownership dimension is
as well omitted in the presented taxonomy.

Table 1. The categories of the engagement taxonomy for introductory programming tools

Level of engagement Description

No viewing There is no visualization, only material in textual
format

Viewing The learner views a visualization with no control
over execution of visualization, can only
zoom/navigate the environment of program
execution

Following The learner views the visualization with the
executed code being highlighted

Controlled viewing Changing the speed The learner can change the speed of visualization
being executed

Executing step by step The learner can view the visualization being
executed step-by-step

Rewinding The learner can rewind the visualization at any
time during the visualization

4 Method to Select Tools

To answer the second research question, asmany as possible of all the available program-
ming environments for secondary education were categorized according to the highest
level of user engagement of ETIP they allow. All the tools from the previous classifi-
cations of programming environments for K-12 education (Duncan et al. 2014, Saito
et al. 2017, Joao et al. 2019) were included in the list for the study as well as additional
environments from the web search. The general overview of 70 selected environments
can be found in the Appendix 1. The list could not be seen as complete, since the number
of introductory learning environments for K-12 education is difficult to track. However,
most of the most popular visual introductory programming environments are included.

Engagement Taxonomy for Introductory Programming Tools 99

Of course, it is not possible to distinguish clearly between introductory programming
for K-12 and higher education. Even though there are differences in final goals they are
trying to achieve, these systems do overlap to a large extent. Even the block-based
programming environments (usually designed for primary and middle schools’ students
in mind) are being used in universities. Tools based on textual execution environments
were omitted as there could be rarely a clear focus on K-12 regarding the design. Finally,
environments developed for learning with robots or electronics were not included in this
study.

Another problem with selection was the language, since the environments for
younger students happen to be implemented in native languages of the learners. Since it
would be really difficult to evaluate such systems, only the ones that were available in
English were included.

There was also a problem in determining whether particular programming environ-
ments are still in use. While the latest web-based applications dominate the searches,
some older visualization systems are still compatible withmodernOS systems andmight
be still used for education. There is no basis to consider these systems obsolete. To tackle
this problem, we included only the systems that could be found in a web search and were
showing some activity during the last 5 years (updates, community posts, etc.).

After analyzing each tool, a classification of all the 70 tools was made according to
the proposed taxonomy. The results could be found in the Appendix 2.

5 Results

The results from the Appendix 1 table suggest that majority of the tools cover most of
the basic programming concepts with exception of the tools focusing on primary edu-
cation. Also, majority of the tools use the same block model for code construction as
well as the same game/puzzle activity type (Blockly games, Code Studio, etc.). Another
common group of introductory programming environments are the classical turtle visu-
alization environments (Scratch, Snap!, etc.) focusing on the motion of the sprites and
drawing. The most common programming languages used for learning were Python
and JavaScript. Systems based on gamification elements are just as common as tools
allowing for free creation of games, animations, etc.

Appendix 2 shows that only 2 programming tools allow rewinding and only 20%
of the introductory programming environments allow executing step by step level of
engagement, while majority (47%) allows only viewing of program execution visualiza-
tion. What is somewhat surprising is that tools created for primary education to a great
extent employ low engagement levels, while the systems that fall into high engagement
level categories are targeted towards older students.

6 Discussion

The results of the study bring some new insights into K-12 programming education.
First of all, it seems that in relation to such a large number of educational program-
ming environments, most of the tools stick to the same old models. Of course, new
technologies gave visualizations the quality and the possibilities never seen before, but

100 T. Šiaulys

as noted before, even though more enjoyable and emotionally engaging, visualizations
are not always effective in improving the learning results. Secondly, having in mind the
misconceptions of novice programmers about most of the basic programming concepts,
it seems puzzling why so many tool designs do not address the issue of learners’ com-
prehension. In particular, the ability to track the program execution, a skill at the core
of understanding the basic programming concepts, seems to be unrepresented in most
of the programming environments for schools. These systems could borrow strategies
for program visualization from the systems targeted more at higher education. It could
be argued that tracing the program execution in a visual environment involves the same
strategies as tracing an algorithm visualization, while the systems for algorithm visual-
ization often employ much richer tools for user engagement. Vieira et al. (2019) argues
that one of the problems might be a lack of reliable design and usability evaluation
models for educational tools.

This work proposed a new engagement taxonomy of introductory programming
visualization systems, however, it is worth mentioning that taxonomy only points out
the highest engagement level supported by the visualization tool and does not necessarily
reflect the level of engagement of every learner. Even at a viewing level of engagement
supported by the tool, the learners can engage in the process of learning at a higher than
viewing level. On the other hand, even the engagement at the level of execution step by
step does not ensure that the learner will necessarily use the visualization to track the
program execution and construct a better understanding. Research suggests that misuse
of visualization tools might occur often as novices may not be inclined to trace their
programs (Thomas et al. 2004).

There are still a lot of unknowns in studying engagement in K-12 introductory
programming education. It is not clear to what extent engagement in tracing the program
execution visually can help improve comprehension of the basic programming concepts.
Also it is not clear how pedagogy, motivation and collaboration can work in combination
with design of the visualization tools. To answer these questionsmore empirical research
is needed.

7 Conclusion

Thiswork introducedEngagement taxonomy for introductory programming tools (ETIP)
- a model to measure learners’ engagement in tracing the program execution in visual
environments. The new tool was used to classify 70 visual programming environments
for secondary education. Results show that majority of introductory programming envi-
ronments for K-12 education are not developed in line with theoretical models of the
basic programming concepts’ comprehension. There is still a lack of knowledge about
the importance of engagement levels in designing introductory programming tools as
well as different types of engagement involved. Suggested taxonomy could be used for
future research in studying these issues.

Appendix 1

General information of introductory programming environments for K-12 sorted by the
age of target audience.

Engagement Taxonomy for Introductory Programming Tools 101

Name Code representa-
tion

Activity
type

Visualization
type

re
le

as
e

da
te

age
group

co
nd

iti
on

al
s

lo
op

s

va
ri

ab
le

s

fu
nc

tio
ns

ob
je

ct
s

Code Studio (courses) blocks game-puzzle moving sprite,

drawing

2013 4 and up x x x x

BotLogic.us picture-blocks game-puzzle moving sprite 2013 4–11

Kodable picture-blocks,
JavaScript

game-puzzle moving sprite 2014 4–11 x x x x x

Lightbot Jr picture-blocks game-puzzle moving sprite 2014 4–8 x x

Cargo-bot picture-blocks game-puzzle moving sprite 2012 5 and up x x

Tynker Blocks, Python,

JavaScript, HTML

game-puzzle,

creating

moving sprite,

drawing, ani-
mation, music

2012 5 and up x x x x x

Code avengers Java, JavaScript,

Python

game-puzzle,

creating

moving

sprite/drawing

2012 5 and up x x x x x

Lego Bits and bricks picture-blocks game-puzzle moving sprite 2017 5–11 x

Move the Turtle picture-blocks game-puzzle moving sprite 2012 5–11 x x x

My robot friend picture-blocks game-puzzle moving sprite 2013 5–12

Cato's Hike picture-blocks game-puzzle moving sprite 2012 5–12 x x

Junior Coder picture-blocks game-puzzle moving sprite 2015 5–12 x x x

ScratchJr picture-blocks creating moving sprite,
game design

2014 5–7 x x

Daisy the dinosaur blocks game-puzzle moving sprite 2012 5–7 x x

the Foos (CodeSpark) picture-blocks game-puzzle moving sprite,

game design

2014 5–9 x x

Codable Crafts picture-blocks game-puzzle moving sprite 2015 5–9 x x

Swift Playgrounds swift game-puzzle moving sprite 2016 6 and up x x x x x

Run Marco (All can

code, hour of code)

blocks game-puzzle moving sprite 2014 6–12 x x

Codemancer picture-blocks game-puzzle moving sprite 2013 6–12 x x

Rapid router (Blockly,

Code for life)

blocks/Python game-puzzle moving sprite 2014 6–13 x x x x

102 T. Šiaulys

Gamefroot blocks creating game design 2017 7 and up x x x x x

Bee-bot app / bee-bot

emulator

no code game-puzzle moving sprite 2012 7–11

Alice blocks creating game design 1998 7–13 x x x x x

RobotMagic (Blockly) blocks, JavaScript game-puzzle,
creating

moving sprite,
simulation,

game design

2017 7–16 x x x x x

Code Monkey CoffeeScript,
Python

game-puzzle moving sprite 2014 8 and up x x x x x

Blockly games

(Blockly)

blocks game-puzzle moving sprite,

drawing, ani-

mation, music

2012 8 and up x x x x

mBlock (Blockly) blocks, Python creating moving sprite,

drawing, game

design

2011 8 and up x x x x

Pencil Code (Droplet
editor)

blocks, coffee-
Script, JavaScript

creating moving sprite,
drawing, ani-

mation, game

design, music

2013 8 and up x x x x x

Microsoft MakeCode

Arcade

blocks creating game develop-

ment

2020 8 and up x x x x x

Open Roberta Lab

(robot simulation)

blocks creating simulation 2016 8 and up x x x x

CodeBug (electronics

simulation)

blocks creating simulation 2015 8 and up x x x

LearnToMod (Mine-
craft)

blocks, JavaScript creating game design 2015 8 and up x x x x x

Penjee Python game-puzzle moving sprite 2014 8 and up x x x x x

RoboMind RoboMind game-puzzle moving sprite 2005 8 and up x x x x

Turtle Academy jslogo creating moving sprite,

drawing, ani-
mation

2011 8 and up x x x x

Robo Logic picture-blocks game-puzzle moving sprite 2013 8 and up x

StarLogo TNG/Nova blocks creating moving sprite,

drawing, ani-
mation, game

design, simula-

tion

2008 8 and up x x x x x

NetsBlox blocks creating moving sprite,

drawing, game

design, simula-
tion

2016 8 and up x x x x x

Logo Interpreter UCBLogo creating moving sprite,

drawing, game

design

2013 8 and up x x x x x

SpriteBox Coding picture-blocks,

Swift

game-puzzle moving sprite 2018 8–13 x x

Code Kingdoms

(Minecraft, Roblox)

blocks, Java, Lua creating game design 2013 8–14 x x x x x

Hopscotch blocks creating animation,

game design

2012 8–14 x x x x x

Scratch blocks creating moving sprite,
drawing, game

design

2007 8–16 x x x x

Snap! blocks creating moving sprite,

drawing, game
design

2011 8–16 x x x x x

SmalRuby blocks/Ruby creating moving sprite, 2014 8–16 x x x x

Engagement Taxonomy for Introductory Programming Tools 103

drawing, game

design

Pyonkee blocks creating moving sprite,

drawing, game
design

2014 8–16 x x x x

Kodu picture-blocks creating game design 2009 9 and up x x x x

Lightbot picture-blocks game-puzzle moving sprite 2008 9 and up x x x

Code Combat python, JavaScript,
CoffeeeScript

game-puzzle,
creating

moving sprite 2013 9 and up x x x x x

Crunchzilla/Code

Monster

JavaScript creating animation,

game design

2015 9 and up x x x x x

NetLogo NetLogo creating moving sprite,
drawing, ani-

mation, game

design, simula-
tion

1999 9 and up x x x x x

Khan Academy JavaScript creating animation,

game design

2014 9 and up x x x x x

RoboZZle picture-blocks game-puzzle moving sprite 2010 9 and up x x x

MIT App Inventor
(Blockly)

blocks creating app 2010 10 and up x x x x x

Kodular (MIT AppIn-

ventor)

blocks creating app 2018 10 and up x x x x x

Thunkable blocks creating app 2018 10 and up x x x x x

Looking Glass blocks creating game design 2012 10 and up x x x x x

tickle app learn to

code

blocks creating moving sprite 2014 10 and up x x x x

AgentCubes blocks creating game design 2006 10 and up x x x x x

Codesters Python creating moving sprite,

drawing, game

design

2014 11 and up x x x x x

CodeSpells blocks, JavaScript creating game design 2015 12 and up x x x x x

Gameblox (Blocky) blocks creating game design 2014 13 and up x x x x x

App Lab (Code Stu-

dio)

blocks, JavaScript creating app 2016 13 and up x x x x x

Grasshopper (Google) JavaScript game-puzzle,
creating

animation 2018 13 and up x x x x x

Game Lab (Code

Studio)

blocks, JavaScript creating app 2016 13 and up x x x x x

Karel the Dog
(CodeHS)

Karel, Java game-puzzle moving sprite,
drawing

2012 13–15 x x x x

Coding with Chrome

(Blockly)

Blocks, Python,

JavaScript, Cof-

feeScript

creating drawing, ani-

mation, game

design

2015 14 and up x x x x x

Greenfoot Java, Stride creating game design 2006 14 and up x x x x x

Codea Lua creating game design 2011 14 and up x x x x x

CodeHS Python, Java,

JavaScript, C++, C

creating drawing, ani-

mation

2012 16 and up x x x x x

Appendix 2

Classification of introductory programming tools for K-12 education.

104 T. Šiaulys

Name

V
ie

w
in

g

Fo
llo

w
in

g

C
ha

ng
in

g
th

e
sp

ee
d

Ex
ec

ut
in

g
st

ep
- b

y-
st

ep

R
ew

in
di

ng

Age group

Code Combat x 9 and up

Karel the Dog (CodeHS) x 13–15

RobotMagic (Blockly) x 7–16

NetsBlox x 8 and up

Snap! x 8–16

Cargo-bot x 5 and up

Rapid router (Blockly, Code for life) x 6–13

CodeBug (electronics simulation) x 8 and up

Penjee x 8 and up

RoboMind x 8 and up

RoboZZle x 9 and up

AgentCubes x 10 and up

App Lab (Code Studio) x 13 and up

Game Lab (Code Studio) x 13 and up

Greenfoot x 14 and up

Code Studio (courses) x x 4 and up

Blockly games (Blockly) x 8 and up

Lightbot Jr x 4–8

Code Monkey x 8 and up

Lightbot x 9 and up

Swift Playgrounds – x 6 and up

Move the Turtle x x 5–11

StarLogo TNG/Nova x x 8 and up

NetLogo x x 9 and up

BotLogic.us x 4–11

Kodable x 4–11

Lego Bits and bricks x 5–11

Junior Coder x 5–12

ScratchJr x 5–7

Daisy the dinosaur x 5–7

the Foos (CodeSpark) x 5–9

Codable Crafts x 5–9

Run Marco (All can code, hour of

code)
x

6–12

Codemancer x 6–12

Robo Logic x 8 and up

SpriteBox Coding x 8–13

Tynker x x 5 and up

Logo Interpreter x 8 and up

Code avengers x 5 and up

Engagement Taxonomy for Introductory Programming Tools 105

My robot friend x 5–12

Cato's Hike x 5–12

Gamefroot x 7 and up

Bee-bot app / bee-bot emulator x 7–11

Alice x 7–13

mBlock (Blockly) x 8 and up

Pencil Code (Droplet editor) x 8 and up

Microsoft MakeCode Arcade x 8 and up

Open Roberta Lab (robot simulation) x 8 and up

LearnToMod (Minecraft) x 8 and up

Turtle Academy x 8 and up

Code Kingdoms (Minecraft, Roblox) x 8–14

Hopscotch x 8–14

Scratch x 8–16

SmalRuby x 8–16

Pyonkee x 8–16

Kodu x 9 and up

Crunchzilla/Code Monster x 9 and up

Khan Academy x 9 and up

MIT App Inventor (Blockly) x 10 and up

Kodular (MIT AppInventor) x 10 and up

Thunkable x 10 and up

Looking Glass x 10 and up

tickle app learn to code x 10 and up

Codesters x 11 and up

CodeSpells x 12 and up

Gameblox (Blocky) x 13 and up

Grasshopper (Google) x 13 and up

Coding with Chrome (Blockly) x 14 and up

Codea x 14 and up

CodeHS x 16 and up

References

Brown, N.C., Altadmri, A.: Investigating novice programming mistakes: educator beliefs vs.
student data. In: Proceedings of the Tenth Annual Conference on International Computing
Education Research, pp. 43–50, July 2014

Duncan, C., Bell, T., Tanimoto, S.: Should your 8-year-old learn coding? In: Proceedings of the
9th Workshop in Primary and Secondary Computing Education, pp. 60–69, November 2014

Grover, S., Basu, S.:Measuring student learning in introductory block-based programming: exam-
ining misconceptions of loops, variables, and boolean logic. In: Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, pp. 267–272, March 2017

Hidalgo-Céspedes, J., Marín-Raventós, G., Lara-Villagrán, V.: Learning principles in program
visualizations: a systematic literature review. In: 2016 IEEE Frontiers in Education Conference
(FIE), pp. 1–9. IEEE, October 2016

Hundhausen, C.D., Douglas, S.A., Stasko, J.T.: A meta-study of algorithm visualization effective-
ness. J. Vis. Lang. Comput. 13(3), 259–290 (2002)

João, P., Nuno, D., Fábio, S.F., Ana, P.: A cross-analysis of block-based and visual programming
apps with computer science student-teachers. Educ. Sci. 9(3), 181 (2019)

106 T. Šiaulys

Karavirta, V., Shaffer, C.A.: JSAV: the JavaScript algorithm visualization library. In: Proceedings
of the 18th ACM Conference on Innovation and Technology in Computer Science Education,
pp. 159–164. July 2013

Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of programming
environments and languages for novice programmers. ACM Comput. Surv. (CSUR) 37(2),
83–137 (2005)

Lister, R., et al.: A multi-national study of reading and tracing skills in novice programmers. ACM
SIGCSE Bull. 36(4), 119–150 (2004)

Luxton-Reilly,A., et al.: Introductory programming: a systematic literature review. In: Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, pp. 55–106, July 2018

Mladenović, M., Boljat, I., Žanko, Ž.: Comparing loops misconceptions in block-based and text-
based programming languages at the K-12 level. Educ. Inf. Technol. 23(4), 1483–1500 (2017).
https://doi.org/10.1007/s10639-017-9673-3

Myller, N., Bednarik, R., Sutinen, E., Ben-Ari,M.: Extending the engagement taxonomy: software
visualization and collaborative learning. ACMTrans. Comput. Educ. (TOCE) 9(1), 1–27 (2009)

Naps, T.L., et al.: Exploring the role of visualization and engagement in computer science edu-
cation. In: Working Group Reports from ITiCSE on Innovation and Technology in computer
Science Education, pp. 131–152 (2002)

Papert, S.: Mindstorms: Computers, children, and Powerful Ideas, p. 255. Basic Books, New York
(1980)

Qian,Y., Lehman, J.: Students’misconceptions and other difficulties in introductory programming:
a literature review. ACM Trans. Comput. Educ. (TOCE) 18(1), 1–24 (2017)

Rijke, W.J., Bollen, L., Eysink, T.H., Tolboom, J.L.: Computational thinking in primary school:
an examination of abstraction and decom-position in different age groups. Inf. Educ. 17(1), 77
(2018)

Saito, D., Sasaki, A., Washizaki, H., Fukazawa, Y., Muto, Y.: Program learning for beginners: sur-
vey and taxonomy of programming learning tools. In: 2017 IEEE 9th International Conference
on Engineering Education (ICEED), pp. 137–142. IEEE, November 2017

Simon. Assignment and sequence: why some students can’t recognise a simple swap. In: Pro-
ceedings of the 11th Koli Calling International Conference on Computing Education Research
(Koli Calling 2011). Association for Computing Machinery, New York, NY, USA, pp. 10–15
(2011). https://doi.org/10.1145/2094131.2094134

Sorva, J., Karavirta, V., Malmi, L.: A review of generic program visualization systems for
introductory programming education. ACM Trans. Comput. Educ. (TOCE) 13(4), 1–64 (2013)

Thomas, L., Ratcliffe, M., Thomasson, B.: Scaffolding with object diagrams in first year
programming classes: some unexpected results. ACM SIGCSE Bull. 36(1), 250–254 (2004)

Urquiza-Fuentes, J., Velázquez-Iturbide, J.Á.: A survey of successful evaluations of program
visualization and algorithm animation systems. ACM Trans. Comput. Educ. (TOCE) 9(2),
1–21 (2009)

Vieira, E.A.O., Da Silveira, A.C., Martins, R.X.: Heuristic evaluation on usability of educational
games: a systematic review. Inf. Educ. 18(2), 427–442 (2019)

Weintrop, D., Wilensky, U.: Transitioning from introductory block-based and text-based environ-
ments to professional programming languages in high school computer science classrooms.
Comput. Educ. 142, 103646 (2019)

Xu, Z., Ritzhaupt, A.D., Tian, F., Umapathy, K.: Block-based versus text-based programming
environments on novice student learning outcomes: a meta-analysis study. Comput. Sci. Educ.
29(2–3), 177–204 (2019)

https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.1145/2094131.2094134

Ready for Computing Science? A Closer
Look at Personality, Interests and
Self-concept of Girls and Boys at

Secondary Level

Andreas Bollin(B), Max Kesselbacher, and Corinna Mößlacher

Universität Klagenfurt, 9020 Klagenfurt, Austria
{Andreas.Bollin,Max.Kesselbacher,Corinna.Moesslacher}@aau.at

https://www.aau.at/informatikdidaktik

Abstract. Among school children, the interest in dealing with comput-
ing science varies between different age groups and countries, but it can
be observed that it tends to decline among young women, and it is mostly
men who gain a foothold in this domain. Various programs and activities
are meant to increase the interest of all our children, but measurement
instruments to collect baseline data and interpret effects of (classroom)
interventions are rare.

In this work, we present a framework that allows us for collecting
measures (personality traits, interests, and self-concept) from different
age groups, and we use it to take a closer look at girls and boys at lower
secondary school level. We report on measurable similarities as well as
differences and, in the context of our own teaching interventions, we
come up with first recommendations and suggestions in order to encour-
age secondary school teachers and curriculum developers to also address
the needs and interests of girls and boys.

Keywords: Gender issues · Secondary education · Personality ·
General interests · Self-concept · Computing science

1 Introduction

One of the greatest challenges facing society today is to instill in children and
young people an interest in computing science as a skill of the 21st century.
Even though starting ages and also the content differs between individual coun-
tries [18], computing science (thereinafter we are also using the term informatics
instead) has found its way into the different curricula. Clearly, computing science
does not appeal to everyone equally, and so many additional support programs
were launched [7,13,15,20,25].

In Austria, among many others, there are now environments like Pocket-
Code [21] in place, free MOOCs teaching computing science and digital literacy
[11], but also implementations of CoderDojo or CodeClub [2], and in the field
c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 107–118, 2020.
https://doi.org/10.1007/978-3-030-63212-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_9&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_9

108 A. Bollin et al.

of computational thinking and computing science the Bebras (Beaver) compe-
tition [9] attracts more and more young pupils. In Klagenfurt, we are running
the “Informatikwerkstatt” (German for “Informatics-Lab” [22]) and, working
together with teachers from primary and secondary education, it has attracted
more than 13.500 visitors at the Institute for Informatics-Didactics since 2015.

But, a look in the direction of industry or tertiary education makes one
rethink. There, you clearly see that, comparable to the situation at the end of the
1990s [12], on the one hand not enough young people have become enthusiastic
about a computer science career, and on the other hand, the proportion of young
women is still significantly lower compared to young men – a situation that
became known as the gender-gap.

The objective of this paper is now to report on a baseline of traits that can
inform and steer future research in computing science education at the lower
secondary level. Related work (see Sect. 2) shows that interests and personality
do influence the attitude towards computing science, and so we are interested
in learning more about the pupils attending our Informatics-Lab and how to
cope with gender issues. The analysis for more than 650 pupils attending our
workshops was supported by a data collection framework (called KAUA, see
Sect. 3), and the first findings are presented in this work.

The rest of this paper is structured as follows. Section 2 briefly summarizes
literature related to personality, interests and self-concept. Section 3 introduces
our data collection framework, Sect. 4 reports on the collected data for pupils
aged 10 to 14 years, Sect. 5 reflects on the data found and derives initial rec-
ommendations. Finally, Sect. 6 concludes with the most important findings and
future work.

2 Related Work

As mentioned above, it is well known that women are under-represented in many
fields of STEM, but the percentage of women differs in the fields, e.g. women
are not under-represented in biological sciences as they are in computer science.
A cross-study paper of Cheryan et al. [8] found different potential factors that
may result in these differences. They mention, inter alia, stereotypes of STEM
fields, lack of role models, insufficient early experience in the field, as well as
math ability, math performance and self-efficiency. Their paper also shows that
most studies only evaluate one STEM field but lack a cross-study comparison
which could give more insight on the influencing factors.

Stout et al. [24] show that female university students can be influenced by
role models (like female professors). It increases their self-concept, attitudes and
future career ideas.

A study on freshman undergraduate students chose personality, motivation,
self-regulation, self-concept, self-estimates of ability as factors to survey on. It
showed that men and women show different profiles on these criteria: A decisive
factor for women leaving STEM majors are lower scores in Math and Science
self-concept. So it can be a factor to predict STEM persistence [1].

Personality, Self-concept and Interests of Girls and Boys at Secondary I 109

Gender differences have been well reported [4,10,19], with respect to the
RIASEC (Realistic - Investigative - Artistic - Social - Enterprising - Conven-
tional) interests: Women show higher mean scores in the dimensions Artistic
and Social. Men show higher mean scores in the Realistic dimension (indepen-
dently from their background).

A study [10] on school students (n = 247, age cohort 12–19 years) shows also
that students with high scores in self-concepts (verbal and mathematics) as well
as students with higher interest in the subject Math show higher interests in all
dimensions of the RIASEC model.

A study [4] in middle school students (n = 627, age 13) shows that boys
have more interest in STEM occupation and activities (this is also confirmed
by the participants in our Informatics-Lab) – with the highest difference to
girls in technology and engineering. All correlations between RIASEC interests
and STEM interest were observed as being positive but highest in Investigative,
showing similarities between boys and girls. It can also be seen that the students
differ in their interests in science technology, engineering, and mathematics. They
do not see these fields uniformly.

A study [23] on high school students (n = 3023), tracked 10 years after
graduating school, observed RIASEC interests and personality traits. It shows
that the interests can predict many life outcome factors of work, health, and
relationship. It does not show a significant difference by gender on influence
of these measures in the life outcomes concerning work and health. It shows
that specific interests at school can predict later working life and success, which
makes them particularly interesting for further research and justifies the research
in terms of a possible influence on students’ interests.

The characteristics that benefit life outcomes are similar for female and male
students. But, the characteristics differ between the gender cohorts. This makes a
more detailed observation of these characteristics (and the evaluation of possible
interventions to influence these factor) important for progress in educational
processes.

3 Data Collection Framework

In 2016, we intensified our efforts to improve our teaching in Klagenfurt but
also at our partner University in Košice. We also looked for ways to measure
the sustainability of our classroom interventions. As our school systems differ,
but as we also wanted to learn more about the characteristics of our pupils and
(future) students, we implemented a framework called KAUA, which is an online
survey system that supports anonymous, longitudinal studies.

From the very beginning, KAUA was designed with the General Data Pro-
tection Regulation of the European Union1 in mind, guaranteeing that personal
data is not stored while still being able to allow for tracing changes in partici-
pants’ characteristics. To enable this, a KAUA survey works as follows:

1 http://data.europa.eu/eli/reg/2016/679/2016-05-04.

http://data.europa.eu/eli/reg/2016/679/2016-05-04

110 A. Bollin et al.

1. In a first step participants supply personal information (name, birthday) and
answer a security question (where the answer is likely stable over lifetime)
from a list compiled by us. This personal information is then used as input
to compute a SHA-512 hash that identifies the participant. With this setup,
participants are anonymous, but will generate the same hash in longitudinal
study designs.

2. In the second step, participants are authorized with their hash and complete
the survey. The survey results are only linked to the anonymous hash.

KAUA was already used in a small-scale study to investigate the personality,
self-concept, and general interests of pupils participating in informatics compe-
titions (Bebras, Coding Contests) in Austria [3]. Since then, the survey has been
expanded, additionally eliciting specific interest in computing science and study
interests, and it has been adapted to be also usable by children. In its current
version, it takes about 20 min to register and fill out a KAUA survey.

Table 1 provides an overview of the dimensions, the individual traits and
corresponding scales collected by KAUA. The items for I1) General Interests
follow the six dimensions of interests (RIASEC) established by Holland [14]
and formulated by Bergmann and Eder [6]. The items for I2) Personality cover
two dimensions (Dominant/Easygoing, Formal/Informal) of the Five-Factor and
Stress Theory [17,27]. The items for I3) Self-Concept are formulations used in the
PISA surveys [16] that elicit the verbal and mathematical self-concept with three
items each. The item for I4) CS Interest is formulated by us and elicits interest in
computing science specifically. The items for I5) Study Interests are formulated
by us and are presented as check boxes of fields of study the participants might
be interested in (now or in the future).

4 Traits of Lower Secondary Pupils

4.1 Methodology

In this publication, we describe differences in traits of lower secondary school
pupils, aged 10 to 14, with regard to their personality, self-concept and interests.
Our goal is to report on a baseline of traits, which can inform and steer future
research - for example the design of classroom interventions to mitigate gender
gaps. In a two-year span, we used the data collection framework KAUA to collect
676 survey responses (303 girls and 373 boys) from pupils attending computer
science workshops at our Informatics-Lab. The pupils were from regional schools
without any focus on computer science - their class teachers voluntarily decided
to attend our workshops with their classes. The survey was conducted before each
workshop. To better gauge differences in traits, we divide the cohorts by gender
(female and male) and by age (5 groups from 10 to 14 years). For the mentioned
traits, we investigate intra-gender progression (how the traits change with the
pupils’ age) and inter-gender differences (conditional to the pupils’ age). The
sizes of the different cohorts and age groups {10y/o, 11y/o, 12y/o, 13y/o, 14y/o}
are distributed as follows: nFemale = {15, 75, 106, 69, 38}, nMale = {11, 53, 110,
130, 69}.

Personality, Self-concept and Interests of Girls and Boys at Secondary I 111

Table 1. Dimensions and items collected by the KAUA framework.

Dimension Items Scale

I1) General Interests

[6,14]

Realistic, Investigative, Artistic, Social,

Enterprising, Conventional

9-level Likert

[−4; 4]

I2) Personality [17,27] Dominant/Easygoing, Formal/Informal 13-level

Likert [−6; 6]

I3) Self-Concept [16] 3x Verbal Self-Concept, 3x Mathematical

Self-Concept

4-level [1; 4]

I4) CS Interest Computing Science Interest 6-level [1; 6]

I5) Special Interests History, Art, Music, Literature, Language,

Economy, Law, Social fields, Health,

Natural sciences, Informatics, Math,

Engineering, None

Yes/no [0; 1]

4.2 General Interests

In the study of Bollin et al. [3] it turned out that pupils interested in computing
science seem to be more interested in the investigative and artistic area, and,
with the exception of the social dimension, they are more interested in all the
other fields of interest. Figure 1 depicts the responses of interests of our cohorts
and dimensions and shows relevant differences. Interests change and slightly
decrease over time, but two features stand out. First, according to the realistic
(a, b) and artistic (e, f) interests there is a notable difference between boys and
girls. Secondly, while the interest in the social domain decreases for boys (h), it
stays, with some exceptions, stable at a quite high level for girls (g).

4.3 Personality

Personality plays an important role when working together in teams [17], and
pupils interested in Computing Science tend to be (significant) more easy-going
compared to control-groups and not so formal as expected [3]. Figures 2(a) and
(c) depict the differences between the two cohorts and show that girls are “mov-
ing” from dominant to easy-going, whereas boys are “moving” the other way
round. Concerning formal/informal, both cohorts tend to be slightly more for-
mal than informal. But, it is interesting to see that the age of 12 years seems to
be a point where the personality tilts over for both, boys and girls.

4.4 Self-concept

The mathematical and verbal self-concept plays an important role when deciding
for (or staying in) a STEM field. Figure 3 shows the answers to the questions
“How well do you rate yourself in German?” and “How well do you rate yourself
in mathematics?”. There are no statistically significant differences between girls
and boys; girls start at a slightly worse level (in our grading system 1 is the best
grade) but are then overtaking the boys. In all the cases, the mathematical self-
concept is better than the verbal self-concept, but both, verbal and mathematical
self-concept are getting worse by nearly one grade over the time.

112 A. Bollin et al.

Fig. 1. Interests for female and male pupils. Values range [−4 .. not at all interested
up to 4 .. very interested].

Fig. 2. Personality traits for male/female pupils. Scales in (a) and (c) are Dominant
[−6] up to Easy-Going [6], (b) and (d) are Formal [−6] up to Informal [6].

Personality, Self-concept and Interests of Girls and Boys at Secondary I 113

Fig. 3. Mean of reported grades (1 .. very good up to 5 .. insufficient) in language
skills and mathematics for female and male pupils. Numbers and standard deviation
are (nFemale, σlang, σmath) = {(10y/o, 1.03, 0.94), (11y/o, 0.93, 0.93), (12y/o, 0.81,
0.89), (13y/o, 0.83, 1.00), (14y/o, 0.71, 0.81)}, and (nMale, σlang, σmath) = {(10y/o,
0.64, 0.68), (11y/o, 0.92, 1.09), (12y/o, 0.93, 1.05), (13y/o, 0.90, 1.03), (14y/o, 0.87,
1.05)})

4.5 Interest in Computing Science and Special Interests

Figure 4 summarizes the differences in the interest in computing science between
the two cohort of girls and boys. Whereas the interest of boys is quite stable
across the different age groups, it declines a bit for girls. With the exception of
age 10, the interest of boys is always higher than that of girls.

In addition to the RIASEC dimensions and the question about the interest
in computing science, we also asked for additional fields of interests. Figure 5
shows the percentages of boys and girls who voted for one or more items. On
the first sight, girls seem to be interested a bit more in art, music, literature,
language, social sciences, health and nature, and boys are more interested in
informatics, mathematics and the engineering domain. However, it is noticeable
that for girls, with the exception of art and language, the interest is growing
by time, whereas with the exception of history, economy and informatics the
interest decreases for boys in general. It also shows that, when not asking for
computing science (Informatics) directly, interest of girls is still there, but just
at a lower percentage as for boys.

Fig. 4. Reported interest in computing science. Scale between [0 .. not interested to 1
.. very interested]. Numbers and standard deviation are: (nFemale, σ) = {(10y/o, 0.26),
(11y/o, 0.23), (12y/o, 0.28), (13y/o, 0.26), (14/yo, 0.27)} and (nMale, σ) = {(10y/o,
0.36), (11y/o, 0.22), (11y/o, 0.26), (13y/o, 0.25), (14y/o, 0.30)}

114 A. Bollin et al.

Fig. 5. Percentage of items reported for special interests for (a) female and (b) male
pupils. nFemale = {15, 75, 106, 69, 38}, nMale n = {11, 53, 110, 130, 69})

5 Discussion

When pondering over the results of this study, one has to be careful as there
are quite some threats to validity. Among them is the currently small size of the
cohort of the 10-year-old pupils (26 in total). As at the current stage we are using
descriptive analysis only, we decided to include them in the description to cover
the full secondary I level. The good news is that, apart from the realistic and
social RIASEC score and the interest in history, the results do not contradict
findings in literature, e.g. higher results for Artistic and Social dimensions for
girls [4].

Another issue is that the results form some kind of baseline for pupils in
our region. It therefore cannot (and will not) be easily generalizable for other
locations. On the other hand, the results are along with results of existing studies
(which is valuable) and this also confirms the applicability of the KAUA survey
to some extent.

One should also note that the “development over time” of interests, self-
concept or personality is not the “development” of a single child - it is really
just a baseline that is meant to be the starting point. Investigative, Artistic,
Enterprising and Conventional are reported to be more stable over time [26].
As we are continuing to collect this data, by time we will be able to trace
these measures back to an individual Level and can compare them to results in
literature.

Additionally, there might have been problems with the honesty in filling
out the questionnaire, but we had trained student assistants and the classroom
teachers taking care of filling out the online survey and also explaining the

Personality, Self-concept and Interests of Girls and Boys at Secondary I 115

importance of it. There might also be a bias in the interests and attitudes that
we were not able to control as the teachers decided to make use of the offer of
our Informatics-Lab by their own.

Apart from the above-mentioned threats, the results do have implications
on the program that we offer at our Informatics-Lab. The overall assumption
is that, according to the findings in literature and in order to achieve a last-
ing interest in computing science, self-concept, interests and personality should
be considered when teaching. The most important recommendations, stemming
from our observations above, are summarized hereinafter.

One insight is related to the fact that general interests (Fig. 1) are in a state
of constant flow and can be influenced. Attractive materials and classroom inter-
ventions (appropriate to the current living environment) should stimulate realis-
tic interests for girls and artistic interests for boys, and the investigative domain
should always be included. This should reduce the gap reported in interests
[4,10,19] as well as support interest that are important for the study interests.

Concerning personality development (Fig. 2), it is noticeable that especially
girls tend to get less easy-going the older they are. Taking care of it and also
reflecting on it when enacting teamwork in the classroom might be helpful. Apart
of this, there are training tools like PlayBenno2 that help developing personality.

Now let’s not dwell on the regularly poor results of the Austrian school
leaving exams in mathematics and German, but it is astonishing that the verbal
and mathematical self-concept (Fig. 3) are at a really low level. We thus already
started to include (and updated) interdisciplinary materials in our Informatics-
Lab to train these skills but also to strengthen the pupils’ self-confidence in these
fields. Working together with teachers from other subjects also seems to be very
beneficial here. These can be a factor to predict STEM persistence [1], especially
for girls.

Concerning the interest in computing science in general (Fig. 4) and special
interests (Fig. 5) it means that our teaching needs to be highly attractive to the
learning brain [5]. Arousing a wide interest is one thing and can be done by work-
ing together in an interdisciplinary manner, but when e.g. the interest in music
or languages is rising (as with girls), it is advisable to also touch these topics in
ones’ own classes. We already included such materials in our lab and a teacher
education student is currently working on the relation between crocheting and
computing science.

6 Conclusion

In order to make a maximum out of classroom interventions, every teacher should
respond appropriately to the needs of her or his pupils. When trying to motivate
for computing science, personality, interests, the verbal and mathematical self-
concept and the gender gap do play an important role, but all too often these
aspects are not looked at closer.

2 https://inventures.eu/game-with-a-mission-wins-innovation-award/4539/.

https://inventures.eu/game-with-a-mission-wins-innovation-award/4539/

116 A. Bollin et al.

In this paper we thus introduce a framework called KAUA that allows for col-
lecting such measures from different age groups with just a small time-overhead
(about 20 min) in the classroom setting. We then take a closer look at 676 girls
and boys at the lower secondary school level and report on measurable similari-
ties as well as differences.

In the context of our own teaching interventions, we then try to come up
with recommendations and suggestions. Even though the results might not be
generalizable to other locations, the work demonstrates that with not much
effort, (secondary school) teachers are able to learn more about their pupils and
might thus be able to support the interests of girls and boys in computing science
appropriately.

The work presented here is ongoing work and in the winter term 2020 we
will be able to roll out the survey more widely, reaching about several thousand
pupils in Austria. For the next couple of years, we also plan to collect more data
from University students (of different fields), and as we changed the rhythm of
collecting the feedback from returning visitors we will soon be able to analyze
changes in the scores on an individual level.

References

1. Ackerman, P., Kanfer, R., Beier, M.: Trait complex, cognitive ability, and domain
knowledge predictors of baccalaureate success, stem persistence, and gender differ-
ences. J. Educ. Psychol. 105, 911 (2013)

2. Aivaloglou, E., Hermans, F.: How is programming taught in code clubs? Explor-
ing the experiences and gender perceptions of code club teachers. In: Proceed-
ings of the 19th Koli Calling International Conference on Computing Education
Research. Koli Calling 2019, Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3364510.3364514

3. Bollin, A., Demarle-Meusel, H., Kesselbacher, M., Mößlacher, C., Rohrer, M., Sylle,
J.: The Bebras contest in Austria – do personality, self-concept and general interests
play an influential role? In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018.
LNCS, vol. 11169, pp. 283–294. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-02750-6 22

4. Babarović, T., Devic, I., Burusic, J.: Fitting the STEM interests of middle school
children into RIASEC structural space. Int. J. Educ. Vocat. Guidance (2018).
https://doi.org/10.1007/s10775-018-9371-8

5. Sabitzer, B., Stefan Pasterk, S.E.: Brain-based teaching in computer science - neu-
rodidactical proposals for effective teaching. In: Proceedings of the 13th KOLI
Calling Conference. ACM (2013)

6. Bergmann, C., Eder, F.: AIST-R. Allgemeiner Interessen-Struktur-Test mit
Umwelt-Struktur-Test (UST-R) - Revision. Manual. Hogrefe, 1 edn. (2005)

7. Blum, L.: Women in computer science: the Carnegie Mellon experience (2001).
http://www.cs.cmu.edu/lblum/papers/merged%20gh%20proposal2000.pdf

8. Cheryan, S., Ziegler, S., Montoya, A., Jiang, L.: Why are some stem fields more
gender balanced than others? Psychol. Bull. 143 (2016). https://doi.org/10.1037/
bul0000052

https://doi.org/10.1145/3364510.3364514
https://doi.org/10.1007/978-3-030-02750-6_22
https://doi.org/10.1007/978-3-030-02750-6_22
https://doi.org/10.1007/s10775-018-9371-8
http://www.cs.cmu.edu/lblum/papers/merged%20gh%20proposal2000.pdf
https://doi.org/10.1037/bul0000052
https://doi.org/10.1037/bul0000052

Personality, Self-concept and Interests of Girls and Boys at Secondary I 117

9. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69924-8 2

10. Dierks, P.O., Höffler, T.N., Blankenburg, J.S., Peters, H., Parchmann, I.: Interest
in science: a RIASEC-based analysis of students’ interests. Int. J. Sci. Educ. 38(2),
238–258 (2016). https://doi.org/10.1080/09500693.2016.1138337

11. Ebner, M., Adams, S., Bollin, A., Kopp, M., Teufel, M.: Digital gestütztes Lehren
mittels innovativem MOOC-Konzept (in German). journal für lehrerInnenbildung
20(1), 68–77 (2020). https://doi.org/10.35468/jlb-01-2020 05

12. Frenkel, K.A.: Women and computing. Commun. ACM 33(11), 34–46 (1990).
https://doi.org/10.1145/92755.92756

13. Grandl, M., Ebner, M.: Informatische Grundbildung - ein Ländervergleich. Medi-
enimpulse 55(2), 1–17 (2017). https://medienimpulse.at/article/view/mi1069

14. Holland, J.: Exploring careers with a typology - what we have learned and some
new directions. Am. Psychol. 51(4), 397–406 (1996)

15. Kelleher, C., Pausch, R., Kiesler, S.: Storytelling Alice motivates middle school
girls to learn computer programming. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI 2007, pp. 1455–1464. Association
for Computing Machinery, New York (2007). https://doi.org/10.1145/1240624.
1240844

16. Kunter, M., et al.: PISA 2000: Dokumentation der Erhebungsinstrumente. Mate-
rialien aus der Bildungsforschung, 72 (2002)

17. Mujkanovic, A., Bollin, A.: Improving learning outcomes through systematic group
reformation - the role of skills and personality in software engineering education.
In: 2016 IEEE First International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE), pp. 97–103 (2016)

18. Pasterk, S., Bollin, A.: Digital literacy or computer science: where do informa-
tion technology related primary education models focus on? In: 15th International
Conference on Emerging eLearning Technologies and Applications (ICETA), Stary
Smokovec, Slovakia (2017). IEEE. https://doi.org/10.1109/ICETA.2017.8102517

19. Proyer, R., Häusler, J.: Gender differences in vocational interests and their stability
across different assessment methods. Swiss J. Psychol. 66 (2007). https://doi.org/
10.1024/1421-0185.66.4.243

20. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67
(2009). https://doi.org/10.1145/1592761.1592779

21. Slany, W.: Pocket code: a scratch-like integrated development environment for your
phone. In: Proceedings of the Companion Publication of the 2014 ACM SIGPLAN
Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH 2014, pp. 35–36. Association for Computing Machinery, New York (2014).
https://doi.org/10.1145/2660252.2664662

22. Pasterk, S., Barbara Sabitzer, H.D.M.A.B.: Informatics-lab: attracting primary
school pupils for computer science. In: Proceedings of the 14th LACCEI Inter-
national Multi-Conference for Engineering, Education, and Technology, San José,
Costa Rica, July 2016

23. Stoll, G., Rieger, S., Lüdtke, O., Nagengast, B., Trautwein, U., Roberts, B.: Voca-
tional interests assessed at the end of high school predict life outcomes assessed 10
years later over and above IQ and big five personality traits. J. Pers. Soc. Psychol.
113 (2017). https://doi.org/10.1037/pspp0000117

https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1080/09500693.2016.1138337
https://doi.org/10.35468/jlb-01-2020_05
https://doi.org/10.1145/92755.92756
https://medienimpulse.at/article/view/mi1069
https://doi.org/10.1145/1240624.1240844
https://doi.org/10.1145/1240624.1240844
https://doi.org/10.1109/ICETA.2017.8102517
https://doi.org/10.1024/1421-0185.66.4.243
https://doi.org/10.1024/1421-0185.66.4.243
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/2660252.2664662
https://doi.org/10.1037/pspp0000117

118 A. Bollin et al.

24. Stout, J., Dasgupta, N., Hunsinger, M., McManus, M.: Steming the tide: using
ingroup experts to inoculate women’s self-concept in science, technology, engineer-
ing, and mathematics (STEM). J. Pers. Soc. Psychol. 100, 255–270 (2011). https://
doi.org/10.1037/a0021385

25. Wright, R.N., Nadler, S.J., Nguyen, T.D., Sanchez Gomez, C.N., Wright, H.M.:
Living-learning community for women in computer science at Rutgers. In: Pro-
ceedings of the 50th ACM Technical Symposium on Computer Science Educa-
tion, SIGCSE 2019, pp. 286–292. Association for Computing Machinery, New York
(2019). https://doi.org/10.1145/3287324.3287449

26. Xu, H., Tracey, T.: Stability and change in interests: a longitudinal examination
of grades 7 through college. J. Vocat. Behav. 93 (2016). https://doi.org/10.1016/
j.jvb.2016.02.002

27. Yamada, Y., et al.: The impacts of personal characteristic on educational effec-
tiveness in controlled-project based learning on software intensive systems devel-
opment. In: 2014 IEEE 27th Conference on Software Engineering Education and
Training (CSEE & T), pp. 119–128. IEEE, April 2014

https://doi.org/10.1037/a0021385
https://doi.org/10.1037/a0021385
https://doi.org/10.1145/3287324.3287449
https://doi.org/10.1016/j.jvb.2016.02.002
https://doi.org/10.1016/j.jvb.2016.02.002

Factors Influencing Lower Secondary School
Pupils’ Success in Programming Projects

in Scratch

Miroslava Černochová1(B) , Hasan Selcuk2 , and Ondřej Černý3

1 Faculty of Education, Charles University, Magdalény Rettigové 4, Praha 1, Czech Republic
miroslava.cernochova@pedf.cuni.cz

2 Faculty of Education, Psychology and Art, University of Latvia,
Imantas 7. lı̄nija–1, Riga, Latvia

3 Gymnázium a SOŠ dr. V. Šmejkala, Ústí nad Labem,
p. o., Stavbařů 5, Ústí nad Labem, Czech Republic

Abstract. In the Czech Republic, a radical change in the school curriculum is
planned. Through a new, compulsory subject of “Informatics and ICT”, the aim is
to develop digital literacy across all school subjects, and computational thinking.
Computational thinkingwill be implemented in the curriculumof pre-primary, pri-
mary, lower and upper secondary schools, and in teacher education at all faculties
of education in the Czech Republic. To ensure readiness for the implementation
of the new subject, it has been necessary to prepare and develop a set of learning
materials for pupils and teaching guidelines for teachers. These textbooks focus
on robotics, programming (Scratch, Python), and theoretical concepts from Infor-
matics. This paper describes a qualitative study aimed at identifying key factors
influencing lower secondary pupils’ success in completing some activities related
to programming in Scratch. Data were gathered from the feedback of five teachers
and 121 pupils at five lower secondary schools, and from the researchers’ observa-
tion reports from school visits. The key findings of the study showed that pupils’
success programming in Scratch depends on their motivation to the theme of the
Scratch activity, a positive climate in the learning environment, peer collaboration,
and freedom in ways to learn new concepts and to find solutions to given prob-
lems. Programming in Scratch is promising in developing pupils’ creativity and
decision-making in problem-solving. Additionally, a stress-free, non-threatening,
learning environment, where the teacher appreciates the enthusiasm, thinking pro-
cess and effort of pupils to find an original solution has a positive influence on
their success.

Keywords: Scratch · Lower secondary school · Programming · Peer
collaboration ·Motivation

1 Introduction

In accordance with the Government’s Digital Education Strategy [13], the Ministry of
Education, Youth and Sport of the Czech Republic is currently working on revisions

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 119–129, 2020.
https://doi.org/10.1007/978-3-030-63212-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_10&domain=pdf
http://orcid.org/0000-0003-1836-6978
http://orcid.org/0000-0001-8098-1088
http://orcid.org/0000-0002-5335-5169
https://doi.org/10.1007/978-3-030-63212-0_10

120 M. Černochová et al.

to its curricular document, the Framework Educational Programme, with two major
changes: (1) improving pupils’ digital literacy development at all educational stages,
and (2) the implementation of a new compulsory subject of Informatics, instead of ICT.
Informatics will centre on the development of computational thinking. Both changes
are relatively radical and should be put into actual practice in pre-school, primary and
secondary schools by 2021/22.

To achieve this goal, two three-year projects involving all faculties of education in
the Czech Republic have been established: the project, “PRIM” (Support for computa-
tional thinking development [15]), and the project, “DG” (Support for the development
of digital literacy [8]). Since October 2017, 14 textbooks and teaching guidelines for
teaching Informatics as a new subject in primary and secondary schools and for the
development of computational thinking in pre-school children have been produced from
[15]. In the years 2018 to 2020, all these textbooks were verified at several kindergartens,
primary and secondary schools and, based on the evaluation of experience with their use
in teaching, modified into the final form. The final textbooks have been published since
July 2020 on the website at imysleni.cz.

The didactic approach to all these 14 textbooks is based on Papert’s constructionist
idea, learning-by-making. Pupils can learn by experimenting and inquiring activities dur-
ing solving interesting problems or their own ideas. Each textbook basically consists of
two parts: one part (learning material) intended for pupils and the second part (teaching
guidelines) dedicated to teachers.

Three textbooks are focused on computational thinking development at primary
education (ISCED 1) and lower secondary school education (ISCED 2) using Scratch.
Specifically, there is a textbook written by Kalas & Mikova [10] for school education
level ISCED 1 and other textbooks written by Vanicek et al. [19] and by Cernochova
et al. [6] for school education level ISCED 2.

This study presents some results from verification of the textbook by Cernochova
et al. [7] at five Czech schools in 2019/20 with 121 pupils. This textbook brings ideas
for eleven projects in Scratch; some projects are relatively simple and can be used as an
exercise for the solving ofmore complex projects (games, animations, and stories),which
are already more time-consuming, difficult and programming-intensive. This article
is dedicated to two Scratch projects, ‘Clock’ and ‘Interactive postcard’. The study is
intended to reveal factors which determine pupils success in completing the projects if
they follow assignments formulated openly and based on questions for thinking, without
any other strict guidelines.

2 Literature Review

Programming, which is one of the topics in the subject of informatics, has become a
focus of attention for researchers to reveal new evidence about how to capture pupils’
attention and catch their interest in undertaking programming tasks in a more effective
and engaging way. As highlighted by Romero et al. [16, p. 2] “Programming is not only
about writing code but also about the capacity to analyse a situation, identify its key
components, model the data and processes, and create or refine a program through an
agile design-thinking approach”. Programming is generally not easy. “Beginners need

Factors Influencing Lower Secondary School Pupils’ Success 121

to learn to identify the structure of a problem and the logic of a program to solve it -
but they are simultaneously forced to deal with technical details of the programming
environment that are not related to these core tasks” [17, p.764].

There are a lot of platforms to engage children in learning to program through the
creation of computational artefacts, such as Logo, Karel, Blockly, Alice, Kodu etc.
For many reasons, the most popular among them is currently a visual programming
environment, Scratch. “Kids without much experience with computers and with no
prior programming knowledge can quickly create interactive games or tell stories with
Scratch” [17, p. 765].

Previous studies focusing on programming Scratch activities among secondary
school pupils investigated the perceived cognitive load and its effects on the academic
performance in Scratch-based programming activities (e.g., [5]), the use of Scratch envi-
ronment for teaching computer science concepts (e.g., [1]), factors affecting Scratch-
based coding on pupils’ interest development in coding and in mathematics [9], the
impact of introducing programming with Scratch at different stages at an early age in
different school subjects [14], and the link between creative programming with Scratch
and learner´s cognitive and metacognitive strategies [16].

As highlighted by Maloney et al. [11, p. 16.2] “Scratch added programmability to
media-manipulation activities that are popular in youth culture, and it encouraged young
people to learn through exploration and peer sharing, with less focus on direct instruction
than other programming languages.”

Baytak and Land [2, p. 765] discovered that 5th grade pupils were able to “de-
sign functional games in Scratch, following a learning-by-design process of planning,
designing, testing, and sharing”. In their exploratory case study with the 5th grade girls
using Scratch, Baytak & Land also [3, p. 243] found “the potential role of game design
as a vehicle to involve more girls in computer science”. In the research based upon a
novel combination of a revised Bloom’s taxonomy and the SOLO taxonomy,Meerbaum-
Salant et al. [12, p. 69] “showed that, in general, pupils could successfully learn important
concepts of computer science, using new learning materials designed according to the
constructionist philosophy of Scratch, although there were some problems with initiali-
sation, variables and concurrency; these problems can be overcome by modifications to
the teaching process”.

Brennan conducted interviews with 30 pupils and 30 teachers working with Scratch
in K-12 classroom and found that pupils working with Scratch value the freedom and
open-endedness of Scratch the most because “it’s more like real life”. [4, p. 80]

3 The Study

3.1 Research Design

In our research, a qualitative methodology was used to collect and to analyse the data
gathered frommultiple sources, including online open-ended questionnaires for teachers
and their pupils at five lower secondary schools, and from the researchers’ observation
reports from school visits.

Since the study intended to reveal the factors influencing lower secondary school
pupils’ success in completing Scratch-based programming tasks, two Scratch projects,

122 M. Černochová et al.

which are ‘Clock’ and ‘Interactive postcard’, were undertaken by the N = 121 pupils
with the guidance of five teachers during the school year of 2019–2020. Three lessons
were allocated for each of these programming Scratch projects.

3.2 The Sample of Participants

The researchers collaboratedwith five teachers fromfive state schools in different regions
of the Czech Republic (Table 1). These schools had the approval of the Ministry of
Education, Youth and Sports to verify new learning and teaching materials. In this study,
three criteria were determined to select the participants: (1) the school principal had
to agree to implement these materials into teaching of Informatics in their school, (2)
schools should provide education level 2 according to ISCED classification, and (3) the
pupils should be previously introduced to basic features of Scratch.

Table 1. Characteristics of participants.

School Populationa Geographic
location

Type of
school

Number of
participants
(pupils)

Pupils’ age Gender of
Informatics
teacher

School 1 93,000 Bohemia Gymnasium 16 12–14 Male

School 2 1,200 Moravia Basic school 60 13–14 Female

School 3 9,000 Bohemia Gymnasium 16 13–14 Female

School 4 22,000 Moravia Basic school 14 12–14 Female

School 5 1,300,000 Bohemia Gymnasium 15 13–15 Female

Total 121
aNumber of inhabitants in the town where the school is located.

3.3 Programming Scratch Projects

Two projects, ‘Clock’ and ‘Interactive postcard’, were chosen from 11 projects included
in the textbook by [7]. One project, ‘Clock’, represents a project in which it is necessary
to program a functional model that requires to formulate mathematical calculations to
describe the motion of clock hands. The second one, ‘Interactive postcard’, requires not
only pupils’ creativity and stimulating ideas, but also understanding the use of blocks
for clones.

Project 1 – ‘Clock’
In the ‘Clock’ project, pupils are asked to design and create a functional model of a
traditional clock with a second, a minute and an hour hand. The project can be divided
into three phases, in which pupils solve partial problems related to the project. In the
first phase, pupils design the graphical circle form of a clock and then they place in it

Factors Influencing Lower Secondary School Pupils’ Success 123

the numbers from 1 to 12. Pupils are allowed either to program it or use a ready-made
picture of a clock or draw it.

In the second phase, pupils place the long (minute), short (hour) and second hand of
the clock and then set these three hands into circular motion. In the third phase, pupils
adjust the clock to show the correct time. The specificity of the project is that it requires
the application of some mathematical procedures to describe a circular motion of the
hands and to adjust the clock.

When solving a task in the project, pupils follow self-directed, learning material,
which contains some guidelines, instructions and questions prepared for pupils to under-
take the project by themselves or with limited teacher guidance. The learning material
does not contain any precise procedures or specific guidance about what to do and how to
design the clock. In the material, pupils find only a few questions and recommendations
on how to think about the process and find a solution to the task (Fig. 1).

Fig. 1. Guidelines for pupils in the learning material for the Clock project

However, pupils do not have to program or to draw a shape of the dial in Scratch
with its centre located in [0, 0] of the xy co-ordinate system, but they can use a picture
of a circular dial downloaded from the Internet, or a scanned drawing of the dial, etc.
Pupils use their creativity and imagination to create the graphic form of the dial.

Placing the clock hands in a circular motion and setting the correct time on the clock
already requires knowledge of how to design a functional mathematical model and use
mathematical blocks. Each hand moves at a different angular speed. Pupils can use
blocks of the current hour, current minute and current second to set the clock (Fig. 2).

During the project, the teacher’s role is to enable pupils to work independently on
the project and to encourage pupils to work with their peers and help out each other by
advising, explaining and sharing their ideas among themselves.

124 M. Černochová et al.

Fig. 2. Example of mathematical description of the circular motion of a big (Minute) hand clock

Even though, in our study, this project was completed practically by the majority
of pupils, most of them did not show much enthusiasm because the solution required
them to apply some mathematical calculations and an idea of circular motion studied in
physics; its idea was not based on any story or principles of a game. Nevertheless, some
boys found this task engaging and amusing.

Project 2 – Interactive Postcard
In the ‘Interactive postcard’ project, pupils are asked to create an interactive animated
picture based on a simple story. When working on the project, the pupils’ creativity,
imagination, art skills, ability to invent and narrate a story play a key role in completing
the task.

The most important thing is to choose a good and attractive theme as the core of the
story on the postcard. The theme can be greetings from the holidays at grandma’s, from
a camp, from a stay by the sea, from a visit to the zoo, etc. It can also be a birthday or
festive occasion wishes (Easter, Christmas, etc.).

The crucial part of the project is to implement the story in Scratch and to design and
include a set of funny, interactive elements and striking effects in its scene.

With regard to the Christmas theme, the project can be divided into five phases, in
which pupils solve partial problems. In the first phase, pupils think carefully about the
story for the postcard. They contemplate its graphic design and the sprites that would
appear in the story. In the second phase, pupils prepare a typical Christmas landscape
scene (e.g., a house with a Christmas tree) and sprites (e.g., dog, cat, door, chimney, stars
in the night sky). They then propose how selected sprites will be animated and which
sprites, and how to interact with these sprites in the story. In the third phase, the pupils
create a snowflake sprite and program how these snowflakes fall over the landscape. In
the fourth phase, the pupils program how falling snowflakes step-by-step accumulate
on the ground or on other surfaces of objects on the scene (trees, roof, etc.). In the fifth
phase, if pupils have extra time, they can display on their interactive postcard a New
Year’s label, PF (Pour féliciter), with the relevant number for the incoming new year
and add some sound effects, voices, or melodies.

Teachers can inspire pupils to work on an interactive postcard by explaining how to
prepare the postcard as a present for small children or friends. The pupils can deal with
interactions in Scratch in different ways (by clicking on the sprites, sending messages,
meeting the logic conditions, etc.). They can complete the story with various sound
recordings (the barking of a dog, creaking of the door, owl honking, cat meowing, etc.).

Factors Influencing Lower Secondary School Pupils’ Success 125

Teachers allow pupils to work independently, encourage the pupils to work together to
advise or to explain to each other, and to exchange ideas.

In our study, this project was completed by practically the majority of highly inter-
ested pupils. Some pupils displayed the PF label very simply, inserting the label by using
the “stamp” command in Scratch.

3.4 Data Collection Tools

Thedata thatwere collected for this study comprisedof online open-endedquestionnaires
concerning programming projects in Scratch for teachers and for pupils. Furthermore,
researchers’ observation reports (elaborated after their school visits) were also included
as one of the data collections tools.

The online questionnaires (A and B) with 28 open-ended questions for teachers
were designed by the researchers and distributed to each teacher (N = 5) at the end of
each project (‘Clock’ and ‘Interactive postcard’) in order to obtain information about
pupils’ understanding of the tasks in the projects and to identify the main problems
which emerged during the course of projects, and also to find out how these problems
were resolved.

Online questionnaires (C and D) with two or three open-ended questions for pupils
were designed by their teachers to obtain feedback from pupils about what they
have learnt and their views about programming in the projects. Pupils answered the
questionnaires after they had completed all projects included in the textbook by [7].

During the programming projects in Scratch, researchers visited the schools and
wrote eight observation reports. Researchers mainly observed how teachers were
instructing pupils and how pupils were undertaking the programming projects. The
Table 2 below illustrates the overview of data collection tools.

Table 2. Overview of data collection tools.

Data collection Type of data set Purpose

Two online open-ended
questionnaires concerning
programming projects in
Scratch for teachers

Questionnaire A:
‘Clock’ project

To obtain information about
pupils’ understanding the
tasks in the projects and to
identify the main problems
concerning how to complete
the projects

Questionnaire B:
‘Interactive postcard’ project

Two online open-ended
questionnaires concerning
programming projects in
Scratch for pupils

Questionnaire C:
‘Clock’ project

To obtain information from
pupils about what they have
learnt and their approach to
programming the projects

Questionnaire D:
‘Interactive postcard’ project

Eight observation reports
from the researchers

Reports from lessons observed
during programming projects

To understand how teachers
were instructing and how
pupils were undertaking the
projects

126 M. Černochová et al.

3.5 Data Analysis Procedure

Feedback from online open-ended questionnaires gained from teachers and pupils and
taken from researchers’ observation reports were all written data. Therefore, after
researchers completed the data collection, all collected data were first transferred to
one Word document. Second, to familiarise themselves with the content, researchers
read all three datasets several times: teacher and pupil questionnaires and observation
reports from researchers. Third, before moving to coding, researchers highlighted (with
different colours) the key elements such as words, sentences or quotes, which appeared
to be relevant to the topic under scrutiny and, hence, which would help to address
the research question. Fourth, researchers started to carry out open coding in all three
datasets, which involved assigning letters to meaningful codes for each segment in the
transcripts and threads. This method enabled researchers to easily find statements that
we wanted to check in transcripts and threads and identify the source of the statement.
Fifth, in the three datasets, researchers undertook more detailed coding which involved
clustering and organising the open codes into broader categories which describe the data.
Sixth, researchers analysed the links/interconnections between the three datasets.

3.6 Findings

Project solution in Scratch using the textbook by [7] showed that the key factors affect-
ing successful completion of project programmed in Scratch are (1) motivation, (2) a
positive climate in the learning environment, (3) peer interaction and collaboration, (4)
freedom in ways to learn new concepts and to find solutions to given problems, and (5)
a constructionist teaching approach (Table 3).

Table 3. Some examples from datasets.

Factor Pupils Teachers Researchers

(1) motivation “These projects motivated me
to learn programming and at
the same time aroused my
interest in computers”

“Sometimes I had to explain
some things a lot to the pupils,
even though I think it’s nicely
explained. Pupils just do not
want to read the learning
materials carefully. I wanted to
keep the pupils having fun and
it was engaging for them”

“Teachers paid great
attention to introducing pupils
to the topic”

(2) positive climate in the
learning environment

“Personally, I am not so
interested in computers, but I
have enjoyed programming in
the projects and everything we
did in class was great”

“When I entered the
classroom, I felt like being in
a beehive”

(3) peer interaction and
collaboration

“I’m glad that we were able to
help each other, because I
probably wouldn’t have
enjoyed it very much”

“Pupils collaborated a lot,
especially if the pupils were
dealing with falling snowflakes
(snowfall)”

“When solving a project,
pupils could discuss and
consult together and mutually
help each other”

(4) freedom in ways to learn
new concepts and find
solution to given problems

“I have learned that
Informatics is not just about
boring information about the
Internet, diacritics, and test
writing, but it is also about
practical things like
programming”
“But I really enjoyed the
freedom we had when working
with these tasks”

“Pupils came up with their
own solution; they did not use
‘costumes’, but solved it as
separate sprites that jumped
on a given place. (interactive
postcard)”

“One pupil, for example,
designed a witch’s house
instead of a Christmas
postcard”

(continued)

Factors Influencing Lower Secondary School Pupils’ Success 127

Table 3. (continued)

Factor Pupils Teachers Researchers

(5) constructionist teaching
approach

“It was fun in class, especially
when we were given basic
instructions, but everyone took
it in their own way. Such works
were the best”

“Learning material for
Interactive postcard was
understandable - pupils very
quickly began to progress
independently”

“Boys experimented with
blocks more, embarked on
unusual solutions, and took
more risks whereas girls were
more adhering to the
instructions in the learning
materials”

4 Discussion

Our findings demonstrate that if pupils are given interesting issues to be solved (projects)
and some questions that initiate their thinking about how to start to solve the problem, and
if the teachers give them enough freedom to explore and experiment with a programming
environment, they carry out these ideas with interest. At the same time, they learn new
informatics’ concepts and programming procedures. It corresponds with findings of [12]
that children could successfully learn important concepts of computer science using
learning materials which do not bring ready-made solutions, but which trigger their
thinking and lead them to ask new questions.

The twoprojects selected, togetherwith others in the learningmaterial,were designed
in accordance with a constructionist approach and based on Papert s idea of learning-
by-making. The results confirmed that pupils following such type of learning materials
are able to find ways to complete such projects themselves, especially when they work
together with their classmates in a stress-free, non-threatening, learning environment,
where their teacher appreciates their enthusiasm, thinking process and effort. This is
evidenced by the teachers themselves, who stated that about 75% of pupils completed
the ‘Interactive postcard’ project and 70% pupils programmed the project, ‘Clock’, in
accord with the instructions in the learning material.

It appears that the teaching approach to programming employed in our study poten-
tially corresponds with the third and fourth level of creative engagement in computer
programming education introduced by [16].

5 Conclusions

The study findings have some implications for teachers and practitioners. For seamless
integration of Scratch projects in school education, we recommend keeping pupils in
close peer-collaboration and to encourage them to have the courage to take risks, to
experiment with blocks and to look for original ideas. This does, however, require that
teachers are thoroughly prepared to help pupils to program their bold ideas in Scratch.
Teachers have to reckon on the fact that supporting pupils to go their own way, to learn-
by-making and to learn from mistakes brings a lot of unexpected problems and need to
help pupils to discover the resources of mistakes in their scripts; pupils will be impatient
because they will want their Scratch program works as they intended. It is necessary
to constantly maintain the interest of pupils in solving problems. Pupils’ motivation
disappears if a functional version of the Scratch program is not available for a long time.

128 M. Černochová et al.

In our study, we received a relatively large amount of feedback from pupils. We
could observe how pupils proceeded in tackling projects. We still know very little about
how pupils develop their key informatics concepts in Scratch and what are their mis-
conceptions. Like Vanicek [18, p. 370], we are aware of the limitations of our research
methods. In our future research, we plan to focus on identifying, in collaboration with
teachers, these misconceptions and their causes.

In this study, we used only two projects out of the eleven in the textbook by [7].
For future research, we would like to include also other projects to investigate more
deeply factors influencing pupils’ success in their completion. There is a pressing need
for closer investigation of this problem especially because, in 2021-22, Czech schools
will include new curricula for Informatics education using the new 14 textbooks. In the
Czech Republic, there will be great interest in detailed and comprehensive research of
their impact on computer science learning, including programming.

Acknowledgement. This study is a result of the research funded by the PROGRES Q17 Příprava
učitele a učitelská profese v kontextu vědy a výzkumu.

References

1. Armoni, M., Meerbaum-Salant, O., Ben-Ari, M.: From Scratch to “real” programming. ACM
Trans. Comput. Educ. 14(4), 25:1–25:15 (2015)

2. Baytak, A., Land, S.: An investigation of the artifacts and process of constructing computers
games about environmental science in a fifth-grade classroom. Educ. Tech. Res. Dev. 59(7),
765–782 (2011)

3. Baytak, A., Land, S.M.: Advancing elementary-school girls’ programming through game
design. Int. J. Gender Sci. Technol. 3(1), 243–253 (2011)

4. Brennan, K.: Best of both worlds: issues of structure and agency in computational creation, in
and out of school. Doctoral dissertation, MIT (2012). http://web.media.mit.edu/~kbrennan/
files/dissertation/Brennan_Dissertation.pdf

5. Cakiroglu, U., Suicmez, S.S., Kurtoglu, Y.B., Sari, A., Yildiz, S., Ozturk, M.: Exploring
perceived cognitive load in learning programming via Scratch. Res. Learn. Technol. 26, 1–19
(2018)

6. Cernochova, M., Vankova, P., Stipek, J.: Programování ve Scratch pro pokročilé - projekty
pro 2. stupeň základní školy. Pedagogická fakulta UK, Praha (2020). https://imysleni.cz/uce
bnice/programovani-ve-scratchi-ii-projekty-pro-2-stupen-zakladni-skoly

7. Cernochova, M., Vankova, P., Stipek, J.: Programování ve Scratch II (projekty pro 2. stupeň
základní školy). Beta version. PedF UK, Praha (2019)

8. DG. Podpora rozvoje digitální gramotnosti. DG. https://digigram.cz/
9. Dohn, N.B.: Students’ interest in Scratch coding in lower secondary mathematics. Br. J. Edu.

Technol. 50(1), 71–83 (2019)
10. Kalas, I., Mikova, K.: Základy programování ve Scratch pro 5. ročník základní

školy (2020). https://imysleni.cz/ucebnice/zaklady-programovani-ve-scratchi-pro-5-rocnik-
zakladni-skoly

11. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmong, E.: The Scratch programming
language and environment. ACM Trans. Comput. Educ. 10(4), 1e15 (2010)

12. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M.: Learning computer science concepts with
scratch. In: Proceedings of the Sixth International Workshop on Computing Education
Research, pp. 69–76 (2010)

http://web.media.mit.edu/%7ekbrennan/files/dissertation/Brennan_Dissertation.pdf
https://imysleni.cz/ucebnice/programovani-ve-scratchi-ii-projekty-pro-2-stupen-zakladni-skoly
https://digigram.cz/
https://imysleni.cz/ucebnice/zaklady-programovani-ve-scratchi-pro-5-rocnik-zakladni-skoly

Factors Influencing Lower Secondary School Pupils’ Success 129

13. MoEYS: Strategie digitálního vzdělávání do roku 2020 (2014). http://www.msmt.cz/uploads/
DigiStrategie.pdf

14. Moreno-León, J., Robles, G., Román-González, M.: Code to learn: where does it belong in
the K-12 curriculum? J. Inf. Technol. Educ. Res. 15, 283–303 (2016)

15. PRIM: Podpora rozvíjení informatického myšlení. www.imysleni.cz
16. Romero, M., Lepage, A., Lille, B.: Computational thinking development through creative

programming in higher education. Int. J. Educ. Technol. High. Educ. 14(1), 1–15 (2017).
https://doi.org/10.1186/s41239-017-0080-z

17. Tanrikulu, E., Schaefer, B.C.: The users who touched the ceiling of scratch. Procedia Soc.
Behav. Sci. 28, 764–769 (2011)

18. Vanicek, J.: Early programming education based on concept building. Constructivist Found.
14(3), 360–372 (2019)

19. Vanicek, J., Nagyova, I., Tomscanyiova, M.: Programování ve Scratch pro 2. stupeň základní
školy (2020). https://imysleni.cz/ucebnice/programovani-ve-scratchi-pro-2-stupen-zakladni-
skoly

http://www.msmt.cz/uploads/DigiStrategie.pdf
http://www.imysleni.cz
https://doi.org/10.1186/s41239-017-0080-z
https://imysleni.cz/ucebnice/programovani-ve-scratchi-pro-2-stupen-zakladni-skoly

Informatics Teacher Education

Design- and Evaluation-Concept for
Teaching and Learning Laboratories in

Informatics Teacher Education

Bernhard Standl1(B), Anette Bentz1, Mattias Ulbrich2, Annika Vielsack2,
and Ingo Wagner2

1 Karlsruhe University of Education, Karlsruhe, Germany
{bernhard.standl,anette.bentz}@ph-karlsruhe.de

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
{ulbrich,vielsack,ingo.wagner}@kit.edu

Abstract. The integration of practice-related aspects in pre-service
informatics teacher education is an essential part in future teachers’ qual-
ifications. To further promote opportunities for teaching-practice into
our teacher-preparation programs, we recently introduced a teaching-
learning-laboratories (TLL) for informatics in Karlsruhe, Germany. This
TLL not only offers pre-service informatics teachers students the oppor-
tunity to gain practical teaching experience, but we also promote com-
petencies of secondary school pupils in workshops for school classes. In
the laboratory, pre-service informatics teacher students can practice in
micro-teaching learning scenarios both in seminars and in workshops
with school classes. Based on this, we developed teaching-learning strate-
gies as a combination of unplugged and plugged teaching-learning activ-
ities. In order to ensure the effectiveness of the workshops, they are also
subject of an evaluation, examining the TLL from the perspective of
the workshop concepts for pre-service informatics teacher students and
the schools’ pupils. From these two perspectives we investigate different
fields of interest with the common goal to establish an effective TLL. In
this paper we describe our approach of the TLL, our first experiences
with workshops we have already conducted as well as the framework and
the concept for evaluation.

Keywords: Teaching learning lab · Informatics teacher education ·
Evaluation of workshops

1 Introduction

Pupil laboratories are part of extracurricular out-of-school places of learning,
where pupils themselves experiment and research. They learn about scientific
work processes and methods but are accompanied in their (independent) exper-
iments. In addition to this core definition, pupil laboratories should be oriented
towards the principle of inquiry-based learning and strive for a high level of

c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 133–145, 2020.
https://doi.org/10.1007/978-3-030-63212-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_11&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_11

134 B. Standl et al.

authenticity, for example by using the premises for research projects or by
bringing pupils into contact with doctoral students. In this sense, in a broad
understanding of a pupil laboratory, the term “laboratory” can refer not only
to a spatial laboratory, but also to a (artificial) situation specially created by
humans, as well as to the research activity. A special form of a pupil laboratory,
which is extremely relevant with regard to study and teaching, is the teaching-
learning laboratory (TLL). In TLLs, groups of pupils are taught or supervised
by pre-service teacher students. In some cases, the teacher students themselves
develop and test the learning units or learning stations, for example within the
framework of courses or final theses. When conducting teaching-learning labs,
teacher students are usually responsible for a small group (3–5 pupils) at one
learning station (similar to micro-teaching) and try out their teaching actions
about 10–20 min with each group of pupils rotating through the lab. The per-
sonal responsibility and reduction of complexity can be adapted to the level of
competence of the teacher students, for example with regard to moderation or
the establishment of rules. In this way, teacher students gain early experience in
dealing with pupils in a confined, less complex environment and can test their
competencies in classroom situations during their teacher training and reflect on
their actions in a guided manner [24]. Reflection in teaching-learning laborato-
ries can take place in various ways, for example as peer feedback immediately
after the training by fellow students or through expert feedback from the lec-
turers. In addition, self-awareness questionnaires are often used to support the
reflection process and to identify individual learning needs. Furthermore, in the
mode of research-based learning, empirical data can be collected independently
to research the learning process.

In Germany, there are more than 400 laboratories for pupils related to differ-
ent subjects at the beginning of 2020, which are mainly connected to universities
as well as museums, industrial companies and science centres1. But only a cou-
ple of those laboratories are part of practice-related pre-service teacher programs
and so far, only very few focus on informatics. Mostly, such laboratories in infor-
matics were set up either as learning-labs for students, for outreach programs for
schools or as research labs and practice space for pre-service teachers. In Austria
some initiatives of teaching-learning laboratories emerged over the last decade
as for instance the COOL Lab at the University of Linz. This is an interdis-
ciplinary teaching-learning-lab aimed at addressing digital competencies of pre-
and in-service teachers and private visitors with a focus on computational think-
ing [10]. Earlier, parts of this team introduced the so called Informatikwerkstatt
(Informatics-Workshop) at the University of Klagenfurt, which is a teaching-
learning lab also offering workshops for students, pupils and private visitors [23].
Similar formats have been introduced at the University of Paderborn, Germany
[18]. At the University of Oldenburg, Germany, a lab was introduced, which
sets its focus on workshops for teachers with pupil-groups2. The RWTH Aachen
University in Germany, offers a Student-Lab called InfoSphere [7]. At the FU

1 https://www.lernortlabor.de.
2 https://uol.de/lernlabor-informatik.

https://www.lernortlabor.de
https://uol.de/lernlabor-informatik

Design- and Evaluation-Concept for Teaching and Learning Laboratories 135

Berlin, high-school classes can visit workshops designed by pre-service informat-
ics teacher students in a teaching-learning-lab [4].

To further promote opportunities in integrating teaching practice into our
teacher-preparation programs, we recently started a new TLL for pre-service
informatics teacher education in Karlsruhe, Germany3. This TLL has two sites
at the Karlsruhe University of Education (PHKA) and the Karlsruhe Institute
of Technology (KIT). The two sites are located in close proximity and since
the universities target different student groups (becoming teachers at different
school types), the two sites complement each other ideally. On the one hand, the
new TLL aim at motivating students to engage in informatics or even to become
future university students in informatics. On the other hand, the TLL also offers
future informatics teachers practical teaching experience. Therefore, parts of the
TLL activities are carried out by pre-service informatics teacher students as part
of their studies with supervision by university lecturers. Our TLL is accompa-
nied by a research-oriented approach that examines the teaching-learning lab
along the workshop concepts considering different research objectives aimed at
the pupils and the future informatics-teachers. In this way we aim at a well-
concepted integration of the TLL in the development of activities in the context
of informatics education.

The remainder of this paper is structured as follows. First, we describe the
concept of our TLL and then we give three examples of our workshops. Then we
describe the evaluation concept and first experiences. We conclude with a short
outlook on future activities.

2 Description of the Teaching-Learning Lab

The TLL pursues the approach of creating an integrative structure that allows
to apply concepts from informatics in practice and it is designed in a way to
achieve a sustainable effect for informatics education through the interaction of
practical experience, and research. The underlying theoretical pedagogical con-
cept is based on the constructivistic learning theory, whereby students construct
knowledge rather than just receive knowledge from the teacher [6]. Based on
constructivism, the constructionist learning theory by Papert [22] has a long
tradition in informatics education for hands-on activities [9]. For the TLL a des-
ignated room was set up at both locations, which is designed in such a way that
many forms of teaching-learning concepts can be applied. The spectrum of teach-
ing/learning materials ranges from mini-computers such as Arduino or mBot to
tasks and materials developed by us that are processed “unplugged” without the
use of computers. On a conceptual level, the overall approach of the TLL is aimed
at two goals: The integration of practical experience for pre-service informatics
teachers into seminars and the promotion of informatics among school-pupils.
Although the students try out teaching-learning sequences and develop materials
within seminars in the TLL even in the absence of pupils, they are also actively

3 http://www.lehr-lern-labor.info.

http://www.lehr-lern-labor.info

136 B. Standl et al.

involved in the design and implementation of workshops for pupils. The advan-
tage in contrast to existing practical phases at school locations is, that teaching
sequences can be applied, observed and evaluated on a small scale directly in
the TLL. Hence, the practical relevance promotes the professionalisation process
of the prospective informatics teachers. Workshops for pupils are also designed,
conducted and evaluated by academic staff, who also accompany the evalua-
tion of the workshops. As a consequence, we are also able to explore pupils’
learning processes and interest in informatics based on the workshops we offer
(see Sect. 4). A further characteristic of the TLL with its two locations at the
Karlsruhe Institute of Technology and the Karlsruhe University of Education is
that we intentionally combine the competencies of both institutions (technical
science and didactics) in close cooperation and thus obtain an added value in
quality. This means that we take the opportunity to incorporate the expertise of
the Karlsruhe Institute of Technology and the pedagogical-didactical expertise
of the Karlsruhe University of Education into the operation of the TLL.

2.1 Workshop-Examples

In order to provide an idea of our activities in the TLL, we will describe three of
our workshops briefly. They are aimed at pupils in 7th till 9th grade of secondary
schools and have a duration of 90–120 min.

Workshop 1: Schokomat (“Choc-Machine”). This workshop is an intro-
ductory exercise in algorithmic thinking. While programming is an important
element of the curriculum in informatics4, the concept of automata (a.k.a. finite
state machines or state charts) is not introduced. In this workshop we want to
give pupils the possibility to approach the subject of (reactive) algorithms very
playfully, and to build up an intuition on how machines (or computers) make
decisions and how decision-making rules can be formulated in form of automata.

The workshop itself is divided into two parts, an unplugged and a plugged
one: (1) After a short introduction the pupils work together in groups of four.
In each group two pupils simulate the inside of a chocolate machine using a
cardboard mockup with a coin slot, a button and an output slot (Fig. 1(a)).
They have to control the output of the chocolate machine according to a given
state chart. The other two pupils have to figure out how this specific chocolate
machine is working. Therefore, they have to try different inputs and write down
their conclusions in form of a state chart. When finished, they can compare the
original and the recreated state chart, check their results and flip roles. The
pupils work independently and in their own pace. They learn and personally
experience the concepts of “state”, “event” and “state transition” which are
central for (reactive) algorithms. (2) In the plugged part of the workshop, the
pupils use a desktop computer program developed for this purpose (Fig. 1(b))
to design automata on their own and to interact with them. The application
has the benefit of obeying the automata rules rigorously which allows pupils to
4 In our state, a course of informatics is compulsory in grade 7.

Design- and Evaluation-Concept for Teaching and Learning Laboratories 137

explore what automata can do in general and to experiment and probe their
understanding of the concept. A physical chocolate machine that can be driven
by the software is currently under development.

Conducted Workshops have shown that the playful introduction allows pupils
an easy and intuitive access to state charts and the concept of automata. Espe-
cially younger pupils enjoy playing with the mock-ups. This leads to ongoing
motivation during the whole workshop.

(a) (b)

Fig. 1. Material for the “Schokomat” workshop: (a) the unplugged setup, (b) screen-
shots of the Desktop app to design and run automata

Workshop 2: Interactive Coding for Beginners. This workshop focuses
on teaching pupils the concept of algorithms and the ability to develop them.
Using self-regulated learning methods, the pupils develop either a basic idea
of algorithmic thinking or may dive deeper in and experiment with variables
and functions. The workshop has two distinct parts: programming with analog
technique and programming of a robot. The duration of each part can easily
shift from not existing to very extensive and the impact of analog techniques
on motivation and learning success can be investigated in detail. To arouse the
interest of the pupils, we introduce robots in socially relevant topics and draw
comparison with playful robots. In the unplugged programming part, one pupil
plays the part of the programmer by lining up commands, while the other pupil
plays the part of the robot, by executing these commands, for example walking
around the room or drawing simple pictures. The programming is performed by
arranging magnetic programming blocks on small boards as depicted in Fig. 2.

Commands may be “go one step” or “draw one line”. Using the blocks, the
pupils are introduced to the basics of block programming and debugging in a
haptic and social way, without being distracted by the advanced functionality of a
real development environment. Subsequently a simple robot and its development
environment are introduced. After the pupils get used to controlling the robot,
they are asked to proceed with challenges in which the robot fulfils various tasks.
Different missions, from ‘easy’ to ‘advanced’, are provided and the pupils are free

138 B. Standl et al.

Fig. 2. Prototypes of self-developed magnetic programming blocks

to select an assignment of their choice. Learning guides are available to support
the pupils in their self-regulated learning.

Workshop 3: Follow the Line with mBot Robots. The mBot Workshop
also aims to promote algorithmic thinking through the programming of mBot
robots and was prepared and carried out by future informatics teacher students.
The workshop focuses on the integration of haptic experiences in order to moti-
vate students to engage with algorithmic thinking. The educational robots mBot
were used to perform the classical “Hello World” task from robotics, the following
of a line. Before the workshop took place, we consulted the responsible teacher
of this school class. We knew that the students already had some previous expe-
rience with block languages. The concept was hence designed in such a way that
the pupils could build on their previous knowledge in block-based programming.
Therefore, a quick introduction into the use and control of the robot with the
block-based programming language was given at the beginning of the workshop.
Then we worked out how to follow a straight line together.

Fig. 3. Pupils developing an algorithm for the mBot following the black line

Afterwards, the challenge to program the robot for a given race track followed
in groups as shown in Fig. 3. It turned out, that on the one hand the haptic expe-
rience with the robot seemed to have very positive effects on the motivation of

Design- and Evaluation-Concept for Teaching and Learning Laboratories 139

the students. On the other hand, however, some of basic structures of algorithms
would have been necessary for the development of the algorithm in the group
work. We conclude that an introduction to algorithmic thinking in relation to
robot control in the future must be considered at the beginning of the workshop.

3 Method of Evaluation

Subject of our evaluation are the workshops conducted in TLL. The goal of the
evaluation is to establish an effective TLL in informatics education for both,
pupils and pre-service teacher students. We define an effective TLL along our
research objectives (RO): optimized learning processes (RO1), higher self-efficacy
and interpersonal-attitudes (RO2) and a higher interest in informatics (RO3).
This is based on the assumption that learning is most effective when it takes
place holistically, i.e. involves all three levels of development: the intellect (RO1),
the (social) skills and the intuitions and feelings (RO2/3) [20]. Therefore, we
accompany the activities with an evaluation concept, which focuses on the work-
shops with pupils. However, the evaluation does not focus on content-related
research topics as e.g.. coding but rather emphasizes on evaluating the impact
of our workshop concepts on students and pupils attitudes in the fields such as
problem-solving, attitudes and awareness for informatics. From the perspective
of research methodology, the workshops (as intervention) can therefore be con-
sidered as independent variables the research objectives (as response) can again
be described as dependent variables.

Fig. 4. Research setting

As it is shown in Fig. 4, the process of evaluation hence aims to improve the
quality of the TLL based on the workshop concepts on different research objec-
tives. In Subsect. 3.2 we will show that this is represented in a cyclic refinement
process.

140 B. Standl et al.

3.1 Research Objectives

We have divided the research into three objectives: The first relates to learning
processes, the second to students’ attitudes and the last to pupils’ interest in
informatics.

Objective 1: Pupils’ Learning Processes: In this objective, we are in par-
ticular interested in critical decision points in the transition from unplugged-
activities to the integration of the computer as plugged-activities. We will take
a close look at so called intended learning trajectories, which is an approach for
a systematic design and evaluation of an intended progression and has its roots
in mathematics education research [11]. As problem-solving processes in infor-
matics (education) have commonly ambiguities in their solving path [19], it will
therefore be particularly interesting to model these processes. We assume, that
we will be able to identify and optimize typical learning paths. Overall research
question: When is the right time during a learning process to advance from
unplugged to plugged teaching-learning activities?

Objective 2: Students’ Self-efficacy and Interpersonal Attitudes: In our
TLL students co-design workshops for pupils and carry out self-planned micro-
teaching-learning settings within seminars. In order to support this development,
seminars and workshops are embedded in a trustful student-centered climate. As
the teachers’ self-efficacy [2,3] can affect student achievement [13], we are also
interested in investigating the impact of the TLL on future teacher students’
self-efficacy in relation to informatics. Based on scales developed and tested
for informatics-teacher further education [15], we will evaluate the changes in
students’ self-efficacy as a consequence of the TLL integration into the stud-
ies. Moreover, future teachers’ interpersonal attitudes and the nature of the
teacher–student relationships [14] can be considered as essential for inspiring
pupils for a subject [21]. The quality of a student-teacher relationship can be
identified along attitudes as authenticity, acceptance and empathy [1], which are
also a requirement for student-centered teaching [8]. Overall research question:
To what degree does students’ self-efficacy change and to what degree develop
students their student-centered teaching qualities?

Objective 3: Pupils’ Interest for Informatics: Since our TLL not only
serves as an experimental room for pre-service informatics teacher students in
the context of lectures, but also offers workshops to school classes, we are also
interested in the effects of the workshops on pupils. It has been shown, that
outreach programs for pupils can increase interest in informatics [12]. Moreover,
unplugged activities can lead to an increased level of interest in informatics [5].
The goal is to find out if the workshops have an impact on the pupils’ interest
in informatics. Overall research question: Has the participation in a workshop
impact on pupils’ interest for informatics and does the pupils’ knowledge about
informatics change through the workshop participation?

Design- and Evaluation-Concept for Teaching and Learning Laboratories 141

3.2 Research Process

In order to investigate the research objectives, we chose the action research app-
roach as overall procedure. Introduced in 1946 [17], this approach has a long
tradition in education and is refined into a cyclical process of diagnosing, action
planning, action taking, evaluation and specifying learning [25]. We interpret a
cycle as the implementation of a workshop in the TLL, in which we address one
or more of the research objectives mentioned above, depending on the workshop
format. We are aware that a cycle could also extend over several workshops. The
reason for the short step-by-step cycle approach is that we look at each individ-
ual workshop to develop appropriate measures for improvement. Our experience
has shown that the density of events valuable for data collection can be suffi-
cient even within 90-min workshops. As the action-research approach provides
an overall procedure for conducting research, we additionally integrate a more
specific approach for evaluating workshops with case studies. The case study app-
roach as suggested by Yin [26] enables a detailed documentation of the planning,
implementation and analysis of the collected data. In such mixed research field
this is particularly necessary to ensure quality criteria of validity, reliability and
objectivity [27]. As part of the case study process, a case study protocol is also
created, which not only stores the collected data, but also describes the entire
research process, including the research objectives, research methods, approach
and methods of analysis. The case study protocol is again stored in a case study
database. The more workshops have been conducted and researched, the more
data will have been collected, which will enable further methods of analysis on
a statistical basis. However, for direct quality measures during the first phase of
the TLL it is important that workshops receive immediate and direct feedback
for improvement.

As it is shown in Fig. 5, the outer circle represents the action research process
(diagnosing, action taking, evaluating, specifying learning) and the inner one the
corresponding steps of the case study approach (design, collect, analyze, share).
To keep the two circles symmetrical, we have combined the first two steps in
action research. In the first step of the action research cycle, the diagnosis, we
establish links from the research objectives to the existing workshop concept.
This means, that in the case of the research objectives, we first examine the
workshop concept and then determine which parts of it can be addressed by
the research objectives. In the second stage of the action research cycle, data
will be collected during workshops using mixed methods. Depending on which
research objective a workshop focuses on, we use different research instruments
for data collection. On the one hand, existing and proven instruments are used,
but also new ones will be developed. For our research, we will use instruments
as questionnaires, feedback sheets, documentation of self-reflection and video
recordings.

In the third step, the collected data is evaluated and interpreted. We will
mainly use the technique of explanation building, where a phenomenon is
explained by an analysis of the collected data and the research questions [26]. In
qualitative social research, this is also described using a hermeneutic procedure

142 B. Standl et al.

Fig. 5. Research process

or content analysis. In the latter case, the reduction of data to their essential
aspects also enables ways to an objective analysis [16]. In the final step of the
action research cycle, the results of the analysis will lead to a refinement of the
workshop concept, which will again be considered in future action research cycles
of future workshops.

Example. To illustrate the research process, we briefly outline how the research
plan is implemented with research objective 2 (“Students’ self-efficacy and inter-
personal attitudes”) with a workshop, organized by pre-service teachers within a
didactical seminar. Considering the first part of the question: To what degree does
students’ self-efficacy change?, we assume as a precondition, that the students’
self-efficacy expectations change due to the practical experiences in TLL during
the term. In order to determine a change, we use questionnaires at the begin-
ning of the semester, before the workshop, after the workshop and at the end
of the semester to determine the students’ self-efficacy. In addition we develop
questions based on the questionnaire with the possibility of free text answers.
These will be filled in immediately after the workshop. This gives us a quali-
tative impression of the students’ immediate experience and also indications of
where to find phases in the workshop that hinder the development of self-efficacy.
From the statistical analysis of the questionnaires and the qualitative evaluation
of text answers, we derive an overall picture for the revision of the workshop and
adaptation of the seminar organization with regard to the self-efficacy of the stu-
dents. However, the results will not only be used for immediate exploitation as
described in this example. As they have been saved in the case-study database,
they are also used in an accumulated form for higher-level analyses.

Design- and Evaluation-Concept for Teaching and Learning Laboratories 143

4 First Results and Experiences

Even tough our TLL has only existed for a short period of time and we also were
slowed down by the Covid-19 crisis in conducting and researching our workshops,
we can already report first experiences from the first pilot workshops. As we can
only present selected results in this paper, we chose to focus on our research
objective 1, the transition from unplugged-activities to the integration of the
computer as plugged-activities. Regarding this, we observed in our workshops the
importance of unplugged, haptic experience. In both, the Schokomat-workshop
and in the workshop with mBot robots, it was evident that the haptic com-
ponent of the workshop (the cardbox chocolate machine and the driving robot
mBot) visibly increased the pupils’ motivation for their learning engagement.
The pupils’ use of haptic elements during discussions of the newly introduced
concepts with each other suggests that such items help particularly during short
workshops. From this we have recognized the high relevance of the observation
of the transition from analog to digital components.

In general, the school subject informatics has a special relationship with
digitisation: Since informatics in the large is the driving scientific and economic
force behind digitisation, the use of computing or media devices is – for infor-
matics – not only a matter of choice of the teaching medium, but inherently also
an integral part of the subject itself. Informatics is not the subject of “how to
use a computer”, but its concepts in many cases only receive a meaning when
brought together with a computing device of some sort or other. Hence, it goes
without saying that informatics as a subject is taught in digitised environments.
It is rather the opposite question which is interesting in this special case: Can
digitisation in Informatics education be overemphasized? This threat is real with
many visualisations and learning tools available (in particular for programming).
Therefore, it is a goal of the TLL to assess the right timing during a teaching-
learning activity when it is beneficial to use adequate digitised tools, and when
it is beneficial to remain in the “analog” world with unplugged contents. The
unplugged world has the advantage that it allows pupils to apply concepts which
are part of their experience onto newly arising questions. On the other hand,
this may cause improper analogies to arise. Plugged (media-supported, com-
puterised) content allows for more realistic application scenarios to be used in
teaching that connects the addressed topics with the pupils’ everyday experience
in our digitised world, but they are less flexible and due to complexity have the
potential of being overwhelming if used to early in the learning process.

The research questions that arise here and that we want to address in our
future research are: What are the main contributing factors for the ideal transi-
tion point from unplugged to plugged teaching/learning methods? How can we
devise experiments to investigate that point? How individual is this transition,
and in particular, how much would the learning effect of an entire class benefit if
every pupil made the transition at their respective ideal time? As a first step, we
are currently designing an experiment how to set up the Workshop “Schokomat”
from Sect. 2.1, which has a distinct unplugged and a distinct plugged phase, with

144 B. Standl et al.

different transition points and various intended learning trajectories to gather
further experimental data.

5 Summary and Further Work

In this paper we described our concept of a TLL, which fosters opportunities to
integrate teaching practices into teacher-preparation programs and offers special
learning experiences for school pupils. To illustrate our concept, we added exam-
ples describing our workshops. To ensure the effectiveness of the workshops, they
are evaluated. Key aspects of our evaluation are the conceptual framework (with
special focus on the transition from unplugged to plugged activities), teacher stu-
dents’ self-efficiency and teaching qualities, and pupils’ interest regarding infor-
matics. At the moment we are developing further workshop concepts and due to
the corona-pandemic we are adapting our workshop scenarios to be applicable
as online-courses supported by video-conference-calls between teacher students
and pupils. As next steps we plan to wider spread our ideas and thereby foster
the founding of further TLL at other locations. This publication is an essential
part to contribute to this aim.

Acknowledgement. This work was supported by the Vector Foundation.

References

1. Aspy, D., Roebuck, F.: Kids Don’t Learn from People They Don’t Like. Human
Resource Development Press, Champaign (1977)

2. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psychol.
Rev. 84(2), 191–215 (1977)

3. Bandura, A., Freeman, W., Lightsey, R.: Self-efficacy: the exercise of control (1999)
4. Barendsen, E., Dagiene, V., Saeli, M., Schulte, C.: Eliciting computing science

teachers’ PCK using the content representation format. ISSEP 2014 p. 71 (2014)
5. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science unplugged:

school students doing real computing without computers. N. Z. J. Appl. Comput.
Inf. Technol. 13(1), 20–29 (2009)

6. Ben-Ari, M.: Constructivism in computer science education. J. Comput. Math. Sci.
Teach. 20(1), 45–73 (2001)

7. Bergner, N., Schroeder, U., Schulte, C.: Konzeption eines informatik-schülerlabors
und erforschung dessen effekte auf das bild der informatik bei kindern und
jugendlichen. Technical report, Fachgruppe Informatik (2016)

8. Cornelius-White, J., Harbaugh, A.P.: Learner-Centered Instruction: Building Rela-
tionships for Student Success. Sage Publications Inc., London (2009)

9. Csizmadia, A., Standl, B., Waite, J.: Integrating the constructionist learning the-
ory with computational thinking classroom activities. Inform. Educ. 18(1), 41–67
(2019)

10. Demarle-Meusel, H., Sabitzer, B., Sylle, J.: The teaching-learning-lab-digital lit-
eracy and computational thinking for everyone. In: International Conference on
Computer Supported Education, vol. 2, pp. 166–170. SCITEPRESS (2017)

Design- and Evaluation-Concept for Teaching and Learning Laboratories 145

11. Duschl, R., Maeng, S., Sezen, A.: Learning progressions and teaching sequences: a
review and analysis. Stud. Sci. Educ. 47(2), 123–182 (2011)

12. Franklin, D., et al.: Assessment of computer science learning in a scratch-based
outreach program. In: Proceeding of the 44th ACM Technical Symposium on Com-
puter Science Education, pp. 371–376 (2013)

13. Gibson, S., Dembo, M.H.: Teacher efficacy: a construct validation. J. Educ. Psy-
chol. 76(4), 569 (1984)

14. Hattie, J.: Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to
Achievement. Routledge (2009). https://doi.org/10.4324/9780203887332

15. Hildebrandt, C.: Mit dem Glauben Berge versetzen ... - Die Selbstwirksamkeit-
serwartung von Informatiklehrkräaften. In: Informatische Bildung zum Verstehen
und Gestalten der digitalen Welt (2017)

16. Lamnek, S.: Qualitative Sozialforschung: Lehrbuch. Beltz, PVU, Weinheim und
Basel (2005)

17. Lewin, K.: Action research and minority problems. J. Soc. Issues 2(4), 34–46 (1946)
18. Magenheim, J.: Informatik lernlabor-systemorientierte didaktik in der praxis.

Informatische Fachkonzepte im Unterricht, INFOS 2003, 10. GI-Fachtagung Infor-
matik und Schule (2003)

19. Moreno-León, J., Robles, G., Román-González, M.: Towards data-driven learning
paths to develop computational thinking with scratch. IEEE Trans. Emerg. Top.
Comput. (2017)

20. Motschnig-Pitrik, R.: Effectiveness of person-centered learning in the age of the
internet. In: Lytras, M.D., Ruan, D., Tennyson, R.D., Ordonez De Pablos, P.,
Garćıa Peñalvo, F.J., Rusu, L. (eds.) WSKS 2011. CCIS, vol. 278, pp. 494–499.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35879-1 61

21. Motschnig, R., Mallich, K.: Effects of person-centered attitudes on professional
and social competence in a blended learning paradigm. J. Educ. Technol. Soc.
4(7), 176–192 (2004)

22. Papert, S.: Children, computers and powerful ideas (1990)
23. Pasterk, S., Demarle-Meusel, H., Sabitzer, B., Bollin, A.: Informatik-werkstatt:

Entwicklungen und erfahrungen einer lern-und lehrwerkstatt für informatik. Infor-
matik 2016 (2016)

24. Priemer, B., Roth, J. (eds.): Lehr-Lern-Labore: Konzepte und deren Wirksamkeit
in der MINT-Lehrpersonenbildung. Springer, Heidelberg (2020). https://doi.org/
10.1007/978-3-662-58913-7

25. Susman, G.I., Evered, R.D.: An assessment of the scientific merits of action
research. Adm. Sci. Q., 582–603 (1978)

26. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, London
(2008)

27. Zohrabi, M.: Mixed method research: instruments, validity, reliability and reporting
findings. Theory Pract. Lang. Stud. 3(2), 254–262 (2013). https://doi.org/10.4304/
tpls.3.2.254-262

https://doi.org/10.4324/9780203887332
https://doi.org/10.1007/978-3-642-35879-1_61
https://doi.org/10.1007/978-3-662-58913-7
https://doi.org/10.1007/978-3-662-58913-7
https://doi.org/10.4304/tpls.3.2.254-262
https://doi.org/10.4304/tpls.3.2.254-262

A Case of Teaching Practice Founded on
a Theoretical Model

Sylvia da Rosa(B), Marcos Viera, and Juan Garćıa-Garland

Instituto de Computación, Facultad de Ingenieŕıa, Universidad de la República,
Montevideo, Uruguay

{darosa,mviera,jpgarcia}@fing.edu.uy

Abstract. This paper tries to clarify the way in which our theoretical
model relates to teaching practice in response to questions about how the
model could potentially be applied. The theoretical model introduces an
extension of Jean Piaget’s general law of cognition to explaining the
difference between algorithmic thinking and computational thinking by
adequately locating the latter in the specificities of the subject instruct-
ing a computer. The teaching practice consists on activities introducing
programming in high school mathematics courses. These are organised
in a functional programming course to high school mathematics teach-
ers and didactic instances in which the teachers teach their students to
program solutions to mathematics problems.

Through examples we explain how the model helps teachers in finding
a meaning of the popular and controversial expression “computational
thinking”. The goal of the didactic instances is to educate students in
thinking algorithmically and computationally.

1 Introduction

This paper tries to clarify the way in which a theoretical model relates to teaching
practice in order to response to question of how the model could potentially be
applied.

The theoretical model introduces an extension of Jean Piaget’s general law of
cognition, that explains how conceptual knowledge is constructed when an indi-
vidual solves a problem [10]. We have applied Piaget’s general law of cognition to
investigate the construction of knowledge of algorithms and data structures. In
the case of knowledge of programs, the research led us to extend Piaget’s general
law of cognition, because the goal is to know how to help students learning how
to program, not just to know how to help them learning how to write program
texts (algorithms). The ontological approach of our programming didactics con-
siders that a program is in some sense a synthesis between a text (an algorithm)
and a machine that executes it. That means that knowledge about the text
becomes necessary but not sufficient to deal with programming problems. The
research of the construction of knowledge about programs has two main results:
it offers a theoretical model that explains the relationship between conceptual
knowledge of algorithms and of programs [13], and gives a clear definition of the
c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 146–157, 2020.
https://doi.org/10.1007/978-3-030-63212-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_12&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_12

A Case of Teaching Practice Founded on a Theoretical Model 147

controversial expression “Computational Thinking” (hereinafter CT) [12]. In this
paper we describe how and why teachers activities introducing programming in
high school mathematics courses are an example of the application of the theo-
retical model. At the same time, the experience describes a way of introducing
CT into school, contributing to educators’ concern since CT became popular in
educational settings [5,9].

The rest of the paper is organised into the following sections: in Sect. 2 we
describe the theoretical model, while in Subsect. 2.1 we introduce the extended
law of general cognition; in Sect. 3 we describe a teaching experience with math-
ematics teachers and explain how and why it relates to the theoretical model,
and contributes to clarify teachers and students ideas of CT. Finally, we include
conclusions and references.

2 The Theoretical Model

In Piaget’s theory, human knowledge is considered essentially active, that is,
knowing means acting on objects and reality, and constructing a system of trans-
formations that can be carried out on or with them [11].

The problem of determining the role of experience and operational structures
of the individual in the development of knowledge before the formalisation was
studied in depth by Piaget in his experiments about genetic psychology. From
these he formulated a general law of cognition [10], governing the relationship
between know-how and conceptualisation, generated in the interaction between
the subject and the objects that he/she has to deal with to solve problems or
perform tasks. It is a dialectic relationship, in which sometimes the action guides
the thought, and sometimes the thought guides the actions.

Piaget represented the general law of cognition by the following diagram:

C ← P → C’

where P represents the periphery, that is to say, the more immediate and exterior
reaction of the subject confronting the objects to solve a problem or perform a
task. This reaction is associated to pursuing a goal and achieving results, without
awareness neither of actions nor of the reasons for success or failure. The arrows
represent the internal mechanism of the (algorithmic) thinking process. By that
process the subject becomes aware of the coordination of the actions -a method-
that she/he has employed to solve the problem (P → C in the diagram) and of the
modifications that these actions impose to objects, as well as of objects’ intrinsic
properties (P → C’ in the diagram). C and C’ represent awareness of the actions
(maybe mental) encapsulated in the algorithm and of the data structures, respec-
tively. The process of the grasp of consciousness described by the general law of
cognition constitutes a first step towards the construction of concepts.

2.1 The Extended Law of General Cognition

The construction of knowledge about algorithms and data structures is a process
regulated by the general law of cognition. Over the years we have investigated the

148 S. da Rosa et al.

construction of knowledge by novice learners of algorithms and data structures
(for instance sorting, counting, searching elements) basically by applying Piaget’s
law. A synthesis of previous work can be found in [14].

However, in the cases where the subject must instruct an action to a com-
puter, the thought processes and methods involved in such cases differ from
those in which the subject instructs another subject, or performs the action
him/herself. In order to program a computer to solve a problem, the learners
have to establish a causal relationship between the algorithm (he/she acting on
objects), and the elements relevant to the execution of the program (the com-
puter acting on states). By way of analogy with Piaget’s law we describe that
causal relationship by the following diagram:

C ← P → C ′
︸ ︷︷ ︸

newC ←− newP −→ newC ′

where newP is characterised by a periphery centred on the actions of the subject
and the objects he/she acts on. The centres newC and newC’ represent awareness
of what happens inside the computer: newC of the execution of the program
instructions and newC’ of the undergone modifications of the representation of
data structures. The causal relationship between the first row and the second row
is the key of the knowledge of a machine executing a program. It is indicated
with the brace in the diagram above. The diagram describes the situation in
which the subject reflecting on his/her role as problem solver becomes aware of
how to do to make the computer solve the problem [16].

According to Piaget, we identify that the construction of knowledge of meth-
ods (algorithms) and objects (data structures) occurs in the interaction between
C, P and C’. Likewise, we claim that the construction of knowledge of a program
as an executable object takes place in the internal mechanisms of the thinking
process; marked by the arrows between newC, newP and newC’. In other words,
the general law of cognition remains applicable to the thinking process repre-
sented by the arrows; in both lines of the diagram pictured above. In [13] we
describe an empirical study in which we introduce the extended law of cogni-
tion (hereinafter extended law). In [12] we explain that our extension of Piaget’s
law introduces a clear definition of the notion of CT (represented by the second
line of the above diagram). Further, this new definition is adequately located in
relation to the notion of algorithmic thinking (represented by the first line of
the above diagram). The above diagram represents the theoretical model of the
construction of knowledge of algorithms, data structures and programs.

In the next section we describe a teaching experience and explain how and
why it relates to the theoretical model and contributes to clarify ideas of CT in
educational settings. It consists of activities that provide teachers with a clear
description of CT according to our theoretical definition. The teachers become
trained to help the students learning to program, in a way that respects the
process of learning how to think algorithmically and computationally.

A Case of Teaching Practice Founded on a Theoretical Model 149

Fig. 1. MateFun IDE

3 CT in Educational Settings

The activities were developed in 2019 and consisted of a six weeks programming
course for high school mathematics teachers and the supervision of six weeks
activities that these teachers carried out with their students after taking the
course. The teachers teach in diverse educational centres in different regions of
Uruguay. They also teach in different high school years, and most of them teach
to more than one group of students.

The main objective of the activities is the integration of mathematics and
programming as a way to facilitate understanding and learning of mathematical
concepts and at the same time to provide basic programming knowledge to high
school students (see [15] for more details).

The guiding idea of the experience comes from [8] (p. 327), in the sense that
programming a solution to a problem exposes aspects of the resolution process
that are otherwise hidden. Some examples are the need of formulating algorith-
mic problems as such; the role of programming for the training of abstraction; the
possibility of comparing algorithms and choosing those that are more efficient;
and the introduction of a method of proof of equivalence between algorithms
(see Sect. 3.2, first, second, third and fourth example respectively).

The functional language MateFun, briefly described in the next subsection,
was used in the experience (see [15] for more details).

3.1 The Language MateFun

The language MateFun [3,4] is a functional programming language designed with
the specific purpose of being a tool to support mathematical learning, especially
in high school.

MateFun is purely functional, meaning that functions do not introduce side
effects and they only depend on their arguments. To be easily approachable it

150 S. da Rosa et al.

is available as a web integrated development environment (Matefun IDE1), as
shown in Fig. 1. The left frame is a text editor, where the program is written,
and the right frame is a shell with a read-eval-print-loop, where the programs
can be loaded (if they are correct) and the expressions evaluated.

Syntax and semantics of MateFun are both influenced by the seek to be
a tool to express mathematics. The syntax is minimal and close to the usual
mathematical notation. Semantically, it has the peculiarity of being strongly
typed, while having no type inference. The skill to specify the domain and range
of a function is part of the learning process when learning about functions. In
MateFun type information must be given by users, and types in MateFun are
called sets.

Fig. 2. Function plot: ?plot abs Fig. 3. moveRight(redCirc(1),10)

A MateFun script is a list of definitions of sets and functions over such sets.
Predefined sets such as R (representing real numbers) or Z (representing integer
numbers) are available as built-in constructs.

The user can define new sets either by comprehension or by extension, just
as usually presented in mathematics courses. In the following example we define
the sets of natural numbers (N), non-zero real numbers (Rno0), days of the week
(Day) and (Bool):

1 set N = { x in Z | x >= 0 }

2 set Rno0 = { x in R | x /= 0 }

3 set Day = { Mon , Tue , Wed , Thu , Fri , Sat , Sun }

4 set Bool = {True , False}

Sets such as Rno0, defined by comprehension, take a base set (R in this case)
and refine it with a predicate. Predicates can be built by relational operators
and from other predicates by conjunctions.

Functions are defined giving a signature and a proper definition. For example,
one could define the inverse function over the non-null real numbers:

1 https://matefun.math.psico.edu.uy.

https://matefun.math.psico.edu.uy

A Case of Teaching Practice Founded on a Theoretical Model 151

5 inv :: Rno0 -> R

6 inv (x) = 1/x

MateFun supports some of the idioms used to define functions in mathe-
matics. For instance, piece-wise functions can be defined, while, unlike most
functional languages, it does not support pattern matching or conditional expres-
sions. The following MateFun definition specifies the absolute value function over
the real numbers:

7 abs :: R -> R

8 abs (x) = x if x >= 0

9 or -x

This program resembles the definition in the usual mathematical notation:

abs : R → R

abs(x) =

{

x if x ≥ 0
−x otherwise

Then, if we load the program in the interpreter, we can ask to compute the
absolute value of the number -10 by typing the expression:

Example>abs(-10)
10

The interpreter evaluates expressions and interprets special commands. For
instance, we can graph a (one-variable) function using the command ?plot.
The result of plotting abs is shown in Fig. 2.

Example>?plot abs

To emphasise that not all functions are numeric, MateFun allows to define
non-numeric sets (eg. Day and Bool) and functions between those sets, such as
holiDay:

10 holiDay :: Day -> Bool

11 holiDay (d) = True if d == Sun

12 or True if d == Sat

13 or False

We can also define sequences of elements of a given set; usually called lists
in programming. The sequence set A* is defined inductively as:

– [], the empty sequence
– a:as, a sequence composed by an element a belonging to A and a sequence
as belonging to A*.

For instance, N* is the set of sequences of natural numbers.
There exist some primitive functions to operate with sequences: first(s)

returns the first element of the sequence s, rest(s) returns the sequence s
without its first element, and range(n,m,k) returns a sequence of numbers

152 S. da Rosa et al.

(n, n + k, n + 2k, ...) from n to m with step k. With range, combined with a
function to sum the elements of a sequence, we can for instance implement the

summatory
n

∑

i=m

i.

14 summatory :: N X N -> N

15 summatory (m, n) = sum(range(m, n, 1))

16

17 sum :: R* -> R

18 sum (xs) = 0 if xs == []

19 or first(xs) + sum(rest(xs))

Notice the use of recursion in the implementation of sum and the domain using
two variables. Domains with multiple variables can be defined using n-tuples
(the generalisation of Cartesian products).

The language includes the primitive sets Figure and Color, and a set of
primitive functions to create and transform figures. For example, the following
function returns a red-coloured circle of a given radius, centred in the (0, 0) point
of a Cartesian plane.

20 redCirc :: R -> Fig

21 redCirc (r) = color(circ(r), Red)

In MateFun, animations are sequences of figures. The following function takes
a figure fig and a number n of steps, and returns an animation in which the
figure is moved n times one step to the right on the x-axis:

22 moveRight :: Fig X Z -> Fig*

23 moveRight (fig , n)

24 = [] if n == 0

25 or fig : moveRight(move(fig , (1, 0)), n - 1)

The expression move(fig, (1, 0)) moves fig to the point obtained adding
1 and 0 to the abscissa and the ordinate of the centre of fig respectively. Figure 3
shows the sixth frame of the following animation:

Example>moveRight(redCirc(1),10)

3.2 Teachers and Students Activities

The first part of the experience is a MateFun programming course to mathemat-
ics teachers and the second part consists of activities that teachers do with their
students. A complete description of teachers and students activities can be found
in [15], as well as teachers’ reasons of their choices of problems and comments
about students work. Here some activities are selected to describe how those
relate to our theoretical model and offer a way of introducing CT in classrooms.

In educational settings, the starting point for developing a program is usually
the design of the program’s text, that is, an algorithm. In other words, the first
step in getting the computer to solve a problem is to have an algorithm that

A Case of Teaching Practice Founded on a Theoretical Model 153

allows an individual to solve specific cases of the problem. The construction of
knowledge in this first step is regulated by Piaget’s general law of cognition (see
Sect. 2). Many of the problems covered in the course, are contributed by the
teachers themselves and they know the solutions. In the course they are trained
to program these solutions in MateFun, that is, to teach a computer to solve
the problems, a process regulated by the extended law (see Sect. 2.1). Facing
this challenge teachers’ thinking starts from the new periphery (newP), since
they manage to elaborate an algorithm to solve the problem, and it has to move
towards the elements of program execution (newC and newC’). However, the
process is dialectical and often, the transition of the thought from the algorithm
and data structures, (C and C’) to elements of program execution (newC and
newC’), shows the need to modify the algorithm, and even the formulation of
the problem. In the examples below, part of that dialectical process is described.

First Example: Computability. A theme introduced by the teachers in a
group of third-year high school students (aged 13–14) is related to the problem
of finding the multiples of a natural number. The accumulated experience2 has
taught us that often mathematics teachers are not used to rigorously formu-
late problems; many times they formulate problems forgetting details that are
unconsciously interpreted, as in this case. The result could be expressed as “0,
3, 6, 9, ...” or “0, 3, 6, 9, and so on”. However, if the question is to write the
solution in a rigorous language, such as a programming language, and execut-
ing the program, neither the dots nor “and so on” are acceptable. That means
that the problem has to be reformulated in terms of input-output [7], to explic-
itly including the natural number and a bound as input. This is an example of
going from algorithmic to computational thinking, or in terms of the extended
law, from newP to newC and newC’, because thinking on program execution
requires new knowledge about the input (newC’) and the actions (newC).

It is worth mentioning that MateFun is a more powerful tool than other lan-
guages (Python, C), since being strongly typed, it requires to write the signature
of the function as part of its definition (in this case, forcing to express the input
as a pair of natural numbers). The solution in MateFun can be found in [15].

Simple examples like this give teachers the opportunity to introduce comput-
ing problems such as computability, in an understandable way by the students.

Second Example: Abstraction. Although a solution of a general problem
has to be expressed as an algorithm, the power of abstracting is revealed in all
its magnitude when the algorithm is transformed into a program that can be
executed for several cases. The process has a greater impact in the case of novice
learners, for whom the possibilities of experimenting their solutions in action is
a reason of high motivation, as teachers comment in [15]. We illustrate the case
using the following example.

2 We have taught the course for about twelve years using other languages [15].

154 S. da Rosa et al.

Teachers asked the students to program a function that makes a circle move
n steps through the points of multiples of three on the x axis. A solution is pre-
sented below, in which the students adapted the function moveRight (see 3.1)
to program a function move3 that moves a figure n steps through points corre-
sponding to multiples of three on the x axis. They also programmed move3cir
in which the parameter fig of move3 is instantiated to a red circle previously
defined. Notice that adapting moveRight induced the students to write move3,
abstracting the figure in the parameter fig as in moveRight.

1 circle :: R X Color -> Fig

2 circle (r, c) = color(circ(r), c)

3

4 move3 :: Fig X Z -> Fig*

5 move3(fig ,n) = [] if n < 0

6 or fig : move3(move(fig , (3, 0)), n-1)

7

8 move3cir :: N -> Fig*

9 move3cir (n) = move3(circle (0.5, Red), n-1)

Since the problem asks for the multiples of three, the students used the
concrete case of the point (3,0) in the function move3. When the teachers
presented this solution in our course they were asked how to generalise it to the
multiples of any natural number, that is, abstracting the point (3,0) to (num,0).
To construct a general solution they observed that move(fig,(num, 0)) moves
the figure fig through the multiples of any natural number -represented by
num- on x axis. The point discussed was how to define a single function that
also performs the movement n times. Observe that in terms of the general law of
cognition that means that the thought advances towards newC’ (the parameters)
and newC (the action of moving), respectively. Finally, teachers introduced the
definition of moveMultiples below.

10 moveMultiples :: Fig X Z X N -> Fig*

11 moveMultiples(fig , n, num)

12 = [] if n == 0

13 or fig : moveMultiples (move(fig ,(num , 0)),n-1, num)

For instance, moving the red circle through the multiples of three, five times,
is obtained with moveMultiples(circle(0.5, Red), 5, 3).

The point is to always start from teachers or students solutions to construct
new ones. In this type of exercises not only the abstraction is trained but also
the skill of getting better programs by composing and combining other functions
(predefined or not).

Third Example: Complexity. In our course the teachers are asked to solve
many problems involving programming of functions over sequences, using recur-
sion and/or composition of functions. The example below shows a MateFun
program for the factorial function (fact). This is a well known definition by the
teachers and all of them succeed in solving this problem.

A Case of Teaching Practice Founded on a Theoretical Model 155

1 fact :: N -> N

2 fact (n) = 1 if n == 0

3 or n * fact(n-1)

Then the teachers are asked to write another program (factorial) for the same
function using two functions: productSeq that returns the product of the ele-
ments of a sequence (see below), and range introduced in Sect. 3.1.

1 productSeq :: Z* -> Z

2 productSeq (l) = 1 if l == []

3 or first (l) * productSeq(rest(l))

Most of the teachers arrived to a solution similar to:

1 factorial :: N -> N

2 factorial (n) = 1 if n == 0

3 or productSeq(range(1, n, 1))

It can be observed that the definition has a redundant equation in line 2, induced
by the recursive definition of fact. The equation in line 2 is used for a case that
is actually encompassed by the definitions of functions range (case b < a) and
productSeq (productSeq([]) = 1). This kind of errors in which edge cases are
mishandled are frequently made by both teachers and students. Several lessons
are learnt from solving that kind of exercises. One of the most important is
that a program perhaps gives the correct result (teachers’ solution of factorial
does), but has errors anyway. From the point of view of programming it is an
error to make the computer do things that are not necessary or are redundant.
Understanding why the redundant equation is an extra effort for a computer
is a clear example of transiting from algorithmic to computational thinking. In
terms of the general law of cognition that means understanding how the com-
puter performs the actions (newC) on the objects (newC’). One could argue that
the redundant equation can be noted even in the algorithm and this is true, espe-
cially to more experienced programmers. In early stages of learning, however, to
experience the need of a concept is the first step of constructing the concept [10]
(in this case the need of efficiency). This training gives teachers the opportunity
of introducing their students into topics such as programs complexity, inducing
them to think computationally.

Fourth Example: Program Correctness. Programming more than one solu-
tion to a problem gives us the opportunity of introducing teachers to a topic that
brings mathematics and functional programming even closer: the use of the prin-
ciple of structural induction to prove properties of programs. For instance, one
can prove that the two above definitions of the function factorial are equivalent
in the sense that both give the same result when applied to the same value. The
property is:

Property 1. ∀ n ∈ N, fact(n) = factorial(n).

and is proved using the principle of structural induction. For space reasons it is
not included here, but can be found in [15].

156 S. da Rosa et al.

Although the proofs are done with pen and paper, it is possible to do them
using equational reasoning (substituting equals for equals where every step has
to be well founded) since MateFun is a pure functional language (without side
effects).

It is worth saying that traditionally, the principle of induction is used in a very
restricted way in high school education, usually making no sense for students.
Teachers could teach this method as a way of verifying program correctness, in
other words, thinking about the correctness of the computer’s actions (newC)
on the objects (newC’). At the same time, the students would learn the basis of
a topic of mayor relevance for understanding computer science.

4 Conclusions

The absence of clear definitions and substantiated claims about CT, “... leave
teachers in the awkward position of not knowing exactly what they supposed to
teach or how to assess whether they are successful”. Those are P. Denning’s words
in [5]. In fact, the application of a concept that is theoretically weak can even
be counterproductive. As L. Paulson notes in [9]: “Unless somebody can come
up with a more insightful definition, it is indeed time to retire ‘computational
thinking”’.

Taking principles of Jean Piaget’s theory, Genetic Epistemology [12], our
theoretical model offers an insightful definition for CT adequately located in
relation to the notion of algorithmic thinking. Therefore, our definition leaves
teachers in a position of knowing ideas of CT in educational settings and being
able to decide how to apply them.

Our claim is that any learning process is built stepwise and is governed by the
general law of cognition. In the specific case of learning to program, the process
is governed by the new law of cognition as we have formulated it on Sect. 2.1.
Teachers activities presented in this paper show how our theoretical model of
CT relates to teaching practices. Particularly, these activities help teachers to
understand what CT means and how introduce the students in learning to pro-
gram, in a way that respects their teaching practices. As a consequence teachers
and students are educated to think algorithmically and computationally.

Furthermore, our contribution satisfies Denning and Matti Tedre definition
(Chap. 1 of [6]) in the sense that not only the activities show how “to get com-
puters to do jobs for us”, but introduce teachers and students in some of the
relevant problems of computer science, that make “the world a complex of infor-
mation processes” [6]. For instance, the examples show how computability and
complexity of programs could be discussed at high school level. The examples
also reveal the power of abstraction in all its magnitude when putting into prac-
tice one of the main contributions of CT: to make the computer to solve general
problems. Abstracting from concrete cases to obtain generic elements is not a
trivial issue, and learning to program plays a fundamental role in training of
abstraction from early stages, as several authors indicate [1,2,16,17].

Our theoretical model explains -in the framework of Piaget’s theory of con-
struction of knowledge- the relationship between logic, definitions, properties

A Case of Teaching Practice Founded on a Theoretical Model 157

and proofs (algorithmic thinking), and the elaboration and execution of pro-
grams (computational thinking). The presented examples constitute examples
of a didactic application of the model insofar as they show how the model sup-
ports teaching practice.

References

1. Aho, A.V.: Computation and computational thinking. Comput. J. 55, 832–835
(2012)

2. Ambrosio, A.P., da Silva, L., Macedo, J., Franco, A.: Exploring core cognitive
skills of computational thinking. In: Proceedings of the 25th Annual Psychology
of Programming Interest Group Workshop, University of Sussex (2014)

3. Cameto, G., et al.: Using functional programming to promote math learning. In:
2019 XIV Latin American Conference on Learning Technologies (LACLO), pp.
306–313 (2019)

4. Carboni, A., Koleszar, V., Tejera, G., Viera, M., Wagner, J.: MateFun: func-
tional programming and math with adolescents. In: Conferencia Latinoamericana
de Informática (CLEI 2018) - SIESC (2018)

5. Denning, P.J.: Remaining Trouble Spots with Computational Thinking. Commu-
nications of the ACM 60, (2017)

6. Ferragina, P., Luccio, F.: Search Engines. Computational Thinking, pp. 111–127.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97940-3 9

7. Harel, D., Feldman, Y.: Algorithmics the Spirit of Computing. Addison-Wesley,
Boston (2004). An imprint of Pearson Education Limited

8. Knuth, D.: Computer Science and Its Relation to Mathematics. Basic Books Inc.,
Publishers, New York (1974)

9. Paulson, L.C.: Computational Thinking is not Necessarily Computational. Com-
mun. ACM 60, 8–9 (2017)

10. Piaget, J.: La Prise de Conscience. Presses Universitaires de France (1964)
11. Piaget, J.: Genetic Epistemology, A Series of Lectures Delivered by Piaget at

Columbia University, Translated by Eleanor Duckworth. Columbia University
Press, New York (1977)

12. da Rosa, S.: Piaget and computational thinking. In: CSERC 2018: Proceedings of
the 7th Computer Science Education Research Conference, pp. 44–50 (2018)

13. da Rosa Zipitŕıa, S., Dorelo, A.A.: Students Teach a Computer How to Play a
Game. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018. LNCS, vol. 11169,
pp. 55–67. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02750-6 5

14. da Rosa, S., Gómez, F.: Towards a research model in programming didactics. In:
Proceedings of 2019 XLV Latin American Computing Conference (CLEI), pp. 1–8
(2019). https://doi.org/10.1109/CLEI47609.2019

15. da Rosa, S., Viera, M., Garćıa-Garland, J.: Mathematics and MateFun, a natural
way to introduce programming into school. https://hdl.handle.net/20.500.12008/
25233. Accessed Sept 2020

16. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
New York (1980)

17. Wing, J.: Computational thinking and thinking about computing. Philos. Trans.
Roy. Soc. A 366, 3717–3725 (2008)

https://doi.org/10.1007/978-3-319-97940-3_9
https://doi.org/10.1007/978-3-030-02750-6_5
https://doi.org/10.1109/CLEI47609.2019
https://hdl.handle.net/20.500.12008/25233
https://hdl.handle.net/20.500.12008/25233

In-Service Teacher Training and Self-efficacy

Jørgen Thorsnes, Majid Rouhani, and Monica Divitini(B)

Department of Information and Computer Science, NTNU, Trondheim, Norway
{jorgen.thorsnes,majid.rouhani,monica.divitini}@ntnu.no

Abstract. Programming is increasingly introduced in secondary schools, both as
a stand-alone subject or integrated into other subjects, leading to growing attention
to the training of in-service teachers. Teachers need to learn both (a) how to
program and (b) how to teach programming, often in the context of different
disciplines. The paper explores the impact of a university-level training program
offered to in-service teachers, with a focus on teachers’ self-efficacy in teaching
programming. The paper reports the interviews with ten teachers after about one
year they have completed the program. The results indicate that the training has
improved teachers’ self-efficacy, and the impact is lasting in time. Also, some
teachers expressed concerns about their skill level in programming, but this does
not necessarily associate with lower self-efficacy in teaching programming. The
paper presents the results from the study and some implications for the design of
training of in-service programming teachers.

Keywords: In-service teacher training · Self-efficacy · Programming

1 Introduction

In a recent report on the status of Informatics education in Europe, it is recommended that
all pupils must have access to ongoing education in Informatics, and the teaching must
be undertaken only by teachers who have formal education in Informatics [1]. However,
there are several challenges to meet this recommendation and a growing demand for
teacher training, in particular for the re-skilling of in-service teachers. In this context,
it is essential to understand in-service teacher training to define relevant and effective
training. In this paper, we focus on how formal training of in-service teachers impacts
self-efficacy, with a focus on long-term impact. Self-efficacy refers to the belief in one’s
capabilities to organize and execute the courses of action required to produce a given
result [2]. In terms of teaching a specific subject, the teacher’s self-efficacy refers to
their belief in their capabilities to teach the subject, such that pupils achieve the desired
learning outcomes. Positive self-efficacy is connected to increased student and teacher
outcomes, and it has a positive influence on teachers’ psychological well-being [3].
However, several studies identify challenges with self-efficacy connected to program-
ming education. For example, in two recent Swedish studies on teachers’ attitudes and
self-efficacy towards programming, the researchers found that many Swedish teachers
lack confidence in teaching programming [4, 5]. Similar results were reported in UK

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 158–169, 2020.
https://doi.org/10.1007/978-3-030-63212-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_13

In-Service Teacher Training and Self-efficacy 159

schools, with many teachers worried that they miss practical and theoretical knowl-
edge of computing [6]. Given this background, we investigate how formal education at
the university level for in-service programming teachers affects their self-efficacy. The
main research question explored in this paper is: How do in-service teachers perceive
the lasting effect of programming education concerning their self -efficacy in program-
ming and teaching programming? To answer this question, we interviewed ten teachers
who attended a university-level program on programming and programming education.
Interviews were conducted almost one year after the completion of the course.

2 Case and Method

Case Description. Our study is connected to the in-service teacher training program
at our university. The program consists of two courses of 7,5 ECTS each, the first with
a focus on basic programming and the second on teaching programming. In the first
course, teachers get an introduction to Python. The second course is more flexible, and
teachers can select programming languages and topics on which to specialize based on
their interests and needs [7]. Though there are no requirements for teachers to follow
both of the courses, most do. The study program is aimed at in-service teachers in grades
8–13 (Lower and Upper Secondary School). The program is an online study, with web-
based lectures and weekly activities such as online lectures and regular compulsory
work exercises. Students participate in the course with the support of their school, which
is committing to provide some free time to teachers to complete the course, though
they continue their primary duties during the two semesters. The additional costs for
the schools are partly covered by a national program of the Ministry of Education.
This support leads to a very high completion rate. A survey distributed at the end of
the program indicates high levels of satisfaction with the course. With this follow up
study, we investigate how the training has contributed to teachers’ self-efficacy and the
long-term impact of the educational program.

Overall Method. This study is based on interviews with teachers that participated in
the continuing education program in 2018-19. The study uses semi-structured interviews
to explore the research questions by capturing teachers’ reflections on their self-efficacy
towards teaching programming.

Interview Guide. The interview guide was constructed based on three main elements:
(a)Attitudes towards programming in school; (b) Self-efficacy in teaching programming;
(c) Self-efficacy in programming. Since we are interested in understanding the impact
of the program, for each element, we added questions connected to the perceived impact
of the program and changes since its completion.

For Attitude (a), we asked teachers their opinion about the ongoing introduction
of programming in different subjects and, specifically, in the subjects that they teach.
The questions related to Self-Efficacy in Programming (b) are inspired by the Teachers’
Sense of Efficacy Scale (TSES) [8], with a focus on Efficacy for instructional strategies.
Concerning teachers’ programming skills (c), which is also relevant to teachers’ ability

160 J. Thorsnes et al.

to teach programming [9], questions were created to investigate how the teachers feel
towards their own programming skills.

The questions were tested through test-interviews with three pre-service math teach-
ers. The interviews were conducted during the COVID-19 pandemic. Schools were
closed, with all the teaching taking place online and some elective subjects being post-
poned. We, therefore, added a final question on COVID-19. Our goal with this question
was not to investigate its broader impact, but simply to check the validity of our study.

Participants. An invitation letterwas sent to all the participants of the 2018/2019 cohort.
An interview was then planned with the ones who expressed interest in participating in
the study. Table 1 provides an overview of the participants.

Table 1. Overview of interviewees with Gender (M/F), school level (Upper Secondary School,
USS, or Lower Secondary School, LSS), Subjects they are teaching (in italics the ones where they
are not expected to use programming); Type of school (General, G, or Vocational, V)

ID G Level Subject(s) Type

1 F USS Economics V

2 M USS Math, physics G

3 F USS Math, natural science V

4 M LSS Math, natural science, programming G

5 F LSS English, social studies, gymnastics, programming G

6 M USS Math, physics G

7 F USS Math, computer and electronics V

8 F LSS Math, natural science, religion, programming, work-related training G

9 F USS Physics, math, programming, natural science, technology and research G

10 F USS Construction - and control technique V

Interviews were conducted via Zoom, using the service offered internally by our uni-
versity for GDPR-compliance. The interviews were recorded with an external recorder
and then transcribed by the interviewer. The relevant national agency approved the
research. All the participants have been informed about the study, their rights and have
been explicitly given their consent.

Analysis. After the transcription of the interviews, a thematic analysis [10] was per-
formed by one of the authors using themes connected to the Teachers’ Sense of Efficacy
scale. The coding process was done with NVivo (QSR International, 2018). The final
categories are: Attitudes towards programming in school; Teaching programming self-
efficacy; Programming skill; Impact of programming education; Impact of time after
programming education; COVID-19.

In-Service Teacher Training and Self-efficacy 161

3 Results

3.1 Attitudes Towards Programming in School

The interviewees are generally positive towards teaching programming in school. They
also express that they are positive towards using programming in an interdisciplinary
context and underline the relevance for future jobs.

However, they also expressed some concerns that the inclusion of programming will
be a long process, without a quick fix, especially considering the number of teachers
who do not have any competence or education in programming. One of the issues that
emerged from the analysis is the importance of teachers’ community and collaboration.
Four of the teachers expressed that they found collaboration with colleagues important
when dealing with programming in school. Those who had someone to collaborate with
reported that it was beneficial. Some other teachers indicated that they do not have
colleagues to work within programming and that they would like to have that. Also,
some teachers reported to have colleagues who are rather hostile to programming in
school:

… Colleagues? They can be absolutely cruel! … I heard the lecturers talk about
programming in school as the future…Youknow, Iwas standing talking to oneofmy
younger colleagues in the hallway in front of the coffee machine, and a colleague
came past me, jumping out of the neighboring room and scolding me! So, it’s like
that, and it shouldn’t even be mentioned at work…. (Teacher 3-Female-Math-USS)

Some teachers also talked about gender differences related to programming. Partic-
ularly worrying is the resistance of gender stereotypes. One male teacher expressed that
male teachers were more interested in programming than female teachers. One female
teacher experienced that male teachers got much of the responsibility of programming
related tasks in school, even if she is the only teacher with programming education:

…But I notice at work, that when being a woman – “no, you have almost no clue,”
they put the men to take those jobs…. (Teacher 3-Female-Math-USS)

3.2 Teaching Programming and Self-efficacy

In general, all ten teachers responded that they could teach programming, even if this is
mostly connected to a specific subject or school level, for example:

…I can’t teach block programming, I can’t make a lesson in game programming,
I can’t make a lesson in micro:bit … But I think I can make good lessons and
exercises that are relevant to my subjects, such as solving differential equations,
solving equations with numerical methods, etc.…. (Teacher 2-Male-Math-USS)

Adapted Teaching. All of the teachers expressed that they could provide suitable
challenges to capable pupils in programming, for example:

162 J. Thorsnes et al.

…Iamvery focused on giving open assignments because I have pupils on thewhole
scale … I really feel that with open assignments, I can differentiate to different
levels, yes. (Teacher 7-Female-Math-HS)

Some teachers explained that even though some pupils might be better than them in
programming, this is not a major challenge. Teachers could usually find suitable assign-
ments together with the pupils, or the capable pupils could get appropriate challenges
through open tasks or freely choosing what they work with. In a recent study [11], US
K-12 computer science teachers reported that it was challenging tomeet all pupils’ needs
on an individual level. However, in our study, only one of the teachers indicated a lower
sense of self-efficacy in adapting her teaching to her pupils. Despite this, she still felt
that she could provide appropriate challenges for highly skilled pupils by giving them
freedom in what they were doing.

Assessment. The data analysis reveals that the teachers had a more varied sense of self-
efficacy when it comes to assessment in programming. Four of the teachers expressed
that they find assessment in programming difficult, for example because it is easy to find
solutions online for the pupils and that they need strategies and tools for assessment. As
a teacher explains:

…I think I need a strategy or tools for this. I think it is difficult. It’s a little bit
like putting your finger in the air when you think about the assessment of the
pupils. I’ve had some assignments where they have to program something, and
it’s hard to know if they have copied the solution or whether it is their own, one
must actually observe the whole process, and that is simply incredibly difficult….
(Teacher 4-Male-Math-SS)

Other teachers, however, are confident that they can assess their pupils, and some
suggested oral presentations as a useful method, also to unveil whether the pupils under-
stand their solutions or if they have copied it. One of the teachers that finds assessment
challenging feels that it was little focus on this in the program.

Motivation. In general, the teachers seemed to have a relatively high sense of self-
efficacy in motivating their pupils in programming. Nine of the teachers expressed that
they felt they could motivate their pupils to learn to program. Some also thought that it
was easier to motivate than in other subjects. For example:

…Yes. … they [pupils] get to try something new. And those who have some
prior knowledge get to do something they master. So yes, I think it is easier
to motivate them in programming than in accounting, for example…(Teacher
1-Female-Economics-USS)

However, one of the teachers reported challenges withmotivating students in elective
courses:

… It’s about how you meet the students. And in discussing with them, attempt
to find angles of attack that motivate them. I feel that I manage that with some

In-Service Teacher Training and Self-efficacy 163

pupils, but then there is a problem in that not all pupils in elective programming
are necessarily motivated to learn to program. … Some of the pupils are there
just because they did not get into the elective they wanted… that’s a challenge…
(Teacher 4-Male-Math-SS)

Explaining and Conveying Programming Knowledge. Of the ten teachers, eight of
them believe that, to some extent, they can explain programming concepts and come up
with alternative explanations when pupils do not fully understand. Two of the teachers
expressed that they could explain some programming concepts, but probably not all. Six
of the teachers believed that they would not be able to answer difficult programming
questions from the more capable pupils. The other four thought they could answer some
difficult questions, but not all. However, nine of the teachers believed that they could
either come back to the pupil with the answer later or find the answer together:

… the pupils are also quite understanding when you say, “I can’t do this very
well, but I find it very fun! And I want to show you, and then we can figure it out
together”. They understand that, kind of. (Teacher 1-Female-Economics-HS)

The teachers seemed to have a moderately high sense of self-efficacy in this theme,
but themain challenge is that the teachers do not perceive their programming competence
as very advanced.

Developing Teaching Material. Eight of the teachers expressed that they can create
good lesson plans and exercises, though it might be time-consuming, and that it would be
beneficial with more time for planning lessons. Two of the teachers stated that they could
not create suitable lessons from scratch, but they could by adapting existing teaching
resources:

… I’m probably more about finding and adapting than making themmyself. I don’t
feel I have enough expertise for that…. (Teacher 5-Female-English-SS)

Most of the teachers state that they are using and finding teachingmaterial online and
adapt it to their classes. Four of the teachers expressed that they would like more relevant
teaching material resources available. In general, the teachers indicated that they had a
relatively high sense of self-efficacy in designing lessons in or with programming when
there is relevant teaching material that they can adapt to their teaching. However, the
willingness of experimenting with new lesson plans might be limited:

…I don’t know if I’m going to make that much varied, and I’m not so secure in
the coding that I just toss myself into it and just try everything possible, so I limit
it to something that I see will work, or something I’ve experienced that worked
earlier… (Teacher 9-Female- Math-HS)

Challenges in Teaching Programming. When the teachers were asked what they per-
ceived as the biggest challenge in teaching programming, two themes were prominent:
Pupils’ digital competences and technical issues. Three of the teachers talked about
pupils’ computer skills as a challenge. For example:

164 J. Thorsnes et al.

… Several of them name their files “one” “two” “three” and such, they do not
have any system. So it will be difficult when you need to help them find a structure
in programming when they can’t even structure other things, so I think that might
be most challenging…(Teacher 1-Female-Economics-USS)

Three of the teachers also talked about technical challenges. One of the teachers
answered that some computer programs are challenging to use and cause technical
problems and that she would like more user-friendly programs. Two other teachers
explained that there are many technical issues, for example:

…The biggest challenge is technical. For example, when we code in Python, there
are a lot of libraries and stuff that one needs, and then the pupils may have different
versions, and different modules and libraries, and nothingmatches… sowe end up
turning the computer off and on again, restarting, get frustrated because something
that works, or code that works on one PC doesn’t work on another PC. And that
is by far the most frustrating, and what we spend the most time on - unnecessary
time. Sometimes we also give up … And there I have no competence to find out
what the problem is…. (Teacher 9-Female- Math-USS)

3.3 Programming Skill

The teachers were asked how they perceive their own programming skills. Eight of the
teachers expressed that their programming skills were sufficiently good for teaching in
their subjects and grades. However, six of the teachers indicated that their programming
skill was relatively low, as one teacher states:

…For example, it is when we have embarked on slightly larger projects, which
I may not have complete control over the development in. But so far, I have not
been on extremely thin ice, but I have felt that “oh, I have to go home and pick
up the book and read some more” I have had some of those rounds with myself….
Teacher 5-Female-English-LSS)

In general, the answers indicate that the teachers did not have a very high sense
of self-efficacy towards programming, but that this did not severely impact their self-
efficacy towards teaching programming. It also seems that evenwhen their programming
skills are relatively low, teachers perceive that they can increase this skill. Three of the
teachers explained that they would like to have more follow-up in term of exercises or
a local programming group to get better at programming:

…Yes, that it becomes just like an anonymous alcoholics group, that you have
a follow-up group, “anonymous coders” who need some follow-up. Get some
challenges and keep up …. (Teacher 4-Male-Math-LSS)

Previous research suggests that it is essential for teachers of programming to attain
skills in programming [9]. This is also found in this study. However, even when the
teachers perceive their own programming skills as not very high, they still feel capable of
teaching programming in their grades and subjects. Many of the teachers also report that

In-Service Teacher Training and Self-efficacy 165

they feel capable of increasing their programming skills on their own or with colleagues
and that they will get better with experience. This result indicates high self-efficacy
towards getting better in programming.

3.4 Impact of Programming Education on Self-efficacy in Teaching Programming

Six of the teachers expressed that they could not teach programming before the courses,
but that they felt they were able to teach it in their subjects and grades after the program.
This result indicates a very positive impact on the teacher’s self- efficacy towards teaching
programming. Three of the teachers felt they could have taught programming before the
courses, but express that they felt more secure in their teaching afterward. One teacher
thought that the first course had a negative impact on her ability to teach programming
because of the demanding workload and difficult exercises made her more confused
than competent. However, this improved during the second course. Five of the teachers
also stated that programming education had a positive impact on their attitudes towards
programming in school, especially in terms of why programming in school can be
relevant and beneficial in other subjects.

Some of the teachers felt that the learning curve in the first course was very steep.
That programming can be hard to learn is often reported in the literature, e.g., [12].
Most of the teachers still felt that they learned a lot from the first course, and most were
happy with both the learning outcome and the workload in the second course. Two of
the teachers, however, reported that they thought the introductory programming course
was very good, while they felt the second course was either too easy or had little impact
on their competence.

3.5 Impact of Time After Course

The interviews were conducted close to one year after the teachers finished their pro-
gramming studies. Therefore, they were also asked how the time that had passed since
the completion of the program had impacted on their teaching. Most teachers perceived
their programming skills lowered over time, when not used actively:

…I don’t have it as much in my fingers anymore, since I work less on it myself …
I notice that programming is something I should keep a lot more maintained. It’s
like programming is a skill that you have to practice, to a much greater extent than
math and physics, where you basically have it…. (Teacher 9-Female-Math-HS)

At the same time, these teachers expressed that they could “refresh” their pro-
gramming skills and knowledge with little trouble. Also, a lower self-efficacy towards
programming does not seem to relate to lower self-efficacy for teaching it.

The teachers that have taught or used programming in their classes in the last
year explained that they also feel more capable of teaching programming due to the
experience, for example:

…I have used programming more in teaching this year than I did the year before.
So I feel that I am more secure in the role, and promote it more, and want more
people to use it…. (Teacher 7-Female-Math-USS)

166 J. Thorsnes et al.

Only one of the teachers felt less competent in pedagogical aspects of programming
because he has not been teaching programming in the last year, but he also states that it
will come back when he starts planning for it:

…I feel less ready now because I haven’t practiced it in a year. No, that’s not
entirely true, I’m lying, but if you had me sit down with an exam in coding now,
I would have been better off a year ago than now. Pedagogically as well. But it
will return when I start planning a bit again, and I’ve looked a bit on it, I’ve
discussed a bit with some colleagues, and worked a little with coding …(Teacher
2-Male-Math-USS)

Some of the teachers stated that they would have liked more follow up exercises or
a community of teachers to help in maintaining programming skills after the courses.
This suggestion can be seen in relation to the fact that many programming teachers work
in schools without other teachers in their content area [11].

3.6 Impact of COVID-19

Five of the teachers stated that the COVID-19 situation might have impacted their
answers. Interesting is, for example, that two of the teachers reported that they had
found new teaching methods. For example, one stated:

…Maybe towards differentiation in that I discovered that TinkerCad had some
functions similar to Scratch because I have never used TinkerCad before. I have
been very focused on the pupils working with it physically, which we now could not
… But when I used it now, I saw that it was easier to differentiate for the students
because I could use block programming … So yeah, so that’s how it probably
affected because I’ve discovered new things during this period because I had to
make way for another way of teaching… (Teacher 7-Female-Math-USS)

One teacher reported that the answers might have been affected by insecurity about
how to continue teaching programming in the current situation. Other teachers reported
the lack of contact with colleagues and general concerns for the future, considering
that many other teachers have not been able to follow planned training in the Spring.
Interesting is also to see that the situation might have increased concerns about the
general digital competence of other teachers:

…I am one of those who are positive towards programming. But of course, I see
big challenges in including it in the subjects. Because now, when we are teaching
through Teams, we have employees that struggle with technical stuff there, right.
I don’t think this will be done quickly…. (Teacher 8-Female-Math-LSS)

4 Discussion and Implications

The results of our study indicate that the teachers perceive that the education that they
received had a positive impact on their self-efficacy towards teaching programming.
Some of the teachers report that the studies also had a positive effect on their attitudes

In-Service Teacher Training and Self-efficacy 167

towards programming. The teachers say that their self-efficacy in teaching programming
increases with experience in teaching programming, and does not significantly decrease
without experience over time. The teachers report that their programming skills lower
over timewhen not used, but that they can quickly refresh their programming skills when
needed. This can be seen as a positive trend in relation to other studies where teachers
showed a low level of self-efficacy in teaching programming [4–6]. Based on the results
from the interviews, we identify some issues that need attention when designing training
for in-service programming teachers.

Profiling and Flexible Paths. The evaluation of the two courses is rather varied. For
some, the first course was too demanding, for others appropriate. The same holds for the
second course. Though there is a space for improvement of the actual course content,
we think that these differences are strongly connected with the nature itself of the pro-
gram. Participating teachers have different competence levels and different needs since
they teach different subjects to different students. One could advocate for more specific
courses, focusing on specific needs or requiring defined competencies for admittance.
However, this is a model that is difficult to implement for economic reasons, and with
pedagogical limitations, caging teachers in a specific subject and level. The alternative is
then to create modular courses that support different learning trajectories, as in the pro-
gram of our study [7]. However, this requires identifying ways of profiling participants
and scaffolding their participation in the course.

Mini-courses/Continuous Education. One introductive course on programming and
teaching is not enough to meet the challenges that teachers meet every day and to stay
updated. Teacher training should be seen as a continuous process, with the possibility
to follow up a more formal and structured training with shorter training activities in
the form of, e.g., seminars and workshops on specific programming and pedagogical
issues. This training requires a commitment from the providers of training to design
their courses as a continuous process that looks at long term opportunities.

Importance to Promote Community. Collaboration among programming teachers is
useful, both to increase and maintain programming skills and to share and discuss the
teaching of programming. Some teachers also experience that their colleagues are nega-
tive towards programming in school. There is a need to develop and strengthen commu-
nities of practice in the domain of teaching programming. This can be done at different
levels. Many countries have nation-wide communities to support programming teachers,
as the CAS network in the UK [13]. These constitute an essential model, but it might be
equally important to create a landscape of communities, locally at the teachers’ school
and around specific training courses. In this perspective, it is essential during a course to
promote a sense of community among the teachers attending the courses and nurturing
this community after the course is completed as a form of continuous education.

Re-use of Resources. In our study, most of the teachers expressed that they can develop
and adapt varied teaching material in programming and seem to have a relatively high
sense of self-efficacy towards developing and adapting teaching material. However,
some express that it can be difficult to find the most suitable teaching resources in the
abundance of teaching resources in programming found online. A similar result is also

168 J. Thorsnes et al.

found in the interview study of US K-12 computer science teachers [11]. Some teachers
express that they would like more teaching resources in programming, as also indicated
by the teachers in the study reported in [14]. The results also suggest that the teachers have
a relatively high sense of self-efficacy towards motivating their pupils in programming,
but that it can be difficult to create exercises that engage the lesser capable pupils in
programming, while also giving them a sense of mastery. This indicates the need to
create resources that can be adapted at different levels and to different national contexts,
considering both language and study plan. As part of the training, it is important to
include information about available resources and how to adapt them.

Assessment. Our respondents identify assessment as challenging, mirroring other stud-
ies that pointed out the need for quality assessment tools in computer science and coding
education [11]. Thoughwedonot have conclusive evidence, it also seems that assessment
in programming is amore significant challenge than the teachers without experience per-
ceive. It is, therefore, important that any teacher training program explicitly addresses
this issue and challenges teachers to address assessment as an integrated part of the
definition of their lesson plan.

Programming Skills. The results in this study can help ease the minds of future pro-
gramming teachers that are concerned about their programming skills. Many of the
teachers in this study perceived their programming skill as relatively low, but also suf-
ficient for their teaching of programming, and they had a relatively high sense of self-
efficacy in teaching programming. In other words, teachers do not necessarily need to
be expert programmers to feel capable of teaching programming to their pupils, and it
seems possible to attain sufficient programming skills for teaching programming through
continuing education in programming over two semesters.

5 Conclusions

In this paper, we presented the results from interviews conducted with ten teachers,
one year after they completed formal university-level training in programming. The
teachers express high self-efficacy about teaching programming, though some of them
are reporting low skills in programming. The study shows that teachers perceive formal
training at the university level as having a positive and long-lasting impact.

The interviewees differ in terms of subjects they teach and school type. Therefore,
the study covers different perspectives. However, we are fully aware that they are all
connected to the same course, and it might be difficult to generalize the results. More
studies are necessary. Considering that this type of training requires a heavy investment,
both at the individual and the school level, we claim it is crucial to investigatewhich types
of training have the highest impact, not only in terms of acquired knowledge but also
in terms of attitudes and self-efficacy. From our study, formal training at the university
level seems a promising option.

Acknowledgments. We thank the teachers who participated in the interviews. The work is partly
funded by Excited, The Norwegian Center for Excellent IT Education (https://www.ntnu.edu/exc
ited).

https://www.ntnu.edu/excited

In-Service Teacher Training and Self-efficacy 169

References

1. The Committee on European Computing Education (CECE): Informatics Education in
Europe: Are We All In The Same Boat? Association for Computing Machinery, New York
(2017)

2. Bandura, A.: Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84,
191–215 (1977). https://doi.org/10.1037/0033-295X.84.2.191

3. Zee, M., Koomen, H.M.Y.: Teacher self-efficacy and its effects on classroom processes, stu-
dent academic adjustment, and teacher well-being: a synthesis of 40 years of research. Rev.
Educ. Res. 86, 981–1015 (2016). https://doi.org/10.3102/0034654315626801

4. Hartell, E., Doyle, A., Gumaelius, L.: Teachers’ attitudes towards teaching programming
in Swedish Technology education. Presented at the PATT 37, Pupils Attitudes Towards
Technology (2019)

5. Mannila, L., Nordén, L.-Å., Pears, A.: Digital competence, teacher self-efficacy and training
needs. In: Proceedings of the 2018 ACM Conference on International Computing Education
Research. pp. 78–85. Association for Computing Machinery, New York (2018). https://doi.
org/10.1145/3230977.3230993

6. The Royal Society: After the reboot: computing education in UK schools. The Royal Society,
November 2017

7. Rouhani, M., Divitini, M., Vujosevic, V., Stai, S., Olstad, H.A.: Design of a program-
ming course for teachers supporting flexible learning trajectories. In: Proceedings of the 8th
Computer Science Education Research Conference, pp. 33–38. Association for Computing
Machinery, New York (2019). https://doi.org/10.1145/3375258.3375263

8. Tschannen-Moran, M., Hoy, A.W.: Teacher efficacy: capturing an elusive construct. Teach.
Teach. Educ. 17, 783–805 (2001). https://doi.org/10.1016/S0742-051X(01)00036-1

9. Korkmaz,O.: ProspectiveCITE teachers’ self-efficacy perceptions on programming. Procedia
Soc. Behav. Sci. 83, 639–643 (2013). https://doi.org/10.1016/j.sbspro.2013.06.121

10. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3, 77–101
(2006). https://doi.org/10.1191/1478088706qp063oa

11. Yadav, A., Gretter, S., Hambrusch, S., Sands, P.: Expanding computer science education in
schools: understanding teacher experiences and challenges. Comput. Sci. Educ. 26, 235–254
(2016). https://doi.org/10.1080/08993408.2016.1257418

12. Guzdial, M.: Learner-Centered Design of Computing Education: Research on Computing
for Everyone. Synthesis Lectures on Human-Centered Informatics, vol. 8, pp. 1–165 (2015).
https://doi.org/10.2200/S00684ED1V01Y201511HCI033

13. Brown, N.C.C., Sentance, S., Crick, T., Humphreys, S.: Restart: the resurgence of computer
science in UK schools. ACM Trans. Comput. Educ. 14, 9:1–9:22 (2014). https://doi.org/10.
1145/2602484

14. Kadirhan, Z., Gül, A., Battal, A.: Self-efficacy to teach coding in K-12 education. In: Hodges,
C.B. (ed.) Self-Efficacy in Instructional Technology Contexts, pp. 205–226. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99858-9_12

https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.3102/0034654315626801
https://doi.org/10.1145/3230977.3230993
https://doi.org/10.1145/3375258.3375263
https://doi.org/10.1016/S0742-051X(01)00036-1
https://doi.org/10.1016/j.sbspro.2013.06.121
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/08993408.2016.1257418
https://doi.org/10.2200/S00684ED1V01Y201511HCI033
https://doi.org/10.1145/2602484
https://doi.org/10.1007/978-3-319-99858-9_12

Computational Thinking in Small
Packages

Dennis Komm1,2(B), Ulrich Hauser3, Bernhard Matter1, Jacqueline Staub1,2,
and Nicole Trachsler2

1 PH Graubünden, Chur, Switzerland
{dennis.komm,bernhard.matter,jacqueline.staub}@phgr.ch

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
nicole.trachsler@inf.ethz.ch

3 FH Graubünden, Chur, Switzerland
ulrich.hauser@fhgr.ch

Abstract. This article describes an approach to foster computational
thinking in different school subjects. Our approach includes several teach-
ing units (packages) that are self-contained and have been designed for
university courses attended by prospective and graduate primary and
secondary school teachers. Around 30 packages have been designed so
far and together cover eight aspects of computational thinking in six dif-
ferent subjects. In this report, some examples are sketched out together
with the experiences gathered.

Keywords: Computational thinking · K-12 · Primary school ·
Interdisciplinarity

1 Introduction

Computational thinking is regarded as one of the main contributions of informat-
ics to general education. The term was introduced by Seymour Papert [10] and
further popularized by, for instance, Jeanette Wing [11]. It is obvious that many
aspects of computational thinking are not endemic to informatics, but can also
be found in other disciplines. Computational thinking marks itself by the aim
not just to solve a single instance of a problem, but to create a general strategy
to solve any problem instance of the problem class at hand. The description of
this general strategy in a formal language is called an algorithm. The design of
an algorithm is a process which requires creativity, but its (automatic) execution
requires no creativity at all.

While virtually all experts agree that computational thinking is important,
there is no general formal definition. As a consequence, we focus on the following
eight aspects as its core: Abstraction, Algorithm Design, Evaluation, Generaliza-
tion, Iterative Improvement, Information Representation, Precise Communica-
tion, and Problem Decomposition. Five of these aspects have been inspired by

c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 170–181, 2020.
https://doi.org/10.1007/978-3-030-63212-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_14&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_14

Computational Thinking in Small Packages 171

Selby and Woolard [15], three have been added to stress the aspect of interdisci-
plinarity in the context of this project.

This report describes an approach to foster computational thinking interdis-
ciplinarily by creating small teaching units (referred to as packages) for lecturers
of universities for teacher education. These units are intended to be used with
students in their education towards being a primary or secondary school teacher.
Our approach is in contrast to many other projects which mainly concentrate
on the direct training of students. All packages will be published as a collection
and made available to the public through an online platform.

Several related projects aim in the same direction and produce contents for
fostering computational thinking in diverse contexts. Bebras tasks, for instance,
offer learning opportunities in domains which, at first glance, often are not
directly anchored in computer science [14]. However, these tasks typically aim
at students aged 6 to 18. In contrast, our materials aim at lecturers rather than
students. A second example can be found in CS Unplugged, which tackles cen-
tral aspects of computational thinking in a diverse context, too [13]. While this
project aims at making computer science “experienceable” mainly without com-
puters, we want to show that computational thinking does not only exist in
computer science but also in other disciplines. Whether or not a computer is
used for this purpose is not relevant in our context.

In order to design the packages, we visited university courses for future teach-
ers, and made ourselves familiar with the respective curricula. Then, together
with the lecturers, packages have been designed (and are still designed as this
report is written) in order to build a bridge between the respective subject and
computational thinking. After that, these packages have been tested as part of
workshops.

The main part of this report brings forward examples of designed packages
and describes our experiences during workshops. The ultimate goal is to have
the packages implemented as parts of the courses of teacher education, and thus
sensitize (future) teachers about the matter.

2 Project Context

According to the Swiss curriculum “Lehrplan 21,” all fifth and sixth graders who
live in one of the 21 German-speaking cantons enjoy one hour per week that is
partly dedicated to informatics. This somewhat scarce endowment for computer
science as a separate subject fortunately is connected to a requirement that the
corresponding competencies are also to be promoted in an interdisciplinary way.
Concretely, computational thinking should be promoted not only in computer
science but in all subjects. Furthermore, the interdisciplinary embedding of com-
putational thinking starts considerably earlier, namely from Kindergarten age
onwards.

Our project Computational Thinking in Primary School is a collaboration
of two Swiss universities: (i) PHGR, a university of teacher education and (ii)
FHGR, a university of applied sciences. The goal of this collaboration is to spread

172 D. Komm et al.

computational thinking to various courses taught at PHGR. The main target are
primary school teachers, but some secondary school topics are covered as well.

The work presented in this article is part of an even larger collaboration
project with multiple Swiss universities. The overall goal is to strengthen STEM
subjects in Swiss education [8]. Our work is only one of two projects at PHGR
that involve teaching informatics interdisciplinarily; the other project focuses
on specific informatics competencies that are defined within the “Lehrplan 21”
curriculum, having students in the vocational semester as target group [7].

PHGR contains the six departments Design, Language, Mathematics, Music-
Rhythm-Theater, Nature-Human-Society, and Sports, which are responsible for
teacher education with regard to the respective subjects. For each of them, dif-
ferent packages have been created as part of the project. While there are obvious
connections between, say, mathematics and computational thinking, quite sur-
prising links to other subjects have been discovered as well.

It needs to be noted that the project is currently work in progress. In par-
ticular, the findings have not yet been completely evaluated, which is why our
experiences are mostly anecdotal. Moreover, much of the content presented is not
entirely new, but the algorithmic aspects needed to be made more visible, which
lead to an algorithmic enhancement of a given topic taught in a given subject. In
many cases, computational thinking made objects that were studied theoretically
more tangible by actively constructing them (for instance, geometric objects).

3 Example Packages

All packages are documented in written form, specifying which subjects they can
be used for, and which of the above aspects of computational thinking they cover.
Furthermore, we supply an estimate of how much time is needed to implement
the package.

The packages are primarily designed for lecturers teaching at universities
of teacher education. The underlying idea is that some lecturers will integrate
packages into their courses, which allows future teachers to cover computational
thinking later as part of their respective teaching at school.

Each package starts with an introduction for the lecturer, describing the main
topic and how computational thinking is applied. The main part is then usually
an example session that exemplifies how the topic can be introduced to university
students. For each exercise, there is a solution at the end of the material, and all
exercises slowly increase in complexity. A package always concludes with didactic
remarks, possibilities for advanced exercises, and a thorough explanation of what
different aspects of computational thinking are covered, and why.

Language
We designed several packages that deal with formal languages, for instance, using
simplified finite automata or context-free grammars in order to describe simple
words or sentences with some specific structure in a playful way. Another package
deals with Braille encodings of words.

Computational Thinking in Small Packages 173

Fig. 1. An example construction as used in the package aiming to train precise com-
munication. It counts seven bricks, none of which are identical.

Here, we want to use yet another package as an example of how to train a
very important aspect of algorithm design – exhaustive and unambiguous com-
munication. We have tested the package several times as part of a workshop,
which is why subsequently we will be speaking of “the participants.” The partic-
ipants are given a small construction, say, a tower, built of some brick system,
for instance, Lego Duplo. There should not be more than a maximum of seven
bricks used, and those bricks should at least partly be distinguishable by, for
instance, their color or size. Figure 1 shows an example of such a construction.

The participants now work in groups of two. Each participant is presented
with a construction and the task to give a precise written description of it within
ten minutes – it is not allowed to use any kind of drawing, only language. The two
members of a team prepare their respective description such that they cannot
see the other construction. A photograph of the construction is taken and then
it is disassembled. The two members of a group now try to use their peer’s
description in order to recreate the exact same construction within five minutes.
An evaluation of how well the reconstruction went, followed by a reflection and
discussion, concludes the workshop.

Our experience shows that workshop participants perceive the package very
positively. It is not surprising, however, that a large fraction does not succeed to
rebuild the construction – despite of initial enthusiasm as they are only “playing
with toys for children.” We have often observed that only while writing down the
description, one starts to realize how imprecise and ambiguous everyday language
is. Simply stating “place the big blue brick on the small red one” usually does
not work.

Precise Communication is the central aspect of this package, while the
description of how to rebuild the tower is ideally at least close to an algorithm,
that is, it can be carried out without interpretation and only following the given
steps systematically.

174 D. Komm et al.

(a) (b)

Fig. 2. Two black and white pixel graphics.

Design
For a package that can be applied within Design classes, we decided for the topic
of pixel graphics. We only give a short summary. The participants are presented
the idea of representing a black and white picture as a string of Bs and W s
(representing black and white pixels, respectively). For instance, the picture in
Fig. 2a can be encoded as the string BWWBWBBWWBWWWBBW.

After some conversions back and forth between a given image and the respec-
tive encoding, the participants face the question of how such pixel graphics can
be compressed. As an example, in the picture shown in Fig. 2b, there are large
sequences of white pixels. The obvious way of encoding this figure as

BWWWWWWBWWWWWWBWWWWWWBWWWWWWBWWWWWWB

can be shortened quite straightforwardly by writing

1B6W1B6W1B6W1B6W1B6W1B

instead, where a number indicates that the following letter should be repeated
the respective number of times. An even better compression using parentheses
would result in

1B5(6W1B).

Another topic deals with palindroms in pixel graphics (the same topic may be
revisited when speaking about context-free grammars). Graphics which encode
palindromes possess central symmetries, which are explored by the participants.

The major aspect covered in this package is Information Representation, in
particular, how to present information efficiently.

Mathematics
The overlap between mathematics and informatics is large [2–4], and many of
the aspects that make up computational thinking are just part of systematic
problem solving, which is at the core of mathematics.

Some members of the project team are active in teaching with turtle graphics,
for instance, using dedicated Logo or Python environments [5,6,17–19]. Although
the majority of our packages follows an unplugged approach, we additionally
designed some packages that make use of Logo.

Computational Thinking in Small Packages 175

(a) Placing 20 squares. (b) Placing three hexagons.

Fig. 3. Filling the plane with squares and hexagons with Logo. The green Turtle marks
the turtle’s final position. (Color figure online)

Using the turtle, some topics of geometry can be made more tangible than
when just using pen and paper. More specifically, we decided for an advanced
topic, namely filling the Euclidean plane with (identical) regular polygons. It
is well known that this is only possible with equilateral triangles, squares, and
hexagons. Constructing regular polygons with the turtle means to perceive them
somewhat locally, not with global coordinates, but with reasoning about how
(that is, at what angles) the different lines should be connected.

For this package, we assume that the students and lecturers have some basic
knowledge about Logo. Recall that there are four essential commands that let
the programmer navigate the turtle over the screen – fd x moves the turtle x
pixels in the direction it currently looks, bk x moves the turtle x pixels in the
opposite direction. The turtle rotates by a degrees to the left with lt a and to
the right using rt a. As advanced concepts, we assume that the students are
familiar with simple repeat-loops and defining programs with parameters. For
the details of Logo, we refer to the literature [1,12].

The first task is to fill the screen with squares such that no two squares
overlap and no gaps exist between them as in Fig. 3a. Then the notion of a
square can be generalized to that of an n-gon. The important thing is that the
rotation angle 360/n of the turtle is elaborated together with the students. They
discover that the internal angels of a given n-gon always equal 180–360/n. This
insight comes in particularly handy when filling the plane with hexagons (which
have internal angles of 120 degrees); placing three hexagons such that there is
no gap in between and they do not overlap is shown in Fig. 3b. Clearly, the
single point where all of them overlap (and where the turtle is placed in the
figure) induces an angle of 360 degrees and therefore no gap appears. Advanced
exercises ask about filling the plane with triangles where the internal angles can
also be deduced easily from the turtle’s movements. Trying to fill the plane with

176 D. Komm et al.

α

Fig. 4. The turtle dancing the bee’s waggle dance.

pentagons or any regular polygons with more than six edges, the participants
realize, is doomed to fail.

A major aspect that is used to develop the algorithms is Problem Decom-
position; for instance, first strategies to draw squares are designed, which are
then combined to draw rows of squares etc. In this package, programming with
turtle graphics is used to dig deep into regular polygons and constructing them
in order to understand why most of them cannot be used to fill the plane. Fill-
ing the plane with hexagons lends itself for an excellent transition to the next
subsection.

Nature-Human-Society
As the name indicates, many different topics are part of the subject Nature-
Human-Society. We use the Nature part to demonstrate that algorithms are
indeed omnipresent, independent of programming languages, and not per se
human-made. As an example, we take the honey bee’s waggle dance [9], which
we mimic with Papert’s turtle.

The dance is used by bees to communicate the position of nutritional sources –
we consider a simplified version that captures the basic idea. There are essentially
two parameters that need to be communicated in order to locate the food source,
namely the direction and the distance to the food. The former is specified by
the angle α between the sun and the source; the bee positions itself such that
it is rotated by α degrees with respect to the vertical axis on the honeycomb –
which means that the bees mastered the abstraction of the “global direction
towards the sun” to the “local vertical direction on the comb.” The waggle dance

Computational Thinking in Small Packages 177

is composed of three parts. In the middle part, the bee runs from a point x to a
point y while describing a wavy line; then it describes a semicircle and returns
back to x. The distance d to the source is communicated by how long the bee
takes to perform the middle part of the dance, that is, the wavy line – the longer
it takes, the further away the food source. After returning to x, it repeats the
procedure, alternatingly describing a semicircle to the left or to the right.

To implement the algorithm, we again assume a basic knowledge about Logo
as in the previous subsection. The idea behind the algorithm is shown in Fig. 4.
It is important to understand that the waggle dance can indeed be regarded as
an algorithm. The input consists of two parameters, namely the angle α and the
distance d, and the execution is the movement of the bee (turtle) depending on
these parameters.

The major aspect of this package is of course Algorithm Design, but due to
the modular design of the resulting algorithm (as in the previous subsection),
also Problem Decomposition plays an important role.

Music-Rhythm-Theater
For the above examples of Mathematics and Nature-Human-Society, we showed
how to use turtle graphics to both revisit important programming concepts and
at the same time study topics rooted in the respective subjects.

Conversely, after visiting a lesson on Rhythm, the project team found a some-
what unexpected link to turtle graphics as the students were asked to move
according to a specific rule system. Inspired by this, we designed a package,
which we again tried out with some of the lecturers at PHGR as part of a work-
shop. The tasks are carried out in teams of two where one person acts as a robot
(just like the turtle) and one person acts as a programmer. The following rules
need to be followed.

– The robot moves straight ahead one step at a time.
– The robot always starts its path with the right foot.
– If the programmer claps, the robot immediately rotates by 90 degrees and

then makes the step into the new direction. Depending on which leg is on the
move, the robot either turns to the left or to the right; the rotation is always
into the direction of that leg.

As an example, consider Fig. 5, where the orange tones denote positions at
which the programmer claps – actually, she should clap some short time before,
just after the respective foot has been lifted. The robot starts with its right foot
and makes a step. Then it lifts its left foot and the programmer claps, which
results in a 90-degree turn to the left and then making the step. Next, the right
foot is lifted again, and so on. In Fig. 6a, we have sketched the result on checkered
paper. We say the corresponding pattern is “clappable” by the programmer.

178 D. Komm et al.

Fig. 5. An example of clapping to specific tones.

(a) (b) (c)

Fig. 6. Three patterns, two of which are possible results of robot walks. The dot marks
the starting position, and the robot starts with lifting its right foot. Figure (a) corre-
sponds to Fig. 5; (b) can be clapped, while (c) cannot.

There are then some exercises about clapping certain patterns. In particular,
the above rule system is quite restrictive, because the feet are lifted alternatingly,
and the rotation direction is determined by the foot that is currently not touching
the ground. This makes some patterns impossible to be clapped; for instance,
the square in Fig. 6b can be clapped, because it corresponds to a square with
even side length; Fig. 6c cannot be clapped, because the side length is odd.
There are similar observations to be made about other patterns that allow to
systematically explore the rule system under consideration.

A central aspect of computational thinking, which is covered here, is Evalu-
ation. A given rule system may be too restrictive for certain tasks, but powerful
enough for others.

Sports
Official rules in sports are mostly given as written text, often supported by
sketches or photographs. A good example is given by the international volleyball
rules[16] covering about 90 pages of text. In this package, an alternative way of
displaying or even defining rules in sports is introduced, using state diagrams
like the one in Fig. 7 to describe the states of a game and transitions between
them.

Each game corresponds to a specific sequence of states, each of which is
represented by an ellipse. The system can stay in such a state for any time. The
arcs leaving and entering the states each represent a state transition from one
state to the next which we assume to happen instantly. In Fig. 7, the transitions

Computational Thinking in Small Packages 179

Fig. 7. An example graph depicting states and transitions emerging at the beginning
of a volleyball move.

are not labeled with text to increase readability; an exception is the arc labeled
“Player of A misses.”

The initial state corresponds to a serving situation, when a player of team A
holds the ball to perform the service. The corresponding ellipse has a light gray
background. The player may miss the ball. The ball then will fall to the ground,
represented by a state on the left side of the graph. When the ball touches the
ground, this event leads to team A being given an error situation, again indicated
by a state.

The usual scenario of a service is described in the center of the graph. The
serving player of team A hits the ball. Following this event, the ball will soar
across the area of team A, over the net into the area of team B. Subsequently,
a normal move, first under the control of team B, continues.

Only the first transitions of a move are given in the graph, hiding the remain-
der in the “. . . ” part. In case of the service, this is the part up to the ball crossing
over the field of team A.

While playing, the students are requested to follow the sequence of states
and think about questions such as the following:

– What possible events might happen next?
– Which events will lead to our team getting a point just now?
– Which events will lead to the opposing team getting a point just now?
– What are the individual consequences of the events I found?
– How could the states be named according to the consequences of the events?

The questions and events given above are exemplary and do not specify a real
time instant during a game. The outcome of the student’s analysis is transformed
into a graph like the one given in Fig. 7.

It can be seen that such a graph develops a remarkable degree of complexity
quite quickly, which may oppose people to this way of depicting sports rules.

180 D. Komm et al.

It needs some scrutiny to set up or to read such a graph. Therefore, an evaluation
of the developed graph is performed.

– Is the information given by the graph complete?
– Is the information given by the graph ambiguous?
– Can this graph be understood by a computer? (All state diagrams can be

transformed into executable code automatically.)
– The rules for volleyball cover many pages of text. May this text be trans-

formed completely into a number of diagrams?
– May the resulting diagrams be more concise than the written rules?
– May the graph be – once one is used to reading it – be superior to written

rules in some ways?
– If the graph and the written rules are both describing the rules exhaustingly

and unambiguously, may they be exchangeable as equivalent?
– Is it possible to test the written rules for ambiguity? How does the graph

compare here?
– If the two representations of rules are equivalent and a graph can be converted

into code (which then essentially is an algorithm), is the written version of
the rules an algorithm as well?

By answering the above questions, the students will be guided towards the
conclusion that the graph is a representation of an algorithm. Algorithms or their
representation can be found in many places, even unexpected ones. A recipe for
cooking a meal (for an arbitrary number of people), advice on how to tend a
garden (of arbitrary size), the well-planned execution of a series of (arbitrarily
scalable) experiments – all are instances of algorithms.

The representation shown here as a graph normally can be tested more easily
for exhaustion and ambiguities than the associated set of written rules. This is
quite obvious if one puts oneself in the position of a state and imagines all
possible events and their consequences, forking from one state to a whole set of
possible following states. This is extremely difficult to represent in a linear text.

This last package is based on the concepts of Information Representation
and Algorithm Design.

4 Conclusion

We introduced an approach of implementing computational thinking in subjects
other than computer science. As mentioned before, much of the work is about
sensitizing lecturers and teachers, as many of the aspects that make up compu-
tational thinking are already present implicitly. Most of the time, what we newly
introduced was the explicit design of an algorithm rather than teaching problem
solving skills in order to solve concrete problem instances. This results in our
packages being not too invasive, which is why we hope to have them applied
by a larger number of lecturers and consequently motivate (future) teachers to
integrate computational thinking in their own teaching at school.

It should be noted that, while we received very positive feedback so far, only
a test of time will tell whether the project was really successful.

Computational Thinking in Small Packages 181

References

1. Gebauer, H., Hromkovič, J., Keller, L., Kośırová, I., Serafini, G., Steffen, B.: Pro-
gramming in LOGO. http://abz.inf.ethz.ch. Accessed 20 Oct 2020

2. Hauser, U., Komm, D.: Interdisciplinary education in mathematics and informatics
at Swiss high schools. Bull. EATCS (126) (2018). The Education Column

3. Hauser, U., Komm, D., Serafini, G.: Wie Mathematik und Informatik voneinander
profitieren können - Teil 1: Abstraktionsfähigkeit. Informatik Spektrum 42(2), 118–
123 (2019)

4. Hauser, U., Komm, D., Serafini, G.: Wie Mathematik und Informatik voneinander
profitieren können - Teil 2: Variation der Problemstellung und Modularisierung.
Informatik Spektrum 42(2), 124–129 (2019)

5. Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of Python
with the simplicity of logo for a sustainable computer science education. In: Brod-
nik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46747-4 13

6. Kohn, T., Komm, D.: Teaching programming and algorithmic complexity with
tangible machines. In: Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018. LNCS,
vol. 11169, pp. 68–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
02750-6 6

7. Komm, D., Matter, B.: Informatics in Swiss primary schools - a case for interdisci-
plinarity. Bull. EATCS (130) (2020). The Education Column

8. Nationales Netzwerk MINT-Bildung. https://www.fhnw.ch/de/die-fhnw/
hochschulen/ht/mint-bildung. Accessed 20 Oct 2020

9. Waggle Dance. https://en.wikipedia.org/wiki/Waggle dance. Accessed 20 Oct 2020
10. Papert, S.: Mindstorms. Basic Books, 2nd edn. (1993)
11. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33 (2006)
12. XLogo Online. https://xlogo.inf.ethz.ch. Accessed 20 Oct 2020
13. Bell, T., Lodi, M.: Constructing computational thinking without using computers.

Constructivist Found. 14(3), 342–351 (2019)
14. Dagienė, V., Sentance, S., Stupurienė, G.: Developing a two-dimensional categoriza-

tion system for educational tasks in informatics. Informatica 28(1), 23–44 (2017)
15. Selby, C., Woollard, J.: Computational thinking: the developing definition. Univer-

sity of Southampton (E-prints) (2013)
16. Official Volleyball Rules. http://www.fivb.org/EN/Refereeing-Rules/documents/

FIVB-Volleyball Rules 2017-2020-EN-v06.pdf. Accessed 20 Oct 2020
17. Staub, J., Barnett, M., Trachsler, N.: Programmierunterricht von Kindergarten

bis zur Matura in einem Spiralcurriculum. Informatik Spektrum 42(2), 102–111
(2019). https://doi.org/10.1007/s00287-019-01161-6

18. Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based
programming environment for schools aiming at reducing cognitive load on pupils.
In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7 18

19. Trachsler, N.: WebTigerJython - a browser-based programming IDE for education.
Master’s thesis, ETH Zurich (2018)

http://abz.inf.ethz.ch
https://doi.org/10.1007/978-3-319-46747-4_13
https://doi.org/10.1007/978-3-030-02750-6_6
https://doi.org/10.1007/978-3-030-02750-6_6
https://www.fhnw.ch/de/die-fhnw/hochschulen/ht/mint-bildung
https://www.fhnw.ch/de/die-fhnw/hochschulen/ht/mint-bildung
https://en.wikipedia.org/wiki/Waggle_dance
https://xlogo.inf.ethz.ch
http://www.fivb.org/EN/Refereeing-Rules/documents/FIVB-Volleyball_Rules_2017-2020-EN-v06.pdf
http://www.fivb.org/EN/Refereeing-Rules/documents/FIVB-Volleyball_Rules_2017-2020-EN-v06.pdf
https://doi.org/10.1007/s00287-019-01161-6
https://doi.org/10.1007/978-3-319-71483-7_18

Curriculum and Pedagogical Issues

Identification of Dependencies Between
Learning Outcomes in Computing Science

Curricula for Primary and Secondary
Education – On the Way to Personalized

Learning Paths

Yelyzaveta Chystopolova, Stefan Pasterk(B), Andreas Bollin,
and Max Kesselbacher

University of Klagenfurt, 9020 Klagenfurt, Austria
{Yelyzaveta.Chystopolova,Stefan.Pasterk,Andreas.Bollin,

Max.Kesselbacher}@aau.at
https://www.aau.at/en/informatics-didactics

Abstract. The multitude of curricula and competency models poses
great challenges for primary and secondary teachers due to the wealth
of descriptions. Defining optimal (or personalized) learning paths is thus
impeded. This paper now takes a closer look at 7 curricula from 6 dif-
ferent countries and presents an approach for the identification of learn-
ing outcomes and dependencies (requires and expands) between them
in order to support the identification of learning paths. The approach
includes different strategies from natural language processing, but it also
makes use of a refined and simplified version of Bloom’s Taxonomy to
identify dependencies between the learning outcomes. It is shown that the
identification of similar learning outcomes works very well compared to
expert opinions. The identification of dependencies, however, only works
well for detecting learning outcomes that refine other learning outcomes
(expands dependency). The detection of learning outcomes which build
on each other (requires dependency) is, on the other hand, still heav-
ily dependent on the definition of dictionaries and a computing science
topics ontology.

Keywords: Primary and secondary education · Learning outcomes ·
Computing science · Natural language processing

1 Introduction

Every year the field of Computer Science becomes a bigger part of everyday life
not only of scientists but also of all the people. Schools pay more attention to
teaching the basics of Computer Science starting already from primary school.
However, teachers often face the problem of choosing the optimal learning path,
which will be the most suitable for every exact group of students. There are lots
c© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 185–196, 2020.
https://doi.org/10.1007/978-3-030-63212-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_15&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_15

186 Y. Chystopolova et al.

of curricula, which describe different standards, and different options of achieving
a certain learning goal. In some aspects they differ, but also similarities can be
found. Using the collected knowledge from some of them can help to improve
the level of Computer Science education in general and be more flexible to the
current needs of students as well as to new improvements in the field. Merging of
Computer Science curricula rises the question: “How to represent the collected
knowledge from several curricula?”.

Pasterk and Bollin present a graph-based approach for analysis of Com-
puter Science curricula, where they map the Learning Outcomes (LO) to a
graph by connecting them via dependency relations which can be of two types
“EXPANDS” and “REQUIRES” [10]. Relation type “EXPANDS” shows that 2
LO share same main topic extending each other, while the relation of the type
“REQUIRES” assume that in the pair of 2 LO (LO1 and LO2), LO1 cannot be
reached without LO2 and at the same time they do not form a pair, with the
relation type “EXPANDS” [9]. Showing a wide range of new possibilities, this
model requires considerable effort for dependencies identification between LO.

To identify all the dependencies, the experts need to work with curricula,
which are presented in PDF files. Some of them store LO in the form of a table,
however, in most cases, they are presented as lists or plain text. Even looking for
dependencies inside one curriculum, the experts need to keep in mind dozens of
LO. Adding new curricula makes the situation even more complicated. Besides
the identification of dependencies inside one curriculum, the experts need to find
relations between LO from different curricula. Thus the number of LO to work
with rapidly increases to hundreds, which makes the task too complicated for
human experts.

The goal of this paper is to describe a semiautomatic approach for dependen-
cies identification between LO among Computer Science curricula for primary
and secondary education. We also describe a possibility to transfer the available
curricula, which are stored in PDF files, to a directed graph, and also to simplify
the addition of new LO in the future.

To introduce the approach, this paper gives answers to the following ques-
tions:

– To which extent is it possible to identify dependency relations of the type
“EXPANDS” between learning outcomes?

– To which extent is it possible to identify dependency relations of the type
“REQUIRES” between learning outcomes?

– To which extent is it possible to identify directions for dependencies between
learning outcomes?

– How similar is the semiautomatic approach for dependencies identification to
the experts’ opinion?

In order to answer these questions we use seven curricula from six coun-
tries. This way, we have a diverse set of learning outcomes concentrating on the
Primary and Secondary education.

Dependencies Between Learning Outcomes in Computing Science Curricula 187

This paper is structured as follows. After a motivation and an overview of
related work in first two sections, two approaches for determination of depen-
dencies of two types, together with the approach for direction determination are
presented. Section 4 shows first results from the comparison of semi-automatic
determination to the precision of experts. The paper concludes with the section
for discussion and future work.

2 Related Work

With the rise of the research interest for computer science education, the amount
of published literature also increases. More and more papers discuss the analysis
of curricula content in different options (e.g. relevance of the topics [4]). Different
approaches using graph representations of curricula for analysis and comparison
can be found as well (see e.g. [7]). Pasterk and Bollin also propose to present
curricula as graphs [10] which opens new opportunities for further analysis. LO
in such graphs are presented as nodes, and dependencies as edges between these
nodes. Dependent relations can be of two types: “EXPANDS” and “REQUIRES”
[9]. Those mentioned approaches are based on expert opinions who add relations
between courses, knowledge areas, or LO.

Sekiya, Matsuda, and Yamaguchi [13] use statistical methods from natu-
ral language processing (NLP) and text analysis to identify relations between
topics and to generate maps of curricula. With the method called latent Dirich-
let allocation (LDA) topics from curricula are extracted and their relations are
calculated. The results from this process using LDA are interpreted as coordi-
nates for the generation of maps of curricula. Similar techniques are used by
Badawy, El-Aziz, and Hefny [2] to analyze textbooks for higher education based
on included LO. They follow their aim to identify important chapters in these
textbooks according to intended LO of a curriculum. The steps they take in
their research are comparable to a standard process in NLP which includes data
preparation, synonym identification, data preprocessing, and the analysis of LO
based on frequency of the occurring words [2].

Pasterk, Kesselbacher, and Bollin present an approach to semi-automatically
categorize LO into computer science or digital literacy which is also based on
NLP [11]. Asking experts to also categorize the LO to produce a validation
corpus, they found out that experts focus on keywords, especially on nouns,
during categorization, and that the experts’ opinions are often diverse. In the
best cases the semi-automated system matched in 70% of the LO categorization
with the data from the experts [11].

Based on the approach of Pasterk and Bollin [10] the present contribution
describes different approaches to semi-automatically determine dependencies
of different types between LO and the directions of the dependencies. These
approaches are based on the textual analysis of the LO and NLP techniques,
and are described in the following section.

188 Y. Chystopolova et al.

3 Methodology

3.1 Background and Process Description

As already mentioned Pasterk and Bollin define the two types of dependencies
“EXPANDS” and “REQUIRES” [10]. Each of these types needs its own approach
for relation determination. Relations of the type “EXPANDS” connect learning
outcomes on the same topic, those which share some similar context. As every
learning outcome is presented by a short sentence, we can use sentence similarity
measures [1].

In this paper we concentrate on Jaccard Similarity Coefficient. In its original
version this measure compares the size of the intersection of the words occurring
in two sentences (A, B) to its union (Eq. 1).

J(A,B) =
|A ∩ B|
|A ∪ B| (1)

Being rather simple, compared to other Natural Language Processing meth-
ods for similarity determination between sentences, the Jaccard Similarity Coef-
ficient includes all the needed features for identifying relations of the type
“EXPANDS”. It is not only easy to implement but can also serve as a good
basis for different modifications. Hamedani and Kim propose a few ways of using
unweighted and weighted options for link-based similarity measure in graphs [12].

Identification of dependent relations of the type “REQUIRES” is a more
complicated task. Pairs of learning outcomes, which have a connection of this
type, can belong to different topics. They mostly do not share common lexis,
thus similarity metrics are not suitable for their determination. Nevertheless,
even without common lexis, they do have a connection, which can be found by
human experts based on knowledge of the field.

Such a knowledge base can be created with the help of relation extraction
(RE) technics which give a possibility not only to extract dependent pairs of
keywords, but also some background knowledge [5]. It is obvious that for such
knowledge extraction we need to have data, where dependencies between LO
will be already defined. With such a goal a group of experts was working with 7
curricula from 6 countries to create a validation corpus (VC). As a result of their
work, we got a document, which includes identified dependencies of two types
(“EXPANDS” and “REQUIRES”) including directions between LO withing one
or several curricula.

Together with identifying pairs of dependent LO and type of relations, we
need also to identify directions. It will be easy if we know the level of each LO
in the pair. It is a well-known approach in the field of education to use Bloom’s
Taxonomy for such goals. A revised version of Bloom’s Taxonomy [8] is popular
nowadays, and for computer science a 2-dimensional version is suggested by
Fuller et al. [3]. Both taxonomies are based on action verbs which are separated
in levels. In the case of revised Bloom’s taxonomy, there are 6 cognitive levels:
remembering, understanding, applying, analyzing, evaluating, creating.

Dependencies Between Learning Outcomes in Computing Science Curricula 189

In the case of two-dimensional Bloom’s Taxonomy, the same categories got
transferred into two dimensions [3]: the ability to understand and interpret the
existing product, and the ability to design and build a new product.

Even though Bloom’s Taxonomy is very popular, Johnson and Fuller showed
that it is not perfect for Computer Science education [6]. In the course of our
study, we noticed that it includes only about 36% of action verbs, which we met
in LO from Computer Science curricula for primary and secondary education.
Nevertheless, Bloom’s Taxonomy served as a ground base for our own approach
for direction determination.

3.2 Preprocessing and Standardization

The task of dependencies identification is complex and requires a few prepro-
cessing steps. Besides manual transferring of the curricula that were stored in
PDF to CSV files, it includes cleaning and standardization. Firstly we remove all
the irrelevant information, such as punctuation, stop words, and also irrelevant
phrases such as text in brackets and the phrase “The students are able to...” (or
its equivalents). This step finishes with lemmatization, which helps to present
all the words in their base (dictionary) form.

Working with a variety of Curricula we found out that many concepts are
presented by different synonyms and it influences the relation determination.
Thus the Standardization step aims to reduce the number of diverse synonyms
in learning outcomes saving the semantic context. As an example, we met four
synonyms for the term “algorithm”: “sequence of events”, “sequence of instruc-
tions”, “sequence of steps”, and “set of step-by-step instructions”.

Figure 1 shows how a learning outcome changes during the preprocessing
phase.

Fig. 1. Preprocessing of the learning outcome.

3.3 Weighted Jaccard Similarity

For relation identification of the type “EXPANDS” we use modified Jaccard
Similarity Coefficient. The main difference compared to the original method is

190 Y. Chystopolova et al.

that words with different parts of speech have different levels of influence on the
result.

If we take a deeper look on the pair of learning outcomes, which are con-
nected, we will see that nouns play the most important role in similarity deter-
mination. They show the object (what exactly the student should learn). The
next level of importance goes to action verbs. They show what exactly the stu-
dent should do with the object. Most learning outcomes include also auxiliary
words (adjectives, adverbs, prepositions), which are not as important as nouns
and verbs, but still have influence on calculations, helping to calculate similarity
more precisely.

Modifying the original Jaccard Similarity Coefficient we add weights to it.
It means that instead of contributing equally, some parts of speech contribute
more than others. The default weight distribution is: nouns - 50%, verbs - 30%,
and auxiliary words - 20%.

However, it can change, depending on the presence of different parts of speech
in LO. Thus, if LO does not contain any adverbs, adjectives or prepositions, the
weight of auxiliary words will be equally distributed between Nouns and Verbs.

3.4 Relation Extraction Between Keywords

As mentioned earlier, nouns are the most meaningful for relation determination.
Even though nouns in the pairs of learning outcomes connected with the type
“REQUIRES” in most cases belong to different categories, we can still see the
connection between them.

With the validation corpus, it was possible to create a knowledge base, which
shows related pairs of keywords. Based on the expert evaluation, we extracted
pairs of keywords from the pairs of LO with the relation type “REQUIRES”.
Thus we got pairs of keywords (which include nouns and verbs) in the form
requires(K1, K2), where the term K1 requires K2.

The problem of such an approach was that automatic extraction gave us not
only words which are relevant for Computer Science, thus we needed to edit the
table manually.

Having such knowledge as a basis, we can use it for dependency identification
between LO. If two LO contain an extracted earlier pair of related keywords, we
can preliminary see that such LO might be connected. However, to check it more
precisely, we need to look for the percentage of keywords, which have a pair in
the opposite LO. If the result is more than 37%, it is most likely that LO we are
currently checking are connected, otherwise, they are not.

3.5 Action Verbs Triples

In the field of education, Bloom’s taxonomy is a very popular tool for level
determination of learning outcomes. Knowing the level we can easily determine
the direction of relation for the connected pair of LO. Nevertheless, our try to
apply it on praxis did not show satisfying results. Less than 5% of directions were

Dependencies Between Learning Outcomes in Computing Science Curricula 191

determined. The problem was, that having a variety of action verbs divided in
6 levels (in the revised Bloom’s Taxonomy), it is still missing most action verbs
specific for the field of Computer Science.

Giving better results in those cases, when action verbs were included, the
Revised Bloom’s Taxonomy served as a basis for the next idea: using triples of
Action Verbs, extracted from the Validation Corpus (Fig. 2).

The first step in this process is to extract all the action verbs (AV) and to
add them into the middle column of the three-column table. It is known from
VC, that directions between LO go from lower to higher levels. Applying this
knowledge for AV, two other columns can be added. For each AV in the middle
column, we extracted possible AV of lower and higher levels by investigating the
pairs of related LO. For a pair of related LO (LO1, LO2), with LO1 being of a
lower level compared to LO2, the AV of LO1 can be added to the left column of
the respective AV of LO2. On the other hand, the AV of LO2 can be added to
the right column of the respective AV of LO1. To avoid cases when the same AV
appear in one row in the left and right column, we use a count (how many times
the AV was met in this position). If the count of the AV from the left column is
higher, it stays there, otherwise in the right one.

Fig. 2. Automatically extracted triples of action verbs.

The table shows action verbs from easier to harder levels (left to right). With
its help we know that for example before being able to “control” something, the
student should “understand” it.

With the help of such a table, we cannot identify the exact level of the LO,
however, we can check which of two LO to compare are of the higher level. Thus
if LO1 includes the action verb “understand” while LO2 includes “discuss”, we
can see that LO2 is of a higher level than LO1.

Applying it for relation determination, we increase the percentage of deter-
mined directions between pairs of learning outcome to 83%. However there were
still not-determined directions. The problem was that in some pairs both learn-
ing outcomes had the same action verb. An improvement of the identification of
the dependency direction between such LO is difficult using Action Verb Triples,
or Bloom’s Taxonomy. The possible solutions of this problem are to be discussed
in Sect. 5.

In the following section the results of applying the methodology are presented.

192 Y. Chystopolova et al.

4 Trial Results

4.1 Relation Determination

Each of two types of relations between LO needs its own approach for dependency
identification:

– for the type “EXPANDS” we use weighted Jaccard Similarity Coefficient,
where weights are distributed depending on part of speech,

– for the type “REQUIRES” we use extracted pairs of keywords requires(K1,
K2), where the term K2 requires the understanding or knowledge of the term
K1.

As we are using a weighted Jaccard Similarity Coefficient (the metric, which
gives us a probability of how close are two sentences) for relation identification of
the type “EXPANDS”, the results depend on the probability boundary (Fig. 3).

Fig. 3. Automatically determined relations of the type “EXPANDS”. (Color figure
online)

The x-axis shows the probability of how close the LO are in the range from 0
to 1. The closer the value is to 1, the more similar are the LO. The y-axis shows
with the green color percentage of determined relations which match VC compar-
ing to all the determined dependencies (yellow color) of the type “EXPANDS”.

We can see, that the higher the probability is, the higher is the percentage
of identified dependencies that match VC. However, Fig. 4 shows us, that the
higher the probability is, the lower is the percentage of identified dependencies
from VC.

Analyzing the results, presented on the Figs. 3 and 4, we choose the boundary
of 0.4, as it maximally reduces the percentage of noise (which is now 54.02%
compared to the lower probability boundaries) and at the same time helps us to
identify 62.5% of dependencies from VC.

Besides comparing the gained results to VC we asked experts for a new eval-
uation. The goal was to check whether all the pairs of LO which were not met

Dependencies Between Learning Outcomes in Computing Science Curricula 193

Fig. 4. Automatically determined relations of the type “EXPANDS” which match VC.

in VC were really identified wrongly, or if they were simply missed by experts
during the first evaluation. The results of Precision and Recall for dependency
identification of the type “EXPANDS” showed that the actual level of noise is
much lower (Fig. 5). Having identified 41% (recall) of dependencies from VC, the
second evaluation done by experts showed that 96.4% (precision) of automati-
cally determined relations of the type “EXPANDS” were identified correctly.

Fig. 5. Results of the Precision and Recall for “EXPANDS” relations

As for dependencies identification of the type “REQUIRES”, the results were
less satisfying. Related pairs of keywords gave us a chance to identify a high
amount of dependencies from VC, but at the same time, the level of noise was
too high even after excluding pairs of keywords that are irrelevant for Computer
Science (Fig. 6).

Together with reducing the level of noise (Fig. 6), also the percentage of
identified relations from VC was cut in half.

Asking experts for reevaluation, we found out, that our approach helped
to identify dependencies of the type “‘REQUIRES” with a precision of 52.7%
(which includes related pairs of LO which were missed by experts during the
first evaluation) and a recall of 10.3% (Fig. 7). It shows that, in order to identify
relations missed by experts, our approach needs improvement, as the level of
noise is too high.

194 Y. Chystopolova et al.

Fig. 6. Automatically determined relations of the type “REQUIRES”.

Fig. 7. Results of the Precision and Recall for “REQUIRES” relations.

4.2 Direction Determination

Direction determination is needed for the relations of the type “EXPANDS”.
Jaccard Coefficient shows us that Learning Outcomes are connected, but does
not show the order. That is why we are using Triples of Action Verbs, to iden-
tify the relative level between two LO which have a dependency of the type
“EXPANDS”.

In the case of direction determination, we were able to get satisfying results
using triples of Action Verbs. This approach gave us 88.5% of correctly deter-
mined directions.

The main problem of such an approach is, that it is impossible to identify
the direction, if both LO from the pair share the same Action Verb. That is why
we still get 11.5% of not identified directions.

5 Discussion of Findings

Dependency identification between LO which are presented as short sentences is
a rather complicated task. While dependency as well as direction identification
of relations of the type “EXPANDS” works quite well, it is still pretty weak for
relations identification of the type “REQUIRES”.

Dependencies Between Learning Outcomes in Computing Science Curricula 195

It is easier to identify relations of the type “EXPANDS” as they share similar
topics. Nevertheless, some related LO share terms, which belong to the same
topic, but are not synonyms or that obviously connected.

The approach for dependencies identification of the type “REQUIRES” still
needs improvement. While a high percentage of dependent LO from VC can be
identified, the level of noise still has to be reduced. Nevertheless, it can serve
as a good basis for example for developing a Computer Science Ontology of key
terms. Such an ontology might be helpful both for the identification of relations
of the type “EXPANDS” and direction identification.

Triples of action verbs show positive results for direction determination
(88.5%). As Bloom’s Taxonomy served as a basis of our approach, the range
of action verbs can be extended. The problem of defining directions between
those LO which share the same action verb still remains a problem which we
also hope to solve in the future with the help of ontology.

6 Conclusion

In the current paper, we show the approach, which will serve as a helping instru-
ment for experts in dependencies identification between LO from Computer Sci-
ence curricula. It includes relation identification of two types: “EXPANDS” and
“REQUIRES”. We can identify the relations of the type “EXPANDS” with the
precision of 96.4%. As the weighted Jaccard Similarity Coefficient, the method
for relation identification of the type “EXPANDS” gives us results only on the
probability of how close are the two LO, we use also triples of action verbs
for direction identification. Such an approach gives us a possibility to identify
directions with the precision of 88.5%.

The task of dependency identification of the type “REQUIRES” is more
complicated. It requires a knowledge base, which includes dependencies between
key terms. With such knowledge, we were able to identify relations of this type
with a precision of 52.7%. Our approach gives a high level of noise, which we plan
to decrease by developing and using an ontology of Computer Science terms.

Approaches for dependency identification of both types still can be improved,
however already on this point they showed, that human experts miss the rad-
ical amount of relations. For example, only half of the relations of the type
“EXPANDS” was identified by experts during primary evaluation.

The presented approach, for now, cannot serve as an independent tool for
dependency identification, nevertheless, it is a helping hand for experts. It makes
a process of relation identification faster and easier, showing related pairs of LO,
it gives an opportunity for experts to work with a bigger amount of computer
science curricula, and simplify the task of adding new ones.

196 Y. Chystopolova et al.

References

1. Achananuparp, P., Hu, X., Shen, X.: The evaluation of sentence similarity mea-
sures. In: Song, I.-Y., Eder, J., Nguyen, T.M. (eds.) DaWaK 2008. LNCS, vol.
5182, pp. 305–316. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-85836-2 29

2. Badawy, M., El-Aziz, A.A.A., Hefny, H.A.: Analysis of learning objectives for
higher education textbooks using text mining. In: 2016 12th International Com-
puter Engineering Conference (ICENCO), pp. 202–207 (2016)

3. Fuller, U., et al.: Developing a computer science-specific learning taxonomy. ACM
SIGCSE Bull. 39, 152–170 (2007)

4. Gupta, S., Dutta, P.K.: Topic objective and outcome: performance indicators in
knowledge transfer through in-depth curriculum content analysis. Procedia Com-
put. Sci. 172, 331–336 (2020). 9th World Engineering Education Forum (WEEF
2019) Proceedings

5. Ji, G., Liu, K., He, S., Zhao, J.: Distant supervision for relation extraction with
sentence-level attention and entity descriptions. In: Thirty-First AAAI Conference
on Artificial Intelligence (2017)

6. Johnson, C.G., Fuller, U.: Is Bloom’s taxonomy appropriate for computer sci-
ence? In: Proceedings of the 6th Baltic Sea Conference on Computing Education
Research: Koli Calling 2006, pp. 120–123 (2006)

7. Lightfoot, J.M.: A graph-theoretic approach to improved curriculum structure and
assessment placement. Commun. IIMA 10(2), 59–73 (2010)

8. Anderson, L.W., et al.: A taxonomy for learning, teaching, and assessing: a revision
of Bloom’s taxonomy of educational objectives (2001)

9. Pasterk, S.: Competency-based informatics education in primary and lower sec-
ondary schools. Ph.D. thesis, University of Klagenfurt - Department of Informatics
Didactics (2020)

10. Pasterk, S., Bollin, A.: Graph-based analysis of computer science curricula for
primary education. In: 2017 IEEE Frontiers in Education Conference, pp. 1–9
(2017)

11. Pasterk, S., Kesselbacher, M., Bollin, A.: A semi-automated approach to categorise
learning outcomes into digital literacy or computer science. In: Passey, D., Bottino,
R., Lewin, C., Sanchez, E. (eds.) OCCE 2018. IAICT, vol. 524, pp. 77–87. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-23513-0 8

12. Reyhani Hamedani, M., Kim, S.W.: JacSim: an accurate and efficient link-based
similarity measure in graphs. Inf. Sci. 414, 203–224 (2017)

13. Sekiya, T., Matsuda, Y., Yamaguchi, K.: Analysis of computer science related cur-
riculum on LDA and Isomap. In: Proceedings of the Fifteenth Annual Conference
on Innovation and Technology in Computer Science Education, pp. 48–52. ITiCSE
2010, ACM, New York, NY, USA (2010)

https://doi.org/10.1007/978-3-540-85836-2_29
https://doi.org/10.1007/978-3-540-85836-2_29
https://doi.org/10.1007/978-3-030-23513-0_8

Computing in Pre-primary Education

Daniela Bezáková(B), Andrea Hrušecká, and Roman Hrušecký

Comenius University, 842 48 Bratislava, Slovakia
{bezakova,hrusecka,hrusecky}@fmph.uniba.sk

Abstract. In this paper we present our approach to study whether and how some
basic computational pre-constructs (like agent, instruction, sequence, program,
record, order) can be developed with preschool children (aged 5 to 6).

In many kindergartens Bee-Bots are used to introduce programming. But
Bee-Bots themselves do not offer any visual representation of a program which
we think a little bit limiting. To conduct our research, we wanted to use a tool that
would enable direct control of an agent and a visual representation of a program
as a record. Being inspired by the former work of our colleagues, educational
programming environments for lower primary years and research within the Emil
project we have designed an educational microworld for pre-school children –
Circus.

In Circus environment children control a main character (an acrobat) in order
to train it a performance. Instructions for the acrobat are interpreted immediately
and a record of given instructions is being made simultaneously. Circus is aimed
to be used with an interactive whiteboard by a small group of children and by a
teacher moderating the activities of children with the software. The microworld
itself is open, it doesn’t present any tasks to be solved.

In the paper we document an iterative process of designing, developing, using,
evaluating and analysing a)Circus microworld, b) activities to be done by children
in the microworld and related unplugged activities c) methodology for teachers
d) worksheets for children in the cooperation with two kindergartens and present
some findings.

Keywords: Programming in preschool age · Direct control · Program as record

1 Background

In last two decades several tools to support learning of computing for kindergarten chil-
dren in a developmentally appropriate way have been developed and also several studies
about introducing computing to kindergarten children or developing other competen-
cies through computing were conducted, e.g. using Bee-Bots [1, 2], ScratchJr [3, 4]
or KIBO [4, 5]. Bee-Bots are simple programmable floor robots with four instruction
buttons (forward, back, left and right – not interpreted immediately after pushing) and a
GO button which runs a sequence of instructions given before. ScratchJr [4, 15] is an
introductory programming language based on Scratch simplified and redesigned to be
developmentally appropriate for 5–7 years old children. Comparing with Scratch the set

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 197–208, 2020.
https://doi.org/10.1007/978-3-030-63212-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_16&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_16

198 D. Bezáková et al.

of programming blocks is smaller, and the program is built from left to right. Children
can add sprites, change their image in a paint editor, program their behaviour, add voices
and sounds, select a background and thus create interactive stories and games. KIBO
[4] is a screen-free robot kit designed for 4–7 years old children. Children can build
their own robot, use a variety of sensors and art supplies and program it – constructing
physical computer programs by connecting interlocking wooden blocks. Each wooden
block has a bar code that can be scanned by the robot’s embedded scanner. After pressing
a button robot executes the program.

We have looked at the space of opportunities of these three tools from the perspective
of Kalas’ three criteria [6]: actor to control (physical or virtual), style of control (direct
manipulation, direct drive, programming) and interaction (either controlling an isolated
actorwith restricted interaction, or controllingmultiple interactingactors). Inmentioned
three technologies:

• physical (Bee-Bot, KIBO) and virtual actors (Scratch sprites) are present,
• controlling of an isolated actor and multiple interacting actors are present,
• direct manipulation, direct drive and programming (or indirect control) are present.

In Slovakia we can notice an intense effort on supporting educational programming
and building a systematic approach to the learning process in computational thinking
across all learning stages. A complex intervention for Y3 and Y4 was developed in
last years – Emil the Robot: programming environment with graduated units of tasks,
workbooks for pupils and teachermaterials (see [7, 8]). Emil is a virtual actormoving in a
grid, with different levels of control (indirect manipulation, direct and indirect control).
Two years before, closely collaborating with the members of Computing with Emil
project, we started to think about a microworld appropriate for pre-primary stage, that
would be a natural predecessor of Emil concerning computational concepts, procedures
and level of control.

2 At the Beginning

At the very beginning (before designing the first prototype) we had decided to have one
virtual actor with the direct drive style of control. Direct control of an agent is obvious
in many lower primary school programming environments in Slovakia described e.g. in
[9]. We think that immediately executing of given instruction is an important step before
indirect control (planning the future behaviour) of an agent. We also planned to include
a functionality which automatically creates a visual record of given instructions – to
make it possible to reflect on the previous steps, to explore and analyse the sequence of
given instruction, order of instructions, etc. Sequence is in fact the main construct we
wanted to develop by our tool.

When considering the figure of an agent we studied software applications used for
lower primary programming [9]. Most of them use agents like bee, ant, ladybird, a robot
or a magic-man. We would like an agent to be a character popular for children, which
they can meet in a real word, which they can identify with or imitate. We have chosen
a figure of a circus clown. We found the circus topic to be interesting for children and

Computing in Pre-primary Education 199

we also have some positive experience with circus background from Thomas the Clown
application. In our application the agent lives in a circus stage where it practices and
shows performances. It also has its own dressing room.

The actors in primary programming applications usually move in a grid (Emil, Bee-
Bot), inside a map of roads (Thomas the Clown) or just free (Scratch) and in addition
they collect, carry, draw or built something etc. Hence the basic instructions in these
environments are the instructions for movement and rotation (like forward, backwards,
left and right) and then other additional instructions for solving problems in appropriate
application (e.g. collect, take, put,…). In Circus application we didn’t want children to
control the movement of an agent in the meaning of changing its position and direction.
But still we wanted the instructions for an agent to be interesting, funny and repre-
senting some physical activity quite easy to be simulated by children themselves. Our
first suggestions for instructions included clapping, jumping, blowing bubbles, drum-
ming, inflating balloons, pulling subjects from a magic hat, doing handspring, riding
monocycle, playing the trumpet and juggling.

The goal of our research was to find out, how the pre-school children would react to
controlling this kind of agent and whether it is possible to use it to develop some pre-
concepts of computational thinking. We also asked, what organization form is suitable
for the work with this kind of tool in the real kindergarten class and whether we can
support the learning with some unplugged activities and in what form.

3 Method

In our study we applied the design based research approach [10] and we were also
inspired by former experience of our colleagues from development of a software for
ECE education [11]. We have cooperated with three pre-school kindergartens classes
from two different kindergartens: two classes in the first year, one class in the second
year (approximately 20 children to a class).

We started the development ofCircus two years before. The first year of our research
was concentrated to designing prototypes of the software levels and activities for children
to do with the software. Just a few unplugged activities were created in this year. We
had six sessions with children (three with each class). In this year all the software
interventions were conducted by one of the researchers.

In the second year the software went through big graphics changes, some user inter-
face improvements, but almost no conceptual change. Most work in this iteration was
devoted to improving the activities with the software and designing of related unplugged
activities. We had three meetings in kindergarten this year. Interventions with the soft-
ware were conducted by the pre-school teacher itself according to our methodology.
Unplugged activities were moderated by one of the researchers.

In most our sessions two kindergarten teachers and three researchers were present.
Researchers (those who weren’t moderating the software or unplugged activities) were
making observations, taking notes or doing photo or video-documentation. After each
session we had a discussion with one of the present teachers. Outcomes from paper
activities (if realised) were collected to be analysed.

200 D. Bezáková et al.

4 Interventions

4.1 Organization and Structure of Interventions

Circus is meant to be used by children in front of an interactive whiteboard together with
a teacher. The role of the teacher is to moderate the activity (learning process), by giving
assignments, challenges, asking questions, not lecturing. It would not be possible to do
this with the whole class. Being inspired by the experiences of our colleagues working
with kindergarten children [12] we concluded that the best scenario for our interventions
would be working with small groups of (4 to 6) children.

Most of Slovak kindergartens (including ours) have digital corners [13] with a com-
puter or notebook connected to the interactive whiteboard in some of their classes, espe-
cially the classes of pre-schoolers. Thus, we were able to do interventions in children’
natural environment – in the class. The disadvantage of this approach was the necessity
of managing the whole class. We have used the scenario of distributing the children into
groups doing independent activities in parallel. One group worked with the software,
one group made unplugged activity (if prepared), and two other groups realized another
two activities prepared by the class teacher. The groups have worked for 10 to 12 min
on their activities and then they “rotated” (Fig. 1). Both our kindergarten classes have
already some experiences with this kind of “distributed work” and with doing software
activities on interactive whiteboard too.

 A1 A3

 I W

 A2

after 30 min.

 A1 A3

 I W

 A2

after 20 min.

 A1 A3

 I W

 A2

after 10 min.

 A1 A3

 I W

 A2

at the beginning

Fig. 1. Diagram of groups rotations. Groups are distinguished by colours. (IW = interactive
whiteboard, A = activity)

Our sessions had the same structure every time, inspired by [14]. We started with
a short discussion with all children sitting on the ground. Then the group work was
realised. After all groups have finished all the activities there was a closing discussion
with all children. The whole intervention took mostly about an hour.

4.2 The First Year of Interventions

Controlling One Agent. In the first sessionwith childrenwe used a prototype ofCircus
with a clown (agent) knowing six instructions: clap, jump, pull a subject from a magic
hat, blow bubbles, drum and do handspring. In a training stage (see Fig. 2 on the left),
children are training a clown (designing performance) – giving him instructions by
clicking at buttons with action pictograms. Each instruction is carried out immediately
and respective pictogram is added to a record panel. Thus, a visual re-cord of clown’s
training is created – which becomes a performance plan (a program) after switching

Computing in Pre-primary Education 201

to the performance mode. In the performance stage the clown cannot be controlled any
more, he just executes the “program” instruction by instruction. The executed instruction
on the record panel is highlighted.

In our first intervention we wanted to explore whether children would be able to
create and understand a relationship between the actions carried out by the clown and
the visual of record, read and interpret the record by themselves. We started by asking
children what they think the clown can do. Each child has identified one of the action
pictograms and then was asked to tell the clown to do it – children immediately tap on
the appropriate button. This way the group trained the clown its first performance. Then
we switched to a performance mode and watched the clown doing the show.While doing
performance children spontaneously exercised with the clown – they clapped, jumped,
simulated the magic hat, drumming and doing handsprings.

After the show we asked children to name the actions the clown did. We noticed two
“ways” of answer: some children named the action by heart – sometimes not in right
order, but as a group they were always able to name all of them, some children evidently
looked at the whiteboard and read the record – they named all the actions in the right
order. To support children of the first type, we asked questions more precisely: What
did the clown at first? What did it after that? What was the third action?… Later, after
designing other performances and before switching to performance mode, we asked a
little bit differently – to motivate children not to remember the sequence but to read it
from the record, e.g.: What did the clown at first? What did it do at last? What did it
do after clapping? What did it do before jumping? When did it drum?…We also asked
them to simulate the performance personally.

We think that the basic principle of controlling the clown, designing a performance
and its executingwas understood andwe confirmed that children discovered themeaning
of the record, were able to read it and interpret it. We have identified some problems
with GUI (switching mode buttons were not intuitive, the location of action buttons was
not practical, etc.) and gain some ideas how to make the software funnier.

Controlling Two Agents. In the second prototype of Circus we added another level
with two clowns on the stage (a boy and a girl) each one having its own record panel
(see Fig. 2 on the right), dressing room for the clowns, some new instructions (playing
trumpet, riding monocycle, …). The graphics of the software changed a bit.

Fig. 2. Prototypes of Circus. A training stage in the first prototype on the left. A performance
stage of the second prototype on the right – two clowns executing their own “programs”.

202 D. Bezáková et al.

We focused our intervention with children to controlling two agents – to develop
a pre-construct of parallelism. We wanted them to realize we can have more agents
which candodifferent actions independently but in the same time and to explore a relation
between a concrete clown and its record.

First children were asked to design any performance for a boy and then any perfor-
mance for a girl. After training a boy (who was active in default) they realized the need
to “select” the clown, they want to control. Usually they tried to click at the clown itself,
but some children also tried to click at the clown’s icon in front of the record panel (both
possibilities were implemented). After training performance for both boy and girl the
group watched the show in performance mode and saw that both clowns do their actions
in parallel. Like in the first intervention after executing performance or even before it
(right after training) we gradually asked children:

• to name all boy’s actions first and then the girl’s actions: What did the boy do at the
beginning? What did he do then? What did he do as the third? … What was the girl’s
first action? …

• to name boy’s and girl’s actions alternatively, but in the order:What did the boy do as
first? What was the girl’s first action? What did the boy do as the second? …

• to name randomly boy’s and girl’s actions: What did the boy do the end? What did
the girl do as the first? What did she do after jumping? When did the boy clap?…

• to argue: Why do you think so? How do you know it?
• to find out: Did the clowns do the same action sometime? Which one and when?

Answering the last groups of questions children often pointed at the record panels.
The second task in this intervention was to design any performance for the boy and

the same performance for the girl. Some groups manage to do this task independently
reading the first record sequentially and clicking the same action for the girl. In some
groups we helped children a little bit by asking questions like What did the boy do
as first? Thus, what will do the girl do as first?… Some groups made mistakes during
solving the task, but they communicated with each other within the group and corrected
it.

We can state that controlling two agents was not a problem for children and they
also managed to orient in both record panels. Problems from the previous prototype
were eliminated. We have found some new defects in software (not intuitive pictures)
and in organization, too. Children were not distributed equally – we had one three
members group which turned out to be uselessly small. The group ends up the software
activity quickly but couldn’t change for another group because other bigger groups still
performed their activities.

Making a Plan. In the third prototype of the software we added one more level with
a special form of indirect control of an agent – the agent didn’t execute the given instruc-
tions immediately they were just written to the record (plan) panel. As in the previous
level there were two clowns at the stage, but just the boy could be (indirectly) controlled.
The role of the girl clown was to show a performance randomly generated by the appli-
cation. The role of children was to plan the same performance for the boy – which in
fact means to make a record of the girl’s performance. Thus, the visual representation

Computing in Pre-primary Education 203

of the sequence of instructions in this level is a record and a plan at the same time – it
is a record of the girl’s show but a plan of the boy’s one.

When we started working with this level children were confused. They clicked the
instruction buttons, but any clown hasn’t reacted. Just the pictogram of clicked action
was “written” to the record. We encouraged children to switch to performance mode,
where they could notice that the boy executed their instructions, but the girl didn’t. Then
we explained children what’s the task – to watch the girl’s show in the training mode
and to prepare a plan for the same performance for the boy.

The way children solved the task could be denoted as “by heart“. Children watched
the whole girl’s show and then they tried to recall what was the first, the second and the
third girl’s action and clicked the appropriate button. After making a plan for a boy, they
switched to performance mode to see if both clowns would do the same (application
didn’t give them any other form of feedback). If not, they returned to the training mode,
watched the girl’s performance again and made a new plan.

As the girl’s show was quite short at the beginning (just three actions), it was not so
hard to remember and hence the children were very successful. Later when the number
of girl’s actions went up children as individuals were not able to remember the whole
show but in cooperation, as a group, they always managed to prepare the right plan for
the boy (although sometimes not at the first trial). In spite of becoming the task harder
and harder (it is possible to choose from 3 up to 7 actions), children wanted to extend
the girl’s show – they took it as a higher level of a game.

None of the children tried to click at the instruction buttons during the girl’s show,
thus they didn’t discover the possibility of creating the record/plan during the show.

4.3 The Second Year of Interventions

After the first year the software was completely graphically redesigned changed (see
Fig. 3): the graphics of clowns, stage, dressing room, buttons, and action pictograms
was. Some new clown’s actions were added. In the level with the indirect control we
changed the girl clown for a robot figure, so the girl clown would have the same role in
the whole software.

Fig. 3. Dressing room andMaking a plan level.

In our second year’s meetings we used the same organizationmodel as in the first one
– children (not the same as in previous year) were working in four groups independently:

204 D. Bezáková et al.

one group doing software activities using interactive whiteboard moderated by the
class teacher, one group working on our unplugged activities, and two other groups
working on other activities prepared by the class teacher. We had planned four meetings
with children in the second year, but due to the Corona crises just three of them were
realized.

The First Intervention with a Class Teacher. The teacher has prepared everything
very carefully. She has divided children into four groups and explained all the groups
all the activities they would do during next hour so that they could work relatively inde-
pendently without managing them. Then she started to moderate the software activities
which were similar to those presented in Controlling one agent part with the same ques-
tions asking. After being asked How did you know the order of the instructions, clown
did? some children claimed that they remember it. But when designing next perfor-
mance, we could clearly see that they looked at the record and choose the actions so that
they would not repeat. We can conclude that children were able to control an agent and
understand, read and interpret the record of the instructions.

Unplugged activities were oriented to completing and creating sequences of two
alternating pictures – which was presented to children as designing a performance for
the clown with two alternating actions. Children solved these tasks by gluing paper
pictograms of actions to prepared paper cards with empty sequences. As the activity
consists of three sub-tasks we have recorded their word descriptions with talking pegs
(to simple recording and playing devices customized for children), so that children could
hear them whenever they need, without the help of a teacher. But it was not a good idea
because children took the pegs in wrong order, the voice from the pegs disturbed the
other children and some children even overrecorded the assignment. We assured that
the unplugged activities need to be managed by a teacher the whole time (not just at
the beginning) – to explain assignments, answer questions, give feedback, etc. In fact,
the unplugged activities are not necessary to be done in parallel with software activities.
Thus, after this intervention we have specified the order of alternation of the software
and unplugged activities in the methodology, so that they followed up didactically.

Children from the other two groups asked for some feedback too – they wanted to
show the teacher their pictures, buildings or other outcomes. To be able to do this without
disturbing the group by interactive whiteboard, an assistant teacher is needed. Another
problem we noticed (if each group was doing and independent activity) was the rotation
– some children were frustrated by interrupting their actual activity before gaining its
goal (e.g. drawing some picture). We think it’s a matter of training (in one kindergarten
it functioned perfectly, because children were used to this organization model, and also
in the second one the children got used to this method later) and types of the remaining
two activities – they have to be chosen very carefully, so that they would not last more
than 10–12 min and wouldn’t have any specific goals.

Seeing these problems and knowing that in most Slovak kindergarten classes just
one teacher is present (rarely two) we added another possible form of organizing the
class work when doing Circus activities (see Fig. 4). All children do the same activity
possibly such that needn’t be managed (like building from cubes). Each 10 min different
group of 4–6 children works with the teacher with the Circus software.

Computing in Pre-primary Education 205

after 30 min.

 A1

 I W

 A1 A1

after 20 min.

 A1

 I W

 A1 A1

after 10 min.

 A1

 I W

 A1 A1

 a

 A1

 I W

 A1 A1

t the beginning

Fig. 4. Another type of changing the groups. Groups are distinguished by colours.

The Second Intervention with a Class Teacher. In the second session conducted by
class teacher we prepared some new activities that were not presented in the first year.
Children had to design performances (for one clown) with some specific rules: to use
concrete action twice or three times, to do the same action one after another or not one
after another. A bigger set of actions was used. While designing such performances
children discovered various details of clown’s behaviour, like:

• it doesn’t do the same action in the same way (e.g. once it claps with hands down and
once with hands up),

• when doing the same actions one after another it can “graduate” it (e.g. first juggling
with three balls, later with four and then with five) or sometimes is not able to do it or
it does it in a wrong way (e.g. loses a ball by juggling). We liked children’s reasoning
why the clown does it this way, e.g. it is tired, it is being bored doing always the same,
its hands or its legs hurt.

Paper activities, presented on a paper worksheet (see Fig. 5 on the left), were also
concentrated to design performances with given rules, e.g. design a performance where:
the clown will juggle with plates, the clown will play some instrument, the clown will
clap and run the monocycle, the clown will jump before blowing bubbles, the clown
will play two different instruments. The tasks were ordered gradually according to their
difficulty from our point of view. In each group at least one or two children didn’t want
to meet the given rules (they created a sequence they liked) or they placed the solution to
the wrong line, although the teacher read just one assignment at the moment (e.g. they
placed the solution of the second tasks to the fourth line, or they started at the bottom
and finished at the top line). We agreed it would be better to have separate card for each
task and introduce them to children step by step. After evaluating the worksheets, it
turned out, that our estimation of tasks’ difficulty was quite good - the succesfullness of
the children’ solutions was almost perfectly decreasing except of the last but one task,
which turned to be the hardest.

The Third Intervention with a Class Teacher. The third intervention was concen-
trated to controlling two clowns – software activities were almost the same as described
in the Controlling two agents part. As in the first year children were able to select which
clown they want to control, distinguish between the boy’s and the girl’s record, read
the records continuously and also in alternating way, use boy’s record as a pattern for
planning the girl’s performance or vice versa. The most difficult was the task of design-
ing a girl’s performance with a reversed order of actions from the boy’s one. But with
appropriate helping questions from the teacher and cooperating with each other each
group has managed to do it.

206 D. Bezáková et al.

Fig. 5. Examples of worksheets for unplugged activities (with solutions).

Unplugged activities related to this session were concentrated to creating a sequence
(girl’s performance) based on some pattern sequence (boy’s performance) but with given
changes (Fig. 5 on the right). Changes were either in the order of the actions or in
the replacement of action by another action. After our experience from the previous
intervention we prepared each task on separate paper card and the moderator of this
activity gave it to the children just after the previous one was solved.

After this interventionwe has a discussionwith the class teacher about the unplugged
activities. Teacher liked the task we prepared but she didn’t like their paper form and
gluing. She found the paper sheets to be not ecological, just for one use, not practical for
teachers (as the teacher would have to print it before the lesson) and not modifiable. As
either children nor teachers do not need to save the tasks’ solutions, she would appreciate
such form that could be used repeatedly and without preparation – just take and use. We
had several ideas:

• using magnetic cards with assignment (that means pattern sequences or just empty
sequences to fill in) and magnetic pictograms of actions,

• using cards with assignment and pictograms from some (repeatedly) adhesive
material, like some windows stickers,

• using paper-board pictograms that children will just lay (not glue) on the paper-board
assignment cards.

We decided for the last – less expensive solution. We had prepared a set of pictogram
pieces and a set of cards with the assignments – sequences (the description is not written
on the card, just in the methodology). To be able to find the appropriate card very quickly
we decided to mark the backside of the cards by different colours and numbers. Thus,
teacher moderating the unplugged activities can tell just Take the yellow card from the
box and create a sequence such that …

Computing in Pre-primary Education 207

5 Conclusion

Wehave presented a two-years design-based research study conducted in three preschool
classrooms. So far, we have iteratively developed the Circus application consisting of
four levels and designed software activities scheduled to four meetings, eight related
unplugged activities (consisting of 3 to 6 tasks), some supplement activities and
methodology for teachers.

Children worked with the software without any familiarization – they intuitively
figured out the meaning of instructions and were able to directly control an agent. They
explored the record – a sequence of carried out instructions, discovered itsmeaning,were
able to read it, interpret it, use it as a plan, or as a pattern for planning another agent’s
behaviour. They also managed to control two agents independently: they determined
which one is active, observed, whether they can do the same or different actions, explored
their records, read them, compared them, looked for differences or for the common
actions.

Children participated on software activities with enthusiasm and joy. We consider
the 4–6 children groups and the 10–12 min time for one group accurate for working with
the software – children had the opportunity to cooperate and even it was enough space
for everybody in the group to express itself.

Unplugged activities were concentrated to exploring sequence, as it was the main
constructwewanted to develop by our interventions.Doing unplugged activities children
were experiencing the order of instructions in a sequence, creating patterns of alternating
pictures, completing or creating sequences according to given rules or according to given
patterns with some defined changes. A few children showed interest in creating their
own “sequence” tasks for their friends.

We have found that the unplugged activities shouldn’t be realised in parallel with
the software activities. They have to be moderated by a teacher, and the tasks should be
given step by step on separate paper cards.We have also suggested a form of presentation
of the activities’ materials so that they would be reusable.

TheCircus environment is open. It does not give any tasks and any explicit feedback.
In fact, the mentioned software activities are not integrated in the software, they are just
described in the methodology, thus the teacher can adjust them. Using the software and
some unplugged activities’ materials it is also possible to build links to other areas or
topics of early child education e.g.: dressing up, movement (exploring the actions of the
clowns, imitating them), human body (exploring in which actions does the clown uses
mouth, hands, legs, in which both hands and legs,…), counting (designing performances
with exactly three handsprings or counting how many juggling actions were in a given
performance, …), professions (thinking about in which professions or occasions can we
meet with jumping, with handsprings, with playing trumpet and so on).

Acknowledgements. We would like to thank our colleagues from research and developer team
(especially to Andrej Blaho, Ivan Kalaš and Milan Moravčík), our design kindergartens, teachers
that took part in our interventions, gave us feedback, comments and new ideas, to Indicia NPO
for funding our design research process and to the project VEGA 1/0602/20, thanks to which the
results of this research could be published.

208 D. Bezáková et al.

References

1. Pekarova, J.: Using a programmable toy at preschool age: why and how? In: Workshop
Proceedings of SIMPAR 2008, International Conference, pp. 112–121 (2008)

2. Palmér, H.: Programming in preschool –with a focus on learning mathematics. Early Child.
Educ. 8, 75–87 (2017)

3. Flannery, L.-P., Kazakoff, E.-R., Bontá, P., Silverman, B., Bers,M-U., Resnick,M.: Designing
ScratchJr: support for early childhood learning through computer programming. In: Proceed-
ings of the 12th International Conference on InteractionDesign andChildren, pp. 1–10. ACM,
New York (2013)

4. Bers, M.U.: Coding, playgrounds and literacy in early childhood education: the development
of KIBO robotics and ScratchJr. In: 2018 IEEE Global Engineering Education Conference
(EDUCON), pp. 2094–2102 (2018)

5. Bers, M.U., Horn, M.S.: Tangible programming in early childhood: revisiting developmental
assumptions through new technologies: childhood in a digital world (2009)

6. Kalas, I.: On the road to sustainable primary programming. In: Proceedings of the Con-
structionism in Action: Constructionism, pp. 184–191. Suksapattana Foundation, Bangkok
(2016)

7. Kalas, I.: Programming in lower primary years: design principles and powerful ideas. In: Pro-
ceedings of Constructionism Computational Thinking and Educational Innovation, Vilnius,
pp. 71–80 (2018)

8. Kalas, I., Blaho, A., Moravcik, M.: Exploring control in early computing education. In:
Pozdniakov, S.N., Dagienė, V. (eds.) ISSEP 2018. LNCS, vol. 11169, pp. 3–16. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02750-6_1

9. Kabatova, M., Kalas, I., Tomcsanyiova, M.: Programming in slovak primary schools.
Olympiads Inf. 10, 125–159 (2016). https://doi.org/10.15388/ioi.2016.09. (2016)

10. Design-Based Research Collective: Design-based research: an emerging paradigm for
educational inquiry. Educ. Res. 32, 5–8 (2003)

11. Moravcik, M., Kalas, I.: Developing software for early childhood education. In: Addressing
Educational Challenges: TheRole of ICT. IFIPWorkingConference,Manchester, 12 p.MMU
(2012). [CD-ROM]

12. Moravcik, M., Pekarova, J., Kalas, I.: Digital technologies at preschool: class scenarios.
In: Proceedings of 9th WCCE: IFIP World Conference on Computers in Education, Bento
Goncalves, 10 p. (2009). [CD-ROM]

13. Kalas, I.: Recognizing the potential of ICT in early childhood education. In:Analytical Survey,
148 p. UNESCO IITE, Moscow (2010)

14. Ballonova, B., et al.: Škôlka hrou, Edulab (2010)
15. ScratchJr. https://www.scratchjr.org. Accessed 12 Jul 2020

https://doi.org/10.1007/978-3-030-02750-6_1
https://doi.org/10.15388/ioi.2016.09
https://www.scratchjr.org

ePortfolio Introduction: Designing a Support
Process

Hege Annette Olstad(B)

Department of Computer Science, Norwegian University of Science and Technology,
Trondheim, Norway

hege.a.olstad@ntnu.no

Abstract. As a result of innovations within the computer field, educational con-
tent changes continuously. The constant change can make it challenging for some
students to understand what competencies they have gained. Relevant literature
indicates that ePortfolios can help students gain awareness of competencies they
have achieved if given technological - and pedagogical support. The potential ben-
efits of ePortfolios are the motivation behind the research questions:What types of
support do students need when developing an ePortfolio for the first time, and how
should the support be designed to make students independent when developing
ePortfolios? Data is collected by observing four student assistants in computing
education and their reflection on the experience of developing ePortfolios for the
first time. The finding shows that the identified support processwas appropriate but
needs some adjustments to make students able to develop ePortfolios without fur-
ther support from teachers or others. The support process identified and explored
in this study will be customized based on the findings. Subsequent studies will try
out the customized support among a larger group of students.

Keywords: ePortfolio · Competence · Implementation · Promotion · Support

1 Introduction

ePortfolios provides students with a place to collect examples of work experiences and
reflecting on those examples and what they represent. The content in ePortfolios may
include text, images, video, and sound. The artifacts and the associated reflections are
evidence of achievement and demonstrate skills, competencies or learning acquired
from education, training, or work experience [1]. Moreover, the opportunity to present
this information in digital format makes the previously unseen visible to students and
employers alike [2].

Several authors indicate that ePortfolios can be used as a tool to make competencies
more visible for students because ePortfolios creates self-awareness [3–5], and demon-
strate student development over time [6, 7]. However, ePortfolio implementation takes
time and increases teachers’ workload due to the support students need when first intro-
duced to the tool. Most teachers do not have time to put in the necessary effort, and it
is recommend that further empirical research on this topic incorporate approaches that

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 209–220, 2020.
https://doi.org/10.1007/978-3-030-63212-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_17&domain=pdf
https://doi.org/10.1007/978-3-030-63212-0_17

210 H. A. Olstad

do not require as much time and effort from the teachers [8]. Lack of time to implement
ePortfolios is one of the most significant barriers to the use of ePortfolios in classes [4].
Further, Pool et al. [9] point out that challenges to ePortfolio implementation need to be
explored and addressed before effective integration can take place [9].

In this paper, we will explain and examines types of support students need when
developing ePortfolios for the first time. The purpose is to identify what kind of support
students need and develop a support process that may save teachers and university
time when implementing ePortfolios. The methodology chosen for this research is an
exploratory case study and is the first cycle in a broader action research. As this is an
exploratory case study, a small group of students has participated in this study. Based on
the study’s findings described in this paper, the support will be customized and lanced in
a whole class in proper courses in subsequent studies. Therefore, this research is in line
with Poole et al.’s [9] recommendation, addressing challenges before the integration of
ePortfolio.

2 Review of Literature

2.1 Technological Considerations

A survey conducted by Blevins and Brill [4] revealed that the ePortfolio technology
system’s design was the top barrier to ePortfolio use, and that that the students wanted
more flexibility in the design of their ePortfolio then ePortfolios in Learningmanagement
systems (LMS) provides. The survey showed that students prefer to use tools such as
Google and iWeb. Therefore, the university decided to use Google Apps in addition to
LMS. All the students were given a Gmail account and had access to Google Docs.
Besides, the university implemented a zero-credit class where students watched two
video modules. The videos helped them create their Google Sites page and practice
adding artifacts. In this class, they also tried to help students reflect on their experiences
[4]. Class sessions seem to be a method often used when implementing ePortfolios for
providing students technological instructions and training [1, 5, 8, 9].

A study done by Tosh et al. [10] on ePortfolio and challenges from the students’ per-
spective reveals that the biggest technology-related problems for students included lack
of control, lack of features, and lack of access or permission. In turn, such shortcomings
can lead to students becoming less motivated to develop ePortfolios [10]. Shroff et al.
[11] find that students get motivated when they perceive the ePortfolio system easy to
use and nearly free of mental effort, which may also create a favorable attitude towards
its usefulness. Whether the students perceive the ePortfolio as easy to use and nearly
free of mental effort will depend a lot on how the support is designed and whether it is
adequately addressed to the students’ needs [11].

2.2 Pedagogical Considerations

The Learning Outcomes and Competence. Most ePortfolios are developed with a
focus on learning outcomes and are described as developmental portfolios [1]. To address
the intended learning outcomes teaching and learning activities and assessment tasks and

ePortfolio Introduction: Designing a Support Process 211

criteria should be aligned to the learning outcomes [12]. The alignment is the funda-
mental idea of constructive alignment. Constructive alignment is a principle devised by
Professor John Biggs [12] and used for devising teaching and learning activities and
assessment tasks that directly address the intended learning outcomes. Higher education
institutions in Europe develop lists with statements of intended learning outcomes for
each course and program. The list is based on the quality of higher-education agreement
called the Bologna Process. The agreement ensures comparability in the standards and
quality of higher-education qualifications. Learning outcomes are statements of what
a learner knows, understands, and is able to do on completion of a learning process,
defined in terms of knowledge, skills, and competence [13].

Unfortunately, the term ‘competence’ is often used interchangeably with terms like
skills and abilities, causing quite some confusion, according to Westera [14]. Kennedy
et al. [15] point out that there is a need to avoid confusionwhenusing the termcompetence
by defining it for the context in which it is being used [15].

Frezza et al. [16], defines competence as an integrative function consisting of knowl-
edge elements, a set of skill elements, and asset of disposition element. Disposition is
described as the abilities to turn learning into action [16]. Cedefop [17] defines com-
petence as “actually achieved learning outcomes, validated through the ability of the
learner autonomously to apply knowledge and skills in practice, in society, and at work”
[17, p. 30]. The definitions show that skills and abilities are part of the concept of com-
petence for educational purpose together with knowledge. While knowledge represents
facts, procedures, principles, and theories, skills are associated with the mental oper-
ations that process this knowledge. When considering abilities, we are somewhat in
the sphere of intelligence [15]. Competence related to education is thus understood as
applied skills and knowledge, and ePortfolios maymake competencies achieved through
learning more visible for the students.

Artifacts and Reflection. Reflections are central to raise awareness around what is
learned [18]. One way of conceptually link reflection and learning is proposed in Kolb’s
[18] experimental learning theory. In the first stage, the students a concrete experience
that they reflect upon in the second stage. The third stage is where experience and reflec-
tion are transformed, and the students build or modify their abstract conceptualizations.
In other words, they learn from their experience. In the last stage, students use and
apply these concepts in other situations and gain new experiences that starts the next
learning cycle [18]. Reflection is the “heart” of ePortfolios [8], and according to Kolb
[18], reflection is essential for learning. Further, Alexiou et al. [2] describe the process
of reflection on artifacts involved in the development of ePortfolios as one that makes
invisible learning visible.

In a study by Ring et al. [8], one of the findings is that students participating in
ePortfolio instruction sessions with training and support are more capable of articulate
what they know and how they know. In one-on-one sessions, students received instruc-
tion on ePortfolio technology and asked to complete a draft of their portfolios before
participating in these sessions. For the draft, the students used their resumes, academic
records, and extracurricular activities as a starting point, and wrote reflections on the
potential artifacts to place in their ePortfolio.

212 H. A. Olstad

For the reflection, Ring et al. [8] used a What? So what? Now what? model as
instructions designed with guiding questions (see Table 1) to help the students to connect
past experiences with present understanding and future use or action [8].The instruction
was modeled after Kolb’s [18] experiential learning theory. The questions cause the
students to reflect on what they did and act in a cyclic process in response to the learning
situation and what they learned.

Table 1. What, so what, now what with guiding questions [8]

Roberts and Maor [19] added the theoretical principle of the model in a gateway as
an area of the ePortfolio [19]. The gateway may lead to less work for teachers than the
method used by Ring et al. [8], but the results from the research show that the student
did not engage in the gateway’s content [19].

The What? So What? Now What? model is also very similar to a research method
by Janosik and Frank [1]. In sessions, the students received copies of the program’s
learning outcome and were encouraged to develop an orientation toward reflection. The
students were encouraged to reflect on their graduate experience, which led to achieving
the learning outcomes. Here they should reflect on what they had learned and what
they could do due to what they have learned. The students also got to see examples of
evidence, based on expected achievements listed in the learning outcome [1].

Several authors also recommend to providing students with ePortfolio examples
[19–22]. ePortfolio examples enable students to identify the areas they want to highlight
in their ePortfolio [20, 22] and may motivate the students because they can explore
the possibilities. Motivation is essential when implementing ePortfolios [10, 11, 23].
Lack of motivation may cause the students not to upload their learning material in
the ePortfolio. These students often need to be forced through the course content to
uploading the learning material because they do not feel that the ePortfolio has any
value [23]. Together with motivation, promoting the ePortfolio to students is essential to
succeed with ePortfolios. It is through the promotion that students’ basic understanding
of the value is created [19]. According to Tosh et al. [10], the effect of promoting the
e-portfolio to students when introducing ePortfolio cannot be underestimated. Students
need to know what an ePortfolio is, how to use one, and, most important, how it may
benefit them [24].

ePortfolio Introduction: Designing a Support Process 213

3 Research Method

The methodology chosen for this research is an exploratory case study and is the first
cycle in a broader action research. The principle in action research involves steps in an
iterative, cyclical process of reflecting on practice, taking action, reflecting, and taking
further action [25].

Four student assistants from the second year of an IT education at the Norwegian
University of Science and Technology participated. Four students are a small group,
but the study identifies only a first draft of necessary support. The goal was to identify
what types of support students need when developing ePortfolios for the first time, and
how the support should be designed to make students independent when developing
ePortfolios.

Data were collected by observation and reflection notes written by the students after
developing ePortfolios for the first time. The observation data were collected in a session
that lasted for three hours, where four student assistants were to set up their ePortfolio.
The observer took notes to identify challenges and had a participant role [26] where the
students were free to ask questions and discuss with each other. In the following three
weeks, the students continued working on their ePortfolio. After the three weeks, each
student wrote a reflection on their experiences of developing ePortfolio using the support
material described in the next chapter. The observation and the students’ reflection sought
to find answers to what worked and what did not work when it comes to the support and
the students’ overall impression of ePortfolios.

The qualitative data, observation notes, and students’ reflections were imported into
NVivo for coding and thematic analysis, observation notes, and interview transcripts are
easily coded in NVivo. The identification of differences and similarities in the collected
data, themes, and categories was completed using NVivo constant comparative. Obser-
vation notes and reflection notes were compared before clarifying the meaning of what
worked when it comes to the given support and each challenge, identify sub-challenges,
and describe potential links between them.

3.1 Case

At the university, the students attend, all the students use the learning management
system (LMS)Blackboard,which also offers an integrated ePortfolio.However,when the
students graduate, they lose access to Blackboard and their ePortfolio. In this study, we
have selected Google sites ePortfolio solution to allow students to continue developing
and using their ePortfolio after graduation.

Google Sites offer 10 GB storage for free, and this is far more than other solutions.
The one closest toGoogle Sites isWordPress, which provides 3GB for free. Google Sites
has strong integration with Google Docs and YouTube and allows students to add all
kinds of formats as artifacts that do not contribute to the storage limit. This possibility
lacks for MyPortfolio, WordPress and FolioSpace. When it comes to ownership and
lifelong access, Google Sites is the winner. The ePortfolio is owned by the learner
indefinitely, thus encouraging lifelong learning and reflective practice. Google Sites is
also easier to learn and use than WordPress. MyPortfolio and Foliospace. Ease of use is
a favorable towards the usefulness of the system and, positively affects the acceptance

214 H. A. Olstad

of Google Sites [22]. Based on the benefits Google Sites holds as described above and
the usability and ease of use [11], the ePortfolio solution offered through Google Sites
is selected for this project.

The Support Processes. The session started with introducing the ePortfolio, focusing
on promoting the ePortfolio and motivating the students to develop ePortfolio [19, 23,
24]. The students were informed what an ePortfolio is and why the ePortfolio could be
of value for them [2, 6, 7, 10]. After the introduction, carried out by the researcher, the
students were given a combination of three different types of support material. Figure 1
illustrates the support process and the combination of support material. The students had
access to the support material throughout the session and the following three weeks. The
introduction was followed up with a tutorial video that explained step-by-step how to
set up an ePortfolio with Google Sites. Next, the students were given links to ePortfolio
examples, which included one made for this purpose. The ePortfolio made for this
purpose was created with Google Sites and contained artifacts and content relevant to
IT-education. The ePortfolio consisted of two pages, were the first one introduced the
owner, and the second one had a selection of artifacts with associated reflections. The
other ePortfolio examples had the same setup but consisted of more than two pages and
more detailed information as they were developed throughout a study program.

Fig. 1. Support process

Then the students started to build their ePortfolio, and for this, they watched the
tutorial video and the ePortfolio examples. The students could design the page the way
they wanted. However, a minimum requirement was that it should contain two pages.
The first one should consist of a presentation of themselves, and on the second, the
artifacts and the associated reflections.

For the selection of artifacts, the document explained how competence listed in the
learning outcomes can be linked to the courses and how they can link the work they have
done to the competence. This part of the document included three exampleswith different
competencies from the learning outcomes in a course. The document also included the
What? So What? NowWhat? model, described by Ring et al. [8], and an example of an
artifact with a reflection.

ePortfolio Introduction: Designing a Support Process 215

4 Results

4.1 The Introduction

According to the students’ reflection notes and the observation, the students were moti-
vated to start developing ePortfolios for the first time. They actively participated with
questions during the promotion and was eager to get started. One student asked an open
question during the promotion, where the student wondered why they had not been
informed about ePortfolio earlier during their university studies.

However, in one of the students’ reflections, it appears that it is uncertain whether
the student will continue to develop the ePortfolio:

“There are very few in the computer industry that uses e-portfolio today. If there is
nothing a future employer is interested in, I am unsure if I will continue working on my
ePortfolio.” The other students, on the other hand, perceived the ePortfolio more useful
to themselves and pointed out that they would continue develop their ePortfolio after
this project. Some comments from the students’ reflection notes:

“This is something that all students should be familiar with from the beginning
of the education so that it is possible to collect experiences and competencies
acquired during the study period continuously.”

“This was an amazing experience, the ePortfolio forced me to reflect on what I
have done. I have not thought that is useful, but it is and especially when I look
for a job after graduation.”

ePortfolio Technology. The observation revealed that the students actively used the
tutorial video and the ePortfolio examples while setting up their ePortfolios They went
back to the tutorial video several times and the ePortfolio examples while setting up their
ePortfolios. The usefulness of the tutorial video and the ePortfolio examples and the fact
that they had access to this simultaneously as they developed the ePortfolios were also
mentioned in one of the students’ reflections:

“ The tutorial video and the examples helped me a lot at the beginning, and it was
useful to have it available so that I could go back and look when I needed to. All in all,
I think it is an ingenious and easy-to-manage tool for creating an ePortfolio. The layout
is excellent, and it was easy to add new elements to the page.”

One challenge occurred when students were to add artifacts. They managed to orga-
nize them in a folder in Google Docs, but the artifacts were not visible in the ePortfolio
when they signed out of Google. Those who visit the ePortfolio will thus not be able to
see the artifacts. No support material addressed this challenge, but the students managed
to solve the problem together by discussing and trying out different ways. The observa-
tion shows that although the students eventually solved the challenge, it required time
and effort. The students’ time and effort to solve this challenge were also mentioned in
their reflection, and one of the students wrote:

“When we managed to solve it, we found out that it was easy, but it would have saved
us time if this was explained in the video or in any of the other supporting material we
received in the session.”

216 H. A. Olstad

Competence and Artifacts. The students find the document Selection of artifacts to
be useful when it comes to writing a reflection. Still, the students found it challenging to
findwork done throughout the education linked to competencies without further support.
The students ‘reflections and the observation show that it is challenging for them to
select appropriate artifacts. In particular, it was challenging without an understanding
of the meaning of the term competence. One student pointed out in the reflection that
they have many theoretical subjects and that theoretical subjects do not result in any
competencies. The observation revealed that the students spent much time discussing
what was meant by competence when trying to select artifacts evidencing achieved
competencies. Eventually there was a need to explain what was meant by competence
so that they would not spend more time of the session to understand the concept of
competence.When theyfinally understoodwhatwasmeantwith competence, the process
of selecting artifacts became somewhat easier. All the students argued in the reflections
why it was difficult for them to select artifacts. Example from one of the students’
reflection:

“I did not understand what was meant by competence, and therefore it became
difficult for me to select work that proved my competencies. It became easier when
explained what was meant by competence. Without having it explained, I think it would
have been challenging for us.”

The students did not face any challenges when writing reflections based on the
guidance in the document. On the other hand, it is evident from the observation that the
students initially did not understand the reflection’s purpose. After they had written it,
they understood the purpose, and at this point, the student also started to see the value of
developing an ePortfolio. As one of the students said: “I don’t think the reflection would
have had the same effect if I were to reflect on previous work without putting it together
as we did in the ePortfolio.”

5 Discussion and Implications

This study investigates types of support students need when developing ePortfolios for
the first time and how the support should be designed to make students independent
when developing ePortfolios. The challenge the students faced, the shortcomings of
the support the students received and how this may be addressed are discussed in this
chapter.

5.1 The Promotion

In our study, the students’ reflection revealed that ePortfolio promotion has an essential
role when it comes to the students’ decisions whether to continue developing their ePort-
folio through their education. The observation revealed that the students were motivated
to start developing their ePortfolio. However, one student’s reflection revealed that not
all the students were motivated to continue working on the ePortfolio. The ePortfolio
was evaluated against potential employers’ interest, and not one’s own value, hence the
lack of motivation to continue developing the ePortfolio. There may be several reasons

ePortfolio Introduction: Designing a Support Process 217

why employers do not ask to see a job seeker’s ePortfolio, such as not knowing this
opportunity for students to show what they can. ePortfolio can be shown to a potential
employer without being asked for, for example when those who apply for a job are asked
about competence or how they have solved challenges. As Alexiou et al. [2] point out,
an ePortfolio can make the previously unseen visible to employers. It might be that the
explanation in the introduction was to general, making distinction between own value
and the ePortfolio as a showcase vague. This may indicate that there should be a clear
distinction between the own value of developing an ePortfolio and that own value should
be given more focus than how the ePortfolio can be used as a showcase. It is through the
promotion that students’ basic understanding of value can be created according Roberts
and Maor [19]. In our study, it has been found that motivation arises when the students
understand the value. However, it will be essential that all the students understand the
value when implementing ePortfolio.

5.2 Technological and Pedagogical Challenges

The students frequently looked at the tutorial video and the ePortfolio examples while
setting up their ePorfolios andmanaged to set themupwithout further support. Compared
to the sessions used by, e.g., Ring et al. [8] with the same goal, the tutorial video, and the
ePortfolio examplesmay lead to lessworkload for teacherswhen introducing ePortfolios.
The students found the ePortfolio examples useful, and mostly they looked at the one
developed for this purpose. When it comes to the tutorial video, the students also found
this very useful when setting up the ePortfolio. However, the video did not provide any
support when it comes to making artifacts in the ePortfolio visible to visitors. It may be
appropriate to add a document in the supportingmaterial that considers the technological
challenge. Alexiou et al. [2] recommend that support is guided by both technological and
pedagogical considerations. The document Selection of artifacts ismore of a pedagogical
nature. Providing students with two documents, one with pedagogical support and the
other with technological support, may create a clear and positive distance between those
two. Maybe it can also be an advantage considering the length of the document if
operating with one document. Not all students may experience the same challenges.
Suppose some students do not meet any technological challenges but find it challenging
to select artifacts. In that case, they will not have to read a document that also supports
technological challenges and vice versa.

One challenge of a more pedagogical nature occurred when it was time for the
students to select artifacts that demonstrated their competencies. Both the observation
and the students’ reflection revealed that the students did not understand what was meant
by the term competence. There may be several reasons for this (e.g. different terms are
used in their everyday language), but it became essential to explain for the students the
definition of competence. Findings in the study described in this paper demonstrate the
importance of defining competence for the context in which it is used, as recommended
by Kennedy et al. [15]. The students need to understand what is meant by competence,
especially against the student’s expectations related to the learning outcome. When they
understood what was meant by competencies, it became less challenging for them to
select artifacts among their previous work assignments.

218 H. A. Olstad

The document Selection of artifacts support the students well with the writing of
reflections. It can be argued that reflection alone with the use of the What? So what?
Now what? model towards work carried out in education will lead to the same result as
ePortfolios. Our study points to the combination of selecting artifacts, reflecting on them,
and putting them together in an ePortfolio as essential. The students who participated in
this research point out that this process was what made the invisible visible. This may
indicate that the ePortfolios itself supports Kolb’s experiential learning theory [18] and
takes the theory a step further because of the ability to put experiences and reflections
together in a more practical direction.

However, different results may be obtained by a different sample from another field.
The students in this research have high experience using computers and using different
kinds of digital technology, systems, and applications. This may be a limitation in the
research. Students who lack this experience possibly face other challenges than the
students in our research. Another limitation may be that the students in this research
are student assistants. They are interested in this kind of work and are getting paid for
it. One can assume that the enthusiasm these students show is higher than for students
who do not receive such incentives. On the other hand, this research is mainly about
identifying appropriate support for beginners, and none of the student assistants have
previous ePortfolio experience. Finally, a small group of students participated. Therefore,
it is essential not to make strong conclusions, whether the results are positive or not.
Instead, data from this research should be used to design more extensive confirmatory
studies.

6 Conclusion

The goal of this research was to find answers to what types of support students need
when developing ePortfolio for the first time, and how to design the support to make
students independent when developing ePortfolios.

Three types of support material were identified through relevant literature as essen-
tial: tutorial videos, ePortfolio examples and descriptive documents. Even though the
student received such support material, they still encountered some challenges. Three
main challenges were identified as not adequately addressed: students’ value of develop-
ing ePortfolio, an explanation of what is meant by competence in an educational context,
and how to make artifacts visible.

In addition, the support was identified as a process with the goal of promoting
ePortfolio in a way that motivates students to develop ePortfolios and to continue to
develop them through education. The promotion is complex and requires the presence
of a teacher or another who is engaged in ePortfolios. This research indicate that students
may be capable of developing ePortfoliowithout support from teachers or others engaged
in ePortfolios. However, the promotion cannot be left to the support material.

Another conclusion drawn from this research is that challenges may vary from chal-
lenges identified in other similar studies, as this study shows when it comes to students’
understanding of competence. The conclusions driven from this research are not strong
conclusions, but rather a way of identifying what kind of support students need as a
starting point before trying out the support among a larger group of students.

ePortfolio Introduction: Designing a Support Process 219

Acknowledgements. Birgit Rognebakke Krogstie provided valuable comments on draft versions
of the paper.

References

1. Janosik, S.M., Frank, T.E.: Using ePortfolios to measure student learning in a graduate
preparation program in higher education. Int. J. ePortfolio 3(1), 13–20 (2013)

2. Alexiou, A., Paraskeva, F.: Inspiring key competencies through the implementation of an
ePortfolio for undergraduate students. Procedia Soc. Behav. Sci. 197, 2435–2442 (2015).
https://doi.org/10.1016/j.sbspro.2015.07.307

3. Okoro,E.A.,Washington,M.C.,Cardon, P.W.:Eportfolios in business communication courses
as tools for employment. Bus. Commun. Quart. 74(3), 347–351 (2011). https://doi.org/10.
1177/1080569911414554

4. Blevins, S., Brill, J.: Enabling systemic change: creating an ePortfolio implementation frame-
work through design and development research for use by higher education professionals.
Int. J. Teach. Learn. High. Educ. 29(2), 216–232 (2017)

5. Johnsen, H.: Making learning visible with ePortfolios: coupling the right pedagogy with the
right technology. Int. J. ePortfolio 2(2), 139–148 (2012)

6. Chang, C.-C., Liang, C., Liao, Y.-M.: Using e-portfolio for learning goal setting to facili-
tate self-regulated learning of high school students. Behav. Inf. Technol. 37(12), 1237–1251
(2018). https://doi.org/10.1080/0144929X.2018.1496275

7. Donnelly, R., OKeeffe, M.: Exploration of ePortfolios for adding value and deepening student
learning in contemporary higher education. Int. J. ePortfolio 3(1), 1–11 (2013)

8. Ring, G., Waugaman, C., Brackett, B.: The value of career ePortfolios on job applicant
performance: using data to determine effectiveness. Int. J. ePortfolio 2(1), 225–236 (2017)

9. Poole, P., et al.: Challenges and supports towards the integration of ePortfolios in education.
Heliyon 4(11), e00899 (2018). Lessons to be learned from Ireland

10. Tosh, D., et al.: Engagement with electronic portfolios: challenges from the student perspec-
tive. Can. J. Learn. Technol./La revue canadienne de l’apprentissage et de la technologie
31(3), 1–17 (2005). https://doi.org/10.21432/T23W31

11. Shroff, R.H., Deneen, C.C., Ng, E.M.: Analysis of the technology acceptance model in exam-
ining students’ behavioural intention to use an e-portfolio system.Australas. J. Educ. Technol.
27(4), 600–661 (2011). https://doi.org/10.14742/ajet.940

12. Biggs, J.: Aligning Teaching for Constructing Learning, vol. 32, pp. 347–364. Higher
Education Academy, New York (1996). https://doi.org/10.1007/BF00138871

13. European Commission/EACEA/Eurydice: The European Higher Education Area in 2018:
Bologna Process Implementation. Publications Office of the European Union, Luxembourg
(2018)

14. Westera, W.: Competences in education: a confusion of tongues. J. Curriculum Stud. 33(1),
75–78 (2001). https://doi.org/10.1080/00220270120625

15. Kennedy, D., Hyland, A., Ryan, N.: Learning outcomes and competencies. In: Best of the
Bologna Handbook, vol. 33, pp. 59–76. DUZ International, Berlin, German (2009)

16. Frezza, S., et al.: Modelling competencies for computing education beyond 2020: a research
based approach to defining competencies in the computing disciplines. In: Proceedings Com-
panion of the 23rd Annual ACM Conference on Innovation and Technology in Computer
Science Education, New York, NY, USA, pp. 148–174 (2018). https://dl.acm.org/doi/10.
1145/3293881.3295782

https://doi.org/10.1016/j.sbspro.2015.07.307
https://doi.org/10.1177/1080569911414554
https://doi.org/10.1080/0144929X.2018.1496275
https://doi.org/10.21432/T23W31
https://doi.org/10.14742/ajet.940
https://doi.org/10.1007/BF00138871
https://doi.org/10.1080/00220270120625
https://dl.acm.org/doi/10.1145/3293881.3295782

220 H. A. Olstad

17. Cedefop: Defining, writing and applying learning outcome: a European Handbook, Publica-
tions Office of the European Union, Luxembourg (2017). https://www.cedefop.europa.eu/en/
publications-and-resources/publications/4156

18. Kolb, D.A.: Experiential Learning Experience as the Source of Learning and Development.
2nd edn. Pearson Education, Inc, New Jersey (1984)

19. Roberts, P., Maor, D.: ePortfolios to scaffold the development of reflective practice in bach-
elor of education Students. In: World conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education (ELEARN), Montreal, Canada, pp. 1274—1279 (2012)

20. Parkes, K.A., Dredger, S., Hicks, D.: ePortfolio as a measure of reflective practice. Int. J.
ePortfolio 3(2), 99–115 (2013)

21. Ring, G., Ramirez, B.: Implementing ePortfolios for the assessment of general education
competencies. Int. J. ePortfolio 2(1), 87–97 (2012)

22. Ciesielkiewicz,M.: The use of e-portfolios in higher education: from the students’ perspective.
Issues Educ. Res. 29(3), 649–667 (2019)

23. Hanum, S.R., et al.: ePortfolio: a descriptive survey for contents and challenges. Int. J. Emerg.
Technol. Learn. (iJET) 11(01), 4–10 (2016). http://dx.doi.org/10.3991/ijet.v11i01.4900

24. St Jorre, T., Oliver, B.: Want students to engage? Contextualise graduate learning outcomes
and assess for employability. High. Educ. Res. Dev. 37(1), 44–57 (2018). https://doi.org/10.
1080/07294360.2017.1339183

25. Cohen, L., ManionL, L., Morrison, K.: Research methods in education, 8th edn. Routledge,
New York (2018)

26. Cotton, D.R., Stokes, A., Cotton, P.A.: Using observational methods to research the student
experience. J. Geogr. High. Educ. 34(3), 463–473 (2010). https://doi.org/10.1080/03098265.
2010.501541

https://www.cedefop.europa.eu/en/publications-and-resources/publications/4156
http://dx.doi.org/10.3991/ijet.v11i01.4900
https://doi.org/10.1080/07294360.2017.1339183
https://doi.org/10.1080/03098265.2010.501541

Student-Centered Graduate STEM Education
Integrated by Computing: An Insight
into the Experiences and Expectations

of Doctoral Students

Vladimiras Dolgopolovas(B) , Valentina Dagienė , and Tatjana Jevsikova

Vilnius University Institute of Educational Sciences, Universiteto Street 9,
01513 Vilnius, Lithuania

{vladimiras.dolgopolovas,valentina.dagiene,

tatjana.jevsikova}@mif.vu.lt

Abstract. Graduate education system is in the process of ongoing changes driven
by the employers’ requirements, ongoing demographic changes, changes in stu-
dents’ career expectations and the newvision of awider scientific enterprise. There
is a need to refocus graduate educational system from the needs of the academic
institution and related research towards student-centered paradigm. The purpose
of this research is to analyze the practice of STEM doctoral studies from the
student-centered perspective by examining a case practice from a doctoral educa-
tional event. The paper deals with the questions whether the aims and expectations
of graduate students are consistent with the goals and requirements of academics
(researchers and teaching staff of higher education) and to what extent; what
aspects of academic policy and pedagogical approaches correspond to the needs
and requirements of the non-academic and innovative industries; and how the stu-
dents understand their career prospects in terms of innovation, future job require-
ments, and knowledge-based entrepreneurship requests. In order to address this
problem, a case study was conducted in four dimensions: academia, pedagogy,
industry and entrepreneurship. As a result, a qualitative study provided several
implications for organizations preparing future researchers and employees. The
results showwhich students’ needs, challenges and problems and relevant require-
ments for academic institutions are related to the prospects of STEM education
with an emphasis on computing (computer science) and software engineering as
an integrating part.

Keywords: Student-centered education · Doctoral education · STEM education

1 Introduction

STEM (Science, Technology, Engineering, andMathematics) movement has been trans-
forming education on different levels: from early pre-school years to graduate education.
This transformation is driven towards the holistic view on educational subjects in com-
bination with project-based and student-centered teaching and learning methodology.

© Springer Nature Switzerland AG 2020
K. Kori and M. Laanpere (Eds.): ISSEP 2020, LNCS 12518, pp. 221–232, 2020.
https://doi.org/10.1007/978-3-030-63212-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63212-0_18&domain=pdf
http://orcid.org/0000-0002-0416-8930
http://orcid.org/0000-0002-3955-4751
http://orcid.org/0000-0002-6253-7941
https://doi.org/10.1007/978-3-030-63212-0_18

222 V. Dolgopolovas et al.

While computer science and software engineering education is usually seen as a part of
Engineering education, it can be considered as an interconnecting, integrating part of all
the STEM components [1–3].

Successful STEMeducation in schools depends on the processes in research, industry
and other areas and, accordingly, on preparation of students at all educational levels. In
this paper, we discuss the need of change in doctoral studies (also called graduate or
post-graduate studies) in STEM subjects. Graduate studies are usually classified into
one main research area, however, the application of research may cover more fields that
correspond to the STEM idea.

Graduate educational system is in the process of ongoing transformation driven by
the changes in employers’ requirements, ongoing demographic changes, changes in
students’ career expectations and a new vision of a wider scientific enterprise. As stated
in the report on STEMeducation in theU.S., “many graduate programs do not adequately
prepare students to translate their knowledge into impact inmultiple careers” [4]. There is
a need to refocus graduate educational system from the needs of the academic institutions
and related research towards a student-focused paradigm [5]. This includes opportunities
for students to communicate their work and understand its broader impacts, encouraging
them to create their own project-based learning opportunities, giving students time to
explore diverse career options, and helping them identify advisors and mentors who can
best support their academic careers development [4, 6].

Are there any strategical goals for graduate education other than promoting students’
careers in academia? (In this paper, the term “academia” is used as “the environment
or community, usually university, concerned with the pursuit of research, education,
and scholarship”). We advocate a shift for graduate STEM education to pay the major
attention on students’ needs and expectations by (i) providing opportunities for wide
communication and sharing research results within academic institutions as well as with
broader communities and industry, (ii) understanding the impact of students’ research
on local community and society, (iii) inspiring students with their own learning style
and project-based learning opportunities, (iv) introducing various career options and (v)
support students with the best suited advising and mentoring opportunities.

Such rearrangement should be based on a holistic vision of academic educational
system and its impact. Furthermore, the rearrangement should include refocusing of aca-
demic policy, educational and pedagogical approaches at understanding the landscape
of the future technological changes, innovations and working places, providing require-
ments for future career and entrepreneurship opportunities. Current learners should com-
ply with the new digital society requirements, such as self-fulfillment, societal needs [7],
creativity, collaboration and communication [8] in pursuance to stay competitive in mar-
ket and guarantee employability. At the same time, the focus on entrepreneurship carrier
opportunities provide requirements for related major competences such as ability to be
creative, innovative, generate knowledge, and share with other STEM professionals and
organizations – by having a clear strategic approach toward technology change, faster
adoption of technology and business changes.

It is still a challenge to reduce the gap between industry and academia. To this end,
multiple solutions have been proposed, such as new teaching approaches implementa-
tions, policy changes, societal needs analysis, an educational reform movement, such as

Student-Centered Graduate STEM Education Integrated by Computing 223

STEM [9]. STEM is also considered as an educational approach that consists of Science,
Technology, Engineering and Mathematics disciplines and enhances students’ inquiry
skills, problem solving skills, computational thinking, and creative thinking [10].

The rest of the paper is organized as follows. We continue the discussion of the
problem in the next section based on the literature review and describe methodology of
our study. Thenwe present the results of a case study: an initiative of annual International
Doctoral Consortium on Informatics Education and Educational Software Engineering
Research as education activity for STEM graduate education and results of interviews
with doctoral students. Finally, we discuss the results, draw conclusions and provide
limitations and directions for future research.

2 Problem Statement and Methodology

Traditional measures of research productivity are the number of academic researchers
being produced and the number of research papers published, but place much less
emphasis on the quality of teaching and mentorship that students receive [5].

There is a vision/hypothesis thatmany students after doctoral/PhD graduation pursue
non-academic careers, a vision which is not always supported inside the academia. Fur-
thermore, graduate students are often treated as inexpensive skilled labor – researchers
and undergraduates’ teachers [4]. The reason of this is mostly due to non-conformity
of industry and academia goals. Another question to study and hypothesis to test is
the doctoral students’ understanding of the requirements for future and non-academic
professions in terms of innovations [11], innovations focused social [12, 13], knowledge-
based [14, 15], digital [16, 17] and academic entrepreneurship [18–21], and prospective
requirements for working places [22, 23]: is such knowledge and understanding relevant
and properly supported in academia?

The aim of this research is to analyze the practice of STEM doctoral education from
the student-centered perspective. The questions we address are the following. Do aims
and expectations of doctoral students correspond to goals and requirements of academics
and to what extent? Which aspects of academia policy and pedagogical approaches
correspond to the needs and requirements in a non-academic and innovative industry
sectors? How do students understand their career prospects in terms of innovations,
future work-places requirements, and requests for knowledge based entrepreneurship?

Based on the synthesis of insights and reasoning presented in [5, 14, 24, 25] the
problem of our study is analyzed in four dimensions:

1. Academia:Current policies focused on student-centered educational needs, support
from within and outside of academia.

2. Pedagogy: Student-centered approaches and graduate students as individuals with
diverse needs and challenges from educational perspective.

3. Industry: Students’ career perspectives and understanding through creativity,
expertise and innovation.

4. Entrepreneurship:Opportunities, awareness, and motivation for knowledge-based
entrepreneurship.

224 V. Dolgopolovas et al.

In order to analyze the conformity of industry and academia experiences and expec-
tations on STEM doctoral graduates’ career ambitions and current situation (what aca-
demic offers, what industry needs), a case study research on international level is per-
formed. At this stage, seven doctoral students from three countries (Hungary, Ukraine,
Austria), participants of the International Doctoral Consortium on Informatics Educa-
tion and Educational Software Engineering Research presented in the next section, have
been interviewed using structural interview methodology.

3 Research Context: An Initiative of the International Doctoral
Consortium

The International Doctoral Consortium on Informatics Education and Educational Soft-
ware Engineering Research is an annual event, organized since 2010 by the Vilnius
University Institute of Data Science and Digital Technologies and Institute of Educa-
tional Sciences in cooperation with Lithuanian Computer Society. The Doctoral Consor-
tium provides an opportunity for doctoral students to explore and develop their research
interests in a workshop under the guidance of distinguished senior researchers. The Doc-
toral Consortium is designed primarily for students who are being enrolled in any stage
of doctoral studies with a focus on informatics (computer science)/software engineer-
ing/computing education research. Every year, and especially in 2019, the Consortium
turns to be a non-formal STEM graduate studies event, as topics of participating doctoral
students go beyond solely computer science or software engineering, and integrate sev-
eral STEM (or, more precisely, STEAM, as “education” can stand for “Arts”) disciplines
(see Table 1 for students’ dissertation field distribution).

Table 1. Research fields of the surveyed doctoral students.

Student no. Primary research field Secondary research
field

1 Software engineering Education

2 Software engineering Education

3 Mathematics Physics

4 Software engineering Physics,
mathematics

5 Mathematics Physics

6 Computer science Education

7 Computer science Mathematics

The Consortium is designed as a student-centered event and offers:

– Friendly forum for doctoral students to discuss their research topics, researchquestions
and design in the field of their research;

Student-Centered Graduate STEM Education Integrated by Computing 225

– Supportive setting for feedback on students’ current research and guidance on future
research directions;

– Comments and fresh perspectives for each student on his/her work from researchers
and students outside their own institution, as well as help with choosing suitable
methodology and strategies for research;

– Support networking with other researchers in the informatics engineering education
research field, and promote the development of a supportive community of scholars
and a spirit of collaborative research;

– Support a new generation of researchers with information and advice on research and
academic career paths.

This event is attended annually by 12–18 doctoral students, and at least 6 senior
researchers representing several countrieswhogive lectures andworkwith small doctoral
student groups. The methodology used in the Doctoral Consortium is project-based:
going through methodological stages, students develop posters of their research project;
and share and discuss their project with the Consortium’s community.

4 Results

In this section we present results of interview with seven participants of the Doctoral
Consortium held during December 2019 in Druskininkai, Lithuania.

The classification of STEM research topics of surveyed participants is presented in
Table 1 (as the classification of research fields differ in various countries and universities,
we classified the doctoral topic according to its actual research problem).

The responses are classified according to the four dimensions we mentioned in the
previous sections.

4.1 Academia Dimension

Academia dimension explores current policies focused on student-centered educational
need with support from within and outside of academia. Hypotheses (propositions) and
interview questions are presented in Table 2.

A summary of the findings: (1) In terms of university activities (jobs), not related to
doctoral thesis, most of the respondents indicated that they take part in such activities.
These activities for some students are implemented on a voluntary basis and include:
project work, cultural activities of the university, lecturing and engineering. Students,
whose doctoral thesis topic is relatedwith education (see Table 1), give part-time lectures
for the university they study at; (2) Current occupation and future career question showed
that doctoral students mostly work (in addition to their doctoral studies) in industry, e.g.
as software developers, and see their future career in industry as well; (3) Possible
application of the doctoral research area in industry is clearly perceived by most of
respondents; (4) The goal of pursuing doctoral level studies vary between the countries.
Some believe it will positively affect their future career in industry while some indicated
it as the obligatory criteria for possible work in academic environment.

226 V. Dolgopolovas et al.

Table 2. Hypotheses and questions of the structured interview for Academia dimension.

No. Hypothesis/proposition Interview questions

1 Graduate students are still too often seen as
being primarily sources of inexpensive
skilled labor

Do you take part in any activity of the
university that is not directly related to the
topic of your doctoral dissertation? What
type (teaching, research, etc.)?
What amount of time (hours per week)? Is it
formal? If so, why you take part in it? Are
you satisfied with this additional activity?

2 Most students now pursue non-academic
careers

What is your main occupation at the
moment? Do you have formal employment
contract, if so, in what area? What is your
vision for your future career
(teaching/research/industry/public
sector/self-employed/etc./do not know)?

3 Many graduate programs are not preparing
students adequately to succeed in a variety
of careers: employers are finding many
recent graduates overly naïve about
research and development activities in
government and industry

What types of industry/public sectors
related to your research topic you know?
Do you know about research/innovation
activities they conduct? Do you think your
research area/topic could be relevant or
interested to apply in that industry/public
institutions?

4.2 Pedagogy Dimension

The second dimension, Pedagogy, focuses on student-centered approaches and graduate
students as individualswith diverse needs and challenges froman educational perspective
(hypotheses and questions asked are presented in Table 3).

A summary of the findings: (1) The current doctoral curriculumevaluation in terms of
personal respondents’ development is quite positive with the positive impact of curricu-
lum providing opportunities for professional skills development, such as, programming,
making presentations, foreign language. However, the improvement could be made in
curriculum by covering society aspects and soft skills, as it mostly focuses on engineer-
ing and science relationship aspects; (2) Only some respondents pointed out that science
should have social value besides the scientific one and that research should benefit the
society; (3) Regarding commercial value and value for doctoral education on the whole,
the experience on participating in seminars on career perspectives from industries and
organizations was indicated as valuable for professional development by respondents
but not highly important; (4) Most of the students think that valuable and important
experience is mentoring or advising others as it allows to improve communication and
management skills, is good experience and practice, and allows to feel satisfaction on
personal achievements, such as self-efficiency on being a good mentor and teacher.

Student-Centered Graduate STEM Education Integrated by Computing 227

Table 3. Hypotheses and questions of the structured interview for Pedagogy dimension.

No. Hypothesis/proposition Interview questions

1 There is a shift from the current system that
focuses primarily on the needs of
institutions of higher education to one that
is student-centered, placing focus on
graduate students as individuals with
diverse needs and challenges

How can you evaluate your current
doctoral curriculum in terms of your
personal development? Does your
institution provide you an opportunity to
adjust the curriculum to suit your personal
preferences?

2 Students encounter a variety of points of
view about the nature, scope, and substance
of the scientific enterprise and about the
relationships between science, engineering,
and society, and they would be encouraged
to understand and grapple with differences
of opinion, experiences, and ideas as part of
their graduate education and training

How can you evaluate your current
doctoral curriculum in terms of covering
relationships between science, engineering,
and society? Do you think these aspects are
important/relevant for the curriculum?

3 Students have opportunities to
communicate the results of their work and
to understand the broader impacts of their
research. This includes the ability to present
their work and have exposure to audiences
outside of their department, ranging from
peers in other departments to the broader
scientific community and nontechnical
audiences. Students also understand and
learn to consider ethical and cultural issues
surrounding their work, as well as the
broader needs of society

What is your experience about
communication with your
colleagues/mates/community outside of
your department? Do you think these
aspects are important/relevant for the
curriculum? Do you think your
colleagues/peers/community members who
are not directly related to your research
topic could help improve your current
research/future career prospects?

4 Students are encouraged to create their own
project-based learning
opportunities—ideally as a member of a
team—as a means of developing
transferable professional skills such as
communication, collaboration,
management, and entrepreneurship.
Experiences where students “learn by
doing,” rather than simply learn by lecturing
and coursework, would be the norm

Does your curriculum include professional
skills training such as communication,
collaboration and management skills?
What are your expectations regarding the
commercial value of your research?

4.3 Industry Dimension

The third dimension, Industry, explores students career perspectives and understanding
through creativity, expertise and innovation (Table 4). One of the aims was to identify
the understanding of the relation of creativity and innovation to the research that the
respondents are doing.

228 V. Dolgopolovas et al.

Table 4. Hypotheses and questions of the structured interview for Industry dimension.

No. Hypothesis/proposition Interview questions

1 Both innovation workers and knowledge
workers adhere to the idea that only a
postgraduate education, such as a Master’s
or a doctorate, can ensure a good job in the
future, i.e., they believe such an education
is necessary in order to be successful

Why you decided to continue your
education on a doctoral level? Do you
think that doctorate will support your
future? If so, in what sense? What are your
career perspectives? What is your vision of
success?

2 One of the results of globalization is that
companies have realized that creativity,
expertise and innovation are the new
competitive parameters. Profit relies heavily
on businesses being able to bring creativity
and innovation to the market (including
long tail marketing strategy)

Do you think creativity is important? How
do you understand the meaning of being
creative? Do you think creativity is related
to innovations and in what sense?

3 Education in the global economy has
become a commodity in line with other
commodities. Thus, in the future, the
quality, brand and reputation of educational
institutions will be given greater emphasis.
This will result in an increased emphasis on
the ranking of educational institutions – that
is to say, students from the best universities
will be given more opportunities in their
working lives

Do you know the ranking of your
educational institution (country/world)?
What is opinion about the importance of
the ranking for the educational institution
on the whole? What was the importance of
ranking while selecting your institution
(did you choose your study program
because of university rankings or the
relevance of the study program, etc.)?

4 A characteristic of the innovation worker is
that he or she is extremely connected in
social networks. In the global knowledge
economy, the office of the innovation
worker and the knowledge worker will be
wherever they happen to have access to
their digital technology

What is your attitude to the practice of a
social networking? What is your social
networking experience? Do you think
social networking will help you with your
career prospects?

A summary of the findings: (1) Respondents think that innovations require creativity.
The aim of their research is innovation in the form of: new solutions and combinations
of approaches, gaining new results, and technology applications in new context. They
believe that (1) Research in general is innovation based and is supported by a creative
idea or by applying technology in a new context and way; (2) The most important factor
is the ability to implement ideas in practice; (3) The importance of education institu-
tion ranking was indicated only by two respondents; others stated that the ranking had
no influence on institution selection; the majority of respondents stated that the rep-
utation of institution made no impact on former graduate students’ careers according
to the former students’; (4) Some of the respondents indicated that entrepreneurship
is an important experience and has some role in innovation development. The direct
research application in emerging technologies was noticed by more than a half of the

Student-Centered Graduate STEM Education Integrated by Computing 229

respondents. They see the connection to 5G Mobile technology, artificial intelligence,
machine learning, augmented reality, autonomous cars, nanotechnologies, and block
chains. These new technologies provide various opportunities for improvement research
and incorporating various forms of innovations-based entrepreneurship; (5) Only some
of respondents were familiar with entrepreneurial management and three were familiar
with riskmanagement topic (which is relatedwith the fourth dimension). One respondent
noted the importance of harnessing the abilities of entrepreneurial and risk management,
as without them, most start-up cases fail; (6) Analysis of responses showed that doc-
toral students mostly work (in addition to their educational activities) at industry and
see their future career in industry as well. Some respondents indicated that they try to
combine their research or teaching activities and work in industry. Most respondents
highlighted that even when their working activities are not related to their doctoral topic,
they consider them as important, as their involvement into these activities develops
generic competencies, such as teamwork, communication and collaboration. Mostly,
the current assessment criteria of respondents’ educational results are the number of
publications in peer-reviewed scientific journals. The doctoral curriculum was rated as
moderate by a number of respondents. Some respondents stated the problem that the
curriculum does not include an internship, as it could help keeping an open mind and
making new connections inside and also outside the research area. Moreover, the pro-
cedure on some changes (e.g. the topic change) are not well regulated; (7) Respondents
also agree that doctoral curriculum is covering relationships between science and engi-
neering, but there is a lack or no focus on society, and this is a problem as the overall
goal of research is to provide some benefit for the society. Respondents indicated that
there is a need for collaboration between academics working on different fields as it
could lead to many improvements in both research and work. One of the challenges is
a lack of management skills training which is important for the promotion of research
results; (8) In terms of doctoral degree for career perspectives, the respondents’ opinions
split into two directions: doctorate supports future career also in industry, and doctorate
supports future career only in academia. Most of the students believe that creativity is
related to innovation and is a very important skill in science and needs to be improved
and used throughout life. They believe that research in general is innovation based and
is supported by a creative idea or by applying technology in a new context and way.
Moreover, the most important factor is the ability to implement ideas in practice. Some
of the respondents indicated that entrepreneurship is an important experience, and has
some role in innovation development.

4.4 Entrepreneurship Dimension

Career and Entrepreneurship dimension explores the opportunities, awareness, and
motivation for knowledge-based entrepreneurship. Hypotheses and interview questions
presented in Table 5.

A summary of the findings: (1) In terms of doctoral level for career perspectives
the respondents’ opinions splits into two directions: doctorate supports future career
also in industry, and doctorate supports future career only in academia. Additionally,
they were asked to define the vision of success. The answers vary but the focus was on
the being able to do the things you want and realize your own ideas which makes you

230 V. Dolgopolovas et al.

Table 5. Hypotheses and questions of the structured interview for Entrepreneurship dimension.

No. Hypothesis/proposition Interview questions

1 In this connected world, for organizations
and individuals to stay competitive, they
must speed up the process of creating
value-added knowledge and share it at a
rapid pace. Our ability to be creative,
innovative and generate knowledge, and
share with others have amplified many fold
owing to the Internet with numerous
repositories and information platforms

How do you understand creativity in
relation to your topic/occupation? What
does creativity mean to you? Could you
describe your research/research results as
innovative? In what aspects? Do you plan to
share your research results? If so, how
practically are you going to do this? Do
your research/ research results have a
direct/indirect impact, related or will apply
in emerging technologies?

2 Knowledge economy will continue to
evolve societies and bring economic
prosperity in decades to come. It means for
individuals having a focus on continuous
education, understand, learn and embrace
technologies, and cultivate entrepreneurial
mind set and approach toward new
opportunities that knowledge-economy
brings

How do you understand the importance and
role of entrepreneurship? Do you have any
business experience? Have you entered/plan
to enter any business/entrepreneurial
courses/training programs? Do you think
your research results have any commercial
value? If so, do you have any
plans/expectations/opportunities regarding
the commercialization of the results of your
research?

feel happy. One student stated that success is the ability to combine different aspects,
such as professional grow, emotions, personal life success. Most of the doctoral students
believe that creativity is related to innovation and is a very important skill in science and
needs to be improved and used throughout life; (2) For communication with graduates
and researchers, the respondents use social networks. They believe social networking is
useful for career and connections maintenance. Thus, most of the respondents regularly
improve and enlarge their networks; (3) In terms of level of connections, the responses
showed that relationship with academia staff and colleagues are good in most cases as
well as attitude to team work.

5 Discussion and Conclusion

This research provides insights into STEM graduate education adaptation to students’
needs in concern with industry needs and evolution, not only of academia. The Doctoral
Consortium on Informatics Education and Educational Software Engineering Research
as one of the activities for student-centered educational events has been presented. The
presented qualitative study provided several implications for organizations preparing
future researchers and employees, as they showed which students’ needs, challenges
and problems, as well as relevant requirements for academic institutions, are related to
the prospects of STEM4.0 education, defined here as a student-centered STEM focusing
on an industry 4.0 strategy and the corresponding requirements for STEM education. It
could be concluded that:

Student-Centered Graduate STEM Education Integrated by Computing 231

1. Most of the doctoral students already pursue part-time careers in industry. Only a
few are planning to combine their future work with research.

2. In order to stay as competitive individuals, the development of abilities to commu-
nicate, adapt innovations and implement creative ideas practically for the benefit of
the society are crucial.

3. In parallel to the research for their doctoral degree, the students wish to intend to
focus on development of soft skills and entrepreneurial skills. To respond to this
wish, the academic community should focus on developing students’ soft skills,
consulting and mentoring students in terms of personal development, managerial
and entrepreneurial skills.

4. Professional networking was indicated as important. Universities should provide
extended support for students’ networking and professional communication at the
local and international levels.

5. There is a need for extended support from professional audience and further
improvements in aspects related to graduate students’ future professional careers.

6. Despite the fact that the innovation focus aspect is partly supported by the aca-
demic community, there is a need to further improve the educational programs of
doctoral studies with a focus on entrepreneurial management, risk management and
entrepreneurial practice in line with the requirements of modern industry.

The research presented in this paper provides a first step towards deeper STEM
improvement research for graduate studies. A limitation of this study is the limited
group of respondents associated with a doctoral event. In addition, a comparative study
of students’ expectations and attitudes of academia representatives towards directions
of doctoral studies is positioned as future research.

Acknowledgements. This research was funded by Vilnius University, Lithuania. Project funding
agreement No. MSF-LMT-7.

References

1. Štuikys, V., Burbaitė, R.: Smart STEM-driven computer science education (2018)
2. Dolgopolovas, V., Dagienė, V., Jevsikova, T.: Methodological guidelines for the design and

integration of software learning objects for scientific programming education. Sci. Program.
2020, 6807515 (2020). https://doi.org/10.1155/2020/6807515

3. Pears, A., Barendsen, E., Dagienė, V., Dolgopolovas, V., Jasutė, E.: Holistic STEAM educa-
tion through computational thinking: a perspective on training future teachers. In: Pozdniakov,
S.N., Dagienė, V. (eds.) ISSEP 2019. LNCS, vol. 11913, pp. 41–52. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-33759-9_4

4. Leshner, A., Scherer, L.: National Academies, N.A. of S., National Academies, N.A. of E.,
National Academies, N.A. of M.: Graduate STEMEducation for the 21st Century. Consensus
Study Report (2018)

5. Leshner, A.I.: Student-centered, modernized graduate STEM education. Science 80, 969–970
(2018). https://doi.org/10.1126/science.aau0590

6. How, J.P.: New STEM and engineering education paradigms [From the Editor]. IEEE Control
Syst. Mag. 38, 3–4 (2018)

https://doi.org/10.1155/2020/6807515
https://doi.org/10.1007/978-3-030-33759-9_4
https://doi.org/10.1126/science.aau0590

232 V. Dolgopolovas et al.

7. Digital society index (DSI): human needs in a digital world (2019). https://www.oxfordeco
nomics.com/recent-releases/digital-society-index-2019-human-needs-in-a-digital-world

8. The future of jobs: employment, skills and workforce strategy for the fourth industrial
revolution. In: Global challenge insight report. World Economic Forum, Geneva (2016)

9. Wells, J.G.: STEM education: the potential of technology education. In: The Mississippi
Valley Conference in the 21 st Century : Fifteen Years of Influence on Thought and Practice
(2019)

10. Psycharis, S.: STEAM in education: a literature review on the role of computational thinking,
engineering epistemology and computational science. computational steam pedagogy (CSP).
Sci. Cult. 4, 51–72 (2018)

11. Fowosire, R.A., Idris, O.Y., Elijah, O.: Technopreneurship: a view of technology, innovations
and entrepreneurship. Glob. J. Res. Eng. 17 (2017)

12. Agrawal, A., Kumar, P.: Social entrepreneurship and sustainable business models: the case
of India (2018)

13. Portales, L., et al.: Social Innovation and Social Entrepreneurship. Fundamentals, Concepts,
and Tools. Palgrave Macmillan, Cham (2019)

14. Kabir, M.N.: Knowledge-based social entrepreneurship (2019)
15. Cagica Carvalho, L., Rego, C., Lucas, M.R., Sánchez-Hernández, M.I., Viana, A.B.N. (eds.):

NewPaths of EntrepreneurshipDevelopment: TheRole of Education, Smart Cities, and Social
Factors. SESCID. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96032-6

16. Kraus, S., Palmer, C., Kailer, N., Kallinger, F.L., Spitzer, J.: Digital entrepreneurship: a
research agenda on new business models for the twenty-first century (2019)

17. Sahut, J.M., Iandoli, L., Teulon, F.: The age of digital entrepreneurship. Small Bus. Econ.
(2019). https://doi.org/10.1007/s11187-019-00260-8

18. Siegel, D.S.,Wright,M.:Academic entrepreneurship: time for a rethink?Br. J.Manag. (2015).
https://doi.org/10.1111/1467-8551.12116

19. Wright,M.,Clarysse,B.,Mustar, P., Lockett,A.:Academic entrepreneurship inEurope (2007)
20. Peris-Ortiz, M., Gómez, J.A., Merigó-Lindahl, J.M., Rueda-Armengot, C. (eds.):

Entrepreneurial Universities: Exploring the Academic and Innovative Dimensions of
Entrepreneurship in Higher Education. ITKM. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-47949-1

21. Shepherd, D.A.: The aspiring entrepreneurship scholar: strategies and advice for a successful
academic career (2016)

22. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng.
6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

23. Lele, A.: Industry 4.0. In: Smart Innovation, Systems and Technologies (2019)
24. Johannessen, J.A.: The workplace of the future: the fourth industrial revolution, the precariat

and the death of hierarchies (2018)
25. Sharples, M.: Practical Pedagogy: 40 New Ways to Teach and Learn. Routledge, Abingdon

(2019)

https://www.oxfordeconomics.com/recent-releases/digital-society-index-2019-human-needs-in-a-digital-world
https://doi.org/10.1007/978-3-319-96032-6
https://doi.org/10.1007/s11187-019-00260-8
https://doi.org/10.1111/1467-8551.12116
https://doi.org/10.1007/978-3-319-47949-1
https://doi.org/10.1007/s12599-014-0334-4

Author Index

Bentz, Anette 133
Bezáková, Daniela 197
Bollin, Andreas 107, 185

Černochová, Miroslava 119
Černý, Ondřej 119
Chystopolova, Yelyzaveta 185
Combéfis, Sébastien 15

da Rosa, Sylvia 146
Dagiene, Valentina 42, 221
Divitini, Monica 158
Dolgopolovas, Vladimiras 221

García-Garland, Juan 146

Hauser, Ulrich 170
Henry, Julie 79
Hromkovic, Juraj 42
Hrušecká, Andrea 197
Hrušecký, Roman 197

Jašková, L’udmila 3
Jevsikova, Tatjana 221

Kesselbacher, Max 107, 185
Komm, Dennis 170
Kori, Külli 69
Kostová, Natália 3

Lacher, Regula 42
Lombart, Cécile 79
Luik, Piret 69

Matter, Bernhard 170
Mößlacher, Corinna 107

Nančovska Šerbec, Irena 30

Olstad, Hege Annette 209

Pasterk, Stefan 185

Rouhani, Majid 158

Selcuk, Hasan 119
Šiaulys, Tomas 94
Šimandl, Václav 55
Smal, Anne 79
Standl, Bernhard 133
Staub, Jacqueline 170
Stupurienė, Gabrielė 15

Ternik, Žan 30
Thorsnes, Jørgen 158
Todorovski, Ljupčo 30
Trachsler, Nicole 170

Ulbrich, Mattias 133

Vaníček, Jiří 55
Vielsack, Annika 133
Viera, Marcos 146

Wagner, Ingo 133

	Preface
	Organization
	Contents
	Tasks for Informatics Competitions
	Difficulty of Bebras Tasks for Lower Secondary Blind Students
	1 Introduction
	2 Bebras Contest for Blind
	3 Related Work
	4 Research Design
	5 Results
	5.1 The Task Assignment Length
	5.2 The Affiliation of the Task to the Thematic Area
	5.3 Required Skills and Knowledge
	5.4 Age of Students

	6 Conclusions
	References

	Bebras Based Activities for Computer Science Education: Review and Perspectives
	1 Introduction
	2 Literature Review
	3 Research Methodology
	4 Survey Results
	5 Discussions and Recommendations
	6 Conclusion
	A Detailed Results About Annual Brochures
	B Detailed Results About Activities Using Bebras Tasks
	B.1 Textbooks for Schools
	B.2 Task Creation
	B.3 Games
	B.4 Assessment Tools
	B.5 CT Skills Training

	References

	Assessing the Agreement in the Bebras Tasks Categorisation
	1 Introduction
	2 Theoretical Background
	2.1 Development of Categorization
	2.2 Categorization Used in Tagging Bebras Tasks

	3 Empirical Research and Analysis
	3.1 Examples of Task Categorization
	3.2 Fleiss’ Kappa Statistics
	3.3 Results

	4 Conclusions
	References

	A Two-Dimensional Classification Model for the Bebras Tasks on Informatics Based Simultaneously on Subfields and Competencies
	1 Introduction
	2 Reviewing of Existing Classification Models of Learning
	2.1 Research Methodology
	2.2 Existing Learning Taxonomies and Competency Models

	3 Bebras Challenge
	3.1 What Is a Bebras Task
	3.2 Bebras Tasks Categorization

	4 The Proposed Two-Dimensional Classification Model of the Bebras Tasks Based on Subfields and Competency
	4.1 Basic Concept of Classification
	4.2 The Resulting Model of the Bebras Tasks

	5 Discussion and Further Work
	References

	Participants’ Perception of Tasks in an Informatics Contest
	1 Introduction
	2 Methodology and Design
	2.1 Bebras Contest and Questionnaire Survey
	2.2 Research Sample
	2.3 Data Analysis

	3 Results
	3.1 Relationship Between Perceived Difficulty of a Task and Type of Answer Participants Gave
	3.2 Relationship Between Perceived Difficulty of the Test as a Whole and Performance in It
	3.3 Self-perceptions of IT Ability and Performance
	3.4 Gender Differences in Self-perceptions of IT Ability

	4 Discussion and Conclusion
	References

	Engagement and Gender Issues in School Informatics
	Upper- and Lower-Secondary Students’ Motivation to Study Computer Science
	1 Introduction
	2 Previous Studies
	3 Methodology
	3.1 Sample
	3.2 Instrument
	3.3 Procedure
	3.4 Data Analysis

	4 Results
	4.1 Validation of the Scale Measuring Students’ Motivation to Study CS
	4.2 Students’ Motivation to Study CS

	5 Discussion and Conclusion
	References

	Tips and Tricks for Changing the Way Young People Conceive Computer Science
	1 Introduction
	2 Related Work
	2.1 Children's Conceptions of Computers
	2.2 Children's Conceptions About Computer Science
	2.3 Children's Conceptions of Computer Scientists

	3 Methodology
	3.1 Sample and Workshops
	3.2 Data Collection and Analysis

	4 Results
	4.1 Students' View of Computer Science
	4.2 Pupils' View of Computer
	4.3 Pupils' View of Computer Capacity
	4.4 Pupils' View of Computer Jobs

	5 Discussion
	6 Conclusion
	A Results Tables
	References

	Engagement Taxonomy for Introductory Programming Tools: Failing to Tackle the Problems of Comprehension
	1 Introduction
	2 Related Work
	2.1 Misconceptions of Novice Programmers
	2.2 Taxonomies of Programming Learning Tools
	2.3 Engagement Taxonomies

	3 Engagement Taxonomy for Introductory Programming Tools (ETIP)
	4 Method to Select Tools
	5 Results
	6 Discussion
	7 Conclusion
	Appendix 1
	Appendix 2
	References

	Ready for Computing Science? A Closer Look at Personality, Interests and Self-concept of Girls and Boys at Secondary Level
	1 Introduction
	2 Related Work
	3 Data Collection Framework
	4 Traits of Lower Secondary Pupils
	4.1 Methodology
	4.2 General Interests
	4.3 Personality
	4.4 Self-concept
	4.5 Interest in Computing Science and Special Interests

	5 Discussion
	6 Conclusion
	References

	Factors Influencing Lower Secondary School Pupils’ Success in Programming Projects in Scratch
	1 Introduction
	2 Literature Review
	3 The Study
	3.1 Research Design
	3.2 The Sample of Participants
	3.3 Programming Scratch Projects
	3.4 Data Collection Tools
	3.5 Data Analysis Procedure
	3.6 Findings

	4 Discussion
	5 Conclusions
	References

	Informatics Teacher Education
	Design- and Evaluation-Concept for Teaching and Learning Laboratories in Informatics Teacher Education
	1 Introduction
	2 Description of the Teaching-Learning Lab
	2.1 Workshop-Examples

	3 Method of Evaluation
	3.1 Research Objectives
	3.2 Research Process

	4 First Results and Experiences
	5 Summary and Further Work
	References

	A Case of Teaching Practice Founded on a Theoretical Model
	1 Introduction
	2 The Theoretical Model
	2.1 The Extended Law of General Cognition

	3 CT in Educational Settings
	3.1 The Language MateFun
	3.2 Teachers and Students Activities

	4 Conclusions
	References

	In-Service Teacher Training and Self-efficacy
	1 Introduction
	2 Case and Method
	3 Results
	3.1 Attitudes Towards Programming in School
	3.2 Teaching Programming and Self-efficacy
	3.3 Programming Skill
	3.4 Impact of Programming Education on Self-efficacy in Teaching Programming
	3.5 Impact of Time After Course
	3.6 Impact of COVID-19

	4 Discussion and Implications
	5 Conclusions
	References

	Computational Thinking in Small Packages
	1 Introduction
	2 Project Context
	3 Example Packages
	4 Conclusion
	References

	Curriculum and Pedagogical Issues
	Identification of Dependencies Between Learning Outcomes in Computing Science Curricula for Primary and Secondary Education – On the Way to Personalized Learning Paths
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Background and Process Description
	3.2 Preprocessing and Standardization
	3.3 Weighted Jaccard Similarity
	3.4 Relation Extraction Between Keywords
	3.5 Action Verbs Triples

	4 Trial Results
	4.1 Relation Determination
	4.2 Direction Determination

	5 Discussion of Findings
	6 Conclusion
	References

	Computing in Pre-primary Education
	1 Background
	2 At the Beginning
	3 Method
	4 Interventions
	4.1 Organization and Structure of Interventions
	4.2 The First Year of Interventions
	4.3 The Second Year of Interventions

	5 Conclusion
	References

	ePortfolio Introduction: Designing a Support Process
	1 Introduction
	2 Review of Literature
	2.1 Technological Considerations
	2.2 Pedagogical Considerations

	3 Research Method
	3.1 Case

	4 Results
	4.1 The Introduction

	5 Discussion and Implications
	5.1 The Promotion
	5.2 Technological and Pedagogical Challenges

	6 Conclusion
	References

	Student-Centered Graduate STEM Education Integrated by Computing: An Insight into the Experiences and Expectations of Doctoral Students
	1 Introduction
	2 Problem Statement and Methodology
	3 Research Context: An Initiative of the International Doctoral Consortium
	4 Results
	4.1 Academia Dimension
	4.2 Pedagogy Dimension
	4.3 Industry Dimension
	4.4 Entrepreneurship Dimension

	5 Discussion and Conclusion
	References

	Author Index

