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Preface

This volume contains the papers presented at the 23rd workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP 2020) that was held on May 22, 2020, in
conjunction with the 34th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2020). The proceedings of previous workshops are also available
from Springer as LNCS volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537,
2862, 3277, 3834, 4376, 4942, 5798, 6253, 7698, 8429, 8828, 10353, 10773, and
11332.

This year eight papers were submitted to the workshop, of which we accepted six.
All submitted papers went through a complete review process, with the full version
being read and evaluated by an average of four reviewers. Additionally, one invited
paper and one keynote were included in the workshop. We would like to especially
thank our Program Committee members and additional reviewers for their willingness
to participate in this effort and their excellent, detailed, and thoughtful reviews.

For the first time in its history the JSSPP workshop was held fully online due to the
worldwide COVID-19 pandemic. Despite the obvious logistic problems, all talks were
presented live, allowing for the participants to interact with the authors of the papers.
We are very thankful to the presenters of accepted papers for their participation in the
live workshop session. Recordings from all talks at the 2020 edition can be found at the
JSSPP’s YouTube channel: https://bit.ly/3mXyT8F.

This year, the workshop opened with a keynote delivered by César De Rose from
the PUCRS, School of Technology, Brazil. De Rose discussed interference-aware
scheduling in virtualized environments, where multiple applications contending for
shared resources are susceptible to cross-application interference, thus leading to
possible significant performance degradation and consequently an increase in the
number of broken SLAs. Therefore, interference-aware scheduling has gained traction,
with the investigation of ways to classify applications regarding their interference
levels and the proposal of static cost models and policies for scheduling co-hosted
applications. The keynote was concluded with a demonstration of how
interference-aware scheduling can improve resource usage while reducing SLA vio-
lations, with further opportunities for improvement in the areas of application classi-
fication and pro-active dynamic scheduling strategies.

Papers accepted for this year’s JSSPP focused on several interesting problems
within the resource management and scheduling domains. The first two papers focused
on the problem of resource contention and workload interference. Yoonsung et al.
discussed the performance degradation due to the contention for shared resources, such
as cache and memory bandwidth. In this paper, the trade-offs between software and
hardware isolation techniques were illustrated. Also, authors showed the benefit of
coordinated enforcement of multiple isolation techniques.

Thiyyakat et al. presented a new scheduling policy that improves the performance of
critical workload that is co-located with less important batch workloads. The authors
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showed that their policy decreases the slowdown for critical workloads compared to a
solution that used standard Control Groups (cgroups).

In their invited paper, Jaro§ et al. discussed the problems related to scheduling
ultrasound simulation workflows. They described how therapeutic ultrasound plays an
increasing role in modern medicine. To optimize its benefits, the treatment procedures
must be adapted carefully to patients needs by computing various DAG-like workflows
that refine the parameters needed for the actual ultrasound machine. In their paper,
authors discussed several scheduling problems that must be solved in order to execute
these workflows efficiently.

Cavicchioli et al. approached the problem of under-utilizing available memory
bandwidth when avoiding memory interference in systems that feature
high-performance multi-core CPUs tightly integrated with data-parallel accelerators.
They performed a set of experiments where they showed that the standard conservative
approach that relies on exclusive use of shared main memory can be extended by
injecting controlled amounts of memory requests coming from other tasks than the one
currently granted exclusive DRAM access, thus using the available bandwidth more
efficiently.

Nobre et al. proposed a highly optimized GPU+CPU based approach for epistasis
detection. Epistasis (multiple interacting variations in DNA) detection is an important
research topic in the field of DNA analysis as it allows to better understand various
DNA variations that may cause, e.g., Alzheimer’s disease, breast cancer, or Crohn’s
disease. As such, epistasis detection represents a computationally intensive optimiza-
tion problem.

The sixth paper focused on walltime prediction and its impact on job scheduling
performance and predictability. Job walltimes estimates, usually specified by users, are
known to be very imprecise which causes problems both to the users and to the
scheduling policies. Klusacek et al. presented an experimental analysis that demon-
strated how the use of walltime predictors impacts the actual performance of a job
scheduler as well its ability to provide accurate predictions concerning future job
execution.

Last but not least, Geng et al. presented PDAWL, a novel dynamic approach for
scheduling tasks that are capable of running simultaneously on both CPUs and
general-purpose accelerators. It uses machine learning to build communication and
computation performance estimation model of the workload with respect to the actual
CPU and GPU performance. The online scheduler then adaptively adjusts the workload
allocation based on the runtime situation.

We hope you can join us at the next JSSPP workshop, this time in Portland, Oregon,
USA, on May 21, 2021. Enjoy your reading!

September 2020 Dalibor Klusacek
Walfredo Cirne
Narayan Desai
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Abstract. Our previous work shows that multiple applications contend-
ing for shared resources in virtualized environments are susceptible to
cross-application interference, which can lead to significant performance
degradation and consequently an increase in the number of broken SLAs.
Nevertheless, state of the art in resource scheduling in virtualized envi-
ronments still relies mainly on resource capacity, adopting heuristics such
as bin packing, overlooking this source of overhead. However, in recent
years interference-aware scheduling has gained traction, with the investi-
gation of ways to classify applications regarding their interference levels
and the proposal of static cost models and policies for scheduling co-
hosted cloud applications. Preliminary results in this area already show
a considerable improvement on resource usage and in the reduction of
broken SLAs, but we strongly believe that there are still opportunities
for improvement in the areas of application classification and pro-active
dynamic scheduling strategies. This paper presents the state of the art in
interference-aware scheduling for virtualized environments and the chal-
lenges and advantages of a dynamic scheme.

Keywords: Resource management - Interference-aware scheduling -
Dynamic scheduling - Virtualized environments

1 Introduction

In order to allow virtualized platforms to deliver SLA guarantees for high user
satisfaction, efficient and automatic resource scheduling strategies are essential.
Resource scheduling is a core function and a central component to coordinate all
the other platform components to deliver performance-oriented solutions [18].
Typically, in large data centers, resource scheduling is accomplished
through heuristics such as bin packing, which considers only resource capacity
aspects [29], overlooking other sources of overhead [1]. However, related work [34]
shows that several applications contending for shared resources in such environ-
ments can generate cross-application interference, which may lead to significant
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performance degradation and consequently to an increase in the number of bro-
ken Service Level Agreements (SLAs) [19].

Looking for alternatives, in previous work we have explored scheduling poli-
cies based also on interference generated by co-allocated applications [16]. We
proposed an attraction/repulsion model built upon the workload profile of each
application, beyond the traditional concept of just observing resource usage and
capacity. In that work, web applications were investigated since they are a cat-
egory that presents workload variations at run time resulting in an hard to
predict resource utilization due to users’ different request patterns and period-
icity [5]. Dynamic service demands and workload profiles further raise the chal-
lenges for service providers in managing resources on-demand to satisfy SLAs
while minimizing the costs [36]. Therefore, any solution to address these chal-
lenges should account for workload variability and performance interference due
to the dynamic nature of the problem [24].

Although our preliminary results in this area already show a considerable
improvement on resource usage and in the reduction of broken SLAs, but we
strongly believe that there are still opportunities for improvement in the areas
of application classification and pro-active dynamic scheduling strategies. This
paper presents the state of the art in interference-aware scheduling for virtualized
environments and the challenges and advantages of a dynamic scheme.

2 Background

This section outlines the concepts intrinsic to this work.

2.1 Resource Management and Virtualization

In data centers, orchestration systems need highly elastic and scalable infrastruc-
tures that allow the dynamic allocation of different resources (such as compute,
storage, networking, software, or a service) in the right location and with mini-
mal delays, enabling the deployment of applications [30]. The elasticity in such
environments is obtained abstracting physical resources from an underlying layer
through virtualization. There are different virtualization technologies, but the
two most relevant in this landscape are Hardware virtualization and System-level
virtualization:

— Hardware virtualization (Hypervisors) abstracts the underlying hardware lay-
ers to enable complete operating systems to run inside the hypervisor as if
they were an application. Paravirtualization solutions (Xen!) and hardware
virtualization solutions (KVM?), in combination with hardware-specific sup-
port, integrated into modern CPU (Intel VT-x and AMD-V), can achieve a
low level of overhead due to the new layer added between the virtual instance
and the hardware.

! https://xenproject.org/.
2 https://www.linux-kvm.org/.
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— System-level virtualization (Containers) is based on fast and lightweight pro-
cess virtualization and allows to tie up an entire application with its depen-
dencies in a virtual container that can run on every Linux distribution. It
provides its users an environment as close as possible to a standard Linux
distribution. Due to the fact that containers are more lightweight than VMs,
the same host can achieve higher densities with containers than with VMs.
This approach has radically decreased both the start-up time of instances
and the processing and storage overhead, which are typical drawbacks of
Hypervisor-based virtualization [21].

Containerization is the state-of-art virtualization solution for provisioning
platforms and its virtual instances only need seconds to initiate, versus minutes
for a regular VM [35]. By encapsulating run time contexts of software com-
ponents and services, containers improve portability and efficiency for cloud
application deployment. In addition, one container can be scaled out/in within
a minute, and consequently can react immediately when encountering possi-
ble unforeseen crash. Therefore, containers are capable of tolerating fluctuating
stress and reducing overhead [22], features which auto scaling solutions rely on.
There are many well known container solutions, such as: Docker?, Linux LXC?,
OpenVZ® and Linux-VServerS.

2.2 Resource Sharing and Performance Interference

With the advent of resource sharing techniques, physical machines host multiple
applications. Even though the use of resource sharing methods, such as virtual-
ization or containerization, provide techniques to fairly share resource between
co-hosted applications, when multiple services intensively use a resource at the
same time, resource contention may happen. This problem is known as perfor-
mance interference, and it may lead to severe performance degradation [1].

Virtualization technologies and server consolidation are the main drivers of
high resource utilization in modern Data Centers. Combining virtual machines
into the same server may lead to severe performance degradation. This per-
formance degradation is known as virtual machine interference. Supporting a
higher virtual machine interference may result in a higher consolidation, while
strict low interference requirements may demand more resources. Jersark and
Ferreto [7] claim that applications are affected by other virtual machines, which
use the same resource intensively in the same physical machine. Furthermore,
each resource is affected differently. CPU intensive applications led to perfor-
mance degradation of 14%. Memory and disk I/O intensive applications, perfor-
mance degradation may be as high as 90%. Therefore, it is clear that performance
interference is a problem, and performance degradation varies depending on the
stressed resource.

3 http://www.docker.com.

* https://linuxcontainers.org/.

5 https://openvz.org/.

5 http://www.linux-vserver.org.
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Performance interference affects container-based environments as well. Disk-
intensive applications running over containers promote performance degradation
that uses different resources intensively. Xavier et al. [34] have tested several
combinations of co-hosted workloads. While some of these combinations led to
performance degradation up to 38%, they could also combine the workloads with
no interference. Cluster systems usually run several applications-often from dif-
ferent users-concurrently, with individual applications competing for access to
shared resources such as the file system or the network. Low application perfor-
mance may be caused by interference from different sources. Shah et al. [23] state
that mapping performance data related to shared resources onto time slices can
establish the simultaneity of application usage across jobs, which can be indica-
tive of inter-application interference. In some cases, inter-application interference
causes performance degradation by up to 50%.

2.3 Service Level Agreements

Service Level Agreements (SLAs) have been proposed for cloud services as con-
tracts used to record the rights and obligations of service providers and their
customers [15]. At the end of the negotiation process, provider and consumer
commit to an agreement. This agreement is referred to as a SLA. This SLA
serves as the foundation for the expected level of service between the consumer
and the provider. The Quality-of-Service (QoS) attributes that are generally part
of an SLA (such as response time and throughput) however change constantly
and to enforce the agreement, these parameters need to be closely monitored [8].

3 State of the Art

Scheduling tasks in virtualized environments in a way that minimizes the
performance interference effect from co-located applications is referred to as
interference-aware scheduling [34]. This section will present the state of the art
in the following areas related to this work: interference profiling, interference
classification and interference-aware scheduling algorithms.

3.1 Interference Profiling

Modern high-performance computer systems continue to increase in size and
complexity. Tools to measure application performance in these increasingly com-
plex environments must also increase the richness of their measurements to pro-
vide insights into the increasingly intricate ways in which software and hardware
interact [28]. Interference profiling is essential in this work, since dealing with
dynamic workloads and evaluating the impact of interference over time requires
a tool that captures such metrics at run time.

To help advanced users to utilize their hardware more efficiently, the Linux
trace toolkit [14] was developed. It is a suite of tools designed to extract program
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execution details from the Linux operating system and interpret them. Specif-
ically, it enables its users to extract processor utilization rates and allocation
information for a certain period. It is possible to perform various calculations on
this data and dump it to a text file. The toolkit provides flexible, low-overhead
mechanisms to trace a variety of kernel events such as system call invocations,
process, memory, file system and network operations.

Urgaonkar et al. [31] used kernel-based profiling mechanisms in the context
of shared hosting platforms to profile applications execution. The advantage of
this approach is that it works with any application and requires no changes to
the application at the source or binary levels. This is especially important in
hosting environments where the platform provider may have little or no access
to third-party applications.

Terpstra et al. [28] proposed PAPI (the Performance API), a tool that pro-
vides a consistent interface and methodology to use performance counters found
in most major microprocessors. PAPI enables software engineers to see, in near
real-time, the relation between software performance and processor events. In
addition, PAPI provides access to a collection of components that expose per-
formance measurement opportunities across the hardware and software stack.

3.2 Interference Classification

Classification is a necessary step in the identification of tasks that can be sched-
uled on the same virtual instance. An accurate interference classification allows
a manager or a scheduler to better select which tasks will share resources, mini-
mizing interference among them which could cause overhead and adversely affect
their performance.

Javadi and Gandhi [6] presents DIAL, an interference-aware load balancer
for cloud environments. The interference detection is accomplished using deci-
sion tree-based classifier to find the dominant source of resource contention. It
monitors the impact of interference on user metrics such as CPU utilization, I/O
wait time, etc. The model is trained and the decision tree can classify the source
of interference, even for unseen workloads, based on the observed metric values.

Kumar and Setia [13] introduce an interference-free scheduling algorithm
with better performance for cloud computing applications. A random forest tech-
nique is used to classify applications into class labels: CPU, network and memory
intensive. When recognized by the system each task is immediately classified and
scheduled on the desired VM to better use the available resource.

In order to avoid cross-application I/O interference, Kougkas et al. [10]
explore the negative effects of interference at the burst buffer layer. In their study,
a code-block classifier is applied that categorizes the nodes into two classes: com-
pute or I/0O blocks. As a result, they claim that, through better I/O scheduling,
their work can outperform existing state-of-the-art buffering management solu-
tions by three times and can lead to better resource utilization.



6 V. Meyer et al.

3.3 Interference-Aware Scheduling Algorithms

In virtualized ecosystems, consolidating multiple user applications onto multi-
core servers generates interference between co-hosted applications, which
impacts application performance. To minimize interference effects and overcome
those issues, a common solution is to apply resource scheduling policies [1,19,33].

The cloud scheduler proposed by [19] makes this decision based upon the
resource requirements of workloads. To determine resource requirements, VMs
are first profiled on a staging server to determine the amount of resources needed
to attain a desired level of QoS in an interference-free environment. To incorpo-
rate performance interference relationships between VMs that are consolidated
onto a server, they have adopted a multi-input, multi-output (MIMO) model
approach which captures performance interference interactions. It is considered
a discrete-time MIMO model of the platform with its inputs and outputs in
order to design a model predictive control framework. The inputs are defined as
the actuators used by the platform controller to manage resource allocations at
particular time step. The outputs are the predicted QoS values.

In [1] strategy, all newly created VMs are assigned to a PM by a load balanc-
ing scheduler that is generally based on a heuristic such as bin packing. After
that, the scheduler decides whether to trigger migration by comparing the slow-
down factor among all potential PMs and migrates VMs to the PM with the
smallest slowdown factor. The algorithm greedily finds the most suitable PM for
each VM by picking the PM with the smallest slowdown when assigned the new
VM. It requires the loading vectors from each VM as input. The processing step
of a VM request within a PM uses a discrete-time Markov chain in which the
states represent the hypervisor layer and physical resources.

To minimize interference and job execution time in Apache Spark jobs, [33]
designs and implements a scheduler that automatically schedules and executes
submitted Spark jobs leveraging a performance prediction framework. When a
new job arrives in the system the scheduler locates available servers that can
execute the job. If existing jobs are running in the system with possibly more
jobs waiting in the queue, the scheduler calculates the waiting time of the new
job and readjusts the waiting time of the jobs that are already in the queue to
determine the best scheduling plan and updates the scheduling file accordingly.

4 Measuring Performance Interference

Uncontrolled access to shared resources can cause performance variations that
lead applications to fail or run unsteadily. The friction generated by the competi-
tion to access RAM, disk storage, cache or internal busses is called resource con-
tention. Many efforts have been made to alleviate contention at the operating sys-
tem level, ranging from better scheduling techniques in multi-core architectures
[38] to dynamically addressing mapping to minimize memory contention [20].
The steady growth of virtual data centers has raised a concern about resource
contention, and the impact it might cause in environments where performance is
crucial and SLA cannot be violated, such as clouds. I/O contention, for instance,
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occurs when multiple tasks compete for a portion of disk bandwidth in a scenario
where the demand is higher than the available resources.

On the other hand, performance interference may also arise due to isolation
issues in the virtualization layer, which occurs when a virtual instance exceeds
the amount of allocated resources. Because resource limit settings are capacity-
driven (e.g. GB, VCores, etc.) and not throughput-driven (e.g. bandwidth, IPC,
etc.), even though a virtual instance receives a limited portion of resource, there
is nonetheless leakage due to uncontrolled access to operating system queues and
uncore hardware components. Data center administrators have been exaggerated
the amount of allocated resources to sidestep contentious scenarios, making the
data center underutilized.

4.1 Interference Profiler Tool (IntP)

In this section we present IntP [34], a tool for the quantification of per applica-
tion resource sensitivity. By using instrumentation techniques to infer application
behaviors during runtime, IntP gives users information about how their appli-
cations are sensitive to hardware components and OS layers. Results provided
by IntP can assist data center administrators in scheduling strategies to place
applications that cause more noise between each other onto different machines.
In addition, the infrastructure becomes more balanced, since applications with
different characteristics can be interleaved, making the data center resource
efficient.

4.2 System-Level Resource Contentious Instrumentation

Unlike current solutions, IntP is composed of a set of modules running in the
operating system level, which collects metrics from different hardware subsys-
tems and operating system levels. Once started, the modules consist of hooks
that probe operating system functions and apply a filter on every instruction
that comes from tasks to the hardware. For the case of storage block and net-
work stack, interference may come from scheduling queues, and the dispatch
rate is governed by the synchronism between the operating system and an exter-
nal timer clock. This synchronism is architecture-dependent and comes from an
external hardware timer that fires interrupts (jiffies) in time intervals of 1/HZ,
where HZ is a compile-time constant that varies from 100 to 1000 in modern
operating systems. Hence, the variables analyzed by IntP to assess interference
in scheduling queues are defined in Table 1.
The service time per unit of time is defined by:
vk Yy

fit) == S

Considering that the operating system performs scheduling decisions at inter-
vals denoted by HZ, we divided the service time by HZ and integrate it from the
instant ¢y to t1:

Tqueue = /tt1 f(t)/HZDt (2)
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Table 1. Queue instrumentation variables

Variable | Description

v Average service time
y Arrival rate

t Elapsed time

HZ Timer interrupt rate

It means that each time the operating system looks at a scheduling queue, a
job may or not be in progress. This assumption gives us the level of stress that an
application is putting on queues over the operating system level at instant time
t. The next subsections describe IntP instrumentation points that collect above
mentioned variables and other interference perspectives that IntP is capable of
infer.

4.3 Block Layer Points

Although many optimization techniques have been developed, such as page
caches for Writeback operations, the performance of block devices has a big
impact on overall system performance. When a block request arrives into eleva-
tor scheduling queues, the scheduler does optimization functions (sorting, merg-
ing) in request queues to get efficient I/0. It means that requests are merged
with others if either request ever grows large enough that they become con-
tiguous. Afterward, they are sorted, not allowing a read to be moved ahead
of a write or vice-versa. These optimization algorithms allow more contiguous
read/write operations dispatched to disks, reducing seeks and head movements
in hard drives per unit of time. However, the higher the number of requests
arriving at the elevator queues, the less efficient the general operation becomes,
since the disk handles incoming requests at lower rates than CPU. This overload
increases the queue depth (number of pending requests), and becomes even more
noticeable in SMP machines, on which multiple tasks contend for a single disk.

A good metric to assess performance is defined by the time the disk takes to
handle a request (i.e. service time). In order to infer the service time, we mea-
sured the delta-time from the block_rq_complete to block_rq_issue kernel functions.
Theses points are called whenever a block segment is added and removed from
the scheduling queue after the optimizations have taken place. Based on this, we
measured the average service time v (in milliseconds) for I/O requests and the
arrival rate v to quantify interference in elevator queue. This interference metric
is referred to as I4;sr in the IntP.

4.4 Network Stack Points

We focused on analyzing the network packet path from the network device (ring
buffer) to the application buffer (socket’s receive buffer) or vice-versa, so that an
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application can be classified by its level of pressure placed on hardware device
(throughput) and operating system’s network stack (latency). The latency is
meant as the average service time v. Since the OS’s network stack controls two-
ways communications (send/recv) using different queues, the IntP should instru-
ment the scheduler functions in isolation. The average service time of the sending
queue is obtained by the delta-time from the net_dev_zmit to __dev_queue_rmit
functions. And the average service time of the receiving queue is obtained by the
delta-time from the napi_complete_done to __napi_schedule_irqoff functions. The
average service time v is given by the sum of both metrics. The arrival rate ~ is
given by the total of send and receive packets per unit of time. This interference
metric is referred to as Ietstack in the IntP.

On the other hand, IntP aims to measure the interference sourced from con-
tention in the network card, which occurs when the bandwidth is not enough
for multiple tasks to carry all the data that is needed (i.e. capacity overflow).
The bandwidth consumed per tasks is obtained using the probes as above, but
accumulating the length of each packet dispatched and received per unit of time.
Hence, the interference from the hardware device is given by:

t
1 SUM (length)
Ine c.apacity — TR 3

te.apacity /t bandwidth 3)

Where bandwidth is the nominal limit of the network card capacity.

4.5 Memory Points

IntP aims to assess the level of interference an application causes during mem-
ory accesses. The IntP’s memory module collects counters from the memory
controller, which is a digital circuit that manages the flow of data going to and
from the main memory. It is usually called integrated memory controller (IMC).
The first approach was to use LLC_MISS (last level cache miss) * 64 Bytes (size
of cache line). However, the problem with this approach is that he LLC_MISS
counter would not include prefetch misses. This can be a huge issue when there
are a lot of prefetching activities involved (for example, when there is stream-
ing access involved in the program). Recent CPU architectures made available
counters that can be fetched from the uncore IMC, allowing more precise obser-
vations. Hence, the level of interference an application puts on memory access is
given by: ,
1
Ve, = / (MRC + MWC) x CLDt (4)
to
Where M RC and MW C denote the number of reads and memory writes,
respectively. And CL is the size of cache line (commonly 64). Finally, the inte-
gration of application’s threads is summed as follows:

Imem = Z/ythuvth €S (5)

By normalizing I,,em, IntP outputs a metric (0..1), which ranges from lowest
to highest interference degree, of which is possible to infer the behavior of the
application’s threads while they are accessing the main memory.



10 V. Meyer et al.

4.6 LLC Points

The last level cache is a key resource to manage, since multi-threaded architectures
and multicore platforms are constantly arise. The chip industry has been intro-
ducing a new feature in the hardware that allows an OS to determine the usage
of cache by applications running on the platform. This is the case of Intel Cache
Monitoring Technology (CMT) [3]. CMT provides mechanisms for an OS to indi-
cate a software-defined ID for each of the threads that are scheduled to run on a
core. This ID is called the Resource Monitoring ID (RMID). Since there are asso-
ciations between threads and RMIDs, they are programmed via a thread-specific
model-specific register called MSR, and can be read by system software at any time
through an MSR interface. The built-in cache module of IntP takes advantages of
this feature and begins mapping application’s threads to RMIDs during run time
to infer per-application cache usage, thus cache interference can be denoted by;

31
eth = / MSR(T'm’Ldth)Dt (6)
to

Where M SR is the interface that read the thread-specific rmid from the
CPU register during the instant time ¢. Finally, the total of cache occupancy of
an application is given by:

Icache = Zethvvth es (7)

4.7 Use Case: IntP-Assisted Job Scheduling for Big Data

This section demonstrates the use of IntP for better BigData-centric application
scheduling. IntP was used to assess interference metrics of heterogeneous appli-
cations that put stress on different hardware components and OS’s subsystems.
We selected popular benchmarks from HiBench Benchmark Suite [4], which are
well-known representatives for the field of data analytics. The applications were
chosen and classified by their resource intensity levels, such as cache intensive,
compute intensive, and disk-/network-intensive. Such classification covers con-
tention scenarios that IntP proposes to instrument. The applications we choose
are presented in Table 2.

We implemented an interference-aware task scheduling in Apache Hadoop
YARN [32]. YARN is the architectural center of Hadoop that allows multiple
data processing engines such as interactive SQL, real-time streaming, data sci-
ence and batch processing to handle data, as such that applications we have used
during our analysis. We selected a set of applications from different frameworks
and programming engines to extend heterogeneity, including Hadoop, Spark, and
Storm. In addition, we chose the YARN’s Fair policy (default installed) to com-
pare it with the proposed interference policy. We used a carefully-crafted external
script to connect to the YARN’s client API and work like the dispatcher moving
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Table 2. Workload characteristics

App | Type Workload
App01 | Machine learning | LLC
App02 | Machine learning | LLC
App03 | Machine learning | LL.C
App04 | Streaming LLC/memory
App05 | Streaming LLC/memory
App06 | Ordering Memory
App07 | Ordering Memory
App08 | Classification CPU/memory
App09 | Classification CPU/memory
App10 | Search engine CPU
Appll | Sort Network
Appl2 | Sort Network
Appl3 | Query/scan Disk
Appl4 | Query/join Disk
App15 | Query/merge disk
YARN scheduler
]

:H{

density

N

interference—aware scheduler

P

700

1050 1400
time

1750

11

Fig. 1. Comparison between intp-based scheduler and YARN’s scheduler. Density rep-
resents the number of jobs completed per time slice.

jobs every 5s on the 10-in-10 order (no job completion waiting). The experiment
aims to evaluate the jobs’ turnaround times (makespan) and total completion
times. The performance evaluation, as well as the comparison with the default

YARN scheduler is presented in Fig. 1.
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The graph shows that the reduced job turnaround times reflected on the
total completion time, and also improved the efficiency (density), expected when
evaluating performance in scheduling. We observed a performance optimization
up to 35%, This is because applications have been better balanced according to
their interference level, so that they compete less for resources.

5 Static Interference-Aware Scheduling

After better understanding on how to measure interference we developed a static
interference-aware scheduling scheme based on the IntP tool described in the
previous Section.

5.1 Placement Policies

The first step towards a static interference-aware scheduling model was the cre-
ation of policies to make efficient placement decisions. To achieve that, we ana-
lyzed the performance of applications that use CPU and Disk I/O intensively,
and, then, generate the placement policies based on such analysis.

For the performance analysis, we use the node-tiers” benchmark, considering
three multi-tier applications with two tiers each, where both tiers stress the same
resource. The first application was CPU-intensive, the second was disk-intensive,
and the last did not use any resource intensively. Moreover, we generated an
increasing workload, varying the request rate from 0 to 300 requests per sec-
ond. This variation directly impacts the resource interference levels since higher
request rate leads to more resources used to answer the requests. Furthermore,
we have considered two placement variations, where in the first both tiers were
placed in the same PM and in the second each tier was placed in a different PM.

Figure 2a shows the performance of an application consisted of two CPU
intensive tiers. It can be noticed that the execution with higher request size
(512KB) had a worse performance as compared with the lower request size
(1KB). This is a natural behavior since the higher the request size is, the more
pressure it puts on both operating system and network. Additionally, while the
request rate was low, the performance for all executions remained stable. How-
ever, as the request rate increased, the execution with high network usage run-
ning in different PMs suffered performance degradation. In this case, the network
becomes flooded with many requests, and as the network bottleneck is reached,
the response time increases exponentially. On the other hand, while running with
same request size, but in the same PM, there is no impact on the performance.

Figure 2b presents the response time of the application that had two disk
I/0O intensive tiers. The response time kept acceptable while the workload was
low. However, as the workload increased, the application presents a different
behavior from the one seen in the CPU intensive application. All four executions
of this application have performance degradation, but this degradation comes

" https://github.com/uillianluiz/node-tiers.
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earlier in the executions that run the tiers on the same PM. As a conclusion
of this execution, disk I/O intensive applications tend to suffer more from the
interference of co-hosted tiers.

=>=same-1kb —m=different-1kb same-512kb different-512kb —=same-1kb —m—different-1kb same-512kb different-512kb
65536 60000
16384 50000
4096

40000
1024
256 30000

o4 20000

RESPONSE TIME (MS)
RESPONSE TIME (MS]

10000

10 36 61 89 115 142 170 196 215 233 262 289 9 36 61 88 115 140 166 192 220 237 246 263
REQUESTS PER SECOND REQUESTS PER SECOND

(a) CPU-CPU (b) Disk-disk

Fig. 2. Response time of the applications while varying the workload.

5.2 Classification Based on Thresholds and Static Model

Even though the aforementioned insights are useful for optimizing the placement,
it would be important to consider other resources, such as memory and cache,
and also to consider the levels of interference from each one. For these reasons,
we present an interference classification based on thresholds for deciding the best
placement of web applications.

As already mentioned, each resource may suffer from interference in different
ways. A high level of disk interference may be much more prejudicial to an
application than a high level of CPU interference. For this reason, we are not
going to use the interference levels by themselves, but rather the performance
degradation a given interference level generates. Hence, we classified interference
levels into four classes for simplification: Absent, Low, Moderate, and High.
Even though this classification reduces the breadth of the problem, it is still an
improvement to the state-of-the-art works, which most of them consider only two
levels (absent and present). Each class covers different interference levels that go
from 0 to 100% as follows: Absent (0-0%), Low (1-20%), Moderate (21-50%),
and High (51-100%).

Based on this classification, we analyzed performance interference for co-
hosted applications using the node-tiers benchmark and response time as perfor-
mance metric. Initially, we prepared synthetic workloads that fit an application
into each of the interference classes. For the Absent class, there is no performance
degradation, i.e., it increases the response time in 1.0 time. For other classes,
we conducted experiments running a two-tiers application, and put a load stress
using the stressing tool Artillery [25] to find out the workload necessary to fit
the application into the Absent, Low, Moderate, and High classes.
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The interference-related performance degradation was obtained using a sim-
ulated one-tier application deployed by node-tiers. Artillery was configured with
50 concurrent threads producing HTTP’s request bursts to the application dur-
ing the 40-min run time. We collected the average response time while the appli-
cation was running in isolation. Afterwards, we inserted Low, Moderate, and
High applications in the same PM, and calculated the performance degradation
using the equation per feiqss/per fapsents where per fuqss is the average response
time for each interference class, and per fupsent is the average response time while
running in isolation. Furthermore, based on this methodology, the characteriza-
tion of interference performance degradation is shown in Table 3.

Table 3. Performance degradation generated by resource interference.

Level CPU | Memory | Disk | Cache | Network
Absent 1.00 |1.00 1.00 |1.00 |1.00
Low 1.03 |1.07 1.12 | 1.07 1.05
Moderate | 1.15 | 1.62 1.82 | 1.18 1.32
High 1.33 | 1.74 2.25 | 1.26 1.57

Placement algorithms aim to put a set of applications in the smallest number
of PMs to make the data center resource efficient. In order to minimize the
performance degradation generated by resource interference, we have created
CIAPAS®. This is a scheduling analysis tool that uses an interference cost function.

All resource interference metrics are measured and allocated into an interval.
Depending on the interval which they are set, the cost value varies according
Table 3. CIAPA tries to minimize the total cost by testing all possible combina-
tions of applications per host.

To evaluate and analyze the quality of CIAPAs placement algorithms, first,
we define two scenarios that will serve as workload in this section: (I) set of
two multi-tier applications with high conflict between resource interference. The
first application has two CPU moderate-intensive tiers, while the second has
two disk I/O high-intensive tiers; (II) set of three multi-tier application with less
conflict in the same application, but high affinity levels and resource interference
between tiers from different applications. Medium workload to emulate a private
cloud and to allow the execution in our real test bed.

In order to validate if cost is actually correlated with performance, we verify
how CIAPA performs when compared to related work, so that we have run both
scenarios with CIAPA and in a real environment. We executed the placement
algorithms for both cases, comparing CTAPA again with the interference [26] and
affinity [27] strategies, and after reproducing them in our experimental environ-
ment. Figure 3 shows the cost generated by each placement as well as the average
response time achieved by the multi-tier applications for both cases. Also here,

8 https://github.com/uillianluiz/ciapa.
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Fig. 3. Cost and average response time comparison of CIAPA against Interference and
Affinity aware placement strategies for Cases I (a) and II (b).

we can see that CIAPA was not only able to generate a placement with lower
cost, but this cost also led to the best overall application’s performance. In Case
II, a more representative workload, we can observe a reduction in response time
of 10% when compared to Interference strategies, and up to 18% when consid-
ering only affinity strategies.

6 Dynamic Scheduling Scheme

In the last section, we presented an interference-aware scheduling schema based
on a static classification of applications, that was fixed over their entire execution.
In this section, we begin to experiment with a dynamic scheme, to better react to
workload changes during the execution of these applications, and consequently
improve resource usage even more.

6.1 Exploring Dynamic Interference Profiles

To explore a dynamic interference-aware profile, we had to use an application
that has variations in its workload. So, a QoS-oriented e-commerce benchmark,
called Bench4Q?, has been elected. First, we created an increasing workload,
starting with a low load and gradually going to a high load, and profiled it with
IntP. Figure 4 shows interference suffered by each resource in this experiment.
The top chart presents the classification method seen in Sect. 5, with one label
per profiled resource over the entire application execution. After observing the
interference behavior change, a question came up: what if this method were exe-
cuted more than once over curse of the application execution in a segmented
way? Would these labels change? So, we executed the static classification mul-
tiple times. Since we do not know what would be the best number of intervals
to perform it, we arbitrarily divided the execution into four parts and ran the
classification method for each part again. Results are shown at the bottom chart,
in the same figure.

9 https://projects.ow2.org/view /bench4q.
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Fig. 4. Unique (top) and Segmented (bottom) Interference Classification. *To facili-
tate the visualization, a Loess function was applied to smooth short-term variations.
**Resources that suffered classification changes are shown in bold.

It is possible to notice that there are resources that do not change their labels,
for instance, memory, cache, and network. Since they keep their interference
metrics at the same level, on average, with no expressive variation, their labels
are maintained. On the other hand, some resources do change their labels, namely
CPU and disk. Disk has a smooth decrease in its behavior, moving from low
to absent label, at the execution halfway. But CPU has the biggest behavior
change, starting with low, going to moderate levels, and ending with a high
interference level. This highlights that, due to their dynamic workload nature,
each application should be handled differently.

6.2 Al-driven Interference-Aware Application Classifier with
Preliminary Results

As we showed in the previous experiment applying a static classification method
over some applications with high workload variations will lead to an unrepre-
sentative classification estimate. Thus, this approach may disfavor the place-
ment of different types of applications that have dynamic workload patterns. To
tackle this issue, we created an interference-aware application classifier based on
machine learning techniques. The proposed classifier receives monitored metrics
from applications and automatically outcomes their interference levels without
setting its thresholds.

To implement the classifier, two machine learning algorithms have been cho-
sen: SVM for classification and K-Means for clustering. Initially, SVM receives
interference metrics collected from the target application. Then those metrics are
separated into main resource classes: Memory, CPU, Disk, Network, and Cache.
Subsequently, K-Means quantifies them and returns their interference levels.
Both machine learning algorithms use a training dataset, previously defined, to
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assist their decisions. Figure 5 illustrates an overview of how the classifier works
with more details.

O ® CLAK LEVEL:
Memo
_d]Memory
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J SVM K-Means || o .
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Interference : | [(Supervised) (unsupervised) -'_*1_]_ _]_)_lflf__
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Fig. 5. Classifier Architecture Overview: (1) collecting of interference metrics; (2) train-
ing dataset assisting ML algorithms; (3) classification process [17].

The target application is monitored with the IntP tool, every second. When
the defined monitoring period is over, the classifier gathers interference metrics
collected and utilizes it as input data. After, the SVM algorithm trains its model
supported by the data set and turns back the classification results. After classi-
fying a given application into target classes (Memory, CPU, Disk, Network, and
Cache), they are stored in classes queues and become K-Means input data. We
have set four possible levels: absent, low, moderate, and high. When there is no
incidence of interference from some class, the classifier interprets it as Absent.
When any class produces interference activity, it is sent to K-Means that deter-
mines the interference levels of each resource class.

To evaluate the proposed classifier, we verify how it performs when compared
to state-of-the-art studies. Since few related works optimize interference at levels
similar to ours, three approaches have been chosen, as follows:

— Even implements the EvenScheduler, the Apache Storm!? default scheduler;

— Ludwig et al. [16] evaluates the profile of the application workloads and
uses an static interference classification at levels;

— Proportional categorizes the interference from each resource through a pro-
portional division of the ranges of interference levels. This strategy is com-
monly adopted in the resource management field [11].

Even uses an “in order” scheduling strategy, so, it does not take interference
classification aspects into account. Ludwig et al. and Proportional are similar
approaches that utilize interference classification based on fixed thresholds. The
difference between them lies in how their intervals are delimited: Ludwig et al.
defines them empirically, and Proportional applies a fair division. To perform the
comparison, we used three applications: Bench4Q, TPC-H'!, and LinkBench'2.

10 https://storm.apache.org/.
" http://www.tpc.org/tpch/.
2 https://github.com/facebookarchive/linkbench.
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For each application, we have created four workload patterns: increasing, peri-
odic, decreasing, and constant.

A classification scheme, that better represents workload variations, tends to
use resources more efficiently [17]. Therefore, in this experiment, all classifica-
tion methods adopted the Segmented format, this means that all interference
traces were divided into four parts and each one was classified with all classifica-
tion methods. Classification outcomes were inserted into CIAPA over different
numbers of hosts: 4, 6, 8, 10, and 12. The results are presented in Fig. 6.
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2 Our Classifier

Cost

Number of Hosts

Fig. 6. Comparison of Scheduling Costs with State-of-the-Art.

It is possible to observe that, in all executions, the Fven method presented
the worst results (higher costs), which was already expected since this method
is not interference-aware driven. In general, our solution demonstrated the best
placement costs, presenting an improvement in the scheduling efficiency by 27%,
on average, compared to the other strategies from related work. The only excep-
tion appears with 12 hosts. In this case, each host handles only one application,
producing no interference and generating the lowest possible scheduling costs. As
the number of hosts decreases, scheduling costs become higher. Therefore, the
resource concurrency among co-hosted applications tends to increase as well.
With 4 hosts, the highest costs occurred, revealing the case with more cross-
application interference incidence and greater performance degradation.

Preliminary results, with different workloads, have confirmed that resource
interference may result in overhead that has a high impact on application per-
formance, which was already demonstrated by related work. These experiments
enforce that an Al-driven interference-aware fine-grained classification scheme,
which represents better the variability of workloads over time, can improve
results even more, executing efficient scheduling decisions while enhancing the
performance of applications and reducing SLA violations.

6.3 Challenges of a Dynamic Scenario

Although the proposed static methods already deliver better scheduling deci-
sions and improve resource usage than state of the art, we have shown that by
performing a dynamic classification, it is possible to reach even better resource
scheduling results. After analyzing the experiments’ outcomes, we have noticed
that this idea presents great research potential. However, changing the schedul-
ing architecture from static to dynamic is a challenging task and we believe some
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modifications should be done in order to adjust the system due to the following
issues:

— Since dynamic workloads present variations over time, it is mandatory to have
a method that analyzes time-series information to find the right moments to
perform scheduling decisions;

— It is essential to build a manager module that coordinates and schedules all
resources and application executions at runtime;

— Implementing all these features will probably generate system overhead.
Smart policies are needed to keep this overhead low to not consume the
benefits of a improved dynamic scheduling.

6.4 Prediction Models for Proactive Scheduling

As previously stated, the workload may fluctuate a lot in certain environments,
and to avoid QoS drops that may result in SLA violations providers usually
resort to over-provisioning. But this leads to increasing provisioning costs and
energy consumption. Predicting the future workload is one of the strategies by
which the efficiency and operational cost can be improved. This strategy allows
the previous allocation of sufficient resources to maintain QoS and avoid SLA
violations.

Several works in this area explored strategies to better adapt environments to
applications fluctuating demands using machine learning algorithms by tracing
high and low level data (e.g., HTTP requests, disk, cache, CPU, throughput)
[12]. They mentioned predictive models could be applied over past workload
traces to accurately allocate the resources that are necessary to satisfy QoS in
advance.

In this context, the prediction models solve a regression problem, which
means that variables are estimated over time, and the target is the amount
of workload in a future period (e.g., seconds, minutes, hours, days) [2].

We evaluated the most popular machine learning-driven models that are
broadly adopted in related work [9]: ARIMA, MLP, and GRU. We used short-
term predictions that allow flexibility for scheduling strategies. Thus, our pre-
liminary results compare the models under different time intervals of workload
predictions following the distribution order of 5min in a 60 min interval. The
NASA HTTP traces'? were used as workload in our experiments.

Figure 7 shows a more detailed view of the predictions for 15 min confi