
Growth of Differential Identities

Carla Rizzo

Abstract In this paper we study the growth of the differential identities of some
algebras with derivations, i.e., associative algebras where a Lie algebra L (and
its universal enveloping algebra U(L)) acts on them by derivations. In particular,
we study in detail the differential identities and the cocharacter sequences of
some algebras whose sequence of differential codimensions has polynomial growth.
Moreover, we shall give a complete description of the differential identities of the
algebra UT2 of 2 × 2 upper triangular matrices endowed with all possible action
of a Lie algebra by derivations. Finally, we present the structure of the differential
identities of the infinite dimensional Grassmann G with respect to the action of a
finite dimensional Lie algebra L of inner derivations.

Keywords Polynomial identity · Differential identity · Codimension ·
Cocharacter

1 Introduction

Let A be an associative algebra over a field F of characteristic zero and assume that
a Lie algebra L acts on it by derivations. Such an action can be naturally extended
to the action of the universal enveloping algebra U(L) of L and in this case we say
that A is an algebra with derivations or an L-algebra. In this context it is natural
to define the differential identities of A, i.e., the polynomials in non-commutative
variables xh = h(x), h ∈ U(L), vanishing in A.

An effective way of measuring the differential identities satisfied by a given
L-algebra A is provided by its sequence of differential codimensions cL

n (A),
n = 1, 2, . . . . The nth term of such sequence measures the dimension of the
space of multilinear differential polynomials in n variables of the relatively free
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algebra with derivations of countable rank of A. Since in characteristic zero, by the
multilinearization process, every differential identity is equivalent to a system of
multilinear ones, the sequence of differential codimensions of A gives a quantitative
measure of the differential identities satisfied by the given L-algebra. Maybe the
most important feature of this sequence proved by Gordienko in [6] is that in case
A is a finite dimensional L-algebra, cL

n (A) is exponentially bounded. Moreover,
he determined the exponential rate of growth of the sequence of differential
codimensions, i.e., he proved that for any finite dimensional L-algebra A, the
limit limn→∞ n

√
cL
n (A) exists and is a non-negative integer. Such integer, denoted

expL(A), is called the differential PI-exponent of the algebra A and it provides
a scale allowing us to measure the rate of growth of the identities of any finite
dimensionalL-algebra. As a consequence of this result it follows that the differential
codimensions of a finite dimensional L-algebra A are either polynomially bounded
or grow exponentially. Hence no intermediate growth is allowed.

When studying the polynomial identities of an L-algebra A, one is lead to
consider varL(A), the L-variety of algebras with derivations generated by A, that
is the class of L-algebras satisfying all differential identities satisfied by A. Thus
we define the growth of V = varL(A) to be the growth of the sequence cL

n (V) =
cL
n (A), n = 1, 2, . . . and we say that a varietyV has almost polynomial growth ifV
has exponential growth but every proper subvariety has polynomial growth. Since
the ordinary polynomial identities and corresponding codimensions are obtained
by leting L act on A trivially (or L is the trivial Lie algebra), the algebra UT2 of
2 × 2 upper triangular matrices regarded as L-algebra where L acts trivially on it
generates an L-variety of almost polynomial growth (see [4, 8]). Clearly another
example of algebras generating an L-variety of almost polynomial growth is the
infinite dimensional Grassmann algebra G where L acts trivially on it (see [8, 13]).
Notice that in the ordinary case Kemer in [8] proved that UT2 and G are the only
algebras generating varieties of almost polynomial growth.

Recently in [4] the authors introduced another algebra with derivations gener-
ating a L-variety of almost polynomial growth. They considered UT ε

2 to be the
algebra UT2 with the action of the 1-dimensional Lie algebra spanned by the inner
derivation ε induced by 2−1(e11 − e22), where the eij ’s are the usual matrix units.
Also they proved that when the Lie algebra Der(UT2) of all derivations acts onUT2,
the variety with derivations generated by UT2 has no almost polynomial growth.

Notice that if δ is the inner derivation of UT2 induced by 2−1e12, then Der(UT2)

is a 2-dimensional metabelian Lie algebra with basis {ε, δ}. Here we shall study
the differential identities of UT δ

2 , i.e., the algebra UT2 with the action of the
1-dimensional Lie algebra spanned by δ. In particular we shall prove that UT δ

2
does not generate an L-variety of almost polynomial growth. Moreover, in order
to complete the description of the differential identities of UT2, we shall study
the TL-ideal of the differential identities of UT2 with the action of an arbitrary 1-
dimensional Lie subalgebra of Der(UT2).

Furthermore, we shall study the differential identities of some particular L-
algebras whose sequence of differential codimensions has polynomial growth. In
particular we shall exhibit an example of a commutative algebra with derivations
that generates a L-variety of linear growth.
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Finally, we shall give an example of an infinite dimensional L-algebra of
exponential growth. We shall present the structure of the differential identities
of G̃, i.e., the infinite dimensional Grassmann algebra with the action of a finite
dimensional abelian Lie algebra and we shall show that, unlike the ordinary case, G̃
does not generate an L-variety of almost polynomial growth.

2 L-Algebras and Differential Identities

Throughout this paper F will denote a field of characteristic zero. Let A be an
associative algebra over F . Recall that a derivation of A is a linear map ∂ : A → A

such that

∂(ab) = ∂(a)b + a∂(b), for all a, b ∈ A.

In particular an inner derivation induced by a ∈ A is the derivation ad a : A → A of
A defined by (ad a)(b) = [a, b] = ab − ba, for all b ∈ A. The set of all derivations
of A is a Lie algebra denoted by Der(A), and the set ad(A) of all inner derivations
of A is a Lie subalgebra of Der(A).

Let L be a Lie algebra over F acting on A by derivations. If U(L) is its universal
enveloping algebra, the L-action on A can be naturally extended to an U(L)-action.
In this case we say that A is an algebra with derivations or an L-algebra.

Let L be a Lie algebra. Given a basisB = {hi | i ∈ I } of the universal enveloping
algebra U(L) of L, we let F 〈X|L〉 be the free associative algebra over F with free
formal generators x

hi

j , i ∈ I , j ∈ N. We write xi = x1
i , 1 ∈ U(L), and then we set

X = {x1, x2, . . . }. We let U(L) act on F 〈X|L〉 by setting

γ (x
hi1
j1

x
hi2
j2

. . . x
hin

jn
) = x

γhi1
j1

x
hi2
j2

. . . x
hin

jn
+ · · · + x

hi1
j1

x
hi2
j2

. . . x
γ hin

jn
,

where γ ∈ L and x
hi1
j1

x
hi2
j2

. . . x
hin

jn
∈ F 〈X|L〉. The algebra F 〈X|L〉 is called the

free associative algebra with derivations on the countable set X and its elements are
called differential polynomials (see [4, 7, 9]).

Given an L-algebra A, a polynomial f (x1, . . . , xn) ∈ F 〈X|L〉 is a polynomial
identity with derivation of A, or a differential identity of A, if f (a1, . . . , an) = 0
for all ai ∈ A, and, in this case, we write f ≡ 0.

Let IdL(A) = {f ∈ F 〈X|L〉 | f ≡ 0 on A} be the set of all differential
identities of A. It is readily seen that IdL(A) is a TL-ideal of F 〈X|L〉, i.e., an
ideal invariant under the endomorphisms of F 〈X|L〉. In characteristic zero every
differential identity is equivalent to a system of multilinear differential identities.
Hence IdL(A) is completely determined by its multilinear polynomial.

Let

PL
n = span{xh1

σ(1) . . . x
hn

σ(n) | σ ∈ Sn, hi ∈ B}
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be the space of multilinear differential polynomials in the variables x1, . . . , xn, n ≥
1. We act on PL

n via the symmetric group Sn as follows: for σ ∈ Sn, σ(xh
i ) = xh

σ(i).

For every L-algebra A, the vector space PL
n ∩ IdL(A) is invariant under this action.

Hence the space PL
n (A) = PL

n /(PL
n ∩IdL(A)) has a structure of left Sn-module. The

non-negative integer cL
n (A) = dimPL

n (A) is called nth differential codimension of
A and the character χL

n (A) of PL
n (A) is called nth differential cocharacter of A.

Since charF = 0, we can write

χL
n (A) =

∑

λ
n

mL
λ χλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ and
mL

λ ≥ 0 is the corresponding multiplicity.
Let L be a Lie algebra and H be a Lie subalgebra of L. If A is an L-algebra,

then by restricting the action, A can be regarded as a H -algebra. In this case we say
that A is an L-algebra where L acts on it as the Lie algebra H and we identify the
TL-ideal IdL(A) and the TH -ideal IdH (A), i.e., in IdL(A) we omit the differential
identities xγ ≡ 0, for all γ ∈ L\H .

Notice that any algebra A can be regarded as L-algebra by letting L act on A

trivially, i.e., L acts on A as the trivial Lie algebra. Hence the theory of differential
identities generalizes the ordinary theory of polynomial identities.

We denote by Pn the space of multilinear ordinary polynomials in x1, . . . , xn and
by Id(A) the T -ideal of the free algebra F 〈X〉 of polynomial identities ofA. We also
write cn(A) for the nth codimension of A and χn(A) for the nth cocharacter of A.
Since the field F is of characteristic zero, we have χn(A) = ∑

λ
n mλχλ, where
mλ ≥ 0 is the multiplicity of χλ in the given decomposition.

Since U(L) is an algebra with unit, we can identify in a natural way Pn with a
subspace of PL

n . Hence Pn ⊆ PL
n and Pn ∩ Id(A) = Pn ∩ IdL(A). As a consequence

we have the following relations.

Remark 1 For all n ≥ 1,

1. cn(A) ≤ cL
n (A);

2. mλ ≤ mL
λ , for any λ 
 n.

Recall that if A is an L-algebra then the variety of algebras with derivations
generated by A is denoted by varL(A) and is called L-variety. The growth of V =
varL(A) is the growth of the sequence cL

n (V) = cL
n (A), n = 1, 2, . . . .

We say that the L-variety V has polynomial growth if cL
n (V) is polynomially

bounded and V has almost polynomial growth if cL
n (V) is not polynomially

bounded but every proper L-subvariety ofV has polynomial growth.
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3 On Algebras with Derivations of Polynomial Growth

In this section we study some algebras with derivations whose sequence of
differential codimension has linear growth.

Let us first consider the algebra C = F(e11 + e22)⊕Fe12 where the eij ’s are the
usual matrix units. The Lie algebra Der(C) of derivations of C is a 1-dimensional
Lie algebra generated by ε where

ε(α(e11 + e22) + βe12) = βe12,

for all α, β ∈ F .
Let Cε denote the L-algebra C where L acts on it as the Lie algebra Der(C).

Thus we have the following.

Theorem 1

1. IdL(Cε) = 〈[x, y], xεyε, xε2 − xε〉TL .
2. cL

n (Cε) = n + 1.
3. χL

n (Cε) = 2χ(n) + χ(n−1,1).

Proof Let Q = 〈[x, y], xεyε, xε2 − xε〉TL . It is easily checked that Q ⊆ IdL(Cε).
Since xεwyε ∈ Q, where w is a (eventually trivial) monomial of F 〈X|L〉, we
may write any multilinear polynomial f , modulo Q, as a linear combination of
the polynomials

x1 . . . xn, xε
kxi1 . . . xin−1, i1 < · · · < in−1.

We next show that these polynomials are linearly independent modulo IdL(Cε).
Suppose that

αx1 . . . xn +
n∑

k=1

βkxi1 . . . xin−1x
ε
k ≡ 0 (modPL

n ∩ IdL(Cε)).

By making the evaluation xj = e11 + e22, for all j = 1, . . . , n, we get α = 0. Also
for fixed k, the evaluation xk = e12 and xj = e11 + e22 for j � k gives βk = 0.
Thus the above polynomials are linearly independent modulo PL

n ∩ IdL(Cε). Since
PL

n ∩Q ⊆ PL
n ∩ IdL(Cε), this proves that IdL(Cε) = Q and the above polynomials

are a basis of PL
n modulo PL

n ∩ IdL(Cε). Hence cL
n (Cε) = n + 1.

We now determine the decomposition of the nth differential cocharacter of this
algebra. Suppose that χL

n (Cε) = ∑
λ
n mλχλ. Let us consider the standard tableau

T(n) = 1 2 . . . n
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and the monomials

f(n) = xn, f ε
(n) = xεxn−1 (1)

obtained from the essential idempotents corresponding to the tableau T(n) by
identifying all the elements in the row. Clearly f(n) and f ε

(n) are not identities of

Cε . Moreover, they are linearly independent modulo IdL(Cε). In fact, suppose that
αf(n) + βf ε

(n) ≡ 0(mod IdL(Cε)). By making the evaluation x = e11 + e22 we get
α = 0. Moreover, if we evaluate x = e11 + e22 + e12, we obtain β = 0. Thus it
follows that m(n) ≥ 2.

Since degχ(n) = 1 and degχ(n−1,1) = n− 1, if we find a differential polynomial
corresponding to the partition (n − 1, 1) which is not a differential identity of Cε ,
we may conclude that χL

n (Cε) = 2χ(n) + χ(n−1,1).
Let us consider the polynomial

f(n−1,1) = (xεy − yεx)xn−2

obtained from the essential idempotent corresponding to the standard tableau

T(n−1,1) = 1 3 . . . n

2

by identifying all the elements in each row of the tableau. Evaluating x = e11 + e22
and y = e12 we get f(n−1,1) = −e12 � 0 and f(n−1,1) is not a differential identity
of Cε . Thus the claim is proved. ��

Let us now consider the algebraM1 = Fe22⊕Fe12 and let ε and δ be derivations
of M1 such that

ε(αe22 + βe12) = βe12, δ(αe22 + βe12) = αe12, (2)

for all α, β ∈ F .

Lemma 1 Der(M1) is a 2-dimensional metabelian Lie algebra spanned by ε and δ

defined in (2).

Proof Let us consider the Lie algebra D spanned by ε and δ. Since [ε, δ] = δ, D is
a 2-dimensional metabelian Lie algebra and D ⊆ Der(M1).

Now consider γ ∈ Der(M1). Notice that γ (e22e12) = γ (e22)e12 + e22γ (e12) =
e22γ (e12). Since γ (e22e12) = 0, it follows that

γ (e12) = αe12,
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for some α ∈ F . On the other hand, γ (e12) = γ (e12e22) = αe12 + e12γ (e22). Thus
it follows that e12γ (e22) = 0. Hence

γ (e22) = βe12,

for some β ∈ F . Thus we have that γ = αε + βδ ∈ D and the claim is proved. ��
Similarly, if we consider the algebra M2 = Fe11 ⊕ Fe12 and we assume that ε

and δ are derivation of M2 such that

ε(αe11 + βe12) = βe12, δ(αe11 + βe12) = αe12, (3)

for all α, β ∈ F , then we have the following.

Lemma 2 Der(M2) is a 2-dimensional metabelian Lie algebra spanned by ε and δ

defined in (3).

Let L be any Lie algebra. We shall denote by M1 and M2 the L-algebras M1 and
M2 where L acts trivially on them. Since xγ ≡ 0 for all γ ∈ L, in this case we are
dealing with ordinary identities. Thus we have the following result.

Theorem 2 ([3, Lemma 3])

1. IdL(M1) = 〈x[y, z]〉TL and IdL(M2) = 〈[x, y]z〉TL .
2. cL

n (M1) = cL
n (M2) = n.

3. χL
n (M1) = χL

n (M2) = χ(n) + χ(n−1,1).

Denote by Mε
1 and Mε

2 the L-algebras M1 and M2 where L acts on them as
the 1-dimensional Lie algebra spanned by the derivation ε defined in (2) and (3),
respectively.

Theorem 3

1. IdL(Mε
1 ) = 〈xyε, xεy−yεx−[x, y], xε2−xε〉TL and IdL(Mε

2 ) = 〈xεy, xyε−
yxε − [x, y], xε2 − xε〉TL .

2. cL
n (Mε

1 ) = cL
n (Mε

2 ) = n + 1.
3. χL

n (Mε
1 ) = χL

n (Mε
2 ) = 2χ(n) + χ(n−1,1).

Proof If Q is the TL-ideal generated by the polynomials xyε, xεy − yεx −
[x, y], xε2 − xε, then it easy to check that Q ⊆ IdL(Mε

1 ).
Since xεyε, x[y, z] ∈ Q, the polynomials

xjxi1 . . . xin−1, xε
1x2 . . . xn, i1 < · · · < in−1,

span PL
n modulo PL

n ∩ Q and we claim that they are linearly independent modulo
IdL(Mε

1 ). In fact, let f ∈ PL
n ∩ IdL(Mε

1 ) be a linear combination of these
polynomials, i.e.,

f =
n∑

j=1

αjxjxi1 . . . xin−1 + βxε
1x2 . . . xn ≡ 0 (mod PL

n ∩ IdL(Mε
1 )).
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For fixed j � 1, from the substitutions xj = e12 and xk = e22 for k � j we get
αj = 0, j � 1. By making the evaluation xk = e22 for all k = 1, . . . , n, we obtain
α1 = 0. Finally by evaluating x1 = e12 and xk = e22 for k � 1, we get β = 0.
Thus the above polynomials are linearly independent modulo PL

n ∩ IdL(Mε
1 ). Since

PL
n ∩Q ⊆ PL

n ∩IdL(Mε
1 ), this proves that Id

L(Mε
1 ) = Q and the above polynomials

are a basis of PL
n modulo PL

n ∩ IdL(Mε
1 ). Clearly cL

n (Mε
1 ) = n + 1.

We now determine the decomposition of the nth differential cocharacter χL
n (Mε

1 )

of this algebra. Suppose that χL
n (Mε

1 ) = ∑
λ
n mλχλ. We consider the tableau T(n)

defined in Theorem 1 and let f(n) and f ε
(n) be the corresponding polynomials defined

in (1). It is clear that f(n) and f ε
(n) are not identities of Mε

1 . Moreover, they are

linearly independent modulo IdL(Mε
1 ). In fact, suppose that αf(n) +βf ε

(n)
≡ 0(mod

IdL(Mε
1 )). By making the evaluation x = e22 we get α = 0. Moreover, if we

evaluate x = e22 + e12, we obtain β = 0. Thus it follows that m(n) ≥ 2. By
Remark 1 and Theorem 2 we have m(n−1,1) ≥ 1. Thus, since degχ(n) = 1 and
degχ(n−1,1) = n − 1, it follows that χL

n (Mε
1 ) = 2χ(n) + χ(n−1,1).

A similar proof holds for the algebra Mε
2 . ��

Let Mδ
1 and Mδ

2 be the L-algebras M1 and M2 where L acts on them as the
1-dimensional Lie algebra spanned by the derivation δ defined in (2) and (3),
respectively. The proof on the next theorem is similar to the above proof and is
omitted.

Theorem 4

1. IdL(Mδ
1 ) = 〈x[y, z], xyδ, xδy − yδx, xδ2〉TL and IdL(Mδ

2 ) =
〈[x, y]z, xδy, xyδ − yxδ, xδ2〉TL .

2. cL
n (Mδ

1) = cL
n (Mδ

2 ) = n + 1.
3. χL

n (Mδ
1 ) = χL

n (Mδ
2 ) = 2χ(n) + χ(n−1,1).

Let now L be a 2-dimensional metabelian Lie algebra. Let denote by MD
1 the

L-algebra M1 where L acts on it as the Lie algebra Der(M1) and MD
2 the L-algebra

M2 where L acts on it as the Lie algebra Der(M2).

Remark 2

1. xδy − yδx ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .
2. xyδ − yxδ ∈ 〈xεy, xyε − yxε − [x, y], xεδ − xδ〉TL .

Proof First notice that [x, y]δ ∈ 〈xyε, [x, y]ε − [x, y]〉TL . Thus, since [x, y]ε ≡
[x, y](mod 〈xyε, xεy − yεx − [x, y]〉TL), it follows that

[x, y]δ ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .

Moreover, since xyδ ∈ 〈xyε, xεδ − xδ〉TL , we get

xδy − yδx ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .

A similar proof holds for the other statement. ��
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We do not present the proof of next theorem since it can be easily deduced by
using the strategy of proof given in Theorem 3.

Theorem 5

1. IdL(MD
1 ) = 〈xyε, xεy − yεx − [x, y], xε2 − xε, xδε, xεδ − xδ〉TL and

IdL(MD
2 ) = 〈xεy, xyε − yxε − [x, y], xε2 − xε, xδε, xεδ − xδ〉TL .

2. cL
n (MD

1 ) = cL
n (MD

2 ) = n + 2.
3. χL

n (MD
1 ) = χL

n (MD
2 ) = 3χ(n) + χ(n−1,1).

4 The Algebra of 2× 2 Upper Triangular Matrices and Its
Differential Identities

In this section we study the growth of differential identities of the algebra UT2 of
2 × 2 upper triangular matrices over F .

Let L be any Lie algebra over F and denote by UT2 the L-algebra UT2 where
L acts trivially on it. Since xγ ≡ 0, for all γ ∈ L, is a differential identity of UT2,
we are dealing with ordinary identities. Thus by Malcev [11], Kemer [8] and by the
proof of Lemma 3.5 in [1], we have the following results.

Theorem 6

1. IdL(UT2) = 〈[x1, x2][x3, x4]〉TL .
2. cL

n (UT2) = 2n−1(n − 2) + 2.
3. If χL

n (UT2) = ∑
λ
n mλχλ is the nth differential cocharacter of UT2, then

mλ =

⎧
⎪⎪⎨

⎪⎪⎩

1, if λ = (n)

q + 1, if λ = (p + q, p) or λ = (p + q, p, 1)

0 in all other cases

.

Theorem 7 varL(UT2) has almost polynomial growth.

Let now ε be the inner derivation of UT2 induced by 2−1(e11 − e22), i.e.,

ε(a) = 2−1[e11 − e22, a], for all a ∈ UT2, (4)

where the eij ’s are the usual matrix units. We shall denote by UT ε
2 the L-algebra

UT2 where L acts on it as the 1-dimensional Lie algebra spanned by ε. In [4] the
authors proved the following.

Theorem 8 ([4, Theorems 5 and 12])

1. IdL(UT ε
2 ) = 〈[x, y]ε − [x, y], xεyε, xε2 − xε〉TL .
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2. cL
n (UT ε

2 ) = 2n−1n + 1.
3. If χL

n (UT ε
2 ) = ∑

λ
n mε
λχλ is the nth differential cocharacter of UT ε

2 , then

mε
λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n + 1, if λ = (n)

2(q + 1), if λ = (p + q, p)

q + 1, if λ = (p + q, p, 1)

0 in all other cases

.

Theorem 9 ([4, Theorem 15]) varL(UT ε
2 ) has almost polynomial growth.

Let now δ be the inner derivation of UT2 induced by 2−1e12, i.e.,

δ(a) = 2−1[e12, a], for all a ∈ UT2. (5)

Denote byUT δ
2 theL-algebraUT2 whereL acts as the 1-dimensional Lie algebra

spanned by δ. The following remarks are easily verified.

Remark 3 [x, y][z,w] ≡ 0, [x, y]δ ≡ 0, xδyδ ≡ 0, xδ[y, z] ≡ 0 and xδ2 ≡ 0 are
differential identities of UT δ

2 .

Remark 4 xδy[z,w], [x, y]zwδ, xδyzδ ∈ 〈xδyδ, xδ[y, z], [x, y]δ〉TL .

Remark 5 For any permutations σ ∈ St , we have

[xδ
σ(1), xσ(2), . . . , xσ(t)] ≡ [xδ

1, x2, . . . , xt ] (mod 〈xδ[y, z], [x, y]δ〉TL).

Proof Let u1, u2, u3 be monomials. We considerw = u1xixju2y
δu3. Since xixj =

xjxi + [xi, xj ], it follows that w ≡ u1xjxiu2y
δu3 (mod 〈xδ[y, z], [x, y]δ〉TL).

In the same way we can show that u1y
δu2zizju3 ≡ u1y

δu2zj ziu3 (mod
〈xδ[w, z]〉TL). Hence in every monomial

xi1 . . . xit y
δzj1 . . . zjp

we can reorder the variables to the left and to the right of yδ. Since
[x, y]δ = [xδ, y] − [yδ, x], we can reorder all the variables in any commutator
[xδ

i1
, xi2, . . . , xit ] as claimed. ��

Lemma 3 The TL-ideal of identities of UT δ
2 is generated by the following polyno-

mials

[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2 .

Proof Let Q = 〈[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2〉TL . By Remark 3, Q ⊆
IdL(UT δ

2 ).
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By the Poincaré-Birkhoff-Witt Theorem (see [12]) every differential multilinear
polynomial in x1, . . . , xn can be written as a linear combination of products of the
type

x
α1
i1

. . . x
αk

ik
w1 . . . wm (6)

where α1, . . . , αk ∈ U(L), w1 . . . , wm are left normed commutators in the
x

αj

i s, αj ∈ U(L), and i1 < · · · < ik . Since [xα1
1 , x

α2
2 ][xα3

3 , x
α4
4 ] ∈ Q, with

α1, α2, α3, α4 ∈ {1, δ}, then, modulo 〈[xα1
1 , x

α2
2 ][xα3

3 , x
α4
4 ], xδ2〉TL , in (6) we have

αj ∈ {1, δ} and m ≤ 1, so, only at most one commutator can appear in (6). Thus
by Remark 4 every multilinear monomial in PL

n can be written, moduloQ, as linear
combination of the elements of the type

x1 . . . xn, xh1 . . . xhn−1x
δ
j , xi1 . . . xik [xγ

j1
, xj2, . . . , xjm],

where h1 < · · · < hn−1, i1 < · · · < ik , m + k = n, m ≥ 2, γ ∈ {1, δ}.
Let us now consider the left normed commutators [xγ

j1
, xj2, . . . , xjm] and suppose

first that γ = 1. Since [x1, x2][x3, x4] ∈ Q, then it is already known that (see for
example [5, Theorem 4.1.5])

[xj1, xj2, . . . , xjm] ≡ [xk, xh1 , . . . , xhm−1] (mod Q),

where k > h1 < · · · < hm−1.
Suppose now γ = δ, then by Remark 5 we get

[xδ
j1

, xj2, . . . , xjm] ≡ [xδ
1, x2, . . . , xt ] (mod 〈xδ[y, z], [x, y]δ〉TL).

It follows that PL
n is spanned, modulo PL

n ∩ Q, by the polynomials

x1 . . . xn, xi1 . . . xim[xk, xj1 , . . . , xjn−m−1],
xh1 . . . xhn−1x

δ
r , xi1 . . . xim [xδ

l1
, xl2, . . . , xln−m], (7)

where i1 < · · · < im, k > j1 < · · · < jn−m−1, h1 < · · · < hn−1, l1 < · · · < ln−m,
m � n − 1, n.

Next we show that these polynomials are linearly independent modulo
IdL(UT δ

2 ). Let I = {i1, . . . , im} be a subset of {1, . . . , n} and k ∈ {1, . . . , n} \ I

such that k > min({1, . . . , n} \ I), then set XI,k = xi1 . . . xim[xk, xj1, . . . , xjn−m−1].
Also for I

′ = {i1, . . . , im} ⊆ {1, . . . , n}, 0 ≤ |I ′ | < n − 1, set Xδ

I
′ =

xi1 . . . xim[xδ
l1
, xl2, . . . , xln−m] and suppose that

f =
∑

I,J

αI,kXI,k +
∑

I
′

αδ

I
′ Xδ

I
′ +

n∑

k=1

αδ
r xh1 . . . xhn−1x

δ
r

+ βx1 . . . xn ≡ 0 (mod PL
n ∩ IdL(UT δ

2 )).
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In order to show that all coefficients αI,k , αδ

I
′ , αδ

r , β are zero we will make some
evaluations. If we evaluate x1 = · · · = xn = e11 + e22 we get β = 0. For a fixed r ,
by setting xh1 = · · · = xhn−1 = e11 + e22 and xr = e22 we get αδ

r = 0. Also, for
a fixed I

′ = {i1, . . . , im}, by making the evaluations xi1 = · · · = xim = e11 + e22,
xl1 = · · · = xln−m = e22 we obtain αδ

I
′ = 0. Finally, for fixed I = {i1, . . . , im}

and J = {j1, . . . , jn−m−1}, from the substitutions xi1 = · · · = xim = e11 + e22,
xk = e12, xj1 = · · · = xjn−m−1 = e22, it follows that αI,k = 0.

We have proved that IdL(UT δ
2 ) = Q and the elements in (7) are a basis of PL

n

modulo PL
n ∩ IdL(UT δ

2 ). ��
We now compute the nth differential cocharacter of UT δ

2 . Write

χL
n (UT δ

2 ) =
∑

λ
n

mδ
λχλ. (8)

In the following lemmas we compute the non-zeromultiplicities of such cocharacter.

Lemma 4 In (8) mδ
(n) ≥ n + 1.

Proof We consider the following tableau:

T(n) = 1 2 . . . n .

We associate to T(n) the monomials

a(x) = xn, (9)

a
(δ)
k (x) = xk−1xδxn−k, (10)

for all k = 1, . . . , n. These monomials are obtained from the essential idempotents
corresponding to the tableau T(n) by identifying all the elements in the row. It is

easily checked that a(x), a(δ)
k (x), k = 1, . . . , n, do not vanish in UT δ

2 .

Next we shall prove that the n + 1 monomials a(x), a
(δ)
k (x), k = 1, . . . , n, are

linearly independent modulo IdL(UT δ
2 ). In fact, suppose that

αa(x) +
n∑

k=1

αδ
ka

(δ)
k (x) ≡ 0 (mod IdL(UT δ

2 )).

By setting x = e11+e22 it follows that α = 0. Moreover, if we substitute x = βe11+
e22 where β ∈ F , β � 0, we get

∑n
k=1(1− β)βk−1αδ

k = 0. Since |F | = ∞, we can
choose β1, . . . , βn ∈ F , where βi � 0 and βi � βj , for all 1 ≤ i � j ≤ n. Then we
get the following homogeneous linear system of n equations in the n variables αδ

k ,
k = 1, . . . , n,

n∑

k=1

βk−1
i αδ

k = 0, i = 1, . . . , n. (11)
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Since the matrix associated to the system (11) is a Vandermonde matrix, it follows
that αδ

k = 0, for all k = 1, . . . , n. Thus the monomials a(x), a(δ)
k (x), k = 1, . . . , n,

are linearly independent modulo IdL(UT δ
2 ). This says that mδ

(n) ≥ n + 1. ��
Lemma 5 Let p ≥ 1 and q ≥ 0. If λ = (p + q, p) then in (8) we have mδ

λ ≥
2(q + 1).

Proof For every i = 0, . . . , q we define T
(i)
λ to be the tableau

i + 1 i + 2 . . . i + p − 1 i + p 1 . . . i i + 2p + 1 . . . n

i + p + 2 i + p + 3 . . . i + 2p i + p + 1
.

We associate to T
(i)
λ the polynomials

b
(p,q)

i (x, y) = xi x . . . x̃︸���︷︷���︸
p−1

[x, y] y . . . ỹ
︸���︷︷���︸

p−1

xq−i , (12)

b
(p,q,δ)

i (x, y) = xi x . . . x̃︸���︷︷���︸
p−1

(xδy − yδx) y . . . ỹ
︸���︷︷���︸

p−1

xq−i , (13)

where the symbols − or ∼ means alternation on the corresponding variables. The
polynomials b

(p,q)
i , b(p,q,δ)

i are obtained from the essential idempotents correspond-

ing to the tableau T
(i)
λ by identifying all the elements in each row of the tableau. It

is clear that b(p,q)
i , b(p,q,δ)

i , i = 0, . . . , q , are not differential identities of UT δ
2 . We

shall prove that the above 2(q + 1) polynomials are linearly independent modulo
IdL(UT δ

2 ). Suppose that

q∑

i=0

αib
(p,q)
i +

q∑

i=0

αδ
i b

(p,q,δ)
i ≡ 0 (mod IdL(UT δ

2 )).

If we set x = βe11 + e22, with β ∈ F , β � 0, and y = e11, we obtain

q∑

i=0

(−1)p−1βiαδ
i = 0.

Since |F | = ∞, we can take β1, . . . , βq+1 ∈ F , where βj � 0, βj � βk , for all
1 ≤ j � k ≤ q + 1. Then we obtain the following homogeneous linear system of
q + 1 equations in the q + 1 variables αδ

i , i = 0, . . . , q ,

q∑

i=0

βi
jα

δ
i = 0, j = 1, . . . , q + 1. (14)
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Since the matrix of this system is a Vandermonde matrix, it follows that αδ
i = 0,

for all i = 0, . . . , q . Hence we may assume that the following identity holds

q∑

i=0

αib
(p,q)

i ≡ 0 (mod IdL(UT δ
2 )).

If we evaluate x = βe11 + e12 + e22, where β ∈ F , β � 0, and y = e11, then we
get

q∑

i=0

(−1)p−1βiαi = 0. (15)

Since |F | = ∞, we choose β1, . . . , βq+1 ∈ F , where βj � 0, βj � βk , for all
1 ≤ j � k ≤ q +1. Then from (15) we obtain a homogeneous linear system of q+1
equations in the q+1 variables αi , i = 0, . . . , q , equivalent to the linear system (14).
Therefore αi = 0, for all i = 0, . . . , q . Hence the polynomials b

(p,q)
i , b

(p,q,δ)
i ,

i = 0, . . . , q , are linearly independent modulo IdL(UT δ
2 ) and, so, mδ

λ ≥ 2(q + 1).
��

As an immediate consequence of Remark 1 and Theorem 6 we have the
following.

Lemma 6 Let p ≥ 1 and q ≥ 0. If λ = (p + q, p, 1), then in (8) we have mδ
λ ≥

q + 1.

We are now in a position to prove the following theorem about the L-algebra
UT δ

2 .

Theorem 10

1. IdL(UT δ
2 ) = 〈[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2〉TL .

2. cL
n (UT δ

2 ) = 2n−1n + 1.
3. If χL

n (UT δ
2 ) = ∑

λ
n mδ
λχλ is the nth differential cocharacter of UT δ

2 , then

mδ
λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n + 1, if λ = (n)

2(q + 1), if λ = (p + q, p)

q + 1, if λ = (p + q, p, 1)

0 in all other cases

. (16)

Proof By Lemma 3 the TL-ideal of differential identities of UT δ
2 is generated by

the polynomials [x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2 and the elements in (7) are
a basis of PL

n modulo PL
n ∩ IdL(UT δ

2 ). Thus by counting these elements we get that
cL
n (UT δ

2 ) = 2n−1n + 1.
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Finally, as a consequence of Lemmas 4, 5, 6 and by following verbatim the
proof of [4, Theorem 12] we get the decomposition into irreducible characters of
χL

n (UT δ
2 ). ��

Notice that varL(UT δ
2 ) has exponential growth, nevertheless it has no almost

polynomial growth. In fact, the algebra UT2 (ordinary case) is an algebra with Fδ-
action where δ acts trivially on UT2, i.e., xδ ≡ 0 is differential identity of UT2.
Then it follows that UT2 ∈ varL(UT δ

2 ), but varL(UT2) growths exponentially. Thus
we have the following result.

Theorem 11 varL(UT δ
2 ) has no almost polynomial growth.

Now denote by UT
η
2 the L-algebra UT2 where L acts on it as the 1-dimensional

Lie algebra spanned by a non-trivial derivation η of UT2. Notice that since any
derivation of UT2 is inner (see [2]), it can be easily checked that the algebra
Der(UT2) of all derivations of UT2 is the 2-dimensional metabelian Lie algebra
with basis {ε, δ} defined in (4) and (5), respectively. Thus

η = α ε + β δ, for some α, β ∈ F not both zero.

Remark 6 [x, y]η − α[x, y] ≡ 0, xηyη ≡ 0, xη2 − αxη ≡ 0, [x, y][z,w] ≡
0, xη[y, z] ≡ 0 are differential identities of UT

η
2 . Moreover, if α � 0, then

[x, y][z,w], xη[y, z] ∈ 〈[x, y]η − α[x, y], xηyη〉TL .

We do not present the proof of next theorem since it can be deduced by using the
strategy of proofs given in [4, Theorems 5 and 12] and Theorem 10.

Theorem 12

1. If α � 0, then IdL(UT
η
2 ) = 〈[x, y]η − α[x, y], xηyη, xη2 − αxη〉TL . Otherwise,

IdL(UT
η
2 ) = 〈[x, y][z,w], xη[y, z], [x, y]η, xηyη, xη2〉TL .

2. cL
n (UT

η

2 ) = 2n−1n + 1.
3. If χL

n (UT
η

2 ) = ∑
λ
n m

η
λχλ is the nth differential cocharacter of UT

η

2 , then

m
η
λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n + 1, if λ = (n)

2(q + 1), if λ = (p + q, p)

q + 1, if λ = (p + q, p, 1)

0 in all other cases

.

Notice that if α = 0, varL(UT
η
2 ) = varL(UT δ

2 ). Thus by Theorem 11 and by
following closely the proof of [4, Theorem 15], taking into account the due changes,
we get the following.

Theorem 13 If α � 0, then varL(UT
η
2 ) has almost polynomial growth. Otherwise

it has no almost polynomial growth.
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Finally let us assume that L is a 2-dimensional metabelian Lie algebra and
denote by UT D

2 the L-algebra UT2 where L acts on it as the Lie algebra Der(UT2).
Giambruno and Rizzo in [4] proved the following result.

Theorem 14 ([4, Theorems 19 and 25])

1. IdL(UT D
2 ) = 〈[x, y]ε − [x, y], xεyε, xε2 − xε, xδε, xεδ − xδ〉TL .

2. cL
n (UT D

2 ) = 2n−1(n + 2).
3. If χL

n (UT D
2 ) = ∑

λ
n mD
λ χλ is the nth differential cocharacter of UT D

2 , then

mD
λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n + 1, if λ = (n)

3(q + 1), if λ = (p + q, p)

q + 1, if λ = (p + q, p, 1)

0 in all other cases

.

Since xδ ≡ 0 is a differential identity of UT ε
2 , var

L(UT ε
2 ) ⊆ varL(UT D

2 ). Then
by Theorem 8, we have the following.

Theorem 15 ([4, Theorem 26]) varL(UT D
2 ) has no almost polynomial growth.

5 On Differential Identities of the Grassmann Algebra

In this section we present an example of infinite dimensional algebra with deriva-
tions of exponential growth.

Let L be a finite dimensional abelian Lie algebra and G the infinite dimensional
Grassmann algebra over F . Recall that G is the algebra generated by 1 and a
countable set of elements e1, e2, . . . subjected to the condition eiej = −ej ei , for
all i, j ≥ 1.

Notice that G can be decomposed in a natural way as the direct sum of the
subspaces

G0 = spanF {ei1 . . . ei2k | i1 < · · · < i2k, k ≥ 0}

and

G1 = spanF {ei1 . . . ei2k+1 | i1 < · · · < i2k+1, k ≥ 0},

i.e., G = G0 ⊕ G1.
Now consider the algebra G where L acts trivially on it. Since xγ ≡ 0, for all

γ ∈ L, is a differential identity of G, we are dealing with ordinary identities. Thus
by Krakowski and Regev [10] we have the following results.
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Theorem 16

1. IdL(G) = 〈[x, y, z]〉T .
2. cL

n (G) = 2n−1.

3. χL
n (G) = ∑n

j=1 χ(j,1n−j ).

Theorem 17 varL(G) has almost polynomial growth.

Recall that if g = ei1 . . . ein ∈ G, the set Supp{g} = {ei1, . . . , ein} is called the
support of g. Let now g1, . . . , gt ∈ G1 be such that Supp{gi} ∩ Supp{gj } = ∅, for
all i, j ∈ {1, . . . , t}. We set

δi = 2−1 ad gi, i = 1, . . . , t.

Then for all g ∈ G we have

δi(g) =
{
0, if g ∈ G0

gig, if g ∈ G1
, i = 1, . . . , t.

Since for all g ∈ G, [δi, δj ](g) = 0, i, j ∈ {1, . . . , t}, L = spanF {δ1, . . . , δt } is a
t-dimensional abelian Lie algebra of inner derivations of G. We shall denote by G̃

the algebra G with this L-action.
Recall that for a real number x we denote by �x� its integer part.

Theorem 18 ([13, Theorems 3 and 9])

1. IdL(G̃) = 〈[x, y, z], [xδi , y], xδiδj 〉TL , i, j = 1, . . . , t .

2. cL
n (G̃) = 2t2n−1 − ∑�t/2�

j=1

∑t
i=2j

(
t
i

)(
n

i−2j

)
.

3. If χL
n (G̃) = ∑

λ
n mL
λ χλ is the nth differential cocharacter of G̃, then

mL
λ =

⎧
⎪⎪⎨

⎪⎪⎩

∑r
i=0

(
t
i

)
, if λ = (n − r + 1, 1r−1) and r < t

2t , if λ = (n − r + 1, 1r−1) and r ≥ t

0 in all other cases

.

Recall that two functions ϕ1(n) and ϕ2(n) are asymptotically equal and we write
ϕ1(n) ≈ ϕ2(n) if limn→∞ ϕ1(n)/ϕ2(n) = 1. Then the following corollary is an
obvious consequence of the previous theorem.

Corollary 1 cL
n (G̃) ≈ 2t2n−1.

Notice that by Corollary 1 varL(G̃) has exponential growth, nevertheless it has
no almost polynomial growth. In fact, the Grassmann algebra G (ordinary case) is
an algebra with L-action where δi , i = 1, . . . , t , acts trivially on G, i.e., xδi ≡ 0,
i = 1, . . . , t , are differential identities of G. Then it follows that G ∈ varL(G̃), but
by Theorem 16 cL

n (G) = 2n−1. Thus we have the following result.

Theorem 19 ([13, Theorem 6]) varL(G̃) has no almost polynomial growth.
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