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Abstract We present old and new results about Capelli polynomials, Z2-graded
Capelli polynomials, Capelli polynomials with involution and their asymptotics.

Let Capm = ∑
σ∈Sm

(sgnσ)tσ(1)x1tσ (2) · · · tσ (m−1)xm−1tσ (m) be the m-th Capelli
polynomial of rank m. In the ordinary case (see Giambruno and Zaicev, Israel
J Math 135:125–145, 2003) it was proved the asymptotic equality between the
codimensions of the T -ideal generated by the Capelli polynomial Capk2+1 and
the codimensions of the matrix algebra Mk(F). In (Benanti, Algebr Represent
Theory 18:221–233, 2015) this result was extended to superalgebras proving that
the Z2-graded codimensions of the T2-ideal generated by the Z2-graded Capelli
polynomials Cap0

M+1 and Cap1
L+1 for some fixed M , L, are asymptotically equal to

the Z2-graded codimensions of a simple finite dimensional superalgebra. Recently,
the authors proved that the ∗-codimensions of a ∗-simple finite dimensional algebra
are asymptotically equal to the ∗-codimensions of the T-∗-ideal generated by the ∗-
Capelli polynomials Cap+

M+1 and Cap−
L+1, for some fixed natural numbers M and

L.
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1 Introduction

From Kemer’s theory (see [35]), the polynomial identities of the matrix algebra
Mk(F) over a field F of characteristic zero are among the most intriguing topics
in the PI -theory. There are a lot of open problems and conjectures concerning
the bases of polynomial identities of Mk(F), the minimal degree of identities
which do not follow from the standard polynomial, the numerical invariants of
polynomial identities, etc. Similar problems are also to consider for matrix algebras
with additional structure as Z2-gradings, group gradings or involution. The Capelli
polynomial plays a central role in the combinatorial PI -theory and in particular
in the study of polynomial identities of the matrix algebra Mk(F) in fact it was
determinated a precise relation between the growth of the corresponding T -ideal and
the growth of the T -ideal of the matrix algebra. Moreover the Capelli polynomials
characterize the algebras having the cocharacter contained in a given strip (see [41]).
Let us recall that, for any positive integer m, the m-th Capelli polynomial is the
element of the free algebra F 〈X〉 defined as

Capm = Capm(t1, . . . , tm; x1, . . . , xm−1) =

=
∑

σ∈Sm

(sgn σ)tσ(1)x1tσ (2) · · · tσ (m−1)xm−1tσ (m)

where Sm is the symmetric group on {1, . . . ,m}. It is an alternating polynomial
and every polynomial which is alternating on t1, . . . , tm can be written as a
linear combination of Capelli polynomials obtained by specializing the xi’s. These
polynomials were first introduced by Razmyslov (see [39]) in his construction of
central polynomials for k × k matrices. It is easy to show that if A is a finite
dimensional algebra A and dim A = m − 1 then A satisfies Capm. Moreover,
any finitely generated PI -algebra A satisfies Capm for some m (see, for example,
Theorem 2.2 in [35]). Then the matrix algebra Mk(F) satisfies Capk2+1 and k2 + 1
is actually the minimal degree of a Capelli polynomial satisfied by Mk(F).

The main purpose of this paper is to present a survey on old and new results
concerning the Capelli polynomials. In particular, in Sect. 2 we recall the results
about the T -ideal generated by the m-th Capelli polynomial Capm and in Sect. 3
the results concerning the T2-ideal generated by the Z2-graded Capelli polynomials
Cap0

M+1 and Cap1
L+1. We show their relations with the T -ideal of the polynomial

identities of Mk(F) and, respectively, with the T2-ideals of the Z2-graded identities
of the simple finite dimensional superalgebra Mk(F), Mk,l(F ) and Ms(F ⊕ tF ).
In Sect. 4 we present the recent results obtained by the authors about the study
of the ∗-codimensions of the T -∗-ideal generated by the ∗-Capelli polynomials
Cap+

M+1 and Cap−
L+1. These results has been announced in a complete version

at the preprint server of Cornell University (https://arxiv.org/pdf/1911.04193.pdf)
and has been submitted elsewhere.

https://arxiv.org/pdf/1911.04193.pdf
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2 Ordinary Case

Let F be a field of characteristic zero and let F 〈X〉 = F 〈x1, x2, . . .〉 be the free
associative algebra on a countable set X over F. Recall that an ideal I of F 〈X〉 is a
T -ideal if it is invariant under all endomorphisms of F 〈X〉. Let A be an associative
algebra over F , then an element f = f (x1, . . . , xn) ∈ F 〈X〉 is a polynomial
identity for A if f (a1, . . . , an) = 0 for any a1, . . . , an ∈ A. If f is a polynomial
identity for A we usually write f ≡ 0 in A. Let Id(A) = {f ∈ F 〈X〉 | f ≡ 0 in A}
be the ideal of polynomial identities of A. When A satisfies a non trivial identity
(i.e. Id(A) � (0)), we say that A is a PI - algebra. The connection between T -
ideals of F 〈X〉 and PI -algebras is well understood: for any F -algebra A, Id(A)

is a T -ideal of F 〈X〉 and every T - ideal I of F 〈X〉 is the ideal of identities of
some F -algebra A. For I = Id(A) we denote by var(I) = var(A) the variety of all
associative algebras having the elements of I as polynomial identities. The language
of varieties is effective for investigations of PI -algebras.

An important class of T -ideals is given by the so-called verbally prime T -ideals.
They were introduced by Kemer (see [35]) in his solution of the Specht problem
as basic blocks for the study of arbitrary T -ideals. Recall that a T -ideal I ⊆ F 〈X〉
is verbally prime if for any T -ideals I1, I2 such I1I2 ⊆ I we must have I1 ⊆ I

or I2 ⊆ I . A PI -algebra A is called verbally prime if its T -ideal of identities
I = Id(A) is verbally prime. Also, the corresponding variety of associative algebras
var(A) is called verbally prime. By the structure theory of T -ideals developed by
Kemer (see [35]) and his classification of verbally prime T -ideals in characteristic
zero, the study of an arbitrary T -ideal can be reduced to the study of the T -ideals of
identities of the following verbally prime algebras

F, F 〈X〉, Mk(F ), Mk(G), Mk,l(G)

where G is the infinite dimensional Grassmann algebra, Mk(F), Mk(G) are the
algebras of k × k matrices over F and G, respectively, and

Mk,l(G) =
k l

k

l

(
G0 G1

G1 G0

)
.

Recall that G is the algebra generated by a countable set {e1, e2, . . .} subject to the
conditions eiej = −ej ei for all i, j = 1, 2, . . ., and G = G0 ⊕ G1 is the natural
Z2-grading on G, where G0 and G1 are the spaces generated by all monomials in
the generators ei’s of even and odd length, respectively.

It is well known that in characteristic zero every T -ideal is completely deter-
mined by its multilinear elements. Hence, if Pn is the space of multilinear
polynomials of degree n in the variables x1, . . . , xn, the relatively free algebra
F 〈X〉/Id(A) is determined by the sequence of subspaces {Pn/(Pn ∩ Id(A))}n≥1.
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The integer cn(A) = dim Pn/(Pn ∩ Id(A)) is called the n-th codimension of A and
gives a quantitative estimate of the polynomial identities satisfied by A.

Thus to each T -ideal I = Id(A) one can associate the numerical sequence of
codimensions {cn(I)}n≥1 = {cn(A)}n≥1 of I, or A, that plays an important role in
the study of Id(A). It is well known that A is a PI -algebra if and only if cn(A) < n!
for some n ≥ 1. Regev in [40] showed that if A is an associative PI -algebra, then
cn(A) is exponentially bounded i.e., there exist constants α, β which depend on A

such that cn(A) ≤ αβn for any n ≥ 1 (see also [36] and [42] for the best known
estimates). Giambruno and Zaicev improved this result and, in [23] and [24], proved
that for a PI -algebra A

exp(A) = lim
n→∞

n
√

cn(A)

exists and is an integer; exp(A) is called the PI -exponent of the algebra A. For the
verbally prime algebras we have (see [14, 43, 44] and [24])

exp(Mk(F )) = k2, exp(Mk(G)) = 2k2, exp(Mk,l(G)) = (k + l)2.

In [43] Regev obtained the precise asymptotic behavior of the codimensions of the
verbally prime algebra Mk(F). It turns out that

cn(Mk(F )) � C(
1

n
)(k

2−1)/2k2n,

where C is a certain constant explicitly computed. For the other verbally prime
algebras Mk(G), Mk,l(G) there are only some partially results (see [14] and [16]).
More precisely,

cn(Mk,l(G)) � angαn, cn(Mk(G)) � bnhβn,

with α = (k + l)2, g = − 1
2 (k2 + l2 − 1), β = 2k2, h = − 1

2 (k2 − 1), and a and b

are undetermined constants. It turns out that it is in general a very hard problem to
determine the precise asymptotic behavior of such sequences.

In [29] and in [10] it was found a relation among the asymptotics of codimensions
of the verbally prime T -ideals and the T -ideals generated by Capelli polynomials
or Amitsur’s Capelli-type polynomials.

Now, if f ∈ F 〈X〉 we denote by 〈f 〉T the T -ideal generated by f . Also for
V ⊂ F 〈X〉 we write 〈V 〉T to indicate the T -ideal generated by V . Let Cm be the
set of 2m polynomials obtained from the m-th Capelli polynomial Capm by deleting
any subset of variables xi (by evaluating the variables xi to 1 in all possible ways)
and let 〈Cm〉T denotes the T -ideal generated by Cm. If Um = var(Cm) is the variety
corresponding to 〈Cm〉T then exp(Cm) = exp(Um). In case m = k2, it follows from
[43] that

exp(Ck2+1) = k2 = exp(Mk(F )).
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Mishchenko, Regev and Zaicev in [37] computed the exp(Cm), for an arbitrary
m, and in particular they proved (see also [30, Theorem 9.1.5])

Theorem 1 ([37, Theorem])

(1) m − 3 ≤ exp(Cm+1) ≤ m.

(2) exp(Cm+1) = max{a1, a2, a3, a4} where
aj = max{d2

1 + · · · + d2
j | d1, . . . , dj ∈ Z, d1, . . . , dj > 0, d2

1 + · · · + d2
j +

j ≤ m + 1}.
(3) exp(Cm+1) ≤ m ⇔ m = q2, for some q.

The proof applies, in an essential way, the classical Lagrange’s four square theorem.
In [29] Giambruno and Zaicev proved that the codimensions of Uk2+1 are

asymptotically equal to the codimensions of the verbally prime algebra Mk(F)

Theorem 2 ([29, Theorem 3, Corollary 4]) Let m = k2. Then var(Cm+1) =
var(Mk(F ) ⊕ B) for some finite dimensional algebra B such that exp(B) < k2.
In particular

cn(Ck2+1) � cn(Mk(F )).

This result has been extended to the others verbally prime algebras by the so
called Amitsur’s Capelli-type polynomials.

Let L and M be two natural numbers, let n̂ = (L + 1)(M + 1) and let μ be a
partition of n̂ with associated rectangular Young diagram, μ = ((L + 1)M+1) � n̂.
In [6] the following polynomials, denoted Amitsur’s Capelli-type polynomials, were
introduced

e∗
M,L = e∗

M,L(t1, . . . , tn̂; x1, . . . , xn̂−1) =
∑

σ∈Sn̂

χμ(σ )tσ (1)x1tσ (2) · · · xn̂−1tσ (n̂),

where χμ(σ) is the value of the irreducible character χμ corresponding to the
partition μ � n̂ on the permutation σ . We note that for L = 0 we have μ =
(1n̂) and e∗

M,L = Capn̂ is the n̂-th Capelli polynomial. The Amitsur’s Capelli-
type polynomials generalize the Capelli polynomials in the sense that the Capelli
polynomials characterize the algebras having the cocharacter contained in a given
strip (see [41]) and the Amitsur’s polynomials characterize the algebras having a
cocharacter contained in a given hook (see [6, Theorem B]).

Let E∗
M,L denote the set of 2n̂−1 polynomials obtained from e∗

M,L by evaluating
the variables xi to 1 in all possible ways. Also we denote by �M,L = 〈E∗

M,L〉T the
T -ideal generated by E∗

M,L. Moreover we write VM,L = var(E∗
M,L) = var(�M,L),

cn(E
∗
M,L) = cn(�M,L) and exp(E∗

M,L) = exp(�M,L). The following relations
between the exponent of the Capelli-type polynomials and the exponent of the
verbally prime algebras are well known (see [15])

exp(E∗
k2,k2) = 2k2 = exp(Mk(G)), exp(E∗

k2+l2,2kl
) = (k + l)2 = exp(Mk,l(G)).
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In [15] (see also [30]) Berele and Regev, by using the generalized-six-square
theorem [17], proved that

Theorem 3 ([15, Proposition 4.4.]) Let l ≤ k. Then k + l−3 ≤ exp(E∗
k,l) ≤ k + l.

Finally, in [10] it was shown the following asymptotical equalities

Theorem 4 ([10, Theorem 5]) Let k, l ∈ N. Then var(E∗
k2+l2,2kl

) =
var(Mk,l(G) ⊕ G(D′)), where D′ is a finite dimensional superalgebra such that
exp(D′) < (k + l)2. In particular

cn(E
∗
k2+l2,2kl

) � cn(Mk,l(G)).

Theorem 5 ([10, Theorem 10]) Let k ∈ N, k > 0. Then var(E∗
k2,k2) =

var(Mk(G) ⊕ G(D′)), where D′ is a finite dimensional superalgebra such that
exp(D′) < 2k2. In particular

cn(E
∗
k2,k2) � cn(Mk(G)).

3 Z2-Graded Case

Recall that an algebra A is a superalgebra (or Z2-graded algebra) with grading
(A(0), A(1)) if A = A(0) ⊕ A(1), where A(0), A(1) are subspaces of A satisfying:

A(0)A(0) + A(1)A(1) ⊆ A(0) and A(0)A(1) + A(1)A(0) ⊆ A(1).

The elements of A(0) and of A(1) are called homogeneous of degree zero (or even
elements) and of degree one (or odd elements), respectively. If we write X = Y ∪Z

as the disjoint union of two countable sets, then the free associative algebra F 〈X〉 =
F 〈Y ∪ Z〉 = F(0) ⊕ F(1) has a natural structure of free superalgebra with grading
(F(0),F(1)), where F(0) is the subspace generated by the monomials of even degree
with respect to Z and F(1) is the subspace generated by the monomials having odd
degree in Z.

Recall that an element f (y1, . . . , yn, z1, . . . , zm) of F 〈Y ∪ Z〉 is a Z2-
graded identity or a superidentity for A if f (a1, . . . , an, b1, . . . , bm) = 0, for
all a1, . . . , an ∈ A(0) and b1, . . . , bm ∈ A(1). The set Idsup(A) of all Z2-
graded identities of A is a T2-ideal of F 〈Y ∪ Z〉 i.e., an ideal invariant under
all endomorphisms of F 〈Y ∪ Z〉 preserving the grading. Moreover, every T2-
ideal � of F 〈Y ∪ Z〉 is the ideal of Z2-graded identities of some superalgebra
A = A(0) ⊕ A(1), � = Idsup(A). For � = Idsup(A) a T2-ideal of F 〈Y ∪ Z〉,
we denote by supvar(�) or supvar(A) the supervariety of superalgebras having the
elements of � as Z2-graded identities.

As it was shown by Kemer (see [34, 35]), superalgebras and their Z2-graded iden-
tities play a basic role in the study of the structure of varieties of associative algebras
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over a field of characteristic zero. More precisely Kemer showed that any variety is
generated by the Grassmann envelope of a suitable finite dimensional superalgebra
(see Theorem 3.7.8 [30]) and moreover he established that an associative variety is
a prime variety if and only if it is generated by the Grassmann envelope of a simple
finite dimensional superalgebra.

Recall that, if F is an algebraically closed field of characteristic zero, then a
simple finite dimensional superalgebra over F is isomorphic to one of the following
algebras (see [30, 35]):

1. Mk(F) with trivial grading (Mk(F ), 0);

2. Mk,l(F ) with grading

((
F11 0
0 F22

)

,

(
0 F12

F21 0

))

, where F11, F12, F21, F22

are k × k, k × l, l × k and l × l matrices respectively, k ≥ 1 and l ≥ 1;
3. Ms(F ⊕ tF ) with grading (Ms(F ), tMs(F )), where t2 = 1.

Thus an important problem in the theory of PI -algebras is to describe the
T2-ideals of Z2-graded identities of finite dimensional simple superalgebra:
Idsup(Mk(F )), Idsup(Mk,l(F )), Idsup(Ms(F ⊕ tF )).

In case charF = 0, it is well known that Idsup(A) is completely determined
by its multilinear polynomials and an approach to the description of the Z2-graded
identities of A is based on the study of the Z2-graded codimensions sequence of this
superalgebra. If P

sup
n denotes the space of multilinear polynomials of degree n in

the variables y1, z1, . . ., yn, zn (i.e., yi or zi appears in each monomial at degree 1),
then the sequence of spaces {P sup

n ∩ Idsup(A)}n≥1 determines Idsup(A) and

c
sup
n (A) = dimF

(
P

sup
n

P
sup
n ∩ Idsup(A)

)

is called the n-th Z2-graded codimension of A. The asymptotic behaviour of the
Z2-graded codimensions plays an important role in the PI -theory of superalgebras.
In 1985, Giambruno e Regev (see [22]) proved that the sequence {csup

n (A)}n≥1 is
exponentially bounded if and only if A satisfies an ordinary polynomial identity.
In [12] it was proved that if A is a finitely generated superalgebra satisfying a

polynomial identity, then lim
n→∞

n

√

c
sup
n (A) exists and is a non negative integer. It

is called superexponent (or Z2-exponent) of A and it is denoted by

supexp(A) = lim
n→∞

n

√

c
sup
n (A).

We remark that in [21] the existence of the G-exponent has been proved when G is a
group of prime order and, in general, in [2, 31] and [1] for an arbitrary PI -algebras
graded by a finite abelian group G.

Now, if f ∈ F 〈Y ∪ Z〉 we denote by 〈f 〉T2 the T2-ideal generated by f . Also
for a set of polynomials V ⊂ F 〈Y ∪ Z〉 we write 〈V 〉T2 to indicate the T2-ideal
generated by V. Let denote by Capm[Y,X] = Capm(y1, . . . , ym; x1, . . . , xm−1)
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and Capm[Z,X] = Capm(z1, . . . , zm; x1, . . . , xm−1) the m-th Z2-graded Capelli
polynomial in the alternating variables of homogeneous degree zero y1, . . . , ym and
of homogeneous degree one z1, . . . , zm, respectively. Then Cap0

m indicates the set
of 2m−1 polynomials obtained from Capm[Y,X] by deleting any subset of variables
xi (by evaluating the variables xi to 1 in all possible way). Similarly, we define
by Cap1

m the set of 2m−1 polynomials obtained from Capm[Z,X] by deleting any
subset of variables xi .

If L and M are two natural numbers, let �M+1,L+1 be the T2-ideal generated by
the polynomials Cap0

M+1, Cap1
L+1, �M+1,L+1 = 〈Cap0

M+1, Cap1
L+1〉T2 . We also

write Usup
M+1,L+1 = supvar(�M+1,L+1).

In [8] it was calculated the supexp(Usup
M+1,L+1). We recall the following

Definition 1 (see [8]) Let M and L be fixed. Then, for any integers s, t ≥ 0, r ≥ 1
such that r − 1 = r0 + r1 for some non-negative integers r0, r1, we define the set

Ar,s,t;r0,r1 = {a1, . . . , ar, k1, l1, . . . , ks , ls, b1, . . . , bt ∈ Z
+ |

a2
1 + · · · + a2

r + (k2
1 + l2

1) + · · · (k2
s + l2

s ) + b2
1 + · · · + b2

t + r0 + s + t ≤ M,

and 2k1l1 + · · · + 2ksls + b2
1 + · · · + b2

t + r1 + s + t ≤ L}.

Also, given integers s, t ≥ 0 (r = 0), we define the set

Ãs,t = {k1, l1, . . . , ks, ls , b1, . . . , bt ∈ Z
+ |

(k2
1 + l2

1) + · · · (k2
s + l2

s ) + b2
1 + · · · + b2

t + s + t ≤ M + 1,

and 2k1l1 + · · · + 2ksls + b2
1 + · · · + b2

t + s + t ≤ L + 1}.

Moreover, let

ar,s,t;r0,r1 = maxai ,ki ,li ,bi∈Ar,s,t;r0,r1
{a2

1 +· · ·+a2
r +(k1 + l1)

2 +· · · (ks + ls)
2 +2b2

1 +· · ·+2b2
t }

and

ãs,t = maxki ,li ,bi∈Ãs,t
{(k1 + l1)

2 + · · · (ks + ls )
2 + 2b2

1 + · · · + 2b2
t },

then we define

a0 = max{ar,s,t;r0,r1, ãs,t | r + s + t ≤ 11}.

Theorem 6 ([8, Theorem 4]) If M ≥ L ≥ 0, then

(1) supexp(Usup
M+1,L+1) = a0;

(2) (M + L) − 10 ≤ supexp(Usup
M+1,L+1) ≤ (M + L).
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This result was inspirated by the ordinary case. Moreover, we should mention
that in the previous theorem an essential tool is the generalized-six-square theorem
proved in [17] (see also Appendix A of [30]).

The following relations between the superexponent of the Z2-graded Capelli
polynomials and the superexponent of the simple finite dimensional superalgebras
are well known (see [8, 12, 28])

supexp(Usup
k2+1,1

) = k2 = supexp(Mk(F ))

supexp(Usup
k2+l2+1,2kl+1

) = (k + l)2 = supexp(Mk,l(F ))

supexp(Usup
s2+1,s2+1

) = 2s2 = supexp(Ms(F ⊕ tF )).

In [9] it was found a close relation among the asymptotics of Usup

k2+l2+1,2kl+1
and

Mk,l(F ) and the asymptotics of Usup

s2+1,s2+1 and Ms(F ⊕ tF ). More precisely it was
showed that

Theorem 7 ([9, Theorem 9]) Let M = k2 + l2 and L = 2kl with k, l ∈ N, k >

l > 0. Then Usup

M+1,L+1 = supvar(�M+1,L+1) = supvar(Mk,l(F )⊕D′), where D′
is a finite dimensional superalgebra such that supexp(D′) < M + L. In particular

c
sup
n (�M+1,L+1) � c

sup
n (Mk,l(F )).

Theorem 8 ([9, Theorem 14]) Let M = L = s2 with s ∈ N, s > 0. Then
Usup

M+1,L+1 = supvar(�M+1,L+1) = supvar(Ms(F ⊕ tF ) ⊕ D′′), where D′′ is
a finite dimensional superalgebra such that supexp(D′′) < M + L. In particular

c
sup
n (�M+1,L+1) � c

sup
n (Ms(F ⊕ tF )).

In [29] Giambruno and Zaicev proved that c
sup
n (�k2+1,1) � c

sup
n (Mk(F )).

4 Involution Case

Let F 〈X, ∗〉 = F 〈x1, x
∗
1 , x2, x

∗
2 , . . .〉 denote the free associative algebra with

involution ∗ generated by the countable set of variables X = {x1, x
∗
1 , x2, x

∗
2 , . . .}

over a field F of characteristic zero. Let (A, ∗) be an algebra with involution ∗
over F , recall that an element f (x1, x

∗
1 , · · · , xn, x

∗
n) of F 〈X, ∗〉 is a ∗-polynomial

identity (or ∗-identity) for A if f (a1, a
∗
1 , · · · , an, a

∗
n) = 0, for all a1, . . . , an ∈ A.

We denote by Id∗(A) the set of all ∗-polynomial identities satisfied by A. Id∗(A) is
a T -∗-ideal of F 〈X, ∗〉 i.e., an ideal invariant under all endomorphisms of F 〈X, ∗〉
commuting with the involution of the free algebra. Similar to the case of ordinary
identities any T -∗-ideal � of F 〈X, ∗〉 is the ideal of ∗-identities of some algebra A
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with involution ∗, � = Id∗(A). For � = Id∗(A) we denote by var∗(�) = var∗(A)

the variety of ∗-algebras having the elements of � as ∗-identities.
It is well known that in characteristic zero Id∗(A) is completely determinated

by the multilinear ∗-polynomials it contains. To the T-∗-ideal � = Id∗(A) one
associates a numerical sequence called the sequence of ∗-codimensions c∗

n(�) =
c∗
n(A) which is the main tool for the quantitative investigation of the ∗-polynomial

identities of A. Recall that c∗
n(A), n = 1, 2, . . ., is the dimension of the space

of multilinear polynomial in n-th variables in the corresponding relatively free
algebra with involution of countable rank. Thus, if we denote by P ∗

n the space of
all multilinear polynomials of degree n in x1, x

∗
1 , · · · , xn, x

∗
n then

c∗
n(A) = dimP ∗

n (A) = dim
P ∗

n

P ∗
n ∩ Id∗(A)

.

It is clear that the ordinary free associative algebra F 〈X〉 (without involution) can
be considered as a subalgebra of F 〈X, ∗〉 and, in particular, an ordinary polynomial
identity (without involution) can be considered as an identity with involution. Hence
if A is a ∗-algebra, then Id(A) ⊆ Id∗(A). Moreover, a celebrated theorem of
Amitsur ([4, 5], see also [30]) states that if an algebra with involution satisfies a
∗-polynomial identity then it satisfies an ordinary polynomial identity. At the light
of this result in [22] it was proved that, as in the ordinary case, if A satisfies a
non trivial ∗-polynomial identity then c∗

n(A) is exponentially bounded, i.e. there
exist constants a and b such that c∗

n(A) ≤ abn, for all n ≥ 1. Later (see [7]) an
explicit exponential bound for c∗

n(A) was exhibited and in [28] a characterization
of finite dimensional algebras with involution whose sequence of ∗-codimensions is
polynomial bounded was given. This result was extended to non-finite dimensional
algebras (see [27]) and ∗-varieties with almost polynomial growth were classified
in [26] and [38]. The asymptotic behavior of the ∗-codimensions was determined in
[13] in case of matrices with involution.

Recently (see [33]), for any algebra with involution, it was studied the exponen-
tial behavior of c∗

n(A), and it was showed that the ∗-exponent of A

exp∗(A) = lim
n→∞

n
√

c∗
n(A)

exists and is a non negative integer. It should be mentioned that the existence of the
∗-exponent was proved in [25] for finite dimensional algebra with involution.

An interesting problem in the theory of PI -algebras with involution ∗ is to
describe the T -∗-ideals of ∗-polynomial identities of ∗-simple finite dimensional
algebras. Recall that, if F is an algebraically closed field of characteristic zero,
then, up to isomorphisms, all finite dimensional ∗-simple are the following ones
(see [30, 45]):

• (Mk(F ), t) the algebra of k × k matrices with the transpose involution;
• (M2m(F), s) the algebra of 2m × 2m matrices with the symplectic involution;
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• (Mh(F ) ⊕ Mh(F)op, exc) the direct sum of the algebra of h × h matrices and
the opposite algebra with the exchange involution.

Let G be the infinite dimensional Grassmann algebra over F . G is generated by
the elements e1, e2, . . . subject to the following condition eiej = −ejei , for all
i, j ≥ 1. Recall that G has a natural Z2-grading G = G0 ⊕ G1 where G0 (resp.
G1) is the span of the monomials in the ei’s of even length (resp. odd length). If
B = B0 ⊕ B1 is a superalgebra, then the Grassmann envelope of B is defined as
G(B) = (G0 ⊗ B0) ⊕ (G1 ⊗ B1). The relevance of G(A) relies in a result of
Kemer ([35, Theorem 2.3]) stating that if B is any PI -algebra, then its T -ideal
of polynomial identities coincides with the T -ideal of identities of the Grassmann
envelope of a suitable finite dimensional superalgebra. This result has been extended
to algebras with involution in fact in [3] it was proved that, if A is a PI -algebra with
involution over a field F of characteristic zero, then there exists a finite dimensional
superalgebra with superinvolution B such that Id∗(A) = Id∗(G(B)).

Recall that a superinvolution ∗ of B is a linear map of B of order two such
that (ab)∗ = (−1)|a||b|b∗a∗, for any homogeneous elements a, b ∈ B, where
|a| denotes the homogeneous degree of a. It is well known that in this case
B∗

0 ⊆ B0, B
∗
1 ⊆ B1 and we decompose B = B+

0

⊕
B−

0

⊕
B+

1

⊕
B−

1 . We can
define a superinvolution ∗ on G by requiring that e∗

i = −ei, for any i ≥ 1. Then
it is easily checked that G0 = G+ and G1 = G−. Now, if B is a superalgebra
one can perform its Grassmann envelope G(B) and in [3] it was shown that if
B has a superinvolution ∗ we can regard G(B) as an algebra with involution
by setting (g ⊗ a)∗ = g∗ ⊗ a∗, for homogeneous elements g ∈ G, a ∈ B.

By making use of the previous theorem, in [33] it was proved the existence of
the ∗-exponent of a PI -algebra with involution A and also an explicit way of
computing exp∗(A) was given. The ∗-exponent is computed as follows: if B is a
finite dimensional algebra with superinvolution over F , then by Giambruno et al.
[32] we write B = B̄ + J where B̄ is a maximal semisimple superalgebra with
induced superinvolution and J = J (B) = J ∗. Also we can write B̄ = B1⊕· · ·⊕Bk ,
where B1, · · · , Bk are simple superalgebras with induced superinvolution. We
say that a subalgebra Bi1 ⊕ · · · ⊕ Bit , where Bi1 , . . . , Bit are distinct simple
components, is admissible if for some permutation (l1, . . . , lt ) of (i1, . . . , it ) we
have that Bl1JBl2J · · · JBlt � 0. Moreover if Bi1 ⊕ · · · ⊕ Bit is an admissible
subalgebra of B then B ′ = Bi1 ⊕ · · · ⊕ Bit + J is called a reduced algebra.
In [33] it was proved that exp∗(A) = exp∗(G(B)) = d where d is the maximal
dimension of an admissible subalgebra of B. It follows immediately that if A

is a ∗-simple algebra then exp∗(A) = dimF A. If V = var∗(A) is the variety
of ∗-algebras generated by A we write Id∗(V) = Id∗(A), c∗

n(V) = c∗
n(A) and

exp∗(V) = exp∗(A).
The reduced algebras are basic elements of any ∗-variety in fact we have the

following (see [11])

Theorem 9 Let V be a proper variety of ∗-algebras. Then there exists a finite
number of reduced superalgebras with superinvolution B1, . . . , Bt and a finite
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dimensional superalgebra with superinvolution D such that

V = var(G(B1) ⊕ · · · ⊕ G(Bt) ⊕ G(D))

with exp∗(V) = exp∗(G(B1)) = · · · = exp∗G((Bt )) and exp∗(G(D)) < exp∗(V).

In terms of ∗-codimensions we obtain

Corollary 1 Let V = var∗(A) be a proper variety of ∗-algebras. Then there exists a
finite number of reduced superalgebras with superinvolutionB1, . . . , Bt and a finite
dimensional superalgebra with superinvolution D such that

c∗
n(A) � c∗

n(G(B1) ⊕ · · · ⊕ G(Bt )).

If A is a finite dimensional ∗-algebra, then we have the following

Corollary 2 Let A be a finite dimensional ∗-algebra. Then there exists a finite
number of reduced ∗-algebras B1, . . . , Bt and a finite dimensional ∗-algebra D

such that

var∗(A) = var∗(B1 ⊕ · · · ⊕ Bt ⊕ D)

c∗
n(A) � c∗

n(B1 ⊕ · · · ⊕ Bt )

and

exp∗(A) = exp∗(B1) = · · · = exp∗(Bt ), exp∗(D) < exp∗(A).

4.1 ∗-Capelli Polynomials and the ∗-Algebra
UT ∗(A1, . . . ,An)

In this paragraph we shall recall the relation among the asymptotics of the ∗-
codimensions of the ∗-simple finite dimensional algebras and the T -∗-ideals
generated by the ∗-Capelli polynomials recently proved by the authors. If (A, ∗) is
any algebra with involution ∗, let A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ =
−a} denote the subspaces of symmetric and skew elements of A, respectively. Since
charF = 0, we can regard the free associative algebra with involution F 〈X, ∗〉 as
generated by symmetric and skew variables. In particular, for i = 1, 2, . . ., we let
yi = xi + x∗

i and zi = xi − x∗
i , then we write X = Y ∪ Z as the disjoint union

of the set Y of symmetric variables and the set Z of skew variables and F 〈X, ∗〉 =
F 〈Y ∪ Z〉. Hence a polynomial f = f (y1, . . . , ym, z1, . . . , zn) ∈ F 〈Y ∪ Z〉 is
a ∗-polynomial identity of A if and only if f (a1, . . . , am, b1, . . . , bn) = 0 for all
ai ∈ A+, bi ∈ A−. Let Cap∗

m[Y,X] = Capm(y1, . . . , ym; x1, . . . , xm−1) denote
the m-th ∗-Capelli polynomial in the alternating symmetric variables y1, . . . , ym
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and let Cap∗
m[Z,X] = Capm(z1, . . . , zm; x1, . . . , xm−1) be the m-th ∗-Capelli

polynomial in the skew variables z1, . . . , zm. Then we denote by Cap+
m the set of

2m−1 polynomials obtained from Cap∗
m[Y,X] by deleting any subset of variables

xi (by evaluating the variables xi to 1 in all possible way). Similarly, we define
by Cap−

m the set of 2m−1 polynomials obtained from Cap∗
m[Z,X] by deleting

any subset of variables xi . If L and M are two natural numbers, we denote by
�∗

M+1,L+1 = 〈Cap+
M+1, Cap−

L+1〉 the T-∗-ideal generated by the polynomials

Cap+
M+1, Cap−

L+1. We also write U∗
M+1,L+1 = var∗(�M+1,L+1) for the ∗-variety

generated by �∗
M+1,L+1.

The following results give us a characterization of the ∗-varieties satisfying a
Capelli identity. The proof of the next result follows closely the proof given in [30,
Theorem 11.4.3]

Theorem 10 Let V be a variety of ∗-algebras. If V satisfies the Capelli identity of
some rank then V = var∗(A), for some finitely generated ∗-algebra A.

Let M , L be two natural numbers. Let A = A+ ⊕ A− be a generating ∗-algebra
of U∗

M+1,L+1. It is easy to show that A satisfies a Capelli identity. Hence by the
previous theorem, we may assume that A is a finitely generated ∗-algebra. Moreover
by Sviridova [46, Theorem 1] we may consider A as a finite dimensional ∗-algebra.
Since any polynomial alternating on M + 1 symmetric variables vanishes in A (see
[30, Proposition 1.5.5]), we get that dim A+ ≤ M . Similarly we get that dim A− ≤
L and exp∗(A) ≤ dim A ≤ M + L. Thus we have the following

Lemma 1 exp∗(U∗
M+1,L+1) ≤ M + L.

Now, we recall the construction of the ∗-algebra UT ∗(A1, . . . , An) given in
Section 2 of [18]. Let A1, . . . , An be a n-tuple of finite dimensional ∗-simple
algebras, then Ai = (Mdi (F ), μi), where μi is the transpose or the symplectic
involution, or Ai = (Mdi (F ) ⊕ Mdi (F )op, exc), where exc is the exchange
involution.

Let γd be the orthogonal involution defined on the matrix algebra Md(F) by
putting, for all a ∈ Md(F), aγd = g−1atg = gatg, where at is the transposed of
the matrix a and

g =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 . . . 1
·

·
·

1 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

If d = ∑n
i=1 dimF Ai , then we can consider an embedding of ∗-algebras

� :
n⊕

i=1

Ai → (M2d(F ), γ2d)
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defined by

(a1, . . . , an) →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ā1
. . .

ān

b̄n

. . .

b̄1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where, if ai ∈ Ai = (Mdi (F ), μi), then āi = ai and b̄i = a
μiγdi

i , and if ai =
(ãi , b̃i) ∈ Ai = (Mdi (F ) ⊕ Mdi (F )op, exc), then āi = ãi and b̄i = b̃i . Let D =
D(A1, . . . , An) ⊆ M2d (F ) be the ∗-algebra image of

⊕n
i=1 Ai by � and let U be

the subspace of M2d (F ) so defined:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 U12 · · · U1t

. . .
. . .

...

0 Ut−1t

0
0 Utt−1 · · · Ut1

. . .
. . .

...

0 U21

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where, for 1 ≤ i, j ≤ n, i � j , Uij denote the vector space of the rectangular matri-
ces of dimensions di × dj . Let define (see section 2 of [18]) UT ∗(A1, . . . , An) =
D ⊕ U ⊆ M2d(F ). It is easy to show that UT ∗(A1, . . . , An) is a subalgebra with
involution of (M2d (F ), γ2d) in which the algebras Ai are embedded as ∗-algebras
and whose ∗-exponent is given by

exp∗(UT ∗(A1, . . . , An)) =
n∑

i=1

dimF Ai.

In [20] and [19] the link between the degrees of ∗-Capelli polynomials and the
∗-polynomial identities of UT ∗(A1, . . . , An) was investigated. If we set d+ :=∑n

i=1 dimF A+
i and d− := ∑n

i=1 dimF A−
i , then the following result applies

Lemma 2 Let R = UT ∗(A1, . . . , An). Then Cap∗
M [Y,X] and Cap∗

L[Z,X] are in
Id∗(R) if and only if M ≥ d+ + n and L ≥ d− + n.
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4.2 Asymptotics for ∗-Capelli Polynomials

In this section we shall state our main results about the ∗-Capelli polynomials and
their asymptotics (see [11]).

The following two key lemmas hold for any ∗-simple finite dimensional algebra.

Lemma 3 Let A = Ā ⊕ J where Ā is a ∗-simple finite dimensional algebra and
J = J (A) is its Jacobson radical. Then J can be decomposed into the direct sum of
four Ā-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where, for p, q ∈ {0, 1}, Jpq is a left faithful module or a 0-left module according to
p = 1, or p = 0, respectively. Similarly, Jpq is a right faithful module or a 0-right
module according to q = 1 or q = 0, respectively. Moreover, for p, q, i, l ∈ {0, 1},
JpqJql ⊆ Jpl , JpqJil = 0 for q � i and there exists a finite dimensional nilpotent
∗-algebra N such that J11 � Ā ⊗F N (isomorphism of Ā-bimodules and of ∗-
algebras).

Proof It follows from the proof of Lemma 2 in [29].

Lemma 4 Let Ā be a ∗-simple finite dimensional algebra. Let M = dimF Ā+ and
L = dimF Ā−. Then Ā does not satisfy Cap∗

M [Y,X] and Cap∗
L[Z,X].

Proof The result follows immediately from [21, Lemma 3.1].

Lemma 5

(1) Let M1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0 and let
J11 � Mk(F) ⊗F N , as in Lemma 3. If �M1+1,L1+1 ⊆ Id∗(Mk(F ) + J ), then
J10 = J01 = (0) and N is commutative.

(2) Let M2 = m(2m − 1) and L2 = m(2m + 1) with m ∈ N, m > 0 and let
J11 � M2m(F) ⊗F N , as in Lemma 3. If �M2+1,L2+1 ⊆ Id∗(M2m(F) + J ),
then J10 = J01 = (0) and N is commutative.

(3) LetM3 = L3 = h2 with h ∈ N, h > 0 and let J11 � (Mh(F )⊕Mh(F)op)⊗F N ,
as in Lemma 3. If �M3+1,L3+1 ⊆ Id∗((Mh(F ) ⊕ Mh(F)op) + J ), then J10 =
J01 = (0) and N is commutative.

Lemma 6

(1) Let M1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0. Then

exp∗(U∗
M1+1,L1+1) = M1 + L1 = k2 = exp∗((Mk(F ), t)).
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(2) Let M2 = m(2m − 1) and L2 = m(2m + 1) with m ∈ N, m > 0. Then

exp∗(U∗
M2+1,L2+1) = M2 + L2 = 4m2 = exp∗((M2m(F), s)).

(3) Let M3 = L3 = h2 with h ∈ N, h > 0. Then

exp∗(U∗
M3+1,L3+1) = M3 + L3 = 2h2 = exp∗((Mh(F ) ⊕ Mh(F)op, exc)).

Proof (1) The exponent of U∗
M1+1,L1+1 is equal to the exponent of some minimal

variety lying in U∗
M1+1,L1+1 (for the definition of minimal variety see [30]). Let

d+ := ∑n
i=1 dimF A+

i and d− := ∑n
i=1 dimF A−

i , then, by Di Vincenzo and
Spinelli [20, Theorem 2.1] and Lemma 2, we have that

exp∗(U∗
M1+1,L1+1) = max{exp∗(UT ∗(A1, . . . , An)) | d++n ≤ M1 +1 and d−+n ≤ L1 +1}.

Then

exp∗(U∗
M1+1,L1+1) ≥ M1 + L1 = k2 = exp∗(UT ∗(Mk(F ))).

Since by Lemma 1, exp∗(U∗
M1+1,L1+1) ≤ M1 + L1 then the proof is completed.

(2), (3) The proof is the same of that of point (1).

Now we are able to prove the main results.

Theorem 11 Let M1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0. Then

U∗
M1+1,L1+1 = var∗(�∗

M1+1,L1+1) = var∗(Mk(F ) ⊕ D′),

where D′ is a finite dimensional ∗-algebra such that exp∗(D′) < M1 + L1. In
particular

c∗
n(�

∗
M1+1,L1+1) � c∗

n(Mk(F )).

Sketch of the Proof By the previous Lemma we have that exp∗(U∗
M1+1,L1+1) =

M1 + L1.
Let A = A+ ⊕ A− be a generating finite dimensional ∗-algebra of U∗

M1+1,L1+1.
By Corollary 2, there exist a finite number of reduced ∗-algebras B1, . . . , Bs and
a finite dimensional ∗-algebra D′ such that U∗

M1+1,L1+1 = var∗(A) = var∗(B1 ⊕
· · ·⊕Bs ⊕D′), with exp∗(B1) = · · · = exp∗(Bs) = exp∗(U∗

M1+1,L1+1) = M1 +L1
and exp∗(D′) < exp∗(U∗

M1+1,L1+1) = M1 + L1. Then, it is enough to analyze the
structure of a finite dimensional reduced ∗-algebra R such that exp∗(R) = M1 +
L1 = exp∗(U∗

M1+1,L1+1) and �∗
M1+1,L1+1 ⊆ Id∗(R). Let write R = R1 ⊕ · · · ⊕

Rq + J, where J = J (R), R1J · · · JRq � 0 and Ri is isomorphic to one of the
following algebras :(Mki (F ), t) or (M2mi (F ), s) or (Mhi (F ) ⊕ Mhi (F )op, exc).
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Let t1 be the number of ∗-algebras Ri of the first type, t2 the number of ∗-algebras
Ri of the second type and t3 the number of Ri of the third type, with t1 + t2 +
t3 = q . By [18, Theorem 4.5] and [18, Proposition 4.7] there exists a ∗-algebra
R isomorphic to the ∗-algebra UT ∗(R1, . . . , Rq) such that exp∗(R) = exp∗(R) =
exp∗(UT ∗(R1, . . . , Rq)). Let observe that

k2 = M1 + L1 = exp∗(R) = exp∗(R) = exp∗(UT ∗(R1, . . . , Rq)) =

dimF R1+· · ·+dimF Rq = k2
1 +· · ·+k2

t1
+(2m1)

2+· · ·+(2mt2)
2+2h2

1+· · ·+2h2
t3
.

Let d± = dimF (R1 ⊕ · · · ⊕ Rq)± then

d+ + d− = d = dimF (R1 ⊕ · · · ⊕ Rq) = exp∗(R) = M1 + L1.

By [20, Lemma 3.2] R does not satisfy the ∗-Capelli polynomials Cap∗
d++q−1[Y ; X]

and Cap∗
d−+q−1[Z; X], but R satisfies Cap∗

M1+1[Y ; X] and Cap∗
L1+1[Z; X]. Thus

d+ + q − 1 ≤ M1 and d− + q − 1 ≤ L1. Hence d+ + d− + 2q − 2 ≤ M1 + L1.
Since d+ + d− = M1 + L1 we obtain that q = t1 + t2 + t3 = 1. Since t1, t2 and
t3 are nonnegative integers by considering all possible cases we get that t1 = 1 and
R � Mk(F) + J. From Lemmas 3 and 5 we obtain

R � (Mk(F ) + J11) ⊕ J00 � (Mk(F ) ⊗ N	) ⊕ J00

where N	 is the algebra obtained from N by adjoining a unit element.
Thus var∗(R) = var∗(Mk(F ) ⊕ J00) with J00 a finite dimensional nilpotent ∗-

algebra. Hence, recalling the decomposition given above, we get

U∗
M1+1,L1+1 = var∗(�M1+1,L1+1) = var∗(Mk(F ) ⊕ D′),

where D′ is a finite dimensional ∗-algebra with exp∗(D′) < M1 + L1. Then

c∗
n(�M1+1,L1+1) � c∗

n(Mk(F ))

and the theorem is proved.
In a similar way we can prove the next two theorems.

Theorem 12 Let M2 = m(2m − 1) and L2 = m(2m + 1) with m ∈ N, m > 0.
Then

U∗
M2+1,L2+1 = var∗(�M2+1,L2+1) = var∗(M2m(F) ⊕ D′′),
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where D′′ is a finite dimensional ∗-algebra such that exp∗(D′′) < M2 + L2. In
particular

c∗
n(�M2+1,L2+1) � c∗

n(M2m(F)).

Theorem 13 Let M3 = L3 = h2 with h ∈ N, h > 0. Then

U∗
M3+1,L3+1 = var∗(�M3+1,L3+1) = var∗((Mh(F ) ⊕ Mh(F)op) ⊕ D′′′),

where D′′′ is a finite dimensional ∗-algebra such that exp∗(D′′′) < M3 + L3. In
particular

c∗
n(�M3+1,L3+1) � c∗

n(Mh(F ) ⊕ Mh(F)op).
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