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Abstract In this paper we study the growth of the differential identities of some
algebras with derivations, i.e., associative algebras where a Lie algebra L (and
its universal enveloping algebra U (L)) acts on them by derivations. In particular,
we study in detail the differential identities and the cocharacter sequences of
some algebras whose sequence of differential codimensions has polynomial growth.
Moreover, we shall give a complete description of the differential identities of the
algebra UT, of 2 x 2 upper triangular matrices endowed with all possible action
of a Lie algebra by derivations. Finally, we present the structure of the differential
identities of the infinite dimensional Grassmann G with respect to the action of a
finite dimensional Lie algebra L of inner derivations.

Keywords Polynomial identity - Differential identity - Codimension -
Cocharacter

1 Introduction

Let A be an associative algebra over a field F' of characteristic zero and assume that
a Lie algebra L acts on it by derivations. Such an action can be naturally extended
to the action of the universal enveloping algebra U (L) of L and in this case we say
that A is an algebra with derivations or an L-algebra. In this context it is natural
to define the differential identities of A, i.e., the polynomials in non-commutative
variables x" = h(x), h € U(L), vanishing in A.

An effective way of measuring the differential identities satisfied by a given
L-algebra A is provided by its sequence of differential codimensions c,l;(A),
n = 1,2,.... The nth term of such sequence measures the dimension of the
space of multilinear differential polynomials in n variables of the relatively free
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algebra with derivations of countable rank of A. Since in characteristic zero, by the
multilinearization process, every differential identity is equivalent to a system of
multilinear ones, the sequence of differential codimensions of A gives a quantitative
measure of the differential identities satisfied by the given L-algebra. Maybe the
most important feature of this sequence proved by Gordienko in [6] is that in case
A is a finite dimensional L-algebra, ¢k (A) is exponentially bounded. Moreover,
he determined the exponential rate of growth of the sequence of differential
codimensions, i.e., he proved that for any finite dimensional L-algebra A, the
limit lim,,—, o0 v/cL (A) exists and is a non-negative integer. Such integer, denoted
exp’ (A), is called the differential PI-exponent of the algebra A and it provides
a scale allowing us to measure the rate of growth of the identities of any finite
dimensional L-algebra. As a consequence of this result it follows that the differential
codimensions of a finite dimensional L-algebra A are either polynomially bounded
or grow exponentially. Hence no intermediate growth is allowed.

When studying the polynomial identities of an L-algebra A, one is lead to
consider var(A), the L-variety of algebras with derivations generated by A, that
is the class of L-algebras satisfying all differential identities satisfied by A. Thus
we define the growth of V = varl(A) to be the growth of the sequence c,’; (V) =
ck(A),n =1,2,... and we say that a variety V has almost polynomial growth if V’
has exponential growth but every proper subvariety has polynomial growth. Since
the ordinary polynomial identities and corresponding codimensions are obtained
by leting L act on A trivially (or L is the trivial Lie algebra), the algebra UT, of
2 x 2 upper triangular matrices regarded as L-algebra where L acts trivially on it
generates an L-variety of almost polynomial growth (see [4, 8]). Clearly another
example of algebras generating an L-variety of almost polynomial growth is the
infinite dimensional Grassmann algebra G where L acts trivially on it (see [8, 13]).
Notice that in the ordinary case Kemer in [8] proved that UT> and G are the only
algebras generating varieties of almost polynomial growth.

Recently in [4] the authors introduced another algebra with derivations gener-
ating a L-variety of almost polynomial growth. They considered UT; to be the
algebra UT, with the action of the 1-dimensional Lie algebra spanned by the inner
derivation ¢ induced by 2’1(e11 — e22), where the ¢;;’s are the usual matrix units.
Also they proved that when the Lie algebra Der(U T5) of all derivations acts on U 75,
the variety with derivations generated by U 7> has no almost polynomial growth.

Notice that if § is the inner derivation of U 75 induced by 2~ ley,, then Der(U T)
is a 2-dimensional metabelian Lie algebra with basis {¢, §}. Here we shall study
the differential identities of U T2‘s , 1.e., the algebra UT, with the action of the
1-dimensional Lie algebra spanned by §. In particular we shall prove that U T2‘s
does not generate an L-variety of almost polynomial growth. Moreover, in order
to complete the description of the differential identities of UT,, we shall study
the T -ideal of the differential identities of U7, with the action of an arbitrary 1-
dimensional Lie subalgebra of Der(U T>).

Furthermore, we shall study the differential identities of some particular L-
algebras whose sequence of differential codimensions has polynomial growth. In
particular we shall exhibit an example of a commutative algebra with derivations
that generates a L-variety of linear growth.
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Finally, we shall give an example of an infinite dimensional L-algebra of
exponential growth. We shall present the structure of the differential identities
of 5, i.e., the infinite dimensional Grassmann algebra with the action of a finite
dimensional abelian Lie algebra and we shall show that, unlike the ordinary case, G
does not generate an L-variety of almost polynomial growth.

2 L-Algebras and Differential Identities

Throughout this paper F will denote a field of characteristic zero. Let A be an
associative algebra over F. Recall that a derivation of A is alinearmapd : A — A
such that

d(ab) = d(a)b + ad(b), foralla,b € A.

In particular an inner derivation induced by a € A is the derivationada : A — A of
A defined by (ad a)(b) = [a, b] = ab — ba, for all b € A. The set of all derivations
of A is a Lie algebra denoted by Der(A), and the set ad(A) of all inner derivations
of A is a Lie subalgebra of Der(A).

Let L be a Lie algebra over F acting on A by derivations. If U (L) is its universal
enveloping algebra, the L-action on A can be naturally extended to an U (L)-action.
In this case we say that A is an algebra with derivations or an L-algebra.

Let L be a Lie algebra. Given a basis 8 = {h; | i € I} of the universal enveloping
algebra U (L) of L, we let F(X|L) be the free associative algebra over F with free
formal generators xl.“, i €l,jeN. Wewrite x; = xl.l, 1 € U(L), and then we set
X ={x1,x2,...}. Welet U(L) act on F(X|L) by setting

vhi, h hiy _hi

hiy hiy hiy, in hi, iy vhi,
j/(le XjT Xy )—le Xj " Xy +~-~+le Xjm e

where y € L and xfli'x;zz ..x;lrf" € F(X|L). The algebra F(X|L) is called the
free associative algebra with derivations on the countable set X and its elements are
called differential polynomials (see [4, 7, 9]).

Given an L-algebra A, a polynomial f(xy,...,x,) € F(X|L) is a polynomial
identity with derivation of A, or a differential identity of A, if f(ai,...,a,) =0
for all @; € A, and, in this case, we write f = 0.

Let Idb(A) = {f € F(X|L) | f = Oon A} be the set of all differential
identities of A. It is readily seen that IdE(A) is a Tp-ideal of F(X|L), ie., an
ideal invariant under the endomorphisms of F(X|L). In characteristic zero every
differential identity is equivalent to a system of multilinear differential identities.
Hence Id%(A) is completely determined by its multilinear polynomial.

Let

h i
Pl = span{xal(l) Xy | O € Su,hi € B}
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be the space of multilinear differential polynomials in the variables x1, ..., x,, n >
1. We act on PL via the symmetric group S, as follows: for o € S, a(xl.h) = xg (i)

For every L-algebra A, the vector space PnL N Id% (A) is invariant under this action.
Hence the space PnL (A) = PnL / (PnL NId% (A)) has a structure of left S,-module. The
non-negative integer c,I; (A) = dim PnL (A) is called nth differential codimension of
A and the character X,f (A) of PnL (A) is called nth differential cocharacter of A.
Since char F = 0, we can write

XEA) =) mfx,
An

where A is a partition of n, x, is the irreducible S,-character associated to A and
m)lj > 0 is the corresponding multiplicity.

Let L be a Lie algebra and H be a Lie subalgebra of L. If A is an L-algebra,
then by restricting the action, A can be regarded as a H -algebra. In this case we say
that A is an L-algebra where L acts on it as the Lie algebra H and we identify the
Tr-ideal IdX (A) and the Ty-ideal Id" (A), i.e., in IdX (A) we omit the differential
identities x¥ = 0, forall y € L\H.

Notice that any algebra A can be regarded as L-algebra by letting L act on A
trivially, i.e., L acts on A as the trivial Lie algebra. Hence the theory of differential
identities generalizes the ordinary theory of polynomial identities.

We denote by P, the space of multilinear ordinary polynomialsin x1, . .., x, and
by Id(A) the T-ideal of the free algebra F'(X) of polynomial identities of A. We also
write ¢, (A) for the nth codimension of A and x,(A) for the nth cocharacter of A.
Since the field F is of characteristic zero, we have x,(A) = >_,, , mj x», where
m; > 0 is the multiplicity of x, in the given decomposition.

Since U (L) is an algebra with unit, we can identify in a natural way P, with a
subspace of PnL. Hence P, C PnL and P, NId(A) = P,NIdL(A). Asa consequence
we have the following relations.

Remark 1 Foralln > 1,

1. ca(A) < ck(A);
2.my < m){‘, for any A - n.

Recall that if A is an L-algebra then the variety of algebras with derivations
generated by A is denoted by var’ (A) and is called L-variety. The growth of V =
varl'(A) is the growth of the sequence cL (V) = ck(A),n =1,2,....

We say that the L-variety V has polynomial growth if cﬁ (V) is polynomially
bounded and V has almost polynomial growth if cﬁ (V) is not polynomially
bounded but every proper L-subvariety of V has polynomial growth.
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3 On Algebras with Derivations of Polynomial Growth

In this section we study some algebras with derivations whose sequence of
differential codimension has linear growth.

Let us first consider the algebra C = F(e11 + e22) @ Feq2 where the ¢;;’s are the
usual matrix units. The Lie algebra Der(C) of derivations of C is a 1-dimensional
Lie algebra generated by ¢ where

e(alerr + exn) + Berz) = Beia,

foralle, B € F.
Let C? denote the L-algebra C where L acts on it as the Lie algebra Der(C).
Thus we have the following.

Theorem 1

1. 1d5(C%) = (Ix, y1, 2535, 2" — x%),.
2. ckectHy=n+1.
3 XE(C®) = 2xm) + X(-1,1)-

Proof Let Q = ([x, y], x®y?, x& — x®)7, . Itis easily checked that Q C IdL(CS).
Since x*wy® € Q, where w is a (eventually trivial) monomial of F(X|L), we
may write any multilinear polynomial f, modulo Q, as a linear combination of
the polynomials

e . .
X1 oo Xny XpXip oo Xiy s <. <lp-1.

We next show that these polynomials are linearly independent modulo Id* (C?).
Suppose that

n
axi .. Xn+ Y By .. X, xf = 0 (mod PF N 1d5(C?)).
k=1

By making the evaluation x; = e11 + e, forall j = 1,...,n, we geta = 0. Also
for fixed k, the evaluation x; = e12 and x; = e11 + ex for j # k gives B = 0.
Thus the above polynomials are linearly independent modulo PnL N1d5(C?). Since
PnL nQ c PnL N1d-(C?), this proves that Id* (C®) = Q and the above polynomials
are a basis of PnL modulo PnL N 1dL(C?). Hence crf (C®HH =n+1.

We now determine the decomposition of the nth differential cocharacter of this
algebra. Suppose that XnL (C®) =Y ;1 maxa. Let us consider the standard tableau

Tmy=12...n
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and the monomials

foy=x".  fo,=xx""" (1)

obtained from the essential idempotents corresponding to the tableau 7(;,, by
identifying all the elements in the row. Clearly f,) and f(’“:l) are not identities of

C?. Moreover, they are linearly independent modulo Id” (C?). In fact, suppose that
afm + ,Bf&) = 0(mod Id*(C?)). By making the evaluation x = e] + ez we get
a = 0. Moreover, if we evaluate x = ey + e22 + ej2, we obtain § = 0. Thus it
follows that m ;) > 2.

Since deg x(») = 1 and deg x(,—1,1) = n — 1, if we find a differential polynomial
corresponding to the partition (n — 1, 1) which is not a differential identity of C?,
we may conclude that XnL (C®) =2xm) + X(n—1,1)-

Let us consider the polynomial

fon-1y = (xFy — yFx)x" 2
obtained from the essential idempotent corresponding to the standard tableau

13...n
T(n—1,1)=2

by identifying all the elements in each row of the tableau. Evaluating x = e11 + e22
and y = ejp we get f(,_1,1) = —ei2 # 0 and f,_1 1) is not a differential identity
of C?. Thus the claim is proved. O

Let us now consider the algebra M| = Fex, @ Fepp and let € and § be derivations
of M such that

e(aex + Bern) = Bera, S(aexr + Berz) = aeqn, (2)

foralla, B € F.
Lemma 1 Der(M) is a 2-dimensional metabelian Lie algebra spanned by € and §
defined in (2).

Proof Let us consider the Lie algebra D spanned by ¢ and §. Since [¢, 5] = 6, D is
a 2-dimensional metabelian Lie algebra and D < Der(My).

Now consider y € Der(M7). Notice that y (exze12) = y(ex2)e12 + exnny(e12) =
exny(e12). Since y (exe12) = 0, it follows that

y(e12) = aejy,
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for some « € F. On the other hand, y (e12) = v (e12¢22) = aeqr + e12y (e22). Thus
it follows that e12y (e22) = 0. Hence

y(ex) = Bern,

for some B € F. Thus we have that y = e 4+ 8 € D and the claim is proved. O

Similarly, if we consider the algebra M> = Fe11 @ Fej2 and we assume that ¢
and ¢ are derivation of M» such that

e(aer + Beiz) = Beiz, d(aer) + Bern) = aenn, 3)
for all o, B € F, then we have the following.

Lemma 2 Der(M>) is a 2-dimensional metabelian Lie algebra spanned by € and &
defined in (3).

Let L be any Lie algebra. We shall denote by M7 and M; the L-algebras M and
M; where L acts trivially on them. Since x¥ = 0 for all y € L, in this case we are
dealing with ordinary identities. Thus we have the following result.

Theorem 2 ([3, Lemma 3])

1. 1d*(My) = (x[y, z2l)1, and 1d*(M2) = ([x, y]2)7,.
2. ckmy) = k(M) =n.

3 xEMy) = xE(M2) = Xy + X—1.1).-

Denote by M{ and M; the L-algebras M| and M, where L acts on them as
the 1-dimensional Lie algebra spanned by the derivation ¢ defined in (2) and (3),
respectively.

Theorem 3

1. IdL(Mf) = (xy®, x®y—yx—[x, y], sz—xS)TL andIdL(Mg) = (x°y, xy*—
yxf =[x, yl, 2% = xf)g,.

2.ty =k =n+1.

3oxEME) = x E(ME) = 2x0) + X(n-1,1)-

Proof If Q is the Tp-ideal generated by the polynomials xy®, x®y — y®x —

[x, ¥], x& x, then it easy to check that Q € Id- (MY).
Since x®y®, x[y, z] € Q, the polynomials

e . .
XjXip o Xiy—1, X1X2...Xp, <. <llp-,

span PF modulo PF N Q and we claim that they are linearly independent modulo
IdL(Mf). In fact, let f € PE N 1d- (M7) be a linear combination of these
polynomials, i.e.,

n
f= Zajxjx,-l o Xip—1 + Bxixa. .. x, =0 (mod PL n1dl(M?)).
j=1
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For fixed j # 1, from the substitutions x; = ejz and x; = ey for k # j we get
aj =0, j # 1. By making the evaluation x; = ez forallk =1, ..., n, we obtain
a1 = 0. Finally by evaluating x; = ej2 and x;y = ey fork # 1, we get B = 0.
Thus the above polynomials are linearly independent modulo PF N 1dE(m 7). Since
PnL nQ C PnL NIdt(m 1), this proves that dt (M ) = Q and the above polynomials
are a basis of PnL modulo PnL N Id: (M7). Clearly cﬁ (M}) =n+1.

We now determine the decomposition of the nth differential cocharacter XnL (M 15 )
of this algebra. Suppose that XnL (M{) = )51, max,. We consider the tableau 7,
defined in Theorem 1 and let f{,) and f&) be the corresponding polynomials defined
in (1). It is clear that f,) and f(gn) are not identities of M{. Moreover, they are
linearly independent modulo Id% (M 1)- In fact, suppose that o f(,) + B f&) = 0(mod
IdL(Mf)). By making the evaluation x = ey we get « = 0. Moreover, if we
evaluate x = ey + ej2, we obtain § = 0. Thus it follows that m(,y > 2. By
Remark 1 and Theorem 2 we have m,—1,1) > 1. Thus, since deg x(,y) = 1 and
deg x(u—1,1) = n — 1, it follows that x,/ (M) = 2x(n) + X(n—1,1)-

A similar proof holds for the algebra M. O

Let Mf and MS be the L-algebras M1 and M, where L acts on them as the
1-dimensional Lie algebra spanned by the derivation § defined in (2) and (3),
respectively. The proof on the next theorem is similar to the above proof and is
omitted.

Theorem 4
Loadbd) = (xly.2l, x Kby — yhx, )y and 1dhMY) =

([-xv )’]Za xﬁy’ xy5 - yxav x62>TL'
k(M) =ckMy) =n+1.
30 xEMY) = X EMD) = 2X(m) + X(u-1.1)-
Let now L be a 2-dimensional metabelian Lie algebra. Let denote by MlD the

L-algebra My where L acts on it as the Lie algebra Der(M) and M2D the L-algebra
M, where L acts on it as the Lie algebra Der(M>).

N

Remark 2
1. x‘sy — y‘sx € (xy®, xfy — yfx — [x, y], x& — x‘S)TL.
2. xy® — yx¥ e (xfy, xy® — yx® —[x,y], x* —x%)7,.

Proof First notice that [x, y]° € (xy®, [x, y]° — [x, yI)1, . Thus, since [x, y]° =
[x, yl(mod (xy®, x°y — y®x — [x, y])1,), it follows that

&

[)C, y]8 € <Xy ) x€y_y€x - [-xv )’]» x€5 _x(S)TL'

§_ x‘s)TL, we get

Moreover, since xy? € (xy®, x®
X%y — yox € (xy®, xfy — y'x — [x, y], x%° — xa)TL.

A similar proof holds for the other statement. O



Growth of Differential Identities 391

We do not present the proof of next theorem since it can be easily deduced by
using the strategy of proof given in Theorem 3.

Theorem 5

1. IdL(MlD) = (xy®%, xfy — y*x — [x,y], )cs2 — x%, x% x&8 _ x‘S)TL and
IdL(MzD) = (xfy, xy® — yx® —[x, y], Xt = x€, x%¢ x80 — x‘S)TL.

2. ckMPy=ckMmPy=n+2.

3 xEMP) = xEMP) =3x0) + X(n—1,1)-

4 The Algebra of 2 x 2 Upper Triangular Matrices and Its
Differential Identities

In this section we study the growth of differential identities of the algebra UT, of
2 x 2 upper triangular matrices over F.

Let L be any Lie algebra over F and denote by U7, the L-algebra UT, where
L acts trivially on it. Since x¥ = 0, for all y € L, is a differential identity of U 7>,
we are dealing with ordinary identities. Thus by Malcev [11], Kemer [8] and by the
proof of Lemma 3.5 in [1], we have the following results.

Theorem 6

1. 15U D) = ([x1, x21[x3, x4])7, -
2. ck(UD) =2"""(n —2) + 2.
3. Ifan(U To) =Y, , myx» is the nth differential cocharacter of UT, then

1, ifh= ()
my,=13yq+1, ifr=((p+q,porrk=(p+q,p1)-
0 in all other cases

Theorem 7 varl (UT») has almost polynomial growth.

Let now ¢ be the inner derivation of U 7> induced by 2-1 (e11 — ex), i.e.,
g(a) =27 e11 — en, al, for all a € UT, 4)

where the e;;’s are the usual matrix units. We shall denote by UT; the L-algebra
UT, where L acts on it as the 1-dimensional Lie algebra spanned by ¢. In [4] the
authors proved the following.

Theorem 8 ([4, Theorems 5 and 12])
115 UTE) = ([x, yIF — [x, y], x°F, x& —xF)7,.
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2. ckwr) =2""n+ L
3. IfxEw T5) = Y s-n M3 X2 i the nth differential cocharacter of UTy, then

n+1, ifA = (n)
me — 2@+, ifr=({@+q,p)
A= . :
qg+1, fr=({@+q,p, 1
0 in all other cases

Theorem 9 ([4, Theorem 15]) vart (U Ty) has almost polynomial growth.

Let now § be the inner derivation of U 7> induced by 27 les, ie.,
8(a) =212, al, for all a € UTs. )

Denote by U T2‘S the L-algebra U T, where L acts as the 1-dimensional Lie algebra

spanned by §. The following remarks are easily verified.
Remark 3 [x, yllz, w] = 0, [x, y]* = 0, x%y% = 0, x%[y, z] = 0 and x*° = 0 are
differential identities of UT}.

Remark 4 x%y[z, w], [x, ylzw®, x%yz% € (x%y%, X[y, z1, [x, y1%)7,.

Remark 5 For any permutations o € S;, we have
[X0 (1) X6 @) - -+ Xoy] =[x, x2, ..., %] (mod (x°[y, 2], [x, y1°)z,).

Proof Letuy, uy, uz be monomials. We consider w = ulxixju2y5u3. Since x;x; =
xjx; + [xi, x;], it follows that w = ulxjxiu2y5u3 (mod (xa[y,z], [x, y]‘S)TL).
In the same way we can show that ulyauzzizjug = ulyauzzjz,-ug (mod
(x°[w, z])1; ). Hence in every monomial

8
Xip oo Xy Y Zjy -+ 2

we can reorder the variables to the left and to the right of y®. Since
[x, y]‘3 = [x4, y] — [y‘s, x], we can reorder all the variables in any commutator
[)clfsl s Xigs -« ., Xi,] as claimed. O

Lemma 3 The Ty -ideal of identities of U Tz‘s is generated by the following polyno-
mials

[x, yllz. wl, [x, y1°, x[y, 2], x0y%, x%.

Proof Let Q = ([x, yllz, w], [x, yI°, x’[y, z], x%y?, x52>TL.By Remark 3, Q C
1d-UT).
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By the Poincaré-Birkhoff-Witt Theorem (see [12]) every differential multilinear

polynomial in x, ..., x, can be written as a linear combination of products of the
type
o [+7%

X X WL W (6)
where ay,...,ar € U(L), wy...,w, are left normed commutators in the
o . . . .
x;'s,j € U(L), and iy < --- < ir. Since [x]", x3?1[x3°, x3*] € Q, with

ar, a2, 3, a4 € {1, 8}, then, modulo ([x]", x371[x5°, x4*], x52>Tu in (6) we have
aj € {1,8} and m < 1, so, only at most one commutator can appear in (6). Thus
by Remark 4 every multilinear monomial in PnL can be written, modulo Q, as linear
combination of the elements of the type

§ 14
X1oooXny  Xhy oo Xhy g Xj, x,-l...x,-k[le,sz,...,xjm],
where h| < --- < hp_1,i1 <---<ig,m+k=nm=>2,y €{l,d}.
Let us now consider the left normed commutators [xj./ ,Xjy, ..., Xj, ] and suppose
1 m

first that y = 1. Since [x1, x2][x3, x4] € Q, then it is already known that (see for
example [5, Theorem 4.1.5])

[Xjis Xjos e v vs Xju] = [Xk, Xnys « v vy Xy, ] (mod Q),

where k > hy < --- < hy—1.
Suppose now y = §, then by Remark 5 we get

(x5, Xjyo o a g, = 60, x2, . %] (mod (x°[y, 2], [x, y1°)7,).

It follows that P is spanned, modulo PF N Q, by the polynomials

X1...Xn, Xiy oo X Xk, Xy oo Xy ]
) $
Xhy oo Xp,_ Xy, Xiy ...x,-m[xll,xlz,...,xlnfm], (7)
wherei] < -+ <im, k> j1 < < Jnem—1, 01 <+ <hp_1,01 <+ <ly_m,

m#n—1,n.
Next we show that these polynomials are linearly independent modulo
1d5(UT)). Let I = {i1,...,im} be asubsetof {I,...,n}and k € {I,...,n}\ I

such thatk > min({1, ..., n}\ I), thenset X; x = x;; ... x;, [Xx, Xj;, ..., Xj,_, ]
Also for I = {i1,...,im} S {1,...,n}, 0 < |I| < n — 1, set x§ =
Xip oo Xiy [xl‘s1 , Xl - -+ XI,_,,] and suppose that

n

§ vo § §

f= E ark X1k + E otI,XI/~|— E Oy Xpy oo Xhy_ Xy
1.J I% k=1

4+ Bx1...x, =0 (mod PL N1d*(UTY)).
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In order to show that all coefficients o g, af,, af, B are zero we will make some

evaluations. If we evaluate x; = --- = x;,, = e11 + e22 we get § = 0. For a fixed r,
by setting x,, = -+ = xp,_; = e11 + e and x, = e we get af = 0. Also, for
afixed I = {i1, ..., im}, by making the evaluations x;; = --- = x;,, = e11 + €22,
Xy, = -+ = x,_, = ez we obtain o, = 0. Finally, for fixed I = {i1,...,im}
and J = {ji,..., ju—m—1}, from the substitutions x;, = --- = x;, = e11 + e,
Xk = €12, Xj; =+ =Xj,_,. | = €22, it follows that aj g = 0.

We have proved that dL U T2‘S ) = Q and the elements in (7) are a basis of PnL
modulo PF N1d4(UTY). O

We now compute the nth differential cocharacter of U Tz‘s. Write
X (UTH) =Y mdx. ®)
An
In the following lemmas we compute the non-zero multiplicities of such cocharacter.
Lemma 4 In (8) mfn) >n+1.
Proof We consider the following tableau:

Tyw=12...n.

We associate to 7,y the monomials

a(x) = x", )

a,ﬁa)(x) = xk1xdxn—k, (10)

forall k =1, ..., n. These monomials are obtained from the essential idempotents

corresponding to the tableau 7, by identifying all the elements in the row. It is
easily checked that a(x), a,E‘S)(x), k=1,...,n,donot vanish in UTZ‘S.

Next we shall prove that the n + 1 monomials a(x), a,E‘S)(x), k=1,...,n,are

linearly independent modulo Id* (U Tz‘s). In fact, suppose that

aa(x) + Y ofa’ (x) =0 (mod 1d“(UTY)).
k=1

By setting x = eq1+ep2 it follows that « = 0. Moreover, if we substitute x = fSeq1+
e where B € F, B #0,wegety ;_,(1— ,3),3"’105,‘3 = 0. Since | F| = oo, we can
choose B1, ..., B, € F, where B; # 0and B; # B, forall 1 <i # j < n. Then we
get the following homogeneous linear system of n equations in the n variables oz,f,
k=1,...,n,

n
Zﬂi"—laﬁzo, i=1,...,n. (1)
k=1
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Since the matrix associated to the system (11) is a Vandermonde matrix, it follows
that @} = 0, forall k = 1, ..., n. Thus the monomials a(x), a> (x), k = 1,...,n,
are linearly independent modulo Id% (U Tz‘s ). This says that m‘?n) >n+1. O

LemmaS5 Let p > landgq > 0. If A = (p + q, p) then in (8) we have mi >
2(g + D).

Proof Foreveryi =0, ..., q we define Tk(i) to be the tableau

i+1 i+2 ...i+p—1 i+p 1...ii+2p+1...n
i+p+2i+p+3... i+2p i+p+1 ’

We associate to T)fi) the polynomials

(p.q) i ~ > q—i
b" " (x,y)=x"x.. . X[x,yly...yx?", (12)
p—1 p—1
(p.q.9) _ i ~0.8 ) ~ q—i
b; x,)=x"x..Xx°y —yx)y...yx?, (13)
p—1 p—1

where the symbols — or ~ means alternation on the corresponding variables. The

polynomials 77, b"4"* are obtained from the essential idempotents correspond-
ing to the tableau T)f’) by identifying all the elements in each row of the tableau. It

is clear that bfp 2 bfp 49 i —0,...,q,are not differential identities of U ). We
shall prove that the above 2(g + 1) polynomials are linearly independent modulo
df (U Tza). Suppose that

q q
> aib”? +3 @b =0 (mod 1dL(UTY)).
i=0 i=0

If we set x = Beq1 +exn, with g € F, 8 #0,and y = e11, we obtain
q .
Z(—1)P*1ﬂ’af =0.
i=0

Since |F| = oo, we can take By, ..., Bg4+1 € F, where ; # 0, Bj # Py, for all
1 < j # k < g + 1. Then we obtain the following homogeneous linear system of
q + 1 equations in the g + 1 variables af, i=0,...,q,

q
Z‘B;(xl‘szo, J:l,,q+1 (14)
i—0
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Since the matrix of this system is a Vandermonde matrix, it follows that af =0,
foralli =0,..., q. Hence we may assume that the following identity holds

q
> aib?? =0 (mod 1d-(UTY)).
i=0

If we evaluate x = Bej| + e12 + €22, where B € F, 8 # 0, and y = ey, then we
get

q
Y (=1 gl =0. (15)
i=0

Since |F| = oo, we choose B, ..., By+1 € F, where B8; # 0, B; # P, for all
1 < j # k < g+ 1. Then from (15) we obtain a homogeneous linear system of g 4- 1

equations in the g+ 1 variableso;, i = 0, .. ., g, equivalent to the linear system (14).
Therefore o; = 0, for all i = 0, ..., q. Hence the polynomials bfp’q), bfp’q’a),
i=0,...,q, are linearly independent modulo IdL(U T2‘S ) and, so, mi >2(g+1).

O

As an immediate consequence of Remark 1 and Theorem 6 we have the
following.

Lemma6 Let p > landqg > 0.If» = (p + q, p, 1), then in (8) we have mi >
q+1

We are now in a position to prove the following theorem about the L-algebra
UTj.
Theorem 10
1 1d5UTY) = ([x, yllz, wl, [x, y°, x°[y, 2], x°y?, ),
2. ckwr)y=2""n + 1.
3. Ifan(U Tz‘s) = in miXA is the nth differential cocharacter of UTY, then

n+1, if A = (n)
2 1 if A =
m? = (g+ D), zf (p+4q.p) ‘ (16)
q+1, ifr=({@+q,p, D
0 in all other cases

Proof By Lemma 3 the Ty -ideal of differential identities of U T2‘S is generated by
the polynomials [x, y][z, w], [x, ¥1°, x*[y, z], x%y?, x%* and the elements in (7) are
a basis of PnL modulo PnL Nidk Tz‘s). Thus by counting these elements we get that
ctwr)) =2""n+ 1.
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Finally, as a consequence of Lemmas 4, 5, 6 and by following verbatim the

proof of [4, Theorem 12] we get the decomposition into irreducible characters of
L s

Xy (UTY). ]

Notice that varl (U Tz‘s) has exponential growth, nevertheless it has no almost
polynomial growth. In fact, the algebra U T» (ordinary case) is an algebra with F'§-
action where § acts trivially on UT>, i.e., x% = 0 is differential identity of UT>.
Then it follows that UT> € vark (UT3), but varl (U T») growths exponentially. Thus
we have the following result.

Theorem 11 varl (U Tz‘s) has no almost polynomial growth.

Now denote by U TZ" the L-algebra U T, where L acts on it as the 1-dimensional
Lie algebra spanned by a non-trivial derivation n of UT5. Notice that since any
derivation of UT; is inner (see [2]), it can be easily checked that the algebra
Der(UT3) of all derivations of UT; is the 2-dimensional metabelian Lie algebra
with basis {¢, 8} defined in (4) and (5), respectively. Thus

n=oae+ B8 for some «, B € F not both zero.

Remark 6 [x,y]" — a[x,y] = 0, x"y" = 0, x”2 —ax™ =0, [x,yllz,w] =
0, x"[y,z] = 0 are differential identities of U TZ”. Moreover, if ¢« # 0, then
[)C, y][zs w]s -xn[ys Z] € ([-xv )’]n - (X[.x, }’]7 xnyrI)TL'

We do not present the proof of next theorem since it can be deduced by using the
strategy of proofs given in [4, Theorems 5 and 12] and Theorem 10.

Theorem 12

1. Ifa #0, then IdL(UTZ") = ([x, y]I" — a[x, y], x"y", X" ax") 1, . Otherwise,
15 UT)) = ([x, yllz, wl, x"[y, 2], [x, y1", x"y", X”Z)TL.

2. ctwur)y=2"nh + 1.

3. Ifan(UTz']) = itn mXXA is the nth differential cocharacter of UT,, then

n+1, if A= (n)
' — 2+, ifr=(p+aq,p)
r= . :
q+1, fr=({@+q,p, D
0 in all other cases

Notice that if & = 0, var/(UT,) = var(UT}). Thus by Theorem 11 and by
following closely the proof of [4, Theorem 15], taking into account the due changes,
we get the following.

Theorem 13 If o # 0, then vark (U Tzn) has almost polynomial growth. Otherwise
it has no almost polynomial growth.
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Finally let us assume that L is a 2-dimensional metabelian Lie algebra and
denote by U T2D the L-algebra U T, where L acts on it as the Lie algebra Der(U 7).
Giambruno and Rizzo in [4] proved the following result.

Theorem 14 ([4, Theorems 19 and 25])

1. IdL(UT2D) = ([x, yI° — [x, ¥], x%y%, X x€, x% x& _ x‘s)TL.

2. ckwrPy=2""1n+2).

3. Ifan(U TZD) = in meA is the nth differential cocharacter of UTL, then

2n +1, if A = (n)
3gq+1), ifr={p+q,p
q+1, fr=((p+q,p,1)

0 in all other cases

Since x® = 0 is a differential identity of UTy, varl(UTS) C varl (UT,). Then
by Theorem 8, we have the following.

Theorem 15 ([4, Theorem 26]) vark w T2D ) has no almost polynomial growth.

5 On Differential Identities of the Grassmann Algebra

In this section we present an example of infinite dimensional algebra with deriva-
tions of exponential growth.

Let L be a finite dimensional abelian Lie algebra and G the infinite dimensional
Grassmann algebra over F. Recall that G is the algebra generated by 1 and a
countable set of elements ey, ez, ... subjected to the condition e;e; = —eje;, for
alli, j > 1.

Notice that G can be decomposed in a natural way as the direct sum of the
subspaces

Go =spang{e;, ...ep | i1 < -+ <iy,k >0}
and
G =spang{e;, ...eiy, | i1 < -+ <izy1,k > 0},
ie., G = Go® Gy.
Now consider the algebra G where L acts trivially on it. Since x¥ = 0, for all

y € L, is a differential identity of G, we are dealing with ordinary identities. Thus
by Krakowski and Regev [10] we have the following results.
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Theorem 16
1. 1d5(G) = ([x, v, z])7.
2. cL(G)—z'H.

3 Xn L(G) = Z?:l X(j =iy
Theorem 17 var’ (G) has almost polynomial growth.

Recall thatif g = ¢;, ...¢e;, € G, the set Supp{g} = {e;;, ..., e;,} is called the
support of g. Let now g1, ..., & € G be such that Supp{g;} N Supp{g;} = @, for
alli, j e {l,...,t}. We set

si=2"ladg, i=1,....,1.
Then for all g € G we have

0, ifgeGo

) , oi=1,...,¢t.
gig, ifge G

3i(g) =

Since for all g € G, [§;,6;1(g) =0,i,j € {1,...,t}, L = spang{d1,...,5} isg
t-dimensional abelian Lie algebra of inner derivations of G. We shall denote by G
the algebra G with this L-action.

Recall that for a real number x we denote by | x] its integer part.

Theorem 18 ([13, Theorems 3 and 9])

1.1d4G) = (1%, y, 2, [x ol K = L
2. Cﬁ’(G) — Dtpn— 1 Zl_l‘/ ] Z (t) (,’Ilzj)'
3. IanL (G) =", m)\ X is the m‘h differential cocharacter of G, then

Yiol@), fr=@m—r+ 11" Yandr <t
my =12, fr=m—r+1, 1" Yandr>1.

0 in all other cases

Recall that two functions ¢ (n) and ¢, (n) are asymptotically equal and we write
p1(n) =~ @a(n) if lim,—o0 @1(n)/@2(n) = 1. Then the following corollary is an
obvious consequence of the previous theorem.

Corollary 1 ¢k (G) ~ 212",

Notice that by Corollary 1 varl (5) has exponential growth, nevertheless it has
no almost polynomial growth. In fact, the Grassmann algebra G (ordinary case) is
an algebra with L-action where §;,i = 1, ..., ¢, acts trivially on G, i.e., xbi =0,
i =1,...,1, are differential identities of G. Then it follows that G € vart (5), but
by Theorem 16 c,l; (G) = 2"~!. Thus we have the following result.

Theorem 19 ([13, Theorem 6]) var® ((~;) has no almost polynomial growth.
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