
Towards a Generalizable Comparison of
the Maintainability of Object-Oriented

and Service-Oriented Applications

Justus Bogner1,2(B), Bhupendra Choudhary2, Stefan Wagner2,
and Alfred Zimmermann1

1 University of Applied Sciences Reutlingen, Reutlingen, Germany
{justus.bogner,alfred.zimmermann}@reutlingen-university.de

2 University of Stuttgart, Stuttgart, Germany
{justus.bogner,stefan.wagner}@iste.uni-stuttgart.de,

bhupendra.choudhary@gmx.de

Abstract. While there are several theoretical comparisons of Object
Orientation (OO) and Service Orientation (SO), little empirical research
on the maintainability of the two paradigms exists. To provide support
for a generalizable comparison, we conducted a study with four related
parts. Two functionally equivalent systems (one OO and one SO version)
were analyzed with coupling and cohesion metrics as well as via a con-
trolled experiment, where participants had to extend the systems. We
also conducted a survey with 32 software professionals and interviewed 8
industry experts on the topic. Results indicate that the SO version of our
system possesses a higher degree of cohesion, a lower degree of coupling,
and could be extended faster. Survey and interview results suggest that
industry sees systems built with SO as more loosely coupled, modifiable,
and reusable. OO systems, however, were described as less complex and
easier to test.

Keywords: Maintainability · Service orientation · Object orientation ·
Metrics · Experiment · Survey · Interviews

1 Introduction

The ability to quickly and cost-efficiently change applications and services due to
new or redacted requirements is important for any company relying on custom
software. The associated quality attribute is maintainability: the degree of effec-
tiveness and efficiency with which software can be changed [5], e.g. to adapt or
extend it. The introduction of Object Orientation (OO) lead to maintainability-
related benefits like encapsulation, abstraction, inheritance, or increased sup-
port for modularization [3]. In today’s enterprise world, however, systems built
on Service Orientation (SO) are increasingly more common. By introducing a
higher level of abstraction, Service-Based Systems (SBSs) consist of loosely cou-
pled distributed components with well defined technology-agnostic interfaces [7].
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 114–125, 2020.
https://doi.org/10.1007/978-3-030-63161-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_9


Comparing the Maintainability of Object and Service Orientation 115

SO aims to promote interoperability, reuse of cohesive functionality at a business-
relevant abstraction level, and encapsulation of implementation details behind
published interfaces [4].

So while Service Orientation seems to surpass Object Orientation w.r.t. main-
tainability from a theoretical point of view, this comparison is very hard to gen-
eralize in a practical setting. Developers can build systems of arbitrary quality
in both paradigms, although the inherent properties of both paradigms may
make it easier or harder to build well maintainable systems. Very little empirical
research exists on the topic of comparing the maintainability of OO and SO (see
Sect. 2). Results from such studies can bring valuable insights into the evolution
qualities of these two paradigms. Research in this area can also highlight poten-
tial deficiencies and weaknesses, which helps raising awareness for developers as
well as providing decision support for choosing a paradigm for a project.

This is why we conducted a study to compare the maintainability of object-
oriented and service-oriented applications from different perspectives. For a prac-
tical empirical point of view, we constructed two functionally equivalent systems
(one based on OO and the other on SO) and compared them with metrics as well
as by means of a controlled software development experiment. To gain insight
into software professionals’ subjective estimation of the two paradigms, we con-
ducted an industry survey as well as expert interviews. In the remainder of this
paper, we first introduce related work in this area. Then we present the details
of our 4-part study including the methods, results, and limitations. Lastly, we
conclude by summarizing our results and putting them into perspective.

2 Related Work

A small number of scientific publications exists that compare Service Orienta-
tion and Object Orientation. In 2005 when SBSs were still very young, Baker
and Dobson [1] published a theoretical comparison of Service-Oriented Archi-
tecture (SOA) and Distributed Object Architectures (DOA) based on literature
and personal experience. Their comparison is very high-level and not focused
specifically on maintainability. While they highlight a large number of similari-
ties, they also point out the more coarse-grained interfaces of SOA that lead to
simplified communication and less cognitive overhead for developers of service
consumers. Moreover, they point out the missing notion of inheritance and inter-
face specialization in SOA, which they acknowledge as initially less complex, but
potentially limiting in the long term.

Stubbings [10] provided another theoretical comparison that also emphasizes
the direct line of evolution from OO to SO. Beneficial OO concepts like encap-
sulation and reuse have been adapted to a higher abstraction level in Service
Orientation that is closer to the business domain. He further assessed the struc-
tural and technological complexity to be higher in a system based on Service
Orientation. Concerning communication, he reported the focus for OO to be
primarily internal while SO would be more aimed at external interoperability.



116 J. Bogner et al.

One of the few empirical studies on the subject was performed by Pere-
pletchikov et al. [8] on two versions of a fictional Academic Management System
(one service-oriented version, the other one object-oriented). To compare the
maintainability of the two, they employed traditional source code metrics like
Lines of Code, Cyclomatic Complexity, as well as the OO metrics suite from Chi-
damber and Kemerer. They focused on the structural properties size, complexity,
coupling, and cohesion. As findings, they reported that the SO version provides
better separation of business and implementation logic and a lower degree of
coupling. The OO system, however, would be overall less complex.

Lastly, Mansour and Mustafa [6] conducted a similar empirical study. They
constructed a service-oriented version of an existing OO Automated Teller
Machine system and compared the two versions with a set of metrics, very
similar to the ones in [8]. They reported that the SO version of their system
inhibited a higher degree of reusability and a lower degree of coupling while the
complexity of the OO version was lower. Additionally, they described difficulties
when trying to apply OO metrics to a Service-Based System and advocated the
need for a set of service-oriented maintainability metrics.

Existing studies are either of a theoretical nature or solely focused on met-
rics. While the presented empirical studies provide first valuable support for a
comparison with metrics, they also reported difficulties due to a lack of mutu-
ally applicable metrics. Not all OO metrics can be used for SBSs. Moreover,
additional metric evaluations with other systems will be of value while new
approaches can bring different perspectives to the discussion.

3 Study Design

Based on the results and lessons learned of the related work, we therefore con-
ducted a study with four different parts. First, we constructed a service-oriented
and an object-oriented version of a simple Online Book Store (OBS) that pro-
vided functionality to register as a user as well as to browse and order books. The
service-oriented version was implemented with RESTful NodeJS services using
the Express framework1 and an Angular frontend2 while the object-oriented ver-
sion is a Java monolith relying on JavaServer Pages (JSP) as a web UI. These
two systems were compared using a set of coupling and cohesion metrics.
To respect the two system versions, we needed metrics that can be applied both
to service- as well as object-oriented systems. This is often difficult to achieve,
since coupling and cohesion metrics are usually designed for either of the two
paradigms. We therefore chose two metrics for each structural property that
could be adapted to be mutually applicable.

For coupling, we chose Absolute Importance of the Service (AIS) and Absolute
Dependence of the Service (ADS). Both have been specifically designed for SBSs
and represent the number of clients invoking a service (AIS) and the number of

1 https://expressjs.com.
2 https://angular.io.

https://expressjs.com
https://angular.io


Comparing the Maintainability of Object and Service Orientation 117

Fig. 1. Object-oriented version of OBS

other services a service depends on respectively (ADS) [9]. They can be easily
adapted to object-oriented systems by substituting services with classes.

For cohesion, we selected two object-oriented metrics, namely Tight Class
Cohesion (TCC) and Loose Class Cohesion (LCC) [2]. These metrics attempt to
measure the relatedness of class functionality based on common class attributes
that the methods operate on. TCC represents the relative number of directly
connected methods while LCC also includes indirectly connected methods (via
other intermediate methods). To adapt these metrics to a service-oriented con-
text, class methods are substituted by service operations.

While the majority of maintainability metrics use structural properties as
a proxy, industry is really interested in something else: how fast can changes
or features be implemented for the system? To account for this, the same sys-
tems were used in a controlled experiment. Software practitioners had to
implement search functionality for books while the time was measured. We then
analyzed whether the version made a noticeable difference. 8 software develop-
ers participated in the experiment, four per system version of OBS. 7 of the 8
developers were from Germany. They had an average of ∼4.1 years of experience
(OO AVG: 4.5 years, SO AVG: 3.75 years). All of them had worked with their
respective paradigm before. We measured the time necessary to complete the
exercise as well as the changed Lines of Code for the backend part.

To complement these two empirical approaches, we also conducted an indus-
try survey to capture the general sentiment of developers towards the two
paradigms. Software professionals filled out an online questionnaire where they



118 J. Bogner et al.

Fig. 2. Service-oriented version of OBS

were asked to compare structural and maintainability-related properties of the
two paradigms based on their personal experience. 32 participants completed
our web-based questionnaire that was distributed via personal industry con-
tacts, mailing lists, and social media. The survey was hosted from 2018-04-19
until 2018-05-06 and consisted of 12 questions, mostly with Likert scale answers.
Most participants were from Germany and India and all had at least three years
of professional experience. They had to comment on the average condition of
different structural properties (e.g. coupling) and subquality attributes of main-
tainability in SW projects based on either OO or SO. Lastly, they had to answer
some questions where they ranked the three paradigms Object Orientation, Ser-
vice Orientation, and Component-Based for similar attributes.

As a more in-depth follow-up to the survey, we conducted qualitative inter-
views with several experts to complement the broader scope of the survey and
to dive more deeply into some of the topics. Similar to the survey, we also asked
for their personal experience and preference w.r.t. the maintainability of the
two paradigms under study. This was the fourth and final part of our study.
All 8 experts had an IT or Engineering background and had previously worked
with object-oriented as well as service-oriented systems. 7 of the 8 experts were
older than 30 years, i.e. had considerable professional experience. The inter-
views started with an introduction of the two OBS versions and a discussion
about their strengths and weaknesses. This was followed by similar questions



Comparing the Maintainability of Object and Service Orientation 119

as in the survey about properties of the two paradigms and the participants’
experience.

Please refer to our GitHub repository for the source code of the systems as
well as the detailed survey questions and results3.

4 Results

For the metric-based part of the study, we measured all four component-level
metrics for both the object-oriented (Fig. 1) and the service-oriented version
(Fig. 2) of the Online Book Store (OBS). Since each version of the system
includes three components (services or classes respectively), we have a total
of 12 measurements (see Table 1). When looking at the AVG values per version
and metric (see Fig. 3), we can see that the service-oriented version overall has
slightly better values, i.e. on average lower coupling and higher cohesion per
component.

Table 1. Coupling and cohesion metric values per component

Component AIS ADS TCC LCC

OO Version Administration 1 2 0.00 0.40

Register 1 2 0.16 0.50

Shopping Cart 2 0 0.33 0.33

SO Version AdminService 1 1 0.67 0.67

BookService 1 1 0.33 0.50

CartService 1 1 1.00 1.00

During the controlled experiment, it took less time and effort to extend
the service-oriented version of OBS (see Fig. 4). The mean duration for the SO
version was 0.8 h while it was 0.99 h for the OO version. Respectively, the mean
effort was 7.25 LoC for SO and 12.5 LoC for OO. When analyzing the significance
of the mean differences in our sample with an unpaired t-test, we found two-tailed
p-values smaller than 0.05 (p-valueduration: 0.0479, p-valueeffort: 0.005).

The following part highlights the results of the survey questions. For Lik-
ert scale question, we also present the aggregated score per paradigm (Strongly
Disagree: −2, Disagree: −1, Neutral: 0, Agree: 1, Strongly Agree: 2).

Question: In my experience, software based on <paradigm> has a comparatively
low degree of coupling .

3 https://github.com/xJREB/research-oo-vs-so.

https://github.com/xJREB/research-oo-vs-so


120 J. Bogner et al.

1.33 1.33

0.16

0.41

1 1

0.67
0.72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Absolute Importance of
the Service

Absolute Dependence of
the Service

Tight Class Cohesion Loose Class Cohesion

M
et

ric
 V

al
ue

AVG in OO Version AVG in SO Version

Fig. 3. Average coupling and cohesion metric values per version

0.76 0.91 0.83 0.68

1.16
0.91 0.9 0.98

0

0.5

1

1.5

SO SO SO SO OO OO OO OO

P1 P3 P5 P7 P2 P4 P6 P8

Ti
m

e 
in

 H
ou

rs

Fig. 4. Experiment: duration per participant

1

2

7

4

8

20

15

6

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 5. Question: In my experience, software based on <paradigm> has a compara-
tively low degree of coupling.



Comparing the Maintainability of Object and Service Orientation 121

For coupling, participants clearly favored Service Orientation (score: 30) over
Object Orientation (score: 8). Over 80% reported that service-oriented systems
were in their experience of a more loosely coupled nature while only 50% reported
the same for object-oriented systems (see Fig. 5). This result was to be expected,
since loose coupling and the reduction of dependencies is a major driver in SBSs.

Question: In my experience, software based on <paradigm> facilitates a com-
paratively high degree of cohesion .

When it came to cohesion, the results were less decisive (SO: 18, OO: 14).
Overall, roughly 13% more participants agreed with this statement for Service
Orientation (SO: ∼63%, OO: 50%). This does not seem to be a lot, when we
consider the prevalence of the “cohesive services grouped around business capa-
bilities” theme in an SOA and especially in a Microservices context.

Question: In my experience, software based on <paradigm> promises a signif-
icant extent of reusability .

Participants reported higher reusability for their service-oriented software
than for their object-oriented software. While the scores were pretty even (SO:
25, OO: 22), ∼78% of participants agreed to this statement for SO while only
∼59% agreed for OO. Absolute scores are so close because two more people
disagreed for SO and one more strongly agreed for OO (see Fig. 6). Overall, these
results seem to support the SO principle of business-relevant reuse granularity.

3

1

4

12

22

15

3

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 6. Question: In my experience, software based on <paradigm> promises a signif-
icant extent of reusability.

Question: In my experience, software based on <paradigm> reduces the com-
plexity of testing .

In the case of testability, Object Orientation (score: 24) was seen as more
beneficial than Service Orientation (score: 14) to reduce complexity. Roughly
72% of participants agreed with this statement for OO while only ∼53% agreed
for SO together with 6 disagreements (see Fig. 7). This is the first category where
OO decisively wins out in the opinion of participating developers.

Lastly, developers were asked to rank the three paradigms Object Orientation,
Service Orientation, and Component-Based from their experience for three fur-
ther properties: modifiability, encapsulation/abstraction, and size/complexity.
Ranking a paradigm first provided three points, ranking it second provided two,



122 J. Bogner et al.

6 9

9

14

22

3

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 7. Question: In my experience, software based on <paradigm> reduces the com-
plexity of testing.

Table 2. Question: In your experience, which of the three paradigms provides on
average the most favorable degree of <attribute>?

Object Orientation Component-Based Service Orientation

Modifiability 63 43 86

Encapsulation
and Abstraction

58 43 85

Size and
Complexity

74 39 73

ranking it last provided one point respectively. The results (see Table 2) indi-
cate that participants experienced systems based on Service Orientation as more
modifiable and with a better degree of encapsulation and abstraction as for the
other two paradigms. For size and complexity, however, participants reported
that they believed the manageability of these properties to be roughly equal for
OO and SO, with OO winning out by one point.

We compiled results from the qualitative interviews in several areas. For
the topic of modifiability, 5 of the 8 experts reported that on average in their
experience service-oriented systems are more beneficial than object-oriented ones
when it comes to evolving already developed systems. Participants emphasized
the advantages of service-based modularity, which would increase independence
in the system and reduce costs in the long run. Some experts highlighted that
SO is more convenient when requirements frequently change.

Concerning complexity, most experts indicated based on their past software
projects that systems based on Object Orientation are on average less complex
than SBSs from a structural and technological point of view. They also men-
tioned mature tool support in the field of object-oriented SW development that
would ease some of the difficulties. In the service-oriented space, however, tool
support would be lacking.

When comparing the average analyzability of the two paradigms, the major-
ity of participants favored Service Orientation over Object Orientation. The
structure of the system would be easier to grasp when referring to services as
coarse-grained components. Moreover, experts experienced less dependencies in
SBSs, which also helped to comprehend the structure of a system.



Comparing the Maintainability of Object and Service Orientation 123

Lastly, in addition to the lack of mature tool support for Service Orientation,
participants reported the danger of ripple effects when changing services, espe-
cially with service interface changes that require updates of all service consumers.
Some experts also stressed that Object Orientation was a valuable paradigm to
be used for the inner low-level design of single services and that it would nicely
complement the service-based high-level architecture of a system. So the choice
would not always be either Service or Object Orientation.

5 Threats to Validity

Several things have to be mentioned to put our results into appropriate perspec-
tive. For the metric-based evaluation, the tested systems were artificially
constructed and are not real industry or open source systems. While we tried
to design and implement them as close to a real use case as possible, we also
needed something of manageable size and complexity, which may impact the
generalizability of the comparison (e.g. the AVG metric values were computed
from only three components). The chosen technology for both versions may also
be a limitation. Results with other programming languages or frameworks could
be different. Moreover, we only used a small number of metrics and targeted
only two structural properties (coupling and cohesion). Other metrics, e.g. for
size or complexity, could have yielded additional insights, but were neglected
due to project time constraints. Finally, we calculated the metric values manu-
ally due to missing tool support. Since the systems are of limited size and we
double-checked each value, the error probability should still be very small.

In the case of the controlled experiment, the same limitations of the con-
structed systems as described above hold true. The two different programming
languages (Java and NodeJS/JavaScript) also limit the comparability of the LoC
effort. Additionally, we only had a small number of participants. Potentially dif-
ferent development experience and skill levels could not be accounted for when
assigning the participants to the two versions of OBS. Lastly, the experiment
consisted of only one exercise, which can only test the modifiability of certain
parts of the system.

As with most quantitative surveys, a number of limitations have to be
mentioned. First, the number of participants (32) only provides limited gen-
eralizability, as a different population subset may have different views on the
subject. Moreover, we could not guarantee that the participating developers
indeed had sufficient experience with all three software paradigms. Lastly, the
subjective estimation of the inherent qualities of a paradigm may be skewed
by a particularly bad experience with a suboptimally designed system. Overall,
it is important to keep in mind that personal preference of developers is not
necessarily of a rational nature.

As opposed to our survey participants, we could select our interview
experts based on their experience with the two paradigms under evaluation,
at least up to a certain degree. However, there is still a chance that some experts
were less proficient with one of the paradigms or were heavily influenced by one



124 J. Bogner et al.

specific project of theirs. Moreover, there is a chance that we slightly influenced
the experts by posing questions that should direct the conversation to the prop-
erties under evaluation. Lastly, our interviews were conducted and analyzed in
a fairly loosely structured manner without a rigorous methodology.

6 Conclusion

To provide additional evidence for a generalizable comparison of the maintain-
ability of Service Orientation and Object Orientation, we conducted a study
with four parts: a metric-based comparison of two functionally equivalent sys-
tems (one SO and one OO version); a controlled experiment where practitioners
had to extend the same systems; an industry survey with comparative questions
about OO and SO; and expert interviews as a more in-depth follow-up to the
survey.

The empirical results indicate that the service-oriented version of our Online
Book Store system consists of more cohesive and more loosely coupled compo-
nents and could also be extended faster and with less effort (LoC) by experi-
ment participants. Survey and interview results seem to go in the same direc-
tion: industry professionals experienced higher modifiability, lower degrees of
coupling, higher reusability, and stronger encapsulation and abstraction in their
service-oriented projects. For their average object-oriented systems, however,
they reported comparatively lower complexity and better testability.

While these results can aid in the decision process for a paradigm and can
highlight important maintainability-related focus points when designing systems
with either paradigm, it is still important to remember that we can build software
of arbitrary quality in both paradigms. Moreover, Object Orientation can be a
useful complement for the inner architecture of services.

Acknowledgments. This research was partially funded by the Ministry of Science
of Baden-Württemberg, Germany, for the Doctoral Program “Services Computing”
(http://www.services-computing.de/?lang=en).

References

1. Baker, S., Dobson, S.: Comparing service-oriented and distributed object architec-
tures. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 631–645.
Springer, Heidelberg (2005). https://doi.org/10.1007/11575771 40

2. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. In:
Proceedings of the 1995 Symposium on Software reusability - SSR 1995, pp. 259–
262. ACM Press, New York (1995)

3. Booch, G.: Object Oriented Analysis & Design with Application. Pearson Educa-
tion, London (2006)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

5. International Organization For Standardization: ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Technical report (2011)

http://www.services-computing.de/?lang=en
https://doi.org/10.1007/11575771_40


Comparing the Maintainability of Object and Service Orientation 125

6. Mansour, Y.I., Mustafa, S.H.: Assessing internal software quality attributes of the
object-oriented and service-oriented software development paradigms: a compara-
tive study. J. Software Eng. Appl. 04(04), 244–252 (2011)

7. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 7th International Conference on Properties and Appli-
cations of Dielectric Materials (Cat. No.03CH37417), pp. 3–12. IEEE (2003)

8. Perepletchikov, M., Ryan, C., Frampton, K.: Comparing the impact of service-
oriented and object-oriented paradigms on the structural properties of software.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp.
431–441. Springer, Heidelberg (2005). https://doi.org/10.1007/11575863 63

9. Rud, D., Schmietendorf, A., Dumke, R.R.: Product Metrics for Service-Oriented
Infrastructures. In: IWSM/MetriKon (2006)

10. Stubbings, G.: Service-orientation and object-orientation: complementary design
paradigms. SPARK: ACES J Postgrad. Res. 1, 1–9 (2010)

https://doi.org/10.1007/11575863_63

	Towards a Generalizable Comparison of the Maintainability of Object-Oriented and Service-Oriented Applications
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results
	5 Threats to Validity
	6 Conclusion
	References




