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Preface

This volume contains the papers presented at the 23rd workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP 2020) that was held on May 22, 2020, in
conjunction with the 34th IEEE International Parallel and Distributed Processing
Symposium (IPDPS 2020). The proceedings of previous workshops are also available
from Springer as LNCS volumes 949, 1162, 1291, 1459, 1659, 1911, 2221, 2537,
2862, 3277, 3834, 4376, 4942, 5798, 6253, 7698, 8429, 8828, 10353, 10773, and
11332.

This year eight papers were submitted to the workshop, of which we accepted six.
All submitted papers went through a complete review process, with the full version
being read and evaluated by an average of four reviewers. Additionally, one invited
paper and one keynote were included in the workshop. We would like to especially
thank our Program Committee members and additional reviewers for their willingness
to participate in this effort and their excellent, detailed, and thoughtful reviews.

For the first time in its history the JSSPP workshop was held fully online due to the
worldwide COVID-19 pandemic. Despite the obvious logistic problems, all talks were
presented live, allowing for the participants to interact with the authors of the papers.
We are very thankful to the presenters of accepted papers for their participation in the
live workshop session. Recordings from all talks at the 2020 edition can be found at the
JSSPP’s YouTube channel: https://bit.ly/3mXyT8F.

This year, the workshop opened with a keynote delivered by César De Rose from
the PUCRS, School of Technology, Brazil. De Rose discussed interference-aware
scheduling in virtualized environments, where multiple applications contending for
shared resources are susceptible to cross-application interference, thus leading to
possible significant performance degradation and consequently an increase in the
number of broken SLAs. Therefore, interference-aware scheduling has gained traction,
with the investigation of ways to classify applications regarding their interference
levels and the proposal of static cost models and policies for scheduling co-hosted
applications. The keynote was concluded with a demonstration of how
interference-aware scheduling can improve resource usage while reducing SLA vio-
lations, with further opportunities for improvement in the areas of application classi-
fication and pro-active dynamic scheduling strategies.

Papers accepted for this year’s JSSPP focused on several interesting problems
within the resource management and scheduling domains. The first two papers focused
on the problem of resource contention and workload interference. Yoonsung et al.
discussed the performance degradation due to the contention for shared resources, such
as cache and memory bandwidth. In this paper, the trade-offs between software and
hardware isolation techniques were illustrated. Also, authors showed the benefit of
coordinated enforcement of multiple isolation techniques.

Thiyyakat et al. presented a new scheduling policy that improves the performance of
critical workload that is co-located with less important batch workloads. The authors

https://bit.ly/3mXyT8F


showed that their policy decreases the slowdown for critical workloads compared to a
solution that used standard Control Groups (cgroups).

In their invited paper, Jaroš et al. discussed the problems related to scheduling
ultrasound simulation workflows. They described how therapeutic ultrasound plays an
increasing role in modern medicine. To optimize its benefits, the treatment procedures
must be adapted carefully to patients needs by computing various DAG-like workflows
that refine the parameters needed for the actual ultrasound machine. In their paper,
authors discussed several scheduling problems that must be solved in order to execute
these workflows efficiently.

Cavicchioli et al. approached the problem of under-utilizing available memory
bandwidth when avoiding memory interference in systems that feature
high-performance multi-core CPUs tightly integrated with data-parallel accelerators.
They performed a set of experiments where they showed that the standard conservative
approach that relies on exclusive use of shared main memory can be extended by
injecting controlled amounts of memory requests coming from other tasks than the one
currently granted exclusive DRAM access, thus using the available bandwidth more
efficiently.

Nobre et al. proposed a highly optimized GPU+CPU based approach for epistasis
detection. Epistasis (multiple interacting variations in DNA) detection is an important
research topic in the field of DNA analysis as it allows to better understand various
DNA variations that may cause, e.g., Alzheimer’s disease, breast cancer, or Crohn’s
disease. As such, epistasis detection represents a computationally intensive optimiza-
tion problem.

The sixth paper focused on walltime prediction and its impact on job scheduling
performance and predictability. Job walltimes estimates, usually specified by users, are
known to be very imprecise which causes problems both to the users and to the
scheduling policies. Klusáček et al. presented an experimental analysis that demon-
strated how the use of walltime predictors impacts the actual performance of a job
scheduler as well its ability to provide accurate predictions concerning future job
execution.

Last but not least, Geng et al. presented PDAWL, a novel dynamic approach for
scheduling tasks that are capable of running simultaneously on both CPUs and
general-purpose accelerators. It uses machine learning to build communication and
computation performance estimation model of the workload with respect to the actual
CPU and GPU performance. The online scheduler then adaptively adjusts the workload
allocation based on the runtime situation.

We hope you can join us at the next JSSPP workshop, this time in Portland, Oregon,
USA, on May 21, 2021. Enjoy your reading!

September 2020 Dalibor Klusáček
Walfredo Cirne
Narayan Desai

vi Preface



Organization

Workshop Organizers

Dalibor Klusáček CESNET, Czech Republic
Walfredo Cirne Google, USA
Narayan Desai Google, USA

Program Committee

Ashvin Agrawal Microsoft, USA
Amaya Booker Facebook, USA
Julita Corbalan Barcelona Supercomputing Center, Spain
Stratos Dimopoulos Apple, USA
Hyeonsang Eom Seoul National University, South Korea
Dror Feitelson Hebrew University, Israel
Liana Fong IBM T. J. Watson Research Center, USA
Eitan Frachtenberg Facebook, USA
Alfredo Goldman University of São Paulo, Brazil
Allan Gottlieb New York University, USA
Zhiling Lan Illinois Institute of Technology, USA
Bill Nitzberg Altair, USA
P-O. Östberg Umeå University, Sweden
Gonzalo P. Rodrigo Apple, USA
Larry Rudolph Two Sigma, USA
Uwe Schwiegelshohn TU Dortmund, Germany
Yingchong Situ Google, USA
Leonel Sousa Universidade de Lisboa, Portugal
Ramin Yahyapour University of Göttingen, Germany

Additional Reviewers

Diogo Marques
Ricardo Nobre



Contents

Towards Interference-Aware Dynamic Scheduling in Virtualized
Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Vinícius Meyer, Uillian L. Ludwig, Miguel G. Xavier,
Dionatrã F. Kirchoff, and Cesar A. F. De Rose

Towards Hybrid Isolation for Shared Multicore Systems . . . . . . . . . . . . . . . 25
Yoonsung Nam, Byeonghun Yoo, Yongjun Choi, Yongseok Son,
and Hyeonsang Eom

Improving Resource Isolation of Critical Tasks in a Workload . . . . . . . . . . . 45
Meghana Thiyyakat, Subramaniam Kalambur, and Dinkar Sitaram

Optimizing Biomedical Ultrasound Workflow Scheduling Using
Cluster Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Marta Jaros, Dalibor Klusáček, and Jiri Jaros

Evaluating Controlled Memory Request Injection to Counter PREM
Memory Underutilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Roberto Cavicchioli, Nicola Capodieci, Marco Solieri, Marko Bertogna,
Paolo Valente, and Andrea Marongiu

Accelerating 3-Way Epistasis Detection with CPU+GPU Processing . . . . . . . 106
Ricardo Nobre, Sergio Santander-Jiménez, Leonel Sousa,
and Aleksandar Ilic

Walltime Prediction and Its Impact on Job Scheduling Performance
and Predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Dalibor Klusáček and Mehmet Soysal

PDAWL: Profile-Based Iterative Dynamic Adaptive WorkLoad Balance
on Heterogeneous Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Tongsheng Geng, Marcos Amaris, Stéphane Zuckerman,
Alfredo Goldman, Guang R. Gao, and Jean-Luc Gaudiot

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163



Towards Interference-Aware Dynamic
Scheduling in Virtualized Environments

Vińıcius Meyer , Uillian L. Ludwig , Miguel G. Xavier ,
Dionatrã F. Kirchoff , and Cesar A. F. De Rose(B)

School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS),
6681 Ipiranga Ave, Building 32, Porto Alegre, Brazil

{vinicius.meyer,uillian.ludwig,dionatra.kirchoff}@edu.pucrs.br
{miguel.xavier,cesar.derose}@pucrs.br

Abstract. Our previous work shows that multiple applications contend-
ing for shared resources in virtualized environments are susceptible to
cross-application interference, which can lead to significant performance
degradation and consequently an increase in the number of broken SLAs.
Nevertheless, state of the art in resource scheduling in virtualized envi-
ronments still relies mainly on resource capacity, adopting heuristics such
as bin packing, overlooking this source of overhead. However, in recent
years interference-aware scheduling has gained traction, with the investi-
gation of ways to classify applications regarding their interference levels
and the proposal of static cost models and policies for scheduling co-
hosted cloud applications. Preliminary results in this area already show
a considerable improvement on resource usage and in the reduction of
broken SLAs, but we strongly believe that there are still opportunities
for improvement in the areas of application classification and pro-active
dynamic scheduling strategies. This paper presents the state of the art in
interference-aware scheduling for virtualized environments and the chal-
lenges and advantages of a dynamic scheme.

Keywords: Resource management · Interference-aware scheduling ·
Dynamic scheduling · Virtualized environments

1 Introduction

In order to allow virtualized platforms to deliver SLA guarantees for high user
satisfaction, efficient and automatic resource scheduling strategies are essential.
Resource scheduling is a core function and a central component to coordinate all
the other platform components to deliver performance-oriented solutions [18].

Typically, in large data centers, resource scheduling is accomplished
through heuristics such as bin packing, which considers only resource capacity
aspects [29], overlooking other sources of overhead [1]. However, related work [34]
shows that several applications contending for shared resources in such environ-
ments can generate cross-application interference, which may lead to significant

c© Springer Nature Switzerland AG 2020
D. Klusáček et al. (Eds.): JSSPP 2020, LNCS 12326, pp. 1–24, 2020.
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2 V. Meyer et al.

performance degradation and consequently to an increase in the number of bro-
ken Service Level Agreements (SLAs) [19].

Looking for alternatives, in previous work we have explored scheduling poli-
cies based also on interference generated by co-allocated applications [16]. We
proposed an attraction/repulsion model built upon the workload profile of each
application, beyond the traditional concept of just observing resource usage and
capacity. In that work, web applications were investigated since they are a cat-
egory that presents workload variations at run time resulting in an hard to
predict resource utilization due to users’ different request patterns and period-
icity [5]. Dynamic service demands and workload profiles further raise the chal-
lenges for service providers in managing resources on-demand to satisfy SLAs
while minimizing the costs [36]. Therefore, any solution to address these chal-
lenges should account for workload variability and performance interference due
to the dynamic nature of the problem [24].

Although our preliminary results in this area already show a considerable
improvement on resource usage and in the reduction of broken SLAs, but we
strongly believe that there are still opportunities for improvement in the areas
of application classification and pro-active dynamic scheduling strategies. This
paper presents the state of the art in interference-aware scheduling for virtualized
environments and the challenges and advantages of a dynamic scheme.

2 Background

This section outlines the concepts intrinsic to this work.

2.1 Resource Management and Virtualization

In data centers, orchestration systems need highly elastic and scalable infrastruc-
tures that allow the dynamic allocation of different resources (such as compute,
storage, networking, software, or a service) in the right location and with mini-
mal delays, enabling the deployment of applications [30]. The elasticity in such
environments is obtained abstracting physical resources from an underlying layer
through virtualization. There are different virtualization technologies, but the
two most relevant in this landscape are Hardware virtualization and System-level
virtualization:

– Hardware virtualization (Hypervisors) abstracts the underlying hardware lay-
ers to enable complete operating systems to run inside the hypervisor as if
they were an application. Paravirtualization solutions (Xen1) and hardware
virtualization solutions (KVM2), in combination with hardware-specific sup-
port, integrated into modern CPU (Intel VT-x and AMD-V), can achieve a
low level of overhead due to the new layer added between the virtual instance
and the hardware.

1 https://xenproject.org/.
2 https://www.linux-kvm.org/.

https://xenproject.org/
https://www.linux-kvm.org/


Towards Interference-Aware Dynamic Scheduling 3

– System-level virtualization (Containers) is based on fast and lightweight pro-
cess virtualization and allows to tie up an entire application with its depen-
dencies in a virtual container that can run on every Linux distribution. It
provides its users an environment as close as possible to a standard Linux
distribution. Due to the fact that containers are more lightweight than VMs,
the same host can achieve higher densities with containers than with VMs.
This approach has radically decreased both the start-up time of instances
and the processing and storage overhead, which are typical drawbacks of
Hypervisor-based virtualization [21].

Containerization is the state-of-art virtualization solution for provisioning
platforms and its virtual instances only need seconds to initiate, versus minutes
for a regular VM [35]. By encapsulating run time contexts of software com-
ponents and services, containers improve portability and efficiency for cloud
application deployment. In addition, one container can be scaled out/in within
a minute, and consequently can react immediately when encountering possi-
ble unforeseen crash. Therefore, containers are capable of tolerating fluctuating
stress and reducing overhead [22], features which auto scaling solutions rely on.
There are many well known container solutions, such as: Docker3, Linux LXC4,
OpenVZ5 and Linux-VServer6.

2.2 Resource Sharing and Performance Interference

With the advent of resource sharing techniques, physical machines host multiple
applications. Even though the use of resource sharing methods, such as virtual-
ization or containerization, provide techniques to fairly share resource between
co-hosted applications, when multiple services intensively use a resource at the
same time, resource contention may happen. This problem is known as perfor-
mance interference, and it may lead to severe performance degradation [1].

Virtualization technologies and server consolidation are the main drivers of
high resource utilization in modern Data Centers. Combining virtual machines
into the same server may lead to severe performance degradation. This per-
formance degradation is known as virtual machine interference. Supporting a
higher virtual machine interference may result in a higher consolidation, while
strict low interference requirements may demand more resources. Jersark and
Ferreto [7] claim that applications are affected by other virtual machines, which
use the same resource intensively in the same physical machine. Furthermore,
each resource is affected differently. CPU intensive applications led to perfor-
mance degradation of 14%. Memory and disk I/O intensive applications, perfor-
mance degradation may be as high as 90%. Therefore, it is clear that performance
interference is a problem, and performance degradation varies depending on the
stressed resource.
3 http://www.docker.com.
4 https://linuxcontainers.org/.
5 https://openvz.org/.
6 http://www.linux-vserver.org.

http://www.docker.com
https://linuxcontainers.org/
https://openvz.org/
http://www.linux-vserver.org
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Performance interference affects container-based environments as well. Disk-
intensive applications running over containers promote performance degradation
that uses different resources intensively. Xavier et al. [34] have tested several
combinations of co-hosted workloads. While some of these combinations led to
performance degradation up to 38%, they could also combine the workloads with
no interference. Cluster systems usually run several applications-often from dif-
ferent users-concurrently, with individual applications competing for access to
shared resources such as the file system or the network. Low application perfor-
mance may be caused by interference from different sources. Shah et al. [23] state
that mapping performance data related to shared resources onto time slices can
establish the simultaneity of application usage across jobs, which can be indica-
tive of inter-application interference. In some cases, inter-application interference
causes performance degradation by up to 50%.

2.3 Service Level Agreements

Service Level Agreements (SLAs) have been proposed for cloud services as con-
tracts used to record the rights and obligations of service providers and their
customers [15]. At the end of the negotiation process, provider and consumer
commit to an agreement. This agreement is referred to as a SLA. This SLA
serves as the foundation for the expected level of service between the consumer
and the provider. The Quality-of-Service (QoS) attributes that are generally part
of an SLA (such as response time and throughput) however change constantly
and to enforce the agreement, these parameters need to be closely monitored [8].

3 State of the Art

Scheduling tasks in virtualized environments in a way that minimizes the
performance interference effect from co-located applications is referred to as
interference-aware scheduling [34]. This section will present the state of the art
in the following areas related to this work: interference profiling, interference
classification and interference-aware scheduling algorithms.

3.1 Interference Profiling

Modern high-performance computer systems continue to increase in size and
complexity. Tools to measure application performance in these increasingly com-
plex environments must also increase the richness of their measurements to pro-
vide insights into the increasingly intricate ways in which software and hardware
interact [28]. Interference profiling is essential in this work, since dealing with
dynamic workloads and evaluating the impact of interference over time requires
a tool that captures such metrics at run time.

To help advanced users to utilize their hardware more efficiently, the Linux
trace toolkit [14] was developed. It is a suite of tools designed to extract program
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execution details from the Linux operating system and interpret them. Specif-
ically, it enables its users to extract processor utilization rates and allocation
information for a certain period. It is possible to perform various calculations on
this data and dump it to a text file. The toolkit provides flexible, low-overhead
mechanisms to trace a variety of kernel events such as system call invocations,
process, memory, file system and network operations.

Urgaonkar et al. [31] used kernel-based profiling mechanisms in the context
of shared hosting platforms to profile applications execution. The advantage of
this approach is that it works with any application and requires no changes to
the application at the source or binary levels. This is especially important in
hosting environments where the platform provider may have little or no access
to third-party applications.

Terpstra et al. [28] proposed PAPI (the Performance API), a tool that pro-
vides a consistent interface and methodology to use performance counters found
in most major microprocessors. PAPI enables software engineers to see, in near
real-time, the relation between software performance and processor events. In
addition, PAPI provides access to a collection of components that expose per-
formance measurement opportunities across the hardware and software stack.

3.2 Interference Classification

Classification is a necessary step in the identification of tasks that can be sched-
uled on the same virtual instance. An accurate interference classification allows
a manager or a scheduler to better select which tasks will share resources, mini-
mizing interference among them which could cause overhead and adversely affect
their performance.

Javadi and Gandhi [6] presents DIAL, an interference-aware load balancer
for cloud environments. The interference detection is accomplished using deci-
sion tree-based classifier to find the dominant source of resource contention. It
monitors the impact of interference on user metrics such as CPU utilization, I/O
wait time, etc. The model is trained and the decision tree can classify the source
of interference, even for unseen workloads, based on the observed metric values.

Kumar and Setia [13] introduce an interference-free scheduling algorithm
with better performance for cloud computing applications. A random forest tech-
nique is used to classify applications into class labels: CPU, network and memory
intensive. When recognized by the system each task is immediately classified and
scheduled on the desired VM to better use the available resource.

In order to avoid cross-application I/O interference, Kougkas et al. [10]
explore the negative effects of interference at the burst buffer layer. In their study,
a code-block classifier is applied that categorizes the nodes into two classes: com-
pute or I/O blocks. As a result, they claim that, through better I/O scheduling,
their work can outperform existing state-of-the-art buffering management solu-
tions by three times and can lead to better resource utilization.
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3.3 Interference-Aware Scheduling Algorithms

In virtualized ecosystems, consolidating multiple user applications onto multi-
core servers generates interference between co-hosted applications, which
impacts application performance. To minimize interference effects and overcome
those issues, a common solution is to apply resource scheduling policies [1,19,33].

The cloud scheduler proposed by [19] makes this decision based upon the
resource requirements of workloads. To determine resource requirements, VMs
are first profiled on a staging server to determine the amount of resources needed
to attain a desired level of QoS in an interference-free environment. To incorpo-
rate performance interference relationships between VMs that are consolidated
onto a server, they have adopted a multi-input, multi-output (MIMO) model
approach which captures performance interference interactions. It is considered
a discrete-time MIMO model of the platform with its inputs and outputs in
order to design a model predictive control framework. The inputs are defined as
the actuators used by the platform controller to manage resource allocations at
particular time step. The outputs are the predicted QoS values.

In [1] strategy, all newly created VMs are assigned to a PM by a load balanc-
ing scheduler that is generally based on a heuristic such as bin packing. After
that, the scheduler decides whether to trigger migration by comparing the slow-
down factor among all potential PMs and migrates VMs to the PM with the
smallest slowdown factor. The algorithm greedily finds the most suitable PM for
each VM by picking the PM with the smallest slowdown when assigned the new
VM. It requires the loading vectors from each VM as input. The processing step
of a VM request within a PM uses a discrete-time Markov chain in which the
states represent the hypervisor layer and physical resources.

To minimize interference and job execution time in Apache Spark jobs, [33]
designs and implements a scheduler that automatically schedules and executes
submitted Spark jobs leveraging a performance prediction framework. When a
new job arrives in the system the scheduler locates available servers that can
execute the job. If existing jobs are running in the system with possibly more
jobs waiting in the queue, the scheduler calculates the waiting time of the new
job and readjusts the waiting time of the jobs that are already in the queue to
determine the best scheduling plan and updates the scheduling file accordingly.

4 Measuring Performance Interference

Uncontrolled access to shared resources can cause performance variations that
lead applications to fail or run unsteadily. The friction generated by the competi-
tion to access RAM, disk storage, cache or internal busses is called resource con-
tention. Many efforts have been made to alleviate contention at the operating sys-
tem level, ranging from better scheduling techniques in multi-core architectures
[38] to dynamically addressing mapping to minimize memory contention [20].
The steady growth of virtual data centers has raised a concern about resource
contention, and the impact it might cause in environments where performance is
crucial and SLA cannot be violated, such as clouds. I/O contention, for instance,
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occurs when multiple tasks compete for a portion of disk bandwidth in a scenario
where the demand is higher than the available resources.

On the other hand, performance interference may also arise due to isolation
issues in the virtualization layer, which occurs when a virtual instance exceeds
the amount of allocated resources. Because resource limit settings are capacity-
driven (e.g. GB, VCores, etc.) and not throughput-driven (e.g. bandwidth, IPC,
etc.), even though a virtual instance receives a limited portion of resource, there
is nonetheless leakage due to uncontrolled access to operating system queues and
uncore hardware components. Data center administrators have been exaggerated
the amount of allocated resources to sidestep contentious scenarios, making the
data center underutilized.

4.1 Interference Profiler Tool (IntP)

In this section we present IntP [34], a tool for the quantification of per applica-
tion resource sensitivity. By using instrumentation techniques to infer application
behaviors during runtime, IntP gives users information about how their appli-
cations are sensitive to hardware components and OS layers. Results provided
by IntP can assist data center administrators in scheduling strategies to place
applications that cause more noise between each other onto different machines.
In addition, the infrastructure becomes more balanced, since applications with
different characteristics can be interleaved, making the data center resource
efficient.

4.2 System-Level Resource Contentious Instrumentation

Unlike current solutions, IntP is composed of a set of modules running in the
operating system level, which collects metrics from different hardware subsys-
tems and operating system levels. Once started, the modules consist of hooks
that probe operating system functions and apply a filter on every instruction
that comes from tasks to the hardware. For the case of storage block and net-
work stack, interference may come from scheduling queues, and the dispatch
rate is governed by the synchronism between the operating system and an exter-
nal timer clock. This synchronism is architecture-dependent and comes from an
external hardware timer that fires interrupts (jiffies) in time intervals of 1/HZ,
where HZ is a compile-time constant that varies from 100 to 1000 in modern
operating systems. Hence, the variables analyzed by IntP to assess interference
in scheduling queues are defined in Table 1.

The service time per unit of time is defined by:

f(t) =
υ ∗ γ

t
(1)

Considering that the operating system performs scheduling decisions at inter-
vals denoted by HZ, we divided the service time by HZ and integrate it from the
instant t0 to t1:

Iqueue =
∫ t1

t0

f(t)/HZDt (2)
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Table 1. Queue instrumentation variables

Variable Description

υ Average service time

γ Arrival rate

t Elapsed time

HZ Timer interrupt rate

It means that each time the operating system looks at a scheduling queue, a
job may or not be in progress. This assumption gives us the level of stress that an
application is putting on queues over the operating system level at instant time
t. The next subsections describe IntP instrumentation points that collect above
mentioned variables and other interference perspectives that IntP is capable of
infer.

4.3 Block Layer Points

Although many optimization techniques have been developed, such as page
caches for Writeback operations, the performance of block devices has a big
impact on overall system performance. When a block request arrives into eleva-
tor scheduling queues, the scheduler does optimization functions (sorting, merg-
ing) in request queues to get efficient I/O. It means that requests are merged
with others if either request ever grows large enough that they become con-
tiguous. Afterward, they are sorted, not allowing a read to be moved ahead
of a write or vice-versa. These optimization algorithms allow more contiguous
read/write operations dispatched to disks, reducing seeks and head movements
in hard drives per unit of time. However, the higher the number of requests
arriving at the elevator queues, the less efficient the general operation becomes,
since the disk handles incoming requests at lower rates than CPU. This overload
increases the queue depth (number of pending requests), and becomes even more
noticeable in SMP machines, on which multiple tasks contend for a single disk.

A good metric to assess performance is defined by the time the disk takes to
handle a request (i.e. service time). In order to infer the service time, we mea-
sured the delta-time from the block rq complete to block rq issue kernel functions.
Theses points are called whenever a block segment is added and removed from
the scheduling queue after the optimizations have taken place. Based on this, we
measured the average service time υ (in milliseconds) for I/O requests and the
arrival rate γ to quantify interference in elevator queue. This interference metric
is referred to as Idisk in the IntP.

4.4 Network Stack Points

We focused on analyzing the network packet path from the network device (ring
buffer) to the application buffer (socket’s receive buffer) or vice-versa, so that an
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application can be classified by its level of pressure placed on hardware device
(throughput) and operating system’s network stack (latency). The latency is
meant as the average service time υ. Since the OS’s network stack controls two-
ways communications (send/recv) using different queues, the IntP should instru-
ment the scheduler functions in isolation. The average service time of the sending
queue is obtained by the delta-time from the net dev xmit to dev queue xmit
functions. And the average service time of the receiving queue is obtained by the
delta-time from the napi complete done to napi schedule irqoff functions. The
average service time υ is given by the sum of both metrics. The arrival rate γ is
given by the total of send and receive packets per unit of time. This interference
metric is referred to as Inetstack in the IntP.

On the other hand, IntP aims to measure the interference sourced from con-
tention in the network card, which occurs when the bandwidth is not enough
for multiple tasks to carry all the data that is needed (i.e. capacity overflow).
The bandwidth consumed per tasks is obtained using the probes as above, but
accumulating the length of each packet dispatched and received per unit of time.
Hence, the interference from the hardware device is given by:

Inetc.apacity =
∫ t1

t0

SUM(length)
bandwidth

(3)

Where bandwidth is the nominal limit of the network card capacity.

4.5 Memory Points

IntP aims to assess the level of interference an application causes during mem-
ory accesses. The IntP’s memory module collects counters from the memory
controller, which is a digital circuit that manages the flow of data going to and
from the main memory. It is usually called integrated memory controller (IMC).
The first approach was to use LLC MISS (last level cache miss) * 64 Bytes (size
of cache line). However, the problem with this approach is that he LLC MISS
counter would not include prefetch misses. This can be a huge issue when there
are a lot of prefetching activities involved (for example, when there is stream-
ing access involved in the program). Recent CPU architectures made available
counters that can be fetched from the uncore IMC, allowing more precise obser-
vations. Hence, the level of interference an application puts on memory access is
given by:

γth =
∫ t1

t0

(MRC + MWC) ∗ CLDt (4)

Where MRC and MWC denote the number of reads and memory writes,
respectively. And CL is the size of cache line (commonly 64). Finally, the inte-
gration of application’s threads is summed as follows:

Imem =
∑

γth,∀th ∈ S (5)

By normalizing Imem, IntP outputs a metric (0..1), which ranges from lowest
to highest interference degree, of which is possible to infer the behavior of the
application’s threads while they are accessing the main memory.
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4.6 LLC Points

The last level cache is a key resource to manage, since multi-threaded architectures
and multicore platforms are constantly arise. The chip industry has been intro-
ducing a new feature in the hardware that allows an OS to determine the usage
of cache by applications running on the platform. This is the case of Intel Cache
Monitoring Technology (CMT) [3]. CMT provides mechanisms for an OS to indi-
cate a software-defined ID for each of the threads that are scheduled to run on a
core. This ID is called the Resource Monitoring ID (RMID). Since there are asso-
ciations between threads and RMIDs, they are programmed via a thread-specific
model-specific register called MSR, and can be read by system software at any time
through an MSR interface. The built-in cache module of IntP takes advantages of
this feature and begins mapping application’s threads to RMIDs during run time
to infer per-application cache usage, thus cache interference can be denoted by;

θth =
∫ t1

t0

MSR(rmidth)Dt (6)

Where MSR is the interface that read the thread-specific rmid from the
CPU register during the instant time t. Finally, the total of cache occupancy of
an application is given by:

Icache =
∑

θth,∀th ∈ S (7)

4.7 Use Case: IntP-Assisted Job Scheduling for Big Data

This section demonstrates the use of IntP for better BigData-centric application
scheduling. IntP was used to assess interference metrics of heterogeneous appli-
cations that put stress on different hardware components and OS’s subsystems.
We selected popular benchmarks from HiBench Benchmark Suite [4], which are
well-known representatives for the field of data analytics. The applications were
chosen and classified by their resource intensity levels, such as cache intensive,
compute intensive, and disk-/network-intensive. Such classification covers con-
tention scenarios that IntP proposes to instrument. The applications we choose
are presented in Table 2.

We implemented an interference-aware task scheduling in Apache Hadoop
YARN [32]. YARN is the architectural center of Hadoop that allows multiple
data processing engines such as interactive SQL, real-time streaming, data sci-
ence and batch processing to handle data, as such that applications we have used
during our analysis. We selected a set of applications from different frameworks
and programming engines to extend heterogeneity, including Hadoop, Spark, and
Storm. In addition, we chose the YARN’s Fair policy (default installed) to com-
pare it with the proposed interference policy. We used a carefully-crafted external
script to connect to the YARN’s client API and work like the dispatcher moving
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Table 2. Workload characteristics

App Type Workload

App01 Machine learning LLC

App02 Machine learning LLC

App03 Machine learning LLC

App04 Streaming LLC/memory

App05 Streaming LLC/memory

App06 Ordering Memory

App07 Ordering Memory

App08 Classification CPU/memory

App09 Classification CPU/memory

App10 Search engine CPU

App11 Sort Network

App12 Sort Network

App13 Query/scan Disk

App14 Query/join Disk

App15 Query/merge disk

interference−aware scheduler

YARN scheduler

0 350 700 1050 1400 1750
time

de
ns

ity

Fig. 1. Comparison between intp-based scheduler and YARN’s scheduler. Density rep-
resents the number of jobs completed per time slice.

jobs every 5 s on the 10-in-10 order (no job completion waiting). The experiment
aims to evaluate the jobs’ turnaround times (makespan) and total completion
times. The performance evaluation, as well as the comparison with the default
YARN scheduler is presented in Fig. 1.
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The graph shows that the reduced job turnaround times reflected on the
total completion time, and also improved the efficiency (density), expected when
evaluating performance in scheduling. We observed a performance optimization
up to 35%, This is because applications have been better balanced according to
their interference level, so that they compete less for resources.

5 Static Interference-Aware Scheduling

After better understanding on how to measure interference we developed a static
interference-aware scheduling scheme based on the IntP tool described in the
previous Section.

5.1 Placement Policies

The first step towards a static interference-aware scheduling model was the cre-
ation of policies to make efficient placement decisions. To achieve that, we ana-
lyzed the performance of applications that use CPU and Disk I/O intensively,
and, then, generate the placement policies based on such analysis.

For the performance analysis, we use the node-tiers7 benchmark, considering
three multi-tier applications with two tiers each, where both tiers stress the same
resource. The first application was CPU-intensive, the second was disk-intensive,
and the last did not use any resource intensively. Moreover, we generated an
increasing workload, varying the request rate from 0 to 300 requests per sec-
ond. This variation directly impacts the resource interference levels since higher
request rate leads to more resources used to answer the requests. Furthermore,
we have considered two placement variations, where in the first both tiers were
placed in the same PM and in the second each tier was placed in a different PM.

Figure 2a shows the performance of an application consisted of two CPU
intensive tiers. It can be noticed that the execution with higher request size
(512 KB) had a worse performance as compared with the lower request size
(1 KB). This is a natural behavior since the higher the request size is, the more
pressure it puts on both operating system and network. Additionally, while the
request rate was low, the performance for all executions remained stable. How-
ever, as the request rate increased, the execution with high network usage run-
ning in different PMs suffered performance degradation. In this case, the network
becomes flooded with many requests, and as the network bottleneck is reached,
the response time increases exponentially. On the other hand, while running with
same request size, but in the same PM, there is no impact on the performance.

Figure 2b presents the response time of the application that had two disk
I/O intensive tiers. The response time kept acceptable while the workload was
low. However, as the workload increased, the application presents a different
behavior from the one seen in the CPU intensive application. All four executions
of this application have performance degradation, but this degradation comes

7 https://github.com/uillianluiz/node-tiers.

https://github.com/uillianluiz/node-tiers
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earlier in the executions that run the tiers on the same PM. As a conclusion
of this execution, disk I/O intensive applications tend to suffer more from the
interference of co-hosted tiers.
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Fig. 2. Response time of the applications while varying the workload.

5.2 Classification Based on Thresholds and Static Model

Even though the aforementioned insights are useful for optimizing the placement,
it would be important to consider other resources, such as memory and cache,
and also to consider the levels of interference from each one. For these reasons,
we present an interference classification based on thresholds for deciding the best
placement of web applications.

As already mentioned, each resource may suffer from interference in different
ways. A high level of disk interference may be much more prejudicial to an
application than a high level of CPU interference. For this reason, we are not
going to use the interference levels by themselves, but rather the performance
degradation a given interference level generates. Hence, we classified interference
levels into four classes for simplification: Absent, Low, Moderate, and High.
Even though this classification reduces the breadth of the problem, it is still an
improvement to the state-of-the-art works, which most of them consider only two
levels (absent and present). Each class covers different interference levels that go
from 0 to 100% as follows: Absent (0–0%), Low (1–20%), Moderate (21–50%),
and High (51–100%).

Based on this classification, we analyzed performance interference for co-
hosted applications using the node-tiers benchmark and response time as perfor-
mance metric. Initially, we prepared synthetic workloads that fit an application
into each of the interference classes. For the Absent class, there is no performance
degradation, i.e., it increases the response time in 1.0 time. For other classes,
we conducted experiments running a two-tiers application, and put a load stress
using the stressing tool Artillery [25] to find out the workload necessary to fit
the application into the Absent, Low, Moderate, and High classes.
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The interference-related performance degradation was obtained using a sim-
ulated one-tier application deployed by node-tiers. Artillery was configured with
50 concurrent threads producing HTTP’s request bursts to the application dur-
ing the 40-min run time. We collected the average response time while the appli-
cation was running in isolation. Afterwards, we inserted Low, Moderate, and
High applications in the same PM, and calculated the performance degradation
using the equation perfclass/perfabsent, where perfclass is the average response
time for each interference class, and perfabsent is the average response time while
running in isolation. Furthermore, based on this methodology, the characteriza-
tion of interference performance degradation is shown in Table 3.

Table 3. Performance degradation generated by resource interference.

Level CPU Memory Disk Cache Network

Absent 1.00 1.00 1.00 1.00 1.00

Low 1.03 1.07 1.12 1.07 1.05

Moderate 1.15 1.62 1.82 1.18 1.32

High 1.33 1.74 2.25 1.26 1.57

Placement algorithms aim to put a set of applications in the smallest number
of PMs to make the data center resource efficient. In order to minimize the
performance degradation generated by resource interference, we have created
CIAPA8. This is a scheduling analysis tool that uses an interference cost function.

All resource interference metrics are measured and allocated into an interval.
Depending on the interval which they are set, the cost value varies according
Table 3. CIAPA tries to minimize the total cost by testing all possible combina-
tions of applications per host.

To evaluate and analyze the quality of CIAPAs placement algorithms, first,
we define two scenarios that will serve as workload in this section: (I) set of
two multi-tier applications with high conflict between resource interference. The
first application has two CPU moderate-intensive tiers, while the second has
two disk I/O high-intensive tiers; (II) set of three multi-tier application with less
conflict in the same application, but high affinity levels and resource interference
between tiers from different applications. Medium workload to emulate a private
cloud and to allow the execution in our real test bed.

In order to validate if cost is actually correlated with performance, we verify
how CIAPA performs when compared to related work, so that we have run both
scenarios with CIAPA and in a real environment. We executed the placement
algorithms for both cases, comparing CIAPA again with the interference [26] and
affinity [27] strategies, and after reproducing them in our experimental environ-
ment. Figure 3 shows the cost generated by each placement as well as the average
response time achieved by the multi-tier applications for both cases. Also here,
8 https://github.com/uillianluiz/ciapa.

https://github.com/uillianluiz/ciapa
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Fig. 3. Cost and average response time comparison of CIAPA against Interference and
Affinity aware placement strategies for Cases I (a) and II (b).

we can see that CIAPA was not only able to generate a placement with lower
cost, but this cost also led to the best overall application’s performance. In Case
II, a more representative workload, we can observe a reduction in response time
of 10% when compared to Interference strategies, and up to 18% when consid-
ering only affinity strategies.

6 Dynamic Scheduling Scheme

In the last section, we presented an interference-aware scheduling schema based
on a static classification of applications, that was fixed over their entire execution.
In this section, we begin to experiment with a dynamic scheme, to better react to
workload changes during the execution of these applications, and consequently
improve resource usage even more.

6.1 Exploring Dynamic Interference Profiles

To explore a dynamic interference-aware profile, we had to use an application
that has variations in its workload. So, a QoS-oriented e-commerce benchmark,
called Bench4Q9, has been elected. First, we created an increasing workload,
starting with a low load and gradually going to a high load, and profiled it with
IntP. Figure 4 shows interference suffered by each resource in this experiment.
The top chart presents the classification method seen in Sect. 5, with one label
per profiled resource over the entire application execution. After observing the
interference behavior change, a question came up: what if this method were exe-
cuted more than once over curse of the application execution in a segmented
way? Would these labels change? So, we executed the static classification mul-
tiple times. Since we do not know what would be the best number of intervals
to perform it, we arbitrarily divided the execution into four parts and ran the
classification method for each part again. Results are shown at the bottom chart,
in the same figure.
9 https://projects.ow2.org/view/bench4q.

https://projects.ow2.org/view/bench4q
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Fig. 4. Unique (top) and Segmented (bottom) Interference Classification. *To facili-
tate the visualization, a Loess function was applied to smooth short-term variations.
**Resources that suffered classification changes are shown in bold.

It is possible to notice that there are resources that do not change their labels,
for instance, memory, cache, and network. Since they keep their interference
metrics at the same level, on average, with no expressive variation, their labels
are maintained. On the other hand, some resources do change their labels, namely
CPU and disk. Disk has a smooth decrease in its behavior, moving from low
to absent label, at the execution halfway. But CPU has the biggest behavior
change, starting with low, going to moderate levels, and ending with a high
interference level. This highlights that, due to their dynamic workload nature,
each application should be handled differently.

6.2 AI-driven Interference-Aware Application Classifier with
Preliminary Results

As we showed in the previous experiment applying a static classification method
over some applications with high workload variations will lead to an unrepre-
sentative classification estimate. Thus, this approach may disfavor the place-
ment of different types of applications that have dynamic workload patterns. To
tackle this issue, we created an interference-aware application classifier based on
machine learning techniques. The proposed classifier receives monitored metrics
from applications and automatically outcomes their interference levels without
setting its thresholds.

To implement the classifier, two machine learning algorithms have been cho-
sen: SVM for classification and K-Means for clustering. Initially, SVM receives
interference metrics collected from the target application. Then those metrics are
separated into main resource classes: Memory, CPU, Disk, Network, and Cache.
Subsequently, K-Means quantifies them and returns their interference levels.
Both machine learning algorithms use a training dataset, previously defined, to
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assist their decisions. Figure 5 illustrates an overview of how the classifier works
with more details.

SVM 
(supervised)

K-Means 
(unsupervised)

CPU

Memory

Disk

Network

Cache

Interference 
Metrics

CLASS:31

2 Training Dataset

CPU

Memory

Disk

Network

Cache 

LEVEL:

Fig. 5. Classifier Architecture Overview: (1) collecting of interference metrics; (2) train-
ing dataset assisting ML algorithms; (3) classification process [17].

The target application is monitored with the IntP tool, every second. When
the defined monitoring period is over, the classifier gathers interference metrics
collected and utilizes it as input data. After, the SVM algorithm trains its model
supported by the data set and turns back the classification results. After classi-
fying a given application into target classes (Memory, CPU, Disk, Network, and
Cache), they are stored in classes queues and become K-Means input data. We
have set four possible levels: absent, low, moderate, and high. When there is no
incidence of interference from some class, the classifier interprets it as Absent.
When any class produces interference activity, it is sent to K-Means that deter-
mines the interference levels of each resource class.

To evaluate the proposed classifier, we verify how it performs when compared
to state-of-the-art studies. Since few related works optimize interference at levels
similar to ours, three approaches have been chosen, as follows:

– Even implements the EvenScheduler, the Apache Storm10 default scheduler;
– Ludwig et al. [16] evaluates the profile of the application workloads and

uses an static interference classification at levels;
– Proportional categorizes the interference from each resource through a pro-

portional division of the ranges of interference levels. This strategy is com-
monly adopted in the resource management field [11].

Even uses an “in order” scheduling strategy, so, it does not take interference
classification aspects into account. Ludwig et al. and Proportional are similar
approaches that utilize interference classification based on fixed thresholds. The
difference between them lies in how their intervals are delimited: Ludwig et al.
defines them empirically, and Proportional applies a fair division. To perform the
comparison, we used three applications: Bench4Q, TPC-H11, and LinkBench12.
10 https://storm.apache.org/.
11 http://www.tpc.org/tpch/.
12 https://github.com/facebookarchive/linkbench.

https://storm.apache.org/
http://www.tpc.org/tpch/
https://github.com/facebookarchive/linkbench


18 V. Meyer et al.

For each application, we have created four workload patterns: increasing, peri-
odic, decreasing, and constant.

A classification scheme, that better represents workload variations, tends to
use resources more efficiently [17]. Therefore, in this experiment, all classifica-
tion methods adopted the Segmented format, this means that all interference
traces were divided into four parts and each one was classified with all classifica-
tion methods. Classification outcomes were inserted into CIAPA over different
numbers of hosts: 4, 6, 8, 10, and 12. The results are presented in Fig. 6.
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Fig. 6. Comparison of Scheduling Costs with State-of-the-Art.

It is possible to observe that, in all executions, the Even method presented
the worst results (higher costs), which was already expected since this method
is not interference-aware driven. In general, our solution demonstrated the best
placement costs, presenting an improvement in the scheduling efficiency by 27%,
on average, compared to the other strategies from related work. The only excep-
tion appears with 12 hosts. In this case, each host handles only one application,
producing no interference and generating the lowest possible scheduling costs. As
the number of hosts decreases, scheduling costs become higher. Therefore, the
resource concurrency among co-hosted applications tends to increase as well.
With 4 hosts, the highest costs occurred, revealing the case with more cross-
application interference incidence and greater performance degradation.

Preliminary results, with different workloads, have confirmed that resource
interference may result in overhead that has a high impact on application per-
formance, which was already demonstrated by related work. These experiments
enforce that an AI-driven interference-aware fine-grained classification scheme,
which represents better the variability of workloads over time, can improve
results even more, executing efficient scheduling decisions while enhancing the
performance of applications and reducing SLA violations.

6.3 Challenges of a Dynamic Scenario

Although the proposed static methods already deliver better scheduling deci-
sions and improve resource usage than state of the art, we have shown that by
performing a dynamic classification, it is possible to reach even better resource
scheduling results. After analyzing the experiments’ outcomes, we have noticed
that this idea presents great research potential. However, changing the schedul-
ing architecture from static to dynamic is a challenging task and we believe some
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modifications should be done in order to adjust the system due to the following
issues:

– Since dynamic workloads present variations over time, it is mandatory to have
a method that analyzes time-series information to find the right moments to
perform scheduling decisions;

– It is essential to build a manager module that coordinates and schedules all
resources and application executions at runtime;

– Implementing all these features will probably generate system overhead.
Smart policies are needed to keep this overhead low to not consume the
benefits of a improved dynamic scheduling.

6.4 Prediction Models for Proactive Scheduling

As previously stated, the workload may fluctuate a lot in certain environments,
and to avoid QoS drops that may result in SLA violations providers usually
resort to over-provisioning. But this leads to increasing provisioning costs and
energy consumption. Predicting the future workload is one of the strategies by
which the efficiency and operational cost can be improved. This strategy allows
the previous allocation of sufficient resources to maintain QoS and avoid SLA
violations.

Several works in this area explored strategies to better adapt environments to
applications fluctuating demands using machine learning algorithms by tracing
high and low level data (e.g., HTTP requests, disk, cache, CPU, throughput)
[12]. They mentioned predictive models could be applied over past workload
traces to accurately allocate the resources that are necessary to satisfy QoS in
advance.

In this context, the prediction models solve a regression problem, which
means that variables are estimated over time, and the target is the amount
of workload in a future period (e.g., seconds, minutes, hours, days) [2].

We evaluated the most popular machine learning-driven models that are
broadly adopted in related work [9]: ARIMA, MLP, and GRU. We used short-
term predictions that allow flexibility for scheduling strategies. Thus, our pre-
liminary results compare the models under different time intervals of workload
predictions following the distribution order of 5 min in a 60 min interval. The
NASA HTTP traces13 were used as workload in our experiments.

Figure 7 shows a more detailed view of the predictions for 15 min confirming
that all three techniques coped with the dynamics of the proposed workload. As
previously stated, our experiments show that short-term predictions achieved
good predictions. A disadvantage of ARIMA is that the time series are recalcu-
lated for each prediction. This can be time consuming and compromises its appli-
cation in certain environments. ARIMA laso showed to be more dependent on
the number of workload samples and the definition of its parameters than MLP

13 http://ita.ee.lbl.gov/html/contrib/.

http://ita.ee.lbl.gov/html/contrib/
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Fig. 7. Predictions with 15-min

and GRU. Both MLP and GRU models need fewer samples to give precise fore-
casts in all experiments. Based on the accuracy metrics, GRU achieved slightly
better results for workload characteristics in our preliminary experiments.

7 Related Work

Many studies have been previously conducted on building interference-aware
scheduling strategies, and the challenge is to have fast and scalable tools for
addressing real-world applications. Furthermore, with virtualization technology,
it has become possible to consolidate easily and quickly adapt resource allocation.
In this section, we only discuss those works that are most closely related to
interference-aware classification and scheduling aspects.

Zang et al. [37] propose two schedulers: one in the virtualization layer to mini-
mize interference, and one in the Hadoop framework that helps batch processing
jobs meet their own performance deadlines. The combination of these sched-
ulers allows data center administrators to safely mix resource-intensive Hadoop
jobs with latency-sensitive web applications, and still achieve predictable per-
formance for both. The evaluation shows that both schedulers allow a mixed
cluster to reduce web response times by more than ten fold while meeting more
Hadoop deadlines and lowering total task execution times by 6.5%.

Chen et al. [1] present CloudScope, a system for diagnosing interference for
multi-tenant cloud systems. It employs a discrete-time Markov Chain model for
the online prediction of performance interference of co-resident VMs. It uses the
results to optimally (re)assign VMs to physical machines and to optimize the
hypervisor configuration, e.g. the CPU share it can use, for different workloads.
The authors have implemented CloudScope on top of the Xen hypervisor and
conducted experiments using a set of CPU, disk, and network-intensive work-
loads and a real system (MapReduce). The interference-aware scheduler improves
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virtual machine performance by up to 10% compared to the default scheduler,
achieving an average error of 9%. The authors claim that the hypervisor recon-
figuration can improve network throughput by up to 30%.

To address latency-sensitive application issues, such as QoS impact, and
overcome limitations in existing offline approaches, Shekhar et al. [24] present
an online, data-driven approach that utilizes Gaussian Processes-based machine
learning techniques to build predictive run time models of the performance of
the system under different levels of interference. The predictive online models are
then used in dynamically adapting to the workload variability by vertically auto-
scaling co-located applications such that performance interference is minimized,
and QoS properties of latency-sensitive applications are met. A comparison with
a representative latency-sensitive application reveals up to 39.46% lower tail
latency than reactive approaches.

Wang et al. [33] developed data-driven analytical models to estimate the
effect of interference among multiple Apache Spark jobs on job execution time in
virtualized cloud environments. Next, they present the design of an interference
aware job scheduling algorithm leveraging the developed analytical framework.
The evaluation of model accuracy was measured using real-life applications on a
6 node cluster while running up to four jobs concurrently. Experimental results
show that the scheduling algorithm reduces the average execution time of indi-
vidual jobs and the total execution time significantly and ranges between 47 and
26% for individual jobs and 2 to 13% for total execution time, respectively.

8 Conclusions

Virtualized environments have been heavily applied by the IT community due
to their flexibility and efficacy to manage resources, allowing also their efficient
sharing to improve utilization rates and reduce energy consumption. However,
multiple services contending for shared resources may generate cross-application
interference and this can lead to severe performance degradation. There is strong
evidence showing that this kind of interference can have a significant impact on
application performance and consequently break service level agreements. It is
also dependent on the type of the shared resource and workload variations.

In this paper we presented the state of the art in interference-aware scheduling
for virtualized environments, our main contributions to this area and the chal-
lenges and advantages of applying a dynamic scheduling scheme to this problem.

After more than a decade investigating ways to better understand and avoid
cross-application interference we strong believe that, due to its sensitivity to
workload variations, this is the way to go. Nevertheless, there are still opportu-
nities for improvement in the areas of application classification and pro-active
dynamic scheduling strategies.
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Abstract. Co-locating and running multiple applications on a multi-
core system is inevitable for data centers to achieve high resource effi-
ciency. However, it causes performance degradation due to the con-
tention for shared resources, such as cache and memory bandwidth.
Several approaches use software or hardware isolation techniques to miti-
gate resource contentions. Nevertheless, the existing approaches have not
fully exploited differences in isolation techniques by the characteristics
of applications to maximize the performance. Software techniques bring
more flexibility than hardware ones in terms of performance while sac-
rificing strictness and responsiveness. In contrast, hardware techniques
provide more strict and faster isolations compared to software ones. In
this paper, we illustrate the trade-offs between software and hardware
isolation techniques and also show the benefit of coordinated enforce-
ment of multiple isolation techniques. Also, we propose HIS, a hybrid
isolation system that dynamically uses either the software or hardware
isolation technique. Our preliminary results show that HIS can improve
the performance of foreground applications by from 1.7–2.14× compared
with static isolations for the selected benchmarks.

1 Introduction

A variety of applications from the simple web server to the complicated machine
learning are running in the modern data centers. In the data centers, these
applications are typically running on the multicore servers, sharing the comput-
ing resources such as CPUs and memory to improve resource efficiency. Sharing
resources on a machine is essential to reduce the total cost of ownership (TCO)
of the data center; however, it causes contentions for the shared resources lead-
ing to performance degradation [13]. The performance degradation may result
in user complaints and tremendous revenue loss [14]. To meet the service level
objectives (SLOs) of multiple applications while improving resource efficiency
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in a machine, it is necessary to enforce isolation techniques appropriately to
mitigate resource contentions.

There are two types of isolation techniques for multicore systems, that is,
software and hardware ones. Software techniques are isolation techniques that
allocate resources such as CPU and memory by controlling interactions among
threads and resources in a software manner. They are broadly used in vari-
ous platforms because it is relatively easy to adopt software isolation tech-
niques [8,21]. Moreover, software techniques are flexible in terms of performance,
allowing multiple configurations for maximizing performance [6,17]. On the other
hand, software techniques are relatively loose isolation than hardware ones since
they do not directly segregate or manipulate resources contrary to hardware ones.
It makes software isolations less strict and less responsive than hardware ones,
which may result in relatively slow isolation enforcement and high-performance
variations [23]. Further, compared with hardware isolation, software one may
have a larger search space for configurations due to considerable available com-
binations. For example, hardware cache partitioning provides strict isolation for
last-level cache, and per-core dynamic voltage frequency scaling (DVFS) is useful
when boosting latency-critical operations [9,23].

Several research works have utilized software and hardware isolation tech-
niques. First, some works use software techniques, such as core allocation, cycle
throttling, and thread placement [6,17,20,21]. Software approaches focus on effi-
cient, portable, and flexible isolation. However, their approach is less strict in
terms of providing predictable performance, and less responsive in that latency
to isolation may be relatively high. Second, a few works utilize hardware tech-
niques, such as hardware cache partitioning and per-core DVFS [9,23]. Hardware
approaches are strict and fast because they directly control the hardware fea-
ture for performance isolation. Their approach allows stable performance for
workloads by segregating resources completely or quick response time for rapid
changes in workloads. However, the approach may use a few hardware config-
urations that may not be enough for achieving maximum performance. Third,
some research works use both hardware and software techniques for the isola-
tion of multiple resources [4,15]. Their works are in line with ours in terms of
using multiple types of isolation techniques. However, we focus on the tradeoffs
in hardware and software techniques, which they have not fully explored.

In this paper, we investigate the characteristics of isolation techniques in
terms of strictness, responsiveness, and flexibility. We explore the tradeoffs lying
between hardware and software techniques and further evaluate a prototype that
combines software and hardware isolation techniques to overcome the shortcom-
ings of each isolation technique. The proposed scheme considers the tradeoffs
mainly caused by the isolation mechanism which is either strict and low-latency
hardware techniques or loose but flexible software ones to mitigate the con-
tentions dynamically according to the workloads’ resource demands and execu-
tion patterns. To realize the hybrid isolation scheme, we developed a profiler
and a user-level scheduler that uses four isolation techniques. It uses two hard-
ware isolations, which are hardware cache partitioning and per-core DVFS, and
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two software isolations that allocate cores and perform thread placement. Using
these techniques, the scheduler can perform isolation strictly, fast, and flexibly to
consolidated workloads. We have evaluated our prototype with the two types of
foreground workloads, such as latency-sensitive and batch one, while the batch
workload runs in the background. Our preliminary results show that the pro-
posed scheduler can improve the performance of foreground workloads by from
1.7–2.14× compared with static software isolations.

The contributions of our work as follows:

– We have explored the tradeoffs between hardware isolation techniques and
software ones in terms of the strictness, responsiveness, and flexibility.

– We have designed and implemented a hybrid isolation system which adap-
tively isolates workloads considering the characteristics of workloads and
tradeoffs in the isolation techniques.

– We have evaluated preliminarily that our system can improve the performance
compared with static isolations for the selected benchmarks.

The rest of this paper is organized as follows: Section 2 briefly presents the
background for isolation techniques. Section 3 describes the tradeoff between
hardware and software techniques, and Sect. 4 shows problem of ineffective iso-
lations. Section 5 describes the design and implementation of our prototype.
Section 6 shows the preliminary evaluation. Section 7 covers the related work.
Finally, Sect. 8 concludes this paper.

2 Background

This section briefly describes the existing software and hardware isolation tech-
niques and illustrates tradeoffs between these isolation techniques.

2.1 Existing Isolation Techniques

Table 1 shows the existing hardware and software isolation techniques. Most
schedulers utilizes the software isolation techniques and hardware isolation tech-
niques in the table. All isolation techniques can be categorized by three types;
Throttling, Scheduling, and Partitioning.

2.1.1 Software Isolation Techniques

Software techniques reduce contentions among workloads by using software inter-
faces. Throttling and Scheduling are the representative types of software
isolation techniques. Throttling is a broadly used to minimize performance
interference by controlling the execution rates of contentious workloads among
co-located ones. For example, Google CPI2 throttles CPUs of background work-
loads to protect the performance of co-located production workloads [21]. Mem-
guard restricts the memory accesses of the memory-intensive workloads based
on assigned memory budget throttling CPU cycles [20]. Limiting CPU cycles is
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an efficient software isolation technique which throttle the execution of specific
workloads [8,20,21]. The technique mitigates the contention for shared resources
by limiting the number of cycles to quota within the configured periods. If the
assigned cycles are exhausted during a period, the core will remain idle until the
new period begins.

Another technique is mitigating contentions via Scheduling. Two techniques
are mostly used for Scheduling. One is CPU allocation, and the other is thread
migration. CPU allocation is simple, yet the effective software technique to iso-
late workloads. It works purely in software manner, and easily reduces the con-
tention of shared resources. It allocates dedicated CPU cores to each workload
to minimize resource contention among workloads. When allocating cores to
workloads, it is critical to consider which workloads will be colocated with each
other [6,11,16,17,24]. Because resource contention among workloads can grow
or not depending on which workloads are co-located. When resource contentions
can not be resolved by other isolations in a socket, thread migration can be help-
ful by migrating the most suffered workload to the less contentious socket (or
machine). This can be helpful where exist severe contentions that Throttling
can not mitigate. In contrast, in the cases of all the possible schedule pairs can
not relax the contention, Scheduling may result in poor performance due to the
unnecessary overheads as it would fail to find better workload pairs.

Table 1. Comparison of the existing hardware and software isolation techniques

Hardware isolation techniques Software isolation techniques

Intel

CAT [10]

Per-core

DVFS [19]

CPU cycle

limit [18]

CPU

allocation [7]

Thread

migration [7]

Type Partitioning Throttling Throttling Scheduling Scheduling

Latency (ms) 3 2 40–50 3 90

Configurations

(Xeon E5-2683v4)

# of ways (20

per LLC)

# of available

freq. (10 per core)

Quota/period

(100)

# of cores (16) # of sockets (2)

Strictness High High Medium Medium Low

Responsiveness High High Medium High Low

Flexibility Low Low High High High

2.1.2 Hardware Isolation Techniques

Hardware techniques physically allocate resources to mitigate contentions among
workloads or exploits specific hardware features equipped on recent multi-
core machines. Hardware techniques can provide fast and strict isolation com-
pared with the software ones, because they directly control hardware interfaces.
Besides, hardware techniques have lower latency than software ones. Because
they have a fewer number of available configurations, which makes configura-
tion search faster when enforcing isolations. There are two types of hardware
isolation techniques; Partitioning and Throttling. Partitioning is a rep-
resentative hardware isolation technique which strictly segregates resources for
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multiple workloads. For hardware partitioning, there are Intel Cache Alloca-
tion Technology (Intel CAT) for LLC way-partitioning [10] and Intel Running
Average Power Limits (Intel RAPL) for limiting power consumption [5].

Another hardware isolation technique is Throttling-type one using dynamic
voltage frequency scaling (DVFS). DVFS is originally designed to perform power
management, however, owing to the advance of DVFS, voltage regulators on
recent CPUs can adjust a voltage of each core in the CPUs. This enables faster
and low-overhead controls for specific operations [9], thus this can enable fine-
grained isolation for latency-sensitive workloads [23].

3 Trade-Offs Between Hardware and Software Techniques

In this section, we describe the trade-offs between hardware and software iso-
lation techniques. Also, we present the effects of isolation techniques by the
characteristics of workloads such as resource demands.

To describe the trade-offs, we ran two workloads, each is a multi-threaded
process and ran on a single socket while enforcing performance isolation. The
test machine has 32 GB of RAM, and its CPU is a Xeon E5-2683v4 (2.1 GHz,
16-cores). We turned off the hyper-threading feature. For baseline, we used static
software isolation (i.e., Core Allocation). We used cgroups cpuset [7] to allocate
8 cores (16 cores) of one socket equally to each workload and allocate local mem-
ory. We chose several benchmarks for foreground workloads that show a diverse
range of memory and LLC access pattern; streamcluster and canneal of PAR-
SEC [2], and kmeans and nn of Rodinia [3], and Apache benchmark (ab). For
background workloads, we used SP of the NASA parallel benchmark [1] because
it shows high LLC and memory bandwidth usage enough to stress memory sub-
system.

Strictness. To show the strictness of hardware techniques and software ones,
we compared hardware cache-partitioning and software cycle-limiting by run-
ning two workloads concurrently on a socket. We ran canneal as a foreground
and SP as a background by allocating the equal number of dedicated cores. For
hardware isolation, we allocated the equal amount of LLC to each workload, and
for software isolation, we limited the CPU cycles of a background workload to
use only 50% of assigned CPU cycles to restrict LLC accesses to its half.

Figure 1 shows the changes in LLC usage and instructions per cycle (IPC) of
foreground and background workloads. As shown in Fig. 1a and 1b, when using
the hardware isolation technique, the LLC allocations are equally divided all
the time due to the direct and strict segregation of hardware isolation. On the
other hand, when using the software isolation technique, the LLC allocations
are changed dramatically over times, because the software isolation does not
guarantee the physical segregation of resources.

The difference between isolation techniques makes the performance of work-
loads unpredictable. Figure 1c and 1d show the performance variations of the
software isolation. Software CPU cycle limiting shows a larger variation com-
pared with the hardware cache partitioning in the case of foreground workload.
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Fig. 1. Comparing the strictness of the hardware and software isolations, necessary for
predictable performance, the software one shows high variation of performance. Work-
loads are canneal (foreground) and SP (background). x-axis represents the number of
samples and y-axis represents LLC allocation and IPC of workloads.

Even worse, in the case of background workload, those variations are getting
much bigger, showing more unpredictable IPCs when software cycle limiting.
As a result, we find that the hardware isolation technique provides better pre-
dictable performance than the software isolation technique by enforcing strict
isolation.

Responsiveness.We also compared responsiveness of the hardware and software
technique to find which technique can provide more fine-grained contention con-
trol by performing isolation quickly. We define responsiveness of isolation tech-
nique as the latency to its effect. We chose per-core DVFS as a hardware iso-
lation technique and CPU cycle limiting as a software one to demonstrate the
difference in terms of the responsiveness. Per-core DVFS can adjust the core
frequencies at 0.1 GHz granularity. On the other hand, CPU cycle limiting can
change the cycle at 1% granularity. Even though the control granularity of soft-
ware is more fine-grained, the speed of enforcing isolation is faster when enforc-
ing hardware isolation. Enforcing core frequency takes a couple of milliseconds.
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Fig. 2. Comparing the responsiveness of the hardware and software isolations. The
graph shows the responsiveness can affect the performance. Workloads are apache web
server (ab) (foreground) and SP (background). x-axis represents the percentile of web
server request and y-axis represents the latency of web server

Meanwhile, enforcement of cycle limiting takes 40–50 ms which is 13–25× longer
than DVFS as shown in Table 1.

To illustrate the responsiveness of the hardware and software isolation tech-
nique, we ran two workloads in a socket, and each runs on the eight dedicated
cores; one is apache web server and the other is SP that shows high LLC and
memory bandwidth demands. We evaluated the responsiveness of isolation tech-
niques by running the apache benchmark (ab) which sends the requests to the
web server. While running two workloads, we increased the request load of the
web server, and also throttled the execution of the background workload. To
compare hardware and software techniques, we conducted the experiments twice;
first with per-core DVFS, and second with CPU cycle limiting. In both exper-
iments, we throttled the CPU cores of the background workload by increasing
the degree of isolation by a step at every 200 ms, and we increased ten steps.
For per-core DVFS, we changed the CPU frequency of the background workload
from 2.1 GHz to 1.2 GHz by 0.1 GHz. In the same way, for CPU cycle limiting, we
also changed the allowed CPU cycle percentage from 100% to 57%, which is the
same degree as DVFS. Figure 2 presents how the hardware isolation technique
responds more quickly. When performing the software isolation, 98th percentile
latency can be 1.33× higher than hardware isolation. This latency difference in
tail-latency comes from fast isolation speed thanks to low overhead of hardware
technique. The effect of fast isolation may be more important where the resource
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Fig. 3. Benefits of the flexible software isolation. canneal and SP show high LLC
and memory contentions. However, swaptions and nn are relatively not. In case of
performing the hardware isolation, the contention is still high. On the other hand, the
software isolation can effectively mitigate the contention significantly. x-axis shows the
runtime and speedup of workloads and y-axis shows their name and CPU affinities.
The ranges in parenthesis indicate the range of CPU IDs where workloads runs.

contention changes frequently or fine-grained control matters. Consequently, we
find that the hardware isolation technique is more responsive than software one.

Flexibility. We investigated the flexibility of the hardware and software isola-
tion technique. Flexibility means the ability to choose better scheduling options
by mapping threads to resources (e.g., CPU cores and memory nodes) or group-
ing workloads which minimize the contentions and improve the throughput for
the workloads. To describe the effectiveness of flexibility, we grouped four work-
loads, which shows high LLC-intensity or memory bandwidth intensity, into
two groups. And, two workloads are paired in each group, and scheduled each
group to the separate sockets. We performed different isolations to the same four
workloads; the first with the hardware cache partitioning and the second with
scheduling by regrouping the background workloads. Figure 3 shows scheduling
is more effective than hardware cache partitioning, so that the performance of
canneal and SP improves by up to 1.6× and 1.3× than the hardware one. Some
workloads show performance degradations, but their performance loss is reason-
able considering the other workloads’ performance benefit. The results indicate
that software isolation can be useful when the resource contention can not be
reduced by the hardware isolation, which have a few isolation options. In this
experiment, hardware cache partitioning can only solve resource contention in a
socket. However, software isolations such as migration enable more options for
enhancing performance and improving resource efficiency.

4 Ineffective Isolations

In addition to the trade-offs between isolation techniques, the isolation effects
depend on the characteristics of workloads such as resource demands. The same
isolation technique can deliver different impacts according to the workloads. We
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Fig. 4. Enforcing multiple isolations to streamcluster and canneal, each colocated
with SP. The execution time is normalized to the performance of a workload running
on the dedicated cores on the default system (P: Partitioning, T: Throttling, and
S: Scheduling).

present a simple example of multiple isolations are performed on the different
foreground under the high LLC and memory contention.

To demonstrate the effectiveness of each isolation, we tested all isolation
techniques which are Partitioning, Throttling, and Scheduling. We manu-
ally divided LLCs evenly to workloads using Intel CAT for Partitioning. We
also changed the execution rate of background workload by setting the frequency
of core as the highest frequency (2.1 GHz), the middle frequency (1.7 GHz), and
the lowest frequency (1.2 GHz) for Throttling. Finally, we changed the number
of cores of the background workload to the half of allocated cores, which is four
cores, to describe the effect of mitigating memory contention via Scheduling.
The baseline is the case of when two workloads are running on its dedicated
cores without performing any isolation.

As shown in Fig. 4, the performances of foregrounds vary according to the
different isolation techniques. This is because the resource demands of the fore-
grounds are different from each other, and also isolation effects are different
depending on the isolation techniques as well. In the case of streamcluster,
partitioning LLC increased the execution time by 20% compared with the base-
line, but Throttling or Scheduling reduced the execution time by 10% com-
pared to the baseline. This is because the streamcluster is a memory band-
width intensive workload, so restricting LLC makes its performance worsen.
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However, Throttling or Scheduling could increase the memory bandwidth
of streamcluster by reducing background’s memory access. In the case of
canneal, it uses less memory bandwidth than streamcluster, but it is an LLC
intensive workload with high LLC hit ratio. For canneal, all three isolations can
reduce the execution time significantly.

However, in the case of streamcluster, when both techniques (Throttling
and Scheduling) are used, the execution time is reduced by 24% compared with
the baseline configuration. On the other hand, in case of canneal, the execution
time is reduced by up to 38%, which is the highest performance improvement. In
this way, we find that effective isolation techniques can be different according to
the characteristics of the workload. Moreover, we realize that it is necessary and
important to enforce appropriate isolation techniques adaptively considering the
changed contentions.

5 HIS: Hybrid Isolation System

This section briefly describes the overview of how our proposed system can
deal with the trade-offs between multiple isolation techniques depending on the
characteristics of workloads. To achieve this goal, we propose HIS, a hybrid
isolation system that leverages hardware and software isolation techniques to
mitigate contentions and improve the performance of workloads.

Figure 5 illustrates our HIS architecture. As described in the figure, our
system consists of a profiler, isolation techniques, and a scheduler. We divide
workloads as foreground workloads and background workloads. The foreground
is a latency-critical or high-priority batch workload and the background is the
best-effort workload. HIS groups these two types of workloads and performs
isolations on workload groups and places a group on a socket to improve resource
efficiency. We also assume there is one foreground workload in the workload
group like other clouds do [15].

The profiler collects the performance counters from workloads, and then pro-
files resource contentions from the collected counters. To profile resource con-
tention online, the profiler performs solo-run mode, which enables for a fore-
ground workload to run alone, to obtain the performance counters of each work-
load when no contention exists. After profiling solo-run data, the profiler collects
performance counters of consolidated workloads to estimate how contentions
affect resource usages. We define the performance counters of workloads when
workloads co-executes as co-run data. Note that, we currently consider the solo-
run data for the foreground workloads. We will describe more detail of solo-run
mode at the Sect. 5.1. Both the obtained solo-run data and the co-run data
are used to calculate the resource contention. After that, it sends the informa-
tion of resource contention to the scheduler. Then, the scheduler checks which
resource contention is the most contentious and decides an isolation technique
considering the types of isolation technique and resource contention. Once an
isolation technique is selected, the scheduler searches for a configuration of iso-
lation and enforces isolations until the contention is minimized to below the
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Fig. 5. HIS architecture. It consists of a profiler, isolation techniques, and a scheduler.
The redline shows control flow and black dotted line shows the feedback of workload
profiles, performances, and isolation decisions. The scheduler uses four isolation tech-
niques; two hardware isolations (i.e., Intel CAT and per-core DVFS) and two software
isolations (i.e., core allocation and thread migration).

pre-tuned threshold (i.e., 5% for each contention). In other words, the scheduler
adjusts isolations to reduce the resource contention for a foreground workload
close to when the workload runs alone. The scheduler repeats this procedure
until the foreground workload finishes.

For isolations, HIS checks which isolation technique is the most appropriate
one among multiple isolation ones; HIS considers multiple hardware and software
isolations, and applies isolation techniques incrementally to improve the perfor-
mance of a foreground workload while maximizing that of background one. This
approach is useful because the scheduler reflects the subsequent resource con-
tention and can enforce the corresponding isolation technique. For enforcing a
proper isolation, the scheduler should know the dominant contention and decide
appropriate isolations. Following sections will describe how the profiler profiles
contention and how scheduler chooses isolation configurations in detail.

5.1 Profiling Contention

Profiling contention is essential for performance isolation. Our scheduler receives
the resource usages of workloads from the profiler to estimate the contention on
the system. To profile the contention, the profiler measures the per-workload
performance counters such as LLC misses and LLC references in every profile
interval (i.e., 200 ms). It calculates the resource contention by the difference of
resource usages between when all workloads run concurrently (co-run) and when
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a workload runs alone (solo-run). We used the differences of co-run and solo-
run data, because it presents resource sensitivity of a workload that how much
the performance of workloads is degraded by the contention compared with no
contention exists [11,22,23].

The profiler maintains the solo-run data for each foreground workload to
calculate the resource contention, thus the scheduler checks whether the solo-
run data exists or the execution phase has changed at every scheduling interval
using already sampled data. If there is no data to calculate resource contention
or the profile sample data is outdated, then the scheduler dictates to collect
the new samples for solo-run data by stopping other background workloads. We
call this procedure solo-run mode. We used two signals to enable solo-run mode;
SIGSTOP for stop running workloads and SIGCONT for resume stopped workloads.
To enable the solo-run mode, the profiler stops all current isolations and also
pauses other background workloads during the successive profile intervals (e.g.,
one or two seconds). During the solo-run mode, only a foreground workload runs
alone, and after finishing, the profiler stores all collected performance counters
during the mode and resumes all previously paused isolations and background
workloads.

The profiler classifies the workloads by their mostly used resources and also
classify them by the type of the workload provided by users (e.g., FG and BG).
We focused on the LLC and memory bandwidth to mitigate the contention
on the memory subsystem. To measure the LLC contention, we used the LLC
misses and LLC references, obtained by performance counters, and calculate
the LLC hit ratio reflecting how much workload reuses the LLC. In addition,
local mem bytes, obtained by Intel Resctrl, is used to estimate the memory
bandwidth contention. The metrics can be added to consider more contentions
and complicated execution patterns. With these metrics, the profiler can deter-
mine the dominant resource by comparing them, and also classify a workload as
one of which CPU-intensive, LLC-intensive, or memory bandwidth intensive at
every scheduling interval.

5.2 Hybrid Isolation

In this section, we will detail the trade-offs of isolation techniques and describe
how our scheduler leverages them to mitigate the contention.

5.2.1 Isolation Mechanisms

HIS considers four isolations to mitigate contentions. In Table 1 of Sect. 2.1.1,
HIS uses four techniques, which are hardware cache partitioning, per-core DVFS,
core allocation, and thread migration, in hybrid isolation system.

Hardware Isolations. For hardware isolations, we used the Intel Cache Allo-
cation Technology (Intel CAT) and per-core dynamic voltage frequency scaling
(DVFS). With Intel CAT, HIS can allocate a LLC by the unit of a way. In
our machine (i.e., Xeon E5-2683v4, 16-cores per socket), a socket has 40 MB of
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LLCs and each consists of 20 ways. Intel CAT provides strict isolation for the
LLC in a socket, because it partitions LLCs physically by masking the ways in
Resctrl. We also used the per-core DVFS to throttle the execution of workload.
Per-core DVFS is used to improve power efficiency of processors as well as mit-
igate the contentions and enable fine-grained control to improve performance of
workloads. Using per-core DVFS, the scheduler can rapidly mitigate the mem-
ory contention, generated from contentious background workloads by adjusting
the frequencies of cores running backgrounds. For enforcing core frequencies, we
used the CPUFreq Governor of Linux.

The hardware isolations perform strict and quick isolation compared with
the software isolations. Hardware cache partitioning provides the strict isolation
which affects more predictable performance for the workloads. They generally
take few milliseconds to reflect their effects to the workloads’ performance. As
shown in Table 1 (in Sect. 2.1.1), we observed 2–3 ms of latencies, and this low
latency is beneficial to meet the SLOs of the latency-sensitive workload when
the execution patterns of workloads changed frequently or the load of latency-
sensitive workload shows high variation.

Software Isolations. For software isolations, we used the cgroups cpuset to
allocate CPUs and memory nodes to workloads. To mitigate the contentions
on the multicore systems, two software isolations are used in scheduling; core
allocation and thread migration. Core allocation performs the allocation of CPU
cores for workloads to isolate core resources by their CPU demands. For example,
latency-sensitive workloads such as the web server can show high load variation
by the user patterns, so the CPU demands can vary by their loads. Therefore,
core allocation should be performed according to the CPU demands to improve
resource efficiency and meet the SLO of foreground workloads.

Unlike core allocation which manages the contention of a workload group,
thread migration detects the performance imbalance between workload groups,
then it regroups those workloads by migrating workloads to the other socket.
The thread migration is effective when the contention on a workload group
is too large to be mitigated by other isolations (e.g., hardware isolations) on
the single socket. However, too frequent thread migrations may be harmful to
the performance because the cost of the memory migration over the sockets is
expensive [12]. Therefore, we designed that thread migration is triggered only
(1) if the performance benefit is estimated to exceed the threshold or (2) if the
phase changes in a workload group is detected.

The software isolations provide flexibility compared with the hardware iso-
lations. Core allocation treats CPU demands as well as mitigates memory con-
tention according to the type of contention of workloads. They typically take
more times than the hardware isolations to reflect isolation impacts on the work-
loads’ performance (e.g., tens to hundreds of milliseconds).
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5.2.2 Hybrid Scheduler

The hybrid scheduler periodically (1) chooses a proper isolation technique and
(2) searches isolation configurations to improve the performance of foreground
workloads within the workload groups. Before the hybrid scheduler initiates iso-
lations, the profiler sends the information about current active workload groups,
such as pid, workload type (FG or BG), and profiled resource contention to the
scheduler. By using the workload group information, the scheduler initiates the
isolations for the workload groups in parallel. While performing isolations, the
scheduler checks whether the workloads in the group need solo-run data to cal-
culate contentions, and if yes, requests for the profiler to perform solo-run mode
to collect the new solo-run data.

Choosing an Isolation Technique. The hybrid scheduler chooses an isolation
technique based on the mostly contentious resource, identified by the profiler.
For the resource contention, at first, the scheduler checks whether the hard-
ware isolation is available for the resource or not, and chooses the isolation if
the isolation is possible and has not been tried. Between software and hardware
isolations, the scheduler prioritizes hardware isolations for the strict and fast
isolation. If all hardware isolation has tried before, the scheduler checks whether
the software isolation technique are available for the resource or not and if it
is possible then chooses the software isolation. If all the hardware and soft-
ware isolations are used, the scheduler reconsider all techniques to reuse them.
We implemented our policy to consider hardware isolation as much as possible.
However, the policy for choosing an isolation technique can be changed to meet
SLOs of the workloads.

There are two cases that the software isolations are chosen rather than hard-
ware one. The first case is wrong invocation for an isolation technique. The
scheduler often fails to search a better configuration due to the a few errors of
profile data. For instance, the profiler may identify CPU contention as major fac-
tor when the actual contention is LLC contention. In this situation, the scheduler
may perform hardware cache partitioning by its profile results. To minimize this
case, we may choose isolation techniques more conservatively by not changing
techniques until successive contentions are detected. The second case is when the
scheduler exploits all hardware techniques, but still fails to reduce the contention
because of their lower number of available configurations. For example, while the
per-core DVFS may be not enough for mitigating severe memory contention due
to its small configuration ranges, restricting the number of cores may be more
beneficial to mitigate memory contention.

Enforcing Isolation. After choosing the isolation, the scheduler searches iso-
lation configurations that minimize the resource contention by enforcing the
various configurations repeatedly and incrementally. Whenever before enforc-
ing isolation, the scheduler decides whether it allocates more resources to the
foreground workload or not, based on resource contention. For example, if the
dominant resource contention for the foreground workload is LLC contention,
and also if the LLC hit ratio of the foreground one during co-run is lower than
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that of solo-run, the scheduler allocates more LLC ways to foreground workload.
Because lower LLC hit ratio than the solo-run typically means that foreground
workload can be improved if the workload is assigned more LLC ways.

Once the isolation is performed, the scheduler waits until the effect of enforc-
ing an isolation is reflected, and then it repeatedly checks the degree of the
contention. We empirically find that 200 ms is the most effective time to feed-
back contentions, yet the wait time can be tuned depending the target workloads.
The scheduler finds there is no severe contention, or it can not perform the isola-
tions further (e.g.., searching all possible configurations), then the configuration
search ends. Finally, the scheduler enforces the configuration for chosen isolation.

6 Preliminary Evaluation

This section describes the preliminary experimental setup and results. We eval-
uated the hybrid isolation system for the batch and latency-sensitive workloads
compared with the default Linux system using static software isolations. Here,
we define the baseline as the case of co-run where the foreground and the back-
ground runs together on a socket. Both workloads share memory subsystem such
as an LLC and a memory controller, but have their own dedicated CPU cores.

6.1 Experimental Setup

We evaluated the HIS on a dual 16-core Intel Xeon E5-2683 v4 server. The LLC
size of the server processor is 40 MB and can be allocated to the workload in 2 MB
units (per a way) using Intel CAT. The nominal frequency is 2.1 GHz and the
configurable core frequencies are 10 steps from 1.2 GHz to 2.1 GHz. We turned
off Turbo-boost and Hyper-threading. Our test machine is equipped 32 GB of
RAM with each socket. The maximum bandwidth of the socket is measured to
68 GB/s by Intel VTune and we used Linux kernel 4.19.0.

We used various benchmark applications from four different suites. For batch
foregrounds, we used PARSEC (bodytrack, canneal, streamcluster, dedup,
facesim, ferret, fluidanimate, swaptions, and vips) and Rodinia (cfd, nn,
kmeans, and bfs). For latency-sensitive foregrounds, we used the apache web
server and ab (apache benchmark). In the case of latency-sensitive foreground,
the scheduler should respond quickly to deal with the load spikes of the web
server. We chose the SP from NPB as the background, because SP shows high
memory bandwidth and LLC usage than other benchmarks.

6.2 Preliminary Results

6.2.1 Batch Workloads

We show the performance results for the batch workloads running as the fore-
ground in Fig. 6. In the figure, HIS isolates foreground workload effectively, so
that the performance of batch workloads are improved significantly compared to
the co-run. In case of canneal, the performance is improved more than 1.7× than
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Fig. 6. Performance improvement of the batch foreground workload with HIS com-
pared to the co-run. Each workload is initially allocated eight dedicated cores (back-
ground workload: SP).

co-run with simple core isolation that the workloads run on their dedicated cores,
and the scheduler improves the performance of benchmarks on average 1.22×
than co-run. On the other hand, the performance of the background workload is
degraded, because our scheduler restricts the resource usage of the background
workload to improve the performance and the responsiveness of foreground.

6.2.2 Latency-Sensitive Workloads

Figure 7 presents the performance of latency-sensitive workload running as the
foreground. In order to evaluate the performance of latency-sensitive workload,
we modified the ab which uses the Pareto distribution to reproduce situations
where a few users are connected during most of the time and the connections
are bursty. We measured the percentile latencies of requests.

In the figure, HIS can reduce the tail-latencies of web server below the perfor-
mance of solo-run (8 cores) until 99.9th percentile, because the scheduler consid-
ers changes in dynamic load of the web server as well as the dominant resource
contentions, and enforces various isolation techniques according to them. We
also plot the tail-latencies of solo-run (12 cores) to compare with the proactive
approach that reserves CPU cores as much as the maximum CPU cores that
HIS allocates under the experiment. The latencies of HIS are higher than solo-
run (12-cores), because HIS begins by allocating fewer cores to workload and
increase the number of cores assigned to the workloads.

Compared with the co-run, HIS achieves the performance up to 2.14×
speedup (for 99.9th percentile latency), while the performance of background
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Fig. 7. Performance improvement of the latency-sensitive foreground workload
(Apache web server) with HIS compared to the co-run. Each workload is initially
allocated eight dedicated cores (background workload: SP).

workloads is slow down by 1.47×. We observed that the main reason for the per-
formance improvement of foreground is due to fast and strict hardware isolation,
core isolation which allocates more cores depending on the CPU demands, and
adaptive isolations.

7 Related Work

There have been many studies on isolation approaches used in multicore systems.
Software isolation is widely used in most multicore systems. CPI2 [21] detects
the performance anomaly and identifies the suffered a victim workload using
statistics of CPI(Cycles Per Instruction), and throttles the CPU usage of the
antagonist for performance isolation. Their work is inline with ours in terms of
throttling background workloads with software isolations. However it only uses
software techniques which provide less strict isolation, thereby needs harsh CPU
hard-capping for antagoist for strictness (i.e., 0.01 CPU-sec/sec).

Memguard [20] isolates the memory bandwidth contention based on its mem-
ory budget. It utilizes a software isolation that throttles memory access of each
workload by restricting CPU cycles, thus each workload’s memory bandwidth
can not exceed the assigned memory bandwidth. Similar to our work, it iso-
lates memory resources by reserving memory bandwidth, but it does not uti-
lize hardware isolation technique, so there is no guarantee for strict isolation.
However, our work uses hardware isolation techniques to supplement strictness.
Both CPI2 [21] and Memguard [20] isolate workloads by throttling CPU using
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a software technique, and they can mitigate memory contention easily. However
software techniques may result in unintended interferences under the co-location
of workloads showing bursty behaviors.

Dirigent [23] is a fine-grained isolation runtime system which partition an
LLC and throttle CPUs. Similar to ours, it exploits hardware isolation techniques
such as hardware cache partitioning and per-core DVFS to meet the SLOs of a
latency-sensitive workload while backfilling batch workloads to improve resource
efficiency. Our work is in line with their work [23] in terms of providing fine-
grained isolations for considering the characteristics of workloads. However, we
focus on the adaptive enforcement of multiple isolation techniques according
to the characteristics of workloads, thus we can take more options for better
performance isolation.

Quasar [6] utilizes a machine learning algorithm to infer which colocation
mostly mitigates the shared resource contention, and uses scheduling and thread
migration, which is the software approach, for isolation of consolidated work-
loads. Their work is inline with ours in terms of multiple isolation techniques In
contrast, they only uses software isolation techniques for higher flexibility which
can not provide strict and fast isolation.

Heracles [15] and PARTIES [4] isolate workloads by partitioning and throt-
tling resources using both hardware and software isolation schemes to meet SLOs
of production workloads while increasing resource efficiency. Similar to ours, their
works are inline with ours in terms of using multiple isolation techniques for
multicore systems. However, their works do not consider the tradeoffs between
isolation techniques which can be harmful for the strictness and flexibility.

8 Conclusion

We developed a hybrid isolation system that utilizes hardware and software iso-
lation techniques in a hybrid manner by the characteristics of the workloads.
We have explored the tradeoffs between hardware and software isolation tech-
niques, and illustrated how these properties affect performance of consolidated
workloads. We have proposed an algorithm for isolation to use isolation tech-
niques mutually complementary through characteristics analysis of workloads
and comparison of each isolation technique. Our experimental results show that
our approach can improve the performance of foreground workloads in terms
of execution time than the static software isolation by from 1.7×–2.14× while
improving resource efficiency for the selected benchmarks. For future work, we
will evaluate our prototype with more diverse workload combinations. Also, we
will investigate isolation techniques for the different micro-architectures such as
AMD and ARM to generalize our ideas.
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Abstract. Typical cluster schedulers co-locate critical tasks and back-
ground batch tasks to improve the utilization of resources in the cluster.
However, this leads to resource contention and interference between the
diverse co-located tasks. To ensure guaranteed resource allocation and
predictability, critical tasks are executed within containers as they pro-
vide resource isolation using container resource allocation mechanisms.
Linux-based containers achieve resource allocation and isolation using
a kernel feature known as Control Groups (cgroups). Cgroups allow
the division of CPU time into shares which can be allocated to differ-
ent groups of tasks. In our study, we run workloads on servers with
different hardware configurations and measure the CPU time per sec-
ond, or the CPU bandwidth, that the critical tasks in the workloads
can consume. Our workloads have been generated using a cluster trace
published by Google, and contain a mixture of critical and background
tasks. The results of the experiments show that under high CPU load
conditions, the CPU bandwidth consumed by the critical tasks is inad-
equate and unstable because of the poor resource isolation offered by
cgroups. However, when these tasks are scheduled with the careful use of
SCHED DEADLINE policy, which is based on the Global Earliest Dead-
line First and Constant Bandwidth Server algorithms, they steadily con-
sume their required CPU bandwidth irrespective of the load on the CPU.
As a result, when critical tasks are scheduled using SCHED DEADLINE,
they experience 3×–40× smaller delays than under cgroups.

Keywords: Resource isolation · Cgroups · Containers · CPU
bandwidth

1 Introduction

As a result of the cost benefits of deploying multiple applications on shared
infrastructure, companies are moving more and more of their computations to
private and public clouds. The workloads running on these clouds comprise crit-
ical tasks and background tasks. Critical tasks need guaranteed resource alloca-
tions and/or have strict latency requirements. These are generally tasks of user-
facing services such as web search that are deployed on stream processing frame-
works like Storm [29] and Flink [7]. Background tasks comprise batch jobs from
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frameworks, such as Hadoop [30] which do not have stringent resource require-
ments and may be latency-tolerant. To improve the utilization of servers, tasks
with diverse characteristics and resource requirements are co-located. There have
been numerous works that use heuristics to find optimal combinations of tasks
to schedule on to systems such that the utilization of the infrastructure is maxi-
mized without violating service-level objectives [10,11,15,21,22,32]. Despite the
recognized benefits of shared infrastructure, it gives rise to two concerns: resource
isolation [4] and security. Today, containers have emerged as a popular light-
weight virtualization solution to address both these issues [23]. In Linux-based
containers, two kernel features - control groups (cgroups) [8] and namespaces,
are used to implement resource-isolation and security, respectively. The cgroups
feature was introduced in Linux kernel version 2.6.24. It allows users to impose
constraints on the resource utilization of groups of tasks. While cgroups allow
users to manage multiple resources such as memory and network bandwidth,
in this paper, we focus on the resource isolation offered by cgroups for CPU
bandwidth.

SCHED DEADLINE, originally designed for embedded systems [5,12,18],
is a real-time CPU scheduling policy available in Linux kernel version 3.14
onward. The policy is based on 2 algorithms - Earliest Deadline First (EDF)
and Constant Bandwidth Server (CBS). It schedules tasks based on their dead-
lines and performs admission control of tasks to prevent over-provisioning of
the CPU bandwidth, thereby ensuring that all the deadlines can be met. While
SCHED DEADLINE has traditionally been used to guarantee temporal isola-
tion of real-time tasks, that is, ensuring that deadlines of tasks are met, we show
that it can also be used to secure the required CPU bandwidth for critical tasks,
undeterred by the load on the CPU.

We use samples from the Google Cluster Trace [27] to emulate cluster work-
loads consisting of critical and background tasks. The results of our experiments
show that when critical tasks are allocated CPU bandwidth using cgroups, they
are unable to steadily consume their required bandwidth because of interfer-
ence from the background tasks. When the same tasks are scheduled using
SCHED DEADLINE, they are able to consistently consume their required CPU
bandwidth which results in smaller delays in their response times.

The contributions of the paper are a description of how we have used the
Google Cluster Trace to emulate cluster workloads, a method to estimate the
parameters required for scheduling with SCHED DEADLINE, and a comparison
of the resource isolation offered by cgroups and SCHED DEADLINE.

The rest of the paper is organized as follows. Section 2 summarizes scheduling
in the Linux operating system. Section 3 describes in detail the workloads used
and the experimental setup. Section 4 presents the results of the study. Section 5
discusses related works and finally, Sect. 6 concludes the paper.

2 Background

Linux is a multitasking general-purpose operating system and must concurrently
execute interactive as well as CPU bound jobs. Therefore, the scheduler needs
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to give preference to interactive tasks to ensure quick responses, while ensur-
ing that CPU-bound jobs do not starve. Linux also supports real-time schedul-
ing policies to handle tasks with real-time constraints. SCHED DEADLINE,
SCHED FIFO, and SCHED RR are the real-time policies available in the Linux
scheduler. The SCHED DEADLINE policy, based on Global Earliest Deadline
First [19] and Constant Bandwidth Server [2] algorithms, is used to grant tem-
poral isolation to tasks and predictability in their execution. In our work, we
show that SCHED DEADLINE offers better resource isolation than cgroups.

2.1 Completely Fair Scheduler

The Completely Fair Scheduler [25] is Linux’s default scheduling policy. Tasks
scheduled under SCHED OTHER, SCHED IDLE and SCHED BATCH policies
are all handled by CFS. In our work, we only consider one of CFS’s policies:
SCHED OTHER. Since CFS does not provide implicit resource isolation, we
have used the results of critical tasks scheduled under CFS (SCHED OTHER) as
a baseline to compare the CPU bandwidth allocation with and without resource
isolation. In all the scheduling scenarios in our study, the background tasks are
scheduled using SCHED OTHER only.

2.2 SCHED DEADLINE

The SCHED DEADLINE policy was added to the Linux kernel in 2014, to ver-
sion 3.14 and is based on the Global Earliest Deadline First and Constant Band-
width Server algorithms. Tasks scheduled under this policy are given the highest
priority in the system and can preempt tasks of all other policies. Since the
scheduling policy is based on CBS it ensures non-interference between tasks by
throttling threads that try to consume more than their allotted share of the CPU.
While CFS ensures maximum utilization of the CPU and that no process starves,
SCHED DEADLINE provides predictability to tasks that have strict deadlines
and latency constraints. To schedule a task using SCHED DEADLINE, 3 param-
eters are passed to the scheduler—sched runtime (budget), sched period
(period) and sched deadline (deadline). The budget denotes the amount of
CPU time the task needs every period. Hence, the share of CPU time allotted
to the task is sched runtime ÷ sched period. The sched deadline parameter
conveys to the scheduler that it must allocate sched runtime seconds of CPU
time to the task within sched deadline seconds of each period. If a task tries
to consume more CPU time than its budget, it is throttled until its next period.
This property, combined with the fact that the tasks of this policy are assigned
the highest priority, enforces resource isolation between the tasks. To ensure that
deadlines can be met and that the required budget can be sanctioned to each
task every period, the scheduler performs a schedulability test. The schedulabil-
ity test only allows a new thread to enter the runnable thread pool if the sum
of the CPU usage rates of the new thread and the existing threads in the pool
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continues to be less than the number of processors. That is,

n∑

i=1

sched runtime

sched period
<= N (1)

where N is the number of processors, and n is the runnable threads in the
system, including the new task. However, to ensure that non-real-time tasks do
not starve, an upper limit is enforced on the total CPU usage rate of real-time
tasks. To reflect this the above equation is modified:

n∑

i=1

sched runtime

sched period
<= N × rt quota% (2)

where rt quota% is the cap on the aggregate CPU usage rate of real-time tasks.
rt quota is equal to 95% by default in Linux.

In our work, we make use of the resource isolation offered by
SCHED DEADLINE while scheduling critical tasks. However, since the tasks
may be long-running, aperiodic, and have dynamic resource requirements, we
use the SCHED DEADLINE policy differently from its conventional usage for
real-time tasks. In our work, we show that the policy can also be used to secure
the CPU bandwidth necessary for the critical tasks to run without delays. Since
the bandwidth requirements may vary with time, for every window of time
during which the CPU bandwidth is constant, SCHED DEADLINE is used
to secure the needed CPU bandwidth. A description of this modified usage of
SCHED DEADLINE is given in Sect. 3.3. When scheduling critical tasks using
SCHED DEADLINE, if a task fails the schedulability test, we put the task to
sleep for 0.1 s, and then try to reschedule the task. We repeat this step until the
task is successfully scheduled. The sleep duration was determined empirically
based on the trade-off between the polling overhead and delay in scheduling the
thread.

2.3 Control Groups

Control groups, or cgroups, were introduced as a part of the Linux kernel in
version 2.6.24. They allow system administrators to make resource reservations
and partitions for groups of tasks. The cgroups interfaces to resources such as
CPU or memory are known as subsystems. In our work, we focus on the CPU
only and have thus made use of the CPU subsystem. Linux-based containers use
the CPU subsystem to enforce CPU bandwidth isolation with the help of shares.
Shares are integers used to describe the relative share of total CPU bandwidth
that a cgroup is assigned. That is, a cgroup’s portion of the total CPU bandwidth
is the number of shares assigned to the cgroup divided by the total number of
shares available. If a task is not assigned explicitly to a cgroup, it comes under
the root cgroup. In our study, we assign the critical tasks to a cgroup, group p.
We have allocated group p with 95% in the initial runs, and then with 99% of
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the CPU shares. The number of shares assigned to group p is calculated using
the following formulae:

group p shares

group p shares + root shares
= share% (3)

The root cgroup has 1024 shares by default. If the subsystem has only one
explicitly defined group—group p, it has to be assigned 19456 shares to give the
tasks in group p access to a minimum of 95% of the total CPU bandwidth (using
Eq. 3).

Cgroups also allow users to enforce hard upper limits on the amount of
CPU Time that can be consumed in a specified period. This is done by defining
quotas. In our work, we have not used quotas for the background tasks to ensure
optimum CPU utilization. When the critical tasks do not require the remaining
CPU bandwidth, the background tasks scheduled using quotas cannot make
use of this bandwidth, thereby reducing the overall utilization of the CPU and
introducing unnecessary delays in the background tasks.

Scheduling of tasks under cgroups is undertaken by CFS by default. In
our work, the critical tasks assigned to cgroups are scheduled using CFS
(SCHED OTHER).

3 Methodology

The objective of our study was to compare the resource isolation offered by
cgroups and SCHED DEADLINE policy. To do so, we measured the CPU
bandwidth consumed by the critical tasks in the workloads under different
scheduling scenarios. When resource isolation is not robust, interference from
the co-located tasks does not allow critical tasks to consume the required CPU
time at the rate needed by the tasks. This leads to delays in their response
times. While robust resource isolation could be guaranteed to critical tasks by
scheduling them on dedicated CPU cores, such course-grained allocation leads
to severe underutilization of the CPU resources. Hence, we have used cgroups
and SCHED DEADLINE to allocate resources at a finer granularity.

In this paper, the terms CPU usage rate, bandwidth, share and utilization, all
represent the amount of CPU Time that is consumed or required every second.
While the terms all measure the same quantity, they have been used depending
on the context of the measurement and cannot be used interchangeably. The
quantity, CPU usage rate, used by Google in their cluster trace, is measured
in core-second/second. We have used the term CPU bandwidth to refer to the
ratio of the CPU Time consumed or required per second, to the total CPU Time
available per second. We use the term “Total CPU bandwidth” to denote 100%
CPU bandwidth. Therefore, if a task running on a 4-core machine has a CPU
bandwidth requirement of 20%, it consumes 20% of the total CPU time available
every second, that is, 20% of 4 core-seconds. Therefore, its CPU usage rate is 0.8
core-second/second. We have used the term share, as per the cgroups definition,
for the relative amount of CPU Time allotted to a cgroup per second. The term
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CPU utilization has been used to denote the utilization of the entire CPU of the
server when executing a workload or a part of it.

3.1 Workloads

The two workloads used in our experiments were created from the Google Clus-
ter Trace [27]. The trace, published by Google in 2011, contains data about the
different tasks that run on a 12k node cluster for 29 days. It includes measure-
ments such as CPU and memory usage, task characteristics such as priorities
and scheduling classes, and the attributes of the machines on which the tasks
are deployed. All the dimensions in the trace have been normalized relative to
the largest capacity of a resource.

3.2 Workload Generation

To generate the High CPU Utilization (HCU) workload, we first chose a machine
from the trace that had experienced a high CPU load. To do so, we selected
all machines from the machine events table with CPU capacity 1 (maximum
capacity, since all the resource dimensions are normalized). The utilization of
the cluster is maximum during days 22 and 23 of the trace [28]. We found
the average utilization of the selected machines on these days by joining tables
task usage and task events. The tasks events table contains information about
the priority and scheduling class of each task and the task usage table holds a
log of the resource consumption of each task for every measurement window.
The measurement window is typically 300s unless it is the beginning or end of
a task’s execution lifetime. From the top 10 machines with the highest average
utilization, we chose a machine that had tasks with a diverse mixture of priorities
and scheduling classes. For our second workload, the Low CPU Utilization (LCU)
workload, we sampled the resource usage data for the same machine but for day
10—during which the CPU utilization was relatively lower. The LCU workload,
therefore, has a lower overall CPU utilization.

Since our study only concerns CPU time, each row of the resulting trace
sample consisted of the following values:

1. Start time of the measurement period
2. End time of the measurement period
3. Mean CPU usage rate
4. Priority
5. Scheduling class

As all measurements in the trace are normalized, the “Mean CPU usage
rate” in the sample, measured in core-second/second, ranged from 0–1. Google
has chosen not to disclose their machine specifications to the extent we require,
hence, to be able to denormalize the resource measurements, we made assump-
tions about the values of the CPU clock speed of the machine chosen. We used
the parameters of a typical machine of that period to assume that the chosen



Improving Resource Isolation of Critical Tasks in a Workload 51

machine, machine A, was a 4-core machine with a processing speed of 2.1 GHz.
While generating the workload, we have made a simplifying assumption that
the CPU clock speed is constant for the values reported in the trace. However,
we have executed the workload on real systems with varying CPU speeds. The
assumption holds since we use the results to perform comparisons between dif-
ferent runs on a given system only, and not across systems. We calculated the
following values for each measurement period in the trace as per the assumptions
made:

ExecutionT ime = Endtime− Starttime (4)

CPURuntimeA = Normalized CPU Usage Rate× 4 × ExecutionT ime (5)

Here, Starttime and Endtime are the beginning and end of the measurement
window in the trace. CPURuntimeA is the runtime of the task on machine
A and Normalized CPU Usage Rate is the normalized mean CPU usage rate
given in the trace for each measurement window. We multiply by 4 to undo the
normalization based on the assumed number of cores. To run the workloads on
the target machine, machine B, we scaled them appropriately by performing the
following calculations:

ClockCycles = CPURuntimeA× ClockSpeedA (6)
= CPURuntimeB × ClockSpeedB (7)

∴ CPURuntimeB =
CPURuntimeA× ClockSpeedA

ClockSpeedB
(8)

CPURuntimeB is the denormalized CPU time the task is to consume on
machine B, ClockSpeedA and ClockSpeedB are the CPU speeds of the chosen
machine, machine A, and the target machine, machine B, respectively.

Each task in the workloads was executed as a separate multi-threaded pro-
cess. When the CPU usage rate of a task was greater than 1 core-second/second,
the rate was split equally among multiple threads and scheduled to run on mul-
tiple cores. To consume CPURuntimeB seconds of the CPU, the task thread
executed a few mathematical statements for CPUSlice seconds and was then
put to sleep for SleepSlice seconds. The task thread repeated these steps until
the total CPU Time consumed by it equaled CPURuntimeB. The parameters
were calculated as follows:

SleepT imeB = ExecutionT ime− CPURuntimeB (9)

NumSlices =
ExecutionT ime

Slice
(10)

CPUSlice =
CPURuntimeB

NumSlices
(11)

SleepSlice =
SleepT imeB

NumSlices
(12)

The value of Slice was set to 0.05. Algorithm 1 summarizes how the tasks were
modeled and emulated based on the calculated values.
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Algorithm 1: Pseudo-code for running a task in the workloads.
Input: trace sample trace
begin

Function RUN ON CPU(row)

slice = 0.05 num slices = row.window/slice
cpu slice = cpu time/num slices sleep slice = sleep time/num slices
current cpu time = 0

while current cpu time < cpu time do
Run math operations on CPU till CPU time equal to cpu slice is
consumed;

Sleep for sleep slice seconds;
current cpu time = current cpu time+ cpu slice;

end
Function Main(trace)
foreach row ∈ trace do

if row.cpu time > row.window then
num threads = ceil(row.cpu time/row.window)
row.cpu time = row.cpu time/num threads

for i ← 0tonum threads1 do
execute RUN ON CPU(row) on a new thread

end
else

RUN ON CPU(row)
end

end
return Task Completed

end

For each task, a logger thread maintained a log of the CPU usage rate of
the task. The aggregate CPU usage rate of each task class was later found
and plotted. The average delay in the tasks, as well as the delay observed in
each measurement window, were plotted for each scheduling scenario. We also
recorded the overall CPU utilization % of the workloads every second.

Only tasks with priority 9 or higher and scheduling class greater than 0 were
considered as “critical”. Other tasks were labeled as “background”. We did so
based on the analysis of the trace by Reiss et al. [28] and the description of the
trace parameters published by Google [27]. Since there are no descriptions of
the jobs and tasks in the trace, we assume that critical tasks are those tasks
that have stringent-latency constraints and/or need strict resource allocation
guarantees.

We created two different workloads to study resource isolation under different
CPU load conditions. The HCU workload consisted of 7 critical tasks and 7
background tasks. A summary of the tasks in the workload scaled for the 4-core
machine according to the methodology described in Sect. 3.2, can be found in
Table 1. The LCU workload contained 9 critical tasks and 33 background tasks.
Both workloads had a runtime of around 2 h. The CPU bandwidth requirements
of the two categories of tasks in the HCU and LCU workloads are shown in
Fig. 1.
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Table 1. Description of the HCU workload tasks on the 4-core machine.

Task No Type Mean CPU Usage Rate [Std Dev]

(in core-second/second)

Duration (in s)

1 Critical 0.186 [0.024] 5700

2 Critical 0.179 [0.018] 5700

3 Critical 0.162 [0.019] 6300

4 Critical 0.039 [0.042] 6600

5 Critical 0.030 [0.025] 6600

6 Critical 0.042 [0.040] 6600

7 Critical 0.705 [0.154] 6600

8 Background 1.398 [0.266] 6600

9 Background 0.247 [0.085] 6600

10 Background 0.239 [0.090] 6600

11 Background 0.231 [0.120] 6600

12 Background 0.261 [0.124] 5438

13 Background 0.247 [0.094] 6600

14 Background 0.001 [0.0] 246

Fig. 1. CPU bandwidth requirement of each task category in the a) HCU workload,
and b) LCU workload.

The delay in the response time was calculated as follows:

ResponseT ime = Task ETime− Task ST ime (13)

Delay = ResponseT ime− TaskExecutionT ime (14)

Where TaskExecutionT ime is defined as the duration between the start and
end of the task as per the trace. Task ST ime and Task ETime are the actual
wall clock times recorded at the start and end of the task thread’s execution,
respectively.
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3.3 Experimental Setup

To compare the resource isolation offered by the two resource allocation mech-
anisms, the upper limit on the CPU bandwidth allocated to critical tasks had
to be set equally for both. In our experiments, we set the upper limit as 95%
of the total CPU bandwidth. This is because, in Linux, the CPU bandwidth
that real-time tasks are allowed to consume is capped, by default, at 95% of the
total CPU bandwidth. The 2 system-wide settings: sched rt period us and
sched rt runtime us, found in /proc/sys/kernel/, determine the CPU band-
width that real-time tasks are allowed to consume [26] and have default values of
1s and 0.95s, respectively, restricting the CPU usage of real-time tasks to 95% of
the total CPU bandwidth. Therefore, for a fair comparison of the two scheduling
scenarios, we assigned 95% of the CPU shares to the cgroup with the critical
tasks. While the critical tasks scheduled using SCHED DEADLINE were allot-
ted a maximum of 95% of total the CPU bandwidth, the tasks scheduled using
cgroups were allotted a minimum of 95% of the total CPU bandwidth. However,
since SCHED DEADLINE tasks are always assigned the highest priority in the
system, the tasks can consume up to 95% of the total CPU bandwidth with-
out being throttled or having to wait for lower priority tasks to yield the CPU.
Therefore, in both scenarios, 95% of the total CPU bandwidth was allocated to
the running of the critical tasks. We ran the workloads under 3 scenarios: i) using
neither cgroups or SCHED DEADLINE (only SCHED OTHER), ii) selectively
assigning the critical tasks to a cgroup with 95% share of the total CPU band-
width, and iii) selectively scheduling critical tasks using SCHED DEADLINE.
The results of scenario (i) were used as a baseline to compare the performance
of tasks with and without resource isolation.

We ran the workloads on two Intel Xeon machines. Since some cloud-
workloads comprise tasks deployed on containers which, in turn, run on Virtual
Machines (VMs), we also conducted our experiments on two EC2 instances. The
details of the servers are summarized in Table 2. In the table, HT stands for
Hyperthreading.

Cgroups: For the cgroups scenario, the critical tasks were scheduled to a cgroup
group p. Since the CPU bandwidth of real-time tasks is capped, by default, at

Table 2. Server configurations

Type CPU speed
GHz

Logical cores
or vCPUs

Linux
kernel
version

EC2 instance- c5n.xlarge 3.0 4 4.15

EC2 instance- c4.2xlarge 2.6 8 4.15

Intel Xeon E3-1220 3.1 4 5.5

Intel Xeon E5-2683 v4 (with HT) 2.1 32 5.5
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95% of the total CPU bandwidth, we assigned 95% of the total CPU shares to
group p to allow us to compare the two scheduling scenarios. The experiment
was also repeated with 99% of the total CPU shares being allotted to group p.

Dynamic Parameter Estimation For SCHED DEADLINE: To sched-
ule tasks using SCHED DEADLINE, 3 parameters need to be set:
sched runtime, sched deadline and sched period. A task thus scheduled
is given sched runtime seconds of CPU Time every sched period seconds
with a relative deadline of sched deadline seconds from when the task begins
execution.

Since the value of sched runtime required by a task is generally unknown
before-hand, we use a dynamic profiling method to estimate the value of
sched runtime. We split the execution of every task in each measurement win-
dow of the trace into 2 stages: a short profiling stage at the beginning of the
window, and an execution stage spanning the rest of the window. We utilised
the resource isolation offered by SCHED DEADLINE even during the profiling
stage to get an accurate estimate of the CPU usage rate required by the task.
During its short profiling stage, each thread in every runnable task was allotted
an entire CPU core for the duration of the profiling stage. That is, if the duration
of the stage is t seconds, sched runtime, sched deadline and sched period are
all set to t. This allowed the task to run unhampered at the CPU usage rate it
required without being throttled or having to deal with interference from other
tasks. After the short profiling stage, we measured the required CPU usage rate
of the task as:

CPU usage rate =
CPUTime

ProfilingWindow

Where ProfilingWindow is the duration of the profiling stage, and CPUTime
is the amount of CPU time (on a single core) consumed by the task dur-
ing the profiling stage. A representation of the stages can be found in Fig. 2.
SCHED DEADLINE performs a schedulability test (Eq. 2) before admitting
tasks into its runnable pool. Hence, if the server has N cores, and tn is the num-
ber of concurrent tasks that are executing in their profiling stage at an instant,
tn <= N. When the number of tasks that wish to enter their profiling stages, tp,
is greater than N, then at least tp - N tasks fail the schedulability test and need
to wait for at least one task to exit its profiling stage before they can enter their
own. We empirically determined the size of the Profiling Window such that the
wait time of the tasks did not cause significant delays in their response times.
Once the CPU usage rate was found, the sched runtime parameter was set to
CPU usage rate seconds and the sched period and sched deadline parame-
ters were set to 1 s. By doing so, we guaranteed that the task got its required
CPU bandwidth every second. Therefore, instead of using SCHED DEADLINE
to guarantee a deadline was met, we used it to secure the CPU bandwidth
required by the task.

Since the Google Cluster trace only reports the mean CPU usage rate for
every measurement window (usually 300 s long), we modeled the tasks such that
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they had a constant CPU usage rate during a measurement window—equal to the
value given in the trace. After every window, we ran the profiling stage again to
find the current required rate and rescheduled the tasks with the updated param-
eter values. In the future, we wish to extend our work to tasks with continuously
varying CPU usage rates.

By default, Linux restricts the total usage rate of real-time tasks to
95% of the total CPU bandwidth to ensure that non-real-time tasks are not
starved. We retained the default value while running our workloads under
SCHED DEADLINE.

4 Results

In this section, we discuss the results of running the LCU and HCU workloads
on the 4 servers under the different scheduling scenarios described in Sect. 3.

4.1 CPU Bandwidth Consumption

Figure 3 shows the CPU bandwidth consumed by the critical and background
tasks of the HCU workload on the 32-core physical machine. In Fig. 4 and Fig. 5,
the CPU bandwidth consumed by the critical tasks in the HCU workload, sched-
uled using CFS, cgroups, and SCHED DEADLINE, is plotted.

The standard deviation of the CPU bandwidth consumed during the inter-
vals of time indicated by the numbers 1 and 2 in Fig. 1a is tabulated in
Table 3 and Table 4, respectively. From the table it is observed that the stan-
dard deviation of the bandwidth consumption is consistently smaller in the
SCHED DEADLINE scenario, proving that the CPU bandwidth consumption
under SCHED DEADLINE is steadier. We have chosen the two intervals towards
the beginning of the runs because, towards the latter part of the runs, the CPU
bandwidth curve for the cgroups scenario lags behind due to delays arising from

Fig. 2. Dynamic sched runtime estimation
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Fig. 3. CPU bandwidth consumed by each task category in the HCU work-
load when scheduled on the 32-core physical machine, using a) cgroups, and b)
SCHED DEADLINE.

insufficient bandwidth allocation. During intervals 1 and 2, the transitions in
the CPU bandwidth consumption in the two time-series are still aligned with
respect to time, therefore, allowing us to compare them.

Table 3. Standard deviation of the CPU bandwidth % consumed in Interval 1 by
critical tasks scheduled using SCHED DEADLINE and cgroups

Server SCHED DEADLINE Cgroups

4-core physical machine 0.032 0.422

32-core physical machine 0.031 1.235

EC2 instance- c4.2xlarge 0.026 1.409

EC2 instance- c5n.xlarge 0.049 1.518

The results show that on all the servers, the bandwidth consumed by the
critical tasks under CFS and cgroups was unsteady and lesser than the required
CPU bandwidth for most of the run. However, the CPU bandwidth consumed
by the critical tasks scheduled with SCHED DEADLINE did not fluctuate as
much and was equal to the required bandwidth for most of the run. This obser-
vation also validates our methodology used for the dynamic estimation of the
sched runtime parameter for the critical tasks (Sect. 3.3). The mean absolute
percentage error (MAPE) and the standard error (SE) in the estimation of
sched runtime for the critical tasks in the HCU workload are recorded for each
server in Table 5.

A similar trend was found when the critical tasks were scheduled under a
cgroup allotted with 99% of the CPU shares (Fig. 6). The standard deviation of
the CPU bandwidth consumed in intervals 1 and 2 is given in Table 6.
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Fig. 4. CPU bandwidth consumption of critical tasks under cgroups on the a) 32-core
physical machine and b) 4-core physical machine, under SCHED DEADLINE on the
c) 32-core physical machine and d)4-core physical machine, and under CFS on the e)
32-core physical machine and f) 4-core physical machine
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Fig. 5. CPU bandwidth consumption of critical tasks under cgroups on the a)
c4.2xlarge instance, and b) c5n.xlarge instance, under SCHED DEADLINE on the
c) c4.2xlarge instance and d) c5n.xlarge instance, and under CFS on the e) c4.2xlarge
instance and f) c5n.xlarge instance
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Table 4. Standard deviation of the CPU bandwidth % consumed in Interval 2 by
critical tasks scheduled using SCHED DEADLINE and cgroups

Server SCHED DEADLINE Cgroups

4-core Physical Machine 0.044 1.745

32-core Physical Machine 0.054 0.578

EC2 Instance- c4.2xlarge 0.027 0.805

EC2 Instance- c5n.xlarge 0.028 1.120

Table 5. Mean Absolute Percentage Error and Standard Error of the estimated
sched runtime parameter in the HCU workload

Server Mean
absolute
percentage
error

Standard error
(in core-
second/second)

EC2 Instance- c5n.xlarge 4.694% 0.043

EC2 Instance- c4.2xlarge 3.726 0.052

Intel Xeon E3-1220 5.349% 0.052

Intel Xeon E5-2683 v4 1.249% 0.030

Fig. 6. CPU bandwidth consumption of critical tasks under cgroups (99% share allot-
ted) on the a) 4-core physical machine, and b) 32-core physical machine.

Table 6. Standard deviation of the CPU bandwidth % consumed in intervals 1 and 2,
by critical tasks scheduled under the cgroup with 99% of the CPU shares

32-core physical machine 4-core physical machine

Interval 1 0.087 0.783

Interval 2 1.139 1.296
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The CPU bandwidth consumed by the critical tasks in the LCU workload,
under the different scheduling scenarios, on the 32-core physical machine is
reported in Fig. 7.

Fig. 7. CPU bandwidth consumption of the critical tasks in the LCU workload, under
cgroups and SCHED DEADLINE, on the 32-core physical machine.

Since the background tasks in the LCU workload have a lower CPU uti-
lization than those in the HCU workload, the interference posed by the tasks
is bound to be lesser. Hence, it can be seen that the CPU bandwidth con-
sumed under both scheduling scenarios was nearly equal to the bandwidth
required. However, the CPU bandwidth consumed by critical tasks under
SCHED DEADLINE was still found to be marginally greater than that con-
sumed under cgroups. Since the difference is not apparent from the plot, we
have briefly summarized the distribution of the CPU bandwidth consumed by
the critical tasks in Table 7.

Table 7. Distribution of the CPU bandwidth % consumed by the critical tasks in the
LCU workload on the 32-core physical machine.

SCHED DEADLINE Cgroups

1st Quartile 36.32% 36.28%

Median 41.66% 41.61%

3rd Quartile 44.28% 44.25%
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4.2 Delay in Tasks

The maximum CPU utilization of the critical tasks in the workloads was found
to be far less than 95% (e.g., only 43.8% on the 32-core physical machine).
Therefore, it is expected that if the critical tasks are assigned to a cgroup with
95% of the CPU shares, the tasks must execute without considerable delay in
their response times. The average delay in the response times of tasks in the
HCU workload, for the 3 scenarios: CFS, selective scheduling of critical tasks
using a cgroup with 95% of the CPU shares, and selective scheduling of critical
tasks using SCHED DEADLINE (with the default 95% cap on CPU usage rate),
is reported for the 4 servers in Fig. 8. The average delay for each task category
has been calculated as the sum of the delays in each of its task, divided by the
number of tasks in the category. The delay in each task was found using Eq. 14.

From the plots, it is evident that despite the cgroup having been allotted
with more than the required number of CPU shares, the response times of the
critical tasks assigned to it were very poor. The average delay of critical tasks
when they were assigned to cgroups was 3 to 40 times larger than the average
delay of the tasks under SCHED DEADLINE. These results were found to be
consistent across all 4 servers.

The average delay in the response times of the tasks in the LCU workload
under the different scheduling scenarios is shown in Fig. 9. While the delays
were smaller than those in the HCU workload, it can be seen that, here too,
the delay in the critical tasks scheduled with SCHED DEADLINE was smaller
than the delay under cgroups. However, unlike the HCU workload, the average
delay in the background tasks in the LCU workload is smaller than the average
delay in the critical tasks. We suspect this is due to two reasons. First, the
CPU bandwidth requirement of the critical tasks in the LCU workload is much
higher than that of the background tasks. Second, the background tasks in the
LCU workload are short-lived while the critical tasks are long-running tasks.
Both these factors cause the critical tasks to be more adversely affected by
resource contention leading to larger delays. In the case of the HCU workload,
the background tasks had a higher CPU bandwidth requirement when compared
to the critical task. Since the background tasks are scheduled using CFS which
penalizes CPU-bound jobs, larger delays were found in the background tasks of
the HCU workload. We also suspect that the reason behind the slightly higher
average delay in the critical tasks of the LCU workload under cgroups, when
compared to CFS, is due to contention within the cgroup itself.

To further study the resource isolation, the delays observed in the critical
tasks at the end of each measurement period and the CPU utilization of the HCU
workload were recorded throughout the run (Fig. 10). It was found that under
cgroups, the delays of the critical tasks in each measurement period increased
considerably when the CPU utilization of the workload was high. Hence, it is
evident that the performance of the critical tasks under cgroups was not immune
to the load on the CPU. However, under SCHED DEADLINE, the magnitude
of the delay in the critical tasks was not only considerably smaller but also
remained nearly constant throughout the run, unaffected by the changes in the
CPU load.
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Fig. 8. Average delay in the response time of tasks of the HCU workload on the a)
4-core physical machine, b) 32-core physical machine, c) c5n.xlarge instance, and d)
c4.2xlarge instance.

Fig. 9. Average delay in LCU workload tasks on the 32-core physical machine.
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Fig. 10. Total CPU utilization of the 32-core physical machine while running the HCU
workload and the corresponding delay in the critical tasks scheduled using a) cgroups
and b) SCHED DEADLINE.

5 Related Work

In this section, we survey work that is related to resource isolation, cgroups, and
the performance of scheduling policies such as SCHED DEADLINE that enforce
temporal isolation in the CPU.

Several enhancements have been proposed to the cgroups feature to improve
its I/O resource management capabilities on NUMA machines with SSDs [3,24].
Gao et al. [13], studied the different ways in which it is possible to circumvent
the resource isolation enforced by cgroups and how an adversarial container can
take advantage of the weaknesses inherent in cgroups to consume more resources
than it is allowed to. From our work, too, it is evident that cgroups are unable
to provide robust resource isolation for CPU time and background hogs can
interfere with the tasks running in cgroups, thereby reducing their chances of
getting the required share of CPU time.

PINE [20] is a performance isolation optimization strategy that dynamically
adjusts disk space and I/O concurrency levels based on the performance require-
ments of tasks— either throughput or latency.

Vitucci et al. [31] compared the performance of SCHED DEADLINE with
non-resource isolating algorithms like SCHED FIFO and SCHED OTHER con-
cluding that SCHED DEADLINE provides an almost stable throughput com-
pared to the other scheduling policies.

AIRS [16] is based on two algorithms—Flexible CBS and EDF with Window-
constraint Migration (EDF-WM). The results show that AIRS is able to achieve
higher frame rates than SCHED DEADLINE when running multiple movies due
to the use of the EDF-WM algorithm. The work, however, does not touch on
resource isolation or stability of CPU bandwidth allocation. It instead focuses on
improving overall system utilization by allowing tasks to divide runtime among
multiple cores and to share excess CPU bandwidth allocation.
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In [9], the authors make use of the IRMOS real-time scheduler with KVM
to provide stable performance to real-time applications running on VMs. The
IRMOS scheduler allocates CPU time to a group of threads, such that the threads
share the specified CPU time within a given period. Since our paper focuses
specifically on the isolation of individual critical tasks, rather than VMs, we
make use of the SCHED DEADLINE policy without having to modify underly-
ing system software. Our sched runtime parameter estimation methodology is
dynamic, and unlike the benchmarking in the aforementioned work, it does not
require dedicated resources. This is because we use the SCHED DEADLINE pol-
icy to provide the resource isolation necessary to estimate the CPU bandwidth
requirement of critical tasks.

In [1], the authors present a hierarchical scheduler to execute the tasks in
real-time control groups. The runqueues associated with the CPUs of a real-time
cgroup are scheduled using the SCHED DEADLINE policy. While the paper is
related to cgroups and SCHED DEADLINE, the objective of the work greatly
differs from ours. Firstly, our work focuses on non-real-time workloads with
unknown resource requirements and non-real-time cgroups which are scheduled
using CFS. Secondly, the objective of our paper is to show that non-real-time
cgroups, which are used as the default resource allocation mechanism in contain-
ers, provide poor resource isolation when compared to SCHED DEADLINE.

PerfIso [14] is a performance isolation framework that uses a method known
as CPU Blind Isolation that restricts the cores on which background tasks run
to ensure that critical tasks always have some headroom. In our work, we use
SCHED DEADLINE to provide robust resource isolation to critical tasks such
that the background tasks can utilize the remaining CPU bandwidth, without
affecting the performance of the critical tasks. By allowing background tasks
unrestricted access to the CPU bandwidth that has not been allocated to critical
tasks, we improve the overall CPU utilization.

SCHED DEADLINE is most effective when the CPU usage rate required by
a task can be known or predicted accurately. Hence, our study complements
other works [6,11,17], whose objective is to profile workloads and predict the
dynamic resource requirements of tasks.

6 Conclusion

Cgroups are a kernel feature which enforce resource isolation between tasks in
Linux-based containers. In this paper, we compare the resource isolation offered
by cgroups and the SCHED DEADLINE scheduling policy in the context of CPU
bandwidth. While SCHED DEADLINE has traditionally been used to guaran-
tee temporal isolation of real-time tasks, we demonstrate that it can also be
used to secure guaranteed CPU bandwidth allocation for critical tasks, unde-
terred by the load on the CPU. Our experiments reveal that under cgroups,
the critical tasks are unable to secure the required CPU bandwidth because of
interference from co-located tasks. Since the tasks scheduled using cgroups do
not get adequate CPU bandwidth in a timely manner, delays are introduced
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in the tasks’ execution. However, when the critical tasks in the workloads are
scheduled using SCHED DEADLINE, the CPU bandwidth consumption of the
tasks is nearly equal to the required CPU bandwidth, irrespective of the load
on the CPU. As a result, the average delay of critical tasks scheduled using
SCHED DEADLINE was found to be 3x-40x smaller than cgroups. From this,
we conclude that under high CPU load conditions, if critical tasks are sched-
uled using SCHED DEADLINE rather than cgroups, they are assured better
resource isolation, which results in stable resource allocations, smaller delays
and predictable response times. We, therefore, recommend that existing execu-
tion environments for critical tasks be modified to exploit the resource isolation
and the consequent benefits (such as dynamic estimation of CPU bandwidth
requirement and reduction in task delays) offered by SCHED DEADLINE.

Acknowledgments. We thank Akarsh Dsouza for his assistance with the implemen-
tation of the emulation and modelling of tasks in the cluster trace.
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Abstract. Therapeutic ultrasound plays an increasing role in dealing
with oncological diseases, drug delivery and neurostimulation. To maxi-
mize the treatment outcome, thorough pre-operative planning using com-
plex numerical models considering patient anatomy is crucial. From the
computational point of view, the treatment planning can be seen as the
execution of a complex workflow consisting of many different tasks with
various computational requirements on a remote cluster or in cloud. Since
these resources are precious, workflow scheduling plays an important part
in the whole process.

This paper describes an extended version of the k-Dispatch workflow
management system that uses historical performance data collected on
similar workflows to choose suitable amount of computational resources
and estimates execution time and cost of particular tasks. This paper
also introduces necessary extensions to the Alea cluster simulator that
enable the estimation of the queuing and total execution time of the
whole workflow. The conjunction of both systems then allows for fine-
grain optimization of the workflow execution parameters with respect to
the current cluster utilization. The experimental results show that this
approach is able to reduce the computational time by 26%.

Keywords: Scheduling · Workflow · k-Dispatch · Simulation · Alea

1 Introduction

The use of ultrasound as a diagnostic imaging tool is well-known, particularly
during pregnancy where ultrasound is used to create pictures of developing
babies. In recent years, a growing number of therapeutic applications of ultra-
sound have also been demonstrated [17]. The goal of therapeutic ultrasound is
to modify the function or structure of biological tissue in some way rather than
produce an anatomical image. This is possible because the mechanical vibrations
caused by ultrasound waves can affect tissue in different ways, for example, by
c© Springer Nature Switzerland AG 2020
D. Klusáček et al. (Eds.): JSSPP 2020, LNCS 12326, pp. 68–84, 2020.
https://doi.org/10.1007/978-3-030-63171-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63171-0_4&domain=pdf
http://orcid.org/0000-0002-7775-8106
http://orcid.org/0000-0002-0087-8804
https://doi.org/10.1007/978-3-030-63171-0_4


Optimizing Biomedical Ultrasound Workflow Scheduling 69

causing the tissue to heat up or by generating internal forces that can agitate the
cells or tissue scaffolding. These ultrasound bioeffects offer enormous potential
to develop new ways to treat major diseases. In the last few years, clinical trials
of different ultrasound therapies have demonstrated the ability of ultrasound to
destroy cells through rapid heating for the treatment of cancer and neurologi-
cal disorders, target the delivery of anticancer drugs, stimulate or modulate the
excitability of neurons, and temporarily open the blood-brain barrier to allow
drugs to be delivered more effectively [12]. These treatments are all completely
noninvasive and have the potential to significantly improve patient outcomes.

The fundamental challenge shared by all applications of therapeutic ultra-
sound is that the ultrasound energy must be delivered accurately, safely, and
noninvasively to the target region within the body identified by the doctor. This
is difficult because bones and other tissue interfaces can severely distort the shape
of the ultrasound beam. In principle, it is possible to predict and correct for these
distortions using models of how ultrasound waves travel through the body. How-
ever, the underlying physics is complex and typically must consider nonlinear
wave propagation through absorbing media with spatially varying material prop-
erties. Simple formulas do not exist for this scenario, so models used for studying
therapeutic ultrasound are instead based on the numerical solution of the wave
equation (or the corresponding constitutive equations) [19].

The k-Wave toolbox designed for the time-domain simulation of acoustic
waves in biomedical materials has become very popular in the international
ultrasonic community [18]. Nevertheless, modelling ultrasound treatments using
this toolbox requires very complex and intensive computations that generally
cannot be satisfied by desktop computers or small servers [6]. It is thus essential
to offload the computational work to cloud or HPC clusters. Unfortunately,
using these facilities and composing the processing workflow representing the
treatment is complex even for experienced developers. Therefore, it is crucial to
offer clinical end-users a middleware layer that features a simple interface (e.g.,
web page, medical GUI, etc.) to upload treatment setups with related data and
automate the execution. This middleware layer is implemented by our software
package called k-Dispatch [9].

k-Dispatch, however, offers much more than simple job submission with semi-
automated execution and monitoring such as HTCondor [8] or Pegasus [3]. k-
Dispatch additionally provides a low level automatization by selecting suitable
execution parameters specifying the amount of compute resources and estimates
required execution time for particular tasks. This is enabled by a fixed set of
medically certified binaries serving as building blocks for user’s workflows, and
collected performance data updated after every successful run. Based on the task
input data, k-Dispatch searches the performance database to estimate scaling of
particular binaries on the fly, and tune the execution parameters to minimize
execution time and/or computational cost. Nevertheless, since the computational
resources are shared by multiple users and workflows, the queuing times and user
interference may depreciate the execution plan.
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Therefore, this paper deals with the extension of the Alea cluster simula-
tor [10] to estimate the workflow makespan, i.e., the overall execution time
including the queuing times as well as the computational cost for complex
biomedical ultrasound workflows. For every workflow, k-Dispatch prepares a can-
didate set of execution parameters and passes them to Alea which simulates the
workflow execution with respect to the cluster parameters, job scheduling system
setup, and background workload.

This paper is organized as follows. In Sect. 2, the considered workflow schedul-
ing problem is discussed thoroughly. Section 3 describes the Alea simulator
and its new workflow-related functionality. Next, Sect. 4 demonstrates the newly
developed simulation capabilities which are crucial for the k-Dispatch’s schedul-
ing module when analyzing the quality of considered workflow execution plan(s).
The paper is concluded and the future work is discussed in Sect. 5.

2 Problem Description

The k-Dispatch’s mission is to enable fully automated offloading of biomedical
ultrasound workflows built on the top of the acoustic k-Wave toolbox to the
HPC and cloud environment. These workflows are used for pre-operative treat-
ment planning based on the patient specific images to maximize the treatment
outcome. Every treatment plan consists of many tasks carrying out data pro-
cessing, ultrasound sonications, and thermal and tissue model evaluations. Their
orchestration is encoded in the form of a directed acyclic graph (DAG) describ-
ing the data dependency and precedence relations [14]. Every task is evaluated
by an appropriate piece of software included in the k-Wave toolbox. The most
time consuming ultrasound tasks can be executed by a variety of simulation
codes optimized for particular hardware platform including shared memory sys-
tems, single Nvidia GPU, and distributed memory CPU and GPU clusters. Each
binary is suitable for a different simulation size and complexity and has associ-
ated a different simulation cost. The shared memory/GPU versions can be used
for treatment planning in small volumes such as prostate, while the distributed
versions are suitable for large treatments in the brain, liver or kidney.

Working within the medical environment implies all software must undergo
a strict regulatory and certification process. It is thus not possible for users
to use their own binaries. Instead, only authorized personnel are allowed to
deploy the simulation binaries within a strictly controlled environment, e.g.,
inside Singularity [7] or Docker [13] containers. The clinical users are, of course,
allowed to compose different workflows from predefined modules, change the
number of sonications, their parameters or upload different patient images.

These restrictions, on the other hand, open great opportunity for automated
performance tuning and resource allocation. Since the binaries are fixed, their
execution can be monitored, and the performance data collected and analysed
for future use. k-Dispatch maintains a complex performance database including
information about every successful task containing binary name, cluster name,
queue name, amount of resources, simulation medium size and properties, wall
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clock time and computational cost. Once a new ultrasound workflow is received,
k-Dispatch decodes individual tasks and assigns them suitable binaries, appro-
priate resources, and estimates the wall clock time. Then, the tasks are handed
over to the cluster job scheduler that is responsible for their execution.

The optimizations of execution parameters help minimizing the computa-
tional cost and/or the execution time of individual tasks. However, since every
workflow contains many tasks and there are usually multiple workflows being
simultaneously executed, the isolated optimization of individual tasks may lead
to poor cluster utilization or long queuing times. It is necessary to focus on
bigger picture and take into account the dependencies between tasks of (multi-
ple) DAGs. However, the optimization complexity can become exponential [15].
Therefore, there is a need for heuristics that include fast cluster simulations to
evaluate the overall execution time of all workflows currently in the system. This
information provides the feedback to the planning logic to adjust the amount of
resources for particular tasks.

2.1 Workflows and Infrastructure

There are many workflow templates supported by k-Dispatch [9]. Figure 1 shows
an intracranial neuromodulation workflow used for treatment planning of essen-
tial tremor and Parkinson’s disease procedures. The purpose of this workflow
is to verify the ultrasound hits the desired target but does not rise the tissue
temperature above safety levels.

The workflow starts with the aberration correction pre-processor converting
the treatment parameters and patient data into input files for the following
ultrasound simulations. This task is usually simple and only employs a single
compute node for a couple of minutes per sonication. The total execution time
thus increases with the number of sonications (N) being executed (see the first
line in Table 1). Next, a number of independent aberration correction simulations
is executed. For this particular example, an ultrasound transducer with a driving
frequency of 550 kHz, and a medium of 25 cm × 29 cm × 19 cm is used.

Table 1. Execution time and amount of resources for particular tasks within the
neurostimulation workflow measured on the Anselm Supercomputer. The number of
sonications (denoted by N) influences the total execution time.

Code type Number of nodes Execution time

Aberration correction pre-processor 1 400 + 250 · N [s]

Aberration correction simulation 1–16 < 34.31, 4.96 > [h]

Aberration correction post-processor 1 115 + 95 · N [s]

Forward planning pre-processor 1 650 + 310 · N [s]

Forward planning simulation 1–16 < 30.90, 4.72 > [h]

Forward planning post-processor 1 105 + 60 · N [s]

Thermal simulation 1 30 + 720 · N [s]
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Fig. 1. Typical neurostimulation simulation workflow using the reverse focusing for
aberration corrections. After pre-processing, reverse ultrasound propagation simulation
from particular targets are executed. After aberration correction, forward ultrasound
simulations are executed to calculate energy deposition. Finally, a thermal simulation
is executed to estimate overall heat deposition and temperature rise in the tissue.

A simulation of such a size can be executed by the distributed CPU code running
on 1 to 16 nodes. The number of sonications is usually between 1 and 32. After
all aberration correction simulations have completed, the aberration correction
post-processor joins the results from the previous step and derives corrected
transducer signals. The forward planning pre-processor consequently generates
new ultrasound simulation files. Both these tasks require a single node only. The
forward planning simulations use the same code as the aberration correction
simulations but with different driving signal. The execution times are therefore
very similar. This stage is closed by the forward planning post-processors, which
collects the heat deposition from particular sonications. Again, a single node is
sufficient for this task. Finally, the thermal simulation is executed to calculate
the temperature rise in the brain and evaluate the treatment outcome. This code
uses a single simulation node only.

The target infrastructure used for the evaluation of the planning capabili-
ties is based on a 16 node partition of the Anselm supercomputer run by the
IT4Innovations National Supercomputing Centre1. Each node is equipped with
two 8-core Sandy Bridge processors, 64 GB RAM and 40 GB InfiniBand connec-
tion. The supercomputer is managed by the PBS Pro scheduler with a backfilling
job scheduling.

1 https://docs.it4i.cz/anselm/compute-nodes/.

https://docs.it4i.cz/anselm/compute-nodes/
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2.2 Optimization Criteria

In general, k-Dispatch aims to find the best execution parameters for particular
tasks to minimize the overall execution time, computational cost and queuing
times. This is achieved by using the database maintaining information about
previously completed tasks that allows us to approximate execution time and
amount of resources for new workflows, and cluster simulations that evaluate
queuing times for given execution parameters.

The optimization criteria can be minimized independently using a multi-
objective approaches to create a Pareto front, or aggregated into a single criterion
by associated weights. To limit the time complexity of the optimization process,
the following aggregated criteria f is used:

f = wt ∗ (t + q) + wc ∗ c (1)

where wt and wc are the weights promoting the execution time and computa-
tion cost, respectively, t is the wall clock execution time of all tasks, q is the
aggregated queuing time, and c is the overall computation cost. Five different
combinations of the weights are evaluated in this paper:

– wt = 1 ∧ wc = 0 minimizing execution time but ignoring cost,
– wt = 0 ∧ wc = 1 minimizing execution cost but ignoring time
– wt = 0.5 ∧ wc = 0.5 looking for a trade-off between execution time and cost,
– wt = 0.7 ∧ wc = 0.3 preferring execution time to cost,
– wt = 0.3 ∧ wc = 0.7 preferring execution cost to time.

2.3 Execution Parameters Selection

Before the workflow is submitted to the cluster, the execution parameters for
particular tasks have to be set. For this purpose, k-Dispatch employs four mod-
ules: (1) Optimizer that employs a simple hill climbing algorithm traversing the
search space of promising execution parameters, (2) Interpolator that provides
estimations of execution time and cost for given tasks and their execution param-
eters, (3) Simulator that evaluates the queuing times and calculates the overall
execution time of the complete workflow, see Eq. (1), and (4) Collector that
updates the performance database after the workflow execution.

Let us start with Interpolator which is supposed to estimate the execution
time and cost for a given task and execution parameters provided by Optimizer.
This module searches the performance database for similar tasks. If there is a
direct match, i.e., a task of the same type and size has already been executed, the
records are filtered by the age and sorted according to the execution parameters
used. If there are multiple records for the same execution parameters, the median
value is taken. Consequently, a strong scaling plot is constructed, see Fig. 2. From
this plot, it is straightforward to estimate the execution time and cost for given
execution parameters (number of nodes in this case). If some values are missing,
e.g., Optimizer asks about an odd number of compute nodes, the execution
time and cost are interpolated. If there is not a direct match, which indicates
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Fig. 2. Strong scaling of the (a) execution time and (b) execution cost for aberration
correction and forward planning simulations. The anomalies in the plots are caused by
unbalanced work distribution over compute nodes.

such a task has not been executed before, a dual interpolation is performed.
Interpolator searches all tasks of similar size, constructs multiple scaling plots,
and interpolates between them. If the interpolation fails due to oscillations of the
interpolation polynomial or a low number of records found, a default wall clock
time with the associated cost are returned. This is, however, a very rare situation,
since the more tasks get executed, the more records are in the database, and the
more precise interpolations are.

Once the execution parameters have been set for all tasks, the workflow sched-
ule is handed over to Simulator. Although many job schedulers offer some kind
of queuing time estimation, the number of such requests is very limited, e.g., one
per 5 min. Therefore, the actual state of the cluster is downloaded and fed into
the Alea simulator. After the evaluation, the overall execution time (makespan)
is calculated as the sum of the estimated execution and queuing times over all
tasks. Since the queuing times are not included in the execution cost, the simula-
tor only returns the overall time. Let us note that on a real system, the execution
times of particular tasks may slightly vary due to cluster workload (network and
I/O congestion, varying temperature and clock frequency between nodes, etc.).
These oscillations are, however, neglected since being usually below 5%, and
if there is a significant transient performance drop, the k-Dispatch monitoring
module detects such an anomaly and terminates affected tasks.

Optimizer tries to select appropriate execution parameters to minimize the
aggregated criteria for the whole workflow, see Fig. 3. The parameters of the
tasks may be initialized randomly, using the recently best known values, or by
individual optimization of each task. In order to search the space, the execution
parameters are slightly perturbed in every iteration, the compute time and cost
estimated by Interpolator, and the makespan evaluated by Simulator. After a
predefined number of iterations, the best workflow parameters are used to submit
the workflow to the cluster. In order to broaden the performance database, there
is a small probability that Optimizer selects such execution parameters that have
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not been tried before. This helps adapt the workflow schedules to changes in
the cluster software configuration, hardware upgrades, long-term performance
anomalies, etc. After the workflow has been executed by the cluster, the amount
of resources used is stored in the performance database along with the actual
execution time and cost.

Figure 3 shows two examples of the execution plans designed by k-Dispatch.
In the first example, all aberration correction simulations use the same amount
of resources, which may yield the best value of the optimization criteria for
individual tasks. This may however lead to a suboptimal execution schedule when
the cluster size is limited. A better solution may be to use 2 nodes for first 16
tasks and 4 nodes for the last four. Should the number of nodes assigned per task
happen not to be a divider of the cluster size, there would be wasted computing
slots. The main objective of k-Dispatch is to prevent such inefficiencies.

Fig. 3. Example of two different execution plans of the neurostimulation workflow on
a 16-node cluster. On the left, every job was optimized independently neglecting the
queuing times. On the right, the complete workflow was optimized leading to different
resources allocations for particular simulations to minimize the overall execution time.
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3 Simulator

As the basis for our workflow scheduling simulator, we have adopted the Alea
job scheduling simulator [10]. Alea is a platform-independent event-driven dis-
crete time simulator written in Java built on the top of the GridSim simulation
toolkit [16]. GridSim provides the basic functionality to model various entities
in a simulated computing system, as well as methods to handle the simulation
events. The behavior of the simulator is driven by an event-passing protocol. For
each simulated event, such as job arrival or completion, one message defining this
event is created. It contains the identifier of the message recipient, the type of the
event, the time when the event will occur and the message data. Alea extends
this basic GridSim’s functionality and provides a model allowing for detailed
simulation of the whole scheduling process in a typical HPC/HTC system. To
do that, Alea either extends existing GridSim classes or it provides new classes
on its own, especially the core Scheduler class and classes responsible for data
parsing and collection/visualization of simulation results.

Figure 4 shows the overall scheme of the Alea simulator, where boxes denote
major functional parts and arrows express communication and/or data exchange
within the simulator.

3.1 General Description

The main part of the simulator is the centralized job scheduler. The sched-
uler manages the communication with other parts of the simulator. It maintains
important data structures such as job queue(s). Job scheduling decisions are per-
formed by scheduling algorithms that can be easily added using existing simple
interfaces. Furthermore, scheduling process can be further influenced by using
additional system policies, e.g., the fair-sharing policy which dynamically pri-
oritizes job queue(s). Also, system queues including various limits that further
refine how various job classes are handled are supported. Additional parts sim-
ulate the actual computing infrastructure, including the emulation of machine

Fig. 4. Main components of the Alea jobs scheduling simulator.
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failures/restarts. Workload readers are used to feed the simulator with input data
about jobs being executed and the simulator also provides means for visualiza-
tion and generation of simulation outputs. Alea is freely available at GitHub [1].

The primary benefit of Alea is that it allows for realistic testing of work-
load execution subject to (different) scheduling policies or setups of computing
systems. It models all important features that have significant impact on the
performance of the system. These features enable us to mimic real-life systems
properly with a reasonably high realism [11].

3.2 Workflow Support

One of the main contributions of this work is the development of workflow (DAG)
execution support in Alea. This has been mostly achieved by modifying two
components in the simulator: the workload reader and the scheduler. Workload
reader has been modified to properly parse new DAG-compatible workload for-
mat (see Sect. 3.3). In the scheduler, new logic has been added to properly handle
inter job dependencies. The most important modification was the addition of a
new hold queue for all jobs with unfinished predecessors. Using this queue, these
jobs are excluded from the normal scheduling loop until all their dependencies
are resolved, i.e., all their predecessors are completed.

The list of all unfinished predecessors is kept up-to-date throughout the exe-
cution of DAGs. Once a job completes its execution, it is removed from the list
of unfinished predecessors and the hold queue is scanned to check if any job
now has all of its precedence constraints satisfied. If so, this job is immediately
moved to the normal scheduling queue where it waits until it is actually started.
Figure 5 demonstrates how the inter-DAG dependencies are handled, using the
hold queue together with the list of all unfinished predecessors.

Otherwise, only minor changes were necessary in Alea, e.g., job definition as
well as simulation outputs have been extended to reflect that each job (task)
may have predecessors.

3.3 DAG Workload Format

For convenience, we use slightly extended Standard Workload Format (SWF)
which is used in the Parallel Workloads Archive [4]. SWF is a simple format
where each workload is stored in a single ASCII file [5]. Each job (or task) is
represented by a single line in the file. Lines contain a predefined number of fields,
which are mostly integers, separated by whitespace. Fields that are irrelevant
for a specific log or model appear with a value of −1. To represent DAGs, we
have extended the standard 18 entries with two new entries that allow us to
distinct which line corresponds to which DAG (DAG id) and which task within
a given DAG this job represents (task id). Also, we have modified the existing
Preceding Job Number such that it can point to more than one job (task). If a
given job has more than one predecessor in the DAG, then & character is used
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Fig. 5. Added logic handling correct execution order of DAG-like workflows within Alea
simulator. Job dependencies are checked during new job arrival (top) and updated once
a job completes its execution (bottom). At this point, waiting jobs from the hold queue
are moved to the scheduling queue if their dependencies are satisfied.

to concatenate the list of these predecessor IDs. For example, 1&2&3 means that
the given job can only start once jobs 1, 2 and 3 are all completed2.

4 Alea Simulation Capabilities

Alea job scheduling simulator is well known for its capability to simulate and
also optimize various setups of HPC/HTC systems [2,10]. In this section we will
demonstrate the novel DAG-oriented simulation capability. We illustrate how
the newly extended Alea simulator can be used to evaluate various setups of
ultrasound simulations in order to choose the best available setup.

2 This string corresponds to the list of direct predecessors used in Fig. 5.
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As discussed in Sect. 2, k-Dispatch keeps its internal performance database
to predict rather accurately what the execution time needed to complete such
a task will be. The problem is, that task-level optimization does not guarantee
that good results will be achieved. Instead, we need to optimize the execution
parameters of the whole workflow(s) to achieve good performance. An example of
such situation has been shown in Fig. 3. Also, as the available computing infras-
tructure may change over the time, k-Dispatch must be able to adapt existing
scheduling plans once, e.g., the amount of available resources has changed.

In the first example, we use Alea to model and execute (simulate) the problem
depicted previously in Fig. 3. In this case, the same workflow uses two different
sets of task execution parameters which influence the total execution time. The
Gantt chart presented in Fig. 6 shows the execution of all tasks (Y -axis) over the
time (X-axis). Clearly, these results correspond to the illustration used in Fig. 3.

Fig. 6. Alea simulator used to measure the impact of task-level (left) vs. workflow-level
(right) optimization on the total workflow execution time (makespan).
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We can observe, that task-level execution time optimization (see the Gantt chart
on the left in Fig. 6) is suboptimal compared to the workflow-level optimization
(right). In this particular case, the second (right) scenario decreased the total
execution time from 31 time units to just 23, representing 26% improvement by
means of cost/time.

Of course, there are more scenarios that can be modelled and analysed in
Alea. For example, we may analyse how several workflows will perform when
executed simultaneously. Such an experiment may be very useful when finding
the trade-off between total execution time and cost. In other words, we can use
such experiment to see how many resources are needed to compute N workflows
in a given time T . We illustrate this situation in Fig. 7. Here we show the impact
of concurrently executed workflows on the queuing time and the total execution
time (makespan). Also, the impact of varying number of available number of
CPU cores (i.e., the cost) is shown.

For this demonstration, we use identical workflows, each consisting of 3 tasks
that are directly dependent upon each other3. We start with a scenario where
we execute 3 such workflows together (see the top chart in Fig. 7). As we can
see, the system (16 nodes) is capable of executing all 3 workflows concurrently.
The situation changes once we add the fourth workflow (see the middle chart
in Fig. 7). In this case, the system is not large enough to execute all four tasks
no. 2 simultaneously, i.e., the task no. 2 from the fourth workflow (denoted as
DAG-4 [2]) has to wait until at least one task no. 2 of the remaining workflows is
completed. As a result, the makespan gets higher. As illustrated in the bottom
chart in Fig. 7, the makespan gets even worse once we shrink the available
resources to a half (8 nodes).

Clearly, the Alea simulator allows us to compare various alternatives and
decide which combination of parameters and/or what cost leads to acceptable
makespan. Simulations like these can be then used by the k-Dispatch’s scheduling
module when deciding which parameter settings to choose for the tasks that must
be scheduled.

Finally, we would like to briefly mention the simulation overhead of Alea
when dealing with DAG-like workflows. Naturally, we need the simulator to be
fast when emulating the execution of realistically complex workflows. Therefore,
we have performed a set of experiments, where we measured the time needed
to perform a simulation. We investigated the influence of both DAG complexity
(number of tasks within a workflow) and the number of DAGs being simulated
simultaneously4. The results are shown in Fig. 8. Simulations use various number
of DAGs (up to 64 DAGs) while each such DAG has different number of tasks
(2, 4, 8, 16, 32 or 64 tasks per DAG). The figure shows that the simulator is
capable to simulate DAG executions in a reasonable amount of time. Even with
the most demanding setup (64 DAGs, each having 64 tasks per DAG) the total
simulation time is below 2.5 s.

3 The corresponding DAG looks like this: task 1→ task 2→ task 3.
4 The experiments were performed on a machine running Windows 10 with Intel Core

i7-7500U CPU running at 2.7 Ghz and having 8 GB of RAM.
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Fig. 7. Makespan and wait time (queuing time) as impacted by the number of concur-
rently executed workflows and the size of the infrastructure.

This means that Alea is capable of evaluating many different workflow param-
eter setups within just few seconds. Such a small overhead is clearly no issue for
the k-Dispatch workflow management system.
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Fig. 8. The time needed to execute one simulation with respect to the number and
complexity of simulated workflows (DAGs).

5 Conclusions

In this paper, we have described the scheduling problem related to proper setup
of complex biomedical ultrasound workflows. Moreover, we have provided an
example of real life-based problem instances (workload describing DAG-like
workflows) and developed an extension for the open source job scheduling sim-
ulator Alea. Using this extension, basic DAG-like workflows can be simulated
and the impact of varying workflow execution parameters (number of tasks and
their requirements) can be quickly analysed. Also, thanks to the main focus of
the Alea simulator, detailed system-oriented setups and resource policies (e.g.,
scheduling algorithms, queue setup or fair-share priorities) can be easily emu-
lated, thus providing more realistic outputs and performance predictions.

In the future, we would like to integrate this functionality with the k-Dispatch
workflow management system. The newly extended Alea simulator with DAG
scheduling support can be freely obtained on GitHub [1]. Also, we invite other
researchers to look into the data provided along with this paper that describe
real-life based workflows used within the international ultrasonic community.
These workloads include the examples used in this paper and will be available
at the website of the workshop5.

This work has a significant impact on the biomedical ultrasound community.
Not only the clinicians do not have to bother with selecting suitable comput-
ing facilities, deploying simulation codes, moving data forth and back, job sub-
mission, execution and monitoring, but their workflows are executed efficiently
minimizing the execution time and cost. This all is done without any user inter-
vention, actually, the users do not even know such a process exists.
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Abstract. Modern heterogeneous systems-on-chip (HeSoC) feature
high-performance multi-core CPUs tightly integrated with data-parallel
accelerators. Such HeSoCS heavily rely on shared resources, which hin-
der their adoption in the context of Real-Time systems. The predictable
execution model (PREM) has proven effective at preventing uncontrolled
execution time lengthening due to memory interference in HeSoC sharing
main memory (DRAM). However, PREM only allows one task at a time
to access memory, which inherently under-utilizes the available memory
bandwidth in modern HeSoCs. In this paper, we conduct a thorough exper-
imental study aimed at assessing the potential benefits of extendingPREM
so as to inject controlled amounts of memory requests coming from other
tasks than the one currently granted exclusiveDRAMaccess. Focusing on a
state-of-the-art HeSoC, the NVIDIA TX2, we extensively characterize the
relation between the injected bandwidth and the latency experienced by
the task under test. The results confirm that for various types of workload
it is possible to exploit the available bandwidth much more efficiently than
standard PREM arbitration, often close to its maximum, while keeping
latency inflation below 10%. We discuss possible practical implementation
directions, highlighting the expected benefits and technical challenges.

Keywords: Heterogeneous systems-on-chip · Memory interference ·
Predictable execution

1 Introduction

In recent years, embedded systems designs have been increasingly embracing
the heterogeneous system-on-chip paradigm (HeSoC), where several and possi-
bly non-identical general-purpose CPUs are coupled to various accelerators (e.g.,
GPUs for general purpose computing, Digital Signal Processors, etc.), achieving
high processing capacity at a comparatively low cost. While these systems are
capable of achieving very high GOps/W targets, they are designed for optimal
best-effort performance, not at all for timing predictability. Designing a pre-
dictable system requires characterizing its schedulability, i.e., formally assessing
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whether the timing constraints of each work unit (task) can be satisfied with the
available computing resources (CPU cores, accelerator cores, memory). In the
real-time literature [2], applications are generally composed of tasks character-
ized by a period (minimum time span between two instances of the same task),
a Worst-Case Execution Time (WCET ) and a deadline. A taskset is schedulable
if there exists a mapping of its tasks to the available compute/memory resource
that does not cause a deadline miss at runtime.

In HeSoCs, CPU cores or other computing units can concurrently access
shared memory resources such as caches and system DRAM. The best-effort,
throughput-oriented arbitration mechanisms of such on-chip shared resources –
which increasingly becomes a point of contention, severely impacting the execu-
tion time of concurrent tasks – coupled to the often undisclosed nature of their
internal working poses severe challenges to the adoption of HeSoCs in the con-
text of real-time applications. Real-time scheduling has traditionally focused on
scheduling CPU computation, assuming that the Worst-Case Execution Time
can be computed for each task running in the system. However, when consider-
ing different applications running concurrently on a modern HeSoC, with several
actors featuring different bandwidth usage, the measured WCET can vary sig-
nificantly, depending on the global system schedule.

The Predictable Execution Model (PREM) was originally proposed in the
context of single-core CPUs [11] to provide robustness to memory-access inter-
ference from I/O devices, and was later extended to avoid inter-core interference
in multi-core CPUs [1] and in HeSoCs [6]. PREM assumes that tasks are split
into memory and compute phases, with all shared-memory accesses in the mem-
ory phases. By scheduling memory phases separately, the system designer has
full control on shared-memory interference. In particular, interference can be
canceled completely by executing one memory phase at a time.

While this greatly reduces WCET pessimism, the very method for canceling
interference entails one of the main drawbacks of PREM: executing only one
memory phase at a time implies severe under-utilization of the shared-memory
bandwidth in most cases.

In this paper, we conduct a thorough experimental study aimed at assessing the
potential benefits of extending PREM with a technique capable of injecting con-
trolled amounts ofmemory accesses coming fromother tasks than the one currently
granted exclusive access to the memory. Focusing on a state-of-the-art HeSoC, the
NVIDIA Tegra X2, we extensively characterize the relation between the injected
bandwidth and the memory-access latency experienced by the task(s) under test.
The NVIDIA TX2 features a host CPU design architected as two clusters, one
made of four ARM Cortex-A57 and the other made of two DENVER cores, each
featuring local, shared L2 cache. On both the Cortex-A57 and the DENVER clus-
ters, if the workload is memory-intensive, controlled injection allows reaching over
80% of the maximum cluster bandwidth with virtually no impact on the execu-
tion time of the PREM task. If the workload has more sporadic/random accesses
to main memory, we can improve over PREM by at least 600%, in some cases reach-
ing maximum exploitation of the available bandwidth.

Based on these observations, we discuss possible practical implementation
directions, highlighting the expected benefits and technical challenges.
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This paper is organized as follows: Sect. 2 discusses background notions
related to the PREM execution model and the target hardware platform, as
well as our benchmarking methodology and the experimental setup. Section 3
presents and discusses the results of the various experiments we conduct to assess
the benefits of controlled injection. Section 4 discusses possible practical ways
to implement and deploy the presented approach in real-life application scenar-
ios. Section 5 presents related works, before concluding the paper in Sect. 6,
highlighting future research directions.

2 Controlled Injection: Background, Experimental
Methodology and Setup

The Predictable Execution Model (PREM) is designed to isolate accesses to
shared main memory from different actors. The original proposal in [11] was
meant to provide robustness to CPU memory-access interference from periph-
eral devices, and was later extended to avoid inter-core interference in multi-core
CPUs [1]. This is achieved by partitioning programs into contention-sensitive
memory and contention-free computation phases, and scheduling these such that
two memory phases are never executed in parallel. By scheduling only a single
memory phase at a time, contention at the main memory level is effectively
avoided. This allows a system designer to tightly bound memory access laten-
cies, leading to shorter worst-case execution times (WCET) and, ultimately, less
pessimism in traditional timing and schedulability analysis.

Most modern multi-core SoC designs leverage heterogeneity at different lev-
els. Typically, a powerful multi-core, general-purpose CPU (the host processor) is
coupled to some type of acceleration fabric, like a data-parallel co-processor (e.g., a
GPGPU, DSPs) or programmable logic (FPGA). For energy efficiency, the design
of the host CPU itself is typically heterogeneous, with a number of compute clus-
ters locally grouping a small number of homogeneous CPUs sharing interconnec-
tion and memory resources. Globally, these heterogeneous clusters share the last-
level cache or the main system memory. The latter is also shared with other accel-
eration devices. These systems must sustain tremendous bandwidth to the main
memory, to satisfy requests coming from many actors. Table 1 shows the effect
of inter-core bandwidth sharing on a variety of commercial heterogeneous SoCs,
highlighting the portion of the total SoC bandwidth that is used by the host CPU
cores (the focus of this paper). The rightmost column indicates the nominal main
memory bandwidth as reported in the official datasheets (where available). We use
the bw mem benchmark from the LMBench suite [10] to measure the maximum
bandwidth request generated by a single CPU (host) core and the maximum aggre-
gated bandwidth requested by all the cores inside the CPU complex1 For each of
the tested SoCs where a total nominal bandwidth value is available (i.e., those fea-
turing a GPU), the comparison with the aggregated CPU bandwidth shows that
a significant share of this bandwidth is reserved to other devices than the CPU
1 bw mem performs a pointer walk over a >100 MiB buffer, using a stride such that

consecutive memory accesses request a different L2 cache line. The test is executed for
a predefined time window (3 s) to measure the average bandwidth.
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Table 1. Baseline and composite bandwidth on recent SoCs.

SoC/Board CPU core

count

Arch BW from single

core [GiB/s]

aggreg CPU

BW [GiB/s]

Total BW

(nominal) [GiB/s]

NVIDIA Jetson

Xavier

8 Carmel (ARM

v8.2-A)

18 74 137

NVIDIA Jetson TX2 6 Denver2 +

Cortex-A57

12(4) 22 59.7

Intel i7-9700K 8 x86 64 22 27 39.4

Xilinx UltraScale

Zynq ZCU 102

4 Cortex-A53

(ARM v8-A)

2.3 6.7 -

Xilinx Zedboard

Zynq-7000

2 Cortex-A9

(ARM v7)

0.404 0.505 -

(the acceleration logic). Focusing on the CPU complex, we observe a significant
difference between the maximum bandwidth used by a single core and the aggre-
gated memory bandwidth used by the whole CPU compute cluster. Even though
the bandwidth request in general does not grow up linearly with the number of
cores, it is evident that a single CPU core only consumes a fraction of the band-
width budget allotted to the CPU complex.

In this scenario, the one-core-at-a-time memory arbitration model implied
by PREM is bound to poorly fit this increasing gap in bandwidth reservation.
PREM could be enhanced with techniques to admit more than one task at a time
to access memory. We will explain that for such techniques to be successful, the
rate at which the new task injects its own transactions should be controlled in
a fine-grained manner. We call this technique Controlled memory-transaction
Injection, proposing a synthetic benchmark that allows evaluating this concept
by a thorough characterization of the system.

2.1 Target Architecture

For our benchmarking, and to assess the potential benefits of a Controlled Injec-
tion scheme, we have selected the NVIDIA Jetson TX2 as our reference HeSoC
hardware. The NVIDIA Jetson TX2 is a widely available commercial HeSoC
featuring a GPU accelerator governed by a heterogeneous host processor.

The host is organized in two different compute clusters: a quad-core ARMv8
Cortex-A57, and a dual-core ARMv8-compliant DENVER processor (NVIDIA
proprietary design). Each of the six cores integrates a 32 KiB L1 data cache and
a 48 KiB L1 instruction cache. Furthermore, each cluster features a 2 MiB L2
cache shared among its local cores.

The main system memory is an 8 GiB LPDDR4 128 bit DRAM with a total
bandwidth of 59.7 GiB/s, needed to sustain requests coming from the two CPU
clusters and the GPU accelerator.

In this paper, we focus on the characterization of the host memory behavior.

2.2 Benchmarking Methodology

There are many ways to implement Controlled Injection (see Sect. 4 for a discus-
sion on practical solutions). In this paper, our focus is on exhaustively studying
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Fig. 1. Block diagram of the Tegra X2 architecture.

the potential benefits of this technique, stressing corner cases via a custom-
designed synthetic benchmark, called mem bench2.

Controlling the Access Pattern. The first thing we need to be able to control
is the type of access pattern our benchmark generates. Traditionally, sequential
and random patterns are adopted for this type of bandwidth/latency measure-
ments, with the former reading memory addresses one word aside (i.e., consec-
utive words, with unit stride) and the latter reading with random stride. The
NVDIA TX2, like most modern HeSoCs, features a number of hardware blocks
aimed at improving the average-case performance (cache prefetchers, DRAM
row buffers, etc.). As all these features are platform-specific, for our benchmark-
ing methodology to be general, we need a convenient knob to control the extent
to which our workload bypasses such mechanisms, spanning a range of access
patterns that goes from purely sequential to fully random (where each mem-
ory access really pays the worst-case cost). To achieve this goal, we implement
a simple pointer walk over a portion of a statically pre-allocated large array
(64 MiB) of data structures, each containing: (i) a pointer to the next address
to read/write; (ii) padding, to fill the remainder of a whole L2 cache line.

To model a sequential access pattern, we only need to define a SIZEMEM and
a stride parameter. The pointer walk can then be initialized to read SIZEMEM/
stride cache lines at that fixed stride. In this case, the SIZEMEM is the size of the
L2 cache divided by the number of cores, and the stride is the size of a cache line
(64B). For the random access pattern, mem bench accepts two parameters:

2 Available for download: https://git.hipert.unimore.it/msolieri/membench.

https://git.hipert.unimore.it/msolieri/membench
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1. the size of the memory portion within the static array from which
the addresses to initialize the pointer walk are taken (SIZEMEM ):
this is key to control the actual distance of the loads/stores (i.e., their cost)
when modeling a random traffic pattern3;

2. the number of cache lines the pointer walk should access (NLINES):
this is key to control the size of the PREM memory phase, which, in this work,
is assumed to be the L2 cache size divided by the number of cores. As the
data is read only once, this parameter dictates the overall duration of the
benchmark.

The first parameter is in fact used to model the desired traffic pattern mix.
Figure 2 shows the results of an experiment where we measure the execution time
to read a memory portion of increasing size (on the X axis) on both the Cortex-A57
and the DENVER CPU cores. More specifically, here SIZEMEM = NLINES ∗
SIZEcache line. The bandwidth is computed as SIZEMEM/exec time.

For both the Cortex-A57 and the DENVER, for small values of SIZEMEM ,
the duration of the transfer is very small, which makes the measurement very
sensitive to system overheads. For this reason, the curves initially ramp up,
getting closer to their peak value at around 16 and 32 KB, respectively. This is
the operating point where the use of prefetching mechanisms is still predominant.
The more we move to the right, the higher the probability that the strides are
wider than the prefetch buffers size and that the requests are difficult to reorder
at the DRAM side for better row usage. We can see that for SIZEMEM ≥ 4096B
the traffic pattern generated by our benchmark is truly random4.

Controlling the Injection Rate. To evaluate the benefits of Controlled Injec-
tion as well as to assess the capability of controlling it at a fine granularity, we
extend mem bench with an option that allows interleaving a sequence of mem-
ory accesses (representative of one PREM task memory phase) with a parametric
number of stall cycles, so as to finely tune the injected memory bandwidth request.

To this aim, we add two more parameters:

1. the number of cache lines (L) that the task can read before being throttled;
2. the number of cycles (C ) the task will be throttled for before reading again.

L and C define the duty cycle of the memory requests issued by the task perform-
ing controlled injection. In our experimental evaluation, we call LOAD intensity
the ratio between number of cache lines and the number of throttling cycles. The
LOAD intensity affects in different ways the injection rate that a given task can
sustain, based on the type of access pattern the task performs5. Intuitively, there
3 Randomly computing the next address inside a memory portion that fits the size

of the prefetch buffer generates the same behavior of a sequential traffic pattern, as
most of the loads/stores will hit in the L2 cache.

4 In the remainder of the paper, we use the value SIZEMEM = 12 MiB to generate
random interference traffic.

5 As we will explain later on, the injection rate is defined as the ratio between the
bandwidth request generated by a task at a given LOAD intensity value and the
bandwidth request generated by the same task at 100% LOAD intensity.
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Fig. 2. Bandwidth request for increasingly larger memory portions. Random traffic.

are several ways of organizing the memory access pattern so as to obtain a given
injection rate. Depending on the granularity at which the injection is done, the
generated interference will be different. Our synthetic benchmarking methodol-
ogy is aimed at capturing the effects of the most fine-grained injection scheme
one could conceive, i.e., a single memory access, followed by a controllable num-
ber of stall cycles. Evaluating this particular injection scheme (as compared, for
example, to coarser grained ones like [21]) in combination with an experimental
setup that stresses the most pessimistic operating conditions (see Sect. 2.3) is in
our opinion the fairest way to assess the benefits of controlled injection.
mem bench can be configured to operate in two modes:

1. mem bench LAT : in this mode, the benchmark only reads once the
SIZEMEM bytes specified as the memory phase. This is the most accurate
mode for latency measurements;

2. mem bench BW : in this mode, the benchmark reads multiple times
the SIZEMEM bytes to ensure the duration (in seconds) of the benchmark
exceeds the value specified via an additional DURATION parameter. This
is the most accurate mode for bandwidth measurements.

2.3 Experimental Setup

Our experiments are aimed at assessing the benefits of Controlled Injection as
a complementary technique to a standard PREM scheme. In such a system, all
the tasks are transformed according to the PREM rules (memory + compute
phase), and their memory phases are augmented with the fine-grained controlled
injection mechanism described in the previous section.

Our target is to exhaustively assess the benefits of this fine-grained con-
trolled injection system under the most pessimistic conditions. To model such
conditions, we model the PREM taskset as follows: The task under test (UT) is
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Table 2. Maximum bandwidth request (in MiB) generated by a single Cortex-A57
or DENVER core when executing in isolation (Alone) or with the other CPU complex
and GPU generating maximum bandwidth request (All together).

Alone All together

Sequential Random Sequential Random

Cortex-A57 4204 425 3650 400

DENVER 9078 409 8760 395

representative of the PREM task currently allowed to access the main memory
(in a traditional mutually-exclusive PREM scheduling scheme). The task reads
once the amount of data decided by the code generation policy in the com-
piler: typically the whole cache [5]). The rest of the tasks, which in a standard
PREM system would be idle while this UT task is executing, are in our experi-
ments allowed to inject their own memory transactions at varying rates, acting
as interfering tasks (IF). In the real PREM+Controlled Injection system that we
envision, these IF tasks would also be transformed according to the PREM rules:
their memory phases would have defined duration and they would be scheduled
to maximize their memory bandwidth usage. To model the worst-case interfer-
ence that the IF tasks could generate, we execute them for the whole time that
the UT task is running. Specifically, IF tasks start execution before we launch
the UT task, and complete execution after the UT task has terminated.

This is representative of an ideal PREM+Controlled Injection system, where
the interference is constant, because we always have sustained injection traffic
and we can schedule it so as to never leave gaps. In a real system, such gaps
would be present, so the interference suffered by the UT task would in general
be smaller. In this sense, the results we show here are pessimistic with respect
to the benefits of controlled injection.

Considering the cluster-based nature of the target hardware, we conduct our
experiments in three settings:

1. inside the Cortex-A57 CPU cluster;
2. inside the DENVER CPU cluster;
3. across the two compute clusters.

For experiments 1 and 2, we consider a single UT task, which represents the
task that a regular PREM scheme would grant exclusive access to memory. On
top of that, we explore the effect of allowing controlled injection by IF tasks,
mapped on the remaining cores from the same compute cluster (each task is
pinned to a different core). For these, we vary (with exponential spacing) the
LOAD intensity (and thus the injection rate) from near-zero to 100%.

The Cortex-A57 and the DENVER cores read memory chunks of 512 KiB
and 1024 KiB respectively (the size of their whole L2 cache divided by the
number of cores in each cluster). Table 2 shows the measured bandwidth in
MiB for a single Cortex-A57 or DENVER core considering both sequential and



Evaluating Controlled Memory Request Injection 93

random access patterns. The two groups of columns refer to the case when the
observed core is the only one that generates memory requests (Alone) and to
the case when the cores from the other CPU complex and from the GPU are
all generating memory requests at full speed (All together). We have observed
that the interconnects and the memory controller implement static partitioning
of the bandwidth between the Cortex-A57 complex, the DENVER complex and
the GPU complex. Cores from a given complex are allowed to use some of the
bandwidth allocated to a different complex if this is not used, as the difference
between the Alone and All together numbers show. For this reason, while we run
our experiments on a target complex, we keep the rest of the complexes active
and reclaiming as much as possible of their own bandwidth (e.g., to conduct
experiment 1, we keep all the cores from the DENVER and GPU complexes
active executing sequential access patterns).

The third set of experiments studies the effect of interference among the two
compute clusters. One ARM core and one DENVER core run one of two UT
tasks. we run four IF tasks on the remaining cores (three Cortex-A57, one DEN-
VER) from both clusters. The GPU is active and generates as many sequential
memory requests as possible.

To stress all the possible corner cases, we consider various combinations of
access patterns. Indeed, even if PREM compilers try hard to generate sequen-
tial patterns for their memory phases, random patterns are unavoidable in cer-
tain applications [6]. Using the benchmarks described in the previous sections,
we generate four different combinations for UT and IF tasks, considering both
sequential (SEQ) and random (RAN) access patterns:

1. UT=SEQ, IF=SEQ;
2. UT=SEQ, IF=RAN;
3. UT=RAN, IF=SEQ;
4. UT=RAN, IF=RAN.

For increasing LOAD intensity/injection rates, each of our plots shows a
breakdown of the bandwidth usage among different cores (stacked areas) and
the latency increase experienced by the UT task. In this way, it is easy to appre-
ciate how much controlled injection can be tolerated in the various configura-
tions before the UT task significantly suffers from the interference. Note that
bandwidth and latency for the UT tasks are measured in different runs of the
benchmark: as already mentioned, mem bench LAT provides the most accurate
way of measuring the effect of interference on PREM tasks (which are charac-
terized by relatively small burst transfers), while mem bench BW provides the
most accurate way of measuring how much bandwidth the UT tasks can utilize
under interference.

To limit the noise from operating system services (power management, graph-
ics server, etc.), we do the following for all the experiments: (i) we set the maxi-
mum operating frequencies on both the CPU clusters, the GPU and the memory
controller via the jetson clock command with root privileges; (ii) the operat-
ing system (Linux for Tegra (L4T) Ubuntu 18.04) is set to run level 2 via the
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telinit command; and (iii) all the tasks are pinned to a core using the taskset
command, and their priority is set to -15 using the nice command.

For the latencies, we run each experiment 100 times, and we take the worst-
case value, filtering out outliers due to OS activities. In all our experiments,
outliers can be easily spotted, as their values are one to two orders of magni-
tude higher than the vast majority of the samples. Quantitatively, in all our
experiments less than 5% of the samples were discarded.

3 Evaluation

3.1 Effects of Controlled Injection Within the Cortex A57 Cluster

Fig. 3. Effects of controlled injection within the ARM cluster. Task under test has
sequential traffic, cache transfer is 512 KiB.
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Fig. 4. Effects of controlled injection within the ARM cluster. Task under test has
random traffic, cache transfer is 512 KiB.

Figures 3 and 4 show the results for our experiments within the Cortex-A57
compute cluster. The plots show LOAD intensity on the bottom X-axis, and the
injection rate of a single IF task on the top X-axis. This metric is computed
as the bandwidth requested by an IF task for a particular LOAD intensity,
normalized to the maximum bandwidth that the same IF task can request for
the same experiment (i.e., when the LOAD injection reaches 100%). It repre-
sents probably the most significant way of visualizing the degree of controlled
injection the system is sustaining, which allows for a more direct comparison
between bandwidth usage and latency increase. The plots show measured band-
width on the left Y-axis, and latency on the right Y-axis. The stacked area plots
show the breakdown of the total utilized memory bandwidth (to be read on the
left Y-axis) by the UT task (the darker area) and the IF tasks. The plots also
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highlight the measured MAX bandwidth that the four ARM cores can cumu-
latively request when generating memory transactions at full throttle (for both
SEQ and RAN access patterns). The black line with yellow markers shows the
increase in execution time (latency, to be read on the right Y-axis) experienced
by the UT task while IF tasks are injecting extra memory transactions at increas-
ing rates. More specifically, the values on the markers represent the latency of
the test with interference normalized to the baseline execution latency in absence
of interference.

If we focus on the bandwidth usage (stacked areas), in all these plots it seems
that a significant portion of the available bandwidth, which is not exploited by
the PREM task alone (as shown when the injection rate is at its minimum), can
be utilized by controlled injection (as shown when we move to the right). By
combining the information from the latency curve and the bandwidth areas it is
possible to identify the sweet spot where, for each traffic pattern combination,
we can gain the most.

Focusing on the first subplot, (UT=SEQ; IF=SEQ), where both the task
under test and the interference traffic feature sequential access pattern (i.e.,
the most sensitive case to interference), we see that the cumulative bandwidth
request from all the Cortex-A57 cores is limited to only around 6 GB. As already
mentioned, the breakdown shows that this is due to system-level bandwidth
partitioning, as a single core utilizes 66% of that maximum bandwidth.

If we focus on the latency curve, we notice that a 0.8% LOAD intensity by
any IF task implies 30% injection rate, perturbing the execution time of the UT
task by a tiny 5%. Overall, in this case controlled injection allows to reach 81%
of the maximum sequential bandwidth with virtually no impact on the execution
time of the UT task.

When the IF workload is of type RAN, the SEQ UT task is never perturbed,
even when 100% controlled injection is allowed. This brings a 37% increase in
bandwidth usage, overall reaching 72% of the maximum sequential bandwidth.
Focusing on a RAN UT task (Fig. 4), when the IF task is of type SEQ we see
that controlled injection has a tremendous effect on increasing memory band-
width usage. Clearly, the tolerated increase in execution time for the UT task
varies from one system (or one application domain) to another, but we can see
that even with 100% injection rate the latency never exceeds 17%. In this case
we observe a staggering 1365% increase in bandwidth usage, reaching 93% of
the maximum sequential bandwidth. If a more conservative 10% is chosen as a
maximum tolerated increase in latency, we can see that this is achieved for a
LOAD intensity of around 1.5% (46% injection rate). Even in this case, con-
trolled injection allows for a 626% increase in bandwidth usage.

Finally, when both the UT and the IF tasks are of type RAN, we see that
the bandwidth requests can be fully summed up, increasing bandwidth usage by
300% without impacting the execution time of the UT task.
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3.2 Effects of Controlled Injection Within the DENVER Cluster

Figures 5 and 6 show the results for our experiments within the DENVER com-
pute cluster. The setup is identical to the Cortex-A57 compute cluster, as is
the information in the plots and the general observations that can be drawn.
The benefits of controlled injection in the DENVER cluster are even more pro-
nounced, as one single DENVER core roughly uses half the available bandwidth
for the cluster, as can be seen in the UT=SEQ, IF=SEQ plot (whereas in the
Cortex-A57 case a single core used 66% of the total). Although the numbers are
slightly less stable in this experiment, it can be seen that even when the injection
rate reaches 100% the increase in the latency of the UT task stays around 10%.
The bandwidth usage reaches full efficiency, as it gets doubled.

Fig. 5. Effects of controlled injection within the DENVER cluster. Task under test
has sequential traffic, cache transfer is 1024 KiB.
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Fig. 6. Effects of controlled injection within the DENVER cluster. Task under test
has random traffic, cache transfer is 1024 KiB.

Similar to the Cortex-A57, there is not a lot to be gained when the IF task
is of type RAN and the UT task is of type seq, as the bandwidth generated by
the random access pattern is an order of magnitude smaller than the sequential
for the DENVER core. Still, controlled injection can be applied at full throttle
without disturbing the UT task.

When the UT task is of type RAN, there is always to gain from controlled
injection. If the IF task is of type SEQ, we increase bandwidth usage by 465%
while keeping latency increase below 10% (and we could increase it by 2300%
if a latency increase of up to 18% could be tolerated). When the IF task is of
type RAN, we can double the bandwidth usage without impacting the UT task
at all.
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3.3 Inter-Cluster Effects of Controlled Injection

After studying the benefits of controlled injection within each compute cluster
in isolation, we experiment with inter-cluster interference. We first elect a single
ARM or DENVER core, in turn, to host the UT task, and we place the IF tasks
on the sole cores belonging to the other cluster. Thus, when one DENVER hosts
the UT task, the IF tasks run on the ARM cluster (the second DENVER core is
inactive), and vice-versa. We don’t show whole plots for this experiment (which
we consider preliminary to what follows), but we report here the most important
findings.

When a DENVER core hosts the UT task, its latency is virtually unmodified
(<5%) independent of the injection rate of the IF tasks running on the ARM

Fig. 7. Effects of controlled injection among the ARM and DENVER clusters (SoC
level). Task under test has sequential traffic, cache transfer is 512 KiB for the ARM
and 1024 KiB for the DENVER.



100 R. Cavicchioli et al.

Fig. 8. Effects of controlled injection among the ARM and DENVER clusters (SoC
level). Task under test has random traffic, cache transfer is 512 KiB for the ARM and
1024 KiB for the DENVER.

cores. When it is an ARM core that hosts the UT task, its latency is more
susceptible to the injection rate of the IF tasks running on the other cluster
(the DENVER cores), but the variation always stays below 10% if the LOAD
intensity stays within 33%.

These findings suggest that the best way to support PREM on a platform
of this type is that of always allowing one core from each cluster to access
memory. This still leaves plenty of room for better bandwidth exploitation, which
controlled injection can effectively achieve.

Figures 7 and 8 show the results for our last experiment, where an ARM
core and a DENVER core both run an UT task, while the remaining cores
from both clusters run IF tasks. At the system level, the benefits of controlled
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injection already seen within each cluster are consolidated. When both the UT
and IF tasks generate SEQ requests we can tune IF tasks to inject up to a
LOAD intensity of 3%, with an increase in the UT tasks latency within 10%.
This brings a 35% increase in bandwidth usage compared to only allowing a
single Cortex-A57 and a single DENVER core to access memory (a basic PREM
scheme). If the IF tasks are of type RAN, no significant interference is generated
on the UT tasks on both clusters. The benefits are more modest (as already
observed within the individual clusters), with an increase in bandwidth usage
of around 13%. Note that the values in the latency curves (in particular for the
DENVER) might sometimes drop below one. This is due to the fact that as a
baseline value for normalization we consider the latency measured when a single
core from a given cluster executes (SEQ or RAN) while all cores from the other
cluster (and from the GPU) execute SEQ IF tasks. In this particular experiment,
we have less interference coming from the other cluster, as one of the cores hosts
the UT task. As a consequence, particularly when the UT task is of type RAN,
the amount of interference generated for the other cluster is smaller.

When the UT tasks are of type RAN, we see the highest potential for making
a better use of the available bandwidth. If the IF tasks are of type SEQ, they can
inject at a LOAD intensity of up to 3% to keep the latency increase below 10%,
improving bandwidth usage by 628% compared to PREM (a single Cortex-A57
and a single DENVER). Note that it is only the Cortex-A57 that poses this
limitation. The maximum interference observed on the UT task running on the
DENVER core is 11%, when the LOAD intensity reaches 100%. At this point,
the overall increase in bandwidth usage is 1822%. If the IF tasks are of type
RAN, they can inject at full throttle, stacking up additively all the bandwidth
requests and improving bandwidth usage by 202%.

4 Practical Realization of the Injection Scheme

Implementing controlled injection requires design choices that are inherently
tight not only to the specific real-time requirements, but also to the particu-
lar software stack of interest. Hence, since it would be impossible to provide a
definitive reference implementation, we guide the reader along the most impor-
tant points.

Injection Rate Limit. Although effective in increasing the system utilization,
bandwidth injection on a PREM-like setup needs to be bounded to preserve the
memory access determinism.

Safe Approach. Given a platform of interest, and an expendable relative latency
for memory phases l and characterization of the platform’s memory subsystem
like the one we presented, it is easy to to find the greatest injection load intensity
i such that, for any intensity i′ ≤ i, we measure a relative intensity l′ ≤ l.
On a TX2 platform, for instance, if we assume l = 5%, and look at the less
favourable worst case for injection SEQ-SEQ, we find i = 0.8%. This practically
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means that we are gaining: 2.1 GiB/s from 3 cores injecting on A57; 0.3 GiB/s
from 1 core injecting on Denver; and 2.7 GiB/s for 3+1 cores injecting on the
whole SoC. Although it produces experimental guarantees, this approach may be
considered expensive or rigid. Also, it is prone to a tradeoff between bandwidth
underutilization and latency degradation, similarly to the m-PREM technique
discussed in Sect. 5.

Dynamic Approach. Alternatively, if a hot measurement of the latency impact
can be performed, then such information can be fed to a suitable adaptive algo-
rithm which dynamically increases the injection rate, until reaching an oscillation
around the optimal value. In this case, the optimization function has to be con-
structed or parameterized in order to provide a bounded latency impact that
meets the safety requirements.

Injection Control. Regardless of the injection rate limitation approach, such
limit has to be enforced, when injecting tasks are allowed to execute alongside
a PREM task. We discuss two mutually non-exclusive techniques.

Fine-Grained Control. When tasks’ code is automatically transformed to adhere
to the PREM scheme, a compiler is also part of the PREM runtime [6]. This
enables the memory interval compiled code to be regularly interleaved by an idle
instruction sequence, whose length can be dynamically determined, or statically
hard-coded. In this case, the control on the injection rate is the finest possible,
exactly as the idle cycle C used in the empirical section, but we need all tasks
to be rebuilt on the custom-compiler.

Transparent Control. A centralized and secure injection control mechanism can
be integrated in the underlying system-layer software, where the PREM admis-
sion control also usually resides. For example, an injection server can conve-
niently be implemented in a hypervisor, to periodically throttle an injecting
task, and possibly measure the impacted latencies. Feasibility has been already
been proven by the implementation of a memory guarding server [21] for the
memory paritioning version [7] of Jailhouse [3], Experiments on Nvidia TX2
showed [13] that such server may run with a period of 16µs without costing
more than 2% time utilization on the injecting task, or even every 1µs, cost-
ing the 30%. Although courser-grained than the previous one, this technique
is compatible with PREM-foreign code, thus enabling injection on third-party
proprietary portion of the software stack (e.g., OS and libraries).

5 Related Work

The effects of memory contention in modern system-on-chips have been abun-
dantly discussed in previous literature. Efforts to study the deterioration in the
WCET of memory-contending applications have been performed on multi-core
embedded systems [12], HPC-oriented systems [8,15] and even the magnitude
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on memory interference of co-running integrated and discrete GPUs [4,18,19]
has been measured in previous work.

PREM was originally proposed for single-core CPUs [11] to provide robust-
ness to memory-access interference from peripheral devices, and was later
extended to avoid inter-core interference in multi-core CPUs [1,14]. After that,
there has been extensive work on controlling CPU-GPU interference with PREM
on HeSoCs [5,6,9]. PREM splits tasks into memory and compute phases, and
schedules memory phases one at a time to prevent interference. While this sim-
ple approach allows to greatly reduce the pessimism in WCET estimates, it also
heavily under-utilizes the memory bandwidth available in modern HeSoCs.

This fact was highlighted by the original authors of PREM [20], which exper-
imentally proved that the latency of main-memory accesses does grow less than
linearly with the number of cores accessing memory at the same time. In par-
ticular, if each core accesses a different bank, then the latency stays unchanged,
independent of the number of competing cores. Based on this observation, the
authors define a parameterized algorithm that schedules up to m phases at the
same time. The main drawback of this approach is that the user must guess the
right value for m for avoiding interference or for keeping it sufficiently low.

This may be particularly tricky if the accesses generated by a task set are not
even: for the memory phases of some tasks, a given value of m may be fine, but
for other tasks it may be either too low or too high. Even worse, m = 2 may be
too high for some tasks (or even all tasks), thereby making any utilization boost
impossible. Controlled injection, as our evaluation demonstrates, seems able to
improve bandwidth utilization also in these unfriendly scenarios, due to its finer
granularity.

Memguard [21] provides a different approach to protecting a task’s WCET
from the adverse effects of memory interference, based on throttling the band-
width at which every core can access the shared memory, in an attempt to guar-
antee that each core gets its assigned bandwidth. Although simple and effective,
such a mechanism may provide less control on interference compared to PREM,
because memory accesses cannot be controlled explicitly. In addition, PREM
is a much more general solution, because it is a building block for arbitrary
schedules, while throttling is a well-defined control policy. Consider for example
a constrained-deadline task6. To meet the task’s deadlines with Memguard, the
task must be assigned a (much) higher bandwidth than that sufficient to com-
plete each instance before the arrival of a new one. This results in (high) band-
width waste. With PREM, such a task can be scheduled with efficient schedul-
ing algorithms for constrained-deadline tasks, resulting in minimum or even zero
bandwidth waste. Previous work has characterized the effects of memory inter-
ference on modern HeSoCs [4,16], but the focus has always been on latency
only, with no study of the bandwidth utilization, or the correlation between the
two. More in general, none of the aforementioned contributions assess whether
it is convenient on a performance and predictability perspective to arbitrate

6 i.e., a task with a relative deadline (much) shorter than the minimum inter-arrival
time of the task instances.
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simultaneous memory accesses in modern HeSoCs through controlled injection
of memory clients’ requests.

6 Conclusion and Future Work

In this paper we presented how, with various types of workload, it is possible
to exploit the available bandwidth of HeSoCs in a more efficient way than the
canonical PREM arbitration, which conservatively considers main memory as a
one-user-at-a-time resource. The proposed controlled injection technique allows
in most practical cases to get close to the maximum available bandwidth, without
significantly impacting the latency of the original PREM task. With regards to
practical scenarios, authors in [17], for instance, present CAVBench, a collection
of applications for autonomous driving vehicles. Profiling these applications leads
to the conclusion that such workloads are extremely memory bound, hence the
importance of accurately controlling memory bandwidth becomes paramount in
latency sensitive scenarios.

As part of our future work, we envision the development of a practical con-
trolled injection scheme, built on top of existing PREM implementations that
consider both the CPU and the GPU of a HeSoC [5,6,9]. Controlled Injection
also paves the way to new, more effective PREM-based scheduling algorithms.
We are currently evaluating scheduling policies where both the UT and the IF
tasks are slowed down by the same factor, rather than leaving full bandwidth to
a core and allowing the others to inject small amounts of requests.
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Abstract. A Single Nucleotide Polymorphism (SNP) is a DNA variation
occurring when a single nucleotide differs between individuals of a species.
Some conditions can be explained with a single SNP. However, the com-
bined effect of multiple SNPs, known as epistasis, allows to better correlate
genotype with a number of complex traits. We propose a highly optimized
GPU+CPU based approach for epistasis detection. The GPU portion of
the approach relies only on CUDA cores to score sets of SNPs, based on
the copresence of genetic variants and a specific outcome (case or control),
making it suitable for a large number of computing devices. Considering
datasets with different shapes (more SNPs than patients, or vice versa)
and sizes, combining an analytical analysis and an experimental evalu-
ation with five CPU+GPU configurations covering different GPU archi-
tectures from the last five years, we show that the performance achieved
by our proposal is close to what is theoretically possible on the targeted
GPUs. Comparing, in 3-way epistasis detection, with a state-of-the-art
GPU-based approach which also does not rely on specialized hardware
cores,MPI3SNP, the proposal is on average 3.83×, 2.72×, 2.44× and 2.71×
faster on systems with a Titan X (Maxwell 2.0), a Titan XP (Pascal), a
Titan V (Volta) and a GeForce 2070 SUPER (Turing) GPU, respectively.

Keywords: Epistasis detection · Parallel processing · GPU ·
Heterogeneous system.

1 Introduction

Throughout the years, Genome-Wide Association Studies (GWAS) have been
promoting significant advances in genetics research by shedding light into the
relationship between genetic variants and phenotypic traits. The analysis of Sin-
gle Nucleotide Polymorphisms (SNPs) plays a prevailing role in this context,
since they represent the most frequent type of variation in the human genome.
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In the pursuit of a better understanding of genotype-phenotype relationships,
increasing research efforts have been focused on identifying the impact of multi-
ple, interactive SNPs, a phenomenon known as epistasis [10]. In fact, the accu-
rate identification of epistatic interactions represents a hot research topic, since
a number of complex traits (such as Alzheimer’s disease [20], breast cancer [14]
and Crohn’s disease [8]) are consequence of the joint effect of several SNPs at
different interaction orders.

The epistasis detection not only introduces additional layers of biological
complexity but it also represents a computationally intensive optimization prob-
lem. This challenging nature becomes even more noticeable when an exhaus-
tive (as precise as possible) evaluation of interactive SNP combinations (i.e.,
triplets in 3-way detection) is needed to explain very complex traits. In order to
address this issue, given the data-parallel nature of epistasis detection searches
(same operations performed to evaluate each set of SNPs), there are a number of
exhaustive strategies implementing GPU-based approaches [3,5,12,17,19]. How-
ever, for a number of reasons (e.g., differences in the architectures), some of those
approaches might not be able to efficiently use recent hardware.

This work proposes a novel GPU+CPU approach for epistasis detection based
on exhaustive examination of SNP combinations, which aims at fully exploiting
the computational capabilities offered by the joint, collaborative action of CPU
and GPU devices. With this purpose in mind, the proposed method relies on
the architectural differences between CPU and GPU to undertake the efficient
evaluation of epistatic interactions, accurately scheduling and distributing these
tasks according to their properties and suitability to the underlying hardware.
The main contributions of this paper are the following:

– High-Performance GPU+CPU based high-order epistasis detection approach
based on optimized parallel algorithms;

– Analytical and experimental analysis of the proposal when performing 3-way
detection on five CPU+GPU systems (comprising Maxwell 2.0, Pascal, Volta
and Turing GPU architectures and Xeon, i7, and i9 CPU architectures);

– In-depth discussion of theoretical and achieved parallel performance on dif-
ferent dataset shapes and problem sizes, with validation of results through
comparisons with other state-of-the-art strategies.

Experimental results show that the proposed approach is capable of outper-
forming MPI3SNP [12], a state-of-the-art approach, for about 2.9× (on average)
across four different NVIDIA architectures. In addition, the proposal achieves
near-theoretical maximum performance according to the characteristics of the
algorithm.

This paper is structured as follows. Section 2 formulates the epistasis detec-
tion problem. Section 3 provides insight into the proposed method and the
design strategies adopted to enhance epistasis searches on CPU+GPU systems.
Section 4 presents the experimental campaign herein undertaken and contrasts
the results achieved with the state-of-the-art. Section 5 situates the proposal
in the related work on optimized algorithms for epistasis detection. Section 6
concludes the paper.
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2 Problem Formulation

Certain phenotypic traits, e.g. diseases, are strongly correlated to the joint inter-
action of different SNPs in the genome of a particular individual (patient). The
accurate identification of such interactions represents the main goal in epistasis
detection. Epistasis analyses therefore deal with the processing of information
on SNPs from different individuals, which are classified according to a binary
outcome (e.g., having –case– or not having –control– the phenotypic trait under
study). Such information is contained in a dataset D of size N × (M +1), where
N is the number of individual samples and M the number of SNPs subject to
analysis. Each entry D[i, j], i ∈ {1, ..., N}, j ∈ {1, ...,M} provides the genotypic
value observed at the j-th SNP for the i-th individual, encoded as 0 (homozygous
major allele, AA), 1 (heterozygous allele, aA or Aa), or 2 (homozygous minor
allele, aa). The entry D[i,M + 1] in a sample represents the phenotypic state
observed for the i-th individual (0 in control samples and 1 in case samples).

Epistasis detection is usually formulated as an optimization problem that is
aimed at identifying the combination of k-interactive SNPs x = [x1, x2, ..., xk]
(xi ∈ {1, ...,M}) that most likely governs the occurrence of the examined trait,
where k is the epistasis interaction order assumed for that trait. The identifica-
tion of the optimal solution to the problem requires exploring an epistasis search
space of MCk = M !

k!(M−k)! sorted and non-repeated combinations of SNPs [13].
The suitability of each possible combination x is measured by means of objective
functions, which measure the degree of impact of the evaluated interaction in
the studied trait. In this work, the proposed approach adopts the widely-used
Bayesian K2 score [2,15] as the scoring objective function:

K2 =
I∑

i=1

⎛

⎝
ri+1∑

b=1

log(b) −
J∑

j=1

rij∑

d=1

log(d)

⎞

⎠ , (1)

where I is the number of possible genotypic combinations among k SNPs (I = 3k,
since each SNP can take one out of three possible genotypic values), J the number
of phenotypic states (J = 2 in case-control scenarios), ri the frequency of a
certain genotypic combination i at the evaluated SNPs x = [x1, x2, ..., xk], and rij
the number of samples that satisfy the occurrence of the phenotypic state j with
the genotypic combination i at x. That is, given a k-order SNP interaction, the
occurrences of each possible genotype combination for the examined k SNPs are
counted through all the samples recorded in the dataset, taking into account each
record type (case or control). This results in a total of 2 × 3k frequency values.
These values, forming what is known as a contingency or frequency table, are
used to compute a score that aims to discriminate predictive strength, between
the different sets of SNPs, in relation to the binary outcome under study. Lower
K2 scores denote better solution quality, in such a way that the interaction that
minimizes Eq. 1 represents the best potential solution.

In terms of computational effort, the exhaustive identification of optimal
solutions depends on the interaction order and the dimensions of the input data.
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Specifically, the number of possible candidate solutions to the problem exponen-
tially grows in harder epistasis scenarios (increasing k and M), while the amount
of calculations in the objective function depends on N . These issues demand
efficient parallel strategies and orchestration of computing devices to tackle the
problem, accurately exploiting the combined capabilities of CPU+GPU systems.

3 GPU+CPU Hybrid Epistasis Detection

Fig. 1. Overview of scheduling between CPU and GPU.

The approach proposed in this paper is aimed at exploiting the collaborative
execution among CPU and GPU devices to conduct computationally demand-
ing epistasis detection tasks, particularly the exhaustive search for optimal 3-
way SNP interactions according to the K2 score. Figure 1 provides the general
overview of the proposed CPU+GPU approach, which is designed in such a way
that both device types cooperate in the process of determining the optimal solu-
tion by executing different sets of tasks. This task distribution is conducted due
to the architectural differences between CPU and GPU, thus each device type
is assigned with the tasks whose characteristics allow better exploitation of the
computational and memory resources on a per device architecture basis.

In a nutshell, the host CPU cores are responsible for generating the sets
of combinations of SNP indexes (Combinations Vector) to be processed in the
GPU. The evaluation of SNP combinations is a task rich in data-parallelism, thus
highly suitable for GPU execution, while the generation of combinations vec-
tors requires a large amount of complex control and synchronization primitives,
thus better fitting the CPU architecture. The combinations vectors (chunks)
are simultaneously constructed within several CPU threads and offloaded to
the GPU in a streaming fashion. This process is repeated in several scheduling
rounds until all possible SNP combinations have been examined.

Upon reception of a combinations vector, the GPU performs the following
set of tasks: 1) Contingency table construction, i.e., counting the frequencies of
combined genotypes for each of the unique sets of SNPs (resulting from com-
bining SNPs all-to-all) generated by a particular CPU thread in a given round,
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2) Objective function (K2 score) calculation, i.e., scoring each set of SNPs based
on the constructed contingency table; and 3) determination of the local optimal
solution (the one with the minimum K2 score) from the set of tuples of SNP
indexes in the combinations vector, i.e., Round-level Solution.

For each scheduling round, the host CPU threads maintain the information
regarding the best solution obtained across all executed rounds on the GPU (and
initiated by that thread). Upon all possible SNP combinations are processed,
the final/global optimum solution is determined by the CPU master thread by
gathering the partial solutions from each host CPU thread.

3.1 CPU as Orchestration Engine and Generator of Unique Sets

Exhaustive epistasis searches in 3-way fashion require evaluating all-to-all combi-
nations three SNPs at a time. There are algorithms specialized in the generation
of a combination of elements from a given index (e.g., [1]). The use of these
algorithms allows arriving at a given combination faster than exhaustively and
iteratively enumerating all combinations up to that combination. This is espe-
cially the case when those combination indexes are large.

Direct calculation of the combination (i.e., the triplet of indexes of SNPs)
to process inside each GPU thread, from the GPU global thread identifiers,
introduces a considerable overhead as it does not suit the parallel architecture
of GPUs. Generation of the triplets of indexes of SNPs inside the GPU threads
can result in an overhead that can only be offset when processing datasets with
a large number of patient records. Notice that, given the nature of epistasis
detection, we only want to process unique sets of SNPs. If what was required
was to process all permutations, it would not be challenging to achieve direct
mapping of thread identifiers into the triplets to process inside the GPU threads.

In the proposal presented in this paper, it is the host (i.e., the CPU) that
generates combinations of indexes of SNPs, to be sent to the GPU for evaluation.
Generation of combination vectors and communication of these vectors to the
GPU for evaluation are performed in multiple rounds. The number of rounds is
given by

⌈
MC3
s

⌉
, where MC3 is the total number of combinations to evaluate in

a particular epistasis detection 3-way search (SNPs combined all-to-all in sets
of three) and s is the number of combinations processed per round. Herein we
refer to the later as chunk size.

Multiple rounds are processed concurrently by multiple CPU threads (a
parameter). This results in more efficient use of the CPU resources to gener-
ate sets while also improving bandwidth utilization between CPU and GPU
devices. While some CPU threads are generating combination vectors or waiting
for GPU kernel executions to complete, other threads are sending new com-
bination vectors to the GPU. Each CPU thread, when starting a new round,
generates the first combination of three SNPs (i.e., three indexes) from a given
starting combination index (assigned to that round). The calculation of the first
combination for a given round is accomplished through an adaptation of the
algorithm presented in [1].
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Algorithm 1 depicts the operations the proposal performs for determining
the configuration of the lth combination (starting from 1), represented in output
vector c, considering combinations of three SNPs chosen from m SNPs numbered
from 0 to m − 1.

Data: m, l
Result: c
r = l;
c[0] = −1;
for i = 0; i < 2; i = i + 1 do

while r > 0 do
c[i] = c[i] + 1;
d = comb(m − (c[i] + 1), 2 − i);
r = r − d;

end
r = r + d;
c[i + 1] = c[i];

end
c[2] = c[2] + r;

Algorithm 1: Generation of the lth combination of three elements chosen
from m elements.

The for loop executes for two iterations (i = 0 and i = 1), determining the
value for the first and the second positions—c[0] and c[1]—in the combination
configuration vector c. The value for the third (and last) position—c[2]—is equal
to the value found for the previous position (the second)—c[1]—plus a remainder
(rest) stored in the r variable. In each of the two for loop iterations, the nested
while loop executes until r ≤ 0, which signals that the SNP index value for
c[i] (i = 0 or i = 1) has been found. Variable r, decremented by comb(m −
(c[i]+1), 2− i)—number of combinations that exist between {c[0], c[0]+1, c[0]+
2} and {c[0] + 1, c[0] + 2, c[0] + 3} (i = 0) or between {c[0], c[1], c[1] + 1} and
{c[0], c[1] + 1, c[1] + 2} (i = 1)—for any increment to c[i], holds the distance to
the lth combination. When the while loop condition is evaluated to false, the
previous value of r (the remainder) is restored—r = r + d—and the starting
value of c[i + 1], the next combination configuration index, is set c[i], the value
found in the current for loop iteration. In order to avoid having to calculate
(and recalculate) jC2 during execution of a given epistasis detection search, the
proposal relies on a lookup table that is only required to store values for j up to
the number of SNPs. Thus, in the first for loop iteration (i = 0), the term
comb(m − (c[i] + 1), 2 − i) maps to precomputed values that are loaded at the
application start. In the second (and final) for loop iteration (i = 1), there is
no need to resort to precomputed values, as the number of combinations of one
element chosen from m − (c[i] + 1) elements is equal to the latter.

After the configuration of the first combination to be processed in a given
round is known, all other combinations to be processed in that round are
sequentially enumerated (assuming lexicographical order) by the CPU thread
operating the round. For example, the next combination after {32, 41, 1854} is
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{32, 41, 1855} if the number of SNPs to select from is larger than 1855 (the
indexes of the SNPs start at 0), and {32, 42, 43} otherwise. This offsets the ini-
tial cost of determining the first combination to be part of the combinations
vector to be generated on a given round, as generating the next combination
from a given other combination is considerably less computationally expensive.

While combination vectors are being processed on GPU kernel executions
launched by some CPU threads, additional combination vectors are concurrently
being generated on the CPU by other threads, and combination vectors per-
taining to other rounds are being transferred to the GPU (i.e., host to device
memory transfer). This behavior is achieved using OpenMP, with a parallel
for loop (#pragma omp parallel for schedule(dynamic)) iterating over the
total number of sets to process (i.e., MC3) with a step equal to the number
of combinations to be evaluated on a given round (i.e., the chunk size). These
chunks must be large enough (a parameter of the proposal) to saturate the GPU
compute units, while at the same time not large to the point of severely reducing
the number of threads that can execute concurrently on the host. Each itera-
tion of the parallel OpenMP loop, executed by a given CPU thread (each with
its own private CUDA stream) is responsible for generating a chunk of triplets
of indexes representing combinations of SNPs (i.e., the combinations vector),
sending them to the GPU and launching the GPU kernel that evaluates the
combinations. After that particular kernel execution completes, the CPU thread
transfers back (i.e., device to host memory transfer) the index identifying the
locally optimal combination found on the GPU kernel execution and correspond-
ing score. Each CPU thread keeps track of the best solution found up to any
given point, with the final reduction done on the master thread after the parallel
for loop completes execution, i.e., once all combinations of SNPs are exhausted.

3.2 GPU as a Combinations Processor

Due to the challenging nature of the epistasis detection problem tackled herein,
the way the input dataset is represented and processed represents a crucial aspect
in ensuring its high performance execution, especially on GPU devices. In order
to efficiently encode the input data set, we rely on binarization techniques, first
used in the context of epistasis detection in [16]. In the proposed approach, the
GPU receives as input two arrays, representing the controls and cases in the
dataset (phenotype), respectively. As it is depicted in Fig. 2(a), all genotypic
information pertaining a given SNP X in relation to the samples in the dataset
is represented by 3 × (N0 + N1) binary values, where N0 and N1 represent
the number of controls and the number of cases, respectively. Each of these
binary values is stored in the array representing controls (phenotype 0) or in the
array representing cases (phenotype 1), respectively. For each pair composed of
a sample and a SNP, one of three particular bits is set to 1 (in the cases or the
controls array), identifying which genotype (0, 1 or 2) the sample has regarding
that SNP. In total, these two arrays represent M × 3 × N binary values, where
M is the number of SNPs and N is the total number of samples (N0 + N1).
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Fig. 2. Representation of basic notions in epistasis detection.

As previously referred, the GPU receives an array holding triplets of indexes
of the SNPs to process in a specific kernel execution (i.e., the combinations
vector), one triplet to be processed per GPU thread. When processing a single
SNP combination, the binary representation of input data allows calculating
the frequency of any given combined genotype (out of the 27 possible genotypic
combinations) using only bitwise AND and POPC (population count, which
counts the number of bits set to 1) instructions, and accumulating until all bit-
packs concerning cases or controls (for a given genotype) have been processed.

Cases and controls are represented in distinct bit arrays and thus processed
from separate bit-packs of data. Both AND and POPC instructions process 32-
bit of data in all GPUs that are part of the systems targeted in this paper. Thus,
for interaction order k (i.e., k-way epistasis detection searches), the total number
of POPC instructions is equal to MCk × 3k × (

⌈
N0
32

⌉
+

⌈
N1
32

⌉
), while the total

number of AND instructions is (k − 1) times higher (M being the number of
SNPs, N0 the number of controls and N1 the number of cases). In particular, for
2-way epistasis detection, depicted in Fig. 2(b), an equal amount of and POPC
instructions is required. However, for 3-way detection (considered in the work
proposed herein), the number of AND instructions to be performed is 2 times
higher than the amount of POPC instructions. This is due to the fact that, in
order to calculate a single entry in the contingency table, two AND operations
are needed to be performed over three binary encoded SNP inputs, before a
single POPC operation is applied.

To facilitate the calculation of the objective function, the main GPU kernel
also receives as input an array with precalculated values, specific to the particular
function used (logarithms of factorials for the K2 Bayesian score [2,15]), for up to
the maximum that can possibly be needed to calculate scores given the number
of cases and controls in the dataset, the number of SNPs, and the total number
of sets resulting from the number of SNPs and the interaction order. Some of
these values could be calculated inside each particular GPU thread, but it makes
for a more efficient solution to pass values that are to be the same in all GPU
threads as input to the kernel.



114 R. Nobre et al.

Fig. 3. Round of combinations being processed on a given GPU thread block.

The main GPU kernel is launched with a grid composed of as many thread
blocks as the number of sets of SNPs to be processed by it (the chunk size)
divided by the number of threads per thread block. The global identifier of each
GPU thread pertaining to a given kernel execution (blockDim.x * blockIdx.x
+ threadIdx.x) identifies the combination of SNPs to be processed from the
sets of SNPs represented in the combinations vector sent by the CPU in a given
round. Thus, it is mapped to the positions in global memory holding the indexes
representing the three SNPs to be evaluated by a given GPU thread.

Each GPU thread processes a set of SNPs, whose indexes are identified in
the combinations vector previously transferred from the CPU for that particular
round, at positions s × i + global id, where s is the number of combinations of
SNPs to be processed per round and i is the particular SNP index out of the three
involved. Reading the triplet of indexes identifying the SNPs to evaluate from
global memory in each GPU thread does not significantly increase the execution
time of the GPU kernel. These indexes are read in a coalesced access pattern,
at a small cost in relation to the overall execution of the GPU kernel.

Figure 3 illustrates how combinations are processed within a single GPU
thread block, including which parts in the memory subsystems are used at each
step. Each thread in a thread block iterates over all cases and then over all
controls, reading packed binarized genotype patient data for a particular triplet
of SNPs. The read operations to fetch patient data from global memory are in
general efficiently performed. Within each array, SNP genotype values are binary
encoded as follows. Each bit-pack n of w binary encoded patient data records
(i.e., representing w patients) concerning one of the three possible genotype con-
figurations (0, 1 or 2), represented as g, of an SNP of index m is stored in position
g × M × ⌈

N
w

⌉
+ n × M + m in global memory. Given that the number of SNPs

in the dataset is expected to be significantly larger than the size of a warp, and
that GPU threads with contiguous thread id access lexicographically contiguous
combinations, GPU threads in a given warp are likely to access data concerning
the third SNP in the combination being processed from contiguous positions in
memory, i.e., in a coalesced access pattern. For instance, the combination after
{23, 354, 661} is likely {23, 354, 662}. In addition, the global memory reads to
data concerning the first and the second SNPs from the combination being eval-
uated in each GPU thread will typically access the same memory positions as
other threads from the same warp.
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Fig. 4. Reduction of scores between different GPU thread blocks.

Iterating over individuals, cases or controls, the three vectors of data per
SNP and per genotype (a total of nine vectors of binarized patient data) in a
given GPU thread are combined to determine the number of occurrences of each
genotype combination (27 possible genotype combinations) in the samples rep-
resented by the bit-packs of binarized data. This is accomplished with bitwise
AND and POPC instructions. The proposal relies on popcll(), which is the
64-bit equivalent of the popc() 32-bit CUDA intrinsic. Both map to the POPC
32-bit instruction, but processing bit-packs of 64-bit of data at a time allowed
to achieve a slightly higher overall performance. Iteratively processing 64-bit of
binarized patient data instead of 32-bit allows a better use of the GPU memory
subsystem, by reducing the amount of write accesses needed for incrementing the
frequency counters during construction of the contingency table to half. Geno-
type frequencies are accumulated for cases and controls (processed separately)
until all bit-packs of patient data concerning a given triplet of SNPs have been
processed, at which point the construction of the contingency tables for all GPU
threads in a warp is complete.

The GPU threads in a given thread block store the counts of observed com-
bined genotype frequencies (for cases and controls) in an array of size 2×27×T
in shared memory, where T represents the number of GPU threads in a thread
block. All write memory accesses during the generation of the contingency tables
are coalesced. Each frequency counter for a given combined genotype g (from 0 to
26) and phenotype p (0 for controls and 1 for cases), pertaining to a GPU thread
with a given local id, is mapped to position 2×g×T +p×T +local id of the array
in shared memory. In any given thread block, the specific shared memory 32-bit
slot used in a GPU thread is indexed by its local identifier (threadIdx.x) in the
thread block. Thus, there is no possibility of collision with other threads in the
same warp (i.e., multiple threads accessing the same memory slot). These opti-
mizations maximize the utilization of shared memory, thus benefiting from its
low latency and high bandwidth nature (when compared to the global memory).

After all data (for all cases and controls) regarding the set of SNPs assigned
to a given GPU thread has been processed, a score is calculated based on the
counts for the 27 combined genotype frequencies (for cases and controls) stored,
per GPU thread, in shared memory. Afterwards, the score is reduced in shared
memory across the GPU threads in the same thread block, and finally, in global
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memory across all thread blocks, as illustrated in Fig. 4, in order to determine
the best overall objective score (minimum in the case of the K2 score) for a given
round. The global id of the thread achieving local minimum and the correspond-
ing score are transferred to the CPU thread responsible for that particular GPU
kernel execution and stored, after mapping the global id to a combination index
(adding the index of the first combination processed in the round), if the score
is better than the best score found in the previous rounds in that CPU thread.

Particularities of the exhaustive epistasis detection algorithm used and
knowledge about the type of data being processed are leveraged to attain high
performance. For instance, the proposal improves performance of the objective
function by using a lookup table for storing precomputed values that are to
be used by the scoring function. Note that this makes the performance of the
proposal, in regards to the evaluation of the sets of SNPs from the genotype
frequency counts (i.e., the contingency table values for cases and controls), to
a great extent independent of the particular scoring function used. The only
requirement is that the range of precomputed values includes all the values that
might be needed when computing the scores, which depends both on the scoring
function and the number of cases and controls, and that access to those val-
ues is fast. The later aspect is assured by the use of the read-only GPU data
cache load function (i.e., ldg()). In the case of the K2 Bayesian score, the
logarithms of factorials calculated by this scoring function are precomputed on
the CPU and sent to the GPU (once for the whole execution). Thus, assuring
that no actual expensive computation of logarithms of factorials needs to be per-
formed on the GPU. Even compared with the use of the lgamma() CUDA math
intrinsic, which allows to calculate the factorials efficiently through the use of
the gamma function (Γ(x) = (x − 1)!), using the lookup tables allows achieving
highest performance.

3.3 CPU+GPU Execution Orchestration

In order to get the maximum performance out of a given CPU+GPU system,
the proposal relies on several CPU threads executing concurrently. Thus, over-
lapping the generation of combination vectors on the CPU with computation on
the GPU and with data transfers between CPU/GPU at any given time. This
results in making efficient use of the available bandwidth between CPU/GPU,
all available CPU cores and GPU compute resources. This kind of orchestration
is suitable even in the presence of multi-GPU systems. In such systems, GPU
devices on the same machine are assigned to CUDA streams private to different
CPU threads. The way the proposal divides combinations of SNPs to be eval-
uated into smaller work units improves efficiency of work distribution between
GPUs on the same system. Depending on the capability of a given GPU, com-
pared with other GPUs in the system, more/less rounds are assigned during
execution to the CPU threads responsible for orchestrating work for that GPU.

The overall wall-clock time required to execute the proposal is dominated by
execution on the GPU. Generation of combinations on the CPU might only be a
performance deterrent in unbalanced systems (i.e., high-end GPU or multi-GPU
paired with weak CPU). The number of threads is by default set to be equal
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to the number of CPU cores identified at runtime to exist in the system. This
assures that there are enough concurrently running CPU threads to send the
GPU new combination vectors to process at a pace that allows CUDA cores to
be utilized close to their potential.

A suitable chunk size, i.e., number of sets to process per kernel execution, is
important to achieve high performance. Chunk size determines the time taken by
CPU threads to generate combinations and the time required to evaluate them
on the GPU. The range of values that best suit the execution of the proposal is
expected to depend on the dataset (number of SNPs and patient records) and
on the given target CPU+GPU configuration. A value that is too low implies
that the GPU compute resources will be severely underutilized and/or result
in more time spent on preparation and launching the kernel in relation to the
kernel execution. A value that is too large can also result in performance degra-
dation, impacting negatively the load balancing between the CPU threads. This
is especially the case in scenarios where the input dataset has a small number of
SNPs, and thus the resulting number of total sets to process is also small. The
latter scenario can result, in the worst case, in the complete serialization of the
work, being all SNP combinations processed in a single round.

Data transfer between CPU and GPU devices is mostly in the direction from
the CPU to the GPU. Data transfer from the GPU to the CPU is only performed
at the end of the execution of the main GPU kernel in a given CPU thread, i.e.,
an index identifying the SNP set evaluated as having the best score and the
score itself. Compared with the wall-clock time required by the GPU to evaluate
combinations of SNPs, the time required for sending the combination vectors
is not expected to limit overall performance on well balanced systems. This is
especially the case on systems with CPUs with a large number of cores.

4 Experimental Results

Our experimental campaign is aimed at thoroughly evaluating the impact of
different numbers of SNPs and individual samples on the throughput of the
proposal for systems with different CPU+GPU configurations. We performed
experiments on datasets with different shapes (more SNPs than patient records,
or vice versa) and sizes in order to cover different use cases. In addition, we
evaluate the combined performance impact of the number of concurrently exe-
cuting CPU threads and the number of combinations processed per scheduling
round. Finally, the performance of the proposal is compared with MPI3SNP [12],
a GPU-based state-of-the-art approach for 3-way epistasis detection.

4.1 Experimental Setup and Datasets

We rely on five different workstations/servers for our experiments. The systems
are comprised of a Xeon E3-1245 V3 and a GeForce 2070 SUPER (designated
as S1), a Core i9-7900X and a Titan V (S2), a i7-4770K and a Titan Xp (S3),
a i7-5960X and a Titan X (S4) or a i7-6700K and two GeForce 980 GPUs (S5).
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Table 1 shows the specifications of the systems, including GPU, CPU, DRAM,
operating system, CUDA and GPU driver1 versions. The systems are ordered
based on GPU architecture, from the most recent (Turing) to the one released
earliest (Maxwell 2.0).

Table 1. Overview of systems used in the experiments.

Systems GPU (NVIDIA) CPU (Intel) DRAM Operating

arch. | cuda | driver #cores | freq #channels | freq System

S1 GeForce 2070S Xeon E3-1245 V3 16GB DDR3 Ubuntu 18.04

Turing | 10.1 | 430.40 4 | 3.6GHz dual | 2400MHz

S2 Titan V Core i9-7900X 64GB DDR4 CentOS 7.5

Volta | 9.2 | 396.54 10 | 4.0GHz quad | 2400MHz

S3 Titan XP Core i7-4770K 32GB DDR3 CentOS 7.6

Pascal | 10.1 | 418.56 4 | 3.5GHz dual | 1333MHz

S4 Titan X Core i7-5960X 32GB DDR4 Fedora 21

Maxwell 2.0 | 8.0 | 375.26 8 | 3.3GHz quad | 2133MHz

S5 2×GeForce 980 Core i7-6700K 32GB DDR4 CentOS 7.3

Maxwell 2.0 | 8.0 | 410.48 4 | 4.2GHz dual | 2133MHz

In Volta (compute capability 7.0) and in Turing (compute capability 7.5),
each Streaming Multiprocessor (SM), the most basic building block of NVIDIA
GPUs, has four processing blocks. Each processing block has one instruction
scheduling and dispatch unit, 64 KBytes of register file space, 16 IEE754 32-
bit floating point scalar Arithmetic Logic Units (ALUs) (i.e., Floating-Point
Units (FPUs)), 16 32-bit integer scalar ALUs, four load/store units and four
Special Function Units (SFUs). In addition, each SM has 96 KBytes (Turing)
or 128 KBytes (Volta) of L1 configurable cache/shared memory, shared between
the four processing blocks. In comparison, in Maxwell 2.0 (compute capabil-
ity 5.2) and Pascal (compute capability 6.1), each processing block has double
the amount of ALUs, FPUs, SFUs and load/store units. All four GPU archi-
tectures use a quadrant-based design, therefore the amount of units per SM in
Maxwell 2.0 and Pascal is double the amount in Volta and Turing. There are 96
KB of shared memory per SM on the two former architectures.

The GPU configurations considered have each a total of 2560 (GeForce 2070S),
5120 (Titan V), 3840 (Titan Xp), 3072 (Titan X) and 4096 (2 × GeForce 980)
CUDA cores. The advertised boost frequencies are 1770, 1455, 1582, 1089 and 1216
MHz, respectively. An important factor in the execution of the proposal is given by
the throughputs of AND and POPC instructions. The considered GPU configura-
tions are capable of executing 4.5 (GeForce 2070S) and 7.4 (Titan V), 6.1 (Titan
Xp), 3.3 (Titan X) and 5 (2× GeForce 980) tera 32-bit bitwise AND instructions
per second at their respective boost clocks. The rate of 32-bit POPC instructions
per second is a quarter that of AND instructions for all GPUs.
1 The experiments targeting the Titan V system that are concerned with comparing

the proposal with MPI3SNP were conducted using a more up-to-date driver (440.64).
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Fig. 5. Number of giga (×109) sets processed per second normalized to the number of
patient samples (N) for the proposal on five different systems (S1, S2, S3, S4 and S5)
and considering different numbers of SNPs (represented at the bottom) and patients
(the different chart bars).

In order to fully exercise the capabilities of the proposal, taking into account
that real datasets can vary substantialy in regard to size and shape, we have
examined synthetic datasets with different numbers of SNPs and patient sam-
ples. Notice that the specific values pertaining SNP data of cases or controls in
the dataset do not affect the efficiency of the algorithm, thus the achieved per-
formance is representative of what would be achieved with real datasets. A total
of 16 datasets were generated, each having a combination of 1000, 2000, 4000 or
8000 SNPs with 1000, 2000, 4000 or 8000 patient records (half cases/controls).
Considering 3-way epistasis detection scenarios, the numbers of unique sets of
SNPs to be evaluated per problem instance are the following: 166167000 (1000
SNPs), 1331334000 (2000 SNPs) and 10658668000 (4000 SNPs) and 85301336000
(8000 SNPs). Each doubling of the number of SNPs results in a growth of about
8× regarding the total number of combinations of SNPs to evaluate. We rely on
the same datasets in the experiments performed to examine the effect in per-
formance of the number of sets to process per scheduling round, setting it to
10000, 20000, 40000, 80000, 160000 or 320000, combined with using 1, 2, 4 or 8
concurrently executing CPU threads. Finally, for the experiments comparing the
proposal with MPI3SNP we rely on the two datasets available on the MPI3SNP
source code repository2. These datasets represent 10000 SNPs from 1600 patients
and 40000 SNPs from 6400 patients, half cases and half controls. The number
of SNPs in these datasets results in 166616670000 and 10665866680000 combi-
nations of SNPs to evaluate, respectively.

2 https://github.com/chponte/mpi3snp/wiki/Sample-files.

https://github.com/chponte/mpi3snp/wiki/Sample-files
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4.2 Performance Analysis Across Different Datasets and Platforms

Figure 5 depicts the performance achieved by the proposal on the different sys-
tems employed in the experimentation. Overall, performance tends to increase
with the number of patient records. This is especially the case when going from a
dataset with 1000 patients to a dataset with 2000 patients. Certain costs associ-
ated with execution of the GPU kernel implemented in the proposal are indepen-
dent from the number of samples in the input dataset. In addition to the cost of
initializing the GPU kernel execution on the host in a given round, there are other
operations with cost invariant to the number of patient records, such as the cal-
culation of the score on top of the contingency table and the score reduction oper-
ations, first between GPU threads in shared memory and then between thread
blocks in global memory. After a certain number of patients, which depends on
the system targeted, the potential for exploitation of resources gets saturated.
Thus, considering more patients makes the wall-clock time increase close to lin-
early, resulting in similar performance levels. The number of SNPs also impacts
performance, which increases considerably from 1000 to 2000 SNPs.

Overall, the attained results suggest that the main performance limiting fac-
tor, provided that the input dataset saturates the implementation of the proposal
(i.e., sufficient ammount of SNPs and patient records), is the throughput of the
CUDA cores, and not that of memory bandwidth. Performing the population
counts, which uses the POPC instruction, is the operation that imposes the
main restrictions on the maximum performance achievable in this problem for
the considered GPU architectures. POPC is more challenging than bitwise AND
as, although two instructions of the latter type have to be executed per a single
instruction of the former type, POPC instructions execute at a quarter the rate
of AND instructions. Even when considering a simplified performance model
where only the execution of the POPC instruction is taken into account, it can
be observed from the achieved results that the performance of the proposal on
all GPUs is close to their compute capabilities. Using such simplified model, one
can estimate the performance for evaluation of a given dataset from the total
number of CUDA cores and boost frequency of each GPU configuration. The
different GPU configurations are capable of executing POPC instructions at dif-
ferent rates (see subsection above). Given that each POPC instruction processes
32 patient records for a given genotype out of the 27 allowed genotypes (for
a given triplet of SNPs), each GPU configuration has the potential to achieve
1.185× (from 32

27 ) the sets of SNPs per patient record processed per second in
relation to the rate of POPC instructions executed per second. Therefore, the
maximum performance at advertised boost clocks considering only the POPC
instruction would be 1343 (GeForce 2070S), 2207 (Titan V), 1800 (Titan Xp),
991 (Titan X) and 1476 (2× GeForce 980) giga (×109) triplets of SNPs per sam-
ple processed per second. For the largest dataset (8000 SNPs and 8000 patients),
the proposal achieved 86, 85, 80, 82 and 87 percent of those estimated values,
respectively. One can infer from this analysis, which in fact is not even taking into
account the cost of executing the AND instructions, that the implementation of
the proposal is able to efficiently use the targeted GPUs.
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Fig. 6. Effect of the number of combinations to process per round (between 10000
and 160000) and the number of CPU threads (between 1 and 8) on the performance
achieved by the proposal on system S2 (Titan V and i9-7900X) considering 4000 SNPs
and different numbers of patients (between 1000 and 8000).

Overall, the system with the Titan V (S2) is the fastest at executing the pro-
posal. For the largest dataset, the system S2 achieved 1.63×, 1.30×, 2.31× and
1.12× higher performance than systems S1 (GeForce 2070S), S3 (Titan Xp),
S4 (Titan X) and S5 (2× GeForce 980), respectively. The experimentally
achieved performance ratios, calculated from comparing performance on all other
systems with system S2 (Titan V), are very close to the values that can be pre-
dicted based on GPU compute resources and clock frequency. This points to the
fact that the execution of the proposal is not being limited by CPU performance.

4.3 Performance Impact of the Number of Combinations per
Round and CPU Threads

The number of concurrently executing CPU threads and the number of combi-
nations of SNPs processed per round can have a significant impact on the per-
formance achieved by the proposed approach. Figure 6 depicts the impact, on
the system with the Titan V (S2), of setting these parameters, when processing
datasets with different numbers of patients. Since datasets with 4000 SNPs have
been shown to be sufficient to achieve the maximum performance (see Sect. 4.2),
this analysis is focused on examining results for that number of SNPs. System S2
has the CPU with the most cores out of the ones considered in the experiments
and the overall most capable GPU. Thus, we will rely on results obtained on
that system to demonstrate the importance of the selection of suitable values
for these parameters.

The impact on performance of adding more patients observed in the experi-
ments across multiple systems is also observed here. For a given chunk size and
number of CPU threads, increasing the amount of patients to process tends to
improve performance, as there is more data to process per GPU kernel execu-
tion. This allows to better use the available GPU resources. As expected, the
increase in performance only happens up to a point. For example, when using
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Fig. 7. Number of giga (×109) sets processed per second normalized to the number of
patients in the dataset for MPI3SNP and the proposal on different systems.

8 CPU threads and a chunk size of 40000 combinations, going from 4000 patients
to 8000 patients did not improve performance. This happens because the GPU
kernel is already fully saturated processing the dataset with 4000 patients.

For datasets with the same amount of patients, and for the same chunk size,
using more CPU threads tends to result in improved performance, as there are
more rounds being concurrently executed. Thus, there is more opportunity to
more efficiently utilize the CPU (for generating combination vectors) and the
GPU resources (for evaluating combinations) by overlapping execution between
the different phases of the proposal, including overlapping computation with
memory transfers concerned with the combination vectors from the CPU to the
GPU. The few existing outliers where using 8 CPU threads (e.g., 80000 combi-
nations per chunk and 8000 patients) resulted in a small decrease in performance
compared with using 4 threads might be explained by additional (or more aggres-
sive) instances of reduction of GPU frequency under heavy load due to power,
voltage, and thermal specifications.

For the same number of threads and number of patient records, relying on
processing larger chunks (i.e., number of combinations processed per round)
tends to result in increased performance for the configurations herein evaluated.
More combinations to process per round can help to make each individual ker-
nel execution better use the GPU compute resources. However, saturation is
achieved at some point, depending on the number of patients and the number
of threads. Note that this does not mean that chunk size can simply be set to
an arbitrarily large value. Processing too many combinations per round, in rela-
tion to the total amount of combinations to process can result in the number
of rounds being too small, at which point parallelism, achieved by concurrently
executing rounds, can get severely restricted.

4.4 Comparing Performance with MPI3SNP

Figure 7 depicts results for the systems S1, S2, S3 and S4, comparing the
performance archived with the one with MPI3SNP [12]. The performance
improvement achieved is 2.21×, 1.96×, 1.80× and 3.35× in comparison with
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MPI3SNP, for a dataset with 10000 SNPs and 1600 patients, and 3.33×, 3.03×,
4.09× and 4.39× for a dataset with 40000 SNPs and 6400 patients, on the
systems S1 (Xeon E3-1245 V3 + GeForce 2070S), S2 (i9-7900X + Titan V),
S3 (i7-4770K + Titan Xp) and S4 (i7-5960X + Titan X). This makes the pro-
posal, on average 2.71×, 2.44×, 2.72× and 3.83× faster on those systems.
These experimental results reveal that the proposed approach shows improved
behaviour from a performance-wise perspective in comparison to MPI3SNP.

The performance improvement of the proposal in relation to MPI3SNP is
higher on the largest dataset. This is consistent with the results of the per-
formance evaluation presented in the previous section, where it is shown that
datasets with more patients are more adequately handled by the proposal by
better exploiting the available computing resources. Moreover, the system S2
has achieved slightly higher performance when processing the dataset with 4000
SNPs and 6400 samples in comparison with the highest performance achieved
in the experiments presented in the previous subsections for other datasets. The
Titan V accelerator has achieved higher core clock frequencies on the epistasis
detection runs performed in the context of comparing the proposed approach to
MPI3SNP due to the use of a clocking strategy (supported from driver version
415.25 onwards) that makes the GPU boosting behavior on the Titan V system
similar to that of the other considered CPU+GPU systems.

The wall-clock time required for the evaluation of the dataset with 40000
SNPs and 6400 patients helps at showing the importance of efficiently using all
available computing resources. For that dataset, MPI3SNP takes 4 days and 7
hours to completion on the system with the less resourceful CPU+GPU con-
figuration (S4). In contrast, processing that dataset on system S4, by using the
proposed approach takes slightly less than a full day.

5 Related Work

Given the combinatorial characteristics and the data-parallel nature of epistasis
detection, the methods proposed in the literature can be classified into different
categories depending on the targeted computing systems and device architec-
tures. There are approaches aimed at using multicore CPUs [5,7], Intel Xeon Phi
accelerators [3,9], GPUs [3–6,12,17–19] and specialized architectures in FPGAs
[18]. These approaches can also be categorized based on the interaction order
they tackle in the context of epistasis detection. The majority of these state-of-
the-art approaches focus on 2-way detection [3,5,7,9,17,17–19], while only rare
attempts are made on performing 3-way detection [4,6,12]. Given a set of SNPs
to analyze, the evaluation of SNP triplets results in an enormous growth in the
number of combinations to be considered when compared to the pairwise evalu-
ation. As such, it is of utmost importance to efficiently leverage the capabilities
of computation and memory resources of a given system in order to perform
3-way epistasis detection.

In this paper, the performance of the herein proposed approach is com-
pared with MPI3SNP [12] (a recently published GPU-based approach for 3-way
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epistasis detection using mutual information as scoring function), achieving con-
siderably higher parallel performance for different datasets. In fact, the perfor-
mance of the proposal is close to the theoretical maximum across all the GPU
architectures considered. This is mainly due to the efficient workload distribu-
tion across multi-core CPU and GPU devices, as well as due to the highly opti-
mized nature of the proposed algorithms for data-parallel processing of different
SNP combinations on GPU cores. It is also worth to emphasize that signifi-
cant efforts were made in order to ensure the high-performance calculation of
the K2 Bayesian score (the objective function), which is computationally more
demanding than the mutual information scoring used in MPI3SNP [12].

Another distinctive aspect lies in the way the workload is sched-
uled/distributed between the different processors and/or accelerators. For
instance, the herein proposed approach differs from related work that employs
matrix operations to combine SNP data, such as [6] or [11], which may attain
high performance for certain dataset types by relying on General Matrix Mul-
tiply (GEMM) or similar matrix operations. However, these approaches require
sufficiently large datasets to achieve efficiency, in order to ensure near-maximum
performance of the GEMM kernels, as well as to minimize the impact of ineffi-
cient resource utilization when evaluating non-unique combinations.

6 Conclusions

Epistasis detection is a computationally challenging problem that has been
attracting increased research efforts in recent years. In order to deal with this
problem, this paper introduced a high-performance GPU+CPU hybrid app-
roach for exhaustively identifying 3-way epistatic interactions according to the
Bayesian K2 criterion. The proposed approach relies on the exploitation of archi-
tectural differences between CPU and GPU to orchestrate the key tasks involved
in these biological analyses, defining the scope of the execution according to the
properties of each operation and the characteristics of the underlying hardware.

The results of an experimental campaign covering different possible dataset
shapes (i.e., more SNPs than patients, and vice versa) and sizes are presented.
The achieved results show that the proposal is very close at extracting maxi-
mum performance out of all five targeted GPU+CPU configurations. The pro-
posed method achieves high performance on 3-way searches in relation to other
approaches that do the same amount of core computations for calculating the
genotype frequency tables regarding all-to-all combinations of SNPs and which
do not rely on specialized cores (e.g., tensor cores or specialized hardware in
FPGAs). Compared with MPI3SNP [12], a recently published GPU-based app-
roach, the proposal has been evaluated to be on average 3.83×, 2.72×, 2.44×
and 2.71× faster at evaluating all unique combinations of SNPs, on systems with
Xeon, i7 and i9 CPU architectures paired with a Titan X (Maxwell 2.0), a Titan
Xp (Pascal), a Titan V (Volta) and a GeForce 2070S (Turing), respectively.

Ongoing work includes an extension of the proposed approach to support
multiple nodes in a cluster configuration. Using as a baseline the method herein
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presented, inter-node processing and load balancing strategies will be integrated
to exploit the characteristics of these systems, in the pursuit of highly efficient,
higher-order epistasis detection.
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Abstract. For more than two decades researchers have been analyzing
the impact of inaccurate job walltime (runtime) estimates on the per-
formance of job scheduling algorithms, especially the backfilling. In this
paper, we extend these existing works by focusing on the overall impact
that improved walltime estimates have both on job scheduling perfor-
mance and predictability. For this purpose, we evaluate such impact in
several steps. First, we present a simple walltime predictor and analyze
its accuracy with respect to original user walltime estimates captured in
real-life workload traces. Next, we use these traces and a simulator to see
what is the impact of improved estimates on general performance (back-
filling ratio and wait time) as well as predictability. We show that even a
simple predictor can significantly decrease user-based errors in runtime
estimates, while also slightly improving job wait times and backfilling
ratio. Concerning predictions, we show that walltime predictor signifi-
cantly decreases errors in job wait time forecasting while having little
effect on the ability of the scheduler to provide solid advance predictions
about which nodes will be used by a given waiting job.

Keywords: Job · Scheduling · Backfilling · Walltime estimate ·
Prediction

1 Introduction

This paper is focusing on the problem of inaccurate job runtime estimates as
provided by users. We use existing results [6,10,13] and we try to understand the
impact that inaccuracy has on various aspects of job scheduling performance.
Importantly, we study whether a technique improving runtime estimates has
some significant impact on system’s behavior. For this purpose, we use a simple
runtime predictor which we have developed on our own. This predictor uses
historic data to generate runtime estimates for newly arriving jobs. Althought
it has been developed on our own in 2018, we have learned recently that our
predictor uses similar idea to the predictor used in the past [12].
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Fig. 1. Normal scenario for data staging is wasting CPU cycles during data staging
(top). Considered solution relying on accurate node predictions uses advance data
staging onto compute node(s) before job start, reducing idle CPU time (bottom).

The main contribution of this paper is as follows. First, we demonstrate that
even simple predictor can significantly improve inaccurate job runtime estimates
(Sect. 2). Second, we use detailed simulations to analyze the impact of refined esti-
mates on the job scheduling performance. We analyze how the improved estimates
impact the number of backfilled jobs and job wait times (Sect. 3). Last but not
least, in Sect. 4 we analyze deeply if refined runtime estimates can improve pre-
dictability of system behavior. To achieve this goal we use two different scenarios.
In the first one, we analyze the accuracy of job waiting time predictions (Sect. 4.1).
This scenario obviously focuses on system users that naturally want to know how
long their jobs will have to wait before being processed by the system, i.e., here the
question is “when will a job start?”. In the second scenario (Sect. 4.2) we analyze
the ability of the scheduler to correctly predict (in advance) which node(s) will
be selected for each waiting job. In this case, instead of focusing on the question
“when?” we rather try to answer the question “where?”.

The motivation here is related to jobs requiring either large amount of data
and/or jobs requiring special pre-processing, e.g., an ad hoc and independent
local file system. In both cases, the time needed to either stage the data and/or
setup the file system can cause temporarily low CPU utilization. Our goal is to
determine whether it is possible to stage the data and/or deploy the local file
system in advance, thus limiting idle CPU time. Obviously, to make this advance
staging/setup possible, the scheduler must provide rather accurate advance job
allocations (ahead of actual job start). We illustrate the benefit of this approach
in Fig. 1 and later describe in full detail in Sect. 4.2.

2 Job Walltimes, User Estimates and Predictor

In this paper, job walltime (or job runtime) denotes the time it takes to execute
the job on a computing node(s). This time is not known in advance. Instead,
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user is requested to provide an estimate for each job. This walltime estimate
is used as an upper bound by the resource manager, i.e., job is killed when its
actual runtime exceeds the walltime estimate. It is not surprising that in prac-
tice these walltime estimates are therefore very inaccurate and overestimated in
order to prevent jobs from being killed [3,8]. This causes the relatively high over-
estimation. Second, scheduling systems also frequently classify jobs according to
some default runtime limits. For example, there can be different job queues with
different maximum job runtime defaults. Frequently, these default runtime val-
ues are then used by many jobs due to users laziness. As a result, most jobs in
the system use only few common estimates and therefore “look similar” to the
scheduling algorithm (e.g., backfilling).

2.1 Workload Traces

In the remainder of this paper we will be using four different real-life work-
load traces that come from the Karlsruhe Institue of Technology in Germany
(FH1 and FH2), Cornell Theory Center (CTC SP2) and San Diego Supercom-
puter Center (SDSC SP2). These traces can be obtained at Parallel Workloads
Archive [2]. We begin our analysis by showing how user-based estimates are
inaccurate and overestimated in all four considered workloads.

This is captured in Fig. 2, which shows the cumulative distribution functions
(CDF) of actual runtimes and user estimated job walltimes (blue and red line,
respectively). Clearly, user-provided walltime estimates are (very) inaccurate and
overestimated. Therefore, we introduce a simple walltime predictor, which tries
to refine these overly long estimates by more accurate values.

2.2 Walltime Predictor and Its Performance

The considered walltime predictor is working on a per-user basis, i.e., a new
runtime estimate for a given job of a user is computed using information about
previous jobs of that user.

The predictor is an extended version of the predictor used in our previous
work [4]. It measures the fraction of job’s actual runtime and user’s estimate (see
usagewall in Formula 1), i.e., it measures to what extent the estimated walltime
(est walltime) was actually used. Since the user’s estimate is the upper bound of
job runtime, usagewall falls between 0.0 and 1.0 representing the relative usage
of requested walltime. In other words, the technique measures by how much a
user overestimates job’s runtime, which is similar to what has been used in [12].

usagewall(jobi) =
runtime(jobi)

est walltime(jobi)
(1)

predicted wall(jobi) = est walltime(jobi) · max
i−5≤k≤i−1

usagewall(jobk) (2)

Once the usagewall is computed, it is stored to be used in the future, i.e.,
once a new job of this user arrives in the system. When this happens, the
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Fig. 2. Cumulative distribution functions (CDF) of actual runtimes, user estimated
walltimes and predicted job walltimes for all four workloads (Color figure online).

five most recent usagewall values are considered and their maximum is cho-
sen1. The job’s walltime estimate is then multiplied by this maximum (see For-
mula 2) and the resulting predicted wall is the predictor’s output. It represents

1 In case that a given user has either no or less than five completed jobs then we use
the user-provided estimate or those few already completed jobs, respectively.
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Fig. 3. Avg. absolute errors of runtime predictions (per user) with respect to the
walltime being used (user estimate, predictor).

a conservative strategy, where the predicted walltime is calculated using the
known relative accuracy of user’s recent estimates. By choosing the maximum
usagewall (i.e., choosing a job where the difference between actual and esti-
mated runtime was minimal), this technique aims to minimize the number of
cases where the new predicted walltime will be underestimated. At the same
time, by ignoring older jobs it reflects aging and orients itself more on the recent
user’s workload characteristics. When a job turns out to be underestimated
(predicted wall(jobi) < runtime(jobi)) the predictor increases its initial esti-
mate by a factor of two. It does so (over the time) until the estimate is sufficient
(and job completes) or until the estimate meets the original user estimate (this
is still a hard limit which cannot be exceeded).

The impact of the predictor can be observed in Fig. 2 (green line). Clearly, the
over-estimated user-based walltimes are now distributed closely to what is the
real distribution of actual runtimes (blue line). The improving effect is especially
visible when the user-based estimates are very bad, which is the case for the FH1
and also FH2 workloads.

We also analyzed, how our simple predictor performs with respect to indi-
vidual users. Therefore, we have computed the average absolute errors of both
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Fig. 4. Avg. absolute errors of runtime predictions (per user) with respect to the
walltime being used (user estimate, predictor).

user-based estimates and predictor-based walltimes per each user in the system
and plotted these pairs in a line chart which we show in Figs. 3–4 (users on the
x-axis are ordered according to the average user estimate error).

These figures illustrate that for some users our simple predictor is not able
to reduce the average error very well. Still, it decreases the errors compared to
those user-based walltimes quite successfully. Clearly, some users are really poor
in judging the duration of their jobs, providing estimates that are (on average)
several hours or even days longer than necessary. From this point of view, even
a simple predictor like the one we presented makes a good sense to use.

3 Impact on Job Scheduling Performance

So far, we have demonstrated using several existing workload traces that predic-
tor can improve the accuracy of walltime estimates. This section uses detailed
simulations to analyze the impact of walltime predictor on the performance of
the system. For this purpose, each of those four systems is modeled in Alea sim-
ulator [5] and the workload is replayed. For comparison, simulations use either
perfect estimates (i.e., exact job runtimes are used), user-provided or predictor-
generated estimates to build the job schedule, respectively.
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3.1 Scheduling Policy

In all experiments we use conservative backfilling [8] as it heavily relies on pro-
vided estimates. The schedule is built using available runtime estimates (per-
fect, user-provided or predictor-based, respectively). In case a job finishes earlier
than expected, the schedule is updated using schedule compression algorithm [8].
During the update, jobs are checked one by one and a start time of each job is
adjusted, i.e., it is moved into the earliest possible time slot with respect to
previously adjusted jobs (compression phase). Similarly, if a job’s runtime is
underestimated, it is first prolonged (see the discussion in Sect. 2.2) and then
the existing schedule is updated, i.e., jobs are reinserted using same mechanism
as during the aforementioned compression phase.

3.2 Metrics and Results

As our performance indicators we measure the percentage of backfilled jobs and
the distribution of job wait times. Let us first discuss the impact of improved esti-
mates on the backfilling ratio. The intuition suggests that with more accurate
estimates (and even more with perfectly known runtimes) the ratio of back-
filled jobs should increase. Conversely, when using inaccurate, user-provided and
overestimated walltimes, the backfilling ratio should be significantly lower since
most jobs “appear to be too long” for existing gaps. The results we obtained (see
Fig. 5) seem to follow this expectation but the differences are not very dramatic.

Figure 5 shows the percentage of backfilled jobs with respect to the accuracy
of estimates being used. With the exception of FH1 workload, there is only slight
improvement in the backfilling ratio when accurate or predictor-based walltimes
are used. The difference between FH1 and remaining workloads is most likely
caused by the very bad original user-based estimates available in FH1. As can be
seen in Fig. 2 (top), FH1 has the worst user-based estimates among all workloads.
It is important to understand that improved walltimes do not guarantee higher
backfill ratio. In fact, with better walltime estimates, not only individual jobs

Fig. 5. The percentage of backfilled jobs with respect to the walltime being used (exact
runtime, user estimate, predictor).
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Fig. 6. Distribution of job wait times with respect to the walltime being used (exact
runtime, user estimate, predictor).

“look shorter” but also all available holes in the schedule become “shorter” as
job runtimes are less overestimated. Therefore, the probability that a job will be
backfilled within existing holes is only slightly higher when estimates are better2.

We also measured the impact of improved walltime estimates on the distri-
bution of job wait times which is captured in Figs. 6 and 7. The main general
difference between these two figures is the large amount of jobs that start imme-
diately (see Fig. 6). This is caused by the relatively smaller backlog of waiting
jobs compared to the CTC and SDCS workloads (see Fig. 7). Other than that,
most of the workloads show that user-based inaccurate estimates are associated
with worse distribution of job wait times, i.e., more jobs fall into categories
representing long waiting. As soon as the predictor is used, we see a common
tendency where job wait times are decreased.

2 With the exception of poor user-based estimates as shown in case of FH1 workload.
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Fig. 7. Distribution of job wait times with respect to the walltime being used (exact
runtime, user estimate, predictor).

The only exception is the CTC workload (see Fig. 7 (top)), where the use of
predictor does not produce better distribution of job wait times, instead it stays
very close to the one dictated by user-provided estimates. This phenomenon
has been observed in the past, e.g., in [1,3] and deeply explained in [13] (using
the same CTC workload trace). Apart from the explanation provided in [13],
we would like to add that metrics like wait time can be easily influenced by
even subtle changes in the job processing ordering. Job execution order can be
easily manipulated either purposely (e.g., via fair-sharing mechanism) or “acci-
dentally”, e.g., as a side effect of using the predictor. Predictor’s estimates may
shuffle the order in which jobs are executed as backfilling tends to prefer shorter
jobs. Clearly, this shortest job first-like scheduling reduces average wait time.

Figure 8 shows a hypothetical example of three different schedules that are
however composed of the same set of jobs. All three schedules have the same
makespan (Cmax = 10 time units) but exhibit very different job wait times.
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This figure illustrates the impact of job ordering in a somewhat extreme scale,
yet we believe it illustrates nicely that metrics like wait time may oscillate quite
wildly.
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Fig. 8. The impact of job execution ordering on job wait times.

4 Impact on Accuracy of Predictions

This section is focusing on the ability of the scheduling system to provide pre-
dictions concerning job wait times and future job-to-node allocations. First, we
analyze the accuracy of wait time predictions in Sect. 4.1. Next, Sect. 4.2 focuses
on the impact that (in) accurate walltime estimates have on the capability of
the job scheduler to provide advance node predictions for waiting jobs, i.e., the
ability to correctly predict where a waiting job will be executed.

4.1 Wait Time Predictions

It is quite convenient when the scheduling system is able to provide informa-
tion when a given job is likely to start executing. This is especially useful for
interactive jobs. Although the system can use a scheduler-independent solution
like QBETS [9], we use this section to analyze the accuracy of predictions that
the scheduler can provide on its own. In this case, the scheduler is using the
schedule (built by conservative backfilling) to estimate how long a job will wait
before its execution will start. Since these wait times can be continuously refined
(shortened) as jobs are completing earlier and the schedule is compressed, we
use the initial estimate returned by the scheduler at the moment of job arrival.
This can be seen as the first “response” the user gets when he or she submits the
job. The accuracy of predictions is measured by computing the absolute error of
predicted wait time with respect to the actual job wait time.

Figure 9 shows the absolute errors in predicted job wait times when using
either user-provided walltime estimates or the predictor-based estimates. It
nicely illustrates the ability of the predictor to decrease the prediction error.
This is mostly visible in case of FH1 and FH2 workloads which have the worst
user-based estimates (see Fig. 2 and related discussion). From this point of view,
predictor-based estimates can deliver much better predictions of job waiting
times, thus giving the users more optimistic responses concerning when their
workloads will be executed.
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Fig. 9. Absolute errors in predicted wait times of jobs when using either user-estimated
walltimes or predictor.

4.2 Node Allocation Predictions

The ability to predict node(s) for waiting job in advance can be very useful. If
the target node(s) is known for reasonably long time (e.g., at least a few minutes
ahead) this time can be used to stage all job-related data in advance, thus saving



138 D. Klusáček and M. Soysal

CPU cycles. Also, if needed, local ad hoc file system can be setup for a waiting
job in advance. We have illustrated this approach in Fig. 1.

This section analyzes whether it is feasible to predict the target node(s)
ahead. More specifically, we measure for how long the target node has been
known prior job start. We called this time period Valid Node Allocation Time
Period and denote it as Tnode. To sum up, for each job the Tnode is computed
as the difference between job start time and the time when the final accurate
prediction has been made (i.e., the one that was correct). In case a job starts
immediately after its submission, Tnode is equal to zero. Otherwise, the job is
waiting and the scheduler is adding that job into the schedule. If perfect walltime
estimates (exact runtimes) are used, the schedule being built is accurate and can
be used to correctly predict target node(s) for jobs in advance. However, since
job walltime estimates are inaccurate, the schedule is constantly adapting to jobs
finishing at different times than previously predicted. This impedes the effort of
the scheduler to provide reasonably accurate node predictions as planned node
and time allocations can change virtually at any time. As we have shown in
our earlier work [11], with inaccurate estimates only a small portion of jobs can
achieve accurate predictions, i.e., only a fraction of jobs gets a reasonably high
(useful) Tnode.

Tnode is also negatively influenced (reduced) by backfilling approach [11]. As
demonstrated in Fig. 10, jobs being backfilled can distort previous node alloca-
tions, thus decreasing Tnode for those jobs being affected. Therefore, instead of
backfilling, we use simple First Come First Served (FCFS) policy to built the job
schedule in this use case. This means that existing holes in the schedule are not
being filled with later arriving jobs in order to reduce the negative effect observed
in backfilling. FCFS policy simply finds the earliest available free slot at the end
of the schedule, without searching for possible gaps within the existing schedule.
For example, if FCFS was used in the scenario presented in Fig. 10 instead of
backfilling, FCFS would place new job behind job #5 leaving all preceding gaps
unused.

Moreover, we have extended the approach used in our previous paper [11]
and developed a significant extension to the scheduling policy, which allows us
to “pin” jobs to their planned nodes if their predicted start time is near enough.

1
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Node 5
Node 6
Node 7
Node 8
Node 9
Node 10

Exis ng job schedule                                         New Schedule

new job 5

re-alloca on of job #4

4

1

2
3

5

4

new job

Fig. 10. An example of backfilling distorting previous node allocations for job #4 as
a result of its “gap filling” approach.
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Fig. 11. Distribution of durations of valid node predictions (Tnode) with respect to the
pinning interval (none, 1 h, 2 h) and walltime being used (exact runtime, user estimate,
predictor).

In other words, if a job is about to start soon (e.g., during 1 h) we do not allow
the scheduler to change the planned nodes for this job. Thus this job’s node
allocation is fixed and its Tnode cannot decrease. Without node-pinning, jobs can
be shifted to different nodes — e.g., as a result of early job completion and the
following schedule compression procedure. This reshuffling of the whole schedule
then destroys existing predictions while reseting all corresponding Tnode values
to zero. Therefore, pinning helps to keep predictions valid subject to inaccuracies
in the job schedule. In our implementation, node-pinning is only activated when
the planned job’s start time is within a given “pinning interval” x, i.e., that job
is planned to be executed within next x minutes.

In the following text, using a series of experiments, we analyze how the Tnode

values are distributed with respect to varying accuracies of walltime estimates
(exact, user-estimated, predictor). We also measure what is the effect of the
newly developed node-pinning functionality. For this purpose, we analyze the
effect of either no node-pinning or pinning with short interval (x = 1 h) or
pinning with long interval (x = 2 h). Since the absence of backfilling and the use
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Fig. 12. Distribution of durations of valid node predictions (Tnode) with respect to the
pinning interval (none, 1h, 2h) and walltime being used (exact runtime, user estimate,
predictor)

of node-pinning can potentially lead to poor performance, we also measure this
impact by comparing job wait times of all considered scenarios.

Figures 11–12 shows the durations of valid node predictions (distribution of
Tnode values) with respect to the pinning interval (none, 1 h, 2 h) and walltime
being used (exact runtime, user estimate, predictor). From these distributions we
can quickly identify the positive effect that node-pinning has on the ability of the
scheduler to provide reasonable advance node predictions. On the other hand,
the effect of predictor is rather moderate. It does show positive effect in case
of FH1 workload (the one having worst user-based estimates) as it significantly
increases the fraction of jobs that have Tnode > 0 s. Moderate positive effect can
be seen for FH2, CTC and SDSC workloads (comparing estim vs. predictor).
However, in most cases the largest benefit is evidently achieved through node-
pinning rather than through improved walltime estimates.

The node-pinning functionality developed in this work sadly has some obvious
drawbacks. Since we do not use backfilling, nodes can easily become underutilized
when waiting jobs are already pinned to different (busy) CPUs. To measure the
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Fig. 13. Distribution of job wait times with respect to the pinning interval and wall-
time being used.

impact, we provide Figs. 13–14 that show wait time distributions corresponding
to the experiments focusing on node predictability.

Clearly, the effect of FCFS policy (even increased by node-pinning) is heav-
ily influencing the wait time distributions as can be seen by comparing these
distributions to those observed for “pure” backfilling in Figs. 6–7. FCFS wors-
ened waiting times while node-pinning added even more delays. Also, it is worth
noticing that the accuracy of estimates plays smaller role in this use case since
the FCFS policy is less dependent on the quality of estimates than conservative
backfilling used in Sect. 3.

4.3 Summary

To sum this use case, we have shown that proposed node-pinning extensions of
the FCFS policy along with the predictor help to increase node predictability
(higher Tnode values) but at the expense of deteriorated wait times and poorer
utilization. This clearly is not a desirable outcome and it leaves the problem open
for further research. At the same time, we have seen that when using accurate
walltimes reasonable node predictions are achievable and for many jobs their
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Fig. 14. Distribution of job wait times with respect to the pinning interval and walltime
being used.

Tnode is sufficiently long to allow for advance data staging. There are several
classes of computations where job runtimes can be predicted very accurately
and advance data staging is very useful due to the large size of input data. One
such type of computation represents, e.g., the processing (converting) of raw
video data.

Also, not all jobs probably require such a special treatment, i.e., only truly
data-demanding jobs benefit from advance data staging. Therefore, it would be
interesting to pin only these data-heavy jobs and use the remaining jobs to
efficiently “fill the holes”, i.e., use selective backfilling. Our results show that the
benefits of FCFS does not overweight its poorer performance.

5 Conclusion and Future Work

In this work we have studied walltime estimates and the use of a simple walltime
predictor with respect to their impact on several different aspects of job schedul-
ing. This analysis focused on the predictor’s accuracy and the effect it has on
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system performance and predictability. Our main findings are summarized in the
following list:

– Even simple predictor improves the accuracy of walltimes
– Better accuracy improves backfilling opportunities but the effect is not dra-

matic
– Wait time can be slightly reduced with better estimates (but other effects

play role)
– Significant improvement can be achieved in wait time predictions
– With the existing predictor, node allocations cannot be predicted very well
– Better node predictions can be achieved by using heavily modified FCFS-

based scheduler using “node-pinning”, however job waiting times then dete-
riorate heavily.

In the future, we want to implement more advanced predictors as well as test
them in practice using the PBS Pro system being used in the Czech national com-
puting infrastructure MetaCentrum [7]. Also, we would like to further improve
our node-pinning policy and introduce selective backfilling which should reduce
the negative impact on job wait times and utilization. Another promising, yet
more demanding, way is to design “node-aware” scheduling algorithm, which
takes node prediction into account. For example, the new algorithm can try to
place each job so as to overlap with the minimal number of previous jobs, thus
limiting constant job re-allocations upon early job completions. In the example
of Fig. 10, this would suggest placing job #4 as continuing job #1 from the out-
set, instead of having it use nodes that had previously been assigned to both job
#1 and job #2.
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Abstract. While High Performance Computing systems are increas-
ingly based on heterogeneous cores, their effectiveness depends on how
well the scheduler can allocate workloads onto appropriate comput-
ing devices and how communication and computation can be over-
lapped. With different types of resources integrated into one system,
the complexity of the scheduler correspondingly increases. Moreover,
for applications with varying problem sizes on different heterogeneous
resources, the optimal scheduling approach may vary accordingly. We
thus present PDAWL, an event-driven profile-based Iterative Dynamic
Adaptive Work-Load balance scheduling approach to dynamically and
adaptively adjust workload to efficiently utilize heterogeneous resources.
It combines online scheduling (DAWL), which can adaptively adjust
workload based on available real time heterogeneous resources, with
an offline machine learning (profile-based estimation model) which can
build a device-specific communication computation estimation model.
Our scheduling approach is tested on control-regular applications, Stencil
kernel (based on a Jacobi Algorithm) and Sparse Matrix-Vector Multipli-
cation (SpMV) in an event-driven runtime system. Experimental results
show that PDAWL is either on-par or far outperforms whichever yields
the best results (CPU or GPU).

Keywords: Heterogeneous many-core computing · Workload balance ·
Adaptive modeling · Ml assisted scheduling

1 Introduction and Motivation

As the current TOP500 rankings show, most High-Performance Computing plat-
forms feature heterogeneous hardware resources (CPUs, GPUs, FPGAs, etc.) [11].
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In the future, the nodes of such platforms are expected to be even more hetero-
geneous and they will feature side-by-side, fast and slow computing units mixed
with accelerators, I/O nodes, etc. Heterogeneous platforms offer the promise of
both better energy efficiency and performance. However, this comes at a cost in
terms of code development and resource management.

Meanwhile, whole sectors of scientific computing continue to rely on iter-
ative algorithms. In particular, Stencil-based computations are at the core of
many essential scientific applications: Stencils are used in image processing algo-
rithms, e.g., convolutions; partial differential equation solvers, Laplacian trans-
forms, or computational fluid dynamics, linear algebra, etc. More specifically,
the Jacobi iteration method [19] has been proposed to solve sparse triangu-
lar systems arising from incomplete Cholesky preconditioning. A diverse set of
realistic symmetric positive definite test problems have proved that Jacobi iter-
ations are effective for a large range of problems [4], while block techniques can
further help improve the performance. Other kernels are also used in iterative
algorithms, such as sparse matrix-vector multiplications (SpMV). As opposed
to Stencil (regular computing per row/column), the individual work-items of
SpMV exhibit a different computational load profile since the numbers of non-
zero elements per row may vary significantly. However, both Stencil and SpMV
are control-regular, and the accelerator and host regularly synchronize until the
computation is finished. Finding the right workload balance between accelerator
and host for both Stencil and SpMV is the challenge.

Our research is based on the following observations: with a few exceptions
(detailed in Sect. 5), most work dealing with accelerators—GPUs—has followed
one of two paths: (1) fully offload the most compute-intensive parts of a given
application to a GPU, or (2) statically partition the “hot” parts of an application
between “CPU-friendly” and “GPU-friendly,” i.e., running solely on (respec-
tively) the CPU or the GPU.

This paper presents a novel approach to dynamic scheduling of tasks on
heterogeneous systems. It is based on a profile-based machine-learning approach
and explores the concept of co-running, as defined by Zhang et al. [25]: a system
has enabled co-running if it runs applications decomposed into tasks capable
of running simultaneously on both CPUs and general-purpose accelerators. Our
approach, PDAWL, offers the following characteristics:

1. PDAWL is a Profile-based Iterative Dynamic Adaptive WorkLoad balanc-
ing algorithm for heterogeneous systems. It can dynamically and adaptively
adjust the workload based on the run time situation (dynamic) and hard-
ware platform (static) information. An offline machine learning approach is
employed to build the heterogeneous resources performance-workload (com-
munication vs. computation) estimation model based on the analysis of the
performance of pure CPUs and GPU. The online scheduler adaptively adjusts
the workload allocation based on the run time situation. Combining online
and offline information improves flexibility and accuracy.

2. The event-driven characteristics of PDAWL increase flexibility: Multiple lev-
els of parallelism can be employed to improve the flexibility of scheduling.
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3. The efficiency of PDAWL is evaluated with control-regular applications:
Stencil-based kernels (Jacobi algorithm), featuring regular data process and
SpMV-CSR kernels, featuring irregular data process.

The rest of the paper is organized as follows: Sect. 2 reviews the main concepts
of this work; Sect. 3 describes our methodology; Sect. 4 focuses on our main
experimental results; Sect. 5, reviews the state of the art Finally, Sect. 6 concludes
this work and presents the planned future work.

2 Background

PDAWL leverages data-driven execution models and their implementation in
large-scale heterogeneous machines at the runtime system level.

Runtime System: We extended DARTS [1,18], an implementation of the Codelet
Model [26], to include GPU-aware scheduling capabilities. DARTS relies on
dataflow-inspired event-driven parallelism. It can implement fine, coarse, or
hybrid-grain parallelism as demanded by the scheduling algorithm.

Heterogeneous Computing: This work considers CPU-GPU heterogeneous sys-
tems where GPUs are connected to a host machine via a PCI Express (PCIe)
bus. Both have different memory address spaces, and data must be explicitly
copied back and forth between the two memory pools.

Concurrent Streams on GPUs: CUDA has been augmented with stream-based
constructs starting with CUDA v7. This allows the accelerator to efficiently
overlap computation and communication with the host.

3 Methodology

In this section, we present the two ways with which we spread the workload
between the host and the accelerator. Dynamic adaptive work-load scheduling
is discussed in Sect. 3.1; Sect. 3.2 presents our complementary profile-based app-
roach. As will be discussed in Sect. 4.1, we will target two types of control-regular
kernels: Stencil, and a sparse matrix-vector product.

3.1 Dynamic Adaptive Work-Load Scheduler

We aim at finding the right load balance that will maximize throughput when
CPUs and GPUs execute. Different factors [9] should be taken into account: the
accelerator’s memory size, the throughput of PCIe, the structure of the memory
hierarchy, the utilization of the cache, the respective computing capabilities of
CPUs and GPUs etc.
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Data-regular Computations. The workload can be decomposed into multiple
instances of the same tasks and run on both CPUs and GPU.

GPUnaive = memcpyHost→Device +
ComputeDevice

NumThreadsDevice
+ memcpyDevice→Host

(1)
Eq. 1 models the total GPU execution time. However, it is overly simple. For
example, when the various DMA engines are available on modern GPUs, as
well as the Stream type in CUDA, it is possible to overlap communications and
computations. This means that Eq. 1 is a pessimistic/worst-case view of a single
GPU’s performance. Conversely, it guarantees performance will be maximal if
GPUnaive is “not too high.”

CPUnaive =
ComputeHost

NumThreadsHost
(2)

Eq. 2 models the CPUs execution time. This model is also rather näıve; While
data transfers with the DRAM are not negligible, they take orders of magnitude
less time than data transfers on a PCIe bus: they can be neglected. Further
more, the performance does not always scale well over multiple cores and nodes.
The memory/cache conflicts and synchronization issues incur quite a large over-
head. Moreover, HPC processors tend to have a very efficient and aggressive
way of prefetching data, which tends to fully hide the latency related to DRAM
transfers—especially in the case of consecutive reads or writes. The overlapping
data transfers (due to caches and prefetching operations) are included in the
execution time.

r =
CPUnaive

GPUnaive
(3)

In Eq. 3, r is the ratio between two quantities, GPUnaive and CPUnaive, com-
puted in Eq. 1 and 2. If r � 1, then the workload will execute much faster if it
is on an accelerator. Hence, most if not all of the computation will be carried
on the GPU. On the contrary, if r � 1, then the amount of data transfers is
saturating the PCIe bus when running it on a GPU, and in general, the overall
computation is much faster using general-purpose processing elements. When
r ≈ 1, task scheduling must enable co-running, so that both the host and the
accelerator are allocated their fair share of the work in order to complete the
computation as fast as possible.

Data-irregular Computations. Irregular computations can lower GPU perfor-
mance dramatically. To counter this effect, we can extract the irregular parts
and assign them to CPUs. The remaining regular workload can then follow the
same methodology as with data-regular computations.

The Dynamic Adaptive WorkLoad (DAWL) Scheduler. DAWL was created to
decide what tasks should be scheduled and where to schedule workload to min-
imize the load imbalance between heterogeneous processing elements. It adjusts
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Fig. 1. PDAWL – The Dynamic Adaptive Work-Load scheduling algorithm coupled
with Machine Learning. Machine learning occurs in steps 1, 3, and 4 (see the bold
polygon ML).

the workload distribution on different computing resources based on real-time
information and the knowledge we have derived from Eq. 1, 2, and 3. It consists
of seven main steps, outlined in Fig. 1.

1. Set up the initial workload on all the Processing Elements (PEs), namely
CPUs and GPU.

2. Configure PEs according to the given workload. This includes how many
CPUs will be put to work, whether the GPU will be also used, how much
shared memory (for the host) and global memory (for the accelerator) must
be allocated, the number of streams on the GPU, etc.

3. Simultaneously run tasks on both CPUs and GPUs, and time each execution
for their specific workloads.

4. Check the status of the PEs, estimate the completion time of other devices
based on the history timing measurements. Then allocate and run the next
workload on available PEs. Repeat until the remaining workload is within
10% of the total workload.

5. Calculate the value of ratio, where ratio = CPUcur/(CPUcur + GPUcur).
CPUcur and GPUcur are the amount of all work finished on CPUs and
GPU, respectively. The corresponding GPU ratio is obtained using the same
method. The CPUs or the GPU only take �ratio × remaining workload�
amount of work. The remaining workload is dynamically allocated to
whichever (set of) PE(s) is available after completing early.

6. Evaluate the load-balance metrics collected during the time step execution,
in particular the execution time. Adjust (coarsen) the task granularity based
on available PEs and the metrics.

7. Free all resources: PEs and memory.
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3.2 Profile-Based Machine Learning Estimation Model

Eq. 1 and Eq. 2 are too näıve to model complex situations. The growing variety
of hardware devices as well as their combinations, increases the difficulty of
building accurate mathematical estimation models. Furthermore, any change in
the hardware configuration may cause great performance variations and result in
a need to rebuild the mathematical model. Moreover, the mathematical model
cannot capture the run time situation which is another important factor that
affects the accuracy of the performance estimation model.

Considering these factors, we designed a profile-based Machine Learning
(ML) approach to reduce the complexity of establishing an estimation model
while promoting its accuracy. We call the resulting algorithm PDAWL, short for
Profile-based DAWL. It follows four phases, as shown in Fig. 1’s dotted box:

1. Collect hardware information. Table 1 lists some parameters. In addition to
these, the host’s cache related and more GPU parameters have also been
collected.

2. Collect the application’s profile information at run time as training data.
The pure CPU and pure GPU performance model are used to predict the
heterogeneous (co-running) performance model.

– CPU: We collect cache and branch related events using Oprofile [10]
– GPU: We used the gpu-trace and api-trace APIs to collect CUDA run

time information and events.
3. Normalize the collected data to a common scale
4. Cluster features: a hierarchical agglomerative clustering algorithm (HAC) is

utilized to group similarity features, collected from Oprofile and Nvprof,
and finally obtain 4 to 12 features.

5. Build a pure CPU and pure GPU profile-based estimation model.
– Run a set of ML algorithms such as linear regression, support vector

machine (SVM) and random forest model. Specifically, the linear regres-
sion model can be shown in the form: ln(F (X)) =

∑n
i=1 wiφi(xi). Where

φi(x) are functions from the set of x, x2, x3, x4, ex, lnx, x · lnx; xi are
features from last cluster step. The logarithmic scale is used to fit the
final data F (X). It provides reasonable approximations with the target
variable and reduce the non-linearity factors [2]. For SVM, we try the
polynomial and Gaussian kernels.

– Overfitting: we use 10-fold cross validation and L2 regularity to reduce
the overfitting problems.

– Evaluate models: To evaluate how well the model fits the data, a coef-
ficient of determination, Rsquared, is used. Rsquared = Explained variation

Total variation ,
with 0% ≤ Rsquared ≤ 100%. 0% indicates the model explains none of the
variability of the response data around its mean while 100% says that the
model explains all the variability of the response data around its mean.

– Build an estimation model with the best matched ML algorithm to predict
an application’s performance on this specific heterogeneous platform.
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6. Build a heterogeneous prediction model based on the pure CPU and GPU
model. Based on Sects. 2 and 3.1, and Eq. 1 and 3, the concurrent streams
technique will be utilized when the workload is far larger than the GPU’s
global memory. Then, the huge workload will be split into relatively small
concurrent workload tasks. In this case, we can use the small workloads per-
formance information, obtained from the GPU model, to predict the large
workload allocation and execution on GPU.

PDAWL results from the combination of the heterogeneous prediction model
and DAWL. DAWL can dynamically adjust the workload allocation depending
on the run time execution situation. It monitors the actual execution time and
compares it with the ML-provided baseline. It then increases the confidence
interval for the next tasks and can further compensate for the insufficient off-
line ML method. The ML model remains suitable or provides some guidance
when the software or the hardware changes. This approach is suitable for all
iterative algorithms, as they often require some form of global synchronization.
The reason why we combine offline ML with online scheduling methods together
is to expect the test applications can satisfy the real-time requirements. If there is
no real-time requirement, we can use the online ML (such as stochastic gradient
algorithm) to replace offline ML to build prediction model.

4 Algorithm Implementation and Experiment Results

4.1 Experimental Testbed

Table 1. Hardware platforms

Machines Param.

CPU parameters GPU parameters PCIe

Cores Clock Socket L3 Size Mem SM Clock L2 Size Mem

Machine1 (K20) 32 2.6 GHz 2 20 MB 64 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s

Machine2 (K20) 40 3 GHz 2 25 MB 256 GB 13 0.71 GHz 1.25 MB 4.8 GB 6.1 GB/s

Machine3 ( k40) 8 3.4 GHz 1 8 MB 16 GB 15 0.75 GHz 1.5 MB 12 GB 10.3 GB/s

Machine4 (Titan) 12 3.4 GHz 1 12 MB 31 GB 14 0.88 GHz 1.5 MB 6 GB 11.5 GB/s

We ran the experiments on four heterogeneous systems, as shown in
Table 1 and 2. Stencil-based computations and Compressed Row SpMV (SpMV-
CSR) were selected to evaluate our DAWL and PDAWL.

Target Applications: Stencil Computation To emphasize a worst-case sce-
nario, we used the Stencil kernels described in [8], without ghost cells, which
enhances the need for synchronization. Specifically, we focused on kernel: a 5-
point 2D Stencil, double precision. We fixed the number of time steps to 30,
removing the convergence test at the end of each time step for simplification
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Fig. 2. GPU/CPU hybrid: 2D Stencil slicing and tiling

and to make it more deterministic. Note that the CPU tasks and GPU tasks
within one time step were totally independent and that a global barrier was
inserted at the end of each iteration. Each experiment was repeated 20 times.
There are no confidence intervals as the standard deviations were small, the
larger one being 5% and the average smaller than 1%.

The partitioning approach we employed for CPU/GPU tasks entails two steps
named “Slicing” and “Tiling,” respectively, as shown in Fig. 2. A static Blocks-
Tile size was selected for DAWL. As mentioned in Sect. 3, different systems
architecture can yield different parameters for our ML model. Hence, it tries to
find the right match between a given Blocks-Tile size and the number of con-
current streams to issue. This results in near-optimal compute-communication
overlap.

Target Applications: SpMV Computation We reuse the SHOC benchmark
suite’s implementation of SpMV-CSR [5], for both the CUDA and CPP sequen-
tial versions. We convert the sequential code to parallel code where every CPU
core can calculate one or multiple rows. Considering that the number of non-zero
elements per row in a sparse matrix may make a significant difference, we call
the denser rows (with many more non-zero elements) “irregular rows,” whereas
the others are deemed “regular rows.” Once the irregular rows can be processed
separately, the majority regular rows that are left over can be considered at reg-
ular computing and can run with our DAWL and PDAWL. To split regular and
irregular rows, we build up a co-running model on SHOC SPMV-CSR. More
specific steps will be shown in the following:

1. Analyze and evaluate statistic information (see Table 3) to estimate the spar-
sity degree of the matrix. NNZ is the number of total non-zero elements; μ
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is the average number of non-zero elements per row; σ is the variance of the
number of non-zero elements per row; CV is the coefficient of variation per
row; MAX is the maximum number of non-zero elements per row.

2. Build priority groups based on the information. The highest priority level
contains the maximum non-zero number per row(s). The majority regular
rows construct of the lowest level. In the same level, group members have
similar non-zero numbers so they can run parallel. To simplify the model,
we statically set the ratio (30%) as the threshold. Top 30% maximum non-
zero number per row(s) will be extracted from the matrix and added to CPUs
priority groups. The ratio can be learned using ML model, but it will increase
training cases and time.

3. Run irregular and regular computations on CPUs and GPU, in parallel. CPUs
will proceed from the higher to the lower level and GPU will proceed from
the lowest level. Concurrent streams are leveraged here.

4. Synchronize all the computations at the end.

Parameter Space of Our Experiments. We used numactl to allocate mem-
ory in a round-robin fashion and avoid NUMA-related issues. We configure the
GPU memory to 2 GB as an example to explain our methodology. We will not
show experiments with other GPU memory configuration since the overall trend
is the same for all of them.

Table 2. Software Environment

Machines GCC CUDA

Machine1 v6.2/v8.1 v8.0

Machine2 v4.85/v6.2 v8.0

Machine3 v5.4 v9.0

Machine4 v4.92 v9.1

Table 3. Matrices for SpMV

Name Dimension NNZ μ σ cv MAX

circuit5M 5.56 M 59.52 M 10.71 1356.62 126.68 1290501

eu-2005 0.86 M 19.24 M 22.30 29.33 1.32 6985

in-2004 1.38 M 16.92 M 12.23 37.23 3.04 7753

FullChip 2.99 M 26.62 M 8.91 1806.80 202.73 2312481

kmer U1a 67.7 M 138.8 M 2.05 0.37 0.18 35

Matrices Used for our Experiments. We use 50 sparse matrices from the Univer-
sity of Florida Sparse Matrix Collection (UFSMC) [6] to train and 5 matrices 3
to evaluate our DAWL/PDAWL.

4.2 DAWL: Performance Analysis

To comprehensively characterize DAWL, we performed a series of workload per-
formance analysis. We compared the DARTS-DAWL performance with GPU-Only,
CPU-Seq, DARTS-CPU, and DARTS-GPU (see Table 4 for details). DARTS-DAWL is the
implementation of DAWL on DARTS. Based on the parameters mentioned in
Sect. 3.1, DARTS-DAWL may run on multiple CPUs or GPU, or be co-running on
both CPUs and GPU.

Figure 3 shows the speedup of different variants for the Stencil. DARTS-GPU
use concurrent streams all time. while, GPU-Only use a one-stream method when
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Table 4. Stencil kernel implementation

Implementation Illustration

CPU-Seq Sequential c++ code

GPU-Only CUDA code

DARTS-CPU Multi-threads c++ code

DARTS-GPU CUDA code on DARTS (concurrent streams)

DARTS-DAWL DAWL hybrid code on DARTS

the problem size is smaller than the GPU memory capacity. This is to avoid
superfluous synchronizations between the host and device. Concurrent streams
are utilized when the problem size is larger than the GPU’s memory capacity to
overlap communication and computation.

Figure 3 demonstrates the validity of our model. With 30 iterations con-
straints on Stencil kernels, when the workload is less than the available device
memory, r from Eq. 3 is far larger than 1, and the application allocates all the
workload to the device so as to yield maximum performance. When the work-
load is larger than the available device memory, it is allocated to both the host
and the device. Adding the communication & synchronization costs between two
resources types ultimately causes the total performance to drop. The speedup
ratios are quite different on different systems, which is due to the differences in
hardware. e.g., the GPU of machine 3 is a Tesla-K40, which has a higher clock
and memory frequency than Tesla-K20.

DARTS-DAWL on machine 3 should run in pure GPU mode based on the ana-
lytic model. Here, DARTS-DAWL is hard coded to co-running to show our ML
approach will improve performance even in the worst case which chooses the
wrong target device as shown in Fig. 5.

4.3 Profile-Based Estimation Model and Result

Section 3.2 shows how we use the performance of pure CPU or GPU to pre-
dict that of concurrent CPU-GPU. Our training/validation/test set is split into
two, CPU and GPU. The “CPU set” is to build a CPU performance-resource
estimation model which can provide the “best” scheduler using minimum com-
puting resources to obtain the maximum performance (shortest execution time)
for a specific workload. combining spread and compact mapping policies, we
run experiments with different active CPU threads number (e.g. 2, 4, 8, 16. . . )
to obtain the necessary run time information by using Oprofile. PDAWL uti-
lizes this information to provide an accurate prediction model even when (for
example) some PEs are suddenly turned off because of power issues.

The “GPU set” is used to build a GPU communication-computation overlap
model, to estimate data transfer and execution time. In particular, the right
Block-Tile size can perfectly overlap communication and computation on a sys-
tem; and yet, the overlap ratio may be very low on other systems since the
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available SM, PCIe throughput, etc. are different. Specifically, the estimation
model consists of: API launching, data transfer between host and device and
device computation parts. We run the two version of GPU code, with or without
concurrent streams, combining with different Block-Tile size.

The information collected by the runtime helps gather more than two hun-
dreds features for each type of device. HAC was employed to group features.
Figure 4 shows one dendrogram aiming at grouping the features in five clus-
ters. One feature with the maximum variance is selected from each cluster. We
then selected different group of features running the dendrogram algorithm with
different numbers of cluster groups (e.g., 4, 5, 6, · · · , 12).

Fig. 4. Stencil: Dendrogram with 5 clusters from features with correlation between the
execution times higher than |0.75|

Table 5. Stencil : Mean Absolute Percentage Error

Machines #1 #2 #3 #4

MAPE 6.43% 7.41% 3.45% 1.68%

After running various ML algorithms, as described in Sect. 3.2, it turns out
that the model that finds the majority of the best matches both for Stencil and
SpMV computation is linear regression: 0.93 ≤ Rsquared ≤ 0.94. The chosen
model may change with different types of applications and hardware configu-
rations. To measure the progress of the learning algorithm the Mean Absolute
Percentage Error (MAPE) was used. Table 5 shows the MAPE of the linear
model for each machine in the Stencil experiments. The important factors vary
with the hardware configuration and cluster group numbers.

Figures 5 show the results for PDAWL. Compared to DARTS-CPU, the number
of PEs changes with runtime. Our scheduler can reach up to 6× speedups com-
pared to sequential runs, 1.6× speedup compared to the multiple core version,
and 4.8× speedup compared to the pure GPU version in the Stencil. Figures 5
shows that one cannot always obtain significant speedups using profiling. This
is especially true around drop points (drop points are unstable points and are
affected by multiple co-running hardware/software conflicts parameters, which
our machine learning estimation model did not take into consideration).
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Fig. 5. Stencil: Speedup when matrices are larger than 17K (PDAWL)
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Figure 6 compares the SpMV of the five Matrices listed in Table 3 on Machine
1. DARTS-PDAWL executes 30.5× faster than the GPU version and 1.37× better
than the multi CPU version. Our ML algorithm can be further improved by
combining online learning Algorithms and neural-networks with our learning
estimation model.

5 Related Work

The main challenge of the load-balancing mechanism is to precisely divide work-
load on processing units. A simple heuristics division approach may actually
result in worse performance than a simple uniform division. Machine-learning-
based prediction mechanism or/and online profiling-based scheduling algorithms
have been deployed to determine the workload partitioning decision on many-
core homogeneous/heterogeneous systems.

[12] proposes an empirical adaptive mapping, a fully automatic technique
to map computations to processing elements on heterogeneous multiprocessors.
[21] utilizes an ML approach to decide whether to parallelize a loop and how to
schedule candidates on multi-core platforms. [16,17] proposed two profile-based
scheduling algorithms for data-parallel applications in heterogeneous CPU-GPU
clusters.The ML approach is utilized to predict the best distribution of data
block size among different processing units. [25] performs a series of workload
characterization analysis to understand the co-running behaviors on integrated
CPU/GPU architecture. The main factors affecting the co-running performance:
the architectural differences between CPUs and GPUs and the limited shared
memory bandwidth. Based on this information, an ML model can be built to
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predict coarse-grain workload partitioning on a co-running device before porting
the program. [24] proposes a fine-grain workload reshaping approach which
combines performance prediction, from an ML model, and partitioning threshold,
from an online-turning model, to partition the workload between CPU and GPU
on integrated architectures. When the workload is lower than the threshold, it
is executed on GPUs. Otherwise, CPUs are employed. [14] and [15] focus on
the accelerator sharing control for multiple kernels and propose to use ML to
determine whether to run OpenCL code on GPU or OpenMP code on multi-core
CPUs. [22] uses ML to decide whether to merge or separate multi-user OpenCL
tasks running on the most suitable devices in a CPU-GPU systems.

Except for architectural differences, communication between CPUs, GPUs,
and the memory has a pivotal role. [3,7,20,23,25] propose an analytical per-
formance model that includes PCIe transfers and overlapping computation and
communication. [13] proposes PARTANS, an autotuning framework for CPUs
and GPUs to execute Stencil computations over two nodes with multiple GPUs.
Data transfer on the PCIe bus play a crucial role to determine the number
of GPUs to be utilized. To handle the communication-synchronization problem
between CPUs and GPUs,

Most of these are aimed at coarse-grain workload partitioning and loosely
synchronized parallel workloads where specific tasks are often run only a spe-
cific type of processing element (e.g., CPU or GPU). [24] works for fine-grain
partitioning, but static workload partition is inherently rigid. Furthermore, the
precision of the ML model determines the efficiency of workload partitioning
approach. The hardware change during runtime may have a catastrophic effect
on the performance. At the same time, hardware changes during runtime may
happen frequently, and as much as half of the CPU cores may be turned off
because of power issues.

Our work focuses on synchronization between CPUs and GPUs. Further, the
communication between CPUs and GPUs plays a central role in our dynamic
scheduling approach. Finally, our approach is neither purely static nor dynamic.
We combine the two models: an offline ML model provides us with workload allo-
cation, while DAWL dynamically balances the workload to compensate offline-
ML inaccuracies.

6 Conclusions and Future Work

We have presented PDAWL, an iterative event-driven scheduling algorithm
designed to better load balance tasks in a heterogeneous system. It leverages a
profile-based approach based on offline machine learning and an online schedul-
ing approach. The Machine-Learning estimation model can help build an esti-
mation model in a heterogeneous resource context. It consists of a CPU model
and a GPU model. We used ML to find the best workload-resource match to
improve the CPUs’ utilization rate as well as the optimal estimation model to
improve GPU performance since building an accurate mathematical general-
purpose GPU performance model is nigh-impossible, as the search space is too
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large. Online event-driven scheduling can make up for the inflexibility of offline
machine learning and increase accuracy of scheduling.

Two applications, Stencil and SpMV, have been chosen to evaluate our app-
roach. Experiments with Stencil and SpMV show that PDAWL yields speedups
up to 1.6× and 1.37× for a multi-core baseline, 4.8× and 30.5× for pure GPU
execution.

Future work includes augmenting our model with power consumption param-
eters to enrich PDAWL and determining good trade-offs between performance
and power on heterogeneous architectures. We plan on adding Deep Learning
algorithms to PDAWL. We will also employ meta learning to reduce training
time when run our PDAWL on other configuration Hardware environment.
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