
Maria Fazio
Wolf Zimmermann (Eds.)

Workshops of ESOCC 2018
Como, Italy, September 12–14, 2018
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 1115

Communications
in Computer and Information Science 1115

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Maria Fazio • Wolf Zimmermann (Eds.)

Advances in
Service-Oriented
and Cloud Computing
Workshops of ESOCC 2018
Como, Italy, September 12–14, 2018
Revised Selected Papers

123

Editors
Maria Fazio
University of Messina
Messina, Italy

Wolf Zimmermann
Martin Luther University Halle-Wittenberg
Halle (Saale), Germany

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-63160-4 ISBN 978-3-030-63161-1 (eBook)
https://doi.org/10.1007/978-3-030-63161-1

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-63161-1

Workshop Editors

Cloudways and OptiMoCS

Claus Pahl
Free University of Bozen-Bolzano
Italy
Claus.Pahl@unibz.it

Zoltan Adam Mann
University of Duisburg-Essen
Germany
zoltan.mann@paluno.uni-due.de

WESOACS

Andreas S. Andreou
Cyprus University of Technology
Cyprus
andreas.andreou@cut.ac.cy

Luciano Baresi
Politecnico di Milano
Italy
luciano.baresi@polimi.it

ESOCC PhD Symposium

Vasilios Andrikopoulos
University of Groningen
The Netherlands
v.andrikopoulos@rug.nl

Massimo Villari
University of Messina
Italy
mvillari@unime.it

ESOCC EU-Projects Track

Federico Facca
Martel Innovate
Switzerland

Dumitru Roman
SINTEF
Norway
dumitru.roman@sintef.no

Preface

The European Conference on Service-Oriented and Cloud Computing (ESOCC) is the
premier event on advances of the state of the art in services and cloud technologies. It
serves as an important venue for scientist as well as practioners from industry. The
main objective is to provide a forum for an exchange of ideas. In this respect, the
workshops are an important part of the conference. They contribute to an intensive
exchange in special fields of service-oriented and cloud computing. In addition,
ESOCC organized a PhD symposium where PhD students can present their ideas and
results, ranging from early ideas to almost completed work. The EU projects track
discusses recent developments from European Projects. The workshop proceedings of
ESOCC 2018 contains contributions from the following workshops and events:

– 14th International Workshop on Engineering Service-Oriented Applications and
Cloud Services

– Joint Workshop on Optimization in Modern Computing Systems and the 4th
Workshop on Cloud Migration and Architecture

– PhD Symposium
– EU Projects Track of ESOCC

We are grateful to Flavio de Paoli and his team for the great organization in a nice
location. Pierluigi Plebani supported us in the administration and organization of this
volume – thank you very much. We thank the organizers of the workshops and the
Program Committee members of the workshops. Their work enabled an attractive
program. Finally, we thank the authors who submitted their work to the workshops, the
presenters, and the attendees. Without their support, active and fruitful workshops
would be impossible.

March 2020 Maria Fazio
Wolf Zimmermann

Organization

General Chair

Flavio di Paoli University of Milano-Bicocca, Italy

Program Chairs

Kyriakos Kritikos ICS-FORTH, Greece
Pierluigi Plebani Politecnico di Milano, Italy

Workshop Chairs

Maria Fazio University of Messina, Italy
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Steering Committee

Antonio Brogi University of Pisa, Italy
Schahram Dustdar TU Wien, Austria
Paul Grefen Eindhoven University of Technology, The Netherlands
Kung Kiu Lau The University of Manchester, UK
Winfried Lamersdorf University of Hamburg, Germany
Frank Leymann University of Stuttgart, Germany
Flavio de Paoli University of Milano-Bicocca, Italy
Cesare Pautasso University of Lugano, Switzerland
Ernesto Pimentel University of Malaga, Spain
Ulf Schreier Hochschule Furtwangen University, Germany
Stefan Schulte TU Wien, Austria
Massimo Villari University of Messina, Italy
John Erik Wittern IBM T.J. Watson Research Center, USA
Olaf Zimmermann HSR FHO Rapperswil, Switzerland
Wolf Zimmermann Martin Luther University Halle-Wittenberg, Germany

Contents

Joint Cloudways and OptiMoCS Workshop

Model-Driven Simulation for Performance Engineering
of Kubernetes-Style Cloud Cluster Architectures . 7

Federico Ghirardini, Areeg Samir, Ilenia Fronza, and Claus Pahl

On Enhancing the Orchestration of Multi-container Docker Applications 21
Antonio Brogi, Claus Pahl, and Jacopo Soldani

Transactional Migration of Inhomogeneous Composite Cloud Applications . . . 34
Josef Spillner and Manuel Ramírez López

Secure Apps in the Fog: Anything to Declare? . 46
Antonio Brogi, Gian-Luigi Ferrari, and Stefano Forti

14th International Workshop on Engineering Service-Oriented
Applications and Cloud Services

Implementation of a Cloud Services Management Framework. 67
Hong Thai Tran and George Feuerlicht

On Limitations of Abstraction-Based Deadlock-Analysis
of Service-Oriented Systems . 79

Mandy Weißbach and Wolf Zimmermann

Decentralized Billing and Subcontracting of Application Services for Cloud
Environment Providers. 91

Wolf Posdorfer, Julian Kalinowski, Heiko Bornholdt,
and Winfried Lamersdorf

May Contain Nuts: The Case for API Labels . 102
Cesare Pautasso and Erik Wilde

Towards a Generalizable Comparison of the Maintainability
of Object-Oriented and Service-Oriented Applications 114

Justus Bogner, Bhupendra Choudhary, Stefan Wagner,
and Alfred Zimmermann

ESOCC 2018 PhD Symposium

Towards an Evolvability Assurance Method for Service-Based Systems 131
Justus Bogner, Alfred Zimmermann, and Stefan Wagner

Predictive Management of Fog Applications . 140
Stefano Forti

How to Manage Efficiently Clinical Big-Data by Means
of Cloud Computing . 148

Antonino Galletta and Massimo Villari

The Slingshot Approach: Model-Driven Engineering the Coordination
of Autoscaling Mechanisms for Elastic Cloud Applications 158

Floriment Klinaku and Steffen Becker

Analysing and Deploying (Micro)service-Based Applications 166
Davide Neri

ESOCC 2018 EU Projects Track

TheyBuyForYou: Enabling Procurement Data Value Chains 179
Elena Simperl, Oscar Corcho, Marko Grobelnik, Dumitru Roman,
Ahmet Soylu, María Jesús Fernández Ruíz, Stefano Gatti, Chris Taggart,
Urška Skok Klima, Annie Ferrari Uliana, Ian Makgill, Philip Turk,
and Till Christopher Lech

EW-Shopp Project: Supporting Event and Weather-Based Data Analytics
and Marketing Along the Shopper Journey. 187

Matteo Palmonari, Michele Ciavotta, Flavio De Paoli, Aljaž Košmerlj,
and Nikolay Nikolov

I-BiDaaS: Industrial-Driven Big Data as a Self-service Solution 192
Giorgos Vasiliadis, Dusan Jakovetic, Ilias Spais, and Sotiris Ioannidis

SMARTSDK - A FIWARE-Based Software Development Kit for Smart
Applications for the Needs of Europe and Mexico. 197

Tomas Aliaga, Hugo Estrada, Miguel González Mendoza,
and Daniele Pizzolli

The FIRST (vF Interoperation suppoRting buSiness innovaTion) Project:
Service Management for Virtual Factories . 204

Yuewei Bai, Stephan Böse, Giacomo Cabri, Paul de Vrieze,
Norbert Eder, Alexander Lazovik, Federica Mandreoli,
Massimo Mecella, Hua Mu, and Lai Xu

ElasTest: An Elastic Platform for E2E Testing Complex Distributed Large
Software Systems . 210

Juan Francisco Ribera Laszkowski, Andy Edmonds, Piyush Harsh,
Francisco Gortazar, and Thomas Michael Bohnert

x Contents

RECAP (Reliable Capacity Provisioning and Enhanced Remediation
for Distributed Cloud Applications): The Simulation Approach 219

Patricia Takako Endo, Christos Filelis-Papadopoulos, Sergej Svorobej,
Anna Gourinovitch, Konstantinos Giannoutakis, George Gravvanis,
Dimitrios Tzovaras, Divyaa Manimaran Elango, James Byrne,
and Theo Lynn

DevOps-Based Software Engineering for the Cloud. 226
Andreas Christoforou, Andreas Andreou, Luciano Baresi,
and Michael Papazoglou

Author Index . 233

Contents xi

Joint Cloudways and OptiMoCS
Workshop

CloudWays/OptiMoCS 2018
Abstract/Summary

Joint CloudWays/OptiMoCS 2018 Workshop:

– 4th International Workshop on Cloud Migration and Architecture (CloudWays
2018)

– First International Workshop on Optimization in Modern Computing Systems
(OptiMoCS 2018)

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications in the form of legacy systems that have been developed
over a long period of time using traditional development methods. Despite often
serious maintainability issues, (on-premise) legacy systems are still crucial as they
support core business processes. Therefore, migrating legacy systems towards cloud-
based platforms allows organizations to leverage their existing systems deployed and
provided (using publicly available resources) as scalable cloud services.

CloudWays 2018 brought together cloud architecture experts from both academia
and industry; to promote discussions and collaboration amongst participants; to help
disseminate novel cloud adoption, migration, and software architecture practices and
solutions; and to identify future cloud architecture challenges and dimensions.

OptiMoCS 2018 served as a platform for discussing recent work on optimization in
modern computing systems (e.g., service-oriented computing, cloud computing, edge
and fog computing, mobile computing, network function virtualization). Such systems
must satisfy several goals regarding performance, consumption of computing and
network resources, energy consumption, and financial costs. Optimization of these
goals is an important concern in the design and operation of many systems, leading to
challenging optimization problems. Improved algorithms for these problems directly
translate to more effective and more efficient systems.

CloudWays/OptiMoCS 2018 Preface

Cloud computing has been the focus of attention of both academic research and
industrial initiatives. From a business point of view, organizations can benefit from the
on-demand and pay-per-use model offered by cloud services rather than an upfront
purchase of costly and over-provisioned infrastructure. From a technological per-
spective, the scalability, interoperability, and efficient (de-)allocation of resources
through cloud services can enable a smooth execution of organizational operations.

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications in the form of legacy systems that have been developed
over a long period of time using traditional development methods. Despite often
serious maintainability issues, (on-premise) legacy systems are still crucial as they

support core business processes. Therefore, migrating legacy systems towards cloud-
based platforms allows organizations to leverage their existing systems deployed and
provided (using publicly available resources) as scalable cloud services.

This fourth edition of the CloudWays workshop – the 4th International Workshop
on Cloud Migration and Architecture (CloudWays 2018) – was held in Como, Italy, on
September 12, 2018, as an ESOCC satellite event. The first edition was held in
September 2015 in Taormina, Italy, the second in September 2016 in Vienna, Austria,
and the third on September 12, 2017, in Oslo, Norway, all as a satellite events of
ESOCC. The workshop’s goals were to bring together cloud migration and cloud
architecture experts from both academia and industry; to promote discussions and
collaboration among participants; to help disseminate novel cloud adoption, migration,
and architecture practices and solutions; and to identify future cloud challenges and
dimensions that help software applications to be architectured for and deployed in the
cloud.

In this fourth edition, three full CloudWays papers were accepted for presentation
during the workshop, out of a total of six submissions.

The First International Workshop on Optimization in Modern Computing Systems
(OptiMoCS 2018) served as a platform for discussing recent work on optimization in
modern computing systems. Modern computing paradigms (e.g., service-oriented
computing, cloud computing, edge and fog computing, mobile computing, and network
function virtualization) allow the construction, deployment, and operation of systems
of ever larger scale and complexity. Such systems must satisfy several important, often
contradicting, quantifiable goals. Metrics of interest include performance, consumption
of computing and network resources, energy consumption, and financial costs. Opti-
mization of these goals is an important concern in the design and operation of many
different systems, leading to challenging optimization problems. Improved algorithms
for these problems directly translate to more effective and more efficient systems.

OptiMoCS 2018 was organized as a special track of CloudWays 2018. From two
submissions, one paper was selected for presentation during the workshop.

The first CloudWays paper “Model-Driven Simulation for Performance Engi-
neering of Kubernetes-style Cloud Cluster Architectures” by Federico Ghirardini,
Areeg Samir, Ilenia Fronza, and Claus Pahl looked at performance engineering for
container environments. Here Kubernetes was the target for which a model-driven
simulation tool has been developed.

The second CloudWays paper “On enhancing the orchestration of multi-container
Docker applications” by Antonio Brogi, Claus Pahl, and Jacopo Soldani also had
container architectures as a concern. Raising the abstraction level through standardized
languages such as the orchestration language TOSCA was the starting point to enhance
the orchestration of Docker containers.

The third CloudWays paper “Transactional Migration of Inhomogeneous Com-
posite Cloud Applications” by Josef Spillner and Manuel Ramírez López targeted
interoperability of cloud applications.

The final OptiMoCS paper “Secure Apps in the Fog: Anything to Declare?” by
Antonio Brogi, Gian-Luigi Ferrari, and Stefano Forti provided a declarative way of
specifying security capabilities of Fog infrastructures and security requirements of Fog

CloudWays/OptiMoCS 2018 Abstract/Summary 3

applications, as well as a probabilistic reasoning strategy to determine application
deployments and to quantitatively assess their security level.

We take this opportunity to thank all authors, members of the Program Committee,
and workshop attendees, whose participation was invaluable to the success of the
event. We also acknowledge the support provided by the Free University of Bozen-
Bolzano, Italy.

March 2020 Vasilios Andrikopoulos
Nane Kratzke

Claus Pahl
Zoltan Adam Mann

4 CloudWays/OptiMoCS 2018 Abstract/Summary

CloudWays/OptiMoCS 2018 Organization

CloudWays Program Committee

Aakash Ahmad University of Hail, Saudi Arabia
Vasilios Andrikopoulos (Co-chair) University of Stuttgart, Germany
Thais Batista Federal University of Rio Grande do Norte,

Brazil
William Campbell Birmingham City University, UK
Fei Cao University of Central Missouri, USA
Nicolas Ferry SINTEF, Norway
Sören Frey Daimler TSS, Germany
Vinicius Garcia Universidade Federal de Pernambuco, Brazil
Wilhelm (Willi) Hasselbring Kiel University, Germany
Abbas Heydarnoori Sharif University of Technology, Iran
Pooyan Jamshidi University of South Carolina, USA
Ali Khajeh-Hosseini RightScale, Inc., UK
Nane Kratzke (Co-chair) Technical University of Applied Sciences

Lübeck, Germany
Xiaodong Liu Edinburgh Napier University, UK
Paulo Henrique Maia Ceará State University, Brazil
Nabor Mendonça University of Fortaleza, Brazil
Claus Pahl (Co-chair) Free University of Bozen-Bolzano, Italy
Dana Petcu West University of Timisoara, Romania
Alessandro Rossini EVRY, Norway
Américo Sampaio University of Fortaleza, Brazil
Bruno Volckaert Ghent University, Belgium

OptiMoCS Program Committee

Vasilios Andrikopoulos University of Groningen, The Netherlands
Steffen Becker University of Stuttgart, Germany
Luiz Bittencourt University of Campinas, Brazil
Pascal Bouvry University of Luxembourg, Luxembourg
David Breitgand IBM Research, Israel
Antonio Brogi University of Pisa, Italy
Rajkumar Buyya The University of Melbourne, Australia
Emiliano Casalicchio Blekinge Institute of Technology, Sweden
Noel Crespi Institut Mines-Telecom, France
Schahram Dustdar TU Wien, Austria

Marco Guazzone University of Piemonte Orientale, Italy
Odej Kao TU Berlin, Germany
Gabor Kecskemeti Liverpool John Moores University, UK
Francesco Palmieri University of Salerno, Italy
Roberto Pietrantuono University of Naples Federico II, Italy
Javid Taheri Karlstad University, Sweden
Massimo Villari University of Messina, Italy
Stefan Wesner Ulm University, Germany

6 CloudWays/OptiMoCS 2018 Organization

Model-Driven Simulation for Performance
Engineering of Kubernetes-Style Cloud

Cluster Architectures

Federico Ghirardini, Areeg Samir, Ilenia Fronza, and Claus Pahl(B)

Free University of Bozen-Bolzano, Bolzano, Italy
{federico.ghirardini,areeg.samir,ilenia.fronza,claus.pahl}@unibz.it

Abstract. We propose a performance engineering technique for self-
adaptive container cluster management, often used in cloud environ-
ments now. We focus here on an abstract model that can be used by
simulation tools to identify an optimal configuration for such a system,
capable of providing reliable performance to service consumers. The aim
of the model-based tool is to identify and analyse a set of rules capa-
ble of balancing resource demands for this platform. We present an
executable model for a simulation environment that allows container
cluster architectures to be studied. We have selected the Kubernetes
cluster management platform as the target. Our models reflect the cur-
rent Kubernetes platform, but we also introduce an advanced controller
model going beyond current Kubernetes capabilities. We use the Palladio
Eclipse plugin as the simulation environment. The outcome is a working
simulator, that applied to a concrete container-based cluster architecture
could be used by developers to understand and configure self-adaptive
system behavior.

Keywords: Container · Cluster · Kubernetes · Performance
engineering · Simulation

1 Introduction

Container management techniques such as Docker or Kubernetes are becoming
widely used in cloud and other environments. making container-based systems
self-adaptive involves the continuous adjustment of their computing resources
in order to provide a reliable performance under different workloads. To achieve
this, a well-designed autonomous elastic system should be built considering the
following three key aspects: scalability, the ability of the system to sustain work-
load fluctuation, cost efficiency, acquiring only the required resources by releasing
initialized ones, time efficiency, acquiring and releasing resources as soon as a
request is made [9]. Moreover, whenever it is possible the system should also be
fault tolerant, meaning it detects and handles failures effectively.

Therefore, we focus on investigating container cluster architectures for explor-
ing and analyzing different performance and workload patterns, capable of
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 7–20, 2020.
https://doi.org/10.1007/978-3-030-63161-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_1

8 F. Ghirardini et al.

enhancing reliability and validity for cluster management in container-based
cloud environments [6,17,20]. The main goal of our study is obtaining a reliable
tool to be used as a simulation environment for autonomous elastic systems. We
aim to help finding suitable settings for the management of container-based cloud
resources. While various simulation tools such as CloudSim exist, we focus here
on an architecture model driven approach that allows application and platform
architecture settings to be modelled and changed easily. We use the container
cluster management tool Kubernetes here that is now widely used in cloud envi-
ronments as our platform facilitating self-adaptive systems. We use Palladio as
the platform for modeling and simulation here.

An adaptive container system architecture can be abstracted, looking at the
inter-collaboration of three main parts: an application (or service) provided by
the system, the container platform, and a monitor for analyzing resources used
and overall performance. As a consequence, the most suitable and logically appli-
cable architectural pattern for such a system has been the MAPE-K architecture
pattern (i.e., using a Monitor, Analyze, Plan, Execute and Knowledge imple-
mentation). We will provide here an abstract, but executable model for the (i)
architectural aspects of platform and application and (ii) the controller for self-
management. The model is essentially the configuration of a simulation environ-
ment. The first set of models (i) reflect the current Kubernetes platform, which
we also use in the experimental evaluation. We also introduce an advanced con-
troller model (ii) aiming to link observable performance anomalies to underlying
workload problems that is going beyond current Kubernetes capabilities.

2 Self-adaptive Systems – Background

For our autoscaling investigation, we follow the MAPE-K control loop, i.e., mon-
itoring the performance of the application environment used by public users and
tenants (i.e. a group of users who share a common access with specific privileges
to the software instance), analyzing the just planned corrective actions, using
the knowledge part (i.e. the Rule base) containing the autoscaling rules of the
system. Autoscaling an application involves specifying threshold-based rules to
implement elasticity policies for acquiring and releasing resources [8]. To give an
example, a typical autoscaling rule might look as follows: IF the workload is high
(e.g., >80%) AND the response time is slow (e.g., >600 ms) THEN add/remove
n instances.

In Kubernetes, a system consists of the pod and the service. The management
of elastic applications in Kubernetes consists of multiple microservices, [7,23,24]
which communicate with each other. Often those microservices are tightly cou-
pled forming a group of containers that would typically, in a non-containerized
setup, run together on one server. This group, the smallest unit that can be
scheduled to be deployed through Kubernetes, is called a pod. These containers
are co-located, hence share resources and are always scheduled together. Pods
are not intended to live long. They are created, destroyed and re-created on
demand, based on the state of the server and the service itself.

Model-Driven Simulation for Performance Engineering 9

Since pods have a short lifetime, there is no guaranteed IP address they
are served at. For that reason, Kubernetes uses the concept of a service: an
abstraction on top of a number of pods, typically requiring to run a proxy for
other services to communicate with it via a virtual IP address. This is used to
configure load balancing for pods and expose them as a service [12].

Kubernetes is the container system for our investigation because of its
autoscaling feature. Kubernetes is able to automatically scale up and down clus-
ters. Once a cluster is running, there is the possibility of creating a Horizontal
Pod Autoscaler (HPA). When defining an HPA there is the possibility to declare
the exact number of pod replicas that the system should maintain (e.g., between
1 and 10). So, the autoscaler will increase and decrease the number of repli-
cas (via deployment) to maintain an average CPU utilization of 50% (default
setting) across all pods [13]. We will create simulator for this.

Fig. 1. Palladio simulator environment, see [21,22].

Palladio has been chosen as the simulation platform, not only for its advanced
simulation tools, but also for its architectural modeling capabilities. With Palla-
dio we can prototype and adjust also the application and platform architecture of
a system under investigation. Palladio provides several models capable of speci-
fying the architecture and carrying out simulations, see Fig. 1. In Palladio, each
model is built on top of the previous one. Palladio is Eclipse-based, thus models
need to be grouped inside a single project directory.

10 F. Ghirardini et al.

Fig. 2. Component repository model for all simulations.

3 Architecture Model

The Palladio modeling tool allows us to specify a software system architecture in
order to run simulations on these systems. We discuss now how the Kubernetes
containerized architecture has been abstracted and recreated inside Palladio in
order create a simulation tool (called KubeSim). In the following, we introduce
the different structural and behavioural models.

A Component Repository Model (CRM) describes interfaces, compo-
nents and dependencies between elements of the system architecture. Figure 2
illustrates how the Kubernetes architecture has been abstracted and represented
as a Repository model. In the model, a service is provided through Kubernetes,
from pod governed databases, and accessible to a user via an internet connected
device. For that reason, two interfaces are declared: one for the Kubernetes
system (IKubernetes), performing a void run() action (simulate service up and
running system call), and another for the pod component (IPod). Furthermore,
one component has been created for the IKubernetes interface, named simply
Kubernetes, and one for the IPod, named Pod. The Master component acts as
the controller for load-balancing based on self-adaptive resource utilization rules.

Each component of the CRM has its own Service Effect Specification
(SEFF), a behavioral model. Figure 3 shows the three SEFF models for the
Kubernetes, Pod and Master component actions. Since the Kubernetes compo-
nent requires the IPod interface to work, its behavior is reflected in an Exter-
nalCallAction for the elaborateRequest() action. The action on the Pod com-
ponent is performed internally. Moreover, in this SEFF diagram we specified
actual resource demands of the system call. Resource demands are specified for
the CPU (computational resource) and the HDD (storage resource) as hard-
ware resources, in the form of stochastic expressions for work-units per second.
The last SEFF models two components instead of only one: Pod1 and Pod2.
This reconnects with Component Repository Model and the two arrows exiting
from the Master component representing two instances of a Pod element. For
simplicity, we use two sample pods.

Model-Driven Simulation for Performance Engineering 11

(a) Kubernetes run()

(b) Pod elaborateRequest()

(c) Master load balancing

Fig. 3. System Behaviour Models (SEFFs).

Here the execution flow is executed by a so called BranchAction, that has
the task to distribute and balance the workload between the pod components.
In this case, it is configured to reflect the default Kubernetes balancing rule that
distributes the work evenly across all system pods. However, this setting could
be varied in experiments and used like a virtual knob to tune balancing settings
of the Master controller to whatever value of interest.

The System Model captures the composite structure of the whole Kuber-
netes system’s architecture (not displayed as a diagram for space reasons). The
system architecture for this model uses the available components declared in the
Component Repository Model to constitute a complete component-based soft-
ware system. This model includes dependencies between the various assembly
contexts (i.e., components) of the Kubernetes architecture. The entire system
provides its service over the Kubernetes platform, i.e., through the IKubernetes
interface. This interface is connected to the assembly elements representing the
Kubernetes component. Since Kubernetes requires pods to run the service, it is
connected with a component providing the IPod interface. However, because the
cluster is self-adaptive, we cannot directly connect the Kubernetes assembly to
the pods, but use the Master controller node as an intermediary. The system also
requires two pod interfaces. We only need to instantiate two assembly contexts
for two pods and then connect the two with the Master component.

Based on the system model, we declare and allocate resources for our sys-
tem environment. For that, there are the so called Deployment Models, which

12 F. Ghirardini et al.

Fig. 4. Execution Environment Model configured for a Single Experiment.

include the Execution Environment Model and the Component Alloca-
tion Model. We have three resource components: Kubernetes, Pod1 and Pod2.
Each pod has a CPU unit with scheduling policy set to Processor Sharing (that
is an approximation of a Round-Robin resource management strategy), and an
HDD with scheduling policy set to First-Come-First-Serve (that is a typical
behavior for hard disk drives). The Processing Rates of CPUs and HDDs can
vary, therefore the values in this model are purely indicative of one single experi-
ment configuration. The Execution Environment Model, see Fig. 4, also provides
other settings for resources, like the Number of Replicas, Mean Time To Failure
(MTTF) and Mean Time To Repair (MTTR). In order to focus on performance,
these have been set to standard values, i.e., resp., 1, 0.0 and 0.0. Kubernetes con-
tainers also have CPU and HDD declared resource demands (with Processing
Rate set to 10 for both), with default settings for Number of Replicas, MTTF
and MTTR. The three containers are connected via a LinkingResource compo-
nent, that could act as a fast network, with Latency set to 0, Throughput set to
1,000,000 and Failure Probability set to 0.0.

The Usage Model contains a Service Effect Specification diagram specifying
the system call. The Usage Model provides two different workloads for the sys-
tem under study: an OpenWorkload and a ClosedWorkload. For the OpenWork-
load, the user interarrival time could be specified in seconds, and the number of
users coming to use the system will vary from one simulation run to the other.

Model-Driven Simulation for Performance Engineering 13

Fig. 5. Usage model for experiment.

With the ClosedWorkload we can specify the user population (i.e. the number
of active users in our system), and also the single user think time (i.e. the pause
the user after each run() action, in seconds) (Fig. 5).

4 Experimental Evaluation

In the experimental evaluation, we focus on simulations of the Kubernetes imple-
mentation as it is currently available, with the HPA component. Our aim was to
aid specification for container cluster scaling rules. The main experimental goal
for the project focused on evaluating suitable system performance. We translate
this into a simple rule: keep idle time less or equal to 50% (not to waste resource
power) and concurrent active job time less or equal to 25% (not to experience
long overload periods that impacts on performance), for both CPU and HDD
components of the pods.

As a starting point, we considered different workload patterns, distinguished
in terms of three qualitative values: low, medium and high, i.e., workloads with-
out unexpected fluctuations in relation to the three main values.

To set a desired workload inside Palladio, we use the SEFF diagram describ-
ing the core system function, and specify the resource demand in the form of a
stochastic expression. In our case, the SEFF diagram to be modified is the one of
elaborateRequest() action, see Fig. 3. We keep the HDD expression fixed at 100
processing unit rate for all workload types, while for the CPU component the
stochastic values (expressed in a joint Probability Mass Function with double
values, i.e. DoublePMF) that have been used for the different workloads are:
DoublePMF [(10.0; 0.1) (20.0; 0.8) (30.0; 0.1)] for low, i.e. 10% of the time the
CPU power used is being used at 10%, 80% of the time it is being used at 20%
of power and in the remaining 10% of the time it is being used at 30% of power;
and correspondingly DoublePMF [(40.0; 0.1) (50.0; 0.8) (60.0; 0.1)] for medium
and DoublePMF [(70.0; 0.1) (80.0; 0.8) (90.0; 0.1)] for high.

The specification of a pod resource demand can been adjusted. Particularly,
the CPU and HDD processing rate are the ones in which we are highly interested
in, because they reflect the specification rules for assigning Kubernetes pods
resource demands limits. The variable field that need to be changed for this

14 F. Ghirardini et al.

Fig. 6. Resource Utilization (idleness) for different Workloads – Best and Worst Case.

time is the Execution Environment model. Figure 6 shows the worst and best case
results for CPU and HDD resources for different workload patterns and assumed
processing rates. The values for CPU and HDD processing rate varied from 2 to
18 during different simulations where we followed an experimental progression
based on observations obtained through the different simulating runs.

For another set of experiments, we also changed the population number,
which describes the number of active users inside the system at simulation time,
see Fig. 7. The aim here was to better judge the impact the number of active users
could have on overall system performance. We tested the system with 1, 3 and
5 users that were equally distributed between the pods, showing an increasingly
reduced idle for higher CPU loads as the population increases.

5 Discussion

Our paper has focused on creating an environment to simulate the behavior of
self-adapting (scaling) container cluster architectures. We presented the models
implemented in the Palladio environment, thus creating a simulation bench by
defining the architecture of a systems and its resource. We have demonstrated
that running simulations of applications with Kubernetes autoscaling strategies
allows investigating the architectural structure of a system and its behavioural
properties. This can lead to greater efficiency in implementations as the sam-
ple resource utilization experiments have shown. KubeSim tool is useful when

Model-Driven Simulation for Performance Engineering 15

Fig. 7. Aggregated workload results for different user populations.

trying to obtain specification values to identify and configure for the controller.
We were able to understand and investigate underlying functions and charac-
teristics of self-adaption in Kubernetes – for example the case we experimen-
tally observed that CPU and HDD performances were impacted by each other’s
settings. KubeSim is thus beneficial for application developers aiming to use
Kubernetes.

We also look at limitations and threats to the validity of our work. We can
start our the threats to validity analysis by looking to a central and potential
critical aspect of our work, the experiments’ sample field. While running simu-
lations for KubeSim, we considered only a small portion of experimental values.
Concretely, we restricted our sampling field as follows:

– Architecture: we took a scenario with a simplifying two pod system for illus-
trative purposes. We can, however, assume that our experimental results
would apply also to bigger systems composed by more that two pods and
used by a greater population of users as the results so far indicate linearity.

– Uncertainty: KubeSim was not exposed to unpredictable workloads and fail-
ures (as in real world platforms), thus restricting even more our sample fields
and leading to more uncertainty in the validity of the results.

– Scale: applies to all KubeSim settings, for which we used small numerical
values for input variables (e.g., processing and user think time in the usage
model). As argued above, linearity here is possible, but not yet proven.

16 F. Ghirardini et al.

A final remark on restricting the sample field is in regards to the load balancer
policy, for which we only tested the implemented equal balancing load rule.
Our advanced controller model is a first step towards proposing an improved
Kubernetes scaling strategy, which however is beyond the scope of this paper.

However, evaluating our simulation environment under all possible scenarios
was beyond the scope of this paper. The overall aim was to point out a valid
alternative to already present performance engineering and evaluation methods
for self-adaptive container cluster systems (i.e. those who separates software
engineering analysis for the architecture and the autoscaling strategies parts).

6 Towards an Advanced Controller Model

The controller implemented in Kubernetes and modelled above uses equal work-
load distribution as the load balancing strategy. One of our goals is to explore
advanced controller settings for Kubernetes that could be implemented in an
improved HPA component. Our proposal shall take into account that platform
and application are not controlled by the same organisation, i.e., that some load
properties of platform resources (i.e., Kubernetes core components offered by a
cloud provider) are not visible for the Kubernetes user. The general situation is
that in shared virtualised environments, third parties provides some resources
that can be directly observed (e.g., using performance metrics such as response
time) while others remain hidden from the consumer (e.g., the reason behind
performance or workload anomalies, the dependency between the affected nodes
and container, etc.). In order to improve the workload balancing and autoscaling
capability, we can enhance the MAPE-K based controller here. We introduce a
core model for anomaly detection and analysis for a cluster environment that
automatically manages resource workload fluctuations. This can be implemented
as an extension of the Palladio model towards dynamic auto-scaling[1,14,15,25],
which in the current version only considers a static load balancing strategy.

Fig. 8. HHMM for auto-scaling workload for cluster-container environments.

Model-Driven Simulation for Performance Engineering 17

We differentiate two situations in which response time fluctuations occur:

– Hidden states might show anomalous behavior of the resource that might
needs to be remedied by the controller (unwanted behavior such as overload,
or appreciated behavior like underload).

– Emission or observation of behaviour for the user (indicating possible failure),
which might result in failure if caused by a faulty hidden state.

To address this, we propose Hidden Markov Models (HMMs) to map the
observed failure behaviors of a system resource to its hidden anomaly causes
(e.g., overload) and to predict the occurrence of the anomaly in the future. A
Hidden Markov Model (HMM) is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with hidden states. In simple
Markov models, state transition probabilities are the only parameters, while in
the hidden Markov model, there are observable emissions (e.g., in the form of
response time data), dependent on the workload state.

To reflect the layered nature of application, platform and infrastructure in
a Kubernetes system, we utilize a specific variant of HMM, that of Hierarchi-
cal Hidden Markov Models (HHMM) [5], see Fig. 8. HHMMs are better suited
here than HMM in describing the uncertain probability distribution at node and
cluster level. HHMM generate sequences by a recursive activation of one of the
substates (nodes) of a state (cluster). This substate might also be hierarchically
composed of substates (here pods). The HHMM decides on transition probabili-
ties a possible (hidden) cause for an observed anomaly and then decides how to
transfer load between nodes to reduce undesired performance degradations.

Each state ‘hidden state’ (internal ‘node’, production ‘pod’, root ‘cluster’)
may be in an overload, underload or normal load state. Each workload is associ-
ated with response time observations that are emitted from a production state.
The existence of anomalous workload in one state not only affects the current
state, but possibly substates on the other level. The edge direction in the figure
indicates the dependency between states. We can use vertical transitions for
identifying the fault and we use horizontal transitions to show the fault that
exists between states and to trace the fault/failure mapping between states at
the same level.

7 Related Work

In [9,10], resource management and auto-scaling rules for self-adaptive systems
was investigated, focused mainly on VM-based cloud platforms. As part of their
experimental approach, a parameterized architecture model when running sim-
ulations has been used. That is, simulations were run on base of stochastic
expressions, which reflected each system’s component behavior. This allowed
fine adjustments while setting adaptation rules for the simulation environment.
We have followed these and similar approaches, but add a novel perspective in
the advanced controller model here that takes the hidden/observable distinction
into account for a hierarchically organised architecture.

18 F. Ghirardini et al.

To the best of our knowledge, there is no Kubernetes simulation environment.
Models of performance concerns and resource management has been discussed
[16], but a simulation tool has not been created.

In addition to work on models for self-adaptive cloud systems for perfor-
mance and workload management, we also look at the simulation tool landscape.
This allows us to justify our decision to choose Palladio as the model. Often,
load balancing strategies can be formalised and simulated in tools like MatLab.
However, this would not allow us to model the architecture in terms of appli-
cations, platform and infrastructure concerns. As we target the KubeSim tool
to application developers and users of Kubernetes and similar tools, an explicit
architecture model is of critical importance. The same argument also applies to
other simulation tools such as CloudSim [2].

8 Conclusions

We investigated performance engineering solutions for self-adaptive container
cluster systems [19], aiming to find an efficient way to determine and express
autoscaling rules for such systems, in order to improve platform settings.

We created a simulation tool for Kubernetes using the Palladio platform,
capable of delivering an easy to use simulation bench. KubeSim offers a developer
the possibility of testing such a system by tuning different settings and metrics
of the system. In fact, the novelty of KubeSim as a Kubernetes performance
simulation tool is to enable reliable performance analysis with the effort of having
to implement prototype implementations. With the advanced controller model
[9–11], we also target a deeper investigation beyond application development.

As future work, KubeSim could include the possibility of considering faults
types. Another improvement would be considering sensor noise. That is assuming
and considering that the system’s sensor is exposed to noise derived from hosting
platform connection. Again, a last upgrade, always related to fault consideration,
could be implementing a fault prediction algorithm, so that the system would
be aware of an oncoming error and scale resource on its base. Another aim is to
integrate the advanced controller model in KubeSim. This would allow studying
alternative strategies for the Kubernetes HPA component.

Another significant area to be addressed is security and trust. In hetero-
geneous cluster environments, monitoring and result data should be certifiable
[3,4]. Distributed ledger technologies might provide an answer here, but will have
an impact on performance.

Acknowledgments. The authors are particularly grateful to the Palladio team at
KIT for their support regarding the Palladio tool.

References

1. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement
learning techniques for fuzzy cloud auto-scaling. In: CCGRID (2017)

Model-Driven Simulation for Performance Engineering 19

2. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infras-
tructures and Services (2018). http://www.cloudbus.org/cloudsim/

3. El Ioini, N., Pahl, C.: A review of distributed ledger technologies. In: Panetto,
H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.)
OTM 2018. LNCS, vol. 11230, pp. 277–288. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02671-4 16

4. El Ioini, N., Pahl, C.: Trustworthy orchestration of container based edge computing
using permissioned blockchain. In: International Conference on Internet of Things:
Systems, Management and Security (2018)

5. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: analysis
and applications. Mach. Learn. 32, 41–62 (1998)

6. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. 6(2), 358–371 (2018)

7. Heinrich, R., et al.: Performance engineering for microservices: research challenges
and directions. In: International Conference on Performance Engineering Compan-
ion (2017)

8. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

9. Jamshidi, P., Sharifloo, A., Pahl, C., Metzger, A., Estrada, G.: Self-learning cloud
controllers: fuzzy Q-learning for knowledge evolution. In: ICCAC (2015)

10. Jamshidi, P., Sharifloo, A., Pahl, C., Metzger, A., Estrada, G.: Fuzzy self-learning
controllers for elasticity management in dynamic cloud architectures. QoSA (2016)

11. Jamshidi, P., Pahl, C., Mendonca, N.C.: Managing uncertainty in autonomic cloud
elasticity controllers. IEEE Cloud Comput. 3(3), 50–60 (2016)

12. Introduction to Kubernetes (2018). https://x-team.com/blog/introduction-
kubernetes-architecture/

13. Autoscaling in Kubernetes (2018). http://blog.kubernetes.io/2016/07/auto
scaling-in-kubernetes.html

14. Lim , H.C., et al.: Automated control in cloud computing: challenges and oppor-
tunities. In: Workshop Automated Control for Datacenters and Clouds (2009)

15. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of auto-scaling tech-
niques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–
592 (2014)

16. Medel, V., Rana, O., Banares, J.A.l., Arronategui, U.: Modelling performance &
resource management in Kubernetes. In: International Conference on Utility and
Cloud Computing (2016)

17. Pahl, C., El Ioini, N., Helmer, S., Lee, B.: An architecture pattern for trusted
orchestration in IoT edge clouds. In: International Conference on Fog and Mobile
Edge Computing (2018)

18. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017)

19. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-
els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process. 29(2), e1849 (2017)

20. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. (TOIT) 18(2), 1–23 (2018)

21. Palladio Simulator (2018). http://www.palladio-simulator.com/about palladio/
22. Reussner, R.H., et al.: Modelling and Simulating Software Architecture - The Pal-

ladio Approach. MIT Press, Cambridge (2016)

http://www.cloudbus.org/cloudsim/
https://doi.org/10.1007/978-3-030-02671-4_16
https://doi.org/10.1007/978-3-030-02671-4_16
https://x-team.com/blog/introduction-kubernetes-architecture/
https://x-team.com/blog/introduction-kubernetes-architecture/
http://blog.kubernetes.io/2016/07/autoscaling-in-kubernetes.html
http://blog.kubernetes.io/2016/07/autoscaling-in-kubernetes.html
http://www.palladio-simulator.com/about_palladio/

20 F. Ghirardini et al.

23. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating
to microservices architectures: an empirical investigation. Cloud Comp. 4(5), 22–32
(2017)

24. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a
systematic mapping study. In: International Conference on Cloud Computing and
Services Science (2018)

25. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in
the cloud. ACM SIGCOMM Comput. Comm. Rev. 41(51), 45–52 (2011)

On Enhancing the Orchestration
of Multi-container Docker Applications

Antonio Brogi1, Claus Pahl2, and Jacopo Soldani1(B)

1 University of Pisa, Pisa, Italy
{brogi,soldani}@di.unipi.it

2 Free University of Bozen-Bolzano, Bolzano, Italy
claus.pahl@unibz.it

Abstract. After introducing Docker containers in a nutshell, we discuss
the benefits that can be obtained by supporting enhanced descriptions of
multi-container Docker applications. We illustrate how such applications
can be naturally modelled in TOSCA, and how this permits automating
their management and reducing the time and cost needed to develop
such applications (e.g., by facilitating the reuse of existing solutions, and
by permitting to analyse and validate applications at design-time).

Keywords: Docker · TOSCA · Orchestration · Cloud applications

1 Introduction

Containers are emerging as a simple yet effective solution to manage applica-
tions in PaaS cloud platforms [19]. Containers are also an ideal solution for
SOA-based architectural styles that are emerging in the PaaS community to
decompose applications into suites of independently deployable, lightweight com-
ponents, e.g., microservices [2,22,26]. These are natively supported by container-
based virtualisation, which permits running components in independent con-
tainers, and allows containers to interact through lightweight communication
mechanisms.

However, to fully exploit the potential of SOA, container-based platforms
(e.g., Docker—www.docker.com) should enhance their support for selecting the
containers where to run the components of an application, and for orchestrating
containers to build up a multi-container application. To that end, there is a
need for a modelling language to describe the features offered by a container (to
satisfy the requirements of an application component), to orchestrate containers
to build multi-container applications, and to deploy and manage them in clusters.

Our objective here is to highlight the need for such language, by illustrating
its potential benefits on a concrete containerisation framework like Docker. In
this context, the main contributions of this paper are:

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 21–33, 2020.
https://doi.org/10.1007/978-3-030-63161-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_2&domain=pdf
www.docker.com
https://doi.org/10.1007/978-3-030-63161-1_2

22 A. Brogi et al.

1. We discuss the benefits, but also the limitations of Docker, specifically with
respect to composition and orchestration in multi-container applications.

2. We propose a way to represent multi-container Docker applications in TO-
SCA [17], the OASIS standard for orchestrating cloud applications, as an
example to discuss the advantages of enhancing their orchestration (e.g.., eas-
ing the selection and reuse of existing containers, reducing time and cost for
developing multi-container applications, automating their management, etc.).

This paper is organised as follows. Section 2 provides some background on
TOSCA. Sections 3 and 4 provide an introduction to Docker and discuss its
current benefits and limitations, respectively. Section 5 discuss the advantages
of enhancing the orchestration of multi-container Docker applications with
TOSCA. Finally, Sects. 6 and 7 discuss related work and draw some conclud-
ing remarks, respectively.

2 Background: TOSCA

TOSCA [17] (Topology and Orchestration Specification for Cloud Applications)
is an OASIS standard for specifying portable cloud applications and automating
their management. TOSCA provides a modelling language to describe the struc-
ture of a cloud application as a typed topology graph, and its management tasks
as plans. More precisely, each applications is represented as a service template
(Fig. 1), consisting of a topology template and of optional management plans.

Fig. 1. TOSCA service template.

The topology template is a typed directed graph describing the structure of
an application. Its nodes (node templates) model the application components,
while its edges (relationship templates) model the relationship among those com-
ponents. Both node templates and relationship templates are typed by means of
node types and relationship types. A node type defines (i) the observable proper-
ties of a component, (ii) its requirements, (iii) the capabilities it offers to satisfy
other components’ requirements, and (iv) its management operations. Relation-
ship types describe the properties of relationships occurring among components.

On Enhancing the Orchestration of Multi-container Docker Applications 23

Plans permit describing the management of an application. A plan is a work-
flow orchestrating the management operations offered by the application com-
ponents to address (part of) the management of the whole application.

3 Docker in a Nutshell

Docker is a Linux-based platform for developing, shipping, and running appli-
cations through container-based virtualisation. Container-based virtualisation
exploits the kernel of the host’s operating system to run multiple guest instances.
Each guest instance is called a container, and each container is isolated from oth-
ers (i.e., each container has its own root file system, processes, memory, devices
and network ports).

Containers and Images. Each container packages the applications to run, along
with whatever software they need (e.g., libraries, binaries, etc.). Containers are
built by instantiating so-called Docker images.

A Docker image is a read-only template providing the instructions for creat-
ing a container. It is built by layering multiple images, with the bottom image
being the base image, and with each image being the parent of the image right
above it. A Docker image can be created by loading a base image, by performing
the necessary updates to that image, and by committing the changes. Alterna-
tively, one can write a Dockerfile, which is a configuration file containing the
instructions for building an image1.

It is also possible to look for existing images instead of building them from
scratch. Images are stored in registries, like Docker Hub (hub.docker.com). Inside
a registry, images are stored in repositories. Each repository is devoted to a
software application, and it contains different versions of such software. Each
image is uniquely identified by the name of the repository it comes from and by
the tag assigned to the version it represents, which can be used for retrieving it.

Volumes. Docker containers are volatile. A container runs until the stop com-
mand is issued, or as long as the process from which it has been started is
running. By default, the data produced by a container is lost when a container
is stopped, and even if the container is restarted, there is no way to access to
the data previously produced. This is why Docker introduces volumes.

A volume is a directory in a container, which is designed to let data persist,
independently of the container’s lifecycle. Docker therefore never automatically
deletes volumes when a container is removed, and it never removes volumes that
are no longer referenced by any container. Volumes can also be used to share
data among different containers.

Docker Orchestration. The term orchestration refers to the composition, coordi-
nation and management of multiple software components, including middleware
1 The latter provides a more effective way to build images, as it only involves writ-

ing some configuration instructions (like installing software or mounting volumes),
instead of having to launch a container and to manually perform and commit
changes.

http://hub.docker.com

24 A. Brogi et al.

and services [16]. In the context of container-based virtualisation, this corre-
sponds to multi-component applications, whose components independently run
in their own containers, and talk each other by exploiting lightweight communi-
cation mechanisms.

Docker supports orchestration with swarm and compose. Docker swarm per-
mits creating a cluster of Docker containers and turning it into a single, virtual
Docker container (with one or more containers acting “masters” and scheduling
incoming tasks to “worker” containers). Docker compose permits creating multi-
container applications, by specifying the images of the containers to run and the
interconnections occurring among them. Docker compose and Docker swarm are
seamlessly integrated, meaning that one can describe a multi-component appli-
cation with Docker compose, and deploy it by exploiting Docker swarm.

4 Benefits and Limitations of Docker

Docker containers feature some clear benefits. Firstly, they permit separation
of concerns. Developers only focus on building applications inside containers and
system administrators only focus on running containers in deployment environ-
ments. Previously, developers were building applications in local environments,
passing them to system administrators, who could discover (during deployment)
that certain libraries needed by the applications were missing in the deployment
environments. With Docker containers, everything an application needs to run
is included within its container.

Docker containers are also portable. Applications can be built in one environ-
ment and easily shipped to another. The only requirement is the presence of a
Docker engine installed on the target host.

Furthermore, containers are lightweight and fast to launch. This reduces
development, testing and deployment time. They also improve the horizontal
scalability of applications, as it is easy to add or remove containers whenever
needed.

On the other hand, limitations do exists. Docker currently does not support
search mechanisms other than looking for the name and tag of an image inside
a registry [10]. There is currently no way to describe the internals of an image,
e.g., the features offered by a container instantiated from an image, or the soft-
ware it supports. A more expressive description of images would enable more
powerful reuse mechanisms (e.g., adaptation of existing images), hence reducing
the time needed to retrieve images and develop container-based applications.

Further limitations affect the orchestration of complex applications. Con-
sider, for instance, a multi-component application made of three components,
i.e., a web-based GUI, which depends on a back-end API to serve its clients,
which in turn connects to a database to store application data. Currently, Docker
does not provide a way to describe the runtime environment needed to run each
component. A developer is hence required to manually select the image where
to run each component, to extend it (by adding the component and its run-
time dependencies), and to package it into a new image. The obtained images

On Enhancing the Orchestration of Multi-container Docker Applications 25

can then be composed with Docker compose to build a multi-container Docker
application, which however has no explicit information about which component
is hosted on which image nor on which component is interconnected on each
other. Everything is hidden in a kind of “black-box” view due to the lack of
information on the internals of Docker containers [11].

It is not possible to distinguish between simple dependencies determining the
deployment ordering from persistent connections to set up. For instance, in the
aforementioned application, Docker compose would include two interconnections,
one between the containers packaging the GUI and the API, and one between
those packaging the API and the database. However, the former interconnection
may be unnecessary (especially in a multi-host deployment scenario), as the GUI
may not require to set up a connection to the API. The GUI may indeed just
require to be deployed after the API and to be configured so to forward user
queries to the actual endpoint offered by the API.

Additionally, despite Docker compose and Docker swarm are seamlessly inte-
grated, limitations do exists2. For instance, when a compose application is
deployed with swarm, the latter may not be able to manage all interdepen-
dencies among containers, which may result in deploying all containers on the
same host or in not being able to automatically deploy all containers. In the
latter case, one would hence be required to manually complete the deployment.

A more expressive specification language (e.g., TOSCA [17]) would permit
overcoming these limitations. By describing the environment needed to run an
application component, it would be possible to specify what the component
needs, and then to automatically derive the images of the underlying infras-
tructure (e.g., by exploiting existing reuse techniques [12,21]). It would also
permit describing the management of a complex multi-component application
by orchestrating the management of its components.

5 Orchestrating Multi-container Applications in TOSCA

In this section, we first show how multi-container applications can be repre-
sented in TOSCA (Sect. 5.1). We then illustrate how this permits enhancing the
orchestration of multi-container Docker applications (Sect. 5.2), as well as better
exploiting container-oriented design patterns (Sect. 5.3).

5.1 Multi-container Applications in TOSCA

A multi-container application essentially corresponds to a multi-component
application, where each component is hosted on a container. A multi-container
Docker application can be represented by a TOSCA service template, whose
topology nodes represent the application components, the containers they need
to run, and the volumes that must be mounted by containers. The relationships
instead model the dependencies between components, containers and volumes

2 A thorough discussion on this is available at docs.docker.com/compose/swarm.

http://docs.docker.com/compose/swarm

26 A. Brogi et al.

(e.g., hosting a component on a container, connecting components and/or con-
tainers, or attaching a volume to a container). Plans then orchestrate the oper-
ations offered by the nodes to describe the management of a whole application.

We hence need the types to include the above mentioned nodes and relation-
ships in a topology template. For the nodes, we can exploit the TOSCA types
defined in [11], which permit distinguishing (a) Software components, (b) Con-
tainers and (c) Volumes (Fig. 2). For the relationships, we can instead rely on
the TOSCA normative relationship types [17].

Without delving into the details on the modelling (which can be found
in [11]), we show how it can be exploited to represent the multi-container
Docker application mentioned in Sect. 4 (which consists of three interconnected
components—i.e., a GUI, an API and a database). With the above men-
tioned TOSCA types, we can go beyond Docker compose (that only permits

Fig. 2. TOSCA node types for multi-container Docker applications [11].

Fig. 3. Examples of (a) a topology template modelling a multi-container Docker appli-
cation, and of (b) a plan orchestrating its deployment.

On Enhancing the Orchestration of Multi-container Docker Applications 27

identifying the images of three containers, and specifying the interconnection
occurring between them). As illustrated by Fig. 3(a), we can describe compo-
nents and containers separately, and explicitly specify which container is hosting
a component (e.g., the API is hosted on the Maven container), the dependencies
among components (e.g., the API connects to the database) and the necessary
volumes.

We can also program the management of the application as a whole. Each
component indeed exposes the operations that permit managing its lifecycle,
which can then be orchestrated to accomplish application management tasks. A
concrete example is given in Fig. 3(b), which displays a BPMN-like plan orches-
trating the deployment of the multi-container Docker application in Fig. 3(a).

5.2 Orchestrating Multi-container Applications with TOSCA

One may argue whether the effort of defining multi-container Docker applica-
tions in TOSCA really pays off. As we anticipated in Sect. 4, a model like that
discussed in the previous section permits enhancing the orchestration of multi-
container Docker applications in three main ways.

Searching for images. Docker search capabilities are currently limited, as
Docker only permits looking for names and tags of images in registries [10].
TOSCA permits overcoming such limitation, as it also permits describing the
internals of an image (like the features that will be offered by a container
instantiated from an image, or the software distributions it will support).
This enables more powerful discovery mechanisms.
For instance, in [9] we show how to automatically discover the Docker con-
tainers offering the runtime support needed by the components forming an
application. The host requirements of GUI and API can be left pending,
by only describing the runtime capabilities that must be provided by the
container that can satisfy them (e.g., which software distribution they must
support, which operating system they must run, etc.). Then, a concrete imple-
mentation like that in Fig. 3 can be automatically derived by reusing existing
Docker containers. As we illustrated in [9], such an approach can drastically
reduce the time and costs needed for developing and maintaining container-
based applications.

Design-time validation. TOSCA permits explicitly indicating which are the
requirements needed to run a component, which capabilities it provides to
satisfy the requirements of other containers, and how requirements and capa-
bilities are bound one another. This permits validating multi-container appli-
cations at design-time, by checking whether the requirements of a component
have been properly satisfied (e.g., with the validator presented in [6]).
The same is currently not possible with Docker, which is not providing enough
information to determine whether all interdependencies have been properly
settled. This is because Docker compose only permits listing the images of
containers to run, and the interconnections among them.

28 A. Brogi et al.

Automation of application management. We can exploit TOSCA plans to
describe only once all the management of an application (by orchestrating
the management operations of the application components). For instance, we
can program how to coordinate the deployment of all the components of an
application with a single plan (as exemplified in Fig. 3(b)).
The management of multi-container Docker applications can be further auto-
mated by exploiting management protocols [5], which permit specifying the
behaviour of the nodes forming a TOSCA application, and to automatically
derive the management behaviour of an application by composing the man-
agement protocols of its nodes. This permits automating various useful anal-
yses, like determining whether management plans are valid, which are their
effects (e.g., which application configuration is reached by executing a plan,
or whether it generates faults), or which plans permit reaching certain appli-
cation configurations or recovering faulted applications.

The above remarks highlight how Docker (and, more generally, a container-based
framework) would enhance its orchestration capabilities by being integrated with
expressive specification languages, such as TOSCA. This is also concretely illus-
trated and evaluated by the work in [9] and [11]. The latter present the com-
ponents of the TosKer open-source environment, by also empirically showing
how the integration of Docker with a language like TOSCA can provide some of
the aforementioned benefits.

It is also worth noting that, even if we exploited a simple application (with
just three components) for illustration purposes, this is sufficient to illustrate the
positive impact of an enhanced orchestration support for Docker-based frame-
works. By considering complex enterprise applications [13], which can contain a
much higher number of interdependent components, the potential and impact
of allowing to search, reuse, orchestrate and verify multi-container applications
can be even more significant. This is currently not supported by any of the
frameworks that we will discuss in Sect. 6.

5.3 Container-Oriented Design Patterns in TOSCA

TOSCA templates describe the structure of (parts of) multi-component appli-
cations. This aligns with the idea of design patterns, which also describe the
structure of (parts of) software applications [1], and which can be provided as
templates to be directly included into TOSCA applications [4].

From an architecture perspective, multi-container Docker applications are
often designed according to the microservices architectural style [14] (as Docker
perfectly matches the microservices’ requirement of independent deployability).
Hence, microservices design patterns constitute a concrete example of design
patterns that can be provided as predefined TOSCA templates, to support and
ease the development of new multi-container Docker applications.

A catalogue of such design patterns is presented in [23]. Three main categories
of patterns emerge, i.e., orchestration and coordination patterns (capturing com-
munication and coordination from a logical perspective), deployment patterns

On Enhancing the Orchestration of Multi-container Docker Applications 29

(reflecting physical deployment strategies for services on hosts through Docker
containers), and data management patterns (capturing data storage options).
All patterns falling within such categories align with our discussion on how to
enhance the orchestration of multi-contained Docker applications with TOSCA.
They indeed provide solutions for orchestrating the management of the compo-
nents and containers forming multi-container applications, and for managing the
Docker volumes storing their data.

We below provide a list of the patterns falling in the above mentioned cate-
gories, which can provided as predefined templates to support the development
of multi-container Docker applications in TOSCA.

Orchestration and coordination patterns. Within this category, we have
design patterns for service composition and discovery.
Service Composition → API Gateway. An API Gateway is an entry point to
a system. It provides a tailored API for each client to route requests to appro-
priate containers, aggregate the required contents, and serve them back to the
clients. The API Gateway can also implement some shared logic (e.g., authen-
tication), and it can serve as load balancer. Its main goal is to increase system
performance and simplify interactions, thus reducing the number of requests
per client.
Service Discovery → Client-Side Discovery, Server-Side Discovery. Multi-
ple instances of the same service usually run in different containers. The
communication among them must be dynamically defined and the clients
must be able to efficiently communicate to the appropriate microservice that
dynamically change instances. For this purpose, service discovery dynamically
supports the resolution addresses. For the Client-Side Discovery design pat-
tern, clients query a registry, select an available instance, and make a request
directly. For the Server-Side Discovery design pattern, clients make requests
via a load balancer, which queries a registry and forwards the request to
an available instance. Unlike the API-Gateway pattern, this pattern allows
clients and containers to talk to each other directly.

Deployment patterns. Within this category, we the most common pattern is
the Multiple Service per Host design pattern. According to such pattern, each
service in an application is deployed in a separate container, containers are
distributed among a cluster of hosts, by allowing multiple containers to run
on a same host. There is also a Single Service per Host design pattern, but it
reflects a very uncommon deployment strategy.

Data management patterns. This category of patterns focuses on data stor-
age options for applications composed by multiple services and containers.
Database-per-Service. With this design pattern, each service accesses its pri-
vate database.
Database cluster. The aim of this design pattern is storing data on a database
cluster. This improves scalability, allowing to move the databases to dedicated
nodes.
Shared database server. The aim of this design pattern is similar to that of
the Database Cluster design pattern. However, instead of using a database
cluster, all services access a single shared database.

30 A. Brogi et al.

To illustrate the usefulness of the above listed patterns, we refer back to example
in Sect. 4. We discussed a layered architecture with GUI, API and database
components. In such scenario, the API Gateway Pattern suggests an abstraction
that permits routing user requests not only to a single container, but also to
different containers (e.g., for different databases). Automatic deployment using
Docker compose and Swarm, as also discussed, can also be modelled by exploiting
the deployment patterns we introduced.

6 Related Work

Despite Docker permits creating multi-container applications (with Docker com-
pose) and ensuring high-availability of containers (with Docker swarm), its cur-
rent orchestration capabilities are limited. Docker only permits specifying the
images to run, and the interconnections occurring among the containers instan-
tiated from such images. It is not possible to search for images other than by
looking for their names and tags in registries, there is no way to validate multi-
container applications at design-time, and there is a lack of support for automat-
ing the management of the components in multi-container applications.

Multi-container Docker solutions can also be created by organising containers
into clusters. Each of these clusters consists of host nodes that hold various
containers with common services, such as scheduling and load balancing. This
can be done with Mesos, Kubernetes, Marathon, and Cloud Foundry’s Diego.

Mesos (mesos.apache.org) is an Apache cluster management platform that
natively supports LXC and Docker. It organises distributed resources into a
single pool, and includes a distributed systems kernel that provides applications
with resource management and scheduling. However, Mesos does not allow to
structure clusters, nor to orchestrate them.

Kubernetes (kubernetes.io) is a cluster management and orchestration solu-
tion that permits structuring clusters of hosts into pods, which are in charge of
running containers. Kubernetes lacks a proper support for orchestrating multi-
container applications, by only permitting to specify the images to run through
their names and tags. This results in limitations analogous to those we identified
for Docker (see Sect. 4): It is not possible to abstractly describe the runtime envi-
ronment needed to run each component (to be then automatically implemented
by adopting reuse techniques), and developers are hence required to manually
select the image where to run each component, to extend it, and to package the
obtained runtime into a new image. The obtained images can then be composed
to build a multi-container application, which however has no explicit informa-
tion about which component is hosted on which image nor about dependencies
occurring among components (as the only dependencies that can be modelled
are the interconnections occurring among containers).

Marathon (mesosphere.github.io/marathon) and Diego [24] are alternative
solutions for managing and orchestrating clusters of containers (on top of Mesos
and Cloud Foundry, respectively). Their objectives, as well as their limitations
in orchestrating multi-container applications, are similar to those of Kubernetes.

http://mesos.apache.org
http://kubernetes.io
http://mesosphere.github.io/marathon

On Enhancing the Orchestration of Multi-container Docker Applications 31

Rocket (coreos.com/rkt) is a container framework alternative to Docker,
which tries to address some of the limitations of Docker, like the search and
composition of container images. Images of Rocket containers can indeed be
composed to form complex applications, and there is a dedicated protocol for
retrieving images. However, Rocket still lacks a way of specifying topology and
orchestration of multi-container applications.

To summarise, currently existing platforms lack support for the high-level
specification of multi-container (Docker) applications, and this limits their capa-
bilities for searching and reusing container images, for orchestrating them to
build up multi-container applications, and for verifying designed applications.

The possibility of employing TOSCA for enhancing the orchestration of
multi-container applications was suggested in [18]. In this paper, we try to con-
cretise such by providing a discussion of its benefits.

7 Conclusions

The management of multi-component applications across multiple and heteroge-
neous clouds is becoming commonplace [1,15]. Additionally, with the advent of
fog and edge clouds, there is an increasing need for lightweight virtualisation sup-
port [7,8,20]. In this scenario, containers can play an important role, especially
to decompose complex applications into suites of lightweight containers running
independent services [14,25]. However, currently available platform offer limited
support for specifying and orchestrating multi-container applications.

In this paper we have illustrated how a modelling language like TOSCA
would enhance the orchestration of multi-container applications, thus overcom-
ing current limitations. While utilising TOSCA for orchestrating container-based
applications requires some additional initial effort, it permits composing and
automatically orchestrating them to build and manage multi-container appli-
cations [11]. TOSCA can also empower the reuse of containers, by allowing
developers to search and match them based on what they feature [9].

Additionally, despite both TosKer [9,11] and Cloudify (getcloudify.org) pro-
vide a basic support for deploying multi-container Docker applications specified
in a simplified profile of TOSCA, a full-fledged support for orchestrating multi-
container applications is still lacking. Its development is in the scope of our
future work.

It is finally worth noting that, while Docker is the de-facto standard for
container-based virtualisation [19], the same does not hold for TOSCA [3] (which
was exploited here just as an example). There exists promising alternatives to
TOSCA that can be exploited, In the scope of our future work, we plan to
comparatively assess existing topology languages to determine the most suited
to our purposes, by also considering how Ansible or similar languages can be
extended to develop the aforementioned full-fledged support for orchestrating
multi-container applications.

http://coreos.com/rkt
http://getcloudify.org

32 A. Brogi et al.

References

1. Andrikopoulos, V.: Engineering cloud-based applications: towards an application
lifecycle. In: Mann, Z.Á., Stolz, V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 57–72.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79090-9 4

2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

3. Bergmayr, A., et al.: A systematic review of cloud modeling languages. ACM Com-
put. Surv. 51(1), 22:1–22:38 (2018)

4. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

5. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. J. Syst. Softw. 139, 189–210 (2018)

6. Brogi, A., Di Tommaso, A., Soldani, J.: Sommelier: a tool for validating TOSCA
application topologies. In: Pires, L.F., Hammoudi, S., Selic, B. (eds.) MODEL-
SWARD 2017. CCIS, vol. 880, pp. 1–22. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-94764-8 1

7. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog -
State of the Art and Open Challenges. arXiv:1901.05717 [cs.DC] (2019)

8. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, proba-
bly. In: 2017 IEEE International Conference on Fog and Edge Computing (ICFEC),
pp. 105–114. IEEE (2017)

9. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: Orchestrating incomplete TOSCA
applications with Docker. Sci. Comput. Program. 166, 194–213 (2018)

10. Brogi, A., Neri, D., Soldani, J.: A microservice-based architecture for (customis-
able) analyses of Docker images. Softw. Pract. Exp. 48(8), 1461–1474 (2018)

11. Brogi, A., Rinaldi, L., Soldani, J.: TosKer: a synergy between TOSCA and Docker
for orchestrating multicomponent applications. Softw. Pract. Exp. 48(11), 2061–
2079 (2018)

12. Brogi, A., Soldani, J.: Finding available services in TOSCA-compliant clouds. Sci.
Comput. Program. 115–116, 177–198 (2016)

13. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston (2002)

14. Jamshidi, P., Pahl, C., Mendonca, N., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

15. Jamshidi, P., Pahl, C., Mendonca, N.: Pattern-based multi-cloud architecture
migration. Softw. Pract. Exp. 47(9), 1159–1184 (2017)

16. Liu, F., et al.: NIST cloud computing reference architecture: recommendations of
the national institute of standards and technology (special publication 500–292).
NIST (2012)

17. OASIS: Topology and Orchestration Specification for Cloud Applications (2013)
18. Pahl, C.: Containerization and the PaaS cloud. IEEE Cloud Comput. 2(3), 24–31

(2015)
19. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-

of-the-art review. IEEE Trans. Cloud Comput. (2017, in press). https://doi.org/
10.1109/TCC.2017.2702586

20. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: Proceedings of FiCloud 2015, pp. 379–386. IEEE (2015)

https://doi.org/10.1007/978-3-319-79090-9_4
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-319-94764-8_1
https://doi.org/10.1007/978-3-319-94764-8_1
http://arxiv.org/abs/1901.05717
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586

On Enhancing the Orchestration of Multi-container Docker Applications 33

21. Soldani, J., Binz, T., Breitenbücher, U., Leymann, F., Brogi, A.: ToscaMart: a
method for adapting and reusing cloud applications. J. Syst. Softw. 113, 395–406
(2016)

22. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

23. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a
systematic mapping study. In: Proceedings of the 8th International Conference on
Cloud Computing and Services Science, CLOSER 2018, pp. 221–232. SciTePress
(2018)

24. Winn, D.: Cloud Foundry: The Cloud-Native Platform. O’Reilly Media, Inc.,
Sebastopol (2016)

25. Yangui, S., Mohamed, M., Tata, S., Moalla, S.: Scalable service containers. In:
Proceedings of the 2011 IEEE Third International Conference on Cloud Computing
Technology and Science (CloudCom 2011), pp. 348–356. IEEE Computer Society
(2011)

26. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 32(3), 301–310
(2017)

Transactional Migration
of Inhomogeneous Composite

Cloud Applications

Josef Spillner(B) and Manuel Ramı́rez López

School of Engineering, Service Prototyping Lab (blog.zhaw.ch/splab/),
Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

{josef.spillner,ramz}@zhaw.ch

Abstract. For various motives such as routing around scheduled down-
times or escaping price surges, operations engineers of cloud applications
are occasionally conducting zero-downtime live migrations. For mono-
lithic virtual machine-based applications, this process has been stud-
ied extensively. In contrast, for composite microservice applications new
challenges arise due to the need for a transactional migration of all
constituent microservice implementations such as platform-specific light-
weight containers and volumes. This paper outlines the challenges in the
general heterogeneous case and solves them partially for a specialised
inhomogeneous case based on the OpenShift and Kubernetes applica-
tion models. Specifically, the paper describes our contributions in terms
of tangible application models, tool designs, and migration evaluation.
From the results, we reason about possible solutions for the general het-
erogeneous case.

1 Introduction

Cloud applications are complex software applications which require a cloud envi-
ronment to operate and to become programmable and configurable through well-
defined and uniform service interfaces. Typically, applications are deployed in
the form of virtual machines, containers or runtime-specific archives into envi-
ronments such as infrastructure or platform offered as a service (IaaS and PaaS,
respectively). Recently, container platforms (CaaS) which combine infrastructure
and higher-level platform elements such as on-demand volumes and schedul-
ing policies have become popular especially for composite microservice-based
applications [1].

The concern of continuous deployment in these environments is then to keep
the applications up to date from the latest development activities [2]. Another
concern is to maintain flexibility in where the applications are deployed and how
quickly and easily they can be re-deployed into another environment. When a
new deployment from the development environment is not desired or simply not
possible due to the lack of prerequisites, a direct migration from a source to a
target environment may be a solution despite hurdles to full automation [3].
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 34–45, 2020.
https://doi.org/10.1007/978-3-030-63161-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_3&domain=pdf
http://orcid.org/0000-0002-5312-5996
https://doi.org/10.1007/978-3-030-63161-1_3

Transactional Migration of Inhomogeneous Composite Cloud Applications 35

Cloud application migration from this viewpoint can be divided into different
categories: Homogeneous and heterogeneous migrations, referring to differences
in the source and target environment technologies, same-provider and cross-
provider migrations, referring to the ability to migrate beyond the boundaries of
a single hosting services provider, as well as offline and online/live migrations,
referring to the continuity of application service provisioning while the migration
goes on. On the spectrum between homogeneity and heterogeneity, inhomoge-
neous migrations are concerned with minor automatable differences. This paper
is concerned with live, heterogeneous/inhomogeneous, cross-provider migrations
as shown in Fig. 1.

Fig. 1. Positioning within the multi-dimensional categories of cloud application
migrations

An additional distinction is the representation of applications. Most of the lit-
erature covers monolithic applications which run as instances of virtual machine
images where the main concern is pre-copy/post-copy main memory synchro-
nisation [4]. Few emerging approaches exist for more lightweight compositions
of stateless containers, where main memory is no longer a concern, and further
platform-level components such as database services, volumes, secrets, routes
and templates, some of which keep the actual state [5]. This paper is therefore
concerned with migrating applications based on container compositions between
diverse cloud platforms.

Consequently, the main contribution of the paper is a discussion of migra-
tion tool designs and prototypes for containerised Docker Compose, OpenShift
and Kubernetes applications across providers. OpenShift is one of the most
advanced open source PaaS stacks based on Kubernetes, a management and
scheduling platform for containers, and in production use at several commer-
cial cloud providers including RedHat’s OpenShift Online, the APPUiO Swiss
Container Platform, and numerous on-premise deployments [6]. Additional pure
Kubernetes hosting is offered by the Google Cloud Platform, by Azure Con-
tainer Services and by the overlay platform Tectonic for AWS and Azure, among

36 J. Spillner and M. R. López

other providers [7]. Both platforms orchestrate, place, schedule and scale ideally-
stateless Docker containers, while simpler compositions can also be achieved with
Docker Compose.

The possibility to have the same containerised application deployed and
running in different cloud providers and using different container platforms or
orchestration tools is useful for both researcher and for companies. It facilitates
the comparison of different cloud providers or different orchestration tools. For
companies, it facilitates to run the applications in the most attractive hosting
options by cost or other internal constraints. Key questions to which the use
of our tools gives answers typically are: Is the migration feasible? Is it lossless?
How fast is it? Does the order matter?

The paper is structured as follows. First, we analyse contemporary appli-
cation compositions to derive requirements for the generalised live heteroge-
neous migration process (Sect. 2), followed by outlining the tool design principles
(Sect. 3) and architecture (Sect. 4) for a simpler subset, inhomogeneous migra-
tion. The implemented tools are furthermore described (Sect. 5) and evaluated
with real application examples (Sect. 6). The paper concludes with a summary of
achievements (Sect. 7) and a discussion on filling the gap to truly heterogeneous
live migration.

2 Analysis

In the definition given in a ten-year review of cloud-native applications [8],
such applications are designed using self-contained deployment units. In cur-
rents applications the consensus is to use containers for reasonable isolation and
almost native performance. Among the container technologies, Docker contain-
ers are the most common technology, although there are alternatives including
Rkt, Containerd or CRI-O, as well as research-inspired prototypical engines such
as SCONE [9]. In the following, we define a well-designed cloud application as
a blueprint-described application, using containers to encapsulate the logic in
microservices bound to the data confined in volumes. For deploying these appli-
cations in production into the cloud, just the container technology is not enough.
Generally, a proper containerised application also uses an advanced container
platform or an orchestration solution to add self-healing, auto-scaling, load bal-
ancing, service discovery and other properties which make it easier and faster to
develop and deploy applications in the cloud. The platform also leverages more
resilience, higher availability and scalability in the application itself. Among
the most popular tools and platforms used to orchestrate containers are Docker
Swarm, Docker Compose, Kubernetes, OpenShift, Rancher, and similar plat-
forms. All of these can run in different cloud providers or on-premise. Moreover,
usually each cloud provider has their own container platform. In Fig. 2 a dia-
gram about the main container platforms and container orchestrators with their
different associated composition blueprints is shown. The diagram also reveals
relations and classifies the approaches by licencing (open source or proprietary)
and by fitness for production. This complex technological landscape leads to dif-
ferent blueprints for the same containerised application depending which causes

Transactional Migration of Inhomogeneous Composite Cloud Applications 37

practical difficulties for migrations. Despite fast ongoing consolidation, including
the announced discontinuation of Docker Cloud in 2018, minor variations such as
installed Kubernetes extensions continue to be a hurdle for seamless migration.

Fig. 2. Map of major container platforms and orchestration tools

The planning of the migration of a containerised application thus encom-
passes two key points which restrain the ability to automate the process:

– The blueprints: Even though containers encapsulate all the code in images
which are meant to be portable and run everywhere, most of the real applica-
tions will need an orchestration tool to exploit all advantages that the cloud
environment introduces: service discovery, definition of the number of repli-
cas or persistence configuration. As most orchestration tools will introduce
specific blueprints or deployment descriptors, the migration tool will need to
convert between blueprint formats through transformation, perform minor
modifications such as additions and removals of expressions, or rewrite limits
and group associations (requirement R1).

– The data: Migration of the persisted data and other state information is
non-trivial. In most container engines, the persistence of the data is confined
to volumes. Depending of the cloud provider, the blueprints processed by
the orchestration tools could reference volumes differently even for homoge-
neous orchestration tools, leading to slight differences and thus inhomogeneity
(requirement R2).

To address these two points and increase the automation, the design of a
suitable migration tool needs to account specifically for blueprint conversion
and properly inlined data migration. We formalise a simplified composite appli-
cation deployment as D = {b, c, v, . . . }, respectively, where: b: blueprint; c: set
of associated containers; v: set of associated volumes. For example, a simplified
OpenShift application is represented as Dopenshift = {b, c, v, t, is, r, . . . }, where:

38 J. Spillner and M. R. López

t: set of templates; is: set of image streams; r: set of routes. The goal of ideal
heterogeneous migration m is to find migration paths from any arbitrary source
deployment to any target deployment: m = D → D′.

Figure 3 summarises the different realistically resulting inhomogeneous
migration paths between the three possible configurations Dkubernetes, Dopenshift

and Dcompose. Through various modifications applied to the orchestration
descriptors, sources and targets can be largely different while mostly avoiding a
loss of deployment information in fulfilment of R1.

Fig. 3. Inhomogeneous application migration paths between three systems

3 General Application Migration Workflows

Requirement R1 calls for a dedicated blueprint extraction, conversion and re-
deployment process. We consider four steps in this process (see Fig. 4) which
shall be implemented by a migration tool:

– Step 1. Downloading the blueprints of the composite application: The tool
will connect to the source platform the application is running on, will iden-
tify all the components of the application and download the blueprints to a
temporary location.

– Step 2. Converting the blueprints: A conversion from source to target format
takes place. Even when homogeneous technologies are in place on both sides,
re-sizing and re-grouping of components can be enforced according to the
constraints on the target side (fulfilling R1).

– Step 3. Deploying the application: The tool will connect to the new orches-
tration platform and deploy the application there.

– Step 4. Deleting the application: Once the new application instance is running
in the new place, the tool can delete the old application instance from the
previous place. This step is optional and only executed under move semantics
as opposed to copy semantics.

A major issue is the transactional guarantee of achieving a complex running
and serving application on the target platform which in all regards equals the
source. To make this process successful in all cases, the tool algorithm must
further fulfil the following three requirements:

Transactional Migration of Inhomogeneous Composite Cloud Applications 39

Blueprints of
orchestration tool A

Blueprints of
orchestration tool BOrchestration tool B

Step 1:
Download

files

Step 2:
ConversionStep 3:

Deploy the
APP

Orchestration tool A

Fig. 4. Blueprints process diagram

– Connect to each of the different platforms in scope for heterogeneous
migration.

– Convert between all the blueprints.
– Download and upload the application components from/to all the platforms,

ensuring a re-deployment in the right order and a smooth hand-over by
name service records which are typically external to both source and target
platform.

With the previously described workflow, the tool can migrate stateless appli-
cation or the stateless components of a stateful application. To complete the
migration, the data in the containers needs to be migrated as well according
to R2. In practice, this refers to volumes attached to containers, but also to
databases and message queues which must be persisted in volume format before-
hand. The process of the migration of a volume will be as follows:

– Step 1. Find the list of volumes linked to an application and for each one the
path to the data.

– Step 2. Download the data to a temporary location. Due to the size, differ-
ential file transfer will be used.

– Step 3. Identify the same volume in the new deployment and pre-allocate the
required storage space.

– Step 4. Upload the data to the new volume.

Now, we devise a fictive tool to express how the combined fulfilment of R1
and R2 in the context of heterogeneous application migration can be realised,
expressed by Fig. 5 which highlights the separation into blueprints and data.

Although practicioners and researchers would benefit greatly from such a
generic and all-encompassing tool, its conception and engineering would take
many person months of software development work, needlessly delaying a proto-
type to answer the previously identified questions many companies in the field
have right now. Instead, to focus on key research questions as outlined in the
introduction follows a divide-and-conquer strategy. We subdivide the overall fic-
tive tool into a set of smaller tools logically grouped into three categories, as
shown in Fig. 6. Thus, we put our own prototypical work into context of a wider

40 J. Spillner and M. R. López

Docker
Swarm

Vamp

Docker
Compose

docker-compose

Marathon

Kubernetes

OpenShift

others...

/templates/
 /k8s/

 /marathon
/vamp

 /compose
/other

/volumes

Generic Migration

Fig. 5. Stateful application components diagram

ecosystem with some existing tools and further ongoing and future developments,
making it possible to evaluate migration scenarios already now. The tools are:

– Homogeneously migrating containerised applications between multiple
instances of the same orchestration tool: os2os (our work).

– Converting blueprints between the formats required by the platforms related
to R1: Kompose (existing work).

– Rewriting Kubernetes blueprints to accomodate quotas: descriptorrewriter
(our work).

– Migrating volumes related to R2: volume2volume (our work).
– Homogeneous transactional integration of volume and data migration for

OpenShift as a service: openshifter (our early stage work).

Fictive Generic
Heterogeneous
Migration Tool

OpenShift:
os2os

Kubernetes:
"k8s2k8s"

Docker Swarm:
"swarm2swarm"

others...

Kompose

"Cubernetes"

volume2volume

oc kubectl docker others CLI

Homogeneous migration

Blueprint
conversion

Data
migration

OpenShift:
openshifter

descriptor
rewriter

Fig. 6. Implementation strategy for fictive heterogeneous migration tool

We contribute in this paper the architectural design, implementation and
combined evaluation of four tools referring to inhomogeneous OpenShift/Kuber-
netes/Docker Compose-to-OpenShift/Kubernetes migration. Use cases encom-
pass intra-region replication and region switching within one provider, migration

Transactional Migration of Inhomogeneous Composite Cloud Applications 41

from one provider to another, and developer-centric migration of local test appli-
cations into a cloud environment. All tools are publicly available for download
and experimentation1.

4 Migration Tools Design and Architecture

The general design of all tool ensures user-friendly abstraction over existing low-
level tools such as oc and kubectl, the command line interfaces to OpenShift
and Kubernetes, as well as auxiliary tools such as rsync for differential data
transfer. Common migration and copy/replication workflows are available as
powerful single commands. In Openshifter, these are complemented with full
transaction support so that partial migrations can be gracefully interrupted or
rolled back in case of occurring issues.

As Fig. 7 shows on the left side, os2os uses oc to communicate with the
source and target OpenShift clusters and temporarily stores all artefacts in local
templates and volumes folders. This choice ensures that only a single provider
configuration file needs to be maintained and that any features added to oc
will be transparently available. On the right side of Fig. 7, the Openshifter tool
is depicted which follows a service-oriented design. This choice ensures that
the migration code itself runs as stateless, resilient and auto-scaled service. A
further difference between the tools is that for Openshifter, we have explored
a conceptual extension of packaged template and configuration data archives,
called Helm charts, into fat charts which include a snapshot of the data, closing
the gap to monolithic virtual machines.

OpenShift source cluster
OpenShift target cluster

os2os/templates

/volumes
oc

My project/namespace

My application

blueprint
volume volume

volume2volume

rsync

Migration space

openshifter

oc rsync

openshifterclient

/templates

/volumes

/charts

Fig. 7. OS2OS/Volume2Volume architectures (left); Openshifter architecture (right)

1 Tools website: https://github.com/serviceprototypinglab/.

https://github.com/serviceprototypinglab/

42 J. Spillner and M. R. López

Exemplarily for all tools, os2os is composed of the following commands:

– export: Connect to one cluster and export all the components (objects) of
one application in one project, saved locally in a folder called templates.

– up: Connect to one cluster and upload all the components of one application
in one project which are saved in templates.

– down: Connect to one cluster and delete all the components of one application
in one project.

– migrate: Combine all the commands chronologically for a full migration in a
single workflow.

The tools are implemented in different ways following the different designs.
Both os2os and volume2volume are inspired by Kompose. They are imple-
mented as command-line tools using Go with Cobra as library for handling the
command-line parameters. Furthermore, the command names are derived from
Kompose, making it easy to learn the tool for existing Kompose users. As usual
in applications using Cobra, the configuration of the tool is stored in a YAML
file. It contains the credentials to connect to the clusters, the cluster endpoints,
the projects and the object types to migrate, overriding the default value of all
object types. The openshifter prototype is implemented in Python using the
AIO-HTTP web library to expose RESTful methods and works without any
configuration file by receiving all parameters at invocation time.

5 Evaluation

When evaluating cloud migration tools, three important questions arise on
whether the migration is lossless, performing and developer-acceptable. The mea-
surable evaluation criteria are:

– C1/Losslessness: The migration needs to avoid loss of critical application
deployment information even after several roundtrips of migration between
inhomogeneous systems. This is a challenge especially in the absence of fea-
tures on some platforms. For instance, Kubernetes offers auto-scaling while
Docker Swarm does not, leading to the question of how to preserve the infor-
mation in case a migration from Kubernetes to Docker Swarm is followed by
a reverse migration while the original source platform has vanished.

– C2/Performance: A quantitative metric to express which time is needed both
overall and for the individual migration steps. Further, can this time be pre-
calculated or predicted in order to generate automated downtime messages,
or can any downtime be alleviated.

– C3/Acceptance: The migration needs to be easy to use for developers and
operators as well as in modern DevOps environments.

A testbed with two local virtual machines running OpenShift 3.6 (setup S1)
as well as a hosted OpenShift environment provided by the Swiss container plat-
form APPUiO (S2) were set up to evaluate our tools experimentally according

Transactional Migration of Inhomogeneous Composite Cloud Applications 43

to the defined criteria C1 and C2. A synthetic scenario application consisting
of three deployments and three services was prepared for that matter (A1), and
the existing Snafu application (A2) was used for the comparison. The evaluation
of C3 is left for future work.

5.1 Evaluation of Losslessness

For Kubernetes and OpenShift, the scenario service consists of shared Service
and ConfigMap objects as well as platform-specific ones which are subject to loss;
for Docker Compose, it consists of roughly equivalent directives. The deployed
service was migrated from source to target and, with swapped roles between the
platforms, back again from target to source. The following table reports on the
loss of information depending on the system type. The Kompose tool incorrectly
omits the lowercasing of object names and furthermore does not automatically
complete the generated descriptors with information not already present in the
Docker Compose files. To address the first issue, we have contributed a patch,
whereas the second one would require a more extensive tool modification. The
upgrade from Kubernetes to OpenShift works although OpenShift merely sup-
ports Deployment objects as a convenience whereas DeploymentConfig objects
would be needed (Table 1).

Table 1. Losslessness of blueprint transformations

Source Target Loss

OpenShift OpenShift None (assuming equal quotas)

OpenShift Kubernetes (manual) ImageStream, Route,
DeploymentConfig

Kubernetes OpenShift (manual) (Deployment)

Docker compose Kubernetes (w/ Kompose) None (yet incomplete & incorrect)

As a result, we have been able to automate all migrations except for the down-
grade from OpenShift to Kubernetes using a combination of our tools which is
invoked transparently when using Openshifter. The losslessness further refers to
in-flight import and export of volume data. To avoid data corruption, applica-
tions need to perform modifications on the file level atomically, for instance by
placing uploads into temporary files which are subsequently atomically renamed.
Support for applications not adhering to this requirement is outside the scope
of our work.

5.2 Evaluation of Performance

The synthetic scenario service A1 was exported from the source, re-deployed at
the target, and torn down at the source 10 times with os2os in order to get

44 J. Spillner and M. R. López

information about the performance and its deviation in the local-to-local migra-
tion setup S1. Figure 8 shows the results of the performance experiments. An
evident characteristic is that exporting objects without changing them is more
stable than running the down/up commands which modify the objects and cause
changes to the scheduling of the remaining objects. A second observation is that,
counter-intuitively, the down command consumes most of the time. A plausible
explanation is that instead of simple deletions, objects are rather scheduled for
deletion into a queue.

Fig. 8. Durations of the individual migration phases – export (left figure), up (middle),
down (right) – between two local Kubernetes clusters

Service A2 was transformed automatically to measure the influence of the
transformation logic on planned live migrations. The creation of Kubernetes
descriptors with Kompose takes approximately 0.028 s. The adjustment of quotas
and consolidation of pods, as performed by descriptorrewriter, takes approx-
imately 0.064 s on the resulting Kubernetes descriptors. Both transformations
are thus negligible which implies that apart from blueprint exports, the data
transfer, which is primarily limited by the cluster connectivity, is the dominant
influence on overall performance.

6 Conclusion

We have conducted a first analytical study on migrating cloud-native applica-
tions between inhomogeneous development and production platforms. The anal-
ysis was made possible through prototypical migration tools whose further devel-
opment is in turn made possible by the results of the experiments. The derived
findings from the experimental evaluation suggest that application portability
is still an issue beyond the implementation (container) images. Future cloud
platforms should include portability into the design requirements.

7 Future Work

The current prototypes only support Kubernetes-based platforms. All function-
ality to convert other formats has been integrated into the experiments with

Transactional Migration of Inhomogeneous Composite Cloud Applications 45

external and existing tools. In the future, we want to integrate them in a unified
way into openshifter. Further, we want to work on stricter requirements con-
cerning a production-ready migration. They encompass improved user interfaces
for easier inter-region/-zone migration within one provider, automatic identifi-
cation of associated state and data formats, plugins for databases and message
queues which keep non-volume state, data checksumming, and pre-copy statis-
tics about both expected timing and resource requirements of the process and
the subsequent deployment.

Acknowledgement. This research has been funded by Innosuisse - Swiss Innovation
Agency in project MOSAIC/19333.1.

References

1. Piraghaj, S.F., Dastjerdi, A.V., Calheiros, R.N., Buyya, R.: Efficient virtual machine
sizing for hosting containers as a service (SERVICES 2015). In: 2015 IEEE World
Congress on Services, pp. 31–38, June 2015

2. Rodŕıguez, P., et al.: Continuous deployment of software intensive products and
services: a systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)

3. Ficco, M., Esposito, C., Chang, H., Choo, K.-K.R.: Live migration in emerging cloud
paradigms. IEEE Cloud Comput. 3(2), 12–19 (2016)

4. Bezerra, P., Martins, G., Gomes, R., Cavalcante, F., da Costa, A.F.B.F.: Evaluat-
ing live virtual machine migration overhead on client’s application perspective. In:
2017 International Conference on Information Networking, ICOIN 2017, Da Nang,
Vietnam, 11–13 January 2017, pp. 503–508 (2017)

5. Lee, J., Kang, K.: Poster: a lightweight live migration platform with container-based
virtualization for system resilience. In: Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys 2017, Niagara
Falls, NY, USA, 19–23 June 2017, p. 158 (2017)

6. Pahl, C.: Containerization and the PaaS Cloud. IEEE Cloud Comput. 2(3), 24–31
(2015)

7. Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, Omega, and
Kubernetes. Commun. ACM 59(5), 50–57 (2016)

8. Kratzke, N., Quint, P.-C.: Understanding cloud-native applications after 10 years
of cloud computing - a systematic mapping study. J. Syst. Softw. 126, 1–16 (2017)

9. Arnautov, S.: SCONE: secure Linux containers with Intel SGX. In: 12th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2016, Savan-
nah, GA, USA, 2–4 November 2016, pp. 689–703 (2016)

Secure Apps in the Fog: Anything
to Declare?

Antonio Brogi, Gian-Luigi Ferrari, and Stefano Forti(B)

Department of Computer Science, University of Pisa, Pisa, Italy
{antonio.brogi,gian-luigi.ferrari,stefano.forti}@di.unipi.it

Abstract. Assessing security of application deployments in the Fog is
a non-trivial task, having to deal with highly heterogeneous infrastruc-
tures containing many resource-constrained devices. In this paper, we
introduce: (i) a declarative way of specifying security capabilities of Fog
infrastructures and security requirements of Fog applications, and (ii) a
(probabilistic) reasoning strategy to determine application deployments
and to quantitatively assess their security level, considering the trust
degree of application operators in different Cloud/Fog providers. A life-
like example is used to showcase a first proof-of-concept implementation
and to illustrate how it can be used in synergy with other predictive
tools to optimise the deployment of Fog applications.

Keywords: Fog computing · Application deployment · Security
assessment · Executable specifications · Probabilistic programming ·
Trust

1 Introduction

Fog computing [11] aims at better supporting the growing processing demand of
(time-sensitive and bandwidth hungry) Internet of Things (IoT) applications by
selectively pushing computation closer to where data is produced and exploiting
a geographically distributed multitude of heterogeneous devices (e.g., personal
devices, gateways, micro-data centres, embedded servers) spanning the contin-
uum from the Cloud to the IoT. As a complement and an extension of the Cloud,
the Fog will naturally share with it many security threats and it will also add its
peculiar ones. On the one hand, Fog computing will increase the number of secu-
rity enforcement points by allowing local processing of private data closer to the
IoT sources. On the other hand, the Fog will be exposed to brand new threats for
what concerns the trust and the physical vulnerability of devices. In particular,
Fog deployments will span various service providers - some of which may be not
fully trustworthy - and will include accessible devices that can be easily hacked,
stolen or broken by malicious users [28]. Security will, therefore, play a crucial
role in the success of the Fog paradigm and it represents a concern that should
be addressed by-design at all architectural levels [29,41]. The Fog calls for novel
technologies, methodologies and models to guarantee adequate security levels to
Fog deployments even when relying upon resource-constrained devices [10].
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 46–61, 2020.
https://doi.org/10.1007/978-3-030-63161-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_4

Secure Apps in the Fog: Anything to Declare? 47

Meanwhile, modern computing systems are more and more made from dis-
tributed components – such as in service-oriented and micro-service based archi-
tectures [34] – what makes it challenging to determine how they can be best-
placed so to fulfil various application requirements [14]. In our previous work [5],
we proposed a model and algorithms to determine eligible deployments of IoT
applications to Fog infrastructures based on hardware, software and QoS require-
ments. Our prototype – FogTorchΠ – implements those algorithms and permits
to estimate the QoS-assurance, the resource consumption in the Fog layer [7]
and the monthly deployment cost [8] of the output eligible deployments. Var-
ious other works tackled the problem of determining “optimal” placements of
application components in Fog scenarios, however, none included a quantitative
security assessment to holistically predict security guarantees of the deployed
applications, whilst determining eligible application deployments [6]. Therefore,
there is a clear need to evaluate a priori whether an application will have its secu-
rity requirements fulfilled by the (Cloud and Fog) nodes chosen for the deploy-
ment of its components. Furthermore, due to the mission-critical nature of many
Fog applications (e.g., e-health, disaster recovery), it is important that the tech-
niques employed to reason on security properties of deployed multi-component
applications are both configurable and well-founded.

In this paper, we propose a methodology (SecFog) to (quantitatively) assess
the security level of multi-component application deployments in Fog scenarios.
Such quantitative assessment can be used both alone – to maximise the security
level of application deployments – and synergically with other techniques so to
perform multi-criteria optimisations and to determine the best placement of appli-
cation components in Fog infrastructure. This work allows application deploy-
ers to specify security requirements both at the level of the components and at
the level of the application as a whole. As per recent proposals in the field of AI
[3], it exploits probabilistic reasoning to account for effectiveness against possible
attacks and trust, whilst capturing the uncertainty inherent to Fog. Therefore, we
propose: (i) a declarative methodology that enables writing an executable specifi-
cation of the security policies related to an application deployment to be checked
against the security offerings of a Fog infrastructure, (ii) a reasoning methodology
that can be used to look for secure application deployments and to assess the secu-
rity levels guaranteed by any input deployment, and (iii) a first proof-of-concept
implementation of SecFog which can be used to optimise security aspects of Fog
application deployments along with other metrics.

The rest of this paper is organised as follows. After reviewing some related
work (Sect. 2), we offer an overview of SecFog and we introduce a motivating
example (Sect. 3). Then, we present our proof-of-concept implementation of Sec-
Fog and we show how it can be used to determine application deployments
whilst maximising their security level1 (Sect. 4). Finally, we show how SecFog
can be used with FogTorchΠ to identify suitable trade-offs among QoS-assurance,
resource usage, monthly cost and security level of eligible deployments (Sect. 5),
and we briefly conclude with some directions for future work (Sect. 6).

1 Code to run the example is available at: http://pages.di.unipi.it/forti/code/
secfog.pl.

http://pages.di.unipi.it/forti/code/secfog.pl
http://pages.di.unipi.it/forti/code/secfog.pl

48 A. Brogi et al.

2 Related Work

Among the works that studied the placement of multi-component applications
to Cloud nodes, very few approaches considered security aspects when deter-
mining eligible application deployments, mainly focussing on improving perfor-
mance, resource usage and deployment cost [21,24], or on performing identifica-
tion of potential data integrity violations based on pre-defined risk patterns [32].
Indeed, existing research considered security mainly when treating the deploy-
ment of business processes to (federated) multi-Clouds (e.g., [15,26,40]). Similar
to our work, Luna et al. [22] were among the first to propose a quantitative
reasoning methodology to rank single Cloud providers based on their security
SLAs, and with respect to a specific set of (user-weighted) security requirements.
Recently, swarm intelligence techniques [24] have been exploited to determine
eligible deployments of composite Cloud applications, considering a risk assess-
ment score based on node vulnerabilities.

Fog computing introduces new challenges, mainly due to its pervasive geo-
distribution and heterogeneity, need for QoS-awareness, dynamicity and sup-
port to interactions with the IoT, that were not thoroughly studied in previous
works addressing the problem of application deployment to the Cloud [37,39].
Among the first proposals investigating these new lines, [18] proposed a from-
Fog-to-Cloud search algorithm as a first way to determine an eligible deploy-
ment of (multi-component) DAG applications to tree-like Fog infrastructures.
Their placement algorithm attempts the placement of components Fog-to-Cloud
by considering hardware capacity only. An open-source simulator – iFogSim –
has been released to test the proposed policy against Cloud-only deployments.
Building on top of iFogSim, [23] tries to guarantee the application service deliv-
ery deadlines and to optimise Fog resource exploitation. Also [38] used iFogSim
to implement an algorithm for optimal online placement of application compo-
nents, with respect to load balancing. Recently, exploiting iFogSim, [17] pro-
posed a distributed search strategy to find the best service placement in the
Fog, which minimises the distance between the clients and the most requested
services, based on request rates and available free resources. [20,35] proposed
(linearithmic) heuristic algorithms that attempt deployments prioritising place-
ment of applications to devices that feature with less free resources.

From an alternative viewpoint, [19] gave a Mixed-Integer Non-Linear Pro-
gramming (MINLP) formulation of the problem of placing application compo-
nents so to satisfy end-to-end delay constraints. The problem is then solved by
linearisation into a Mixed-Integer Linear Programming (MILP), showing poten-
tial improvements in latency, energy consumption and costs for routing and
storage that the Fog might bring. Also [33] adopted an ILP formulation of the
problem of allocating computation to Fog nodes so to optimise time deadlines on
application execution. A simple linear model for the Cloud costs is also taken into
account. Finally, dynamic programming (e.g., [30]), genetic algorithms (e.g., [33])
and deep learning (e.g., [36]) were exploited promisingly in some recent works.

Overall, to the best of our knowledge, no previous work included a quantita-
tive assessment of the security level of candidate Fog application deployments.

Secure Apps in the Fog: Anything to Declare? 49

3 Methodology Overview

The OpenFog Consortium [1] highlighted the need for Fog computing platforms
to guarantee privacy, anonymity, integrity, trust, attestation, verification and
measurement. Whilst security control frameworks exist for the Cloud (e.g., the
EU Cloud SLA Standardisation Guidelines [2] or the ISO/IEC 19086), to the
best of our knowledge, no standard exists yet that defines security objectives
for Fog application deployments. Based on recent surveys about security aspects
in Fog computing (i.e., [24,25,28]), we devised a simple example of taxonomy2

(Fig. 1) of security capabilities that can be offered by Cloud and Fog nodes
and therefore used for reasoning on the security levels of given Fog application
deployments.

FOG SECURITY

Virtualisation Communications Data Physical Other

Access Logs

Authentication

Host IDS

Process Isolation

Permission
Model

Resource Usage
Monitoring

Restore Points

User Data Isola-
tion

Certificates

Firewall

IoT Data En-
cryption

Node Isolation
Mechanims

Network IDS

Public Key
Cryptography

Wireless Secu-
rity

Backup

Encrypted Stor-
age

Obfuscated
Storage

Access Control

Anti-tampering
Capabilities

Audit

Fig. 1. An example of taxonomy of security capabilities in Fog computing.

Security features that are common with the Cloud might assume renewed
importance in Fog scenarios, due to the limited capabilities of the available
devices. For instance, guaranteeing physical integrity of end-user data isolation
at an access point with Fog capabilities might be very difficult. Apropos, the
possibility to encrypt or obfuscate data at Fog nodes, along with encrypted IoT
communication and physical anti-tampering machinery, will be key to protect
those application deployments that need data privacy assurance.

Figure 2 shows the ingredients needed to perform the security assessment by
means of the SecFog methodology.
2 The proposed taxonomy can be easily modified, extended and refined so as to include

new security categories and third-level security features as soon as normative security
frameworks will get established for the Fog.

50 A. Brogi et al.

Fig. 2. Bird’s-eye view of SecFog.

On the one hand, we assume that infrastructure operators declare the security
capabilities featured by their nodes3. Namely, for each node she is managing, the
operator publishes a Node Descriptor (ND) featuring a list of the node security
capabilities along with a declared measure of their effectiveness against potential
attacks (in the range [0, 1]), as shown in Fig. 4. On the other hand, based on the
same common vocabulary, application operators can define (non-trivial) custom
security policies. Such properties can complete or override a set of default security
policies available in SecFog implementation.

For instance, one can derive that application components deployed to nodes
featuring Public Key Cryptography capabilities can communicate through End-to-
End Secure channel. A different stakeholder might also require the availability
of Certificates at both end-points to consider a channel End-to-End Secure. Sim-
ilarly, one can decide to infer that a node offering Backup capabilities together
with Encrypted Storage or Obfuscated Storage can be considered a Secure Storage
provider. Custom and default properties are used, along with ground facts, to
specify the security requirements of a given application as Component Require-
ments (CR) or Application Requirements (AR), or both. For instance, application
operators can specify that a certain component c is securely deployed to node n
when n features Secure Storage and when the communication with component
c′ happens over an End-to-End Secure channel.

Finally, the security level of an application deployment can be assessed by
matching the security requirements of the application with the security capa-
bilities featured by the infrastructure and by multiplying the effectiveness of all
exploited security capabilities, weighting them as per trust degrees, which may
be assigned by application deployers to each infrastructure operator. This last
step can be used both to assess the security level of a single (possibly partial)

3 For the sake of simplicity, in this paper, we assume that operators exploit the vocab-
ulary of the example taxonomy in Fig. 1. In reality, different operators can employ
different vocabulary and then rely on mediation mechanisms [31].

Secure Apps in the Fog: Anything to Declare? 51

input application deployment and to generate and test all eligible deployments
according to the declared security requirements. We now go through a motivating
example that we will retake later on by exploiting the SecFog prototype.

3.1 Motivating Example

We retake the application example of [8]. Consider a simple Fog application
(Fig. 3) that manages fire alarm, heating and A/C systems, interior lighting, and
security cameras of a smart building. The application consists of three microser-
vices:

– IoTController, interacting with the connected cyber-physical systems,
– DataStorage, storing all sensed information for future use and employing

machine learning techniques to update sense-act rules at the IoTController so
to optimise heating and lighting management based on previous experience
and/or on people behaviour, and

– Dashboard, aggregating and visualising collected data and videos, as well as
allowing users to interact with the system.

Fig. 3. Fog application.

Each microservice represents an independently deployable component of
the application [27] and has hardware and software requirements4 in order to
function properly. Application components must cooperate so that well-defined
levels of service are met at runtime. Hence, communication links supporting
component-component and component-thing interactions should provide suit-
able end-to-end latency and bandwidth.

Figure 4 shows the infrastructure – two Cloud data centres, three Fog nodes –
to which the smart building application is deployed. For each node, the available
security capabilities and their effectiveness against possible attacks (as declared
by the infrastructure operator) are listed in terms of the taxonomy of Fig. 1.

4 For the sake of readability, we omit the application requirements. The interested
reader can find all the details in [8].

52 A. Brogi et al.

Fig. 4. Fog infrastructure description.

Table 1 lists all the deployments of the given application to the considered
infrastructure which meet all set software, hardware and network QoS require-
ments, as they are found by FogTorchΠ in [8]. For each deployment, FogTorchΠ
outputs the QoS-assurance (i.e., the likelihood it will meet network QoS require-
ments), an aggregate measure of Fog resource consumption, and an estimate
of the monthly cost for keeping the deployment up and running. Deployments
annotated with ∗ are only available when Fog 2 features a 4G connection which
costs, however, 20 e a month in addition to the costs reported in Table 1.

In [8], the deployments Δ2 and Δ16 are selected as the best candidates
depending on the type of mobile connection (i.e., 3G vs 4G) available at Fog 2.

As the majority of the existing approaches for application placement, [8]
focuses on finding deployments that guarantee application functionality and end-
user preferences, but ignoring security aspects in the featured analysis.

Nevertheless, the application operators can define the following Component
Requirements:

– IoTController requires Physical Security guarantees (i.e., Access Control ∨ Anti-
tampering Capabilities) so to avoid that temporarily stored data can be phys-
ically stolen from the deployment node,

– DataStorage requires Secure Storage (viz., Backup ∧ (Obfuscated Storage ∨
Encrypted Storage)), the availability of Access Logs, a Network IDS in place to
prevent distributed Denial of Service (dDoS) attacks, and

– Dashboard requires a Host IDS installed at the deployment node (e.g., an
antivirus software) along with a Resource Usage Monitoring to prevent interac-
tions with malicious software and to detect anomalous component behaviour.

Secure Apps in the Fog: Anything to Declare? 53

Table 1. Eligible deployments of the example application.

Dep. ID IoTController DataStorage Dashboard QoS Resources Cost

Δ1 Fog 2 Fog 3 Cloud 2 98.6% 48.4% e 856.7

Δ2 Fog 2 Fog 3 Cloud 1 98.6% 48.4% e 798.7

Δ3 Fog 3 Fog 3 Cloud 1 100% 48.4% e 829.7

Δ4 Fog 2 Fog 3 Fog 1 100% 59.2% e 844.7

Δ5 Fog 1 Fog 3 Cloud 1 96% 48.4% e 837.7

Δ6 Fog 3 Fog 3 Cloud 2 100% 48.4% e 887.7

Δ7 Fog 3 Fog 3 Fog 2 100% 59.2% e 801.7

Δ8 Fog 3 Fog 3 Fog 1 100% 59.2% e 875.7

Δ9 Fog 1 Fog 3 Cloud 2 96% 48.4% e 895.7

Δ10 Fog 1 Fog 3 Fog 2 100% 59.2% e 809.7

Δ11 Fog 1 Fog 3 Fog 1 100% 59.2% e 883.7

Δ12∗ Fog 2 Cloud 2 Fog 1 94.7% 16.1% e 870.7

Δ13∗ Fog 2 Cloud 2 Cloud 1 97.2% 5.4% e 824.7

Δ14∗ Fog 2 Cloud 2 Cloud 2 98.6% 5.4% e 882.7

Δ15∗ Fog 2 Cloud 1 Cloud 2 97.2% 5.4% e 785.7

Δ16∗ Fog 2 Cloud 1 Cloud 1 98.6% 5.4% e 727.7

Δ17∗ Fog 2 Cloud 1 Fog 1 94.7% 16.1% e 773.7

Furthermore, the Application Requirements require guaranteed end-to-end
encryption among all components (viz., all deployment nodes should feature
Public Key Cryptography) and that deployment nodes should feature an Authen-
tication mechanism. Finally, application operators assign a trust degree of 80% to
the infrastructure providers of Cloud 1 and Cloud 2, and of 90% to the infrastruc-
ture providers of Fog 3 and Fog 2. Naturally, they consider their management of
Fog 1 completely trustworthy.

4 Proof-of-Concept

Being SecFog a declarative methodology based on probabilistic reasoning about
declared infrastructure capabilities and security requirements, it was natural
to prototype it relying on probabilistic logic programming. To implement both
the model and the matching strategy we used a language called ProbLog [12].
ProbLog is a Python package that permits writing logic programs that encode
complex interactions between large sets of heterogeneous components, captur-
ing the inherent uncertainties that are present in real-life situations. ProbLog
programs are composed of facts and rules. The facts, such as

p::f.

54 A. Brogi et al.

represent a statement f which is true with probability p5. The rules, like

r :- c1, ... , cn.

represent a property r inferred when c1 ∧ · · · ∧ cn hold6. ProbLog programs are
logic programs in which some of the facts are annotated with (their) probabilities.
Each program defines a probability distribution over logic programs where a fact
p::f. is considered true with probability p and false with probability 1 − p.
The ProbLog engine [13] determines the success probability of a query q as the
probability that q has a proof, given the distribution over logic programs.

Our proof-of-concept of SecFog is listed in Fig. 5. It offers a secureApp(A,D)
predicate that, given an app A and the list of its components L, looks for deploy-
ments of the application (line 3) and checks whether they can be considered
secure (line 4). The deployment(L,D) predicate generates possible deployments
of an application by recurring on the list of its components (line 5–8). Then,
for any generated deployment, the predicate secureDeployment(D) recursively
checks whether each component can be securely deployed according to its Com-
ponent Requirements (line 11) and that the deployment node N is managed by
a trustworthy operator Op (lines 12–13). Finally, it checks if the Application
Requirements can be also satisfied (line 14).

secureApp(A,D) :- (1)

)2(,)L,A(ppa

deployment(L, D), (3)

secureDeployment(D). (4)

deployment([],[]). (5)

deployment([C|Cs],[d(C,N)|D]) :- (6)

)7(,)_,N(edon

deployment(Cs,D). (8)

secureDeployment([]). (9)

secureDeployment([d(C,N)|D]) :- (10)

secureComponent(C,N), (11)

)21(,)pO,N(edon

trustworthy(Op), (13)

)41(,)N(sartxe

secureDeployment(D). (15)

Fig. 5. SecFog proof-of-concept.

The application operator is therefore asked to define a secureComponent(C,
N) clause, specifying the Component Requirements for each of the applica-
tion components, and a (possibly empty) extras(N) specifying the Application

5 A fact declared simply as f. is assumed to be true with probability 1.
6 f, r and {ci} can include variable (upper-case) or constant (lower-case) terms. The

OR operator ∨ is denoted by a semicolon like in c1; c2.

Secure Apps in the Fog: Anything to Declare? 55

Requirements that are required by all application components. It is worth noting
that the predicate secureApp(A,D) can be queried to determine secure applica-
tion deployments as well as to verify whether a given candidate deployment is
actually secure.

4.1 Motivating Example Continued

In this section, we retake the example of Sect. 3.1 and we show how ProbLog
permits to naturally express both security capabilities of an infrastructure and
security requirements of an application. Node Descriptors can be expressed by
listing ground facts, possibly featuring a probability that represents their effec-
tiveness against attacks according to the infrastructure provider. For instance,
fog1 directly operated by the application operator appOp is described as

node(fog1,appOp).

0.9::authentication(fog1).

resource_monitoring(fog1).

iot_data_encryption(fog1).

0.95::firewall(fog1).

public_key_cryptography(fog1).

0.95::wireless_security(fog1).

obfuscated_storage(fog1).

All the Node Descriptors made following this template form a description of the
security capabilities available in the infrastructure.
Application operators can define the topology of an application by specifying an
identifier and the list of its components. For instance, the application of Fig. 3
can be simply denoted by the fact

app(smartbuilding, [iot_controller, data_storage, dashboard]).

Then, they can define the security requirements of the application both as Com-
ponent Requirements and Application Requirements. In our example, the Com-
ponent Requirements can be simply declared as

secureComponent(iot_controller, N) :-

physical_security(N).

secureComponent(data_storage, N) :-

secure_storage(N),

access_logs(N),

network_ids(N).

secureComponent(dashboard, N) :-

host_ids(N),

resource_monitoring(N).

where the custom security policies physical security(N) and
secure storage(N) are defined as

56 A. Brogi et al.

secure_storage(N) :-

backup(N),

(encrypted_storage(N); obfuscated_storage(N)).

physical_security(N) :- anti_tampering(N); access_control(N).

Analogously, the Application Requirements that concern the application as a
whole can be specified by specifying the extras(N) predicate as follows

extras(N) :- public_key_cryptography(N), authentication(N).

Finally, application operators can express their trust degrees towards each infras-
tructure operator as the probability of trusting it (i.e., t ∈ [0, 1]). In our example,
we have

0.8::trustworthy(cloudOp1).

0.8::trustworthy(cloudOp2).

0.9::trustworthy(fogOp).

trustworthy(appOp).

Our prototype can be used to find (via a generate & test approach) all deploy-
ments that satisfy the security requirements of the example application to a
given infrastructure, by simply issuing the query:

query(mySecureApp(smartbuilding,D)).

As shown in Fig. 6, relying on ProbLog out-of-the-box algorithms, SecFog pro-
totype returns answers to the query along with a value in [0, 1] that repre-
sents the aggregate security level of the inferred facts, i.e. the probability that a

Fig. 6. Results of the motivating example.

Secure Apps in the Fog: Anything to Declare? 57

deployment can be considered secure both according to the declared effectiveness
against attacks of the infrastructure capabilities and to the trust degree of the
application operator in each exploited infrastructure provider.

If the application operator is only considering security as a parameter to lead
her search, she would try to maximise the obtained metric and, most probably,
deploy all three components to Fog 3. However, security might need to be consid-
ered together with other parameters so to find a suitable trade-off among them.
In the next section, we propose a simple multi-objective optimisation and we
apply it to our motivating example.

5 Multi-objective Optimisation

Naturally, the quantitative results obtained with ProbLog can be used to opti-
mise the security level of any application deployment, by simply taking the
maximum value for our query. As we will show over an example in the next
section, it is possible to exploit the SecFog methodology to optimise the security
level together with other metrics. In this work, as in [16], given a deployment Δ,
we will try to optimise the objective function

r(Δ) =
∑

m∈M

ωm · ̂m(Δ)

where M is the set of metrics to be optimised, ωm is the weight7 assigned to each
metrics (so that

∑
m∈M ωm = 1) and ̂m(Δ) is the normalised value of metric

m for deployment Δ, which – given the set D of candidate deployments – is
computed as:

– ̂m(Δ) = m(Δ)−mind∈D{m(d)}
maxd∈D{m(d)}−mind∈D{m(d)} when the m(Δ) is to be maximised, and

– ̂m(Δ) = maxd∈D{m(d)}−m(Δ)
maxd∈D{m(d)}−mind∈D{m(d)} when m(Δ) is to be minimised.

Therefore, since we assumed that the higher the value of r(Δ) the better is
deployment Δ, we will choose Δ such that r(Δ) = maxΔ∈D{r(Δ)}. In what fol-
lows, we solve the motivating example by employing this optimisation technique
on all attributes of Table 1 along with the security levels computed in Sect. 4.

5.1 Motivating Example Continued

In our motivating example, we will attempt to maximise QoS-assurance and
security, whilst minimising cost (in which we include the cost for the 4G con-
nection at Fog 2 when needed). However, different application operators may
want to either maximise or minimise the Fog resource consumption of their

7 For the sake of simplicity, we assume here ωm = 1
|M| , which can be tuned differently

depending on the needs of the application operator.

58 A. Brogi et al.

deployment, i.e. they may look for a Fog-ward or for a Cloud-ward deployment.
Hence, concerning this parameter, we will consider both situations. Table 2 shows
the values of the Fog-ward (i.e., rF (Δ)) and of the Cloud-ward (i.e., rC(Δ))
objective functions.

In the Fog-ward case, when looking for the best trade-off among QoS-assuran-
ce, resource consumption, cost and security level, the most promising deployment
is not Δ2 anymore (as it was in [7]). Indeed, Δ3 scores a much better ranking
when compared to Δ2. Furthermore, in the Fog-ward case, the 4G upgrade at
Fog 2, which makes it possible to enact Δ15 and Δ16, is not worth the investment
due to the low score of both deployments. Conversely, in the Cloud-ward case
(even though Δ3 would still be preferable), Δ16 features a good ranking value,
despite requiring to upgrade the connection available at Fog 2.

Table 2. Ranking of eligible deployments.

Dep. ID IoTController DataStorage Dashboard rF (Δ) rC(Δ)

Δ1 Fog 2 Fog 3 Cloud 2 0.53 0.28

Δ2 Fog 2 Fog 3 Cloud 1 0.63 0.38

Δ3 Fog 3 Fog 3 Cloud 1 0.85 0.60

Δ6 Fog 3 Fog 3 Cloud 2 0.75 0.50

Δ15∗ Fog 2 Cloud 1 Cloud 2 0.15 0.40

Δ16∗ Fog 2 Cloud 1 Cloud 1 0.51 0.76

6 Concluding Remarks

In this paper, we proposed a declarative methodology, SecFog, which can be used
to assess the security level of multi-component application deployments to Fog
computing infrastructures. With a proof-of-concept implementation, we have
shown how SecFog helps application operators in determining secure deploy-
ments based on specific application requirements, available infrastructure capa-
bilities, and trust degrees in different Fog and Cloud providers. We have also
shown how SecFog can be used synergically with other predictive methodolo-
gies to perform multi-objective optimisation of security along with other metrics
(viz., deployment cost, QoS-assurance, resource usage). In our future work we
plan to:

– enhance SecFog by including a more expressive trust model, capable of
describing indirect trust relations among involved stakeholders like in [4],

– evaluate the possibility to use SecFog with meta-heuristic optimisation tech-
niques (e.g., genetic or swarm intelligence algorithms), also taming the time
complexity of the generate & test approach we prototyped, and

– further engineer our ProbLog proof-of-concept implementation and show its
applicability to actual use cases (e.g., based on the Fog application of [9]).

Secure Apps in the Fog: Anything to Declare? 59

Acknowledgments. This work has been partly supported by the project
“DECLWARE: Declarative methodologies of application design and deployment”
(PRA 2018 66) funded by the University of Pisa, Italy.

References

1. OpenFog Consortium. http://www.openfogconsortium.org/
2. EU Cloud SLA Standardisation Guidelines (2014). https://ec.europa.eu/digital-

single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
3. Belle, V.: Logic meets probability: towards explainable AI systems for uncertain

worlds. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI, pp. 19–25 (2017)

4. Bistarelli, S., Martinelli, F., Santini, F.: Weighted datalog and levels of trust. In:
3rd International Conference on Availability, Reliability and Security, pp. 1128–
1134 (2008)

5. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017)

6. Brogi, A., Forti, S., Guerrero, C., Lera, I.: How to Place Your Apps in the Fog -
State of the Art and Open Challenges. arXiv:1901.05717 [cs.DC] (2019)

7. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your Fog applications, prob-
ably. In: Rana, O., Buyya, R., Anjum, A. (eds.) Proceedings of 1st IEEE Interna-
tional Conference on Fog and Edge Computing (2017)

8. Brogi, A., Forti, S., Ibrahim, A.: Deploying fog applications: how much does it
cost, by the way? In: Proceedings of the 8th International Conference on Cloud
Computing and Services Science, pp. 68–77. SciTePress (2018)

9. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: an active learning
lab with fog computing. In: 2018 Third International Conference on Fog and Mobile
Edge Computing (FMEC), pp. 79–86. IEEE (2018)

10. Choo, K.K.R., Lu, R., Chen, L., Yi, X.: A foggy research future: advances and
future opportunities in fog computing research (2018)

11. Dastjerdi, A.V., Buyya, R.: Fog computing: helping the internet of things realize
its potential. Computer 49(8), 112–116 (2016)

12. De Raedt, L., Kimmig, A.: Probabilistic (logic) programming concepts. Mach.
Learn. 100(1), 5–47 (2015). https://doi.org/10.1007/s10994-015-5494-z

13. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: a probabilistic prolog and its
application in link discovery. In: Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, pp. 2468–2473 (2007)

14. Forti, S.: Supporting application deployment and management in fog computing.
Papers From the 12th Advanced Summer School on Service-Oriented Computing
(SummerSOC 2018), pp. 64–75 (2018)

15. Goettelmann, E., Dahman, K., Gateau, B., Dubois, E., Godart, C.: A security risk
assessment model for business process deployment in the cloud. In: 2014 IEEE
International Conference on Services Computing, pp. 307–314. IEEE (2014)

16. Guerrero, C., Lera, I., Juiz, C.: Resource optimization of container orchestration: a
case study in multi-cloud microservices-based applications. J. Supercomput. 74(7),
2956–2983 (2018)

17. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement policy
for performance optimization in fog computing. J. Ambient. Intell. Hum. Comput.
(2018)

http://www.openfogconsortium.org/
https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-standardisation-guidelines
http://arxiv.org/abs/1901.05717
https://doi.org/10.1007/s10994-015-5494-z

60 A. Brogi et al.

18. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017)

19. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: fog-based data analytics scheme
with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw.
Comput. Appl. 82, 152–165 (2017)

20. Hong, H.J., Tsai, P.H., Hsu, C.H.: Dynamic module deployment in a fog com-
puting platform. In: 2016 18th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pp. 1–6 (2016)

21. Kaur, A., Singh, M., Singh, P., et al.: A taxonomy, survey on placement of virtual
machines in cloud. In: 2017 International Conference on Energy, Communication,
Data Analytics and Soft Computing (ICECDS), pp. 2054–2058. IEEE (2017)

22. Luna, J., Taha, A., Trapero, R., Suri, N.: Quantitative reasoning about cloud
security using service level agreements. IEEE Trans. Cloud Comput. 5(3), 457–
471 (2017)

23. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module
management for fog computing environments. Trans. Internet Technol. 19, 1–21
(2018)

24. Mezni, H., Sellami, M., Kouki, J.: Security-aware SaaS placement using swarm
intelligence. J. Softw. Evol. Process. 30(8), e1932 (2018)

25. Mukherjee, M., et al.: Security and privacy in fog computing: challenges. IEEE
Access 5, 19293–19304 (2017)

26. Nacer, A.A., Goettelmann, E., Youcef, S., Tari, A., Godart, C.: Obfuscating a
business process by splitting its logic with fake fragments for securing a multi-
cloud deployment. In: 2016 IEEE World Congress on Services (SERVICES), pp.
18–25. IEEE (2016)

27. Newman, S.: Building microservices: designing fine-grained systems. O’Reilly
Media Inc., Sebastopol (2015)

28. Ni, J., Zhang, K., Lin, X., Shen, X.: Securing fog computing for internet of things
applications: challenges and solutions. IEEE Comm. Surv. Tutor. 20, 601–628
(2017)

29. OpenFog: OpenFog Reference Architecture (2016)
30. Rahbari, D., Nickray, M.: Scheduling of fog networks with optimized knapsack by

symbiotic organisms search. In: 2017 21st Conference of Open Innovations Associ-
ation (FRUCT), pp. 278–283 (2017)

31. Rodŕıguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity
classes from different ontologies. Trans. Knowl. Data Eng. 15(2), 442–456 (2003)

32. Schoenen, S., Mann, Z.Á., Metzger, A.: Using risk patterns to identify violations of
data protection policies in cloud systems. In: Braubach, L., Murillo, J.M., Kaviani,
N., Lama, M., Burgueño, L., Moha, N., Oriol, M. (eds.) ICSOC 2017. LNCS, vol.
10797, pp. 296–307. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91764-1 24

33. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards QoS-aware fog service
placement. In: 2017 IEEE 1st International Conference on Fog and Edge Comput-
ing (ICFEC), pp. 89–96 (2017)

34. Soldani, J., Tamburri, D.A., Van Den Heuvel, W.J.: The pains and gains of
microservices: a systematic grey literature review. J. Syst. Softw. 146, 215–232
(2018)

https://doi.org/10.1007/978-3-319-91764-1_24
https://doi.org/10.1007/978-3-319-91764-1_24

Secure Apps in the Fog: Anything to Declare? 61

35. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), pp. 1222–1228 (2017)

36. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. Trans. Serv. Comput. 12, 712–725
(2018)

37. Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architec-
tures, applications and abstractions. In: 2017 IEEE 1st International Conference
on Fog and Edge Computing (ICFEC), pp. 115–124 (2017)

38. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017)

39. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for Internet of Things services. IEEE Internet Comput. 21(2), 16–24 (2017)

40. Wen, Z., Ca�la, J., Watson, P., Romanovsky, A.: Cost effective, reliable and secure
workflow deployment over federated clouds. Trans. Serv. Comput. 10(6), 929–941
(2017)

41. Zhang, P., Zhou, M., Fortino, G.: Security and trust issues in fog computing: a
survey. Futur. Gener. Comput. Syst. 88, 16–27 (2018)

14th International Workshop on
Engineering Service-Oriented

Applications and Cloud Services

WESOACS 2018 Preface

The International Workshop on Engineering Services-Oriented Applications and Cloud
Services (WESOACS) is a long-established forum (formerly known as WESOA) for
innovative ideas from research and practice in the field of software engineering for
modern service-oriented application systems. This year, the 14th meeting took place on
September 12 in Como, Italy.

Service-oriented applications play an important role in many diverse areas, from
cloud/edge computing to Web/enterprise applications. While there is agreement on the
main principles for designing, developing, and deploying applications based on dis-
tributed software services, methods, and tools that support the development of such
applications are still the subject of intense research. These research topics include
lifecycle management, development methodologies, enterprise architectures, analysis
and design, and in particular service engineering technologies for cloud computing
environments in general, and more specifically for edge/fog-based applications and
intelligent cyber-physical systems. Additionally, the DevOps approach that inextricably
links software service development and operations and involves agile processes,
microservices, continuous delivery, containers, and cloud technologies is an important
part of the current transformation of IT.

The WESOACS technical program included five research papers and one invited
presentation, organized in three sessions. Professor Elisabetta Di Nitto opened the
workshop with her invited presentation titled “An Overview on DevOps and
Infrastructure-as-Code.” The first paper in the technical program (“Towards a Gener-
alizable Comparison of the Maintainability of Object-Oriented and Service-Oriented
Applications”) discusses the differences between object and service orientation, notes
the lack of empirical research on this topic, and details the results of a study conducted
by the authors.

The second paper (“Implementation of a Cloud Services Management Frame-
work”) describes the implementation of a Service Consumer Framework (SCF) for the
management of design-time and runtime activities of enterprise applications that use
externally provided cloud services. The third paper (“Decentralized Billing and Sub-
contracting of Application Services for Cloud Environment Providers”) proposes a
decentralized billing and subcontracting system for regional cloud service providers,
based on blockchain technology that allows to collectively offer services in a dis-
tributed environment and to bill each user of the service individually without a central
service.

The fourth paper (“May Contain Nuts: The Case for API Labels”) addresses the
challenge of managing and describing APIs. The paper presents the vision of stan-
dardized API labels, which summarize and represent critical aspects of APIs, as a
means to ease API management. Finally, the fifth paper (“On Limitations of
Abstraction-Based Deadlock-Analysis of Service-Oriented Systems”) proposes an
approach based on Mayr’s Process Rewrite Systems to model both concurrent and

stack behaviors of concurrent service-oriented systems and keep the deadlock problem
decidable.

The participants had ample opportunity for professional exchange and networking,
so that the 14th edition of the event can once again be regarded as a success.

We wish to thank all authors for their contributions, the Program Committee
members for their hard work, and the ESOCC 2018 workshop chairs for their help
makethings work.

March 2020 Andreas S. Andreou
Luciano Baresi

George Feuerlicht
Winfried Lamersdorf

Guadalupe Ortiz
Willem-Jan van den Heuvel

Christian Zirpins

WESOACS 2018 Preface 65

WESOACS 2018 Organization

Workshop Organizers

Andreas S. Andreou Cyprus University of Technology, Cyprus
Luciano Baresi Politecnico di Milano, Italy
George Feuerlicht Prague University of Economics and Business,

Czech Republic
Winfried Lamersdorf University of Hamburg, Germany
Guadalupe Ortiz University of Cádiz, Spain
Willem-Jan van den Heuvel Tilburg University, The Netherlands
Christian Zirpins Karlsruhe University of Applied Sciences,

Germany

Program Committee

Mike Papazoglou University of Tilburg, The Netherlands
Ioannis Stamelos Aristotle University of Thessaloniki, Greece
Elisabetta di Nitto Politecnico di Milano, Italy
Danilo Ardagna Politecnico di Milano, Italy
Sam Jesus Guinea Politecnico di Milano, Italy
George Pallis University of Cyprus, Cyprus
Patricia Lago University of Amsterdam, The Netherlands
Herodotos Herodotou Cyprus University of Technology, Cyprus
Sotirios P. Chatzis Cyprus University of Technology, Cyprus
Efi Papatheocharous SICS, Sweden
Spyros Likothanassis University of Patras, Greece
Efstratios Georgopoulos TEI of Kalamata, Greece
Georgios J. Fakas Uppsala University, Sweden
Chi-Hung Chi CSIRO, Australia
Frank Leymann University of Stuttgart, Germany

Implementation of a Cloud Services
Management Framework

Hong Thai Tran1 and George Feuerlicht1,2,3(B)

1 Faculty of Engineering and Information Technology, University of Technology Sydney,
Sydney, Australia

{HongThai.Tran,George.Feuerlicht}@uts.edu.au
2 Unicorn College, V Kapslovně 2767/2, 130 00 Prague 3, Czech Republic

3 Prague University of Economics, W. Churchill Square. 4, 130 67 Prague 3, Czech Republic

Abstract. Rapid growth of various types of cloud services is creating new oppor-
tunities for innovative enterprise applications. As a result, enterprise applications
are increasingly reliant on externally provided cloud services. It can be argued
that traditional systems development methods and tools are not adequate in the
context of cloud services and that newmethods and frameworks that support these
methods are needed for management of lifecycle of cloud services. In this paper,
we describe the implementation of a Service Consumer Framework (SCF) – a
framework for the management of design-time and runtime activities throughout
the lifecycle of enterprise applications that use externally provided cloud services.
The SCF framework has been evaluated during the implementation of a large-scale
project and is being continuously improved to incorporate additional types of cloud
services.

Keywords: Cloud computing · Service management · Frameworks

1 Introduction

Most enterprise applications today use third party cloud services to implement a sig-
nificant part of their functionality. This results in hybrid environments that require the
integration of on-premises services with public cloud services made available on a pay-
per-use basis by external cloud providers. The use of third party cloud services (e.g.
payment services, storage services, etc.) in enterprise applications has many benefits,
but at the same time presents challenges as both the functional and non-functional charac-
teristics of cloud services are controlled by autonomous cloud service providers. Service
consumers are primarily responsible for the selection of services, integration of cloud
services into on-premises enterprise applications and managing continuity of operation
during runtime. With the increasing use of cloud services, it is important that cloud ser-
vice consumers use suitablemethods and tools tomanage the entire lifecycle of enterprise
applications [1]. A comprehensive framework is needed to support all phases of service
consumer lifecycle including the selection of cloud services, integration of services with
enterprise applications and runtime monitoring and management of services.

© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 67–78, 2020.
https://doi.org/10.1007/978-3-030-63161-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_5

68 H. T. Tran and G. Feuerlicht

Cloud services management has been an active area of research with numerous pub-
lications addressing different cloud service lifecycle phases, in particular cloud service
selection [2–7] and service integration and monitoring [8–11]. However, most of these
research efforts take service provider perspective and do not address the issues that arise
when on-premises enterprise applications consume externally provided cloud services.
A typical scenario illustrating this situation involves an on-premises application that
consumes a range of cloud services (e.g. payment services: PayPal and eWay, storage
services:DropBox,GoogleDrive andAWSS3,mapping services:GoogleMaps, etc.) via
published APIs (Application Programming Interfaces) [12]. Management of such het-
erogeneous environments requires both design-time and run-time support to minimize
the software maintenance effort and to ensure continuity of operation.

The main motivation for our research is to provide a detail description of the service
development lifecycle as it applies to cloud service consumers (as distinct from cloud
service providers) and to implement a prototype framework that supports this lifecycle.
In our previous work we have proposed a Service Consumer Framework (SCF) [13]
and described a cloud Service Consumer System Development Lifecycle (SC-SDLC)
[14] for managing cloud services from a service consumer perspective. In this paper,
we describe how the SCF supports design-time and run-time activities throughout the
SC-SDLC (Sect. 3), and detail the implementation of this framework (Sect. 4). In the
next section (Sect. 2), we review related work on the methods and frameworks for the
management of cloud services. Section 5 are our conclusions and directions for future
work.

2 Related Work

While the management of cloud services in enterprise applications is still a subject of
extensive investigation, there is a general agreement in the literature about the individ-
ual lifecycle phases. A method for managing integrated lifecycle of cloud services was
proposed by Joshi et al. [15]. The authors have identified performance metrics asso-
ciated with each lifecycle phase that include data quality, cost, and security metrics
based on SLA (Service Level Agreement) and consumer satisfaction, and they have
proposed a service repository with a discovery capability for managing cloud services
lifecycle [16]. The authors divide cloud services lifecycle into five phases: requirements
specification, discovery, negotiation, composition, and consumption. During the ser-
vice discovery phase, service consumers search for services using service description
and provider policies in a simple services database. Service information is stored as a
Request for Service (RFS) that contains functional specifications, technical specifica-
tions, human agent policy, security policy and data quality policy. Field et al. [17] present
a European Middleware Initiative (EMI) Registry that uses a decentralized architecture
to support service discovery for both hierarchical and peering topologies. The objective
of the EMI Registry is to provide robust and scalable service discovery that contains
two components: Domain Service Registry (DSR) and Global Service Registry (GSR).
Service discovery is based on service information stored in service records that contain
mandatory attributes such as service name, type of service, service endpoint, service
interface, and service expiry date.

Implementation of a Cloud Services Management Framework 69

Cloud-based application development frameworks and architectures have been the
subject of intense recent interest in the context of microservices and DevOps [18, 19].
According to Rimal et al. [20] the most important current challenge is the lack of a
standard architectural approach for cloud computing. The authors explore and classify
architectural characteristics of cloud computing and identify several architectural fea-
tures that play a major role in the adoption of cloud computing. The paper provides
guidelines for software architects for developing cloud architectures. Another notable
effort in this area is the Seaclouds project [21, 22] that aims to develop a new open
source framework for Seamless Adaptive Multi-Cloud management of service-based
applications. The authors argue that lack of standardization results in vendor lock-in
that affects all stages of the cloud applications’ lifecycle, forcing application developers
to have a deep knowledge of the providers’ APIs. Seaclouds is a software platform and
a reference architecture designed to address the heterogeneity of cloud service APIs at
IaaS (Infrastructure as a Service) and SaaS (service as a Service) levels. The Seaclouds
platform supports Discovery and Matchmaking, Cloud Service Optimization, Applica-
tion Management, Monitoring and SLA Enforcement, and Application Migration. The
authors of theNucleous project [23] have investigated the practicability of abstracting the
differences of vendor specific deployment and management APIs and creating an inter-
mediary abstraction layer based on four selected PaaS platforms (cloudControl, Cloud
Foundry, Heroku, and OpenShift), and concluded that the diversities among the plat-
forms can be successfully harmonized. Using the Nucleous platform the effort involved
in switching providers can be minimized, increasing the portability and interoperability
of PaaS applications, helping to avoid critical vendor lock-in.

Unlike the above-mentioned initiatives, we do not aim to implement a framework for
multi-cloud deployment, monitoring and orchestration of cloud services across multiple
cloud platforms. Our focus is on designing a framework that improves the manageability
and reliability of enterprise applications that consume cloud services from different
providers with varied QoS (Quality of Service) characteristics.

3 Service Consumer Framework and SC-SDLC

Service Consumer Framework is a research prototype designed for the purpose of eval-
uating the functionality required for supporting the SC-SDLC. SCF constitutes a layer
between on-premises enterprise applications and external cloud services and consists
of four main components: Service Repository, Service Adaptors, Workflow Engine and
Monitoring Centre. The service repository records information about enterprise appli-
cations and related cloud services throughout the entire service lifecycle. The service
adaptor module contains adaptors for various categories of services. The function of a
service adaptor is to present a unified API for services from different cloud providers
for the same type of service (e.g. a payment service), transforming outgoing application
requests into the format supported by the current version of the corresponding external
service, and incoming responses into format compatible with on-premises applications.
The main function of the workflow engine is to provide failover capability in the event
of a cloud service not being available by routing application requests to an alternative
cloud service. The monitoring centre uses log data collected from service adaptors and
the workflow engine tomonitor cloud services and to analyze their runtime performance.

70 H. T. Tran and G. Feuerlicht

We have described the SC-SDLC in previous publications [24, 25]; in this section
we briefly describe the main SC-SDLC lifecycle phases and discuss how the Service
Consumer Framework supports activities during these phases. We have identified the
following five phases of SC-SDLC: Requirements Specification, Service Identification,
Service Integration, Service Monitoring and Service Optimization. We classify these
phases into design-time activities: requirements specification, service identification and
service integration, and run-time activities: service monitoring and service optimization.
Typically, business analysts are involvedwith the requirements specification phase,while
service identification, integration and optimization phases are the domain of application
developers. Service monitoring phase is the responsibility of system administrators.

The SC-SDLC is closely interrelated with the Service Consumer Framework that
provides support for lifecycle phases and activities. Figure 1 illustrates how the Service
Consumer SDLC is supported by the Service Consumer Framework.

Fig. 1. Service consumer framework support for SC-SDLC phases

During the service requirements specification phase, business analysists record func-
tional and non-functional requirements of the services in the service repository. Func-
tional specification of the service describes what functions the service should provide
and its characteristics may vary according to the type of service (i.e. application ser-
vice, infrastructure service, etc.). The QoS (Quality of Service) non-functional attributes
include service availability, response time, security requirements, and may also include
requirements such as data location and the maximum cost of the service. Once the ser-
vice is fully described and classified, the service consumer creates a Request for Service

Implementation of a Cloud Services Management Framework 71

(RFS) and records this information in the service repository. Services are categorized
according to service type (e.g. payment, storage, mapping, etc.) and this information is
used during the service identification phase to search the service repository.

The service identification phase involves searching the service repository for services
that match the RFS attempting to identify an existing service that is already certified for
use (e.g. payment service with availability of 99.99 and sub-second response time). The
SCF incorporates anAPI that supports a repository query function (described inSect. 4.1)
that searches the service repository database for suitable candidate services. Service
repository database stores detail information that includes service features available in
different versions (i.e. functional description of the service) as well as non-functional
parameters, including service reliability information recorded during runtime. Service
repository can be searched based on various parameters to identify candidate services
that are then checked for compatibility with the service specifications. If no suitable
certified service is found, the service consumer will attempt to identify the service
from the services available from external cloud providers. Following verification of
the functionality and performance, the service is certified and recorded in the service
repository. Certification involves extensive testing of the functionality and performance
of the service. If no suitable cloud service is found, the service may have to be developed
internally (i.e. as an on-premises service).

The service integration phase involves the integration of cloud services with on-
premises enterprise applications. This activity varies depending on the type of cloud
service and may involve the development of a service adaptor and design of specialized
workflows to improve the reliability of applications by incorporating failover capability.
The SCF repository records the relationships between services (service versions) and
corresponding enterprise applications. The final activity of the cloud service integration
phase comprises integration testing, provisioning, and deployment, similar to activities
during the implementation of on-premises application.

The service monitoring phase involves measuring runtime QoS attributes and com-
paring their valueswith those specified in the corresponding SLA. System administrators
use the monitoring centre to identify performance issues. Local monitoring is required
as QoS values measured at the consumer site may differ from the values published by
cloud service providers. Data generated during the monitoring phase is stored in the
monitoring database.

The final SC-SDLC phase is concerned with service optimization and continuous
service improvement. Service optimization may involve replacing existing services with
new versions as these become available, or by identifying alternative cloud services from
a different provider with improved QoS characteristics.

4 SCF Implementation

This section describes the implementation details of the components of the SCF frame-
work. Additional implementation details are available in [26] and the SCF source code
has been published on GitHub (https://github.com/tranhongthai/SCF). The SCF pro-
totype is developed using .Net technologies: Microsoft SQL Server [27] was used to
implement the service repository and monitoring center databases, ASP.Net MVC 5

https://github.com/tranhongthai/SCF

72 H. T. Tran and G. Feuerlicht

[28] was used to build the service repository and the service monitoring center tools,
and Windows Communication Foundation (WCF) [29] was used to implement service
repository and monitoring centre APIs. The SCF is deployed on an AWS (Amazon
Web Services) EC2 server and the databases are implemented as AWS RDS (Relational
Database System) services. The workflow engine and service adaptors are implemented
as Class Libraries (DLL) in C# programming language and released using NuGet -
Microsoft package manager for .NET (https://www.nuget.org/packages). Table 1 lists
the main SCF modules, technologies used for their implementation and deployment
platforms.

Table 1. SCF implementation technologies and deployment platforms

SCF modules Implementation technology Deployment platform

Service repository ASP.NET MVC
Microsoft SQL Server

AWS EC2
AWS RDS

Service adaptors Class Library (.DDL) Nuget

Workflow engine Class Library (.DDL) Nuget

Monitoring center Windows service application
Microsoft SQL Server
Window foundation communication

AWS EC2
AWS RDS

4.1 Service Repository

Service repository is a key component of SCF framework that maintains information
about cloud services throughout the entire service lifecycle. A simplified data model
(Entity-Relationship Diagram) of the service repository is shown in Fig. 2. Service is a
central entity of the service repository with attributes that describe services and include
service requirements as captured by the SLA. In order to manage service evolution
and keep track of changes in service functionality, information about service versions is
stored in the repository. The ServiceVersion entity includes functional and non-functional
descriptors of the service that are further described by the information in the relatedQoS
and ServiceFeature entities. This allows service versions to have different QoS values
and features. ServiceCategory is used to categorize services according to their type (e.g.
payment, storage, etc.); the self-referencing relationship produces a service type hierar-
chy, so that for example, a storage service constitutes a subtype of an infrastructure ser-
vice. ServiceProvider entity represents service providers and contains service provider
attributes including provider description and provider ranking (indication of provider
reputation). The Application entity represents on-premises applications that are asso-
ciated with requirements specifications (Specification) that are matched with services
(ServiceVersion) based on the compatibility of functional and non-functional attribute
values. Results of service invocations are logged at runtime, and are represented by the
Log entity. Service log records include response time, results of service invocations,

https://www.nuget.org/packages

Implementation of a Cloud Services Management Framework 73

and other non-functional attributes collected at run-time and used for analysis of service
performance. Responsibility for managing services is assigned to system administrators
and represented by the Administrators entity.

Fig. 2. Service repository entity relationship diagram

Service Repository Interface
Service repository APIs are implemented using WCF and provide access to repository
information. The following methods have been implemented:

74 H. T. Tran and G. Feuerlicht

• Search: this method is used to query the service repository database and to retrieve
services basedon the specifiedvalues ofQoSparameters (e.g. service type, availability,
response time, etc.)

• GetInfo: this method retrieves information about a specific cloud service, including
basic service description and QoS information

• UpdateQoS: this method is used to insert and update the QoS information for a
specified cloud service

4.2 Service Adaptors

Service adaptors implement generic interfaces for different types of services (e.g. a pay-
ment service) that support common service functions (e.g. payment, refund, etc.). This
allows runtime substitution of cloud services and can improve the overall reliability
of enterprise applications. At design time, cloud services can be replaced by alterna-
tive services with improved QoS characteristics, as these become available. The main
function of a service adaptor is to transform application requests into the format sup-
ported by the current version of the corresponding external service, and to ensure that
incoming responsesmaintain compatibility with internal applications. Genericmessages
and methods that support common service functions are defined for each service type
and mapped into the corresponding messages and methods of specific cloud provider
services. So that for example, the Dropbox adaptor transforms the generic Download
request into the Dropbox DownloadAsync request, and the Google Drive Adaptor trans-
forms this request into GetByteArrayAsync request. The use of service adaptors across
all enterprise applications alleviates the need to modify individual applications when a
new version of the cloud service API is released. Another function of service adaptors
is to perform runtime logging of performance parameters that are used to calculate QoS
attributes.

Service Adaptor Library
The Service Adaptor Library contains generic APIs that include methods for various
types of services. For example, a generic payment service interface contains three com-
mon methods: Pay, Refund, and CheckBalance that use generic messages (Paymen-
tRequest, PaymentResponse, RefundRequest, RefundResponse, etc.). Service adaptors
inherit the generic interface and implement the body of the methods. The Service Adap-
tor Library currently contains adaptors for PayPal, eWay, Stripe payment services, and
Dropbox and GoogleDrive storage services. We intent to expand the range of adaptors,
but at the same time we recognize that this may not be a workable solution in situa-
tions where the functionality of services from different cloud providers is significantly
different.

4.3 Workflow Engine

The purpose of the workflow engine is to implement simple workflows using a combina-
tion of adaptors and pre-defined sub-workflows (i.e. workflow fragments that implement
a specific function, e.g. the Retry Fault Tolerance reliability strategy). The SCF work-
flow engine it is not intended to replicate a fully-functional orchestration engine (e.g.

Implementation of a Cloud Services Management Framework 75

BPEL engine). The workflow engine determines the sequence of service invocations
for a given application requirement, and is typically used to configure adaptors to pro-
vide failover function using various fault tolerance strategies. We have demonstrated,
using payment services PayPal and eWay, that relatively simple fault tolerance strategies
such as Retry Fault Tolerance, Recovery Block Fault Tolerance or Dynamic Sequential
Fault Tolerance strategy can lead to significant improvements in application availability
[30]. Figure 3 shows an example of a workflow that uses Dropbox and Google Drive as
alternative storage systems. During normal operation, the data is replicated across both
storage systems. The workflow engine switches between the storage systems to maintain
continuity of operation in the event of a single storage system failure; on recovery, the
storage systems are re-synchronized.

Fig. 3. Example of a fault tolerant cloud storage workflow

Workflow Engine Library
Workflow Engine is a class library developed using the C# programming language. A
workflow can contain a sequence of service adaptors and sub-workflows (pre-configured
workflows, e.g. Retry Fault Tolerance strategy for payment services). When executing a
workflow, adaptors and sub-workflows invoke individual cloud services in a pre-defined
sequence.

4.4 Monitoring Center

The function of the monitoring centre is to monitor the runtime performance of cloud
services and to calculate QoS values that are used for optimizing applications. The
Monitoring Centre provides three basic functions:

• Recording log data: This function collects service log data from enterprise applica-
tions. The Log Collector is invoked by service adaptors or by enterprise applications
and records log data in the monitoring database. At the same time, alerts are generated
that indicate fault conditions and departures from the expected QoS values.

• QoS calculation: This function calculates the response time and availability of cloud
services using recorded log data. The resulting QoS values can be used for cloud
service selection during the service identification phase.

76 H. T. Tran and G. Feuerlicht

• Cloud service monitoring: The availability and runtime performance of cloud
services is compared to the expected QoS values as specified in the RFS.

Themonitoring centre consists ofMonitoringCentreDatabase, LogCollector,QoSAnal-
ysis and ServiceMonitormodules. Themonitoring centre database is implemented using
Microsoft SQL server and stores log records generated by service invocations. The log
records include the service identifier (ServiceCode) and the application identifier (Appli-
cationID) of the enterprise application that executed the API call, service execution start
(StartTime) and end times (EndTime), result of the call (i.e. success/failure) and error
codes generated by the adaptor. Service adaptors record the runtime logs in the monitor-
ing database using the log collector module.Whenever the log collector detects a service
failure, the monitoring centre sends a notification to the relevant system administrators.
The log data is used to generate hourly, daily and monthly reports of average availability
and response time for individual cloud services. The QoS analysis module developed
using C# programming language is deployed on a AWS EC2 server and configured to
execute as a Window Service. The service monitor module is developed using ASP.Net
MVC 5 and is deployed as a client tool for monitoring the cloud services. The service
monitor module displays the runtime QoS information for individual cloud services and
compares these values with the QoS values defined in the requirements specification.

5 Conclusions

Wehave argued that traditional systems development methods and tools are not adequate
in the context of cloud services, and that a new approach that supports cloud service
consumer lifecycle activities is required. In our earlier work, we have proposed a Ser-
vice Consumer SystemDevelopment Lifecycle (SC-SDLC) that focuses on the activities
of cloud service consumers. In this paper, we describe implementation of the Service
Consumer Framework (SCF) that supports design and runtime activities throughout the
SC-SDLCphases. SCF is a research prototype intended to evaluate the feasibility of a rel-
atively light-weight solution suitable for SMEs (Small andMedium size Enterprises) that
are in the process of developing enterprise applications that consume externally provided
cloud services. We have evaluated the implementation of several fault tolerant strate-
gies (RFT, RBFT and DSFT) and found that the experimental results obtained using the
SCF are consistent with theoretical predictions, indicating significant improvements in
service availabilitywhen compared to invoking cloud services directly [30]. Both the SC-
SDLC and SCF have been evaluated during the development of a Hospital Management
application for Family Medical Practice (https://www.vietnammedicalpractice.com/), a
leading international primary health care provider in Vietnam [26]. We have received
positive feedback indicating that the SC-SDLC method guided developers throughout
the project and SCF framework provided a suitable tool for recording information about
cloud services and the various SC-SDLC phases, leading to an improvement in over-
all productivity. Additionally, the cross-provider failover capability implemented using
the workflow engine, and monitoring center features were regarded as having potential
to significantly reduce outages and improve application availability. Areas of potential
future improvement include the definition of guiding principles and documentation of
best practices for each SC-SDLC phase.

https://www.vietnammedicalpractice.com/

Implementation of a Cloud Services Management Framework 77

References

1. Rehman, Z.-U., Hussain, O.K., Hussain, F.K.: User-side cloud service management: state-of-
the-art and future directions. J. Netw. Comput. Appl. 55, 108–122 (2015)

2. Arun, S., Chandrasekaran, A., Prakash, P.: CSIS: cloud service identification system. Int. J.
Electr. Comput. Eng. (IJECE) 7(1), 513–520 (2017)

3. Ghamry, A.M., Alkalbani, A.M., Tran, V., Tsai, Y.-C., Hoang, M.L., Hussain, F.K.: Towards
a public cloud services registry. In: Bouguettaya, A., et al. (eds.) WISE 2017. LNCS, vol.
10569, pp. 290–295. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68783-4_20

4. Hajlaoui, J.E., et al.: QoS based framework for configurable IaaS cloud services discovery.
In: 2017 IEEE International Conference on Web Services (ICWS). IEEE (2017)

5. Rotem, R., Zelovich, A., Friedrich, G.: Cloud services discovery and monitoring. Google
Patents (2016)

6. Yang, K., et al.: Model-based service discovery—prototyping experience of an OSS scenario.
BT Technol. J. 24(2), 145–150 (2006)

7. Zisman, A., et al.: Proactive and reactive runtime service discovery: a framework and its
evaluation. IEEE Trans. Softw. Eng. 39(7), 954–974 (2013)

8. Ciuffoletti, A.: Application level interface for a cloud monitoring service. Comput. Stand.
Interfaces 46, 15–22 (2016)

9. Qu, L., et al.: Context-aware cloud service selection based on comparison and aggregation of
user subjective assessment andobjective performance assessment. In: 2014 IEEE International
Conference on Web Services (ICWS). IEEE (2014)

10. Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of user
feedback and quantitative performance assessment. In: 2013 IEEE International Conference
on Services Computing (SCC). IEEE (2013)

11. Montes, J., et al.: GMonE: a complete approach to cloud monitoring. Futur. Gener. Comput.
Syst. 29(8), 2026–2040 (2013)

12. ProgrammableWeb. ProgrammableWeb - API Directory (2018). https://www.programmable
web.com/. Accessed 20 July 2018

13. Feuerlicht, G., Tran, H.T.: Service consumer framework. In: Proceedings of the 16th Inter-
national Conference on Enterprise Information Systems-Volume 2 (2014). SCITEPRESS-
Science and Technology Publications, Lda

14. Tran, H.T., Feuerlicht, G.: Service development life cycle for hybrid cloud environments. J.
Softw. (2016)

15. Joshi, K., et. al.: Integrated lifecycle of IT services in a cloud environment. In: Proceedings
of The Third International Conference on the Virtual Computing Initiative (ICVCI 2009),
Research Triangle Park, NC (2009)

16. Joshi, K.P., Yesha, Y., Finin, T.: Automating cloud services life cycle through semantic
technologies. IEEE Trans. Serv. Comput. 7(1), 109–122 (2014)

17. Field, L., et al.: The EMI registry: discovering services in a federated world. J. Grid Comput.
12(1), 29–40 (2014)

18. Mahmood, Z., Saeed, S.: Software Engineering Frameworks for the Cloud Computing
Paradigm. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5031-2

19. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
20. Rimal, B.P., et al.: Architectural requirements for cloud computing systems: an enterprise

cloud approach. J. Grid Comput. 9(1), 3–26 (2011)
21. Brogi, A., et al.: SeaClouds: a European project on seamless management of multi-cloud

applications. ACM SIGSOFT Softw. Eng. Notes 39(1), 1–4 (2014)
22. Brogi, A., et al.: SeaClouds: an open reference architecture for multi-cloud governance. In:

Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS, vol. 9839, pp. 334–338.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48992-6_25

https://doi.org/10.1007/978-3-319-68783-4_20
https://www.programmableweb.com/
https://doi.org/10.1007/978-1-4471-5031-2
https://doi.org/10.1007/978-3-319-48992-6_25

78 H. T. Tran and G. Feuerlicht

23. Kolb, S., Röck, C.: Nucleus-unified deployment and management for platform as a service
(2016)

24. Feuerlicht, G., Thai Tran, H.: Adapting service development life-cycle for cloud. In: Pro-
ceedings of the 17th International Conference on Enterprise Information Systems-Volume 3
(2015). SCITEPRESS-Science and Technology Publications, Lda

25. Tran, H.T., Feuerlicht, G.: Service development life cycle for hybrid cloud environments.
JSW 11(7), 704–711 (2016)

26. Tran, H.T.: A framework for management of cloud services (2017). University of Technology
Sydney

27. SQL Server 2017 on Windows and Linux | Microsoft. https://www.microsoft.com/en-au/sql-
server/sql-server-2017. Accessed 20 July 2018

28. Anderson, R.: ASP.NETMVC 5 (2018). https://docs.microsoft.com/en-us/aspnet/mvc/mvc5.
Accessed 20 July 2018

29. Windows Communication Foundation (2018). https://docs.microsoft.com/en-us/dotnet/fra
mework/wcf/. Accessed 20 July 2018

30. Tran, H.T., Feuerlicht, G.: Improving reliability of cloud-based applications. In: Aiello, M.,
Johnsen,E.B.,Dustdar, S.,Georgievski, I. (eds.) ESOCC2016.LNCS, vol. 9846, pp. 235–247.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44482-6_15

https://www.microsoft.com/en-au/sql-server/sql-server-2017
https://docs.microsoft.com/en-us/aspnet/mvc/mvc5
https://docs.microsoft.com/en-us/dotnet/framework/wcf/
https://doi.org/10.1007/978-3-319-44482-6_15

On Limitations of Abstraction-Based
Deadlock-Analysis of Service-Oriented

Systems

Mandy Weißbach(B) and Wolf Zimmermann

Institute of Computer Science, Martin Luther University Halle-Wittenberg,
Von-Seckendorff-Platz 1, 06120 Halle, Germany

{mandy.weissbach,wolf.zimmermann}@informatik.uni-halle.de

Abstract. Deadlock-analysis of concurrent service-oriented systems is
often done by P/T-net-based approaches. We show that there is a con-
current service-oriented system with synchronous (stack behavior) and
asynchronous procedure (concurrent behavior) calls with a deadlock that
is not discovered by classical P/T-net-based approaches. Hence, P/T-net-
based approaches lead to false statements on absence of deadlocks. We
propose an approach based on Mayr’s Process Rewrite Systems to model
both, concurrent and stack behavior while the deadlock problem remains
decidable.

Keywords: Deadlock-analysis · Concurrency · Petri Net abstraction ·
Service-oriented system

1 Introduction

Van der Aalst’s workflow nets is a P/T (place/transition)-net-based approach
for checking soundness properties, i.e., the absence of deadlocks or livelocks
of business process workflows and their (de)composition [10]. This approach is
refinement-based, i.e., the workflow nets are refined to an implementation. The
approach might be well-suited for an initial implementation but it is well-known
that maintaining the consistency of the model and the corresponding implemen-
tation requires disciplined programmers. Hence, it is not uncommon that the
model for a service and its implementation becomes more and more inconsistent.
Furthermore, there exists certainly many services that are not implemented as a
refinement of workflow nets. This does not mean that the approach using work-
flow nets as a tool for checking soundness property is superfluous, if it is used
in the other direction: abstract an implementation to P/T-net and check the
abstracted P/T-net for absence of deadlocks.

Since P/T-nets are unable to model stack behavior, any P/T-net-based
abstraction of an implementation including stack behavior (recursive proce-
dure calls) can not capture this behavior. In [13] it was shown that finite-state
approaches for protocol conformance checking may lead to false positives if recur-
sion is allowed, i.e., the approach reports the absence of protocol conformance
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 79–90, 2020.
https://doi.org/10.1007/978-3-030-63161-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_6

80 M. Weißbach and W. Zimmermann

violations while the real behavior produces one. In [5] we have shown that using
Mayr’s Process Rewrite Systems (PRSs), the concurrent and recursive behavior
can be modeled adequately, i.e., false positives can not occur. [1] shows that
this PRS-based abstraction can also be made compositional and is therefore as
appropriate for service compositions as P/T-nets. In this paper, we answer the
question whether a similar situation occurs for deadlock analysis using workflow
nets (and composing them to P/T-nets).

It turns out that we have a similar phenomenon as for protocol conformance
checking:

There is a service-oriented system S with a deadlock where the abstraction
of its services to workflow nets and their composition leads to a deadlock-
free P/T-net.

Thus, if van der Aalst’s workflow nets are used to model the behavior of services,
it may lead to false statements on the absence of deadlocks.

Section 2 introduces P/T-nets, the Abstraction and Composition Process,
and the Programming Model of our service-oriented system. In Sect. 3 we explain
the main results on limitations of deadlock analysis with the help of an example
presented in Sect. 2. Related Work is discussed in Sect. 4. Section 5 concludes
our work.

2 Foundations

P/T-Nets. A place/transition net (short P/T-net) is a tuple Π � (P, T,E,
λ, μ0) where

– P is a finite set of places
– T is a finite set of transitions, P ∩ T = ∅.
– E ⊆ P × T ∪ T × P
– λ : E → N is a labeling function
– μ0 : P → N is the initial marking

A state in Π is a function μ : P → N. Informally, μ(p) is the number of tokens
in place p.

Note that (P ∪ T,E) is a bipartite directed graph. The set of pre-places of
a transition t is defined as Pre(t) � {p : (p, t) ∈ E}. Analogously, the set of
post-places of t is defined as Post(t) � {p : (t, p) ∈ E}.

A transition t of Π is enabled in state μ if μ(p) ≥ λ((p, t)) for all p ∈ Pre(t),
i.e., p contains at least as many tokens as the edge label of (p, t).

If an enabled transition t fires in state μ, then the next state μ′ is computed
as follows:

μ′(p) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ(p) + λ(t, p) if p ∈ Post(t) \ Pre(t)
μ(p) − λ(p, t) if p ∈ Pre(t) \ Post(t)
μ(p) − λ(p, t) + λ(t, p) if p ∈ Pre(t) ∩ Post(t)
μ(p) otherwise

On Limitations of Abstraction-Based Deadlock-Analysis 81

In this paper, a P/T-net Π may also have a final state μf . A state δ (= μf)
is called a deadlock if no transition is enabled in δ. The absence of deadlocks is
decidable for P/T-nets. It is furthermore decidable if the final state μf is always
reachable from the initial state μ0.

Figure 3 shows an example. As usual, places are depicted as circles, transi-
tions are depicted as squares, and tokens are depicted as bullets in places. Here
μ0(q0) = 1, and μ0(q) = 0 for all q ∈ P \ {q0}. There is no label at the edges. By
default, this means λ(e) = 1 for all e ∈ E. For example, transition t0 is enabled
in μ0. If t0 fires, then for the next state it holds μ1(q1) = 1, μ1(ib) = 1, and
μ1(q) = 0 for each q ∈ P \ {q1, ib}.

A workflow net is a triple WF � (Π, I,O) where Π = (P, T,E, λ, μ0) is a
P/T-net, I ⊆ P is a set of input places, O ⊆ P is a set of output places, and
I ∩ O = ∅. Figure 2 shows four workflow nets. The input and output places are
the places on the border of the box.

AI
BI

CI

q :1

q :2

q :f

 (); void async

 (); void async c

 b

 (); void async

 (); void async c

 b
{RA Interface

}

{I A

}
();avoid

Interface

a

a1

i :
q :

 if e1 {
 call b }

q :a4 sync b }

r :a }return

r :

i :b

b

void b(){
//something no sync/ no call

return }

r :

i :c

c

void c(){
//something no sync/ no call

return }

implements Ivoid main(){ Rimplements I
q :0

Service AR
A

void a(){
A Service B B

implements IService C C

Service M

}

call a
call c
call b

a2

a3q :
q :

q :a5

M

{RM

();a
Interface

void

}

Interface {I

();void
B

b
}

Interface {I

();void
}

C

casync async

 call c }
 else {

if e2 {

else {
 sync c }

return

Fig. 1. A service-oriented system with services M, A, B and C. Service M acts as
a client. Procedure a is a synchronous procedure while procedures b and c are asyn-
chronous procedures.

Programming Model and Abstraction Process. Figure 1 shows a service-
oriented system with a client service M and services A, B and C. Furthermore,
Fig. 1 defines the interfaces RM , RA. IA, IB , and IC . An interface is a finite set
of procedure signatures (denoted in C-style).

A service X may provide an interface IX (provided interface), i.e., the pro-
cedures in this interface IX have to be implemented by X. This implementation
may call procedures of other services. The set of signatures of these called pro-
cedures is the required interface RX of X.

In Fig. 1, service M has no provided interface and services A, B, and C have
the provided interfaces IA, IB , and IC , respectively. Furthermore service M has
a required interface RM and service A has a required interface RA. Services B
and C have no required interfaces.

82 M. Weißbach and W. Zimmermann

Table 1. Control-flow abstractions to P/T-nets

Each procedure p in a required interface R must be connected to a procedure
p in a provided interface I.

For example, RM contains the signature void a() and is connected to the
provided interface IA containing the same signature void a(). The service-
oriented system in Fig. 1 starts its execution by executing main in the client
service M .

Procedures can be synchronous or asynchronous. If a synchronous procedure
is being called, the caller waits until the callee has been completed. Therefore
synchronous procedure calls behave like classical procedures. In case of recursion,
their semantics behaves as stacks. If an asynchronous procedure is being called,
the caller and the callee are concurrently be executed. For example, in Fig. 1
procedure a is synchronous and procedures b and c are asynchronous, indicated
by the keyword async. It is not possible to connect synchronous procedures to
asynchronous procedures and vice versa.

There are two possibilities of synchronization for asynchronous procedure
calls: First, the caller reaches a sync-statement. In this case, the caller waits
until the callee returns. Second, the caller reaches a return-statement. Then,
the caller waits until the callee returns. For example, the statement qa4 waits
until the call of the asynchronous procedure b in qa1 has been completed. The
other control structures are the classical ones with the classical semantics.

Table 1 shows different control structures and their abstraction to P/T-nets.
The main principle is that each program point corresponds to a place. Each
procedure p has a unique entry place ip and a unique return place rp.

A token in a place means that the control is at the corresponding pro-
gram point in the state of program execution. Important control structures are
atomic statements, e.g., assignments, conditionals, synchronous procedure calls
and returns, asynchronous procedure calls and returns, and synchronizations.
Loops and case statements are abstracted similarly to conditionals.

On Limitations of Abstraction-Based Deadlock-Analysis 83

q0

q1

q2

qf

ib

ic

ia

ra

rb

rc

ia

ib

ic

qa2

rb

ra

qa3

qa4 qa5

rc

qa1

ib

rb

ic

rc

MService ServiceA Service

Service

B

C

Fig. 2. Workflow net abstraction of Fig. 1

Note that for each procedure p in a provided interface IX of a service X, ip
is an input place and rp is an output place of the workflow net WFX for X.
Similarly, for each procedure q of a required interface RX of a service X, iq is an
output place and rq an input place of WFX . We further assume that a service
containing only required interfaces is a client and has an initial marking μ0 such
that μ0(q0) = 1 if q0 is the first program point of main and μ0(q0) = 0 otherwise.
For all non-client services, there is no token in the initial marking.

Figure 2 shows the workflow nets of the abstractions obtained from the
service-oriented system in Fig. 1.

Composition. A service-oriented system is implemented by connecting the
required interfaces of a service (external call to another service) to a corre-
sponding provided interface of another service. Following the ideas of [7], the
composition of workflow nets WF 1, . . . ,WFn is a P/T-net

Pc � (P1 ∪ · · · · · · Pn, T1 ∪ · · · ∪ Tn, E1 ∪ · · · ∪ En, λ1 ∪ · · · λn, μ
(1)
0 ∪ · · · ∪ μ

(n)
0)

84 M. Weißbach and W. Zimmermann

0

1

2

3

4

5 6

7 8 9

10

11 12 13

14

16

17

15

q0

q1

q2

qf

ia

qa2

ra

qa3

qa4 qa5

qa1

ic

rc

Service C

ib

rb

t

t

t

t

t

t t

t t t

t

t t t

t

t

t

t

MService ServiceA

ServiceB

Fig. 3. Composition of the workflow nets in Fig. 2

under the assumption that all places in the workflow nets WF i = (Πi, Ii, Oi)
with Πi = (Pi, Ti, Ei, λi, μ

(i)
0), i = 1, . . . , n are pairwise disjoint except for input

and output places.
Figure 3 shows the composition of the workflow nets in Fig. 2.

Remark 1. Suppose service X calls a procedure p of a service Y . Then output
place ip of the workflow net WFX is identified with input place ip of the workflow
net WFY . Similarly, the output place rp of WFY is identified with the input place
rp of WFX .

Note that the output places ib of services M and A of our example in Fig. 1 are
both identified with the input place ib of service B. Similarly, output place rb of
service B is identified with the input places rb of services M and A, respectively.

In a certain sense, the treatment of procedures is similar to the treatment in
context-insensitive interprocedural program analysis. We therefore call this kind
of composition context-insensitive composition. In contrast, in context-sensitive
compositions the workflow net for a procedure p is copied for each call. However,
this is impossible if recursion is allowed.

Remark 2. Our approach is similar to [7]. There, the workflow nets are called
modules and in addition, each module has a unique starting place α and a unique

On Limitations of Abstraction-Based Deadlock-Analysis 85

final place ω. Hence, the abstractions to workflow nets as discussed in our work
are modules in the sense of [7]. Our notion of composition corresponds to the
notion of syntactic composition of modules.

Remark 3. For Mayr’s process rewrite systems (PRS), P/T-nets are equivalent
to the class of (P,P)-PRS [8]. The abstraction mechanism leads to a set of PRS
rules for each service [5]. The composition is called combined abstraction [1]. For
the special class of (P,P)-PRS, this corresponds to the composition of workflow
nets as described above.

3 Limitations of Deadlock Analysis

Claim 1. The P/T-net abstraction (cf. Fig. 3) of the service-oriented system
in Fig. 1 is deadlock-free.

Proof. It must be shown that the final state μf (i.e. μf (qf) = 1 and μf (q) = 0
for all places q 	= qf is always reached from the initial state μ0. For simplicity,
for all places q not mentioned in the definition of a state μ, we assume μ(q) = 0.

Step 1: Each state μ1 ∈ M1 � {μ : μ(ra) = 1, μ(ib) + μ(rb) + μ(ic) + μ(rc) = 2}
always reaches μf

Step 2: Each state μ2 ∈ M2 � {μ : μ(qa3) = 1, μ(ib) + μ(ib) ≥ 1, μ(ic) + μ(ic) ≥
1, μ(ib) + μ(ib) + μ(ic) + μ(ic) = 3} always reaches a state μ1 ∈ M1

Step 3: μ0 always reaches a state μ2 ∈ M2.

If we have proven this, then the initial state q0 always reaches qf .

Remark 4. M1 contains all states where ra has one token and services B and
C together have two tokens. M2 describes all states where qa3 has one token,
services B and C have at least one token and both service, B and C have together
three tokens.

Step 1: It is sufficient to consider only situations where service B and C has
tokens in rb and rc since tokens in ib and ic mean that transitions t9 are t10
enabled and ib and ic do not have othter successors. We consider the following
two cases:

(i) ra, rb, and rc have one token, i.e. only transitions t12, t14 and t15 are enabled.
(ii) ra has one token and rb has two tokens, i.e., only transitions t12 and t15 are

enabled.

The case where ra has one token and rc has two tokens is analogous to (ii). The
following tables show all possible firing sequences of (i) and (ii). Each of this
firing sequences end in the final state μf :
(i) : t12, t14, t15

t12, t15, t17
t14, t12, t15
t14, t15, t16

(ii) : t12, t12, t15
t12, t15, t16
t15, t16, t16

86 M. Weißbach and W. Zimmermann

Step 2: Analogously to Step 1, it is sufficient to consider only situations where
service B and C have their tokens in rb and rc, respectively. We consider the
case where rb has two tokens and rc has one token. The other case (rb has one
token and rc has two tokens) is proven analogously. In this state, t7 and t8 are
the only two transitions being enabled. The following firing sequence all lead to
a state μ1 ∈ M1:

t7, t11 reaches state μ(ra) = μ(rb) = μ(rc) = 1
t8, t13 reaches state μ(ra) = 1, μ(rb) = 2, μ(rc) = 0

Step 3: According to the discussions of Steps 1 and 2, it is sufficient to consider
only situations where ib and ic have at least one token, respectivly, and μ(ib) +
μ(ic) = 3. We show that a state μ2 ∈ M2 is alywas be reached from the initial
state. Under the above circumstances, the simulation of the P/T-net always
starts with the firing sequence t0, t1, t2 reaches a state where ia, ib and ic contain
one token, respectively. Now, the transitions t3 and t4 are the only enabled
transitions (except the inner transitions t9 and t10). If t3 fires, then only t6 is
enabled, leading to one token in qa3, one token in ib, and two tokens in ic. If t4
fires, then only t5 is enabled leading to one token in qa3, two tokens in ib, and
one tokens in ic. Both states are in M2.

Table 2. Execution Semantics with Cactus Stacks (program points)

Now we look at the execution of the service-oriented system in Fig. 1. The
runtime system is based on cactus stacks. Cactus stacks were introduced as tree
of stacks by [3]. Our execution model includes states of unbounded recursion and
unbounded concurrency. These states can be represented by cactus stacks. Thus,
the execution transforms cactus stacks into cactus stacks. Table 2 shows these
transisitions. If a synchronous procedure is called, there is transisition to the next
program point and a stack frame with the initial state of the called procedure is

On Limitations of Abstraction-Based Deadlock-Analysis 87

pushed onto a stack. If an asynchronous procedure is called, a new stack frame
is created that forks from the caller. The top stack frame of the caller and the
bottom element of the new stack are linked together (like a saguaro cactus).
Thus, synchronization is only possible with two elements that are forked from a
top-of-stack frame.

Claim 2. The service-oriented system in Fig. 1 may end in a deadlock.

Proof. Table 3 shows an execution trace of the service-oriented system in Fig. 1.
In the first step q0 forks to q1 and ib. Then, the control moves from ib to rb which
waits for synchronization or the return from main. Hence, the only possible step
is the asynchronous call of c. In the next step the control moves to rc. Now, the
only possibility is the (synchronous) call of a. This means that the next state qf
and the initial state ia are pushed on the stack. After this call it is not possible
to synchronize with rb and rc forked from qf since qf is not a top element of
a stack.The final cactus stack is a deadlock since qa5 waits for synchronization
with rc but there is no rc for synchronization.

Table 3. Derivation from the initial state to a deadlock

Remark 5. [5] discusses the abstraction to general PRS and shows a 1 − 1 cor-
respondence betweem cactus stacks (of program points) and process-alegebraic
expressions. Hence, the deadlock can be found by using general PRS.

88 M. Weißbach and W. Zimmermann

Remark 6. The deadlock in Table 3 means that the control reached rc, qa5 and
twice rb. This means that the P/T-net in Fig. 3 reaches a state that contains
two tokens in rb, one token in rc, and one token in qa5. Thus t13 is enabled and
it is the only transition being enabled. Hence, the deadlock in the execution of
the service-oriented system does not correspond to a deadlock in the P/T-net
abstraction (based on workflow nets).

4 Related Work

Woflan [11] is a Petri Net-based analysis tool which verifies parallel business
process worklflows. Recursion of processes are not considered. It is not clear
whether their composition is context-sensitive or context-insensitive.

In [9] recursive Petri Nets (rPNs) are used to model the planning of
autonomous agents which transport goods from location A to location B and
their coordinating problem. The model of rPNs is used to model dynamic pro-
cesses (e.g., agent’s request). Deadlocks can only arise when interactions between
agents (e.g., shared attributes) invalidates preconditions. For that reason a coor-
dinating algorithm is introduced to prevent these interactions between agents.

A refinement-based approach is described in [6]. Hicheur models healthcare
processes based on algebraic and recursive Petri Nets [4], a high level algebraic
Petri Net. Hicheur et al. use recursive Petri Net to model subprocesses that are
called by a process (e.g., the main process), i.e. a context-sensitive composition.
However, to the best of our knowledge, we are not aware of any work on deadlock
analysis for recursive Petri Nets.

Bouajjani et al. [2] propose an abstraction-based approach to model con-
trol structures of recursively parallel programs (e.g., Cilk, X10, Multilisp). Their
approach is based on recursive vector addition systems. They explore the decid-
ability and complexity of state-reachability. It seems that their model is slightly
more general than ours as there are situations where the reachability problem
becomes undecidable.

Our approach is similar to [7], cf. Remark 2. However, it seems that exactly
one call to a module is being considered. Hence, context-sensitivity does not play
a role in the notion of composition.

We are not aware of any work stating out the drawback of deadlock anal-
ysis of systems with synchronous and asynchronous procedure calls and also
synchronization concepts.

5 Conclusion

We presented an example of a service-oriented system with synchronous proce-
dures, asynchronous procedures and a barrier-based synchronization mechanism.
We have discussed a straightforward abstraction mechanism to workflow nets
and their context-insensitive composition to P/T-nets. Furthermore, we have
also shown a runtime based on cactus stacks (which was already be defined as a

On Limitations of Abstraction-Based Deadlock-Analysis 89

runtime system of Simula67 [3]). Our main result is an example that the work-
flow net approach doesn’t satisfy its goals for deadlock analysis: the resulting
P/T-net is free of deadlocks (Claim 1) while the execution of the service-oriented
system leads to a deadlock (Claim 1). Note, that our example is not a spurious
counterexample. A spurious counterexample would be a deadlock in the P/T-
net while the service-oriented system is deadlock-free. In our previous work [12],
we showed another phenomenon using workflow nets abstractions: the approach
only has spurious counterexamples while the real one is not discovered.

Our result shows that in general, deadlock checking based on straightforward
P/T-net abstraction with context-insensitive composition should not be used to
prove deadlock-freeness. In contrast, PRS-abstractions are able to model the
stack behavior of synchronous procedure calls as well. On the other hand, it
might be that context-sensitive composition might solve the problem for bound
recursion depth. Unbound recursion would require an infinite expansion of the
procedure calls.

In future work it remains to investigate the concurrent and recursive concept
and also the synchronization concept of other languages (e.g., Java Threads,
Simula and so on). Another open issue is the occurence of deadlocks in a cer-
tain recursion depth. We conjecture that if a deadlock associated with recursive
behavior (recursion or recursive callbacks) in a service-oriented system occurs,
in its PRS-abstraction it always occurs in recursion depth one. If the conjecture
would be true, it should be possible to use a P/T-net-based abstraction for dead-
lock checking (possibly with a special class of context-sensitive compositions of
workflow nets).

References

1. Both, A., Zimmermann, W.: Automatic protocol conformance checking of recur-
sive and parallel component-based systems. In: Chaudron, M.R.V., Szyperski, C.,
Reussner, R. (eds.) CBSE 2008. LNCS, vol. 5282, pp. 163–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87891-9 11

2. Bouajjani, A., Emmi, M.: Analysis of recursively parallel programs. In: ACM SIG-
PLAN Notices, vol. 47, pp. 203–214. ACM (2012)

3. Dahl, O.J., Nygaard, K.: Simula: an algol-based simulation language. Commun.
ACM 9, 671–678 (1966)

4. Haddad, S., Poitrenaud, D.: Modelling and analyzing systems with recursive Petri
Nets. In: Boel, R., Stremersch, G. (eds.) Discrete Event Systems. The Springer
International Series in Engineering and Computer Science, vol. 569. Springer,
Boston (2000). https://doi.org/10.1007/978-1-4615-4493-7 48

5. Heike, C., Zimmermann, W., Both, A.: On expanding protocol conformance check-
ing to exception handling. SOCA 8(4), 299–322 (2014). https://doi.org/10.1007/
s11761-013-0146-2

6. Hicheur, A., Ben Dhieb, A., Barkaoui, K.: Modelling and analysis of flexible health-
care processes based on algebraic and recursive Petri Nets. In: Weber, J., Perseil,
I. (eds.) FHIES 2012. LNCS, vol. 7789, pp. 1–18. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39088-3 1

https://doi.org/10.1007/978-3-540-87891-9_11
https://doi.org/10.1007/978-1-4615-4493-7_48
https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/s11761-013-0146-2
https://doi.org/10.1007/978-3-642-39088-3_1

90 M. Weißbach and W. Zimmermann

7. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-31984-9 3

8. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1–2), 264–286 (2000)
9. Seghrouchni, A.E.F., Haddad, S.: A recursive model for distributed planning. In:

Proceedings of the 2nd International Conference on Multi-Agent Systems (ICMAS
1996), pp. 307–314 (1996)

10. Aalst, W.M.P.: Workflow verification: finding control-flow errors using Petri-Net-
based techniques. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45594-9 11

11. Verbeek, E., van der Aalst, W.M.P.: Woflan 2.0 a Petri-Net-based workflow diag-
nosis tool. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp.
475–484. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44988-4 28

12. Weißbach, M., Zimmermann, W.: on abstraction-based deadlock-analysis in
service-oriented systems with recursion. In: De Paoli, F., Schulte, S., Broch
Johnsen, E. (eds.) ESOCC 2017. LNCS, vol. 10465, pp. 168–176. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67262-5 13

13. Zimmermann, W., Schaarschmidt, M.: Automatic checking of component protocols
in component-based systems. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol.
4089, pp. 1–17. Springer, Heidelberg (2006). https://doi.org/10.1007/11821946 1

https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/978-3-540-31984-9_3
https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/3-540-44988-4_28
https://doi.org/10.1007/978-3-319-67262-5_13
https://doi.org/10.1007/11821946_1

Decentralized Billing and Subcontracting
of Application Services for Cloud

Environment Providers

Wolf Posdorfer(B), Julian Kalinowski, Heiko Bornholdt,
and Winfried Lamersdorf

Department of Informatics, University of Hamburg,
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

posdorfer@informatik.uni-hamburg.de

Abstract. This paper proposes a decentralized billing and subcontract-
ing system for regional cloud service providers. Based on blockchain tech-
nology, this system allows, on the one hand side, to collectively offer ser-
vices in a distributed environment in a strict or ad-hoc federation and,
on the other, to bill each user of such a services individually without a
respective central service. In order to do so, it uses a blockchain-based
transaction process which uses specialized tokens in order to enable a fair
and secure distribution of requested cloud services. It maintains the abil-
ity to achieve consensus by validating the respective blockchain (part).
In result, the proposed system is not bound to a specific technology, but
rather open to any blockchain that allows arbitrary data or modeling of
custom transactions.

Keywords: Blockchain · Cloud computing · Cloud environment
provider · Consensus · Decentralized ledgers

1 Introduction

Enabled by the increasing need to offload work intensive or space hungry appli-
cations into cloud environments, a few major players have emerged to dominate
the market. This oligarchy is not only dangerous for the end consumer but also
greatly hinders a fair and competitive market for smaller regional providers [7].
A study shows that in 2017 four companies dominate the cloud market with a
combined share of over 50% [16].

By imposing secret migration hindrances through inflexible APIs these major
players are enforcing a vendor lock-in which negatively affects smaller providers,
as a complete stack migration to their service becomes either unfeasible or simply
impossible. Due to their higher market power they can essentially also dictate
the service prices by which smaller providers have to abide to stay somewhat
competitive.

The introduction of Bitcoin in 2008 triggered a new movement in decentral-
ization. Blockchains enable consensus-based replication of data in an untrustwor-
thy environment. Every participating node has the same identical view of all the
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 91–101, 2020.
https://doi.org/10.1007/978-3-030-63161-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_7

92 W. Posdorfer et al.

transactions and their respective order. The underlying database is fully repli-
cated and provides a high reliability. Even though the blockchain was initially
created to serve the single purpose of being a “cryptocurrency” the technology
can be used for many other applications and business processes.

We propose a scenario in which a multitude of smaller cloud environment
providers can form a federation. Allowing them to bundle their resources into
one virtual cloud provider. By utilizing the blockchain technology we can achieve
a verifiable billing and subcontracting system. This enables all providers to act
as equals and provides fair distribution and payment for the requested cloud
services. The proposed process is generalizable to other use cases whenever they
have a similar system composition and the process can be divided into sub-steps.
The following use case will outline the process in the billing and subcontracting
of cloud services.

Our approach differs from [14] in that it is not locked into Ethereum-VM
compatible blockchains relying solely on smart contracts for application logic.
By defining standard transaction types, which can be run on any blockchain, we
do not impose technological restrictions. This also mitigates the requirements
of Proof-of-Work, allowing for shorter block times and less energy consumption.
Also in contrast to [18] our approach does not require a registry of current
provider prices. Computing hours are not distributed in an auction style system
where cheaper services are always favored, thus no price war is created between
smaller providers.

2 Use Case

This section will provide a use case for a decentralized billing platform to illus-
trate the benefits it can provide. With a decentralized subcontracting and billing
platform of application services in cloud environments multiple smaller cloud
computing providers can form a federation to act as a single provider, thus
allowing them to be more competitive in todays market. Instead of offering their
services as single entities they can offer a combined service that is transparent
for the end user.

Figure 1 shows an exemplary composition of a customer requesting 90 h of
service and three providers (Provider 1–3), with two subcontractors (Sub3a &
Sub3b).

2.1 Cloud Service Billing

One of the necessities of a decentralized platform where multiple providers share
an incoming workload is the correct billing of the performed computation hours
by each participant. In this scenario we assume that a customer has paid for
a service in advance and that the service will run as long as its being paid
for. Depending on the configuration the fiat money will be evenly distributed
between all the providers connected to the federation. In Fig. 1 the customer
requests 90 h, which is evenly distributed as 30 h for each provider.

Decentralized Billing and Subcontracting Cloud Environment 93

Customer

request
90h service

Provider3Provider1 Provider2

30h
30h

30h

15h
Sub3a Sub3b

15h 15h

Fig. 1. Service billing and subcontracting

2.2 Cloud Service Subcontracting

On the assumption that all connected cloud service providers have limited
resources it is quite possible that an even distribution of workload between them
will lead to bottlenecks. By allowing providers to offload a complete or partial
workload to another provider these bottlenecks can be overcome. It even allows
a single provider to act as a proxy to subcontractors, e.g., regional providers.
Figure 1 shows how Provider3 subcontracts to two additional providers Sub3a
and Sub3b.

3 Blockchain

A blockchain is a decentralized data structure, whose internal consistency is
being maintained by reaching consensus over an application state in a network.
The data itself is fully replicated and kept in synchrony over every participating
node [2].

To change the state of the blockchain a transaction has to be submitted.
Each transaction is bundled into a block, which will be chained together by
calculating a hash over the transactions and a hash pointing to the previous
block. Thus effectively chaining each block to its predecessor and creating a
definite order. Figure 2 depicts an exemplary blockchain datastructure showing
three blocks, their linking via the predecessors hash (Prev Hash) and the root
hash of a merkle-tree (Tx Root) containing transactions (Tx0 - Tx3).

3.1 Transaction

The fundamental data structures of the blockchain are transactions and blocks.
The transaction is the smallest data unit being processed and capable of changing
the overall state of the blockchain. Network participants can create them and

94 W. Posdorfer et al.

Fig. 2. Simplified blockchain datastructure

propagate them to other nodes through a peer-to-peer network. Depending on
the blockchain technology used transactions can contain different arbitrary data.
In Bitcoin [13] and other cryptocurrencies they contain info about the sender,
receiver and quantity of currency (simplified). Even function calls are possible,
by using smart contracts or chain code as used in Ethereum [19]. But blockchains
are not limited to the usage of currency or smart contracts. They can also be used
for several other applications like supply chain management, voting or ballots,
crowd funding or to store data in general.

3.2 Block

After a transaction has been published and propagated through the network it
will be bundled into a block. The transactions will be stored and hashed with a
suited algorithm and data structure, usually variants of the SHA-algorithm and
Merkle-Trees. Every block consist of a header containing the predecessors blocks
hash, its own transactions hash (root hash) and depending on the used technol-
ogy other information like timestamps, version, block height, target, nonce or
others.

By using the preceding block hash they are effectively chained together all
the way back to the genesis block. The chaining of blocks creates a traceability
over all transactions and thus also the overall state and state changes of the
blockchain.

3.3 Consensus

The key element behind every blockchain is its consensus algorithm. Through
it the blockchain ensures that the majority of nodes has the same valid shared
state in the long-term. Depending on the used algorithm the majority of nodes
necessary for a valid block typically lies at 51% in chain-based algorithms or +2

3
in Byzantine Fault Tolerant (BFT)-based algorithms.

Decentralized Billing and Subcontracting Cloud Environment 95

Chain-Based/Append-Based Algorithms. In Bitcoin and similar technolo-
gies the consensus algorithm is referred to as Proof-of-Work (PoW) [4,13,19].
Its goal is to provide trust through a cryptographic challenge. The challenge
consists of finding a Nonce so that the resulting hash of Nonce and Root-Hash
meets a certain target or difficulty in the form of amount of leading zeros. Every
node interested in solving the challenge by brute-forcing nonces is called a Miner,
while the process itself is referred to as Mining. Its rather simple to verify the
validity of the produced block by other nodes. The difficulty ensures that very
rarely two different blocks are propagated through the network at the same time.
Also it ensures that it becomes harder and harder to forge previous blocks by
recalculating hashes with different nonces.

To create a block a miner selects a set of transactions calculates the root
hash and starts brute-forcing nonces until he finds one that meets the current
difficulty. The difficulty is automatically adjusted by the network in order to keep
the median time between two blocks in roughly the same timespan. With the
increased participation in the cryptographic challenge the amount of computing
power also increases as a direct result of the PoW algorithm and self-adjusting
difficulty.

In contrast to PoW the Proof-of-Stake (PoS) algorithms try to mitigate the
waste of resources [6,9,10]. In PoS miners can stake their own coins (or other
values) in order to create blocks more easily. Owning and staking a higher amount
of coins results in a higher likelihood of creating a block. Other algorithms impose
additional requirements on the coins, like the coin-age, to limit the usage of
massive amount of coins.

BFT-Based/Propose-Based Algorithms. BFT-based algorithms try to
solve the consensus problem by using algorithms that solve the byzantine gen-
erals problem [17]. Usually they are loosely based on the PBFT-algorithm [5]
and 2-Phase-Commit-algorithms [12]. In BFT-based PoS algorithms there is a
certain set of nodes called Validators, who are responsible for consensus. Valida-
tors each take turns in proposing new blocks. This ensures that only one block
for a given height is valid. Unlike in chain-based algorithms where more than
one block can compete to be the next block. This also means that there can be
no forks in the chain. While in chain-based algorithms any number of nodes can
choose to not partake in the block-finding process, in BFT style algorithms a
minimum set of more than 2

3 (or +2
3) of validators need to be online at any given

time. If there are less than + 2
3 the proposed block will not reach consensus.

3.4 Process

Every blockchain independent of its underlying consensus algorithm follows the
same sequence of steps until a new block which is accepted by other nodes is
appended. Every blockchain participant is running the same client, which either
contains the application layer (like Bitcoin) or an API for a custom application
(like Hyperledger [1]). Every node is linked to a certain amount of other nodes
via a peer-to-peer network which allows the distribution of messages.

96 W. Posdorfer et al.

Once the application layer has created a transaction, which contains data
depending on the use-case/technology, it will be passed to the validation com-
ponent. The transaction validation depends highly on the use case, e.g., checking
if an account balance is sufficient. If it is valid the transaction will be placed into
the mempool and broadcasted to other peers, who repeat this process. Ideally
this ensures that every network participant has the same valid transactions in
its mempool.

Once a node has qualified for creating a block (or proposing) it will select
a number of transactions from the mempool and bundle them into a block.
Depending on certain criteria like transaction age or transaction fees the node
can choose which transactions to include. After forming the block the node will
distribute it to its peers. Upon receiving a block the node has to perform its own
validity checks on the block and transactions within the block, as to not append
an incorrect state to its own blockchain.

4 Problem Definition

A classic approach for managing cross-company payments, costs and distribution
of revenue would be to establish and make use of a trusted third party. This
trusted third party keeps track of everything that is relevant to the system, such
as commissions, orders, computing hours and billable hours. This implies that
the third party will get to know details about business relationships between the
companies and, of course, the account balances.

Instead of trusting a third party with this data, it is desirable to keep as
much of the data private as possible and to instead distribute the trust amongst
all parties.

Since in the sketc.hed scenarios, we will have multiple participants, poten-
tially distrusting each other (dishonesty can lead to personal advantage), a
blockchain solution seems appropriate [20]. It provides data integrity with mul-
tiple untrusted writers without a trusted third party. Additionally, blockchain
transactions can be designed in a way that they support required business pro-
cesses in a network of equal partners, where nobody is in control, and yet every-
body can verify the correctness of a process.

The concept of blockchain was created with transparency in mind, which is
why all stored data is available for everyone to validate [13]. The validation in
turn provides the necessary security for a distributed database with multiple
participants who potentially distrust each other. Each participant is given the
opportunity to vote for his own sense of correctness of a given transaction in the
blockchain and to do so, he must have access to the data. This is why validation
is a critical part of a blockchain and it is tightly coupled with transparency.

In the given scenario however, full transparency might not be a valid option
as data are trade secrets and should not be made publicly available. While a
blockchain can be private, not offering public access for anyone who is interested,
transparency of sensible information remains a problem: At least all authorized
participants would be able to read all data, which is bad by itself, especially

Decentralized Billing and Subcontracting Cloud Environment 97

when direct competitors are involved in the same system. On the other hand
transparency is highly necessary to ensure a working validation and checking for
transaction correctness to guarantee reaching consensus.

5 Approach

The general idea is that, instead of transferring fiat money, trading happens
on the blockchain using tokens. This enables a fast, reliable and secure way for
exchanging a value representation without having to pay fees, enabling partici-
pants to reflect every single transfer of value in the blockchain. Additionally, the
blockchain will provide a decentralized way of clearing, such that the tokens can
be exchanged for fiat money after a given period. This period may be inspired
by the underlying business process and common for all participants. It may also
depend on individual preferences and should not be restricted, however.

5.1 Billing and Subcontracting Scenario

In this scenario, there are two groups of participants, service providers and cus-
tomers. Each provider may maintain business relationships with other providers,
although there will not always be a direct connection between any two of them
in this graph of relationships. Instead, multiple smaller strongly connected sub-
graphs corresponding to individual groups of co-operation are possible.

Figure 3 shows a sample graph of this scenario, where Ci are customers and
Pi are providers. The edges are labeled with the amount of tokens that are being
sent. Dotted edges represent distribution of a previous token, performed by a
provider. Marked in red for each provider is the sum of tokens after all the
transactions are performed, e.g., the net sum for each provider.

The customers (or a central proxy) are the only entities that may issue new
tokens, just like a mint would do with fiat money. Tokens (representing money
or computing hours) are then given to one or more providers, who can in turn
split them and pass them on to other providers.

In this scenario, tokens, once issued, can be distributed and passed from
provider to provider. However, they can never vanish and a provider can only
pass on a token he owns and hasn’t already spent otherwise.

Now, after all tokens have been transferred according to the underlying busi-
ness process, each provider knows his token balance at any time, which corre-
sponds e.g., to computing hours.

In order to exchange his tokens for fiat money, he must be able to generate a
proof showing anyone with access to the blockchain data that he is the rightful
owner of his tokens.

5.2 Transaction Types

Based on the previously introduced use case at least the following three transac-
tion types are necessary to model the business processes. Every Transaction can

98 W. Posdorfer et al.

P22
P1

2

3

P3

5C1

2

1

C2

1
2

P4
0

2 5

1

Fig. 3. Billing scenario

contain multiple input tokens and multiple output tokens. Input tokens must
be owned by the same participant, while outputs can be assigned to different
parties. The following transaction types are not unique to a special blockchain,
but can be implemented on any technology that allows custom transactions, like:
Corda [3], Ethereum [19], Hyperledger [1], Tendermint [11] and others. Bitcoin
and its descendants are unsuited because of their strict transaction formats and
limited transaction payload size.

Initialization (INIT) is used to publish newly created tokens into the sys-
tem. Only customers can create new tokens, backing them against fiat currency.
This transaction type does not require any input tokens as the customer is
actively minting them and also contains only one output.

Distribution (DIST) allows a single party to transfer or split their tokens as
required by the business process. It can be used to sell parts of their computing
hours to others.

Payout (POUT) transaction is used to exchange tokens for fiat money with
a customer. It contains multiple input tokens from the same owner and a single
output token towards the customer.

Figure 4 shows an exemplary transaction flow. The customer deposits fiat
money and converts it to 100 Tokens (T). The 100T are then issued to Provider1
using the INIT transaction type. After this transactions has been validated and
finalized in a block, every participant can now confirm that Provider1 owns
100T. When Provider1 is unable to provide the 100T worth of computing hours
he can offload it to another provider. Provider1 distributes his tokens using the
DIST transaction to split his balance between himself and Provider2. Again
after validation and finalization in a block, everyone can confirm that Provider1
and Provider2 both own 50T. Once Provider2 wants to convert his tokens back
into fiat money he issues a POUT transaction, reassigning his 50T back to
the customer. Upon receiving the tokens the customer will issue the respective
amount of fiat money to Provider2 off-chain.

Decentralized Billing and Subcontracting Cloud Environment 99

INIT
100T::Provider_1

Customer

n

Provider1

receives
100T

n+1

DIST
100T

50T::Provider1
50T::Provider2

Provider2

receives
50T

n+2

POUT
50T::Customer

receives payout request
50T::Provider2

convert 50T to fiat money

read transactionwrite transaction off-chain transaction

Blockchain

receives
50T

Fig. 4. Example transaction flow

A minor impracticality in this scenario is the huge reliance on trust. In order
to mitigate wrongdoings by customers a proxy-service will have to be placed in
between to deposit the fiat money and issue the corresponding tokens respec-
tively. This ensures that the customer has actually deposited fiat money and the
providers can later retrieve it.

5.3 Validation and Transparency

As stated in Sect. 4, validation of transactions is performed by any active par-
ticipant. This requires full access to the transaction data, which, in our scenario,
means every participant can see any tokens being sent between customers (or
proxy) and service providers. But as previously stated full transparency is not
desired for at least the following three aspects:

– Amount of tokens in possession by a single provider should not be revealed.
– Offloading relations should be hidden from other providers not participating

in the corresponding customer’s job.
– General anonymity is also not ensured as every token assignment must be

directed to a specific provider.

A reasonable validation rule, executed by every participant of the system,
would be: “For any tokens that are distributed and payed-out, is there a valid

100 W. Posdorfer et al.

incoming token transaction for this provider?” In a fully transparent blockchain
system, this would be trivial to check as everyone has access to the balances and
can take a look at past transactions. However, in a system with private balances
and transaction data, there may be no validation possible at all (thus render-
ing the blockchain approach pointless). This implies that designing a privacy-
protective solution may come with a trade-off between privacy and validation.

The natural approach in favor of privacy would be full encryption of the
transaction data. All data would be private and visible for the sender and recip-
ient only. Obviously, nobody may validate this data except for the sender and
receiver, respectively.

6 Future Work and Conclusion

The proposed blockchain based solution shows a generalizable method to pro-
vide a decentralized billing and subcontracting process for cloud environment
providers. It can be adapted to a multitude of other business processes that
share the same characteristics. Whenever a process is started from a single entity
and can be divided into measurable subparts the proposed solution is a suitable
candidate.

Another exemplary use case can be the execution of distributed workflows.
Where an orchestrator (customer) distributes actions of the workflow to services
(provider), which in turn can divide the actions into subactions and redistribute
them to other services all in a traceable and verifiable manner on the blockchain.

As transaction transparency and transaction validation are closely reliant on
each other new methods for privacy protection must be established. As full data
encryption is not feasible, because it breaks validation, other steps must be taken
when specific use cases highly require data protection.

One of the measures to take to ensure validation is the usage of homomorphic
encryption [8]. Homomorphic encryption allows for token values to be encrypted
while still maintaining the ability to construct sums and verify input and output
values.

When introducing encryption the encrypted values or token sums must also
remain unforgeable. Thus a binding value must be chosen in the form of a veri-
fiable secret. A commitment solves these issues as it firstly hides the input value
and secondly is also binding [15].

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p.
30. ACM (2018)

2. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media Inc., Newton (2014)

3. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda: An introduction. R3 CEV,
August 2016

Decentralized Billing and Subcontracting Cloud Environment 101

4. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

5. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI, vol.
99, pp. 173–186 (1999)

6. David, B.M., Gazi, P., Kiayias, A., Russell, A.: Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake protocol. IACR Cryptol. ePrint Arch.
2017, 573 (2017)

7. Feng, Y., Li, B., Li, B.: Price competition in an oligopoly market with multiple
IaaS cloud providers. IEEE Trans. Comput. 63(1), 59–73 (2014)

8. Gentry, C., Boneh, D.: A Fully Homomorphic Encryption Scheme, vol. 20. Stanford
University Stanford, Stanford (2009)

9. Jain, A., Arora, S., Shukla, Y., Patil, T., Sawant-Patil, S.: Proof of stake with
casper the friendly finality gadget protocol for fair validation consensus in ethereum
(2018)

10. King, S., Nadal, S.: Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-
published paper, 19 August 2012

11. Kwon, J.: Tendermint: Consensus without mining. Draft v. 0.6, fall (2014)
12. Lampson, B., Sturgis, H.E.: Crash recovery in a distributed data storage system

(1979)
13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
14. Neidhardt, N., Köhler, C., Nüttgens, M.: Cloud service billing and service level

agreement monitoring based on blockchain. In: EMISA, pp. 65–69 (2018)
15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

16. Synergy Research Group: The leading cloud providers continue to run away
with the market (2017). https://www.srgresearch.com/articles/leading-cloud-
providers-continue-run-away-market

17. Vukolić, M.: The quest for scalable blockchain fabric: proof-of-work vs. BFT repli-
cation. In: Camenisch, J., Kesdoğan, D. (eds.) iNetSec 2015. LNCS, vol. 9591, pp.
112–125. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39028-4 9

18. Wang, H., Shi, P., Zhang, Y.: Jointcloud: A cross-cloud cooperation architecture
for integrated internet service customization. In: 2017 IEEE 37th International
Conference on Distributed Computing Systems (ICDCS), pp. 1846–1855. IEEE
(2017)

19. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper 151, 1–39 (2018)

20. Wüst, K., Gervais, A.: Do you need a blockchain? Cryptology ePrint Archive,
Report 2017/375 (2017). https://eprint.iacr.org/2017/375

https://doi.org/10.1007/3-540-46766-1_9
https://www.srgresearch.com/articles/leading-cloud-providers-continue-run-away-market
https://www.srgresearch.com/articles/leading-cloud-providers-continue-run-away-market
https://doi.org/10.1007/978-3-319-39028-4_9
https://eprint.iacr.org/2017/375

May Contain Nuts: The Case
for API Labels

Cesare Pautasso1(B) and Erik Wilde2

1 Software Institute, Faculty of Informatics, USI, Lugano, Switzerland
c.pautasso@ieee.org

2 CA Technologies, Zürich, Switzerland

Abstract. As APIs proliferate, managing the constantly growing and
evolving API landscapes inside and across organizations becomes a chal-
lenge. Part of the management challenge is for APIs to be able to describe
themselves, so that users and tooling can use descriptions for finding and
filtering APIs. A standardized labeling scheme can help to cover some
of the cases where API self-description allows API landscapes to become
more usable and scalable. In this paper we present the vision for stan-
dardized API labels, which summarize and represent critical aspects of
APIs. These aspect allow consumers to more easily become aware of the
kind of dependency they are going to establish with the service provider
when choosing to use them. API labels not only summarize critical cou-
pling factors, but also can include claims that require to be validated by
trusted third parties.

1 Introduction

APIs are the only visible parts of services in API-based service landscapes. The
technical interface aspect of APIs has been widely discussed with description
languages such as WSDL, RAML, and Swagger/OpenAPI. The non-functional
aspects are harder to formalize (e.g., see the survey by Garćıa et al. [8]) but can
also benefit from a framework in which information can be represented and used.

The idea of “API Labels” is equivalent to that of standardized labeling sys-
tems in other product spaces, for example for food, for device energy consump-
tion, or for movie/games audience ratings. In these scenarios, labels enable con-
sumers to understand a few key (and often safety-critical) aspects of the product.
This framework is not intended to be a complete and exhaustive description of
the product. Instead, it focuses on areas that are important and helpful to make
an initial product selection. The assumption is that the information found on
the label can be trusted, so that consumers can make decisions based on labels
which are correct and do not contain fraudulent information.

In the API space, numerous standards and best practices have evolved
how APIs can be formally described for machine processing and/or docu-
mented for human consumption [14] (e.g., WSDL [4], WADL [9], RESTdesc
[24], hRESTS [12], RADL [19], RAML, Swagger/OpenAPI [22], SLA� [10],

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 102–113, 2020.
https://doi.org/10.1007/978-3-030-63161-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_8

May Contain Nuts: The Case for API Labels 103

RSLA [21], SLAC [23] just to mention a few). However, there still is some uncer-
tainty how to best combine and summarize these, and how to use them so that
API description, documentation, and labeling can be combined. This paper pro-
poses the API Labels Framework (AFL) to introduce API labels as a synthesis
of existing API descriptions combined with additional metadata which can help
customers assess several practical qualities of APIs and their providers and thus
be useful to reduce the effort required to determine whether an API can be worthy
of consideration.

The main motivation for labeling APIs is probably not so much about a way
to enable providers to put marketing labels on their APIs nor is it a way to
summarize information that is already present in existing formal API descrip-
tions. Instead, it is about providing assurances for API consumers about crucial
characteristics of the service behind the API that may not be visible on its
surface.

The rest of this paper is structured as follows. In Sect. 2 we present general
background on labeling and related work which has inspired the current paper.
In Sect. 3 we apply the concept of labeling to APIs and discuss how to use
OpenAPI Link Objects and Home Documents to make API labels easy to find.
We discuss the issue of how to establish trust for API labels in Sect. 4 and then
introduce different label types in Sect. 5. The following Sect. 6 provides a non-
exhaustive set of label type examples. The problem of discovering labels and
ensuring that they can evolve over time are identified in Sect. 7.2. Finally we
draw some conclusions in Sect. 8 and outline possible directions for future work
in Sect. 9.

2 Background and Related Work

Labeling helps to identify, describe, assess and promote products [13]. Branding
and labeling contribute to differentiate competing products by assuring the con-
sumer of a guaranteed level of quality or by restoring consumer’s confidence after
some negative publicity leading to a loss of reputation. More specifically, food
labeling has also been used to educate consumers on diet and health issues [5].
Labeling can thus be used as a marketing tool [1] by providers or as a provider
selection tool by consumers [2].

This work is inspired by previous work on designing simplified privacy labels
of Web sites [11] based on the now discontinued P3P standard [7]. It shares
similar goals to provide a combined overview over a number of “API Facts”.
However, one important difference is that P3P was a single-purpose specification
intended to standardize everything required for embedding privacy labels. It thus
had fixed methods to locate privacy policies (four variations of discovering the
policy resource), fixed ways how those were represented (using an XML-based
vocabulary), and a fixed set of acceptable values (also encoded into the XML
vocabulary) to be used in these policies.

The work presented in this paper is bigger in scope, and on the framework
level. As such, we do not authoritatively prescribe any of the aspects that P3P

104 C. Pautasso and E. Wilde

was defining. Instead, we are assuming that with organizations and user groups
using API labels, certain patterns will emerge, and will be used inside these
communities. We can easily envision a future where our framework is used as a
foundation to define a more concrete set of requirements, but this is out of scope
for this paper, and most likely would benefit substantially from initial usage and
feedback of the API label framework presented here.

3 Labeling APIs

The idea of API labels is that they apply not just to individual resources, but
to a complete API. Many APIs will provide access to a large set of resources.
It depends on the API style how APIs and individual resources relate [18]. In
the most popular styles for APIs today, which are HTTP-based, the API is
established as a set of resources with distinct URI identities, meaning that the
API is a set of (potentially many) resources. One exception to this are RPC-
oriented API styles (such as the ones using SOAP, grpc or GraphQL) which
“tunnel” all API interactions through a single “API endpoint”. In that latter
case, there is no such thing as a “set of HTTP-oriented resources establishing
the API”, but since we are mostly concerned with today’s popular HTTP-based
styles, the question of the scope of API labels remains relevant.

Applications consuming APIs are coupled to them, and the choice of API
to be consumed introduces critical dependencies for consumers [17]. Consumers
need to be made aware about non-functional aspects, concerning the short-term
availability and long-term evolution of API resources [15]. Likewise, when a
resource is made available by a different API, different terms of service may
apply to its usage.

From the consumer point of view, the concept of an “API boundary” can
seem arbitrary or irrelevant, or both. API consumers most importantly want to
implement applications. To do so, they need to discover, select and invoke one or
more APIs. However, even when from the strict application logic point of view
the “boundary” between APIs may not matter (applications will simply traverse
resources either driven by application logic or by hypermedia links), it still may
be relevant for non-functional aspects, such as when each API resource is made
available by a different provider and therefore different terms of service apply to
its usage.

Generally speaking, the Web model is that applications use various resources
to accomplish their goals, and these resources often will be provided by more
than one API. In this case the question is how it is possible to get the API
labels for every resource, if applications want to do so. What is the scope of API
labels, and how is it possible, starting from any resource of an API, to find its
API labels? And how can an application know when traversing resources that it
traverses an “API boundary”? The Web (and HTTP-based URIs) has no built-
in notion to indicate “API boundaries”, so the question is how to establish such
a model.

It seems wasteful to always include all API label information in all resources,
given that in many cases, applications will not need this information and thus it

May Contain Nuts: The Case for API Labels 105

would make API responses unnecessarily large. However, there are approaches
how this can be done in more efficient ways, and currently there are two solutions
available (OpenAPI Link Objects and Home Documents). It is important to keep
in mind that it is up to an API designer to decide if and how they will use these
techniques to make labels easy to find.

3.1 OpenAPI Link Objects

The API description language OpenAPI (formerly known as Swagger) has added
the concept of a link object with its first major release under the new name,
version 3.0. Essentially, link objects are links that are defined in the OpenAPI
description, and then can be considered to be applicable to specific resources
of the API. In essence, this creates a shortcut mechanism where these links are
factored out from actual API responses, and instead become part of the API
description.

It is important to keep in mind that because of this design, the actual links in
the OpenAPI link object never show up in the API itself; instead they are only
part of the OpenAPI description. This design allows OpenAPI consumers to use
these links without producing any runtime overhead, but it makes these links
“invisible” for anybody not using the OpenAPI description and interpreting its
link objects.

This design of OpenAPI thus can be seen as effective optimization, because it
creates no runtime overhead. On the other hand, it limits self-descriptiveness and
introduces substantial coupling by making the links in link objects exclusively
visible to clients knowing and using the OpenAPI description.

For this reason, we believe that in environments where this coupling has been
introduced already, OpenAPI link objects may be a good solution. This can be
any environment where the assumption is that API consumers always know the
OpenAPI descriptions of the APIs they are consuming. This may be a decision
that is made in certain organizations or communities, but cannot be considered
a design that is used in unconstrained API landscape.

In unconstrained API landscapes, it seems that the coupling introduced by
making the knowledge and usage of all OpenAPI descriptions mandatory is
substantial, and may be counterproductive to the self-describing and loosely
coupled consumption of APIs. If the design goal is to focus on self-description
and loose coupling, then OpenAPI link objects probably are not the best choice,
and instead the approach of home documents may be the better one.

3.2 Home Documents

An alternative model to that of OpenAPI is established by the mechanism of
home documents [16]. The idea of home documents is that there is a “general
starting point” for an API. This starting point can provide a variety of infor-
mation about the API, including information about its API labels. The home
document then can be linked to from API resources, and there is a specific home
link relation that is established as part of the home document model.

106 C. Pautasso and E. Wilde

Using this model, all resources of an API can provide one additional link,
which is to the API home document. The home document then becomes the
starting point for accessing any information about the API, including an API’s
labels. This model means that there is an overhead of one link per resource.
However, given modern mechanisms such as HTTP/2.0 header compression, it
seems that this overhead is acceptable in the majority of cases, even if that link
is not so much a functional part of the API itself, but instead provides access to
metadata about the API.

One of the advantages of the idea of home documents and providing home
links for resources is that this makes the API (or rather its resources) truly self-
describing: Consumers do not need any additional information to find and use
the information about an API’s home document.

One downside to this model is that home documents are not yet a stable
standard used across many APIs. The draft has been around for a while and has
evolved over time, but it is not guaranteed that it will become a stable stan-
dard. One other hand, since this work is rooted in general Web architecture,
even without the specification being a stable standard already using it is accept-
able, and in fact this is how many IETF standards are conceived: drafts are
proposed, already adopted by some, and the eventual standard then is informed
by gathering feedback from those who already have gained experience with it.

4 Trusting API Descriptions and Documentations

API labels provide a human-readable format to summarize API descriptions
including hyperlinks to relevant documentation and specifications. API labels
are also meant to be machine processable to provide the basis for automated
support for API landscape visualization and filtering capabilities.

One example for this are the link relation types for Web services [26].
These could be readily used as API labels (if they are made discoverable
through the general API label mechanism). Some of the resources are likely
just human-readable (for example API documentation provided as PDF), while
other resources might be machine-readable and to some extent even machine-
understandable (for example API description provided as OpenAPI which can
be used by testing and documentation generation tools).

API labels are not meant to provide a complete specification of APIs and
replace existing languages and service discovery tools. Instead, they are designed
to include information that is currently not found in API descriptions as written
by service providers, because this information may include claims that need to
be verified by trusted third parties. Additionally, the summary described in the
label can lead to more detailed original sources that can be used to confirm the
validity of the summarized information.

While it is in a provider’s best interest to provide a correct representation
of its APIs functional characteristics (operation structure, data representation
formats, suggested interaction conversations) so that clients may easily consume
the API appropriately, questionable providers may be tempted to misrepresent

May Contain Nuts: The Case for API Labels 107

some of the Quality of Service levels they may be capable of guaranteeing. Hence
labeling APIs could provide the necessary means to certify and validate the
provided API metadata information complementing other means to establish
and assess the reputation of the API provider [3]. This is a rather challenging
task that would require to deal with a number of non-trivial issues.

For example, how would consumers establish trust with a given API label
certification authority? Is one centralized authority enough or should there be
multiple ones taking into advantage the decentralized nature of the Web [6]?
If multiple parties can certify the same API, how should consumers deal with
conflicting labels? How to ensure labels can be certified in an economically sus-
tainable way (are consumers willing to pay to get verified labels?) without leading
to corruption (providers are willing to pay to get positive labels)? How would
the authority actually verify the QoS claims of the provider? How to avoid that
a provider obtains good results when undergoing a certification benchmark but
poor performance during normal operations when servicing ordinary customer
requests? How to ensure API labels are not tampered with? Should labels be
signed by reference or by value?

While it is out of scope of this paper to deal with all of these issues, we believe
some form of delegation where APIs reference labels via links to label resources
hosted by third parties will be one of the key mechanisms to enable trust into
certified API labels. This way, even if the label value itself is not provided by the
API, but by using the delegation mechanism, we could still make it discoverable
through the API.

5 Label Types

In order to be understandable, labels must follow a framework of well-defined
types that can be “read” as API labels. Some of these may already exist as
evolving or existing standards. The link relations for Web services discussed in
the previous section can be considered potential API labels that are defined in
an evolving standard. An example for an existing standard is the license link
relation defined in RFC 4946 [20], which is meant to convey the license attached
to resources made available through a service.

A label type identifies the kind of label information that is represented by
attaching a label of this type. In principle, there are three different ways of how
label types can communicate label information to consumers:

– By Value: If the label is simply an identifier, then the meaning of the label
is communicated by the label value itself. The question then is what the per-
missible value space is (i.e., which values can be used to safely communicate
a well-defined meaning between label creators and label readers). The value
space can be fixed and defined by enumerating the values associated with the
label type, or it can be defined in a way so that it can evolve. This second
style of managing an evolving value space often is implementing through reg-
istries [27], which effectively decouples the definition of the label type and the
definition of its value space.

108 C. Pautasso and E. Wilde

– By Format: If the label is intended to communicate its meaning by reference,
then it will link to a resource that represents the label’s meaning. It is possible
for label types to require that the format is always the same, and must be used
when using that label. This is what P3P (the example mentioned earlier) did,
by defining and requiring that P3P policies always must be represented by the
defined format. This approach allows to build automation that can validate
and interpret labels, by depending on the fact that there is one format that
must be used for a given label type.

– By Link: It is also possible to not require the format being used. This is
the most webby and open-ended approach, where a label links to a resource
representing the label’s value, but the link does not pre-determine the format
of the linked resource. This approach has the advantage that label value
representations can evolve and new ones can be added when required, but
it has the disadvantage that there is no a priori interoperability of label
producers and label consumers.

Returning to the examples given above, it becomes obvious that the exist-
ing mechanisms discussed so far that could be considered to be used as API
labels already use different approaches from this spectrum. The link relation for
licenses [20] is based on the assumption that a license is identified by value, thus
requiring licenses to be identified by shared URI identifiers. P3P [7] defines its
own format that has to be used for representing P3P labels. The link relations for
Web services [26] identify information by link, and do not constrain the format
that has to be used with those link relations.

6 API Label Examples

In this section we collect a preliminary list of API label types and values, char-
acterizing several technical and non-technical concepts [25] which are meant to
assist consumers during their API selection process. We have compiled this list
based on the relevant literature, our experience, including feedback from our
industry contacts.

– Invocation Style: This label defines on a technical level which kind style is
required for clients to invoke the API. We distinguish between Synchronous
RPC, Synchronous Callbacks, Asynchronous Events/Messages, REST, and
Streaming.

– Protocol Interoperability: Which are the interaction protocols supported by
the API? Which versions of the protocols? Examples values: SOAP, HTTP,
GraphQL

– Privacy: Where is the data managed by the API stored? While clients do not
care whether their data is stored in SQL or XML, they do worry whether their
data is located in a different country and thus subject to different regulations.

– Service Level Agreement: Does an SLA explicitly exist? If it does: how is it
enforced? are there penalties for violations? can it be negotiated? This helps to

May Contain Nuts: The Case for API Labels 109

roughly distinguish between APIs without SLAs from APIs having an explic-
itly (formally or informally) defined SLA, which can be further annotated to
highlight whether service providers make serious efforts to stand behind their
promises and whether they are willing to adapt to client needs by negotiating
the terms of the agreement with them as opposed to offering a number of
predefined usage plans.

– Pricing: Also related to SLA, clients want to know: whether there a free price
plan? Can the API paid price plans be considered as cheap, reasonable, or
expensive? This label needs to be computed based on the client expectations
or by comparing with similar APIs.

– Availability Track Record: Does the API provider explicitly promises high
availability? How well does the promise (e.g., “five nines” or 99.999%) matches
the reality? Is the API provider’s availability improving or getting worse?
Additionally, clients need to know how to set their timeouts before giving up
and determining that the API is no longer available. The Availability Track
Record should label APIs for which such information is explicitly found in
the corresponding SLA.

– Maturity/Stability: The Maturity label should provide a metric to determine
whether the API has reached flying altitude and can be considered as mature
enough, i.e., it is likely to be feature complete and stable during the entire
lifecycle of clients consuming it. This can be inferred from versioning meta-
data, or some kind of metric summarizing the API version history (e.g., the
number of changes over time, or how many alternative versions of the same
API are supported in parallel by the provider). Conversely, if APIs are not
yet mature and unstable, clients would benefit from knowing how much time
they have to react to breaking API changes. Different providers may allow
different amounts of time between announcing changes and carrying them
out. In a similar way, as APIs eventually disappear, does the provider sup-
port some notion of sunset metadata? Are API features first deprecated and
eventually retired, or does the API provider simply remove features without
any warning?

– Popularity: How many clients are using the API? Is this the mostly used API
within the ecosystem/architecture? is it in the top 10 APIs based on daily
traffic? or only very few clients rarely invoke it?

– Alternative Providers: Are there alternative and competing providers for the
API? or there exists only one monopolistic provider? How easy is it to replace
the service provider of the API? How easy is it to find a replacement API
within minimal differences from the current one?

Additional label types describing energy consumption, sustainability, quality
management (e.g. ISO 9001 compliance) or trust certificates are possible.

7 A Recipe for API Labels

As mentioned already, the exact way of how to implement labels is not yet
standardized. In this paper, we discuss the parts that need to be in place to

110 C. Pautasso and E. Wilde

use API labels, but we do not prescribe one single correct way. In order to
summarize these parts, and to give organizations looking at using API labels a
useful starting point, we are summarizing the required parts in an “API label
landscape”. We also recommend specific ways of solving these individual issues.
In particular, Sect. 7.1 provides methods to make labels findable, and Sect. 7.2
provides methods to manage the types and the values of those findable labels so
that the set of labels used in an API landscape can organically grow over time.

7.1 Findable Labels

In order for API labels to be usable and useful, they must be findable. One pos-
sibility is to manage them separate from APIs themselves, but this approach is
likely to let APIs and their labels go out of sync easily. A more robust approach
is to make API labels parts of APIs themselves, which allows labels to be man-
aged and updated by the APIs themselves, and also allows labels to be found
and accessed by those that have access to these APIs.

Using such an approach, making API labels findable amounts to allowing
them to be accessed through the API. For this to be consistent across APIs,
there need to be conventions that are used across APIs to find and access labels.
What these conventions look like, depends on the style and technology of APIs.
For HTTP APIs that are based on the resource-oriented or the hypermedia style
of APIs this amount to providing resources that represent label information.

In terms of currently available practices, using home documents as described
in Sect. 3.2 works well, if it is acceptable as a general API guideline to require
APIs to provide home documents. If it is, labels still need to be made discover-
able from that home document. We are suggesting to represent labels in a way
that represents a set of labels, and that has the ability to “delegate” label rep-
resentation to third parties, so that scenarios like the ones discussed in Sect. 4
can be implemented.

7.2 Extensible Label Sets

Once there is a defined way how labels can be found for APIs and, as suggested
above, through the APIs themselves, then the next question is what types of
labels can be found (Sect. 6 suggests a starting set of label types). It is likely
that the set of label types is going to evolve over time, so the question is not
only which types of labels to support, but also how to manage the continuous
evolution of that set of types.

A flexible way to manage label sets is to use registries [27], as mentioned in
Sect. 5. Once the necessary registry infrastructure is in place, registries need to
be combined with policies so that values in the registry have a well-defined way
how they evolve. For API label types and their corresponding values, a rather
standard set of policies for registry management would most likely work well:

– Initial Set Any API label landscape will start with a set of initial label types.
This set should be the “minimal viable product”, meaning that it is more
important to get API label use off the ground, than to have the perfectly

May Contain Nuts: The Case for API Labels 111

curated set of label types. Likewise, the initial values of each label type will
be chosen among values with a fixed and well-understood meaning.

– Additions after community review and consensus: The label landscape will
continually grow, with new label types and values being added as required.
Additional label types should have some motivation documented, and that
motivation should be the starting point for a community review. If there is
sufficient consensus to add the type, it is added to the set of existing label
types. In a similar way, new values should undergo some review so that they
broadly follow the general idea of the label type, and ideally do not created
overlaps or conflicts with existing entries.

– Semantics of registered label types and values do not change: API labels
should always mean the same, so the meaning of an API label type should
never be changed. Once it has been registered, users will start using it and
will depend on its registered meaning, so changing its meaning would be a
breaking change for all uses of the API label. One exception to this rule is
that it is possible to clarify and correct the meaning of a registered label
value, but this should be used very carefully because any change being made
to a label value’s meaning should retroactively invalidate or change the way
how a label value has been used before.

– Registered label types and values cannot be removed, but can be retired:
Label types should never change meaning, but their usage may not be sup-
ported or required anymore. If that is the case, there should be a mechanism
how a label type or value can be marked as deprecated in the registry, so that
it becomes clear that this label may appear, but that it should not be actively
used anymore. As opposed to removing it from the registry, the semantics of
the deprecated value remain registered and available, allowing everybody to
still look up what an assigned label type or value means. However, the status
also makes it clear that this value should not be used for new labels.

While this recipe for managing label types and values is not the only possible
way, it ensures that label management can evolve, and does not suffer from
breaking changes along the way. This is thanks to the combination of stable
semantics, and the policies on how to evolve them. Because this is a general
pattern how to achieve robust extensibility, a very similar recipe can be used to
manage the evolution of the value space of individual labels.

8 Conclusion

In this position paper we have made the case for API Labels. Labeling APIs is
driven by the real world needs of consumers to quickly assess the main quality
attributes of an API and its provider, which are likely to affect the consumer
application built using the API in the long term. We have proposed the API
Label Framework (ALF): a framework based on the “API the APIs” principle to
make API self-descriptive by attaching API labels as metadata to API resources.
We also included an initial proposal for a number of possible label types. Some
of these can be automatically derived by summarizing information found in

112 C. Pautasso and E. Wilde

API descriptions written by the providers. Other require some external input
by a third-party authority. For API Labels to become a trusted mechanism
for API annotation, comparison and selection, there needs to be a verification
and validation process which guarantees that consumers can trust the “facts”
mentioned in the label.

9 Future Work

As part of future work we plan to make labels self-describing by creating identi-
fiers for each label type you want to support and make label values self-describing
by clearly defining the value space for each label. Tooling will be required to
automatically extract labels and validate the consistency of labels with the cor-
responding detailed API descriptions so that API owners can easily test their
labels and see how they are working. Once a number of machine-readable API
labels become available, tooling to crawl labels will make it easier for developers
to explore the “label graph” of the labels that one or more API providers define.

Also policies around label changes will need to be established so that it is
well-defined when and how to expect label updates and how these are communi-
cated by tracking the history of a given API. Given that label types and values
themselves will likely evolve, it will be important to determine how the set of
possible known values is defined and where can the identified label types can be
reused from. Registries [27] for API labels and possibly their value spaces are
like to play a key role for addressing this challenge.

References

1. Atkinson, L., Rosenthal, S.: Signaling the green sell: the influence of eco-label
source, argument specificity, and product involvement on consumer trust. J.
Advert. 43(1), 33–45 (2014)

2. Becker, T.: To what extent are consumer requirements met by public quality pol-
icy? In: Quality Policy and Consumer Behaviour in the European Union, pp. 247–
266. Wissenschaftsverlag Vauk Kiel KG (2000)

3. Bidgoly, A.J., Ladani, B.T.: Benchmarking reputation systems: a quantitative ver-
ification approach. Comput. Human Behav. 57, 274–291 (2016). https://doi.org/
10.1016/j.chb.2015.12.024

4. Booth, D., Liu, C.K.: Web Services Description Language (WSDL) Version 2.0 Part
0: Primer. World Wide Web Consortium, Recommendation REC-wsdl20-primer-
20070626, June 2007

5. Caswell, J.A., Mojduszka, E.M.: Using informational labeling to influence the mar-
ket for quality in food products. Am. J. Agric. Econ. 78(5), 1248–1253 (1996)

6. Chu, Y.H., Feigenbaum, J., LaMacchia, B., Resnick, P., Strauss, M.: REFEREE:
trust management for web applications. Comput. Netw. ISDN Syst. 29(8–13), 953–
964 (1997)

7. Cranor, L.F.: Web Privacy with P3P. O’Reilly & Associates, Sebastopol (2002)
8. Garćıa, J.M., Fernandez, P., Pedrinaci, C., Resinas, M., Cardoso, J.S., Cortés, A.R.:

Modeling service level agreements with linked USDL agreement. IEEE Trans. Serv.
Comput. 10(1), 52–65 (2017). https://doi.org/10.1109/TSC.2016.2593925

https://doi.org/10.1016/j.chb.2015.12.024
https://doi.org/10.1016/j.chb.2015.12.024
https://doi.org/10.1109/TSC.2016.2593925

May Contain Nuts: The Case for API Labels 113

9. Hadley, M.: Web application description language (WADL). Technical report. TR-
2006-153, Sun Microsystems, April 2006

10. Kearney, K.T., Torelli, F., Kotsokalis, C.: SLA�: an abstract syntax for service level
agreements. In: Proceedings of the 11th IEEE/ACM International Conference on
Grid Computing (GRID), pp. 217–224 (2010)

11. Kelley, P.G., Bresee, J., Cranor, L.F., Reeder, R.W.: A nutrition label for privacy.
In: Proceedings of the 5th Symposium on Usable Privacy and Security, p. 4. ACM
(2009)

12. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: an HTML microformat for
describing RESTful web services. In: IEEE/WIC/ACM International Conference
on Web Intelligence, Sydney, Australia, pp. 619–625, December 2008. https://doi.
org/10.1109/WIIAT.2008.469

13. Kotler, P.: Marketing Management: Analysis, Planning, Implementation and Con-
trol. Prentice Hall, Upper Saddle River (1997)

14. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documen-
tation: the state of the practice. IEEE Software 20(6), 35–39 (2003). https://doi.
org/10.1109/MS.2003.1241364

15. Li, J., Xiong, Y., Liu, X., Zhang, L.: How does web service API evolution affect
clients? In: IEEE 20th International Conference on Web Services (ICWS), pp.
300–307, June 2013

16. Nottingham, M.: Home Documents for HTTP APIs. Internet Draft draft-
nottingham-json-home-06, August 2017

17. Pautasso, C., Wilde, E.: Why is the web loosely coupled? A multi-faceted metric
for service design. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) 18th
International World Wide Web Conference, Madrid, Spain, pp. 911–920. ACM
Press, April 2009

18. Pautasso, C., Zimmermann, O.: The web as a software connector: integration rest-
ing on linked resources. IEEE Software 35(1), 93–98 (2018)

19. Robie, J., Sinnema, R., Wilde, E.: RADL: RESTful API description language. In:
Kosek, J. (ed.) XML Prague 2014, Prague, Czech Republic, pp. 181–209. February
2014

20. Snell, J.M.: Atom License Extension. Internet RFC 4946, July 2007
21. Tata, S., Mohamed, M., Sakairi, T., Mandagere, N., Anya, O., Ludwig, H.: RSLA:

a service level agreement language for cloud services. In: Proceedings of the 9th
International Conference on Cloud Computing (CLOUD2016), pp. 415–422. IEEE
(2016). https://doi.org/10.1109/CLOUD.2016.60

22. The Open API Initiative: OAI (2016). https://openapis.org/
23. Uriarte, R.B., Tiezzi, F., De Nicola, R.: SLAC: a formal service-level-agreement

language for cloud computing. In: UCC, pp. 419–426. IEEE, December 2014
24. Verborgh, R., Steiner, T., Deursen, D.V., Coppens, S., Vallés, J.G., de Walle, R.V.:

Functional descriptions as the bridge between hypermedia APIs and the semantic
web. In: Alarcón, R., Pautasso, C., Wilde, E. (eds.) Third International Workshop
on RESTful Design (WS-REST 2012), Lyon, France, pp. 33–40, April 2012.https://
doi.org/10.1145/2307819.2307828

25. Wilde, E.: Surfing the API web: web concepts. In: 27th International World Wide
Web Conference, Lyon, France, pp. 797–803. ACM Press, April 2018

26. Wilde, E.: Link Relation Types for Web Services. Internet Draft draft-wilde-
service-link-rel-10, January 2019

27. Wilde, E.: The Use of Registries. Internet Draft draft-wilde-registries-02, April
2019

https://doi.org/10.1109/WIIAT.2008.469
https://doi.org/10.1109/WIIAT.2008.469
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/MS.2003.1241364
https://doi.org/10.1109/CLOUD.2016.60
https://openapis.org/
https://doi.org/10.1145/2307819.2307828
https://doi.org/10.1145/2307819.2307828

Towards a Generalizable Comparison of
the Maintainability of Object-Oriented

and Service-Oriented Applications

Justus Bogner1,2(B), Bhupendra Choudhary2, Stefan Wagner2,
and Alfred Zimmermann1

1 University of Applied Sciences Reutlingen, Reutlingen, Germany
{justus.bogner,alfred.zimmermann}@reutlingen-university.de

2 University of Stuttgart, Stuttgart, Germany
{justus.bogner,stefan.wagner}@iste.uni-stuttgart.de,

bhupendra.choudhary@gmx.de

Abstract. While there are several theoretical comparisons of Object
Orientation (OO) and Service Orientation (SO), little empirical research
on the maintainability of the two paradigms exists. To provide support
for a generalizable comparison, we conducted a study with four related
parts. Two functionally equivalent systems (one OO and one SO version)
were analyzed with coupling and cohesion metrics as well as via a con-
trolled experiment, where participants had to extend the systems. We
also conducted a survey with 32 software professionals and interviewed 8
industry experts on the topic. Results indicate that the SO version of our
system possesses a higher degree of cohesion, a lower degree of coupling,
and could be extended faster. Survey and interview results suggest that
industry sees systems built with SO as more loosely coupled, modifiable,
and reusable. OO systems, however, were described as less complex and
easier to test.

Keywords: Maintainability · Service orientation · Object orientation ·
Metrics · Experiment · Survey · Interviews

1 Introduction

The ability to quickly and cost-efficiently change applications and services due to
new or redacted requirements is important for any company relying on custom
software. The associated quality attribute is maintainability: the degree of effec-
tiveness and efficiency with which software can be changed [5], e.g. to adapt or
extend it. The introduction of Object Orientation (OO) lead to maintainability-
related benefits like encapsulation, abstraction, inheritance, or increased sup-
port for modularization [3]. In today’s enterprise world, however, systems built
on Service Orientation (SO) are increasingly more common. By introducing a
higher level of abstraction, Service-Based Systems (SBSs) consist of loosely cou-
pled distributed components with well defined technology-agnostic interfaces [7].
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 114–125, 2020.
https://doi.org/10.1007/978-3-030-63161-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_9

Comparing the Maintainability of Object and Service Orientation 115

SO aims to promote interoperability, reuse of cohesive functionality at a business-
relevant abstraction level, and encapsulation of implementation details behind
published interfaces [4].

So while Service Orientation seems to surpass Object Orientation w.r.t. main-
tainability from a theoretical point of view, this comparison is very hard to gen-
eralize in a practical setting. Developers can build systems of arbitrary quality
in both paradigms, although the inherent properties of both paradigms may
make it easier or harder to build well maintainable systems. Very little empirical
research exists on the topic of comparing the maintainability of OO and SO (see
Sect. 2). Results from such studies can bring valuable insights into the evolution
qualities of these two paradigms. Research in this area can also highlight poten-
tial deficiencies and weaknesses, which helps raising awareness for developers as
well as providing decision support for choosing a paradigm for a project.

This is why we conducted a study to compare the maintainability of object-
oriented and service-oriented applications from different perspectives. For a prac-
tical empirical point of view, we constructed two functionally equivalent systems
(one based on OO and the other on SO) and compared them with metrics as well
as by means of a controlled software development experiment. To gain insight
into software professionals’ subjective estimation of the two paradigms, we con-
ducted an industry survey as well as expert interviews. In the remainder of this
paper, we first introduce related work in this area. Then we present the details
of our 4-part study including the methods, results, and limitations. Lastly, we
conclude by summarizing our results and putting them into perspective.

2 Related Work

A small number of scientific publications exists that compare Service Orienta-
tion and Object Orientation. In 2005 when SBSs were still very young, Baker
and Dobson [1] published a theoretical comparison of Service-Oriented Archi-
tecture (SOA) and Distributed Object Architectures (DOA) based on literature
and personal experience. Their comparison is very high-level and not focused
specifically on maintainability. While they highlight a large number of similari-
ties, they also point out the more coarse-grained interfaces of SOA that lead to
simplified communication and less cognitive overhead for developers of service
consumers. Moreover, they point out the missing notion of inheritance and inter-
face specialization in SOA, which they acknowledge as initially less complex, but
potentially limiting in the long term.

Stubbings [10] provided another theoretical comparison that also emphasizes
the direct line of evolution from OO to SO. Beneficial OO concepts like encap-
sulation and reuse have been adapted to a higher abstraction level in Service
Orientation that is closer to the business domain. He further assessed the struc-
tural and technological complexity to be higher in a system based on Service
Orientation. Concerning communication, he reported the focus for OO to be
primarily internal while SO would be more aimed at external interoperability.

116 J. Bogner et al.

One of the few empirical studies on the subject was performed by Pere-
pletchikov et al. [8] on two versions of a fictional Academic Management System
(one service-oriented version, the other one object-oriented). To compare the
maintainability of the two, they employed traditional source code metrics like
Lines of Code, Cyclomatic Complexity, as well as the OO metrics suite from Chi-
damber and Kemerer. They focused on the structural properties size, complexity,
coupling, and cohesion. As findings, they reported that the SO version provides
better separation of business and implementation logic and a lower degree of
coupling. The OO system, however, would be overall less complex.

Lastly, Mansour and Mustafa [6] conducted a similar empirical study. They
constructed a service-oriented version of an existing OO Automated Teller
Machine system and compared the two versions with a set of metrics, very
similar to the ones in [8]. They reported that the SO version of their system
inhibited a higher degree of reusability and a lower degree of coupling while the
complexity of the OO version was lower. Additionally, they described difficulties
when trying to apply OO metrics to a Service-Based System and advocated the
need for a set of service-oriented maintainability metrics.

Existing studies are either of a theoretical nature or solely focused on met-
rics. While the presented empirical studies provide first valuable support for a
comparison with metrics, they also reported difficulties due to a lack of mutu-
ally applicable metrics. Not all OO metrics can be used for SBSs. Moreover,
additional metric evaluations with other systems will be of value while new
approaches can bring different perspectives to the discussion.

3 Study Design

Based on the results and lessons learned of the related work, we therefore con-
ducted a study with four different parts. First, we constructed a service-oriented
and an object-oriented version of a simple Online Book Store (OBS) that pro-
vided functionality to register as a user as well as to browse and order books. The
service-oriented version was implemented with RESTful NodeJS services using
the Express framework1 and an Angular frontend2 while the object-oriented ver-
sion is a Java monolith relying on JavaServer Pages (JSP) as a web UI. These
two systems were compared using a set of coupling and cohesion metrics.
To respect the two system versions, we needed metrics that can be applied both
to service- as well as object-oriented systems. This is often difficult to achieve,
since coupling and cohesion metrics are usually designed for either of the two
paradigms. We therefore chose two metrics for each structural property that
could be adapted to be mutually applicable.

For coupling, we chose Absolute Importance of the Service (AIS) and Absolute
Dependence of the Service (ADS). Both have been specifically designed for SBSs
and represent the number of clients invoking a service (AIS) and the number of

1 https://expressjs.com.
2 https://angular.io.

https://expressjs.com
https://angular.io

Comparing the Maintainability of Object and Service Orientation 117

Fig. 1. Object-oriented version of OBS

other services a service depends on respectively (ADS) [9]. They can be easily
adapted to object-oriented systems by substituting services with classes.

For cohesion, we selected two object-oriented metrics, namely Tight Class
Cohesion (TCC) and Loose Class Cohesion (LCC) [2]. These metrics attempt to
measure the relatedness of class functionality based on common class attributes
that the methods operate on. TCC represents the relative number of directly
connected methods while LCC also includes indirectly connected methods (via
other intermediate methods). To adapt these metrics to a service-oriented con-
text, class methods are substituted by service operations.

While the majority of maintainability metrics use structural properties as
a proxy, industry is really interested in something else: how fast can changes
or features be implemented for the system? To account for this, the same sys-
tems were used in a controlled experiment. Software practitioners had to
implement search functionality for books while the time was measured. We then
analyzed whether the version made a noticeable difference. 8 software develop-
ers participated in the experiment, four per system version of OBS. 7 of the 8
developers were from Germany. They had an average of ∼4.1 years of experience
(OO AVG: 4.5 years, SO AVG: 3.75 years). All of them had worked with their
respective paradigm before. We measured the time necessary to complete the
exercise as well as the changed Lines of Code for the backend part.

To complement these two empirical approaches, we also conducted an indus-
try survey to capture the general sentiment of developers towards the two
paradigms. Software professionals filled out an online questionnaire where they

118 J. Bogner et al.

Fig. 2. Service-oriented version of OBS

were asked to compare structural and maintainability-related properties of the
two paradigms based on their personal experience. 32 participants completed
our web-based questionnaire that was distributed via personal industry con-
tacts, mailing lists, and social media. The survey was hosted from 2018-04-19
until 2018-05-06 and consisted of 12 questions, mostly with Likert scale answers.
Most participants were from Germany and India and all had at least three years
of professional experience. They had to comment on the average condition of
different structural properties (e.g. coupling) and subquality attributes of main-
tainability in SW projects based on either OO or SO. Lastly, they had to answer
some questions where they ranked the three paradigms Object Orientation, Ser-
vice Orientation, and Component-Based for similar attributes.

As a more in-depth follow-up to the survey, we conducted qualitative inter-
views with several experts to complement the broader scope of the survey and
to dive more deeply into some of the topics. Similar to the survey, we also asked
for their personal experience and preference w.r.t. the maintainability of the
two paradigms under study. This was the fourth and final part of our study.
All 8 experts had an IT or Engineering background and had previously worked
with object-oriented as well as service-oriented systems. 7 of the 8 experts were
older than 30 years, i.e. had considerable professional experience. The inter-
views started with an introduction of the two OBS versions and a discussion
about their strengths and weaknesses. This was followed by similar questions

Comparing the Maintainability of Object and Service Orientation 119

as in the survey about properties of the two paradigms and the participants’
experience.

Please refer to our GitHub repository for the source code of the systems as
well as the detailed survey questions and results3.

4 Results

For the metric-based part of the study, we measured all four component-level
metrics for both the object-oriented (Fig. 1) and the service-oriented version
(Fig. 2) of the Online Book Store (OBS). Since each version of the system
includes three components (services or classes respectively), we have a total
of 12 measurements (see Table 1). When looking at the AVG values per version
and metric (see Fig. 3), we can see that the service-oriented version overall has
slightly better values, i.e. on average lower coupling and higher cohesion per
component.

Table 1. Coupling and cohesion metric values per component

Component AIS ADS TCC LCC

OO Version Administration 1 2 0.00 0.40

Register 1 2 0.16 0.50

Shopping Cart 2 0 0.33 0.33

SO Version AdminService 1 1 0.67 0.67

BookService 1 1 0.33 0.50

CartService 1 1 1.00 1.00

During the controlled experiment, it took less time and effort to extend
the service-oriented version of OBS (see Fig. 4). The mean duration for the SO
version was 0.8 h while it was 0.99 h for the OO version. Respectively, the mean
effort was 7.25 LoC for SO and 12.5 LoC for OO. When analyzing the significance
of the mean differences in our sample with an unpaired t-test, we found two-tailed
p-values smaller than 0.05 (p-valueduration: 0.0479, p-valueeffort: 0.005).

The following part highlights the results of the survey questions. For Lik-
ert scale question, we also present the aggregated score per paradigm (Strongly
Disagree: −2, Disagree: −1, Neutral: 0, Agree: 1, Strongly Agree: 2).

Question: In my experience, software based on <paradigm> has a comparatively
low degree of coupling .

3 https://github.com/xJREB/research-oo-vs-so.

https://github.com/xJREB/research-oo-vs-so

120 J. Bogner et al.

1.33 1.33

0.16

0.41

1 1

0.67
0.72

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Absolute Importance of
the Service

Absolute Dependence of
the Service

Tight Class Cohesion Loose Class Cohesion

M
et

ric
 V

al
ue

AVG in OO Version AVG in SO Version

Fig. 3. Average coupling and cohesion metric values per version

0.76 0.91 0.83 0.68

1.16
0.91 0.9 0.98

0

0.5

1

1.5

SO SO SO SO OO OO OO OO

P1 P3 P5 P7 P2 P4 P6 P8

Ti
m

e
in

 H
ou

rs

Fig. 4. Experiment: duration per participant

1

2

7

4

8

20

15

6

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 5. Question: In my experience, software based on <paradigm> has a compara-
tively low degree of coupling.

Comparing the Maintainability of Object and Service Orientation 121

For coupling, participants clearly favored Service Orientation (score: 30) over
Object Orientation (score: 8). Over 80% reported that service-oriented systems
were in their experience of a more loosely coupled nature while only 50% reported
the same for object-oriented systems (see Fig. 5). This result was to be expected,
since loose coupling and the reduction of dependencies is a major driver in SBSs.

Question: In my experience, software based on <paradigm> facilitates a com-
paratively high degree of cohesion .

When it came to cohesion, the results were less decisive (SO: 18, OO: 14).
Overall, roughly 13% more participants agreed with this statement for Service
Orientation (SO: ∼63%, OO: 50%). This does not seem to be a lot, when we
consider the prevalence of the “cohesive services grouped around business capa-
bilities” theme in an SOA and especially in a Microservices context.

Question: In my experience, software based on <paradigm> promises a signif-
icant extent of reusability .

Participants reported higher reusability for their service-oriented software
than for their object-oriented software. While the scores were pretty even (SO:
25, OO: 22), ∼78% of participants agreed to this statement for SO while only
∼59% agreed for OO. Absolute scores are so close because two more people
disagreed for SO and one more strongly agreed for OO (see Fig. 6). Overall, these
results seem to support the SO principle of business-relevant reuse granularity.

3

1

4

12

22

15

3

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 6. Question: In my experience, software based on <paradigm> promises a signif-
icant extent of reusability.

Question: In my experience, software based on <paradigm> reduces the com-
plexity of testing .

In the case of testability, Object Orientation (score: 24) was seen as more
beneficial than Service Orientation (score: 14) to reduce complexity. Roughly
72% of participants agreed with this statement for OO while only ∼53% agreed
for SO together with 6 disagreements (see Fig. 7). This is the first category where
OO decisively wins out in the opinion of participating developers.

Lastly, developers were asked to rank the three paradigms Object Orientation,
Service Orientation, and Component-Based from their experience for three fur-
ther properties: modifiability, encapsulation/abstraction, and size/complexity.
Ranking a paradigm first provided three points, ranking it second provided two,

122 J. Bogner et al.

6 9

9

14

22

3

1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Service Orienta on

Object Orienta on

Strongly Disagree Disagree Neutral Agree Strongly Agree

Fig. 7. Question: In my experience, software based on <paradigm> reduces the com-
plexity of testing.

Table 2. Question: In your experience, which of the three paradigms provides on
average the most favorable degree of <attribute>?

Object Orientation Component-Based Service Orientation

Modifiability 63 43 86

Encapsulation
and Abstraction

58 43 85

Size and
Complexity

74 39 73

ranking it last provided one point respectively. The results (see Table 2) indi-
cate that participants experienced systems based on Service Orientation as more
modifiable and with a better degree of encapsulation and abstraction as for the
other two paradigms. For size and complexity, however, participants reported
that they believed the manageability of these properties to be roughly equal for
OO and SO, with OO winning out by one point.

We compiled results from the qualitative interviews in several areas. For
the topic of modifiability, 5 of the 8 experts reported that on average in their
experience service-oriented systems are more beneficial than object-oriented ones
when it comes to evolving already developed systems. Participants emphasized
the advantages of service-based modularity, which would increase independence
in the system and reduce costs in the long run. Some experts highlighted that
SO is more convenient when requirements frequently change.

Concerning complexity, most experts indicated based on their past software
projects that systems based on Object Orientation are on average less complex
than SBSs from a structural and technological point of view. They also men-
tioned mature tool support in the field of object-oriented SW development that
would ease some of the difficulties. In the service-oriented space, however, tool
support would be lacking.

When comparing the average analyzability of the two paradigms, the major-
ity of participants favored Service Orientation over Object Orientation. The
structure of the system would be easier to grasp when referring to services as
coarse-grained components. Moreover, experts experienced less dependencies in
SBSs, which also helped to comprehend the structure of a system.

Comparing the Maintainability of Object and Service Orientation 123

Lastly, in addition to the lack of mature tool support for Service Orientation,
participants reported the danger of ripple effects when changing services, espe-
cially with service interface changes that require updates of all service consumers.
Some experts also stressed that Object Orientation was a valuable paradigm to
be used for the inner low-level design of single services and that it would nicely
complement the service-based high-level architecture of a system. So the choice
would not always be either Service or Object Orientation.

5 Threats to Validity

Several things have to be mentioned to put our results into appropriate perspec-
tive. For the metric-based evaluation, the tested systems were artificially
constructed and are not real industry or open source systems. While we tried
to design and implement them as close to a real use case as possible, we also
needed something of manageable size and complexity, which may impact the
generalizability of the comparison (e.g. the AVG metric values were computed
from only three components). The chosen technology for both versions may also
be a limitation. Results with other programming languages or frameworks could
be different. Moreover, we only used a small number of metrics and targeted
only two structural properties (coupling and cohesion). Other metrics, e.g. for
size or complexity, could have yielded additional insights, but were neglected
due to project time constraints. Finally, we calculated the metric values manu-
ally due to missing tool support. Since the systems are of limited size and we
double-checked each value, the error probability should still be very small.

In the case of the controlled experiment, the same limitations of the con-
structed systems as described above hold true. The two different programming
languages (Java and NodeJS/JavaScript) also limit the comparability of the LoC
effort. Additionally, we only had a small number of participants. Potentially dif-
ferent development experience and skill levels could not be accounted for when
assigning the participants to the two versions of OBS. Lastly, the experiment
consisted of only one exercise, which can only test the modifiability of certain
parts of the system.

As with most quantitative surveys, a number of limitations have to be
mentioned. First, the number of participants (32) only provides limited gen-
eralizability, as a different population subset may have different views on the
subject. Moreover, we could not guarantee that the participating developers
indeed had sufficient experience with all three software paradigms. Lastly, the
subjective estimation of the inherent qualities of a paradigm may be skewed
by a particularly bad experience with a suboptimally designed system. Overall,
it is important to keep in mind that personal preference of developers is not
necessarily of a rational nature.

As opposed to our survey participants, we could select our interview
experts based on their experience with the two paradigms under evaluation,
at least up to a certain degree. However, there is still a chance that some experts
were less proficient with one of the paradigms or were heavily influenced by one

124 J. Bogner et al.

specific project of theirs. Moreover, there is a chance that we slightly influenced
the experts by posing questions that should direct the conversation to the prop-
erties under evaluation. Lastly, our interviews were conducted and analyzed in
a fairly loosely structured manner without a rigorous methodology.

6 Conclusion

To provide additional evidence for a generalizable comparison of the maintain-
ability of Service Orientation and Object Orientation, we conducted a study
with four parts: a metric-based comparison of two functionally equivalent sys-
tems (one SO and one OO version); a controlled experiment where practitioners
had to extend the same systems; an industry survey with comparative questions
about OO and SO; and expert interviews as a more in-depth follow-up to the
survey.

The empirical results indicate that the service-oriented version of our Online
Book Store system consists of more cohesive and more loosely coupled compo-
nents and could also be extended faster and with less effort (LoC) by experi-
ment participants. Survey and interview results seem to go in the same direc-
tion: industry professionals experienced higher modifiability, lower degrees of
coupling, higher reusability, and stronger encapsulation and abstraction in their
service-oriented projects. For their average object-oriented systems, however,
they reported comparatively lower complexity and better testability.

While these results can aid in the decision process for a paradigm and can
highlight important maintainability-related focus points when designing systems
with either paradigm, it is still important to remember that we can build software
of arbitrary quality in both paradigms. Moreover, Object Orientation can be a
useful complement for the inner architecture of services.

Acknowledgments. This research was partially funded by the Ministry of Science
of Baden-Württemberg, Germany, for the Doctoral Program “Services Computing”
(http://www.services-computing.de/?lang=en).

References

1. Baker, S., Dobson, S.: Comparing service-oriented and distributed object architec-
tures. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3760, pp. 631–645.
Springer, Heidelberg (2005). https://doi.org/10.1007/11575771 40

2. Bieman, J.M., Kang, B.K.: Cohesion and reuse in an object-oriented system. In:
Proceedings of the 1995 Symposium on Software reusability - SSR 1995, pp. 259–
262. ACM Press, New York (1995)

3. Booch, G.: Object Oriented Analysis & Design with Application. Pearson Educa-
tion, London (2006)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

5. International Organization For Standardization: ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Technical report (2011)

http://www.services-computing.de/?lang=en
https://doi.org/10.1007/11575771_40

Comparing the Maintainability of Object and Service Orientation 125

6. Mansour, Y.I., Mustafa, S.H.: Assessing internal software quality attributes of the
object-oriented and service-oriented software development paradigms: a compara-
tive study. J. Software Eng. Appl. 04(04), 244–252 (2011)

7. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 7th International Conference on Properties and Appli-
cations of Dielectric Materials (Cat. No.03CH37417), pp. 3–12. IEEE (2003)

8. Perepletchikov, M., Ryan, C., Frampton, K.: Comparing the impact of service-
oriented and object-oriented paradigms on the structural properties of software.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp.
431–441. Springer, Heidelberg (2005). https://doi.org/10.1007/11575863 63

9. Rud, D., Schmietendorf, A., Dumke, R.R.: Product Metrics for Service-Oriented
Infrastructures. In: IWSM/MetriKon (2006)

10. Stubbings, G.: Service-orientation and object-orientation: complementary design
paradigms. SPARK: ACES J Postgrad. Res. 1, 1–9 (2010)

https://doi.org/10.1007/11575863_63

ESOCC 2018 PhD Symposium

ESOCC PhD Symposium Preface

The ESOCC PhD symposium is an international forum for PhD students working in
any of the areas addressed by the ESOCC conference. The following papers collect all
accepted research reports as submitted by the students. As a result, five out of the eight
submitted papers are included in the following. The decision which of these reports to
include in the symposium proceedings was based on the quality of the report, pre-
sentation, and short pitch by the student during the symposium.

As the organizers of this event, we would like to thank the students for their high
quality submissions, the Program Committee for their reviews and feedback during and
after the presentations, and the conference organizers for creating this space of idea
exchanges.

March 2020 Vasilios Andrikopoulos
Massimo Villari

ESOCC PhD Symposium Organization

Program Committee

Marco Aiello University of Stuttgart, Germany
Antonio Brogi University of Pisa, Italy
Flavio De Paoli University of Milano-Bicocca, Italy
Friederike Klan Friedrich Schiller University Jena, Germany
Welf Loewe Linnaeus University, Sweden
Alexander Pokahr University of Hamburg, Germany
Emilio Tuosto University of Leicester, UK
John Wittern IBM Research, USA

Towards an Evolvability Assurance
Method for Service-Based Systems

Justus Bogner1,2(B), Alfred Zimmermann1, and Stefan Wagner2

1 University of Applied Sciences Reutlingen, Reutlingen, Germany
justus.bogner@reutlingen-university.de

2 University of Stuttgart, Stuttgart, Germany
justus.bogner@informatik.uni-stuttgart.de

Abstract. To enable software professionals to design and evolve long-
living Service-Based Systems (SBSs) in sustainable fashion, we are devel-
oping a continuous assurance method to identify and remediate poten-
tial evolvability-related issues. With the rational of broad applicability
within service-based architectural styles, we focus on the commonalities
of Service-Oriented Architecture (SOA) and Microservices. The method
is based on structural service-oriented metrics (e.g. coupling or cohesion),
service evolution scenarios, as well as service-oriented design patterns to
increase modifiability. Tool support should enable convenient usage and
adoption of the method for practitioners. The final evaluation is planned
as an industry case study in combination with action research.

Keywords: Evolvability · Maintainability · Service-Based Systems ·
Microservices · Metrics · Scenarios · Patterns

1 Introduction and Motivation

In a world of digital transformation where change is the only constant, it is
essential for companies to quickly and efficiently adapt their software to new or
changed requirements. The associated quality attribute (QA) is maintainability,
the degree of effectiveness and efficiency with which software can be changed
[21]. While requirements are stable, corrective or perfective maintenance can be
performed. With changes in the set of requirements, we perform adaptive or
extending maintenance [31]. The quality attribute for the latter types of mainte-
nance is also referred to as evolvability. The importance and complexity of this
quality attribute have been known for a long time and have been for example
conceptualized in Lehman’s laws of software evolution [23]. Nonetheless, evolv-
ability is often overshadowed by the need for new features or other QAs with
more end-user visibility, e.g. performance. Choosing expedient solutions that
work in the short term but may pose significant issues for software evolution in
the long run leads to the accrual of technical debt [4]. Lastly, it is very difficult to
quantify and generalize evolvability, as one system may be very robust towards a
certain type of change, but may be completely inflexible towards other changes.
c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 131–139, 2020.
https://doi.org/10.1007/978-3-030-63161-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_10

132 J. Bogner et al.

The introduction of Service-Oriented Computing (SOC) [28] allegedly
brought several maintainability-related advantages like effective encapsulation
and abstraction, loose coupling, increased reusability and composition, or a high
degree of interoperability. However, Service-Based Systems (SBSs) also come
with high technological and structural complexity and make end-to-end testing
more difficult [16]. Industry dissatisfaction with Service-Oriented Architecture
(SOA) in general and SOAP Web Services in particular (e.g. due to heavyweight
and complex technology, vendor product lock-in, or governance overhead) led to
the rise of a more agile and lightweight service-based architectural style, namely
Microservices [26]. The combination of DevOps tools and principles [5], fine-
grained loosely coupled services, and decentralization of management and control
is also supposed to increase long-term maintainability and especially evolvabil-
ity of these systems. Several studies indicate that increased maintainability is
one of the primary drivers for migrating to a Microservice Architecture (MSA)
[14,19,27]. While Microservices seem to work very well for companies stocked
with top talent like Amazon, Netflix, or Spotify, they are certainly no silver
bullet and also introduce a high complexity in the outer architecture [11].

Moreover, several publications report a high trust of practitioners in the
inherent evolution qualities of service orientation (e.g. [1,34]), in fact to such
a degree that they may deliberately reduce maintainability control efforts. In
our industry survey (n = 60) [7], only 25% of participants indicated that they
were actually content with the degree of maintainability of their software, while
simultaneously ∼67% reported to not treat systems based on service orienta-
tion any different w.r.t. maintainability assurance. As reasons, most admitted
that they did not know what to change or that they had never thought about
addressing SBSs differently. A “blind” belief in the base-level maintainability of
service orientation without being aware for the preconditions of these inherent
qualities can lead to serious evolution issues in the long-term.

While the evolvability assurance of Service- and Microservice-Based Systems
is of a complex nature due to, for example, a high degree of technological hetero-
geneity, a higher level of abstraction for metrics, a large number of components
in different source code repositories, or indirect dependencies between services,
there are very few publications on the topic from a holistic perspective. Likewise,
available tool support to aid in the assurance process is also lacking. In the con-
text of the presented problem space, the planned contribution of this research is
therefore to develop a lightweight assurance method to support the identification
and remediation of evolvability-related issues in Service-Based Systems.

This paper presents the specifics of the mentioned method by first explain-
ing the scope and guiding questions for this research. The section thereafter
provides an overview of completed and planned research contributions to design
the method. To put our contribution into perspective, the related work section
presents existing research of similar intent. Lastly, a conclusive section summa-
rizes the paper and presents an outlook on the next steps.

Towards an Evolvability Assurance Method for Service-Based Systems 133

2 Scope and Research Questions

While existing related work (see Sect. 4) holds value and may partially address
evolvability-related issues in systems based on service orientation, there is cur-
rently no lightweight and practical method that is specialized for modern forms
of service orientation and approaches evolvability from several perspectives at
once. To address this gap, our goal is to develop a holistic assurance method
with the following characteristics.

Targeted at Service-Based Systems in General. The method is specifically
designed for service orientation. We consciously chose the more neutral term
Service-Based Systems as opposed to SOA or Microservices. The rationale for
this is that we focus on the commonalities of the two prevalent service-based
architectural styles. Moreover, we believe that there are several SBSs in practice
that are neither fully classifiable as SOA nor as Microservices, which seems to be
confirmed by [33]. Nonetheless, we focus on modern containerized service- and
web-based applications that use RESTful HTTP or lightweight messaging (e.g.
AMQP) as opposed to heavyweight SOAP/WSDL.

An Efficient Method for Continuous Software Engineering. We aspire
our method to be of a lightweight and flexible nature that is relevant for industry.
It should be usable in agile organizations in line with the philosophy of contin-
uous software engineering [18]. Within a continuous integration pipeline, timely
automatic feedback for evaluating services will be provided.

Structural Metrics for Fast Feedback. The method enables the automatic
gathering of structural metrics for system properties like coupling, cohesion, or
granularity. This provides a quantitative evaluation of the base-level evolvability
of the system.

Evolution Scenarios for Specific Changes. To complement the metric-based
evaluation, we will provide qualitative evaluation in the method via lightweight
scenarios. This tool-supported but manual analysis helps to prepare for specific
changes and has been adapted for modifiability of service-based systems from
scenario-based methods like ATAM or ALMA.

Service-Oriented Evolvability Patterns. As remediations to identified prob-
lems in the architecture (hot spots), we suggest selected service-oriented design
patterns that are beneficial for modifiability.

Tool Support to Bring it All Together. As the central end-user interface, we
plan to provide tool support for convenient visualization of the analysis results
and remediation suggestions.

The research questions that frame and provide guidance for this project are as
follows. RQ1a and RQ1b are of exploratory and analytical nature to accumulate
knowledge while RQ2 is design-related and focused on the final artifact.

RQ1a: What are existing approaches to measure and improve maintainability
and evolvability for Service-Based Systems?

134 J. Bogner et al.

RQ1b: Are these approaches also applicable to Microservice-Based Systems
and what are potential limitations?
RQ2: What is a feasible and efficient method for continuous evolvability
assurance of Service-Based Systems?

3 Research Activities

To build up the necessary knowledge and define the separate building blocks
for the method, we already conducted a number of research activities, which we
describe in this section together with ongoing and planned research. The method
and building blocks are also visualized in Fig. 1.

Metrics

Evolvability Assurance Method for Service-Based Systems

Evolution
Scenarios Tool SupportEvolvability

Patterns

Fig. 1. Final contribution: evolvability assurance method

3.1 Metrics

The higher abstraction level in SBSs requires a set of new metrics, since object-
oriented or traditional source code metrics are only of limited use [24,29]. To
discover existing metric candidates specifically designed for systems based on
service orientation, we conducted a literature review [8]. We identified nearly
50 metrics from 8 different publications and also analyzed their applicability
to Microservices. With the exception of centralization metrics, the majority of
metrics are indeed applicable.

As a follow-up, we started an experimentation and selection process with
some of the metrics that yielded a maintainability model as an intermediate
result [9]. Further research is however necessary to analyze which metrics are
best suited for the planned method. Currently, several research projects center
around metric evaluation as well as the development of tool support for their
automatic gathering. Considered input artifacts are for example architecture
models (e.g. SoaML1) and Swagger/OpenAPI2 specification files.

1 https://www.omg.org/spec/SoaML/About-SoaML.
2 https://swagger.io/specification.

https://www.omg.org/spec/SoaML/About-SoaML
https://swagger.io/specification

Towards an Evolvability Assurance Method for Service-Based Systems 135

3.2 Scenarios

While metrics are valuable, they still mostly rely on structural attributes as a
proxy. Scenario-based evaluation methods like ATAM [22] or ALMA [6] enable
a more detailed analysis of potential future changes. However, they require lots
of manual effort and are not specialized for service orientation. In our current
research, we aim to synthesize a lightweight service-oriented scenario template
from existing approaches that exploits the classifiability of change in these sys-
tems (e.g. service implementation vs. service interface changes). Furthermore, we
are working on flexible tool support to document and evaluate scenarios based
on this template.

3.3 Patterns

Design patterns are established solutions to structure software and help to
address recurring problems. While there is a significant body of service-oriented
patterns (e.g. [17]), patterns for Microservices are still forming [30]. To ana-
lyze the relevance of SOA patterns for Microservices, we conducted a qualitative
analysis on the basis of Microservice principles [12]. Similar as with the metrics,
a large part of SOA patterns was fully or partly applicable, notable exceptions
being governance and centralization patterns.

Since the complex relation between design patterns and quality attributes is
controversially discussed in literature and not a lot of research exists for service-
oriented patterns, we used architectural modifiability tactics as a proxy for pat-
tern candidate selection [10] (e.g. the tactic Use an Intermediary can be realized
by the SOA pattern Service Façade or the Microservices pattern API Gateway).
To further select service-based modifiability patterns in a reliable fashion, we
are currently conducting research projects with functionally equivalent systems
(one pattern version, one non-pattern version). These systems are analyzed with
metrics as well as via controlled software development experiments. Our final
goal within the method is to propose patterns based on the individual metric
and scenario results.

4 Related Work

Brcina et al. [13] present a general method to maintain evolvability on an archi-
tectural level over the life-cycle of a system. Their approach is based on a quality
model and an optimization process that employs generic metrics like Number of
Features or Number of Insulated Artifacts as well as traceability links between
features and architectural components.

Several publications exist also for the context of SOA or Microservices.
Andrikopoulos [2] conceptualized a theoretical framework based on formal mod-
eling to support SOA evolution in a non-breaking fashion. He focused on shallow
changes that are local to a service, but may lead to ripple effects to consumers.
The framework provides models for versioned service interfaces and compatible
contract-based evolution.

136 J. Bogner et al.

Andrzej et al. [3] provided a high-level change-management-driven process
to organize the evolution of service-oriented systems. The included phases and
tasks are compliant with ISO 20000. The core of the method consists of models
for business processes and service compositions as well as a traceability model
to support change impact analysis.

Sabir et al. [32] analyze the specifics of the maintenance and evolution of
Service-Based Systems. They point out key differences and research challenges
such as dependency and impact analysis, tools and techniques to support multi-
language system analysis and maintenance, or service-oriented evolution pat-
terns.

In the domain of Microservices, Granchelli et al. [20] presented an approach
to recover the potentially unknown evolved architecture of Microservice-Based
Systems. The approach relies on model-driven reverse engineering, static source
code analysis, as well as dynamic runtime analysis and is supported by the tool
MicroART.

Similarly, Mayer and Weinreich [25] developed an approach to analyze the
architecture and to visualize the dependencies of RESTful Microservice-Based
Systems at runtime. Initially, a deployed service is added to the model based on
static OpenAPI specification files. Later on, the model is enriched with commu-
nication data. The architecture is presented in a web-based dashboard together
with some operational and QoS indicators.

Lastly, Engel et al. [15] used the Goal Question Metric (GQM) approach to
come up with evaluation criteria for Microservice Architectures. Based on prin-
ciples identified from literature, they select a set of metrics to quantify the main-
tainability of the architecture. To calculate these metrics, the architectural model
is reconstructed from operational data using the Open Tracing API. Results are
visualized in a web-based tool (MAAT).

5 Conclusion

To support software professionals in the development of Service-Based Systems
with very high requirements w.r.t. evolvability, we are working on a continu-
ous assurance method to identify and remediate hot spots in the architecture.
The method is targeted at modern service- and web-based systems and applica-
tions and focuses on the commonalities of SOA and Microservices. To identify
hot spots, we rely on quantitative analysis with structural metrics specifically
designed for SBSs as well as qualitative analysis with service-oriented evolution
scenarios. To increase the modifiability of identified hot spots, selected service-
based patterns are suggested. Applying the method is supported by a web-based
tool with convenient visualization of results and suggestions.

During the construction of the method, we put great emphasis on the indus-
try’s perspective and analyze the current state of practice as well as existing
pain points via surveys and expert interviews. For the final evaluation of the
assurance method, industry case studies and action research are planned.

Towards an Evolvability Assurance Method for Service-Based Systems 137

Acknowledgments. This research was partially funded by the Ministry of Science
of Baden-Wörttemberg, Germany, for the Doctoral Program “Services Computing”
(http://www.services-computing.de/?lang=en).

References

1. Ameller, D., Galster, M., Avgeriou, P., Franch, X.: A survey on quality attributes
in service-based systems. Softw. Qual. J. 24(2), 271–299 (2015). https://doi.org/
10.1007/s11219-015-9268-4

2. Andrikopoulos, V.: A theory and model for the evolution of software services. Ph.D.
thesis, Tilburg University (2010)

3. Andrzej, Z., Marcin, S., Szymon, K.: An evolution process for service-oriented
systems. Comput. Sci. 13(4), 71 (2012)

4. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., Seaman, C.: Managing techni-
cal debt in software engineering. Dagstuhl Rep. 6(4), 110–138 (2016)

5. Bass, L., Weber, I., Zhu, L.: DevOps: a software architect’s perspective, 1st edn.
Addison-Wesley Professional, Boston (2015)

6. Bengtsson, P., Lassing, N., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (ALMA). J. Syst. Softw. 69(1–2), 129–147 (2004)

7. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Limiting technical debt with
maintainability assurance - an industry survey on used techniques and differences
with service- and microservice-based systems. In: Proceedings of the 1st Interna-
tional Conference on Technical Debt (TechDebt 2018), Gothenburg, Sweden. ACM
(2018)

8. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems. In: Proceedings of the 27th
International Workshop on Software Measurement and 12th International Confer-
ence on Software Process and Product Measurement on - IWSM Mensura 2017,
pp. 107–115. ACM Press, New York (2017)

9. Bogner, J., Wagner, S., Zimmermann, A.: Towards a practical maintainability qual-
ity model for service-and microservice-based systems. In: Proceedings of the 11th
European Conference on Software Architecture Companion Proceedings - ECSA
2017, vol. 3, pp. 195–198. ACM Press, New York (2017)

10. Bogner, J., Wagner, S., Zimmermann, A.: Using architectural modifiability tactics
to examine evolution qualities of service- and microservice-based systems. SICS
Softw.-Intensiv. Cyber-Phys. Syst. 34, 141–149 (2019). https://doi.org/10.1007/
s00450-019-00402-z

11. Bogner, J., Zimmermann, A.: Towards integrating microservices with adaptable
enterprise architecture. In: IEEE 20th International Enterprise Distributed Object
Computing Workshop (EDOCW), pp. 1–6. IEEE, September 2016

12. Bogner, J., Zimmermann, A., Wagner, S.: Analyzing the relevance of SOA pat-
terns for microservice-based systems. In: Proceedings of the 10th Central European
Workshop on Services and their Composition (ZEUS 2018), Dresden, Germany, pp.
9–16. CEUR-WS.org (2018)

13. Brcina, R., Bode, S., Riebisch, M.: Optimisation process for maintaining evolvabil-
ity during software evolution. In: 16th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems. pp. 196–205. IEEE,
April 2009

http://www.services-computing.de/?lang=en
https://doi.org/10.1007/s11219-015-9268-4
https://doi.org/10.1007/s11219-015-9268-4
https://doi.org/10.1007/s00450-019-00402-z
https://doi.org/10.1007/s00450-019-00402-z

138 J. Bogner et al.

14. Dragoni, N., et al.: Microservices: yesterday, today, and tomorrow. Present and
Ulterior Software Engineering, pp. 195–216. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67425-4 12

15. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice
architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H.
(eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92901-9 8

16. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

17. Erl, T.: SOA Design Patterns. Pearson Education, Boston (2009)
18. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.

J. Syst. Softw. 123, 176–189 (2017)
19. Francesco, P.D., Malavolta, I., Lago, P.: Research on architecting microservices:

trends, focus, and potential for industrial adoption. In: IEEE International Con-
ference on Software Architecture (ICSA), pp. 21–30. IEEE, April 2017

20. Granchelli, G., Cardarelli, M., Francesco, P.D., Malavolta, I., Iovino, L., Salle,
A.D.: Towards recovering the software architecture of microservice-based systems.
In: IEEE International Conference on Software Architecture Workshops (ICSAW),
pp. 46–53. IEEE, April 2017

21. International Organization For Standardization: ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models. Technical report (2011)

22. Kazman, R., Klein, M., Clements, P.: ATAM : method for architecture evaluation.
Technical report, August 2000

23. Lehman, M.M., Ramil, J., Wernwick, P., Perry, D., Turski, W.: Metrics and laws of
software evolution - the nineties view. In: Proceedings of the Fourth International
Software Metrics Symposium, pp. 20–32 (1997)

24. Mansour, Y.I., Mustafa, S.H.: Assessing internal software quality attributes of the
object-oriented and service-oriented software development paradigms: a compara-
tive study. J. Softw. Eng. Appl. 4, 244 (2011)

25. Mayer, B., Weinreich, R.: An approach to extract the architecture of microservice-
based software systems. In: IEEE Symposium on Service-Oriented System Engi-
neering (SOSE), pp. 21–30. IEEE, Mar 2018

26. Newman, S.: Building microservices: designing fine-grained systems, 1st edn.
O’Reilly Media, Newton (2015)

27. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science, vol.
1. SCITEPRESS - Science and and Technology Publications (2016)

28. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 7th International Conference on Properties and Appli-
cations of Dielectric Materials. IEEE (2003)

29. Perepletchikov, M., Ryan, C., Frampton, K.: Comparing the impact of service-
oriented and object-oriented paradigms on the structural properties of software.
In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2005. LNCS, vol. 3762, pp.
431–441. Springer, Heidelberg (2005). https://doi.org/10.1007/11575863 63

30. Richardson, C.: Microservices Patterns. Manning Publications, Shelter Island
(2018)

31. Rowe, D., Leaney, J., Lowe, D.: Defining systems architecture evolvability - a
taxonomy of change. In: International Conference and Workshop: Engineering of
Computer-Based Systems, pp. 45–52, December 1998

https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/11575863_63

Towards an Evolvability Assurance Method for Service-Based Systems 139

32. Sabir, B., Perveen, N., Qamar, U., Muzaffar, A.W.: Impact analysis on evolution
patterns of service oriented systems. In: International Conference on Engineering,
Computing & Information Technology (ICECIT 2017), pp. 61–67 (2018)

33. Schermann, G., Cito, J., Leitner, P.: All the services large and micro: revisiting
industrial practice in services computing. In: Norta, A., Gaaloul, W., Gangadha-
ran, G.R., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9586, pp. 36–47. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-50539-7 4

34. Voelz, D., Goeb, A.: What is different in quality management for SOA? In: 14th
IEEE International Enterprise Distributed Object Computing Conference, pp. 47–
56. IEEE, October 2010

https://doi.org/10.1007/978-3-662-50539-7_4

Predictive Management of Fog
Applications

Stefano Forti(B)

Department of Computer Science, University of Pisa, Pisa, Italy
stefano.forti@di.unipi.it

Abstract. Deploying and managing multi-component IoT applications
in Fog computing scenarios is challenging due to the heterogeneity, scale
and dynamicity of Fog infrastructures, as well as due to the complexity
of modern software systems. When deciding where/how to (re-)allocate
application components over the continuum from the IoT to the Cloud,
application administrators need to find the “best” deployment, satisfy-
ing all application (hardware, software, QoS, IoT) requirements over the
contextually available resources, also fulfilling non-functional desiderata
(e.g., financial costs, security).

Keywords: Fog computing · App deployment · App management

1 Introduction

Fog computing [3] aims at better supporting the growing processing demand of
(time-sensitive and bandwidth hungry) IoT applications by selectively pushing
computation closer to where data is produced and relying on a geographically
distributed multitude of heterogeneous devices (e.g., personal devices, gateways,
micro-data centres, embedded servers) spanning the IoT-Cloud continuum. A
substantial amount of computation, storage and networking is therefore expected
to happen closer to where data is produced and to cyber-physical systems, con-
tiguously to and interdependently with the Cloud. In general, Fog computing
platforms are expected to guarantee that processing always occurs wherever it
is best-placed for any given IoT application, thereby accelerating the velocity of
decision making, by enabling prompter responses to sensed events [20].

Modern large-scale applications are not monolithic anymore. Indeed, an
application running in a Fog computing infrastructure is a set of independently
deployable components (or services, or micro-services) that work together and
must meet some (hardware, software, IoT and QoS) requirements. Deploying
and managing such applications in Fog computing scenarios is therefore a chal-
lenging task. Indeed, it requires to dynamically map each of the (possibly many)
application components (i.e., functionalities) to the computational node(s) that
will host them at runtime. Whilst some application functionalities are naturally

S. Forti—PhD Thesis Supervisor: Prof. Antonio Brogi, University of Pisa, Italy.

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 140–147, 2020.
https://doi.org/10.1007/978-3-030-63161-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_11

Predictive Management of Fog Applications 141

suited to the Cloud (e.g., service back-ends) and others are naturally suited
to edge devices (e.g., industrial control loops), there are applications for which
functionality segmentation is not as straightforward (e.g., short to medium term
analytics). Future tools for the deployment and management of IoT applications
should consider application requirements (i.e., hardware, software, IoT, QoS),
infrastructure capabilities (i.e., hardware, software, IoT devices, network con-
ditions, security) and deployers’ desiderata (i.e., business and security policies,
cost constraints) to efficiently support adaptive segmentation of functionalities
from the Cloud to the IoT.

In this context, we are investigating the design, prototyping and validation of
novel models, and predictive algorithms and methodologies which will be useful
to (i) process data about the application, the infrastructure and their monitored
performance so to informedly suggest how to (re-)distribute application compo-
nents, (ii) identify and validate the best sequence of actions to (re-)distribute
components to different Fog or Cloud nodes based on specified policies, and (iii)
choose when/how to (re-)deploy, (re-)configure or scale components in response
to workload or network variations, churn and failures.

2 State of the Art

Fog computing introduces new challenges, mainly due to its pervasive geo-
distribution and heterogeneity, need for QoS-awareness, dynamicity and support
to interactions with the IoT, that were not thoroughly studied in previous works
addressing the problem of application deployment to the Cloud [25,28]. Among
the first proposals investigating these new lines, [15] proposed a Fog-to-Cloud
search algorithm as a first way to determine an eligible deployment of (multi-
component) DAG applications to tree-like Fog infrastructures. Their placement
algorithm attempts the placement of components Fog-to-Cloud by considering
hardware capacity only. An open-source simulator – iFogSim – has been released
to test the proposed policy against Cloud-only deployments. Building on top of
iFogSim, [18] refines tries to guarantee the application service delivery deadlines
and to optimise Fog resource exploitation. Also [27] used iFogSim to imple-
ment an algorithm for optimal online placement of application components,
with respect to load balancing. Recently, exploiting iFogSim, [14] proposed a
distributed search strategy to find the best service placement in the Fog, which
minimises the distance between the clients and the most requested services,
based on request rates and free available resources. [16,23] proposed (linearith-
mic) heuristic algorithms that attempts deployments prioritising placement of
applications to devices that feature with less free resources.

From an alternative viewpoint, [1] gave a Mixed-Integer Non-Linear Program-
ming (MINLP) formulation of the problem of placing application components
so to satisfy end-to-end delay constraints. The problem is then solved by lin-
earisation into a Mixed-Integer Linear Programming (MILP), showing potential
improvements in latency, energy consumption and costs for routing and storage
that the Fog might bring. [22] designed a hierarchical modelling of Fog infrastruc-
tures and adopted an ILP formulation of the problem of allocating computation

142 S. Forti

to Fog nodes so to optimise time deadlines on application execution. A simple
linear model for the Cloud costs is also taken into account. Regrettably, none of
the discussed ILP/MILP approaches came with the code to run the experiments.
Conversely, the authors of [9] released an open-source extension of Apache Storm
that exploits ILP to perform component placement, while improving the end-
to-end application latency and the availability of deployed applications. Finally,
also dynamic programming (e.g., [21]), genetic algorithms (e.g., [22]) and deep
learning (e.g., [24]) were exploited promisingly in recent works.

The management of Fog applications is also time-consuming and error-prone
to be tuned manually, still lacking of adequate support. [19] proposed a MAPE-
K loop to identify action plans to minimise SLA violations while maximising
the use of allocated resources- [12] highlighted the need to check for inconsis-
tencies that can arise within or between different stages of a deployment plan.
[12] proposed a deployment management system model to enable the automated
generation of deployment plans for distributed infrastructures after identifying
(with static analysis techniques) possible flaws in deployment plan specifica-
tions. The use of formal models to verify properties of application deployments
to Cloud infrastructure has been advocated by various authors. [17], for instance,
defined a process calculus to specify deployment, migration and security policies
of virtual machines (VMs) across different Clouds, in order to enable the verifi-
cation of security policies after live VM reconfigurations. [2] proposed a similar
approach to preserve data consistency when migrating deployed applications in
Fog scenarios. [11] proposed a pseudo-dynamic testing approach, which com-
bines emulation, simulation, and existing real testbeds. While various proposals
exist to automate the management of applications, to verify the correctness of
deployments to the Cloud, to the best of our knowledge, none of the existing
approaches addresses the validation of application management for the Fog.

3 Thesis Objectives

This section aims at illustrating the objectives of this thesis work, towards sup-
porting the QoS-aware deployment and management of Fog applications, with
suitable models (Sect. 3.1), algorithms and methodologies (Sect. 3.2).

3.1 Modelling

First, with this thesis we aim at contributing to the modelling of the Fog scenario
with particular focus on:

1. describing arbitrary multi-component applications topologies considering
their processing (e.g., hardware, software and IoT devices), QoS (e.g., latency,
bandwidth, security) requirements and component inter-dependencies, along
with the possibility for their components to scale both vertically and hori-
zontally, according to workload demand and behaviour models,

Predictive Management of Fog Applications 143

2. describing accordingly Fog infrastructures in terms of their capabilities (i.e.,
Cloud data-centres, Fog nodes, Things) and their (expected or current) per-
formance1 (e.g., QoS of communication links, nodes utilisation, reliability of
nodes and links), considering IoT-Fog, Fog-Fog and Fog-Cloud interactions,

3. accounting for dynamicity and churn of the infrastructure (e.g., variations
in the QoS of communication links, mobility of IoT devices and Fog nodes,
failures) and in the users’ demand, as well as for application scalability on het-
erogeneous devices so to be able to plan for scalable, reliable and dependable
application deployments,

4. including the possibility of expressing preferences on application deploy-
ment that have to be enforced due to particular end-user targets (e.g., QoS-
assurance, financial budget, resource usage) or deployment needs (e.g., secu-
rity, trust, reliability, energy consumption),

5. identifying and devising appropriate metrics and performance indicators
(e.g., QoS-assurance, resource consumption, reliability) to characterise eligi-
ble application deployments and plans, also considering their behaviour over
time, as well as financial costs and energy consumption to keep the application
up and running.

3.2 Algorithms and Methodologies

To complement and make use of the models described in the previous section,
we intend to devise algorithms and methodologies in order to:

1. efficiently determine eligible context- and QoS-aware deployments of appli-
cation components to Fog infrastructures, according to different strategies
and by adopting proper heuristics to reduce the search space, whilst selecting
cost-/energy-aware matchings between application requirements (viz., hard-
ware and software) and available Fog/Cloud offerings,

2. simulate and predict the (expected) behaviour of different eligible deploy-
ments under the proposed metrics at varying (i) QoS of available communi-
cation links, (ii) available resources in the current state of the infrastructure,
(iii) workload and users demand, also considering historical data about the
monitored infrastructure and feedback about previous deployments,

3. compare and recommend and/or automatically select best candidate deploy-
ments – among the eligible ones – based on predicted metrics and declared
targets, by plotting results to empower experts to make informed choices, and
by exploiting multi-objective optimisation or learning techniques,

4. determine and optimise plans that take into account dependencies between
components so to perform application deployment to a given infrastructure,
envisioning deployment (vertical and horizontal) scalability on heterogeneous
devices and optimal resources exploitation (e.g., hardware, energy), and con-
sidering alternative backup deployments to tackle dynamicity issues (e.g.,
increasing workload, mobility, QoS variations, churn and failures),

1 Data on monitored infrastructure capabilities – collected either through centralised
or self-attesting distributed mechanisms – can be aggregated and used to this end.

144 S. Forti

5. understand when to trigger and how to (optimally) perform reconfiguration
actions (e.g., enactment of an alternative plan), scaling of application com-
ponents, or components re-allocation to different nodes so to guarantee QoS
or SLA constraints will be met by enacted deployments, whilst avoiding (or
minimising) the likelihood of service disruption.

4 First Results

First results of this work have been described in some conferences and journals.

Deployment. In [4], we proposed a simple, yet general, model of multi-
component IoT applications and Fog infrastructures. After proving that the
problem of determining eligible deployments is NP-hard, we devised a greedy
backtracking search algorithm to solve it. In [5], we combined an exhaustive ver-
sion of our search algorithm with Monte Carlo simulations so to consider varia-
tions in the QoS of communication links (modelled by probability distributions)
and to predict how likely a deployed application is to comply with the desired
network QoS (viz., latency and bandwidth) and how much Fog resources it will
consume in the Fog layer. In [6], we further enhanced the proposed methodology
by proposing a cost model that extends Cloud cost models to Fog scenarios and
integrates them with costs coming from the IoT. It is worth noting that, with
respect to the majority of related work, our approach works on arbitrary appli-
cation and infrastructure graph topologies and considers interactions between
applications and the IoT.

All proposed predictive methodologies have been implemented in an open-
source prototype2, FogTorchΠ, and are described in detail in [7], which also offers
a comparison with one of the first tools for simulating Fog scenarios (iFogSim
[15]). FogTorchΠ (Fig. 1) can be used to determine, simulate and compare eligible
deployments of an application to a given (probabilistic) infrastructure in a QoS-
(with respect to network variations), context- (with respect to the considered
hardware and IoT resources), and cost-aware (estimating monthly revenues and
outflows) manner.

Indeed, based on FogTorchΠ output deployments, which can be plotted as
shown in Fig. 1, application deployers can choose their application deployment
looking for the best trade-off among predicted QoS-assurance, Fog resource con-
sumption and estimated monthly cost.

Management. CISCO FogDirector [10] (FD) is among the first available man-
agement tools for large-scale production deployments of Fog applications. In
[13] we presented a simple operational semantics of all basic functionalities of
FD, describing the effects of the operations that client programs can perform to
publish, deploy, configure, start, monitor, stop, undeploy and retire their appli-
cations in a given infrastructure, using the REST APIs offered by the tool.
Based on such modelling, we introduced a prototype simulation environment3,
2 Available at: https://github.com/di-unipi-socc/FogTorchPI/.
3 Available at: https://github.com/di-unipi-socc/FogDirMime/.

https://github.com/di-unipi-socc/FogTorchPI/
https://github.com/di-unipi-socc/FogDirMime/

Predictive Management of Fog Applications 145

Fig. 1. Bird’s-eye view of FogTorchΠ.

FogDirMime (Fig. 2), that also considers probabilistic (hardware and network
QoS) variations of the infrastructure that happen independently from the consid-
ered application management. On one hand, the proposed semantics constitutes
a concise and unambiguous reference of the (basic) behaviour of FD that can
be used to quickly understand its functioning and to check correctness of man-
agement scripts at design time. On the other hand, FogDirMime can be fruitfully
exploited to experiment and compare different application management poli-
cies, so to predict their effectiveness and tune them in a simulated environment,
according to user-defined metrics (Fig. 2 (b)).

Fig. 2. (a) Bird’s-eye view of FogDirMime and (b) output example.

5 Conclusions and Future Work

We consider our preliminary results as first promising steps to support decision-
making when deploying or managing IoT applications to Fog infrastructures.
Yet, such results clearly show some limitations with respect to the objectives of
this thesis, as set in Sect. 3. In our future work, we intend to:

146 S. Forti

1. extend our methodologies to include more aspects of the life-cycle of applica-
tion management, including new features such as components upgrade, recon-
figuration and scaling, while envisioning the possibility for a component to
be deployed in different flavours like in Osmotic Computing [26],

2. consider new metrics and dimensions that will be important in Fog scenarios
(e.g., security, mobility, energy consumption) and propose a way to automat-
ically and efficiently select best candidate (re-)deployments – i.e., matching
deployers’ desiderata – using AI and multi-objective optimisation, and

3. prototype, validate and assess all new methodologies as extensions to our
prototypes or as new open-source tools that can synergically work with them,
and assess them in controlled settings (e.g., over the simple Fog application
we proposed in [8]) as well as, possibly, in lifelike Fog environments.

References

1. Arkian, H.R., Diyanat, A., Pourkhalili, A.: MIST: fog-based data analytics scheme
with cost-efficient resource provisioning for IoT crowdsensing applications. J. Netw.
Comput. Appl. 82, 152–165 (2017)

2. Bao, W., et al.: Follow me fog: toward seamless handover timing schemes in a fog
computing environment. IEEE Commun. Mag. 55(11), 72–78 (2017)

3. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for
internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and
Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–
186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4 7

4. Brogi, A., Forti, S.: QoS-aware deployment of IoT applications through the fog.
IEEE Internet Things J. 4(5), 1185–1192 (2017)

5. Brogi, A., Forti, S., Ibrahim, A.: How to best deploy your fog applications, prob-
ably. In: Rana, O., Buyya, R., Anjum, A. (eds.) Proceedings of 1st IEEE Interna-
tional Conference on Fog and Edge Computing, Madrid (2017)

6. Brogi, A., Forti, S., Ibrahim, A.: Deploying fog applications: how much does it
cost, by the way? In: Proceedings of the 8th International Conference on Cloud
Computing and Services Science, CLOSER 2018, Funchal, Madeira, Portugal, 19–
21 March 2018, pp. 68–77 (2018)

7. Brogi, A., Forti, S., Ibrahim, A.: Predictive analysis to support fog application
deployment. In: Buyya, R., Srirama, S.N. (eds.) Fog and Edge Computing: Prin-
ciples and Paradigms, chap. 9, pp. 191–222. Wiley (2019)

8. Brogi, A., Forti, S., Ibrahim, A., Rinaldi, L.: Bonsai in the fog: an active learning
lab with fog computing. In: Third International Conference on Fog and Mobile
Edge Computing (FMEC), pp. 79–86. IEEE (2018)

9. Cardellini, V., Grassi, V., Lo Presti, F., Nardelli, M.: Optimal operator placement
for distributed stream processing applications. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, DEBS 2016,
pp. 69–80. ACM, New York (2016)

10. CISCO: Cisco Fog Director Reference Guide (v. 1.5) (2017). https://www.cisco.
com/c/en/us/td/docs/routers/access/800/software/guides/iox/fog-director/
reference-guide/1-5/fog director ref guide.html

11. Ficco, M., Esposito, C., Xiang, Y., Palmieri, F.: Pseudo-dynamic testing of realistic
edge-fog cloud ecosystems. IEEE Commun. Mag. 55(11), 98–104 (2017)

https://doi.org/10.1007/978-3-319-05029-4_7
https://www.cisco.com/c/en/us/td/docs/routers/access/800/software/guides/iox/fog-director/reference-guide/1-5/fog_director_ref_guide.html
https://www.cisco.com/c/en/us/td/docs/routers/access/800/software/guides/iox/fog-director/reference-guide/1-5/fog_director_ref_guide.html
https://www.cisco.com/c/en/us/td/docs/routers/access/800/software/guides/iox/fog-director/reference-guide/1-5/fog_director_ref_guide.html

Predictive Management of Fog Applications 147

12. Fischer, J., Majumdar, R., Esmaeilsabzali, S.: Engage: a deployment management
system. SIGPLAN Not. 47(6), 263–274 (2012)

13. Forti, S., Ibrahim, A., Brogi, A.: Mimicking FogDirector application management.
Softw.-Intensiv. Cyber-Phys. Syst. 34(2–3), 151–161 (2019). https://doi.org/10.
1007/s00450-019-00403-y

14. Guerrero, C., Lera, I., Juiz, C.: A lightweight decentralized service placement pol-
icy for performance optimization in fog computing. J. Ambient Intell. Humanized
Comput. 10(6), 2435–2452 (2018). https://doi.org/10.1007/s12652-018-0914-0

15. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for
modeling and simulation of resource management techniques in the internet of
things, edge and fog computing environments. Softw. Pract. Exp. 47(9), 1275–
1296 (2017)

16. Hong, H.J., Tsai, P.H., Hsu, C.H.: Dynamic module deployment in a fog com-
puting platform. In: 2016 18th Asia-Pacific Network Operations and Management
Symposium (APNOMS), pp. 1–6 (2016)

17. Jarraya, Y., Eghtesadi, A., Debbabi, M., Zhang, Y., Pourzandi, M.: Cloud cal-
culus: security verification in elastic cloud computing platform. In: International
Conference on Collaboration Technologies and Systems (CTS), pp. 447–454 (2012)

18. Mahmud, R., Ramamohanarao, K., Buyya, R.: Latency-aware application module
management for fog computing environments. ACM Trans. Internet Technology
(TOIT) 9, 1–21 (2018)

19. Maurer, M., Brandic, I., Sakellariou, R.: Adaptive resource configuration for Cloud
infrastructure management. Future Gener. Comput. Syst. 29(2), 472–487 (2013)

20. OpenFog: OpenFog Reference Architecture (2016)
21. Rahbari, D., Nickray, M.: Scheduling of fog networks with optimized knapsack by

symbiotic organisms search. In: 21st Conference of Open Innovations Association
(FRUCT), pp. 278–283 (2017)

22. Skarlat, O., Nardelli, M., Schulte, S., Dustdar, S.: Towards QoS-aware fog service
placement. In: IEEE 1st International Conference on Fog and Edge Computing
(ICFEC), pp. 89–96 (2017)

23. Taneja, M., Davy, A.: Resource aware placement of IoT application modules in
fog-cloud computing paradigm. In: IFIP/IEEE Symposium on Integrated Network
and Service Management (IM), pp. 1222–1228 (2017)

24. Tang, Z., Zhou, X., Zhang, F., Jia, W., Zhao, W.: Migration modeling and learning
algorithms for containers in fog computing. IEEE Trans. Serv. Comput. 12(5),
712–725 (2018)

25. Varshney, P., Simmhan, Y.: Demystifying fog computing: characterizing architec-
tures, applications and abstractions. In: IEEE 1st International Conference on Fog
and Edge Computing (ICFEC), pp. 115–124 (2017)

26. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

27. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017)

28. Wen, Z., Yang, R., Garraghan, P., Lin, T., Xu, J., Rovatsos, M.: Fog orchestration
for internet of things services. IEEE Internet Comput. 21(2), 16–24 (2017)

https://doi.org/10.1007/s00450-019-00403-y
https://doi.org/10.1007/s00450-019-00403-y
https://doi.org/10.1007/s12652-018-0914-0

How to Manage Efficiently Clinical
Big-Data by Means of Cloud Computing

Antonino Galletta(B) and Massimo Villari

MIFT Department, University of Messina, Messina, Italy
{angalletta,mvillari}@unime.it

Abstract. Nowadays, Information and Communication Technologies
(ICT) are widely adopted in hospitals. Increasingly often medical devices
are computer-assisted. Hospital Information Systems (HISs) are not
designed to manage the huge amount of data produced by these devices.
New paradigms, such as Cloud Computing, by means of its features rep-
resents a valid tool to handle this kind of problem. Cloud Computing
is very powerful, but it arises issues concerning data privacy. For this
reason, clinical operators are reluctant to adopt it in HISs. In this paper,
considering two real use-cases coming from the IRCCS “Bonino Pulejo”,
a clinical and research center in Messina, we discuss a Cloud Computing
architecture able to manage amounts vast of medical data. From a tech-
nical point of view, the proposed solution is based on microservices each
of them realized for performing a specified task, such as the anonymizer.
A microservice that is able to obfuscate users’ sensitive data in order to
assure data privacy and to make the system compliant with GDPR.

Keywords: Telemedicine · GDPR · Cloud computing · MRI ·
Internet of Things · Big data

1 Introduction

Nowadays, we are observing a revolution in hospital and clinical centers. Indeed,
often old medical devices are replaced by innovative computer assisted ones.
These new kind of equipment widely adopt Internet of things (IoT) approach.
Statista [1] predicted that the number of connected devices will grow up to
about 75 billion in 2025. These new kind of devices allow physicians to make
more accurate and precise diagnoses. However, they produce a huge amount of
data. These data are different for type and structure, therefore, the way to man-
age them is also different. Considering as example Magnetic Resonance (MR).
It produces Digital Imaging and COmmunications in Medicine DICOM files:
series of jpg images with a specific header. Instead equipments for rehabilitation
such as CAREN and Lokomat produce raw data that can be stored in inter-
nal Hard-Disks or exported as Comma-separated values (CSV) files. Traditional

M. Villari—Supervisor.

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 148–157, 2020.
https://doi.org/10.1007/978-3-030-63161-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_12

How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing 149

Hospital Information Systems are not able to manage these data. Innovations
in ICT provide a very powerful tool suitable for solving such a problem: Cloud
Computing. Use Cloud Computing in HIS provides several advantages for clin-
ical centers. Indeed, it allows to create high available specific workflows that
can scale up or down based on the workload. However, it presents several issues
related to users’ data privacy especially in the GDPR era. Such a problem makes
difficult the proliferation of Cloud based systems in HIS. In this paper, we dis-
cuss about of the experience done during the first two years of the doctorate
course at the University of Messina and the IRCCS Centro Neurolesi “Bonino
Pulejo”. In particular, considering two real medical use-cases coming from the
IRCCS, one related to Magnetic Resonance (MR) and another related to reha-
bilitation, we discuss about of a Cloud Computing microservice architecture able
to manage the huge amount of produced data. In our solution we widely adopt
the Hybrid Cloud approach: sensitive data are stored in a secure manner into
the Private Cloud, data that have to be shared with foreign users are stored
into the Public Cloud. From a technical point of view, the proposed solution
is based on microservices each of them realized for performing a specified task,
such as the anonymizer. A microservice that is able to obfuscate users’ sensi-
tive data in order to assure data privacy and to make the system compliant with
GDPR. The rest of the paper is organized as follows. In Sect. 2, we present other
works related to telemedicine, BigData visualization and mechanisms to share
data over the Cloud. In Sect. 3 we focus on our motivations for this work. The
Sect. 4, describes the architecture designed for managing effectively clinical Big
Data. Finally, in Sect. 6 we conclude the work discussing about of future steps.

2 Background and Related Work

Nowadays, ICT is present in all fields from the industry to the agriculture to
the health care. Innovations in ICT word led to creation to new systems and
protocols. Such as telemedicine, physicians by using it are able to provide assis-
tance to remote bedridden patients. Benefits and drawbacks of telemedicine were
discussed in [2].

The consequence of the introduction of these new systems was an explosion
of data. The management of these data is very complicated, indeed traditional
techniques and systems are not adequate to manage them. Another problem in
Big Data is the analysis of them in order to extract insight.

In [3], authors presented a way for processing electroencephalography data.
Their work is based on three steps: in the first step they convert data from
European Data Format (EDF) to the JavaScript Object Notation (JSON); in
the second they gather JSON data; in the latter, by means of smartphones, they
perform real-time interactions with signal data.

A tool able to show the relationship among heterogeneous data is presented
in [4]. This tool, based on three data structures (Tree Structure, Graph Structure
and Graph-Tree Structure), shows the relationship of data stored into relational
databases.

150 A. Galletta and M. Villari

4 visualization tools for physicians were discussed [5]. These visualization
tools show the behavior of measured parameters considering different time inter-
val: the “Continuous Month” which groups measurement by month representing
them day by day; the “Continuous Day” which groups measurement by day rep-
resenting them hour by hour; the “Circular Day” which represents by means of
a pie chart same parameters of the “Continuous Day”; the “Multi-Circular Day”
tool, instead, allows to compare the behavior of specified parameter over several
days.

In Big Data another challenge is the sharing of them among several users.
In [6], authors considering a Network Storage Environment (NSE) discussed

a file partitioning method optimization. In particular, considering serviceability,
reliability and availability, they proposed an algorithm for distributing files inside
a cluster.

An approach for improving the file reliability is discussed in [7]. In particular,
authors split data into chunks. The main idea is to increase the reliability of the
system adding redundancy. In such a way, they can assure by means of data
correction procedures. In PRESIDIO [8], is discussed a similar strategy.

Authors in [9] discussed a file partitioning strategy. In particular, they pre-
sented BerryStore: a distributed object storage system designed for Cloud ser-
vice especially for the massive small files storing. By means of a distributed
coordinated controller, BerryStore is able to assure concurrency, scalability, and
fault-tolerance.

The management of Big Data is a very complex task. The common idea of all
aforementioned scientific works is to create a specif tool per each type of data.
In this work, we aim to create a single architecture that can be specialized based
on the type of data.

3 Motivation

Nowadays, Information and Communication Technologies (ICT) are widely
adopted in hospitals. Indeed more often medical devices are computer-assisted
(e.g., Magnetic Resonance, Lokomat, CAREN). Data produced from these
devices are different for dimension, form and quantity. For instance, considering
the Magnetic Resonance (MR) it produces Magnetic Resonance Images (MRIs):
series of jpg images with a specific header. Usually, these images are stored and
processed as DICOM files. CAREN and Lokomat produce raw data related to
rehabilitation activities of patients, these data are stored into internal Databases
(DBs) and can be exported as CSV files. The difference among the structure of
these kind of data reflects also differences in the management. Indeed in the first
case the object storage is needed.

The research activities presented in this paper can be divided into two main
branches: the first one related to the management of MRIs, the latter related to
the management of rehabilitation data coming from CAREN, Lokomat and wear-
ables. With reference to MRI branch, physicians need a system that allow them to
share DICOMs in a safe manner with other practitioners, physicians and patients.

How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing 151

Share content among different practitioners is very important for a clinical point
of view, indeed, it allows to merge the experience of different physicians and to
have more accurate diagnosis. Instead, with reference to rehabilitative data, physi-
cians need a telemedicine Big-Data visualization tool that allows them to analyse
patients’ health status simply looking at data representation.

The enabler technology that allows us to create a system able to manage
effectively these kinds data is the Cloud Computing. In particular, in order to
reach our goals, we adopted a Hybrid Cloud Computing approach. We used
public Cloud Storage providers for storing anonymized DICOM images and Pri-
vate Cloud in order to save personal and rehabilitative data. Public Cloud may
arise many treats in terms of data security, privacy and availability. Indeed,
Cloud Storage services might discontinued (such as copy https://copy.com/),
or attacked by hackers (such as Dropbox. Indeed in 2012 68 Million of account
was compromised [10]). If we also consider the GDPR the scenario become very
complex. The end users of our system, physicians and patients, often are not
accustomed to use this kind of tools, therefore they need an user friendly tool
that allows them to manage these data. Considering the assumptions that we
made before, we aim to realize an user friendly tool that allows physicians to
manage clinical data in a secure manner.

The design of our Cloud based clinical Big Data management solution have
to satisfy the following requirements:

1. single core that can be specialized based on users’ requirements;
2. high scalability: capability to adapt the execution of different services to the

workload;
3. compliance with GDPR;
4. ability to manage both real time acquisitions and historical data coming from

different data sources;
5. user friendly interface suitable for Personal Computers and mobiles.

4 Our Approaches

In this Section, we discuss about of approaches adopted in order to manage
effectively medical data. In particular, considering requirements described in the
Sect. 3, we designed and developed two specific software prototypes based on
microservices. The design of these prototypes starts from the same core that can
be specialized based on users’ requirements. We decided to adopt a microservice-
based architecture in order to fulfill the scalability requirement. Indeed, each
microservice can be migrated based on the workload from a machine with lower
computation capabilities to a more powerful one.

In the following Subsection we discuss about of the design of these prototypes.

4.1 Big MRI Share

In this Subsection we discuss about of the software prototype designed for man-
aging MRIs and share them with practitioners, physicians and patients.

https://copy.com/

152 A. Galletta and M. Villari

Figure 1, shows whole architecture of the system for managing and sharing
MRIs. The system is compound of 8 blocks:

1. Magnetic Resonance (MR) the source of MRIs;
2. OwnCloud, the Private Cloud adopted for storing MRIs;
3. Anonymizer, the GDPR compliant microservice that anonymizes sensitive

patient’s data;
4. MongoDB a Document Oriented Big Data database used as system database;
5. Splitter, the microservice that executes the data decomposition algorithm and

spread data chunks over the Public Cloud Storage providers;
6. Public Cloud Storage providers, the public repository;
7. Meteor based app, a web-app that executes the data recomposition algorithm

and displays MRIs to end users;
8. practitioners, the consumers of MRIs.

Fig. 1. Big MRI sharing architecture

Producer and Consumers generate and analyse DICOM files containing
MRIs. With reference to the architecture showed above, the producer is the
MR. In our system we could have two kind of consumers that need to analyse
MRIs: foreign and internal practitioners. Each DICOM file is composed of thou-
sands of images that are organized in series. In our system, we store each series
into a specific OwnCloud directory. At this level, the data privacy is guaranteed
by OwnCloud, indeed only authorized users can gain the access to the stored
files.

External practitioners, do not have any way to access directly to data stored
inside the Private Cloud. Only internal authorized physicians can share contents
for a limited time period.

As discussed in Sect. 3, share clinical sensitive data on Public Cloud Storage
services arises several privacy threats. We remark that one of the requirement is
the compliance with GDPR. In order to satisfy this requirement and increase the

How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing 153

security of the whole system we created a specific microservice able to anonymize
users’ sensitive data.

The anomymization process updates the sensitive data contained into the
header of DICOM files and store metadata inside MongoDB. More specifically
this process updates the name of the patient, the user ID and the date of birth.
The patient name is replaced by an UUID that depends on the DICOM series;
the user ID is updated with a random number; regarding the date of birth the
algorithm updates only day and month because the year could be useful in order
to make diagnosis.

Anonymized DICOM files, from Anonymizer are sent to the Splitter microser-
vice. It, by means of splitting algorithms such as the RRNS [11], divides the orig-
inal file into chunks and spread them over the Public Cloud Storage services. The
exact location of each chunk is stored into a Map-File, a special XML file com-
posed of two main nodes: the header, that contains metadata (such as hospital
and practitioner) and the data node that contains public paths to anonymized
DICOM chunks.

The Map-File is very important during the recomposition phase. Indeed, it is
passed as input to the Meteor web-app that runs the recomposition algorithm.
The Meteor web-app represent the interface for external practitioners, it provides
different functionalities such as DICOM visualization, identification and display
of Region of Interest ROI etc.

4.2 Big Rehabilitative Data Visualization

Fig. 2. Big rehabilitative data visualization architecture

154 A. Galletta and M. Villari

In Fig. 2, is shown the overall architecture of the system able to manage
rehabilitative data. Also in this case the architecture is based on microservices,
in such a way several component, such as Anonimyzer and MongoDB, can be
shared among different solutions.

The system is composed of seven blocks:

1. Data sources such as CAREN, Lokomat and wearable;
2. GeoJSON converter, the microservice that uniforms and transforms incoming

data to GeoJSON;
3. Anonymizer, the GDPR compliant microservice that anonymizes sensitive

patient’s data;
4. MongoDB a Document Oriented Big Data database used as system database;
5. Mongo Interface, the microservice that acts as interface between front-end

and back-end;
6. Meteor based app, a web-app that shows charts related to patients’ data;
7. Practitioners, the consumers of data.

In our system we could have different data sources such as CAREN Lokomat
and Wearables. Data produced from these sources can be stored into specific
files or gathered in a real time fashion. We remark that the fourth requirement
discussed into the Sect. 3 is the ability to manage both real time acquisitions
and historical data coming from different data sources. In order to fulfill it, we
created a microservice that by means of specific interfaces is able to interact
with different data sources. Data acquired from these sources will be converted
in GeoJSON, a standard for encoding geographic data structures.

We adopted this format because it is natively stored inside the database
system, therefore we can make queries in a simple way.

The fifth requirement is related to the user friendliness of the system. In order
to satisfy it, we created a Meteor web-app that shows data for physicians-defined
geographical zones in two modalities: general overview or patient-specific [12].

For security concerns, MongoDB is not directly exposed to the external word.
Thus we created a specific microservice that act as interface. It runs a Java
application that is able to make query on MongoDB by means of the official
MongoDB drivers and to receive command from the Meteor web-app.

5 Highlights and Discussions

In this Section we analysed our system from a numerical point of view. In order
to validate the system, we made specific analyzes for each proposed approach.
Our analyses can be divided into three categories: common aspect of presented
architectures (scalability analysis of the anonymization process), MRI (in term
of disk usage) and rehabilitative data (in term of time needed to make queries).

Our testbed is composed of microservices running on a web server with the
following hw/sw characteristics: CPU Intel(R) Core(TM) i5-5200U CPU @ 2.8
8 GHz with 2 cores and 2 threads, RAM 8 GB, GFLOPS 66, OS: Ubuntu server

How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing 155

16.04 LTS 64 BIT. In order to have more reliable results we performed 30 con-
secutive iterations and considered confidence at 95%. In Fig. 3 the behavior of
the anonymizer is shown. As the reader can observe the system scales up linearly
with the increasing of the number of processed elements.

Fig. 3. Performance analysis of the anonymization module considering increasing
dataset sizes.

Fig. 4. Performance analysis of MRI management (a) and rehabilitative data (b)

In Fig. 4(a) is shown a comparison, in term of disk usage for store MRIs,
between RAID 1 approach and RRNS. As the reader can observe, the capacity
of the disk required from RAID 1 approach increase linearly with the redundancy.
RRNS, instead, scales following a different behavior. Indeed, considering the case
without redundancy it is less convenient of RAID 1, but considering the case with
7 degrees of redundancy it is more powerful, indeed it reduces the space required
of a factor 1.75. For further the reader can refer to [13] and [14].

Considering the Big rehabilitative data, hereby we analyse performance of
the general overview visualization mode. Our testbed is composed of 400k on
random patients stored inside a specific MongoDB collection. As reference case,
we considered a circular area of interest of 100 km. In our analyses, we considered
three different configurations. In order to analyse the robustness of the system,
we made 10, 100 and 1000 subsequent requests. Figure 4(b), show the behavior
of the deployed system. As the reader can observe, time performances increase
linearly with the number of subsequent requests that we performed.

Requests with a single patient’s parameter are the simplest but time per-
formance are slower. This behavior is due to the huge amount of data that

156 A. Galletta and M. Villari

flows from MongoDB to practitioners. Requests with five patient’s parameters
have intermediate performance, indeed they present the more complex query
but return back less results. From a numerical point of view, the better trade off
is implemented by the request with three parameters, indeed it presents com-
putation time lower than other scenarios. For further the reader can refer to
[12].

6 Conclusions and Future Work

In this scientific work, we discussed about of the management of clinical Big-
Data. In particular, considering two real use-cases one related to MRI and
another one related to the rehabilitation, that were defined from the IRCCS
Centro Neurolesi “Bonino Pulejo” of Messina, we described a Cloud based soft-
ware architecture. During the design of this architecture, we considered five
requirements such as i) the presence of a single core that can be specialized
based on users’ requirements; ii) high scalability of the system; iii) compliance
with GDPR; iv) ability to manage both real time acquisitions and historical data
coming from different data sources; v) user friendliness interface.

The architecture that fulfills above described requirements is based on
microservices, each of them with a specific function such as the such as the
anonymizer. A microservice that is able to obfuscate users’ sensitive data in
order to assure data privacy and to make the system compliant with GDPR.

In this report we discussed about of the experience done during the first two
years of the doctorate course at the University of Messina and the IRCCS Centro
Neurolesi “Bonino Pulejo”. For the last year the plan is to spend six month at
Karlstads University in order to work on the design of SDN-based geologically
distributed solutions for Big Data analytics.

References

1. statista: Iot number of connected devices worldwide. https://www.statista.com/
statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed Jan
2018

2. Hjelm, N.M.: Benefits and drawbacks of telemedicine. J. Telemed. Telecare 11,
60–70 (2005)

3. Serhani, M.A., Menshawy, M.E., Benharref, A., Harous, S., Navaz, A.N.: New algo-
rithms for processing time-series big EEG data within mobile health monitoring
systems. Comput. Methods Programs Biomed. 149, 79–94 (2017)

4. Liu, Q., Guo, X., Fan, H., Zhu, H.: A novel data visualization approach and scheme
for supporting heterogeneous data. In: 2017 IEEE 2nd Information Technology,
Networking, Electronic and Automation Control Conference (ITNEC), pp. 1259–
1263 (2017)

5. Frink, T.M., Gyllinsky, J.V., Mankodiya, K.: Visualization of multidimensional
clinical data from wearables on the web and on apps. In: 2017 IEEE MIT Under-
graduate Research Technology Conference (URTC), pp. 1–4 (2017)

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing 157

6. Hai-Jia, W., Peng, L., Wei-wei, C.: The optimization theory of file partition in
network storage environment. In: 2010 9th International Conference on Grid and
Cooperative Computing (GCC), pp. 30–33 (2010)

7. Bhagwat, D., Pollack, K., Long, D.D.E., Schwarz, T., Miller, E.L., Paris, J.F.: Pro-
viding high reliability in a minimum redundancy archival storage system. In: Pro-
ceedings of the 14th IEEE International Symposium on Modeling, Analysis, and
Simulation. MASCOTS 2006, Washington, DC, USA, pp. 413–421. IEEE Com-
puter Society (2006)

8. You, L.L., Pollack, K.T., Long, D.D.E., Gopinath, K.: Presidio: a framework for
efficient archival data storage. Trans. Storage 7, 6::1–6:60 (2011)

9. Fan, K., Zhao, L., Shen, X., Li, H., Yang, Y.: Smart-blocking file storage method in
cloud computing. In: 2012 1st IEEE International Conference on Communications
in China (ICCC), pp. 57–62 (2012)

10. BBC: Dropbox hack’ affected 68 million users’. https://www.bbc.com/news/
technology-37232635. Accessed 30 July 2018

11. Celesti, A., Fazio, M., Villari, M., Puliafito, A.: Adding long-term availability,
obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput.
Appl. 59, 208–218 (2016)

12. Galletta, A., Carnevale, L., Bramanti, A., Fazio, M.: An innovative methodology
for big data visualization for telemedicine. IEEE Trans. Ind. Inf. 15(1), 490–497
(2018)

13. Galletta, A., Celesti, A., Tusa, F., Fazio, M., Bramanti, P., Villari, M.: Big MRI
data dissemination and retrieval in a multi-cloud hospital storage system. In: DH
(2017)

14. Galletta, A., Bonanno, L., Celesti, A., Marino, S., Bramanti, P., Villari, M.: An
approach to share MRI data over the cloud preserving patients’ privacy. In: 2017
IEEE Symposium on Computers and Communications (ISCC), pp. 94–99 (2017)

https://www.bbc.com/news/technology-37232635
https://www.bbc.com/news/technology-37232635

The Slingshot Approach

Model-Driven Engineering the Coordination of
Autoscaling Mechanisms for Elastic Cloud Applications

Floriment Klinaku(B) and Steffen Becker

University of Stuttgart, Stuttgart, Germany
{floriment.klinaku,steffen.becker}@iste.uni-stuttgart.de

Abstract. Distributed software systems composed of two or more self-
adaptive components require the presence of a coordination mechanism
to ensure the fulfilment of overall system objectives over time. Exploiting
elasticity, for example, is one important objective for operating software
systems in the cloud. The recently adopted architectural style of inde-
pendent Microservices, each with its autoscaling mechanism, creates a
class of software systems that are composed of several self-adaptive com-
ponents which provision and release resources in an autonomous manner.
Manually evaluating the impact of coordinating actions among autoscal-
ing mechanisms can be complicated because of their large configuration
space. So, to aid software engineers in designing and evaluating coordi-
nating actions for achieving overall elastic applications, we propose the
Slingshot approach which leverages model-driven quality prediction and
search-based software engineering techniques. The approach has three
facets: (1) the decomposition of a software architecture into elastic lay-
ers where the impact of adaptations propagates in a top-down order;
(2) the extension of self-adaptive performance modelling approaches to
allow engineers to specify and analyze dependencies between layers; and
(3) finding the optimal adaptation strategy of a lower layer for a fixed
upper layer context. In this paper, we present a road-map consisting of
research objectives and expected benefits of the proposed approach.

Keywords: Elasticity · Cloud · Coordination

1 Introduction

The primary purpose of engineering self-adaptive software systems [10] is that
the software system will adjust without the need to intervene manually. An
elastic software system should be able to adjust its autoscaling mechanisms [3]
seeking for an optimal elasticity whenever its context, for which it is designed,
evolves in terms of workloads entering the system (, a new tenant1 joins the sys-
tem) or other changes in its environment (, the cloud provider increases the prices
or non-functional requirement change). Similar as in physics, where a constant

1 A group of users that share the same SLA against a SaaS.

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 158–165, 2020.
https://doi.org/10.1007/978-3-030-63161-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_13

The Slingshot Approach 159

factor quantifies the elasticity of a material which determines the proportionality
of deformation under given stress, there exist several proposals to quantify elas-
ticity for a given software system [6]. For example, Herbst et al. [7] measure the
timeshare in which a system is over-provisioning or under-provisioning resources
altogether with the magnitude of the over-provisioning and under-provisioning,
respectively.

The variety of autoscaling mechanisms, their large configuration space, and
the different type of available resources in cloud increases the complexity and
makes it costly to evaluate the impact of their use and their different config-
urations [4]. The complexity grows when the system is composed of several
components where each has its autoscaling mechanism, and coordinated actions
need to be taken to reach overall system objectives. On top of that, depending
on the context, system owners might weight differently the system objectives,
some might want to ensure performance while allocating more operational bud-
get while others would rather sacrifice reliability for a cost-efficient solution.
Such objectives affect the choice of the autoscaling mechanism, its configuration
and actions that coordinate autoscaling mechanisms across components. Since
the space of well-suited configuration rules and coordinating actions is too large,
it is usually costly and inefficient to find a solution which optimizes between
multi-objective goals [3].

State-of-the-art approaches in simulation-based model-driven quality predic-
tions [1] can help engineers to evaluate the impact of autoscaling mechanisms
for modelled software architectures at design-time. However, even in cases where
existing approaches support elasticity analyzes, they require a high modelling
effort to specify elasticity mechanisms and to express coordinated actions in-
between. Currently, the high effort out-weights the support in evaluating design-
decisions concerning elasticity. On the other hand, when the coordination is not
known beforehand, engineers seek to find suitable actions that ensure an optimal
elasticity. Several works tackle this optimization problem through search-based
software engineering techniques for searching optimal configurations which bal-
ance between different trade-offs. However, they do not explore the dependencies
which may exist across autoscalers.

To tackle the high modelling effort in evaluating the impact of autoscaling
configurations and coordinated actions across components and to reduce the
search space for finding optimal rules, we propose the Slingshot approach. The
approach is composed of three facets: (1) the decomposition of software archi-
tectures with respect to elasticity into layers of adaptations where one upper
layer impacts one at the bottom, (2) the extension of self-adaptive performance
modelling approaches to reduce the effort for engineers to specify and analyze
the coordination across layers and (3) finding the optimal adaptation strategy
of a lower layer for a fixed upper layer context.

The rest of this work is structured as follows: in Sect. 3 we present a running
example which motivates the problem and the proposed solution, in Sect. 2 we
describe the foundations for the proposed approach, in Sect. 4 we describe the
three facets that constitute the Slingshot approach, and correspondingly the nec-
essary work packages and expected outcomes. Finally, in Sect. 5 we summarize
and conclude this paper.

160 F. Klinaku and S. Becker

2 Foundations

Three related research threads lay the groundwork for our proposal. In the area
of quality predictions for software systems, traditional approaches predict qual-
ity attributes like performance or reliability for static software systems (, non-
adaptive). One prominent approach is the Palladio Component Model [2] where
engineers can model a software system through several viewpoints, and then dif-
ferent types of analyzes can predict different quality attributes based on different
viewpoints of the modelled system. Palladio is later extended through SimuLizar
to enable the performance prediction of self-adaptive software systems [1]. Engi-
neers can model reactive adaptations based on threshold conditions and evaluate
how they impact the performance of a system. To reduce the modelling effort
and capture the knowledge for common architectural patterns into reusable tem-
plates, Lehrig et al. [8] propose the Architectural Template engineering method
for efficient design-time analysis.

Another thread constitutes the variety of mechanisms and approaches for
engineering self-adaptive software in general and elastic software systems in spe-
cific. One instance of such approaches for developing self-adaptive systems is
called EUREMA (Executable Runtime Megamodels) which focuses on easing
the development of adaptation engines through a model-driven engineering app-
roach [11]. One of the many requirements they tackle which is relevant for this
proposal is the operation of feedback loops in multiple layers where a loop at a
higher layer can adapt a loop at the layer below. On the other hand, a recent
survey on autoscaling mechanisms [3] shows the high variety of solutions to
exploit elasticity. One relevant outcome of the survey is that the use of multi-
ple loops can potentially bring new benefits by having fine-granular adaptations
with localized objectives. Since the ultimate goal is to predict the elasticity of a
software system containing dependencies between adaptation mechanisms it is
important to consider the dependency between the same and different types of
elasticity management mechanisms.

Last but not least, the third fundamental research thread is work that com-
bines search-based software engineering techniques [5] and model-driven quality
predictions discussed above. One prominent example is the PerOpteryx app-
roach [9]. They apply a multi-criteria genetic algorithm to software architectures,
modelled via the Palladio Component Model, to automate the search of good
candidates which constitute the Pareto front with regards to quality attributes
such as performance, reliability, and cost. The relevance of this thread is to deter-
mine if the proposed layered approach reduces the search space and increases
the efficiency of employing search-based software engineering for deriving depen-
dencies between elasticity mechanisms.

3 Running Example

As a running example, we consider a software deployed in the cloud which pro-
cesses data from field sensors. As Fig. 1 shows, the software is composed of two
components: a front-end (FE) and a back-end (BE).

The Slingshot Approach 161

Com. FE

2 tenants1 tenant

time

requests
per

second

tenants

Com. FECom. FE

Com. BE - Ten A.

Com. FE Com. FECom. FE

Com. BE - Ten A.

Com. BE - Ten B.

Com. FE Com. FE

ELASTICITY

NSLOV

OVERPRO.

UNDERPRO.

HIGH

LOW

HIGH

ELASTICITY

NSLOV

OVERPRO.

UNDERPRO.

LOW

LOW

LOW

3

2

1

300

200

100

Fig. 1. Example: A cloud solution made of two self-adaptive components FE and BE
processing requests from IoT devices. Component FE adapts based on the requests
per second entering the system while Component BE based on the number of tenants
(group of devices). Problem: When a new tenant joins, the self-adaptation strategy
of the FE component is not able to deliver the same elasticity as before.

The front-end component processes incoming requests from IoT devices and
invokes the BE component to store the result. The BE component stores the
results for a fixed amount of sensors (tenant). Whenever there is a new group of
sensors deployed in the field the BE adapts by creating an additional shard for
the new group. This way the system can ensure service level objectives (SLOs)
for each tenant. Contrary to the BE, the FE component is stateless and adapts
through horizontal replication based on lower level signals such as the number of
incoming requests per second or when the average CPU utilization is exceeded
above a threshold. The FE is entirely agnostic to the notion of grouped sensors.

As Fig. 1 depicts, both components, FE and BE, cost-efficiently handle a
single tenant. Once another group of sensors is deployed, the FE component
experiences degradation of elasticity which results either in quality degradation
or inquires unnecessary costs. Various reasons can lead to elasticity degrada-
tion. Since in the new context the slope at which requests arrive is higher, the

162 F. Klinaku and S. Becker

adaptation process and its configuration is not optimal for the new context.
It may be the case that the adaptation process slowly adapts the FE and the
under-provisioning timeshare increases, or, no violation of SLOs occur since the
adaptation process in the new context over-provisions most of the time. In both
cases, there is the need to update self-adaptation rules or conditions so that the
software system as a whole maintains the desired elasticity.

4 The Slingshot Approach

A slingshot is a composite of two materials, one Y-shaped wooden or plastic
frame and one elastic rubber band attached at the end of the branched-out edges
of the plastic casing. Its only objective is to shoot or displace an object, usually
a stone, with a high velocity at a specific target. When deforming the plastic
frame (, increasing or reducing the distance between the branched-out edges),
one needs to adjust the rubber band accordingly so that the whole composite
can continue to meet its overall objective: shooting the stone at the same speed
as before.

Based on this analogy, we introduce the Slingshot approach to model and
analyze dependencies between self-adaptations so that we can reason on and
predict the elastic behaviour of a software system based on its dynamic archi-
tectural model as a composite at design-time. At the root of the approach is the
decomposition of the software architecture, concerning self-adaptations, into two
parts: the plastic and the elastic part. Both parts entail unique characteristics
with respect to the context against they adapt, the rental costs, the adaptations
reversibility and their granularity.

For example, the BE component in our running example self-adapts whenever
a group of sensors join the system. The FE component, unlike the BE component,
adapts based on the number of requests in the system and independently of the
number of tenants in the system. Another characteristic which differentiates
the plastic part from the elastic one is the rental costs: once a new tenant is
part of the system the service provider has fixed costs for the BE component
and variable cloud expenses for the FE component. They also differ concerning
adaptations granularity and reversibility: there are less frequent variations in the
number of tenants than in the number of requests that enter the system; thus
fewer adaptations for the BE component during some period. As a consequence,
we have prolonged periods where the plastic part does not change and against
which the elastic part can adjust to offer a high quality of elasticity: saving costs
while still being performant and reliable.

Once decomposed, one can identify and model dependencies between the
plastic and the elastic part. This dependency is a directed edge from the self-
adaptive mechanism of the plastic part to the self-adaptive mechanism of the
elastic part. This edge can be seen as an event-condition-action rule where the
event represents an adaptation event on the plastic part, the condition can be
an arbitrarily condition and the action modifies the autoscaling mechanism of
the elastic part.

The Slingshot Approach 163

We distinguish three different cases concerning the dependency between the
plastic and the elastic part. Based on these three cases we design our research
road-map consisting of research objectives, work packages and expected out-
comes.

No Edge Specified. It is possible to employ independent autoscaling mech-
anisms for components in the software architecture. Considering our running
example, it means that the BE and the FE can adapt independently against
different contexts and resolve the impact of each other adaptations without spec-
ifying explicit actions. Further, it means that the software architecture may be
elastic against all context changes (, changes in load, changes in the number of
tenants) as a whole and meet the expected and weighted objectives for a target
bounded context.

This case marks out our first work package which involves investigating can-
didates that represent state-of-the-art self-adaptive software architectures with
a particular focus on the coordination of adaptation actions. Possible candi-
dates are messaging queues which play a significant role in many cloud solu-
tions primarily for the recently adopted Function as a Service (FaaS) model.
For the selected candidates, first, we intend to identify existing adaptations at
the component level and classify them based on the context against which they
adapt. The second step involves determining the dependencies between adapta-
tions. Illustrating this with our running example it means identifying all directed
edges such as the one from the adaptation mechanism of the BE to the adap-
tation mechanism of the FE. The expected result from this work package is to
obtain a layered data structure where for every two layers the upper one repre-
sents the plastic part which when adapted impacts the lower layer—the elastic
layer. At this stage, we also investigate the rules/constraints for edges to be
drawn between layered components, if the adaptation of two components part
of a plastic layer impact the adaptation of the same component at the elastic
layer then only one edge is necessary to be drawn and analyzed.

Known Edge. In the second case, engineers know the dependency between the
plastic and the elastic part. Considering the running example, the edge between
the plastic component BE, and the elastic component FE in an event-condition-
action structure would look like: whenever BE replicates (event), increase the
size of an FE instance, select another image from the cloud provider (action).
We distinguish three different classes of actions which adapt the self-adaptive
mechanism of the elastic part: re-configuring the adapted element, choosing a
different size of VM; adjusting autoscaling parameters, selecting different thresh-
olds in threshold-based autoscalers, or re-configuring both the adapted element
and the adaptation rules. With such dependency specified, one is interested to
know the impact in the overall elasticity of the system.

This case determines the second work package of our approach which con-
sists in extending SimuLizar to allow engineers and interested parties to model
and evaluate such dependencies between self-adaptive components and evaluate
the elasticity of the composite at design-time. With regards to assessing the
elasticity, engineers will be able to predict the elasticity of a software system

164 F. Klinaku and S. Becker

architecture for any context alternation. Since we distinguished three differ-
ent classes of actions, it is essential to extend SimuLizar’s approach formally.
Through this extension it is clear what an elasticity analysis should yield for
each of the action classes: for example, if the dependency modifies the adapted
element, as previously described, by changing its size, then when evaluating
the elasticity of the system with respect to the number of tenants the analysis
should consider the time until all FE instances match the size specified in the
dependency.

Unknown Edge. The last case which determines our last part of the proposed
research is when the existence of the impact between layers is known, but the
optimal actions are not known; thus an optimal action has to be searched when
the plastic part adapts. The main question is to evaluate the feasibility of using
model-driven simulation and search based software engineering techniques as in
PerOpteryx [9] to automatically obtain a set of candidates for the dependencies
between two layers which deliver the same quality of elasticity. Since elasticity is
related to performance, reliability, and costs, it is of interests to find and classify
the degrees of freedom which retain one property but impact the other.

Evaluation Methods. The proposed approach relies on the assumption that
an elastic software system can be designed through a layered approach where the
impact of adaptations propagate in a top-down order. To verify this assumption,
we plan to conduct lab experiments and simulations, complemented by empir-
ical research evidence on publicly accessible data. To verify if the modelling
abstractions aid engineers to model and analyze dependencies between two self-
adaptive components, we plan to obtain qualitative and quantitative feedback
by designing and conducting an industrial case study. Through the designed case
study, we will evaluate the method itself, the modelling abstractions it offers, and
the outcome of its application. The expected evaluation result is to show that
the Slingshot approach supports engineers and software architects in designing
autonomous cloud software system where its elastic behaviour is designed, eval-
uated and can be explained throughout its lifetime through the modelled part
and the weighted objectives.

5 Conclusion

In this research proposal, we tackle the problem of designing and evaluation coor-
dinated actions across autoscalers and components to reach the desired quality of
elasticity throughout the lifetime of a software system. We propose the Slingshot
approach which decomposes the software architecture into elastic layers where
provisioning actions in an upper layer impact the provisioning mechanism of a
layer below. To understand the impact of such dependencies, we plan to extend
SimuLizar, the state-of-the-art performance modelling and analysis approach for
self-adaptive software systems. This way we enable engineers and interested par-
ties to evaluate the impact of coordinating actions at design-time and evaluate
the elasticity of the architecture as a whole. Last but not least, in cases where

The Slingshot Approach 165

the specific impact of an upper layer adaptation is not known, we intend to
use search-based software engineering methods in the modelled architecture to
derive the optimal action for the new context.

References

1. Becker, S., Brataas, G., Lehrig, S.: Engineering Scalable, Elastic, and Cost-Efficient
Cloud Computing Applications: The CloudScale Method. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54286-7

2. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009). Special Issue:
Software Performance - Modeling and Analysis

3. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-
adaptive cloud auto scaling systems. In: CSUR (2018)

4. Evangelidis, A., Parker, D., Bahsoon, R.: Performance modelling and verification of
cloud-based auto-scaling policies. Future Gener. Comput. Syst. 87, 629–638 (2018)

5. Harman, M., Briand, L., Wolf, A.: The current state and future of search based
software engineering (2007)

6. Herbst, N., et al.: Ready for Rain? A View from SPEC Research on the Future
of Cloud Metrics. Technical report. SPEC-RG-2016-01, SPEC Research Group –
Cloud Working Group (2016)

7. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it
is, and what it is not. In: Proceedings of the 10th International Conference on
Autonomic Computing (ICAC 2013), pp. 23–27. USENIX, San Jose (2013)

8. Lehrig, S., Hilbrich, M., Becker, S.: The architectural template method: templating
architectural knowledge to efficiently conduct quality-of-service analyses. Softw.
Pract. Exp. 48(2), 268–299 (2018)

9. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve soft-
ware architecture models for performance, reliability, and cost using evolutionary
algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Con-
ference on Performance Engineering, pp. 105–116. ACM, New York (2010)

10. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-
lenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–1442 (2009)

11. Vogel, T.: Model-driven engineering of self-adaptive software. Ph.D. thesis, Uni-
versität Potsdam (2018)

https://doi.org/10.1007/978-3-319-54286-7

Analysing and Deploying
(Micro)service-Based Applications

Davide Neri(B)

Department of Computer Science, University of Pisa, Pisa, Italy
davide.neri@di.unipi.it

Abstract. Microservices propose to develop applications as suites of
small independent services communicating via lightweight mechanisms.
Microservices are usually packaged into containers created ad-hoc, which
help in deploying applications onto cloud platforms. Even if microservices
and containers are already pervading enterprise IT, how to design, refac-
tor and deploy microservice-based applications are key open problems.
This paper illustrates our research project aimed at addressing two main
research challenges deriving from the above mentioned problems, i.e., (i)
analysing and (ii) deploying microservice-based applications.

1 Introduction

Arising from SOA [26], microservices are an approach to developing a single
application as a suite of small services, each running in its own process and com-
municating with lightweight mechanisms, often an HTTP resource API. These
services are built around business capabilities and are independently deploy-
able by fully automated deployment machinery. There is a bare minimum of
centralized management of these services, which may be written in different
programming languages and use different data storage technologies [12].

Microservices are typically deployed in the cloud by exploiting container
technologies [21]. Containers are a virtualisation mechanism used for appli-
cation packaging, distribution and orchestration on cloud platforms and fog
infrastructures [19]. Containers enable the deployment of microservices into
multiple execution environments with a centralized management [17]. In the
last years, Docker (www.docker.com) has emerged as the de-facto platform for
containers [20].

In this paper, we discuss our research project aimed at enhancing the cur-
rent support for microservices. Our project focuses on two main research chal-
lenges, in-line with the currently open problems of microservices [9,11,13,22,23]
i.e., analysis and deployment of microservices. In order to introduce the reader
to the concrete problems, we hereafter discuss a motivating example.

Motivating Example. Figure 1 shows the microservice-based architecture of a
toy application, which allows users to search and order items from a catalog.

Supervisor: Antonio Brogi, University of Pisa, Italy.

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 166–173, 2020.
https://doi.org/10.1007/978-3-030-63161-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_14&domain=pdf
www.docker.com
https://doi.org/10.1007/978-3-030-63161-1_14

Analysing and Deploying (Micro)service-Based Applications 167

Fig. 1. Microservice-based architecture of an e-commerce application.

The application provides a service (viz., Dashboard) that gathers information
from three services (viz., Users, Catalog, and Orders), each equipped with its
own database. Users manages the users of the application, Catalog maintains
the catalogue of the saleable items, and Orders manages the orders of the users.
The services communicate with each other using HTTP resource APIs, and each
service requires a different runtime environment (viz., Users requires Python
2.7, Orders requires Node v6, Catalog requires both Java 1.8 and Maven, and
Dashboard requires Node v6). Given our toy application, a system architect may
wish to answer to the following questions:

– Is the Users service horizontally scalable? If not, how can we refactor the
application to make it so? What about the other microservices?

– Can we automatically package the Catalog service in a container that satisfies
its requirements (i.e., a container that supports both Java 1.8 and Maven)?

��

2 Research Objectives

Our research project aims at supporting microservice-based architectures by
addressing two research challenges:

– (R1) Analysing microservice-based architectures. Microservice-based
architectures are usually composed by a huge amount of interacting services.
The lack of an appropriate modelling makes it hard to analyse and refactor
such complex architectures [23]. For example, it is hard to check whether
a microservice-based architecture enjoys some of the key microservice prin-
ciples (e.g., independent deployability, horizontal scalability), or to refactor
an existing architecture [24]. This is because all such kinds of analyses are
currently done manually, or by setting ad-hoc runtime test. This research
objective aims at developing design-time methodologies for supporting the
analysis and the refactoring of microservice-based architectures.

– (R2) Deploying microservice-based architectures. Microservice-based
architectures are usually deployed using container-based virtualisation. How-
ever, it is currently not possible to automatically select the container satis-
fying the requirements of a microservice (e.g., operating system and software
distributions needed by the microservices). Microservices hence need proper

168 D. Neri

Fig. 2. Two-layers modelling and research objectives ecosystem.

solutions for automatically deploying each microservice in a container capable
of satisfying its deployment requirements.

To address our research challenges, a suitable modelling is needed. Such
modelling should allow to describe the structure of microservice-based archi-
tectures and the interactions among microservices (i.e., the application-layer),
and to represent the containers deployement (i.e., the containers-layer). The
availability of such modelling would allow to analyse microservice architectures
(e.g., to check whether they meet some properties and or to suggest refactor-
ings) and to propose refactorings, and to automatically package the compo-
nents of an application into containers (e.g., finding containers satisfying services’
requirements).

Figure 2 shows our two research challenges (i.e., R1 and R2) along with
the two-layered model (left) and the research objectives ecosystem (right). R1
includes the selection of a proper model for describing microservice architecture
and the development of the Analyser module, which is in charge to run the
methodologies for analysing and refactoring microservice-based architectures. R2
includes the development of tools (i.e., Completer, Discoverer, and Packager),
which are in charge of packaging microservices into containers. In the following,
we expand the discussion concerning the research challenges R1 and R2.

(R1) Analysing Microservice-Based Architectures. A support for the design of
microservice-based architectures requires to find a suitable representation of
such complex architectures. A comparative assessment of existing models will
allow us to proceed with the selection of the metamodel that we consider more
suited for representing microservice-based architectures under various compar-
ative dimensions—e.g., expressive power of each metamodel, its ease of use, its
non-ambiguity, etc. In this perspective, we will choose one among the following
possibilities: (i) employ one of the emerging standard proposals, (ii) extend one
of the existing proposal, or (iii) design and develop a new model.

After the definition of a suitable representation for microservice-based archi-
tectures, we would like to propose methodologies to (i) analyse microservice-
based architectures, to (ii) suggest architecture refactoring for resolving identi-
fied problems, and to (iii) validate the microservice-to-container packaging.

Analysing and Deploying (Micro)service-Based Applications 169

The proposed analysis methodologies can be then exploited by the Analyser
module (Fig. 2). The Analyser takes as input the two-layered modelling of a
microservice-based architecture, it executes the analysis methodologies, and it
suggests refactorings of the microservice-based architecture (if needed).

(R2) Deploying Microservice-Based Architectures. Currently, developers are
required to manually deploy the services of an application into containers by
following the whole packaging process (e.g., copying the source code inside a
container, installing or updating the software dependencies). This process of
packaging microservices into containers is time-consuming and error-prone, and
it has to be manually repeated whenever the requirements of a microservice
change. We plan to design tools that, given the requirements of microservices,
can automatically discover the containers that satisfy such requirements, and
automatically package services inside the discovered containers.

For addressing R2, we plan to develop three modules (Completer,
Discoverer, and Packager—Fig. 2) whose purpose is the following. Completer
receives the description of a microservice-based architecture (where each service
is described with its requirements) and it completes the description by selecting
the containers that can satisfy its requirements (e.g., Python 2.7 runtime). To
accomplish such completion, it can either call the Discoverer module or it can
built containers from scratch. Discoverer receives a list of services requirements
and it returns the containers satisfying such requirements. The Discoverer
should also perform a pre-processing phase that consists of finding the contain-
ers (e.g., from a central repository like Docker Hub hub.docker.com) offering the
requirements (e.g., Python 2.7) and store them in a local database.The require-
ments describe the characteristics offered by the containers. Packager receives
the description of a microservice-based architectures (including the mapping
of microservice on the containers that will host them), and it translates such
description in a format that is executable by orchestrator engines (e.g., Docker
Compose [10], Kubernetes [15]).

3 Related Work

In this section we discuss the state of the art regarding the two research objectives
we outlined in Sect. 2.

Analysing Microservice-Based Architectures. Due to space limitations, we only
discuss the approaches that focus on modelling and analysing cloud applica-
tions and microservice-based architectures. TOSCA [18] is an emerging standard
whose main goals are to enable the specification of portable cloud applications
and to automate their deployment and management. To do so, TOSCA provides
modelling language that allows to formalise the structure of a cloud application
as a typed topology graph, and the deployment/management tasks as plans.

Docker Compose [10] is a tool for defining and running multi-container Docker
applications. With Docker Compose, developers define a YAML file (i.e., Com-
pose file) that describes their services in their applications. Each service in a

http://hub.docker.com

170 D. Neri

Docker Compose configuration file is described by a list of attributes (e.g., Docker
image, number of replicas, and placement constraints) that are used to properly
build and deploy the service in a Docker containers.

Kubernetes [15] is a container orchestration platform. Kubernetes takes care
of the deployment, scaling and management of containerized applications across
a distributed cluster of nodes. The applications packed into Docker containers
can be seamlessly deployed using Kubernetes.

System-Z [2] is a tool developed by Spotify for supporting their microservice-
based architecture. System-Z creates a dependency graph of components by
tracking the outgoing calls that the microservices perform. The dependency
graph can be used to model and analyse the structure of a microservice-based
architecture, e.g., by finding information about components, by discovering the
dependencies among microservices, or by detecting wrong communications.

spigo [1] is a tool developed by Adrian Cockcroft that is able to simulate
the interactions of microservice-based architectures. The architecture in spigo is
described as a JSON file that lists the components and the dependencies among
them. spigo simulates the call of the microservices in an architecture and it
generates statistics of the simulated execution.

Finally, it is worth discussing also two solutions for modelling the behaviour
of service-based applications. Aeolus [8] and management protocols [3] permit
describing the characteristics of the components of cloud applications (e.g.,
states, management operations, and dependencies), as well as the fact that com-
ponent interfaces might vary depending on the internal component state. They
both provide mechanisms for automatically analysing and planning the deploy-
ment and management of an application.

Although the aforementioned approaches are interesting, none of them pro-
vides the two layered model for supporting the analysis and deployment of
microservices.

Deploying Microservice-Based Architectures. In this section, we discuss some
solutions for enhancing the discovery and packaging of software components
in virtual environments. Docker eases images distribution by permitting sharing
them through so-called Docker registries, like Docker Hub (hub.docker.com) and
Docker Store (store.docker.com). Docker Hub permits searching Docker image
“by name” (i.e., it permits specifying a term to be matched within the name,
description, or username associated to an image). Docker Store is a web-based
application that extends the search capabilities provided by the Docker Hub by
also allowing to filter images by category (e.g., database images, programming
languages images). The main limitations of Docker registries are twofold. They
only allow to search for images based on their name and category. It is not
possible to look for images based on the software distributions they support, or
on other attributes that developers may wish to specify to find the images(s)
they need.

JFrog’s artifactory [14] is an universal artefact repository working as a single
access point to software packages created by any language or technology (includ-
ing Docker). JFrog users can look for Docker images by indicating their name,

http://hub.docker.com
http://store.docker.com

Analysing and Deploying (Micro)service-Based Applications 171

tag or image digest. Users can also assign custom properties to images, which
can then be exploited to specify and resolve queries. JFrog, however, requires
users to manually assign properties to images, as it does not to automatically
assign properties to images that satisfy a certain software requirements.

Wettinger et al. [25] contribute to the general objective of easing the discov-
ery of DevOps “knowledge” (which includes Docker images). More precisely, [25]
proposes to build the knowledge-base (which includes Docker images) in a semi-
automated way, by (automatically) crawling heterogeneous artefacts from dif-
ferent sources, and by requiring DevOps experts to share their knowledge and
(manually) associate metadata to the artefacts in the knowledge-base. However,
the process proposed by [25] requires to manually assign custom metadata.

4 First Results and Future Work

In this section we outline our first results, and how we plan to proceed towards
achieving the research objectives introduced in Sect. 2.

First Results. We focused our initial efforts more on R2. Indeed, we have already
developed solutions that implement some of the Discoverer and Completer fun-
cionalities. For the Discoverer module we developed two tools (DockerFinder,
and DockerAnalyser). DockerFinder [7] is a tool that permits searching for
(images of) Docker containers based on multiple attributes (e.g., images size, sup-
ported software distributions). DockerAnalyser [6] generalises DockerFinder by
allowing to customise the function that is used to analyse the crawled images
allowing users to create their own analysers of Docker images.

For the Completer we developed TosKeriser [4,5] a tool that can automat-
ically complete TOSCA application specifications, by discovering Docker-based
runtime environments. More precisely, TosKeriser take as input a TOSCA-
based representation of an application, which specifies the microservices forming
such application, the dependencies among them, and the software support that
each microservice requires to effectively run. Then, TosKeriser automatically
completes the TOSCA application specification, by discovering and including the
Docker containers providing the software support needed by the microservices
forming such application.

Ongoing Research. We are currently working on R1 for determining an appro-
priate model which permits specifying all information needed for describing the
two layers we wish to consider (viz., application and containers). Currently, we
are developing a simple modelling that permits describing an application as a
directed graph (whose node are the software components and the edges are the
interactions among them). Based on this simple model, we are developing anal-
yses based on antipatterns that permit to discover portions of an architecture
that are not compliant to microservice principles (i.e., bounded context, inde-
pendent deployability, and horizontal scalability) and to propose refactorings
that can solve the identified problems (e.g., split the database in order to obtain
bounded contexts, refactor the interactions among services in order to obtain

172 D. Neri

independently depoyable services, add a load balancer for obtaining horizzon-
tally scalable services). Given that microservices are ever-evolving architectures,
we plan to obtain such direted graph in completely automatic way by exploiting
existing tools that extract the architecture of microservice-based systems (such
as [16]).

We are also working at the container-layer of the model. Microservices are
packaged onto containers that are deployed by orchestration engines. Orches-
tration engines provide additional functionalities (e.g., load balancing, service
discovery) that can impact on whether/how microservice-based architectures
comply with microservice principles. To cope with such a kind of situations, we
plan to permit modelling the packaging of microservices onto containers, as well
as to consider the additional functionalities provided by orchestration engines
while analysing and refactoring microservice-based architectures.

All the methodologies developed in the scope of R1 will be included in the
Analyser module shown in Fig. 2, so as to allow developers to concretely analyse
and refactor their microservice-based architectures.

Next Steps. There are two main steps towards R1 and R2 that we plan to pur-
sue. For R1, we plan to formalise our current two-layer model for microservice-
based architectures (by also allowing to specify the behaviour of services), and
to develop techniques for analysing and refactoring them. For R2, we plan to
extend the work in [4,6,7] and by developing the Packager module (Fig. 2). The
Packager will be in charge to translate the description of a microservice-based
architecture (packaged in proper containers by the TosKeriser tool) into a for-
mat (e.g., Compose file [10]) which can hence be used by other orchestration
engines to run the containerised application in an infrastructure. We also plan
to evaluate our approach by studying the advantages and disadvantages of our
model under different dimensions (e.g., the effort required to use our model with
respect to analyse an architecture manually).

References

1. Adrian Cockcroft: Simulate Protocol Interactions in Go. https://github.com/
adrianco/spigo. Accessed 17 July 2018

2. Petter Måhlén: Modelling Microservices at Spotify. https://clusterhq.com/2016/
03/22/microservices-spotify-petter-mahlen/. Accessed 17 July 2018

3. Brogi, A., Canciani, A., Soldani, J.: Fault-aware management protocols for multi-
component applications. J. Syst. Softw. 139, 189–210 (2018)

4. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: From (incomplete) TOSCA specifica-
tions to running applications, with Docker. In: Cerone, A., Roveri, M. (eds.) SEFM
2017. LNCS, vol. 10729, pp. 491–506. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74781-1 33

5. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: Orchestrating incomplete TOSCA
applications with Docker. In: Science of Computer Programming (2018, in press)

6. Brogi, A., Neri, D., Soldani, J.: A microservice-based architecture for (customis-
able) analyses of Docker images. Softw. Pract. Exp. 48(8), 1461–1474 (2018)

https://github.com/adrianco/spigo
https://github.com/adrianco/spigo
https://clusterhq.com/2016/03/22/microservices-spotify-petter-mahlen/
https://clusterhq.com/2016/03/22/microservices-spotify-petter-mahlen/
https://doi.org/10.1007/978-3-319-74781-1_33
https://doi.org/10.1007/978-3-319-74781-1_33

Analysing and Deploying (Micro)service-Based Applications 173

7. Brogi, A., Neri, D., Soldani, J.: DockerFinder: multi-attribute search of Docker
images. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp.
273–278 (2017)

8. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

9. Di Francesco, P.: Architecting microservices. In: 2017 IEEE International Confer-
ence on Software Architecture Workshops (ICSAW), pp. 224–229. IEEE (2017)

10. Docker Inc.: Docker Compose. https://docs.docker.com/compose/. Accessed 17
July 2018

11. Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L., Villari, M.: Open issues in
scheduling microservices in the cloud. IEEE Cloud Comput. 3(5), 81–88 (2016)

12. Fowler, M., Lewis, J.: Microservices. ThoughtWorks. https://martinfowler.com/
articles/microservices.html. Accessed 17 July 2018

13. Jamshidi, P., Pahl, C., Mendonça, N.C., Lewis, J., Tilkov, S.: Microservices: the
journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

14. JFrog Ltd.: Docker: Secure Clustered HA Docker Registries With A Uni-
versal Artifact Repository. https://www.jfrog.com/support-service/whitepapers/
docker/. Accessed 17 July 2018

15. Linux Foundation: Kubernetes - Production-Grade Container Orchestration.
https://kubernetes.io/. Accessed 17 July 2018

16. Mayer, B., Weinreich, R.: An approach to extract the architecture of microservice-
based software systems. In: 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pp. 21–30, March 2018

17. Newman, S.: Building Microservices: Designing Fine-Grained Systems. O’Reilly
Media Inc., Sebastopol (2015)

18. OASIS: Topology and OrchestrationSpecification for Cloud Applications (TOSCA)
Simple Profile in YAML Version 1.0 (2015). http://docs.oasis-open.org/tosca/
TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.
0-csprd01.pdf

19. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: 2015 3rd International Conference on Future Internet of Things and
Cloud, pp. 379–386 (2015)

20. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017, in press)

21. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: CLOSER
2016, pp. 137–146. SCITEPRESS - Science and Technology Publications, Lda
(2016)

22. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 1: reality check and service design. IEEE Softw. 34(1), 91–98
(2017)

23. Pautasso, C., Zimmermann, O., Amundsen, M., Lewis, J., Josuttis, N.: Microser-
vices in practice, part 2: service integration and sustainability. IEEE Softw. 34(2),
97–104 (2017)

24. Taibi, D., Lenarduzzi, V.: On the definition of microservice bad smells. IEEE Softw.
35(3), 56–62 (2018)

25. Wettinger, J., Andrikopoulos, V., Leymann, F.: Automated capturing and system-
atic usage of DevOps knowledge for cloud applications. In: 2015 IEEE International
Conference on Cloud Engineering, pp. 60–65 (2015)

26. Zimmermann, O.: Microservices tenets. Comput. Sci. Res. Dev. 301–310 (2016).
https://doi.org/10.1007/s00450-016-0337-0

https://docs.docker.com/compose/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.jfrog.com/support-service/whitepapers/docker/
https://www.jfrog.com/support-service/whitepapers/docker/
https://kubernetes.io/
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/csprd01/TOSCA-Simple-Profile-YAML-v1.0-csprd01.pdf
https://doi.org/10.1007/s00450-016-0337-0

ESOCC 2018 EU Projects Track

EU Project Space Track Preface

The ESOCC 2018 program included a special track devoted to presenting results and
perspectives of EU research projects on service-oriented and cloud computing. The
track session was held on September 12, 2018. It featured a good opportunity for eight
EU projects (TheyBuyForYou1, EW-Shopp2, I-BiDaaS3, SmartSDK4, FIRST5,
ElasTest6, RECAP7, and DOSSIER-Cloud8) to disseminate their results and for par-
ticipants to get an updated view of the ongoing research on service-oriented and cloud
computing.

The topics covered by the projects were wide. The first group of projects focused
on big data platforms, two were specific purpose platforms – e-procurement for
TheyBuyForYou and targeted marketing for EW-Shopp – while I-BiDaaS focused on
self provisioning aspects of big data solutions. Two other projects explored platforms
for smart services, covering cities in the case of SmartSDK and factories for FIRST.
Another two projects presented technologies to support cloud-based services devel-
opment: large scale end-to-end application testing, in the case of ElasTest, and cloud-
to-edge scalability simulators in the case of RECAP. Finally DOSSIER-Cloud project
presented lessons learnt in knowledge transfer activities for cloud and dev-ops
technologies.

The chairs wish to thank the track Program Committee members for their hard work
in the careful assessment of the submitted papers. Further thanks go to the authors of
contributed papers, in particular, for their efforts in the preparation of their submissions,
the camera-ready versions, as well as the presentations at the event. The chairs finally
thank the entire organization team of the ESOCC 2018, who actively contributed to the
organization and the success of the event.

March 2020 Federico Facca
Dumitru Roman

1 https://theybuyforyou.eu/.
2 http://www.ew-shopp.eu.
3 https://www.ibidaas.eu/.
4 https://www.smartsdk.eu/.
5 https://www.h2020first.eu/.
6 https://elastest.eu/.
7 http://recap-project.eu/.
8 http://web.cut.ac.cy/dossier/.

https://theybuyforyou.eu/
http://www.ew-shopp.eu
https://www.ibidaas.eu/
https://www.smartsdk.eu/
https://www.h2020first.eu/
https://elastest.eu/
http://recap-project.eu/
http://web.cut.ac.cy/dossier/

EU Project Space Track Organization

Track Program Committee

Anna Fensel Semantic Technology Institute (STI) Innsbruck,
University of Innsbruck, Austria

Carlos A. Iglesias Universidad Politécnica de Madrid, Spain
Ahmet Soylu Norwegian University of Science

and Technology, Norway
Sean Murphy Zurich University of Applied Sciences

(ZHAW), Switzerland
Attilio Vaccaro MBI Srl, Italy
Maria Maleshkova University of Bonn, Germany
Hugo Estrada INFOTEC, Mexico
Manolis Koubarakis National and Kapodistrian University

of Athens, Greece
Vladimir Alexiev Ontotext, Bulgaria
Matteo Palmonari University of Milano-Bicocca, Italy

TheyBuyForYou: Enabling Procurement
Data Value Chains

Elena Simperl1, Oscar Corcho2, Marko Grobelnik3, Dumitru Roman4,
Ahmet Soylu4(B), Maŕıa Jesús Fernández Rúız5, Stefano Gatti6,

Chris Taggart7, Urška Skok Klima8, Annie Ferrari Uliana9, Ian Makgill10,
Philip Turk4, and Till Christopher Lech4

1 University of Southampton, Southampton, UK
2 Universidad Politécnica de Madrid, Madrid, Spain

3 Jožef Stefan Institute, Ljubljana, Slovenia
4 SINTEF Digital, Oslo, Norway

ahmet.soylu@sintef.no
5 Ayuntamiento de Zaragoza, Zaragoza, Spain

6 Cerved Group Spa US, Milan, Italy
7 OpenCorporates Ltd., London, UK

8 Ministrstvo za javno upravo, Ljubljana, Slovenia
9 OESIA Networks SL, Madrid, Spain

10 OpenOpps Ltd., London, UK

Abstract. The release of a growing amount of open procurement data
means that we are increasingly able, and even have the obligation,
to scrutinize and analyse public spending for delivering better quality
of public services, optimizing costs, preventing fraud and corruption,
and building healthy and sustainable economies. The TheyBuyForYou
project addresses this challenge by developing an integrated technology
platform, with a cross-lingual and cross-border procurement knowledge
graph, core services, open APIs, and online tools, and validating them
in several business cases in public/corporate procurement in Slovenia,
Spain and Italy. This paper gives an overview about the project’s goals
and challenges.

Keywords: Knowledge graph · Public procurement · Ontology ·
Interaction design · Data analytics · Cross-lingual document
comparison

1 Introduction

The interaction between governments and their suppliers needs to be subjected
to new levels of scrutiny to ensure the efficient delivery of public services and to
protect the interests of taxpayers. With a spending in the range of trillions of
euros1, governments are facing a real responsibility to ensure that this money is
1 http://ec.europa.eu/DocsRoom/documents/20679.

This work is funded by EU H2020 TheyBuyForYou project (780247).

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 179–186, 2020.
https://doi.org/10.1007/978-3-030-63161-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_15&domain=pdf
http://ec.europa.eu/DocsRoom/documents/20679
https://doi.org/10.1007/978-3-030-63161-1_15

180 E. Simperl et al.

used in the best way possible and that decisions are made considering inclusive,
long-term goals and strategies. The release of a growing amount of open procure-
ment data means that we are increasingly able, and even have the obligation,
to scrutinize and analyse public spending for delivering better quality of public
services, optimizing costs, preventing fraud and corruption, and building healthy
and sustainable economies [1].

The recently started TheyBuyForYou project2 (Enabling procurement data
value chains for economic development, demand management, competitive mar-
kets and vendor intelligence) addresses this challenge by developing an integrated
technology platform, with a cross-lingual and cross-border procurement knowl-
edge graph, core services, open APIs, and online tools, and validating them in
several business cases in public/corporate procurement in Slovenia, Spain and
Italy. This paper gives an overview about the project’s goals and challenges.

The rest of the paper is structured as follows. Section 2 discusses the related
work, while Sect. 3 presents the project background through project’s objectives
and challenges. Section 4 describes the TheyBuyForYou approach and Sect. 5
presents customer scenarios and business cases. Finally, Sect. 6 reports the cur-
rent state of the project.

2 Related Work

Many of the tools in use by governments are often not optimised for government
use, or are subject to restrictive contracts which unnecessarily complicate pub-
lishing open data. Other contracts, such as contracts for tender advertising por-
tals are hampering the progress of transparency because the portals are claiming
copyright over all data published in the portals, even though their public-sector
clients are the authors and the data on tender opportunities are required to be
published openly by law. The technical landscape for managing such contracts is
very heterogeneous: for example, even in medium-sized cities, contracts are han-
dled using different tools and formats across departments, including relational
databases, Excel spreadsheets, and Lotus Notes. This makes it difficult to have
a high-level overview of processes and decisions.

There are various initiatives whose purpose is to create de-jure and de-facto
standards for electronic procurement, including such as Open Contracting Data
Standard (OCDS)3 and TED eSenders4. However, these are mostly oriented to
achieve interoperability (i.e., addressing communication between systems), doc-
ument oriented (i.e., the structure of the information is commonly provided by
the content of the documents that are exchanged), and provide no standardised
practices to refer to third parties, companies participating in the process, or even
the main object of contracts. This at the end generates a lot of heterogeneity. Pro-
curement domain can take advantage of applying the Semantic Web approach by

2 https://theybuyforyou.eu.
3 http://standard.open-contracting.org/latest/en/.
4 http://simap.ted.europa.eu/.

https://theybuyforyou.eu
http://standard.open-contracting.org/latest/en/
http://simap.ted.europa.eu/

TheyBuyForYou: Enabling Procurement Data Value Chains 181

reusing existing vocabularies, ontologies, and standards [1]. Specifically in the pro-
curement domain, these include among others PPROC ontology [6] for describ-
ing public processes and contracts, LOTED2 ontology [3] for public procurement
notices, PCO ontology [7] for contracts in public domain, and MOLDEAS ontol-
ogy [9] for announcements about public tenders. LOTED2 is considered as a legal
ontology and is comparatively more complex and detailed with respect to MOLD-
EAS, PCO, and PPROC. The latter is concerned on reaching a balance between
usability and expressiveness.

3 Background

TheyBuyForYou explores how procurement and public spending data, paired
with data management, analytics, and interaction design, could be used to inno-
vate four key areas:

(i) economic development by delivering better economic outcomes from public
spending, in particular for SMEs (to get better access to public tenders,
competing with more established players etc.);

(ii) demand management by spotting trends in spending and supplier manage-
ment to achieve long-term goals such as cost savings and efficiency gains;

(iii) competitive markets by identifying areas for cost cuts through healthier
competition;

(iv) and, procurement intelligence by producing advanced analytics to inform
decision support, risk monitoring and supply market analysis for procure-
ment managers.

3.1 Objectives

Our first objective is to build a technology platform, consisting of a set of mod-
ular, Web-based services and APIs to publish, curate, integrate, analyse, and
visualize an open, comprehensive, cross-border and cross-lingual procurement
knowledge graph, including public spending and corporate data from multiple
sources across the EU.

Our second objective is to support the realisation of the four innovation areas
discussed, through a series of online tools and public portals, which allow sup-
pliers, buyers, data journalists, data analysts, control authorities and regular
citizens to explore and understand how public procurement decisions affect eco-
nomic development, efficiencies, competitiveness and supply chains. For private
buyers looking to overhaul their procurement and purchasing decisions, we will
deliver vendor intelligence solutions with advanced analytics capabilities around
risk monitoring, collusive tendering, and bespoke decision support.

Finally, our third objective is validation in the procurement market to inves-
tigate how the knowledge graph published can be used to support the four main
innovation scenarios. While the economic development and procurement intelli-
gence scenarios target SMEs and big industries looking for subcontractors, the
other two offer decision support to public buyers and other parties interested in
an analysis of the public spending market.

182 E. Simperl et al.

3.2 Challenges

The first challenge to meet is the heterogeneity of the underlying data, which
covers structured (e.g., statistics, financial news) as well as unstructured (e.g.,
text, social media) sources in different languages and using their own terminology
and formats (CSV, PDF, databases, websites, APIs etc.). To be truly useful, our
technology will have to offer its services in real-time, including the thousands
of new tenders published on official portals such as TED (Tenders Electronic
Daily)5 every week, as well as general-purpose corporate data streams such as
business-centric social networks and stock market data.

The second challenge will be in turning this vast array of information into a
semantic knowledge graph [12], an interconnected knowledge organization struc-
ture using Web URIs and linked data vocabularies, which can be analysed in
depth to identify patterns and anomalies in procurement processes and networks.
Finally, we need to find means to communicate the results of our analysis and
inform decisions, which convey useful information while scaling well to complex
data shapes and large volumes of data.

4 TheyBuyForYou Approach

The TheyBuyForYou approach has three layers. First, data and technology layer
enables developers to create fully functional, robust, and scalable data integra-
tion pipelines, from sourcing the data; pre-processing, augmenting, and inter-
linking it; to learning patterns and anomalies; making predictions; and commu-
nicating the insights to specific audiences. Second, tools and products layer offers
end-user tools and procurement APIs such as for visualisation, and document
comparison. Finally, validation layer realises a set of selected business cases over
online portals, one for suppliers and one for buyers, built on tools and products
layer. The TheyBuyForYou approach is mapped to a high-level architecture as
described in Fig. 1.

4.1 Procurement Knowledge Graph

The knowledge graph primarily integrates supplier data and procurement data.
Core company data is provided by OpenCorporates6. Tenders and contracts data
is provided by OpenOpps7 in the OCDS (Open Contracting Data Standard) for-
mat8, whose primary source of data is the TED data feed. The data is curated
(e.g., missing and duplicate records), normalised, and integrated through a com-
mon ontology [5,6,11]. The entities in the knowledge graph (e.g., tenders and
suppliers) are linked and reconciled. The data will be made available through
SPARQL end-points, open APIs, and linked data interfaces.

5 http://ted.europa.eu.
6 https://opencorporates.com.
7 https://openopps.com.
8 http://standard.open-contracting.org/latest/en.

http://ted.europa.eu
https://opencorporates.com
https://openopps.com
http://standard.open-contracting.org/latest/en

TheyBuyForYou: Enabling Procurement Data Value Chains 183

T-box

A-boxnormalize curate link

REST
APIs

Other
APIs

Document
store

An
corrup on

Economic
development

Procurement
intelligence

Vendor
intelligence

Public spending
monitoring

Cross-lingual document
similarity

Common spending
templates

Demand
predic on

Knowledge graph

Tools

Business cases

Procurement
data

OpenOpps

OpenCorporates

Supplier
data

Di
st

rib
ut

ed
 d

at
as

et
s

SPARQL
end-point

Fig. 1. TheyBuyForYou high level architecture.

4.2 Cross-lingual and Real-Time Analytics

A real-time monitoring and analysis framework is to be developed for public and
private procurement information that is published over several different sources
and in different languages. The framework needs to scale to the millions of docu-
ments available (calls, news, events etc.). Since most procurement documents are
available in the native language of the issuing authority or organisation, cross-
language support is a key [4]. A methodology for discovery of common order and
spending patterns is also to be developed, which will offer additional insight into
public procurement practices [2].

4.3 Data Interaction and Story Telling

TheyBuyForYou will develop tools, using such as interactive visualizations, con-
figurable infographics, and automatically generated data stories, to explore pro-
curement data and to support sense making and decision making based on this
data. Three features will be at the core of the designs: encouraging exploration,
as a means to master the high-dimensionality of the knowledge graph; empha-
sizing provenance trails for the data and accountability of analytics insights;
and contextualizing visualizations and analytics findings via data narratives [8].
To make the creation of data narratives manageable, we will learn storytelling
templates, which could be assembled into configurable infographics.

5 Customer Scenarios and Business Cases

We will develop a series of tools across four innovation scenarios (i.e., economic
development, demand management, competitive markets, and procurement

184 E. Simperl et al.

intelligence), discussed in Sect. 3, to ensure the project impact. These scenarios
will result in two open online portals: one for suppliers/bidders and a second one
for buyers. Tools and APIs delivered will be used to implement initially three busi-
ness cases (see Fig. 1) targeting the main customer segments in procurement. Two
business cases will be with public administrations at the national and local levels
in Spain and Slovenia, while the third one is a corporate business case and will
result in a new commercial product.

5.1 Business Case 1: Slovenia

The first case targets competitive markets and advanced procurement intelli-
gence scenarios and is led by Ministrstvo za javno upravo (The Ministry of
Public Administration, Slovenia) with support from Jozef Stefan Institute. The
Slovenian business case is centred around the theme of anti-corruption, includ-
ing the following aspects: definition of selection criteria for tenders; monitoring
diversity of requirements in similar procurement calls and issuing of an alert
when relevant anomalies are identified; providing support in the post procure-
ment process, so as to prevent unnecessary changes to the original contract;
and offering transparency data to help ensure they are working with the most
suitable and reliable suppliers.

5.2 Business Case 2: Spain

The second case targets economic development, demand management, and com-
petitive markets scenarios and is led by Ayuntamiento de Zaragoza (City of
Zaragoza, Spain) with support from Oesia. They together with other regional
public administrations in Spain launched the PPROC ontology within W3C for
the standardisation of public procurement information according to the Span-
ish legislation. City of Zaragoza and Oesia aim to improve their procurement
business by focusing on easier access to smaller companies for specific types of
tenders, better understanding of demand from public organizations both inside
and outside Spain, and identifying opportunities to cut costs.

5.3 Business Case 3: Italy

The third case targets advanced procurement intelligence and is led by Cerved.
Cerved will develop a new product for vendor intelligence targeting the entire
procurement market. The product will use open data (e.g., knowledge graph cre-
ated in this project); proprietary data (e.g., chamber of commerce data, balance
sheet data etc.); and third-party data (e.g., website traffic statistics). An impor-
tant goal is to provide a more nuanced supplier analysis and classify relevant
companies into micro, small and medium-sized enterprises by cross-connecting
multiple data sources. This will enable Cerved to target SMEs better and define
appropriate similarity scores between tenders and potential bidders.

TheyBuyForYou: Enabling Procurement Data Value Chains 185

6 Current Status

At the time of writing, the project is in the middle of its first year and plan
is to publish the first version of the knowledge graph at the end of first year.
Currently data providers, i.e., OpenOpps and OpenCorporates, are expanding
their data coverage by identifying, prioritising, and auditing new data sources
with respect to some quality criteria (e.g., legal, practical, and technical) and
the needs of the business cases. Some data curation and integration activities
directly take place at the side of our data providers, while main integration tasks
will be handled by DataGraft, a cloud-based platform for data transformation
and publishing [10].

A cross-lingual document similarity service for automatic comparison of pub-
lic orders and spending documents across different languages has been imple-
mented and deployed through a RESTful API. A conceptual framework has been
developed for describing dimensions of data visualisation, based on a review
of background literature and media, for the purpose of informing the initial
process of ideation prior to the creation of visualisation and narrative compo-
nents. Finally, existing ontologies for suppliers and procurement data are being
reviewed for re-use (cf. [1]) and requirements are being collected from business
cases.

References

1. Alvarez-Rodŕıguez, J.M., et al.: New trends on e-Procurement applying semantic
technologies: current status and future challenges. Comput. Ind. 65(5), 800–820
(2014)

2. Chandola, V., et al.: Anomaly detection: a survey. ACM Comput. Surv. 41(3),
15:1–15:58 (2009)

3. Distinto, I., et al.: LOTED2: an ontology of European public procurement notices.
Semant. Web 7(3), 267–293 (2016)

4. Fortuna, B., et al.: A kernel canonical correlation analysis for learning the seman-
tics of text. In: Kernel Methods in Bioengineering, Communications and Image
Processing (2006)

5. Kharlamov, E., et al.: Ontology based data access in Statoil. Web Semant. Sci.
Serv. Agents World Wide Web 44, 3–36 (2017)

6. Muñoz-Soro, J.F., et al.: PPROC, an ontology for transparency in public procure-
ment. Semant. Web 7(3), 295–309 (2016)

7. Necaský, M., et al.: Linked data support for filing public contracts. Comput. Ind.
65(5), 862–877 (2014)

8. Portet, F., et al.: Automatic generation of textual summaries from neonatal inten-
sive care data. Artif. Intell. 173(7), 789–816 (2009)

9. Rodŕıguez, J.M.Á., et al.: Towards a pan-European e-procurement platform to
aggregate, publish and search public procurement notices powered by linked open
data: the MOLDEAS approach. Int. J. Softw. Eng. Knowl. Eng. 22(3), 365–384
(2012)

186 E. Simperl et al.

10. Roman, D., et al.: DataGraft: one-stop-shop for open data management. Semant.
Web 9(4), 393–411 (2018)

11. Suchanek, F.M., et al.: Knowledge bases in the age of big data analytics. Proc.
VLDB Endow. 7(13), 1713–1714 (2014)

12. Yan, J., et al.: A retrospective of knowledge graphs. Front. Comput. Sci. 12(1),
55–74 (2018)

EW-Shopp Project: Supporting Event
and Weather-Based Data Analytics and
Marketing Along the Shopper Journey

Matteo Palmonari1, Michele Ciavotta1(B), Flavio De Paoli1, Aljaž Košmerlj2,
and Nikolay Nikolov3

1 University of Milan-Bicocca, Milan, Italy
{matteo.palmonari,michele.ciavotta,flavio.depaoli}@unimib.it

2 Jovžef Stefan Institute, Ljubljana, Slovenia
aljaz.kosmerlj@ijs.si
3 SINTEF, Oslo, Norway

nikolay.nikolov@sintef.no

Abstract. EW-Shopp is an innovation project, the aim of which is to
build a platform for support of data linking, integration, and analytics
in companies from the e-commerce, retail, and marketing industries. The
project consortium joins several business partners from different sectors
of e-commerce including marketing, price comparison, and both web and
brick-and-mortar stores. The project is developing several pilot services
to test the platform and inform its further development.

Keywords: Machine learning · Data integration · e-commerce · Visual
analytics

1 The Project

EW-Shopp1 aims at providing support to companies operating in the fragmented
European e-commerce ecosystem in order to connect, transform and integrate
their data with external sources and use analytics to gain insights into their
business. It is an innovation action project funded within the H2020 Research and
Innovation program of the European Commission (ICT-14-2016-2017, Big Data
Public-Private Partnership: cross-sectorial and cross-lingual data integration and
experimentation). With its start in January 2017, it is now at the mid-point of
its three-year duration.

The crux of the project is to foster small and medium-sized enterprises
(SMEs), which represent 99% of all businesses in the EU, by building a platform
which will deliver an end-to-end flexible solution to work with consumer and mar-
ket data. In particular, to achieve novel customer and market insights, the plat-
form will empower data manipulation, linking, and enrichment of business data

1 http://www.ew-shopp.eu.

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 187–191, 2020.
https://doi.org/10.1007/978-3-030-63161-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_16&domain=pdf
http://www.ew-shopp.eu
https://doi.org/10.1007/978-3-030-63161-1_16

188 M. Palmonari et al.

with weather and event information, as a first enabler to create powerful analyt-
ical services. In fact, as a result of operating in a multi-lingual and multi-market
environment, European companies (even those not operating through digital
channels) commonly deal with large amounts of data, in multiple languages,
acquired from different sources and sectors, or generated internally. Further-
more, their businesses are strongly impacted by external factors such as weather
and global, as well as local events. To compete with international e-commerce
giants, these companies must increasingly leverage this business data using mod-
ern analytics technologies to power and improve their services. Unfortunately,
managing and integrating this heterogeneous data is prohibitively costly and
time-consuming for a large number of companies, whose workforce generally
does not possess the necessary skills. This is especially true for SMEs. Further,
language barriers, lack of common models and shared systems of identifiers to
interlink data, make these data integration tasks even more challenging.

The EW-Shopp platform attempts to simplify and streamline these tasks
and level the playing field. We firmly believe this to be possible and give as an
example the case of a project partner that, by using a predictive model built on
top of integrated data about click-through rate of products, weather, and events,
could design a service able to increase advertising of top-gear sport equipment
in the days before a sunny weekend during the Tour De France.

2 The Consortium

The majority of the consortium consists of private companies from various sec-
tors of e-commerce, covering the entire shopper journey from advertising and
market research to sales and customer relations management for both online as
well as brick-and-mortar stores. This includes: Ceneje Ltd. (SI), the manager of
the largest price comparison shopping platform in Slovenia, Croatia, Serbia, and
Bosnia and Herzegovina; BrowseTel Limited (UK), a provider of multi-channel
communication services for customer relation management; GFK Eurisko (IT),
the Italian branch of the fourth largest market research company in the world;
Big Bang Ltd. (SI), the largest electronics retailer in Slovenia; Measurence (IR),
a provider of sensor-based analytics solutions for physical locations; and JOT
Internet Media (SP), a digital marketing solutions company.

Providing the technical and research expertise for the development of the
platform the consortium includes: Engineering Ingegneria Informatica S.p.A
(IT), the leading Italian software and services group; University of Milano-
Bicocca (IT), focusing on semantic and interactive technologies for data link-
ing; SINTEF (NO), the leading Norwegian research institute supporting data
integration through their DataGraft2 platform, and Jožef Stefan Institute (SI),
the largest research institute in Slovenia overseeing all project analytics efforts
and providing the event data source through the Event Registry3 global media
monitoring platform.
2 https://datagraft.io.
3 http://eventregistry.org.

https://datagraft.io
http://eventregistry.org

EW-Shopp Project: Weather and Events in Ecommerce 189

3 Innovation

The data sources combined in the project offer numerous possibilities for inno-
vative applications of knowledge discovery and data mining methodology. By
linking and integrating the data sets of business partners and external data
sources regarding weather and events, models can be constructed that power
real-time responsive services for digital marketing, reporting-style services for
market research, advanced data and resource management services for retail
and e-commerce companies and their technology providers, as well as enhanced
location intelligence services.

To guide the development of the platform and provide a basis for its evalua-
tion, several pilot services are in development:

– Pilot I - Enrichment of purchase information for web platforms: By
building a predictive model of user interaction on an online shopping portal
in relation to external weather and event factors, we will enable the portal
to run a reactive sense-of-urgency information service. For example, before a
heatwave, we inform consumers that air conditioning sales commonly spike
in such conditions and delivery could be delayed significantly.

– Pilot II - Integrated platform for category and marketing optimiza-
tion: Combining data from a price comparison platform and a retailer will
enable analysis and modeling of business actions such as marketing campaigns
and discounts. This analysis will power a business-to-business service that will
allow a retailer to use the wider market view of the price comparison platform
to inform its category and marketing management.

– Pilot III - External data access API and decision-making systems
supporting customized campaigns: Using weather and event-based pre-
dictive models for predicting customer response rate in a call center and
managing marketing campaigns.

– Pilot IV - Location Intelligence: Modeling seasonal dependencies of visits
to physical store locations to support activity planning and management.

– Pilot V - Campaign-driven purchasing intentions: Modeling the
dynamics of web search engine keywords (e.g.. Google Adwords4) with respect
to weather and event factors to support marketing campaign management.

All the pilot services will be tested by business partners in the scope of their
regular operations. Their feedback will guide development in the second half of
the project.

As it is still undergoing development, we are unfortunately not able to show
a full end-to-end interaction with the platform. Currently, we can demonstrate a
selection of analytics results from the pilots and show the business insights they
offer. These results will be presented with a strong focus on interactive visualiza-
tions, as one of the guiding principles of the project is an emphasis on intuitive
and interactive visualizations in platform reporting services. Because they con-
tain sensitive business information, we are unable to share these visualizations
publicly before the conference.
4 http://adwords.google.com.

http://adwords.google.com

190 M. Palmonari et al.

4 Platform

In this section, we present the characteristic elements of the EW-Shopp platform,
for the design of which the consortium members have completed a requirements
collection phase based mainly on the needs of the business partners (through the
work done on the pilots) and on the best practices of the Big Data architectures.

At the end of this process, the need for an open source platform, capable
of managing data in tabular format and of generating linked data to be used
for analytics and visualization, became clear. In addition, two possible use cases
have emerged. In the first case, small amounts of data have to be manipulated,
the platform has to be lean and easy to install on a commodity machine similarly
to tools like OpenRefine5. In the second scenario, the platform needs to manage
big data, which means that a domain expert user must be able to describe the
transformations through a user-friendly and interactive interface and to execute
it in an automated way as a batch process (as in Karma6 and Trifacta Wrangler7).

In an attempt to give a syncretic response to the needs outlined in the require-
ments, the platform has been conceived as composed of three macro-components
(Fig. 1):

Core Data Services (in light blue): These components provide access to cor-
porate or third party data to be used in both data linking and extension pro-
cesses. Figure 1 shows services to access the project’s core data, i.e., weather
(W), events (E) and products (P). Other enrichment sources include Wiki-
fier8, as well as freely accessible knowledge bases such as DBpedia9.

Platform Services (in green): data preparation, analytics and visualization
services. These services offer simple and intuitive user interfaces for creating
(and executing if the working table is small enough) data wrangling, linking
and extension pipelines.

Corporate Services (in red): These services implement platform components
needed for data governance, i.e., ingestion, storage, processing, data flow and
security management of massive data sets.

The platform components at application level in Fig. 1 are:

Data Wrangler that is the component that enables the user to define the trans-
formations of data cleaning, linking and enrichment at design time, and pos-
sibly on a data sample. Such data preparation processes will then be carried
out by the component referred to as Big Data Runtime on the full dataset.

Data Analyzer that is the component that provides a set of predefined tools
for predictive and prescriptive algorithms on enriched data.

Data Reporter that is the component that allows the user to visualize and
analyze the outcomes produced by the Analyzer from a business viewpoint.

5 http://openrefine.org/.
6 http://usc-isi-i2.github.io/karma/.
7 https://www.trifacta.com/products/wrangler/.
8 http://wikifier.org/.
9 https://wiki.dbpedia.org/.

http://openrefine.org/
http://usc-isi-i2.github.io/karma/
https://www.trifacta.com/products/wrangler/
http://wikifier.org/
https://wiki.dbpedia.org/

EW-Shopp Project: Weather and Events in Ecommerce 191

Fig. 1. General architecture (Color figure online)

With regards to the so-called Corporate services, these are gathered in a
single macro-component called Big Data Runtime (BDR) that has the capabil-
ity to execute transformation operations defined using the Platform services on
genuine Big Data. In addition, it provides the data reporter with specific APIs
for data access. Within the Big Data Runtime, we recognize a sub-component
in charge of Data Storage and another dedicated to the Processing of such data.

5 Conclusions

The EW-Shopp ecosystem aims at fostering e-commerce, Retail and Marketing
industries in improving their efficiency and competitiveness through providing a
platform for supporting data linking, integration, and analytics in European e-
commerce companies. It is developed in cooperation with businesses from all
stages of a shopper’s journey and will be tested in several pilot services to
ensure that it addresses actual business needs. The project showcase will focus
on selected analytics results collected during pilots’ development and present
them using rich interactive visualizations.

Acknowledgements. This paper has been written by the authors on behalf of the
EW-Shopp Consortium. The work is supported by H2020 project EW-Shopp (Grant
n. 732590).

I-BiDaaS: Industrial-Driven Big Data
as a Self-service Solution

Giorgos Vasiliadis1(B), Dusan Jakovetic2, Ilias Spais3, and Sotiris Ioannidis1

1 FORTH, Heraklion, Greece
{gvasil,sotiris}@ics.forth.gr

2 University of Novi Sad, Novi Sad, Serbia
dusan.jakovetic@dmi.uns.ac.rs

3 AEGIS IT Research, Brunswick, Germany
hspais@aegisresearch.eu

Abstract. The convergence of Internet of Things (IoT), Cloud, and
Big Data, creates new challenges and opportunities for data analyt-
ics. Human- and machine-created data is being aggregated continuously,
transforming our economy and society. To face these challenges, compa-
nies call upon expert analysts and consultants to assist them.

In this paper, we present I-BiDaaS, a European Union Horizon 2020
research and innovation project that proposes a self-service solution for
Big Data analytics. The solution will be transformative for companies
that aim to extract knowledge from big data. It will empower their
employees with the right knowledge, and give the true decision-makers
the insights they need to make the right decisions. It will shift the power
balance within an organization, increase efficiency, reduce costs, improve
employee empowerment, and increase profitability. I-BiDaaS aims to
empower users to easily utilize and interact with Big Data technolo-
gies, by designing, building, and demonstrating, a unified solution that
significantly increases the speed of data analysis while coping with the
rate of data asset growth, and facilitates cross-domain data-flow towards
a thriving data-driven EU economy.

Keywords: Big Data · Batch processing · Stream processing

1 Introduction

Organizations leverage data pools to drive value, while it is variety, not volume
or velocity, which drives big-data investments. The convergence of IoT, cloud,
and big data, creates new opportunities for self-service analytics [3] towards big
data analytics. Human and machine created data is being aggregated, trans-
forming our economy and society. The aforementioned trends lead us to one
of the main challenges of the data economy [5], Big-Data-as-a-Self-Service. A
self-service solution will be transformative for organizations, it will empower
their employees with the right knowledge, and give the true decision-makers

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 192–196, 2020.
https://doi.org/10.1007/978-3-030-63161-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_17

I-BiDaaS: Industrial-Driven Big Data as a Self-service Solution 193

the insights they need to make the right decisions. It will shift the power bal-
ance within an organisation, increase efficiency, reduce costs, improve employee
empowerment, and increase profitability. The domains that can exploit such self-
service solutions are numerous, including among others banking, manufacturing,
and telecommunications.

In this paper we present the project I-BiDaaS [2], that aims to address the
above challenges and deficiencies. I-BiDaaS targets to empower users to easily uti-
lize and interact with big data technologies, by designing, building, and demon-
strating, a unified framework that: significantly increases the speed of data anal-
ysis while coping with the rate of data asset growth, and facilitates cross-domain
data-flow towards a thriving data-driven EU economy. I-BiDaaS will be tangi-
bly validated by three real-world, industry-lead experiments with significant chal-
lenges and requirements: banking, manufacturing, and telecommunications.

I-BiDaaS is a European Union (EU)-funded H2020 3 year project that has
started on January 1, 2018, and will last for 3 years. The project consortium
comprises the following institutions: Foundation for Research and Technology
Hellas, Greece (FORTH) – project coordinator; Barcelona Supercomputing Cen-
ter (BSC), Spain; IBM Israel (IBM); Centro Ricierche FIAT SCPA Italy (CRF);
Software AG (SAG), Germany; Caixabank, SA, Spain (CAIXA); The University
of Manchester, UK (UNIMAN); Ecole Nationale des Ponts et Chausees, France
(ENPC); ATOS, Spain (ATOS); AEGIS IT Research LTD, UK (AEGIS); Infor-
mation Technology for Market Leadership, Greece (ITML); University of Novi
Sad, Faulty of Sciences, Serbia (UNSPMF); and Telefonica Investigacion y Desar-
rollo SA, Spain (TID).

The main objectives of I-BiDaaS are:

– Develop, validate, demonstrate, and support, a complete and solid big data
solution that can be easily configured and adopted by practitioners.

– Break inter- and intra-sectorial data-silos, create a data market and offer
new business opportunities, and support data sharing, exchange, and
interoperability.

– Construct a safe environment for methodological big data experimentation,
for the development of new products, services, and tools

– Develop data processing tools and techniques applicable in real-world settings,
and demonstrate significant increase of speed of data throughput and access.

– Develop technologies that will increase the efficiency and competitiveness of
all EU companies and organisations that need to manage vast and complex
amounts of data.

Current Project Stage. So far, the project work has focused on: 1) investigat-
ing the industrial challenges of the data economy in the fields of Finance, Manu-
facturing, and Telecommunications; 2) carrying out a through review of state of
the art in the scientific and technological domains relevant to the project; and
3) defining initial data management policy for the data that will be consumed
and generated within the project.

194 G. Vasiliadis et al.

2 Approach and Methodology

Based on the challenges and requirements of the three critical domains (i.e.,
banking, manufacturing, and telecommunications), we aim to develop I-BiDaaS,
a solution to enable Big Data as a self-service. It will offer an integrated, full-
stack solution for processing and extracting actionable knowledge from big data,
that includes: (i) configuration of the underlying infrastructure resources (com-
modity/public clusters or private clouds), (ii) efficient and automatic usage of
computational and storage resources (resource provisioning, data transfers, etc.),
(iii) data capture and integration from a variety of different sources and formats
(unstructured, noisy, incomplete, etc.), (iv) batch and real-time data processing
analytics for fast-growing data, and (v) simple, intuitive, and effective visualiza-
tion and interaction capabilities for the end-users.

I-BiDaaS will offer Big Data as a Self-Service to enterprises by allowing seam-
less integration and injection of streaming and batch heterogeneous data, and
facilitate the adoption of big data analytics to enterprises that possess big data,
but may not have in-house expertise to extract the required actionable knowl-
edge. To achieve this, it will allow the development of new applications or tasks
via standard sequential programming, alleviating the burden of dealing with
sophisticated analytics techniques (that requires data mining expertise), thus
lowering enterprise costs. Also, the platform will be extendible to other applica-
tion scenarios, as well as compatible with existing platforms such as OpenStack.

2.1 The Three-Layer Architecture: A Layer-by-Layer Description

We now present our layered system architecture, and provide a detailed workflow
and user interface description. Conceptually, the architecture is divided into
three principal layers: the infrastructure layer, the distributed large-scale layer,
and the application layer.

Infrastructure Layer. The infrastructure layer includes the actual underly-
ing storage and processing infrastructure of the I-BiDaaS solution, nominally
provided and managed by ATOS and FORTH. This includes (i) a private cloud
infrastructure provided by ATOS, (ii) a commodity cluster provided by FORTH
(which consists of high-end GPUs, Intel Phi accelerators, and powerful multi-
core CPUs that contain secure enclaves that are able to protect the code and
the sensitive data). We note that the I-BiDaaS solution will be deployable to
other infrastructure premises as well; for instance, in the end user scenario that
involves CAIXA, the platform will be deployed within CAIXA proprietary pri-
vate cloud.

Distributed Large-Scale Layer. The distributed large-scale layer is respon-
sible for the orchestration and management of the underlying physical compu-
tational and storage infrastructure. It allows the effective and efficient use of
the infrastructures and enables the application layer to provide effective big

I-BiDaaS: Industrial-Driven Big Data as a Self-service Solution 195

data analytics. The distributed large-scale layer is responsible for the following
tasks: (i) task and data dependency capturing, (ii) data transfer optimization,
(iii) task and data scheduling, (iv) resource provisioning and management, and
(v) capturing, integrating, and preparing data from heterogeneous, distributed
sources,

Application Layer. The application layer sits on top of the distributed large-
scale layer. It refers to the architecture aspects and components that are involved
in the actual workflow of extracting actionable knowledge from the big data,
starting from data preparation and analytics, to delivering results for supporting
decision making. The data analytics include both batch and real time processing
of streaming data. The data from heterogeneous sources are ingested in the solu-
tion. For early development scenarios when not sufficient real data is available,
we will use the IBM’s data fabrication platform [1].

In terms of interleaving batch and stream processing, the proposed solution
goes beyond the traditional lambda architecture [4]. It uses a complex event
analysis system, combined with a hardware-based implementation of streaming
analytics that uses many different many-core accelerators (GPUs, Intel Phi, etc.).
This design allows us to offload parts of the streaming analytics that can be par-
allelized and gives us the opportunity to partition the analytics queries, between
the high-level stream processing engine and the low-level, hardware-optimized
implementation. By carefully performing part of the queries at the lowest level
(especially for the filtering), only the required data will be forwarded to the
stream-processing engine for a more sophisticated analysis, while the remainder
will be ignored at the earliest possible. The partition of the queries (between
the complex event analysis system and the hardware-based streaming analytics)
can be done either statically (i.e., during the implementation of a specific user
query) or dynamically, at run-time (i.e., by monitoring the execution of a user-
defined query, and deciding if the offloading to a manycore processor would lead
to better performance.

User Interface. In order to make our solution ease to use by end-users, we will
build a multi-purpose interface (AEGIS), that can be used by different categories
of users. The interface will provide different levels of abstractions, tailored to dif-
ferent categories of user expertise. First, we will offer a programming API for
access to every level of our software stack. This will give the flexibility to experi-
enced IT users to utilise every aspect of our solution, and fine-tune their applica-
tions. The API will give access to the high-level application components—such
as the advanced machine-learning modules and the streaming analytics—as well
as to the low-level infrastructure layer, such as the scheduling and the resource
management of the underlying infrastructure. Second, we will provide a domain
language for access to the application layer. The purpose of this language is to
offer an easy way to program data analytics (either batch or stream processing)
without caring about scalability issues and infrastructure placement.

196 G. Vasiliadis et al.

3 Conclusions

In this paper, we presented I-BiDaaS, a European Union Horizon 2020 project
that proposes a solution for Big Data as a self-service. Once achieved, the solution
will be transformative for enterprises that seek to extract actionable knowledge
from Big Data, as it will allow their employees to easily utilize and interact with
Big Data technologies. This can lead to increased efficiency, reduced costs, and
increased profitability within an enterprise.

Acknowledgments. The authors thank all project partners for all the fruitful dis-
cussions on several aspects of the architecture. This work is supported by the I-BiDaaS
project, funded by the European Commission under Grant Agreements No. 780787.
This publication reflects the views only of the authors, and the Commission cannot be
held responsible for any use which may be made of the information contained therein.

References

1. Creating secure test data to test systems. https://www.ibm.com/blogs/research/
2014/07/creating-secure-test-data-to-test-systems/

2. I-BiDaaS: Industrial-Driven Big Data as a Self-Service Solution. https://www.
ibidaas.eu

3. Self-Service Analytics. https://www.gartner.com/it-glossary/self-service-analytics/
4. Marz, N., Warren, J.: Big Data: Principles and Best Practices of Scalable Realtime

Data Systems, 1st edn. Manning Publications Co., Greenwich (2015)
5. Passlick, J., Lebek, B., Breitner, M.H.: A self-service supporting business intelligence

and big data analytics architecture. In: Wirtschaftsinformatik (2017)

https://www.ibm.com/blogs/research/2014/07/creating-secure-test-data-to-test-systems/
https://www.ibm.com/blogs/research/2014/07/creating-secure-test-data-to-test-systems/
https://www.ibidaas.eu
https://www.ibidaas.eu
https://www.gartner.com/it-glossary/self-service-analytics/

SMARTSDK - A FIWARE-Based Software
Development Kit for Smart Applications
for the Needs of Europe and Mexico

Tomas Aliaga1, Hugo Estrada2, Miguel González Mendoza3(B), and Daniele Pizzolli4

1 Martel Innovate, Lugano, Switzerland
tomas.aliaga@martel-innovate.com

2 INFOTEC, Mexico D.F., Mexico
hugo.estrada@infotec.mx

3 ITESM, Atizapán de Zaragoza, Mexico State, Mexico
mgonza@itesm.mx

4 CRATE-NET (FBK), Trento, Italy
dpizzolli@fbk.eu

Abstract. We present the goals, development and results of the SmartSDK
project, a FIWARE initiative that aims to create a sustainable FIWARE ecosys-
tem between Europe and Mexico by leveraging on existing FIWARE outcomes
and building reference standards for common challenges, providing ready-to-use
bundles to simplify the creation of Smart Software Services.

Keywords: FIWARE · Software development · Cloud computing · IoT ·
Docker · Open source · Smart cities

1 Fiware

FIWARE [3], a public-private partnership initiative supported by the European Commis-
sion, is nowadays considered the reference platform for Future Internet solutions. With
the recent engagement of third-party actors not part of the original initiative, FIWARE
rapidly evolved from being just a platform to become a complex and rich ecosystem.
Nowadays this ecosystem spans across Europe and beyond thanks to the efforts of the
FIWARE Mundus programme and the collaboration around Smart Cities with major
worldwide initiatives such as the Global City Team Challenge, organized by NIST, and
the Open & Agile Smart Cities (OASC) involving at the moment more than 100 cities
around the world.

2 SMARTSDK

2.1 Introduction

SmartSDK is the FIWARE’s “cookbook” for developing smart applications in the
Smart City, Smart Healthcare and Smart Security domains. Concretely, this means that

© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 197–203, 2020.
https://doi.org/10.1007/978-3-030-63161-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_18

198 T. Aliaga et al.

SmartSDK refines, combines and develops new FIWARE Generic Enablers (GEs) [4]
and FIWAREDataModels [1] into a set of well-codified and ready-to-use solutions. This
is very important to improve the uptake of FIWARE by new developers and facilitate
the transition from proof-of-concept environments to production ones.

The “cookbook” is based on a set of architecture patterns (i.e. the basic cooking
processes), a set of Generic Enablers (i.e. the basic ingredients) and a set of data models
(i.e. the spices and flavors binding the ingredients through the cooking process). This
idea is illustrated in Fig. 1.

Fig. 1. SmartSDK as catalyzer of the EU - Mexico FIWARE ecosystem.

SmartSDK also proposes a Platform Manager (PM) which orchestrates resources
provided by an underlying cloud computing platform, such as FIWARE Lab, where the
PM is deployed. Then, with the PM users can deploy their container-based applications.
Such applications are typically built with the reuse of open-source components, FIWARE
Generic Enablers, Data Models and common architecture and recipes, realized through
Docker1 technologies to orchestrate the composing microservices. Figure 2 gives a good
picture of these mentioned SmartSDK components.

The main project goals include enhancing Europe-Mexico collaboration and tech-
nology transfer within FIWARE, facilitating and increasing FIWARE adoption by pro-
viding ready-to-use reference service architectures and data models for IoT and data-
intensive Future Internet scenarios (SmartCities, SmartSecurity and SmartHealthcare),
and supporting the global uptake of validated FIWARE-based applications.

1 https://www.docker.com.

https://www.docker.com

SMARTSDK - A FIWARE-Based Software Development Kit 199

Fig. 2. SmartSDK architecture.

2.2 Project Organisation

Theproject responds to theEuropean callH2020-ICT-2016-2017 andhas been co-funded
by the EU’s Horizon2020 programme under agreement number 723174 - ©2016 EC and
by CONACYT agreement 737373. It has been running from September 2016 and will
find its closure at the end of 2018. The consortium comprises a total of 10 companies
and research institutions from Mexico and Europe.

On the European side, the project counts with the collaboration of MARTEL INNO-
VATE (Switzerland) acting as the project manager and developer of architectural soft-
ware components and recipes. FBKCREATE-NET (Italy) works mostly on the Platform
Manager and cloud infrastructure. UBIWHERE LDA (Portugal) brings its experience in
geo-visualizations and smart cities, particularly helpful for the SmartCity demonstrator.
Essential for the same demonstrator has been the work from HOP UBIQUITOUS SL on
the open-hardware and IoT aspects of the platform. Halfway-through the project, TELE-
FONICA I+D (Spain) left and the recently-formed FIWARE Foundation [2] (Germany)
joined to contribute in standardization efforts and harmonization of data models created
in the project.

With the support of European partners, the Mexican institutions have been more
focused on the development of different applications acting as validators of SmartSDK
in the three scenarios. Nevertheless, their work has also covered the development of
platform software components and datamodels to be reused in different applications. The

200 T. Aliaga et al.

collaboration has been so good that it is difficult to trace hard boundaries for contribution
efforts; however, it could be summarized as follows. INFOTEC has taken the lead of
the “GreenRoute” application, focused onmobility in the SmartCities scenario. CICESE
and INAOE have focused on the rehabilitation and monitoring applications in the case of
SmartHealthCare. INAOE has lead the development of “VIVA”, the video-surveillance
application for the SmartSecurity scenario. Finally, ITESM and CENIDET have worked
on orthogonal contributions to all scenarios, developing also data models and reusable
software libraries.

2.3 Main Results

The project has accumulated a good number of successful outcomes during the last two
years, both in the form of new technical contributions to FIWARE as well as through the
collaboration between European and Mexican Institutions and SMEs. This section will
briefly cover the results grouped in four areas: the platform, the software and hardware
components, the validator applications and the dissemination activities.

With the release of the PlatformManager (PM) [6], SmartSDK offers now FIWARE
users a harmonized and simplifiedwayof deployingFIWAREGenericEnablers andother
Open Source Components used to assemble user applications. Users no longer need to
manually create Virtual Machines (VM) and install each required software component
(each with a different procedure) and their dependencies; the PM simplifies all these
tasks. For example, users just need an account in FIWARE Lab which comes with some
assigned resources (RAM, IPs, VMs quotas, etc.) Then, they can log in the PMwith their
FIWARE Account, and easily create their environment. PM will automatically create
the VMs in FIWARE Lab, provision them with Docker and use them to form a Swarm
cluster. Then, with a simple click on the PM, users can deploy containerized GEs or
applications of their choice on top of the Docker Swarm2 Cluster, which is running on
top of their cloud resources. PM is built using Rancher3, the FIWARE Authentication
services, Portainer4, and an ad-hoc catalogue of recipes5.

Having a cluster of machines and such a powerful tool as Docker Swarm, users are
now empowered to profit from the benefits of more complex architectural patterns for the
development and deployment of their applications. SmartSDK studied the composition
of FIWARE Generic Enablers and created recipes aimed to enable the deployment of
components with patterns such as Scalability, High Availability and Multisite in mind.
This way, a simple Orion Context Broker could be automatically launched as shown in
Fig. 3 without the need of user manual configuration. Figure 4 provides excerpts of how
a recipe for the deployment of Fig. 3 would look like and marks in bold which kind of
parameters are used to leverage different architecture patterns. These ideas are presented
in more depth in deliverable 3.4 [7].

Worth mentioning are also the contributions to the FIWARE offerings in the form of
software and hardware components. How these components fit into the overall FIWARE

2 https://docs.docker.com/engine/swarm/.
3 https://rancher.com/.
4 https://portainer.io/.
5 https://github.com/smartsdk/smartsdk-recipes.

https://docs.docker.com/engine/swarm/
https://rancher.com/
https://portainer.io/
https://github.com/smartsdk/smartsdk-recipes

SMARTSDK - A FIWARE-Based Software Development Kit 201

Fig. 3. Orion CB in HA.

Fig. 4. Recipes excerpts

reference architecture can be seen in Fig. 5. Moreover, all these components are open
source and can be found at [5]. QuantumLeap, for example, has been proposed as a new
incubated FIWARE Generic Enabler [4], to let users of NGSI data manipulate historical
records on top of modern distributed databases tailored to work with timeseries. It has
been used not only in the validator applications but also in different projects as well

202 T. Aliaga et al.

[9]. Other component examples include a JavaScript library to exchange NGSI data in
mobile applications, a library to encrypt and decrypt NGSI data and the integration of
Cloudino and SmartSpot as IoT sensors for FIWARE solutions.

TheMexican partners, with the support from the European ones, have been develop-
ing a set of applications in the scenarios of Smart Cities (traffic-and-pollution-aware user
mobility), Smart Security (intelligent video surveillance) and Smart Healthcare (mobile-
sensing and in-house patient recovery). Such applications work as validators and first
beneficiaries of the aforementioned components developed in the project. Moreover, the
new and extended NGSI Data Models were contributed back to the official FIWARE
Data Models catalogue [1].

Fig. 5. SmartSDK extended FIWARE ref. architecture for IoT and data intensive apps.

Finally, dissemination activities were carried out with the aim of maintaining and
coordinating the appropriate mechanisms and tools to ensure broad visibility and impact
of the project’s work and results, while expanding the FIWARE community reach in
Mexico. Such activities have contributed towards the elaboration of a wide range of
events, webinars, workshops, documentation materials and guided tours.

The official SmartSDKwebsite [8] has been one of themain communication channels
where ongoing results have been presented throughout the lifespan of the project. In the
deliverables page [7], readers can find more details not only about the technical tasks,
but also about results from the exploitation activities, including for example workshops
in Mexico and new pieces of bilingual documentation and tutorials for FIWARE.

SMARTSDK - A FIWARE-Based Software Development Kit 203

References6

1. Data Models. https://www.fiware.org/developers/data-models/
2. FIWARE Foundation. https://www.fiware.org/foundation
3. FIWARE. https://www.fiware.org
4. Generic Enablers. https://catalogue-server.fiware.org/enablers
5. Github project. https://github.com/smartsdk
6. Platform Manager. http://platform-manager.smartsdk.eu
7. Project Deliverables. https://www.smartsdk.eu/deliverables/
8. SmartSDK. https://www.smartsdk.eu
9. Orchestra Cities. https://www.orchestracities.com/

6 All link references have been last accessed on 2018/09/28.

https://www.fiware.org/developers/data-models/
https://www.fiware.org/foundation
https://www.fiware.org
https://catalogue-server.fiware.org/enablers
https://github.com/smartsdk
http://platform-manager.smartsdk.eu
https://www.smartsdk.eu/deliverables/
https://www.smartsdk.eu
https://www.orchestracities.com/

The FIRST (vF Interoperation
suppoRting buSiness innovaTion) Project:
Service Management for Virtual Factories

Yuewei Bai1, Stephan Böse2, Giacomo Cabri3(B), Paul de Vrieze4,
Norbert Eder2, Alexander Lazovik5, Federica Mandreoli3, Massimo Mecella6,

Hua Mu7, and Lai Xu4

1 Shanghai Second Polytechnic University, Shanghai, China
ywbai@sspu.edu.cn

2 GK Software, Berlin, Germany
neder@gk-software.com

3 Università degli Studi di Modena e Reggio Emilia, Modena, Italy
{giacomo.cabri,federica.mandreoli}@unimore.it

4 University of Bournemouth, Poole, UK
{pdvrieze,lxu}@bournemouth.ac.uk

5 University of Groningen, Groningen, NL, The Netherlands
a.lazovik@rug.nl

6 Sapienza Università di Roma, Rome, Italy
mecella@dis.uniroma1.it
7 KM Soft, Wuhan, China

muh@kmsoft.com.cn

http://www.sspu.edu.cn, http://www.gk-software.com,

http://www.unimore.it, http://www.bournemouth.ac.uk, http://www.rug.nl,

http://www.uniroma1.it, http://www.kmsoft.com.cn/

Abstract. The H2020 FIRST project addresses the virtual factories,
which are digital abstractions of real factories. The exploitation of vir-
tual factories enables interoperability between real components inside a
factory as well as between different factories belonging to the same sup-
ply chain. Moreover, virtual factories can be exploited to manage and
compose services inside a factory, defining dynamic adaptation of set of
services depending on high-level goals.

In this paper we sketch the project results and its current state.

Keywords: Virtual factories · Interoperability · Service management

This work is funded by the EU H2020-RISE Project “FIRST: virtual Factory Interop-
eration suppoRting buSiness innovaTion” (Grant no. 734599).

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 204–209, 2020.
https://doi.org/10.1007/978-3-030-63161-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_19

FIRST Project 205

1 Introduction

The EU H2020 “vF Interoperation suppoRting buSiness innovaTion” (FIRST)
is a project funded in the framework of H2020 RISE program, which promotes
international and inter-sectoral collaboration through research and innovation
staff exchanges, and through sharing of knowledge and ideas from academia to
industry (and vice-versa)1.

The FIRST project addresses the challenges related to virtual factories, dig-
ital abstractions of real factories, considering in particular manufacturing facto-
ries. Advanced manufacturing is entering a new era. It requires new ICT tech-
nologies and collaborative applications. Integration among traditional manufac-
turing practices and processes can increase flexibility in manufacturing, i.e. mass
customisation speeds to markets with better design and quality. Virtual factory
models need to be created before the real factory is implemented to better explore
different design options, evaluate their performance and before commissioning
the automation systems thus saving time-to. This foundational concept to future
factories allow the flexible amalgamation of manufacturing resources in multi-
ple organisations to model, simulate and test factory layouts and processes in a
virtual reality environment, virtual factory design and virtual factories, finally
create the real factory in shorter time, with demand driven product lines.

In this scenario the specific goals of the FIRST project are to provide new
technology and methodologies to describe manufacturing assets; to compose and
integrate existing services into collaborative virtual manufacturing processes;
and to deal with evolution of changes. Moreover, the issues and gaps are inves-
tigated from a global view, i.e. among European member states and Chinese
perspectives.

The work of the FIRST project can rely on a well-established body of research
on virtual organisations in the services industry as well as on open product
design, general service description, discovery, composition, adaption, interoper-
ation and execution. Manufacturing assets, however, are not general (digital)
services. Moreover, there are different practices and protocols in different coun-
tries. Member states are also sponsoring national initiatives such as Industrie
4.0 in Germany, the Factory of the Future in Italy, High Value Manufacturing
Catapult in the UK, etc. It is essential to ensure the exchange of data between
smart machines, systems and software within a networked value chain, as prod-
uct design shares with all involved parties through “virtual factory”, a product
moves into and through the ‘smart factory’, as well as to allow flexible manufac-
turing processes through simple ‘plug-and-play’ techniques.

1.1 Project Facts

The project involves 7 partners, of which 5 are universities, 2 are companies, 5
are European, 2 are Chinese2.

1 https://www.h2020first.eu/.
2 https://www.h2020first.eu/first/bin/view/Main/Partners.

https://www.h2020first.eu/
https://www.h2020first.eu/first/bin/view/Main/Partners

206 Y. Bai et al.

The current number of secondment-months performed is 343.
In the context of the project 12 papers have been published in international

journals and conference proceedings4.

2 Project Results

In this section we present summaries of the main results of the project. Interested
readers can refer to the cited publications to get more details about specific
results.

A first result of the project is a review of concepts and research challenges of
interoperability of virtual factory [6], which presents basic concepts of factories
of the future, i.e. smart factory, digital factory and virtual factory, studies the
relationships among smart factory, digital and virtual factory, and defines inter-
operability of virtual factories. The main challenges of interoperability of virtual
factories are identified as the lack of standards of virtual factories; managing
traceability of sensitive data, protected resources and applications or services
are critical for forming and using virtual factories; handling multilateral solu-
tions and managing variability of different solutions/virtual factory models are
also impact to the usability of the virtual factory. In short, the interoperability
of virtual factory is related to many newly developed ICT of the hardware and
software innovation. An interoperation framework allows evolutional and han-
dling changes, which is crucial for generating and maintaining virtual factories
among different industrial sectors.

A second study concerned the compliance constrains processes to adhere to
rules, standards, laws and regulations [2]. Non-compliance can lead enterprises
to litigation and financial fines, so compliance verification is essential to deploy
and implement collaborative business process systems. It ensures that processes
are checked for conformance to compliance requirements throughout their life
cycle. A proactive approach has been proposed, which aims to discuss the need
for design time preventative compliance verification as opposed to after effect
runtime detective approach.

Another result is a resilience analysis perspectives of SOA collaborative
process systems [4], i.e., overall system perspective, individual process model
perspective, individual process instance perspective, service perspective, and
resource perspective. A real world collaborative process has been exploited for
illustrating our resilience analysis. This research contributes to extend SOA col-
laborative business process management systems with resilience support, not
only looking at quantification and identification of resilience factors, but also
considering ways of improving the resilience of SOA collaborative process sys-
tems through measures at design and runtime. Resilience is defined as the com-
bination of two aspects. The former aspect is the capability of the system to
contain and minimize the effect of a disruption. The second aspect is the system
capability of reducing the impact of disturbances over time including the use of
3 https://www.h2020first.eu/first/bin/view/Main/Secondments.
4 https://www.h2020first.eu/first/bin/view/Main/Publications.

https://www.h2020first.eu/first/bin/view/Main/Secondments
https://www.h2020first.eu/first/bin/view/Main/Publications

FIRST Project 207

temporary alternative until the resumption of normal operations. A disruption
is an event that leads to failures of the processes coordinated by the process
management system. Another way of looking at this perspective of resilience is
as the impact of a disruption over time. The definition of resilience takes into
consideration the following parameters:

– start of the disruption;
– equilibrium point at which the disruption causes no further performance

degradation;
– slack time, i.e., maximum amount of time to post-disruption equilibrium that

is acceptable before ensuring recovery;
– time to final recovery, i.e., new equilibrium state;
– time to complete initial recovery actions;
– decay in resilience attributable to time to new equilibrium.

An architecture of collaborative processes for managing short term, low fre-
quency collaborative processes has been proposed [7]. A real-world case of col-
laborative processes is used to explain the design and implementation of the
cloud-based solution for supporting collaborative business processes. Service
improvement of the new solution and computing power costs are also analysed
accordingly.

SSPU has closely cooperated with KMSoft in the field of smart manufactur-
ing technology, particularly in Manufacturing Execution System (MES) Frame-
work development, production scheduling algorithm based on virtual manufac-
turing network, and precision measurement system integration [3,5] (i.e., among
coordinate measurement machine, motion controller, and measurement soft-
ware systems). We have implemented some original requirement surveys with
Bournemouth University of UK, which focused on the manufacturing asserts
management in Shanghai Huida Mechanical Manufacture Co5, Smart Manufac-
turing Lab of SSPU respectively. The related requirements of MES being used
in multi-enterprises have been gathered and it’s helpful for KM-MES (developed
by KMSoft) Improvement in next step which has been applied in over twenty
companies of three industries separately.

An interoperability architecture for digital factories has been proposed [1].
To this end, we analysed the main challenges that must be addressed to sup-
port an integrated and scalable factory architecture characterized by access to
services, aggregation of data, and orchestration of production processes. Then,
we revised the state of the art in the light of these requirements and proposes
a general architectural framework conjugating the most interesting features of
service-oriented architectures and data sharing architectures. Figure 1 reports
the architectural layers of the proposed interoperable platform.

Besides the scientific results presented above, in the spirit of the RISE frame-
work, the project has achieved also structural results for the companies.

In fact, FIRST has been a turning point for the GK company. It is the large
opportunity to establish own and sustainable research and innovation infrastruc-

5 http://www.huidajx.com.

http://www.huidajx.com

208 Y. Bai et al.

Fig. 1. Conceptual overview of the interoperable architectural layers

ture in order to meet the customer expectations and to secure future competi-
tiveness. GK Software AG is working on the digitization of large retail companies
with OmniPOS products to integration physical, online and mobile commerce.
In order to have a maximum benefit of the project FIRST and facing the oppor-
tunities as the project’s single industry partner receiving almost all secondments,
GK Software AG decided to establish a new and own Innovation and Research
unit, recruiting a new Head of Unit.

The Virtual Factories of FIRST and the OmniChannel Solutions of GK Soft-
ware AG fit optimal together because the integration across the lifecycle - includ-
ing the IoT information - and sales channel integration is a key aspect of mod-
ern manufacturing. Manufacturing is driven entirely from the sales channels and
from omni-channel and customer journey approaches in the digital economy and
society.

3 Conclusions and Future Work

In this paper we have presented the current results of the FIRST project.
In the context of virtual factories, services play an important role, both inter-

factory and intra-factory. In fact, proper and interoperable service management
can lead not only to a control of the real factory processes, but also to dynami-
cally adapt the factory processes to the factory goals. In addition, services can
be exploited to enable and leverage interaction among factories belonging to the
same supply chain, as well as to enable dynamic supply chains where factories
can be added and changed depending on the needs. To achieve effective results,
a global approach is deserved.

With regard to the future work, we aim at concretising the service composi-
tion sketched in the architectures we have defined, in order to enable factories to
apply the virtual factory concept. Moreover, we will apply the defined approaches
to real cases of factories, in order to test them and to have a useful feedback to
continue our research.

FIRST Project 209

References

1. Bicocchi, N., Cabri, G., Mandreoli, F., Mecella, M.: Dealing with data and software
interoperability issues in digital factories. In: International Conference on Transdis-
ciplinary Engineering (TE2018) (2018)

2. Kasse, J.P., Xu, L., deVrieze, P., Bai, Y.: The need for compliance verification
in collaborative business processes. In: Camarinha-Matos, L.M., Afsarmanesh, H.,
Rezgui, Y. (eds.) PRO-VE 2018. IAICT, vol. 534, pp. 217–229. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99127-6 19

3. Pan, F., Nie, L., Bai, Y., Wang, X., Wu, X.: Geometric errors measurement for coor-
dinate measuring machines. In: IOP Conference Series: Earth and Environmental
Science, vol. 81, p. 012117. IOP Publishing (2017)

4. de Vrieze, P., Xu, L.: Resilience analysis of service-oriented collaboration process
management systems. Serv. Oriented Comput. Appl. 12, 25–39 (2018). https://doi.
org/10.1007/s11761-018-0233-5

5. Wu, X., Bai, Y., Nie, L., Pan, F., Liu, K., Yu, Y.: Tracking object in four dimensions
by multi-exposure compressive in-line holography. In: Sixth International Confer-
ence on Optical and Photonic Engineering (icOPEN 2018), vol. 10827, p. 108270T.
International Society for Optics and Photonics (2018)

6. Xu, L., de Vrieze, P., Yu, H., Phalp, K., Yuewei, B.: Interoperability of virtual
factory: an overview of concepts and research challenges. Int. J. Mech. Manuf. Syst.
13, 3–27 (2020)

7. Xu, L., Vrieze, P.D.: Supporting collaborative business processes: a BPaaS approach.
Int. J. Simul. Process Model. 13(1), 57–72 (2018)

https://doi.org/10.1007/978-3-319-99127-6_19
https://doi.org/10.1007/s11761-018-0233-5
https://doi.org/10.1007/s11761-018-0233-5

ElasTest: An Elastic Platform for E2E
Testing Complex Distributed Large

Software Systems

Juan Francisco Ribera Laszkowski1, Andy Edmonds1(B), Piyush Harsh1,
Francisco Gortazar2, and Thomas Michael Bohnert1

1 Zuerich University of Applied Sciences, Winterthur, Switzerland
{ribr,edmo,harh,bohe}@zhaw.ch

2 University of Rey Juan Carlos, Madrid, Spain
francisco.gortazar@urjc.es

Abstract. As systems get more complex testing has also increased not
only in complexity but in the total IT cost, which is estimated to increase
even more by 2020. Testing large complex distributed applications is
hard, time consuming and lacks tooling. Given that the digitisation of
business has proved to be a key aspect for improving the productivity of
developers in the delivery of the service to end-users, in this paper we
present early results showing how these capabilities can also be provided
to testers of software and services, by adopting standard interfaces and
leveraging the tools provided by an early research open-source platform,
capable of efficiently testing large scale systems, ElasTest.

Keywords: Cloud · Testing · E2E · Large scale · Distributed ·
Computing · Systems

1 Introduction

The demand for larger and more interconnected software systems is constantly
rising, and recently more and more architectures opt for a microservices-oriented
architecture [21], many of which are cloud native applications [20]. This increase
has also caused that the development, operations and management, and com-
plexity of such microservice-based systems to increase. However, the skills of
software developers and testers must satisfy the rate at which these large sys-
tems are appearing [18], especially when, in this case, larger and more complex
systems demand themselves more efficient testing processes.

The ElasTest project aims at significantly improving the efficiency and effec-
tiveness of the testing process throughout the software development life cycle
and, with it, the overall quality of large software systems. A set of required

This work is partially funded by the Swiss State Secretariat for Education, Research
and Innovation (SBFI) in association with the European Union Horizon 2020 research
and innovation programme via grant agreement #731535, for the ElasTest project [5].

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 210–218, 2020.
https://doi.org/10.1007/978-3-030-63161-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_20

ElasTest: An Elastic Platform for E2E Testing Complex 211

tests that are modern and accepted, are defined by [17], who also shows that
testing a full cloud native application is not a mean or small task. This is how
the ElasTest platform comes to be, with the purpose of not only developing an
open-source, modern test orchestration theory and toolbox, to allow the creation
of complex test suites as the composition of simple testing units; but also, to
create an impact in the community and become a worldwide reference in the field
of large-scale software testing, providing sustainability of the project generated
results.

In this context of testing and delivery of service, the challenging questions to
be asked are:

1. How can a complete and large scale cloud native application be effectively
tested and supported by a test platform?

2. How can the investments made in testing be minimised such that the organ-
isation (e.g. SME, corporation) tasked with delivering the application can
deliver the same reliability and assurance in the same or reduced time frame?

This paper attempts to tackle these questions and therefore, reports the work-
in-progress of an efficient large scale system testing and open source research
platform, ElasTest [7], which provides the means to test applications (or systems)
“in-the-small” as well as the same systems deployed “in-the-large”, through the
support of industry standards.

We organize this paper by starting with an overview of the ElasTest Project,
followed by the Architecture of the system which describes how services are
composed and delivered to the tests that operate against an System under Test
(SUT). Then, the current set of services offered by ElasTest are briefly described
and we finalize with the Discussion and Future Work.

2 ElasTest Overview

The ElasTest project stands for Elastic Platform for Testing complex distributed
large software systems. It is being developed by a consortium of European aca-
demic institutions, research centers, large industrial companies and also SMEs.
The project began January 2017 and will run for 3 years. Its members are [6]:

– Universidad Rey Juan Carlos: is the project coordinator and has key
involvements in overall plaform design, delivery of components related to test
orchestration and implementing one of the key test support services.

– Fraunhofer FOKUS: provides their expertise both in telecommunication
core networking systems and Industrial IoT (IIoT). For the telecommunica-
tions aspect, they provide a vertical demonstrator.

– Technische Universitaet Berlin: provide one of the core systems in
ElasTest, specifically the system that provides all virtualised resources used
by the platform and executed tests. Also provided is an emulated IIoT test
support service. They also provide a vertical demonstrator.

212 J. F. Ribera Laszkowski et al.

– Consiglio Nazionale delle Ricerche: oversee and design the evaluation of
the ElasTest platform based on their extensive experience of the theoretical
foundations of Software Engineering for Testing.

– IMDEA Software Institute: provide two key test support services in
ElasTest, namely the Security and Monitoring services.

– ATOS Spain: oversee the complete delivery of the cloud platform that
ElasTest is built upon. Specifically this includes the components related to
platform instrumentation.

– Zuerich University of Applied Sciences: deliver components related to
the core ElasTest platform including Nexus for service delivery, Sentinel for
system and service monitoring and a cost estimation engine.

– Naevatec: is a SME that provides a reliable continuous integration and deliv-
ery system and also provide one of the vertical demonstrators used to evaluate
ElasTest.

– IBM Ireland: is the key partner providing the component related to test
recommendations. These recommendations are based on the set of end-user
provided tests and suggests new tests using machine learning.

– Relational: is a SME which delivers one of the test support services, the big
data analysis service.

ElasTest is funded by the European Commission under the ICT-10-2016 topic
of the Horizon 2020 programme [10]. ElasTest [5] is an open source platform with
the objective to reduce the complexity of carrying out end-to-end tests of large
scale distributed systems. The Systems under Tests (SUTs) can be applications
and services. ElasTest gives developers and testers of systems the means to assess
their tests in a way that is cost and performance sensitive. ElasTest’s capabilities
are built on common open source technologies, and ensures to provide elasticity
and compatibility to integrate with multiple technologies.

Moreover, ElasTest supports both a lightweight deployment profile, suitable
for laptops to be used for testing in the small, to a complete deployment profile,
suitable for testing complete large scale systems in an automated fashion. Finally,
ElasTest attempts to ease integration with existing continuous integration and
deployment systems and currently has a custom Jenkins plugin.

Currently, the project having delivered its core open source platform is now
improving and using it for the base line of research activities. Importantly, that
platform will be enhanced not only by input from identified end-users but also
by on-going evaluation activities of the platform. This evaluation will be based
upon a set of vertical demonstrators. There are four of these demonstrators: an
e-commerce demonstrator, a 5G carrier-grade network system implementation,
a open online class course demonstrator focusing on real-time communication
and an Industrial IoT demonstrator.

2.1 Elastest vs. Other Solutions

Elastest solves a variety of problems, but each individual feature has been solved
by many different systems. Even though no single system delivers a solution that

ElasTest: An Elastic Platform for E2E Testing Complex 213

provides all the features that Elastest does, there are other options available to
solve some of these problems. Testcraft1 provides a codeless selenium testing
framework with artificial intelligence. It provides a set of workflow creation tools
for non-programmer to develop tests. Cypress2 is a web service Javascript testing
framework developed from the ground up, contrary to a selenium-based frame-
work, which delivers a fast performing testing framework and a vast amount of
information when a failure happens, for the problem to be fixed. Other examples
include Robot Framework3, which is a generic test automation framework writ-
ten in Python which uses selenium to simplify the testing processs, Appium4,
which provides a testing framework written in NodeJS for iOS and Android,
etc. That said, Elastest is not a replacement for other testing tools. Each devel-
oper has their own field or programming language where they feel comfortable.
Nevertheless, where Elastest excels is at bringing together all the testing tools
together and provide real End-to-End testing, starting from the deployment of
the infrastructure of your applications, to deploying the Support Services to
emulate other variables, and finally, providing a powerful Log Analyzer and a
Recommendation System (among others).

3 ElasTest Architecture

ElasTest manages the full testing life cycle, deployment and monitoring of the
SUT, execution of the end-to-end tests, all with the specified support services,
and exposure of the results to the end-users. In order to use the ElasTest system,
the user must first be granted access. Then, the user communicates the testing
requirements through the concept of a “T-Job” (testing-job). A T-Job typically
consists of a set of tests to be executed against a system endpoint and a set
of estimated resources to execute those tests on. It is important to note that
services are the ones that can be attached to the T-Jobs, whereas engines run
irrespectively of the T-Jobs, collecting metrics, analyzing execution patterns,
costs, etc.

Service delivery and composition is done through the ElasTest Service Man-
ager (ESM), which manages the delivery (deployment, provisioning and exe-
cution, incl. destruction) of the Test Support Services (TSS). These TSSs are
reusable services that are typically used by developers for creating their T-Jobs.
These are deployed as part of the ElasTest infrastructure and shall autoscale
to adapt to the tester needs. These TSS follow a Software as a Service (SaaS)
delivery model in the sense that developers do not need to worry about how to
deploy, provision or scale them.

Their capabilities are reachable through service-dependent APIs, defined by
OpenAPI specification (as per ElasTest architectural principles).

1 https://www.testcraft.io.
2 https://www.cypress.io.
3 http://robotframework.org.
4 http://appium.io.

https://www.testcraft.io
https://www.cypress.io
http://robotframework.org
http://appium.io

214 J. F. Ribera Laszkowski et al.

Currently the ESM provides all TSSs through an implementation of the Open
Service Broker API specification [13], which is currently seen as an industry stan-
dard in delivering functionality as a service. It is used in platforms such as Cloud-
Foundry [3], OpenShift [14] and Kubernetes [11]. Currently it is implemented
against the 2.12 specification version and has specific ElasTest extensions.

The ElasTest Project currently provides five TSSs through the ESM. The
motivations and also objectives of these TSS is as follows:

– Enable testers focus on their system’s core functionality
– Simplify the creation of T-Jobs validating individual functions or SiS (i.e.,

deliver TSS capable of helping in the creation of T-Jobs)
– Increase reusability provide reusable capabilities for creating T-Jobs involving

common testing tasks
– Decrease significantly the marginal (i.e. unit) cost of testing
– To be provided on-demand as cloud native services
– Provide access to capabilities/functionality through APIs that might be con-

sumed by the T-Jobs or by the test orchestration engines.

In other words, these ElasTest Test Support Services are meant to act as SaaS
services designed for helping developers in the creation of simple tests (called
T-Jobs in this proposal) by providing capabilities commonly required for typical
testing processes.

Each component within the microservice-based architecture of ElasTest has
its own internal peculiar architecture and, for the sake of brevity, the inter-
nal architecture of these will not be detailed. Each of the components within
the architecture are components that are implemented and developed by the
ElasTest consortium. Below, we describe the macro architecture of ElasTest as
shown in Fig. 1.

Fig. 1. ElasTest Architecture using the Fundamental Modelling Concept (FMC)
notation [9].

ElasTest: An Elastic Platform for E2E Testing Complex 215

– Test Orchestration and Recommendation Manager (ETM): provides
access to a user through the user interface and/or the programmatic API. It
manages all other components within a deployment of ElasTest.

– ElasTest Service Manager (ESM): allows the creation of on-demand
instances delivered as services, which execute the specified T-Job. This com-
ponent enables efficient testing and allow for the rapid creation of these tests.
The TSS supported by the ESM are:
• User impersonation Service (EUS): This service enables the imper-

sonation of end-users’ in their tests through GUI (Graphical User Inter-
face) instrumentation and through mechanisms for QoS and QoE evalu-
ation.

• Sensor, actuator and device impersonation Service (EDS): This
service is useful for enabling tests to emulate customized device behavior
at the time of testing IoT (Internet of Things) applications.

• Monitoring Service (EMS): This service leverages runtime verification
ideas (in turn inspired by formal verification) to represent the system
behavior as sequences of events that can be monitored in universal ways.

• Big Data Analysis Service (EBS): enables the collection, analysis
and visualization of large volumes of logs.

• Security Check Service (ESS): for security vulnerability checking tar-
geting specifically the problems of the main large scale deployed system

– ElasTest Platform Manager (EPM): The EPM is responsible for provid-
ing and managing the resources on which the various ElasTest components
run on. The currently supported cloud infrastructures are: OpenStack [15],
Amazon Web Services [2], Docker [4] and Kubernetes [11]. For orchestrating
the SUT and the network services within the ElasTest platform, OpenBaton
is used [19].

– ElasTest Instrumentation Manager (EIM): allows for dynamic modifi-
cations of the system under test and to inject real world behaviors over the
system (e.g., connection latency or disconnects), while gathers information
for the assessment at runtime as well as for later inspection.

– ElasTest Data Management (EDM): stores the logs and metrics which
are generated during the execution of a T-Job. This component leverages the
technologies of MySQL [12], Elasticsearch [8] as search engine, and Alluxio
[1] as virtual distributed storage system.

Unlike the services described above, engines can run irrespectively of the T-
Jobs, collecting metrics, analyzing execution patterns to report failures, costs,
etc., and are described below:

– ElasTest Cost Engine (ECE) allows static estimation of test execution
costs based on the estimated resource consumption matrix provided by the
test developer. This module empowers test authors to optimize their test
parameters iteratively and make the tests economical in the long term. ECE
also tracks key lifecycle events and correlates them to actual resources con-
sumed by a test execution to compute the true cost of the execution. The ECE

216 J. F. Ribera Laszkowski et al.

utilizes the plan cost models registered by each support service in ESM in
offering cost estimation and actual cost tracking for finished test executions.

– ElasTest Recommendation Engine (ERE): recommends new tests to
the end-user based on the set of tests they have presented to the ETM. This
component uses machine learning and artificial intelligence to generate a set
of additional recommended tests that the end-user can choose to include in
an updated version of their T-Job. This just like the use of external services
through the ESM and cost estimation through the ECE are facilities that aid
rapid system testing with the focus of cost and time-to-market.

– ElasTest Test Orchestration Engine (EOE): through the definition an
orchestration notation for the graph of T-Jobs, where the edges provide the
execution logic and the nodes act as checkpoints, it allows the synchronization
of the T-Jobs and automatic verification on its incoming edges. Furthermore,
it allows the test augmentation through custom operational conditions and
the definition of sub-graphs basing on combinatorial techniques.

– ElasTest Question&Answer Cognitive Engine (EQE): enables the
reuse of testing knowledge across software projects. Supports a dialog man-
ager to support dynamic interaction between user and system, and generates
answers for questions about designing new test cases. A GUI to enable con-
versation is also supported.

Furthermore, to complement, the ElasTest Monitoring Platform (EMP)
is a general purpose monitoring framework that accords first class status to
metrics and logs. It provides:

– advanced analytics and reporting/alerting functions which is used to monitor
the health of service instances managed within the ElasTest Platform and
therefore remediation of states based on red flags’ alert.

– advanced queries such as give me list of all hosts ordered by available
RAM/CPU/Disk which can be used by ESM’s planner for scheduling.

In unison with the EMP some of the potential planned functionalities include
online SLA monitoring, fault tracing and correlated queries over multiple metric
streams. Finally, an Anomaly Detection Component is planned to integrate as
well into these components to conjunctively allow ElasTest to achieve the smooth
and fine grained life-cycle controlled execution of the test environments.

4 Discussion and Future Work

The work within the ElasTest platform has rapidly progressed yet there is still
much work to be done. From the research perspective the following questions
are seen to be answered by future work:

– Reviewing new stakeholders or evaluating existing competitors in order to
provide ElasTest as SaaS;

– Evaluation of not only market conditions, but also the market positioning of
ElasTest through a feature comparison with leading competitors;

ElasTest: An Elastic Platform for E2E Testing Complex 217

– Near real-time service delivery and update with minimal wait times in hav-
ing network-based access to a particular service. This will require the con-
sideration of resource frameworks that far exceed the performance of current
container-based technologies such as Docker;

– In order to make such services reliable and measurable suitable observability
mechanisms will be needed and this work on observability tooling is being
carried out by the EMP;

– With information collected on the running services of ElasTest, the question
of how to leverage machine and deep learning arises. Such approaches can be
used to detect anomalous behaviors that could indicate runtime errors and
prompt remediation actions;

– One of the areas where a need has already been seen from the current five
ElasTest TSSs is enhanced support for debugging of services. What is the best
means to provide such capabilities: is logging sufficient or such approaches
seen in OpenTracing [16] activities be investigated?

– From a business perspective, how can scaling of delivered services by the ESM
be supported yet respect financial cost targets set by the end-user. Indeed how
can SLAs of delivered services be defined in such a way to be self-validating?

The work in ElasTest, specifically on service delivery provides the impetus for
further research in these areas and also provides not only an architecture but an
implementation upon which new technologies can be applied against. Current
efforts in test and quality assurance research and engineering still have to be
furthered in order to address some of the needs of outlined here, within ElasTest
and beyond it. Importantly for ElasTest will the evaluation of the platform with
the previously noted vertical demonstrators.

References

1. Alluxio. https://www.alluxio.org/. Accessed 04 May 2018
2. Amazon Web Services. http://aws.amazon.com. Accessed 04 May 2018
3. CloudFoundry. https://cloudfoundry.org. Accessed 04 May 2018
4. Docker. https://www.docker.com. Accessed 04 May 2018
5. ElasTest. http://www.elastest.io. Accessed 04 May 2018
6. Elastest Consortium. https://elastest.eu/consortium.html. Accessed 23 July 2018
7. ElasTest Software Repositories. https://github.com/elastest. Accessed 04 May

2018
8. ElasticSearch. https://www.elastic.co/. Accessed: 04 May 2018
9. Fundamental Modeling Concepts. http://www.fmc-modeling.org. Accessed 04 May

2018
10. Horizon Programme. https://ec.europa.eu/programmes/horizon2020/en/what-

horizon-2020. Accessed 23 July 2018
11. Kubernetes. https://kubernetes.io. Accessed 04 May 2018
12. MySQL. https://www.mysql.com/. Accessed 04 May 2018
13. Open Service Broker API Specification. https://github.com/openservice

brokerapi/. Accessed 04 May 2018
14. OpenShift. https://www.openshift.com. Accessed 04 May 2018

https://www.alluxio.org/
http://aws.amazon.com
https://cloudfoundry.org
https://www.docker.com
http://www.elastest.io
https://elastest.eu/consortium.html
https://github.com/elastest
https://www.elastic.co/
http://www.fmc-modeling.org
https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
https://ec.europa.eu/programmes/horizon2020/en/what-horizon-2020
https://kubernetes.io
https://www.mysql.com/
https://github.com/openservicebrokerapi/
https://github.com/openservicebrokerapi/
https://www.openshift.com

218 J. F. Ribera Laszkowski et al.

15. OpenStack. https://www.openstack.org/. Accessed 04 May 2018
16. OpenTracing. http://opentracing.io. Accessed 04 May 2018
17. Testing Strategies in a Microservice Architecture. https://martinfowler.com/

articles/microservice-testing/. Accessed 04 May 2018
18. Top Trends for the Future of IT Procurement. https://www.gartner.com/

smarterwithgartner/top-trends-for-the-future-of-it-procurement/. Accessed 23
July 2018

19. Carella, G.A., Magedanz, T.: Open baton: a framework for virtual network function
management and orchestration for emerging software-based 5G networks. Newslet-
ter 2016 (2015)

20. Gilbert, J.: Cloud Native Development Patterns and Best Practices. Packt Pub-
lishers, Birmingham (2018)

21. Newman, S.: Building Micro Services Designing Fine-Grained Systems. O’Reilly
Media, Inc., Sebastopol (2014)

https://www.openstack.org/
http://opentracing.io
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
https://www.gartner.com/smarterwithgartner/top-trends-for-the-future-of-it-procurement/
https://www.gartner.com/smarterwithgartner/top-trends-for-the-future-of-it-procurement/

RECAP (Reliable Capacity Provisioning
and Enhanced Remediation for

Distributed Cloud Applications): The
Simulation Approach

Patricia Takako Endo1(B), Christos Filelis-Papadopoulos2,3, Sergej Svorobej1,
Anna Gourinovitch1, Konstantinos Giannoutakis2, George Gravvanis2,3,

Dimitrios Tzovaras2, Divyaa Manimaran Elango1, James Byrne1,
and Theo Lynn1

1 Irish Centre for Cloud Computing and Commerce (IC4),
Dublin City University (DCU), Dublin, Ireland

{patricia.endo,sergej.svorobej,anna.gourinovitch,divyaa.manimaranelango,
james.byrne,theo.lynn}@dcu.ie

2 Information Technologies Institute, Centre for Research and Technology Hellas,
6th km Harilaou - Thermi, Thessaloniki, Greece

{cfilpapadop,kgiannou,gravvanis,Dimitrios.Tzovaras}@iti.gr
3 Department of Electrical and Computer Engineering, School of Engineering,
Democritus University of Thrace, University Campus, Building A, Kimmeria,

Xanthi, Greece
{cpapad,ggravvan}@duth.gr

Abstract. In order to meet complexity, scalability and quality of service
requirements in modern network infrastructures, resources need to be
allocated and/or optimized along a Cloud-to-Thing (C2T) continuum
using new paradigms. To accommodate the dynamism and address the
variability, network operators and cloud systems will need to be able
to pre-emptively take reconfiguration and remediation actions in a fully
automatic fashion across the C2T continuum. In this work, we present
the simulator approach in RECAP, an EU-funded research project, to
develop the next generation of distributed cloud, edge and fog computing
systems. Initial simulation experiments demonstrate that the RECAP
Simulation Framework can run large-scale simulations of virtual content
delivery networks and inform network optimisation decisions.

Keywords: Simulation · Cloud · Fog computing · Resource
management

1 Introduction

The convergence and widespread adoption of mobile technologies, social media,
cloud computing, and big data analytics are transforming the environment in

c© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 219–225, 2020.
https://doi.org/10.1007/978-3-030-63161-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_21

220 P. T. Endo et al.

which network operators conduct their business. The rapidly changing nature of
both enterprise and consumer digital behavior and the variety, volume and veloc-
ity of the data being transferred across networks has resulted in dramatic shifts
in the bandwidth, network infrastructure requirements and associated economic
models that the traditional network operator approach cannot scale or adapt to
easily. This situation is likely only to exacerbate as society moves towards the
Internet of Everything and a networked society where people, processes, things,
data and networks are interconnected.

The complexity, scalability, security, and quality of service requirements of
the Internet of Everything represent significant technical challenges. In order
to meet these requirements, resources need to be allocated and/or optimized
along a Cloud-to-Thing (C2T) continuum using new paradigms such as fog and
edge computing. Resource allocation and optimisation, however, is made more
complex by greater dynamism and variability in quality of service (QoS) levels in
IOE use scenarios. To accommodate the dynamism and address the variability,
network operators and cloud systems will need to be able to pre-emptively take
reconfiguration and remediation actions in a fully automatic fashion across the
C2T continuum.

RECAP is a 3-year 4.6 m EU-funded research project to develop the next
generation of distributed cloud, edge and fog computing systems. The project is
developing a novel concept for the provisioning of cloud services, where services
are automatically instantiated and elastically deployed close to the users that
actually need them via self-configurable cloud computing systems. To accomplish
this, RECAP addresses three key areas of cloud, edge and fog computing envi-
ronments, namely: (i) deployment support for complex application components,
(ii) infrastructure management support, and (iii) infrastructure operations
support.

The remainder of this paper is organized as follows. The next section sum-
marises the RECAP approach. Then, the RECAP Simulation Framework is pre-
sented and illustrated with reference to one of the RECAP use cases i.e. virtual
content delivery networks (vCDNs). The paper concludes with a discussion of
next steps with respect to work on the RECAP simulation framework and its
integration with the wider RECAP project.

2 The RECAP Approach

The principal objective of RECAP project is to attempt to reverse the current
common practice of providing cloud-based services by allocating data centre
resources on a best-effort basis. Instead, RECAP seeks to incorporate a much
more elastic model which delivers services and allocates resources in a dynamic
manner tied to time-varying user requirements. In this manner, RECAP aims to
develop the next generation of cloud/edge/fog computing capacity provisioning
and remediation via targeted research advances in cloud infrastructure optimi-
sation [2].

The Simulation Approach 221

Pre-emption (and indeed remediation), as envisioned in RECAP, requires
the modelling of complex applications and infrastructures using much more fine-
grained and accurate application deployment and behavior models. Such models
need to capture load and capacity requirements, variations over time, and most
importantly the impact on infrastructure resources. RECAP seeks to achieve this
through the concerted (i) prediction of the evolution of workload and application
performance, (ii) simulation of different deployments across the C2T continuum,
(iii) optimization of the deployment given the output of historic and real-time
analysis, and (iv) relocation of services and application components to achieve
the required QoS, as illustrated in Fig. 1. Different components in the RECAP
architecture interact to achieve the optimal resource management required by
the network operator (see Ostberg et al. [1] for further discussion).

Fig. 1. The RECAP approach

In the context of this paper, two components in the RECAP approach are
of specific interest. The RECAP Optimizer takes fully autonomous application
placement and infrastructure management decisions throughout the network
from the main data centers to the extreme edge. The RECAP Simulator, the
focus of this paper, simulates the interactions of distributed cloud-application
behaviors, emulates data center and connectivity networks systems, and feeds
this data to the Optimizer to inform the resource placement and infrastructure
management decisions.

To achieve this vision, RECAP evolves the state-of-the-art system software,
simulation and modelling frameworks through the realization of different key
uses cases compiled by the RECAP project partners. These use cases describe
the challenges the industry faces today from both technical and business perspec-
tives when adopting technological solutions spanning across fog, edge, and cloud
layers. The project focuses on five such scenarios (see [2] for further details):
(a) infrastructure and network management, (b) big data analytics engine, (c)

222 P. T. Endo et al.

fog and large scale IoT scenario for supporting smart cities, (d) virtual content
distribution networks (vCDN), and (e) network function virtualisation (NFV).

3 The RECAP Simulation Framework

Due to the complexity and scale of the networks and systems in target use cases,
the risk of adverse outcomes and cost of experimentation on live systems and
full-scale deployment respectively are prohibitive. As such simulation presents
itself as an appropriate alternative. The RECAP Simulator plays a key role
in assisting the RECAP Optimizer in the evaluation of different deployment
and infrastructure management alternatives against agreed parameters before
actuation on real application deployments. The RECAP Simulation Framework
utilises two different simulation approaches: (i) discrete time simulation (DTS)
(also known as time-advancing simulation) and (ii) discrete event simulation
(DES), as shown in Fig. 2.

Fig. 2. RECAP simulation framework high level design

3.1 Simulating vCDNs

Content Distribution Network (CDN) providers offer a distribution service that
puts content on caches closer to the end-users i.e. content consumers. vCDNs
replace multiple customised physical caches with a standard server and storage
running multiple virtual applications per CDN operator. To reduce costs associ-
ated with time and effort and maximize utilization of its network infrastructure,
network operators need to identify the optimum location and amount of resources
required to deploy vCDN systems and infrastructure just-in-time. In RECAP,

The Simulation Approach 223

this use case proposes to automate planning and operations, and improve verac-
ity, thereby improving the efficiency of vCDN systems for a network operator.
DTS-based Simulation is being used to support this use case. In order to evaluate
the scalability of this approach, several experiments have been performed with a
varying number of generated requests, measuring the elapsed time to complete
the simulation. As time is critical, the RECAP simulator supports the execution
of simulations sequentially or in parallel using multiple threads.

For the purpose of the vCDN use case, a 4-level hierarchical network topol-
ogy composed of sites was used based on data provided by a network operator.
The vCDN was modelled as a Directed Acyclic Graph (DAG), whereby sites
were grouped per level not allowing inter-level communications. The most com-
putationally demanding parts of the simulation are: (i) the update procedure
for the state of the sites and (ii) the aggregation of metrics in specific timesteps.
Each site is composed of nodes (servers) and virtual machines (VMs). Each VM,
hosted on a specific node, retains a list of requests serving at a given timestep.
Moreover, each site retains a list of requests that are forwarded, consuming only
network resources, thus acting as a gateway for content. All requests are defined
by their resource requirements (vCPU, memory, storage, and network) as well as
their duration. At each timestep the prescribed duration of a request is reduced
by an amount equal to the timestep, until it is considered finished (duration
equals to zero) releasing the allocated resources.

The update procedure is performed per site thus allowing for efficient paral-
lelization, without requiring synchronization points. The sites are enumerated in
lexicographical order from top to bottom. Each available thread is assigned a site,
cyclically, to update its state at each timestep. Furthermore, cyclic assignment
in conjunction with lexicographical ordering has been chosen in order to reduce
load imbalances during execution, since neighboring sites is more likely to have
similar computational requirements. In order to further enhance performance
the requirements of each request were modeled as a fraction of the available
resources of a VM hosting a specific type of content. Thus, each VM retains a
list of floating point numbers denoting the duration of the requests created by
cache hits in a site. By retaining only one number per request, memory require-
ments and consequently memory transfers are reduced, simplifying the status
update procedure and enhancing performance. Similarly, a list of duration vari-
ables is retained for requests created by cache misses in a site. Thus, an update
procedure for a site is performed by updating duration variables for forwarding
and cache hit/miss type request, followed by cleanup of finished requests and
deallocation of respective resources and computation of energy consumption for
active nodes in the current timestep.

The second computationally-demanding task in the simulation framework,
namely the aggregation of metrics, concerns computation of collective (per level)
metrics of sites and is performed based on user defined intervals. These met-
rics are aggregated in parallel through loop level parallelization, following the
aforementioned lexicographical order for traversing sites and cyclic distribution
to threads. Subsequently, the collected metrics are written to an output file.

224 P. T. Endo et al.

If the interval for collecting metrics is small then the output size increases and
performance decreases since the procedure of writing data to files is sequen-
tial. Selection of a large value for the interval results in under-sampling of the
behavior, neglecting possible transient phenomena emerging during simulation.

Initially, an experiment was performed with a network topology composed
of 509 sites with 3 levels (12 sites at level 1, 46 at level 2, and 451 at level
3). Requests were generated uniformly on the last level, and the average time
duration of the requests varied between 300 to 1000 s. This experiment was run
in a Xeon E5-2420-v2 (6 cores, 12 threads) with 48 GB RAM memory with the
number of parallel threads varied from 1 to 12. In Fig. 3, the parallel performance
for various values of incoming tasks and number of threads is presented. The
parallel speedup of the scheme increases as the number of incoming requests and
available threads increase, attaining a maximum of 5.92 (efficiency 49.37%) at
12 threads and 1602203 incoming tasks. It should be noted that the efficiency is
reduced by inherently sequential parts of the code such as positioning of requests
to VMs and storing outputs to a file.

Fig. 3. Elapsed time of simulation using multi-threads

Currently, the RECAP Simulation Framework has the ability to measure the
following metrics: cumulative accepted request per level, cumulative rejected
request per level, cumulative cache hits per level, cumulative cache misses per
level, average vCPU utilization per level, average network utilization per level,
average storage utilization per level, energy consumption.

The Simulation Approach 225

4 Next Steps

This work presents initial results regarding the RECAP Simulation Framework.
From initial experiments, it has been shown that the DTS approach has the
ability to run large-scale simulations of vCDN networks. However it should be
noted that, to date, only a selection of assumptions were considered e.g. sites of
the same level cannot communicate and the bandwidth was considered in a per
site (as opposed to per link) granularity. Currently, the project is focused on the
addition of a more detailed network model that will allow for the assessment of
link congestion as well as same level communications.

Only one use case is presented above however the simulation application and
network models are complete for other use cases. In the near term, further work
is being carried out towards deeper simulation development and modelling of
the edge and fog computing for smart cities use case through the use of DTS,
and network function virtualization related use cases through the use of DES.

At the time of writing, the integration with the RECAP Optimiser is partially
defined. The RECAP Simulation Framework has the capability to receive (a set
of) JSON files containing a simulation configuration, execute it and provide
the required output. In order to improve the integration between the RECAP
Simulation Framework and the RECAP Optimizer, a web REST API-based
approach is currently being implemented, and to validate the accuracy of the
RECAP simulation models, real system data is currently being compared against
simulation outputs.

Acknowledgment. This work is partly funded by the European Union’s Horizon 2020
Research and Innovation Programme through RECAP (http://www.recap-project.eu)
under Grant Agreement Number 732667 and the Irish Centre for Cloud Computing
and Commerce, an Enterprise Ireland and IDA national technology centre.

References

1. Ostberg, P.-O., et al.: Reliable capacity provisioning for distributed cloud/edge/fog
computing applications. In: 2017 European Conference on Networks and Commu-
nications (EuCNC). IEEE (2017)

2. Domaschka, J., et al.: RECAP Project Public Deliverable 3.1. Initial Requirements.
https://recap-project.eu/news/initial-quality-of-service-metrics-and-models/

http://www.recap-project.eu
https://recap-project.eu/news/initial-quality-of-service-metrics-and-models/

DevOps-Based Software Engineering
for the Cloud

Andreas Christoforou1(B), Andreas Andreou1, Luciano Baresi2,
and Michael Papazoglou3

1 Cyprus University of Technology, 3036 Limassol, Cyprus
andreas.christoforou@cut.ac.cy

2 Politecnico di Milano, 20133 Milan, MI, Italy
3 Tilburg University, 5037 AB Tilburg, The Netherlands

Abstract. This paper describes briefly DOSSIER-Cloud, an ongoing H2020
project called that implements a series of coordination and support actions, aiming
at promoting research in the area of Software Engineering for Distributed Sys-
tems development. According to the call, two internationally recognized scientific
groups from the Netherlands (University of Tilburg – UvT) and Italy (Politec-
nico di Milano – POLIMI) collaborate with the Cyprus University of Technology
(CUT) to facilitate transfer of scientific knowledge and expertise, as well as of
best research practices from UvT and POLIMI to CUT, and ultimately strengthen
the research and scientific profile of the partners in the relevant area.

Keywords: Twinning · Horizon2020 · Software engineering · DevOps

1 Project Description

DEVOPS-BASED SOFTWARE ENGINEERING FOR THE CLOUD (DOSSIER-
Cloud) [1] is a 3-years project that proposes a series of coordination and support actions
for promoting research in the area of Software Engineering for Distributed Systems
development. It brings together two internationally recognized scientific groups from
the Netherlands (UvT) and Italy (POLIMI) that collaborate with Cyprus University of
Technology (CUT) so as to strengthen CUT’s research and scientific profile in the rele-
vant area. The aimofDOSSIER-Cloud is to facilitate transfer of scientific knowledge and
expertise as well as of best research practices from UvT and POLIMI to CUT. The ulti-
mate goal is that the research group of CUT increases its research capacity and prowess
by investigating a number of significant and hot topics in the field of Distributed Sys-
tems development. We envisage that after the end of the project a number of high-quality
research results will be produced enable its partners and especially CUT to significantly
increase their international standing in the research community by both achieving related
publications in the top-tier scientific journals and conferences of the relevant research
area as well as by producing new tools that will benefit practitioners in the software
industry. Close cooperation between the partners of DOSSIER-Cloud takes the form of

© Springer Nature Switzerland AG 2020
M. Fazio and W. Zimmermann (Eds.): ESOCC 2018 Workshops, CCIS 1115, pp. 226–232, 2020.
https://doi.org/10.1007/978-3-030-63161-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63161-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-63161-1_22

DevOps-Based Software Engineering for the Cloud 227

knowledge acquisition and transfer through personnel exchanges organization of work-
shops and summer/winter schools with lectures delivered from UvT and POLIMI par-
ticipation in international scientific conferences/workshops and establishment of strong
links with the software industry.

The project is funded under the call “Coordination and Support Action – Twinning
Horizon2020” - number: 692251. The duration of the project is 36 months (1/1/2016–
31/12/2018) and the URL is http://dossier-cloud.eu/. The project is at the last quarter
and the activities are now concentrated on strengthening the involvement of stakeholders
and finalizing discussions on research topics for producing papers for publication in
upcoming events.

The rest of the paper is organized as follows: Sect. 2 outlines the main objectives
of the project while Sect. 3 describes briefly the research topics addressed and new
challenges identified. Section 4 presents the results of the project thus far and Sect. 5
provides the summary and some conclusions.

2 Objectives

DOSSIER-Cloud revolves around three main objectives

• Objective#1: Acquire new and enhance existing knowledge on a set of research top-
ics of interest that are sourced by the general themes of DevOps oriented software
engineering processes and Tools for distributed software systems development

• Objective#2: Share research experiences and best practices with advanced scien-
tific groups in the leading institutions. Change the research culture and scientific
approach/philosophy of CUT’s staff

• Objective#3: Form a collaboration basis with stakeholders and secure industrial
involvement. Engage SMEs and practitioners to facilitate real-world experimentation
and validation using real world feedback

The above objectives are closely related and intertwined with a variety of actions
that were performed during the last 2.5 years each action serving one or more objectives.
These actions involved

• Exchanging personnel and performing site visits to the leading institutions.
• Organizing summer schools in Cyprus and a number of workshops in the three par-
ticipating countries with closed sessions dedicated only for the partners, as well as
open sessions with industrial participation.

• Organizing meetings with stakeholders either one on one or in groups.
• Delivering special purpose/theme lectures and offering training on specific research
methods and tools developed and used bymembers of UvT and POLIMI. The lectures
and training were attended by graduate (master PhD postdoc) students at CUT often
resulting in topics for theses or research problems to be addressed.

• Applying step-by-step problem-solving techniques in joint small-scale projects.
• Participating in conferences either by organizing workshops or presenting research
work that was produced by the project.

http://dossier-cloud.eu/

228 A. Christoforou et al.

3 Research Topics

The research topics investigated so far in the project were the following:

1. Introduction of a new, unified software process for developing distributed software
applications under DevOps principles. This research topic describes a unified frame-
work for developing distributed software systems where the phases of a new and
dedicated DevOps-oriented life-cycle model is studied.

2. Definition of dedicated DevOps-oriented, Cloud-focused Metrics and Measurement
activities. The subject of the second topic is the definition of a new, customized
Monitoring and Control Mechanism (MCM) for DevOps oriented development of
Cloud software and services.

3. Automation of build, deployment and operation activities in a DevOps environment.
This topic focuses on automating the procedures for adjusting and reconfiguring the
DevOps environment:

• Automatic monitoring of service delivery, Cloud resource management and
decision support/making and/or automatic re-configuration

• Cloud Service Composition - Composing cross-layered Cloud services to build
a service-based Cloud application

The above research topics triggered the lectures, discussions and exchange of knowledge
between the partners and formulated the project’s research plan for future publications.
In addition, the collaboration between the partners enabled the identification of new
research challenged, which are described in the next section.

3.1 New Research Challenges

Discussions and brainstorming between the partners on specific scientific topics in the
areas of interest allowed the consortium to identify new research challenges that are also
being addressed. More specifically:

• Social Software Engineering [2]: This challenge involved quite a few aspects. The
first was the modeling and analysis of the organizational and social structures of
teams aiming at investigating their impact on the software process for Cloud services.
The second involved the improvement of teams’ organizational and social structure
targeting at optimizing the software process by decreasing waste (time, effort, code).
Finally, the definition and analysis of the optimal organizational structure for DevOps
strategies to results in a framework/guideline for better organizational configuration
setups.

• Cloud Pricing [3]: Involved the two aspects. The first dealt with the development of
solutions for optimizing pricing policies. The second focused on supporting Cloud
providers to offer an attractive pricing scheme to their customers targeting tomaximize
their profit, while at the same time taking into account their services cost and market
competition

DevOps-Based Software Engineering for the Cloud 229

• Cloud Resource Management [4]: Involved a proposition of a dedicated group of ser-
vices that support resource management on the Cloud (workload prediction, dynamic
provisioning, automatic resourcemanagement) and the utilization of CI/AI techniques
to address Cloud optimization problems (e.g. workload prediction and balancing,
management of physical or virtual resources, and others)

• Self-Adaptive Systems for the Cloud [5]: Included two aspects: First, the evolu-
tion and enhancement of MAPE (Monitor-Analyze-Planning-Execute) control loops
to deal with complex scenarios of Cloud services and/or resource management by
replacing conventional techniques (e.g. control theory) with Computational Intelli-
gence/Artificial Intelligence models. Second, the development of recommendation
systems for automatic software services/microservices synthesis

• SmartManufacturing [6]: Optimization of concept generation, specification& design,
monitoring of production lines and product transactions. Integration of all steps in the
product fabrication process. Proposition a more harmonious development process
utilizing data to develop intelligent technology to expedite new and higher quality
goods.

• Smart Data Processing and Data Analytics [7]: Introduction of models and methods
formanaging and analyzing big volumes of data in a smartway and demonstrating how
this data can be used to benefit variousmarket sectors such as automotive, shipping and
financial industry. Thesemethods consist of techniques and descriptions for collecting,
contextualizing, homogenizing and processing datawith intelligent algorithms in such
a way so as to highlight causes and results and predict future states to support decision
making.

4 Project Results and Current State

Guided by the three main objectives mentioned in Sect. 2, the project produced the
following results:

4.1 Scientific and Research Results

CUT, as the low RDI performing institution, has already started strengthening its scien-
tific knowledge and expertise, which is anticipated to lead to improving its research posi-
tion by increasing the number of high-quality published research papers in the relevant
fields.

In the above context two workshops have already been organized and one is
forthcoming:

• Workshop “SmartData Systems andApplications” in the context of the 23rd ICE/IEEE
International Conference on Engineering Technology and Innovation. Madeira,
Portugal - June 2017.

• Workshop “Engineering Services Oriented Applications and Cloud Services
(WESOACS) in the context of the International Conference on Service-Oriented
Computing (ICSOC), Malaga, Spain – November 2017.

230 A. Christoforou et al.

• Workshop on “Engineering Services Oriented Applications and Cloud Services
(WESOACS) in the context of the 7th European Conference on Service Oriented
and Cloud Computing (ECSOCC), Como, Italy – September 2018.

The collaboration with the leading institutions created the opportunity to meet and
discuss with other research groups from universities and organizations in Europe, such
as the Vrije University of Amsterdam, Technical University of Eindhoven, University of
Gent, Fraunhoffer Germany, LIRIS/CNRS France, Universitat Politècnica de Catalunya,
CSIRO Australia and University of Cairo.

Another result of the collaboration between the partners of DOSSIER-Cloud and
the networking activities was the preparation and submission of several proposals in
Horizon2020 calls.

As regards publications, the project has already produced two conference papers:
In the first one, researchers from POLIMI and CUT introduced a novel model to sup-
port the decision of migrating to microservices architecture. This research work identi-
fied the key concepts and drivers related to the decision of migrating to microservices.
These concepts and their interrelations were gathered by performing a literature review
and then engaging a group of experts from the industry and academia that provided
valuable feedback through questionnaires and interviews. The concepts identified were
organized as aMulti-Layered Fuzzy CognitiveMap (ML-FCM), a graph-shaped compu-
tational intelligence model. The ML-FCM allows one to support decision-makers when
considering the migration to microservices through automated reasoning, by means of
(static) graph analysis and (dynamic) simulation over different and customizable scenar-
ios. This paper was presented at the 15th International Conference on Service-Oriented
Computing (ICSOC), in Malaga, Spain [8]. The second paper dealt with a proposed
machine learning mechanism to improve the impact of cloud data sparsity in the context
of session-based recommendations. To this end, introduced a way of improving themod-
eling capacity of Recommender Systems (RS) that utilize deep learning techniques with
recurrently connected units and adopting concepts from the field of Bayesian statistics,
namely variational inference. This paper was presented at the 2nd Workshop on Deep
Learning for Recommender Systems (DLRS), in Como, Italy [9].

4.2 Industrial and Market Results

The CUT team was introduced to local organizations and companies in the Netherlands,
such as the Municipality of Den Bosch and Philips Lighting, and presented part of its
research work thus far, discussing also the possibility of collaboration for applying it
to practical problems faced by these stakeholders (e.g. modeling and scenario analysis,
automations, smart data processing, etc.).

During the stakeholder’smeetings that were performed in the participating countries,
the members of the DOSSIER-Cloud consortium emphasized on the improvements in
software development productivity brought in by embracing DevOps and automations.
Nineteen (19) companies/organizations were contacted thus far and the objectives of the
project, as well as the potential of future collaboration were discussed with them.

A career day event was organized at the Jheronimus Academy of Data Science
(JADS) in the Netherlands to bring together students and professionals working in the

DevOps-Based Software Engineering for the Cloud 231

field of Data Science. Representatives of the project joined the event and distributed
leaflets and newsletters to the companies and organizations that participated (e.g. Shell,
Omron, Vivat, Hitachin, ABN-Amro, etc.) which disseminate the project results, and
discussed with interested stakeholders about possible applied research collaborations.

CUT has established strong links withmajor industrial players in Cyprus for promot-
ing further collaborations in the field of Industry 4.0 and Smart Manufacturing (Ministry
of Energy, Commerce, Industry, and Tourism of Cyprus, Muskita Aluminum Industry
Ltd., etc.).

4.3 Research Activity in Progress

CUT team members in close cooperation with researchers from project partners are
currently performing research on the relevant research topics listed above. More
specifically:

• Investigation of ways to optimize smart manufacturing by studying trends on process
automations and data exchange (CUT and UvT).

• Utilization of Computational Intelligence techniques to model and analyze social
aspects targeting at defining an optimum team organizational structure that leads to a
better software development process (CUT and UvT).

• Processing of real-world data from the automotive industry aiming on one hand to
identify and predict anomalies for supporting decisionmaking in carmaintenance, and
on the other to facilitate predictive maintenance (CUT and UvT, in close collaboration
with a Dutch company)

• Extend and enrich the research work conducted in [8] by applying and evaluating the
proposed model on real world cases (CUT and POLIMI).

• Review of the main serverless computing providers, as well investigation of possible
resource management approaches, to explore ways and their level of influence to the
software development process (CUT).

5 Summary and Conclusions

DOSSIER-Cloud, a H2020 project, aims to increase CUT’s research capacity and
prowess through research collaboration with two internationally recognized scientific
groups from theNetherlands and Italy, in the area of SoftwareEngineering forDistributed
Systems development. Knowledge transfer and acquisition are the main project objec-
tives which rely on various actions and activities. These activities consist of personnel
exchanges, site visits, organizations of workshops and summer schools and participation
in international scientific conferences.

As the project comes to its end, one can easily conclude that the main targets of
the project have been achieved to the greatest extent, with significant scientific results
and establishment of cooperation with industrial stakeholders. The close cooperation
between the three research institutions that was successfully developed through the
project partnership will continue by working on common research topics of interest. At
the same time, all communication channels that have been established with the industry
will remain open for the benefit of both academia and industry.

232 A. Christoforou et al.

References

1. DevOps-Based Software Engineering for the Cloud. http://dossier-cloud.eu/
2. Ahmadi, N., Jazayeri, M., Lelli, F., Nesic, S.: A survey of social software engineering. In: 2008

23rd IEEE/ACM International Conference on Automated Software Engineering –Workshops,
pp. 1–12. IEEE (2008)

3. Al-Roomi, M., Al-Ebrahim, S., Buqrais, S., Ahmad, I.: Cloud computing pricing models: a
survey. Int. J. Grid Distrib. Comput. 6, 93–106 (2013). https://doi.org/10.14257/ijgdc.2013.6.
5.09

4. Jennings, B., Stadler, R.: Resource management in clouds: survey and research challenges. J.
Netw. Syst. Manage. 23(3), 567–619 (2014). https://doi.org/10.1007/s10922-014-9307-7

5. deLemos,R., et al.: Software engineering for self-adaptive systems: a second research roadmap.
In: de Lemos, R., Giese, H., Müller, Hausi A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35813-5_1

6. Davis, J., Edgar, T., Porter, J., et al.: Smart manufacturing, manufacturing intelligence and
demand-dynamic performance. Comput. Chem. Eng. 47, 145–156 (2012)

7. Gandomi, A., Haider, M.: Beyond the hype: big data concepts, methods, and analytics. Int. J.
Inf. Manage. 35, 137–144 (2015). https://doi.org/10.1016/J.IJINFOMGT.2014.10.007

8. Christoforou, A., Garriga, M., Andreou, A.S., Baresi, L.: Supporting the decision of migrating
to microservices through multi-layer fuzzy cognitive maps. In: Maximilien, M., Vallecillo,
A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 471–480. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69035-3_34

9. Chatzis, S.P., Christodoulou, P., Andreou, A.S.: Recurrent latent variable networks for
session-based recommendation. In: Proceedings of the 2nd Workshop on Deep Learning for
Recommender Systems, pp. 38–45 (2017)

http://dossier-cloud.eu/
https://doi.org/10.14257/ijgdc.2013.6.5.09
https://doi.org/10.1007/s10922-014-9307-7
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1016/J.IJINFOMGT.2014.10.007
https://doi.org/10.1007/978-3-319-69035-3_34

Author Index

Aliaga, Tomas 197
Andreou, Andreas 226

Bai, Yuewei 204
Baresi, Luciano 226
Becker, Steffen 158
Bogner, Justus 114, 131
Bohnert, Thomas Michael 210
Bornholdt, Heiko 91
Böse, Stephan 204
Brogi, Antonio 21, 46
Byrne, James 219

Cabri, Giacomo 204
Choudhary, Bhupendra 114
Christoforou, Andreas 226
Ciavotta, Michele 187
Corcho, Oscar 179

De Paoli, Flavio 187
de Vrieze, Paul 204

Eder, Norbert 204
Edmonds, Andy 210
Elango, Divyaa Manimaran 219
Endo, Patricia Takako 219
Estrada, Hugo 197

Ferrari, Gian-Luigi 46
Feuerlicht, George 67
Filelis-Papadopoulos, Christos 219
Forti, Stefano 46, 140
Fronza, Ilenia 7

Galletta, Antonino 148
Gatti, Stefano 179
Ghirardini, Federico 7
Giannoutakis, Konstantinos 219
Gortazar, Francisco 210
Gourinovitch, Anna 219
Gravvanis, George 219
Grobelnik, Marko 179

Harsh, Piyush 210

Ioannidis, Sotiris 192

Jakovetic, Dusan 192

Kalinowski, Julian 91
Klima, Urška Skok 179
Klinaku, Floriment 158
Košmerlj, Aljaž 187

Lamersdorf, Winfried 91
Lazovik, Alexander 204
Lech, Till Christopher 179
López, Manuel Ramírez 34
Lynn, Theo 219

Makgill, Ian 179
Mandreoli, Federica 204
Mecella, Massimo 204
Mendoza, Miguel González 197
Mu, Hua 204

Neri, Davide 166
Nikolov, Nikolay 187

Pahl, Claus 7, 21
Palmonari, Matteo 187
Papazoglou, Michael 226
Pautasso, Cesare 102
Pizzolli, Daniele 197
Posdorfer, Wolf 91

Ribera Laszkowski, Juan Francisco 210
Roman, Dumitru 179
Ruíz, María Jesús Fernández 179

Samir, Areeg 7
Simperl, Elena 179
Soldani, Jacopo 21
Soylu, Ahmet 179

Spais, Ilias 192
Spillner, Josef 34
Svorobej, Sergej 219

Taggart, Chris 179
Tran, Hong Thai 67
Turk, Philip 179
Tzovaras, Dimitrios 219

Uliana, Annie Ferrari 179

Vasiliadis, Giorgos 192
Villari, Massimo 148

Wagner, Stefan 114, 131
Weißbach, Mandy 79
Wilde, Erik 102

Xu, Lai 204

Zimmermann, Alfred 114, 131
Zimmermann, Wolf 79

234 Author Index

	Workshop Editors
	Preface
	Organization
	Contents
	Joint Cloudways and OptiMoCS Workshop
	CloudWays/OptiMoCS 2018 Abstract/Summary
	CloudWays/OptiMoCS 2018 Preface
	CloudWays/OptiMoCS 2018 Organization
	CloudWays Program Committee
	OptiMoCS Program Committee

	Model-Driven Simulation for Performance Engineering of Kubernetes-Style Cloud Cluster Architectures
	1 Introduction
	2 Self-adaptive Systems – Background
	3 Architecture Model
	4 Experimental Evaluation
	5 Discussion
	6 Towards an Advanced Controller Model
	7 Related Work
	8 Conclusions
	References

	On Enhancing the Orchestration of Multi-container Docker Applications
	1 Introduction
	2 Background: TOSCA
	3 Docker in a Nutshell
	4 Benefits and Limitations of Docker
	5 Orchestrating Multi-container Applications in TOSCA
	5.1 Multi-container Applications in TOSCA
	5.2 Orchestrating Multi-container Applications with TOSCA
	5.3 Container-Oriented Design Patterns in TOSCA

	6 Related Work
	7 Conclusions
	References

	Transactional Migration of Inhomogeneous Composite Cloud Applications
	1 Introduction
	2 Analysis
	3 General Application Migration Workflows
	4 Migration Tools Design and Architecture
	5 Evaluation
	5.1 Evaluation of Losslessness
	5.2 Evaluation of Performance

	6 Conclusion
	7 Future Work
	References

	Secure Apps in the Fog: Anything to Declare?
	1 Introduction
	2 Related Work
	3 Methodology Overview
	3.1 Motivating Example

	4 Proof-of-Concept
	4.1 Motivating Example Continued

	5 Multi-objective Optimisation
	5.1 Motivating Example Continued

	6 Concluding Remarks
	References

	14th International Workshop on Engineering Service-Oriented Applications and Cloud Services
	WESOACS 2018 Preface
	WESOACS 2018 Organization
	Workshop Organizers
	Program Committee

	Implementation of a Cloud Services Management Framework
	1 Introduction
	2 Related Work
	3 Service Consumer Framework and SC-SDLC
	4 SCF Implementation
	4.1 Service Repository
	4.2 Service Adaptors
	4.3 Workflow Engine
	4.4 Monitoring Center

	5 Conclusions
	References

	On Limitations of Abstraction-Based Deadlock-Analysis of Service-Oriented Systems
	1 Introduction
	2 Foundations
	3 Limitations of Deadlock Analysis
	4 Related Work
	5 Conclusion
	References

	Decentralized Billing and Subcontracting of Application Services for Cloud Environment Providers
	1 Introduction
	2 Use Case
	2.1 Cloud Service Billing
	2.2 Cloud Service Subcontracting

	3 Blockchain
	3.1 Transaction
	3.2 Block
	3.3 Consensus
	3.4 Process

	4 Problem Definition
	5 Approach
	5.1 Billing and Subcontracting Scenario
	5.2 Transaction Types
	5.3 Validation and Transparency

	6 Future Work and Conclusion
	References

	May Contain Nuts: The Case for API Labels
	1 Introduction
	2 Background and Related Work
	3 Labeling APIs
	3.1 OpenAPI Link Objects
	3.2 Home Documents

	4 Trusting API Descriptions and Documentations
	5 Label Types
	6 API Label Examples
	7 A Recipe for API Labels
	7.1 Findable Labels
	7.2 Extensible Label Sets

	8 Conclusion
	9 Future Work
	References

	Towards a Generalizable Comparison of the Maintainability of Object-Oriented and Service-Oriented Applications
	1 Introduction
	2 Related Work
	3 Study Design
	4 Results
	5 Threats to Validity
	6 Conclusion
	References

	ESOCC 2018 PhD Symposium
	ESOCC PhD Symposium Preface
	ESOCC PhD Symposium Organization
	Program Committee

	Towards an Evolvability Assurance Method for Service-Based Systems
	1 Introduction and Motivation
	2 Scope and Research Questions
	3 Research Activities
	3.1 Metrics
	3.2 Scenarios
	3.3 Patterns

	4 Related Work
	5 Conclusion
	References

	Predictive Management of Fog Applications
	1 Introduction
	2 State of the Art
	3 Thesis Objectives
	3.1 Modelling
	3.2 Algorithms and Methodologies

	4 First Results
	5 Conclusions and Future Work
	References

	How to Manage Efficiently Clinical Big-Data by Means of Cloud Computing
	1 Introduction
	2 Background and Related Work
	3 Motivation
	4 Our Approaches
	4.1 Big MRI Share
	4.2 Big Rehabilitative Data Visualization

	5 Highlights and Discussions
	6 Conclusions and Future Work
	References

	The Slingshot Approach
	1 Introduction
	2 Foundations
	3 Running Example
	4 The Slingshot Approach
	5 Conclusion
	References

	Analysing and Deploying (Micro)service-Based Applications
	1 Introduction
	2 Research Objectives
	3 Related Work
	4 First Results and Future Work
	References

	ESOCC 2018 EU Projects Track
	EU Project Space Track Preface
	EU Project Space Track Organization
	Track Program Committee

	TheyBuyForYou: Enabling Procurement Data Value Chains
	1 Introduction
	2 Related Work
	3 Background
	3.1 Objectives
	3.2 Challenges

	4 TheyBuyForYou Approach
	4.1 Procurement Knowledge Graph
	4.2 Cross-lingual and Real-Time Analytics
	4.3 Data Interaction and Story Telling

	5 Customer Scenarios and Business Cases
	5.1 Business Case 1: Slovenia
	5.2 Business Case 2: Spain
	5.3 Business Case 3: Italy

	6 Current Status
	References

	EW-Shopp Project: Supporting Event and Weather-Based Data Analytics and Marketing Along the Shopper Journey
	1 The Project
	2 The Consortium
	3 Innovation
	4 Platform
	5 Conclusions

	I-BiDaaS: Industrial-Driven Big Data as a Self-service Solution
	1 Introduction
	2 Approach and Methodology
	2.1 The Three-Layer Architecture: A Layer-by-Layer Description

	3 Conclusions
	References

	SMARTSDK - A FIWARE-Based Software Development Kit for Smart Applications for the Needs of Europe and Mexico
	1 Fiware
	2 SMARTSDK
	2.1 Introduction
	2.2 Project Organisation
	2.3 Main Results

	References

	The FIRST (vF Interoperation suppoRting buSiness innovaTion) Project: Service Management for Virtual Factories
	1 Introduction
	1.1 Project Facts

	2 Project Results
	3 Conclusions and Future Work
	References

	ElasTest: An Elastic Platform for E2E Testing Complex Distributed Large Software Systems
	1 Introduction
	2 ElasTest Overview
	2.1 Elastest vs. Other Solutions

	3 ElasTest Architecture
	4 Discussion and Future Work
	References

	RECAP (Reliable Capacity Provisioning and Enhanced Remediation for Distributed Cloud Applications): The Simulation Approach
	1 Introduction
	2 The RECAP Approach
	3 The RECAP Simulation Framework
	3.1 Simulating vCDNs

	4 Next Steps
	References

	DevOps-Based Software Engineering for the Cloud
	1 Project Description
	2 Objectives
	3 Research Topics
	3.1 New Research Challenges

	4 Project Results and Current State
	4.1 Scientific and Research Results
	4.2 Industrial and Market Results
	4.3 Research Activity in Progress

	5 Summary and Conclusions
	References

	Author Index

