
Walltime Prediction and Its Impact
on Job Scheduling Performance

and Predictability

Dalibor Klusáček1(B) and Mehmet Soysal2

1 CESNET a.l.e., Brno, Czech Republic
klusacek@cesnet.cz

2 Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Karlsruhe, Germany

mehmet.soysal@kit.edu

Abstract. For more than two decades researchers have been analyzing
the impact of inaccurate job walltime (runtime) estimates on the per-
formance of job scheduling algorithms, especially the backfilling. In this
paper, we extend these existing works by focusing on the overall impact
that improved walltime estimates have both on job scheduling perfor-
mance and predictability. For this purpose, we evaluate such impact in
several steps. First, we present a simple walltime predictor and analyze
its accuracy with respect to original user walltime estimates captured in
real-life workload traces. Next, we use these traces and a simulator to see
what is the impact of improved estimates on general performance (back-
filling ratio and wait time) as well as predictability. We show that even a
simple predictor can significantly decrease user-based errors in runtime
estimates, while also slightly improving job wait times and backfilling
ratio. Concerning predictions, we show that walltime predictor signifi-
cantly decreases errors in job wait time forecasting while having little
effect on the ability of the scheduler to provide solid advance predictions
about which nodes will be used by a given waiting job.

Keywords: Job · Scheduling · Backfilling · Walltime estimate ·
Prediction

1 Introduction

This paper is focusing on the problem of inaccurate job runtime estimates as
provided by users. We use existing results [6,10,13] and we try to understand the
impact that inaccuracy has on various aspects of job scheduling performance.
Importantly, we study whether a technique improving runtime estimates has
some significant impact on system’s behavior. For this purpose, we use a simple
runtime predictor which we have developed on our own. This predictor uses
historic data to generate runtime estimates for newly arriving jobs. Althought
it has been developed on our own in 2018, we have learned recently that our
predictor uses similar idea to the predictor used in the past [12].
c© Springer Nature Switzerland AG 2020
D. Klusáček et al. (Eds.): JSSPP 2020, LNCS 12326, pp. 127–144, 2020.
https://doi.org/10.1007/978-3-030-63171-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63171-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-63171-0_7

128 D. Klusáček and M. Soysal

compu ng
node

Classic scenario without node predic on

job A execu ng job B execu ng

data staging for job B

idle CPUs

me

compu ng
node

Considered scenario using node predic on

job A execu ng job B execu ng

data staging for job B

minimal idle CPUs

me

saved CPU me

Fig. 1. Normal scenario for data staging is wasting CPU cycles during data staging
(top). Considered solution relying on accurate node predictions uses advance data
staging onto compute node(s) before job start, reducing idle CPU time (bottom).

The main contribution of this paper is as follows. First, we demonstrate that
even simple predictor can significantly improve inaccurate job runtime estimates
(Sect. 2). Second, we use detailed simulations to analyze the impact of refined esti-
mates on the job scheduling performance. We analyze how the improved estimates
impact the number of backfilled jobs and job wait times (Sect. 3). Last but not
least, in Sect. 4 we analyze deeply if refined runtime estimates can improve pre-
dictability of system behavior. To achieve this goal we use two different scenarios.
In the first one, we analyze the accuracy of job waiting time predictions (Sect. 4.1).
This scenario obviously focuses on system users that naturally want to know how
long their jobs will have to wait before being processed by the system, i.e., here the
question is “when will a job start?”. In the second scenario (Sect. 4.2) we analyze
the ability of the scheduler to correctly predict (in advance) which node(s) will
be selected for each waiting job. In this case, instead of focusing on the question
“when?” we rather try to answer the question “where?”.

The motivation here is related to jobs requiring either large amount of data
and/or jobs requiring special pre-processing, e.g., an ad hoc and independent
local file system. In both cases, the time needed to either stage the data and/or
setup the file system can cause temporarily low CPU utilization. Our goal is to
determine whether it is possible to stage the data and/or deploy the local file
system in advance, thus limiting idle CPU time. Obviously, to make this advance
staging/setup possible, the scheduler must provide rather accurate advance job
allocations (ahead of actual job start). We illustrate the benefit of this approach
in Fig. 1 and later describe in full detail in Sect. 4.2.

2 Job Walltimes, User Estimates and Predictor

In this paper, job walltime (or job runtime) denotes the time it takes to execute
the job on a computing node(s). This time is not known in advance. Instead,

Walltime Prediction and Its Impact on Job Scheduling 129

user is requested to provide an estimate for each job. This walltime estimate
is used as an upper bound by the resource manager, i.e., job is killed when its
actual runtime exceeds the walltime estimate. It is not surprising that in prac-
tice these walltime estimates are therefore very inaccurate and overestimated in
order to prevent jobs from being killed [3,8]. This causes the relatively high over-
estimation. Second, scheduling systems also frequently classify jobs according to
some default runtime limits. For example, there can be different job queues with
different maximum job runtime defaults. Frequently, these default runtime val-
ues are then used by many jobs due to users laziness. As a result, most jobs in
the system use only few common estimates and therefore “look similar” to the
scheduling algorithm (e.g., backfilling).

2.1 Workload Traces

In the remainder of this paper we will be using four different real-life work-
load traces that come from the Karlsruhe Institue of Technology in Germany
(FH1 and FH2), Cornell Theory Center (CTC SP2) and San Diego Supercom-
puter Center (SDSC SP2). These traces can be obtained at Parallel Workloads
Archive [2]. We begin our analysis by showing how user-based estimates are
inaccurate and overestimated in all four considered workloads.

This is captured in Fig. 2, which shows the cumulative distribution functions
(CDF) of actual runtimes and user estimated job walltimes (blue and red line,
respectively). Clearly, user-provided walltime estimates are (very) inaccurate and
overestimated. Therefore, we introduce a simple walltime predictor, which tries
to refine these overly long estimates by more accurate values.

2.2 Walltime Predictor and Its Performance

The considered walltime predictor is working on a per-user basis, i.e., a new
runtime estimate for a given job of a user is computed using information about
previous jobs of that user.

The predictor is an extended version of the predictor used in our previous
work [4]. It measures the fraction of job’s actual runtime and user’s estimate (see
usagewall in Formula 1), i.e., it measures to what extent the estimated walltime
(est walltime) was actually used. Since the user’s estimate is the upper bound of
job runtime, usagewall falls between 0.0 and 1.0 representing the relative usage
of requested walltime. In other words, the technique measures by how much a
user overestimates job’s runtime, which is similar to what has been used in [12].

usagewall(jobi) =
runtime(jobi)

est walltime(jobi)
(1)

predicted wall(jobi) = est walltime(jobi) · max
i−5≤k≤i−1

usagewall(jobk) (2)

Once the usagewall is computed, it is stored to be used in the future, i.e.,
once a new job of this user arrives in the system. When this happens, the

130 D. Klusáček and M. Soysal

Fig. 2. Cumulative distribution functions (CDF) of actual runtimes, user estimated
walltimes and predicted job walltimes for all four workloads (Color figure online).

five most recent usagewall values are considered and their maximum is cho-
sen1. The job’s walltime estimate is then multiplied by this maximum (see For-
mula 2) and the resulting predicted wall is the predictor’s output. It represents

1 In case that a given user has either no or less than five completed jobs then we use
the user-provided estimate or those few already completed jobs, respectively.

Walltime Prediction and Its Impact on Job Scheduling 131

Fig. 3. Avg. absolute errors of runtime predictions (per user) with respect to the
walltime being used (user estimate, predictor).

a conservative strategy, where the predicted walltime is calculated using the
known relative accuracy of user’s recent estimates. By choosing the maximum
usagewall (i.e., choosing a job where the difference between actual and esti-
mated runtime was minimal), this technique aims to minimize the number of
cases where the new predicted walltime will be underestimated. At the same
time, by ignoring older jobs it reflects aging and orients itself more on the recent
user’s workload characteristics. When a job turns out to be underestimated
(predicted wall(jobi) < runtime(jobi)) the predictor increases its initial esti-
mate by a factor of two. It does so (over the time) until the estimate is sufficient
(and job completes) or until the estimate meets the original user estimate (this
is still a hard limit which cannot be exceeded).

The impact of the predictor can be observed in Fig. 2 (green line). Clearly, the
over-estimated user-based walltimes are now distributed closely to what is the
real distribution of actual runtimes (blue line). The improving effect is especially
visible when the user-based estimates are very bad, which is the case for the FH1
and also FH2 workloads.

We also analyzed, how our simple predictor performs with respect to indi-
vidual users. Therefore, we have computed the average absolute errors of both

132 D. Klusáček and M. Soysal

Fig. 4. Avg. absolute errors of runtime predictions (per user) with respect to the
walltime being used (user estimate, predictor).

user-based estimates and predictor-based walltimes per each user in the system
and plotted these pairs in a line chart which we show in Figs. 3–4 (users on the
x-axis are ordered according to the average user estimate error).

These figures illustrate that for some users our simple predictor is not able
to reduce the average error very well. Still, it decreases the errors compared to
those user-based walltimes quite successfully. Clearly, some users are really poor
in judging the duration of their jobs, providing estimates that are (on average)
several hours or even days longer than necessary. From this point of view, even
a simple predictor like the one we presented makes a good sense to use.

3 Impact on Job Scheduling Performance

So far, we have demonstrated using several existing workload traces that predic-
tor can improve the accuracy of walltime estimates. This section uses detailed
simulations to analyze the impact of walltime predictor on the performance of
the system. For this purpose, each of those four systems is modeled in Alea sim-
ulator [5] and the workload is replayed. For comparison, simulations use either
perfect estimates (i.e., exact job runtimes are used), user-provided or predictor-
generated estimates to build the job schedule, respectively.

Walltime Prediction and Its Impact on Job Scheduling 133

3.1 Scheduling Policy

In all experiments we use conservative backfilling [8] as it heavily relies on pro-
vided estimates. The schedule is built using available runtime estimates (per-
fect, user-provided or predictor-based, respectively). In case a job finishes earlier
than expected, the schedule is updated using schedule compression algorithm [8].
During the update, jobs are checked one by one and a start time of each job is
adjusted, i.e., it is moved into the earliest possible time slot with respect to
previously adjusted jobs (compression phase). Similarly, if a job’s runtime is
underestimated, it is first prolonged (see the discussion in Sect. 2.2) and then
the existing schedule is updated, i.e., jobs are reinserted using same mechanism
as during the aforementioned compression phase.

3.2 Metrics and Results

As our performance indicators we measure the percentage of backfilled jobs and
the distribution of job wait times. Let us first discuss the impact of improved esti-
mates on the backfilling ratio. The intuition suggests that with more accurate
estimates (and even more with perfectly known runtimes) the ratio of back-
filled jobs should increase. Conversely, when using inaccurate, user-provided and
overestimated walltimes, the backfilling ratio should be significantly lower since
most jobs “appear to be too long” for existing gaps. The results we obtained (see
Fig. 5) seem to follow this expectation but the differences are not very dramatic.

Figure 5 shows the percentage of backfilled jobs with respect to the accuracy
of estimates being used. With the exception of FH1 workload, there is only slight
improvement in the backfilling ratio when accurate or predictor-based walltimes
are used. The difference between FH1 and remaining workloads is most likely
caused by the very bad original user-based estimates available in FH1. As can be
seen in Fig. 2 (top), FH1 has the worst user-based estimates among all workloads.
It is important to understand that improved walltimes do not guarantee higher
backfill ratio. In fact, with better walltime estimates, not only individual jobs

Fig. 5. The percentage of backfilled jobs with respect to the walltime being used (exact
runtime, user estimate, predictor).

134 D. Klusáček and M. Soysal

Fig. 6. Distribution of job wait times with respect to the walltime being used (exact
runtime, user estimate, predictor).

“look shorter” but also all available holes in the schedule become “shorter” as
job runtimes are less overestimated. Therefore, the probability that a job will be
backfilled within existing holes is only slightly higher when estimates are better2.

We also measured the impact of improved walltime estimates on the distri-
bution of job wait times which is captured in Figs. 6 and 7. The main general
difference between these two figures is the large amount of jobs that start imme-
diately (see Fig. 6). This is caused by the relatively smaller backlog of waiting
jobs compared to the CTC and SDCS workloads (see Fig. 7). Other than that,
most of the workloads show that user-based inaccurate estimates are associated
with worse distribution of job wait times, i.e., more jobs fall into categories
representing long waiting. As soon as the predictor is used, we see a common
tendency where job wait times are decreased.

2 With the exception of poor user-based estimates as shown in case of FH1 workload.

Walltime Prediction and Its Impact on Job Scheduling 135

Fig. 7. Distribution of job wait times with respect to the walltime being used (exact
runtime, user estimate, predictor).

The only exception is the CTC workload (see Fig. 7 (top)), where the use of
predictor does not produce better distribution of job wait times, instead it stays
very close to the one dictated by user-provided estimates. This phenomenon
has been observed in the past, e.g., in [1,3] and deeply explained in [13] (using
the same CTC workload trace). Apart from the explanation provided in [13],
we would like to add that metrics like wait time can be easily influenced by
even subtle changes in the job processing ordering. Job execution order can be
easily manipulated either purposely (e.g., via fair-sharing mechanism) or “acci-
dentally”, e.g., as a side effect of using the predictor. Predictor’s estimates may
shuffle the order in which jobs are executed as backfilling tends to prefer shorter
jobs. Clearly, this shortest job first-like scheduling reduces average wait time.

Figure 8 shows a hypothetical example of three different schedules that are
however composed of the same set of jobs. All three schedules have the same
makespan (Cmax = 10 time units) but exhibit very different job wait times.

136 D. Klusáček and M. Soysal

This figure illustrates the impact of job ordering in a somewhat extreme scale,
yet we believe it illustrates nicely that metrics like wait time may oscillate quite
wildly.

me

no
de

s

me

no
de

s

me

no
de

s

avg. wait = 6.4 units avg. wait = 4.3 units avg. wait = 2.3 units

Fig. 8. The impact of job execution ordering on job wait times.

4 Impact on Accuracy of Predictions

This section is focusing on the ability of the scheduling system to provide pre-
dictions concerning job wait times and future job-to-node allocations. First, we
analyze the accuracy of wait time predictions in Sect. 4.1. Next, Sect. 4.2 focuses
on the impact that (in) accurate walltime estimates have on the capability of
the job scheduler to provide advance node predictions for waiting jobs, i.e., the
ability to correctly predict where a waiting job will be executed.

4.1 Wait Time Predictions

It is quite convenient when the scheduling system is able to provide informa-
tion when a given job is likely to start executing. This is especially useful for
interactive jobs. Although the system can use a scheduler-independent solution
like QBETS [9], we use this section to analyze the accuracy of predictions that
the scheduler can provide on its own. In this case, the scheduler is using the
schedule (built by conservative backfilling) to estimate how long a job will wait
before its execution will start. Since these wait times can be continuously refined
(shortened) as jobs are completing earlier and the schedule is compressed, we
use the initial estimate returned by the scheduler at the moment of job arrival.
This can be seen as the first “response” the user gets when he or she submits the
job. The accuracy of predictions is measured by computing the absolute error of
predicted wait time with respect to the actual job wait time.

Figure 9 shows the absolute errors in predicted job wait times when using
either user-provided walltime estimates or the predictor-based estimates. It
nicely illustrates the ability of the predictor to decrease the prediction error.
This is mostly visible in case of FH1 and FH2 workloads which have the worst
user-based estimates (see Fig. 2 and related discussion). From this point of view,
predictor-based estimates can deliver much better predictions of job waiting
times, thus giving the users more optimistic responses concerning when their
workloads will be executed.

Walltime Prediction and Its Impact on Job Scheduling 137

Fig. 9. Absolute errors in predicted wait times of jobs when using either user-estimated
walltimes or predictor.

4.2 Node Allocation Predictions

The ability to predict node(s) for waiting job in advance can be very useful. If
the target node(s) is known for reasonably long time (e.g., at least a few minutes
ahead) this time can be used to stage all job-related data in advance, thus saving

138 D. Klusáček and M. Soysal

CPU cycles. Also, if needed, local ad hoc file system can be setup for a waiting
job in advance. We have illustrated this approach in Fig. 1.

This section analyzes whether it is feasible to predict the target node(s)
ahead. More specifically, we measure for how long the target node has been
known prior job start. We called this time period Valid Node Allocation Time
Period and denote it as Tnode. To sum up, for each job the Tnode is computed
as the difference between job start time and the time when the final accurate
prediction has been made (i.e., the one that was correct). In case a job starts
immediately after its submission, Tnode is equal to zero. Otherwise, the job is
waiting and the scheduler is adding that job into the schedule. If perfect walltime
estimates (exact runtimes) are used, the schedule being built is accurate and can
be used to correctly predict target node(s) for jobs in advance. However, since
job walltime estimates are inaccurate, the schedule is constantly adapting to jobs
finishing at different times than previously predicted. This impedes the effort of
the scheduler to provide reasonably accurate node predictions as planned node
and time allocations can change virtually at any time. As we have shown in
our earlier work [11], with inaccurate estimates only a small portion of jobs can
achieve accurate predictions, i.e., only a fraction of jobs gets a reasonably high
(useful) Tnode.

Tnode is also negatively influenced (reduced) by backfilling approach [11]. As
demonstrated in Fig. 10, jobs being backfilled can distort previous node alloca-
tions, thus decreasing Tnode for those jobs being affected. Therefore, instead of
backfilling, we use simple First Come First Served (FCFS) policy to built the job
schedule in this use case. This means that existing holes in the schedule are not
being filled with later arriving jobs in order to reduce the negative effect observed
in backfilling. FCFS policy simply finds the earliest available free slot at the end
of the schedule, without searching for possible gaps within the existing schedule.
For example, if FCFS was used in the scenario presented in Fig. 10 instead of
backfilling, FCFS would place new job behind job #5 leaving all preceding gaps
unused.

Moreover, we have extended the approach used in our previous paper [11]
and developed a significant extension to the scheduling policy, which allows us
to “pin” jobs to their planned nodes if their predicted start time is near enough.

1

2
3

Node 0
Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10

Exis ng job schedule New Schedule

new job 5

re-alloca on of job #4

4

1

2
3

5

4

new job

Fig. 10. An example of backfilling distorting previous node allocations for job #4 as
a result of its “gap filling” approach.

Walltime Prediction and Its Impact on Job Scheduling 139

Fig. 11. Distribution of durations of valid node predictions (Tnode) with respect to the
pinning interval (none, 1 h, 2 h) and walltime being used (exact runtime, user estimate,
predictor).

In other words, if a job is about to start soon (e.g., during 1 h) we do not allow
the scheduler to change the planned nodes for this job. Thus this job’s node
allocation is fixed and its Tnode cannot decrease. Without node-pinning, jobs can
be shifted to different nodes — e.g., as a result of early job completion and the
following schedule compression procedure. This reshuffling of the whole schedule
then destroys existing predictions while reseting all corresponding Tnode values
to zero. Therefore, pinning helps to keep predictions valid subject to inaccuracies
in the job schedule. In our implementation, node-pinning is only activated when
the planned job’s start time is within a given “pinning interval” x, i.e., that job
is planned to be executed within next x minutes.

In the following text, using a series of experiments, we analyze how the Tnode

values are distributed with respect to varying accuracies of walltime estimates
(exact, user-estimated, predictor). We also measure what is the effect of the
newly developed node-pinning functionality. For this purpose, we analyze the
effect of either no node-pinning or pinning with short interval (x = 1 h) or
pinning with long interval (x = 2 h). Since the absence of backfilling and the use

140 D. Klusáček and M. Soysal

Fig. 12. Distribution of durations of valid node predictions (Tnode) with respect to the
pinning interval (none, 1h, 2h) and walltime being used (exact runtime, user estimate,
predictor)

of node-pinning can potentially lead to poor performance, we also measure this
impact by comparing job wait times of all considered scenarios.

Figures 11–12 shows the durations of valid node predictions (distribution of
Tnode values) with respect to the pinning interval (none, 1 h, 2 h) and walltime
being used (exact runtime, user estimate, predictor). From these distributions we
can quickly identify the positive effect that node-pinning has on the ability of the
scheduler to provide reasonable advance node predictions. On the other hand,
the effect of predictor is rather moderate. It does show positive effect in case
of FH1 workload (the one having worst user-based estimates) as it significantly
increases the fraction of jobs that have Tnode > 0 s. Moderate positive effect can
be seen for FH2, CTC and SDSC workloads (comparing estim vs. predictor).
However, in most cases the largest benefit is evidently achieved through node-
pinning rather than through improved walltime estimates.

The node-pinning functionality developed in this work sadly has some obvious
drawbacks. Since we do not use backfilling, nodes can easily become underutilized
when waiting jobs are already pinned to different (busy) CPUs. To measure the

Walltime Prediction and Its Impact on Job Scheduling 141

Fig. 13. Distribution of job wait times with respect to the pinning interval and wall-
time being used.

impact, we provide Figs. 13–14 that show wait time distributions corresponding
to the experiments focusing on node predictability.

Clearly, the effect of FCFS policy (even increased by node-pinning) is heav-
ily influencing the wait time distributions as can be seen by comparing these
distributions to those observed for “pure” backfilling in Figs. 6–7. FCFS wors-
ened waiting times while node-pinning added even more delays. Also, it is worth
noticing that the accuracy of estimates plays smaller role in this use case since
the FCFS policy is less dependent on the quality of estimates than conservative
backfilling used in Sect. 3.

4.3 Summary

To sum this use case, we have shown that proposed node-pinning extensions of
the FCFS policy along with the predictor help to increase node predictability
(higher Tnode values) but at the expense of deteriorated wait times and poorer
utilization. This clearly is not a desirable outcome and it leaves the problem open
for further research. At the same time, we have seen that when using accurate
walltimes reasonable node predictions are achievable and for many jobs their

142 D. Klusáček and M. Soysal

Fig. 14. Distribution of job wait times with respect to the pinning interval and walltime
being used.

Tnode is sufficiently long to allow for advance data staging. There are several
classes of computations where job runtimes can be predicted very accurately
and advance data staging is very useful due to the large size of input data. One
such type of computation represents, e.g., the processing (converting) of raw
video data.

Also, not all jobs probably require such a special treatment, i.e., only truly
data-demanding jobs benefit from advance data staging. Therefore, it would be
interesting to pin only these data-heavy jobs and use the remaining jobs to
efficiently “fill the holes”, i.e., use selective backfilling. Our results show that the
benefits of FCFS does not overweight its poorer performance.

5 Conclusion and Future Work

In this work we have studied walltime estimates and the use of a simple walltime
predictor with respect to their impact on several different aspects of job schedul-
ing. This analysis focused on the predictor’s accuracy and the effect it has on

Walltime Prediction and Its Impact on Job Scheduling 143

system performance and predictability. Our main findings are summarized in the
following list:

– Even simple predictor improves the accuracy of walltimes
– Better accuracy improves backfilling opportunities but the effect is not dra-

matic
– Wait time can be slightly reduced with better estimates (but other effects

play role)
– Significant improvement can be achieved in wait time predictions
– With the existing predictor, node allocations cannot be predicted very well
– Better node predictions can be achieved by using heavily modified FCFS-

based scheduler using “node-pinning”, however job waiting times then dete-
riorate heavily.

In the future, we want to implement more advanced predictors as well as test
them in practice using the PBS Pro system being used in the Czech national com-
puting infrastructure MetaCentrum [7]. Also, we would like to further improve
our node-pinning policy and introduce selective backfilling which should reduce
the negative impact on job wait times and utilization. Another promising, yet
more demanding, way is to design “node-aware” scheduling algorithm, which
takes node prediction into account. For example, the new algorithm can try to
place each job so as to overlap with the minimal number of previous jobs, thus
limiting constant job re-allocations upon early job completions. In the example
of Fig. 10, this would suggest placing job #4 as continuing job #1 from the out-
set, instead of having it use nodes that had previously been assigned to both job
#1 and job #2.

Acknowledgments. We acknowledge the support and computational resources sup-
plied by the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the
program Projects of Large Research, Development and Innovations Infrastructures, and
the project Reg. No. CZ.02.1.01/0.0/0.0/16 013/0001797 co-funded by the Ministry of
Education, Youth and Sports of the Czech Republic. We also highly appreciate the
access to the workload traces provided by the Parallel Workloads Archive and the
Karlsruhe Institute of Technology.

References

1. Chiang, S.-H., Arpaci-Dusseau, A., Vernon, M.K.: The impact of more accurate
requested runtimes on production job scheduling performance. In: Feitelson, D.G.,
Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537, pp. 103–127.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36180-4 7

2. Feitelson, D.G.: Parallel workloads archive, February 2018. http://www.cs.huji.ac.
il/labs/parallel/workload/

3. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM
SP2 with backfilling. In: 12th International Parallel Processing Symposium, pp.
542–546. IEEE (1998)

https://doi.org/10.1007/3-540-36180-4_7
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

144 D. Klusáček and M. Soysal

4. Klusáček, D., Chlumský, V.: Evaluating the impact of soft walltimes on job schedul-
ing performance. In: Dalibor Klusáček, N.D., Walfredo C., (eds.) Job Scheduling
Strategies for Parallel Processing, vol. 11332, pp. 15–38. Springer (2018). https://
doi.org/10.1007/978-3-030-10632-4 2

5. Klusáček, D., Tóth, V., Podolńıková, G.: Complex job scheduling simulations with
Alea 4. In: Ninth EAI International Conference on Simulation Tools and Techniques
(SimuTools 2016), pp. 124–129. ACM (2016)

6. Bailey Lee, C., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates
inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)
JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005). https://
doi.org/10.1007/11407522 14

7. MetaCentrum, September 2020. http://www.metacentrum.cz/
8. Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user

runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel
Distrib. Syst. 12(6), 529–543 (2001)

9. Nurmi, D., Brevik, J., Wolski, R.: QBETS: queue bounds estimation from time
series. In: Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2007. LNCS, vol.
4942, pp. 76–101. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78699-3 5

10. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue
wait times and improve scheduler performance. In: Feitelson, D.G., Rudolph, L.
(eds.) JSSPP 1999. LNCS, vol. 1659, pp. 202–219. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-47954-6 11

11. Soysal, M., Berghoff, M., Klusáček, M., Streit, A.: On the quality of wall time
estimates for resource allocation prediction. In: ICPP 2019: 48th International
Conference on Parallel Processing: Workshops (2019)

12. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjusting user run-
time estimates to improve job scheduling on the Blue Gene/P. In: IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–11.
IEEE (2010)

13. Tsafrir, D.: Using inaccurate estimates accurately. In: Frachtenberg, E.,
Schwiegelshohn, U. (eds.) JSSPP 2010. LNCS, vol. 6253, pp. 208–221. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16505-4 12

https://doi.org/10.1007/978-3-030-10632-4_2
https://doi.org/10.1007/978-3-030-10632-4_2
https://doi.org/10.1007/11407522_14
https://doi.org/10.1007/11407522_14
http://www.metacentrum.cz/
https://doi.org/10.1007/978-3-540-78699-3_5
https://doi.org/10.1007/978-3-540-78699-3_5
https://doi.org/10.1007/3-540-47954-6_11
https://doi.org/10.1007/978-3-642-16505-4_12

	Walltime Prediction and Its Impact on Job Scheduling Performance and Predictability
	1 Introduction
	2 Job Walltimes, User Estimates and Predictor
	2.1 Workload Traces
	2.2 Walltime Predictor and Its Performance

	3 Impact on Job Scheduling Performance
	3.1 Scheduling Policy
	3.2 Metrics and Results

	4 Impact on Accuracy of Predictions
	4.1 Wait Time Predictions
	4.2 Node Allocation Predictions
	4.3 Summary

	5 Conclusion and Future Work
	References

