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Preface

This volume contains the proceedings of the INDAM workshop on “Polynomial
Identities in Algebras” held in Roma from September 16 to September 20, 2019.
The purpose of the workshop was to present the current state of the art in the theory
of PI-algebras.

The theory started with the discovery of special identities and with various
structure theorems for primitive or prime rings satisfying a PI. Then, some deep
results analyzing mainly the nil part of an algebra were proved leading to the
theorem of Razmyslov on the nilpotency of the radical of a finitely generated PI-
algebra over a field. A further major step was made by Kemer who developed
a theory of varieties, leading to the solution of the Specht problem stating the
finite generation of T-ideals in characteristic zero. The theory of Kemer introduced
superalgebras and their superidentities as an essential tool. It turns out that the
Grassmann algebra plays an important role and a basic result of Kemer states that
a PI-algebra is PI equivalent to the Grassmann envelope of a finite-dimensional
superalgebra.

Based on these grounds, the theory developed via two different methods: a
geometric approach strongly related to invariants of matrices leading to the theory
of trace identities and a combinatorial approach based on the representation theory
of the symmetric group leading to the distinction of T-ideals through the analysis of
some growth functions attached to them.

The workshop, inspired by the review of the classical results made in the last few
years, revealed new perspectives and connections to other branches of mathematics
suitable for the development of the theory.

The meeting brought together experts from different areas related to the theory of
polynomial identities and focused on the computational and combinatorial aspects
of the theory, its connection with invariant theory, representation theory, growth
problems, and many other topics.

It was attended by experts from several countries, including Belgium, Brazil,
Bulgaria, Canada, Israel, Poland, Russia, Ukraine, and the USA. The workshop
featured 1-h lectures by E. Aljadeff, Y. Bahturin, A. Berele, V. Drensky, A.
Giambruno, A. Kanel-Belov, P. Koshlukov, V. Petrogradsky, C. Polcino Milies, C.
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vi Preface

Procesi, L. H. Rowen, and M. Zaicev and several other invited talks of shorter
length.

The workshop was also an occasion for celebrating Antonio Giambruno’s 70th
birthday and his contribution to the theory of polynomial identities.

The papers of most of the principal speakers and of some of the invited speakers
are included in the present volume. The contents span a broad range of themes in
current active research areas.

The editors thank the Istituto Nazionale di Alta Matematica “Francesco Severi”
for providing funding and logistical support for the workshop. They also wish
to express their appreciation to the institutions that contributed financial support:
Università della Basilicata, Università di Palermo, and Università di Roma “La
Sapienza.”

Potenza, Italy Onofrio Mario Di Vincenzo
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Some Thoughts on the Current State
of the Theory of Identical Relations in Lie
Algebras

Yuri Bahturin

Abstract This is an attempt to survey the progress made in the study of identical
relations in Lie algebras during almost three decades since the publication of my
book “Identical Relations in Lie Algebras”, the only monograph devoted entirely to
this area. Accordingly, we assume that that reader has access to either the Russian
or the English version of this book.

Keywords Lie algebras · Identical relations

1 Introduction

Let us quickly recall that a free Lie algebra L(X) with free generating set X over a
field F is a Lie algebra generated by X and such that any map vp : X→ M , where
M is another Lie algebra over F, uniquely extends to a Lie algebra homomorphism
ϕ : L(X) → M . This property is called the universal property of L(X). It is easy
that the free Lie algebra with the free generating set X is unique. The existence can
be established in different ways, the two basic ways are to start with the associative
algebras or with the groups.

Let A(X) be an associative algebra on noncommutative polynomials in the
variables X over F. This algebras has the same universal property as L(X) in the
class of associative algebras, so A(X) is a free associative algebra. Now A(X)

is a Lie algebra with respect to the commutator [a, b] = ab − ba. One can
prove that the (Lie) subalgebra of A(X) generated by X with respect to this new
operation has the above universal property of L(X), hence it is isomorphic to
L(X).

Another way to obtain L(X) is to start with the free group F = F(X) freely
generated by X and consider its descending filtration by the lower central series

Y. Bahturin (�)
Memorial University of Newfoundland, St. John’s, NL, Canada
e-mail: bahturin@mun.ca
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2 Y. Bahturin

Fn, n = 1, 2, . . ., where F1 = F and Fn+1 = [Fn, F ], for all n = 1, 2, . . ..
One has [Fp, Fq ] ⊂ Fp+q , for all p, q = 1, 2, . . .. The associated graded
abelian group

grF =
∞⊕

n=1

Fn/Fn+1

can be endowed with the Lie commutator defined on the homogeneous elements
ξ = aFk+1, η = bF�+1, where a ∈ Fk , b ∈ F�, by the formula

[ξ, η] = [a, b]Fk+�+1.

One can prove that this operation can be extended to the whole of grF and makes
grF to a Lie ring. If F is a field then F ⊗ grF is a Lie algebra and the mapping
x → xF2, for all x ∈ X is an isomorphism of L(X) and the Lie subalgebra
generated by X = {1⊗ xF2|x ∈ X}.

Let M be a Lie algebra over a field F. Let x1, . . . , xn ∈ X and w(x1, . . . , xn)

a nonzero element in the subalgebra of L(X) generated by x1, . . . , xn. Given
a1, . . . , an ∈ M we denote by w(a1, . . . , an) the image of w(x1, . . . , xn) under
any homomorphism of L(X) to M extending the map x1 �→ a1, . . . , xn �→ an. We
call w(a1, . . . , an) the value of w(x1, . . . , xn) when x1 = a1, . . . , xn = an. We say
that w(x1, . . . , xn) = 0 is an identical relation in M if w(a1, . . . , an) = 0, for all
a1, . . . , an ∈ M .

Given a set (or even a class)V of algebras over F, the set V of allw(x1, . . . , xn) ∈
L(X) such that w(x1, . . . , xn) = 0 is an identical relation in all algebras in V,
is an ideal of L(X) closed under any endomorphisms of L(X). In other words, if
w(x1, . . . , xn) = 0 is an identity in a Lie algebra M and u1, . . . , un ∈ L(X) then
w(u1, . . . , un) = 0 is also an identity inM . Ideal with this property are called verbal
ideals or ideals of identities or T -ideals.

For any subset V ⊂ L(X) the class V of all algebras satisfying w = 0, for
all w ∈ V is closed under subalgebras, factor-algebras and Cartesian products; it is
called the variety of algebras defined by identical relationsw = 0, for allw ∈ V . By
Birkhoff’s Theorem any class of algebras closed under taking subalgebras, factor-
algebras and Cartesian products is a variety. The set of all w ∈ L(X) such that
w = 0 holds in all algebras in V is the verbal ideal of L(X) generated by V . If
X = {x1, x2, . . .} is a countable set of free generators then there is a one-to-one
Galois-type correspondence between varieties of Lie algebras and the verbal ideals
of L(X).

Two main questions in the theory of identical relations in any class of algebras—
associative, Lie, Jordan, etc.—are the following:

1. Given an algebra A, describe all identities of A;
2. Describe all varieties of algebras in question.



Some Thoughts on the Current State of the Theory of Identical Relations in Lie. . . 3

Since no one seriously believes that these questions can be answered in full
generality, one has to impose conditions under which the questions are answerable.
It is always good to have reasons why these or those restrictions are imposed.

2 Finite Basis Problem

By Hilbert’s Basis Theorem, every ideal in the polynomial ring in finitely many
variables can be generated by a finite number of elements. In other words, any affine
algebraic variety can be given by a finite number of equations. A distant analogy
with polynomial identities and varieties of algebras in the case of Lie algebras lead
to one of the main questions of the theory

Finite Basis Problem

Is it true that any variety of Lie algebras can be given by a finite number of identical
relations?

Equivalently,

Is it true that any verbal ideal of a free Lie algebra of countable rank can be generated, as a
verbal ideal, by a finite number of elements?

Keeping closer to Hilbert’s Basis Theorem,

Is it true that for any natural n, the verbal ideals ofL(x1, . . . , xn) can be generated, as verbal
ideals, by finitely many elements?

The Finite Basis Problem was solved in the negative in 1970 by M. R. Vaughan-
Lee who provided an example of an infinite set of identical relations

ws = [[x1, x2], x3, . . . , xs, [x1, x2]] = 0, s = 3, 4, . . .

In [3] we give the details of the generalization of this example by V. Drensky to the
case of Lie algebras over arbitrary fields of positive characteristic p > 0. Drensky’s
system consists of

ws = [[x1, x2]p−1, x3, . . . , xs, [x1, x2]] = 0, s = 3, 4, . . .

Thanks to these authors we have examples of finite-dimensional dimensional Lie
algebras over infinite fields of positive characteristic whose identical relations do
not admit finite basis. In the case of a field F of characteristic p > 0 such algebra
L belongs to the variety NpA. In other words, [L,L]p = {0}. One of the amazing
facts is that the identities of the Lie algebra gl2(F) of 2-by-2 matrices over an infinite
field of characteristic 2 are infinitely based! Also, these authors produced examples
of Lie algebras of triangular matrices over infinite fields of characteristic p > 0
without finite bases for their identities.
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The condition of the base field being infinite is essential because a theorem by
Bahturin-Olshanskii states that the identities of any finite-dimensional Lie algebra
over a finite field have finite basis. This theorem is described in detail in [3].

At the same time, Krasil’nikov [25] has proven that over any field of characteris-
tic p > 0 identities of a Lie algebra L with [L,L]p−1 = {0} do admit finite basis!
In particular, a Lie algebra of triangular n× n matrices over a field of characteristic
p > n has a finite basis of identities.

In the case of characteristic zero, the Finite Basis Problem remains wide open.
This means that there are no examples of infinitely based varieties of Lie algebras
over the fields of characteristic zero. At the same time, there are many theorems
where the authors prove the existence of a finite basis for identities of Lie algebras
satisfying additional conditions. Often, people prove that a certain variety V of Lie
algebras is Specht. This name comes from PI-algebras and means that not only V

itself but also any subvariety of V is finitely based. By Kemer’s Theorem [20] PI-
algebras in characteristic zero are finitely based. Most of these results are described
in detail in [3, Chapter 4]. We only mention one more result by Krasilnilov [24].

Theorem 1 (A. N. Krasilnikov) Let L be a Lie algebra over a field of characteris-
tic zero. Assume that the commutator subalgebra [L,L] is nilpotent. Then identical
relations of L are finitely based.

An important corollary is the following.

Corollary 1 Identities of a finite-dimensional solvable Lie algebra over a field of
characteristic zero are finitely based.

One of the most general results concerning Finite Basis Problem is published in
a paper [19] of A. Iltyakov. We define identities of representations of Lie algebras
in Sect. 4.

Theorem 2 (A. Iltyakov) Identities of finite-dimensional representations of any
Lie algebra over a field of characteristic zero are finitely based.

Corollary 2 Identities of a finite-dimensional Lie algebra over a field of character-
istic zero are finitely based.

This paper has many interesting ideas and techniques, which should be carefully
studied.

3 Engel Lie Algebras

A visible omission in [3] was a very important area of Engel Lie algebras. The main
problem here is whether an analogue of the classical Engel’s Theorem is true in the
case of infinite-dimensional algebras. Let us call an element x of a Lie algebraL ad-
nilpotent or Engel, or simply nil, if the inner derivation ad x : y �→ [x, y], for any
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y ∈ L, is a nilpotent linear transformation of L. A Lie algebra in which all elements
are nil is called a nil or Engel Lie algebra. The main question is the following.

Is it true that a finitely generated nil Lie algebra L is nilpotent?

The answer to this question is well-known to be in the negative. The first famous
Golod’s example dates back to 1963 [15].

After a long period of time, some new examples, based on different ideas, have
appeared. An array of infinite-dimensional nil Lie algebras was built, starting 2006,
in several papers authored by Petrogradsky, Shestakov and Zelmanov (see [35]
and reference therein). These examples are based on self-similarity idea due to
Grigorchuk and Gupta, and Sidki in Group Theory.

Another collection of examples was given in a 2007 paper by Bahturin-
Olshanskii [8]. This time the techniques were similar to those people use while
constructing infinite Burnside groups. One needs to add enough many relations to
a free restricted Lie algebra to make it nil but not too many, so it remains infinite-
dimensional. Note that if we deal with restricted Lie algebras over a filed of prime
characteristic p (see the definition in [3]) then nil elements are those for which
x[pn] = 0, for some n, which makes them closer to associative nil-algebras.

Also, in many important cases, a Lie algebra built by a central filtration of a
periodic group is Engel. What is important is that if this Lie algebra is nilpotent,
then also the original group is nilpotent. This made Lie algebras an important tool
in the solution of the problems of Burnside type in the Group Theory.

Engel Lie algebras in which the nilpotency index of every element is bounded by
a certain number n are called n-Engel Lie algebras. These algebras form a varietyEn
given by an identity (ad x)n(y) = 0. The main questions here are the following:

1. (Global nilpotence) Is it true that for any natural n there is natural f (n) such
that En ⊂ Nf (n)?

2. (Local nilpotence) Is it true that for any natural n, r there is natural g(n, r) such
that any r-generator algebra in En is nilpotent of class g(n, r)?

3.1 Global Nilpotence

An example of P. M. Cohn (see [3]) tells us that if char F = p > 0 then Ep+1 is not
nilpotent. With much more work and ingenuity, Razmyslov [37] has shown that if
p > 3 then Ep−2 is also not nilpotent. For p = 5 this was shown also in [2].

In 1987 Zelmanov proved the following major result [52]

Theorem 3 (E. I. Zelmanov) n-Engel Lie algebra over a field of characteristic 0
is nilpotent.

Corollary 3 There is a function of natural argument f (n) such that n-Engel
algebra over a field of characteristic p > f (n) is nilpotent.
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Zelmanov’s result implies that there is a function f (n) such that En ⊂ Nf (n)
(take as f (n) the nilpotency class of the free algebra of countable rank in En), but it
does not provide for such number. In a paper [45] Traustason proves the following.

Theorem 4 (G. Traustason) If the characteristic of the ground field is zero or big,
say, p > �(n) = 1024 ·1046 ·n40 ·3[(n−5)/2] then n-Engel Lie algebras are nilpotent
of class T (n, �(n)) where T (n, s) is given recursively by T (n, 1) = n, T (n, s+1) =
nT (n, s), for s > 1

One more mathematician was close to the solution of Engel’s Problem. In 1984
paper [28] S. P. Mishchenko considered Engel Lie algebras in the varieties of
exponential growth (see Sect. 5). His result is as follows.

Theorem 5 (S. P. Mishchenko) LetV be a variety of Lie algebras with exponential
growth of codimensions, over a field of characteristic zero. If L ∈ V satisfies an
Engel identity then L is nilpotent.

Although the growth of codimensions of varieties of Lie algebras does not
need to be exponential, many varieties do have such growth. For examples, as
shown in the same paper, varieties Wn generated by Cartan Lie algebras Wn have
exponential growth and any infinite-dimensional algebra simple algebra with a
proper subalgebra of codimension n can be embedded in the Lie algebra W̃n of
derivations of the power series ring F[[x1, . . . , xn]] over a proper extension of the
base field of coefficients (which does not affect identical relations).

It is more or less obvious that the numbers �(n) and T (n, �(n)) in Traustason’s
theorem are too big. For instance, Zelmanov’s guess was that �(n) could be replaced
by just 2n.

3.2 Restricted Burnside Problem: Local Nilpotence of Engel
Lie algebras

In 1994 Zelmanov was awarded the Fields medal for his groundbreaking solution of
Restricted Burnside Problem, which reads as follows:

For what values of r and n is there an upper bound on the orders of finite r-generator groups
of exponent n?

The answer turns out to be that such an upper bound exists for all r and n. From
the classification of finite simple groups and the work of P. Hall and G. Higman,
it follows that it is sufficient to consider n when n is a power of a prime. In 1959
Kostrikin [22, 23] proved that there is an upper bound if n is a prime. In 1989
Zelmanov [53] showed that an upper bound exists if n is a power of an odd prime.
In 1991 Zelmanov [54] showed that an upper bound exists also if n is a power of 2.
Thus he solved the Restricted Burnside problem in its full generality.

The theorems of Kostrikin and Zelmanov are in fact theorems about Lie algebras.
The reason is that the following are equivalent.
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1. There is a largest finite r-generator group of exponent pm;
2. The associated Lie ring of B(r, pm) is nilpotent.

Here B(r, n) is the (relatively) free r-generator group of exponent n. Now the
associated Lie ring of B(r, p) satisfies (p− 1) Engel identity and has characteristic
p, and so we can think of it as an Engel Lie algebra over the field Z/pZ. So it was
sufficient for Kostrikin to prove the following.

Theorem 6 (A. I. Kostrikin) Let L be a finitely generated Engel (p−1)-Engel Lie
algebra over a field of characteristic p. Then L is nilpotent.

A more general result, that the associated Lie-ring of B(r, pm) is nilpotent,
follows from

Theorem 7 (E. I. Zelmanov) Let L be a finitely generated Lie-algebra. Suppose
that there exist positive integers s, t such that:

∑

σ∈Sym(s)

(ad xσ(1))(ad xσ(2)) · · · (ad xσ(s))(x) = 0,

for all x, x1, x2, ..., xs ∈ L, and

(adu)t = 0

for all Lie monomials u ∈ L in terms of generators of L Then L is nilpotent.

A somewhat more general Zelmanov’s result reported to Kyoto ICM in 1991 and
widely used in Group Theory was the following [55]. We call a subset S ⊂ L is
called a Lie set if, for arbitrary elements a,∈ S, we have [a, b] ∈ S. For a subset
X ⊂ L, the Lie set generated by X is the smallest Lie set S〈X〉 containing X. It
consists of X and of all iterated commutators in elements from X.

Theorem 8 (E. I. Zelmanov) Let L be a Lie algebra satisfying a polynomial
identity and generated by elements a1, . . . , am. If an arbitrary element s ∈
S〈a1, . . . , am〉 is ad-nilpotent then the Lie algebra L is nilpotent.

In conclusion, we mentioned one more book [46] on Restricted Burnside
Problem.

4 Identities of Simple Lie Algebras

4.1 The Isomorphism Problem

In 1983 paper [26] the following important result was proven.

Theorem 9 Over an algebraically closed field any simple finite-dimensional Lie
algebra is completely determined, up to isomorphism, by its identical relations.



8 Y. Bahturin

Actually, this result was a consequence of previous deep results by Razmyslov
[42] dealing with so called �-algebras and their representations. If � = ∪∞n=0�n
is a set, a vector space A is an �-algebra if with each ω ∈ �n one associates
an n-ary operation on A, that is, an n-linear map ω : A⊗ n → A. One can
naturally define free �-algebra F�(X) for a set of free generators X. Associative
and Lie algebras are natural examples of �-algebras, with just one, binary,
operation.

Let us fix in F�(X) a subset �′ of multilinear polynomials. Elements of �′ have
natural arity and can be viewed as operations on any subspace G of an �-algebra
B, which is closed under these operations. Razmyslov calls (B,G) an (�,�′)-pair.
Again, natural examples are associative Lie pairs, in particular, the pairs which arise
when we consider a representation ρ : G → EndV of a Lie algebra G by linear
transformations of a vector space V and consider an associative algebraB generated
by ρ(G).

The elements of F�(X) are called �-polynomials. An �-polynomial
w(x1, . . . , xn) is called an identity of an (�,�′)-pair (B,G) if w(g1, . . . , gn) = 0,
for any g1, . . . , gn ∈ G. Identities of a Lie algebra G can be viewed as identities
of the pair (B,G) where B is an associative subalgebra of End L generated by all
ad g, g ∈G.

In [39] Razmyslov proves the following.

Theorem 10 Let (B1,G1) and (B2,G2) be two (�,�′)-algebras over an infinite
field F such thatB1 andB2 are centrally prime andG1 andG2 are finite-dimensional
over F. The identities of (B1,G1) and (B2,G2) are the same if and only if there
exists an F-linear automorphism σ of an algebraically closed extension F1 of infinite
transcendental degree over F such that the pairs (B1,G1) and (B2,G2) are F-
isomorphic and this isomorphism is σ -semilinear.

The above Theorem 9 is a corollary of Theorem 10. Another corollary is

Theorem 11 Let F be an algebraically closed field. Let ρi : Gi → End Vi , i =
1, 2 are two faithful irreducible not necessarily finite-dimensional representations
of finite-dimensional Lie algebrasG1 andG2, respectively. Let us denote by Bi the
associative subalgebra in End Vi generated by ρ(Gi ), i = 1, 2. If (B1,G1) and
(B2,G2) have the same identities then they are isomorphic. If, moreover, V1 and
V2 are finite-dimensional then there exists a Lie isomorphism ϕ : G1 → G2 and a
linear isomorphism ψ : V1 → V2 such that ψ(gv) = ϕ(g)ψ(v), for all g ∈G1 and
all v ∈ V1.

Note that Theorem 9 is just one possible corollary of Theorem 10. It also follows
that

Any two (nonassociative) finite-dimensional simple algebras over an algebraically closed
field have the same identities if and only if they are isomorphic.

Easy examples, say g1 = su2(R) and g1 = so3(R) show that the requirement of
F being algebraically closed is essential. An example by Razmyslov [41] shows that
the following conjecture is false:
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Given two finite-dimensional simple Lie algebras G1 and G2 over an alge-
braically closed field F, does it follow from var G1 ⊂ var G2 that G1 is isomorphic
to a subalgebra in G2?

4.2 Identities of Cartan Type Lie Algebras

This section mostly consists of the results of Razmyslov. Many of them can be
found in his monograph [42]. In [40] he states the following conjecture, the answer
to which is not known even now.

Razmyslov’s Conjecture Any simple Lie algebra satisfying a nontrivial Lie identity
is an algebra of Cartan type.

In the case of the fields of characteristic zero, Cartan type Lie algebra have been
known in Geometry since more than by one hundred years ago and belong to one of
the typesWn, Sn, Hn and Kn. Their analogues in the case of positive characteristic
appear later in Kostrikin–Shafarevich conjecture for the classification of simple Lie
algebras. However, these latter algebras are finite-dimensional. One of the basic
properties of Cartan Lie algebras of rank n is the presence of a proper subalgebra
of codimension n. Razmyslov chooses this property for the definition of simple
Cartan type algebras. As a result, any finite-dimensional simple algebras are of
Cartan type, which is at odds with the terminology accepted in the classification
theory of modular simple Lie algebras.

Definition A simple Lie algebra g over an arbitrary field F is called a Cartan type
Lie algebra, if there is an extension F of the centroidC of g such that the extended F-
Lie algebra g = F⊗C g has a proper F-subalgebra of finite codimension. It follows
from the classical Cartan’s result that, if F is a field of characteristic zero, any simple
Lie algebra g such that g = F⊗ g has a proper F-subalgebra of finite codimension
n can be embedded in a Lie algebra W̃n(F) of all derivations of the power series
F[[t1 . . . , tn]]; in W̃n(F) there is a unique Lie subalgebra of codimension n.

Thus the algebras W̃n(F) are unique universal simple algebras containing
arbitrary simple Cartan type Lie algebras. Similar universal simple algebras can
be defined in the case of the fields of positive characteristic.

The following result is among the strongest aimed to the solution of Razmyslov’s
Conjecture [40].

Theorem 12 Let V be an arbitrary variety of Lie algebras over a field F of
characteristic zero. Assume the growth ofV is at most exponential. Then any simple
F-algebra inV is a Cartan type algebra

As we mentioned in Sect. 3 earlier, S. P. Mishchenko proved that var Wn(F),
hence var W̃n(F) has exponential growth.

If in Theorem 12 we takeV = var Wn(F) then Razmyslov proves that any simple
algebra g in V such that dim g > n2 + 2n is isomorphic to a subalgebra of W̃n(F).
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An earlier result by Razmyslov, in the case of n = 1, gives an additional
interesting piece of information:

Theorem 13 Let g be a simple Lie algebra over a field F, charF � 2. Let C be the
centroid of g. Then the following properties of g are equivalent.

1. There is an extension F1 of C such the simple F1-algebra g1 = F1 ⊗V g has an
F1-subalgebra of codimension 1;

2. g ∈ var W1(F);
3. g satisfies standard Lie identity of degree 5:

∑

σ∈S4

(sgn σ)[xσ(1), xσ(2)xσ(3), xσ(4), x5] = 0; (1)

This brings us to another open question:

Open Problem Is it true that the standard Lie identity of degree 5 forms a basis for
the identities ofW1(F)?

To answer this question in the positive, we would need to prove that for any
algebra g over F, if g satisfies (1), then g ∈ var W1(F). Razmyslov proved this in the
case where g is simple.

M. V. Zaicev noted that the above problem has a “no” answer if m ≥ 2, namely
the identities ofWm do not follow from a standard identity.

We conclude with one more result aimed at the solution of Razmyslov’s Con-
jecture. To state it, we recall that an algebra L is called locally finite-dimensional
if every finite subset of L generates a finite-dimensional subalgebra. The following
result is proven in [4].

Theorem 14 (Y. Bahturin and H. Strade) Let L be a simple locally finite-
dimensional Lie algebra over a field F, satisfying a nontrivial identical relation.
Assume charF = 0 or charF = p > 7. Then L is an algebra of Cartan type.

The restriction p > 7 is related to the state of the classification theory of simple
modular Lie algebras in 1994. Since then there was essential progress by Premet
and Strade [36] in the case of charF = 5, 7, which raises the question about the
validity of the above theorem in the case of these smaller characteristics.

4.3 Capelli Identities

For some time, people believed that infinite-dimensional Cartan type Lie algebras do
not satisfy non-trivial identities. But in 1974 I. Sumenkov proved that W1 satisfies
standard identity of degree 5. Later Razmyslov found that standard identities of
appropriate degrees are satisfied in all Wn, n = 1, 2, . . .. Standard identities are
particular case of so called Capelli identities which are defined, as follows.



Some Thoughts on the Current State of the Theory of Identical Relations in Lie. . . 11

Definition Let w(x1, . . . , xm; xm+1, . . . , xn) ∈ L(x1, . . . , xn) be a Lie polynomial
which is multilinear and alternating with respect to the variables x1, . . . , xm, that is,

w(x1, . . . , xi, . . . , xj , . . . , xm; xm+1, . . . , xn) (2)

= −w(x1, . . . , xj , . . . , xi , . . . , xm; xm+1, . . . , xn) (3)

for any 1 ≤ i < j ≤ m.

Then we say that w(x1, . . . , xm; xm+1, . . . , xn) = 0 is a Capelli identity of order
m.

Any finite-dimensional (Lie) algebra L satisfies all Capelli identities of order
n, n > dim L. In [38] Razmyslov proved several results for algebras and pairs of
algebras far more general then (the representations of) Lie algebras. These results
show that in a certain sense algebras satisfying all Capelli identities of order m+ 1
can be viewed as m-dimensional over an extended domain of “scalars”. One of the
corollaries of the main theorems, closest to Lie algebras, says the following. Given
a Lie algebra L over a field F , we denote by AdL the associative subalgebra of
EndF L generated by all ad x where x ∈ L. Sometimes one calls AdL the adjoint
algebra of L.

Theorem 15 (Yu. P. Razmyslov) Suppose that a Lie algebraL satisfies all Capelli
identities of orderm+1. Then inL there is an ideal J satisfying Jm−2 = {0}with the
following property. The adjoint algebra D = Ad(L/J ) is a PI-algebra, moreover,
D satisfies all identities of a matrix algebra of certain order.

Capelli identities enable one to define the rank r(A, V ) of a subspace
V of an algebra A as follows. Suppose we have a Capelli polynomial
w(x1, . . . , xm; xm+1, . . . , xn), as before. A natural number k is called the rank
of V in A if k is the smallest numberm such that w(v1, . . . , vm; am+1, . . . , an) = 0
as soon as v1, . . . , vm ∈ V and am+1, . . . , an ∈ A. The following Rank Theorem
appears in the proof of the fact that simple algebras are determined by their identities
(see Sect. 4.1). Given a semiprime algebra (could be an�-algebra!)A, one can view
A as a module over the associative algebraD(A) of multiplications of A (AdA if A
is a Lie algebra), take the injective hull P of this module, consider E = EndD(A) P
and define the central closure Q(A) = E ∗ A. If p : E → EndD(A) Q(A) is the
natural representation then C(A) = Imp = E/Kerp is called the Martindale
centroid of A. We have Q(A) = C(A) ∗ A. For A simple, this is just the ordinary
centroid of A. If A is prime then C(A) is a field.

Theorem 16 (Yu. P. Razmyslov) (see [42]) Let V be an F-vector subspace of a
prime algebra A. If rank(A, V ) <∞, then

dimC(A) C(A)V = rank(A, V )− 1.

In [38] the author asks if for any m, the set of all Capelli identities of order m
is finitely based. He mentions that in the case of weak identities of a pair (A,L),
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where A is associative and L is Lie, the answer is yes. No proof substantiated this
claim. We conclude this section by a theorem of Stovba [44].

Theorem 17 (V. V. Stovba) Let F be a field of characteristic zero. The following
systems of identical relations in Lie and associative algebras are finitely based.

1. The set of Capelli identities of any given order m.
2. The set of symmetric identities of any given order m.
3. Any set of identities in finitely many variables such that the degrees of all

variables but one are bounded.

5 Codimension Growth

Let F be a field of characteristic zero and M a Lie algebra over F. Let L(X) be a
free Lie algebra over F, generated by a countable set X = {x1, x2, . . .}, and Id (M)
the verbal ideal of L(X), consisting of all identities of L. Let Vn be the space of all
multitlinear Lie polynomials in the variables x1, . . . , xn insideL(X). Since charF =
0, the ideal Id (M) is uniquely determined by its multilinear components, that is,
Id(M) ∩ Vn, n = 1, 2, . . . L̇et us denote by cn(M) the so called nth codimension of
identities ofM , that is,

cn = cn(M) = dim
Vn

Vn ∩ Id (M)
.

The asymptotic behavior of the sequence {cn(M)}, n = 1, 2, . . . , is an important
numerical characteristic of L. In 1980 paper [10] the authors have described all
the varieties with polynomial growth of codimensions in the language of Young
diagrams. In [29], Mishchenko proved the following:

Theorem 18 (S. P. Mishchenko) The codimensions cn(V) have polynomial growth
if and only N2A � V ⊂ NcA for some c.

A useful consequence of this result is the following.

Corollary 4 If the codimensions of a variety are of subexponential growth, then
their growth is polynomial.

5.1 Exponential Growth

Many important classes of Lie algebras have exponentially bounded growth of the
sequence cn(L).
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Among them we mention finite-dimensional algebras (any, not necessarily
associative or Lie, [7]), affine Kac-Moody Lie algebras [48], infinite-dimensional
Cartan type simple Lie algebras [28], special Lie algebras and many others.

In the case where the growth of cn(L) is at most exponential, the sequence
n
√
cn(L) is bounded and one can write its upper and lower limits

EXP(L) = lim
n→∞

n
√
cn(L), EXP(L) = lim

n→∞
n
√
cn(L),

which are called upper and lower exponents, respectively. If they coincide, there
exists the limit of the sequence

EXP(L) = EXP(L) = EXP(L),

called the exponent of the growth of identities of L or simply the exponent of L.
For an associative PI-algebra A its nth codimension, upper, lower and ordinary

exponents are defined in a similar matter. Regev proved that {cn(A)} is always
exponentially bounded [43]. Several decades ago, Amitsur conjectured that, given
a PI-algebra A, its exponent EXP(A) always exists and is an integral number. This
conjecture was proven in the papers of Giambruno and Zaicev (see this and many
other interesting results in their book [13]).

In the case of Lie algebras, there are many examples where EXP(L) exists
and equals an integer. For instance, if L is an algebra with nilpotent commutator
subalgebra, (L2)m = 0, then EXP(L) is an integer bounded by m [34].

At the same time, for arbitrary Lie algebras, even with exponentially bounded
growth of codimensions, the answer to Amitsur’s question is negative. It was shown
in [50], that there exists an infinite-dimensional Lie algebra L, for which

3.1 < EXP(L) ≤ EXP(L) < 3.9.

In [31] the authors mention that actually for this algebra EXP(L) exists and is a
number close to 3.61. In fact, the integrality of the exponent does not hold for simple
Lie algebras of Cartan type, as shown by an example of S. S. Mishchenko [30]):
13.1 < EXP(W2) < 13.5. In [31] the following is conjectured:

EXP(Wk) = k(k + 1)

(
1 + 1

k

)k
.

In the case of finite-dimensional Lie algebras, Amitsur’s problem was solved by
Zaicev in 2001 [51].

Theorem 19 LetL be a finite-dimensional Lie algebra over a field of characteristic
zero. Then EXP(L) exists and is an integral number.

It should be mentioned, that the techniques suggested in the proof allow one to
explicitly compute EXP(L), if one knows the structure of L.
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5.2 Overexponential Growth

In distinction with the case of associative PI-algebras, the sequence of codimensions
of a Lie algebra, satisfying a nontrivial identity has much more involved behavior.
Volichenko in [47] showed that a Lie L algebra can have overexponential growth of
codimensions already if L satisfies the identity [[x1, x2, x3], [x1, x2, x3]] = 0, that
is, belongs to the product variety AN2.

Still, there is “restriction” from above for the codimension growth of Lie algebras
satisfying a nontrivial identity. This is given in the following theorem by Grishkov
[17].

Theorem 20 (A. N. Grishkov) For any number a the growth of a nontrivial

varieties of Lie algebras is at most
n!
an

.

Razmyslov [42] has associated with any nontrivial variety V of (Lie) algebras a
power series

CV(z) =
∞∑

n=1

cn(V)

n! zn,

which he called the complexity function of V.
The following is a theorem of Razmyslov [42] that implies the above result of

Grishkov:

Theorem 21 (Yu. P. Razmyslov) For any nontrivial variety of Lie algebras V the
series CV(z) defines an entire function of complex variable.

Starting from this, Petrogradsky in [33] exhibited a whole scale of overex-
ponential functions in the process of describing the codimension growth of the
polynilpotent Lie algebras, that is, Lie algebras in the product varieties Nc1 · · ·Ncm .

Petrogradsky gave a better bound for the codimensions of any proper variety of
Lie algebras. To state it, we define

ln(1) x = ln x; ln(s+1) x = ln(ln(s) x) s = 1, 2; . . . ; (4)

Then the following is true.

Theorem 22 (V. M. Petrogradsky) Let V be a variety of Lie algebras satisfying
a non-trivial identity of degree m > 3. Then there exists an infinitesimal o(1)
(depending only on m) such that

cn(V) ≤ n!
(ln(m−3) n)n

(1 + o(1))n.
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For any variety V = Ncq · · ·Nc2Nc1 of polynilpotent Lie algebras Petrogradsky
determined the following:

cn(V) = n!
(ln(q−2) n)n/c1

(
c2 + o(1)
c1

)n/c1

if q ≥ 3

cn(V) = (n!)(c1−1)/c1 (c2 + o(1))n/c1 if q = 2 (5)

5.3 Colength

The study of the growth of the codimensions is done through the representation
theory of the symmetric group Sn. One defines an Sn-action on Pn, where Sn is the
symmetric group on n symbols, by setting

σ ◦ f (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)),

where σ ∈ Sn, f ∈ Pn. Under this action Pn∩ Id (A) is an Sn-submodule of Pn and
we consider the induced action on the quotient space Pn(A) = Pn/(Pn ∩ Id(A)).

Let χn(A) = χ(Pn(A)) be the Sn-character of Pn(A). The character χn(A) is
called the nth cocharacter of A. It can be decomposed as the sum of irreducible
characters

χn(A) =
∑

λ�n
mλχλ

where λ is a partition of n, χλ is the associated irreducible Sn-character and the
integermλ is the corresponding multiplicity. Then if dλ = degχλ,

cn(A) =
∑

λ�n
mλdλ

Now the sequence of colengths is defined as follows. First of all, the nth colength
�n(A) of A is defined as the sum of the multiplicities mλ, as above. Hence

�n(A) =
∑

λ�n
mλ.

We can also speak about the sequence of colengths for any variety of nonasso-
ciative algebras: {�n(V)}. An easy fact is the folowing:

�n(V) ≥ cn(V)√
n! .
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Now it follows easily from Petrogradsky’s formula for codimensions (5) that the
growth of the sequence of colengths for NbNa is overexponential as soon as a ≥ 3.

The following theorem is proven in [14].

Theorem 23 (A. Giambruno, S. P. Mischenko, and M. V. Zaicev) If A is finite-
dimensional algebra over a field of characteristic zero and dimA = d , then
�n(A) ≤ d(n+ 1)d

2+d .

Note that it is not required in this theorem for A to be a Lie algebra. Finally, in the
same paper, the authors find the following

�n(AN2) ∼ exp

(√
2

3
nπ

)

Thus the growth of the sequence of colengths for a variety of Lie algebras can be
intermediate between polynomial and exponential.

6 Graded Lie Algebras and Identities

Let L be an algebra over a field F and G a group. We say that L isG-graded if L =⊕
g∈G Lg such that for any g, h ∈ G one has [Lg,Lh] ⊂ Lgh. The subset SuppL =

{g ∈ G|Lg � 0} is called the support of the grading. If L is a simple algebra, it
is well-known that gh = hg for any g, h ∈ SuppL. The neutral component of the
grading Le is a Lie subalgebra and one of the natural questions is the following.

Suppose that L = ⊕
g∈G Lg is graded by a finite group G so that Le satisfies a nontrivial

identity. Is the same true for the whole of L?

The restriction on the finiteness of the number of homogeneous components is
necessary: a free Lie algebraL(X) is naturally graded byG = Z, with L(X)0 = {0}.

A positive answer to above question, asked by A. Zalessky, was given in 1996 in
[6].

Theorem 24 (Y. Bahturin, M. Zaicev) Let L be a Lie algebra over an arbitrary
field F, G a finite group. If the component Le is a Lie algebra with a non-trivial
identity, then so is L.

Actually, the theorem deals with so called “Lie Type Algebras”, which includes
associative and Lie algebras and superalgebras as particular cases (see Sect. 7
below).

One of the consequences of the above theorem deals with fixed point of
automorphisms in Group Theory. It was proved in [6] for solvable groups but later
V. Linchenko [27] provided a proof without this restriction.

Theorem 25 (V. Linchenko) Let G be a finite subgroup in the automorphism
group of a Lie algebra L over a field F where charF is not a divisor of |G| and
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let the set of G-invariants LG satisfy a non-trivial identity. Then also L satisfies a
non-trivial identity

If the answer to the above question is “yes”, then one asks:

Is there a connection between the identities satisfied by Le and L?

For example, a famous G. Higman’s problem [18] asks:

What is the nilpotency class of a Lie algebra graded by a finite group so that the neutral
component of the grading is trivial?

In connection with the study of groups admitting a fixed-points-free automor-
phism of prime-power order, Higman proved the following.

Theorem 26 (G. Higman) To each prime p corresponds an integer k(p) such that
if a Lie ring L has an automorphism of order p which leaves fixed no element except
zero, then L is nilpotent of class at most k(p).

It is easy to see that k(2) = 1, and that k(3) = 2; Higman proves that k(5) = 6,

and that, for any odd p, k(p) >
p2 − 1

4
. However, it was not possible to find any

general upper bound for k(p), and as Higman writes, “it appears to be quite difficult
even to find its order of magnitude”.

One of the consequences is the following

Theorem 27 (G. Higman) If a finite solvable group has an automorphism of prime
order which leaves no element fixed except the identity, it is nilpotent of class at most
k(p), where k(p) is as in the previous theorem.

7 Graded Identities of Lie Algebras and Generalizations

Let H be a Hopf algebra, say, a group algebra FG of a group G, or the universal
enveloping algebra U(g) for a Lie algebra g and so on (see [32]). We say that a Lie
algebra L is an H -algebra, if L is a left H -module and h ∗ [a, b] = ∑

h[h1a, h2b].
Here �h = ∑

h h1 ⊗h2. For example, FG acts on L in such a way that the
elements of G acts as automorphisms thanks to �g = g⊗ g. Also, in H = U(g)

one has �x = x⊗ 1 + 1⊗ x, for x ∈ g. As a result in an U(g)-algebra L the
elements of g act as derivations. If H = (FG)∗ is the dual to the group algebra
of a group G, then the basis of H is formed by the projections pg, g ∈ G,
such that

�pg =
∑

hk=g
ph⊗pk.

One has pg[a, b] = [pha, pkb]. If we set Lg = pgL thenL = ⊕g∈GLg is a grading
of L by the groupG.
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To define identities of H -algebras, we need to define the free H -algebra with
the free set X of generators. For this, we consider the algebra T (H)⊗F〈X〉, where
T (H) is the tensor algebra of a vector space H and F〈X〉 a free nonassociative
algebra with free generating set X. First, we make T (H) an H -algebra as follows.
Using coassociativity of the coproduct in H we can correctly define �1 = � and
�m+1 = (�m⊗ id) ◦�, for m ≥ 1. Then we write

�n−1(h) =
∑

h

h(1)⊗h(2)⊗ · · ·⊗ h(n)

and define

h(a1 ⊗ a2 ⊗ · · ·⊗ an) =
∑

h

(h(1)a1)⊗(h(2)a2)⊗ · · ·⊗(h(n)an). (6)

Now we choose inside T (H)⊗F〈X〉 a subalgebra FH (X) spanned by T n(H)⊗
(F〈X〉)n, n = 1, 2, . . ., where (F〈X〉)n is spanned by the monomials of degree n in
F〈X〉. This will be an absolutely free H -algebra with free generators X. Any map
ϕ : X→ A, A an H -algebra, uniquely extends to a homomorphism ϕ : FH (X)→
A if one sets

ϕ((h1 ⊗ · · ·⊗hn)x1 · · · xn) = (h1ϕ(x1)) · · · (hnϕ(xn)).

Finally, a free H -Lie algebra LH (X) is the factor-algebra of FH (X) by an H -
invariant ideal generated by all {u(vw) + v(wu) + w(uv)|u, v,w ∈ FH (X)} and
{u2|u ∈ FH (X)}.

If H is cocommutative and char F � 2, then LH (X) is an ordinary free Lie
algebra with free generators hβ ⊗ x, where hβ runs through a basis of H and x runs
through X. Otherwise, it does not need to be a Lie algebra. So when we use this
approach to deal with identities of graded algebra, we must assume that the grading
group is abelian, which is quite natural for dealing gradings on Lie algebras.

In the case of G-graded identities, G a group or even a semigroup, peo-
ple normally choose an alphabet X = ∪g∈GXg , where Xg = {xg1 , xg2 , . . .},
consider a free algebra L(X). If w(xg1

i1
, . . . , x

gn
in
) is an element in L(X) then

w(x
g1
i1
, . . . , x

gn
in
) = 0 is an identity in a G-graded algebra A if w(a1, . . . , an) = 0

whenever a1 ∈ Ag1, . . . , an ∈ Agn . In terms of H -identities one can rewrite
w(x

g1
i1
, . . . , x

gn
in
) as follows. The grading is given by the action of the dual Hopf

algebra H = (FG)∗. A natural basis of H consists of the projections pg, g ∈
G. Graded monomial xg1

i1
, . . . , x

gn
in

in L(X) can now be associated with the
element (pg1 ⊗ · · ·⊗pgn)(xi1 · · · xin) in LH (X). This enables one to rewrite graded
identities in terms of H -identities and vice versa.

The subalgebra T (H)H of invariants of the action of H on T (H) via the left
regular action (6) turns out to be important in the study of identities. In [5] the
authors introduced a technical condition onH which, as they proved, was equivalent
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to the following

dim T (H)/Ideal(T (H)H ) <∞. (7)

Suppose that A is an H -algebra. We denote by I (A) the subalgebra of H -
invariants in A. Then the following is true.

Theorem 28 (Y. Bahturin, V. Linchenko) Let H be a finite-dimensional Hopf
algebra over a field F. The following conditions are equivalent.

1. For any associative algebra A over F with an action of H it follows from I (A)
being a PI-algebra that also A is a PI-algebrai;

2. There exists a function f : N→ N such that for any associative algebra A with
an action of H if I (A) satisfies a non-trivial identity of degree t; then A satisfies
a non-trivial identity of degree f (t)

3. There exists a function g(t) such that for any natural t and any H -algebra A
with I (A)t = {0} one has Ag(t) = {0};

4. There exists a number N such that any H -algebra A where I (A) has zero
multiplication satisfies AN = {0};

5. Condition (7) holds.

Each of the above conditions implies that H is semisimple.

It is noted in [5] that (7) holds for the dual group algebras (FG)∗, so that the
result applies to algebras graded by a finite group. It also holds for semisimple
group algebras and for the crossed product of algebras, satisfying (7). In particular,
all semisimple Hopf algebras of dimension pn, p a prime number, over a field of
characteristic zero, satisfy (7). Thus from the above results one can recover well-
known results on identities of graded associative algebras [9] and algebras with
action of a group by automorphisms [21].

Condition (7) is crucial also in the case of Lie H -algebras. In the same way as in
the case of Theorem 24, the result applies not only to Lie algebras with action of a
Hopf algebras, but to a wider class of so called Lie type algebras, which incidentally
includes associative algebras, Lie supearalgebras, and so on.

Let us call called a varuety of algebras a Lie type variety if the following
conditions are satisfied:

1. There exist λ,μ ∈ F, λ � 0, such that in any algebra ∈ M one has

a(bc) = λ(ab)+ μ(ac)b, where λ,μ ∈ F, λ � 0.

2. The codimension growth cM(n) of M is faster than a function of the form n!
bn

, for
some b ∈ N.

An important theorem by V. Linchenko says the following.
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Theorem 29 (V. Linchenko) For a finite-dimensional Hopf algebra H the follow-
ing conditions are equivalent

(1) dimT (H)/Ideal(I (H)) <∞;
(2) For any H -algebra L in a Lie type variety M, if LH satisfies a non-trivial

identity then so does L.

As a corollary from Linchenko’s theorem, one gets Bahturin and Zaicev’s
Theorem [6]. These theorems have been actively applied in Group Theory while
studying, for example, groups with automorphisms, such that the subgroups of fixed
points satisfy some finiteness conditions. As one of the latest references, please see
[1].

7.1 Codimension Growth

Let L be an H -module Lie algebra. In complete analogy with the case of the
sequence of ordinary codimensions {cn(L)} one can define the sequence of H -
codimensions {cHn (L)}. The analog of Amitsur’s conjecture for H -codimensions of
L can be formulated as the question of the existence and integrality of the number
PI expH(L) = limn→∞ cHn (L).

One calls PI expH (L) the Hopf PI-exponent of L.
A. Gordienko proved a number of results on the codimension growth of identical

relations in finite-dimensional Lie algebras, with additional structure. The most
general of them are the following. In the statement of them there is the notion
of an H -nice Lie algebra L which is a finite-dimensional Lie algebra over an
algebraically closed field F of characteristic zero. One says thatL isH -nice if either
L is semisimple or the following conditions hold:

1. The nilpotent radical N and the solvable radical R of L are H -invariant;
2. (Levi decomposition) There exists an H -invariant maximal semisimple subalge-

bra B ⊂ L such that L = B ⊕ R (direct sum of H -modules);
3. (Wedderburn–Mal’cev decomposition) For any H -submodule W ⊂ L and

associative H -module subalgebra A1 ⊂ EndF(W), the Jacobson radical J (A1)

is H -invariant and there exists an H -invariant maximal semisimple associative
subalgebra Ã1 ⊂ A1 such thatA1 = Ã1⊕J (A1) (direct sum ofH -submodules);

4. For any H -invariant Lie subalgebra L0 ⊂ gl(L) such that L0 is an H -module
algebra and L is a completely reducible L0-module disregarding H -action, L is
a completely reducible (H,L0)-module.

The following are Gordienko’s main results on the codimension growth ofH Lie
algebras [16].

Theorem 30 (A. S. Gordienko) Let L be a nonnilpotentH -nice Lie algebra over
an algebraically closed field F of characteristic 0. Then there exist constants
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C1, C2 > 0, r1, r2 ∈ R, d ∈ N such that C2n
r1dn ≤ cHn (L) ≤ C1n

r2dn for all
n ∈ N.
Corollary 5 The above analog of Amitsur’s conjecture holds for such codimen-
sions.

Theorem 31 (A. S. Gordienko) Let L = L1 ⊕ · · · ⊕ Ls (direct sum of H -
invariant ideals) be an H -module Lie algebra over an algebraically closed field
F of characteristic 0 where H is a Hopf algebra. Suppose Li are H -nice algebras.
Then there exists PI expH (L) = max1≤i≤s P I expH(Li).

7.2 Isomorphism of H -Algebras

In the study of identities ofH -algebras, such as graded algebras, algebras with fixed
group of automorphisms or algebras with derivation, superalgebras one can use a
corollary of the results of Razmyslov in Sect. 4.

We always assume that the signature of�-algebras contains at least one operation
of arity at least 2.

Theorem 32 (Yu. P. Razmyslov) Two simple finite-dimensional �-algebras over
an algebraically closed field, satisfying the same polynomial identities, are isomor-
phic.

An H algebra A can be turned to an �-algebra in the following way. Let μ be
the original operation of A and for each h ∈ H ρh is a unary operation given by
ρh(a) = h ∗ a. Set �H = {μ} ∪ {ρh|h ∈ H }. Now consider the relatively free
�H -algebra given by the identities

1. ρh(x)+ ρg(x) = ρh+g(x);
2. ραg(x) = αρg(x);
3. ρ1(x) = x;
4. ρg(ρh(x)) = ρgh(x);
5. ρh(μ(x, y)) = ∑

h μ(ρh(1) (x), ρh(2)(y)).

Much in the same way as we did just above for the graded identities, one can
rewrite H -identities of A to its identities, as �H -algebra. Thus we obtain the
following.

Theorem 33 (Y. Bahturin, F. Yasumura) Two finite-dimensional H -algebras
over an algebraically closed field, which are simple as H -algebras and satisfy the
same H -identities are isomorphic as H -algebras.

A particular case was settled in a paper [11]: under the restriction that G is an
abelian group, the authors proved that any two finite-dimensional nonassociativeG-
graded simple algebras having the same G-graded identities must be isomorphic as
G-graded algebras.
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In particular, if we have two different (=non-isomorphic)G-gradings of a finite-
dimensional simple Lie algebra then their graded identities are different. Thus it
could be interesting to find identities that separate non-isomorphic gradings.

8 Special Lie Algebras

A Lie algebra L is called special, or SPI, if it is isomorphic to a Lie subalgebra
of an associative PI-algebra. These algebras were introduced in 1963 by Latyshev.
An excellent survey on the achievements in the area of special Lie algebras was
written by Zaicev [49]. We refer the reader to this paper to learn about the theory of
SPI-algebras, which seems to be in dormant condition right now.

To conclude, I will mention one open problem from [12] and a partial solution
from the above survey.

Is it true that any variety of Lie algebras is locally solvable if it does not contain Sl2?

In the case of special varieties, Zaicev proves the following.

Theorem 34 (M. V. Zaicev) Let V be a special variety of Lie algebras over an
infinite field F. If V has no finite-dimensional semisimple Lie algebras then it is
locally solvable. If charF = 0 thenV is solvable.

References

1. Acciarri, C., Khukhro, E.I., Shumyatsky, P.: Profinite groups with an automorphism whose
fixed points are right Engel. Proc. Am. Math. Soc. 147(9), 3691–3703 (2019)

2. Bachmuth, S., Mochizuki, H.Y., Walkup, D.W.: A nonsolvable group of exponent 5. Bull. Am.
Soc., 76, 638–640 (1970)

3. Bahturin, Y.: Identical Relations in Lie Algebras, p. 309. VNU Press (1987)
4. Bahturin, Yu.A., Strade, H.: Locally finite-dimensional simple Lie algebras. Mat. Sb. 185, 2–31

(1994)
5. Bahturin, Yu.A., Linchenko, V.V.: Identities of algebras with actions of Hopf algebras. J.

Algebra 202, 634–654 (1998)
6. Bahturin, Yu.A., Zaicev, M.V.: Identities of graded algebras. J. Algebra 205, 1–12 (1998)
7. Bahturin, Yu.A., Drensky, V.: Identities of bilinear mappings and graded polynomial identities

of matrices. Linear Algebra Appl. 369, 95–112 (2003)
8. Bahturin, Yu.A., Olshanskii, A.Yu.: Large restricted Lie algebras. J. Algebra 310, 413–427

(2007)
9. Bahturin, Yu.A., Giambruno, A., Riley, D.: Group-graded algebras with polynomial identity.

Israel J. Math. 104, 146–155 (1998)
10. Benediktovich, I.I., Zalesski, A.E.: T -ideals of free Lie algebras with polynomial growth of

a sequence of codimensionalities. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk (3), 5–10
(1980)

11. Bianchi, A., Diniz, D.: Identities and isomorphisms of finite-dimensional graded simple
algebras. J. Algebra 526, 333–344 (2019)



Some Thoughts on the Current State of the Theory of Identical Relations in Lie. . . 23

12. Dniester Notebook: Unsolved Problems of the Theory of Rings and Modules, 2nd edn.
Novosibirsk (1976)

13. Giambruno, A., Zaicev, M.: Polynomial Identities and Asymptotic Methods, AMS Math.
Surveys and Monographs, vol. 122, p. 352 (2005)

14. Giambruno, A., Mishchenko, S., Zaicev, M.: Algebras with intermediate growth of the
codimensions. Adv. Appl. Math. 37, 360–377 (2006)

15. Golod, E.S.: On nil-algebras and finitely approximable p-groups. Izv. Akad. Nauk SSSR Ser.
Mat. 28, 273–276 (1964)

16. Gordienko, A.S.: Amitsur’s conjecture for polynomial H -identities of H -module Lie algebras.
Trans. Am. Math. Soc. 367, 313 –354 (2015)

17. Grishkov, A.N.: On the growth of varieties of Lie algebras. Mat. Zametki 44, 51–54 (1988)
18. Higman, G.: Groups and rings having automorphisms without nontrivial fixed elements. J.

Lond. Math. Soc. 32, 321–334 (1958)
19. Iltyakov, A.V.: On finite basis of identities of Lie algebra representations. Nova J. Algebra

Geom. 1, 207–259 (1992)
20. Kemer, A.R.: Ideals of Identities of Associative Algebras. Amer. Math. Soc., Transl. of

Monographs, vol. 87, p. 81 (1991)
21. Kharchenko, V.K.: Galois extensions and rings of fractions. Algebra Logika 13, 460–484

(1974)
22. Kostrikin, A.I.: The Burnside problem. Izv. Akad. Nauk SSSR Ser. Mat. 23, 3–34 (1959)
23. Kostrikin, A.I., Around Burnside, M.: Nauka, 1986, p. 232; Engl. Transl.: Springer, Berlin

(1991), 216 pp
24. Krasilnikov, A.N.: Finite basis property for some varieties of Lie algebras. Vestnik Moscow

Univ. Ser. 1 Mat. Mech. (2), 34–38 (1982)
25. Krasilnikov, A.N.: Identities of Lie algebras with nilpotent commutator ideal over a field of

finite characteristic. Mat. Zametki 51, 47–52 (1992)
26. Kushkulei, A.H., Razmyslov, Yu.P.: Varieties generated by irreducible representations of Lie

algebras. Vestnik Moscow Univ. Ser. 1 Mat. Mech. (5), 4–7 (1983)
27. Linchenko, V.V.: Identities of Lie algebras with actions of Hopf algebras. Commun. Algebra

25, 3179–3187 (1997)
28. Mishchenko, S.P.: Engel’s problem. Mat. Sb. 124, 56–67 (1984)
29. Mishchenko, S.P.: On varieties of polynomial growth of Lie algebras over a field of character-

istic zero. Mat. Zametki 40, 713–721, 828 (1986)
30. Mishchenko, S.S.: New example of a variety of Lie algebras with fractional exponent. Vestnik

Moscow Univ., Ser. 1 Mat. Mech. 6, 44–47 (2011); Engl. Transl.: Moscow Univ. Math. Bull.
66(6), 264–266 (2011)

31. Mishchenko, S.P., Zaicev, M.V.: Sequences of codimensions of identities and their asymptotic
behavior. Fundam. Appl. Mat. 22, 115–127 (2019)

32. Montgomery, S.: Hopf algebras and their actions on rings. In: CBMS Regional Conference
Series in Mathematics, vol. 82, p. 238 (1993)

33. Petrogradskii, V.M.: Growth of polynilpotent varieties of Lie algebras and rapidly growing
entire functions. Mat. Sb. 188, 119–138 (1997)

34. Petrogradskii, V.M.: On numerical characteristics of subvarieties for three varieties of Lie
algebras. Mat. Sb. 188, 111–126 (1999); Engl. transl.: Sb. Math. 190, 887–902 (1999)

35. Petrogradsky, V.M., Shestakov, I.P., Zelmanov, E.I.: Nil graded self-similar algebras. Groups
Geom. Dyn. 4, 873–900 (2010)

36. Premet, A., Strade, H.: Simple Lie algebras of small characteristic. VI. Completion of the
classification. J. Algebra 320, 3559–3604 (2008)

37. Razmyslov, Yu.P.: On Lie algebras satisfying the Engel condition. Algebra Logika 10, 33–44
(1972)

38. Razmyslov, Yu.P.: Algebras satisfying Capelli type identities. Izv. AN SSSR, Ser. Mat. 45,
143–166 (1981)

39. Razmyslov, Yu.P.: Varieties of representations of finite-dimensional algebras. Vestn. Mosc.
Univ. Ser. 1 Mat. Mech. (6), 31–37 (1982)



24 Y. Bahturin

40. Razmyslov, Yu.P.: Simple Lie algebras in the varieties generated by simple Lie algebras of
Cartan type. Izvest. Akad. Nauk SSSR, Ser. Mat. 51,1228–1264 (1987)

41. Razmyslov, Yu.P.: On inclusion of varieties generated by simple Lie algebras. Vestn. Mosc.
Univ. Ser. 1 Mat. Mech. (2), 34–37 (1989)

42. Razmyslov, Yu.P.: Identities of Algebras and their Representations. AMS Transl. of Math.
Mon. vol. 138, p. 318 (1994)

43. Regev, A.: Existence of identities in A⊗B. Israel J. Math. 11, 131–152 (1972)
44. Stovba, V.V.: Finite basis problem for certain varieties of Lie algebras and associative algebras.

Vestn. Mosc. Univ. Ser. 1 Mat. Mech. (2), 54–58 1982
45. Traustason, G.: A constructive approach to Zel’manov’s global nilpotency theorem for n-Engel

Lie algebras over a field of characteristic zero. Internat. J. Algebra Comput. 8, 317–326 (1998)
46. Vaughan-Lee, M.R.: The Restricted Burnside Problem, 2nd edn. London Math. Soc. Mono-

graphs (N.S.) vol. 5, p. 256. Oxford University Press, Oxford (1993)
47. Volichenko, I.B.: Varieties of Lie algebras with identity [[X1, X2, X3], [X4, X5, X6]] = 0 over

a field of characteristic zero. Sibirsk. Mat. Zh. 25, 40–54 (1984) (in Russian)
48. Zaicev, M.V.: Identities of affine Kac–Moody algebras. Vestn. Mosc. Univ. Ser. 1 Mat. Mech.

(2), 34–38 (1982)
49. Zaicev, M.V.: Special Lie algebras. Usp. Mat. Nauk 48, 103–140 (1993)
50. Zaicev, M.V., Mishchenko, S.P.: An example of a variety of Lie algebras with a fractional

exponent. Algebra. J. Math. Sci. (New York) 93, 977–982 (1999)
51. Zaicev, M.V.: Integrality of exponents of growth of identities of finite-dimensional Lie algebras.

Izv. Ross. Akad. Nauk Ser. Mat. 66, 23–48 (2002); Engl. Transl.: Izv. Math. 66, 463–487 (2002)
52. Zel’manov, E.I.: Engel Lie-algebras. Dokl. Akad. Nauk SSSR 292, 265–268 (1987)
53. Zel’manov, E.I.: The solution of the restricted Burnside problem for groups of odd exponent.

Math. USSR Izvestia 36, 41–60 (1991)
54. Zel’manov, E.I.: A solution of the restricted Burnside problem for 2-groups. Mat. Sb. 182,

568–592 (1991); Engl. Transl.: Math. USSR-Sb. 72, 543–565 (1992)
55. Zel’manov, E.I.: Lie algebras and torsion groups with identity. J. Comb. Algebra 1, 289–340

(2017)



Minimal Degree of Identities of Matrix
Algebras with Additional Structures

Dafne Bessades, Rafael Bezerra dos Santos, and Ana Cristina Vieira

Abstract In the ordinary context of the PI-theory, it is well known that 2n is the
smallest degree of a standard polynomial identity ofMn(F). Here we present some
results about the minimal degree of polynomial identities of Mn(F) in the graded
and involution cases. Also we give some consequences in the graded involution case.

Keywords Matrix algebra · Standard identity · Involution · Superalgebra ·
Graded involution

1 Introduction

Throughout this paper, F will denote a field of characteristic zero and A is an asso-
ciative algebra over F . Recall that an identity of A is a polynomial f (x1, . . . , xn) in
the free associative algebra F 〈X〉 on a countable set X of noncommuting variables
over F such that f (a1, . . . , an) = 0 for all a1, . . . , an ∈ A. In this case, we say that
A satisfies the identity f and denote f ≡ 0 on A.

It is obvious that the null polynomial is an identity for any algebra and in the
special case that A satisfies a non trivial identity, we say that A is a PI-algebra.

We denote by Id(A) = {f ∈ F 〈X〉 : f ≡ 0 on A} the ideal of all identities
satisfied byA. We have that Id(A) is a T -ideal of F 〈X〉, i.e. an ideal invariant under
all endomorphisms of F 〈X〉. In [15], Kemer proved that a T -ideal is generated by
a finite set of multilinear polynomials. Recall that a multilinear polynomial is a
polynomial which is linear in each of its variables.
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An important example of multilinear polynomial in F 〈X〉 is the standard
polynomial of degree n defined by

Stn(x1, . . . , xn) =
∑

σ∈Sn
sgn(σ) xσ(1) · · · xσ(n),

where Sn denotes the symmetric group of degree n and sgn(σ) is the sign of the
permutation σ .

If A is a k-dimensional algebra, it is not difficult to prove that A satisfies
Stk+1(x1, . . . , xk+1). The well known Amitsur–Levitzki theorem (see [2]) shows
that the degree of a standard identity is lower in caseA is the full algebra of matrices
overF . In fact, St2n(x1, . . . , x2n) is a polynomial identity of the algebraMn(F) and,
in addition,Mn(F) does not satisfy a polynomial identity of degree less than 2n, that
is, the smallest degree of an identity ofMn(F) is 2n.

An interesting question concerning the above situation can be setting when we
consider the algebra Mn(F) with additional structures, such as graded algebra or
algebra with involution. We can ask if the minimal degree of a standard identity
remains 2n. More precisely, when only certain types of matrices are considered,
what is the smallest degree of a standard identity satisfied byMn(F)?

Our goal is to discuss this problem in the graded and involution cases, by
presenting the results already established in order to respond the question about
the smallest degree of a standard identity in each case. Furthermore, we consider
the consequences of these results for the case in which Mn(F) is endowed with a
graded involution, giving our contribution to the theory in this situation.

More generally, we shall also present some results regarding the minimal degree
of an identity satisfied byMn(F) with additional structures.

2 Involution Case

In this section we treat standard identities in symmetric and skew variables of an
algebra with involution. An involution on an algebraA is a F -linear map ∗ : A→ A

satisfying

(a∗)∗ = a and (ab)∗ = b∗a∗, for all a, b ∈ A,

i.e. ∗ is an anti-automorphism of order at most 2 of A.
An algebra A endowed with an involution ∗ will be called an algebra with

involution and will be denoted by (A, ∗). In this case, we write A = A+ ⊕ A−
where A+ = {a ∈ A : a∗ = a} is the subspace of symmetric elements and
A− = {a ∈ A : a∗ = −a} is the subspace of skew elements of A.

A natural example of involution on the matrix algebra Mn(F) is the transpose
involution defined by (aij )t = (aji), where (aij ) ∈ Mn(F).

If n = 2k is even, there exists another involution onMn(F) called the canonical
symplectic involution s, which will be referred just as symplectic involution, and is
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defined by

as = T atT −1, for all a ∈ M2k(F ),

where T =
k∑

i=1

(ei,i+k − ei+k,i). In other words, if n = 2k, a 2k × 2k matrix is

partitioned into four k × k matrices R, S, P,Q and s is defined as follows

(
R S

P Q

)s
=

(
Qt −St

−P t Rt

)
.

Recall that if X = {x1, x2, . . . } is a countable set of noncommuting variables,
we can consider F 〈X, ∗〉 = F 〈x1, x

∗
1 , x2, x

∗
2 , . . . 〉, the free algebra with involution

on X over F . By setting yi = xi + x∗i and zi = xi − x∗i , for every i = 1, 2 . . . ,
we consider F 〈X, ∗〉 = F 〈y1, z1, y2, z2, . . . 〉 as generated by symmetric and skew
variables. A ∗-polynomial f (y1, . . . , yn, z1, . . . , zm) ∈ F 〈X, ∗〉 is a ∗-identity of
A if f (u1, . . . , un, v1, . . . vm) = 0 for all u1, . . . , un ∈ A+ and v1, . . . , vn ∈
A−.

In the involution case, we will consider two types of standard polynomials of
degree n. The first one is Stn(y1, . . . , yn) in symmetric variables and the other
is Stn(z1, . . . , zn) in skew variables. Next, we will present the results concerning
the smallest degree of standard identities of these types for Mn(F) endowed with
transpose and symplectic involutions.

In 1979, Slin’ko proved that the degree does not change when we consider
symmetric matrices under the transpose involution.

Theorem 1 (Slin’ko, [21]) The smallest degree of a standard identity in symmetric
variables of (Mn(F ), t) is 2n.

In case that skew matrices under the transpose involution are considered, the first
result was given in 1958 by Kostant as follows.

Theorem 2 (Kostant, [16]) The standard polynomial St2n−2(z1, . . . , z2n−2) is an
identity of (Mn(F ), t), for all n > 1 even.

Some years later, in 1974, Rowen extended the Kostant’s result showing that
St2n−2(z1, . . . , z2n−2) is an identity of (Mn(F ), t), for all n ≥ 1, and also
proved the next theorem, which has independent proofs given by Owens [17] and
Hutchinson [14].

Theorem 3 (Rowen, [19]) The smallest degree of a standard identity in skew
variables of (Mn(F ), t) is 2n− 2.

For the symplectic involution we consider the algebraM2k(F ), where k ≥ 1. In
this case, when symmetric matrices are considered, Rowen proved the following.

Theorem 4 (Rowen, [20]) The standard polynomial St4k−2(y1, . . . , y4k−2) is an
identity of (M2k(F ), s), for all k ≥ 1.
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Although this theorem does not give information about the smallest degree in this
case, Rowen conjectured that the smallest degree of a standard identity in symmetric
variables of (M2k(F ), s) is 4k − 2 and for k = 2, he showed that (M4(F ), s) does
not satisfy St5(y1, . . . , y5).

Furthermore, in 1992, Adamsson (see [1]) considered the cases k = 3, 4
and proved that (M6(F ), s) and (M8(F ), s) do not satisfy St9(y1, . . . , y9) and
St13(y1, . . . , y13), respectively.

Recently, Bessades, Leal, dos Santos and Vieira treated the problem by consider-
ing that k is a power of 2. They proved the following theorem that confirms Rowen’s
conjecture in a particular case.

Theorem 5 (Bessades et al. [4]) The minimal degree of a standard identity in
symmetric variables of (M2m(F ), s) is 2m+1 − 2.

The cases discussed above suggest that the smallest degree of a standard identity
in symmetric variables of (M2k(F ), s), in fact, must be 4k− 2. A general proof was
not given until now.

On the other hand, for skew matrices under the symplectic involution, the
smallest degree of a standard identity in skew variables of (M2k(F ), s) has already
been determined by Giambruno, Ioppolo and Martino in 2016. In this situation, the
minimal degree is the same as in the ordinary case.

Theorem 6 (Giambruno et al. [10]) The minimal degree of a standard identity in
skew variables of (M2k(F ), s) is 4k.

We remark that the general question concerning the minimal degree of identities
of (Mn(F ), t) and (M2k(F ), s) is still open.

For (Mn(F ), t) Giambruno proved in [8] that n + 1 is a lower bound for the
degree of an identity of (Mn(F ), t). In the cases n = 2, 3, 4, D’Amour and Racine
in [5] determined that the minimal degree are 2, 4 and 5, respectively.

When only symmetric variables are considered, Slin’ko [21] determined that the
minimal degree of an identity is 2n. Also, Wenxin and Racine described in [22]
all identities in symmetric variables with this degree. On the other hand, when only
skew variables are considered, Hill [13] proved the existence of an identity of degree
2n− 3, for n > 1 even.

For (M2k(F ), s), in the cases k = 1, 2, D’Amour and Racine [6] determined that
the minimal degrees are 2 and 5, respectively. When only symmetric variables are
considered, Rashkova [18] determined that for k = 3 the minimal degree is 9.

When k ≥ 3, Drensky and Giambruno [7] proved that 2k + 2 is a lower bound
for the degree of an identity in symmetric variables of (M2k(F ), s). Also, Hill [12]
presented an upper bound by constructing a multilinear polynomial in symmetric
variables of degree 4k − 3 which is an identity of (M2k(F ), s).

However, as was said above, a proof providing the precise minimal degree has
not been presented in the general case for both cases (Mn(F ), t) and (M2k(F ), s).
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3 Graded Case

In the graded case, the smallest degree of an identity of the full matrix algebra with a
non trivial Z2-grading has already been determined. In this section we shall present
the results obtained by Antonov about the minimal degree of multilinear identities
in even and odd variables.

We say that an algebra A is a superalgebra if there exists a vector space
decomposition A = A0 ⊕ A1, where A0 and A1 satisfy A0A0 + A1A1 ⊆ A0 and
A0A1 + A1A0 ⊆ A1. Observe that the pair (A0, A1) is a Z2-grading on A. Notice
that any algebra is a superalgebra with trivial grading (A, {0}).

The free associative algebra F 〈X〉 has a natural structure of superalgebra as
follows. WriteX = Y ∪Z, the disjoint union of two countable sets Y = {y1, y2, . . .}
and Z = {z1, z2, . . .}. If we denote by F0 the subspace of F 〈Y ∪ Z〉 spanned by
all monomials on X having an even number of variables from Z and by F1 the
subspace spanned by all monomials with an odd number of variables from Z, then
F 〈Y ∪ Z〉 = F0 ⊕ F1 is a Z2-graded algebra called the free superalgebra on Y and
Z over F . We say that the variables from Y have even degree, whereas the variables
from Z have odd degree.

Given a superalgebra A = (A0, A1) , we say that a polynomial

f (y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉

is a graded identity of A if f (a1, . . . , an, b1, . . . , bm) = 0 for all a1, . . . , an ∈ A0
and b1, . . . , bm ∈ A1.

The ideal Idgr(A) of the graded identities satisfied by A is an ideal invariant
under all endomorphisms of F 〈Y ∪ Z〉 that preserve the grading and is completely
determined by its multilinear polynomials.

Recall that, when F is an algebraically closed field, up to isomorphism, any Z2-
grading onMn(F) is given by a pair (Mk,l(F )0,Mk,l(F )1) defined by

Mk,l(F )0 :=
{(
A 0
0 D

)
: A ∈ Mk(F); D ∈ Ml(F )

}

and Mk,l(F )1 :=
{(

0 B
C 0

)
: B ∈ Mk×l (F ); C ∈ Ml×k(F )

}
,

where k + l = n and k ≥ l ≥ 0.
Observe that if l = 0, then we have a trivial grading onMn(F). So, our interest

is in the case k ≥ l > 0. In this situation,Mn(F) is a superalgebra endowed with a
non trivial Z2-grading which will be denoted byMk,l(F ).

The minimal degree of a polynomial identity in variables of even degree of
Mk,l(F ) is an immediate consequence of Amitsur–Levitzki theorem.
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Theorem 7 The minimal degree of a polynomial identity in variables of even degree
ofMk,l(F ) is 2k, for all k ≥ l > 0.

In 2012, Antonov considered the case of polynomials containing only variables
of odd degree.

Theorem 8 (Antonov, [3]) The minimal degree of a polynomial identity in vari-
ables of odd degree ofMk,k(F ) is 4k − 1, for all k ≥ 1.

Theorem 9 (Antonov, [3]) The minimal degree of a polynomial identity in vari-
ables of odd degree ofMk,l(F ) is 4l + 1, for all k > l > 0.

Moreover, the author further provided identities in variables of odd degree having
the minimal degrees established in Theorems 8 and 9. These identities are known as
double Capelli polynomials and are defined as follows.

Definition 1 We define the so-called double Capelli polynomials of degree 2n− 1
and of degree 2n as being, respectively,

C n−1
n (u1, . . . , un; v1, . . . , vn−1) :=

∑

σ∈Sn,
τ∈Sn−1

sgn(στ) uσ(1)vτ(1) . . . vτ(n−1)uσ(n) and

Cn(u1, . . . , un; v1, . . . , vn) :=
∑

σ∈Sn,
τ∈Sn

sgn(στ) uσ(1)vτ(1) . . . uσ(n)vτ(n),

where the indexes of C n−1
n suggest that we have n− 1 variables v’s and n variables

u’s, whereas the index of Cn suggest that we have n variables u’s and n variables
v’s.

Assuming these definitions, Antonov showed the following theorems.

Theorem 10 (Antonov, [3]) The double Capelli polynomial C 2k−1
2k in odd vari-

ables is an identity of minimal degree ofMk,k(F ), for all k ≥ 1.

Theorem 11 (Antonov, [3]) The double Capelli polynomialC 2l
2l+1 in odd variables

is an identity of minimal degree ofMk,l(F ), for all k > l > 0.

In the ordinary context, Giambruno and Sehgal [9] showed that 4n is the minimal
degree of a double Capelli identity ofMn(F). In particular, 8n is the minimal degree
of a double Capelli identity ofM2n(F ). However, as we saw above, in the context of
graded identities of Mk,k(F ), when only odd variables are considered, this degree
drops drastically to 4k−1. In light of this, we can see that the answer to the question
discussed in the introduction about the smallest degree of standard identities can be
even more delicate when we consider gradings on matrix algebras.
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4 Graded Involution Case

In this section we give our contribution to the graded involution case by presenting
the minimal degrees of standard identities in symmetric and skew variables of even
degree of the full matrix algebra with transpose and symplectic graded involutions.

Recall that an involution ∗ on a superalgebra A = A0 ⊕ A1 that preserves the
homogeneous components A0 and A1, i.e. (A0)

∗ = A0 and (A1)
∗ = A1, is called

a graded involution. A superalgebraA endowed with a graded involution ∗ is called
∗-superalgebra.

The connection between the superstructure and the involution on A is given in
the next lemma (see [11]).

Lemma 1 Let A be a superalgebra over a field F of characteristic different from 2
endowed with an involution ∗ and ϕ the automorphism of order 2 determined by the
superstructure. Then A is a ∗-superalgebra if and only if ∗ ◦ ϕ = ϕ ◦ ∗.

As a consequence of this lemma, if A is a superalgebra over a field F of
characteristic different from 2 endowed with an involution ∗, then A is a ∗-
superalgebra if and only the subspaces A+ and A− are graded subspaces. As a
consequence, any ∗-superalgebra can be written as a sum of 4 subspaces

A = (A0)
+ ⊕ (A1)

+ ⊕ (A0)
− ⊕ (A1)

−.

We can give a superstructure on the free algebra F 〈X〉 by writing the set X
as the disjoint union of four countable sets X = Y0 ∪ Y1 ∪ Z0 ∪ Z1, where
Y0 = {y1,0, y2,0, . . .}, Y1 = {y1,1, y2,1, . . .}, Z0 = {z1,0, z2,0, . . .} and Z1 =
{z1,1, z2,1, . . .}. We define the free ∗-superalgebra F = F 〈X|Z2, ∗〉 of countable
rank on X by requiring that the variables from Y0 ∪ Z0 are homogeneous of even
degree and those from Y1 ∪ Z1 are homogeneous of odd degree. We also define an
involution on F by requiring that the variables from Y0∪Y1 are symmetric and those
from Z0 ∪ Z1 are skew.

ConsiderF(0) to be the span of all monomials in the variables fromX which have
an even number of variables of odd degree and F(1) to be the span of all monomials
in the variables fromX which have an odd number of variables of odd degree. Then
(F(0))∗ = F(0) and (F(1))∗ = F(1) and so F = F(0) ⊕ F(1) has a structure of
∗-superalgebra. The elements of F are called (Z2, ∗)-polynomials.

Let

f = f (y1,0, . . . , ym,0, y1,1, . . . , yn,1, z1,0, . . . , zp,0, z1,1, . . . , zq,1) ∈ F.

We say that f is a (Z2, ∗)-identity for the ∗-superalgebraA, and we write f ≡ 0 on
A, if

f (a+1,0, . . . , a
+
m,0, a

+
1,1, . . . , a

+
n,1, a

−
1,0, . . . , a

−
p,0, a

−
1,1, . . . , a

−
q,1) = 0,
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for all a+1,0, . . . , a
+
m,0 ∈ (A0)

+, a+1,1, . . . , a
+
n,1 ∈ (A1)

+, a−1,0, . . . , a
−
p,0 ∈ (A0)

− and

a−1,1, . . . , a
−
q,1 ∈ (A1)

−.
It is clear that any algebra with involution ∗ endowed with trivial grading is a

∗-superalgebra. Also, notice that the identity map is a graded involution for any
commutative superalgebra.

In [11], Giambruno, dos Santos and Vieira proved that, when F is an alge-
braically closed field, the only graded involutions defined on Mk,l(F ) are the
transpose (t) and the symplectic (s), the latter case being allowed only when k = l
or l = 0 and k is even. We will consider only the case l � 0, since we are interested
in non trivial gradings.

In the case of transpose graded involution (t), we have the following four
subspaces of elements symmetric and skew of even and odd degree:

(
Mk,l(F ), t

)+
0 =

{(
S 0
0 S′

)
: S ∈ (Mk(F ), t)+and S′ ∈ (Ml(F ), t)+

}
,

(
Mk,l(F ), t

)−
0 =

{(
K 0
0 K ′

)
: K ∈ (Mk(F ), t)−and K ′ ∈ (Ml(F ), t)−

}
,

(
Mk,l(F ), t

)+
1 =

{(
0 A

At 0

)
: A ∈ Mk×l (F )

}
,

(
Mk,l(F ), t

)−
1 =

{(
0 A

−At 0

)
: A ∈ Mk×l (F )

}
.

Also, for the case of the symplectic graded involution (s) the four subspaces of
elements symmetric and skew of even and odd degree are

(
Mk,k(F ), s

)+
0 =

{(
A 0
0 At

)
: A ∈ Mk(F)

}
,

(
Mk,k(F ), s

)−
0 =

{(
A 0
0 −At

)
: A ∈ Mk(F)

}
,

(
Mk,k(F ), s

)+
1 =

{(
0 K

K ′ 0

)
: K ∈ (Mk(F ), t)−and K ′ ∈ (Mk(F ), t)−

}
,

(
Mk,k(F ), s

)−
1 =

{(
0 S
S′ 0

)
: S ∈ (Mk(F ), t)+and S′ ∈ (Mk(F ), t)+

}
.

In what follows, we are interested in to determine the smallest degree of standard
identities in symmetric and skew variables of even degree of the ∗-superalgebras(
Mk,k(F ), s

)
and

(
Mk,l(F ), t

)
. With this purpose, we begin with some remarks

concerning well known properties of standard polynomials.
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Remark 1 For all n ≥ 1, if A1, . . . , An+1 are k × k matrices, then

(i) Stn+1(A1, . . . , An+1) =
n+1∑

i=1

(−1)i+1AiStn(A1, . . . , Âi , . . . , An+1), where the

symbol ^ means omission;

(ii) Stn(At1, . . . , A
t
n) = (−1)

n(n−1)
2 Stn(A1, . . . , An)

t .

We shall use the properties described above to provide the smallest degree of a
standard (Z2, ∗)-identity in the symmetric and skew variables of even degree of the
∗-superalgebra

(
Mk,k(F ), s

)
.

Theorem 12 The minimal degree of a standard identity in skew variables of even
degree of (Mk,k(F ), s) is 2k.

Proof Let K1,0, . . . ,Kr,0 ∈
(
Mk,k(F ), s

)−
0 . Then, we have that

Ki,0 =
(
Ai 0
0 −Ati

)
, where Ai ∈ Mk(F), for all 1 ≤ i ≤ r.

Now, by using the Remark 1, we have that

Str (K1,0, . . . ,Kr,0) = Str
((
A1 0
0 −At1

)
, . . . ,

(
Ar 0
0 −Atr

))

=
(
Str (A1, . . . , Ar) 0

0 Str (−At1, . . . ,−Atr)
)

=
(
Str (A1, . . . , Ar) 0

0 (−1)rStr (At1, . . . , A
t
r)

)

=
(
Str (A1, . . . , Ar) 0

0 (−1)r+
r(r−1)

2 Str (A1, . . . , Ar)
t

)
.

Therefore, we conclude that Str (z1,0, . . . , zr,0) is a (Z2, ∗)-identity of
(Mk,k(F ), s) if and only if Str (x1, . . . , xr ) is an identity of Mk(F). However,
by Amitsur–Levitzki theorem, we know that this occurs if and only if r ≥ 2k. In
this way, we have that the minimal degree of a standard identity in skew variables
of even degree of (Mk,k(F ), s) is 2k. ��

In a similar way it is also possible to prove the following.

Theorem 13 The minimal degree of a standard identity in symmetric variables of
even degree of (Mk,k(F ), s) is 2k.
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Now, as a consequence of the Theorems 1 and 3, we find in the following
theorems the smallest degree of a standard identity in the symmetric and skew
variables of even degree of the ∗-superalgebra

(
Mk,l(F ), t

)
.

Theorem 14 The minimal degree of a standard identity in skew variables of even
degree of (Mk,l(F ), t) is 2k − 2.

Proof Let K1,0, . . . ,Kr,0 ∈ (
Mk,l(F ), t

)−
0 . We know that Ki,0 =

(
Ai 0
0 Bi

)
, 1 ≤

i ≤ r, where A1, . . . , Ar ∈ (Mk(F ), t)− and B1, . . . , Br ∈ (Ml(F ), t)−.
Now, it is easily seen that

Str (K1,0, . . . ,Kr,0) = Str
((
A1 0
0 B1

)
, . . . ,

(
Ar 0
0 Br

))

=
(
Str (A1, . . . , Ar) 0

0 Str (B1, . . . , Br )

)
.

Since A1, . . . , Ar are k × k skew matrices and B1, . . . , Br are l × l skew
matrices, with respect to the transpose involution, we conclude, by Theorem 3, that
Str (A1, . . . , Ar) = 0 and Str (B1, . . . , Br) = 0 if and only if r ≥ 2k − 2 and
r ≥ 2l − 2. Since it was established that k ≥ l > 0, we get that the minimal degree
of a standard identity in skew variables of even degree of (Mk,l(F ), t) is in fact
2k − 2. ��
Theorem 15 The minimal degree of a standard identity in symmetric variables of
even degree of (Mk,l(F ), t) is 2k.

Proof Let S1,0, . . . , Sr,0 ∈
(
Mk,l(F ), t

)+
0 . Now, we have

Si,0 =
(
Ai 0
0 Bi

)
, 1 ≤ i ≤ r,

where A1, . . . , Ar ∈ (Mk(F ), t)+ and B1, . . . , Br ∈ (Ml(F ), t)+.
As in the previous theorem,

Str (S1,0, . . . , Sr,0) = Str
((
A1 0
0 B1

)
, . . . ,

(
Ar 0
0 Br

))

=
(
Str (A1, . . . , Ar) 0

0 Str (B1, . . . , Br)

)
.

Since A1, . . . , Ar are k × k symmetric matrices and B1, . . . , Br are l × l

symmetric matrices, with respect to the transpose involution, we now conclude,
by Theorem 1, that Str (A1, . . . , Ar) = 0 and Str (B1, . . . , Br) = 0 if and only
if r ≥ 2k and r ≥ 2l. Recalling that k ≥ l > 0, we get the minimal degree of a
standard identity in symmetric variables of even degree of (Mk,l(F ), t) is 2k.

��
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We can see from the results discussed above that there is a close relationship
between the minimal degree of standard identities in symmetric and skew variables
of (Mk(F ), t) in the involution case and the minimal degree of standard identities
in symmetric and skew variables of even degree of (Mk,k(F ), s) and (Mk,l(F ), t) in
the graded involution case.

In a future work, we will show this relationship is not only restricted to the
symmetric and skew variables of even degree. In fact, it can also be extended
in a some way to symmetric and skew variables of odd degree. In light of
this, an interesting observation is that several approaches and tools used in the
case of matrices with transpose involution can also be applied in the context of
superalgebras with graded involution.

We finish by remarking that the minimal degree of identities of the ∗-
superalgebras (Mk,l(F ), t) and (Mk,k(F ), s) seems to be out of reach at present.

Acknowledgement The first author was partially supported by CNPq—Conselho Nacional de
Desenvolvimento Científico e Tecnológico.
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Abstract We present old and new results about Capelli polynomials, Z2-graded
Capelli polynomials, Capelli polynomials with involution and their asymptotics.

LetCapm = ∑
σ∈Sm (sgnσ)tσ(1)x1tσ (2) · · · tσ (m−1)xm−1tσ (m) be them-th Capelli

polynomial of rank m. In the ordinary case (see Giambruno and Zaicev, Israel
J Math 135:125–145, 2003) it was proved the asymptotic equality between the
codimensions of the T -ideal generated by the Capelli polynomial Capk2+1 and
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1 Introduction

From Kemer’s theory (see [35]), the polynomial identities of the matrix algebra
Mk(F) over a field F of characteristic zero are among the most intriguing topics
in the PI -theory. There are a lot of open problems and conjectures concerning
the bases of polynomial identities of Mk(F), the minimal degree of identities
which do not follow from the standard polynomial, the numerical invariants of
polynomial identities, etc. Similar problems are also to consider for matrix algebras
with additional structure as Z2-gradings, group gradings or involution. The Capelli
polynomial plays a central role in the combinatorial PI -theory and in particular
in the study of polynomial identities of the matrix algebra Mk(F) in fact it was
determinated a precise relation between the growth of the correspondingT -ideal and
the growth of the T -ideal of the matrix algebra. Moreover the Capelli polynomials
characterize the algebras having the cocharacter contained in a given strip (see [41]).
Let us recall that, for any positive integer m, the m-th Capelli polynomial is the
element of the free algebra F 〈X〉 defined as

Capm = Capm(t1, . . . , tm; x1, . . . , xm−1) =

=
∑

σ∈Sm
(sgn σ)tσ(1)x1tσ (2) · · · tσ (m−1)xm−1tσ (m)

where Sm is the symmetric group on {1, . . . ,m}. It is an alternating polynomial
and every polynomial which is alternating on t1, . . . , tm can be written as a
linear combination of Capelli polynomials obtained by specializing the xi’s. These
polynomials were first introduced by Razmyslov (see [39]) in his construction of
central polynomials for k × k matrices. It is easy to show that if A is a finite
dimensional algebra A and dim A = m − 1 then A satisfies Capm. Moreover,
any finitely generated PI -algebra A satisfies Capm for some m (see, for example,
Theorem 2.2 in [35]). Then the matrix algebraMk(F) satisfies Capk2+1 and k2 + 1
is actually the minimal degree of a Capelli polynomial satisfied byMk(F).

The main purpose of this paper is to present a survey on old and new results
concerning the Capelli polynomials. In particular, in Sect. 2 we recall the results
about the T -ideal generated by the m-th Capelli polynomial Capm and in Sect. 3
the results concerning the T2-ideal generated by the Z2-graded Capelli polynomials
Cap0

M+1 and Cap1
L+1. We show their relations with the T -ideal of the polynomial

identities ofMk(F) and, respectively, with the T2-ideals of the Z2-graded identities
of the simple finite dimensional superalgebra Mk(F), Mk,l(F ) and Ms(F ⊕ tF ).
In Sect. 4 we present the recent results obtained by the authors about the study
of the ∗-codimensions of the T -∗-ideal generated by the ∗-Capelli polynomials
Cap+M+1 and Cap−L+1. These results has been announced in a complete version
at the preprint server of Cornell University (https://arxiv.org/pdf/1911.04193.pdf)
and has been submitted elsewhere.

https://arxiv.org/pdf/1911.04193.pdf
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2 Ordinary Case

Let F be a field of characteristic zero and let F 〈X〉 = F 〈x1, x2, . . .〉 be the free
associative algebra on a countable set X over F. Recall that an ideal I of F 〈X〉 is a
T -ideal if it is invariant under all endomorphisms of F 〈X〉. Let A be an associative
algebra over F , then an element f = f (x1, . . . , xn) ∈ F 〈X〉 is a polynomial
identity for A if f (a1, . . . , an) = 0 for any a1, . . . , an ∈ A. If f is a polynomial
identity for A we usually write f ≡ 0 in A. Let Id(A) = {f ∈ F 〈X〉 | f ≡ 0 in A}
be the ideal of polynomial identities of A. When A satisfies a non trivial identity
(i.e. Id(A) � (0)), we say that A is a PI - algebra. The connection between T -
ideals of F 〈X〉 and PI -algebras is well understood: for any F -algebra A, Id(A)
is a T -ideal of F 〈X〉 and every T - ideal I of F 〈X〉 is the ideal of identities of
some F -algebra A. For I = Id(A) we denote by var(I) = var(A) the variety of all
associative algebras having the elements of I as polynomial identities. The language
of varieties is effective for investigations of PI -algebras.

An important class of T -ideals is given by the so-called verbally prime T -ideals.
They were introduced by Kemer (see [35]) in his solution of the Specht problem
as basic blocks for the study of arbitrary T -ideals. Recall that a T -ideal I ⊆ F 〈X〉
is verbally prime if for any T -ideals I1, I2 such I1I2 ⊆ I we must have I1 ⊆ I

or I2 ⊆ I . A PI -algebra A is called verbally prime if its T -ideal of identities
I = Id(A) is verbally prime. Also, the corresponding variety of associative algebras
var(A) is called verbally prime. By the structure theory of T -ideals developed by
Kemer (see [35]) and his classification of verbally prime T -ideals in characteristic
zero, the study of an arbitrary T -ideal can be reduced to the study of the T -ideals of
identities of the following verbally prime algebras

F, F 〈X〉, Mk(F ), Mk(G), Mk,l(G)

where G is the infinite dimensional Grassmann algebra, Mk(F), Mk(G) are the
algebras of k × k matrices over F and G, respectively, and

Mk,l(G) =
k l

k

l

(
G0 G1

G1 G0

)
.

Recall that G is the algebra generated by a countable set {e1, e2, . . .} subject to the
conditions eiej = −ej ei for all i, j = 1, 2, . . ., and G = G0 ⊕ G1 is the natural
Z2-grading on G, where G0 and G1 are the spaces generated by all monomials in
the generators ei’s of even and odd length, respectively.

It is well known that in characteristic zero every T -ideal is completely deter-
mined by its multilinear elements. Hence, if Pn is the space of multilinear
polynomials of degree n in the variables x1, . . . , xn, the relatively free algebra
F 〈X〉/Id(A) is determined by the sequence of subspaces {Pn/(Pn ∩ Id(A))}n≥1.
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The integer cn(A) = dimPn/(Pn ∩ Id(A)) is called the n-th codimension of A and
gives a quantitative estimate of the polynomial identities satisfied by A.

Thus to each T -ideal I = Id(A) one can associate the numerical sequence of
codimensions {cn(I)}n≥1 = {cn(A)}n≥1 of I, or A, that plays an important role in
the study of Id(A). It is well known thatA is a PI -algebra if and only if cn(A) < n!
for some n ≥ 1. Regev in [40] showed that if A is an associative PI -algebra, then
cn(A) is exponentially bounded i.e., there exist constants α, β which depend on A
such that cn(A) ≤ αβn for any n ≥ 1 (see also [36] and [42] for the best known
estimates). Giambruno and Zaicev improved this result and, in [23] and [24], proved
that for a PI -algebra A

exp(A) = lim
n→∞

n
√
cn(A)

exists and is an integer; exp(A) is called the PI -exponent of the algebra A. For the
verbally prime algebras we have (see [14, 43, 44] and [24])

exp(Mk(F )) = k2, exp(Mk(G)) = 2k2, exp(Mk,l(G)) = (k + l)2.

In [43] Regev obtained the precise asymptotic behavior of the codimensions of the
verbally prime algebraMk(F). It turns out that

cn(Mk(F )) � C(1

n
)(k

2−1)/2k2n,

where C is a certain constant explicitly computed. For the other verbally prime
algebras Mk(G), Mk,l(G) there are only some partially results (see [14] and [16]).
More precisely,

cn(Mk,l(G)) � angαn, cn(Mk(G)) � bnhβn,

with α = (k + l)2, g = − 1
2 (k

2 + l2 − 1), β = 2k2, h = − 1
2 (k

2 − 1), and a and b
are undetermined constants. It turns out that it is in general a very hard problem to
determine the precise asymptotic behavior of such sequences.

In [29] and in [10] it was found a relation among the asymptotics of codimensions
of the verbally prime T -ideals and the T -ideals generated by Capelli polynomials
or Amitsur’s Capelli-type polynomials.

Now, if f ∈ F 〈X〉 we denote by 〈f 〉T the T -ideal generated by f . Also for
V ⊂ F 〈X〉 we write 〈V 〉T to indicate the T -ideal generated by V . Let Cm be the
set of 2m polynomials obtained from them-th Capelli polynomialCapm by deleting
any subset of variables xi (by evaluating the variables xi to 1 in all possible ways)
and let 〈Cm〉T denotes the T -ideal generated by Cm. If Um = var(Cm) is the variety
corresponding to 〈Cm〉T then exp(Cm) = exp(Um). In case m = k2, it follows from
[43] that

exp(Ck2+1) = k2 = exp(Mk(F )).
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Mishchenko, Regev and Zaicev in [37] computed the exp(Cm), for an arbitrary
m, and in particular they proved (see also [30, Theorem 9.1.5])

Theorem 1 ([37, Theorem])

(1) m− 3 ≤ exp(Cm+1) ≤ m.
(2) exp(Cm+1) = max{a1, a2, a3, a4} where

aj = max{d2
1 + · · · + d2

j | d1, . . . , dj ∈ Z, d1, . . . , dj > 0, d2
1 + · · · + d2

j +
j ≤ m+ 1}.

(3) exp(Cm+1) ≤ m⇔ m = q2, for some q.

The proof applies, in an essential way, the classical Lagrange’s four square theorem.
In [29] Giambruno and Zaicev proved that the codimensions of Uk2+1 are

asymptotically equal to the codimensions of the verbally prime algebraMk(F)

Theorem 2 ([29, Theorem 3, Corollary 4]) Let m = k2. Then var(Cm+1) =
var(Mk(F ) ⊕ B) for some finite dimensional algebra B such that exp(B) < k2.
In particular

cn(Ck2+1) � cn(Mk(F )).

This result has been extended to the others verbally prime algebras by the so
called Amitsur’s Capelli-type polynomials.

Let L and M be two natural numbers, let n̂ = (L + 1)(M + 1) and let μ be a
partition of n̂ with associated rectangular Young diagram, μ = ((L + 1)M+1) � n̂.
In [6] the following polynomials, denoted Amitsur’s Capelli-type polynomials, were
introduced

e∗M,L = e∗M,L(t1, . . . , tn̂; x1, . . . , xn̂−1) =
∑

σ∈Sn̂
χμ(σ )tσ (1)x1tσ (2) · · · xn̂−1tσ (n̂),

where χμ(σ) is the value of the irreducible character χμ corresponding to the
partition μ � n̂ on the permutation σ . We note that for L = 0 we have μ =
(1n̂) and e∗M,L = Capn̂ is the n̂-th Capelli polynomial. The Amitsur’s Capelli-
type polynomials generalize the Capelli polynomials in the sense that the Capelli
polynomials characterize the algebras having the cocharacter contained in a given
strip (see [41]) and the Amitsur’s polynomials characterize the algebras having a
cocharacter contained in a given hook (see [6, Theorem B]).

Let E∗
M,L denote the set of 2n̂−1 polynomials obtained from e∗M,L by evaluating

the variables xi to 1 in all possible ways. Also we denote by �M,L = 〈E∗
M,L〉T the

T -ideal generated by E∗
M,L. Moreover we write VM,L = var(E∗

M,L) = var(�M,L),
cn(E

∗
M,L) = cn(�M,L) and exp(E∗

M,L) = exp(�M,L). The following relations
between the exponent of the Capelli-type polynomials and the exponent of the
verbally prime algebras are well known (see [15])

exp(E∗
k2,k2) = 2k2 = exp(Mk(G)), exp(E∗

k2+l2,2kl) = (k + l)2 = exp(Mk,l(G)).
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In [15] (see also [30]) Berele and Regev, by using the generalized-six-square
theorem [17], proved that

Theorem 3 ([15, Proposition 4.4.]) Let l ≤ k. Then k+ l−3 ≤ exp(E∗
k,l) ≤ k+ l.

Finally, in [10] it was shown the following asymptotical equalities

Theorem 4 ([10, Theorem 5]) Let k, l ∈ N. Then var(E∗
k2+l2,2kl) =

var(Mk,l(G) ⊕ G(D′)), where D′ is a finite dimensional superalgebra such that
exp(D′) < (k + l)2. In particular

cn(E
∗
k2+l2,2kl) � cn(Mk,l(G)).

Theorem 5 ([10, Theorem 10]) Let k ∈ N, k > 0. Then var(E∗
k2,k2) =

var(Mk(G) ⊕ G(D′)), where D′ is a finite dimensional superalgebra such that
exp(D′) < 2k2. In particular

cn(E
∗
k2,k2) � cn(Mk(G)).

3 Z2-Graded Case

Recall that an algebra A is a superalgebra (or Z2-graded algebra) with grading
(A(0), A(1)) if A = A(0) ⊕ A(1), where A(0), A(1) are subspaces of A satisfying:

A(0)A(0) + A(1)A(1) ⊆ A(0) and A(0)A(1) + A(1)A(0) ⊆ A(1).

The elements of A(0) and of A(1) are called homogeneous of degree zero (or even
elements) and of degree one (or odd elements), respectively. If we writeX = Y ∪Z
as the disjoint union of two countable sets, then the free associative algebra F 〈X〉 =
F 〈Y ∪ Z〉 = F(0) ⊕ F(1) has a natural structure of free superalgebra with grading
(F(0),F(1)), where F(0) is the subspace generated by the monomials of even degree
with respect to Z and F(1) is the subspace generated by the monomials having odd
degree in Z.

Recall that an element f (y1, . . . , yn, z1, . . . , zm) of F 〈Y ∪ Z〉 is a Z2-
graded identity or a superidentity for A if f (a1, . . . , an, b1, . . . , bm) = 0, for
all a1, . . . , an ∈ A(0) and b1, . . . , bm ∈ A(1). The set Idsup(A) of all Z2-
graded identities of A is a T2-ideal of F 〈Y ∪ Z〉 i.e., an ideal invariant under
all endomorphisms of F 〈Y ∪ Z〉 preserving the grading. Moreover, every T2-
ideal � of F 〈Y ∪ Z〉 is the ideal of Z2-graded identities of some superalgebra
A = A(0) ⊕ A(1), � = Idsup(A). For � = Idsup(A) a T2-ideal of F 〈Y ∪ Z〉,
we denote by supvar(�) or supvar(A) the supervariety of superalgebras having the
elements of � as Z2-graded identities.

As it was shown by Kemer (see [34, 35]), superalgebras and their Z2-graded iden-
tities play a basic role in the study of the structure of varieties of associative algebras
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over a field of characteristic zero. More precisely Kemer showed that any variety is
generated by the Grassmann envelope of a suitable finite dimensional superalgebra
(see Theorem 3.7.8 [30]) and moreover he established that an associative variety is
a prime variety if and only if it is generated by the Grassmann envelope of a simple
finite dimensional superalgebra.

Recall that, if F is an algebraically closed field of characteristic zero, then a
simple finite dimensional superalgebra over F is isomorphic to one of the following
algebras (see [30, 35]):

1. Mk(F) with trivial grading (Mk(F ), 0);

2. Mk,l(F ) with grading

((
F11 0
0 F22

)
,

(
0 F12

F21 0

))
, where F11, F12, F21, F22

are k × k, k × l, l × k and l × l matrices respectively, k ≥ 1 and l ≥ 1;
3. Ms(F ⊕ tF ) with grading (Ms(F ), tMs(F )), where t2 = 1.

Thus an important problem in the theory of PI -algebras is to describe the
T2-ideals of Z2-graded identities of finite dimensional simple superalgebra:
Idsup(Mk(F )), Idsup(Mk,l(F )), Idsup(Ms(F ⊕ tF )).

In case charF = 0, it is well known that Idsup(A) is completely determined
by its multilinear polynomials and an approach to the description of the Z2-graded
identities of A is based on the study of the Z2-graded codimensions sequence of this
superalgebra. If P supn denotes the space of multilinear polynomials of degree n in
the variables y1, z1, . . ., yn, zn (i.e., yi or zi appears in each monomial at degree 1),
then the sequence of spaces {P supn ∩ Idsup(A)}n≥1 determines Idsup(A) and

c
sup
n (A) = dimF

(
P
sup
n

P
sup
n ∩ Idsup(A)

)

is called the n-th Z2-graded codimension of A. The asymptotic behaviour of the
Z2-graded codimensions plays an important role in the PI -theory of superalgebras.
In 1985, Giambruno e Regev (see [22]) proved that the sequence {csupn (A)}n≥1 is
exponentially bounded if and only if A satisfies an ordinary polynomial identity.
In [12] it was proved that if A is a finitely generated superalgebra satisfying a

polynomial identity, then lim
n→∞

n

√
c
sup
n (A) exists and is a non negative integer. It

is called superexponent (or Z2-exponent) of A and it is denoted by

supexp(A) = lim
n→∞

n

√
c
sup
n (A).

We remark that in [21] the existence of theG-exponent has been proved whenG is a
group of prime order and, in general, in [2, 31] and [1] for an arbitrary PI -algebras
graded by a finite abelian groupG.

Now, if f ∈ F 〈Y ∪ Z〉 we denote by 〈f 〉T2 the T2-ideal generated by f . Also
for a set of polynomials V ⊂ F 〈Y ∪ Z〉 we write 〈V 〉T2 to indicate the T2-ideal
generated by V. Let denote by Capm[Y,X] = Capm(y1, . . . , ym; x1, . . . , xm−1)
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and Capm[Z,X] = Capm(z1, . . . , zm; x1, . . . , xm−1) the m-th Z2-graded Capelli
polynomial in the alternating variables of homogeneous degree zero y1, . . . , ym and
of homogeneous degree one z1, . . . , zm, respectively. Then Cap0

m indicates the set
of 2m−1 polynomials obtained fromCapm[Y,X] by deleting any subset of variables
xi (by evaluating the variables xi to 1 in all possible way). Similarly, we define
by Cap1

m the set of 2m−1 polynomials obtained from Capm[Z,X] by deleting any
subset of variables xi .

If L andM are two natural numbers, let �M+1,L+1 be the T2-ideal generated by
the polynomials Cap0

M+1, Cap
1
L+1, �M+1,L+1 = 〈Cap0

M+1, Cap
1
L+1〉T2 . We also

write UsupM+1,L+1 = supvar(�M+1,L+1).

In [8] it was calculated the supexp(Usup
M+1,L+1). We recall the following

Definition 1 (see [8]) LetM and L be fixed. Then, for any integers s, t ≥ 0, r ≥ 1
such that r − 1 = r0 + r1 for some non-negative integers r0, r1, we define the set

Ar,s,t;r0,r1 = {a1, . . . , ar, k1, l1, . . . , ks , ls, b1, . . . , bt ∈ Z+ |

a2
1 + · · · + a2

r + (k2
1 + l21)+ · · · (k2

s + l2s )+ b2
1 + · · · + b2

t + r0 + s + t ≤M,

and 2k1l1 + · · · + 2ksls + b2
1 + · · · + b2

t + r1 + s + t ≤ L}.

Also, given integers s, t ≥ 0 (r = 0), we define the set

Ãs,t = {k1, l1, . . . , ks, ls , b1, . . . , bt ∈ Z+ |

(k2
1 + l21)+ · · · (k2

s + l2s )+ b2
1 + · · · + b2

t + s + t ≤ M + 1,

and 2k1l1 + · · · + 2ksls + b2
1 + · · · + b2

t + s + t ≤ L+ 1}.

Moreover, let

ar,s,t;r0,r1 = maxai ,ki ,li ,bi∈Ar,s,t;r0,r1 {a
2
1 +· · ·+a2

r +(k1+ l1)2+· · · (ks+ ls)2+2b2
1+· · ·+2b2

t }

and

ãs,t = maxki ,li ,bi∈Ãs,t {(k1 + l1)2 + · · · (ks + ls )2 + 2b2
1 + · · · + 2b2

t },

then we define

a0 = max{ar,s,t;r0,r1, ãs,t | r + s + t ≤ 11}.

Theorem 6 ([8, Theorem 4]) IfM ≥ L ≥ 0, then

(1) supexp(Usup
M+1,L+1) = a0;

(2) (M + L)− 10 ≤ supexp(Usup
M+1,L+1) ≤ (M + L).
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This result was inspirated by the ordinary case. Moreover, we should mention
that in the previous theorem an essential tool is the generalized-six-square theorem
proved in [17] (see also Appendix A of [30]).

The following relations between the superexponent of the Z2-graded Capelli
polynomials and the superexponent of the simple finite dimensional superalgebras
are well known (see [8, 12, 28])

supexp(Usup
k2+1,1

) = k2 = supexp(Mk(F ))

supexp(Usup
k2+l2+1,2kl+1

) = (k + l)2 = supexp(Mk,l(F ))

supexp(Usup
s2+1,s2+1

) = 2s2 = supexp(Ms(F ⊕ tF )).

In [9] it was found a close relation among the asymptotics of Usup
k2+l2+1,2kl+1

and

Mk,l(F ) and the asymptotics of Usup
s2+1,s2+1 and Ms(F ⊕ tF ). More precisely it was

showed that

Theorem 7 ([9, Theorem 9]) Let M = k2 + l2 and L = 2kl with k, l ∈ N, k >
l > 0. Then UsupM+1,L+1 = supvar(�M+1,L+1) = supvar(Mk,l(F )⊕D′), whereD′
is a finite dimensional superalgebra such that supexp(D′) < M + L. In particular

c
sup
n (�M+1,L+1) � csupn (Mk,l(F )).

Theorem 8 ([9, Theorem 14]) Let M = L = s2 with s ∈ N, s > 0. Then
UsupM+1,L+1 = supvar(�M+1,L+1) = supvar(Ms(F ⊕ tF ) ⊕ D′′), where D′′ is
a finite dimensional superalgebra such that supexp(D′′) < M + L. In particular

c
sup
n (�M+1,L+1) � csupn (Ms(F ⊕ tF )).

In [29] Giambruno and Zaicev proved that csupn (�k2+1,1) � csupn (Mk(F )).

4 Involution Case

Let F 〈X, ∗〉 = F 〈x1, x
∗
1 , x2, x

∗
2 , . . .〉 denote the free associative algebra with

involution ∗ generated by the countable set of variables X = {x1, x
∗
1 , x2, x

∗
2 , . . .}

over a field F of characteristic zero. Let (A, ∗) be an algebra with involution ∗
over F , recall that an element f (x1, x

∗
1 , · · · , xn, x∗n) of F 〈X, ∗〉 is a ∗-polynomial

identity (or ∗-identity) for A if f (a1, a
∗
1 , · · · , an, a∗n) = 0, for all a1, . . . , an ∈ A.

We denote by Id∗(A) the set of all ∗-polynomial identities satisfied by A. Id∗(A) is
a T -∗-ideal of F 〈X, ∗〉 i.e., an ideal invariant under all endomorphisms of F 〈X, ∗〉
commuting with the involution of the free algebra. Similar to the case of ordinary
identities any T -∗-ideal � of F 〈X, ∗〉 is the ideal of ∗-identities of some algebra A
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with involution ∗, � = Id∗(A). For � = Id∗(A) we denote by var∗(�) = var∗(A)
the variety of ∗-algebras having the elements of � as ∗-identities.

It is well known that in characteristic zero Id∗(A) is completely determinated
by the multilinear ∗-polynomials it contains. To the T-∗-ideal � = Id∗(A) one
associates a numerical sequence called the sequence of ∗-codimensions c∗n(�) =
c∗n(A) which is the main tool for the quantitative investigation of the ∗-polynomial
identities of A. Recall that c∗n(A), n = 1, 2, . . ., is the dimension of the space
of multilinear polynomial in n-th variables in the corresponding relatively free
algebra with involution of countable rank. Thus, if we denote by P ∗

n the space of
all multilinear polynomials of degree n in x1, x

∗
1 , · · · , xn, x∗n then

c∗n(A) = dimP ∗
n (A) = dim

P ∗
n

P ∗
n ∩ Id∗(A)

.

It is clear that the ordinary free associative algebraF 〈X〉 (without involution) can
be considered as a subalgebra of F 〈X, ∗〉 and, in particular, an ordinary polynomial
identity (without involution) can be considered as an identity with involution. Hence
if A is a ∗-algebra, then Id(A) ⊆ Id∗(A). Moreover, a celebrated theorem of
Amitsur ([4, 5], see also [30]) states that if an algebra with involution satisfies a
∗-polynomial identity then it satisfies an ordinary polynomial identity. At the light
of this result in [22] it was proved that, as in the ordinary case, if A satisfies a
non trivial ∗-polynomial identity then c∗n(A) is exponentially bounded, i.e. there
exist constants a and b such that c∗n(A) ≤ abn, for all n ≥ 1. Later (see [7]) an
explicit exponential bound for c∗n(A) was exhibited and in [28] a characterization
of finite dimensional algebras with involution whose sequence of ∗-codimensions is
polynomial bounded was given. This result was extended to non-finite dimensional
algebras (see [27]) and ∗-varieties with almost polynomial growth were classified
in [26] and [38]. The asymptotic behavior of the ∗-codimensions was determined in
[13] in case of matrices with involution.

Recently (see [33]), for any algebra with involution, it was studied the exponen-
tial behavior of c∗n(A), and it was showed that the ∗-exponent of A

exp∗(A) = lim
n→∞

n
√
c∗n(A)

exists and is a non negative integer. It should be mentioned that the existence of the
∗-exponent was proved in [25] for finite dimensional algebra with involution.

An interesting problem in the theory of PI -algebras with involution ∗ is to
describe the T -∗-ideals of ∗-polynomial identities of ∗-simple finite dimensional
algebras. Recall that, if F is an algebraically closed field of characteristic zero,
then, up to isomorphisms, all finite dimensional ∗-simple are the following ones
(see [30, 45]):

• (Mk(F ), t) the algebra of k × k matrices with the transpose involution;
• (M2m(F), s) the algebra of 2m× 2m matrices with the symplectic involution;
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• (Mh(F ) ⊕ Mh(F)op, exc) the direct sum of the algebra of h × h matrices and
the opposite algebra with the exchange involution.

Let G be the infinite dimensional Grassmann algebra over F . G is generated by
the elements e1, e2, . . . subject to the following condition eiej = −ejei , for all
i, j ≥ 1. Recall that G has a natural Z2-grading G = G0 ⊕ G1 where G0 (resp.
G1) is the span of the monomials in the ei’s of even length (resp. odd length). If
B = B0 ⊕ B1 is a superalgebra, then the Grassmann envelope of B is defined as
G(B) = (G0 ⊗ B0) ⊕ (G1 ⊗ B1). The relevance of G(A) relies in a result of
Kemer ([35, Theorem 2.3]) stating that if B is any PI -algebra, then its T -ideal
of polynomial identities coincides with the T -ideal of identities of the Grassmann
envelope of a suitable finite dimensional superalgebra. This result has been extended
to algebras with involution in fact in [3] it was proved that, if A is a PI -algebra with
involution over a field F of characteristic zero, then there exists a finite dimensional
superalgebra with superinvolution B such that Id∗(A) = Id∗(G(B)).

Recall that a superinvolution ∗ of B is a linear map of B of order two such
that (ab)∗ = (−1)|a||b|b∗a∗, for any homogeneous elements a, b ∈ B, where
|a| denotes the homogeneous degree of a. It is well known that in this case
B∗

0 ⊆ B0, B
∗
1 ⊆ B1 and we decompose B = B+

0

⊕
B−

0

⊕
B+

1

⊕
B−

1 . We can
define a superinvolution ∗ on G by requiring that e∗i = −ei, for any i ≥ 1. Then
it is easily checked that G0 = G+ and G1 = G−. Now, if B is a superalgebra
one can perform its Grassmann envelope G(B) and in [3] it was shown that if
B has a superinvolution ∗ we can regard G(B) as an algebra with involution
by setting (g ⊗ a)∗ = g∗ ⊗ a∗, for homogeneous elements g ∈ G, a ∈ B.

By making use of the previous theorem, in [33] it was proved the existence of
the ∗-exponent of a PI -algebra with involution A and also an explicit way of
computing exp∗(A) was given. The ∗-exponent is computed as follows: if B is a
finite dimensional algebra with superinvolution over F , then by Giambruno et al.
[32] we write B = B̄ + J where B̄ is a maximal semisimple superalgebra with
induced superinvolution and J = J (B) = J ∗.Also we can write B̄ = B1⊕· · ·⊕Bk ,
where B1, · · · , Bk are simple superalgebras with induced superinvolution. We
say that a subalgebra Bi1 ⊕ · · · ⊕ Bit , where Bi1 , . . . , Bit are distinct simple
components, is admissible if for some permutation (l1, . . . , lt ) of (i1, . . . , it ) we
have that Bl1JBl2J · · · JBlt � 0. Moreover if Bi1 ⊕ · · · ⊕ Bit is an admissible
subalgebra of B then B ′ = Bi1 ⊕ · · · ⊕ Bit + J is called a reduced algebra.
In [33] it was proved that exp∗(A) = exp∗(G(B)) = d where d is the maximal
dimension of an admissible subalgebra of B. It follows immediately that if A
is a ∗-simple algebra then exp∗(A) = dimFA. If V = var∗(A) is the variety
of ∗-algebras generated by A we write Id∗(V) = Id∗(A), c∗n(V) = c∗n(A) and
exp∗(V) = exp∗(A).

The reduced algebras are basic elements of any ∗-variety in fact we have the
following (see [11])

Theorem 9 Let V be a proper variety of ∗-algebras. Then there exists a finite
number of reduced superalgebras with superinvolution B1, . . . , Bt and a finite
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dimensional superalgebra with superinvolutionD such that

V = var(G(B1)⊕ · · · ⊕G(Bt)⊕G(D))

with exp∗(V) = exp∗(G(B1)) = · · · = exp∗G((Bt )) and exp∗(G(D)) < exp∗(V).
In terms of ∗-codimensions we obtain

Corollary 1 Let V = var∗(A) be a proper variety of ∗-algebras. Then there exists a
finite number of reduced superalgebras with superinvolutionB1, . . . , Bt and a finite
dimensional superalgebra with superinvolutionD such that

c∗n(A) � c∗n(G(B1)⊕ · · · ⊕G(Bt )).

If A is a finite dimensional ∗-algebra, then we have the following

Corollary 2 Let A be a finite dimensional ∗-algebra. Then there exists a finite
number of reduced ∗-algebras B1, . . . , Bt and a finite dimensional ∗-algebra D
such that

var∗(A) = var∗(B1 ⊕ · · · ⊕ Bt ⊕D)

c∗n(A) � c∗n(B1 ⊕ · · · ⊕ Bt )

and

exp∗(A) = exp∗(B1) = · · · = exp∗(Bt ), exp∗(D) < exp∗(A).

4.1 ∗-Capelli Polynomials and the ∗-Algebra
UT ∗(A1, . . . , An)

In this paragraph we shall recall the relation among the asymptotics of the ∗-
codimensions of the ∗-simple finite dimensional algebras and the T -∗-ideals
generated by the ∗-Capelli polynomials recently proved by the authors. If (A, ∗) is
any algebra with involution ∗, let A+ = {a ∈ A | a∗ = a} and A− = {a ∈ A | a∗ =
−a} denote the subspaces of symmetric and skew elements ofA, respectively. Since
charF = 0, we can regard the free associative algebra with involution F 〈X, ∗〉 as
generated by symmetric and skew variables. In particular, for i = 1, 2, . . ., we let
yi = xi + x∗i and zi = xi − x∗i , then we write X = Y ∪ Z as the disjoint union
of the set Y of symmetric variables and the set Z of skew variables and F 〈X, ∗〉 =
F 〈Y ∪ Z〉. Hence a polynomial f = f (y1, . . . , ym, z1, . . . , zn) ∈ F 〈Y ∪ Z〉 is
a ∗-polynomial identity of A if and only if f (a1, . . . , am, b1, . . . , bn) = 0 for all
ai ∈ A+, bi ∈ A−. Let Cap∗m[Y,X] = Capm(y1, . . . , ym; x1, . . . , xm−1) denote
the m-th ∗-Capelli polynomial in the alternating symmetric variables y1, . . . , ym
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and let Cap∗m[Z,X] = Capm(z1, . . . , zm; x1, . . . , xm−1) be the m-th ∗-Capelli
polynomial in the skew variables z1, . . . , zm. Then we denote by Cap+m the set of
2m−1 polynomials obtained from Cap∗m[Y,X] by deleting any subset of variables
xi (by evaluating the variables xi to 1 in all possible way). Similarly, we define
by Cap−m the set of 2m−1 polynomials obtained from Cap∗m[Z,X] by deleting
any subset of variables xi . If L and M are two natural numbers, we denote by
�∗M+1,L+1 = 〈Cap+M+1, Cap

−
L+1〉 the T-∗-ideal generated by the polynomials

Cap+M+1, Cap
−
L+1. We also write U∗M+1,L+1 = var∗(�M+1,L+1) for the ∗-variety

generated by �∗M+1,L+1.
The following results give us a characterization of the ∗-varieties satisfying a

Capelli identity. The proof of the next result follows closely the proof given in [30,
Theorem 11.4.3]

Theorem 10 Let V be a variety of ∗-algebras. If V satisfies the Capelli identity of
some rank then V = var∗(A), for some finitely generated ∗-algebra A.

Let M , L be two natural numbers. Let A = A+ ⊕ A− be a generating ∗-algebra
of U∗M+1,L+1. It is easy to show that A satisfies a Capelli identity. Hence by the
previous theorem, we may assume thatA is a finitely generated ∗-algebra. Moreover
by Sviridova [46, Theorem 1] we may consider A as a finite dimensional ∗-algebra.
Since any polynomial alternating onM + 1 symmetric variables vanishes in A (see
[30, Proposition 1.5.5]), we get that dimA+ ≤ M . Similarly we get that dimA− ≤
L and exp∗(A) ≤ dimA ≤ M + L. Thus we have the following

Lemma 1 exp∗(U∗M+1,L+1) ≤M + L.
Now, we recall the construction of the ∗-algebra UT ∗(A1, . . . , An) given in

Section 2 of [18]. Let A1, . . . , An be a n-tuple of finite dimensional ∗-simple
algebras, then Ai = (Mdi (F ), μi), where μi is the transpose or the symplectic
involution, or Ai = (Mdi (F ) ⊕ Mdi (F )

op, exc), where exc is the exchange
involution.

Let γd be the orthogonal involution defined on the matrix algebra Md(F) by
putting, for all a ∈ Md(F), aγd = g−1atg = gatg, where at is the transposed of
the matrix a and

g =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 1
·

·
·

1 . . . 0

⎞
⎟⎟⎟⎟⎟⎠
.

If d = ∑n
i=1 dimFAi , then we can consider an embedding of ∗-algebras

� :
n⊕

i=1

Ai → (M2d(F ), γ2d)
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defined by

(a1, . . . , an)→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ā1
. . .

ān

b̄n
. . .

b̄1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where, if ai ∈ Ai = (Mdi (F ), μi), then āi = ai and b̄i = a
μiγdi
i , and if ai =

(ãi , b̃i) ∈ Ai = (Mdi (F ) ⊕ Mdi (F )op, exc), then āi = ãi and b̄i = b̃i . Let D =
D(A1, . . . , An) ⊆ M2d (F ) be the ∗-algebra image of

⊕n
i=1 Ai by � and let U be

the subspace ofM2d (F ) so defined:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 U12 · · · U1t
. . .

. . .
...

0 Ut−1t

0
0 Utt−1 · · · Ut1
. . .

. . .
...

0 U21

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where, for 1 ≤ i, j ≤ n, i � j , Uij denote the vector space of the rectangular matri-
ces of dimensions di × dj . Let define (see section 2 of [18]) UT ∗(A1, . . . , An) =
D ⊕ U ⊆ M2d(F ). It is easy to show that UT ∗(A1, . . . , An) is a subalgebra with
involution of (M2d (F ), γ2d) in which the algebras Ai are embedded as ∗-algebras
and whose ∗-exponent is given by

exp∗(UT ∗(A1, . . . , An)) =
n∑

i=1

dimFAi.

In [20] and [19] the link between the degrees of ∗-Capelli polynomials and the
∗-polynomial identities of UT ∗(A1, . . . , An) was investigated. If we set d+ :=∑n
i=1 dimFA

+
i and d− := ∑n

i=1 dimFA
−
i , then the following result applies

Lemma 2 Let R = UT ∗(A1, . . . , An). Then Cap∗M [Y,X] and Cap∗L[Z,X] are in
Id∗(R) if and only ifM ≥ d+ + n and L ≥ d− + n.
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4.2 Asymptotics for ∗-Capelli Polynomials

In this section we shall state our main results about the ∗-Capelli polynomials and
their asymptotics (see [11]).

The following two key lemmas hold for any ∗-simple finite dimensional algebra.

Lemma 3 Let A = Ā ⊕ J where Ā is a ∗-simple finite dimensional algebra and
J = J (A) is its Jacobson radical. Then J can be decomposed into the direct sum of
four Ā-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where, for p, q ∈ {0, 1}, Jpq is a left faithful module or a 0-left module according to
p = 1, or p = 0, respectively. Similarly, Jpq is a right faithful module or a 0-right
module according to q = 1 or q = 0, respectively. Moreover, for p, q, i, l ∈ {0, 1},
JpqJql ⊆ Jpl , JpqJil = 0 for q � i and there exists a finite dimensional nilpotent
∗-algebra N such that J11 � Ā ⊗F N (isomorphism of Ā-bimodules and of ∗-
algebras).

Proof It follows from the proof of Lemma 2 in [29].

Lemma 4 Let Ā be a ∗-simple finite dimensional algebra. Let M = dimF Ā+ and
L = dimF Ā−. Then Ā does not satisfy Cap∗M [Y,X] and Cap∗L[Z,X].
Proof The result follows immediately from [21, Lemma 3.1].

Lemma 5

(1) Let M1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0 and let
J11 � Mk(F)⊗F N , as in Lemma 3. If �M1+1,L1+1 ⊆ Id∗(Mk(F ) + J ), then
J10 = J01 = (0) and N is commutative.

(2) Let M2 = m(2m − 1) and L2 = m(2m + 1) with m ∈ N, m > 0 and let
J11 � M2m(F) ⊗F N , as in Lemma 3. If �M2+1,L2+1 ⊆ Id∗(M2m(F) + J ),
then J10 = J01 = (0) and N is commutative.

(3) LetM3 = L3 = h2 with h ∈ N, h > 0 and let J11 � (Mh(F )⊕Mh(F)op)⊗F N ,
as in Lemma 3. If �M3+1,L3+1 ⊆ Id∗((Mh(F ) ⊕Mh(F)op) + J ), then J10 =
J01 = (0) and N is commutative.

Lemma 6

(1) LetM1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0. Then

exp∗(U∗M1+1,L1+1) = M1 + L1 = k2 = exp∗((Mk(F ), t)).
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(2) LetM2 = m(2m− 1) and L2 = m(2m+ 1) with m ∈ N, m > 0. Then

exp∗(U∗M2+1,L2+1) = M2 + L2 = 4m2 = exp∗((M2m(F), s)).

(3) LetM3 = L3 = h2 with h ∈ N, h > 0. Then

exp∗(U∗M3+1,L3+1) = M3 + L3 = 2h2 = exp∗((Mh(F )⊕Mh(F)op, exc)).

Proof (1) The exponent of U∗M1+1,L1+1 is equal to the exponent of some minimal
variety lying in U∗M1+1,L1+1 (for the definition of minimal variety see [30]). Let

d+ := ∑n
i=1 dimFA

+
i and d− := ∑n

i=1 dimFA
−
i , then, by Di Vincenzo and

Spinelli [20, Theorem 2.1] and Lemma 2, we have that

exp∗(U∗M1+1,L1+1) = max{exp∗(UT ∗(A1, . . . , An)) | d++n ≤ M1+1 and d−+n ≤ L1+1}.

Then

exp∗(U∗M1+1,L1+1) ≥ M1 + L1 = k2 = exp∗(UT ∗(Mk(F ))).

Since by Lemma 1, exp∗(U∗M1+1,L1+1) ≤ M1 + L1 then the proof is completed.
(2), (3) The proof is the same of that of point (1).

Now we are able to prove the main results.

Theorem 11 LetM1 = k(k + 1)/2 and L1 = k(k − 1)/2 with k ∈ N, k > 0. Then

U∗M1+1,L1+1 = var∗(�∗M1+1,L1+1) = var∗(Mk(F )⊕D′),

where D′ is a finite dimensional ∗-algebra such that exp∗(D′) < M1 + L1. In
particular

c∗n(�∗M1+1,L1+1) � c∗n(Mk(F )).

Sketch of the Proof By the previous Lemma we have that exp∗(U∗M1+1,L1+1) =
M1 + L1.

Let A = A+ ⊕ A− be a generating finite dimensional ∗-algebra of U∗M1+1,L1+1.
By Corollary 2, there exist a finite number of reduced ∗-algebras B1, . . . , Bs and
a finite dimensional ∗-algebra D′ such that U∗M1+1,L1+1 = var∗(A) = var∗(B1 ⊕
· · ·⊕Bs ⊕D′), with exp∗(B1) = · · · = exp∗(Bs) = exp∗(U∗M1+1,L1+1) = M1 +L1
and exp∗(D′) < exp∗(U∗M1+1,L1+1) = M1 + L1. Then, it is enough to analyze the
structure of a finite dimensional reduced ∗-algebra R such that exp∗(R) = M1 +
L1 = exp∗(U∗M1+1,L1+1) and �∗M1+1,L1+1 ⊆ Id∗(R). Let write R = R1 ⊕ · · · ⊕
Rq + J, where J = J (R), R1J · · · JRq � 0 and Ri is isomorphic to one of the
following algebras :(Mki (F ), t) or (M2mi (F ), s) or (Mhi (F )⊕Mhi (F )op, exc).
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Let t1 be the number of ∗-algebrasRi of the first type, t2 the number of ∗-algebras
Ri of the second type and t3 the number of Ri of the third type, with t1 + t2 +
t3 = q . By [18, Theorem 4.5] and [18, Proposition 4.7] there exists a ∗-algebra
R isomorphic to the ∗-algebra UT ∗(R1, . . . , Rq) such that exp∗(R) = exp∗(R) =
exp∗(UT ∗(R1, . . . , Rq)). Let observe that

k2 = M1 + L1 = exp∗(R) = exp∗(R) = exp∗(UT ∗(R1, . . . , Rq)) =

dimFR1+· · ·+dimFRq = k2
1+· · ·+k2

t1
+(2m1)

2+· · ·+(2mt2)2+2h2
1+· · ·+2h2

t3
.

Let d± = dimF (R1 ⊕ · · · ⊕ Rq)± then

d+ + d− = d = dimF (R1 ⊕ · · · ⊕ Rq) = exp∗(R) = M1 + L1.

By [20, Lemma 3.2]R does not satisfy the ∗-Capelli polynomialsCap∗
d++q−1[Y ;X]

and Cap∗
d−+q−1[Z;X], but R satisfies Cap∗M1+1[Y ;X] and Cap∗L1+1[Z;X]. Thus

d+ + q − 1 ≤ M1 and d− + q − 1 ≤ L1. Hence d+ + d− + 2q − 2 ≤ M1 + L1.
Since d+ + d− = M1 + L1 we obtain that q = t1 + t2 + t3 = 1. Since t1, t2 and
t3 are nonnegative integers by considering all possible cases we get that t1 = 1 and
R � Mk(F)+ J. From Lemmas 3 and 5 we obtain

R � (Mk(F )+ J11)⊕ J00 � (Mk(F )⊗N�)⊕ J00

where N� is the algebra obtained from N by adjoining a unit element.
Thus var∗(R) = var∗(Mk(F ) ⊕ J00) with J00 a finite dimensional nilpotent ∗-

algebra. Hence, recalling the decomposition given above, we get

U∗M1+1,L1+1 = var∗(�M1+1,L1+1) = var∗(Mk(F )⊕D′),

whereD′ is a finite dimensional ∗-algebra with exp∗(D′) < M1 + L1. Then

c∗n(�M1+1,L1+1) � c∗n(Mk(F ))

and the theorem is proved.
In a similar way we can prove the next two theorems.

Theorem 12 Let M2 = m(2m − 1) and L2 = m(2m + 1) with m ∈ N, m > 0.
Then

U∗M2+1,L2+1 = var∗(�M2+1,L2+1) = var∗(M2m(F)⊕D′′),
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where D′′ is a finite dimensional ∗-algebra such that exp∗(D′′) < M2 + L2. In
particular

c∗n(�M2+1,L2+1) � c∗n(M2m(F)).

Theorem 13 LetM3 = L3 = h2 with h ∈ N, h > 0. Then

U∗M3+1,L3+1 = var∗(�M3+1,L3+1) = var∗((Mh(F )⊕Mh(F)op)⊕D′′′),

where D′′′ is a finite dimensional ∗-algebra such that exp∗(D′′′) < M3 + L3. In
particular

c∗n(�M3+1,L3+1) � c∗n(Mh(F )⊕Mh(F)op).
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Regev’s Conjecture for Algebras
with Hopf Actions

Allan Berele

Abstract Let A be a p.i. algebra in characteristic zero with action from the finite
dimensional Hopf algebra H , and let {cHn (A)} be the H -codimension sequence. If
1 ∈ A then we prove the H -analogue of Regev’s conjecture, namely, cHn (A) �
αnt en for some α > 0, 2t ∈ Z and e ∈ N. We also prove weaker results under
weaker hypotheses.

Keywords Codimensions · Regev’s conjecture · Hopf actions

1 Introduction

Throughout this paperA will be a non-nilpotent p.i. algebra in characteristic zero. If
{cn(A)}∞n=0 is the codimension sequence, then Giambruno and Zaicev in [8] and [9]
proved the following theorem conjectured by Amitsur:

Theorem (Amitsur’s Conjecture) The limit limn→∞ (cn(A))1/n exists and is a
non-negative integer.

The limit in this theorem is denoted exp(A) or simply e. Giambruno and Zaicev’s
papers prove the stronger statement that

α1n
t1en ≤ cn(A) ≤ α2n

t2en (1)

for some positive α1, α2 and some t1, t2
Giambruno and Zaicev’s theorem has been generalized to other types of codi-

mensions, including *-codimension of p.i. algebras with involution in [12] and
H -codimensions of p.i. algebras with action from a finite dimensional semisimple
Hopf algebra in [13].
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Regev conjectured a stronger estimate of the codimensions, namely,

Conjecture (Regev’s Conjecture) For any non-nilpotent characteristic zero p.i. alge-
bra A the codimensions satisfy cn(A) � αnt en, for some e ∈ N, 2t ∈ Z and α > 0.

Regev also conjectured that the constant α should belong to a field extension of
Q of the formQ[√2π,

√
a1, . . . ,

√
an], where the ai are positive integers. Although

this part of Regev’s conjecture is interesting and important, we have nothing to say
about it in this paper and so shall ignore it.

It will be convenient to refer to the following as Regev’s Weak Conjecture:

Conjecture (Regev’s Weak Conjecture) For any non-nilpotent characteristic zero
p.i. algebra A the codimensions satisfy

α1n
ten ≤ cn(A) ≤ α2n

ten,

where e ∈ N, 2t ∈ Z and 0 < α1 ≤ α2.

Comparing Regev’s Weak Conjecture to (1), the former is stronger in that it states
that the two powers of t are equal integers or half-integers. Regev’s Weak Conjecture
is now known for all p.i. algebras: In [6] and [4] Berele and Regev proved it under
the assumption that the codimension sequence is non-decreasing, and Giambruno
and Zaicev proved that the codimension sequence is always non-decreasing in [11].
The former two papers also proved Regev’s Conjecture for algebras with 1. Our
main goal in this paper is to generalize these results from to H -codimensions of
p.i. algebras with action from finite dimensional Hopf algebras.

Theorem 1.1 Let A be a p.i. algebra with action from the finite dimensional Hopf
algebra H , with H -codimensions cHn (A). If the codimensions are eventually non-
decreasing then Regev’s Weak Conjecture holds, and if 1 ∈ A, then Regev’s
Conjecture holds.

The proof of this theorem is based on the proofs from [4], and for the reader not
familiar with that work we now turn to a brief summary.

2 Regev’s Conjectures for Algebras Without Actions

2.1 Background on Magnums

We start with these two fundamental theorems of Kemer, see [14].

Theorem 2.1 (The Specht Conjecture) The set of T -ideals in characteristic zero
satisfies the ascending chain condition.
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Let E be the infinite dimensional Grassmann algebra with its natural Z2-grading.
Given any Z2-graded algebra A the Grassmann envelope G(A) is defined to be
E0 ⊗ A0 ⊕ E1 ⊗ A1 ⊆ E ⊗A.

Theorem 2.2 (Kemer’s Finite Representability Theorem) If A is any character-
istic zero p.i. algebra, there exists a finite dimensional, Z2-graded algebra B such
that A andG(B) satisfy the same identities.

At this point we need to talk about cocharacters, not just codimensions, and it
is helpful to use hooks. For the reader not familiar with the theory we recommend
[10].

Definition 2.3 The hook H(k, �; n) is the set of all partitions of n with at most k
parts greater than �, and H(k, �) is the union ∪nH(k, �; n).

Henceforth, let mλ = mλ(A) be the multiplicity of the irreducible character
corresponding to the partition λ in the cocharacter sequence of A. Of course, the
codimensions can be computed from the multiplicities via

cn(A) =
∑

λ�n
mλf

λ, (2)

where f λ is the degree of the Sn-character on λ.
The following theorem is due to Amitsur and Regev from [2]. It is at least implicit

in the work of Kemer, see Proposition 1.3 in [14].

Theorem 2.4 (Amitsur-Regev) Given any p.i. algebraA there exists k, � such that
mλ = 0 for all λ � H(k, �).

In the special case of A = G(B) where B is finite dimensional with graded
dimension (d0, d1) we may take (k, �) = (d0, d1).

Definition 2.5 Let A = G(B) and let Uk,� = Uk,�(A) be the universal algebra
for B, i.e., the free Z2-graded algebra on k degree zero variables and � degree
one variables modulo the graded identities of B. The algebra Uk,�(A) is called a
magnum of A.

The connection to cocharacters is because of this theorem of Berele and Regev
from [5].

Theorem 2.6 The magnumUk,�(A) has a natural (k+�)-fold grading with respect
to which it has a Poincaré series Pk,�(A). This series can be expanded as a series
in the hook Schur functions

Pk,�(x1, . . . , xk, y1, . . . , y�) =
∞∑

n=0

∑

λ∈H(k,�;n)
mλHSλ(x; y)
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where the mλ = mλ(A) are the multiplicities of the irreducible characters in the
cocharacter sequence of A.

2.2 Codimension Sequences

Definition 2.7 A sequence {an} is asymptotically almost polynomial times expo-
nential (asymptotically APE for short) if there exists a modulus d such that for each
0 ≤ i ≤ d − 1 there exists e ∈ N, αi ≥ 0, 2ti ∈ Z such that an � αin

ti en where
n = qd + i, q →∞.

Our main theorem in [4] is that cn(A) is always asymptotically APE. The proof
follows combinatorially from two properties of codimension sequences. The first
is due to [9], as follows. A p.i. algebra is said to be varietally irreducible if its T -
ideal of identities cannot be written as the intersection of strictly larger T -ideals.
Equivalently, A is not p.i. equivalent to a direct sum of algebras each satisfying
more identities than A. Every algebra is equivalent to a direct sum of varietally
irreducible ones and Giambruno and Zaicev proved the following theorem about
their cocharacters

Theorem 2.8 Let mλ be the multiplicities in the cocharacter of the varietally
irreducible algebra A. Then there exists k, �,K such that

(a) mλ = 0 if the Young diagram of λ has more than K boxes outside of the hook
H(k, �), i.e., if

∑
i>k max{λi − �, 0} is greater than K .

(b) For all large t there exists λ with mλ � 0 and λ within K of a partition of the
form ((t + �)k, �t ), i.e., such that

∑

i≤k
|λi − (t + �)| +

k+t∑

i=k+1

|λi − �| +
∑

i>k+t
λi

is at most K .

In general, if a sequence of Sn characters satisfies (a) we will say that it almost
lies in the k× � hook and write the set of such as H ′(k, �), surpressing theK; and if
it satisfies both conditions we will say it satisfies the almost square hook conditions
or the (k, �) almost square hook conditions, ASH for short. If it is a finite sum of
characters each satisfying some ASH, not necessarily with the same k, �, we say it
satisfies the multiple almost square hook condition, or MASH for short.

The next ingrediant we need is Theorem 3.3 of [4] which is based on Belov’s
theorem from [3].

Theorem 2.9 For any characteristic zero p.i. algebra A and for any k, � the series
Pk,�(A)(x1, . . . , xk; y1, . . . , y�) is the Taylor series of a rational function which can
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be written as a fraction with denominator a product of terms 1−uwhere u is a monic
monomial.

We call rational functions whose denominators can be taken to have this form
nice rational functions.

It turns out that Theorems 2.8 and 2.9 are just what we need to prove that
the codimension sequence is asymptotically almost polynomial times exponential
(almost APE). Note that this next theorem taken from [4] is purely combinatorial
and makes no reference to p.i. algebras.

Theorem 2.10 Let χn = ∑
λ∈H(k,�;n) mλχλ be a sequence of Sn-characters

supported by some hook H(k, �), and let c(n) = ∑
λ�n mλf λ where f λ is the

degree of χλ.
Assume that the characters satisfy MASH and that

∑
mλHSλ(x; y) is a nice

rational function. Then c(n) is APE.

It is not hard to see that if c(n) is also assumed to be eventually non-decreasing
then the exponents ti must all be equal and c(n) will satisfy the Weak Regev
Conjecture. This condition will be satisfied if whenever f (x1, . . . , xn) is not an
identity for A neither is f (x)xn+1, which in turn will be satisfied if A has a non-
zero divisor. However, this is unnecessary as Giambruno and Zaicev proved in [11]
that codimensions of p.i. algebras are eventually non-decreasing proving the Weak
Regev Conjecture in general. As for the Regev Conjecture, if 1 ∈ A then we need
the concept of Young derived characters.

Definition 2.11 A sequence {χn} of Sn-characters is said to be Young derived if
there exists a sequnce {φn} of Sn-characters such that for each n

χn =
n∑

i=0

φi ↑,

where the arrow indicates inducing the Si character up to Sn.

Drensky proved in [7] that cocharacter sequences of p.i. algebras with 1 are
always Young derived. Together with the following theorem from [4] we see that
Regev’s Conjecture holds for all such algebras.

Theorem 2.12 Let χn be as in the previous theorem and assume in addition that
it is Young derived. Then c(n) is asymptotic to αnt en, where α > 0, 2t ∈ Z and
e ∈ N, as in Regev’s Conjecture.

Explicitely, here are the theorems we intend to generalize in the next section:

Theorem 2.13 Let A is any characteristic zero p.i. algebra.

1. The codimensions cn(A) are asymptotically APE.
2. If in addition they are known to be increasing, then they satisfy Regev’s Weak

Conjecture.
3. If 1 ∈ A then the codimensions satisfy Regev’s Conjecture



62 A. Berele

3 H -Cocharacters

Henceforth we assume that H is a finite dimensional semisimple Hopf algebra, and
that A is a H -module algebra.

For the reader’s convenience we define the H -cocharacter. Let H have basis
h1, . . . , hm. It is convenient to take h1 = 1 so h1(x) = x for all x. Let Vn be
the vector space with basis equal to the (finite) set of symbols

hi1(xσ(1)) · · · hin(xσ(n)), 1 ≤ i1, . . . , in ≤ m, σ ∈ Sn.

Vn is an H module in a natural way and elements of Vn can be identified with
multilinear H -polynomials. If f (x1, . . . , xn) is such a polynomial and σ ∈ Sn we
may define σf (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)). Finally, if In is the identities of
the algebra A in Vn, then In is an Sn submodule. We let cHn (A) be the dimension of
the quotient, χHn (A) the Sn-character and mHλ the multiplicities of the irreducible
components.

Happily, most of what we need to generalize Theorem 2.13 was already done by
Karasik in [13]. Most importantly he generalized Kemer’s two main theorems:

Theorem 3.1 (H -Specht Conjecture) The set ofH -T -ideals in characteristic zero
satisfies the ACC

Theorem 3.2 (H -Finite Representability Theorem) If A is any characteristic
zero p.i. algebra with H action over the field F , and assume that F contains the
complex numbers, then there exists a field extension L of F and a finite dimensional
Z2-graded L-algebra B, with H action compatible with the grading, such that A
and the Grassmann envelopeG(B) satisfy the sameH -identities over F . Moreover,
if A satisfies a Capelli identity, then there is an extension L of the base field F and
a finite dimensional L-algebra B, with H action compatible, such that A and B
satisfy the same H -identities over F .

Two remarks: If the base field F does not contain C, let K be a field containing
both F and C. Then the F -algebra A and the K-algebra A ⊗ K have the same
codimension sequences, so for the study of codimensions we may assume without
loss of generality that F contains C. Secondly, that the algebra B has compatible
H -action and Z2-grading is equivalent to B having an action from the finite
dimensional semisimple Hopf algebraH2 = H ⊗ (Z2)

∗.
As in the case of algebras without actions, we letUk,�(A) be the universal algebra

for B as an F -algebra with H2 action, in k degree 0 generators and � degree one
generators, and we let PHk,�(x; y) be the corresponding Poincaré series. Then we
have the exact analogue of Theorem 2.6.
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Theorem 3.3 The magnumUk,�(A) has a natural (k+�)-fold grading with respect
to which it has a Poincaré series PHk,�(A). This series can be expanded as a series
in the hook Schur functions

PHk,�(x1, . . . , xk, y1, . . . , y�) =
∞∑

n=0

∑

λ∈H(k,�;n)
mHλ (A)HSλ(x; y)

where the mHλ (A) are the multiplicities of the irreducible characters in the H -
cocharacter sequence of A.

Karasik also proved the analogues of Amitsur and Regev’s theorem Theorem 2.4,
and Giambruno and Zaicev’s theorem, Theorem 2.8. Here is his theorem.

Theorem 3.4 Every H -p.i. algebra is H -p.i. equivalent to a finite direct sum of
basic ones, and the cocharacter sequence of each basic H -p.i. algebras is ASH.

In light of Theorem 2.10 all we need to prove in order to obtain that cHn (A) is
asymptotically APE is that Pk,�(x; y) is a nice rational function, which we do in the
next section; and in light of Theorem 2.12 in order to prove Regev’s Conjecture for
algebras with 1 we need to prove that the cocharacter sequence is Young derived,
which we do in the last section.

4 Rationality of Poincaré Series

Our main goal in this section is to prove that if B is any H2 algebra (as above,
H2 = H ⊗ (Z2)

∗) satisfying a Capelli identity, then the corresponding generic
algebra has nice rational Poincaré series. As remarked above, we may assume with
out loss that F contains the complex numbers. If there were H2-algebras satisfying
Capelli identities whose generic algebras were not nice rational functions, then by
the Karasik-Specht theorem we may assume that the ideal J of H -identities of B is
maximal with this property. We could also assume that J is varietally irreducible,
because if J were the intersection of two strictly larger ideals, J = J1 ∩ J2, and if
Fk,� is the free H algebra then the Poincaré series satisfy

P(Fk,�/J1 ∩ J2) = P(Fk,�/J1)+ P(Fk,�/J2)− P(Fk,�/J1 + J2).

But since each of J1, J2 and J1 + J2 is bigger than J , each of the series on the right
hand side would be nice rational and so P(Fk,�/J1 ∩ J2) would be also.

By the finite representability theorem, we may assume that B is finite dimen-
sional over a field L ⊃ F . Moreover, Karasik proved that every finite dimensional
H -p.i is equivalent to a direct sum of H -p.i. basic ones, and so we may assume that
B is H -p.i. basic as an L-H -algebra.
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Let B have graded L basis a1, . . . , ak, b1, . . . , b� and we consider B as a
subalgebra of the matricesMk+�(L). Define generic graded elements via

xi = ti1a1 + . . .+ tikak and yi = si1b1 + . . .+ si�b�
where the tij and sij are central indeterminants. Let K be the polynomial ring
L[tij , sij ]ij

For each h ∈ H2 we define h(xi) and h(yi) in the natural way.
We now define four algebras:

• U is the L-algebra generated by the h(xi) and the h(yi).
• R is the F -algebra generated by the h(xi) and h(yi).
• Let K be the polynomial algebra L[tij , sij ]ij . Since R is a subalgebra of the

matrix algebraMk+�(K) there is a trace functionR→ L. Let C̄ be the F -algebra
generated by all traces of elements of R.

• Let R̄ be the F -subalgebra ofMk+�(K) generated by R and C̄.

It is not hard to see that U is the universal algebra for B as an L-algebra
with H2 action. This means that U satisfies all of the identities of B as an H2-
L-algebra and given any a′1, . . . , a′k ∈ B0 and any b′1, . . . , b′� ∈ B1 there is an
L-H -homomorphism T : U → B that takes each xi to a′i and each yi to b′i . Since
T restricted to R is a F -linear, it follows that R is the generic algebra for B as an
F -H -algebra. In particular, B and R satisfy the same F -H2-identities. Referring to
Theorems 2.10 and 3.3, it is important to prove that the Poincaré series of R is a
nice rational function.

A key step in the proof is that C̄ must be a Noetherian ring and R̄ must be a
Noetherian module over it. This follows from two theorems:

Theorem 4.1 (Shirshov’s Theorem) There exist a finite number of words
u1, . . . , uN in the hi(xj ) and hi(yj ) and an integer α such that R is spanned
by the Shirshov words un1

i1
· · · unβiβ , where β ≤ α.

and

Theorem 4.2 (Cayley-Hamilton Theorem) Mk+�(L) satisfies the mixed trace
identity

xn + c1(x)x
n−1 + · · · + cn(x)1 = 0

where each ci(x) is a degree i trace polynomial in x (with coefficients in Q).

It follows that R̄ is generated over C̄ by Shirshov words in which each exponent
is at most n− 1, and there are finitely many of these.

Also, multiplying the Cayley-Hamilton theorem by x and taking trace implies
the pure trace identity

tr(xn+1)+ c1(x)tr(x
n)+ · · · = 0
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in which all but the first term (including inside the cj ) involves only powers xi with
i ≤ n. This implies that C̄ is generated by traces of Shirshov words in which each
exponent is at most n, and there are finitely many of these. Summarizing:

Theorem 4.3 C̄ is commutative graded Noetherian, and R̄ is a finite graded
module over it.

We now need to pass from C̄ and R̄ to R.
Because B is H2-p.i. basic it has an H2-Kemer polynomial, h(x, y). Among

the properties of Kemer polynomials is that it is not an identity for B and every
evaluation h(r), r ∈ R̄ and every product h(r)s is in R, where r, s ∈ R̄, see
Lemma 8.1 and Corollary 8.2 of [13]. Moreover, since h(x, y) can be constructed
from the Capelli identity by substitutions and alternations, it can be taken to have all
its coefficients in Q, and hence in F . Let J be the ideal generated by all evaluations
of h on R. Then J is an ideal of both R and R̄. Moreover, R/J is the universal
algebra for the H2-T-ideal generated by I and h. Consider

P(R) = P(R/J ) + P(J ).

The first term is the Poincaré series of a generic H2-algebra satisfying more
identities than B, so it is nice and rational. The second term is the Poincaré series
of J , which is a module for the Noetherian ring C̄ and contained in the Noetherian
module R̄. So it is Noetherian and has nice rational Poincaré series. Therefore R
does also and we have now proven the following:

Theorem 4.4 If B is any finite dimensional H2-p.i. algebra and Uk,� is the Z2-
graded generic algebra in k degree zero and � degree one variables, then the
Poincaré series of Uk,� is a nice rational function.

We note that Theorem 4.4 was proven by Aljadeff and Kanel-Belov in [1] in the
case of group gradings.

For our purposes, the main interest is in this consequence.

Theorem 4.5 If A is any H -p.i. algebra, then the codimension sequence cHn (A)
is asymptotically APE. In particular, if cHn (A) is known to be eventually non-
decreasing then the Weak Regev Conjecture holds.

Proof Referring to Theorem 2.10 we need to show that the cocharacters are MASH
and that the Poincaré series of Uk,�(A) is a nice rational function for all k, �.
The former statement is Theorem 3.4. As for the latter, Uk,�(A) is the algebra R
constructed above and the nice rationality of the Poincaré series is Theorem 4.4. ��
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5 Young Derived Sequences

By way of background, we start this section by describing the results for p.i. algebras
without actions.

The space of multilinear, degree n polynomials in x1, . . . , xn has n! elements and
so a basis can be indexed by elements of Sn. One well-known way to do this is due
to Regev, but Specht, see [15], had an earlier one which we illustrate with a few
examples:

(1)(23)(456)↔ x1[x2, x3][x4, [x5, x6]]
(123)(4)(67)↔ x4[x6, x7][x1, [x2, x3]]

(12)(3)(456)(78)(9)↔ x3x9[x1, x2][x7, x8][x4, [x5, x6]]

The exact rules are not important for us. What is important is that every f ∈ Vn can
be written as a sum

f =
∑

1≤i1<···<xk≤n
xi1 · · · xikfi1,...,ik ,

where fi1,...,ik is a commutator polynomial in the remaining variables. Drensky
proved in [7] that if f is an identity for an algebraAwith 1, then so is every fi1,...,ik ,
and that this implies that the cocharacter sequence of A is Young derived.

We now turn to the case of Hopf algebra actions. Each semisimple Hopf algebra
has a special element t called an integral. For example, in the special case that
H = FG is group algebra of a finite group, we let t = 1

|G|
∑
g∈G g, noting that t is

central, t2 = t and tg = t for all g ∈ G. In a different special case, that of group
gradings H = (FG)∗, we let t = π1, the projection onto the identity component.
Again, t is central and t2 = t and, in this case, tπi = δ1i t . In the general case we
have this theorem of Larson and Sweedler.

Theorem 5.1 (Larson-Sweedler) If H is a finite dimensional semisimple Hopf
algebra with count ε : H → F , then H contains a central element t such that
for all h, ht = ε(h)t and ε(t) = 1

Let Vn be the set of all multilinear, homogeneous degree n H -polynomials in
x1, . . . , xn. For each i we write xi as x̃i + t (xi) and note that if we substitute 1 for
xi then t (xi) becomes 1 and x̃i becomes 0.

By Specht’s argument each f in Vn can be written as

f = t (x1)g(x2, . . . , xn)+ h(x1, . . . , xn)

where h = h1 + h2; in h1 t (x1) occurs in commutators only; and h2 is degree one
in x̃1 and does not involve t (x1). In short: h becomes zero if x1 = 1.
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If we substitute x1 + 1 for x1 then f becomes f + g. This means that if f is an
identity for an algebra A, so is g and therefore so is h.

Now repeat the argument with x2, . . . , xn. In the end we get that each f ∈ Vn
can be written as a sum of terms of the form

t (xi1) · · · t (xia )fi1,...,ia
summed over i1 < · · · < ia , and where fi1,...,ia is a multilinear polynomial in the
remaining variables with the property that it becomes zero if any of those variables
is 1. And, most importantly, f is an identity for A if and only in each fi1,...,ia is.

Let Wn ⊆ Vn be all of the polynomials which become zero if any variable is
substituted by 1. Then it follows that as an Sn-module

Vn

Vn ∩ IdH (A) �
n∑

i=0

Wi

Wi ∩ IdH (A) ↑

This is the definition of Young derived.
It follows that theH -cocharacter sequence of A is Young derived and so Regev’s

conjecture is true for the codimensions.
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�-Weak Identities and Central
Polynomials for Matrices

Guy Blachar, Eli Matzri, Louis Rowen, and Uzi Vishne

Abstract We develop the theory of �-weak identities in order to provide a feasible
way of studying the central polynomials of matrix algebras. We describe the weak
identities of minimal degree of matrix algebras in any dimension.

Keywords Weak identities · Central polynomials · Identities of matrix algebras

1 Introduction

One basic question in PI-theory is to determine the polynomial identities (PI’s)
of the matrix algebra Mn(Q). Specht’s celebrated problem is whether every set of
polynomial identities of an algebra is finitely based, i.e., is a consequence of a finite
number of identities, solved affirmatively by Kemer in 1988 and 1990, cf. [10].
However, his solution is difficult to implement to obtain a finite (PI) base for the
identities of Mn(Q), in the sense that every PI of the algebra is a consequence of the
base identities. Indeed, a base is known only for Q and M2(Q). Our overriding goal
here is to obtain partial information about bases, mostly in terms of weak identities
and weak central polynomials. A multilinear polynomial f (x1, . . . , xm) is an �-
weak identity of Mn(Q) if substitution of matrices for xi sends f to zero whenever
tr(x1) = · · · = tr(x�) = 0, and an �-weak central polynomial if such substitution
sends f to a central element.

Section 2 provides a brief overview of polynomial identities. We define and
discuss �-weak identities in Sect. 3, developing an inductive procedure to compute
spaces of �-weak identities (see Remark 3.4). Aided by computer computations, we
obtain the following results.

(1) Explicit generators for the �-weak identities of M2(F ) in degrees 3 and 4, for
any � (Sect. 6).
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(2) When charF � 3 there are no weak identities of degree 5 for M3(F ) (Sect. 7.1).
(3) However, s4 is a weak central polynomial of M3(F ) over a field of characteristic

3, so [s4, x5] is a 4-weak polynomial identity of degree 5 (Sect. 7.2).
(4) We present dimensions and module decomposition for the �-weak identity

spaces in degree 6 for M3(F ), correcting a minor omission in [6] (Sect. 8.1).
(5) We obtain a trace identity of degree 4 for M3(F ) from the Okubo composition

algebra, and deduce Halpin’s 4-weak identity of degree 6 from it (Sect. 8.3).
(6) For n ≥ 4, there are no weak identities of Mn(F ) in degree 2n other than the

standard identity (Sect. 9).

2 Preliminaries

Let F be a field. The free (associative) F -algebra generated by noncommut-
ing variables x1, . . . , xm is denoted F {x1, . . . , xm}; we refer to the elements of
F {x1, . . . , xm} as polynomials.

Definition 2.1 A polynomial p ∈ F {x1, . . . , xm} is called a polynomial identity
(PI) of the F -algebra A if p(a1, . . . , am) = 0 for all a1, . . . , am ∈ A. We write
id(A) for the set of identities of A.

2.1 Identities, Central Polynomials and Examples

The free algebra has no nonzero identities, almost by definition. An algebra A is
PI if id(A) � 0. The most basic examples of PI-algebras are the matrix algebra
Mn(F ) for arbitrary n, f.d. algebras over a field, and the Grassmann algebra G,
cf. [2, Definition 1.35].

Here is a notion closely related to PI.

Definition 2.2 (Central Polynomials) A polynomial f (x1, . . . , xn) is A-central
if f (A) ⊆ Cent(A). A central polynomial f (x1, . . . , xn) is strictly A-central if
f � id(A); in other words, 0 � f (A) ⊆ Cent(A).

A polynomial p(x1, . . . , xn) is k-multilinear if each of the variables x1, . . . , xk
appears exactly once in each of the monomials of p. We omit the preamble if p is
multilinear in all of its variables. Let Pm be the subspace of multilinear polynomials
in F {x1, . . . , xm}, for m ≥ 1. Any PI f can be transformed into a multilinear
PI through the multilinearization process (see [2]), and the process is reversible
in characteristic 0; likewise any central polynomial f can be transformed into
a multilinear central polynomial through the multilinearization process, which is
reversible in characteristic 0. Thus in what follows we consider polynomials in Pm.
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Example 2.3

(i) The polynomial x1 is central for any commutative algebra.
(ii) The polynomial [x1, x2] is central for the Grassmann algebra.

(iii) Let UT(n) denote the algebra of upper triangular matrices over a given
commutative base ring C. Any product of n strictly upper triangular n × n
matrices is 0. Since [a, b] is strictly upper triangular, for any upper triangular
matrices a, b, we conclude that the algebra UT(n) satisfies the identity

[x1, x2][x3, x4] · · · [x2n−1, x2n].

(iv) (Wagner’s identity) The matrix algebra M2(F ) satisfies the identity g2 :=
[[x, y]2, z] or, equivalently, the central polynomial [x, y]2 and its multilin-
earization. (This is because the square of a trace-zero 2 × 2 matrix is scalar.)

(v) Fermat’s Little Theorem translates to the fact that any field F of q elements
satisfies the identity xq−x. Its multilinearization is the symmetric polynomial,
but in going back we only get qxq which is identically zero.

(vi) The standard polynomial

sm :=
∑

π∈Sm
sgn(π)xπ(1) · · · xπ(m)

is a PI of Mn(Q) precisely when m ≥ 2n.
(vii) By Razmyslov [12] and Drensky [4] {s4, g2} is a PI base for M2(F ). A base

for M3(Q) remains unknown.

The PI degree of an algebra A, denoted PIdegA, is the minimal degree of an
identity of this algebra. Thus PIdeg Mn(F ) = 2n, and PIdegG = 3. By [13],
PIdeg M2(G) = 8

2.2 Spechtian Polynomials

A multilinear polynomial is i-Spechtian if it vanishes when 1 is substituted for xi .
We write Spim for the subset of i-Spechtian polynomials in Pm, and SpIm for the
subset

⋂
i∈I Spim of polynomials that vanishes when 1 is substituted for xi , for any

i ∈ I . In particular Sp∅m = Pm. We write Spm = Sp{1,...,m}m for the set of Spechtian
polynomials (also called proper in the literature). The standard polynomial sm is
Spechtian.

Definition 2.4 Define higher commutator inductively, as a commutator [f, g] of
either letters or higher commutators.

In the proof of [2, Proposition 6.2.1], by specializing xi to 1, we see that a
polynomial f can be written as f1 + f2 where xi does not appear in f1 and f2
is i-Spechtian. It follows that f is Spechtian if and only if it is a sum of products of
higher commutators.
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We write idSp(A) for the subset of Spechtian identities of A and idm,Sp(A) for
Spm ∩ id(A).

In [2, Corollary 6.2.2] it is shown that any base of identities can be comprised of
Spechtian identities.

3 Weak Identities

3.1 Weak and Strong Variables

We refine Definition 2.1 with respect to the matrix algebra A = Mn(F ).

Definition 3.1 Let p(x1, . . . , xm) be an �-multilinear polynomial. We say that p is
an �-weak identity ofA if it vanishes under every substitution of matrices of trace 0
in x1, . . . , x� and arbitrary matrices in the other variables.

More generally, for I ⊆ {1, . . . ,m}, we say that p is an I -weak identity of A
if it vanishes under every substitution of matrices of trace 0 in {xi : i ∈ I } and
arbitrary matrices in the other variables (in this context we say that xi, i ∈ I are
weak variables in p, while xi, i � I are strong).

We write idIm = idIm(A) for the set of I -weak multilinear identities of degree
m. In particular, a 0-weak identity is simply an identity, namely id∅m = idm. On the
other extreme, if p is m-weak we omit the prefix and say that p is a weak identity.
For I ⊆ J we have that idIm ⊆ idJm and SpIm ⊇ SpJm.

Lemma 3.2 Assume charF does not divide n.

(1) idIm ∩ SpJm ⊆ idI\Jm for every I, J ⊆ X.
(2) idIm(A) ∩ Spm ⊆ idm for every I .
(3) A weak identity which is a Specht polynomial is in fact an identity.

Proof

(1) Let Mn(F )0 = {a ∈ Mn(F ) | tr(a) = 0}. Since Mn(F ) = F · 1 ⊕ Mn(F )0,
the condition for an I -weak identity f ∈ idIm to be in idI\Jm is that for every
j ∈ I ∩ J , substitution xj �→ 1 sends f to an identity.

(2) Take J = {1, . . . ,m} in (1).
(3) Take I = {1, . . . ,m} in (2) to obtain idmm(A) ∩ Spm = idm. ��

3.2 Modules of Weak Identities

Write id�m for id{1,...,�}m , the set of �-weak identities. We clearly have

idm(A) = id0
m(A) ⊆ id1

m(A) ⊆ · · · ⊆ idmm(A). (1)
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Following the Amitsur–Levitzki theorem [1], it is known that the minimal
identities appear in idm(Mn(F )) for m = 2n, where this space is 1-dimensional.
As a refinement, it is desirable to describe the chain (1), at least for the minimal m
for which it is nonzero.

Note that id�m(A) is not a submodule of Pm for 0 < � < m, since a permutation
could send a weak indeterminate to a strong indeterminate.

Remark 3.3 The space of �-weak identities is a module through the natural action
on weak and strong variables over the ring F [S�×Sm−�] � F [S�]⊗F [Sm−�], which
is semisimple when charF = 0, being a direct sum of matrix rings over F .

In particular idmm(A) and id0
m(A) are Sm-modules, which can be described

through their irreducible decompositions.

The level of details in a description of id�m(A) is a matter of taste. In increasing
level of details, such a description might include:

(1) An indication that the space is nonempty (form minimal).
(2) The dimension of the space, possibly given by a computer program.
(3) Better still would be explicit identities, preferably ones that can be understood

and demonstrated to be identities (and not just computer verified).
(4) Computations in the module id�m(A) can be facilitated by generators and

relations. Or, more generally, the module can be endowed with a resolution
of permutation modules (defined through the action on indices in a generating
set).

(5) A decomposition into irreducible submodules is not hard to obtain for small m,
although our experience [13] and [14] show that by itself it is not very
illuminating.

(6) Finally, it is desirable to explicitly exhibit the embedding π�−1
m (A) ↪→ π�m(A).

In order to study the chain of weak identity spaces (1), we compare two
consecutive chains.

Remark 3.4 The substitution map x� �→ 1 defines a projection π� :Pm → Pm−1
(reducing the indices �′ > � by one), which induces the maps

id
0
m(A) ⊆ id

1
m(A) ⊆ · · · ⊆ id

−1
m (A) ⊆ idm(A) ⊆ · · · ⊆ id

m
m(A) ⊆ Pm

π

id
0

m−1
(A) ⊆ id

1

m−1
(A) ⊆ · · · ⊆ id

−1

m−1
(A) ⊆ Pm−1 = · · · = Pm−1 = Pm−1

Indeed, for every k < �, if p ∈ idkm(A) then p(x1, . . . , xk, . . . , 1, . . . , xm) is a
k-weak identity of degreem− 1, so the downwards arrows are defined.
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Even more is true:

Remark 3.5 Assume charF is prime to m. For � ≤ m,

id�−1
m (A) = id�m(A) ∩ π−1

� (id
�−1
m−1(A)).

Indeed, if p ∈ id�m(A) and π�(p) ∈ id�−1
m−1(A), then as long as x1, . . . , x�−1 are

weak variables in p, x� is weak by the former assumption, and becomes strong by
the latter.

We thus have an inductive procedure to compute the chain (1): once the chain
was computed in degreem−1, the chain in degreem can be computed from idmm(A)
by reverse induction on �. In order to apply the condition π�(p) ∈ id�−1

m−1(A), we
will need a hold on π�(id�m(A)) ⊆ Pm−1, whose elements in general are not even
weak identities. For example, π� induces an embedding π� : id�m(A)/id�−1

m (A) ↪→
Pm−1/id

�−1
m−1(A) which bounds the dimension of id�−1

m (A) from below in terms of
previously known quantities:

dim(id�−1
m (A)) ≥ dim(id�m(A))− [(m− 1)! − dim(id�−1

m−1(A))].

For the minimal degree we can state this procedure more explicitly:

Remark 3.6 Assume charF is prime to n. Assume m is the minimal degree of a
weak identity for A. Then for every � < m,

id�m(A) =
{
f ∈ idmm(A) |π�+1(f ) = · · · = πm(f ) = 0

}
.

4 Central Polynomials for Matrices

The polynomials comprising a base of the T-ideal are hard to ascertain, unknown
even for M3(Q). So we look for minimal identities (e.g., s2n for Mn(Q)) and central
polynomials. Surprisingly, even the minimal possible degree of a nonidentity which
is a 1-weak identity (and thus provides a strict central polynomial, see Theorem 4.3
below) for Mn(F ) is not known in general.

Halpin found an example of a central polynomial:

Lemma 4.1 ([2, Lemma 1.4.14]) The multilinearization of

sn−1([x, y], [x2, y], . . . , [xn−2, y], [xn, y])

is an n
2−n+2

2 -weak identity of Mn(F ), of degree

n2 − n+ 2

2
+ n− 1 = n2 + n

2
= n(n+ 1)

2
.
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As explained in [2, p. 37], this yields a 1-weak identity of total degree n2:

Remark 4.2 For 0 ≤ �′ < �, every �-weak identity of degree m can be viewed
as an �′-weak identity of degree m + (� − �′), by substituting xi �→ [x ′i , x ′′i ] for
i = �′ + 1, . . . , �. In particular every �-weak identity of degreem can be viewed as
an identity of degreem+ �.

However, the 1-weak identity resulting from Halpin’s polynomial is not an
identity of Mn(Q). We thus have the existence of strict central polynomials.
Formanek’s polynomial [7] also has degree n2, and for some time this was thought
the lowest possible, but in 1983, 1985, Drensky and Kasparian [5] discovered by a
computer search a strict central polynomial forM3(Q) of degree 8, further explained
in terms of weak identities by Drensky and Kasparian in 1993. Drensky showed 8
is optimal for n = 3. The space of central polynomials of degree 8 is described in
[13]: the rank of id8(M3(F )) is 43; the Drensky-Kasparian identity adds 2 to the
rank; and the full rank of c-id8(M3(F )) is 47.

In 1994 Drensky and Piacentini found a strict central polynomial for M4(Q) of
degree 13, also obtainable via weak identities. In 1995 Drensky [3] discovered a
strict central polynomial for arbitrary Mn(Q) of degree (n−1)2+4, which is minimal
for n = 3 and n = 4, but its uniqueness is still open for n = 4, and minimality of
degree is open for n > 4. We treat n = 3 in Sect. 8.

4.1 �-Weak Central Polynomials

Similarly to Definition 3.1, a polynomial p of degree m is an �-weak central
polynomial of Mn(F ) if it takes central values under the substitutions of x1, . . . , x�
to matrices of trace zero and x�+1, . . . , xm to arbitrary matrices. More generally,
p is an I -weak central polynomial, for I ⊆ {1, . . . ,m}, if it takes central values
under substitution of matrices provided that xi maps to a zero trace matrix for all
i ∈ I .

In particular, a 0-weak central polynomial is simply a central polynomial. On the
other extreme, if p is m-weak we omit the prefix and say that p is a weak central
polynomial.

Also let c-id�m(A) be the space of �-weak central polynomials of A, so that

c-idm(A) = c-id0
m(A) ⊆ c-id1

m(A) ⊆ · · · ⊆ c-idmm(A) (2)

contains (1) component-wise. A natural question is to ask what is the minimalm for
which idm(A) ⊂ c-idm(A).

By Razmyslov (cf. [2, Lemma 1.4.16]), central polynomials can be obtained from
1-weak identities, trading a weak variable in an identity for a strong variable in a
central identity. We can copy the proof to get a more general result.
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Let p(x) = ∑
aixbi be a polynomial which is multilinear in x, where ai, bi are

monomials over F in some variables other than x. We denote p∗(x) = ∑
bixai ,

which defines an involution. For new variables y, z, consider q(y, z) = p([y, z]) =∑
(aiyzbi−aizybi). Conjugating q(y, z)with respect to y, we have that q∗(y, z) =∑
(zbiyai−biyaiz) = ∑[z, biyai] = [z, p∗(y)]. Thereforep(x) is a weak identity

in terms of x if and only if q(y, z) is identically zero, if and only if q∗(y, z) =
[z, p∗(y)] is identically zero, if and only if all values of p∗(y) are central. This
procedure respects restrictions, such as zero trace, on any other variable involved.
We thus proved a major result:

Theorem 4.3 (Razmyslov) For � ≥ 1, there is a degree-preserving one-to-one
correspondence id�m(A)→ c-id�−1

m (A) between �-weak identities and (�− 1)-weak
central polynomials, given by f �→ f ∗ (pivoting around x�).

Consequently, we have a chain of isomorphisms between the components of the
chains (1) and (2), albeit with non-commuting squares:

id
0
m(A) ⊆ id

1
m(A) ⊆ · · · ⊆ idm(A) ⊆ id

+1
m (A) ⊆ · · · ⊆ id

m
m(A)

m
m(A)c-id

0
m(A) ⊆ · · · ⊆ c-id

−1
m (A) ⊆ c-idm(A) ⊆ · · · ⊆ c-id

m
m−1

(A) ⊆ c-id

Moreover, id�m(A) is an (S� × Sm−�)-module, and c-id�−1
m (A) is an (S�−1 ×

Sm−(�−1))-module. The groups intersect in the common stabilizer of the pivot
variable x�, which is S�−1 × S1 × Sm−�, and the isomorphism of Theorem 4.3 is
of modules over this group.

5 The Connection to the Representation Theory

We view idm(Mn(F )) as a module over Sm, and apply the representation theory
of the group to obtain symmetrical identities (the same considerations holds for
id�m(Mn(F )) over S� × Sm−�).

5.1 Identities and the Group Algebra

Given a multilinear polynomial

∑

σ∈Sm
aσ xσ(1) . . . xσ(m) ∈ Pm,
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we may associate it with the element

∑

σ∈Sm
aσσ

of the group algebra F [Sm].
The action of Sm on Pm translates to the usual multiplication in the group algebra.

A natural left action of Sm on F {x1, . . . , xm} is defined by σ(xi) = xσ(i), which
induces an action of Sm on Pm by

(σ · f )(x1, . . . , xm) = f (xσ(1), . . . , xσ(m))

for all σ ∈ Sm and f ∈ F {x1, . . . , xm}, making Pm a cyclic faithful Sm-module. But
F [Sm] is semisimple by Maschke’s Theorem (assuming charF = 0 or charF >

m), so the module Pm is semisimple, and decomposes as a direct sum of simple
submodules, some of which are generated by PIs ofMn(F).

Each irreducible component of F [Sm] corresponds to a partition λ of m. We
denote the matrix subring corresponding to λ by Typeλ. We also denote the
irreducible module corresponding to λ by Irrλ. Notice that while Typeλ is a uniquely
defined subset of F [Sm] (and by identification, of Pm), Irrλ is only defined up to
isomorphism, as the decomposition of Typeλ into dim(Irrλ) copies of Irrλ is not
unique.

Remark 5.1 The set Spm of Spechtian polynomials of degree m is a submodule
of Pm.

Proof It is closed under the action. ��
Being submodules of Pm, idm,Sp(A) ⊆ idm(A) both are direct sums of minimal

left ideals.
Given a submodule L ≤ Pm, the corresponding subspace L̂ of F [Sm] is a left

ideal. Since F [Sm] is semisimple, L̂ may be written as

L̂ =
⊕

λ�m
(L̂ ∩ Typeλ).

We call each L̂ ∩ Typeλ the projection of L to λ.

5.2 Identities and Representations

While we may be able to decompose the weak identities ideal quite nicely using
representation theory, it is not obvious that each projection has an “elegant”
representative. The following proposition proves the existence of a relatively simple
one.
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Proposition 5.2 Let L be a submodule of Pm. Suppose the projection of L on a
partition λ = (λ1, . . . , λr ) � m is nonzero. Then there exists a nonzero multilinear
polynomial f (x1, . . . , xm) ∈ L which is fixed under the action of

H = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{λ1+···+λr−1+1,...,m}.

In other words, f is a multilinearization of a polynomial in r (noncommuting)
variables y1, . . . , yr , where the degree of yi in each monomial is λi .

Proof Recall that Pm � F [Sm]. Let L̂ be the left ideal of F [Sm] corresponding to L,
and let L̂λ = L̂ ∩ Typeλ be the projection of L on λ, which is a left ideal of Typeλ.

Following the notation of [9, Section 3.3], associate to λ the subgroups Pλ
and Qλ of Sm, fixing the rows and columns respectively in the standard tableau
corresponding to λ. We also set

aλ =
∑

σ∈Pλ
σ, bλ =

∑

σ∈Qλ
(−1)σ · σ, and cλ = aλbλ.

Then cλF [Sm] is an irreducible moduleVλ of F [Sm], contained in the representation
type Typeλ. In particular, cλ ∈ Typeλ. The elements fixed under the action of the
above subgroup H of Sm are precisely the elements t such that aλt = |H |t . Since
a2
λ = |H |aλ, we conclude that aλcλ = |H |cλ, and thus every element of the right

ideal cλTypeλ of Typeλ is fixed under H . Take any 0 � f ∈ L̂λ ∩ cλTypeλ, which
exists because left and right ideals in the prime ring Typeλ intersect nontrivially. ��

6 Weak Identities and the Case n = 2

Our goal in this section is to describe the minimal (and next to minimal) �-weak
identities for the matrix algebra M2(F ), exemplifying the approach described in
Remark 3.5.

6.1 Polynomials of Degree m = 2

Write a ◦ b = ab + ba. Although the PI-degree of M2(F ) is 4, the Wagner identity
provides a weak central polynomial of degree 2, namely x1 ◦ x2. Nevertheless, the
space of 1-weak central polynomials of degree 2 is trivial.
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6.2 Weak Identities of Degree m = 3

The first nonzero instance of the chain (1) occurs for m = 3. Let

ψi = [xi, xj ◦ xk],

where {i, j, k} is a permutation of the index set {1, 2, 3}. All the ψi are 3-weak
identities, and ψ3 is in fact 2-weak. We also observe that

ψ1 + ψ2 + ψ3 = 0. (3)

Therefore

0 = id
0

3
(M2(F )) = id

1

3
(M2(F )) ⊂ id

2

3
(M2(F )) ⊂ id

3

3
(M2(F )) ,

(4)

where id3
3(M2(F )) = 〈ψ1, ψ2, ψ3〉 is 2-dimensional ( � Irr ), and id2

3(M2(F )) =
〈ψ3〉 is 1-dimensional.

Anticipating the computation of id�4(M2(F )) through Remark 3.5, let us further
point out specific submodules of P3. For an even permutation i, j, k of 1, 2, 3, let

gi = xi[xj , xk], g′i = [xi, xj ]xk,

and G = 〈g1, g2, g3〉, G′ = 〈g′1, g′2, g′3〉 the generated submodules. Observing that
g1 + g2 + g3 = s3 = g′1 + g′2 + g′3 generates the intersectionG ∩G′, we conclude
that

G �G′ � Irr ⊕ Irr

(the latter component is the sign representation). It follows thatG+G′ = Type ⊕
Type is the complement of 〈∑ xσ1xσ2xσ3〉 = Type in P3.

6.3 Weak Identities of Degree m = 4

We now consider the chain

id0
4(M2(F )) ⊂ id1

4(M2(F )) ⊂ id2
4(M2(F )) ⊂ id3

4(M2(F )) ⊂ id4
4(M2(F )). (5)
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For a permutation i, j, a, b of 1, 2, 3, 4, let

hij = xi[xa ◦ xb, xj ], h′ij = [xj , xa ◦ xb]xi,

on which S4 acts by the natural action on the indices. Both are weak identities,
immediate consequences of the Wagner identityψj . LetH = 〈hij | i � j 〉 andH ′ =
〈h′ij | i � j〉 be the generated submodules of P4.

Proposition 6.1 The space of weak identities id4
4(M2(F )) has dimension 15,

isomorphic to 2Irr ⊕ 2Irr ⊕ Irr ⊕ Irr . It is generated as a module by s4,

h34 = x3[x1 ◦ x2, x4], and h′34 = [x4, x1 ◦ x2]x3.

Proof We apply a computer program to find the dimension as described in [13],
which is indeed 15. We then guess and verify easy-to-describe identities in this
space; and analyze the submodule they generate to the extent that its dimension
becomes apparent, until we obtain a set of generators.

For every i, it follows from (3) that
∑
j�i hij =

∑
j�i h

′
ij = 0. There are no other

relations, so dimH = dimH ′ = 8. But since 8+ 8 > 15, the spaces must intersect.
The intersection is most easily computed by passing to the dual space. Elements∑
ασ σ ∈ H are characterized by the “right transposition condition”αijk�+αi�kj =

0 and the condition αij0j1j2 + αij1j2j0 + αij2j0j1 = 0. Likewise H ′ is characterized
by the “left transposition condition” αijk� + αjki� = 0 and the condition αi0i1i2j +
αi1i2i0j + αi2i0i1j = 0. So H ∩ H ′ is characterized by the transposition conditions,
as well as αijk� = αji�k and α1234 + α2314 + α3124 = 0; computation then indicates
that dim(H ∩ H ′) = 2. Indeed, acting with

∑
σ∈K4

σ , where K4 is the Klein 4-
group, we find the equality hij + hji + hk� + h�k = h′ij + h′ji + h′k� + h′�k for any
partition ij |k� of the index set. These are three equalities, each defining an element
of H ∩ H ′, whose sum is zero. Thus H ∩ H ′ � Irr . The characters of H,H ′ can
be computed from the action on the basis, and knowing the characters of S4 we
conclude that H �H ′ � Irr ⊕ Irr ⊕ Irr (of dimensions 2 + 3 + 3). It follows

that 〈s4〉� Irr cannot intersect H +H ′, so that H +H ′ + 〈s4〉 is of dimension 15,

and thus equal to the full space of identities. ��
Remark 6.2 The dimensions in the chain (5) are 1 < 3 < 8 < 12 < 15. The �-weak
identity spaces are given as follows.

(3) The space id3
4(M2(F )) of 3-weak identities has dimension 12, spanned as an

S{1,2,3}-module by {[s3, x4], h43, h34, t}, where

t = [x1 ◦ [x2, x4], x3].

We have a direct sum decomposition, 〈[s3, x4]〉 ⊕ 〈h43〉 ⊕ 〈h34〉 ⊕ 〈t〉, with
the components isomorphic to Irr , Irr (as h43+h42+h41 = 0), Irr ⊕ Irr ,
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and the regular representation, respectively. Namely, id3
4(M2(F )) is twice the

regular representation. We also note that [s3, x4] = 1
2 (1+ (123)+ (132))(34)t .

(2) The space id2
4(M2(F )) of 2-weak identities has dimension 8, spanned as an

S{1,2}S{3,4}-module by {s4, t, h34, q}, where q = [x1◦x3, x2◦x4]+[x2◦x3, x1◦
x4]. In fact, id2

4 = 〈s4〉⊕〈t〉⊕〈h34〉⊕〈q〉, of dimensions 1+4+2+1 respectively.
(1) id1

4(M2(F )) is the 3-dimensional space spanned as an S{2,3,4}-module by
(34)t = [x1 ◦ [x2, x3], x4]. This is a 1-weak identity, x1 ◦ [x2, x3] being central
when tr(x1) = 0. In fact, (34)t+ (24)t+ (23)t = s4, explaining how id0

4 ⊂ id1
4.

(0) id0
4(M2(F )) = F · s4 is the well-known 1-dimensional space of degree 4

identities.

Remark 6.3 The spaces of �-weak central polynomials of M2(F ) in degree 4, for
� = 0, 1, 2, 3, 4, have dimensions 3, 8, 12, 15 and 18, respectively.

(The dimensions 3 < 8 < 12 < 15 follow from Remark 6.2 by Theorem 4.3;
and the dimension 18 for the space of weak central polynomials was found, once
more, by a computer program).

7 The Weak PI-Degree of M3(F )

This section is concerned with weak identities of degree 5 for M3(F ). We show that
there are none if charF � 3, and describe the weak identities in degree 5 when
charF = 3.

7.1 Fields of Characteristic Not 3

Proposition 7.1 The algebra M3(F ) has no weak identities of degree 5 when
charF � 3.

Proof Suppose that

f (x1, . . . , x5) =
∑

σ∈S5

aσ xσ(1) . . . xσ(5)

is a weak identity for M3(F ). Note that for all π ∈ S5,

f (xπ(1), . . . , xπ(5)) =
∑

σ∈S5

aσ xπ(σ(1)) . . . xπ(σ (5)) =
∑

τ∈S5

aπ−1τ xτ(1) . . . xτ(5),

so permutation of the variables acts on the coefficients from the right by aσ · π =
aπ−1σ . We write permutations by the cycle decomposition.
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Substituting x1, . . . , x5 = e12, e23, e32, e23, e31, the resulting matrix satisfies

f (e12, e23, e32, e23, e31)1,1 = a1 + a(2,4).

Hence a(2,4) = −a1. Applying a permutation π ∈ S5 yields

aπ(2,4) = −aπ (6)

for every π ∈ S5.
Next, we substitute x1, . . . , x5 = e13, e31, e12, e23, e32, and the (1, 2) entry of

the resulting matrix is

a1 + a(2,5,3,4) + a(1,3,2,4) = 0.

Using (6) and acting with an arbitrary π ∈ S5, we get

aπ − aπ(3,4,5) − aπ(1,3,2) = 0. (7)

Tracing this equation over (3, 4, 5) (that is applying (3, 4, 5) and (3, 5, 4), then
summing the three equations) and applying (1, 2, 3) yields the equation

a1 + a(1,4,5) + a(1,5,4) = 0. (8)

We now substitute x1, . . . , x5 = e13, e32, e23, e22 − e33, e31. The (1, 1) entry of
the resulting matrix is

−a1 + a(3,4) − a(2,4,3) = 0.

Using (6), we see that

a1 − a(3,4) − a(2,3) = 0.

Applying (1, 3) yields the equation a(1,3,2) = a(1,3)(2,3) = a(1,3) − a(1,3,4). We
substitute this expression in (7) (with π = Id) to achieve

a1 − a(3,4,5) − a(1,3) + a(1,3,4) = 0.

By applying (1, 3) on the last equation, we get

a(1,3) − a(1,3,4,5) − a1 + a(3,4) = 0.

Summing up the last two equations, we get

−a(3,4,5) + a(1,3,4) − a(1,3,4,5) + a(3,4) = 0.
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Applying (3, 4) means

a1 + a(1,4) − a(4,5) − a(1,4,5) = 0.

Applying (1, 5) yields the equation

a(1,5) + a(1,4,5) − a(1,5,4) − a(1,4) = 0.

Subtracting the second equation from the first, we see that

a1 − 2a(1,4,5) + a(1,5,4) = −2a(1,4) + a(1,5) + a(4,5).

So, using (8),

3a(1,4,5) = 3a(1,4),

and a1 = a(4,5) since we assume charF � 3. We may again apply π ∈ S5 to get

aπ(4,5) = aπ . (9)

We now see that using (6) and (9),

aπ(2,5) = aπ(2,4)(4,5)(2,4) = aπ ,

but also

aπ(2,5) = aπ(4,5)(2,4)(4,5) = −aπ,

implying that aπ = 0 for all π ∈ S5. Hence f = 0, as required. ��
Since there are identities of degree 6, we conclude that the “weak PI degree” of

M3(F ) is 6:

Corollary 7.2 The minimal degree of a weak identity of M3(F ) is 6.

In Sect. 8 we indicate that in degree 6 there are weak identities other than the
standard identity, so the “strict weak PI degree” of M3(F ) is 6 as well.

7.2 The Case char F = 3

Proposition 7.1 holds when charF � 3. Interestingly, the situation is quite different
in characteristic 3.
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Proposition 7.3 Assume charF = 3. The standard identity s4 is a weak central
identity of M3(F ). In particular M3(F ) has 4-weak identity of degree 5, namely

[s4(x1, . . . , x4), x5].

Proof The value of s4(x1, . . . , x4) under substitution of matrix units eij (i � j ) or
matrices of the form eii − ejj , results in either ±3eij (i � j ) or ±(1 − 3eii). Over
a field of characteristic 3, this implies all values of s4 under weak substitutions are
central. Hence [s4(x1, . . . , x4), x5] is a 4-weak identity.

(Incidentally, if even one variable is strong, the Z-span of s4(x1, . . . , x4) is the
zero-trace part of M3(Z); so [s4(x1, . . . , x4), x5] is not 3-weak). ��

For any m, let ψm = [sm−1(x1, . . . , xm−1), xm]. Let F ⊕ N0 be the natural
representation of Sm, decomposed into the trivial module and its irreducible
complement.

Proposition 7.4 The Sm-module generated by ψm is:

(1) F [Sm]ψm �N0⊗ sgn when m is odd.
(2) F [Sm]ψm � (F ⊕N0)⊗ sgn when m is even.

Proof Fix σ = (1 2 3 . . . m). Since Sm−1 alternates ψm, the module is generated by
the cyclic permutations σjψm.

Every monomial appears in exactly two of the polynomials σjψm. When m is
odd, the signs are opposite. Therefore

∑
σjψm = 0 and there are no other relations,

so the module is N0⊗ sgn. When m is even, the signs are equal (opposite) when the
difference of the indices of the first and last variables is even (odd); so the σjψm are
linearly independent, and the module is N⊗ sgn. ��

Going back to the case m = 5 when charF = 3,

U = F [S5] · [s4(x1, x2, x3, x4), x5] (10)

is 4-dimensional, isomorphic as an S5-module to the nontrivial irreducible compo-
nent of the natural representation, tensored with the sign character.

Proposition 7.5 Assume charF = 3. The space id5
5(M3(F )) of weak identities of

degree 5 has dimension 5. As an S5-module, the representation space is uniquely an
extension

0 −→ U −→ id5
5(M3(F )) −→ F −→ 0

where U is given in (10) and F denotes the trivial module.

Proof The dimension is based on a Sage program. We find the 4-weak identity

ϕ = [x1[x2, x3 ◦ x4] + x2[x1, x3 ◦ x4] − x3[x4, x1 ◦ x2] − x4[x3, x1 ◦ x2], x5] +
+

∑

σ∈S4

xσ(1)[x5, xσ(2)xσ(3)]xσ(4),
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generating id5
5(M3(F )) as a module; indeed,ψ5 = (1−(23))ϕ. Notice that (12)ϕ =

(34)ϕ = ϕ, showing that id5
5(M3(F ))/U is the trivial (and not the sign) module. ��

A Sage computation also shows that (when charF = 3) id3
5(M3(F )) = 0,

and id4
5(M3(F )) is 2-dimensional, spanned by ϕ and ψ5. Again Fψ5 is the unique

irreducible S4-submodule, and (Fϕ + Fψ5)/(Fψ5) is the trivial S4-module.

8 Weak Identities for M3(F ) in Degree 6

Assuming charF = 0, in this section we describe the sets id�6(M3(F )) of �-weak
identities of M3(F ) in degree 6, which by Corollary 7.2 is the minimal degree of
weak identities.

In [6] the authors study weak identities (when all variables are weak, namely
the case � = 6) of M3(F ). Decomposing the S6-module id6

6(M3(F )) into the
representation components, their computations indicate that there are four nonzero
summands, whose Young diagrams are , , and .

We correct a minor omission in the literature by observing the following:

Proposition 8.1 The space id6
6(M3(F )) has five nonzero components, namely the

above four, as well as .

In the first subsection we supply complete details on the dimensions of the spaces
of weak identities, and in the second subsection we present explicit 4-weak identities
and use the Okubo algebra to prove that they indeed have this property.

8.1 Weak Identities of M3(F )

We used a Sage program to find an F -basis for each weak identity space
id�6(M3(F )), and compute the intersection with each representation ideal Typeλ.
The dimensions of the intersections id�6(M3(F )) ∩ Typeλ (for the partitions
λ with nonzero intersection) are listed in the table below. In all participating
representations, id6

6(M3(F )) ∩ Typeλ happens to have rank 1, so the dimension of
the representation is equal to the dimension of the intersection at the bottom line.
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� dim id�6(M3(F ))

0 1 0 0 0 0 1

1 1 0 0 0 0 1

2 1 0 0 0 0 1

3 2 0 0 1 0 1

4 6 1 1 3 0 1

5 15 4 4 6 0 1

6 35 9 10 10 5 1

It follows that there are no 2-weak identities except for the standard identity;
and there is a unique 3-weak identity modulo the standard identity (whose explicit
description, in an appealing form, remains a challenge). The bottom line proves
Proposition 8.1.

8.2 Halpin’s Identity and Its Projections

For n = 3, Halpin’s identity from Lemma 4.1 is

f (x, z) = [[x, z], [x3, z]], (11)

which (when multilinearized) is a 4-weak identity of M3(F ), namely we restrict x
to have zero trace.

Proposition 8.2 The (multilinearization of the) polynomials

f ′(x, z1, z2) = [[x, z1], [x3, z2]] + [[x, z2], [x3, z1]], (12)

and

f ′′(x, z1, z2) = [x, z1] ◦ [x3, z2] − [x, z2] ◦ [x3, z1], (13)

are the unique (up to scalar) 4-weak identities of degree 6 of M3(F ) corresponding
to the components and , respectively.

Proof The representation type follows from symmetries, so uniqueness follows
from the line � = 4 in the table above. It remains to show that these are indeed
4-weak identities.

Linearizing z in (11), we get the 4-weak identity f ′ defined in (12), which can be
decomposed as f ′ = f1 +f2 where f1(x, z1, x2) = [x, z1][x3, z2]− [x3, z1][x, z2]
is the sum of monomials in which z1 precedes z2, and f2(x, z1, z2) = f1(x, z2, z1)

is the sum of monomials in which z2 precedes z1. By Drensky and Rashkova [6,
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Theorem 1.3(ii)], both f1 and f2 are 4-weak identities for M3(F ). It is easy to
verify that f ′′ = f1 − f2 is the is the polynomial f ′′ defined in (13). ��

8.3 Identities from the Okubo Algebra

Some surprising identities of M3(F ) arise from the Okubo algebra, which we
now describe. A nonassociative F -algebra (A, �) is a composition algebra if it
is endowed with a nondegenerate quadratic form N :A→ F such that N(x � y) =
N(x)N(y). The algebra is symmetric if it further satisfies

y � (x � y) = (y � x) � y = N(y)x. (14)

A major example of a symmetric composition algebra is the Okubo algebra
[11], whose underlying vector space is the space M3(F )0 of zero-trace matrices.
Assuming F has a cubic root of unity which we denote ρ, the multiplication is
defined by

x � y = 1 − ρ
3
xy + 1 − ρ2

3
yx − 1

3
tr a(xy).

(There is an analogous description for the case ρ � F , which does not concern us
here). The norm form is N(x) = − 1

3s2(x), where s2(x) is the second coefficient of
the characteristic polynomial of x.

We can now prove the following trace identity:

Proposition 8.3 Assume x, y ∈ M3(F )0. Then

[x2, y2] − [y, xyx] = tr(xy)[x, y].

Proof Write α = 1−ρ
3 and α′ = 1−ρ2

3 , so that α + α′ = 1 and α2 = α − 1
3 , and

therefore α2 + α′2 = αα′ = 1
3 . By assumption,

x � y = αxy + α′yx − 1

3
tr a(xy).

Multiplying by y from left, we have

y � (x � y) = y � (αxy + α′yx − 1

3
tr a(xy)) =

= αy(αxy + α′yx − 1

3
tr a(xy))

+α′(αxy + α′yx − 1

3
tr a(xy))y − 1

3
tr a(y(αxy + α′yx − 1

3
tr a(xy))) =
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= (α2 + α′2)yxy + αα′(y2x + xy2)− (α + α′)1

3
tr(xy)y − 1

3
tr a(y(αxy + α′yx))

= 1

3
yxy + 1

3
(y2x + xy2)− 1

3
tr(xy)y − 1

3
tr a(αyxy + α′y2x).

Since y � (x � y) = N(y)x, the above expression commutes with x. Hence

0 = [x, yxy + y2x + xy2 − tr(xy)y] =
= xyxy − yxyx + x2y2 − y2x2 − tr(xy)[x, y]
= −[y, xyx] + [x2, y2] − tr(xy)[x, y]. ��

Taking y = [z, x] we get y ∈ M3(F )0 and tr(xy) = tr(x[z, x]) = tr([xz, x]) =
0 so Proposition 8.3 gives the 4-weak identity

[[z, x], x[z, x]x] − [x2, [z, x]2] = 0;

but we already know the 4-weak identities, and this is indeed Halpin’s identity (11):

Remark 8.4 We have the tautological identity

[[z, x], x[z, x]x] − [x2, [z, x]2] = [[x, z], [x3, z]]. (15)

Indeed, let y = [x, z]. Then xy + yx = [x2, z], and the left hand side is equal to

[y, xyx] − [x2, y2] = y(xy + yx)x − x(yx + xy)y
= y[x2, z]x − x[x2, z]y
= zx3zx + xz2x3 − zxzx3 + x3zxz− x3z2x − xzx3z

= [zx3, zx] − [zx3, xz] + [x3z, xz] − [x3z, zx]
= [[x, z], [x3, z]].

9 Matrices of Size n ≥ 4

In Sects. 6 and 8 we have seen that Mn(F ) has properly weak identities of degree
2n when n = 2, 3. Here we show that for n ≥ 4 the only weak identity of Mn(F ) in
degree 2n is the standard identity, slightly improving on Amitsur–Levizki [1] who
proved that s2n is the only identity of Mn(F ) in this degree.

An easy argument, similar to that of [8, Lemma 1.10.7], rules out identities of
degree 2n− 2:

Proposition 9.1 The minimal degree of a weak identity of Mn(F ) is ≥ 2n− 1.
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Proof There is a vector space embedding Mn−1(F ) ⊆ Mn(F )0 by sending a �→
(a,− tr(a)), which preserves multiplication in the first component. It follows that
s2n−2 is the only possible identity of degree < 2n − 1. But the standard identity
s2n−2 is ruled out as a weak identity for Mn(F ) by the path 1 → 2 → · · · → n→
· · · → 2 → 1. ��

9.1 Shadows of Identities

We begin by developing a simple decomposition technique for multilinear identities.

Definition 9.2 Let f ∈ Pm be a multilinear polynomial. Writing

f =
∑

i�j

xifi,j (x1, . . . , x̂i , . . . , x̂j , . . . , xm)xj ,

for strong variables xi, xj , we call each fi,j a shadow of f .

As usual, x̂i denotes omission of xi from the list. Each fi,j is an (m − 2)-
multilinear polynomial (on the variables

{
x1, . . . , x̂i , . . . , x̂j , . . . , xm

}
). The action

of Sm on Pm induces an action on the shadows by

(σf )σ(i),σ (j) = fi,j . (16)

Proposition 9.3 Suppose f ∈ Pm is an I -weak identity for Mn(F ). Then the
shadow fi,j is an (I \ {i, j })-weak identity for Mn−1(F ).

In particular, if f ∈ Pm is a (weak) identity for Mn(F ), then each fi,j is a (resp.
weak) identity for Mn−1(F ).

Proof The latter statement follows from the former by taking I = ∅ (resp. � =
{1, . . . ,m}). We view Mn−1(F ) ⊆ Mn(F ) in the natural way, embedded in the
upper-left corner. Fix u, v = 1, . . . , n − 1, and substitute xi �→ enu and xj �→ evn.
By substituting matrices from Mn−1(F ) into the other variables, we see that

f (x1, . . . , enu, . . . , evn, . . . , xm)nn = fi,j (x1, . . . , x̂i , . . . , x̂j , . . . , xm)uv,

since any monomial is zero unless enu appears first and evn last in the product.
By assumption we are forced to assume the variables whose indices are in I

are weak, and this condition for the variables other than xi, xj remains on the
substitution in fi,j . ��

For distinct i, j = 1, . . . ,m, let [i, j ]� denote the quantity |{1, . . . , �} − {i, j }|.
Thus [i, j ]� ∈ {�− 2, �− 1, �}. By Proposition 9.3, if f ∈ Pm is an �-weak identity
for Mn(F ), then fi,j is an [i, j ]�-weak identity for Mn−1(F ).
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Corollary 9.4 For every � there is an injective map

id�m(Mn(F )) ↪→
⊕

u�v

id[u,v]�m−2 (Mn−1(F )).

In particular there are injective maps for identities,

id0
m(Mn(F )) ↪→ id0

m−2(Mn−1(F ))
m(m−1),

and for weak identities,

idmm(Mn(F )) ↪→ idm−2
m−2(Mn−1(F ))

m(m−1). (17)

Corollary 9.5 PIdeg∞(Mn(F )) ≥ 2 + PIdeg∞(Mn(F )). Indeed, if we have
idm−2
m−2(Mn−1(F )) = 0 then idmm(Mn(F )) = 0 by (17).

Proposition 9.6 The matrix algebra M4(F ) has no weak identities of degree 7.

Proof For fields of characteristic different than 3, M3(F ) has no weak identities
of degree 5 by Corollary 7.2, so M4(F ) has no weak identities of degree 7 by
Corollary 9.5. For the remaining case of fields of characteristic 3, the claim was
verified by a Sage program (computing over F3). ��
Corollary 9.7 The weak PI degree of Mn(F ) is 2n for all n ≥ 3.

Proof We have that PIdeg∞(Mn(F )) ≤ PIdeg(Mn(F )) = 2n by Amitsur–Levizki.
The lower bound 2n ≤ PIdeg∞(Mn(F )) is given for n = 4 in Proposition 9.6, and
follows for n > 4 by induction applying Corollary 9.5. ��

9.2 Weak Identities Degree 2n

We will now strengthen this result, and show that in the minimal degree 2n, the
standard identity is the only weak identity, namely id2n

2n(Mn(F )) is one dimensional
for all n ≥ 4.

Theorem 9.8 Let F be a field of characteristic zero. For n ≥ 4,

id2n
2n(Mn(F )) = Fs2n,

where s2n is the standard identity.

Proof We prove this theorem by induction. The case n = 4 was verified using a
Sage program (computing over Q).
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Suppose the proposition is true for some n ≥ 4. We consider a weak identity
f ∈ id2n+2

2n+2(Mn+1(F )). Since this is an S2n+2-module, we may assume f lies in the

λ-component of id2n+2
2n+2(Mn+1(F )), for some partition λ = (λ1, . . . , λr ) � 2n+ 2.

By (17) we have an embedding id2n+2
2n+2(Mn+1(F )) ↪→ id2n

2n(Mn(F ))
(2n+2)(2n+1).

Let us denote the right-hand side by M . As an S2n+2-module, M is isomorphic
to the induced representation IndS2n+2

S2n
(sgn). The irreducible subrepresentations

of M are, by Frobenius reciprocity, those whose restriction from S2n+2 to S2n
is the sign representation of degree 2n, namely, by the Branching Theorem [8,
Theorem 2.3.1], the representations [3112n−1], [2212n−2], [2112n] and the sign
representation [12n+2].

By Proposition 5.2, we may assume that f is fixed under the action of

H = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{λ1+···+λr−1+1,...,2n+2}.

In particular, each shadow fi,j is symmetric under the stabilizer of i, j inH , namely
underHij = {σ ∈ H | σ(i) = i, σ (j) = j }.

On the other hand, by Proposition 9.3, each shadow fi,j is a weak identity for
Mn(F ) of degree 2n. According to the induction hypothesis, this is only possible if

fi,j = αi,j · s2n(x1, . . . , x̂i , . . . , x̂j , . . . , x2n+2)

for some αi,j ∈ F , and so the shadow is antisymmetric. We conclude that if Hij
contains odd permutations, then necessarily fij = 0. In other words for fij � 0 it is
necessary that removing i and j will leave no more than a single point in each part
of λ (reaffirming the list of possible partitions).

CASE I. λ = [312n−1]. Here the only nonzero shadows fi,j of f must be those
where 1 ≤ i, j ≤ 3. Since f must be symmetric with respect to
x1, x2, x3, their coefficients αi,j must also be equal to each other, so
up to multiplication by a scalar, f has to be

f =
∑

1≤i,j≤3

xi · s2n(x1, . . . , x̂i , . . . , x̂j , . . . , x2n+2) · xj .

In other words, f is the multilinearization of

f̂ (x, x4, . . . , x2n+2) = x · s2n(x, x4, . . . , x2n+2) · x.

Substitute x �→ e11−e22 and for the variables x4, x5, . . . , x2n+2 take the
“ladder” matrix units e12, e23, . . . , en,n+1, en+1,n, . . . , e32. By direct
computation, one can verify that

f̂ (x, x4, . . . , x2n+2)1,2 = s2n(x, x4, . . . , x2n+2)1,2 = 3,

which proves that f̂ is not a weak identity for Mn+1(F ).
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CASE II. λ = (2, 2, 12n−2). In this case, f is symmetric with respect to x1 and
x2 and with respect to x3 and x4. The possible nonzero shadows are fi,j
where i ∈ {1, 2} and j ∈ {3, 4}, or vice versa. A similar explanation
shows that f is the multilinearization of an identity of the form

f̂ = α ·x ·s2n(x, y, x5, . . . , x2n+2)·y+β ·y ·s2n(x, y, x5, . . . , x2n+2)·x

for some α, β ∈ F . Set

x, y, x5, . . . , x2n+2 = e12, e21, e13, e31, . . . , e1,n+1, en+1,1.

A simple calculation shows that s2n(e12, e21, e13, e31, . . . , e1,n+1,

en+1,1) = n!e11 − ∑n+1
k=2(n − 1)!ekk. Hence f̂ (e12, e21, e13, e31, . . . ,

e1,n+1, en+1,1) = −α(n− 1)!e11 + βn!e22, showing that α = β = 0.
CASE III. λ = (2, 12n). In a similar manner, one may see that f must be a

multilinearization of a weak identity of the form

f̂ (x, x1, . . . , x2n) =
2n∑

i=1

αi x s2n(x, x1, . . . , x̂i , . . . , x2n) xi +

+
2n∑

i=1

βi xi s2n(x, x1, . . . , x̂i , . . . , x2n) x +

+ γ x s2n(x1, . . . , x2n) x.

Fixing 1 ≤ j < 2n, we substitute xj in place of xj+1 and keep all the other
variables in place. Most summands vanish, and the resulting polynomial is

(αj + αj+1) x s2n(x, x1, . . . , x̂j+1, . . . , x2n) xj +
+(βj + βj+1) xj s2n(x, x1, . . . , x̂j+1, . . . , x2n) x.

This must be a weak identity for Mn+1(F ). Since its multilinearization is symmetric
with respect to two pairs of variables, it lies in the component of (2, 2, 12n−2), hence
must be zero by CASE II. This shows that αj+1 = −αj and βj+1 = −βj . But the
argument holds for all j , so αi = (−1)i−1α1 and βi = (−1)i−1β1.

Next we substitute x1 = x. Again, most terms become zero, and the result is

(α1 + β1 + γ ) x s2n(x, x2, . . . , x2n) x.

This should be a weak identity for Mn+1(F ) lying in the component of (3, 12n−1),
and by CASE I must be zero. This proves that α1 + β1 + γ = 0.
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We have therefore shown that our weak identity has the form

f̂ = α
2n∑

i=1

(−1)i−1 x s2n(x, x1, . . . , x̂i , . . . , x2n) xi +

+ β
2n∑

i=1

(−1)i−1 xi s2n(x, x1, . . . , x̂i , . . . , x2n) x −

− (α + β) x s2n(x1, . . . , x2n) x =

= α
2n∑

i=1

x s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n) xi +

+ β
2n∑

i=1

xi s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n) x −

− (α + β) x s2n(x1, . . . , x2n) x

for appropriate α, β ∈ F .
We substitute

x, x1, x2, . . . , x2n = e12 + e23, e12, e21, . . . , e1,n+1, en+1,1.

We know that s2n(x1, . . . , x2n) = n!e11 − (n− 1)!∑n+1
k=2 ekk, so x s2n(x1, . . . , x2n)

x = −(n−1)!e13. We next compute s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n). Consider
the directed graph Gi on the vertices 1, 2, . . . , n + 1, with an edge j → j ′ if and
only if ej,j ′ appears in the list x1, . . . , x̂i , . . . , x2n, e23 after the substitution above.
Any nonzero summand in the expression s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) cor-
responds to an Eulerian path in Gi . We consider the following cases:

• i = 2� − 1 is odd, in which case xi = e1,�+1. Then deg−(1) − deg+(1) = 1,
so any Hamiltonian path must end at 1. But if � � 2, we also have deg−(� +
1) − deg+(� + 1) = 1, so Gi has no hamiltonian path. There are two types of
Hamiltonian paths inG3: those that begin with 2 → 3 → 1, and those that begin
with 2 → 1. One can see that each path of the first type contributes +1 to the
sum, and each path of the second type contributes −1 to the sum. Since their
number is identical, the result is 0.

• i = 3. We want to compute s2n(e12, e21, e23, e31, e14, . . . , en+1,1). Using the
same considerations, every Hamiltonian path must start at 2 and end at 1.

• i = 2� is even, in which case xi = e�+1,1. But then deg−(1) − deg+(1) = −1,
and also deg−(3)− deg+(3) = −1 (or −2 if i = 4), which again shows that Gi
has no Hamiltonian path.
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To conclude, we know that s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) = 0 for all i.
Hence, for i > 1 we have

s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n) = s2n(e12, x2, . . . , xi−1, e12, xi+1, . . . , x2n)+
+ s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) = 0,

and for i = 1 we have

s2n(x, x2, . . . , x2n) = s2n(e12, x2, . . . , x2n)+ s2n(e23, x2, . . . , x2n) =

= s2n(x1, x2, . . . , x2n) = n!e11 − (n− 1)!
n+1∑

k=2

ekk.

The appropriate summands are thus

x s2n(x, x2, . . . , x2n) x1 = (e12 + e23) s2n(x, x2, . . . , x2n) e12 = 0

x1 s2n(x, x2, . . . , x2n) x = e12 s2n(x, x2, . . . , x2n) (e12 + e23) = −(n− 1)!e13.

Therefore, the substitution above in f̂ yields a matrix whose (1, 3) component is
(n− 1)!α, hence α = 0. Similarly, one may show that β = 0, so f̂ = 0 as required.

In conclusion, we are left with the case where λ = (12n+2), which indeed
corresponds to the standard identity s2n+2. ��
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Computing Multiplicities in the Sign
Trace Cocharacters of M2,1(F )

Luisa Carini

Abstract In Regev (Linear Multilinear Algebra 21:1–28, 1987), Regev applied the
representation theory of the general Lie superalgebra to generalize the theory of
trace identities as developed by Procesi and Razmyslov. Regev showed that certain
cocharacters arising from sign trace identities were given by

∑

λ∈H(k,l;n)
χλ ⊗ χλ

where χλ ⊗ χλ denotes the Kronecker product of the irreducible character of the
symmetric group associated with the partition λ with itself and H(k, l; n) denotes
the set of partitions of n λ = (λ1 ≥ λ2 ≥ . . . ≥ λn) such that λk+1 ≤ l. In case
of k = 2, l = 1, we show how to compute some multiplicities which occur in the
expansion of the cocharacter in terms of irreducible characters by using the reduced
notation Scharf et al. (J Phys A Math Gen 26:7461–7478, 1993).

Keywords Trace identity · Invariant theory · Kronecker product · Schur
functions

1 Introduction

The theory of trace identities, developed independently by Procesi [14] and
Razmyslov [15] has proved to be a powerful tool in the study of identities of
the algebra Mk(F) of k × k matrices over a field F of characteristic 0. In [17]
Regev has given a “hook” generalization of the theory of trace identities, which
has applications to the study of certain P.I. algebras. Briefly in the usual theory of
trace identities, the group algebra C(Sn) of the symmetric group is identified with
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multilinear trace polynomials. Then one can use the classical work of Schur and
Weyl [20] on the polynomial representations of the general linear algebra gl(k, C)
and show that the trace cocharacter of theMk(F) equals

∑
λ∈Λk(n) χλ ⊗ χλ, where

⊗ denotes the Kronecker or inner product of the irreducible Sn−character χλ with
itself and Λk(n) denotes the set of partitions of n with k or fewer parts. It follows
from the basic properties of the Kronecker products that:

∑

λ∈Λk(n)
χλ ⊗ χλ =

∑

μ∈Λ
k2 (n)

mμ(Mk(F ))χμ.

The multiplicities mμ(Mk(F )) are non negative integers and are explicitly known
only for k = 2 and partially for k = 3, 4 (see [1–3, 5–7]) and they are not yet
well understood. In [17] Regev generalizes the notion of trace polynomials to that
of signed trace polynomials by multiplying their coefficients by the sign function ε.
NowC(Sn) can be identified with certain classes of signed trace polynomials in such
a way that one can apply the representation theory of the general Lie superalgebra
pl(k, l) which is a generalization of the representation theory of gl(k, C). In [17]
Regev defines a certain quasi Z2-grading onMk+l (F ) depending on k and l and he
denotes the resulting (k, l) quasi-structure by Mk,l(F ). One can then easily define
by analogy the n-th sign trace cocharacter of Mk,l(F ), denoted by χSTn (Mk,l(F )),
and as one of the major results of [17], Regev proves that χSTn (Mk,l(F )) equals

∑

λ∈H(k,l;n)
χλ ⊗ χλ (1)

where H(k, l; n) denotes the set of partitions λ = (λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0)
where λk+1 ≤ l. This character is associated with several objects in PI theory: with
sign trace identities, with the PI’s of the identities of the 3 × 3 matrices with the
(2,1) superalgebra structure (see [16]) and it is also related to the cocharacters of the
ordinary 3 × 3 matrices (see [6]).

In [18] Remmel gives an explicit formula for (1) in the case where k = l = 1
and he proves the following theorem:

Theorem 1 Let

∑

λ∈H(1,1;n)
χλ ⊗ χλ =

n∑

r=1

χ(r,1n−r ) ⊗ χ(r,1n−r ) =
∑

μ

cμχμ.

Then

1. cμ = 0 if μ is not a hook or a double hook shape;

2. c(r,1n−r ) =
{
r if n-r is even
r − 1 if n-r is odd

3. c(q,p,2b,1a) = 2(q − p + 1) if q ≥ p ≥ 2 and q + p + 2b + a = n.
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In the case k = 2, l = 1, some partial new results about the decomposition of
χSTn (M2,1) are contained in [2] and in [4]. More specifically, let

χSTn (M2,1) =
∑

λ∈H(2,1;n)
χλ ⊗ χλ =

∑

μ

cμχμ

whereH(2, 1; n) = {λ � n : λ3 ≤ 1}. In [4], it has been conjectured that:
if n is even:

• c(n−1,1) = (n−2)2

2

• c(n−2,2) = 3n2−19n+34
2

• c(n−1,12) = n2 − 6n+ 10;

if n is odd:

• c(n−1,1) = n2−4n+5
2

• c(n−2,2) = 3n2−19n+32
2

• c(n−1,12) = n2 − 6n+ 10.

The detailed computation of the coefficient c(n−1,1) can be found in [4]. Here
we will show how to compute c(n−2,2) and c(n−2,12) by using the reduced notation
method which we believe might lead to further results.

The outline of this paper is as follows. In Sect. 2 we shall state some preliminaries
on reduced notation and Littlewood’s modification rules. Then in Sect. 3, we shall
apply this method to carry out our main computation.

A Remark About Notation
In this paper, we shall freely mix the traditional notation of Littlewood with that
of Macdonald [12], which is more convenient for algebraic manipulations. So, the
Schur function corresponding to a partition λ will be indifferently denoted by {λ}
or sλ.

2 Reduced Notation

The concept of reduced notation for the symmetric group was introduced by
Murnaghan in [13] and later used by Littlewood [9–11] for the calculation of inner
plethysm and Kronecker products for the symmetric group Sn.

The irreducible representation {λ} of Sn may be labelled by ordered partitions
(λ) of integers where λ � n. In reduced notation the label {λ} = {λ1, λ2, . . . , λp}
for Sn is replaced by < λ >=< λ2, .., λp >. Given any irreducible representation
< μ > in reduced notation it can be converted back into a standard irreducible
representation of Sn by prefixing < μ > with the integer (n− |μ|).

For example, an irreducible representation < 2, 1 > in reduced notation
corresponds to {3, 2, 1} in S6 or {9, 2, 1} in S12. It is just this feature that leads
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to an n-independent notation for Sn. If n − |μ| ≥ μ1, then the resulting irreducible
representation {n− |μ|, μ} is assuredly a standard irreducible representation of Sn.
However, if n − |μ| < μ1, then the irreducible representation {n − |μ|, μ} is non
standard and must be converted into standard form using the following s-function
modification rules [8]:

(i) In any s-function two consecutive parts may be interchanged provided that the
preceding part is decreased by unity and the succeeding part increased by unity,
the resulting s-function being thereby changed in sign, i.e.

{λ1, .., λi , λi+1, .., λk} = −{λ1, .., λi+1 − 1, λi + 1, . . . , λk}.

(ii) In any s-function if any part exceeds by unity the preceding part, the value of
s-function is zero, i.e. if λi+1 = λi + 1 then

{λ1, .., λi , λi+1, .., λk} = 0.

(iii) The value of any s-function is zero if the last part is negative.

Example 1 Consider in reduced notation < μ >=< 2, 1 >; in S3 μ =< 2, 1 >
becomes {n− |μ|, μ} = {0, 2, 1} which is not standard and must be made standard
using the above Littlewood’s modification rules. Therefore by (i) we get {0, 2, 1} =
−{1, 1, 1} = −{13},
Instead in S4, μ =< 2, 1 > becomes {n− |μ|, 2, 1} = {1, 2, 1} and, by (ii), we get
{1, 2, 1} = 0.

Example 2 < 4, 2 > in S8 becomes {2, 4, 2} = −{3, 3, 2} while in S9 we get
{3, 4, 2} which is zero by (ii); in S4, μ =< 4, 2 > becomes {n − |μ|, 4, 2} =
{−2, 4, 2} and by applying (i) twice we get:

{−2, 4, 2} = −{3,−1, 2} = {3, 1, 0} = {3, 1}.

A reduced Kronecker product< λ > ◦ < μ >may be evaluated by the recursive
relation (see [11, 19])

< λ > ◦ < μ >=
∑

α,β,γ

< {λ/αβ} · {μ/αγ } · {β ◦ γ } >

where “/” indicates an s-function skew, i.e. {λ/μ} = Dsμsλ, (see [12]), a dot is
for Littlewood-Richardson s-function multiplication and “◦” is the ordinary inner
(Kronecker) product. By the notation λ/αβ and μ/αγ we mean the Schur functions
corresponding to all those partitions obtained by removing all possible β and γ with
the same weight, (i.e. same number of cells in their corresponding diagrams), from
the skew diagrams λ/α and μ/α for all possible partitions α contained in λ.
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3 The Sign Trace Cocharacter of M2,1(F )

LetMn(F), the algebra of n×nmatrices over a field F of characteristic zero. In [17]
Regev defines a certain quasi Z2-grading onMk+l (F ) depending on k and l and he
denotes the resulting (k, l) quasi-structure by Mk,l(F ). As one of the major results
of [17], Regev proves that the sign trace cocharacter of Mk,l(F ), χSTn (Mk,l(F ))

equals

∑

λ∈H(k,l,n)
χλ ⊗ χλ =

∑

μ

cμχμ

whereH(k, l; n) denotes the set of partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0), where
λk+1 ≤ l.

By Berele [2, Theorem 5.2] and Carini [4, Section 4] it follows that
c(n)=|H(k, l; n)|= the number of partitions inH(k, l; n) and c(1n) equals the number
of self conjugate partitions in H(k, l; n).

In this section we consider the case k = 2, l = 1 and compute some multiplicities
which occur in the expansion of the n-th sign trace cocharacter ofM2,1(F ) in terms
of irreducible characters. In symbols:

χSTn (M2,1(F )) =
∑

λ∈H(2,1;n)
χλ ⊗ χλ =

∑

μ

cμχμ.

Denote by #x$ the greatest integer less than or equal to x and %x& the least integer
greater than or equal to x.

An easy computation shows that

c(n) = |H(2, 1; n)| =
⌊

3n− 2

2

⌋
+
n−2∑

i=3

⌊
n− i

2

⌋

.
Also, c(1n) is always equal to 1 except the case n = 2, when is zero. In fact, the

only self conjugate partitions contained in H(2, 1, n) are the hooks (
⌈
n
2

⌉
, 1# n2 $) for

n odd and the partition (a, 2, 1a−2) for n even with 2a = n.
From now on we will use the reduced notation.

3.1 Computation of the Coefficient for {n − 2, 2}

We want to establish the coefficient {n− 2, 2} as a polynomial in n. Essentially we
are interested in the sums of the inner squares of all the partitions of n in which the
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third part is 1 or 0. In reduced notation they are of the form < k1x >. Thus for
n = 8 the partitions of interest are

{8} +{71} +{62} +{612} +{53}
+{521} +{513} +{42} +{431} +{4212}
+{414} +{3212} +{3213} +{315} +{2214}
+{216} +{18}

In reduced notation, the single hooks are (not in the same order as above)

< 4 > + < 312 > + < 31 > + < 3 > + < 214 >

+ < 213 > + < 212 > + < 21 > + < 2 > + < 17 >

+ < 16 > + < 15 > + < 14 > + < 13 > + < 12 >

+ < 1 > + < 0 >

Notice that the above hooks can be arranged in groups as follows

< 4 > < 3 > < 2 > < 1 > < 0 >
< 31 > < 21 >
< 312 >

< 214 > < 213 > < 212 >

< 17 > < 16 > < 15 > < 14 > < 13 > < 12 >

We do this to show that the various reduced inner squares can be divided into
classes of hooks and each class can be enumerated and treated separately. The
irreducible representations considered can, in the reduced notation, be divided into
three classes:

< 1x >; < x >; < k1x > (2)

The values of x and k must satisfy certain constraints which depend on the
coefficient of interest and the particular value on n. We then endeavour to extract
from the reduced Kronecker squares the desired coefficient. Throughout we use the
basic reduced Kronecker product result

< λ > ◦ < μ >=
∑

α,β,γ

< λ/αβ · μ/αγ · β ◦ γ > (3)

In going from the reduced notation to standard notation one must, where necessary,
apply the usual s-function modification rules. The modification rules give {1, n −
1} = −{n − 2, 2} and hence in computing the coefficient of {n − 2, 2} we need to
know not only the multiplicity of< 2 > but also the multiplicity of< n− 1 >. The
coefficient of {n − 2, 2} will involve the difference of these two multiplicities. In
what follows we shall consider the contribution of each class in (2) to the coefficient
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for {n−2, 2} and then put together the pieces to yield the coefficient as a polynomial
in n.

Contribution from the Class < 1x >
Since in reduced notation {1n} ≡< 1n−1 > and {1n} ◦ {1n} = {n} we can limit x to

n− 2 ≥ x ≥ 1 (4)

Noting from (3) that

< 1x > ◦ < 1x >=
∑

α,β,γ

< 1x/αβ · 1x/αγ · β ◦ γ > (5)

If x = 1 the only choice for α, β, γ is α, β, γ = {0}. For n−3 ≥ x ≥ 2 we have two
choices α, β, γ = {1x−1}, {0}, {0} and α, β, γ = {1x−2}, {12}, {12}. For x = n − 2
we still have the preceding two choices but the product also gives rise to < n− 1 >
which upon application of the s-function modification rules cancels one of the two
choices and hence we end with the counting algorithm

1. Count 1 for x = 1
2. Count 2 for n− 3 ≥ x ≥ 2
3. Count 1 for x = n− 2
4. Giving a total count of

2(n− 3) (6)

Note that for this class the result does not depend on the parity of n.

Contribution from the Class < x >
Here we must treat the odd and even values of n separately but the results derive in
a very similar fashion to the above to give the two counting algorithms:

n even

1. Count 2 for n−2
2 ≥ x ≥ 2

2. Count 1 for x = n
2

3. Giving a total count of

n− 3 (7a)

n odd

1. Count 2 for n−3
2 ≥ x ≥ 2

2. Count 1 for x = n−1
2

3. Giving a total count of

n− 4 (7b)
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Contribution from the Class < k1x >
This is the most complex part of the derivation and we do it in three steps. We first
compute the multiplicity of < n − 1 > in < k1x > ◦ < k1x > and then the
multiplicity of < 2 > in < k1x > ◦ < k1x > and then subtract the two sets of
multiplicities. In general we will have to consider those cases where k > 1 with

n− 2k ≥ x ≥ 1 (8)

Step 1: The Coefficient of < n− 1 > in < k1x > ◦ < k1x >
Two distinct cases arise: (i) x = n− 2k− 1 and (ii) x = n− 2k. For all other values
of x the coefficient is null. Throughout we assume k > 1.

(i) x = n − 2k − 1. It follows from (3) that the only possible choice for α, β, γ
is α = {0}, β = γ = {1n−2k−1} and we note that {k · k · (n − 2k − 1)} ⊃
{n − 1}. Thus we conclude that in this case the coefficient of < n − 1 > in
< k1n−2k−1 > ◦ < k1n−2k−1 > is 1.

(ii) x = n− 2k. It follows from (3) that there are three choices for α, β, γ

α = {0}, β = γ = {1n−2k+1} (9a)

α = {0}, β = γ = {21n−2k−1} (9b)

α = {1}, β = γ = {1n−2k−1} (9c)

Each case yields< n− 1 > just once and hence for this case the total coefficient of
< n− 1 > in < k1n−2k > ◦ < k1n−2k > is 3.

Step 2: The Coefficient of < 2 > in < k1x > ◦ < k1x >
There are six choices of α, β, γ that can yield the coefficient< 2 >:

α = {k1x−1}, β = γ = {0} (10a)

α = {k − 1, 1x}, β = γ = {0} (10b)

α = {k, 1x−2}, β = γ = {12} (10c)

α = {k − 2, 1x}, β = γ = {2} (10d)

α = {k − 1, 1x−1}, β = γ = {2} (10e)

α = {k − 1, 1x−1}, β = γ = {12} (10f)

Each of the above give a count of 1 or 0 depending on the values of k and x.
Specifically we have the following counting rules

k = 2, x = 1 count 4 (11a)

k = 2, n− 4 ≥ x > 1 count 5 (11b)
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k > 2, x = 1 count 5 (11c)

k > 2, n− 2k ≥ x > 1 count 6 (11d)

Step 3: Combining the Coefficients for the Class < k1x >
Steps 1 and 2 can be carried out for any member of the class< k1x > for any value
of n. Thus for n = 8 we have the classes involving just k = 2, 3 and can readily
deduce from Steps 1 and 2 that for k = 2 we obtain a contribution of 15 and for
k = 3 a contribution of 7 which combined with the contributions of the classes
< 1x > and < x > yields a total contribution of 37 and hence the coefficient for
{62} is 37.

It is illuminating to arrange the contributions for each value of n even

n < 21x > < 31x > < 41x > < 51x > < 61x > Total
6 5 5
8 15 7 22
10 25 19 7 51
12 35 31 19 7 92
14 45 43 31 19 7 145

(12)

It is readily seen how the pattern continues and that for a given n even the total
contribution is

3n2 − 25n+ 52

2
(13)

Likewise for n odd one obtains the pattern

n < 21x > < 31x > < 41x > < 51x > < 61x > < 71x > Total
7 10 2 12
9 20 13 2 35
11 30 25 13 2 70
13 40 37 25 13 2 117
15 50 49 37 25 13 2 176

and again the total contribution is

3n2 − 25n+ 52

2
(14)

and the result is independent of the parity of n.
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4 The Final Result

The coefficient c({n−2,2}) comes from simply summing the contributions for each
class to give the coefficient as

c({n−2,2}) =
{

3n2−19n+34
2 if n is even

3n2−19n+32
2 if n is odd

The Coefficient of {n− 2, 12}
Here one has to look at the three generic classes of partitions (1x), (x), (k1x) and
determines the bounds of x in each case and establishes a counting rule for each
class starting with the Eq. (3):

< λ > ◦ < μ >=
∑

α,β,γ

< λ/αβ · μ/αγ · β ◦ γ >

As before we need to consider the n even and odd cases separately even though
the final result does not depend on the parity of n. In this particular derivation, the
modification rules

{−1, n− 1, 2} > {n− 2, 12} and {0, n− 1, 1} > {n− 2, 12} (15)

are required. The class (1x) and (x) are almost the same as in the earlier derivation.
Care is needed for the class (k1x).

From (3)

< k1x > ◦ < k1x >=
∑

α,β,γ

< k1x/αβ · k1x/αγ · β ◦ γ > (16)

We need to determine the α, β, γ that give the term < 12 > on the rhs of (16). At
first it appears that there are four choices of α, β, γ

α = k, 1x−1 β = γ = 0 (i)

α = k − 1, 1x β = γ = 0 (ii)

α = k − 1, 1x−1 β = 2 γ = 12 (iii)

α = k − 1, 1x−1 β = 12 γ = 2 (iv)

remembering that {k1x/k−1, 1x−1} = {2}+ {12} and that {2} ◦ {12} = {12} ◦ {2} ≡
{12}. However, the modification rules (15) require that we also consider the terms
< n− 1, 2 > and < n− 1, 1 >. These terms arise when x = n − 2k they occur as
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< n− 1, 2 > +4 < n− 2, 12 > and modify via (15) to −3{n− 2, 12} and hence if
x = n− 2k we must count 1 rather than 4 for all other values of x.

All the above leads to the final algorithms for n even and n odd as

n Even
1. Count 1 for each < 1x > with n− 2 ≥ x ≥ 1 giving n− 2.
2. Count 1 for each < x > with n

2 > x ≥ 2 giving n−4
2 .

3. Count 4 for each n− 2k − 1 ≥ x ≥ 1 (k > 1) giving n2 − 8n+ 16.
4. Count 1 for each n− 2k = x (k > 1) giving n−4

2 .
5. Adding all the terms together gives n2 − 6n+ 10.

n Odd
1. Count 1 for each < 1x > with n− 2 ≥ x ≥ 1 giving n− 2.
2. Count 1 for each < x > with n+1

2 > x ≥ 2 giving n−3
2 .

3. Count 4 for each n− 2k − 1 ≥ x ≥ 1 (k > 1) giving n2 − 8n+ 15.
4. Count 1 for each n− 2k − 1 = x (k > 1) giving n−3

2 .
5. Adding all the terms together gives n2 − 6n+ 10.

Thus for general n the coefficient of {n− 2, 12} is

n2 − 6n+ 10

Conjecture 1 If we expand

χSTn (M2,1) =
∑

λ∈H(2,1;n)
χλ ⊗ χλ =

∑

μ

cμχμ

for up to n = 17, 18, it is noticeable and it may stated as a conjecture, the
stabilization of coefficients as the column length increases. Thus the coefficient c(1n)
stabilizes at n = 3, c(2,1n−2) at n = 6 and generally c(k,1n−k) stabilizes at n = 3k

and it is equal to k
3 (2k

2 − 3k + 4). One then notices that c(k,2,1n−2−k) stabilizes at
n = 3k + 2, likewise c(k,3,1n−3−k) stabilizes for k = 3 at n = 13, k = 4 at n = 16.
Steps of 3 seem to be relevant.

Remark 1 The computational aspects of this paper were made using SCHUR, an
interactive program for calculating the properties of Lie groups and symmetric
functions by Brian G. Wybourne [19].
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b-Generalized Skew Derivations on
Multilinear Polynomials in Prime Rings

Vincenzo De Filippis, Giovanni Scudo, and Feng Wei

Abstract Let R be a prime ring of characteristic different from 2, Qr be its
right Martindale quotient ring and C be its extended centroid. In this paper we
define b-generalized skew derivations of prime rings. Then we describe all possible
forms of two b-generalized skew derivations F and G satisfying the condition
F(x)x − xG(x) = 0, for all x ∈ S, where S is the set of the evaluations of
a multilinear polynomial f (x1, . . . , xn) over C with n non-commuting variables.
Several potential research topics related to our current work are also presented.

Keywords Prime rings · Generalized skew derivations · Multilinear polynomials

1 Introduction

In this paper, unless otherwise mentioned,R always denotes a prime ring with center
Z(R). We denote the right Martindale quotient ring of R by Qr . The center of Qr
is denoted by C, which is called extended centroid of R. We refer the reader to the
book [4] for more details.

An additive mapping d : R −→ R is said to be a derivation of R if

d(xy) = d(x)y + xd(y)

for all x, y ∈ R. An additive mapping F : R −→ R is called a generalized
derivation of R if there exists a derivation d of R such that

F(xy) = F(x)y + xd(y)
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for all x, y ∈ R. The derivation d is uniquely determined by F , which is called an
associated derivation of F .

The definition of generalized skew derivation is a unified notion of skew
derivation and generalized derivation, which are considered as classical additive
mappings of non-commutative algebras, have been investigated by many people
from various views, see [1, 9, 11–14, 16, 24, 25, 28, 29, 39, 42, 45]. Let R be an
associative ring and α be an automorphism of R. An additive mapping d : R −→ R

is said to be a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R. The automorphisms α is called an associated automorphism of d .
An additive mapping F : R −→ R is called a generalized skew derivation of R if
there exists a skew derivation d of R with associated automorphism α such that

F(xy) = F(x)y + α(x)d(y)

for all x, y ∈ R. In this case, d is called an associated skew derivation of F and α
is called an associated automorphism of F . It was Chang who first introduced this
notion and initiated the study of generalized skew derivations of (semi-)prime rings
in [10]. Therein, he described the identity of the form h(x) = af (x)+g(x)b, where
f, g and h are the so-called generalized (α, β)-derivations of a prime ring R, a and
b are some fixed noncentral elements of R.

It is worth pointing out that many research papers are devoting to studying
the additive mappings in the interfaces between algebra and operator algebra. In
[7], Brešar and Villena investigate the automatic continuity of skew derivations
on Banach algebras and gave the skew derivation version of noncommutative
Singer-Wermer conjecture on Banach algebras. Various technical generalizations of
derivations on (semi-)prime rings are used to discuss the range inclusion problems of
generalized derivations on noncommutative Banach algebras, see [5, 8, 27, 46, 47].
More recently, Eremita et al determine the structure of generalized skew derivations
implemented by elementary operators [30]. Liu and his students characterize a
(generalized-)skew derivation F of Banach algebras so that the values of F on a left
ideal are nilpotent [41, 43]. Qi and Hou in [45] study generalized skew derivations
on nest algebras determined by acting on zero products.

Brešar in [6] gives a description of additive mappings which are commuting on
a prime ring R. More precisely, he proves that if F is an additive mapping of R
into itself which is centralizing on R and if either R has a characteristic different
from 2 or F is commuting on R, then F is of the form F(x) = λx + ζ(x), where
λ is an element of the extended centroid C of R and ζ is an additive mapping of
R into C. Moreover, the general situation when two additive mappings F and G
of the ring R satisfy F(x)x − xG(x) ∈ Z(R) for all x in a subset S of R is
considered. In particular, it is showed that if 0 � F and G are both derivations
of R and S is a nonzero left ideal of R, then R is commutative. Many researchers
successfully extended this result concerning derivations, by replacing S with other
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subsets of R or replacing F and G with other types of additive mappings. In [49],
Wong characterizes derivationsF andG ofR such that F(x)x−xG(x) ∈ Z(R), for
all x ∈ S, where S is the set of all the evaluations (in a non-zero ideal ofR) of a non-
central multilinear polynomial over C. Later, Lee and Shiue in [36] extend Wong’s
result to derivations acting on arbitrary polynomials. Then, in [40], Liu generalizes
the theorem of Wong to one-sided ideals. More recently, Chen in [15] extends Lee
and Shiue’s result to generalized derivations.

In a recent paper [34], Koşan and Lee propose the following new definition. Let
d : R −→ Qr be an additive mapping and b ∈ Qr . An additive map F : R −→ Qr
is called a left b-generalized derivation, with associated mapping d , if F(xy) =
F(x)y + bxd(y), for all x, y ∈ R. In the present paper this mapping F will be
called b-generalized derivation with associated pair (b, d). Clearly, any generalized
derivation with associated derivation d is a b-generalized derivation with associated
pair (1, d).

In view of this idea, we now give the following:

Definition 1 Let b ∈ Qr , d : R −→ Qr an additive mapping and α be an
automorphism of R. An additive mapping F : R −→ Qr is called a b-generalized
skew derivation of R, with associated term (b, α, d) if

F(xy) = F(x)y + bα(x)d(y)

for all x, y ∈ R.

According to the above definition, we can conclude that general results about
b-generalized skew derivations may give useful and powerful corollaries about
derivations, generalized derivations, skew derivations and generalized skew deriva-
tions.

The main goal of the present paper is to prove the following theorem. It
characterizes b-generalized skew derivations which are commuting on multilinear
polynomials in prime rings:

Theorem 1 Let R be a prime ring of characteristic different from 2,Qr be its right
Martindale quotient ring and C be its extended centroid, α ∈ Aut(R), d and δ
skew derivations of R with associated automorphism α, such that both d and δ are
commuting with α. Suppose that F , G are b-generalized skew derivations of R,
with associated terms (b, α, d) and (p, α, δ), respectively. Let f (x1, . . . , xn) be a
non-central multilinear polynomial over C with n non-commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0 (1)

for all r1, . . . , rn ∈ R, then one of the following statements holds:
1. there exists a′ ∈ Qr such that, F(x) = xa′ and G(x) = a′x for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a′, b′ ∈ Qr such that
F(x) = a′x + xb′, G(x) = b′x + xa′, for all x ∈ R.
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Let us recall some results which will be useful in the sequel.

Note 1 Let R be a prime ring, then the following statements hold:

1. Every generalized derivation of R can be uniquely extended toQr [35, Theorem
3].

2. Any automorphism of R can be uniquely extended to Qr [19, Fact 2].
3. Every generalized skew derivation of R can be uniquely extended to Qr [10,

Lemma 2].

Lemma 1 Let R be a prime ring, α ∈ Aut(R), 0 � b ∈ Qr , d : R −→ R

be an additive mapping of R and F be the b-generalized skew derivation of R
with associated term (b, α, d). Then d is a skew derivation of R with associated
automorphism α.

Proof See [26, Lemma 3.2].

Lemma 2 LetR be a prime ring, α ∈ Aut(R), b ∈ Qr , d : R −→ R be an additive
mapping of R and F be the b-generalized skew derivation of R with associated term
(b, α, d). Then F can be uniquely extended to Qr and assumes the form F(x) =
ax + bd(x), where a ∈ Qr .
Proof See [26, Lemma 3.3].

2 Some Results on Differential Identities
with Automorphisms

In order to proceed with our proofs, we need to recall some well-known results on
skew derivations and automorphisms involved in generalized polynomial identities
for prime rings.

Let us denote by SDer(Qr) the set of all skew-derivations of Qr . By a skew-
derivation word we mean an additive mapping Δ of the form Δ = d1d1 . . . dm,
where di ∈ SDer(Qr). A skew-differential polynomial is a generalized polynomial
with coefficients in Qr of the form Φ(Δj(xi)) involving noncommutative indeter-
minates xi on which the skew derivation words Δj act as unary operations. The
skew-differential polynomial Φ(Δj(xi)) is said to be a skew-differential identity
on a subset T of Qr if it vanishes on any assignment of values from T to its
indeterminates xi .

Let R be a prime ring, SDint be the C-subspace of SDer(Qr) consisting of all
inner skew-derivations of Qr , and let d and δ be two non-zero skew-derivations of
Qr . The following results follow as special cases from results in [18–21, 33].

Note 2 Let d and δ be skew derivations on R, associated with the same automor-
phism α of R. Assume that d and δ are C−linearly independent modulo SDint.
If d and δ are commuting with the automorphism α and Φ(Δj (xi)) is a skew-
differential identity on R, whereΔj are skew-derivations words from the set {d, δ},
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then Φ(yji) is a generalized polynomial identity of R, where yji are distinct
indeterminates (see [33, Theorem 6.5.9]).

In particular, we have

Note 3 In [22] Chuang and Lee investigate polynomial identities with a single skew
derivation. They prove that if Φ(xi,D(xi)) is a generalized polynomial identity
for R, where R is a prime ring and D is an outer skew derivation of R, then R
also satisfies the generalized polynomial identity Φ(xi, yi), where xi and yi are
distinct indeterminates. Furthermore, they observe [22, Theorem 1] that in the case
Φ(xi,D(xi), α(xi)) is a generalized polynomial identity for a prime ring R, D is
an outer skew derivation of R and α is an outer automorphism of R, then R also
satisfies the generalized polynomial identity Φ(xi, yi, zi ), where xi , yi , and zi are
distinct indeterminates.

Note 4 If d and δ are C−linearly dependent modulo SDint, then there exist λ,μ ∈
C, a ∈ Qr and α ∈ Aut(Qr) such that λd(x)+μδ(x) = ax − α(x)a for all x ∈ R.

Note 5 By Chuang and Lee [22] we can state the following result. If d is a non-zero
skew-derivation of R and

Φ

(
x1, . . . , xn, d(x1), . . . , d(xn)

)

is a skew-differential polynomial identity of R, then one of the following statements
holds:

1. either d ∈ SDint ;
2. or R satisfies the generalized polynomial identity

Φ(x1, . . . , xn, y1, . . . , yn).

Note 6 Let R be a prime ring and I be a two-sided ideal of R. Then I , R, and Qr
satisfy the same generalized polynomial identities with coefficients inQr (see [18]).
Furthermore, I , R, and Qr satisfy the same generalized polynomial identities with
automorphisms (see [20, Theorem 1]).

Note 7 Let R be a prime ring, Inn(Qr) be the C-subspace of Aut(Qr) consisting of
all inner automorphisms ofQr and let α and β be two non-trivial automorphisms of
Qr .
α and β are called mutually outer if αβ−1 is not an inner automorphism ofQr .
If α and β are mutually outer automorphisms of Qr and Φ(xi, α(xi), β(xi)) is an
automorphic identity for R, then by Kharchenko [32, Theorem 4] we know that
Φ(xi, yi, zi ) is a generalized polynomial identity for R, where xi, yi, zi are distinct
indeterminates.
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Note 8 LetR be a prime ring, α, β ∈ Aut(Qr ) and d : R→ R be a skew derivation,
associated with the automorphism α. If there exist 0 � θ ∈ C, 0 � η ∈ C and
u, b ∈ Qr such that

d(x) = θ
(
ux − α(x)u

)
+ η

(
bx − β(x)b

)
, ∀x ∈ R (2)

then d is an inner skew derivation of R. More precisely, either b = 0 or α = β.

Proof Starting from relation (2) we have

d(xy) = θ
(
uxy − α(x)α(y)u

)
+ η

(
bxy − β(x)β(y)b

)
, ∀x, y ∈ R. (3)

On the other hand,

d(xy) = d(x)y + α(x)d(y) =
θ

(
ux − α(x)u

)
y + η

(
bx − β(x)b

)
y+

α(x)θ

(
uy − α(y)u

)
+ α(x)η

(
by − β(y)b

)
.

(4)

Comparision of (3) with (4) leads to

η

(
β(x)β(y)b− β(x)by + α(x)by − α(x)β(y)b

)
= 0, ∀x, y ∈ R. (5)

Suppose first that α and β are mutually outer, in the sense of Note 7. Therefore,
by (5) and since η � 0, it follows that

y1y2b − y1by + x1by − x1y2b = 0, ∀x, y, x1, y1, y2 ∈ R. (6)

In particular, for y2 = x1 = 0 we get y1by = 0, for any y, y1 ∈ R and, by the
primeness of R, it follows b = 0, as required.
Now we assume that α and β are not mutually outer, that is there exists an invertible
element q ∈ Qr such that αβ−1(x) = qxq−1, for any x ∈ R. Replacing x by β(x),
it follows easily that α(x) = qβ(x)q−1. Hence by (5)

β(x)β(y)b− β(x)by + qβ(x)q−1by − qβ(x)q−1β(y)b = 0, ∀x, y ∈ R

that is
(
qβ(x)q−1 − β(x)

)(
β(y)b − by

)
= 0, ∀x, y ∈ R. (7)
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Now replace y by yz in (7), then

(
qβ(x)q−1 − β(x)

)(
β(y)β(z)b− byz

)
= 0, ∀x, y, z ∈ R (8)

and using (7) in (8) it follows

(
qβ(x)q−1 − β(x)

)
β(y)

(
β(z)b − bz

)
= 0, ∀x, y, z ∈ R. (9)

By the primeness of R, one has that either β(z)b − bz = 0, for any z ∈ R, or

qβ(x)q−1 − β(x) = 0, for any x ∈ R. In the first case d(x) = θ
(
ux − α(x)u

)
and

we are done. In the latter case, for any x ∈ R we get β(x) = qβ(x)q−1 = α(x) and
we are done again.

Note 9 Assuming that f (x1, . . . , xn) is a multilinear polynomial over C and d is a
skew derivation of R, associated with the automorphism α, we denote

f (x1, . . . , xn) =
∑

σ∈Sn
γσ xσ(1) · xσ(2) · · · xσ(n), γσ ∈ C.

Let f d(x1, . . . , xn) be the polynomial originated from f (x1, . . . , xn) by replacing
each coefficient γσ with d(γσ ). Thus

d

(
γσ · xσ(1) · xσ(2) · · · xσ(n)

)
= d(γσ )xσ(1) · xσ(2) · · · xσ(n)+

+α(γσ )
n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ(j))d(xσ(j+1))xσ(j+2) · · · xσ(n)

and

d(f (x1, . . . , xn)) = f d(x1, . . . , xn)+

+
∑

σ∈Sn
α(γσ )

n−1∑

j=0

α(xσ(1) · xσ(2) · · · xσ(j))d(xσ(j+1))xσ(j+2) · · · xσ(n).
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3 Commuting Generalized Derivations and Commuting
Generalized Skew Derivations

Here we would like also to collect some results in literature concerning commuting
generalized derivations and commuting generalized skew derivations. This section
will be useful in the sequel in order to conclude the proof of our main results.

Proposition 1 ([2, Lemma 3]) Let R be a prime ring, Qr be its right Martindale
quotient ring andC be its extended centroid, f (x1, . . . , xn) be a multilinear polyno-
mial over C, which is not central-valued on R. Suppose there exist a, b, c, q ∈ Qr
such that

(
af (r1, . . . , rn)+ f (r1, . . . , rn)b

)
f (r1, . . . , rn)

−f (r1, . . . , rn)
(
cf (r1, . . . , rn)+ f (r1, . . . , rn)q

)
= 0

(10)

for all r1, . . . , rn ∈ R. Then one of the following statements holds:
1. a, q ∈ C, q − a = b − c = α ∈ C;
2. f (x1, . . . , xn)

2 is central-valued on R and there exists α ∈ C such that q − a =
b − c = α;

3. char(R) = 2 and R satisfies S4.

Corollary 1 Let R be a prime ring and f (x1, . . . , xn) be a multilinear polynomial
over C with n non-commuting variables. Let a, b ∈ R be such that

af (r1, . . . , rn)
2 + f (r1, . . . , rn)bf (r1, . . . , rn) = 0

for all r1, . . . , rn ∈ R. If f (x1, . . . , xn) is not central valued on R, then either
a = −b ∈ C, or char(R) = 2 and R satisfies S4.

Lemma 3 ([2, Lemma 1]) Let R be a prime ring and f (x1, . . . , xn) be a poly-
nomial over C with n non-commuting variables. Let a, b ∈ R be such that
af (r1, . . . , rn) + f (r1, . . . , rn)b = 0 for all r1, . . . , rn ∈ R. If f (x1, . . . , xn) is
not a polynomial identity for R, then either a = −b ∈ C, or f (x1, . . . , xn) is
central-valued on R and a+b = 0, unless char(R) = 2 and R ⊆ M2(C), the 2×2
matrix ring over C.

Corollary 2 Let R be a prime ring of characteristic different from 2 and f (x1, . . . ,

xn) be a polynomial overC with n non-commuting variables. Let a ∈ R be such that
f (r1, . . . , rn)a = 0 (or af (r1, . . . , rn) = 0) for all r1, . . . , rn ∈ R. If f (x1, . . . , xn)

is not a polynomial identity for R, then a = 0.

Theorem 2 ([2, Theorem 1]) Let R be a prime ring, Qr be its right Martindale
quotient ring and C be its extended centroid, I a non-zero two-sided ideal of R,
F and G non-zero generalized derivations of R. Suppose that f (x1, . . . , xn) is a
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non-central multilinear polynomial over C such that

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0

for all r1, . . . , rn ∈ I , then one of the following statements holds:
1. there exists a ∈ Qr such that, F(x) = xa andG(x) = ax for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a, b ∈ Qr such that
F(x) = ax + xb,G(x) = bx + xa, for all x ∈ R;

3. char(R) = 2 and R satisfies S4, the standard identity of degree 4.

4 Some Remarks on Matrix Algebras

Let us state some well-known facts concerning the case when R = Mm(K)

is the algebra of m × m matrices over a field K . Note that the set f (R) =
{f (r1, . . . , rn)|r1, . . . , rn ∈ R} is invariant under the action of all inner automor-
phisms of R. Let us write r = (r1, . . . , rn) ∈ R × R × . . . × R = Rn. Then for
any inner automorphism ϕ of Mm(K), we get that r = (ϕ(r1), . . . , ϕ(rn)) ∈ Rn
and ϕ(f (r)) = f (r) ∈ f (R). As usual, we denote the matrix unit having 1 in
(i, j)-entry and zero elsewhere by eij .

Let us recall some results from [37]. Let T be a ring with 1 and let eij ∈
Mm(T ) be the matrix unit having 1 in (i, j)-entry and zero elsewhere. For a
sequence u = (A1, . . . , An) in Mm(T ), the value of u is defined to be the product
|u| = A1A2 · · ·An and u is nonvanishing if |u| � 0. For a permutation σ of
{1, 2, · · · , n}, we write uσ = (Aσ(1), . . . , Aσ(n)). We call u simple if it is of the
form u = (a1ei1j1 , · · · , aneinjn), where ai ∈ T . A simple sequence u is called even
if for some σ , |uσ | = beii � 0, and odd if for some σ , |uσ | = beij � 0, where
i � j . In [37] it is proved that:

Note 10 Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2. Suppose that
g(x1, . . . , xn) is a multilinear polynomial over K such that g(u) = 0 for all odd
simple sequences u. Then g(x1, . . . , xn) is central-valued on R.

Note 11 Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2. Suppose that
g(x1, . . . , xn) is a multilinear polynomial overK . Let u = (A1, . . . , An) be a simple
sequence from R.

1. If u is even, then g(u) is a diagonal matrix.
2. If u is odd, then g(u) = aepq for some a ∈ T and p � q .

We also notice that:

Note 12 Since f (x1, . . . , xn) is not central-valued on R, then by Note 10 there
exists an odd simple sequence r = (r1, . . . , rn) from R such that f (r) =
f (r1, . . . , rn) � 0. By Note 11, f (r) = βepq , where 0 � β ∈ C and p � q .
Since f (x1, . . . , xn) is a multilinear polynomial and C is a field, we may assume
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that β = 1. Now, for distinct i, j , let σ ∈ Sn be such that σ(p) = i and σ(q) = j ,
and let ψ be the automorphism of R defined by ψ(

∑
s,t ξst est ) =

∑
s,t ξst eσ (s)σ (t).

Then f (ψ(r)) = f (ψ(r1), . . . , ψ(rn)) = ψ(f (r)) = βeij = eij .

Note 13 By Note 11 and [37, Lemma 9], since f (x1, . . . , xn) is not central-
valued on R, then there exists a sequence of matrices r1, . . . , rn ∈ R such that
f (r1, . . . , rn) = ∑

i αieii = D is a non-central diagonal matrix, for αi ∈ C.
Suppose r � s such that αr � αs . For all l � m, let ψ ∈ AutC(R) defined
by ψ(x) = ψ(

∑
ij αij eij ) =

∑
ij αij eσ(i)σ (j), where σ is a permutation in the

symmetric group of n elements, such that σ(r) = l and σ(s) = m. Thus ψ(D) is an
element of f (R) and it is a diagonal matrix with (l, l) and (m,m) entries distinct.

Note 14 ([23, Lemma 1.5]) Let H be an infinite field and n ≥ 2. If A1, . . . , Ak are
not scalar matrices inMm(H) then there exists some invertible matrix P ∈ Mm(H)
such that each matrix PA1P

−1, . . . , PAkP
−1 has all non-zero entries.

5 Commuting Inner b-Generalized Skew Derivations

The present section is devoted to the proof of a reduced version of Theorem 1. More
precisely, we prove the Theorem in the case α, β are automorphisms of R and F , G
are inner b-generalized skew derivations of R respectively defined as follows:

F(x) = ax + bα(x)c, G(x) = ux + pβ(x)w

for all x ∈ R and suitable fixed a, b, c, u, p,w ∈ Qr .
We would like to remark that in this section F andG have not necessarily the same
associated automorphism.

We start with the following case:

Lemma 4 Let R = Mm(C), m ≥ 2 and let C be infinite. Suppose that F , G are
inner b-generalized skew derivations of R respectively defined as follows:

F(x) = ax + bqxq−1c, G(x) = ux + pvxv−1w

for all x ∈ R and suitable fixed a, b, c, u, p,w, q, v ∈ Qr , with invertible elements
q, v of Qr . Let f (x1, . . . , xn) be a non-central multilinear polynomial over C with
n non-commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0 (11)

for all r1, . . . , rn ∈ R, then the following statements hold simultaneously:
1. either bq ∈ Z(R) or q−1c ∈ Z(R).
2. either pv ∈ Z(R) or v−1w ∈ Z(R).
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Proof We assume that bq � Z(R) and q−1c � Z(R), that is both q−1c and bq are
not scalar matrices, and prove that a contradiction follows. By Note 14, there exists
some invertible matrix P ∈ Mm(C) such that each matrix PbqP−1, P (q−1c)P−1

has all non-zero entries. Denote by ϕ(x) = PxP−1 the inner automorphism induced
by P . Say ϕ(bq) = ∑

hl qhlehl and ϕ(q−1c) = ∑
hl chlehl for 0 � qhl, 0 � chl ∈ C.

Without loss of generality, we may replace bq and q−1c with ϕ(bq) and ϕ(q−1c),
respectively. Hence, for f (r1, . . . , rn) = λeij � 0 in (11), we get that the (j, j)-
entry in (11) is

qjicji = 0,

which is a contradiction.
Assume now that pv � Z(R) and v−1w � Z(R), that is both v−1w and pv are

not scalar matrices, and prove that a contradiction follows. As above, there exists
χ(x) = QxQ−1 the inner automorphism induced by Q ∈ R, such that χ(pv) =∑
hl phlehl and χ(v−1w) = ∑

hl whlehl for 0 � phl, 0 � whl ∈ C. Moreover
we replace pv and v−1w with χ(pv) and χ(v−1w), respectively. Hence, again for
f (r1, . . . , rn) = λeij � 0 in (20), we observe that the (i, i)-entry in (11) is

pjiwji = 0,

which is also a contradiction.

Lemma 5 Let R = Mm(C), m ≥ 2 and let char(C) � 2. Suppose that F , G are
inner b-generalized skew derivations of R respectively defined as follows:

F(x) = ax + bqxq−1c, G(x) = ux + pvxv−1w

for all x ∈ R and suitable fixed a, b, c, u, p,w, q, v ∈ Qr , with invertible elements
q, v of Qr . Let f (x1, . . . , xn) be a non-central multilinear polynomial over C with
n non-commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0

for all r1, . . . , rn ∈ R, then one of the following assertions holds:
1. bq ∈ Z(R) and pv ∈ Z(R);
2. bq ∈ Z(R) and v−1w ∈ Z(R);
3. q−1c ∈ Z(R) and pv ∈ Z(R);
4. q−1c ∈ Z(R) and v−1w ∈ Z(R).
Proof If one assumes that C is infinite, the conclusion follows from Lemma 4.

Now let E be an infinite field which is an extension of the field C and let
R = Mt(E) � R ⊗C E. Notice that the multilinear polynomial f (x1, . . . , xn) is
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central-valued onR if and only if it is central-valued on R. Consider the generalized
polynomial

Ψ (x1, . . . , xn) =(
af (x1, . . . , xn)+ bqf (x1, . . . , xn)q

−1c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pvf (x1, . . . , xn)v

−1w

)
,

(12)

which is a generalized polynomial identity for R. Moreover, it is multi-
homogeneous of multi-degree (2, . . . , 2) in the indeterminates x1, . . . , xn. Hence
the complete linearization of Ψ (x1, . . . , xn) is a multilinear generalized polynomial
Θ(x1, . . . , xn, y1, . . . , yn). Moreover,

Θ(x1, . . . , xn, x1, . . . , xn) = 2nΨ (x1, . . . , xn).

Clearly, the multilinear polynomial Θ(x1, . . . , xn, y1, . . . , yn) is a generalized
polynomial identity for R and R too. Since char(C) � 2, we obtainΨ (r1, . . . , rn) =
0 for all r1, . . . , rn ∈ R, and the conclusion follows from Lemma 4.

Lemma 6 Assume that

Ψ (x1, . . . , xn) =(
af (x1, . . . , xn)+ bqf (x1, . . . , xn)q

−1c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pvf (x1, . . . , xn)v

−1w

) (13)

is a generalized polynomial identity for R. If R does not satisfy any non-trivial
generalized polynomial identity, then one of the following holds:

1. bq ∈ C and p = 0;
2. bq ∈ C and v−1w ∈ C;
3. q−1c ∈ C and p = 0;
4. q−1c ∈ C and v−1w ∈ C;
5. a = u ∈ C, q−1c ∈ C, pv ∈ C, bc = 0 and pw = 0.

Proof We firstly assume that a � C.
If {a, bq, 1} is linearly C-independent and since Ψ (x1, . . . , xn) is a trivial general-
ized polynomial identity for R, then the component af (x1, . . . , xn)

2 is also a trivial
generalized identity for R, implying the contradiction a = 0. Hence we assume
there exist α, γ ∈ C, such that bq = αa + γ . In this case (13) reduces to

af (x1, . . . , xn)
2 + (αa + γ )f (x1, . . . , xn)q

−1cf (x1, . . . , xn)

−f (x1, . . . , xn)uf (x1, . . . , xn)− f (x1, . . . , xn)pvf (x1, . . . , xn)v
−1w.

(14)
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Since {1, a} is linearly C-independent and (14) is a trivial generalized polynomial
identity for R, then the components

af (x1, . . . , xn)(1 + αq−1c) (15)

and

γf (x1, . . . , xn)q
−1cf (x1, . . . , xn)− f (x1, . . . , xn)uf (x1, . . . , xn)

−f (x1, . . . , xn)pvf (x1, . . . , xn)v
−1w

(16)

are also trivial generalized polynomial identities for R. By (15), we get q−1c ∈ C.
Thus, in the case v−1w ∈ C we are done. Here we assume that v−1w � C, that is
{1, v−1w} is linearly C-independent. Therefore, by (16) it follows that R satisfies
f (x1, . . . , xn)pvf (x1, . . . , xn)v

−1w, which implies pv = 0, that is p = 0 (since v
is invertible).

Assume now both a ∈ C and bq ∈ C. Hence (13) reduces to

f (x1, . . . , xn)(a + bc)f (x1, . . . , xn)

−f (x1, . . . , xn)uf (x1, . . . , xn)− f (x1, . . . , xn)pvf (x1, . . . , xn)v
−1w.

(17)

Also in this case, if v−1w ∈ C we are done.
Assume that {1, v−1w} is linearlyC-independent. Starting from (17) one has that

the component f (x1, . . . , xn)pvf (x1, . . . , xn)v
−1w must be a trivial generalized

polynomial identity for R. This gives that pv = 0, that is p = 0.
Finally, we consider the case a ∈ C and bq � C. Thus, by (13) we have that

bqf (x1, . . . , xn)q
−1cf (x1, . . . , xn)

+f (x1, . . . , xn)(a − u)f (x1, . . . , xn)− f (x1, . . . , xn)pvf (x1, . . . , xn)v
−1w

(18)

is a trivial generalized polynomial identity for R. Since bq � C and by (18),
it follows that bqf (x1, . . . , xn)q

−1cf (x1, . . . , xn) is also a trivial generalized
polynomial identity for R, implying q−1c ∈ C and bc = 0. As above, if v−1w ∈ C
we are done. On the other hand, if v−1w � C and again by (18), one has that
f (x1, . . . , xn)pvf (x1, . . . , xn)v

−1w is a trivial generalized polynomial identity for
R. This means that pv ∈ C and pw = 0. In light of what has just been said and
by (18), R satisfies

f (x1, . . . , xn)(a − u)f (x1, . . . , xn) (19)

that is a = u.

Remark 1 We would like to remark that any conclusion of the previous Lemma
implies that F andG are generalized derivations ofR. Hence, in view of Theorem 2,
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the statement of Lemma 6 can be written as follows: there exists a′ ∈ Qr such that
F(x) = xa′ and G(x) = a′x for all x ∈ R.

Proposition 2 Let R be a prime ring of characteristic different from 2, Qr be its
right Martindale quotient ring and C be its extended centroid. Suppose that F , G
are inner b-generalized skew derivations of R respectively defined as follows:

F(x) = ax + bqxq−1c, G(x) = ux + pvxv−1w

for all x ∈ R and suitable fixed a, b, c, u, p,w, q, v ∈ Qr , with invertible elements
q, v of Qr . Let f (x1, . . . , xn) be a non-central multilinear polynomial over C with
n non-commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0

for all r1, . . . , rn ∈ R, then one of the following statements holds:
1. bq ∈ Z(R) and pv ∈ C;
2. bq ∈ Z(R) and v−1w ∈ C;
3. q−1c ∈ Z(R) and pv ∈ C;
4. q−1c ∈ Z(R) and v−1w ∈ C.
In other words, F and G are generalized derivations of R and one of the following
statements holds:

1. there exists a′ ∈ Qr such that, F(x) = xa′ and G(x) = a′x for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a′, b′ ∈ Qr such that
F(x) = a′x + xb′, G(x) = b′x + xa′, for all x ∈ R.

Proof IfR does not satisfy any non-trivial generalized polynomial identity, then the
conclusion follows from Lemma 6. Therefore we may assume that

Ψ (x1, . . . , xn) =(
af (x1, . . . , xn)+ bqf (x1, . . . , xn)q

−1c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pvf (x1, . . . , xn)v

−1w

) (20)

is a non-trivial generalized polynomial identity for R.
By Chuang [18] it follows that Ψ (x1, . . . , xn) is a non-trivial generalized

polynomial identity for Qr . By the well-known Martindale’s theorem of [44], Qr
is a primitive ring having nonzero socle with the field C as its associated division
ring. By Jacobson [31, Page 75] Qr is isomorphic to a dense subring of the ring
of linear transformations of a vector space V over C, containing nonzero linear
transformations of finite rank. Assume first that dimCV = k ≥ 2 is a finite positive
integer, thenQ � Mk(C) and the conclusion follows from Lemma 5.
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Let us now consider the case of dimCV = ∞. As in [48, Lemma 2], the set
f (R) = {f (r1, . . . , rn)|ri ∈ R} is dense on R. By the fact that Ψ (r1, . . . , rn) = 0
is a generalized polynomial identity of R, we know that R satisfies

(
ax + bqxq−1c

)
x − x

(
ux + pvxv−1w

)
. (21)

Recall that if an element r ∈ R centralizes the non-zero ideal H = soc(RC),
then r ∈ C.

Hence we may assume there exist r1, r2, r3, r4 ∈ H = soc(RC) such that:

1. either [bq, r1] � 0 or [pv, r1] � 0;
2. either [bq, r2] � 0 or [v−1w, r2] � 0
3. either [q−1c, r3] � 0 or [pv, r3] � 0
4. either [q−1c, r4] � 0 or [v−1w, r4] � 0

and prove that a number of contradictions follows.
By Litoff’s Theorem [31, Page 90] there exists e2 = e ∈ H such that

• r1, r2, r3, r4 ∈ eRe;
• ar1, r1a, ar2, r2a, ar3, r3a, ar4, r4a ∈ eRe;
• br1, r1b, br2, r2b, br3, r3b, br4, r4b ∈ eRe;
• cr1, r1c, cr2, r2c, cr3, r3c, cr4, r4c ∈ eRe;
• qr1, r1q, qr2, r2q, qr3, r3q, qr4, r4q ∈ eRe;
• ur1, r1u, ur2, r2u, ur3, r3u, ur4, r4u ∈ eRe;
• pr1, r1p,pr2, r2p,pr3, r3p,pr4, r4p ∈ eRe;
• vr1, r1v, vr2, r2v, vr3, r3v, vr4, r4v ∈ eRe;
• wr1, r1w,wr2, r2w,wr3, r3w,wr4, r4w ∈ eRe;
• pvr1, r1pv, pvr2, r2pv, pvr3 , r3pv, pvr4, r4pv ∈ eRe;
• bqr1, r1bq, bqr2, r2bq, bqr3, r3bq, bqr4, r4bq ∈ eRe;
• q−1cr1, r1q

−1c, q−1cr2, r2q
−1c, q−1cr3, r3q

−1c, q−1cr4, r4q
−1c ∈ eRe;

• v−1wr1, r1v
−1w, v−1wr2, r2v

−1w, v−1wr3, r3v
−1w, v−1wr4, r4v

−1w ∈ eRe,
where eRe � Mm(C), the matrix ring over the extended centroid C. Note that eRe
satisfies (21). By the above Lemma 5, we have that one of the following assertions
holds:

1. ebqe ∈ C and epve ∈ C, which contradicts with the choice of r1 ∈ H ;
2. ebqe ∈ C and ev−1we ∈ C, which contradicts with the choice of r2 ∈ H ;
3. eq−1ce ∈ C and epve ∈ C, which contradicts with the choice of r3 ∈ H ;
4. eq−1ce ∈ C and ev−1we ∈ C, which contradicts with the choice of r4 ∈ H .

As an easy consequence of Proposition 2 we also obtain a reduced version of
Theorem 1 for the case both F and G are inner b-generalized derivations of R:
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Proposition 3 Let R be a prime ring of characteristic different from 2, Qr be its
right Martindale quotient ring and C be its extended centroid. Suppose that F , G
are inner b-generalized derivations of R respectively defined as follows:

F(x) = ax + bxc, G(x) = px + qxv

for all x ∈ R and suitable fixed a, b, c, p, q, v ∈ Qr . Let f (x1, . . . , xn) be a non-
central multilinear polynomial over C with n non-commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0

for all r1, . . . , rn ∈ R, then one of the following holds:
1. there exists a′ ∈ Qr such that, F(x) = xa′ and G(x) = a′x for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a′, b′ ∈ Qr such that
F(x) = a′x + xb′, G(x) = b′x + xa′, for all x ∈ R.
We are now ready to prove the more general result of this section.

We permit the following facts:

Note 15 Let R be a non-commutative prime ring, a, b ∈ R such that axb ∈ Z(R),
for all x ∈ R. Then either a = 0 or b = 0.

Proof We assume that a � 0 and b � 0. For any x ∈ R and by our assumption, both
a(xb) ∈ Z(R) and a(xb)b ∈ Z(R). Thus we have that either b ∈ Z(R) or axb = 0
for all x ∈ R. In the first case it follows that aR ⊆ Z(R), which contradicts with
the non-commutativity of R. In the latter case, by the primeness of R, we have the
required conclusion.

Note 16 Let R be a non-commutative prime ring, a, b ∈ R, f (x1, . . . , xn) a
polynomial over C, which is not central valued on R. If af (r1, . . . , rn)b ∈ Z(R),
for all r1, . . . , rn ∈ R, then either a = 0 or b = 0.

Proof Let S be the additive subgroup of R generated by {f (y1, . . . , yn) : yi ∈ R}.
Since f (y1, . . . , yn) is not central and char(R) � 2, it is well known that S contains
a non-central Lie ideal L of R (see [17]). Moreover, since L is not central then there
exists a non-central ideal I of R such that [I, R] ⊆ L. Therefore a[i, r]b ∈ Z(R),
for any i ∈ I , r ∈ R. Since I and Qr satisfy the same generalized identities it
follows that a[x, y]b ∈ C for any x, y ∈ Qr . In this situation we may apply the
main result in [3] and one of the following holds: either a = 0 or b = 0 or Qr is
a central simple algebra of dimension at most 4 over C. Moreover, since Qr is not
commutative, thenQr contains some non-trivial idempotent elements e = e2. In this
last case, by the main hypothesis, one has a[e, x(1−e)]b ∈ C, that is aex(1−e)b ∈
C, for all x ∈ Qr . By Note 15, either ae = 0 or (1 − e)b = 0.
If ae = 0 and by a[y, ex]b ∈ C, we get ayexb ∈ C, for any x, y ∈ Qr . Thus, using
Note 15 and since e � 0, it follows that either a = 0 or b = 0, as required.



b-Generalized Skew Derivations on Multilinear Polynomials in Prime Rings 125

On the other hand, if (1 − e)b = 0 and by a[x, y(1 − e)]b ∈ C, we have that
ay(1 − e)xb ∈ C, for any x, y ∈ Qr . Once again by Note 15 and since e � 1, we
get their required conclusion.

Theorem 3 Let R be a prime ring of characteristic different from 2,Qr be its right
Martindale quotient ring and C be its extended centroid. Suppose that F , G are
inner b-generalized skew derivations of R respectively defined as follows:

F(x) = ax + bα(x)c, G(x) = ux + pβ(x)w

for all x ∈ R and suitable fixed a, b, c, u, p,w ∈ Qr , and α, β ∈ Aut(Qr).
Let f (x1, . . . , xn) be a non-central multilinear polynomial over C with n non-
commuting variables. If

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0 (22)

for all r1, . . . , rn ∈ R, then one of the following statements holds:
1. α = β = id , where id denotes the identical mapping onQr ;
2. α = id and there exists an invertible element v ∈ Qr such that β(x) = vxv−1,

for all x ∈ R;
3. β = id and there exists an invertible element q ∈ Qr such that α(x) = qxq−1,

for all x ∈ R;
4. β = id and b = 0;
5. β = id and c = 0;
6. α = id and p = 0;
7. α = id and w = 0;
8. there exists an invertible element q ∈ Qr such that α(x) = qxq−1, for all
x ∈ R, and either p = 0 or w = 0;

9. there exists an invertible element v ∈ Qr such that β(x) = vxv−1, for all
x ∈ R, and either b = 0 or c = 0;

10. b = p = 0;
11. b = w = 0;
12. c = p = 0;
13. c = w = 0;
14. there exist invertible elements q, v ∈ Qr such that α(x) = qxq−1 and β(x) =

vxv−1, for all x ∈ R.
In other words one of the following occurs:

• F and G are ordinary generalized derivations of R.
• F and G are inner b-generalized derivations;
• F and G are inner b-generalized skew derivations of R, associated with inner

automorphisms;
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In any case, respectively in light of Propositions 1, 3 and 2, we have that one of the
following statements holds:

1. there exists a′ ∈ Qr such that, F(x) = xa′ and G(x) = a′x for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a′, b′ ∈ Qr such that
F(x) = a′x + xb′, G(x) = b′x + xa′, for all x ∈ R.

Proof On the contrary, we assume that the following hold simultaneously:

• either α � id or β � id;
• either α � id or β is not an inner automorphism onQr ;
• either β � id or α is not an inner automorphism onQr ;
• either α � id or b � 0;
• either α � id or c � 0;
• either β � id or p � 0;
• either β � id or w � 0;
• either α is not inner, or both p � 0 and w � 0;
• either β is not inner, or both b � 0 and c � 0;
• either b � 0 or p � 0;
• either b � 0 or w � 0;
• either c � 0 or p � 0;
• either c � 0 or w � 0;
• at least one among α and β is not an inner automorphism of R.

By our assumption R satisfies the following generalized polynomial

(
af (x1, . . . , xn)+ bα

(
f (x1, . . . , xn)

)
c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pβ

(
f (x1, . . . , xn)

)
w

)
.

(23)

In view of the Note 6,Qr satisfies (23).
In case α = id , then β is not inner. Thus, by (23), Qr satisfies the generalized

polynomial

(
af (x1, . . . , xn)+ b(f (x1, . . . , xn)c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pf β(y1, . . . , yn)w

)
.

(24)

In particular, pf β(y1, . . . , yn)w is a generalized polynomial identity for Qr . It is
easy to see that pXw = 0, for anyX ∈ S, the additive subgroup ofQr generated by
{f β(y1, . . . , yn) : yi ∈ Qr }. Since f β(y1, . . . , yn) is not central and char(Qr) � 2,
it is well known that S must contain a non-central Lie ideal L. This implies pLw =
(0) and, by the primeness ofQr we get the contradiction that either p = 0 orw = 0.

Similarly, if we assume that β = id , then we obtain the contradiction that either
b = 0 or c = 0.
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Thus we may suppose both α � id and β � id . In what follows we denote

f α(x1, . . . , xn) = α
(
f (x1, . . . , xn)

)
.

If α and β are mutually outer, then by (23),Qr satisfies

(
af (x1, . . . , xn)+ bf α(y1, . . . , yn)c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pf β(z1, . . . , zn)w

)
.

(25)

In particular,Qr satisfies both

bf α(y1, . . . , yn)cf (x1, . . . , xn)

and

f (x1, . . . , xn)pf
β(z1, . . . , zn)w.

Applying twice Corollary 2 to both last relations yields that either b = 0 or c = 0
and simultaneously either p = 0 or w = 0, which is a contradiction.

Assume finally that α and β are not mutually outer, then exists an invertible
element q ∈ Qr such that αβ−1(x) = qxq−1, for any x ∈ R. Therefore α(x) =
qβ(x)q−1 and by (23) it follows thatQr satisfies

(
af (x1, . . . , xn)+ bqβ

(
f (x1, . . . , xn)

)
q−1c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pβ

(
f (x1, . . . , xn)

)
w

)
.

(26)

If β is an inner automorphism of Qr , then the required conclusion follows from
Proposition 2. On the other hand, if β is outer, then, by (26) we have thatQr satisfies

(
af (x1, . . . , xn)+ bqf β(y1, . . . , yn)q

−1c

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pf β(y1, . . . , yn)w

) (27)

and in particular

bqf β(y1, . . . , yn)q
−1cf (x1, . . . , xn)− f (x1, . . . , xn)pf

β(y1, . . . , yn)w (28)

is a generalized polynomial identity for Qr . Since f (x1, . . . , xn) is not cen-
tral valued and in light of Lemma 3, one has that bqf β(y1, . . . , yn)q

−1c =
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pf β(y1, . . . , yn)w ∈ C for any y1, . . . , yn ∈ Qr . Hence Note 16 implies that the
following hold simultaneously:

• either b = 0 or c = 0;
• either p = 0 or w = 0

and in any case we get a contradiction.

6 Commuting b-Generalized Derivations on Multilinear
Polynomials

In this section we provide a proof of Theorem 1 in the case both F and G are
arbitrary b-generalized derivations (not necessarily inner) and prove the following:

Theorem 4 Let R be a prime ring of characteristic different from 2, Qr be its
right Martindale quotient ring and C be its extended centroid, F and G non-
zero b-generalized derivations of R. Suppose that f (x1, . . . , xn) is a non-central
multilinear polynomial over C such that F(f (X))f (X)− f (X)G(f (X)) = 0, for
all X = (x1, . . . , xn) ∈ Rn, then one of the following statements holds:
1. there exists u ∈ Qr such that, F(x) = xu and G(x) = ux for all x ∈ R;
2. f (x1, . . . , xn)

2 is central-valued on R and there exist a, b ∈ Qr such that
F(x) = ax + xb,G(x) = bx + xa, for all x ∈ R.

Hence F and G are generalized derivations of R.

Proof As mentioned in the Introduction, we can write F(x) = ax+bd(x),G(x) =
px + qδ(x) for all x ∈ R, where a, b, p, q ∈ Qr and d, δ are derivations of R. In
light of Proposition 3, we may assume that:

• At least one among d and δ is not an inner derivation of R;
• At least one among b and q is not zero;
• If d is an inner derivation of R, then δ � 0 and q � 0;
• If δ is an inner derivation of R then d � 0 and b � 0.

We will prove that, under these assumptions, a number of contradiction follows.
Assume first that d and δ are both non-zero derivations and linearly C-

independent moduloQr -inner derivations. Since Qr satisfies

(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , d(xi), . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
pf (x1, . . . , xn)+ qf δ(x1, . . . , xn)+ q∑n

i=1 f (x1, . . . , δ(xi ), . . . , xn)

)

(29)
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and by Kharchenko [32], we arrive at thatQr satisfies
(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , yi, . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
pf (x1, . . . , xn)+ qf δ(x1, . . . , xn)+ q∑n

i=1 f (x1, . . . , zi , . . . , xn)

)
.

(30)

In particular,Qr satisfies the blended components

bf (y1, x2, . . . , xn) · f (x1, . . . , xn)

and

f (x1, . . . , xn) · q · f (y1, x2, . . . , xn),

which imply the contradiction b = 0 (by Corollary 2) and q = 0 (by Corollary 1).
Assume now that d and δ are both non-zero derivations andC-dependent modulo

Qr -inner derivations. Without loss of generality, we assume that δ = λd+adw, that
is δ(x) = λd(x)+[w, x], for suitable 0 � λ ∈ C and w ∈ Qr . Moreover, in light of
the previous remarks, d is not an inner derivation of R. By the hypothesis we have
that
(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , d(xi), . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
pf (x1, . . . , xn)+ λqf d(x1, . . . , xn)+

+λq∑n
i=1 f (x1, . . . , d(xi), . . . , xn)+ q[w, f (x1, . . . , xn)]

)

(31)

is a differential polynomial identity forQr , and again by Kharchenko [32] it follows
thatQr satisfies

(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , yi, . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
pf (x1, . . . , xn)+ λqf d(x1, . . . , xn)+

+λq∑n
i=1 f (x1, . . . , yi , . . . , xn)+ q[w, f (x1, . . . , xn)]

)
.

(32)

In particular,Qr satisfies the blended component

b
∑

i

f (x1, . . . , yi, . . . , xn)f (x1, . . . , xn)− λf (x1, . . . , xn)q
∑

i

f (x1, . . . , yi , . . . , xn).

(33)
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Let us choose y2 = y3 = . . . = yn = 0 and y1 = x1 in (33). This yields that Qr
satisfies

bf (x1, . . . , xn)
2 − λf (x1, . . . , xn)qf (x1, . . . , xn). (34)

Moreover, for z � C and yi = [z, xi] for any i = 1, . . . , n in (33), we also have that

b[z, f (x1, . . . , xn)]f (x1, . . . , xn)− λf (x1, . . . , xn)q[z, f (x1, . . . , xn)] (35)

is a generalized polynomial identity for Qr . Application of Proposition 1 to (34)
implies that b = λq ∈ C. Therefore, by (35) it follows thatQr satisfies

b[z, f (x1, . . . , xn)]2.

Since z � C and since neither char(R) = 2 nor f (x1, . . . , xn) is central-valued on
R, by Liu [38] we get b = 0, and so also q = 0, which is a contradiction.

We finally consider the case either d = 0 or δ = 0. Without loss of generality,
we may assume δ = 0 (the case d = 0 is similar and we omit it for brevity). By our
assumption it follows thatQr satisfies

(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , d(xi), . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)pf (x1, . . . , xn).

(36)

Moreover, as above remarked, in this case d is not an inner derivation of R. In view
of Kharchenko’s theorem in [32],Qr satisfies

(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+ b∑n

i=1 f (x1, . . . , yi, . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)pf (x1, . . . , xn).

(37)

Therefore

bf (y1, x2, . . . , xn)f (x1, . . . , xn) (38)

is a generalized polynomial identity forQr , implying again the contradiction b = 0.

7 The Main Result

The last part of our paper is dedicated to the proof of Theorem 1 in its most general
form. For sake of clearness and completeness, we recall our hypothesis.
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We assume that R is a prime ring of characteristic different from 2, Qr its right
Martindale quotient ring and C its extended centroid, α ∈ Aut(R), d and δ skew
derivations ofR associated with α, such that both d and δ are commuting with α. We
suppose that F , G are b-generalized skew derivations of R, respectively associated
with terms (b, α, d) and (p, β, δ). We may write F(x) = ax + bd(x) and G(x) =
ux + pδ(x), for all x ∈ R and suitable a, u ∈ Qr . We assume that f (x1, . . . , xn) is
a non-central multilinear polynomial over C with n non-commuting variables, such
that

F(f (r1, . . . , rn))f (r1, . . . , rn)− f (r1, . . . , rn)G(f (r1, . . . , rn)) = 0 (39)

for all r1, . . . , rn ∈ R, that is R satisfies
(
af (x1, . . . , xn)+ bd(f (x1, . . . , xn))

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pδ(f (x1, . . . , xn))

)
.

(40)

Under these assumptions, we’ll prove that one of the following statements
holds:

1. d = δ = 0;
2. α = id;
3. there exist b′, c′ ∈ Qr such that d(x) = b′x − α(x)b′ and δ(x) = c′x − α(x)c′,

for all x ∈ R;
4. b = p = 0;
5. b = 0 and δ = 0;
6. p = 0 and d = 0.

In other words, either F and G are generalized derivations of R, or F and G are b-
generalized derivations of R, or F and G are inner b-generalized skew derivations
of R. Therefore, respectively in light of Theorems 2, 4 and 3, we have that one of
the following holds:

1. there exists a′ ∈ Qr such that, F(x) = xa′ andG(x) = a′x for all x ∈ R;
2. f (x1, . . . , xn)

2 is central valued on R and there exist a′, b′ ∈ Qr such that
F(x) = a′x + xb′, G(x) = b′x + xa′, for all x ∈ R.

Proof of Theorem 1 By (40) and Note 9,
(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+

b
∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ (j+2) · · ·xσ(n)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pf δ(x1, . . . , xn)

+p∑σ∈Sn β(γσ )
∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))δ(xσ(j+1))xσ (j+2) · · ·xσ(n)

)

(41)

is a generalized identity for R.
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On the contrary we assume that the following hold simultaneously:

• either d � 0 or δ � 0;
• α � id;
• at least one among d and δ is not an inner skew derivation of R;
• at least one among b and p is not zero;
• at least one among b or δ is not zero;
• at least one among p or d is not zero.

7.1 Let d and δ be C−Linearly Independent Modulo SDint

In this case, in view of (41) we know that R satisfies the generalized polynomial
(
af (x1, . . . , xn)+ bf d(x1, . . . , xn)+

b
∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ (j+2) · · ·xσ(n)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)

(
uf (x1, . . . , xn)+ pf δ(x1, . . . , xn)

+p∑σ∈Sn β(γσ )
∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))zσ (j+1)xσ (j+2) · · ·xσ(n)

)
.

(42)

In particular, R satisfies any blended component

b

( ∑

σ∈Sn
α(γσ )

n∑

i=1

α(xσ(1) · xσ(2) · · · xσ(i−1))yσ(i)xσ(i+1) · · · xσ(n)
)
f (x1, . . . , xn).

(43)

In light of the Note 6,Qr satisfies (43).
Suppose there exists an invertible element q ∈ Qr such that α(x) = qxq−1 for

all x ∈ Qr . Since α � id ∈ Aut(R), we may assume q � C. Moreover, it is clear
that α(γσ ) = γσ for all coefficients involved in f (x1, . . . , xn). If we replace each
yσ(i) with qxσ(i) in (43), thenQr satisfies the generalized polynomial

b

(
q
∑

σ∈Sn
γσ xσ(1) · xσ(2) · · · xσ(i−1)xσ(i)xσ(i+1) · · · xσ(n)

)
f (x1, . . . , xn).

That is bqf (x1, . . . , xn)
2 = 0, which implies bq = 0. Since q is invertible, we

obtain that b = 0.
Finally, assume that α is outer. By (43) it follows thatQr satisfies the generalized

polynomial

b

( ∑

σ∈Sn
α(γσ )

n∑

i=1

zσ(1) · zσ(2) · · · zσ(i−1)yσ(i)xσ(i+1) · · · xσ(n)
)
f (x1, . . . , xn).

(44)
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For any i = 1, . . . , n, Qr also satisfies the generalized polynomial

b

( ∑

σ∈Sn−1

α(γσ )zσ(1) ·zσ(2) · · · zσ(i−1) ·zσ(i+1) · · · zσ(n) ·yi
)
f (x1, . . . , xn). (45)

Let us write

∑

σ∈Sn−1

α(γσ )xσ(1) · · · xσ(j−i)xσ(j+1) · · · xσ(n) = tj (x1, . . . , xj−1, xj+1, . . . , xn),

where any tj is a multilinear polynomial of degree n−1 and xj never appears in any
monomial of tj . It follows from (45) thatQr satisfies the generalized polynomial

btj (z1, . . . , zj−1, zj+1, . . . , zn)f (x1, . . . , xn).

As a consequence of Lemma 3 and Corollary 2, either b = 0 or tj (z1, . . . , zj−1,

zj+1, . . . , zn) is a generalized polynomial identity for Qr for all j = 1, . . . , n.
Moreover, we also denote f α(x1, . . . , xn) the polynomial obtained from
f (x1, . . . , xn) by replacing each coefficient γσ with α(γσ ) and notice that
f α(r1, . . . , rn) � 0. Hence, in the case tj (z1, . . . , zj−1, zj+1, . . . , zn) is a
generalized polynomial identity forQr for all j = 1, . . . , n, and since

f α(x1, . . . , xn) =
∑

j

xj tj (x1, . . . , xj−1, xj+1, . . . , xn),

f α(x1, . . . , xn) is a generalized polynomial identity for Qr , which is also a
contradiction. Thus we conclude again that b = 0.
The previous argument shows that b = 0 in any case.
Moreover, by (42) it follows thatQr satisfies

f (x1, . . . , xn)p

( ∑

σ∈Sn
β(γσ )

n∑

i=1

α(xσ(1) · xσ(2) · · · xσ(i−1))zσ(i)xσ(i+1) · · · xσ(n)
)
.

By using the same above argument, one can show that p = 0, which is a
contradiction. We omit the proof for brevity.

7.2 Let d and δ be C−Linearly Dependent Modulo SDint

We firstly assume that there exist 0 � λ ∈ C, 0 � μ ∈ C, c ∈ Qr and γ ∈ Aut(R)
such that λd(x) + μδ(x) = cx − γ (x)c for all x ∈ R. Denote η = −μ−1λ and
q = μ−1c. Thus δ(x) = ηd(x)+ qx − γ (x)q for all x ∈ R. Therefore by (40),Qr
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satisfies the generalized polynomial

af (x1, . . . , xn)
2 + bd(f (x1, . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)(u+ pq)f (x1, . . . , xn)− ηf (x1, . . . , xn)pd
(
f (x1, . . . , xn)

)

+f (x1, . . . , xn)pγ
(
f (x1, . . . , xn)

)
q.

(46)

That is, Qr satisfies the generalized polynomial

af (x1, . . . , xn)
2 + bf d(x1, . . . , xn)f (x1, . . . , xn)

+b
(∑

σ∈Sn α(γσ )
∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))d(xσ(j+1))xσ (j+2) · · ·xσ(n)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)(u+ pq)f (x1, . . . , xn)− ηf (x1, . . . , xn)pf
d(x1, . . . , xn)

−ηf (x1, . . . , xn)p

(∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · xσ(2) · · · xσ(j))d(xσ(j+1))xσ (j+2) · · ·xσ(n)

)

+f (x1, . . . , xn)pγ
(
f (x1, . . . , xn)

)
q.

(47)

In case d is outer, by (47)Qr satisfies the generalized polynomial

af (x1, . . . , xn)
2 + bf d(x1, . . . , xn)f (x1, . . . , xn)

+b
(∑

σ∈Sn α(γσ )
∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ (j+2) · · ·xσ(n)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)(u+ pq)f (x1, . . . , xn)− ηf (x1, . . . , xn)pf
d(x1, . . . , xn)

−ηf (x1, . . . , xn)p

(∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · xσ(2) · · ·xσ(j))yσ(j+1)xσ (j+2) · · ·xσ(n)

)

+f (x1, . . . , xn)pγ
(
f (x1, . . . , xn)

)
q.

(48)

In particular,

b

(∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · · · xσ(j))yσ(j+1)xσ (j+2) · · ·xσ(n)

)
f (x1, . . . , xn)

−ηf (x1, . . . , xn)p

(∑
σ∈Sn α(γσ )

∑n−1
j=0 α(xσ(1) · · ·xσ(j))yσ(j+1)xσ (j+2) · · ·xσ(n)

) (49)

is satisfied by R as well asQr (see Note 6 again).
Suppose there exists an invertible element w ∈ Qr such that α(x) = wxw−1

for all x ∈ Qr . Since α � 1 ∈ Aut(R), we may assume w � C. As above, we
remark that α(γσ ) = γσ for all coefficients involved in f (x1, . . . , xn). Therefore, if
we replace each yσ(i) withwxσ(i) in (49), we obtain thatQr satisfies the generalized
polynomial

(
bwf (x1, . . . , xn)− f (x1, . . . , xn)(ηpw)

)
f (x1, . . . , xn).

Applying again Corollary 1 yields bw = ηpw ∈ C. In particular b = ηp. Let us
now replace each yσ(i) with w[z, xσ(i)] in (49), for some element z � C. Thus we
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obtain thatQr satisfies the generalized polynomial

bw

[
z, f (x1, . . . , xn)

]

2
.

Since f (x1, . . . , xn) is not central-valued onQr and z � C, we get the contradiction
b = p = 0.

Finally, assume that α is outer. By (49) we know thatQr satisfies the generalized
polynomial

b

(∑
σ∈Sn α(γσ )

∑n
i=1 zσ (1) · zσ (2) · · · zσ (i−1)yσ (i)xσ (i+1) · · · xσ(n)

)
f (x1, . . . , xn)

−ηf (x1, . . . , xn)p

(∑
σ∈Sn α(γσ )

∑n
i=1 zσ (1) · zσ (2) · · · zσ (i−1)yσ (i)xσ (i+1) · · · xσ(n)

)
f (x1, . . . , xn)

(50)

and, for any i = 1, . . . , n, Qr also satisfies the generalized polynomial

b

(∑
σ∈Sn−1

α(γσ )zσ(1) · zσ(2) · · · zσ(i−1) · zσ(i+1) · · · zσ(n) · yi
)
f (x1, . . . , xn)

−ηf (x1, . . . , xn)p

(∑
σ∈Sn−1

α(γσ )zσ(1) · zσ(2) · · · zσ(i−1) · zσ(i+1) · · · zσ(n) · yi
)
.

(51)

As above, let us write

∑

σ∈Sn−1

α(γσ )xσ(1) · · · xσ(j−i)xσ(j+1) · · · xσ(n) = tj (x1, . . . , xj−1, xj+1, . . . , xn),

where any tj is a multilinear polynomial of degree n − 1 and xj never appears in
any monomial of tj . In view of (51), we get

b

(
tj (z1, . . . , zj−1, zj+1, . . . , zn)y

)
f (x1, . . . , xn)

−ηf (x1, . . . , xn)p

(
tj (z1, . . . , zj−1, zj+1, . . . , zn)y

)
.

(52)

From Lemma 3 it follows that

btj (z1, . . . , zj−1, zj+1, . . . , zn)y = ηptj (z1, . . . , zj−1, zj+1, . . . , zn)y ∈ C.
(53)

Suppose that tj (z1, . . . , zj−1, zj+1, . . . , zn) is central-valued on Qr for all j =
1, . . . , n. Since

f α(x1, . . . , xn) =
∑

j

xj tj (x1, . . . , xj−1, xj+1, . . . , xn),
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it follows that f α(x1, . . . , xn) is a central-valued on Qr , a contradiction. There-
fore (53) forces b = 0 and ηp = 0, which is again a contradiction.

Let us next start from (46) and consider the case when d(x) = vx − α(x)v for
all x ∈ R and for some fixed v ∈ Qr . Hence, δ(x) = (ηv + q)x − α(x)ηv −
γ (x)q . Therefore, by Note 8, F andG are simultaneously inner b-generalized skew
derivations of R and, by Theorem 3 a number of contradictions follows.

We analyze now the last case. Let us start again from relation (40) and assume
again that d and δ areC−linearly dependent modulo SDint. That is λd(x)+μδ(x) =
cx − γ (x)c for all x ∈ R. Moreover, in view of the previous argument, we have to
assume now λ = 0. Thus δ(x) = qx−γ (x)q for all x ∈ R and q = μ−1c. Therefore
by (40),Qr satisfies the generalized polynomial

af (x1, . . . , xn)
2 + bd(f (x1, . . . , xn)

)
f (x1, . . . , xn)

−f (x1, . . . , xn)(u+ pq)f (x1, . . . , xn)

+f (x1, . . . , xn)pγ
(
f (x1, . . . , xn)

)
q.

(54)

We finally observe that (54) is equivalent to (46) in case η = 0. Therefore the same
above argument completes our proof.

8 Some Open Problems

In the light of the motivation and contents of this article, we will propose several
topics for future research in this field. More precisely, some informations about
the structure of a prime ring R and the description of all possible forms of a
b-generalized skew derivation F of R can be obtained if one of the following
conditions is satisfied:

1. F(x)n = 0 for all x ∈ L, where n is a fixed positive integer and L is a
noncommutative Lie ideal of R.

2. F(x)n ∈ Z(R) for all x ∈ L, where n is a fixed positive integer and L is a
noncommutative Lie ideal of R.

3. F(x)n ∈ Z(R) for all x ∈ I , where n is a fixed positive integer and I is a
non-zero one sided ideal of R.

4. aF(x)n = 0 for all x ∈ I , where n is a fixed positive integer, I is an ideal of R
and a is a non-zero element of R.
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Relatively Free Algebras of Finite Rank

Thiago Castilho de Mello and Felipe Yukihide Yasumura

Abstract Let K be a field of characteristic zero and B = B0 + B1 a finite
dimensional associative superalgebra. In this paper we investigate the polynomial
identities of the relatively free algebras of finite rank of the variety V defined by
the Grassmann envelope of B. We also consider the k-th Grassmann Envelope of B,
G(k)(B), constructed with the k-generated Grassmann algebra, instead of the infinite
dimensional Grassmann algebra. We specialize our studies for the algebrasUT2(G)

and UT2(G
(k)), which can be seen as the Grassmann envelope and k-th Grassmann

envelope, respectively, of the superalgebraUT2(K[u]), where u2 = 1.

Keywords Polynomial Identities · Relatively free algebras · Grassmann envelope

1 Introduction

In this paper K will denote a field of characteristic 0. If X = {x1, x2, . . . } is an
infinite countable set, we denote by K〈X〉 the free associative unitary algebra freely
generated by X. If A is an associative algebra, we say that it is an algebra with
polynomial identity (PI-algebra, for short) if there exists a nonzero polynomial f =
f (x1, . . . , xn) ∈ K〈X〉 such that f (a1, . . . , an) = 0, for arbitrary a1, . . . , an ∈ A.
In this case, we say that f is a (polynomial) identity of A, or simply that A satisfies
f .

If A is a PI-algebra the set T (A) = {f ∈ K〈X〉 | f is an identity of A} is an ideal
of K〈X〉 invariant under any endomorphism of the algebra K〈X〉. An ideal with this
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property is called a T-ideal or verbal ideal of K〈X〉. We refer the reader to [5, 10]
for the basic theory of PI-algebras.

The T-ideals play a central role in the theory of PI-algebras, and they are often
studied through the equivalent notion of varieties of algebras. If F is a subset of
K〈X〉, the class of all algebras satisfying the identities from F is called the variety of
(associative) algebras defined by F and denoted by var(F). GivenV and W varieties
of algebras, we say that W is a subvariety of V if W ⊆ V. If V is a variety of
algebras, we denote by T (V) the set of identities satisfied by all algebras in V.
One can easily see that T (V) is a T-ideal of K〈X〉. It is called the T-ideal of V. If
V = var(F), we say that the elements of T (V) are consequences of (or follow from)
the elements of F.

Let V be a variety of associative algebras. In the theory of algebras with
polynomial identities, an important role is played by the so called relatively free
algebras of V. The relatively free algebra of V freely generated by a set X is an
algebra FX(V) ∈ V, with an inclusion map ι : X ↪−→ FX(V), satisfying the
following universal property:

Given any algebraA ∈ V, and a map ϕ0 : X −→ A, there exists a unique algebra
homomorphism ϕ : FX(V) −→ A such that ϕ ◦ ι = ϕ0.

It is a simple exercise to show that

FX(V) �
K〈X〉
T (V)

.

Moreover, it is well known that for two given sets X and Y , the algebras FX(V) and
FY (V) are isomorphic if and only if X and Y have the same cardinality. Therefore
if |X| = k ∈ N, we denote FX(V) simply by Fk(V) and if X is a countably infinite
set we denote it simply by F(V).

The first studies about relatively free algebras are due to Procesi (see [19, 20]),
when dealing with the so called algebra of generic matrices, which is isomorphic
to the relatively free algebra in the variety generated by Mn(K). This algebra is a
fundamental object in invariant theory and has noteworthy properties. For instance,
it has no zero divisors and one can work with its quotient ring, the so called generic
division algebra (see [6]). Another interesting property is that given a polynomial
f (x1, . . . , xk), we have that f is a central polynomial for Mn(K) if and only if
f (x1, . . . , xk)+ T (Mn(K)) is a central element of Fk(Mn(K)). Such properties do
not hold in any variety. A simple example can be seen in the variety generated by

the algebra M1,1 =
(
G0 G1

G1 G0

)
, where f (x, y) = [x, y]2 is a central element in

F2(M1,1), but it is not a central polynomial forM1,1 (see [14, 18]).
We say that a variety of algebrasV has a finite basic rank ifV = var(A), whereA

is a finitely generated algebra. The minimal number of generators of such an algebra
is the basic rank of the variety V.

Of course that the variety generated by the algebra F(V) is V itself, and that for
any k, Fk(V) ∈ V, but it is not true in general that there exists k such that Fk(V)
generates V.



Relatively Free Algebras of Finite Rank 141

The basic rank of a variety V can be characterized in terms of its relatively free
algebras, as we can see in the following easy-to-prove proposition.

Proposition 1 The basic rank of a variety V is the least integer k such that V =
var(Fk(V))

As examples, we mention that the variety generated by the Grassmann algebra
of an infinite dimensional vector space has infinite basic rank, while the algebra of
n× n matrices over the field (n > 1) generates a basic rank 2 variety (sinceMn(K)
is a 2-generated algebra).

A natural problem in the theory of PI-algebras is to classify in some sense
the subvarieties in a given variety of algebras V. A very important role in this
direction is played by the exponent of a variety V. Proving a conjecture of Amitsur,
Giambruno and Zaicev showed that for any variety of associative algebras over a
field of characteristic zero the exponent exists and is an integer [7, 8] (see also [10]).
Therefore, it was natural to classify varieties of algebras in terms of its exponents.
A successful approach was the classification in terms of forbidden algebras. For
example, Kemer showed that the varieties of exponent 1 are exactly those varieties
not containing the infinite dimensional Grassmann algebra and the 2 × 2 algebra
of upper triangular matrices. Similar results were given for varieties of exponent 2,
with a list of 5 forbidden algebras (see [9]).

The classification of subvarieties of important varieties of algebras were also
studied. For instance, the classification of the subvarieties of the varietyG, generated
by the infinite dimensional Grassmann algebra, was given by La Mattina [16], and
subvarieties of the variety generated by M2(K) were studied by Drensky [4]. The
classification of subvarieties of a given variety is a difficult task. A less accurate, but
interesting approach, is the classification up to asymptotic equivalence of varieties.
This notion was introduced by Kemer in [12], where he classified subvarieties
of a variety satisfying the identity St4 (the standard identity of degree 4), up to
asymptotic equivalence. We say that two T-ideals are asymptotically equivalent
if they satisfy the same proper polynomials from a certain degree on. We recall
that proper polynomials are those which are linear combinations of products of
commutators. In a similar way, two varieties are asymptotically equivalent if their T-
ideals are so. This notion was also used to classify, up to asymptotic equivalence, the
subvarieties of the varietyM5, generated by the identity [x1, x2][x3, x4, x5] (see [3]).

Such variety can be realized as the variety generated by the algebra A =
(
G0 G

0 G

)
.

This is one of the forbidden algebras in the classification of varieties of exponent 2.
If V is a variety of associative algebras of infinite basic rank, we have a lattice of

T-ideals

T (F1(V)) ⊇ T (F2(V)) ⊇ · · · T (Fk(V)) ⊇ T (Fk+1(V)) ⊇ · · · ⊇ T (F(V)) = T (V).

As a consequence of Lemma 3 below, one can easily see that there is an infinite
number of proper inclusions above.
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A natural but difficult problem in general is to describe for all k, the T-ideals
T (Fk(V)). This task was realized only for a small list of varieties of infinite basic
rank, namely: the variety G, the variety M5 [11], and the variety generated by the
algebraM1,1(G). The last only for k = 2 (see [15]).

In the mentioned examples, the knowledge of the identities of the relatively
free algebras of finite rank, were useful to give an alternative description to the
subvarieties of the given variety. For instance, if A ∈G is a unitary algebra, it is PI-
equivalent to K, G, or F2k(G), for some k, and if A ∈ M5, then, it is PI-equivalent
to K, UT2(K), E, F2k(M5) or F2k(M5)⊕G, for some k.

We believe that the knowledge of the identities of the relatively free algebras of
finite rank of a given variety of infinite basic rank may play an important role in the
description of its subvarieties. This is a motivation to the study of such identities.

From Kemer’s theory [13] we know that every finitely generated algebra satisfies
the same identities of a finite dimensional algebra. In light of this, given a variety
V, it is interesting to find finite dimensional algebras Ak ∈ V such that T (Ak) =
T (Fk(V)), for all k. This was done to the above-mentioned examples. In those cases,
it was verified that for all k, the algebra Ak was obtained with the construction we
describe below.

It is well known from Kemer’s theory that the variety V is generated by the
Grassmann envelope of a suitable finite dimensional superalgebra B = B0 + B1.
Recall that the Grassmann envelope of B is given byG(B) = G0 ⊗B0 +G1 ⊗B1,
i.e., the even part of the superalgebra G ⊗ B. Similarly, one can define the k-th
Grassmann envelope of B as G(k)(B) = G(k)0 ⊗ B0 +G(k)1 ⊗ B1, whereG(k) is the
Grassmann algebra of a k-dimensional vector space overK .

If B = B0 + B1 is the superalgebra (which exists by Kemer theory) satisfying
T (G(B)) = T (V), the above-mentioned examples satisfy the following interesting
property:

T (Fk(V)) = T (G(k)(B)), (1)

for any k, in the case V =G or V = M5. In the case V = var(M1,1) we only know
it for k = 2 (see [11]).

In light of the these results, it is an interesting problem to compare the T-ideals
of T (G(k)(B)) and T (Fk(G(B))) for a given finite dimensional superalgebra B.

In the present paper, we obtain partial results on this problem for the variety G2,
generated by UT2(G). We show that the equality (1) does not hold for this variety.

We divide this paper as follows. We construct different models for the relatively
free algebras in Sect. 2, which will give different approaches for the problem. In
Sect. 3 we prove general facts that hold for the relatively free algebras of finite rank.
In Sect. 4, we investigate the polynomial identities ofUT2(G

(k)), and exhibit a basis
of identities when 2 ≤ k ≤ 5. Finally, in Sect. 5, we investigate the polynomial
identities of Fk(UT2(G)).
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2 Models for Relatively Free Algebras

The relatively free algebras are quotients of the polynomial algebra K〈X〉. In
particular, its elements are cosets of noncommutative polynomials. In order to have
a more concrete object to work with, we will present some models of these relatively
free algebras, which can simplify the problem of working with quotient classes.

The most simple example of a model for a relatively free algebra is the algebra
of generic matrices (for the variety generated by an n × n matrix algebra over an
infinite field K). By a model, we mean an algebra isomorphic to the given relatively
free algebra.

Let n be a positive integer,X = {x(k)ij | i, j ∈ {1, . . . , n}, k ∈ N} and K[X] be the
algebra of commutative polynomials on the variables of X. The algebra of generic
n× n matrices is the subalgebra ofMn(K[X]) generated by the matrices

ξk =

⎛

⎜⎜⎜⎜⎝

x
(k)
11 x

(k)
12 · · · x(k)1n

x
(k)
21 x

(k)
22 · · · x(k)2n

...
...
. . .

...

x
(k)
n1 x

(k)
n2 · · · x(k)nn

⎞

⎟⎟⎟⎟⎠
, for k ∈ N.

In a similar way, one can construct a model for a relatively free algebra of a
variety generated by a finite dimensional algebra A. For, one only needs to fix a
basis B = {v1, . . . , vn} of A, and consider a subalgebra of K[X] ⊗ A, (where X =
{x(k)i | i ∈ {1, . . . , n}, k ∈ N}) generated by the elements

ξk =
n∑

i=1

x
(k)
i ⊗ vi, for k ∈ N.

On the other hand, when dealing with a variety of infinite basic rank, the above
construction is not possible.

Examples of models for relatively free algebras of infinite basic rank varieties
were given by Berele in [1]. More specifically, Berele constructed models for the
relatively free algebras of varieties generated byMn(G) andMa,b(G) (the so called
T-prime varieties), as algebras of matrices over the free supercommutative algebra
K[X; Y ].

We say that a superalgebra A = A0 + A1 is supercommutative if its Grassmann
envelope is commutative, i.e., if for any a, b ∈ A0 ∪ A1, one has ab =
(−1)dega degbba.

Considering K as an infinite field, we proceed with a construction of a free
supercommutative superalgebra.

LetX and Y be countably infinite sets. We build the algebraK〈X∪Y 〉 and induce
on it a Z2-grading by defining deg x = 0, x ∈ X, and deg y = 1, y ∈ Y . The algebra
K〈X ∪ Y 〉 with such grading is called the free Z2-graded algebra. If I is the ideal
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generated by the elements ab − (−1)dega degbba, a, b ∈ X ∪ Y , we define the free
supercommutative algebra, denoted by K[X; Y ], as the quotient algebra

K[X; Y ] = K〈X ∪ Y 〉
I

.

One can easily verify that given any supercommutative superalgebra

A = A0 + A1,

and a map ϕ0 : X ∪ Y −→ A such that ϕ0(x) ∈ A0 if x ∈ X and ϕ0(y) ∈ A1 if
y ∈ Y , there exists a unique homomorphism ϕ : K[X; Y ] −→ A which extends ϕ0.

Now given a finite dimensional superalgebra B = B0 + B1, we proceed with
a construction of a model for the relatively free algebra of the variety generated by
G(B). We remark that such is a completely general construction, since any variety of
associative algebras is generated by G(B), for some B, although given an arbitrary
variety it is not a simple task to determine one such B.

Let us fix {u1, . . . , ur } a basis of B0 and {v1, . . . , vs } a basis of B1 and let us
consider the sets X = {x(i)j | i ∈ N, j ∈ {1, . . . , r}} and Y = {y(i)j | i ∈ N, j ∈
{1, . . . , s}}.

We consider the free supercommutative algebra K[X; Y ] and for each i ∈ N, we
define ξi ∈ B ⊗ K[X; Y ] as

ξi =
r∑

j=1

uj ⊗ x(i)j +
s∑

j=1

vj ⊗ y(i)j

Then we have:

Proposition 2 Let n ∈ N, and define K[ξ1, ξ2, . . . ] and K[ξ1 . . . , ξn] as the
subalgebras of B ⊗ K[X; Y ] generated by the elements ξ1, ξ2, . . . and by the
elements ξ1, . . . , ξn, respectively. Then, the following isomorphisms hold:

K[ξ1, ξ2, . . . ] � F(G(B))

K[ξ1, . . . , ξn] � Fn(G(B))

Proof Define the algebra homomorphism η : K〈t1, t2 . . . 〉 −→ K[ξ1, ξ2, . . . ] by
η(ti) = ξi . In particular, if f (t1, . . . , tk) ∈ K〈t1, t2 . . . 〉, then η(f ) = f (ξ1, . . . , ξk).

Of course η is surjective. Once we show that ker η = T (G(B)), the result is
proved.

Suppose f ∈ ker η. This means that f (ξ1, . . . , ξk) = 0.
For each i ∈ {1, . . . , k} we consider arbitrary elements ai ofG(B). These can be

written as

ai =
r∑

j=1

uj ⊗ g(i)j +
s∑

j=1

vj ⊗ h(i)j
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where g(i)j and h(i)j are arbitrary even and odd elements of the Grassmann algebra
respectively. Since K[X; Y ] is the free supercommutative algebra, there exists a
homomorphism ϕ : K[X; Y ] −→ G extending the map ϕ0 : X ∪ Y −→ G, given
by ϕ0(x

(i)
j ) = g(i)j and ϕ0(y

(i)
j ) = h(i)j .

From this, we define the homomorphism of algebras φ : B⊗K[X; Y ] −→ B⊗G,
given by ϕ in K[X; Y ] and fixing B. Then, for each i,

ai = φ
⎛

⎝
r∑

j=1

uj ⊗ x(i)j +
s∑

j=1

vj ⊗ y(i)j

⎞

⎠ = φ(ξi)

As a consequence,

f (a1, . . . , ak) = φ(η(f )) = 0,

which means f ∈ T (G(B)).
Conversely, suppose f ∈ T (G(B)). We will show that f (ξ1, . . . , ξk) = 0.
Write

f (ξ1, . . . , ξk) =
r∑

j=1

uj ⊗mj +
s∑

j=1

vj ⊗ nj

wheremj and nj are Z2-graded polynomials of even and odd degree respectively in

the commutative and anticommutative variables x(q)p and y(q)p of K[X; Y ].
As we have already shown, if

ai =
r∑

j=1

uj ⊗ g(i)j +
s∑

j=1

vj ⊗ h(i)j

are arbitrary elements of G(B), we have f (a1, . . . , ak) = φ(f (ξ1, . . . , ξk)) =∑
j uj ⊗ mj(g; h) + ∑

j vj ⊗ nj (g; h). Since the ais are arbitrary, so are the
homogeneous elements g and h of even and odd homogeneous degree in G. As
a consequence, since f ∈ T (G(B)), mj and nj are Z2-graded identities of G and
since K[X; Y ] is the free supercomutative algebra, it follows that mj = nj = 0 in
K[X; Y ]. What means that f (ξ1, . . . , ξk) = 0, finishing the proof.

The case of Fn(G(B)) is analogous. ��
It should be remarked that such model has appeared in [10, Section 3.8].
Another possible model for relatively free algebras of some special kind of

varieties is presented now.
ConsiderR a PI-algebra and letA be a subalgebra ofMn(R) generated by matrix

units eij . We give a model for the relatively free algebra of the variety generated by
A as a subalgebra of matrices over the relatively free algebra of R. The general
construction can be find in the paper [2, Lemma 6]. Here we present it, as an
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example, for the particular case of A = UT2(G), which we will use below in the
paper.

Example Let U and Uk be the subalgebras of UT2(F (G)) generated by the generic
matrices ξ1, ξ2, . . . and ξ1, . . . , ξk , respectively, where

ξi =
(
x
(1)
11 + T (G) x(i)12 + T (G)

0 x
(2)
22 + T (G)

)

Then

U � F(UT2(G)))

Uk � Fk(UT2(G))), for k ∈ N

It is interesting to observe that when dealing with this model, one transfers the
problem of dealing with cosets of matrices, to dealing with cosets of elements in
the entries of such matrices. When the relatively free algebra of R is well known,
this construction is very useful. For instance, if R is the field, its relatively free
algebra is the polynomial algebra in commuting variables, and we are in the classical
case of generic matrices. In this paper we will deal with this model when R is the
Grassmann algebra, but since its relatively free algebra is easy to handle with, this
will help us to obtain our results.

3 General Remarks

Let A be a finite-dimensional associative superalgebra.
As mentioned in [11], if k1 ≤ k2, then

T (A) ⊆ T (Fk2(A)) ⊆ T (Fk1(A)). (2)

Moreover, in [11, Lemma 8] the authors prove:

Lemma 3 T (Fn(A)) ∩ K〈x1, . . . , xn〉 = T (A) ∩ K〈x1, . . . , xn〉. ��
As a consequence, we have the following:

Proposition 4 T (A) = ⋂
n≥1 T (Fn(A)). In particular, F(A) is a subdirect

product of the {F(Fn(A))}n∈N.
Proof Clearly T (A) ⊆ ⋂

n≥1 T (Fn(A)). Conversely, given

f = f (x1, . . . , xk) ∈
⋂

n≥1

T (Fn(A)),
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by Lemma 3, we have f ∈ T (Fk(A)) ∩ K〈x1, . . . , xk〉 ⊆ T (A). ��
Finally, we have the following alternative description of F(A). We start with a

lemma:

Lemma 5 If i ≤ j , then there exists an algebra monomorphism uij : Fi(A) →
Fj (A). Moreover, if i ≤ j ≤ k, then uik = ujkuij .
Proof Since Fi(A) is free in var(A), a homomorphism from Fi(A) to an algebra in
this variety is defined by a choice of images of the free generators of Fi(A). So we
can let uij send the free generators ξ1, . . . , ξi of Fi(A) to the first i free generators
of Fj (A). If the image of some element is zero in Fj (A), then it is a polynomial
identity of Fi(A), so it will be zero in Fi(A). Thus, this map is injective. The last
assertion is immediate from the construction of the uij . ��

The last lemma says that the pair
(
(Ai )i∈N, (uij )i≤j

)
is a direct system.

Proposition 6 F(A) = lim−→Fi(A).

Proof For each i, let ui : Fi(A) → F(A) be the map sending the free generators
of Fi(A) to the first i free generators of F(A). Clearly ujuij = ui , for all i ≤ j .

Now, consider a target (B, (φi)i∈N), that is, an algebra B together with homo-
morphisms φi : Fi(A) → B such that φjuij = φi . We define u : F(A) → B
in the free generators ξi via u(ξi) := φi(ξi) (the same image of φi applied in the
last generator of Fi(A)). So clearly uui = φi , for each i ∈ N. This proves that
lim−→Fi(A) = F(A). ��
Corollary 7 For any B ∈ var(A), one has

Hom(F (A),B) = lim←−Hom(Fi(A),B).

The former corollary has an intuitive (and somewhat obvious) interpretation. Let
f ∈ F(A). It is known that the following three assertions are equivalent:

(i) f is a polynomial identity of B,
(ii) f ∈ Ker" , for all " ∈ Hom(F (A),B).

(iii) f ∈ Ker" , for all " ∈ Hom(Fj (A),B), for a sufficiently large j (indeed, it
is enough to take a j greater or equal to the number of variables of f ).

The last corollary states the equivalence between (ii) and (iii).

4 Polynomial Identities for UT2(G
(k))

In this section, we investigate the polynomial identities of UT2(G
(k)). We find a

explicit set of polynomials that, together with some class of polynomials, generate
the T-ideal of polynomial identities of UT2(G

(k)).
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One may notice that ifA andB are algebras such thatR =
(
A M

0 B

)
is an algebra,

then T (A)T (B) ⊆ T (R). Verifying if the above inclusion is an equality is a more
difficult task. In some cases, the approach of Lewin’s Theorem applies (see [17]
or [10, Corollary 1.8.2] for a more suitable version). Some results in this direction
are given in the paper [2], where the authors describe conditions under which the
T-ideal of a block-triangular matrix algebra over an algebra A factors as the product
of the ideals of the blocks. But one can see that the algebrasG(k) do not satisfy the
necessary hypothesis to that, namely the existence of a partially multiplicative basis
for its relatively free algebras, so in this paper we try a different approach.

We let K be a field of characteristic zero.

Lemma 8 For any t ∈ N, the following are consequences of the identity
[x1, x2, x3][x4, x5, x6] = 0:

1. [y1, y2, y3]p[z1, z2, z3] = 0,
2. ([y1, y2][y3, y4] + [y1, y3][y2, y4])p[z1, z2, z3] = 0,
3. [y1, y2, y3]p([z1, z2][z3, z4] + [z1, z3][z2, z4]) = 0,
4. ([y1, y2][y3, y4] + [y1, y3][y2, y4])p([z1, z2][z3, z4] + [z1, z3][z2, z4]) = 0.

where p = p(x1, . . . , xt ) is any multilinear polynomial.

Proof The first one follows from

[y1, y2, y3]p(x1, . . . , xt )[z1, z2, z3] =[[y1, y2, y3], p(x1, . . . , xt )][z1, z2, z3]
+ p(x1, . . . , xt )[y1, y2, y3][z1, z2, z3].

Working modulo the identity [x1, x2, x3][x4, x5, x6], for the second one we have

0 = [y1, y
2
2 , y3]p(x1, . . . , xt )[z1, z2, z3]

= ([[y1, y2]y2, y3] + [y2[y1, y2], y3])p(x1, . . . , xt )[z1, z2, z3]
= ([y1, y2][y2, y3] + [y1, y2, y3]y2 + [y2, y3][y1, y2]
+ y2[y1, y2, y3])p(x1, . . . , xt )[z1, z2, z3]

= ([y1, y2][y2, y3] + [y1, y2][y2, y3] + [[y2, y3], [y1, y2]])p(x1, . . . , xt )[z1, z2, z3]
= 2[y1, y2][y2, y3]p(x1, . . . , xt )[z1, z2, z3].

Linearizing the above identity, we obtain (2). Analogously we obtain (3) and (4).
��

We fix m ∈ N.

Lemma 9 The polynomials

1. [x1, x2, x3][x4, x5, x6] = 0,
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2. [x1, x2] . . . [x2m+3, x2m+4] = 0,

are polynomial identities for UT2(G
(2m)) and UT2(G

(2m+1)).

Proof We know that T (G(2m)) = T (G(2m+1)). So, by [2, Lemma 10], we have
T (UT2(G

(2m))) = T (UT2(G
(2m+1))). Thus, we only need to check the statement

for UT2(G
(2m)). It is well-known that [x1, x2, x3][x4, x5, x6] is a polynomial

identity for UT2(G), hence, so is for UT2(G
(2m)) as well.

Now, consider the polynomial q of (2). Since q is multilinear, we only need
to check evaluations of q on matrix units multiplied by elements of G(2m). An
evaluation will be automatically zero if two or more variables are substituted by
a multiple of e12. If all variables assume diagonal values, then we obtain zero again,
since the diagonal of UT2(G

(2m)) is G(2m) ⊕G(2m).
So, assume that xi = ge12, for some g, and let xj be the variable appearing

together with xi . So [xi, xj ] = g′e12. Next, the variables that appear before [xi, xj ]
must be evaluated on some multiple of e11, and the variables after [xi, xj ] must be
evaluated on a multiple of e22; otherwise we certainly obtain zero. So we have that
q = w1g

′w2e12, wherew1g
′w2 is a product of elements ofG(2m), containing at least

m + 1 commutators of elements of G(2m). So w1g
′w2 = 0, and q is a polynomial

identity of UT2(G
(2m)). ��

Before we proceed, we recall the following classical result:

Theorem 10 (Theorem 5.2.1(ii) of [5]) Let K be any infinite field, and n ∈ N. The
relatively free algebra of the variety generated by the identity

[x1, x2] · · · [x2n−1, x2n] = 0

has a basis consisting of all products

x
a1
1 . . . x

am
m [xi11, xi21, . . . , xip11 ] . . . [xi1r , xi2r , . . . , xipr r ],

where the number r of participating commutators is≤ n−1 and the indices in each
commutator [xi1s , xi2s , . . . , xips s ] satisfy i1s > i2s ≤ · · · ≤ ipss . ��
Remark Now, let Tm be the T-ideal generated by the identities of Lemma 9. We
notice the following fact. Assume we have a multilinear polynomial of the following
kind:

[xi1, xi2] . . . [x2r−1, x2r ][y1, . . . , ys][xj1, xj2 ] . . . [xj2t−1, xj2t ],

where s ≥ 3. Then, using the identities of Lemma 8, modulo the polynomial
[x1, x2, x3][x4, x5, x6], we can order i1 < · · · < i2r , and j1 < · · · < j2t .
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Consider the following family of polynomials:

[xi1, xi2] . . . [xi2r−1, xi2r ][xj1, . . . , xjs ][xk1, xk2] . . . [xk2t−1, xk2t ],
r ≥ 0, t ≥ 0, r + t ≤ m, i1 < i2 < · · · < i2r , k1 < k2 < · · · < k2t ,

s > 2, j1 > j2 < j3 < · · · < js.
(3)

Also, for each t ∈ N, let B(t)m be a basis of

Span{[xσ(1), xσ(2)] · · · [xσ(2t−1), xσ(2t )] | σ ∈ S2t } + T (UT2(G
(2m)))/T (UT2(G

(2m))).

Denote Bm = ⋃
t∈NB

(t)
m . Let Tm be the set of polynomial identities of UT2(E

(2m))

given by a linear combination of product of commutators of length 2 (note that
Tm � 0, since it contains identity (d) of Lemma 8).

Lemma 11 The polynomials (3) and Bm generate the proper multilinear polyno-
mials in K〈X〉 modulo Tm + Tm.

Proof Since [x1, x2] . . . [x2m+3, x2m+4] ∈ Tm, it is enough to write the elements of
the relatively free algebra F(UTm+2(K)) as a linear combination of polynomials of
kind (3), and elements ofBm. From Theorem 10, and since [x1, x2, x3][x4, x5, x6] =
0, it is enough to consider a polynomial q of kind

q = [xi1, xi2] . . . [xi2r−1, xi2r ][xj1, . . . , xjs ][xk1, xk2] . . . [xk2t−1, xk2t ].

If s > 2, then from the remark above, we can order i1 < · · · < i2r , and k1 < · · · <
k2t , and we are done. If s = 2, then q is a product of commutators of length 2. So,
q is a linear combination of elements Bm modulo Tm, by definition. ��
Lemma 12 The family of polynomials given by (3) and Bm are linearly indepen-
dent modulo T (UT2(G

(2m))).

Proof Consider a multilinear polynomial identity f ∈ T (UT2(G
(2m))), and write

f = f1 + f2, where f1 is a linear combination of the polynomials (3), and f2 is a
linear combination of polynomials in Bm. For some s > 2, consider the following
evaluation ψ:

xi1 = g1e11, . . . , xi2r = g2re11,

xj2 = e12,

xj1 = xj3 = · · · = xjs = e11,

xk1 = g2r+1e22, . . . , xk2t = g2r+2t e22.

Then, any polynomial which is the product of more than r + t + 1 commutators
annihilate. Note that, since s > 2, this evaluation gives ψ(f2) = 0. Among the
polynomials of type (3), there is a single polynomial having a nonzero evaluation,
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namely

[xi1, xi2] . . . [xi2r−1, xi2r ][xj1, . . . , xjs ][xk1, xk2] . . . [xk2t−1, xk2t ].

This proves that f1 = 0. So f = f2. By the choice of Bm, we obtain f2 = 0 and we
are done. ��

As a consequence, we have the following.

Theorem 13 For m ∈ N, set

Tm = 〈[x1, x2, x3][x4, x5, x6], [x1, x2] . . . [x2m+3, x2m+4]〉.

Then,

T (UT2(G
(2m))) = Tm + Tm,

where Tm is the set of polynomial identities given by linear combination of product
of commutators of length 2. ��

4.1 The Case UT2(G
(2m)), for 1 ≤ m ≤ 2

For small k, we can prove that we do not need the set Tm of the previous result.

Lemma 14 Consider the following family of polynomials:

[xi1, xi2 ] · · · [xi2t−1, xi2t ],
i1 > i2, i3 > i4, . . . , i2t−1 > i2t .

(4)

Fix any m ∈ N, and let t ≤ min{3,m}. Then, the polynomials (4) of degree
2t generate the subspace spanned by all (multilinear) product of commutators of
length 2 of degree 2t ofK〈X〉 moduloTm, and they are linearly independent modulo
T (UT2(G

(2m))).

Proof The assertion that these polynomials generate all multilinear product of
commutators of length 2 modulo Tm is direct from Theorem 10. So we only need to
prove the linearly independence part. If t = 1, then there is nothing to do.

So, let f be a linear combination of polynomials (4), degf = 4. The evaluation

xi1 = g1e11,

xi2 = g2e11,

xi3 = e12,

xi4 = e22,
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will make all product of commutators zero, but [xi1, xi2][xi3, xi4]. Thus, the elements
of degree 4 are linearly independent.

Similarly, if deg f = 6, then the evaluation

xi1 = g1e11,

xi2 = g2e11,

xi3 = e12,

xi4 = e22,

xi5 = g3e22,

xi6 = g4e22,

will make all product of commutators zero, but [xi1, xi2 ][xi3, xi4 ][xi5, xi6]. This
concludes the proof. ��

As a consequence, if 1 ≤ m ≤ 2, then Tm ⊆ 〈[x1, x2] . . . [x2m−1, x2m]〉. Thus,
using the lemmas from the previous section, we see that

Tm ⊆ T (UT2(G
(2m))) ⊆ Tm.

We proved:

Theorem 15 For 1 ≤ m ≤ 2, set

Tm = 〈[x1, x2, x3][x4, x5, x6], [x1, x2] . . . [x2m+3, x2m+4]〉.

Then, T (UT2(G
(2m))) = T (UT2(G

(2m+1))) = Tm.

5 Polynomial Identities for Fk(UT2(G))

Let us denote by T1 the T-ideal generated by [x1, x2, x3] and by T2 the T-ideal
generated by [x1, x2, x3][x4, x5, x6].
Lemma 16 Let n ≥ 1. If f is defined as

f = u0[v1, v2, v3]u1[wσ(1), wσ(2)]u2 · · · un[wσ(2n−1), wσ(2n)]un+1,

with ui, vi , wi ∈ K〈X〉 for all i and σ ∈ S2n, then

f = (−1)σu0[v1, v2, v3][w1, w2] · · · [w2n−1, w2n]u1 · · · un+1 mod T2.

Proof After using the identity

c[a, b] = [a, b]c− [a, b, c],



Relatively Free Algebras of Finite Rank 153

n times, we obtain

f = u0[v1, v2, v3][wσ(1), wσ(2)] · · · [wσ(2n−1), wσ(2n)]u1 · · · un+1 mod T2.

(5)
Since

[x1, x2][x3, x4] = −[x1, x3][x2, x4] mod T1,

the identity

[wσ(1), wσ(2)] · · · [wσ(2n−1), wσ(2n)] = (−1)σ [w1, w2] · · · [w2n−1, w2n] mod T1

holds. The above identity and (5) imply

f = (−1)σu0[v1, v2, v3][w1, w2] · · · [w2n−1, w2n]u1 · · · un+1 mod T2.

��
Remark An analogous version of the above lemma, is also true, if one considers the
factor [v1, v2, v3] at the end of the monomial. The proof is completely analogous.

Lemma 17 If m ≥ 1, the following polynomials are identities for Fk(UT2(G)), for
k ≤ 2m+ 1:

1. [x1, x2, x3][x4, x5, x6];
2. [x1, x2, x3][x4, x5] · · · [x2m+4, x2m+5];
3. [x1, x2] · · · [x2m+1, x2m+2][x2m+3, x2m+4, x2m+5];
4. [x1, x2] · · · [x4m+3, x4m+4].
Proof First we observe that it is enough to prove the result for k = 2m + 1. We
use the model for the relatively free algebra of rank 2m + 1 of UT2(G) given
in section 2, i.e., the subalgebra U2m+1 of UT2(F (G)) generated by the generic
matrices ξ1, . . . , ξ2m+1, where

ξi =
(
x
(1)
11 + T (G) x(i)12 + T (G)

0 x
(2)
22 + T (G)

)

We observe that the set A1,1 = {p |p is the entry (1,1) of some element of U2m+1}
is an algebra, isomorphic to F2m+1(UT2(G)) ofG, in the variables x(1)11 , . . . , x

(2m+1)
11 .

Analogously, the set A2,2 = {p |p is the entry (2,2) of some element of U2m+1} is
an algebra, isomorphic to the relatively free algebra of rank 2m + 1 of G, in the
variables x(1)22 , . . . , x

(2m+1)
22 . In particular, they satisfy the polynomial identities

[x1, x2, x3] and [x1, x2] · · · [x2m+1, x2m+2].
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It is clear that (1) is a polynomial identity, since it is an identity for UT2(G).
To show that (2) and (3) are identities, it is enough to verify they vanish under

substitution of variables by monomials in the variables ξi . By Lemma 16 and using
the identity [ab, c] = a[b, c] + [a, c]b, it is enough to show that they vanish under
substitution of variables by the generic elements ξi , i ∈ {1, . . . , 2m+ 1}.

Now one verifies that the substitution of such elements in the polynomials
[x1, x2, x3] and [x4, x5] · · · [x2m+4, x2m+5] yields matrices which are multiples of
the unit matrix e12 by an element of F(G), since these polynomials are identities
for A1,1 and for A2,2. As a consequence, the product of the evaluations of such
polynomials in both orders vanishes, showing that (2) and (3) are identities for
F2m+1(UT2(G)).

Again, to prove that (4) is an identity, it is enough to verify it vanishes under
substitution of variables by monomials in the variables ξi . After using several times
the identity [ab, c] = a[b, c]+[a, c]b, one obtains a linear combination of elements
of the form

u0[y1, y2]u1[y3, y4]u2 · · ·u2m+1[y4m+3, y4m+4]u2m+2,

where the ui are elements of U2m+1 and the yi are generic matrices ξj .
If 0 < i ≤ 2m+ 1, then, by using the identity c[a, b] = [a, b]c− [a, b, c] in the

factor ui [y2i+1, y2i+2], it turns into [y2i+1, y2i+2]ui−[y2i+1, y2i+2, ui]. Now, since
i ≤ 2m+1 one observes that using Lemma 16 and the fact that (2) is an identity, the
component of the sum corresponding to the triple commutator vanishes. Applying
such procedure several times, we obtain that the elements u1, . . . , u2m+1 can be
moved to the middle of the monomial (just after the (m + 1)-th commutator). In a
analogous way, using the remark after Lemma 16 and the fact that (3) is an identity,
we obtain that if m + 1 < i ≤ 2m + 1, the elements ui can also be moved to the
middle of the monomial, i.e.,

u0[y1, y2]u1[y3, y4]u2 · · ·u2m+1[y4m+3, y4m+4]u2m+2 =

= u0[y1, y2] · · · [y2m+1, y2m+2]u1 · · · u2m+1[y2m+3, y2m+4] · · · [y4m+3, y4m+4]um+2

Since the product of 2m+ 1 commutators is a multiple of e12, and the above is a
product of two multiples of e12, we obtain that the above element is zero in U2m+1.

��

6 Conclusion

Describing the ideal of identities of the relatively free algebras of finite rank of a
given variety may be a very difficult problem. Even the simple case of UT2(G)

is still open even though it seems to be possible to prove it with the canonical
techniques.
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The role played by the relatively free algebras of finite rank in the description of
the subvarieties of a given variety (at least up to asymptotic equivalence) must be
studied.

An interesting problem is to considerV a variety of algebras generated byG(B),
where B = B0 +B1 is a finite dimensional superalgebra and to investigate if, given
an n, there exists an m such that T (Fn(G(B))) = T (G(m)(B)) (since we have
verified that in the variety generated by UT2(G), n = m does not hold, as in the
previously known cases).

In order to know if such questions are true in some generality, it is necessary first
to study it for some simpler examples.

For varieties that we know the structure of the Sn-module Pn(V) (or �n(V)), of
multilinear (or proper multilinear) polynomials modulo the identities of V, this may
be approached by verifying which of the generators of such modules are identities
of Fm(V). We will investigate this problem in future projects.
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Abstract This article surveys results on graded algebras and their Hilbert series.
We give simple constructions of finitely generated graded associative algebras
R with Hilbert series H(R, t) very close to an arbitrary power series a(t) with
exponentially bounded nonnegative integer coefficients. Then we summarize some
related facts on algebras with polynomial identity. Further we discuss the problem
how to find power series a(t) which are rational/algebraic/transcendental overQ(t).
Applying a classical result of Fatou we conclude that if a finitely generated graded
algebra has a finite Gelfand-Kirillov dimension, then its Hilbert series is either
rational or transcendental. In particular the same dichotomy holds for the Hilbert
series of a finitely generated algebra with polynomial identity. We show how to use
planar rooted trees to produce algebraic power series. Finally we survey some results
on noncommutative invariant theory which show that we can obtain as Hilbert series
various algebraic functions and even elliptic integrals.
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The purpose of this article is to survey some results, both old and recent, on
graded algebras and their Hilbert series. In Sect. 2 we discuss the growth of
algebras, and graded algebras and their Hilbert series. Then in Sect. 3 we give
constructions of graded algebras with prescribed Hilbert series. Section 4 is devoted
to algebras with polynomial identities, or PI-algebras. We survey some results
concerning basic properties and the growth of such algebras. Section 5 deals with
power series with nonnegative integer coefficients. We consider methods to produce
series which are transcendental over Q(t) and graded algebras with transcendental
Hilbert series. Combining a classical result of Fatou from 1906 with a theorem
of Shirshov from 1957 we obtain immediately that the Hilbert series of a finitely
generated graded PI-algebra is either rational or transcendental. We also survey
some constructions of algebraic power series based on automata theory and theory
of formal languages. In the next Sect. 6 we consider a method for construction of
algebraic power series with nonnegative integer coefficients. The main idea is to
combine results on planar rooted trees with number of leaves divisible by a given
integer with the fact that submagmas of free Ω-magmas are also free. Finally, in
Sect. 7 we use methods of noncommutative invariant theory to construct free graded
algebras (also nonassociative and not finitely generated) with Hilbert series which
are either algebraic or transcendental. In particular, we give simple examples of free
nonassociative algebras with Hilbert series which are elliptic integrals.

If not explicitly stated otherwise, all power series in our exposition will have non-
negative integer coefficients. Usually, when we state theorems about power series
we do not present them in the most general form and restrict the considerations to
the case of nonnegative integer coefficients.

2 Growth of Algebras and Hilbert Series

IfR is a finite dimensional algebra we can measure how big it is using its dimension
dim(R) as a vector space. But how to measure infinite dimensional algebras? If R
is an algebra (not necessarily associative) generated by a finite dimensional vector
space V , then the growth function of R is defined by

gV (n) = dim(Rn), Rn = V 0 + V 1 + V 2 + · · · + V n, n = 0, 1, 2, . . . .

This definition has the disadvantage that depends on the generating vector space V .
For example, the algebra of polynomials in d variables K[Xd ] = K[x1, . . . , xd ]
is generated by the vector space V with basis Xd = {x1, . . . , xd} and the growth
function gV (n) is

gV (n) =
(
n+ d
d

)
= (n+ d)(n+ d − 1) · · · (n+ 1)

d! = nd

d! + O(nd−1).
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The algebra K[Xd ] is generated also by the monomials of first and second degree,
i.e. by the vector spaceW = V + V 2. Then

gW (n) =
(

2n+ d
d

)
= 2dnd

d! + O(nd−1).

What is common between both generating functions? There is a standard method to
compare eventually monotone increasing and positive valued functions f : N0 =
N∪{0} → R. This class of functions consists of all functions f such that there exists
an n0 ∈ N such that f (n0) ≥ 0 and f (n2) ≥ f (n1) ≥ f (n0) for all n2 ≥ n1 ≥ n0.
We define a preorder ) and equivalence ∼ on the set of such functions. We write
that f1 ) f2 for two functions f1 and f2 (and say that f2 grows faster than f1) if and
only if there exist positive integers a and p such that for all sufficiently large n the
inequality f1(n) ≤ af2(pn) holds and f1 ∼ f2 if and only if f1 ) f2 and f2 ) f1.
This allows to obtain some invariant of the growth because gV (n) ∼ gW(n) for any
generating vector spaces V and W of the algebra R. The equivalence is expressed
in the following notion. The limit superior

GKdim(R) = lim sup
n→∞

logn(gV (n))

is called the Gelfand-Kirillov dimension of R. It is known that GKdim(R) does not
depend on the system of generators of the algebra R.

Below we give a brief information for the values of the Gelfand-Kirillov
dimension of finitely generated associative algebras. For details we refer to the book
by Krause and Lenagan [60].

Theorem 1

(i) If R is commutative then GKdim(R) is an integer equal to the transcendence
degree of the algebra R.

(ii) If R is associative then GKdim(R) ∈ {0, 1} ∪ [2,∞] and every of these reals is
realized as a Gelfand-Kirillov dimension.

Part (i) of Theorem 1 is a classical result. The restriction GKdim(R) � (1, 2) in
part (ii) is the Bergman Gap Theorem [14]. Algebras R with GKdim(R) ∈ [2,∞)
are realized by Borho and Kraft [16], see also the modification of their construction
in the book of the author [32, Theorem 9.4.11]. We shall mimic these constructions
in the next section.

In the sequel we shall work with graded algebras. The algebra R is graded if it
is a direct sum of vector subspaces R0, R1, R2, . . . called homogeneous components
of R and

RmRn ⊂ Rm+n, m, n = 0, 1, 2, . . . .
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It is convenient to assume that R0 = 0 or R0 = K . In most of our considerations
the generators of R are of first degree. The formal power series

H(R, t) =
∑

n≥0

dim(Rn)tn,

is called the Hilbert series (or Poincaré series) of R.
We often shall work with power series with nonnegative integer coefficients

a(t) =
∑

n≥0

ant
n, an ∈ N0.

The advantage of studying such power series instead of the sequence an, n =
0, 1, 2, . . ., of the coefficients of a(t) is that we may apply the theory of analytic
functions or to encode some recurrence relations. In particular, we may find a closed
formula for an or may estimate its asymptotic behavior.

The formal power series a(t) is a rational function if it converges in a neigh-
borhood of 0 to a fraction of two polynomials with rational coefficients, i.e. to an
element of the field Q(t). Similarly, algebraic and transcendental power series are
also overQ(t). Algebraic power series a(t) have the property that p(t, a(t)) = 0 for
some polynomial p(t, z) ∈ Q[t, z] and transcendental power series do not satisfy
any polynomial equation with rational coefficients.

Algebraic power series have a nice characterization given by the Abel-Tannery-
Cockle-Harley-Comtet theorem [1, p. 287], [20–22, 49, 94] (see [4] for comments).

Theorem 2 An algebraic power series

f (t) =
∑

n≥0

ant
n

is D-finite, i.e. it satisfies a linear differential equation with coefficients which are
polynomials in t . Equivalently, its coefficients an satisfy a linear recurrence with
coefficients which are polynomials in n.

We shall recall the usual definition of different kinds of growth of a sequence
an, n = 0, 1, 2, . . ., of complex numbers. If there exist positive b and c such that
|an| ≤ bnc for all n, we say that the sequence is of polynomial growth. (We use this
terminology although it is more precise to say that the sequence an, n = 0, 1, 2, . . .,
is polynomially bounded.) If there exist b1, b2 > 0 and c1, c2 > 1 such that
|an| ≤ b2c

n
2 for all n and b1c

nk
1 ≤ |ank | for a subsequence ank , k = 0, 1, 2, . . .,

then the sequence is of exponential growth. Finally, if for any b, c > 0 there exists a
subsequence ank , k = 0, 1, 2, . . ., such that |ank | > bnck and for any b1 > 0, c1 > 1
the inequality |an| < b1c

n
1 holds for all sufficiently large n, then the sequence is of

intermediate growth.
The following statement is well known, see e.g. [41, Theorem VII.8, p. 501] for

more precise asymptotics of the coefficients.
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Proposition 1 The coefficients of an algebraic power series

a(t) =
∑

n≥0

ant
n

are either of polynomial or of exponential growth.

Every algebra R generated by a finite set {r1, . . . , rd } is a homomorphic image
of the free associative algebra K〈Xd 〉 = K〈x1, . . . , xd 〉. The map π0 : xi → ri ,
i = 1, . . . , d , is extended to a homomorphism π : K〈Xd 〉 → R and R � K〈Xd 〉/I ,
I = ker(π). If the ideal I of K〈Xd 〉 is finitely generated, then the algebra R
is finitely presented. An important special case of graded algebras is the class of
monomial algebras. Monomial algebras are factor algebras of K〈Xd 〉 modulo an
ideal generated by monomials, i.e. by elements of the free unitary semigroup 〈Xd 〉.

Below we give some properties of Hilbert series. We start with commutative
graded algebras.

Theorem 3 Let R be a finitely generated graded commutative algebra. Then:

(i) (Theorem of Hilbert-Serre) The Hilbert series H(R, t) is a rational function
with denominator which is a product of binomials 1 − tm.

(ii) If

H(R, t) = p(t)
∏ 1

(1 − tmi )ai , ai ≥ 1, p(t) ∈ Z[t],

then the Gelfand-Kirillov dimension GKdim(R) is equal to the multiplicity of 1
as a pole of H(R, t): If p(1) � 0, then GKdim(R) = ∑

ai .

The coefficients of the Hilbert series of a finitely generated commutative algebras
are a subject of many additional restrictions, see Macaulay [73]. The picture for
noncommutative graded algebras is more complicated than in the commutative case.
Govorov [43] proved that if the set of monomials U is finite, then the Hilbert series
of the monomial algebra R = K〈X〉/(U) is a rational function. He conjectured [43,
44] that the same holds for the Hilbert series of finitely presented graded algebras.
By a theorem of Backelin [3] this holds when the ideal (U) is generated by a single
homogeneous polynomial. On the other hand Shearer [88] presented an example
of a finitely presented graded algebra with algebraic nonrational Hilbert series. As
he mentioned his construction gives also an example with a transcendental Hilbert
series. Another simple example of a finitely presented algebra with algebraic Hilbert
series was given by Kobayashi [56]. It is interesting to mention that the rationality
of the Hilbert series may depend on the base fieldK . The following theorem is from
the recent paper by Piontkovski [84].

Theorem 4 Let K be a field of positive characteristic p and let the coefficients of
the Hilbert seriesH(R, t) of the finitely generated graded algebra R be bounded by
a constant. If H(R, t) is transcendental, then the base field K contains an element
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which is not algebraic over the prime subfield Fp ofK . For every such fieldK there
exist graded algebrasR with transcendental Hilbert seriesH(R, t) with coefficients
bounded by a constant.

In the next sections we shall discuss the problem how to construct more algebras
with algebraic and nonrational Hilbert series.

By Proposition 1 if the Hilbert series H(R, t) is algebraic, then its coefficients
grow either exponentially or polynomially. Hence a power series with intermediate
growth of the coefficients is transcendental. In [43] Govorov constructed a two-
generated monomial algebra with Hilbert series with intermediate growth of the
coefficients.

A very natural class of finitely generated graded algebras with Hilbert series
with coefficients of intermediate growth are universal enveloping algebras of infinite
dimensional Lie algebras of subexponential (i.e. slower than exponential) growth.
The first example of this kind was given by Smith [93]:

Theorem 5

(i) If L is an infinite dimensional graded Lie algebra with subexponential growth
of the coefficients of its Hilbert series, then the Hilbert series of its universal
enveloping algebra U(L) is with intermediate growth of the coefficients.

(ii) There exists a two-generated infinite dimensional graded Lie algebra L with
Hilbert series

H(L, t) = t + 1

1 − t .

Then the Hilbert series of U(L) is with intermediate growth of the coefficients:

H(U(L), t) = 1

1 − t
∏

n≥1

1

1 − tn .

The Lie algebra L in Theorem 5 (ii) has a basis {x, y1, y2, . . .}, deg(x) = 1,
deg(yi) = i, i = 1, 2, . . ., and the defining relations of L are

[x, yi] = yi+1, [yi, yj ] = 0, i, j = 1, 2, . . . .

Lichtman [70] generalized the result of Smith for different classes of Lie
algebras. Later Petrogradsky [82, 83] developed the theory of functions with
intermediate growth of the coefficients which are realized as Hilbert series in the
known examples of algebras with intermediate growth. In this way he introduced a
detailed scale to measure the growth of algebras which reflected also on the growth
of the coefficients of the Hilbert series of graded associative and Lie algebras.

The algebras in the examples of Smith [93], Lichtman [70], and Petrogradsky
[82, 83] are not finitely presented. Borho and Kraft [16] conjectured that finitely pre-
sented associative algebras cannot be of intermediate growth. For a counterexample
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it is sufficient to show that there exists a finitely presented and infinite dimensional
Lie algebra with polynomial growth. Leites and Poletaeva [68] showed that over a
field of characteristic 0 the classical Lie algebras Wd,Hd, Sd,Kd of polynomial
vector fields are finitely presented. Recall that the algebra Wd = Der(K[Xd ])
consists of the derivations of the polynomial algebra K[Xd ]. The special algebra
Sd ⊂ Wd+1 and the Hamiltonian algebra Hd ⊂ W2d annihilate suitable exterior
differential forms, and the contact algebra Kd ⊂ W2d−1 multiplies a certain form.
The easiest example is the Witt algebraW1 of the derivations of K[x].

The first example of a finitely presented graded algebra with Hilbert series
with intermediate growth of the coefficients was given by Ufnarovskij [95]. In his
example the algebra is two-generated by elements of degree 1 and 2. The Lie algebra
W1 of the derivations of the polynomial algebra in one variable over a field K of
characteristic 0 has a graded basis

{
δi−1 = xi d

dx
| i ≥ 0

}
, deg

(
xi
d

dx

)
= i − 1,

and multiplication

[δi−1, δj−1] =
[
xi
d

dx
, xj

d

dx

]
= (j − i)xi+j−1 d

dx
= (j − i)δi+j−2.

Hence for i ≥ 2 the derivations δi+1 may be defined inductively by

δi+1 = 1

i − 1
[δ1, δi].

Theorem 6 Let L be the Lie subalgebra of W1 generated by δ1 and δ2. It has a
basis {δi | i = 1, 2, . . .} and defining relations

[δ2, δ3] = δ5 and [δ2, δ5] = 3δ7.

The universal enveloping algebra U(L) of L is generated by f1 = x and f2 = y,
where

fi+1 = 1

i − 1
(f1fi − fif1), i = 2, 3, . . . .

It is a factor algebra of the free algebraK〈x, y〉 modulo the ideal generated by

(f2f3 − f3f2)− f5 and (f2f5 − f5f2)− 3f7.
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If deg(fi) = i, i = 1, 2, . . ., then

H(U(L), t) =
∏

n≥1

1

1 − tn .

In a note added in the proofs Shearer [88] gave two more examples of finitely
presented graded algebras with Hilbert series which also have an intermediate
growth of the coefficients. His algebras are generated by three elements and have
three defining relations but, as in the example of Ufnarovskij [95] one of the
generators is of second degree.

Theorem 7 Let R = K〈x1, x2, y〉/(U), where

deg(x1) = deg(x2) = 1, deg(y) = 2,

U = {x1y − yx1, x1x2x1 − x2y, x
2
2y}.

Then the Hilbert series of R is

H(R, t) = 1

(1 − t)(1 − t2)
∏

n≥1

1

1 − tn .

If in U we replace x2
2y with x

2
2 , then

H(R, t) = 1

(1 − t)(1 − t2)
∏

n≥1

(1 + tn).

Koçak [57] modified the construction of Shearer [88] such that the three
generators are of first degree:

Theorem 8 Let

U = {x2
2x1 − x1x

2
2 , x

2
2x3 − x1x3x1, x1x

2
3 , x1x2x1, x1x2x3, x3x2x1, x3x2x3}.

Then the coefficients of the Hilbert series of the algebra R = K〈x1, x2, x3〉/(U) are
of intermediate growth.

Koçak [57] also constructed a graded algebra with quadratic defining relations
and intermediate growth of the coefficients of its Hilbert series.

Theorem 9 Let the Lie algebra L be generated by two elements x1 and x2 of first
degree with defining relations

[[[x1, x2], x2], x2] = [[[x2, x1], x1], x1] = 0,
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and letU(L) = K⊕U(L)1⊕U(L)2⊕· · · be its universal enveloping algebra. Then
the coefficients of the Hilbert series of the algebra R are of intermediate growth,
where R is generated by the homogeneous component U(L)4 of degree 4, and R
is a quadratic algebra with 14 generators and 96 quadratic relations. Its growth
function g(n) satisfies g(n) ∼ exp(

√
n).

The Lie algebraL in Theorem 9 is isomorphic to the Lie algebra of 2×2 matrices
with coefficients fromK[z] generated by

x1 =
(

0 1
0 0

)
and x2 =

(
0 0
z 0

)
.

The series

∏

n≥1

1

1 − tn =
∑

n≥0

pnt
n

and

∏

n≥1

(1 + tn) =
∑

n≥0

ρnt
n

play very special rôles in combinatorics: pn is equal to the number of partitions
of n and ρn is the number of partitions of n in different parts. Recall that λ =
(λ1, . . . , λk) is a partition of n, if the parts λi are integers such that λ1+· · ·+λk = n
and λ1 ≥ · · · ≥ λk ≥ 0; for ρn we assume that λ1 > · · · > λk ≥ 0. The asymptotics
of pn and ρn was found by Hardy and Ramanujan [47] in 1918 and independently
by Uspensky [101] in 1920:

pn ≈ 1

4n
√

3
exp

(
π

√
2

3
n

)
, ρn ≈ 1

4
4
√

3n3
exp

(
π

√
1

3
n

)
.

See also the recent paper by Koçak [58] for more examples and a survey on
finitely presented algebras of intermediate growth.

For further reading, including theory of Gröbner bases and other combinatorial
properties of algebras we refer e.g. Herzog and Hibi [50] for commutative algebras
and Ufnarovskij [99] and Belov, Borisenko, Latyshev [9] for noncommutative
algebras.

3 Algebras with Prescribed Hilbert Series

In this section we shall discuss the following problem.
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Problem 1 Given a power series

a(t) =
∑

n≥0

ant
n, an ∈ N0,

does there exist a finitely generated graded algebra R with Hilbert series equal to
a(t) or at least very close to a(t)?

We shall recall the construction of Borho and Kraft [16] of a finitely generated
graded algebra with Gelfand-Kirillov dimension equal to β ∈ [2,∞). If R is a
finitely generated graded algebra with GKdim(R) = α ∈ [2, 3) and m ∈ N, then
the tensor product K[y1, . . . , ym] ⊗K R is of Gelfand-Kirillov dimension α + m.
Hence for the construction of an algebra R with GKdim(R) ∈ [2,∞) it is sufficient
to handle the case GKdim(R) = α ∈ [2, 3). Let S ⊂ N0 be a set of nonnegative
integers and let

a(t) =
∑

s∈S
ts .

We shall construct a two-generated monomial algebra R with Hilbert series

H(R, t) = 1

1 − t +
t

(1 − t)2 + a(t)t2

(1 − t)2 .

We fix the set U ⊂ 〈x, y〉

U = {yxiyxjy, yxky | i, j ≥ 0, k ∈ N0 \ S}.

Then the factor algebra R = K〈x, y〉/(U) of the free algebra K〈x, y〉 modulo the
ideal generated by U has a basis

{xi, xiyxj , xiyxsyxj | i, j ≥ 0, s ∈ S}

and hence R has the desired Hilbert series.
Pay attention that in the above example the cube (y)3 of the ideal (y) generated

by y is equal to zero in R. A similar construction of a two-generated monomial
algebra R is given in [32, Theorem 9.4.11]. Assuming that (y)k+1 = 0 in R, we
construct a two-generated monomial algebra R with Hilbert series

H(R, t) =
k−1∑

i=0

t i

(1 − t)i+1
+ a(t)tk

(1 − t)k ,

A similar approach was used in the recent paper [33]:
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Theorem 10 Let

a(t) =
∑

n≥0

ant
n

be a power series with nonnegative integer coefficients.

(i) If d is a positive integer such that an ≤ dn, n = 0, 1, 2, . . ., then for any integer
p = 0, 1, 2, there exists a (d + 1)-generated monomial algebra R such that its
Hilbert series is

H(R, t) = 1

1 − dt +
t

(1 − dt)2 + t2a(t)

(1 − dt)p .

(ii) If an ≤
(
d + n− 1

n− 1

)
, n = 0, 1, 2, . . ., for some positive integer d , then for any

integer p = 0, 1, 2, there exists a (d+1)-generated graded algebraR such that
its Hilbert series is

H(R, t) = 1

(1 − t)d +
t

(1 − t)2d +
t2a(t)

(1 − t)dp .

Under the assumptions of Theorem 10 (i) a modification of the proof gives that
for any nonnegative integers p, q , p+q ≤ 2, there exists a (d+1)-generated graded
algebra R such that its Hilbert series is

H(R, t) = 1

1 − dt +
t

(1 − dt)2 + t2a(t)

(1 − dt)p(1 − t)dq .

In the same way we can construct a monomial algebra R with Hilbert series

H(R, t) = 1 + 2t

1 − dt − t + t
2a(t).

In all these constructions it is clear that if the power series a(t) is rational, algebraic
or transcendental, the same property has the Hilbert series of the algebra R.

4 PI-Algebras

Let R be an algebra and let f (x1, . . . , xn) ∈ K〈X〉 = K〈x1, x2, . . .〉. We say that
f (x1, . . . , xn) is a polynomial identity for the algebra R if f (r1, . . . , rn) = 0 for
all r1, . . . , rn ∈ R. If R satisfies a nontrivial polynomial identity it is called a PI-
algebra.
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The study of PI-algebras is an important part of ring theory with a rich structural
and combinatorial theory. PI-algebras form a reasonably big class containing the
finite dimensional and the commutative algebras and enjoying many of their
properties. In this section we shall discuss only the growth and the Hilbert series
of finitely generated PI-algebras. For more details we refer to the survey article
[31].

One of the main combinatorial theorems for finitely generated PI-algebras is the
Shirshov Height Theorem [91].

Theorem 11 Let R be a PI-algebra generated by d elements r1, . . . , rd and
satisfying a polynomial identity of degree k. Then there exists a positive integer
h = h(d, k) such that as a vector space R is spanned on the products un1

1 · · ·unhh ,
ni ≥ 0, i = 1, . . . , h, and every ui is of the form ui = rj1 · · · rjp with p ≤ k − 1.

The integer h is called the height of R.

Corollary 1 Let R be a d-generated PI-algebra satisfying a polynomial identity of
degree k. Then the growth function of R is bounded by a polynomial of degree h
where h = h(d, k) is the height in the theorem of Shirshov.

Proof Let the algebra R be generated by r1, . . . , rd . Then the number of all words
u = rj1 · · · rjp of length p is equal to dp. Hence all words of length ≤ k − 1 are
1+d+d2+· · ·+dk−1. If we extend the generating set ofR to the set of all words of
length ≤ k−1, Theorem 11 implies that as a vector space R behaves as a finite sum
of polynomial algebrasK[ui1 , . . . , uih ]. Hence the growth function of R is bounded
by a polynomial of degree h. ��

As an immediate consequence we obtain the following theorem of Berele [12].

Theorem 12 Every finitely generated PI-algebra R is of finite Gelfand-Kirillov
dimension. If R is d-generated and satisfies a polynomial identity of degree k, then
GKdim(R) ≤ h, where h = h(d, k) is the height in the Shirshov Height Theorem.

The original estimate for the height h in terms of the number of generators d of
R and the degree k of the satisfied polynomial identity can be derived from a lemma
of Shirshov on combinatorics of words. There are many attempts to improve the
estimates for h and to decrease the length p ≤ k− 1 of the words ui = rj1 · · · rjp in
the Shirshov Height Theorem 11. Shestakov conjectured (see the abstract of the talk
of Lvov [72]) that the bound k−1 for the length can be reduced to %k/2&, where %α&,
α ∈ R, is the integer part of α. Lvov added some additional arguments which replace
%k/2& with the PI-degree PIdeg(R) of R in the conjecture of Shestakov. Recall that
a PI-algebra R is of PI-degree c (or of complexity c), if c is the largest integer such
that all multilinear polynomial identities of R follow from the multilinear identities
of the c × c matrix algebraMc(K). The conjecture of Shestakov was confirmed by
Ufnarovskij [97], Belov [7] and Chekanu [18]. Other proofs are given in the survey
article by Belov, Borisenko and Latyshev [9] and in the book by the author and
Formanek [34]. Concerning the height h the original proof of Shirshov [91] gives
primitive recursive estimates. Later it was shown that h is exponentially bounded
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in terms of the number of generators d of the algebra R and the degree k of the
polynomial identity, see the references in the paper by Belov and Kharitonov [10].
In the same paper Belov and Kharitonov found a subexponential bound for h: For a
fixed d and k sufficiently large

h < k12(1+o(1)) log3 k.

Theorems 11 and 12 confirm that from many points of view finitely generated PI-
algebras are similar to commutative algebras. There are also essential differences.
The Gelfand-Kirillov dimension of a finitely generated commutative algebra is
an integer. The discussed in Sect. 3 examples of two-generated PI-algebras R of
Gelfand-Kirillov dimension α ∈ [2, 3) and the tensor productsK[y1, . . . , ym]⊗K R
from [16] satisfy the polynomial identity

(x1x2 − x2x1)(x3x4 − x4x3)(x5x6 − x6x5) = 0.

The examples in [32, Theorem 9.4.11] are two-generated and satisfy the polynomial
identity

(x1x2 − x2x1) · · · (x2m−1x2m − x2mx2m−1) = 0

for a suitable m. Another difference is that the Hilbert series of a finitely generated
commutative graded algebra R is rational and for PI-algebras R it may be also
transcendental. In the next section we shall see that for graded PI-algebrasH(R, t)
cannot be algebraic and nonrational.

On the other hand, there is an important class of PI-algebras which play the same
rôle as the polynomial algebras in commutative algebra and the free associative
algebras in the theory of associative algebras.

Definition 1 Let I (R) ⊂ K〈X〉 be the ideal of all polynomial identities of the
algebra R (such ideals are called T-ideals). The factor algebra

Fd(varR) = K〈Xd 〉/(K〈Xd 〉 ∩ I (R))

is called the relatively free algebra of rank d in the variety of algebras varR
generated by R.

Kemer developed the structure theory of T-ideals in the free algebra K〈X〉 over
a field K of characteristic 0 in the spirit of classical ideal theory in commutative
algebras, which allowed him to solve several outstanding open problems in the
theory of PI-algebras, see [53] for an account and [51] for further references. It is
well known that over an infinite fieldK all relatively free algebras are graded and it
is a natural question to study their Hilbert series. Using the results of Kemer, Belov
[8] established the following theorem which shows that relatively free algebras share
many nice properties typical for commutative algebra.
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Theorem 13 Let K be a field of characteristic 0 and let R be a PI-algebra. Then
the Hilbert series H(Fd(varR), t) is a rational function with denominator similar
to the denominators of the Hilbert series of finitely generated graded commutative
algebras.

5 Algebraic and Transcendental Power Series

The following partial case of a classical theorem of Fatou [39] from 1906 shows that
the condition that a power series with nonnegative integer coefficients is algebraic
is very restrictive.

Theorem 14 If the coefficients of a power series are nonnegative integers and are
bounded polynomially, then the series is either rational or transcendental.

The coefficients of the Hilbert series of graded algebras of finite Gelfand-
Kirillov dimension grow polynomially. Hence we obtain immediately the following
consequence of Theorem 14.

Theorem 15 The Hilbert series of a finitely generated graded algebra of finite
Gelfand-Kirillov dimension is either rational or transcendental.

Corollary 1 and Theorem 12 imply that the same dichotomy holds also for finitely
generated graded PI-algebras.

Theorem 16 The Hilbert series of a finitely generated graded PI-algebra is either
rational or transcendental.

In order to construct the graded algebras with algebraic or transcendental
Hilbert series in Sect. 3 we need algebraic and transcendental power series with
nonnegative integer coefficients. We shall survey several methods for construction
of transcendental power series. We already discussed in Sect. 2 that the power series
with intermediate growth of the coefficients are transcendental.

Recall that the power series a(t) is lacunary, if

a(t) =
∑

k≥1

ank t
nk , ank � 0, lim

k→∞(nk+1 − nk) = ∞.

Maybe the best known example of such series is

a(t) =
∑

n≥1

tn!

which produces the first explicitly given transcendental number

a

(
1

10

)
=

∑

n≥1

1

10n!
,
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the constant of Liouville [71]. The following theorem is due to Mahler [75, p. 42].

Theorem 17 Lacunary series with nonnegative integer coefficients are transcen-
dental.

Example 1 The following power series satisfies the conditions in Theorem 17. A
direct proof of their transcendency is given in the book of Nishioka [81, Theorem
1.1.2]:

a(t) =
∑

n≥0

td
n

, d ≥ 2.

In the definition of lacunary series we do not restrict the growth of the coefficients
although in the above given examples the nonzero coefficients are equal to 1.
Another way to construct transcendental series with polynomial or exponential
growth of the coefficients uses completely (or strongly) multiplicative functions,
i.e. functions α : N→ N0 satisfying α(n1)α(n2) = α(n1n2), n1, n2 ∈ N. Sárközy
[86] described the functions α such that the generating function a(t) =

∑

n≥1

ant
n of

the sequence an = α(n), n = 1, 2, . . ., is rational. Later Bézivin [15] extended this
result for algebraic generating functions. Recently, another, more number-theoretic
proof of the theorem of Bézivin was given by Bell, Bruin, and Coons [6].

Theorem 18 Let α : N→ N0 be a multiplicative function such that its generating
function

a(t) =
∑

n≥1

α(n)tn

is algebraic. Then either α(n) = 0 for all sufficiently large n, i.e. a(t) is a
polynomial, or there exists a nonnegative integer k and a multiplicative periodic
function χ : N→ Q such that α(n) = nkχ(n).

The multiplicative periodic functions which appear in Theorem 18 of Bézivin
were described by Leitmann and Wolke [69].

The proof of the following corollary can be found in [6]. Here we give simplified
arguments.

Corollary 2 If α : N → N0 is a multiplicative function, then the generating
function

a(t) =
∑

n≥1

α(n)tn

is either rational or transcendental.

Proof Let the generating function a(t) of the multiplicative function α : N → N0
be algebraic. By Theorem 18 a(t) is either a polynomial (hence a rational function)
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or α is of the form α(n) = nkχ(n), n = 1, 2, . . ., where k ∈ N0 and χ is a
multiplicative periodic function. The periodicity of χ implies that it is bounded.
Hence α(n) ≤ nkc for some constant c > 0 and the coefficients of the power series
a(t) grow polynomially. By Theorem 14 of Fatou the power series a(t) cannot be
algebraic and nonrational. ��

Now it is easy to construct multiplicative functions with transcendental generat-
ing function. The following simple example is from [33].

Example 2 If α : N→ N0 is a multiplicative function, it is completely determined
by its values on the prime numbers p. Let α(p) = q , where the q’s are pairwise
different primes and α(p) � p for all prime p. If the generating function
a(t) =

∑

n≥1

α(n)tn is rational, then there exists a positive integer k and a periodic

multiplicative function χ : N→ Q such that

α(p) = pkχ(p) = q, χ(p) = q

pk
.

Therefore the multiplicative function χ is not periodic and this implies that a(t)
cannot be rational.

By the theorem of Govorov [43] the Hilbert seriesH(R, t) of a finitely presented
monomial algebra R is a rational function. Ufnarovskij [96] gave a construction
which associates to R a finite oriented graph Γ (R).

Definition 2 Let

R = K〈Xd 〉/(U), U ⊂ 〈Xd 〉, |U | <∞,

be a finitely presented monomial algebra and let k+1 be the maximum of the degrees
of the monomials in the set U . The following graph Γ (R) is called the Ufnarovskij
graph. The set of the vertices of Γ (R) consists of all monomials of degree k which
are not divisible by a monomial in U . Two vertices v1 and v2 are connected by an
oriented edge from v1 to v2 if and only if there are two elements xi, xj ∈ Xd such
that v1xi = xjv2 � U . Then the edge is labeled by xi . (Multiple edges and loops are
allowed.) The generating function

g(Γ (R), t) =
∑

n≥1

gnt
n,

of the graph Γ (R) has coefficients gn equal to the number of paths of length n.

The algebra R in the above definition has a basis consisting of all monomials
in 〈Xd 〉 which are not divisible by a monomial in U . The edges of Γ (R) are in
a bijective correspondence with the basis elements of degree k + 1 of R and the
paths of length n are in bijection with the monomials of degree n + k in the basis.
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Ufnarovskij [96] gave simple arguments (based on the Cayley-Hamilton theorem
only) for the proof of the following result.

Theorem 19 Let R = K〈Xd 〉/(U) be a finitely presented monomial algebra and
let the maximum of the degrees of the monomials in U is equal to k + 1. Then
the generating function g(Γ (R), t) of the graph Γ (R) is a rational function. The
Hilbert series H(R, t) of R and the generating function g(Γ (R), t) are related by

H(R, t) =
∑

n≥0

ant
n =

k∑

n=1

ant
n + tkg(Γ (R), t).

Hence H(R, t) is a rational function.

Now the theorem of Govorov [43] is an obvious consequence of Theorem 19.
Additionally, the growth of the finitely presented monomial algebra R can be
immediately determined from purely combinatorial properties of its graph G(R)—
the existence of cycles and their disposition.

The construction of Ufnarovskij can be translated in terms of automata theory
and theory of formal languages.

A language L on the alphabetXd is a subset of 〈Xd 〉. The language L is regular
if it is obtained from a finite subset of 〈Xd 〉 applying a finite number of operations
of union, multiplication, and the operation ∗ defined by T ∗ =

⋃

n≥1

T n, T ⊂ 〈Xd 〉.
In the theory of computation a deterministic finite automaton is a five-tuple A =

(S,Xd, δ, s0, F ), where S is a finite set of states, Xd is a finite alphabet, δ : S ×
Xd → S is a transition function, s0 is the initial or the start state, and F ⊆ S is the
(possible empty) set of the final states. The automaton A can be identified with a
finite directed graph Γ (A). The set of states S is identified with the set of vertices of
Γ (A). Each vertex v ∈ S is an origin of d edges labeled by the elements of Xd and
v2 is the destination of the edge from v1 to v2 labeled by xi if δ(v1, xi) = v2. The
language L(A) recognized by the automaton A consists of all words xi1 · · · xin such
that starting from the initial state s0 and following the edges labeled by xi1 , . . . , xin
we reach a vertex f from the set of final states F . The theorem of Kleene connects
deterministic finite automata and regular languages.

Theorem 20 A language L is regular if and only if it is recognized by a determin-
istic finite automaton.

For a background on the topic we refer e.g. to the book by Lallement [63].
Ufnarovskij [98] introduced the notion of an automaton monomial algebra.

Definition 3 Let

R = K〈Xd〉/(U), U ⊂ 〈Xd 〉,
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be a monomial algebra. It is called automaton if the set of monomials in 〈Xd 〉 not
divisible by a monomial from U (which form a basis of R) is a regular language.
Equivalently, if U is a minimal set of relations, then U is also a regular language.

It is known that when L ⊂ 〈Xd 〉 is a regular language, then the generating
function g(L, t) of the sequence of the numbers of its words of length n is a rational
function. Since finite setsU ⊂ 〈Xd 〉 are regular languages, this gives one more proof
of the theorem of Govorov [43]. Involving methods of graph theory Ufnarovskij
[98] showed how to construct a basis of the automaton algebra R and to compute
efficiently its growth and Hilbert series.

For further results, see e.g. the paper by Månsson and Nordbeck [78] where the
authors introduce the generalized Ufnarovski graph and as an application show
how this construction can be used to test Noetherianity of automaton algebras.
Another application is given by Cedó and Okniński [17] who proved that every
finitely generated algebra which is a finitely generated module of a finitely generated
commutative subalgebra is automaton. See also Ufnarovski [100] and Mȧnsson [77]
for applying computers for explicit calculations.

The above discussions show that it is relatively easy to construct algebras with
rational Hilbert series. It is more difficult to construct algebras with algebraic and
nonrational Hilbert series. Now we shall survey some constructions of algebraic
power series using automata theory and theory of formal languages. Recently there
are new applications of the theory of regular languages and the theory of finite-state
automata which give new results and new proofs of old results providing algebras
with rational and algebraic nonrational Hilbert series, see La Scala [65], La Scala,
Piontkovski and Tiwari [67] and La Scala and Piontkovski [66] and the references
there.

6 Planar Rooted Trees and Algebraic Series

In this section we shall present another method for construction of algebraic power
series with nonnegative integer coefficients. The leading idea is to start with a
sequence of finite sets of objects An, n = 0, 1, 2, . . ., for which we know (or can
prove), that the generating function

a(z) =
∑

n≥0

|An|zn

of the sequence |An|, n = 0, 1, 2, . . ., is algebraic and nonrational.
A motivating example are the Catalan numbers. The n-th Catalan number cn is

equal to the number of planar binary rooted trees with n leaves. We may introduce
the operation gluing of trees in the set of planar binary rooted trees which gives it
the structure of a nonassociative groupoid (or a nonassociativemagma). Clearly, this
magma is isomorphic to the one-generated free magma {x}. For example, the tree
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Fig. 1 The tree corresponding to the monomial ((xx)(xx))(x((xx)x))

Fig. 2 Concatenation of the monomials (xx)(xx) and x((xx)x)

in Fig. 1 corresponds to the nonassociative monomial ((xx)(xx))(x((xx)x)) and the
gluing of the trees in Fig. 2 can be interpreted as the concatenation of the monomials
(xx)(xx) and x((xx)x) preserving the parentheses:

(xx)(xx) ◦ x((xx)x) = ((xx)(xx))(x((xx)x)).

Hence, as it is well known, the Catalan numbers satisfy the recurrence relation

cn =
n−1∑

k=1

ckcn−k, n = 2, 3, . . . ,

which implies that their generating function

c(t) =
∑

n≥1

cnt
n
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satisfies the quadratic equation c2(t) = c(t)− t . This also gives the formulas

c(t) = 1 −√
1 − 4t

2
, cn = 1

n

(
2n− 2

n− 1

)
, n = 1, 2, . . . .

In this way we obtain a nonrational power series which is algebraic. More generally
we may consider the generating function which counts the planar rooted trees with
fixed number of outcoming branches in each vertex, see, e.g. Drensky and Holtkamp
[36]. This can be formalized in the language of universal algebra in the following
way.

We start with a set

Ω = Ω2 ∪Ω3 ∪ · · ·

which is a union of finite sets of n-ary operations

Ωn = {νni | i = 1, . . . , pn}, n ≥ 2,

and an arbitrary set of variables Y . We consider the freeΩ-magma

{Y }Ω = MΩ(Y ).

The elements of {Y }Ω are theΩ-monomials which are built inductively. We assume
that Y ⊂ {Y }Ω and if u1, . . . , un ∈ {Y }Ω , then νni(u1, . . . , un) also belongs to
{Y }Ω . In the same way as one constructs the free associative algebra K〈Y 〉 as
the vector space with basis the elements of the free semigroup 〈Y 〉 and the free
nonassociative algebra {Y } starting with the free magma {Y }, one can construct the
freeΩ-algebraK{Y }Ω . This allows to use methods and ideas of ring theory for the
study of freeΩ-magmas. The elements of {Y }Ω can be described in terms of labeled
reduced planar rooted trees in a way similar to the way we identify the free magma
{x} with the set of planar binary rooted trees.

If T is a planar rooted tree we orient the edges in direction from the root to
the leaves. We assume that the tree is reduced, i.e. from each vertex which is not
a leaf there are at least two outcomming edges. Then we label the leaves with the
elements of Y and if a vertex is with n outcomming edges we label it with an n-ary
operation νni . We call such trees Ω-trees with labeled leaves. There is a one-to-one
correspondence between theΩ-monomials and theΩ-trees with labeled leaves. For
example, if Y = X = {x1, x2, . . .}, then the monomial

ν31(ν23(x1, x1), x3, ν32(x2, x1, x4))

corresponds to the tree in Fig. 3:
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•x1 •x1 •x3 •x2 •x1 •x4

•ν23 •ν32

•ν31

Fig. 3 The tree corresponding to v31(v23(x1, x1), x3, v32(x2, x1, x4))

The set of Ω-trees with labeled leaves inherits the natural grading of the free
Ω-magma {Y }Ω :

deg(νni(u1, . . . , un)) =
n∑

k=1

deg(uk).

The following proposition describes the generating function of the free Ω-magma
{Y }Ω and the Hilbert series of the freeΩ-algebraK{Y }Ω .

Proposition 2 Let

p(t) =
∑

n≥2

pny
n =

∑

n≥2

|Ωn|tn

be the generating function of the set of operationsΩ = Ω2 ∪Ω3 ∪ · · · .
(i) When Y = {x} consists of one element, then the generating function of the free
Ω-magma {x}Ω (and the Hilbert series of the free Ω-algebraK{x}Ω)

g({x}Ω, t) = H(K{x}Ω, t) =
∑

n≥1

|{x}(n)Ω |tn

is the only solution z = f (t) of the equation p(z) − z + t = 0 which satisfies
the condition f (0) = 0.

(ii) In the general case, if

Y = Y (1) ∪ Y (2) ∪ · · · , whereY (k) = {y ∈ Y | deg(y) = k},

and

a(t) =
∑

k≥1

|Y (k)|tk
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is the generating function of the graded set Y , then

z = f (t) = g({Y }Ω, t) = H(K{Y }Ω, t)

is the solution of the equation p(z) − z + a(t) = 0 satisfying the condition
f (0) = 0.

The problem when the series g({x}Ω, t) = H(K{x}Ω, t) is algebraic and
nonrational depending on the properties of the generating function p(t) from
Proposition 2 is studied in the forthcoming paper by Drensky and Lalov [37]. As
an immediate consequence of Proposition 2 we obtain:

Corollary 3 If p(t) is a polynomial (with nonnegative integer coefficients), then
g({x}Ω, t) is an algebraic nonrational function.

Under some mild conditions the same conclusion holds when p(t) is a rational
function. The following remark is based on arguments from [37].

Remark 1 Let the functionp(t) from Proposition 2 be algebraic and let b(t, p(t)) =
0 for some polynomial b(t, z) ∈ Q[t, z]. Hence g({x}Ω, t) is equal to the solution
z = f (t) of the equation b(z, p(z)) = b(f (t), p(f (t))) = 0. Since p(f (t)) =
f (t) − t , we obtain that b(f (t), f (t) − t) = 0. Hence when the function p(t)
is algebraic then this gives an algorithm which has as an input the polynomial
equation b(t, z) = 0 with coefficients in Q[t] satisfied by p(t) and as an output
the polynomial equation b(z, z− t) = 0, again with coefficients in Q[t], satisfied by
g({x}Ω, t).
Remark 2 Up till now in this section we start with an algebraic series with nonneg-
ative integer coefficients and obtain an algebraic equation satisfied by g({x}Ω, t).
Then we want to obtain conditions which guarantee that the series g({x}Ω, t) is not
rational. We can apply a similar strategy working with the free Ω-magma {Y }Ω
with larger graded generating sets Y . Depending on the properties of the generating
function a(t) of the set Y from Proposition 2 (ii) we can handle the following three
cases:

(1) Both p(t) and a(t) are polynomials in Q[t]. Then g({Y }Ω, t) is equal to the
solution z = f (t) of the equation p(z)− z+ a(t) = 0 with f (0) = 0.

(2) Let p(t) ∈ Q[t] be a polynomial and let a(t) be algebraic satisfying the
polynomial equation q(t, a(t)) = 0, q(t, z) ∈ Q[t, z]. Then g({Y }Ω, t) is the
solution z = f (a(t)) of the equation p(z) − z + a(t) = 0. Replacing a(t) =
f (a(t))−p(f (a(t))) in q(t, a(t)) = 0 we obtain that z = f (a(t)) is a solution
of the polynomial equation q(t, z− p(z)) = 0, and q(t, z− p(z)) ∈ Q[t, z].

(3) Both p(t) and a(t) are algebraic functions and b(t, p(t)) = q(t, a(t)) = 0
for some polynomials b(t, z), q(t, z) ∈ Q[t, z]. Applying the arguments in
Remark 1 we obtain that g({x}Ω, t) = f (t) is a solution u of the polynomial
equation b(u, u − t) = 0. Hence g({Y }Ω, t) = f (a(t)) is a solution u
of the equation b(u, u − a(t)) = 0. Since q(t, a(t)) = 0, the polynomial
equations b(u, u − z) = 0 and q(t, z) = 0 have a common solution z = a(t).
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Hence the resultant r(t, u) = Resz(q(t, z), b(u, u − z)) of the polynomials
q(t, z), b(u, u − z) ∈ (Q[t, u])[z] is equal to 0 which gives a polynomial
equation r(t, u) = 0 with a solution u = f (a(t)).

A variety of algebraic systems satisfies the Schreier property if the subsystems of
the free systems are also free. This holds for example for free groups (the Nielsen-
Schreier theorem [80, 87], two different proofs can be found in [52, 76]), for free Lie
algebras (the Shirshov theorem [90]), for free nonassociative and free Ω-algebras
(theorems of Kurosh [61, 62]). It is folklore that any Ω-submagma of the free Ω-
magma {Y }Ω is also free. A proof can be found e.g. in Feigelstock [40]. (This can
be derived also from the theorems of Kurosh [61, 62].)

We shall give an example considered in Drensky and Holtkamp [36]. The subset
S of the magma {x} consisting of all nonassociative monomials of even degree is
closed under multiplication and hence forms a free submagma of {x}. It is easy to see
that the set of free generators of S consists of all monomials of the form u = u1u2,
where both u1 and u2 are of odd degree. Let

a(t) =
∑

n≥1

a2nt
2n

be the generating function of the free generating set of S. The generating function
g(S, t) of S is expressed in terms of the generating function of the Catalan numbers

g(S, t) =
∑

n≥2

c2nt
2n = 1

2
(c(t)+ c(−t)).

From the equation

g2(S, t)− g(S, t) + a(t) = c2(a(t))− c(a(t))+ a(t) = 0

we obtain that a(t) satisfies the quadratic equation

4a2(t)− a(t)+ t2 = 0 and a(t) = 1

4
c(4t2), a2n = 4n−1cn.

Applying the Stirling formula for n! after some calculations we obtain

a2n

c2n
≈ 1

2

√
2n− 1

n− 1
, lim

n→∞
a2n

c2n
=

√
2

2
≈ 0.707105.

Every monomial u of even degree in {x} is a product of two submonomials u1 and
u2 where both u1 and u2 are either of even or of odd degree. The above calculations
show that the monomials u = u1u2 with u1 and u2 of odd degree are much more
than those of even degree. This can be translated in the language of planar binary
rooted trees with even number of leaves. Every such tree has two branches which
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even branches odd branches

Fig. 4 Trees with 4 leaves with even and odd branches

both are of the same parity of the number of leaves. The trees in Fig. 4 correspond,
respectively, to the monomials

(xx)(xx) (even branches), ((xx)x)x, (x(xx))x, x((xx)x), x(x(xx)) (odd branches).

It turns out that the trees with branches with odd number of leaves are more than
70% of all trees with even number of leaves which, at least for the authors of [36],
was quite surprising.

The above observation was the starting point of the project of Drensky and Lalov
[37]. One of the first results there is the following.

Theorem 21 Let Ω be a set of operations with algebraic generating function p(t)
and let {x}Ω be the one-generated free Ω-magma. For a fixed positive integer s
consider theΩ-submagma SΩ consisting of all monomials of degree divisible by s.
Then the generating function a(t) of the free generating set of SΩ is algebraic.

The following lemma answers the problem when the set S is nonempty.

Lemma 1 Let the number of the n-ary operations in Ω is equal to pn and let d be
the greatest common divisor of all numbers n − 1, for which pn is different from 0.
Then SΩ is nonempty if and only if d and s are relatively prime. Moreover, the set
SΩ is either empty or is infinite.

One of the main problems in this direction is the following.

Problem 2 If in the notation of Theorem 21 we know the polynomial equation
b(t, z) ∈ Q[t, z] satisfied by p(t), how to find the equation satisfied by the
generating function a(t) of the free generating set of SΩ?

In [37] we have found an algorithm which solves this problem. In particular, we
have the following statement which gives more examples of algebraic power series
with nonnegative integer coefficients.

Theorem 22 If the generating function p(t) of the operations inΩ is a polynomial
and the set SΩ is nonempty, then the generating function a(t) of the free set of
generators of SΩ is algebraic and nonrational.

Example 3 Let Ω consist of one binary operation only and let s = 3. This
corresponds to the set S of binary planar rooted trees with number of leaves divisible
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by 3. Applying the algorithm in [37] we obtain that the generating function a(t) of
the free generating set of S satisfies

729a4(t)− 486a3(t)+ 108a2(t)2 − (64t3 + 8)a(t)+ 16t3 = 0.

Solving this equation we obtain four possibilities for a(t). We expand each of them
in series and since only one solution has nonnegative coefficients of the first powers,
we obtain the value of the desired generating function:

a(t) = 1

6
− 1

18

√
1 + 4t + 16t2 −

√
1 − 2t − 8t2 + 1−64t3√

1+4t+16t2

9
√

2

= 2t3+38t6+1262t9+51302t12+2319176t15+111964106t18+5652760340t21+· · · .

Example 4 Let Ω = Ω2 ∪ Ω3 ∪ · · · and let |Ω | = 1 for all n = 2, 3, . . .. Its
generating function is

p(t) = t2

1 − t .

Then the one-generated free Ω-magma can be identified with the set of all planar
rooted reduced trees and the generating function of {x}Ω is equal to the generating
function of the super-Catalan numbers (see [92, sequence A001003]). Let S be the
set of all monomials of even degree. The calculations in [37] give that the generating
function a(t) of the set of free generators of S satisfies the equation

36a4(t)− 12(t2 + 1)a3(t)+ (19t2 + 1)a2(t)+ 3t2(t2 − 1)a(t)+ 2t4 = 0

Only two of the solutions have nonnegative coefficients of the first few powers.
However, the correct solution is chosen taking into account the coefficient of the 4th
power and it is

a(t)) = 1

12
(1 + t2)− 1

12

√
1 − 34t2 + t4 −

√
t2 + t4 − t2−34t4+t6√

1−34t2+t4

6
√

2

= t2+10t4+174t6+3730t8+89158t10+2278938t12+60962718t14+1685358882t16+· · · .

7 Noncommutative Invariant Theory

In this section we shall follow the traditions of classical invariant theory and shall
work over the complex field C although most of our results are true for any field
K is of characteristic 0. In classical invariant theory one considers the canonical
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action of the general linear group GLd(C) on the d-dimensional vector space Vd
with basis {v1, . . . , vd }. The algebra C[Xd ] consists of the polynomial functions
f (Xd) = f (x1, . . . , xd), where

xi(v) = ξi for v = ξ1v1 + · · · + ξdvd ∈ Vd, ξ1, . . . , ξd ∈ C.

The group GLd(C) acts on C[Xd ] by the rule

g(f )(v) = f (g−1(v)), g ∈ GLd (C), f ∈ C[Xd ], v ∈ Vd.

If G is a subgroup of GLd (C), then the algebra C[Xd ]G of G-invariants consists of
all f (Xd) ∈ C[Xd ] such that

g(f ) = f for all g ∈ G.

For a background on classical invariant theory see, e.g. some of the books by
Derksen and Kemper [23], Dolgachev [25] or Procesi [85].

One possible noncommutative generalization is to replace the polynomial algebra
with the free associative algebraC〈Xd 〉 under the natural restriction d ≥ 2. It is more
convenient to assume that GLd(C) acts canonically on the vector space CXd with
basis Xd and to extend diagonally its action on C〈Xd 〉 by the rule

g(f (x1, . . . , xd)) = f (g(x1), . . . , g(xd)), g ∈ GLd(C), f ∈ C〈Xd 〉.

Then, for a subgroupG of GLd (C) the algebra of G-invariants is

C〈Xd 〉G = {f (Xd) ∈ C〈Xd 〉 | g(f ) = f for all g ∈ G}.

The algebras of invariants in the commutative case have a lot of nice properties.
For example, the algebra C[Xd ]G is finitely generated for a large class of groups
including all reductive groups, when G is a maximal unipotent subgroup of a
reductive group (see Hadžiev [46] or Grosshans [45, Theorem 9.4]), and con-
sequently when G is a Borel subgroup of a reductive group. Since the algebra
C[Xd ]G is graded, the Hilbert-Serre theorem (Theorem 3 (i)) gives that for such
groups G the Hilbert series H(C[Xd ]G, t) is a rational function. In this case the
algebra C[Xd ]G is a homomorphic image of a polynomial algebra C[Yp] modulo
some ideal I . But it is quite rare when the algebra C[Xd ]G is isomorphic to
the polynomial algebra C[Yp]. By the theorem of Shephard and Todd [89] and
Chevalley [19] if G is finite then C[Xd ]G � C[Xd ] if and only if G is generated by
pseudoreflections.

The picture of invariant theory for the free algebra C〈Xd 〉 is quite different. The
algebra C〈Xd 〉G is very rarely finitely generated.
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Theorem 23

(i) (Dicks and Formanek [24] and Kharchenko [55]) If G is a finite group then
C〈Xd 〉G is finitely generated if and only if G is cyclic and acts on the vector
space CXd by scalar multiplication.

(ii) (Koryukin [59]) LetG be an arbitrary subgroup of GLd (C) and let C〈Xd 〉G be
finitely generated. Assume that the vector space CXd does not have a proper
subspace CYe, Ye = {y1, . . . , ye}, e < d , such that C〈Xd 〉G ⊆ C〈Ye〉. Then G
is a finite and acts on CXd by scalar multiplication.

On the other hand the following theorem of Koryukin [59] implies something
positive.

Theorem 24 Let us equip the homogeneous component of degree n of the free
algebraC〈Xd 〉 with the action of the symmetric group Sn by permuting the positions
of the variables:

(∑
αixi1 · · · xin

)
σ−1 =

∑
αixiσ(1) · · · xiσ(n) , σ ∈ Sn.

Then under this additional action the algebra C〈Xd 〉G is finitely generated for any
reductive group G.

The analogue of the Shephard-Todd-Chevalley theorem sounds also very differ-
ent for K〈Xd 〉. It turns out that the algebra C〈Xd 〉G is always free. Additionally,
whenG is finite, then there is a Galois correspondence between the subgroups ofG
and the free subalgebras of C〈Xd 〉 which contain C〈Xd 〉G.

Theorem 25 (Lane [64] and Kharchenko [54]) For every subgroup G of GLd(C)
the algebra of invariants C〈Xd 〉G is free.

Theorem 26 (Kharchenko [54]) Let G be a finite subgroup of GLd(C). The map
H −→ C〈Xd 〉H gives a one-to-one correspondence between the subgroups of G
and the free subalgebras of C〈Xd 〉 containing C〈Xd 〉G.

Comparing with the commutative case, the behavior of the Hilbert series of
C〈Xd 〉G depends surprisingly very much on the properties of the group G. For
example, the classical Molien formula [79] for the Hilbert series of the algebra of
invariants C[Xd ]G for a finite groupG states that

H(C[Xd ]G, t) = 1

|G|
∑

g∈G

1

det(1 − tg) ,

where det(1 − tg) is the determinant of the matrix Id − tg ∈ GLd(C) (and Id is
the identity d × d matrix). The analogue of the Molien formula for H(C〈Xd〉G, t)
is due to Dicks and Formanek [24]:



184 V. Drensky

Theorem 27 For a finite subgroupG of GLd (C)

H(C〈Xd 〉G, t) = 1

|G|
∑

g∈G

1

1 − tr(tg)
,

where tr(tg) is the trace of the matrix tg, g ∈ GLd (C).

Corollary 4 If G is a finite subgroup of GLd (C), then the Hilbert series of the free
algebra C〈Xd 〉G and the generating function a(t) of its set of homogeneous free
generators are rational functions.

We shall illustrate Corollary 4 with two examples.

Example 5 Let d = 2 and G = S2 be the symmetric group of degree 2. It consists
of the matrices

I2 =
(

1 0
0 1

)
, σ =

(
0 1
1 0

)
.

Hence

det(I2 − tI2) =
∣∣∣∣
1 − t 0

0 1 − t
∣∣∣∣ = (1 − t)2, det(I2 − tσ ) =

∣∣∣∣
1 −t
−t 1

∣∣∣∣ = 1 − t2.

The Molien formula gives

H(C[x1, x2]S2, t) = 1

2

(
1

det(I2 − tI2) +
1

det(I2 − tσ )
)
= 1

(1 − t)(1 − t2) ,

which expresses the fact that the algebraC[x1, x2]S2 is isomorphic to the polynomial
algebra generated by the elementary symmetric functions

e1 = x1 + x2 and e2 = x1x2.

Since tr(I2) = 2, tr(σ ) = 0, by the Dicks-Formanek formula we obtain

H(C〈x1, x2〉S2 , t) = 1

2

(
1

1 − tr(tI2)
+ 1

1 − tr(tσ )

)

= 1

2

(
1

1 − 2t
+ 1

)
= 1 − t

1 − 2t
= 1 + t + 2t2 + 4t3 + · · · .

As in the case of free nonassociative algebras, there is a formula for the Hilbert
series of the algebra C〈Y 〉 for an arbitrary graded set Y of free generators. If the
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generating function of Y is a(t), then

H(C〈Y 〉, t) = 1

1 − a(t) .

Easy computations give for the free generators of C〈x1, x2〉S2

a(t) = t

1 − t .

This shows that the free homogeneous set of generators of the algebra C〈x1, x2〉S2

consists of one polynomial for each degree n ≥ 1. This example is a partial case
of a result of Wolf [104] where she studied the symmetric polynomials in the free
associative algebra C〈Xd 〉, d ≥ 2.

Example 6 Let G = 〈σ 〉 ⊂ GL3(C) be the cyclic group of order 3 which permutes
the variables x1, x2, x3. It is generated by the matrix

σ =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠ ,

det(I3 − tI3) = (1 − t)3, det(I3 − tσ ) = det(I3 − tσ 2) = 1 − t3,

H(C[X3]G, t) = 1

3

(
1

(1 − t)3 + 2

1 − t3
)
= 1 + t3
(1 − t)(1 − t2)(1 − t3)

and this is a confirmation of the well known fact that C[X3]G is a free C[e1, e2, e3]-
module generated by 1 and x2

1x2 + x2
2x3 + x2

3x1. Here, as usual,

e1 = x1 + x2 + x3, e2 = x1x2 + x1x3 + x2x3, e3 = x1x2x3.

Since tr(σ ) = 0, forH(C〈X3〉G, t) we obtain

H(C〈X3〉G, t) = 1

3

(
1

1 − 3t
+ 2

)
= 1 − 2t

1 − 3t
= 1 + t + 3t2 + 9t3 + · · · .

For the generating function a(t) of the free generators of C〈X3〉G we have

1

1 − a(t) =
1 − 2t

1 − 3t
, a(t) = t

1 − 2t
.

The situation changes drastically when we consider arbitrary reductive groups
G. In the commutative case the Hilbert series of the algebra of invariantsC[Xd ]G is
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always rational. Surprisingly even in the simplest noncommutative case we obtain
an algebraic Hilbert series which is not rational.

Example 7

(i) Let the special linear group SL2 = SL2(C) act canonically on the two-
dimensional vector space with basis X2. Almkvist, Dicks and Formanek [2]
showed that

H(C〈X2〉SL2, t) = 1 −√
1 − 4t2

2t2
.

This means that homogeneous invariants exist for even degree only and their
dimension of degree 2(n − 1) is equal to the nth Catalan number cn. As in
Example 5 we use the formula relating the Hilbert seriesH(C〈X2〉SL2, t) and the
generating function aSL2(t) of the free homogeneous generating set C〈X2〉SL2 :

H(C〈X2〉SL2 , t) = 1

1 − a SL2(t)
.

This implies that

aSL2(t) = 1 − 2t2

1 −√
1 − 4t2

.

(ii) Drensky and Gupta [35] computed the Hilbert series of the algebra of invariants
C〈X2〉UT2 of the unitriangular group UT2 = UT2(C):

H(C〈X2〉 UT2, t) = 1 −√
1 − 4t2

t (2t − 1 +√
1 − 4t2)

.

As in the case of SL2(C) we can obtain for the free generating set of the algebra
of UT2(C)-invariants

aUT2(t) = 1 − t (2t − 1 +√
1 − 4t2)

1 −√
1 − 4t2

= t + a SL2(t).

SinceC〈X2〉SL2 ⊂ C〈X2〉UT2, this equality suggests that the set of free generators
of C〈X2〉UT2 consists the free generators of C〈X2〉SL2 and one more generator
of first degree which was confirmed in [35]. The paper [35] contains also a
procedure which constructs inductively a free generating set of C〈X2〉SL2 .

Invariant theory of SL2(C) and UT2(C) considered, respectively, as subgroups
of SLd(C) and UTd (C), acting on the polynomial algebra C[Xd ] and the free
associative algebra C〈Xd 〉 can be translated in the language of derivations. We shall
restrict our considerations for the case d = 2 only. Recall that the linear operator δ
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acting on an algebra R is called a derivation if

δ(r1r2) = δ(r1)r2 + r1δ(r2) for all r1, r2 ∈ R.

The derivation is locally nilpotent if for any r ∈ R there exists an n such that
δn(r) = 0. The kernel Rδ of δ is called its algebra of constants. It is well known,
see e.g. Bedratyuk [5] for comments, references and applications, that there is a one-
to-one correspondence between the Ga-actions (the actions of the additive group
(C,+)) on CXd and the linear locally nilpotent derivations on C[Xd ].

If UT2(C) acts on C[X2] and on C〈X2〉 by the rule

g(x1) = x1, g(x2) = x2 + αx1, g ∈ UT2(C), α ∈ C,

then C[X2]UT2 and C〈X2〉UT2 coincide, respectively, with the algebras of constants
C[X2]δ1 and C〈X2〉δ1 of the derivation δ1 defined by

δ1(x1) = 0, δ1(x2) = x1.

Equivalently,

C[X2]UT2 = {f (x1, x2) ∈ C[X2] | f (x1, x2 + x1) = f (x1, x2)},

C〈X2〉UT2 = {f (x1, x2) ∈ C〈X2〉 | f (x1, x2 + x1) = f (x1, x2)}.

Similarly, C[X2]SL2 and C〈X2〉SL2 coincide, respectively, with the subalgebras of
C[X2]UT2 andC〈X2〉UT2 consisting of all f (x1, x2) inC[X2]UT2 andC〈X2〉UT2 such
that

f (x1 + x2, x2) = f (x1, x2).

Up till now we discussed Hilbert series of algebras of invariants which are
subalgebras of polynomial algebras and free associative algebras. Instead we may
consider free algebras in other classes. One of the most important algebras from this
point of view are relatively free algebras of varieties of associative or nonassociative
algebras. We shall restrict our considerations to varieties of associative algebras over
C.

Let R be an associative PI-algebra and let Fd(varR) be the relatively free
algebra of rank d in the variety varR generated by R. Again, we assume that
the general linear group GLd(C) acts canonically on the vector space CXd and
extend this action diagonally on the whole algebra Fd(varR). (Equipped with this
action, in the case when varR is the variety A of all commutative associative
algebras, we do not consider polynomials as functions. The algebra Fd(A) is
isomorphic to the symmetric algebra S(CXd) of the vector space CXd .) For
a subgroup G of GLd (C) the algebra of G-invariants FGd (varR) is defined in
an obvious way as in the case of C[Xd ]G and C〈Xd 〉G. For a background on
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invariant theory of relatively free algebras we refer to the survey articles by
Formanek [42] and the author [30], see also the references in Domokos and Drensky
[28, 29].

Although PI-algebras are considered to have many similar properties with
commutative algebras, from the point of view of invariant theory they behave quite
differently. For example, the finite generation of FGd (varR) for all finite groups
forces very strong restrictions on the polynomial identities of R, and the restrictions
are much stronger when we assume that FGd (varR) is finitely generated for all
reductive groups, see the surveys [30, 42] and Kharlampovich and Sapir [48] where
the finite generation is related also with algorithmic problems. As an illustration we
shall mention only a result in Domokos and Drensky [27]. The algebra FGd (varR)
is finitely generated for all reductive groupsG if and only R satisfies the identity of
Lie nilpotency [x1, . . . , xc] = 0 for some c ≥ 2. Also, the analogue of the theorem
of Shephard and Todd [89] and Chevalley [19] holds for a very limited class of
varieties. By a theorem of Domokos [26] if G is finite then the algebra FGd (varR)
is relatively free in varR if and only if G is generated by pseudoreflections and R
satisfies the polynomial identity [x1, x2, x3] = 0.

If we consider Hilbert series of relatively free algebras, they are of the same
kind as in the commutative case. Hence we cannot obtain nonrational algebraic or
trascendental power series in this way. The following theorem was established in
Domokos and Drensky [28]. A key ingredient of its proof is the result of Belov
[8] for the rationality of the Hilbert series Fd(varR) and its extension by Berele
[13].

Theorem 28 Let G be a subgroup of GLd(C) such that for any finitely generated
N0-graded commutative algebra A with A0 = C on which GLd (C) acts rationally
via graded algebra automorphisms, the subalgebra AG of G-invariants is finitely
generated. Then for every PI-algebra R the Hilbert series of the relatively free
algebra FGd (varR) is a rational function with denominator similar to the denom-
inators of the Hilbert series of the algebras of G-invariants in the commutative
case.

More applications for computing Hilbert series of invariants of classical groups
and important numerical invariants of PI-algebras can be found in the paper by
Benanti, Boumova, Drensky, Genov and Koev [11]. Here the usage of derivations is
combined with the classical method for solving in nonnegative integers systems of
linear Diophantine equations and inequalities discovered by Elliott [38] from 1903
and its further development by MacMahon [74] in his “Ω-Calculus” or Partition
Analysis.

If we go to free nonassociative algebras, the Hilbert series of the algebras of
invariants may be even more far from rational than in the case of free associative
algebras. We shall complete our article with the following result in Drensky and
Holtkamp [36].
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Theorem 29 Let C{X2} be the free two-generated nonassociative algebra. Then
the Hilbert series of the algebras of invariants C{X2}SL2 and C{X2}UT2 are elliptic
integrals:

H(C{X2}SL2 , t) =
∫ 1

0
sin2(2πu)

(
1 −√

1 − 8t sin(2πu)
)
du,

H(C{X2}UT2, t) =
∫ 1

0
cos2(πu)

(
1 −√

1 − 8t cos(2πu)
)
du.

The proof uses a noncommutative analogue of the Molien-Weyl integral formula
for the Hilbert series in classical invariant theory (which is an integral version of the
Molien formula for finite groups [102, 103]).

It would be interesting to obtain the Hilbert series for algebras of invariants for
the groups SL2(K) and UT2(K) acting on other free Ω-algebras, as well for the
invariants of other important groups.
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Central Polynomials of Algebras
and Their Growth

Antonio Giambruno and Mikhail Zaicev

Abstract A polynomial in noncommutative variables taking central values in an
algebra A is called a central polynomial of A. For instance the algebra of k × k
matrices has central polynomials. For general algebras the existence of central
polynomials is not granted. Nevertheless if an algebra has such polynomials, how
can one measure how many are there?

The growth of central polynomials for any algebra satisfying a polynomial
identity over a field of characteristic zero was started in recent years and here we
shall survey the results so far obtained.

It turns out that one can prove the existence of two limits called the central
exponent and the proper central exponent of A. They give a measure of the
exponential growth of the central polynomials and the proper central polynomials of
any algebra A satisfying a polynomial identity. They are closely related to exp(A),
the PI-exponent of the algebra.

Keywords Central polynomial · Polynomial identity · Codimension ·
Exponential growth

1 Introduction

In the 30s Wagner noticed that the polynomial in noncommutative variables
[[x1, x2]2, x3] vanishes when evaluated in M2(F ), the algebra of 2 × 2 matrices
over a field F , or in other words, the polynomial [x1, x2]2 takes values in the scalars,
the center of M2(F ). Recall that a polynomial in non commuting variables taking
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central values when evaluated in an algebra A is called a central polynomial. Also
if it takes at least one non-zero value we say that it is a proper central polynomial of
A.

It is easily checked that the above polynomial [x1, x2]2 is a proper central
polynomial of M2(F ), but it turns out that it is peculiar of 2 × 2 matrices,
meaning that it does not have an obvious generalization to matrices of higher
size. Nevertheless in the 50s Kaplansky conjectured the existence of proper central
polynomials for the algebra Mk(F) of k × k matrices over F , for any k ≥ 3 (see
[18]). This conjecture was verified in the early 70s independently by Formanek and
Razmyslov [6, 22]. They constructed proper central polynomials for Mk(F) using
completely different methods. It is worth noticing that generally, even if an algebra
A has a non-zero center, the existence of proper central polynomials is not granted.

Recall that a central polynomial for an algebra A which is not proper is called a
polynomial identity of A. An extensive study of the polynomial identities satisfied
by an algebra has been carried out in the past, and one may ask whether some of the
results so far obtained can be extended to central polynomials. To this end, a first
natural question might be: how many proper central polynomials exist compared to
the polynomial identities of an algebra?

Such question can be reformulated in terms of codimension growth by comparing
the growth of the spaces of central polynomials, proper central polynomials and
polynomial identities of an algebra in the following sense.

LetA be an associative algebra over a field F and let F 〈X〉 be the free associative
algebra on X = {x1, x2, . . .} over F . For every n ≥ 1 let Pn(A) be the space
of multilinear polynomials in the variables x1, . . . , xn modulo the polynomial
identities of A. Also, let Pzn (A) be the space of multilinear polynomials in the
variables x1, . . . , xn modulo the central polynomials of A. Then one defines two
numerical sequences cn(A) = dimPn(A) and czn(A) = dimPzn (A) n = 1, 2, . . .,
called the sequence of codimensions and the sequence of central codimensions of
A, respectively. They are related to the polynomial identities and to the central
polynomials of A, respectively. Clearly the sequence δn(A) = cn(A) − czn(A),
n = 1, 2, . . ., corresponds to the proper central polynomials of A and is called
the sequence of proper central codimensions of A.

On a first attempt one may try to compute the values of these three sequences
but this can be achieved in a very few cases. Then one can try to compare their
asymptotics. This can be done in some cases.

The sequence of codimensions was first defined by Regev in [23], and in [24] he
was able to compute its precise asymptotics for the algebraMk(F), whenF is a field
of characteristic zero. The sequences of central codimensions and proper central
codimensions were introduced in [25] and the asymptotics of the two sequences for
the algebraMk(F), charF = 0, were computed in [4].

It is well known that if A is an algebra satisfying a non-trivial polynomial
identity (PI-algebra), then the sequence of codimensions cn(A), n = 1, 2, , . . .,
is exponentially bounded [23]. Moreover, if A is an algebra over a field of
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characteristic zero the limit

exp(A) = lim
n→∞

n
√
cn(A)

always exists and is a non-negative integer called the PI-exponent of A [7, 8]. Since
cn(A) = czn(A)+ δn(A) it follows that if A is a PI-algebra, the sequences czn(A) and
δn(A), n = 1, 2, . . ., are also exponentially bounded and it is worth asking if the
corresponding limits

expz(A) = lim
n→∞

n
√
czn(A), expδ(A) = lim

n→∞
n
√
δn(A) (1)

exist.
Here we shall survey on the results obtained in recent years on this subject.

Since the main tool for computing asymptotics is the representation theory of the
symmetric group that is well understood in characteristic zero, one restricts himself
to algebras over a field of characteristic zero.

In this framework we shall see that for any associative PI-algebra A, the central
exponent expz(A) and the proper central exponent expδ(A) always exist and are
non-negative integers. Moreover they can be characterized as the dimension of
suitable semisimple algebras related to A. In particular if exp(A) ≥ 2, the central
exponent expz(A) and the PI-exponent exp(A) coincide. Concerning the proper
central exponent expδ(A) examples can be exhibited showing that it can take any
value smaller than exp(A).

One can consider the same kind of questions for non associative algebras.
It is well-known that in this setting the codimensions of a PI-algebra can be
overexponential. Nevertheless they are exponentially bounded for finite dimensional
algebras. In [16] it was shown that even if the codimensions of an algebra are
exponentially bounded and the PI-exponent exists, it is not necessarily an integer.
Here we shall see that the same phenomenon can appear with respect to the sequence
of proper central codimensions.

2 A General Setting

Throughout F will be a field of characteristic zero and F 〈X〉 the free associative
algebra over F on a countable set X = {x1, x2, . . .}. Recall that a polynomial
f (x1, . . . , xn) ∈ F 〈X〉 is a central polynomial of an associative algebra A if
f (a1, . . . , an) ∈ Z(A), the center of A, for any a1, . . . , an ∈ A. If f takes non-
zero values in Z(A), we say that f is a proper central polynomial whereas if f
takes only the zero value, f is a polynomial identity of A.

The set Id(A) of polynomial identities of A and the set Idz(A) of central
polynomials of A are an ideal and a subalgebra of F 〈X〉, respectively. Since they
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are invariant under the endomorphisms of F 〈X〉, we say that they are a T-ideal and
a T-subalgebra, respectively.

Regev in [23] and [25] introduced the notions of codimension and central
codimension of an algebra A as follows. Let Pn be the space of multilinear
polynomials in the variables x1, . . . , xn, and define

Pn(A) = Pn

Pn ∩ Id(A), P zn (A) =
Pn

Pn ∩ Idz(A) .

Then

�n(A) = Pn ∩ Idz(A)
Pn ∩ Id(A)

corresponds to the space of proper central polynomials in n fixed variables.
The sequences

cn(A) = dimPn(A), czn(A) = dimP zn (A), δn(A) = dim�n(A), n = 1, 2, . . . ,

are called the sequence of codimensions, central codimensions and proper central
codimensions of A, respectively. The relation among them is given by the equality

cn(A) = δn(A)+ czn(A). (2)

This is a special case of a more general relation among polynomials. In fact, let
the symmetric group Sn act on Pn via σf (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)), for
f (x1, . . . , xn) ∈ Pn and σ ∈ Sn. Then the three spaces Pn(A), P zn (A),�n(A) have
an induced structure of Sn-modules and we denote by χn(A), χzn(A), χ(�n(A)) the
corresponding characters (called cocharacters), respectively.

Since charF = 0, we can decompose such characters into irreducibles:

χn(A) =
∑

λ�n
mλχλ, χzn(A) =

∑

λ�n
m′
λχλ, χ(�n(A)) =

∑

λ�n
m′′
λχλ, (3)

where χλ is the irreducible character of Sn corresponding to the partition λ of n and
mλ,m

′
λ,m

′′
λ are the multiplicities. Then

χn(A) = χ(�n(A))+ χzn(A),

and in (3) we have mλ = m′
λ +m′′

λ, for all λ � n.
Recall that an algebra satisfying a non-trivial polynomial identity is called a PI-

algebra. Also we say that two algebras A and B are PI-equivalent if they have the
same identities, i.e., Id(A) = Id(B). Another useful relation among polynomial
identities and central polynomials is the following.
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Remark 1 LetA andB be two PI-algebras. If they are PI-equivalent, then Idz(A) =
Idz(B) and�n(A) = �n(B), for all n ≥ 1.

Recall that ifA = A(0)⊕A(1) is a superalgebra andG = G(0)⊕G(1) is the infinite
dimensional Grassmann algebra with its canonical Z2-grading, then the algebra

G(A) = A(0) ⊗G(0) ⊕ A(1) ⊗G(1) ⊆ A⊗G,

is called the Grassmann envelope of A.
By a fundamental result of Kemer [19] any associative PI-algebra is PI-equivalent

to the Grassmann envelope of a finite dimensional superalgebra.
In [7] and [8] it was proved that if A is any PI-algebra,

C1n
t1dn ≤ cn(A) ≤ C2n

t2dn,

for some constants C1 > 0, C2, t1, t2, where d = exp(A) is an integer called the
PI-exponent of A that can be characterized as follows.

By the result of Kemer mentioned above we may assume that the algebra A is
the Grassmann envelope G(B) of a finite dimensional superalgebra B. Also, by
extending the base field, since codimensions do not change, we may assume that
F is algebraically closed. Then exp(A) = exp(G(B)) can be characterized as the
dimension of a suitable semisimple subalgebra of B, a so-called admissible subal-
gebra of B of maximal dimension. We refer the reader to [11] for the corresponding
definitions and an account of results on polynomial identities and their numerical
invariants. We should mention that the asymptotics of the codimensions of a PI-
algebra were later obtained in [3] and [2] for algebras with unity. For algebras
without unity the asymptotics were obtained up to a constant (see also [13]).

In what follows we shall describe the results obtained in recent years about the
central codimensions and proper central codimensions. Since the three codimen-
sions do not change by extension of the base field, throughout we shall assume that
our algebras are over an algebraically closed field F of characteristic zero.

3 Examples of Central Polynomials

In this section we present some examples of proper central polynomials of associa-
tive algebras.

Example 1 This example was already mentioned in the introduction. Let A1 =
M2(F ) be the algebra of of 2× 2 matrices over F . Its center is the one-dimensional
space of scalar matrices, Z(A1) = F(e11 + e22) and a corresponding central
polynomial is [x1, x2]2 (or its linearization).

Example 2 Recall that M1,1(G) is the subalgebra of the algebra M2(G) of 2 × 2
matrices over the infinite dimensional Grassmann algebra consisting of the matrices
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of the type

(
a b

c d

)
, where a, d ∈ G(0), b, c ∈ G(1).

The center of A2 =M1,1(G) consists of the “scalar” matrices,

Z(A2) =
{(
a 0
0 a

)
| a ∈ G(0)

}
,

and f (x1, . . . , x4) = [[x1, x2], [x3, x4]] is a proper central polynomial for A2.

Example 3 Denote by A3 the subalgebra of M3(F ) spanned by the matrix units
e22, e12, e23 and e13. Then Z(A3) = annA3(A3) = span{e13} and the polynomials

[x1, . . . , xk][xk+1, . . . , xm], k ≥ 2,m ≥ k + 2, (4)

are proper central polynomials for A3. Here [x1, . . . , xk] denotes the left-normed
commutator of x1, . . . , xk . Similarly, one can check that the polynomials

[x1, x2]y1 · · · yl[x3, x4] (5)

with l ≥ 0, are also proper central polynomials of A3.
Since A3 satisfies the identity

y1[x1, x2]y2 ≡ 0, (6)

it is easy to see that any polynomial in (4) is a linear combination of polynomials of
the type (5), modulo Id(A3).

Example 4 By slightly modifying the previous example we can consider the algebra

A4 =

⎧
⎪⎨

⎪⎩

⎛

⎜⎝
a b c

0 e d
0 0 a

⎞

⎟⎠ | a, b, c, d, e ∈ F

⎫
⎪⎬

⎪⎭
= span{e11+e33, e22, e12, e23, e13} ⊂ M3(F ).

The center of A4 is Z(A4) = span{e13}, a one-dimensional space.
Notice that the algebras A3 and A4 are not PI-equivalent. For example A4 does

not satisfy the identity (6). Nevertheless all the polynomials in (4) and (5) are
proper central polynomials for A4. PerhapsA3 and A4 have the same proper central
polynomials.



Central Polynomials of Algebras and Their Growth 201

Example 5 In order to get more complex examples of nontrivial central polynomi-
als one can consider the algebra

A5 =
⎧
⎨

⎩

⎛

⎝
0 B C
0 A D
0 0 0

⎞

⎠ |A,B,C,D ∈ Mt(F )
⎫
⎬

⎭ ⊂ M3t (F ),

which is isomorphic to A3 ⊗Mt(F ). This algebra has the following proper central
polynomial

St2t (x1, . . . , x2t )St2t (y1, . . . , y2t ),

where

Stm(x1, . . . , xm) =
∑

σ∈Symm
(sgn σ)xσ(1) · · · xσ(m)

is the standard polynomial on the variables x1, . . . , xm.

4 Algebras Without Proper Central Polynomials

Although the algebra Mk(F) has proper central polynomials, there are several
examples of algebras with non-zero center but with no proper central polynomials.

An algebra of interest in PI-theory is the algebra of upper block triangular matri-
ces UT (d1, . . . , dk). Recall that UT (d1, . . . , dk) is a subalgebra of Md1+···+dk (F )
defined as follows.

UT (d1, . . . , dk) =

⎛

⎜⎜⎜⎜⎝

A1 A12 · · · A1k

A2
...

. . . Ak−1k

0 Ak

⎞

⎟⎟⎟⎟⎠
,

where Ai � Mdi (F ), 1 ≤ i ≤ k, and Aij � Mdi×dj (F ), the space of di × dj
matrices over F , 1 ≤ i < j ≤ k.

The interest in the algebras of upper block triangular matrices relies on several
useful properties: they are explicit examples of the so called fundamental algebras
introduced by Kemer (see [19]), their T-ideal of identities is a product of ideals of
identities of matrix algebras (see [9, 20]), the asymptotics of their codimensions can
be computed.

Unfortunately such algebras do not have proper central polynomials. In fact we
have the following (see [14, Lemma 1]).
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Lemma 1 If k > 1, the algebra UT (d1, . . . , dk) has no proper central polynomi-
als.

Another useful example, which is actually a generalization of the above is the
following.

First recall the definition of minimal superalgebra [10]. Let A be a finite dimen-
sional superalgebra over F . Since F is algebraically closed and of characteristic
zero, we can decompose A = Ā + J , where Ā = A1 ⊕ · · · ⊕ Am is a semisimple
subalgebra and J = J (A) is the Jacobson radical of A. It is well-known (see
for instance [11]) that J is a homogeneous ideal and Ā can be chosen to be a
superalgebra, i.e., homogeneous in the Z2-grading. It follows that we may assume
that A1, . . . , Am are simple superalgebras. Then recall that each Ai is of the type
eitherMk(F), orMk,l(F ), k ≥ l ≥ 1 orMk(F ⊕cF ), with c2 = 1 (see for instance
[11]). We call the diagonal matrix units e11, . . . , ekk of homogeneous degree zero
ofMk(F) (resp.Mk,l(F ) andMk(F ⊕ cF )), minimal graded idempotents.

We say that A is a minimal superalgebra if either A is simple or there exist
homogeneous elements w12, . . . , wm−1,m ∈ J (0) ∪ J (1) and minimal graded
idempotents e1 ∈ A1, . . . , em ∈ Am such that

eiwi,i+1 = wi,i+1ei+1 = wi,i+1, 1 ≤ i ≤ m− 1,

w12w23 · · ·wm−1,m � 0,

and w12, . . . , wm−1,m generate J as a two-sided ideal of A.
The minimal superalgebras are strictly related to the so called minimal varieties

of exponential growth. Recall that if V is a variety of algebras, its exponent is the
PI-exponent of a generating algebra. Then a varietyV is minimal of exponent d ≥ 2
if exp(V) = d and exp(W) < d , for any proper subvariety of V. It was proved in
[10] that any variety minimal of exponential growth is generated by the Grassmann
envelope of a minimal superalgebra (see [11, Proposition 8.5.6]).

Simple superalgebras are examples of minimal superalgebras and it is not hard to
see that they have proper central polynomials. Unfortunately this is a special case.
In fact the following result can be proved [15, Lemma 4].

Lemma 2 LetA be a minimal superalgebra. IfA is not a simple superalgebra, then
G(A) has no proper central polynomials.

5 The Proper Central Exponent

Let R be an associative algebra over F . As we mentioned above, since we are
interested in computing the three codimensions, we may assume that R is the
Grassmann envelope G(A) of a finite dimensional superalgebra A. Also, since F
is algebraically closed and of characteristic zero, we can decompose A = Ā + J ,
where Ā is a semisimple subalgebra and J = J (A) is the Jacobson radical of A.
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Also we can decompose Ā into a sum Ā = A1 ⊕ · · · ⊕ Am, where A1, . . . , Am are
simple superalgebras.

Now, if G(A) has no proper central polynomials, then δn(G(A)) = 0, for all n.
In case G(A) has proper central polynomials we make the following definition.

Definition 1 A semisimple subalgebraB = Ai1⊕· · ·⊕Aik ⊆ Ā, where i1, . . . , ik ∈
{1, . . . ,m} are distinct, is a centrally admissible subalgebra forG(A) if there exists a
multilinear proper central polynomial f = f (x1, . . . , xs) ofG(A) with s ≥ k, such
that f (a1, . . . , ak, b1, . . . , bs−k) � 0, for some a1 ∈ G(Ai1), . . . , ak ∈ G(Aik ),
b1, . . . , bs−k ∈ G(A).

As an illustration next we give examples of centrally admissible subalgebras
for the algebras of Examples 1–5 of Sect. 3. Notice that since the algebras
A1, A3, A4, A5 of those examples are finite dimensional we search for centrally
admissible subalgebra contained in them. Now, for the algebra A1 = M2(F ) the
whole of A1 is a centrally admissible subalgebra. For the algebra A2 = M1,1(G) a
centrally admissible subalgebra is

M1,1(F ) = M2(F ).

In the Examples 3, 4 and 5 a centrally admissible subalgebra S(Ai) coincides with
a corresponding maximal semisimple subalgebra:

S(A3) = span{e22}, S(A4) = span{e11 + e33, e22}, S(A5) = span{e22} ⊗Mt(F ).

Centrally admissible subalgebras do not necessarily exist (see the example at the
end of the section). Hence what can we say if G(A) has proper central polynomials
but no centrally admissible subalgebras?

In this case if A is nilpotent, then δN(G(A)) = 0, for N large, and if A is not
nilpotent, we let f be a proper central polynomial of G(A). If a1, . . . , an ∈ G(A)
are such that f (a1, . . . , an) � 0, then a1, . . . , an must lie in G(J ) and since
f (a1, . . . , an) � 0 we have J n � 0. It follows that δN(G(A)) = 0 as soon as
JN = 0. In conclusion δN(G(A)) = 0, for N large enough.

WhenG(A) has centrally admissible subalgebras, then one can actually compute
an upper and a lower bound of δn(G(A)). In fact we have the following [15,
Theorem 1, Proposition 3].

Theorem 1 Let G(A) be the Grassmann envelope of a finite dimensional superal-
gebra A over an algebraically closed field of characteristic zero.

(1) If G(A) has no proper central polynomials, then δn(G(A)) = 0, for all n.
(2) If G(A) has proper central polynomials but no centrally admissible subalge-

bras, then δn(G(A)) = 0, for all n large enough.
(3) If G(A) has centrally admissible subalgebras then, for all n ≥ 1,

C1n
t1dn ≤ δn(G(A)) ≤ C2n

t2dn, (7)
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for some constants C1 > 0, C2, t1, t2, where d is the maximal dimension of a
centrally admissible subalgebra for G(A).

It is clear that the inequalities in (7) still hold for any PI-algebra even if we also
relax the hypothesis on F being algebraically closed. As a special case we can get
the following.

Corollary 1 If R is a PI-algebra over a field of characteristic zero, then the proper
central exponent expδ(R) = limn→∞ n

√
δn(R) exists and is a non-negative integer.

Moreover expδ(R) ≤ exp(R).
Another easy consequence of the above theorem is the following.

Corollary 2 Let R be a PI-algebra over a field of characteristic zero. Then the
sequence δn(R), n = 1, 2, . . ., is either polynomially bounded or grows as an
exponential function an with a ≥ 2.

There is a close relation between centrally admissible subalgebra of G(A)
of maximal dimension and reduced algebras. Recall that a finite dimensional
superalgebraA = A1 ⊕ · · · ⊕Am + J is reduced if, after a reordering of the simple
components, we have A1JA2J · · · JAm � 0 (see [11, Definition 9.4.2]). In fact we
have.

Remark 2 If B ⊂ Ā is a centrally admissible subalgebra for G(A) of maximal
dimension, then the superalgebra B̂ = B + J is reduced.

Proof Let B = A1 ⊕ · · · ⊕ Ak with A1, . . . , Ak simple superalgebras, and let
f = f (x1, . . . , xs) be a multilinear proper central polynomial ofG(A). Let ai⊗gi ∈
G(Ai), 1 ≤ i ≤ k, and bj ⊗ hj ∈ G(A), 1 ≤ j ≤ s − k be such that

f (a1 ⊗ g1, . . . , ak ⊗ gk, b1 ⊗ h1, . . . , bs−k ⊗ hs−k) � 0.

Since G(Ai)G(Aj ) = 0, for any i � j then

G(Ai1)G(J )G(Ai2)G(J ) · · ·G(J )G(Aik ) � 0,

for some permutation (i1, . . . , ik) of (1, . . . , k). This implies thatAi1JAi2J · · · JAik
� 0, i.e., the superalgebra B̂ = B + J is reduced. ��

Next we give an example of an algebra with proper central polynomials but no
centrally admissible subalgebras.

Example 6 Let A = B ⊕ R where B is the subalgebra of M3(F ) consisting
of all matrices whose third row is zero and let R = F 〈Xm〉/F 〈Xm〉m+1, where
Xm = {x1, . . . , xm}. We regard A as a superalgebra with trivial grading so that
G(A) = G(0) ⊗ A has the same identities as A. Clearly the center of A coincides
with its annihilator and equals Rm. Hence any polynomial identity of B of degree
m is a proper central polynomial of A. On the other hand, any central polynomial
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of A vanishes under any evaluation such that at least one variable is evaluated in a
maximal semisimple subalgebra of A.

We know by (2) that for any PI-algebraA, exp(A) ≥ expδ(A). But how far apart
can be the two exponents? This question is answered in the following result [14,
Corollary 4].

Theorem 2 For any integerN ≥ 0 there exists a finite dimensional algebra R such
that expδ(R) � 0 and exp(R)− expδ(R) > N .

Regarding the algebraMk(F) of k× k matrices over F , Regev in [24] computed
the precise asymptotics. Recall that two functions f (x) and g(x) of a real variable
are asymptotic equal, and we write f (x) � g(x), if limx→∞ f (x)

g(x)
= 1. Then

Regev’s result is that cn(Mk(F )) � Cn− k2−1
2 k2n, whereC is an explicitly computed

constant. The asymptotics of the other two codimensions are strictly related to the
above asymptotic, in fact in [4] it was proved that czn(Mk(F )) � 1

k2 cn(Mk(F )) and,

so, δn(Mk(F )) � k2−1
k2 cn(Mk(F )).

6 The Central Exponent

In this section we focus on the computation of the central exponent expz(R) for any
associative PI-algebra R.

Recall that the codimensions cn(R) are sandwiched between two exponential
functions

C1n
t1exp(R)n ≤ cn(R) ≤ C2n

t2exp(R)n, (8)

for some constants C1 > 0, C2, t1, t2. Hence, since by (2) czn(R) ≤ cn(R), we get
that

czn(R) ≤ C2n
t2exp(R)n,

Now, if exp(R) = 0 then R is a nilpotent algebra and, so, expz(R) = 0. In case
exp(R) = 1, then either expz(R) = 1 or expz(R) = 0. In fact, exp(R) = 1 says
that R is not nilpotent and the sequence of codimensions is polynomially bounded.
Clearly the same holds for the sequence of central codimensions. Thus expz(A) = 1
provided czn(A) � 0 for all n.

By making use of the basic properties of minimal varieties of exponential growth
we can also compute a lower bound of the central codimensions. In fact we have the
following [15, Theorem 2].
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Theorem 3 Let R be a PI-algebra over a field of characteristic zero. If exp(R) ≥ 2
then

C1n
t1exp(R)n ≤ czn(R) ≤ C2n

t2exp(R)n,

for some constants C1 > 0, C2, t1, t2. Hence expz(R) exists and expz(R) =
exp(R). If exp(R) = 0 then expz(R) = 0 and if exp(R) = 1 then expz(R) = 0 or
1.

Proof Assume as we may that F is algebraically closed and R = G(A) with A is a
finite dimensional superalgebra.

Suppose exp(R) ≥ 2 and let V = var(G(A)) be the variety of algebras
generated by the algebraG(A). By the solution of the Specht problem due to Kemer
(see [19]), every T-ideal is finitely generated as a T-ideal. Hence the variety V
contains a subvariety W which is minimal of exponent exp(R) = exp(W) =
exp(V). Hence there exists a minimal superalgebra B such that W = var(G(B)).

Suppose that B is not a simple superalgebra. If f ∈ Idz(G(A)) is a central
polynomial of G(A), by Lemma 2 f is an identity of G(B). Hence Idz(G(A)) ⊆
Idz(G(B)) = Id(G(B)). This says that czn(G(A)) ≥ cn(G(B)), and since
cn(G(B)) has a lower bound as in (8), we get the desired lower bound of czn(G(A)).

When B is a simple superalgebra, we refer the reader to the proof in [15]. ��
We remark that by [11, Theorem 7.2.4] when exp(R) ≤ 1, the algebra R has

the same identities as a finite dimensional algebra A and the case expz(R) =
expz(A) = 0 can be characterized as follows [14, Proposition 1].

Proposition 1 Let A be a finite dimensional algebra such that expz(A) = 0. Then
A = A1 ⊕ A2 where A1 is a nilpotent algebra and A2 is a commutative algebra.

Proof If czn(A) = 0 for some n ≥ 2, then any monomial of degree n is a central
polynomial of A. In particular, x1 · · · xn is a central polynomial.

Write A = Ā+ J where Ā = A1 ⊕ · · · ⊕ Am is a sum of simple algebras and J
is the Jacobson radical. Since x1 · · · xn is central, we get that A1 � · · · � Am � F
and they are central subalgebras.

Let e be the unity of A1. Write J = J0 ⊕ J1 where xe = ex = 0 if x ∈ J0 and
ye = ey = y if y ∈ J1. Also for i = 2, . . . ,m, since eAi = 0 we get that AiJ1 = 0.
It follows that A = (A1 + J1) ⊕ (A2 + · · · + Am + J0). Notice that A1 + J1 is
commutative since y = en−1y lies in the center of A for any y ∈ J1. Repeating this
procedure we get A = C1 ⊕ · · · ⊕ Cm ⊕ I where all C1, . . . , Cm are commutative
and I ⊂ J is nilpotent. ��

7 Non Associative Algebras

One may wonder if the results about the growth of central polynomials still holds for
non associative algebras. Starting with the free non associative algebra of countable
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rank F {X} over a field F of characteristic zero, we consider the space of non
associative multilinear polynomials in the first n variables. If A is an algebra over
F , we defines similarly the spaces Pn(A), Pzn (A), �n(A) and the corresponding
dimensions cn(A), czn(A), δn(A).

It is well-known that for a non associative PI-algebra A the codimensions
are not necessarily exponentially bounded. In [16] it was shown that even if the
codimensions of an algebra A are exponentially bounded and the PI-exponent
exp(A) exists, exp(A) is not necessarily an integer. In fact, for any real number
α > 1 an algebra Rα was constructed such that exp(Rα) exists and equals α.

Now, for any finite dimensional algebra A the sequence cn(A), n = 1, 2, , . . .,
is exponentially bounded (see [1, 12]). Hence from the equality in (2) for nonasso-
ciative polynomials, it follows that in this case also the sequences czn(A) and δn(A),
n = 1, 2, . . ., are exponentially bounded.

Here we want to point out that even for finite dimensional algebras the central
exponent and the proper central exponent, even if they exist, can be non integer.

To this end we let A be the algebra over F with basis {e−1, e0, e1, e2, z} and
multiplication table given by

e−1e0 = e−1, e−1e1 = e0, e−1e2 = e0e1 = e1, e0e2 = e2, e2e2 = z,

and all the other products equal to zero.
ClearlyA is a five-dimensional non associative algebra and it can be checked that

its center is Z(A) = Fz = annA(A).
Also A is a Z-graded algebra: A = ⊕i∈ZAi , where A−1 = Fe−1, A0 = Fe0,

A1 = Fe1, A2 = Fe2, A4 = Fz, and Ai = 0, for all other i ∈ Z.
Notice that if f is a multilinear polynomial and we evaluate f in the given basis

of A, then the corresponding value will lie in a homogeneous componentAi .
In what follows we shall use the notation a1a2 · · · an to indicate the left-normed

product of a1, a2, . . . , an, i.e., a1a2a3 = (a1a2)a3 and inductively a1a2 · · · am =
(a1a2 · · · am−1)am. In this notation we can write

St4(x1, . . . , x4) =
∑

σ∈Sym4

(sgn σ)xσ(1) · · · xσ(4), (9)

where all monomials on the right hand side of (9) are left normed.

Remark 3 ([17, Remark 1])

St4(x1, . . . , x4)St4(y1, . . . , y4) (10)

is a multilinear proper central polynomial of A.

It can be shown that if χλ is an Sn-character appearing with non-zero multiplicity
in one of the cocharacters of A (see (3)), then λ has at most four parts. Then for a
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partition λ = (λ1, . . . , λ4) � n we define the function

&(λ) =
(
λ1

n

)− λ1
n
(
λ2

n

)− λ2
n
(
λ3

n

)− λ3
n
(
λ4

n

)− λ4
n

.

Here some of the parts λk, 2 ≤ k ≤ 4, could be zero and in this case we set

( λk
n
)−

λk
n = 1.

We remark that the definition of &(λ) can be generalized to the real numbers
0 ≤ α1, . . . , α4 ≤ 1 such that α1 + · · · + α4 = 1 by setting

&(α1, . . . , α4) = α−α1
1 · · ·α−α4

4 . (11)

We are now ready to introduce the candidates for exp(A), expz(A) and expδ(A).
Let T be the domain of R4 defined by the conditions

⎧
⎨

⎩

α1 + · · · + α4 = 1,
−α1 + α3 + 2α4 = 0,
α1 ≥ · · · ≥ α4 ≥ 0.

(12)

Since the function & is continuous, it takes a maximal value &max on the compact
set T .

We start by stating a technical result which is a consequence of [21] and [5] (see
[17, Proposition 2]).

Proposition 2 The function &(α1, . . . , α4) defined in (11) reaches the maximal
value on the compact set T in the point β = (β1, β2, β3, β4) where β1 ≈
0.421350946, β2 ≈ 0.276953179, β3 ≈ 0.182040800, β4 ≈ 0.119655073, and
&max ≈ 3.610718614.

Remark 4 Notice that β1 + · · · + β4 ≈ 1 and β2 − β3 < β4.

The final result of this section is the following [17, Theorem 2, Theorem 3].

Theorem 4 The exponents exp(A), expz(A) and expδ(A) exist. Moreover,

exp(A) = expz(A) = expδ(A) = &max.

The above Theorem 4 and Proposition 2 say that the five-dimensional non-
associative algebra A has the property that the three exponents , exp, expz, expδ

exist and their value is exp(A) = expz(A) = expδ(A) ≈ 3.610718614, a non
integer.
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Trace Identities on Diagonal Matrix
Algebras

Antonio Ioppolo, Plamen Koshlukov, and Daniela La Mattina

Dedicated to our dear colleague and friend Professor Antonio
Giambruno on the occasion of his seventieth anniversary.

Abstract LetDn be the algebra of n×n diagonal matrices. On such an algebra it is
possible to define very many trace functions. The purpose of this paper is to present
several results concerning trace identities satisfied by this kind of algebras.

Keywords Polynomial identities · Traces · Diagonal matrices · Codimensions

1 Introduction

The invariant theory of n × n matrices and the consequent theory of trace
identities represent an interesting object of study and an important area of modern
Mathematics. The methods and the main results in this field, obtained independently
by Procesi [22] and Razmyslov [23], are one of the basic tools needed in order to
develop the theory of PI-algebras.

Concerning the theory of polynomial identities, a key year is the 1972, when
Regev introduced the famous codimension sequence of an associative algebra, a
function measuring, in some sense, the growth of the identities of the algebra. He
proved [24] that for a PI-algebra (an algebra satisfying a non-trivial identity) such a
sequence is exponentially bounded. More than 20 years later, Giambruno and Zaicev
[5, 6] proved that every variety of associative algebras over a field of characteristic
zero has an integral exponential growth, answering positively to a famous conjecture
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posed by Amitsur in the early ’80. We recall an important result obtained in 1979 by
Kemer. He characterized the varieties of associative algebras having a polynomially
bounded codimension sequence [21].

In recent years a lot of papers concerning associative algebras endowed with
some additional structure, and their polynomial identities, have been published. In
them it is possible to find several analogues of the celebrated results mentioned
above (see for instance [1, 2, 4, 7–19, 25]).

In this paper we are interested in trace polynomial identities for matrix algebras.
The algebra Mn(F) of n × n matrices endowed with the usual trace represents
one of the most famous examples of algebras with trace. Procesi and Razmyslov,
in the papers mentioned above, described the trace identities of such an algebra
over a field of characteristic 0. It turns out that they are consequences of the well-
known Cayley–Hamilton polynomial written in terms of the traces of the matrix
and its powers (and then linearised). We must note here that as it often happens, the
simplicity of the statement of the theorem due to Razmyslov and Procesi is largely
misleading, and that the proofs are very sophisticated and extensive. We also recall
that the theorem of Razmyslov and Procesi is one of the most general results in PI
theory. No analogues of it are known for the ordinary identities for the n×nmatrices
with n > 2, and it seems to us that with the methods at hand nowadays it would be
hardly possible to obtain such analogues.

Among matrix algebras, in this paper we focus our attention on the algebra Dn
of n × n diagonal matrices. On such an algebra it is possible to define very many
traces: in fact, sinceDn is commutative, a trace on it is just a linear function. This is
in sharp contrast with the situation of full matrix algebras: in this case, every trace
function is a scalar multiple of the usual trace.

The paper is organized in the following way. After two sections of preliminaries,
we present results concerning the algebraDn endowed with a particular trace. Then,
in the last sections dedicated to D2 and D3, we study the polynomial identities
satisfied by these algebras endowed with all possible traces.

2 Preliminaries

Throughout this paper F will denote a field of characteristic zero and A a unitary
associative F -algebra. We say that A is an algebra with trace if it is endowed with a
linear map tr : A→ F such that for all a, b ∈ A one has

tr(ab) = tr(ba).

Accordingly, one can construct F 〈X,Tr〉, the free algebra with trace on the
countable set X = {x1, x2, . . .} where Tr is a formal trace. Let M denote the set
of all monomials in the elements of X. Then F 〈X,Tr〉 is the algebra generated by
the free algebra F 〈X〉 together with the set of central (commuting) indeterminates
Tr(M), M ∈ M, subject to the conditions that Tr(MN) = Tr(NM), and
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Tr(Tr(M)N) = Tr(M)Tr(N), for allM , N ∈ M. In other words,

F 〈X,Tr〉 � F 〈X〉 ⊗ F [Tr(M) | M ∈ M].

The elements of the free algebra with trace are called trace polynomials.
A trace polynomial f (x1, . . . , xn,Tr) ∈ F 〈X,Tr〉 is a trace identity for A if,

after substituting the variables xi with arbitrary elements ai ∈ A and Tr with the
trace tr, we obtain 0 ∈ A. We denote by Idt r (A) the set of trace identities of A,
which is a trace T -ideal of the free algebra with trace, i.e., an ideal invariant under
all endomorphisms of F 〈X,Tr〉.

As in the ordinary case, Idt r (A) is completely determined by its multilinear
polynomials.

Definition 1 The vector space of multilinear elements of the free algebra with trace
in the first n variables is called the space of multilinear trace polynomials in x1, . . . ,
xn and it is denoted byMTn (MT comes from mixed trace). Its elements are linear
combinations of expressions of the type

Tr(xi1 · · · xia ) · · ·Tr(xj1 · · · xjb )xl1 · · · xlc
where {i1, . . . , ia, . . . , j1, . . . , jb, l1, . . . , lc} = {1, . . . , n}.
Remark 1 It is well known that dimF MTn = (n+ 1)!.

The non-negative integer

ctrn (A) = dimF
MTn

MTn ∩ Idt r (A)

is called the n-th trace codimension of A.
A prominent role among the elements of MTn is played by the so-called pure

trace polynomials, i.e., polynomials such that all the variables x1, . . . , xn appear
inside a trace.

Definition 2 The vector space of multilinear pure trace polynomials in x1, . . . , xn
is the space

PTn = spanF
{
Tr(xi1 · · · xia ) · · ·Tr(xj1 . . . xjb ) : {i1, . . . , jb} = {1, . . . , n}} .

For a permutation σ ∈ Sn we write

σ−1 = (
i1 · · · ir1

) (
j1 · · · jr2

) · · · (l1 · · · lrt
)

as a product of disjoint cycles, including one-cycles and let us assume that r1 ≥
r2 ≥ · · · ≥ rt . In this case we say that σ is of cyclic type λ = (r1, . . . , rt ). Assume
further that each cycle has in its leftmost position the least integer that it moves.
That is i1 is the least element in the first cycle, j1 in the second, and so on. We then
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define the pure trace monomial ptrσ ∈ PTn as

ptrσ (x1, . . . , xn) = Tr
(
xi1 · · · xir1

)
Tr

(
xj1 · · · xjr2

)
· · ·Tr

(
xl1 · · · xlrt

)
.

Moreover, we define the so-called trace monomialmtrσ ∈ MTn−1 so that

ptrσ (x1, . . . , xn) = Tr (mtrσ (x1, . . . , xn−1)xn) .

3 Matrix Algebras with Trace

In this section we study matrix algebras with trace. LetMn :=Mn(F) be the algebra
of n × n matrices over F . One can endow such an algebra with the usual trace on
matrices, denoted t1, and defined as

t1(a) = t1

⎛

⎜⎝
a11 · · · a1n
...
. . .

...

an1 · · · ann

⎞

⎟⎠ = a11 + · · · + ann ∈ F.

The following lemma is a well known result of elementary linear algebra.

Lemma 1 Let f : Mn → F be a trace. Then there exists α ∈ F such that f = αt1.
In what follows we shall use the notation tα to indicate a trace on Mn such that

tα = αt1. Moreover,Mtα
n will denote the algebra of n × n matrices endowed with

the trace tα .
In sharp contrast with the above result, there are very many traces on the algebra

Dn = Dn(F) of diagonal matrices over F . The following lemma shows this
situation.

Lemma 2 If tr is a trace on Dn then there exist scalars α1, . . . , αn ∈ F such that
for each diagonal matrix a = diag(a11, . . . , ann) ∈ Dn one has

tr(a) = α1a11 + · · · + αnann.

Proof The algebra Dn � Fn is commutative, and Dn � Fn with component-wise
operations. Hence a linear function tr : Dn → F must be of the form stated in the
lemma. Clearly for each choice of the scalars αi one obtains a trace onDn.

We shall denote the trace tr such that, for all a = diag(a11, . . . , ann) ∈ Dn,
tr(a) = α1a11 + · · · + αnann, for some fixed scalars α1, . . . , αn ∈ F , with the
symbol tα1,...,αn . At the same time, to indicate that the algebra Dn is endowed with

such a trace, we shall write D
tα1,...,αn
n .

We have the following remark.
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Remark 2 Let Sn be the symmetric group of order n on the set {1, 2, . . . , n}. For

every σ ∈ Sn, the algebras D
tα1 ,...,αn
n and D

tασ(1),...,ασ(n)
n are isomorphic, as algebras

with trace.

Proof We need only to observe that the linear map ϕ : Dtα1 ,...,αn
n → D

tασ(1),...,ασ(n)
n ,

defined by ϕ(eii) = eσ(i)σ (i), for all i = 1, . . . , n, is an isomorphism of algebras
with trace.

Recall that a trace function tr on an algebra A is said to be degenerate if there
exists a non-zero element a ∈ A such that

tr(ab) = 0

for every b ∈ A. This means that the bilinear form f (x, y) = tr(xy) is degenerate
on A. In the following lemma we describe the non-degenerate traces on Dn.

Lemma 3 Let D
tα1 ,...,αn
n be the algebra of n × n matrices endowed with the trace

tα1,...,αn . Such a trace is non-degenerate if and only if all the scalars αi are non-zero.

Proof Let tα1,...,αn be non-degenerate and suppose that there exists i such that αi =
0. Consider the matrix unit eii . It is easy to see that we reach a contradiction since,
for any element diag(a11, . . . , ann) ∈ Dn, we get

tα1,...,αn(eiidiag(a11, . . . , ann)) = tα1,...,αn(eiiaii) = αiaii = 0.

In order to prove the opposite direction, let us assume that all the scalars αi are non-
zero. Suppose, by contradiction, that the trace tα1,...,αn is degenerate. Hence there
exists a non-zero element a = diag(a11, . . . , ann) ∈ Dn such that tα1,...,αn (ab) = 0,
for any b ∈ Dn. In particular, let b = eii , for i = 1, . . . , n. We have that

tα1,...,αn(aeii) = tα1,...,αn(diag(a11, . . . , ann)eii ) = tα1,...,αn(aiieii) = αiaii = 0.

Since αi � 0, for all i = 1, . . . , n, we get that aii = 0 and so a = 0, a contradiction.
The proof is complete.

4 Some Results on Dn

In this section we deal with the algebraD
tα1,...,αn
n , i.e., the algebraDn endowed with

the trace tα1,...,αn , defined as

tα1,...,αn

⎛

⎜⎝
a11 . . . 0
...
. . .

...

0 . . . ann

⎞

⎟⎠ = α1a11 + · · · + αnann.
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Here we want to highlight that if α1 = · · · = αn = 0, then Dn is just an ordinary
commutative algebra (with a zero trace). As Dn is unitary it is not nilpotent. Hence
the T -ideal of identities is generated by just the commutator and its codimension
sequence is equal to 1.

The first goal of this section is to find the generators of the T tr -ideal of identities
of the algebraD

tα,...,α
n . Here α1, . . . , αn are all equal to a non-zero scalar α.

To this end, given a trace polynomial f (x1, . . . , xk,Tr) ∈ MTk , we start by
constructing a new trace polynomial f α(x1, . . . , xk,Tr) in the following way.
For every monomial Ms(x1, . . . , xk) of f (x1, . . . , xk,Tr) containing s traces,
f α(x1, . . . , xk,Tr) contains the monomial

α−sMs(x1, . . . , xk).

Lemma 4 Let the algebraDn be endowed with the usual trace t1,...,1 or with a trace
tα,...,α, for some α ∈ F \ {0}. A trace polynomial f (x1, . . . , xk,Tr) is an identity of
D
t1,...,1
n if and only if f α(x1, . . . , xk,Tr) is an identity ofD

tα,...,α
n .

Proof We need only to observe that, for any a1, . . . , ak ∈ Dn, the following
evaluations coincide:

f (a1, . . . , ak, t1,...,1) = f α(a1, . . . , ak, tα,...,α).

Let now

Ck(x1, . . . , xk) =
∑

σ∈Sk+1

(−1)σmtrσ (x1, . . . , xk)

be the k-th Cayley–Hamilton polynomial, k ≥ 2.

Theorem 1 Let α ∈ F \{0}. The trace T -ideal Idt r (Dtα,...,αn ) is generated, as a trace
T -ideal, by the polynomials:

1. [x1, x2],
2. Cαn (x1, . . . , xn).

Proof For α = 1, the result was proved by Berele in [3, Theorem 2.1]. Using the
same idea one deals with the case α � 1.

We conclude this section with the following result in which the algebra Dn is
endowed with a trace tα1,...,αn .

Theorem 2 Let D
tα1,...,αn
n be the algebra of n × n diagonal matrices endowed with

the trace tα1,...,αn . If there exist i, j such that αi , αj � 0 and αi � αj , then D
tα1,...,αn
n

does not satisfy any multilinear trace identity of degree n which is not a consequence
of the identity [x1, x2] ≡ 0.
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Proof Modulo the identity [x1, x2] ≡ 0, a generic multilinear trace identity f of
degree n should be of the type

f (x1, . . . , xn) =
∑

a
I1,...,Is
μ1,...,μs Tr

(
x
i
(1)
1

· · · x
i
(1)
μ1

)
· · ·Tr

(
x
i
(s−1)
1

· · · x
i
(s−1)
μs

)
x
i
(s)
1

· · · x
i
(s)
μs

where

• s = 0, . . . , n and μ1 + · · · + μs = n,
• 0 ≤ μ1 ≤ · · · ≤ μs ≤ n,
• Ij = {i(j)1 , . . . , i

(j)
μj }, i(j)1 < · · · < i(j)μj , j =1, . . . , s.

Notice that two traces with the same number of elements are ordered in the
following way: we put first the trace with the least index of the first variable.

In order to prove the result we will show that actually f is the zero polynomial.
We assume that all the scalars α1, . . . , αn are non-zero (with few changes it is easy
to deal with the general case).

First we introduce the following notation. We say that a monomialM of f is of
the type

(μ1, . . . , μs), μ1 ≤ · · · ≤ μs,

if the variables of M are divided in s groups of length μ1, . . . , μs , respectively,
which are inside s traces (in this case, inM there are no variables outside the traces)
or inside s − 1 traces and a group of variables outside the traces. For example, the
following monomials are both of type (μ1, . . . , μs):

Tr
(
x
i
(1)
1
· · · x

i
(1)
μ1

)
· · ·Tr

(
x
i
(s)
1
· · · x

i
(s)
μs

)
,

Tr
(
x
i
(1)
1
· · · x

i
(1)
μ1

)
· · ·Tr

(
x
i
(s−1)
1

· · · x
i
(s−1)
μs−1

)
x
i
(s)
1
· · · x

i
(s)
μs
.

Moreover, we shall introduce the following order on the types of a monomial. We
say that the type (μ1, . . . , μs) is greater than the type (η1, . . . , ηr ), and we write
(μ1, . . . , μs) , (η1, . . . , ηr ), if

• s > r or
• s = r and μs > ηs .
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Now we can start by considering the greatest type, which is (1, . . . , 1). The
monomials of f of this type, with the corresponding scalars, are the following:

a
{x1},...,{xn},∅
1,...,1,0 Tr(x1) · · ·Tr(xn),

a
{x1},...,{xn}
1,...,1 Tr(x1) · · ·Tr(xn−1)xn,

...

a
{x2},...,{xn},{x1}
1,...,1 Tr(x2) · · ·Tr(xn)x1.

Let us consider the evaluation xi = eii , i = 1, . . . , n. It is clear that all the
monomials of f which are not of the type (1, . . . , 1) vanish under this evaluation.
For any i = 1, . . . , n, it follows that

a
{x1},...,{xn},{xi }
1,...,1 = −αi a{x1},...,{xn},∅

1,...,1,0 .

By hypothesis, there exist i, j such that αi � αj . We shall consider another
evaluation: xi = ejj , xj = eii and xl = ell , for all l � {i, j }. As before, we get
that

a
{x1},...,{xn},{xi }
1,...,1 = −αj a{x1},...,{xn},∅

1,...,1,0 .

Since αi � αj , we get that a{x1},...,{xn},∅
1,...,1,0 = 0. As a consequence, we have also that

a
{x1},...,{xn}
1,...,1 = · · · = a{x2},...,{xn},{x1}

1,...,1 = 0.

In conclusion, we have proved that all the scalars corresponding to the type
(1, . . . , 1) are actually zero.

The proof now continues in the same way. We consider the greatest remaining
type (μ1, . . . , μs) (at the first step it will be (1, . . . , 1, 2)) and we shall prove that
all the scalars corresponding to such monomials are actually zero.

Let M be the following monomial of f of type (μ1, . . . , μs) with no variables
outside the traces:

M = aJ1,...,Js ,∅
μ1,...,μs,0

Tr
(
x
j
(1)
1
· · · x

j
(1)
μ1

)
· · ·Tr

(
x
j
(s)
1
· · · x

j
(s)
μs

)
,

with fixed J1 = {j (1)1 , . . . , j
(1)
μ1 }, . . . , Js = {j (s)1 , . . . , j

(s)
μs }.

We consider the evaluation:

x
j
(l)
h

= ell, h = 1, . . . , μl, l = 1, . . . , s. (1)

As before, all the monomials of f of type less than (μ1, . . . , μs) vanish under
this substitution. Moreover, the same will happen to any other monomial of f ,
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distinct from M , of type (μ1, . . . , μs) and with no variables outside the traces (in
fact, some variables will be in other traces, compared to where they were inM).

Let now M ′ be a generic monomial of f of type (μ1, . . . , μs) with variables
outside the traces

aI1,...,Isη1,...,ηs
Tr

(
x
i
(1)
1
· · · x

i
(1)
η1

)
· · ·Tr

(
x
i
(s−1)
1

· · · x
i
(s−1)
ηs−1

)
x
i
(s)
1
· · · x

i
(s)
ηs
.

Here {η1, . . . , ηs} = {μ1, . . . , μs} and Ij = {i(j)1 , . . . , i
(j)
ηj }, i(j)1 ≤ · · · ≤ i

(j)
ηj ,

j = 1, . . . , s.
It is not difficult to see that, under the above evaluation, the monomial M ′ does

not vanish if and only if

{I1, . . . , Is } = {J1, . . . , Js}.

In conclusion, under this evaluation, we obtain

f = aJ1,...,Js ,∅
μ1,...,μs ,0

α1 · · ·αsIn + aJ1,...,Js
μ1,...,μs

α1 · · ·αs−1ess+
a
J1,...,Js ,Js−1
μ1,...,μs ,μs−1α1 · · ·αs−2αses−1s−1 + · · ·+
aJ1,J3...,Js ,J2
μ1,μ3...,μs,μ2

α1α3 · · ·αse22 + aJ2,...,Js ,J1
μ2,...,μs ,μ1

α2 · · ·αse11 = 0.

Recalling that In = e11 + · · · + enn and that n > s (in fact s = n only in the first
step of the proof), since α1, . . . , αs � 0, we immediately get that

a
J1,...,Js ,∅
μ1,...,μs ,0

= aJ1,...,Js
μ1,...,μs

= aJ1,...,Js ,Js−1
μ1,...,μs,μs−1 = · · · = aJ1,J3...,Js ,J2

μ1,μ3...,μs ,μ2
= aJ2,...,Js ,J1

μ2,...,μs,μ1
= 0.

We are left to deal with the remaining monomials of type (μ1, . . . , μs). The
procedure is the same. We consider one monomial with no variables outside the
traces and make a suitable evaluation like that one in (1). As before, it follows that
all the scalars corresponding to monomials of type (μ1, . . . , μs) are actually zero.

Now it is sufficient to deal with the new greater type and the theorem is proved.

5 Trace Identities on D2

In this section we deal with the algebraD2 of 2× 2 diagonal matrices over the field
F . In accordance with the results of Sect. 3, we can define onD2, up to isomorphism,
the following kinds of trace functions:

1. tα,0, for any α ∈ F ,
2. tα,α , for any non-zero α ∈ F ,
3. tα,β , for any distinct non-zero α, β ∈ F .
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Our goal is to find the generators of the T tr -ideal of the identities of the algebra
D2 endowed with a trace of the above kinds.

Let us start with the case ofD
tα,0
2 . Recall that, if α = 0, thenD2 is just an ordinary

algebra with T -ideal of identities generated by the commutator and codimensions
sequence equal to 1.

For α � 0, we have the following result.

Theorem 3 Let α ∈ F \ {0}. The trace T -ideal Idt r (Dtα,02 ) is generated, as a trace
T -ideal, by the polynomials:

• f1 = [x1, x2],
• f2 = Tr(x1)Tr(x2)− αTr(x1x2).

Moreover

ctrn (D
tα,0
2 ) = 2n.

Proof It is clear that T = 〈f1, f2〉T tr ⊆ Idt r (D
tα,0
2 ).

We need to prove the opposite inclusion. First we claim that the polynomials

Tr(xi1 · · · xik )xj1 · · · xjn−k , (2)

where {i1, . . . , ik, j1, . . . , jn−k} = {1, . . . , n} , i1 < · · · < ik, j1 < · · · < jn−k ,
span MTn modulo MTn ∩ T , for every n ≥ 1. In fact, because of the identity
f2 ≡ 0, we can kill all products of two traces (and more than two traces). So we
may consider only monomials with either no trace or with one trace. Clearly the
identity f1 implies that we can assume all of these monomials ordered, outside and
also inside each trace. The claim is proved.

Our next goal is to show that the polynomials in (2) are linearly independent
modulo Idt r (D

tα,0
2 ). To this end, let g(x1, . . . , xn,Tr) be a linear combination of the

above polynomials which is a trace identity:

g(x1, . . . , xn,Tr) =
∑

I,J

aI,JTr(xi1 · · · xik )xj1 · · · xjn−k ,

where I = {xi1, . . . , xik }, J = {xj1, . . . , xjn−k } and i1 < · · · < ik, j1 < · · · < jn−k .
We claim that g is actually the zero polynomial. Suppose that, for some fixed

I = {xi1, . . . , xik } and J = {xj1, . . . , xjn−k }, one has that aI,J � 0. We consider the
following evaluation:

xi1 = · · · = xik = e11, xj1 = · · · = xjn−k = e22, Tr = tα,0.

It follows that g(e11, . . . , e11, e22, . . . , e22, tα,0) = aI,J αe22 = 0. Hence aI,J = 0.
The claim is proved and so

Idt r (D
tα,0
2 ) = T .
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Finally, in order to compute the codimension sequence of our algebra, we have only
to count the number of elements in (2). Fixed k, there are exactly

(
n
k

)
elements of the

type Tr(xi1 · · · xik )xj1 · · · xjn−k , i1 < · · · < ik, j1 < · · · < jn−k . Hence the number
of elements in (2) is

∑n
k=0

(
n
k

) = 2n and the proof is complete.

The T tr -ideal of identities of the algebra D
tα,α
2 is given in Theorem 1 for n = 2.

However, a complete proof of the next result can be found in [20].

Theorem 4 Let α ∈ F \ {0}. The trace T -ideal Idt r (Dtα,α2 ) is generated, as a trace
T -ideal, by the polynomials:

• f1 = [x1, x2],
• f3 = Cα2 (x1, x2).

Moreover

ctrn (D
tα,α
2 ) =

n∑

k=0

(
n

k

)
= 2n.

We conclude this section by considering the case ofD
tα,β
2 . The following theorem

is proved in [20].

Theorem 5 Let α, β ∈ F \ {0}, α � β. The trace T -ideal Idt r (Dtα,β2 ) is generated,
as a trace T -ideal, by the polynomials:

• f1 = [x1, x2],
• f4 = −x1Tr(x2)Tr(x3) + (α + β)x1Tr(x2x3) + x3Tr(x1)Tr(x2) − (α +
β)x3Tr(x1x2)− Tr(x1)Tr(x2x3)+ Tr(x3)Tr(x1x2),

• f5 = Tr(x1)Tr(x2)Tr(x3)−(αβ2+α2β)x1x2x3+αβx1x2Tr(x3)+αβx1x3Tr(x2)+
αβx2x3Tr(x1) − (α + β)x1Tr(x2)Tr(x3) + (α2 + αβ + β2)x1Tr(x2x3) −
αβx2Tr(x1x3)− αβx3Tr(x1x2)+ αβTr(x1x2x3)− (α + β)Tr(x1)Tr(x2x3).

Moreover

ctrn (D
tα,β
2 ) = 2n+1 − n− 1.

6 Trace Identities on D3

In this section, we focus our attention on the trace identities of the algebra D3 of
3×3 diagonal matrices over the field F . By taking into account the results of Sect. 3,
it is easy to see that onD3, up to isomorphism, it is possible to define the following
kinds of trace functions:

1. tα,0,0, for any α ∈ F ,
2. tα,α,0, for any non-zero α ∈ F ,
3. tα,β,0, for any distinct non-zero α, β ∈ F .



222 A. Ioppolo et al.

4. tα,α,α , for any non-zero α ∈ F ,
5. tα,β,β , for any distinct non-zero α, β ∈ F ,
6. tα,β,γ , for any distinct non-zero α, β, γ ∈ F .

Let us start with the case of D
tα,0,0
3 . Recall that, if α = 0, then D3 is just an

ordinary algebra with T -ideal of identities generated by the commutator. Moreover
its codimension sequence is constant equal to 1.

If α � 0, the case ofD
tα,0,0
3 is solved with the same approach with which we have

found out the generators of Idt r (D
tα,0
2 ). Actually, exactly the same proof allows us

to state the following general result.

Theorem 6 Let α ∈ F \ {0}. Then Idt r (D
tα,0,...,0
n ) is generated, as a trace T -ideal,

by the polynomials:

• f1 = [x1, x2],
• f2 = Tr(x1)Tr(x2)− αTr(x1x2).

Moreover

ctrn D
tα,0,··· ,0
n = 2n.

Concerning the algebraD
tα,α,0
3 we have the following result.

Theorem 7 Let α ∈ F \ {0}. The trace T -ideal Idt r (Dtα,α,03 ) is generated, as a trace
T -ideal, by the polynomials:

• f1 = [x1, x2],
• f6 = Tr(x1)Tr(x2)Tr(x3)+2α2Tr(x1x2x3)−αTr(x1)Tr(x2x3)−αTr(x2)Tr(x1x3)−
αTr(x3)Tr(x1x2).

Proof Write T = 〈f1, f6〉T tr . It is easy to see that T ⊆ Idt r (D
tα,α,0
3 ).

In order to prove the opposite inclusion let f ∈ MTn be a multilinear trace
polynomial of degree n. Hence it is a linear combination of polynomials of the type

Tr(xi1 · · · xia ) · · ·Tr(xj1 · · · xjb )xl1 · · · xlc ,

where {i1, . . . , ia, . . . , j1, . . . , jb, l1, . . . , lc} = {1, . . . , n}. Because of the identity
f6 ≡ 0, we can kill all products of three traces (and more than three traces).
Considering also the identity f1, which implies that all the variables (inside or
outside a trace) are ordered, we have proved that, for every n ≥ 1, the following
polynomials spanMTn moduloMTn ∩ T :

Tr(xi1 · · · xik )Tr(xj1 · · · xjh)xl1 · · · xln−k−h, (3)

where {i1, . . . , ik, j1, . . . , jh, l1, . . . , ln−k−h} = {1, . . . , n}, and i1 < · · · < ik, j1 <
· · · < jh, l1 < · · · < jn−k−h.
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By using the same idea employed in Theorem 2, we obtain that the above
polynomials are linearly independent modulo Idt r (D

tα,α,0
3 ).

Hence Idt r (D
tα,α,0
3 ) ⊆ T and so we have proved that

Idt r (D
tα,α,0
3 ) = T .

Let us now focus our attention to the case of D
tα,β,0
3 , α, β � 0, α � β.

By Theorem 2, we already know that such an algebra does not satisfy any
multilinear trace identity of degree 3 which is not a consequence of the commutator.
Moreover, thanks to the use of the Computer Algebra System Maxima, we have the
following result.

Lemma 5 Let α, β ∈ F be two distinct non-zero elements. For any r1, r2, r3 ∈ F ,
the following polynomial is an identity of D

tα,β,0
3 :

f7(r1, r2, r3) =+ r1αβTr(x1)Tr(x2x3x4)− (r1(α + β)+ r2 + r3)Tr(x1)Tr(x4)Tr(x2x3)

+ r1αβTr(x2)Tr(x1x3x4)− (r1(α + β)+ r2 + r3)Tr(x2)Tr(x3)Tr(x1x4)

+ r3Tr(x2)Tr(x4)Tr(x1x3)− (α(r1β + r3)+ r3β)Tr(x1x3)Tr(x2x4)

+ r2Tr(x3)Tr(x4)Tr(x1x2)− (α(r1β + r2)+ r2β)Tr(x1x2)Tr(x3x4)

+ (r1β2 + α(r1β + r2 + r3)+ β(r2 + r3)+ r1α2)Tr(x1x4)Tr(x2x3)

+ r3Tr(x1)Tr(x3)Tr(x2x4)− r1(αβ2 + α2β)Tr(x1x2x3x4)

+ r1Tr(x1)Tr(x2)Tr(x3)Tr(x4)+ r2Tr(x1)Tr(x2)Tr(x3x4)

+ r1αβTr(x3)Tr(x1x2x4)+ r1αβTr(x4)Tr(x1x2x3).

Conjecture 1 Let α, β ∈ F \ {0}, α � β. Then Idt r (D
tα,β,0
3 ) is generated, as a trace

T -ideal, by the polynomials:

f1 = [x1, x2], f7(1, 0, 0), f7(0, 1, 0), f7(0, 0, 1).

The T tr -ideal of identities of the algebraD
tα,α,α
3 is given in Theorem 1 for n = 3.

Theorem 8 Let α ∈ F \{0}. The trace T -ideal Idt r (Dtα,α,α3 ) is generated, as a trace
T -ideal, by the polynomials:

1. [x1, x2],
2. Cα3 (x1, x2, x3).

We conclude this paper by dealing with the case of D
tα,β,β
3 and D

tα,β,γ
3 , where

α, β, γ are distinct non-zero elements of the field F . The situation in these two
cases is much more complicated and we have only partial results.
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First, let us consider the algebra D
tα,β,β
3 . By Theorem 2 we already know that

such an algebra does not satisfy any multilinear trace identity of degree 3 which is
not a consequence of the commutator. Concerning the trace identities of degree 4
we have the following results.

Lemma 6 The modified Cayley–Hamilton polynomial Cβ4 (x1, x2, x3, x4) is a trace

identity ofD
t2β,β,β
3 .

Conjecture 2 The algebra D
tα,β,β
3 , with α � 2β, does not satisfy any multilinear

trace identity of degree 4 which is not a consequence of the commutativity.

Finally, for the algebra D
tα,β,γ
3 , where α, β, γ are distinct non-zero elements of

the field F , we have no identities of degree 3 which are not a consequence of the
commutator (see Theorem 2). Moreover, according to several computations made
on Maxima, we can conjecture that the same happens also at degree 4.

Thanks to the software Maxima we have the following result.

Lemma 7 Let α, β, γ ∈ F be three distinct non-zero elements. Then the algebra
D
tα,β,γ
3 satisfies a trace identity of degree 5.
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Abstract LetK be a field of characteristic zero. We study the asymptotic behavior
of the codimensions for polynomial identities of representations of Lie algebras,
also called weak identities. These identities are related to pairs of the form (A,L)
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1 Introduction

Let K be a field of characteristic zero. A pair (A,L) where A is an associative
enveloping algebra for the Lie algebra L is said to be an associative–Lie pair. If
ρ : L→ gl(V ) is a representation of the Lie algebra L one obtains an associative–
Lie pair (A, ρ(L)). Here A is the associative subalgebra of EndK(V ) generated
by ρ(L). The polynomial identities of the representation ρ are the identities of
the pair (A, ρ(L)). Sometimes these are also called weak identities. They were
introduced by Razmyslov in [25] in his research which led to the description of
the identities of the matrix algebra M2(K). Razmyslov obtained a finite basis
for the identities of the Lie algebra sl2(K), as well as the weak identities of the
pair (M2(K), sl2(K)), and in this way he managed to describe the identities of
M2(K).

Denote by Pn the vector space of all multilinear polynomials of degree n in
the variables x1, . . . , xn in the free associative algebra K〈X〉 freely generated over
K by X = {x1, x2, . . . }. As in the case of ordinary identities for associative or
Lie algebras, since charK = 0 it suffices to study only multilinear polynomial
identities of (A,L). If (A,L) is a pair and Id(A,L) is its weak ideal, that is the
ideal of its weak polynomial identities in K〈X〉, then Id(A,L) is generated as a
weak ideal by the elements in Pn∩Id(A,L) for n ≥ 1. The vector space Pn is a left
module over the symmetric group Sn in a natural way, and it is isomorphic to the
left regular Sn-module KSn. Moreover Pn ∩ Id(A,L) is its submodule. It is more
convenient to consider the factor module Pn(A,L) = Pn/(Pn ∩ Id(A,L)) instead
of Pn ∩ Id(A,L). Following this line one applies the theory of representations of
the symmetric group to the study of weak identities, and in an equivalent form,
the representation of the general linear group. Hence it is important to known the
decomposition of Pn(A,L) into irreducible modules, its character, the generators of
the irreducible modules and so on. One of the most important numerical invariants of
a pair satisfying a non-trivial weak identity is its codimension sequence cn(A,L) =
dimPn(A,L).

In the same manner one defines the Sn-module Pn(B) and its codimension
sequence cn(B) = dimPn(B) for an associative or Lie algebra B. The exact
computation of the associative, Lie, or weak codimensions is extremely difficult;
it has been done for very few algebras and pairs. That is why one is led to study
the asymptotic behavior of the codimensions. In the associative case, Regev in
[26] proved that the codimension sequence of a PI-algebra A is exponentially
bounded. Moreover, in [8, 9] Giambruno and Zaicev proved that the sequence
(cn(A))

1/n converges, and its limit is always an integer, called the PI exponent of
A. Concerning Lie algebras, Zaicev in [28] established that the exponent exists and
is an integer for finite dimensional Lie algebras. For pairs of the form (A, ρ(L))

where ρ is a finite dimensional representation of L, Gordienko in [12] also proved
the existence and integrality of the exponent. The above three results concerning
the integrality of the PI exponent give positive answers to a conjecture due to S.
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Amitsur (stated for the associative case only but easily reformulated for any classes
of algebras).

Given a variety of pairs V, the growth of V is the growth of the codimension
sequence cn(V) associated with the weak ideal Id(V). Of special interest are the
varieties of polynomial growth, that is the varieties of pairs such that the sequence
cn(V) is polynomially bounded. The definitions for varieties of associative or Lie
algebras are the same. In the associative and Lie cases, characterizations of the
varieties with polynomial growth of codimensions in terms of their cocharacter
sequence are well known [2, 15, 22].

It is important to study varieties satisfying extremal properties. One such property
is the almost polynomial growth: that is the varieties whose growth is not polynomial
but every proper subvariety has polynomial growth. In the associative case, by the
results of Kemer in [16], the only associative algebras generating varieties of almost
polynomial growth areE andUT2. Recall here thatE is the Grassmann (or exterior)
algebra of an infinite dimensional vector space, and UT2 stands for the algebra of
the 2 × 2 upper triangular matrices. For Lie algebras, Drensky in [4] proved that
sl2 generates a variety of almost polynomial growth, and this is the only known
non-soluble Lie algebra with this property.

It is well known that if A is an associative PI algebra then its cocharacter
is contained in some hook H(d, l). In other words all irreducible Sn-modules
that appear in the decomposition of Pn(A) correspond to Young diagrams that
are contained in the hook H(d, l) for appropriate integers d and l. Recall that
a partition λ = (λ1, . . . , λr ) � n of n corresponds to a Young diagram in the
hook H(d, l) whenever λd+1 ≤ l. The pair (A,L) is special whenever A is an
associative PI algebra. The pair (A,L) is of associative type if its cocharacter is
contained in a hookH(d, l) for some d and l. Clearly a special pair is of associative
type.

In this paper we study at first the polynomial growth for weak codimensions.
We characterize the varieties of pairs of polynomial growth in terms of their
cocharacter sequence. By the results of Gordienko in [12], such a characterization
is already valid for identities of finite dimensional representations. Afterwards we
are interested in the pairs formed by the algebras UT2, E andM2. Here and in what
followsM2 =M2(K) stands for the matrix algebra of order 2 over the base fieldK ,
and sl2 is the Lie algebra of the traceless 2×2 matrices overK . Hence we obtain the
codimensions, cocharacters and exponents for the pairs (UT2, UT

(−)
2 ), (E,E(−)),

and (M2, sl2). Moreover we prove that they generate varieties of pairs of almost
polynomial growth. Notice that these are pairs associated to representations of Lie
algebras, see Examples 1 and 2 below.

Furthermore we establish a partial analogue of Kemer’s theory for pairs. To this
end we introduce the notion of a graded pair and of a superpair. For the latter
we define its Grassmann envelope and relate the identities satisfied by a pair and
by its Grassmann envelope. This enables us to deduce that if V is a variety of
pairs consisting of pairs of associative type then there exists a superpair whose
Grassmann envelope generates V. As a corollary to the theorem we prove that if
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V is a special variety of pairs over an algebraically closed field, and V does not
contain any pair corresponding to a representation of the Lie algebra sl2 then V is
soluble.

As another consequence of the method we are able to construct an example of a
pair whose PI exponent (if it exists) lies in the open interval (6, 7), and thus cannot
be an integer.

2 Preliminaries

2.1 Generalities

ThroughoutK stands for a field of characteristic 0. All algebras, vector spaces, and
tensor products we consider will be overK .

If A is an associative algebra then considering the vector space of A together
with the Lie bracket [a, b] = ab − ba, a, b ∈ A one obtains a Lie algebra A(−).
An associative algebra A is said to be an enveloping algebra for a Lie algebra L
if L is a Lie subalgebra of A(−) and A (as an associative algebra) is generated
by its vector subspace L. The pair (A,L) where L is a Lie algebra and A is an
enveloping algebra for L is called an associative–Lie pair (or simply pair). The
notions of subpair, homomorphism of pairs and direct product of pairs are defined
in the natural way. IfA is an associative algebra then (A,A(−)) is an associative–Lie
pair. Another important example is obtained from a representation ρ : L → gl(V )

of a Lie algebra L. We consider the associative-Lie pair (A, ρ(L)) where A is the
associative subalgebra of EndK(V ) generated by the image ρ(L). In this case we
say that the pair is associated to the representation ρ.

Let L be a Lie algebra, we denote by ad : L→ gl(L) the adjoint representation
x �→ ad x. For our purpose in this case we consider the action on the right, that
is if x ∈ L we write yad x = [y, x], y ∈ L. Moreover we use L′ to denote the
commutator subalgebra (or derived algebra) of L.

We denote by K〈X〉 the free associative algebra on the countable set X =
{x1, x2, . . . } and by L(X) the Lie subalgebra of K〈X〉(−) generated by the set X.
By the well known theorem of Witt, L(X) is the free Lie algebra. Combining these
two free algebras we obtain the pair (K〈X〉,L(X)) called the free pair generated by
X. The polynomials inK〈X〉 and L(X) are called associative and Lie polynomials,
respectively.

2.2 Polynomial Identities

Let (A,L) be an associative–Lie pair. A polynomial f = f (x1, x2, . . . , xn) ∈
K〈X〉 is called a (weak) identity of the pair (A,L) if f (a1, a2, . . . , an) = 0 in
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the algebra A for every a1, a2, . . . , an ∈ L. In this case we say that (A,L) satisfies
f or that f ≡ 0 on (A,L). The set

Id(A,L) = {f ∈ K〈X〉 | f ≡ 0 in (A,L)}

is a weak ideal, that is an ideal of K〈X〉 invariant under all endomorphisms of the
free pair (K〈X〉,L(X)). In other words if f (x1, . . . , xn) ≡ 0 is an identity of (A,L)
then af (g1, . . . , gn)b ≡ 0 is also an identity of (A,L) for any g1, . . . , gn ∈ L(X)
and a, b ∈ K〈X〉. Let S ⊆ K〈X〉 be a non-empty set. The weak ideal generated by
S, denoted by 〈S〉W , is the intersection of all weak ideals of K〈X〉 that contain S.
We denote by V = V(S) the variety of pairs determined by the set 〈S〉W , that is the
class of all pairs (A,L) such that f ≡ 0 on (A,L) for all f ∈ S, and we write I =
〈S〉W = Id(V). The relatively free pair in V is the pair (K〈X〉/I,L(X)/L(X)∩I),
it is denoted by FX(V). If Id(V) = Id(A,L) then we say that V is generated by
the pair (A,L) and we write V = var(A,L).

The weak identities of a pair (A, ρ(L)) associated to a representation ρ are called
identities of the representation ρ and we denote its ideal of identities by Id(ρ).

We list several important examples of pairs that are associated to representations.

Example 1 The pairs (UT2, UT
(−)

2 ) and (E,E(−)) are associated to representa-

tions. Indeed, for the pair (UT2, UT
(−)

2 ) it is enough to consider the identity

Id : UT (−)2 → gl(V ) where dimV = 2.
For the pair (E,E(−)) let ρ : E(−) → gl(E) be the map given by ρ(x)y = xy

for every x, y ∈ E. It is a well defined injective homomorphism of Lie algebras.
Moreover ρ also defines an injective homomorphism of associative algebras from
E to EndK(E). Hence the associative subalgebra generated by the image of ρ is
ρ(E(−)) � E; it follows that (E,E(−)) is associated to the (infinite dimensional)
representation ρ.

Example 2 Given ρ : sl2 → gl(V ) a nontrivial representation of the Lie algebra
sl2, we have that ρ(sl2) � sl2 since sl2 is simple. Hence, identifying sl2 with its
image, we associate to this representation the pair (A, sl2)whereA is the associative
subalgebra generated by sl2. When dimV = 2, we have the pair (M2, sl2); it is well
known that the associated representation is irreducible.

The polynomial [x ◦ y, z] ≡ 0 where x ◦ y = xy + yx, is a weak identity for the
pair (M2, sl2). In other words, we can say that [x ◦y, z] ≡ 0 is a polynomial identity
of a representation of sl2 of dimension 2. Moreover, when charK = 0, this identity
generates all weak identities of the pair (M2, sl2), that is Id(M2(K), sl2(K)) =
〈[x ◦ y, z]〉W . In fact this identity generates Id(M2(K), sl2(K)) in the more general
case when K is an infinite field of characteristic different from 2, see [18]. It
follows from the results in [6] that in characteristic 0, this identity together with
the standard polynomial of degree 4, St4, generate Id(M2(K), sl2(K)) in a weaker
sense: that is when one is allowed to substitute the variables of a polynomial by
linear combinations of variables only, and to multiply an identity on both sides.
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Analogously to the associative–Lie case we define the polynomial identities for
associative and Lie algebras. For these cases we shall use similar notation for the
ideal of identities. An (associative or Lie) algebra B satisfying a non-trivial identity
is called a PI-algebra and its ideal of identities Id(B) is a T-ideal, that is, it is
invariant by endomorphisms of K〈X〉 and of L(X), respectively. The associative or
Lie varieties are defined in the same way as in the case of pairs and we shall use
analogous notation.

2.3 Multilinear Polynomials. Modules over the Symmetric
Group

As mentioned in Sect. 1 above, in studying the polynomial identities of an algebra
(or a pair) over a field of characteristic 0 one can consider the multilinear
polynomials only. We denote by Pn the vector space of the polynomials in K〈X〉
which are multilinear in x1, . . . , xn. The symmetric group acts on the left-hand side
by permuting the variables and so Pn is a left Sn-module; it is isomorphic to the
regular module KSn. Thus we can identify Pn and KSn as Sn-modules. If (A,L)
is a pair with Id(A,L) its ideal of weak identities, Pn ∩ Id(A,L) is a submodule
of Pn, and the factor Pn(A,L) = Pn/(Pn ∩ Id(A,L)) is also an Sn-module. We
recall briefly some of the notation and facts we shall need from the representation
theory of Sn. The interested reader could consult the monographs [5, Ch. 12] and
[9, Ch. 2] for a detailed treatment of these topics. Here we stick to the notation
from [9], and the notions not explicitly defined here can be found in [9, Ch. 2]. The
facts we recall below are quite well known in the case of identities of an algebra.
We shall need them in the context of pairs, and that is why we decided to include
the main statements we shall need, as well as a good part of the terminology we
will use. The proofs for pairs are literally the same, and that is why we omit them
but cite the corresponding results for algebras. Let λ � n be a partition of n, that
is λ = (λ1, . . . , λr ), λ1 ≥ · · · ≥ λr , and λ1 + · · · + λr = n. We denote by Dλ
its Young diagram. It is an array of r rows, having λi boxes in its ith row and the
rows are aligned at the left. The diagram Dλ′ is the conjugate (or transpose) of Dλ,
it corresponds to the conjugate (transpose) partition λ′ of λ. The Young tableau
Tλ is obtained by filling in the boxes of Dλ with the integers from 1 to n without
repetition. The tableau Tλ is standard if these integers increase along the rows and
also along the columns. Let RTλ and CTλ stand for the row and for the column
stabilizer of Tλ. Put eTλ =

∑
(−1)πσπ ∈ KSn where σ ∈ RTλ , π ∈ CTλ and (−1)π

is the sign of the permutation π . Then eTλ is a scalar multiple of an idempotent (a
semi-idempotent) in the group algebra KSn and the submodule Mλ = KSneTλ is
irreducible. Also if μ � n thenMλ � Mμ if and only if λ = μ.

The degree of the representation Mλ, dimMλ, equals the number of standard
tableaux corresponding to the partition λ. It can be computed by using the hook
formula as follows. Fix a box at position (i, j) in Dλ, then its hook number hij
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equals the quantity of boxes of the ith line on the right of the given box, plus those
of the j th column below that box, plus the box (i, j). Then dimMλ = n!/∏ hij
where (i, j) runs over all boxes ofDλ. We denote by dλ the degree of the moduleMλ
and by χλ its character, then χλ(1) = dλ. Let e1, . . . , edλ be the semi-idempotents
obtained from the standard λ-tableaux. If M is a submodule in KSn isomorphic to
Mλ with semi-idempotent e then e is a linear combination of the ei’s. Moreover
if M is an Sn-module with character χ then χ = ∑

mλχλ where the sum is over
all λ � n, and the multiplicities mλ are nonnegative integers. Given two characters
χ = n1χ1 + n2χ2 + · · · + nq1χq1 and θ = m1χ1 +m2χ2 + · · · +mq2χq2 we denote
χ ⊆ θ if q1 ≤ q2 and ni ≤ mi , i = 1, . . . , q1.

We shall need also the notion of a hook. Let d and l be nonnegative integers,
then H(d, l) is the set of all partitions λ such that λ = (λ1, λ2, . . . ), and λd+1 ≤ l.
So drawing an infinite hook area having an “arm” of height d and a “leg” of width
l, the diagrams of these λ lie in the hook. With certain abuse of notation we write
λ ∈ H(d, l) or Dλ ⊆ H(d, l), and also χλ ⊆ H(d, l). Analogously if M is an
Sn-module with character χ(M) = ∑

mλχλ then M (and χ(M)) lies in H(d, l)
whenever λ ∈ H(d, l) for each λ with mλ > 0. The following two facts were
obtained in [9, Lemmas 6.2.4, 6.2.5], their proofs consist in manipulations with the
Hook formula and the Stirling approximation. If λ and μ are partitions then μ ≤ λ
if Dμ ⊆ Dλ, that is for each i one has μi ≤ λi .
Lemma 1

1. If λ � n and μ � n′ satisfy μ ≤ λ, and if n − n′ ≤ c for some constant c then
dμ ≤ dλ ≤ ncdμ.

2. Fix d and l two nonnegative integers, then there exist constantsC and r such that∑
dλ ≤ Cnr(d + l)n. Here the sum runs over all λ � n with λ ∈ H(d, l). In

particular, whenever l = 0, that is λ ∈ H(d, 0), one has dλ ≤ Cnrdn.
As we already discussed above, we have a structure of an Sn-module on

Pn(A,L) = Pn/(Pn ∩ Id(A,L)). The same holds for the T-ideals Id(A) of
associative algebras A, and also for the T-ideals of Lie algebra Id(L). In the latter
case though one considers L(X) ⊆ K〈X〉(−).

We define the nth weak codimension of the pair (A,L) in analogy with the
ordinary case as cn(A,L) = dimPn(A,L). The character of the Sn-module
Pn(A,L) is χn(A,L), it is the nth cocharacter of the pair (A,L). Hence χn(A,L) =∑
λ�n mλ(A,L)χλ, here the mλ(A,L) are the multiplicities of the corresponding

irreducible modules. If V is an associative or Lie variety with corresponding T-
ideal Id(V) then we define cn(V), χn(V) and mλ(V) as in the case of pairs. The
following theorem can be found in [9, Theorem 2.4.5, p. 55], stated and proved for
the case of T-ideals of associative algebras. Its proof holds word by word for the
case of associative–Lie pairs.

Theorem 1 Suppose χn(A,L) = ∑
λ�n mλ(A,L)χλ is the nth cocharacter of the

pair (A,L). Then mλ(A,L) = 0 for some λ if and only if for each Young tableau
Tλ corresponding to the diagramDλ, and for each f ∈ Pn one has eTλf = 0 in the
pair (A,L).
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An easy argument shows that if dimL = k <∞ then for each λ = (λ1, λ2, . . .)

with λk+1 ≥ 1 (that is λ has at least k + 1 rows) then mλ(A,L) = 0.
Now let Vn denote the vector space Pn∩L(X), that is the Lie multilinear elements

of degree n, and let (A,L) be an associative–Lie pair. We shall use the notation
Pn(A) = Pn/(Pn ∩ Id(A)), Vn(L) = Vn/(Vn ∩ Id(L)); these are Sn-modules.
Their dimensions are the codimensions cn(A) and cn(L), respectively. We write
χn(A) = ∑

λ�n mλ(A)χλ, and χn(L) = ∑
λ�n mλ(L)χλ for the corresponding

cocharacters. Put V1 = var(A), V2 = var(L), then denote cn(V1) = cn(A),
χn(V1) = χn(A), and analogously for V2 and L.

Lemma 2 For every λ � n the inequalities mλ(L) ≤ mλ(A,L) ≤ mλ(A) hold. It
follows cn(L) ≤ cn(A,L) ≤ cn(A) and χn(L) ⊆ χn(A,L) ⊆ χn(A).
Proof If mλ(L) = k then there exist k independent Lie polynomials in Vn(L) that
generate irreducible Sn-modules corresponding to λ. Using the equality L(X) ∩
Id(A,L) = Id(L) one obtains that these k polynomials are independent modulo
Id(A,L), thus mλ(A,L) ≥ k. The inequality mλ(A,L) ≤ mλ(A) follows from a
similar argument by using the inclusion Id(A) ⊆ Id(A,L). ��

2.4 The Exponent

If (A,L) is a pair such that cn(A,L) is exponentially bounded we denote

exp(A,L) = lim inf(cn(A,L)1/n), exp(A,L) = lim sup(cn(A,L)1/n),

and call these the lower and upper exponent of (A,L). If exp(A,L) = exp(A,L)
then this limit is called the (weak) exponent exp(A,L) of the pair. In the same way
one defines the exponent exp(B) of an associative or Lie algebra B, and also the
exponent of a variety of algebras or pairs, if the exponent exist. If the pair is of the
form (A, ρ(L)) where ρ is a representation of L then we denote exp(A, ρ(L)) =
exp(ρ) whenever the exponent exist.

The celebrated theorem of Regev [26] implies that if A is associative and PI
then cn(A) is exponentially bounded. We recall below three important theorems
describing the exponent. All of them hold over a field of characteristic 0.

1. If A is an associative PI algebra then exp(A) exists and is an integer, see for
example [9, Chapter 6].

2. If L is a finite dimensional Lie algebra then exp(L) exists and is an integer, see
[28].

3. If ρ : L → gl(V ) is a finite dimensional representation of a Lie algebra L then
exp(ρ) exists and is an integer, see [12].

It follows from Lemma 2 that for a pair (A,L) one has exp(L) ≤ exp(A,L) ≤
exp(A) whenever the exponents exist.

The following easy fact will be used throughout without explicit mention.



Weak Polynomial Identities and Non-integrality of the PI Exponent 235

Remark 1 Let A be an associative algebra and form the pair (A,A(−)). Then
Id(A) = Id(A,A(−)). Therefore cn(A) = cn(A,A(−)) and χn(A) = χn(A,A(−)).
If Id(A,A(−)) � {0} (Id(A) � {0}) it follows that both associative and weak expo-
nents exist by Remark 1 above. In this case, we have that exp(A) = exp(A,A(−)).

We draw the reader’s attention that a basis (that is a generating set) of Id(A) is
not necessarily one for Id(A,A(−)) (the rules for taking consequences in the pair
are “weaker” than those in the algebra).

If V is a variety (of associative or Lie algebras, or of pairs) then the lower and
upper exponents of V, denoted by exp(V) and exp(V) respectively, are similarly
defined considering cn(V). If they are equal we have the exponent of V denoted by
exp(V).

Definition 1 A sequence {an}n∈N has polynomial growth if there exist constants C
and r such that an ≤ Cnr for every n ∈ N.

Let V be a variety (of associative or Lie algebras or of pairs). The growth of V
is defined to be the growth of the sequence {cn(V)}n∈N of its codimensions. We
say that V has almost polynomial growth if V is not of polynomial growth but any
proper subvariety of V has polynomial growth.

We give some examples that are important for the next sections.

Example 3 ([19, 24]) For the infinite dimensional Grassmann algebra E the
following conditions hold:

1. The T-ideal of identities Id(E) is generated by the polynomial [x1, x2, x3] ≡ 0;
2. cn(E) = 2n−1 and hence exp(E) = 2;
3. χn(E) = ∑

λ∈H(1,1) χλ.

Here and in what follows we assume that long commutators without inner
brackets are left normed, that is [a, b, c] = [[a, b], c] and so on.

Example 4 ([20]) For the algebra UT2(K) of 2× 2 upper triangular matrices over
the field K the following conditions hold:

1. The T-ideal of identities Id(UT2) is generated by the polynomial [x1, x2]
[x3, x4] ≡ 0;

2. cn(UT2) = 2n−1(n− 2)+ 2 and hence exp(UT2) = 2;
3. The cocharacter is given by

χn(UT2) =
∑

λ�n
mλ(UT2)χλ

where mλ(UT2) = q + 1 if either

λ = (p + q, p), p ≥ 1, q ≥ 0 or λ = (p + q, p, 1), p ≥ 1, q ≥ 0.

In all remaining casesmλ(UT2) = 0, except for the case m(n)(UT2) = 1.
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2.5 The Action of the General Linear Group

In the next sections we also work with the representation theory of the general
linear group which is closely related to that of the symmetric group. To this end
we introduce the vector space of homogeneous polynomials in a given set of
variables. Let U = spanK {x1, . . . , xm} and let Km〈X〉 = K〈x1, . . . , xm〉 be the
free associative algebra in m variables. The group GL(U) � GLm acts naturally
on the left on the vector space U , as linear transformations, and we can extend this
action diagonally to get an action of GL(U) on Km〈X〉.

The vector space Km〈X〉 ∩ Id(A,L) is invariant under this action, hence

Km(A,L) = Km〈X〉
Km〈X〉 ∩ Id(A,L)

has a structure of a left GLm-module. Let Knm be the vector space of homogeneous
polynomials of degree n in the variables x1, . . . , xm. Then

Knm(A,L) =
Knm

Knm ∩ Id(A,L)
is canonically isomorphic to a GLm-submodule of Km(A,L) and we denote its
character by ψn(A,L). Write

ψn(A,L) =
∑

λ�n
m̄λ(A,L)ψλ

where ψλ is the irreducible GLm-character associated to the partition λ and
m̄λ(A,L) is the corresponding multiplicity. Analogously as in [3] and [4], if the
nth cocharacter of (A,L) has the decomposition χn(A,L) = ∑

λ�n mλ(A,L)χλ
then mλ(A,L) = m̄λ(A,L) for every λ � n whose corresponding diagram has
height at most m (that is it has at most m rows).

It is also well known (see for instance [5, Theorem 12.4.12]) that any irreducible
submodule of Knm(A,L) corresponding to λ is generated by a non-zero polynomial
fλ, called highest weight vector, of the form

fλ = fλ(x1, . . . , xq) =
λ1∏

i=1

Sthi (λ)(x1, . . . , xhi(λ))
∑

σ∈Sn
ασ σ (1)

where ασ ∈ K , the right action of Sn on Knm(A,L) is defined by place per-
mutation, and hi(λ) is the height of the ith column of the diagram of λ. Here
Stp(x1, . . . , xp) = ∑

σ∈Sp(−1)σ xσ(1) · · · xσ(p) is the standard polynomial of
degree p: the alternating sum of monomials xσ(1) · · · xσ(p) where σ ∈ Sp ,
the symmetric group permuting {1, 2, . . . , p}. Recall that fλ is unique up to a
multiplicative constant.
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For a Young tableau Tλ, denote by fTλ the highest weight vector obtained from
(1) by considering the only permutation σ ∈ Sn such that the integers σ(1), . . . ,
σ(h1(λ)), in this order, fill in from top to bottom the first column of Tλ, σ(h1(λ)+1),
. . . , σ(h1(λ)+ h2(λ)) the second column of Tλ, and so on.

We also have the following equality (see for instance [5, Proposition 12.4.14]).

Remark 2 Suppose that

ψn(A,L) =
∑

λ�n
m̄λψλ

is theGLm-character ofKnm(A,L). Then m̄λ � 0 if and only if there exists a tableau
Tλ such that the corresponding highest weight vector fTλ is not a weak identity
for (A,L). Moreover m̄λ is equal to the maximal number of linearly independent
highest weight vectors fTλ in Knm(A,L).

2.6 Special Pairs and Pairs of Associative Type

Definition 2 An associative–Lie pair (A,L) is special whenever A is a PI algebra.
A variety of pairs is special if it is generated by a special pair.

An associative–Lie pair (A,L) is of associative type if there exist nonnegative
integers d and l such that χn(A,L) ⊆ H(d, l) for every n ≥ 1. A variety of pairs is
of associative type if it is generated by a pair of associative type.

Lemma 3

1. If (A,L) is a special pair then it is of the associative type.
2. Let (A,L) be a special pair and let χn(A,L) = ∑

λ�n mλ(A,L)χλ be its
cocharacter. Assume that there exist a constant C > 0 and a positive integer k
such thatmλ(A,L) � 0 whenever n−(λ1+· · ·+λk) ≤ C. Then cn(A,L) ≤ ntkn
for some t > 0, and for every n.

Proof The first statement is immediate. As for the second, since (A,L) is special
we have A is a PI algebra. Hence χn(A) = ∑

λ�n mλ(A)χλ and there exist
C > 0 and a positive integer k with

∑
λ�n mλ(A) ≤ Cnt , see [9, Theorem 4.9.3].

Since mλ(A,L) ≤ mλ(A) it follows
∑
λ�n mλ(A,L) is polynomially bounded.

By applying Lemma 1 and the Hook formula one gets that if mλ(A,L) � 0 then
dλ = degχλ ≤ ntkn for some t > 0, and the proof follows. ��
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3 Polynomial Growth of the Codimensions

3.1 Slow Growth of the Codimensions

In this section we shall see that some properties of polynomial growth in the Lie
case do not hold in the associative–Lie case.

Let A be the variety of abelian Lie algebras and let Nt be the variety of nilpotent
Lie algebras (of index of nilpotency t + 1). We denote by NtA the variety of Lie
algebras consisting of algebras with nilpotent commutator subalgebra with index of
nilpotency t + 1. This variety is the product of the varieties A and Nt (see [1]).
Moreover, the varieties of this type are related to almost polynomial growth of the
Lie codimensions. The following theorem is due to Mishchenko.

Theorem 2 ([23, Theorem 2.2, p. 33]) Let V be a variety of Lie algebras. The
following conditions are equivalent:

1. V has polynomial growth;
2. For some s ∈ N,N2A � V ⊆ NsA;
3. There exists a constant q such that

χn(V) =
∑

λ�n|λ|−λ1≤q

mλ(V)χλ,

for every n ≥ 1.

Take t ∈ N. Analogously to the Lie case, we define Wt , the variety of
associative–Lie pairs defined by the identity

[[x1, x2], . . . , [x2t+1, x2t+2]] ≡ 0.

It is the variety consisting of the pairs (A,L) where L has nilpotent commutator
subalgebra of index t + 1 (L ∈ NtA). We shall see that the conditions (1) and (2)
in the Theorem 2 are not equivalent for varieties of associative–Lie pairs.

Given f = f (x1, . . . , xn) ∈ K〈X〉 and L a Lie algebra, let

Lf = {z ∈ L | zf (ad y1, . . . , ad yn) = 0, for every y1, . . . , yn ∈ L}

where yad x = [y, x] is the action corresponding to the adjoint representation.

Lemma 4 Take f = f (x1, . . . , xn) ∈ K〈X〉 a multihomogeneous polynomial of
degree at most 2 in each variable xi , i = 1, . . . , n. Then Lf is an ideal of L.

Proposition 1 ([21]) Let L be a Lie algebra and suppose that L satisfies the
identity [x1, . . . , xn, y, y] ≡ 0, for some n ∈ N. Then L is nilpotent.
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Theorem 3 Let V be a variety of associative–Lie pairs. Suppose there exists an

integer n ∈ N such that cn(V) < 2[ n−1
2 ] where [a] denotes, as usual, the integer

part of the real number a. Then

V ⊆ Wc, for some c ∈ N. (2)

Proof Given k, r ∈ N with r ≤ k, consider the transpositions δi = (2i − 1, 2i) ∈
S2k , i = 1, . . . , r . Let Hkr = 〈δ1, . . . , δr 〉 be the subgroup of S2k generated by δ1,
. . . , δr . Note that Hkr is an abelian 2-group.

Fix n ∈ N such that cn(V) < 2[ n−1
2 ] and take k = [ n−1

2 ]. We can view Hkk as a
subgroup of Sn−1. Consider the elements of L(X)

[xn, xσ(n−1), . . . , xσ(1)], σ ∈ Hkk .

We have |Hkk | = 2k. Hence, since cn(V) < 2k, there exist λσ ∈ K , σ ∈ Hkk , not all
of them zero, such that

∑

σ∈Hkk
λσ [xn, xσ(n−1), . . . , xσ(1)] ≡ 0 (mod Id(V)).

If n is odd, we have that 2k = n − 1 and we replace xn = [x, t]. If n is even, we
have that 2k + 1 = n − 1 and σ(2k + 1) = 2k + 1 for all σ ∈ Hkk . In this case we
replace xn = x and xσ(n−1) = t . In both cases, we obtain

f =
∑

σ∈Hkk
λσ [x, t, xσ(2k), . . . , xσ(1)] ≡ 0 (mod Id(V)). (3)

We distinguish two cases:

Case 1 Suppose λσ = −λσδk for all σ ∈ Hkk . Then, the Jacobi identity implies

[z1, z2, z3, z4] − [z1, z2, z4, z3] = [[z1, z2], [z3, z4]],

and we obtain from f that

∑

σ∈Hkk−1

λ′σ [[[[x, t], [x2k, x2k−1]], xσ(2k−2)], . . . , xσ(1)] ≡ 0 (mod Id(V)),

for some λ′σ ∈ K . Here we joined the terms in order to eliminate the permutations
of Hkk where δk appears. Hence we have λ′σ = λσ for all σ ∈ Hkk−1.
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Case 2 Suppose λσ � −λσδk for some σ ∈ Hkk . We have that two transpositions δi
and δj , i � j , do not exchange the same integers. Hence, taking xσ(2k) = xσ(2k−1) =
y1 in each permutation σ ∈ Hkk of (3), we obtain that

∑

σ∈Hkk−1

λ′σ [[[x, t](ad y1)
2, xσ(2k−2)], . . . , xσ(1)] ≡ 0 (mod Id(V)),

for some λ′σ ∈ K , not all of them zero, because λ′σ = λσ + λσδk for at least one
σ ∈ Hkk−1.

Repeating the argument with δk−1, . . . , δ1, we obtain that V satisfies an identity
of the form [x, t]ḡ, where ḡ is an associative monomial g in ad [xi+1, xi] or (ad yi)2

of degree at most 2 in each variable.
Now we apply induction on the number of variables of degree 2 in g. Suppose

there does not exist variable of degree 2, then

[x, t]ḡ = [[x, t], [x2k, x2k−1], . . . , [x2, x1]] ≡ 0

and we obtain (2).
Suppose there exists at least one variable of degree 2, then we write g = f1f2

with f1 = hz2 where z is variable of degree 2, and h has no variable of degree
2. Denote by f̄1 and f̄2 the corresponding evaluation of f1 and f2 by ad [xi+1, xi]
and/or (ad yi)2, then we have ḡ = f̄1f̄2.

Take (A,L) ∈ V an arbitrary pair. Each variable in f2 corresponding to
a substitution by ad [xi+1, xi] = [ad xi+1, ad xi] is replaced by a commutator
[zi+1, zi ]. Then we obtain, from f2, an associative polynomial q in the variables
zi . Let q̄ be the evaluation of q of the form zi → ad xi . We have that q̄ = f̄2. Hence
[x, t]f̄1q̄ = [x, t]f̄1f̄2 ≡ 0 in L and it follows that L̄ = L/Lq satisfies the identity
[x, t]f̄1 ≡ 0, that is it satisfies

[x, t]ad [x2k, x2k−1] · · · ad [xp, xp−1](ad y1)
2 ≡ 0

for some p ∈ N. Then, by Proposition 1, it follows that L̄ has nilpotent commutator
subalgebra. Therefore there exists r ∈ N such that L satisfies

[x, t]ad [z1, z2] · · · ad [x2r−1, x2r ]q̄ ≡ 0,

and then

[x, t]ad [z1, z2] · · · ad [x2r−1, x2r ]f̄2 ≡ 0,

which is a polynomial with fewer variables of degree 2. Applying induction the
result follows. ��
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Corollary 1 If V is a variety of associative–Lie pairs of polynomial growth then

W2 � V ⊆ Wc, for some c ∈ N. (4)

Here we observe that it is well known that in the case of varieties of associative PI
algebras one has expV ≤ 1 if and only if V has polynomial growth. By repeating
word by word the proof of [9, Theorem 7.2.2] one obtains that the statement holds
for the case of varieties of associative–Lie pairs.

Example 5 Consider V = var(E,E(−)). We have that [[x1, x2], [x3, x4], [x5, x6]]
∈ Id(V), then Id(W2) ⊆ Id(V), i.e., V ⊆ W2. Moreover, if W2 ⊆ V, then
(UT2, UT

(−)
2 ) ∈ V and (UT2, UT

(−)
2 ) satisfies the identity [x1, x2, x3] ≡ 0, a

contradiction. Hence, V satisfies (4) with c = 2. On the other hand, exp(V) =
exp(E,E(−)) = exp(E) = 2 and then V has no polynomial growth.

3.2 Characterizing Varieties of Pairs of Polynomial Growth

In this section we shall give a characterization of the varieties of polynomial growth
through the behavior of their sequences of cocharacters.

Consider I = Id(E,E(−)) and J = 〈[x, y, z], [xy, y, z]〉W . The pair (E,E(−))
satisfies the identities [x, y, z] ≡ 0 and [xy, y, z] ≡ 0, then J ⊆ I . Using analogous
arguments of the associative case [9, Theorem 4.1.8], we obtain that I = J .

The next lemma is similar to the associative case.

Lemma 5 The variety V of associative–Lie pairs satisfies a standard identity if
and only if (E,E(−)) � V.

Given an irreducible KSn-module M and λ = (λ1, . . . , λs) � n a partition
associated to this module, we define H(λ) = H(M) = n − λ1, h(λ) = h(M) = s,
and H−(λ) = H−(M) = n − h(λ). In other words in the diagram Dλ, H(λ) is
the number of boxes below the first row, h(λ) is the length of the first column and
H−(λ) is the number of boxes outside the first column.

Let V be a variety of associative–Lie pairs. If n ∈ N is fixed, we have finitely
many irreducible submodules in the decomposition of the KSn-module Pn/(Pn ∩
Id(V)). Thus we can obtain a set N0 ⊆ N such that �V = {Mn | n ∈ N0} is the set
of all irreducible modules (� 0) in each decomposition for each n ∈ N. Notice that
if N0 is finite and then �V is finite, we have cn(V) = 0 for n large enough.

Therefore we shall consider only varieties V such that N0 is infinite.

Lemma 6 Let V be a variety of associative–Lie pairs and let χn(V) =∑
λ�n mλχλ be its cocharacter. Suppose Stm ∈ Id(V) for some m ∈ N. Given

n > m and λ � n we have that mλ = 0 if H−(λ) = n− h(λ) < n
m
− 1.

Proof LetMλ be a non-zero irreducible Sn-module associated to some partition λ =
(λ1, . . . , λr ) in the decomposition of χn(V). ThenMλ is generated by a multilinear
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polynomial g that alternates in λ1 sets of variables. Consider C the set consisting of
h(λ) = s variables. The elements of C are the variables corresponding to the first
column of λ. Hence they must alternate in g.

We shall show that every monomial of g contains at least one submonomial
consisting of m variables in C. As the variables in C alternate, then g belongs to
the weak ideal generated by Stm and the lemma will follow.

Suppose the latter assertion fails. Then g has at least one monomial of type

m1w1m2w2m3 · · ·wk−1mkwkmk+1

where each wi is a monomial in the variables of C of length at most m− 1, i = 1,
. . . , k, and the mj ’s are monomials in the variables outside of C. Moreover, if j ∈
{2, . . . , k}, then mj cannot be the empty word. Hence we obtain that

n− s ≥ k − 1 and s ≤ k(m− 1). (5)

By hypothesis, we have the inequalities

n > m(n− s + 1) and s >
(m− 1)n

m
+ 1 >

(m− 1)n

m
. (6)

Combining (5) and (6), we obtain

n > m(k − 1 + 1) = mk and
(m− 1)n

m
< k(m− 1)

and then mk > n > mk, a contradiction. ��
The previous lemma says that if a variety satisfies a standard identity, then in

the decomposition of its cocharacter the number of boxes outside the first column
cannot be bounded. On the other hand, under some assumptions, we shall see that
the same does not apply to the number of boxes below the first row.

Lemma 7 Let V be a variety of associative–Lie pairs and consider the set �V =
{Mn | n ∈ N0} where N0 ⊆ N is an infinite set of positive integers. If n− h(Mn)→
∞,Mn ∈ �V, and there exists k ∈ N such that dimMn < nk , for everyMn ∈ �V,
then the set H = {H(Mn) |Mn ∈ �V} is finite.
Proof Given n ∈ N0 let λ = (λ1, . . . , λs ) � n be the partition associated to Mn ∈
�V. We put an = λ1 and bn = h(λ) = s.

Suppose that H is infinite. Then H(Mn) → ∞, Mn ∈ �V. We shall consider
two cases:

Case 1 Suppose that min{an, bn} is not bounded. This means that the first row
and the first column of the tableaux associated to the modules Mn ∈ �V grow
indefinitely when n ∈ N0.
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For each n ∈ N0 and each λ � n, consider the partition μ = (an, 1bn−1) �
p = an+ bn− 1 andMp the irreducible Sp-module associated with μ. By the hook
formula [13, Theorem 20.1, p. 77], it follows that dimMp = dμ ≤ dλ = dimMn
and

dμ = (an + bn − 1)!
(an + bn − 1)(an − 1)!(bn − 1)! =

(an + bn − 2)!
(an − 1)!(bn − 1)! =

(
an + bn − 2

an − 1

)
.

Moreover, by the arithmetic–geometric means inequality, we have

(an + bn − 2)2 = ((an − 1)+ (bn − 1))2 ≥ 2(an − 1)(bn − 1) > n.

Here the last inequality holds for an and bn large enough. For these values of an and
bn, let c = an−1 or c = bn−1 according as min{an, bn} = an or min{an, bn} = bn,
respectively. Then

dimMn ≥ dimMp = dμ ≥ [√n]!
(c!)2

which contradicts dimMn < nk .

Case 2 Suppose there exists t ∈ N such that min{an, bn} < t for all n ∈ N0.
Without loss of generality we can assume that there exists an infinite subsetN′0 ⊆ N0
such that bn < t , n ∈ N′0. Let n ∈ N′0 and let λ � n be a partition associated to the
moduleMn ∈ �V. We put cn = λ2 and we take μ = (an, cn) � q = an + cn with
associated irreducible moduleMq . Notice that we can suppose cn � 0, since H was
supposed to be infinite. As in the previous case, we have that dimMq = dμ ≤ dλ =
dimMn and q ≤ n. Moreover, once again by the hook formula,

dμ = (an + cn)!
(an+1)!cn!
an−cn+1

= (an + cn)!(an − cn + 1)

(an + 1)an!cn! ≥ (an + cn)!
nan!cn! =

(
an + cn
cn

)
1

n

Hence if c2
n ≥ n

2 for some n ∈ N′0, then

dimMn = dλ ≥ dμ = dimMq > 2cn−1 1

n
≥ 1

n
2
√

n
2−1

and we reach a contradiction.

Suppose finally c2
n <

n
2 for every n ∈ N′0. As bn < t , that is the number of rows

of the tableaux associated withMn, n ∈ N′0, is bounded by t , it follows n−h(Mn)→
∞, n ∈ N′0. Hence as H is infinite, we must have cn →∞. Then take n ∈ N′0 large
enough such that cn > bn. We have that an + c2

n > an + bncn > n and then

an + cn > an > n− c2
n > n− n/2 = n/2.
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Consider n ∈ N′0 large enough such that cn > k + 2, then

dimMq ≥
(
an + cn
cn

)
1

n
>

( [ n2 ]
k + 2

)
1

n
> nk,

and this is a contradiction once again.
In all cases we reach a contradiction, thus H must be finite. ��

Theorem 4 Let V be a variety of associative–Lie pairs. The following conditions
are equivalent:

1. V has polynomial growth;
2. There exists a constant q such that

χn(V) =
∑

λ�n|λ|−λ1≤q

mλ(V)χλ,

for every n ≥ 1.

Proof Suppose V has polynomial growth and cn(V) < nk for every n ≥ 1 and for
some fixed k ∈ N. Consider the set �V introduced above. We have that exp(V) ≤ 1.
Then (E,E(−)) � V since exp(E,E(−)) = exp(E) = 2. By Lemma 5, it follows
that V satisfies a standard identity.

Thus, by Lemma 6, if

χn(V) =
∑

λ�n
mλ(V)χλ (7)

is the cocharacter of V, then n − h(Mn) → ∞, Mn ∈ �V. In other words the
number of boxes outside the first column of the diagram of Mn is not bounded
in the decomposition (7). Moreover, for each Mn ∈ �V we have that dimMn ≤
cn(V) < nk .

By Lemma 7, we have that H = {H(Mn) | Mn ∈ �V} is finite. This means that
the number of boxes below the first row is bounded and then it is enough to take
q = maxH .

The opposite implication follows a standard argument, see for example [9,
Theorem 7.2.2, p. 169]. ��

3.3 Almost Polynomial Growth

In this section we consider the pairs (E,E(−)), (UT2, UT
(−)

2 ) and (M2, sl2). As we
saw in Examples 1 and 2, these pairs are related to certain natural representations
of Lie algebras. In this section we obtain that these pairs generate varieties of
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almost polynomial growth. Hence the principal result of this section is the following
theorem.

Theorem 5 The associative–Lie pairs (E,E(−)), (UT2, UT
(−)

2 ) and (M2, sl2)

generate varieties of pairs with almost polynomial growth of the codimensions.

3.3.1 The Pair (UT2, UT
(−)

2 )

We start with the pair (UT2, UT
(−)

2 ). By Example 4, we have that

exp(UT2, UT
(−)

2 ) = exp(UT2) = 2 and

χn(UT2, UT
(−)

2 ) =
∑

λ�n
mλ(UT2, UT

(−)
2 )χλ

wheremλ(UT2, UT
(−)

2 ) = q + 1 if either

1. λ = (p + q, p), for all p ≥ 1, q ≥ 0, or
2. λ = (p + q, p, 1), for all p ≥ 1, q ≥ 0.

In all remaining cases mλ(UT2, UT
(−)

2 ) = 0, with the exception of

m(n)(UT2, UT
(−)

2 ) = 1.

Let I = Id(UT2, UT
(−)

2 ) and J = 〈[x1, x2][x3, x4]〉W . The pair

(UT2, UT
(−)

2 ) satisfies the identity [x1, x2][x3, x4] ≡ 0 and then J ⊆ I . Using
analogous arguments of the associative case [9, Theorem 4.1.5], we obtain that
I = J .

Fix n ∈ N and consider the Sn-module Pn(UT2, UT
(−)

2 ). Using the decomposi-

tion of the cocharacter χn(UT2, UT
(−)

2 ), we shall determine the generators of the
irreducible modules associated to partitions whose multiplicities are non zero. It
turns out more convenient here to work with modules over the general linear group
rather than with those over the symmetric group. (As one has at most three rows
in the corresponding diagrams then passing to modules over the general linear
group one can work with at most three variables though of higher degrees.) If
λ = (n), the corresponding highest weight vector fTλ = xn is not an identity of
(UT2, UT

(−)
2 ) since fTλ(E11) = E11 � 0. Then xn is the generator corresponding

to λ = (n).
Given p ≥ 1 and q ≥ 0, consider λ = (p + q, p) and T iλ , i = 0, . . . , q , the

tableau

i + 1

i + p + 2

i + 2

i + p + 3

······
· · ·

· · ·i + p − 1

i + 2p

i + p + 1

i + p

1 i i + 2p + 1 n
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We associate to T iλ the polynomial

a(i)p,q(y1, y2) = yi1 ȳ1 · · · ỹ1︸������︷︷������︸
p−1

[y2, y1] ȳ2 · · · ỹ2︸������︷︷������︸
p−1

y
q−i
1 (8)

where “−” and “∼” stand for alternation on the corresponding “labeled” variables.
We shall prove that the q + 1 polynomials a(i)p,q(y1, y2), i = 0, . . . , q , are linearly
independent modulo I . Suppose they are linearly dependent, then there exist α0, . . . ,
αq ∈ K , not all of them zero, such that

q∑

i=0

αia
(i)
p,q ≡ 0 (mod I).

Take t = max{i | αi � 0}, then

αta
(t)
p,q +

∑

i<t

αia
(i)
p,q ≡ 0 (mod I).

If we now substitute y1 with y1 + y3, we obtain

αt(y1 + y3)
t (y1 + y3) · · · ( ˜y1 + y3)︸��������������������������︷︷��������������������������︸

p−1

[y2, y1 + y3] ȳ2 · · · ỹ2︸������︷︷������︸
p−1

(y1 + y3)
q−t +

+
∑

i<t

αi(y1 + y3)
i (y1 + y3) · · · ( ˜y1 + y3)︸��������������������������︷︷��������������������������︸

p−1

[y2, y1 + y3] ȳ2 · · · ỹ2︸������︷︷������︸
p−1

(y1 + y3)
q−i .

modulo I . Since K is an infinite field, it follows that all homogeneous components
are still identities for (UT2, UT

(−)
2 ). Let us consider the homogeneous component

g of degree t + p in y1 and of degree q − t in y3. Making the substitution

y1 = E11, y2 = E12 + E22, y3 = E22

we obtain

0 = αtE11(−E12)(E12 + E22)E22 = −αtE12,

which means αt = 0, a contradiction. Since m(p+q,p)(UT2, UT
(−)

2 ) = q + 1, it
follows that the q + 1 polynomials of type (8) generate all distinct copies of the
same irreducible module associated to λ = (p + q, p) in the decomposition of
Pn(UT2, UT

(−)
2 ).
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Fix p ≥ 1 and q ≥ 0, and consider λ = (p + q, p, 1), and T iλ , i = 0, . . . , q , the
tableau

i + p

i + p + 1

i + p + 2

· · · · · ·
· · ·

· · ·i + 1

i + p + 3

i + p − 1

i + 2p +1

1 i i+ 2p + 2 n

We associate to T iλ the polynomial

b(i)p,q(y1, y2, y3) = yi1 ŷ1 · · · ỹ1︸������︷︷������︸
p−1

ȳ1ȳ2ȳ3 ŷ2 · · · ỹ2︸������︷︷������︸
p−1

y
q−i
1 (9)

where “∧”, “−” and “∼” stand for alternation on the corresponding “labeled”
variables. Using the same arguments as in the previous case, we obtain
that the q + 1 polynomials b(i)p,q(y1, y2, y3), i = 0, . . . , q , are linearly

independent modulo I . Since m(p+q,p,1)(UT2, UT
(−)

2 ) = q + 1, it follows
that the q + 1 polynomials of type (9) generate all distinct copies of the same
irreducible module associated to λ = (p + q, p, 1), in the decomposition of
Pn(UT2, UT

(−)
2 ).

Theorem 6 Let V be a variety of associative–Lie pairs and suppose that V �

var(UT2, UT
(−)

2 ). Then there exists a constant N such that for every n ∈ N and
λ � n we have that mλ(V) ≤ N . MoreoverV has polynomial growth.

Proof Let I = Id(UT2, UT
(−)

2 ). Since V � var(UT2, UT
(−)

2 ), there exists

λ � n such that mλ(V) < mλ(UT2, UT
(−)

2 ). Let a(i)p,q , b(i)p,q , i = 0, . . . , q , be
the polynomials constructed above. Then either

q∑

i=0

αia
(i)
p,q ≡ 0 (mod I), and αi � 0 for some i; (10)

or

q∑

i=0

βib
(i)
p,q ≡ 0 (mod I), and βi � 0 for some i. (11)

By the identity [x1, x2][x3, x4] and replacing y3 with [y2, y1], from (11) we obtain
the relation (10).

Suppose that

q∑

i=0

αiy
i
1ȳ1 · · · ỹ1[y2, y1]ȳ2 · · · ỹ2y

q−i
1 ≡ 0 (mod I).
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Let J = Id(UT2) be the associative T-ideal of UT2. Since J = I , we have that

q∑

i=0

αiy
i
1ȳ1 · · · ỹ1[y2, y1]ȳ2 · · · ỹ2y

q−i
1 ≡ 0 (mod J ).

In what follows we shall use associative consequences, that is consequences of
identities of associative algebras. We draw the readers’ attention that these are
admissible when we consider the identities modulo the T-ideal J .

Take t = max{i | αi � 0}. By substituting y2 with y3 + y4, the above polynomial
becomes

αty
t
1ȳ1 · · · ỹ1[y3 + y4, y1](y3 + y4) · · · ˜(y3 + y4)y

q−t
1

+
∑

i<t

αiy
i
1ȳ1 · · · ỹ1[y3 + y4, y1](y3 + y4) · · · ˜(y3 + y4)y

q−i
1 ≡ 0 (mod J ).

We consider the homogeneous component g of degree 1 in y4, we substitute y3 with
y2

1 and y4 with y2 in g. Thus we obtain

f = f (y1, y2) = αtyt1 ȳ1 · · · ỹ1︸������︷︷������︸
p−1

[y2, y1] y2
1 · · · ỹ2

1︸������︷︷������︸
p−1

y
q−t
1

+
∑

i<t

αiy
i
1 ȳ1 · · · ỹ1︸������︷︷������︸

p−1

[y2, y1] y2
1 · · · ỹ2

1︸������︷︷������︸
p−1

y
q−i
1 ≡ 0 (mod J ).

LetN = deg f = 3p+q−1. Expanding the alternators in the above polynomial,
identifying y2 = [z, y1] and using the equality [[z, y1], y1] = zy2

1 − 2y1zy1 + y2
1z,

it follows that

αty
t+2p
1 zy

N−t−2p
1 ≡

∑

i<t+2p

γiy
i
1zy

N−i
1 (mod J )

for some coefficients γi ∈ K . Let M = t + 2p. Recall that αt � 0, then we rewrite
the above equivalence as follows

yM1 zy
N−M
1 ≡

∑

i<M

δiy
i
1zy

N−i
1 (mod J ), δi ∈ K. (12)

We shall prove that mλ(V) ≤ N , for every partition λ. By the cocharacter of
(UT2, UT

(−)
2 ), it is enough to consider the two cases λ = (p + q, p) and λ =

(p + q, p, 1). Consider λ = (p + q, p, 1). If q < N , we have nothing to prove,
since mλ(UT2, UT

(−)
2 ) = q + 1. Suppose q ≥ N . Then we can replace z with

ŷ1 · · · ỹ1︸������︷︷������︸
p−1

ȳ1ȳ2ȳ3 ŷ2 · · · ỹ2︸������︷︷������︸
p−1
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and apply relation (12) to every polynomial b(i)p,q(y1, y2, y3) such that i ≥ M . We
obtain that

b(i)p,q ≡
∑

j<M

δjb
(j)
p,q (mod J )

and, recalling that J = I , it follows that

b(i)p,q ≡
∑

j<M

δjb
(j)
p,q (mod I).

Thereforemλ(V) ≤ M − 1 ≤ N . The case λ = (p + q, p) is analogous.
Finally we prove that the variety V has polynomial growth. Linearizing (12), we

obtain
∑

σ∈SN
y1σ(1) · · · y1σ(M)zy1σ(M+1) · · · y1σ(N) ≡

≡
∑

i<M

∑

σ∈SN
δiy1σ(1) · · · y1σ(i)zy1σ(i+1) · · · y1σ(N) (mod J ). (13)

We identify z = [y3, y4], multiply (13) on the right by y21 · · · y2M and alternate y1i
with y2i for i = 1, . . . , M . It follows that

ȳ11ŷ12 · · · ỹ1M[y3, y4]ȳ21ŷ22 · · · ỹ2My1M+1 · · · y1N ≡ 0 (mod J ).

If we multiply on the left by y2M+1 · · · y2N and alternate y1j with y2j for j =M+1,
. . . , N we obtain

ȳ11ŷ12 · · · ỹ1N [y3, y4]ȳ21ŷ22 · · · ỹ2N ≡ 0 (mod J ).

Since J = I , it follows that

ȳ11ŷ12 · · · ỹ1N [y3, y4]ȳ21ŷ22 · · · ỹ2N ≡ 0 (mod I).

This proves that if λ = ((N + 1)2) then mλ(V) = 0.
Similarly, if we identify z = ȳ3ȳ4ȳ5 in (13), by using the identity

ȳ3ȳ4ȳ5[z1, z2] ≡ 0,

we obtain the identity

y̌11ŷ12 · · · ỹ1Nȳ3ȳ4ȳ5y̌21ŷ22 · · · ỹ2N ≡ 0 (mod I).

This proves that λ = ((N + 1)2, 1), and thus mλ(V) = 0.
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It follows that if λ is a partition of n such that λ2 ≥ N + 1 then mλ(V) = 0.
Therefore

χn(V) =
∑

λ�n|λ|−λ1≤N

mλ(V)χλ.

and, by Theorem 4, V has polynomial growth. ��

3.3.2 The Pair (E, E(−))

We consider the pair (E,E(−)) where E is the infinite dimensional Grassmann
algebra. As we saw at the beginning of Sect. 3.2 we have that Id(E,E(−)) =
〈[x, y, z], [xy, y, z]〉W and, by Example 3, exp(E,E(−)) = exp(E) = 2 and
χn(E,E

(−)) = ∑
λ∈H(1,1) χλ.

We obtain generators of the irreducible modules in the decomposition of the
cocharacter of (E,E(−)). Given k ∈ N, take λ = (k, 1n−k) a partition of n such that
mλ(E,E

(−)) = 1 � 0 in the decomposition of χn(E,E(−)). The highest weight
vector

fk = fk(x1, x2, . . . , xn−k+1) = xk−1
1 Stn−k+1(x1, x2, . . . , xn−k+1). (14)

is not an identity of (E,E(−)) and generates the irreducible module associated to
λ = (k, 1n−k), for every k ∈ N.

Theorem 7 Let V be a variety of associative–Lie pairs and suppose V �

var(E,E(−)). ThenV has polynomial growth.

Proof Since V is a proper subvariety, it follows that (E,E(−)) � V. By Lemma 5,
there exists m ∈ N such that Stm ≡ 0 is identity of V. Thus we have that Stm+l ∈
Id(V) for each l ≥ 1.

By the form of the generators fk in (14), we obtainmλ(V) = 0 for every partition
λ = (1p) with p ≥ m. Moreover, by multiplying each highest weight vector fk
associated to this partitions by a power of the variable x1, it follows that if λ =
(k, 1n−k) thenmλ(V) = 0 for k ≥ 1 and n−k ≥ m. Therefore the number of boxes
below the first row in the decomposition of χn(V) is bounded by m. By applying
Theorem 4 we obtain the statement. ��

3.3.3 The Pair (M2, sl2)

We recall that the identity [x ◦ y, z] ≡ 0 generates all weak identities of (M2, sl2).
Moreover mλ(M2, sl2) = 1 and λ4 = 0 for every partition λ of n in the
decomposition of the cocharacter of (M2, sl2), see [7]. In other words
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χn(M2, sl2) =
∑

λ=(λ1,λ2,λ3)�n
χλ. (15)

We deduce properties of the decomposition of the cocharacter and of the
codimension sequence of the pair (M2, sl2).

The next two lemmas can be found in [9, Sections 1.11 and 1.12] and [1, Section
6.4.2].

Lemma 8 Let A be a semisimple associative PI-algebra over an algebraically
closed field K and suppose that A satisfies a polynomial identity of degree d . Then
A is a subdirect product of matrix algebras over the field K with order bounded by
d/2.

Lemma 9 Let L be a Lie algebra over a field of characteristic zero K and suppose
there exists a faithful and irreducible L-module V . Then L is abelian or contains
some subalgebra isomorphic to sl2.

The next lemma is a natural property of the codimensions of (M2, sl2). This is
valid for example for the Lie identities of sl2.

Lemma 10 For the pair (M2, sl2) we have cn+1(M2, sl2) ≥ cn(M2, sl2), for every
n ≥ 1.

Proof We give a sketch of the proof. Let I = Id(M2, sl2) and let f1, . . . , fk be
multilinear polynomials in x1, . . . , xn. Suppose f1, . . . , fk are linearly independent
modulo I , it suffices to prove that f1xn+1, . . . , fkxn+1 are independent modulo I .
Form a linear combination of the latter polynomials; put xn+1 = h ∈ sl2, that is
the diagonal matrix with entries 1 and −1 on the diagonal. Since h is invertible we
can cancel it and obtain a linear combination for the fi . The fi were chosen linearly
independent hence our linear combination is trivial. ��
Lemma 11 The exponent of (M2, sl2) exists. More precisely exp(M2, sl2) = 3.

Proof The algebra M2 satisfies the standard identity St4. Therefore the pair
(M2, sl2) is special and χn(M2, sl2) ⊆ H(3, 0), n ≥ 1. Hence by Lemma 3 we
have that

cn(M2, sl2) ≤ nt3n, n ≥ 1, (16)

for some t > 0.
On the other hand, the polynomial

gk = St3(x1
1 , x

1
2 , x

1
3) · · · St3(xk1 , xk2 , xk3 )

of degree 3k is not a weak identity for (M2, sl2) for any k ≥ 1. By considering the
action of S3k on P3k , we obtain that gk generates an irreducible S3k-module with
cocharacter χλ, λ = (k, k, k). According to [9, Lemma 5.10.1, p. 139], one has the
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inequality dλ ≥ 33k/(3k)3. Therefore cn(M2, sl2) ≥ 3n/n3 for every n ≥ 1, by
Lemma 10.

Combining this inequality with (16) we complete the proof of the lemma. ��
Let λ = (p + q + r, p + q, p) � n = 3p + 2q + r be a partition in (15). The

polynomial

fTλ(x1, x2, x3) = St3(x1, x2, x3)
pSt2(x1, x2)

qxr1 =
= x̄1x̄2x̄3 · · · x̃1x̃2x̃3︸�������������������︷︷�������������������︸

p

[x1, x2] · · · [x1, x2]︸��������������������︷︷��������������������︸
q

xr1 (17)

generates an irreducible module associated to λ (see [7]).
Codimensions of representations do not change upon an extension of the base

field. The proof is analogous to the cases of codimensions of associative [9, Theorem
4.1.9] and Lie algebras [28, Section 2]. Thus without loss of generality we may
assume K to be algebraically closed.

Example 6 ([27]) Let ρ : sl2 → gl(V ) be a representation of the Lie algebra
sl2. Suppose that ρ is faithful, irreducible and of finite dimensional n. Then the
polynomial

δx4St3(ad x1, ad x2, ad x3)− x4St3(x1, x2, x3) ≡ 0 (18)

is an identity for ρ, where δ = n2−1
8 and ad denotes the adjoint representation. In

particular, for the pair (M2, sl2) we have the identity

3

8
x4St3(ad x1, ad x2, ad x3)− x4St3(x1, x2, x3) ≡ 0. (19)

Lemma 12 Let ρ : sl2 → gl(V ) be a finite dimensional representation of the Lie
algebra sl2. Consider the pair (A, sl2) corresponding to ρ and V = V1 ⊕ · · · ⊕ Vl
the decomposition of V in a direct sum of irreducibles. If Id(M2, sl2) ⊆ Id(A, sl2),
then each Vi , i = 1, . . . , l, corresponds to a representation of dimension 2 and
Id(A, sl2) = Id(M2, sl2).

Proof Let ρi be the irreducible representation corresponding to Vi , i = 1, . . . , n.
Since sl2 is simple, ρi is faithful, i = 1, . . . , n. By identities (18) and (19), it follows
that faithful irreducible representations of sl2 of dimension greater than 2 can not
satisfy all identities of (M2, sl2). Moreover, Id(A, sl2) ⊆ Id(ρi), i = 1, . . . , l.
Hence if dimVi ≥ 3 for some i ∈ {1, . . . , r} we obtain a contradiction, as in this
case

Id(M2, sl2) ⊆ Id(A, sl2) ⊆ Id(ρi).

Therefore V decomposes into a sum of irreducible representations of dimension 2.
Consequently Id(M2, sl2) = Id(A, sl2). ��
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Theorem 8 Let V be a variety of associative–Lie pairs and suppose that V �

var(M2, sl2). Then

St3(x, y, z)
M = x̄ȳz̄ · · · x̃ỹz̃︸����������︷︷����������︸

M triples

≡ 0

and

[x, y] · · · [x, y]︸���������������︷︷���������������︸
2M commutators

≡ 0

are identities of V, for someM ∈ N.
Proof Let I = Id(V) be the ideal of weak identities of V. Consider

(A,L) = (K〈X〉/I,L(X)/L(X) ∩ I)

the relatively free pair in the variety V. We have that

Id(M2) ⊆ Id(M2, sl2) � I.

Since M2 is an associative PI-algebra, there exists a non zero polynomial f =
f (x1, . . . , xn) ∈ K〈X〉 such that f (g1, . . . , gn) ∈ Id(M2) ⊆ I , for every g1,
. . . , gn ∈ K〈X〉. Therefore, A = K〈X〉/I is an associative PI-algebra.

Since in the decomposition of the cocharacter of (M2, sl2) we have at most
three rows in each Young tableau, let us consider the subpair (A1, L1) of (A,L)
generated by three elements x, y, z. In other words, (A1, L1) is the relatively
free pair in V of rank equal to 3. Since A1 is a finitely generated associative
PI-algebra, it follows that its Jacobson radical J = J (A1) is a nilpotent ideal.
Moreover, A2 = A1/J is semisimple and, by Lemma 8, is a subdirect product
of matrix algebrasMnγ (K), γ ∈ �, over the field K . Furthermore the sizes of these
matrix algebras are bounded. For each γ ∈ �, let Vγ be the vector space such that
EndK(Vγ ) � Mnγ (K). Notice that Mnγ (K) acts irreducibly and faithfully in Vγ .
Consider the quotient L2 = L1/(L1 ∩ J ). Thus, given γ ∈ �, the image of L2
(by the projection πγ of the subdirect product) in each Mnγ acts irreducibly and
faithfully in Vγ , since A2 is generated by L2. By Lemma 9, this image is abelian
or contains a subalgebra isomorphic to sl2. In the second case, we obtain a subpair
(R, sl2) of (A1, L1) corresponding to a finite dimensional representation of sl2,
then

Id(M2, sl2) ⊆ Id(V) = Id(A1, L1) ⊆ Id(R, sl2)

By Lemma 12, we must have equality in the above inclusions, a contradiction,
since V is a proper subvariety of var(M2, sl2). Therefore, the image of L2 in each



254 P. Koshlukov and D. L. S. Macêdo

componentMnγ is abelian, γ ∈ �, and it follows that the derived algebra L′1 of L1
is contained in J .

Now it is enough to notice that x̄ȳz̄ belongs to the associative ideal of A1
generated by L′1 and then (x̄ȳz̄)M = 0, where M ∈ N is such that JM = 0.
Therefore,

St3(x, y, z)
M = x̄ȳz̄ · · · x̃ỹz̃︸����������︷︷����������︸

M triples

≡ 0 (20)

is an identity for the relatively free pair (A,L) and, consequently, is an identity
of V.

For the second identity notice that [x2, y] ≡ 0 is an identity for the pair (M2, sl2)

and then

x[x, y] + [x, y]x = x2y − xyx + xyx − yx2 ≡ 0 (21)

y[x, y] + [x, y]y = yxy − y2x + xy2 − yxy ≡ 0 (22)

are also identities for (M2, sl2). By (21) and (22), it follows that

x̄ȳ[x, y] = x̄ȳ[x, y] − x̄[x, y]ȳ + [x, y]x̄ȳ =
= [x, y][x, y] − x[x, y]y + y[x, y]x + [x, y][x, y] ≡

≡ [x, y][x, y] + [x, y]xy − [x, y]yx + [x, y][x, y] = 3[x, y][x, y] (23)

modulo Id(M2, sl2) ⊆ Id(V). Taking z = [x, y] and using (20) and (23), we
obtain

0 ≡ x̄ȳ[x, y] · · · x̃ỹ ˜[x, y]︸�����������������������︷︷�����������������������︸
M triples

≡ 3M [x, y][x, y] · · · [x, y][x, y]︸�������������������������������︷︷�������������������������������︸
2M commutators

.

modulo Id(V) and the result follows.
��

Corollary 2 Let V be a variety of associative–Lie pairs and suppose that V is a
proper subvariety of var(M2, sl2). ThenV is of polynomial growth.

Proof By Theorem 8, there existsM ∈ N such that

St3(x, y, z)
M = x̄ȳz̄ · · · x̃ỹz̃︸����������︷︷����������︸

M triples

≡ 0

and

St2(x, y)
2M = [x, y] · · · [x, y]︸���������������︷︷���������������︸

2M commutators

≡ 0



Weak Polynomial Identities and Non-integrality of the PI Exponent 255

are identities of V. By the form of generators of the irreducible modules in (17),
these identities imply that if λ = (λ1, λ2, λ3) is a partition such that λ2 − λ3 ≥ 2M
or λ3 ≥M , thenmλ(V) = 0 in the decomposition of the cocharacter of V. Thus the
multiplicitiesmλ(V) � 0 correspond to partitions such that λ3 < M and λ2 − λ3 <

2M . Therefore

χn(V) =
∑

λ�n|λ|−λ1≤C

mλ(V)χλ

where C = 4M . The result follows from Theorem 4. ��

3.3.4 More Examples

We construct here two examples of pairs in which the Lie algebras of these pairs
have almost polynomial growth, but the pairs do not have the same property.

The Lie algebra of the first example appears in [9, Example 12.3.13, p. 318]. We
use the same notation as in [9]. Let L = spanK {h, e} be the soluble nonabelian Lie
algebra of dimension 2 with multiplication [h, e] = e. Consider the left L-action on
the polynomial ring K[t] defined by

h(f ) = tf ′, e(f ) = tf (24)

where f ′ is the usual derivation in t . Then the vector space

B = L+K[t] = spanK{h, e, 1, t, t2, . . . }

is an infinite dimensional Lie algebra if we define the multiplication as follows:

[λh+ μe + f, αh + βe+ g] = (λβ − μα)e + λh(g)+ μe(g)− αh(f )− βe(f ).

In particular, K[t] is abelian ideal of B of codimension 2 and B is soluble. Note
also that B ′ = spanK {e} +K[t] is a non-nilpotent Lie algebra.

Theorem 9

1. (see [23, Theorem 5.4] or else [9, Theorem 12.4.4, p. 324]) The exponent of B
exists and we have exp(B) = 2. Moreover B generates a Lie variety of almost
polynomial growth.

2. Let (A,B) be an associative–Lie pair where B is the Lie algebra just con-
structed. Then V = var(A,B) has a proper subvariety W of non-polynomial
growth.

Our second example is based on the Lie algebra given in [9, Example 12.3.14].
Let H = spanK{x, y, z} be the Heisenberg algebra, that is H is the three-
dimensional Lie algebra with basis x, y, z, and multiplication defined by [x, y] = z,
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all other commutators among the basis elements are zero. Consider the leftH -action
on K[t] given by

x(f ) = f ′, y(f ) = tf, z(f ) = f

and define the multiplication on

C = H +K[t] = spanK {x, y, z, 1, t, t2, . . . }

as follows

[αx + βy + γ z + f, λx + μy + νz+ g] =
(αμ− βλ)z+ αx(g)+ βy(g)+ z(g)− λx(f )− μy(f )− z(f ) =

(αμ− βλ)z + αg′ − λf ′ + βtg − μtf + f − g.

Then C becomes a soluble infinite dimensional Lie algebra. Moreover, C′ =
spanK{z} +K[t] is not a nilpotent algebra.

Theorem 10

1. (see [23, Theorem 5.4], see also [9, Theorem 12.4.4, p. 324]) The exponent of C
exists and we have exp(C) = 3. Moreover, C generates a Lie variety with almost
polynomial growth.

2. Let (A,C) an associative–Lie pair where C is the above Lie algebra. ThenV =
var(A,C) has a proper subvarietyW of non-polynomial growth.

4 Graded Pairs and Amitsur’s Conjecture

4.1 Weak Graded Polynomial Identities

If G is a group and A an algebra (not necessarily associative) then A is G-graded
wheneverA = ⊕g∈GAg. HereAg are vector subspaces ofA such thatAgAh ⊆ Agh
for every g, h ∈ G. We shall need only the case G = Z2 where Z2 denotes the
cyclic group of order 2, and accordingly we stick to the additive notation. Then
A = A0 ⊕ A1; the elements of A0 ∪ A1 are homogeneous. We call the elements of
A0 even and those of A1 odd elements. The G-degree of a homogeneous element
a will be denoted by |a| ∈ G. A vector subspace (subalgebra, ideal) B of A is
homogeneous (or graded) if B = (B ∩ A0)⊕ (B ∩ A1).

The free associative and Lie algebras have a natural Z2-grading. We write X =
Y ∪Z, a disjoint union of infinite sets, and declares the variables from Y of degree 0,
and those from Z of degree 1. This is extended to the monomials in K〈X〉 and thus
the latter becomes the freeZ2-graded associative algebra. This construction transfers
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to L(X). In this case we also denote K〈X〉 by K〈Y,Z〉 and L(X) by L(Y,Z). The
Grassmann algebra is one of the most widely used Z2-graded algebra. The natural
grading on it is defined as E = E0⊕E1. Here Ei is the span of all basic monomials
of length k ≡ i (mod 2), i = 0, 1. It is clear that E0 is the centre of E and E1 is the
“anti-commuting” part of E.

Assume that A = A0 ⊕ A1 is a (not necessarily associative) Z2-graded algebra,
then the Grassmann envelope G(A) of A is the algebra G(A) = (A0 ⊗ E0) ⊕
(A1 ⊗ E1). This leads immediately to the notion of a superalgebra. Assume V is
a variety of (not necessarily associative) algebras. A Z2-graded algebra A is called
a V-superalgebra if G(A) ∈ V. Pay attention that one does not require A ∈ V. If
V is the variety of all associative algebras then an associative superalgebra is just
a Z2-graded associative algebra. When V is the variety of all Lie algebras, if L is
Z2-graded, L = L0 ⊕ L1 then G(L) ∈ V if and only if L satisfies the super-forms
of the anticommutativity [a, b] = (−1)|a||b|[b, a], and of the Jacobi identity:

(−1)|a||c|[a, [b, c]] + (−1)|a||b|[b, [c, a]] + (−1)|b||c|[c, [a, b]] = 0,

for every homogeneous elements a, b, c ∈ L. Thus L0 is a Lie algebra and L1 is a
module over L0.

The notions of subalgebra, ideal and factor algebra of a superalgebra are defined
in the natural way. Also solubility and nilpotence for superalgebras are defined in
the canonical way. If A = A0 ⊕ A1 is an associative superalgebra then defining the
super-bracket [a, b] = ab− (−1)|a||b|ba on the homogeneous elements of A yields
a Lie superalgebra denoted by A(∼). If (A,L) is a pair (not necessarily associative–
Lie) then (A,L) is said to be Z2-graded whenever A is an associative Z2-graded
algebra and L is a homogeneous vector subspace of A which generates A as an
associative algebra.

The free object in the class of associative–Lie Z2-graded pairs is the pair
(K〈X〉,L(X)) equipped with the Z2-grading commented above. As in the case of
Z2-graded associative (Lie) algebras one defines a graded identity for a Z2-graded
associative–Lie pair. Let (A,L) = (A0 ⊕A1, L0 ⊕L1) be a Z2-graded associative–
Lie pair. A polynomial f (x1, . . . , xn) ∈ K〈X〉 is a Z2-graded (or simply graded)
weak identity for (A,L) if f (a1, . . . , an) = 0 in A for every ai ∈ L0 ∪ L1 where
ai ∈ L|xi |, i = 1, . . . , n. In other words f vanishes on (A,L) when one makes
substitutions respecting the grading. We denote by Id2(A,L) the ideal of graded
weak identities for the associative–Lie Z2-graded pair (A,L).

The Z2-graded pair (A,L) = (A0 ⊕ A1, L0 ⊕ L1) is a superpair if L is a
sub(super)algebra of the Lie superalgebra A(∼). The notions of associative–Lie
homogeneous (or Z2-graded) subpair and sub(super)pair are defined in the natural
way. With certain abuse of notation we shall use the terms subalgebra and subpair,
omitting “super” when this causes no confusion.

As in the ordinary case one defines a free object in the case of superpairs. Let
K〈X〉 be the free associative superalgebra and let L(X) be the Lie superalgebra
of K〈X〉(∼) generated by X. Note that we are using the same notation for the Z2-
graded Lie algebra and the superalgebra generated by the set X. Here we assume
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X = Y ∪ Z, a disjoint union of infinite countable sets as above where Y are the
even and Z the odd variables, respectively. As in the case of associative–Lie Z2-
graded pairs one defines weak identities for the superpair (A,L), also called graded
weak identities; we shall also denote Id2(A,L) the ideal of weak identities for
the superpair. A variety of associative–Lie (Z2-graded) pairs and a supervariety of
superpairs are defined exactly in the same way as in the ordinary case.

Let V be a supervariety of superpairs and put I = Id2(V) the ideal of the weak
identities for all superpairs in V. Then I is an ideal of graded weak identities and it
is closed under endomorphisms ofK〈X〉 which respect the superstructures ofK〈X〉
and also of L(X). The superpair FY,Z(V) = (K〈Y,Z〉/I,L(Y,Z)/L(Y,Z) ∩ I) is
free in V, it is the relatively free pair in V. Here we consider L(Y,Z) as the Lie
superalgebra in K〈Y,Z〉(∼) generated by Y ∪ Z. This construction is analogous to
the case of a variety of Z2-graded associative–Lie pairs.

Now let E = E0 ⊕ E1 be the Grassmann algebra with its canonical Z2-grading.
Let A = A0 ⊕ A1 and L = L0 ⊕ L1 be an associative and a Lie superalgebra,
respectively. The Grassmann envelope G(A) = (A0 ⊗ E0) ⊕ (A1 ⊗ E1) is an
associative algebra while G(L) = (L0 ⊗ E0) ⊕ (L1 ⊗ E1) is a Lie algebra. We
stress that G(L) is a Lie algebra. Suppose that (A,L) is a superpair and denote
GA(L) the associative subalgebra ofA⊗E generated byG(L). This impliesGA(L)
is spanned by products of elements (l1 ⊗ x1) · · · (lk ⊗ xk) = l1 · · · lk ⊗ x1 · · · xk .
Here the xj ∈ E0 ∪ E1 are homogeneous elements in E and lj ∈ L0 ∪ L1,
moreover |lj | = |xj | for every j . Hence |l1 · · · lk| = |x1 · · · xk|. Now the spanning
set of GA(L) can be split into two subsets GA(L)i ⊆ Ai ⊗ Ei , i = 0, 1,
and it follows GA(L) = GA(L)0 ⊕ GA(L)1. Thus GA(L) is a homogeneous
(associative) subalgebra of G(A), and G(L) becomes a homogeneous subspace of
GA(L). A direct verification shows that G(L) is a Lie subalgebra of GA(L)(−). It
follows (GA(L),G(L)) is an associative–Lie pair which is Z2-graded. We call it the
Grassmann envelope of the superpair (A,L) and we denote it by G(A,L).

In the opposite direction, let (A,L) be an associative–Lie pair, and put B =
(A ⊗ E0) ⊕ (A ⊗ E1), M = (L ⊗ E0) ⊕ (L ⊗ E1). Then one writes down the
products in B and inM and obtains that (B,M) is a superpair.

4.2 Finitely Generated Superpairs

We denote Pk,m the vector space of the polynomials in K〈Y,Z〉 which are
multilinear in the variables y1, . . . , yk ∈ Y , and z1, . . . , zm ∈ Z. If f ∈ Pk,m
then it can be written as follows:

f =
∑

ασ,Ww0zσ(1)w1zσ(2) · · ·wm−1zσ(m)wm.

HereW = (w0, w1, . . . , wm) is a sequence of monomials in the variables y1, . . . , yk ,
ασ,W ∈ K , and σ ∈ Sm where Sm is the symmetric group permuting {1, 2, . . . ,m}.
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Let

f̃ =
∑
(−1)σ ασ,Ww0zσ(1)w1zσ(2) · · ·wm−1zσ(m)wm ∈ Pk,m

where σ ∈ Sm and (−1)σ is the sign of the permutation σ . Clearly the map f �→ f̃

defines an isomorphism on the vector space Pk,m, and moreover ˜̃f = f . Recall
that in the case of associative algebras this automorphism was introduced and used
extensively by Kemer, see for example [17]. We follow the treatment given to it in
[9, pp. 81–82, 110–112] with the adaptations to our case.

Lemma 13 Let f ∈ Pk,m and let (A,L) = (A0 ⊕ A1, L0 ⊕ L1) be a superpair.
Then f is a graded identity for G(A,L) if and only if f̃ is a graded identity for
(A,L).

If V is a variety of associative–Lie pairs we denote V∗ the class of all superpairs
(A,L) such thatG(A,L) ∈ V.

Lemma 14 The classV∗ is a supervariety.

We observe that the above lemma can be obtained by applying directly the
theorem of Birkhoff which is also valid in the case of pairs, that is a class of pairs
is a variety if and only if it is closed under subpairs, direct products of pairs and
homomorphic images.

Since V∗ is a supervariety it has relatively free superpairs. If V is a variety of
associative–Lie pairs we denote F = FY,Z(V∗) the relatively free superpair in the
supervarietyV freely generated by the even variables Y = {u1, . . . , uk} and the odd
ones Z = {z1, . . . , zm}.
Proposition 2 Let f = f (y1

1 , . . . , y
p1
1 , . . . , y

1
k , . . . , y

pk
k , z

1
1, . . . , z

q1
1 , . . . , z

1
m,

. . . , z
qm
m ) be a multilinear polynomial in the given variables. Suppose f is symmetric

in each set of variables {y1
i , . . . , y

pi
i }, 1 ≤ i ≤ k, and is skew-symmetric in each

{z1
j , . . . , z

qj
j }, 1 ≤ j ≤ m. Form the polynomial f̃ considering the y as even and

the z as odd variables. If

f̃ (u1, . . . , u1︸���������︷︷���������︸
p1

, . . . , uk, . . . , uk︸���������︷︷���������︸
pk

,w1, . . . , w1︸����������︷︷����������︸
q1

, . . . , wm, . . . , wm︸������������︷︷������������︸
qm

) = 0 (25)

in F then f is a weak identity inV.

Proof The polynomial f̃ (y1
1 , . . . , y

p1
1 , . . . , y

1
k , . . . , y

pk
k , z

1
1, . . . , z

q1
1 , . . . , z

1
m,

. . . , z
qm
m ) is symmetric in each set of variables {y1

i , . . . , y
pi
i }, 1 ≤ i ≤ k, and

also in each set {z1
j , . . . , z

qj
j }, 1 ≤ j ≤ m, according to the definition of f̃ . Since

u1, . . . , uk and w1, . . . , wm are the free generators of F, the equality (25) means
that the polynomial

f̃ (y1, . . . , y1︸���������︷︷���������︸
p1

, . . . , yk, . . . , yk︸���������︷︷���������︸
pk

, z1, . . . , z1︸��������︷︷��������︸
q1

, . . . , zm, . . . , zm︸����������︷︷����������︸
qm

)
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is a graded identity for V∗.
Let S = (SA, SL) be the relatively free pair in V freely generated by {yji , zji |

i, j ∈ N}. Form the superpair (B,M) whereB = B0⊕B1 = (SA⊗E0)⊕(SA⊗E1)

andM = M0⊕M1 = (SL⊗E0)⊕(SL⊗E1). For the Grassmann envelopeG(B,M)
of the latter superpair we haveG(B,M) = (GA(M),G(M)), and

G(M) = (M0 ⊗ E0)⊕ (M1 ⊗ E1) ⊆ SL ⊗ R,
GA(M) ⊆ G(B) = (B0 ⊗ E0)⊕ (B1 ⊗ E1) ⊆ SA ⊗ R.

HereR = (E0⊗E0)⊕(E1⊗E1) is a commutative and associative algebra. Hence if
a multilinear polynomial g vanishes as an element of SA when evaluated on SL, then
g vanishes under any substitution with elements from SL⊗R. Here we consider the
latter evaluation inside SA ⊗R. Therefore g is a weak identity forG(B,M). In this
way we have that G(B,M) satisfies all weak identities from S, hence G(B,M) ∈
V. This implies (B,M) ∈ V∗, and thus

f̃ (c1, . . . , c1︸��������︷︷��������︸
p1

, . . . , ck, . . . , ck︸��������︷︷��������︸
pk

, d1, . . . , d1︸���������︷︷���������︸
q1

, . . . , dm, . . . , dm︸����������︷︷����������︸
qm

) = 0 (26)

for every choice of ci ∈ M0, di ∈ M1. We substitute

ci = y1
i ⊗ a1

i + · · · + ypii ⊗ apii , dj = z1
j ⊗ b1

j + · · · + zqjj ⊗ bqjj
where 1 ≤ i ≤ k, 1 ≤ j ≤ m, ati are monomials from E0 written on distinct
generators, and btj ∈ E1 are monomials also written in distinct generators of E, so
that the product of all ati and all btj is nonzero.

Now we compute f̃ from Eq. (26). We have (ati )
2 = (btj )

2 = 0. Also f̃ is

symmetric in each of the sets {y1
i , . . . , y

pi
i } and in each of the sets {z1

j , . . . , z
qj
j }.

Thus we obtain

f̃ (c1, . . . , dm) = p1! · · · qm!˜̃f (y1
1, . . . , y

p1
1 , . . . , z

1
1, . . . , z

qm
m )⊗a1

1 · · · ap1
1 · · · b1

1 · · · bqmm .

But ˜̃f = f , the product of factorials is nonzero, and the rightmost product is (up to
a sign) a basic element of E which is also nonzero. Therefore f (y1

1, . . . , z
qm
m ) is a

weak identity for F. Since the yti and ztj are free generators of S, the relatively free
pair in V, it follows f is a weak identity for V, and the proposition is proved. ��

Now we have the necessary ingredients in order to obtain the following theorem.

Theorem 11 Let V be a nontrivial variety of associative–Lie pairs. If V is of
associative type then there exists a superpair (A,L) = (A0 ⊕ A1, L0 ⊕ L1) such
thatV = var(G(A,L)).
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Proof Since V is of associative type there exist k, m with χn(V) ⊆ H(k,m) for
every n. As in Proposition 2 we form the supervariety V∗ and its relatively free
superpair F = FY,Z(V∗). Here Y = {u1, . . . , uk} and Z = {w1, . . . , wm} are the
even and odd free generators of F, respectively. We claim that V is generated by the
Grassmann envelopeG(F).

It follows from the definition of V∗ that G(F) ∈ V hence it suffices to prove
that V satisfies all identities forG(F). Suppose f is a multilinear identity of degree
n for G(F). By [9, Theorem 2.4.7], the identity f is equivalent to a collection of
identities of the form eTλg = 0. Here g = g(x1, . . . , xn) is multilinear, λ � n, and
Tλ is a tableau corresponding to λ. Thus we shall consider f of the form eTλg.

If λ � H(k,m) then f ∈ Id(V) since χn(V) ⊆ H(k,m). So we suppose
λ ∈ H(k,m). By [9, Lemma 2.5.6], we can take f to be symmetric in some k′ ≤ k
sets of variables {y1

i , . . . , y
pi
i }, 1 ≤ i ≤ k′, and skew-symmetric in the m′ ≤ m sets

{z1
j , . . . , z

rj
j }, 1 ≤ j ≤ m′. In order to simplify the notation we take k′ = k and

m′ = m. Write f as

f = f (y1
1 , . . . , y

p1
1 , . . . , y

1
k , . . . , y

pk
k , z

1
1, . . . , z

q1
1 , . . . , z

1
m, . . . , z

qm
m ),

then f satisfies the statement of Proposition 2. Recall we assume the ypi as even
variables and zqj as odd ones. In this way we consider f as a graded identity of

G(F). By Lemma 13 the superpair F satisfies the graded identity f̃ . This implies

f̃ (u1, . . . , u1︸���������︷︷���������︸
p1

, . . . , uk, . . . , uk︸���������︷︷���������︸
pk

,w1, . . . , w1︸����������︷︷����������︸
q1

, . . . , wm, . . . , wm︸������������︷︷������������︸
qm

) = 0.

Now by Proposition 2 f is an identity for V, and the proof is complete. ��
We want to describe varieties of special pairs which do not contain representa-

tions of sl2. First we state a pair of results.

Lemma 15 Let V = var(B,M) be a variety of associative–Lie pairs where
(B,M) is a special pair. Then each pair in V is special. In particular, as V =
var(G(A,L)) for some superpair (A,L) = (A0 ⊕ A1, L0 ⊕ L1) we have that
GA(L) is a PI algebra.

The motivation for the following proposition is a fact deduced easily by Regev’s
theorem concerning the tensor product of two PI algebras, see [26]. If B = B0 ⊕B1
is PI and a Z2-graded algebra thenB⊗E is also PI (asE is PI, satisfying the identity
[x1, x2, x3] = 0 the tensor productB⊗E is also PI by Regev’s theorem). It follows
the Grassmann envelopeG(B) is also PI. Put J = Id(G(B)), I = Id(B⊗E), then
one has I � 0 and I ⊆ J .

Proposition 3 Let (A,L) = (A0⊕A1, L0⊕L1) be a superpair such thatG(A,L)
is a special pair. Then A is a PI algebra.

Theorem 12 Suppose the base field is algebraically closed (and of characteristic
0). Let V be a special variety of associative–Lie pairs such that (R, sl2) � V for
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every pair (R, sl2) associated to a representation of sl2. ThenV is a soluble variety
of pairs.

Proof As V is special it is of associative type, we have that V = var(G(A,L))

where (A,L) = (A0 ⊕ A1, L0 ⊕ L1) is a superpair of finite rank. Without loss of
generality we can assume (A,L) is relatively free. Thus A is a finitely generated
associative superalgebra. Then by Lemma 15 we have that GA(L) is an associative
PI algebra, and Proposition 3 yieldsA is PI too. It is well known the Jacobson radical
J = J (A) of an associative finitely generated PI algebraA is a nilpotent ideal. Then
A = A/J is semisimple hence A is a subdirect product of matrix algebrasMnγ (K)
over the base field K . (At this point only we need K algebraically closed.) Since A
is PI then the nγ are bounded.

It follows L = L/(L ∩ J ) embeds into a direct product of finite dimen-
sional superalgebras (contained in the respective Mnγ (K)). The corresponding
associative–Lie pairs obtained from the even components all belong to V, and are
of bounded dimensions. These components cannot contain pairs (R, sl2) hence the
Lie algebras in the components do not contain copies of sl2. Therefore all of them
are soluble.

But a Lie superalgebra B = B0 ⊕ B1 is soluble if and only if B0 is a soluble Lie
algebra, see for example [14, Proposition 1.3.3]. Therefore L is soluble since each
component in the embedding above is soluble of bounded index. But J is nilpotent
and this implies L is soluble, and so G(L) is soluble. The theorem is proved. ��

4.3 Non-integral Exponent: An Example

Here we shall construct an associative–Lie pair such that its exponent is not an
integer (if it exists). More precisely we shall prove that both the lower and upper
exponents are contained in the open interval (6, 7). According to Gordienko’s
theorem [12] such a pair cannot be the one obtained by a finite dimensional
representation ρ of the corresponding Lie algebra.

We begin with several notions, definitions and statements. These can be found in
[9, Section 10.4] in the context of algebras. Here we will need them for pairs and
superpairs. The proofs of these statements follow verbatim the ones for algebras,
and that is why we shall omit them.

We start with the free associative Z2-graded algebra K〈Y,Z〉 in the even
variables Y and odd variables Z. Let Pk,n−k be the vector space of the multilinear
polynomials in y1, . . . , yk, z1, . . . , zn−k . Let (A,L) be an associative–Lie Z2-
graded pair or a superpair. The intersection Pk,n−k ∩ Id2(A,L) consists of the
multilinear graded identities for (A,L) of degree k in the even variables and of
degree n− k in the odd variables. The group Sk × Sn−k acts on Pk,n−k in a natural
way: Sk permutes the even variables while Sn−k permutes the odd variables. Then
Pk,n−k becomes an Sk × Sn−k-module, Pk,n−k ∩ Id2(A,L) is a submodule, and we
denotePk,n−k(A,L) = Pk,n−k/(Pk,n−k∩Id2(A,L)) the factor module of the “non-
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identities” for (A,L). Its cocharacter χk,n−k(A,L) is the (k, n − k)th graded weak
cocharacter of (A,L). It can be decomposed as a sum of irreducibles as follows:
χk,n−k(A,L) = ∑

mλ,μχλ ⊗ χμ where λ � k, μ � n − k, and mλ,μ is the
multiplicity of the irreducible character associated to the pair of partitions (λ, μ).
Clearly deg(χλ ⊗ χμ) = dλdμ.

Let ck,n−k(A,L) = dimPk,n−k(A,L) be the (k, n − k)th weak codimension
of (A,L), then cZ2

n (A,L) = ∑n
k=0

(
n
k

)
ck,n−k(A,L) is the nth weak graded

codimension of (A,L). According to [9, Lemma 10.1.2], for an associative–Lie pair
(A,L) the inequality cn(A,L) ≤ cZ2

n (A,L) holds for each n. If B is an associative
or Lie Z2-graded algebra one defines in a similar way the graded codimensions and
cocharacters of B. The analog of Theorem 1 holds in this situation too.

Theorem 13 Let χk,n−k(A,L) = ∑
mλ,μχλ ⊗ χμ, λ � k, μ � n − k be the

cocharacter of the associative–Lie graded pair (or superpair) (A,L) and let λ and
μ be given. Then mλ,μ = 0 if and only if for every Young tableaux Tλ and Tμ, and
for every f = f (y1, . . . , yk, z1, . . . , zn−k) ∈ Pk,n−k the pair (A,L) satisfies the
graded identity eTλeTμf = 0.

We shall use several ideas and constructions “borrowed” from the papers by
Giambruno and Zaicev [10, 11]. In these papers the authors provided examples of a
special Lie algebra and a Lie superalgebraL respectively such that lim inf(cn(L)1/n)
and lim sup(cn(L)1/n) both exist and belong to the open interval (6, 7), and in the
superalgebra case coincide. Clearly neither of these can be integer.

Let A = M4(K) be the 4 × 4 matrix algebra over K . We fix the following Z2-
grading on A = A0 ⊕ A1:

A0 =
{(
P 0
0 Q

)
| P,Q ∈ M2(K)

}
, A1 =

{(
0 S
T 0

)
| S, T ∈ M2(K)

}
.

Form the Lie superalgebra A(∼) and its homogeneous subalgebra L = L0 ⊕ L1
where

L0 =
{(
X 0
0 −Xt

)
| X ∈ M2(K), tr(X) = 0

}
,

L1 =
{(

0 Y
Z 0

)
| Y,Z ∈ M2(K), Y

t = Y,Zt = −Z
}
.

We denote as usual tr(X) the trace of X, and Y t stands for the transpose of Y . Thus
dimL = 7, dimL0 = 3, and dimL1 = 4.

Let R be the associative subalgebra of A generated by L, then R is spanned by
the set β = {a1 · · · ak | ai ∈ L0 ∪ L1, k ≥ 1}. We split β = β0 ∪ β1 where βi is
formed by all products a1 · · · ak which are even (i = 0) or odd (i = 1) as elements
of A. Denote Ri the span of βi , i = 0, 1, then R = R0 ⊕ R1, and moreover L is
a homogeneous subalgebra of R(∼). We form the superpair (R,L), its Grassmann
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envelope is G(R,L) = (B,M) = (GA(L),G(L)) = (B0 ⊕ B1,M0 ⊕M1). Here
Mi = Li ⊗ Ei , and Bi ⊆ Ri ⊗ Ei , i = 0, 1.

The (k, n− k)th graded cocharacters of (B,M) and of (R,L) are given by

χk,n−k(B,M) =
∑

mλ,μχλ ⊗ χμ, χk,n−k(R,L) =
∑

m̃λ,μχλ ⊗ χμ, (27)

where λ � k, μ � n − k. We observe here that if A = A0 ⊕ A1 is an associative
superalgebra then (A,A(−)) is an associative–Lie graded pair. As Id2(A,A

(−)) =
Id2(A) we have that mλ,μ(A,A(−)) = mλ,μ(A) for every choice of n ≥ k ≥ 0
and λ � k, μ � n− k. Here Id2(A) denotes the ideal of Z2-graded identities of the
superalgebraA.

Recall that for a partition λ its conjugate is denoted by λ′, it corresponds to
the “transpose” diagram of λ (that is the diagram obtained by exchanging the
rows and the columns in the corresponding diagram). If Tλ is a λ-tableau put
e∗Tλ = ∑

(−1)σστ where σ ∈ RTλ , τ ∈ CTλ . (Recall that for eTλ one alternates
on the elements from the column stabilizer of Tλ while here we alternate on the row
stabilizer.) The following lemma can be found in [9, Lemma 4.8.6].

Lemma 16 Let y1, . . . , yl and z1, . . . , zm be even and odd variables, respectively,
and let f and g be two multilinear polynomials in these variables. Suppose Sm
permutes the variables z1, . . . , zm, μ � m, Tμ is a μ-tableau, and for the element
eTμ ∈ KSm we have f = eTμh. Then f̃ = ±e∗Tμ′h. (Recall the linear transformation
f �→ f̃ was defined at the beginning of Sect. 4.2.)

Lemma 17 If (A,L) is an associative–Lie Z2-graded pair and (A1, L1) is a
homogeneous (associative–Lie) subpair thenmλ,μ(A1, L1) ≤ mλ,μ(A,L) for every
λ � k, μ � n− k.
Lemma 18 In the decomposition of the cocharacter of (B,M) in Eq. (27), there
exist constants C and r which do not depend on n and such that

∑
mλ,μ ≤ Cnr ,

λ � k, μ � n− k.
Lemma 19 If λ � k, μ � n− k then m̃λ,μ � 0 if and only if mλ,μ′ � 0. (Recall the
multiplicities m̃λ,μ were defined in Eq. (27).)

Proof If m̃λ,μ � 0 let g = g(y1, . . . , yk, z1, . . . , zn−k) ∈ Pk,n−k \ Id2(R,L).
Suppose K(Sk × Sn−k)g is an irreducible Sk × Sn−k-module in Pk,n−k with a
character χλ ⊗ χμ, then f = eTλeTμg = eTμeTλg is not an identity for (R,L).

If h = eTλg then f = eT μh. The linear map f �→ f̃ fixes the variables y1, . . . , yk ,
therefore by Lemma 16 we get f̃ = ±e∗Tμ′ eTλg = eTλe

∗
Tμ′g. On the other hand f̃

generates an irreducible Sk × Sn−k-module in Pk,n−k whose character is χλ ⊗ χμ′ .
By Lemma 13 it follows f̃ is not a graded identity for (B,M) and thus mλ,μ′ � 0.

If mλ,μ′ � 0 by using the above argument and (μ′)′ = μ one has m̃λ,μ � 0 and
we are done. ��
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Now we find an upper bound for exp(B,M). If μ = (μ1, . . . , μt ) � m following
[11] we define the weight of μ, wt(μ) = −μ1 + μ2 + · · · + μt = m − 2μ1. The
following lemma is quite similar to Lemma 5 of [11].

Lemma 20 Let λ and μ be partitions such that m̃λ,μ � 0 in Eq. (27). Then

1. λ4 = 0 and μ5 = 0.
2. wt(μ) ≤ 1, that is μ1 + 1 ≥ μ2 + μ3 + μ4.
3. There exist constants α1, α2, q1, q2 which do not depend on k and n−k and such

that dλ ≤ α1n
q13k , and dμ ≤ α2n

q2(2
√

3)n−k .

Corollary 3 There exist constants α3, q3 which do not depend on n and such that
c
Z2
n (B,M) ≤ α3n

q3(3 + 2
√

3)n for each n. Thus exp(B,M) ≤ 3 + 2
√

3.

Proof The first statement follows as in [11, Lemma 7]. Since cn(B,M) ≤
c
Z2
n (B,M) we get exp(B,M) = lim sup(cn(B,M)1/n) ≤ 3 + 2

√
3. ��

In the remainder we deduce a lower bound for the codimensions of (B,M). We
follow ideas from [11, Section 4]. Recall that (B,M) is the Grassmann envelope
G(R,L). We fix a basis of L0 as follows. Let e = e12 − e43, f = e21 − e34,
h = e11 − e22 − e33 + e44 where eij is the matrix unit with 1 at position (ij) and
0 elsewhere. Then clearly he = −eh = e, fh = −hf = f , and ef = e11 + e44,
f e = e22 + e33. An easy manipulation shows then that the standard polynomial
s3(e, f, h) = 3(ef + f e) = 3I ∈ R0 where I stands for the identity matrix. Hence
if v ∈ R one obtains s3(e, f, h)qv = 3qv for every q ≥ 1.

Consider L(1) and L(−1) the upper right and the lower left block 2 × 2 of L1,
respectively. (Recall L = L0 ⊕ L1 was defined after Theorem 13.) Take linearly
independent elements a, b, c ∈ L(1) (these exist since dimL(1) = 3). Let 0 � d ∈
L(−1) then d has in its lower left corner a skew symmetric matrixD of order 2. It is
immediate that if x ∈ L(1) has the symmetric matrixX in its upper right corner then

[x, d] =
[(

0 X
0 0

)
,

(
0 0
D 0

)]
=

(
XD 0

0 DX

)
.

Therefore u1 = [a, d], u2 = [b, d], u3 = [c, d] are linearly independent. As
dimL0 = 3 they form a basis ofL0. Writing down the ui as linear combinations of e,
f , g, one obtains s3(u1, u2, u3) = αI , 0 � α ∈ K . It follows s3(u1, u2, u3)v = αv
for every v ∈ R. Taking a scalar multiple of d we can suppose α = 1. This means
s3(u1, u2, u3)v = [a, d][b, d][c, d]v = v. Here and in what follows we use the bar
and symbols like ã and/or â to indicate alternating sets of variables.

Now we iterate and apply s3(u1, u2, u3)
q+1 to v, and we write it as

[a, d][b, d][c, d][â, d][b̂, d][ĉ, d] · · · [ã, d][b̃, d][c̃, d]v = v.

Since [d, d] = 0 we can rewrite the latter equality as

[a, d̂][b, d][c, d][â, d̃][b̂, d][ĉ, d] · · · [ã, d][b̃, d][c̃, d]v = v.
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In other words the latter expression is alternating on q sets of variables, each of
them {a, b, c, d}, and on one alternating set {a, b, c}. Moreover there are 2q + 3
additional variables d (which do not alternate) and one v. The left-hand side yields
a polynomial of degree 4q+ 3+ 2q+ 3+ 1 = 6q+ 7, and this polynomial depends
on odd variables only. Linearizing (polarizing) it we obtain a multilinear polynomial
of degree 6q + 7, in odd variables. Denote the latter multilinear polynomial by

fq = fq(t11 , t12 , t13 , z1
1, z

1
2, z

1
3, t

2
1 , t

2
2 , t

2
3 , z

2
1, z

2
2, z

2
3, . . . , t

q+1
1 , t

q+1
2 , t

q+1
3 , z

q+1
1 , z

q+1
2 , z

q+1
3 , z).

Thus fq is alternating on each one of the sets {t i1, t i2, t i3, zi+1
1 }, 1 ≤ i ≤ q , and also

on the set {tq+1
1 , t

q+1
2 , t

q+1
3 }.

If we specialize the variables as follows: t i1 �→ a, t i2 �→ b, t i3 �→ c, zij �→ d ,
for all i and j , and z �→ v where 0 � v ∈ L1 is arbitrary then clearly fq does not
vanish.

Denote by gq the symmetrization (restitution) of fq in the four sets of variables

{t11 , . . . , tq1 }, {t12 , . . . , tq2 }, {t13 , . . . , tq3 }, {z1
2, z

1
3, z

2
1, z

2
2, z

2
3, . . . , z

q

1 , z
q

2 , z
q

3 , z
q+1
1 }

containing q , q , q , 3q variables, respectively. The above specialization shows that
gq is not an identity for the pair (B,L). As we work in characteristic 0 we can
linearize gq and obtain a multilinear element. Let P0,6q+7 be the vector space of the
multilinear polynomials in the odd variables appearing in the complete linearization
of gq . Ifm = 6q then the symmetric group Sm permutes the variables from the above
four sets, and P0,6q+7 becomes an Sm-module. The linearization of gq generates an
irreducibleSm-module (this follows from the form of the polynomial) corresponding
to the partition ν = (3q, q3) = (3q, q, q, q). The above specialization of gq falls in
R1 since deg gq is odd and there are only odd variables in the polynomial; the same
holds for its linearization.

We already saw s3(e, f, h)
qv = 3qv for every v ∈ R. It follows that for

v = gq we have that the polynomial hq = s3(y1
1 , y

1
2 , y

1
3 ) · · · s3(yq1 , yq2 , yq3 )gq does

not vanish on the superpair (R,L) whatever the even variables yij are. Indeed it

is sufficient to substitute all yi1 for e, all yi2 for f and yi3 for h. Then as above
we symmetrize first on the three sets {yi1}, {yi2}, {yi3}, then linearize and obtain a
multilinear polynomial pq of degree 3q in the even variables, and of degree 6q + 7
in the odd variables. Clearly pq generates an irreducible S3q × S6q -submodule in
P3q,6q+7 which corresponds to a pair of partitions (λ, ν), where λ = (q, q, q) and
ν = (3q, q, q, q). But then one takes the induced representation for S3q×S6q+7 and
chooses an irreducible component in it. We summarize the above considerations in
the following proposition.

Proposition 4 (Cf. [11, Lemma 9]) If q ≥ 1 then there is a multilinear polynomial
pq in 3q even and 6k+7 odd variables which generates an irreducible S3q×S6q+7-
module corresponding to the pair of partitions (λ, μ). The polynomial pq does not
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vanish on (R,L). Moreover λ = (q3) = (q, q, q), and if ν = (3q, q3) then ν ≤ μ.
Moreover the character of this module is χλ ⊗ χμ

Now we follow fairly close the exposition of [11].

Lemma 21 If n = 9q + 7 then cn(B,M) ≥ α4n
q4(35/3)n where α4 > 0 and q4 are

constants.

Proof According to the above Proposition 4 there exist λ = (q3), μ � 6q + 7, and
ν = (3q, q3) ≤ μ such that m̃λ,μ � 0 in the decomposition given in Eq. (27). This
means, once again by (27) that mλ,μ′ � 0. Here μ′ is the conjugate of μ, hence
ν′ = (4q, 12q) ≤ μ′. Therefore there is an irreducible S3q × S6q+7-module N in
P3q,6q+7 whose character is χλ ⊗ χμ′ . Moreover N is generated by a multilinear
polynomial f in 3q even and 6q+7 odd variables and f is not a graded identity for
(B,M). Then f cannot be an ordinary (nongraded) identity for (B,M).

Applying the Stirling formula exactly in the same way as in [11, Lemma 10] one
gets the conclusion of the Lemma. ��
Lemma 22 The inequality cn(B,M) ≤ cn+1(B,M) holds for every n.

Corollary 4 One has exp(B,M) ≥ 35/3.

Theorem 14 (Cf. [11, Theorem 1]) Let (R,L) be the superpair defined in the
beginning of this section. Then its Grassmann envelope G(R,L) = (B,M) is an
associative–Lie pair, and its exponent, if it exists, is not an integer. More precisely
the following inequalities hold:

6.24 ≈ 35/3 ≤ exp(B,M) ≤ exp(B,M) ≤ 3 + 2
√

3 ≈ 6.46.

The proof of the theorem is contained in the statements preceding it. We note that
we do not know whether exp(B,M) < exp(B,M) (that is the exponent does not
exist) or exp(B,M) = exp(B,M) (that is the exponent exists but is not an integer).
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On Codimensions of Algebras
with Involution

Daniela La Mattina

Dedicated to my dear colleague Antonio Giambruno on the
occasion of his anniversary.

Abstract Let A be an associative algebra with involution ∗ over a field F of
characteristic zero. One associates to A, in a natural way, a numerical sequence
c∗n(A), n = 1, 2, . . ., called the sequence of ∗-codimensions of A which is the main
tool for the quantitative investigation of the polynomial identities satisfied by A. In
this paper we focus our attention on c∗n(A), n = 1, 2, . . . , by presenting some recent
results about it.

Keywords *-identities · *-codimensions · Growth

1 Introduction

Let A be an algebra with involution ∗ over a field F of characteristic zero. Recall
that one can attach to A a numerical sequence c∗n(A), n = 1, 2, . . ., called the
sequence of ∗-codimensions of A. Such sequence is built out of the dimensions of
the multilinear ∗-polynomial identities of degree n ≥ 1 satisfied by the algebra A.
Such sequence has been extensively studied (see [9, 12–16]) but it turns out that it
can be explicitly computed only in very few cases. In case A is a PI-algebra, i.e., it
satisfies a non trivial polynomial identity, it was proved in [6] that, as in the ordinary
case, c∗n(A), n = 1, 2, . . ., is exponentially bounded. As a consequence in the last
years the interest has been focused in the computation of its asymptotics since they
represent an invariant of the T∗-ideal of the ∗-polynomial identities satisfied by A.
The exponential rate of growth of the sequence of ∗-codimensions was computed
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for finite dimensional algebras in [7] and for general PI-algebras in [9] and it turns
out to be a non-negative integer called the ∗-exponent of the algebra.

In this paper we present some results proved recently on c∗n(A), n = 1, 2, . . ..
First we shall point out that if A is any algebra with involution satisfying a non
trivial polynomial identity, then its sequence of ∗-codimensions is eventually non
decreasing. Then, starting with the well-known inequality for PI-algebras given in
[9]:

C1n
t exp∗(A)n ≤ c∗n(A) ≤ C2n

s exp∗(A)n (1)

with C1 > 0, C2, t, s constants, we shall see that, for finite dimensional algebras
[11] and, as a consequence [17] for finitely generated algebras, t = s ∈ 1

2Z. In

this way we get a second invariant limn→∞ logn
c∗n(A)

exp∗(A)n of a T∗-ideal, after the
∗-exponent.

Such result is accomplished by studying especial class of algebras, the so-called
∗-fundamental algebras. These are finite dimensional algebras that can be defined
in terms of some multialternating polynomials and for such algebras the polynomial
factor t in (1) is related to the structure of the algebra and can be determined
explicitly.

Finally, we shall give a characterization of the varieties of algebras with
involution whose exponential growth is bounded by 2.

2 ∗-Codimensions and ∗-Fundamental Algebras

Throughout this paper F will denote a field of characteristic zero, A an associative
F -algebra with involution ∗ and F 〈X, ∗〉 = F 〈x1, x

∗
1 , x2, x

∗
2 , . . .〉 the free associa-

tive algebra with involution on a countable set X = {x1, x
∗
1 , x2, x

∗
2 , . . .} over F .

Recall that a ∗-polynomial identity (or simply a ∗-identity) of A is a ∗-
polynomial f (x1, x

∗
1 , . . ., xn, x

∗
n) ∈ F 〈X, ∗〉 such that f (a1, . . . , an) = 0, for all

a1, a
∗
1 , . . . , an, a

∗
n ∈ A.

Obviously, any ordinary polynomial identity can be viewed as a ∗-identity
and, so, if an algebra is PI, i.e., it satisfies a non-trivial ordinary identity then it
also satisfies a non-trivial ∗-identity. The converse is also true for a well-known
result of Amitsur [2], i.e., if A satisfies a non-trivial ∗-identity, then A satisfies
an ordinary identity. This result gives a close relation between identities and ∗-
identities. Moreover, an explicit bound related to the ordinary identities of the
algebra A was found in [3].

As for the ordinary case, we have a positive answer to the Specht problem [1]:
every proper T∗-ideal of F 〈X, ∗〉 is finitely generated as a T∗-ideal. Here T∗-ideal
refers to an ideal of F 〈X, ∗〉 invariant under all endomorphisms of the free algebra
commuting with ∗. Nevertheless, the T∗-ideals of the free algebra are quite obscure
objects, since finding a finite set of generators is not at all simple. So, in order to
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get information about the ∗-identities satisfied by an algebra, one associates to an
algebra numerical invariants. One of the most important numerical invariants of a
PI-algebra is its codimension sequence c∗n(A), n = 1, 2, . . .. It is well known that
in characteristic zero, every ∗-identity is equivalent to a system of multilinear ∗-
identities. We denote by

P ∗
n = spanF {wσ(1) · · ·wσ(n)| σ ∈ Sn,wi = xi or wi = x∗i , 1 ≤ i ≤ n}

the space of multilinear ∗-polynomials of degree n in x1, . . . , xn, i.e., for every
i = 1, . . . , n, either xi or x∗i appears in every monomial of P ∗

n at degree 1 (but not
both).

So, if we denote by Id∗(A) the T∗-ideal of all ∗-identities satisfied byA, its study
is equivalent to the study of P ∗

n ∩ Id∗(A), for all n ≥ 1 and we denote by

c∗n(A) = dimF
P ∗
n

P ∗
n ∩ Id∗(A)

, n ≥ 1

the n-th ∗-codimension of A. Recently, it was proved in [4] that such a sequence is
eventually non-decreasing.

Theorem 1 ([4]) Let A be a PI-algebra with involution ∗. Then the sequence of ∗-
codimensions c∗n(A), n = 1, 2, . . . , is eventually non-decreasing, that is, c∗n+1(A) ≥
c∗n(A), for n large enough.

Despite its importance the exact computation of the ∗-codimensions of an algebra
is extremely difficult, and it has been done for very few algebras. That is why one
is led to study the asymptotic behaviour of the sequence of ∗-codimensions. Such
a sequence is bounded from above by the dimension of P ∗

n which is 2nn! but, in
case A is a PI-algebra, it was proved in [6] that, as in the ordinary case, c∗n(A), n =
1, 2, . . . , is exponentially bounded. The exponential rate of growth of c∗n(A), n =
1, 2, . . . was computed and shown to be an integer for finite dimensional algebras in
[7] and for general PI-algebras in [9].

Theorem 2 ([9]) Let A be a PI-algebra with involution ∗ over a field of character-
istic zero. Then there exist constants C1 > 0, C2, t1, t2 such that

C1n
t1dn ≤ c∗n(A) ≤ C2n

t2dn. (2)

Hence limn→∞ n
√
c∗n(A) = exp∗(A), the ∗-exponent of A, exists and is an integer.

As a consequence of the above theorem we have that the sequence of ∗-
codimensions c∗n(A), n = 1, 2, . . . , is either polynomially bounded or grows
as an exponential function dn with d ≥ 2.

In case of polynomial growth, if A is an algebra with 1, in [14] it was proved that

c∗n(A) = qnk +O(nk−1)
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is a polynomial with rational coefficients. Moreover its leading term satisfies the
inequalities

1

k! ≤ q ≤
k∑

i=0

2k−i (−1)i

i! .

Let us write down the disequality given in (2) keeping in mind that d = exp∗(A):

C1n
t1 exp∗(A)n ≤ c∗n(A) ≤ C2n

t2 exp∗(A)n. (3)

Now one can ask if the polynomial factor in (3) is uniquely determined, i.e., t1 =
t2, giving in this way a second invariant of a T∗-ideal, after the ∗-exponent. The
answer is positive for finite dimensional algebras with involution [11] and, as a
consequence, by the main result in [17], for finitely generated algebras.

Theorem 3 ([11]) Let A be a finitely generated ∗-algebra over a field F of
characteristic zero. If A satisfies a polynomial identity then

C1n
t exp∗(A)n ≤ c∗n(A) ≤ C2n

texp∗(A)n,

where t ∈ 1
2Z, for some constants C1 > 0, C2. Hence limn→∞ logn

c∗n(A)
exp∗(A)n exists

and is a half integer.

Now, a more concrete question would be the following: can one compute such
polynomial factor for a certain class of algebras relating it to the structure of the
algebra itself? The answer is positive for the class of ∗-fundamental algebras defined
in [11].

Let us recall the definition of ∗-fundamental algebra.
We recall that a ∗-polynomial f (x1, . . . , xn, Y ) linear in the variables x1, . . . , xn

(and in some other set of variables Y ) is alternating in x1, . . . , xn if f vanishes
whenever we identify any two of these variables This is equivalent to say that the
polynomial changes sign whenever we exchange any two of these variables (here
we exchange the indices of the two variables).

Now assume that A = Ā + J is a finite dimensional ∗-algebra over an
algebraically closed field, where Ā is a semisimple subalgebra ofA and J = J (A) is
the Jacobson radical. We recall that the (t, s)-index ofA is Indt,s(A) = (dim Ā, sA)
where sA ≥ 0 is the smallest integer such that J sA+1 = 0.

Next we define the Kemer ∗-index of A.
Let Γ ⊆ F 〈X, ∗〉 be the ideal of ∗-identities of A. Then β(Γ ) is defined as the

greatest integer t such that for every μ ≥ 1, there exists a multilinear ∗-polynomial
f (X1, . . . , Xμ, Y ) � Γ alternating in the μ sets Xi with |Xi | = t . Moreover γ (Γ )
is defined as the greatest integer s for which there exists for all μ ≥ 1, a multilinear
∗-polynomial f (X1, . . . , Xμ,Z1, . . . , Zs, Y ) � Γ alternating in the μ sets Xi with
|Xi | = β(Γ ) and in the s sets Zj with |Zj | = β(Γ )+ 1.

Then Ind∗K(Γ ) = (β(Γ ), γ (Γ )) is called the Kemer ∗-index of Γ .
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Since Γ = Id∗(A), we also say that (β(Γ ), γ (Γ )) = (β(A), γ (A)) = Ind∗K(A)
is the Kemer ∗-index of A.

In general we have that Ind∗K(A) ≤ Indt,s(A) in the left lexicographic order.
Next we give a definition of ∗-fundamental algebra through the Kemer ∗-index.

Definition 1 ([11, Theorem 6.1]) A finite dimensional ∗-algebra A is ∗-
fundamental if and only if Ind∗K(A) = Indt,s(A).

The main feature of these algebras is that any finite dimensional algebras satisfies
the same ∗-identities as a finite direct sum of ∗-fundamental algebras.

Theorem 4 ([11]) Let A = Ā + J be a ∗-fundamental algebra over an alge-
braically closed field F of characteristic zero and let s ≥ 0 be the least integer
such that J s+1 = 0. Write Ā = A1 ⊕ · · ·Ar ⊕ Ar+1 ⊕ · · · ⊕ Aq , a direct sum of
∗-simple algebras with A1, . . . , Ar not simple algebras, then

C1n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n ≤ c∗n(A) ≤ C2n
− 1

2 (dim(Ā)−−r)+s(dim Ā)n,

for some constants C1 > 0, C2, where (Ā)− = {a ∈ Ā | a∗ = −a} is the Lie
algebra of skew elements of Ā. Hence

lim
n→∞ logn

c∗n(A)
exp∗(A)n

= −1

2
(dim(Ā)− − r)+ s.

3 Low Exponential Growth

A structure theorem for PI-algebras with involutions proved in [1] is fundamental in
proving Theorem 2; it asserts that any PI-algebra with involution A over a field of
characteristic zero, satisfies the same ∗-identities as the Grassmann envelopeG(B)
of a finite dimensional superalgebra with superinvolution B, i.e.,

Id∗(A) = Id∗(G(B)). (4)

Now let us recall the basic definitions in order to see some applications of such a
result.

Let B = B0 ⊕ B1 be an associative superalgebra over F endowed with a
superinvolution �. Recall that a superinvolution on B is a graded linear map � :
B −→ B such that (a�)� = a for all a ∈ B and (ab)� = (−1)(dega)(degb)b�a� for
any homogeneous elements a, b ∈ B. Here deg c denotes the homogeneous degree
of c ∈ B0 ∪ B1.

Since charF = 0, we can write B = B+
0 ⊕B−

0 ⊕B+
1 ⊕B−

1 , where for i = 0, 1,
B+
i = {a ∈ Bi | a∗ = a} and B−

i = {a ∈ Bi | a∗ = −a} denote the sets of
symmetric and skew elements of Bi, respectively.
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In a natural way one defines the free algebra with superinvolution F 〈X, �〉, the
ideal of identities with superinvolution Id�(B), etc.

Let G be the infinite dimensional Grassmann algebra over F , i.e., the algebra
generated by the elements 1, e1, e2, . . . subject to the relations eiej = −ej ei, for all
i, j ≥ 1. Recall that G has a natural Z2-grading G = G0 ⊕G1, where G0 and G1
are the spans of the monomials in the ei’s of even and odd length, respectively. One
defines a superinvolution � on the Grassmann algebra G = G0 ⊕ G1 by requiring
that e�i = −ei, for i ≥ 1. HenceG+ = G0 and G− = G1.

Now if B = B0 ⊕ B1 is a superalgebra endowed with a superinvolution �, it was
proved in [1] that the Grassmann envelope of B, G(B) = B0 ⊗G0 ⊕ B1 ⊗G1 has
an induced involution ∗ by requiring that (a ⊗ g)∗ = a� ⊗ g�, on all homogeneous
elements g ∈ G and a ∈ B. The main property of such a Grassmann envelope
is the one we have seen above: if A is a PI-algebra with involution over a field
of characteristic zero, then there exists a finite dimensional superalgebra with
superinvolution B, such that Id∗(A) = Id∗(G(B)).

As a consequence we have that c∗n(A) = c∗n(G(B)), for all n ≥ 1.
Such a result allowed the authors in [9] to determine the exponential rate of

growth of the ∗-codimensions of G(B), and consequently of A. They also proved
that the ∗-exponent, when the field is algebraically closed, is just the dimension of
a suitable subalgebra of B.

In order to state this result we make the following definition. Let F be an
algebraically closed field of characteristic zero and let B be a finite dimensional
superalgebra with superinvolution. Then by Giambruno et al. [8] B = B̄+J, where
B̄ is a maximal semisimple subalgebra with induced superinvolution and J = J �

is the Jacobson radical of B. Let B̄ = B1 ⊕ · · · ⊕ Bq be a direct sum of simple
superalgebras with superinvolution. Then a subalgebra C = C1 ⊕ · · · ⊕ Ct of
B, where C1, . . . , Ct are distinct subalgebras from the set {B1, . . . , Bq } is called
admissible if

C1JC2J · · · JCt � 0.

The subalgebra C + J with induced superinvolution will be called reduced.
The result in [9] reads as follows. IfB = B1⊕· · ·⊕Bq+J is a finite dimensional

superalgebra with superinvolution defined as above, i.e., Id∗(A) = Id∗(G(B)), then
there exist constants C1 > 0, C2, t1, t2 such that

C1n
t1dn ≤ c∗n(G(B)) ≤ C2n

t2dn, (5)

where d is the maximal dimension of an admissible subalgebra of B.
Since the codimensions do not change by extending the base field, by putting

together the results in (4) and (5) we get the result in Theorem 2.
Hence, in order to characterize the varieties of ∗-algebras of a given ∗-exponent

t , a starting point is the study of the varieties of algebras with superinvolution
generated by reduced finite dimensional algebras whose semisimple part is of
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dimension t . We recall that the ∗-exponent of a variety is the ∗-exponent of a
generating algebra.

Next we give a characterization of the varieties of algebras with involution whose
∗-exponent is bounded by 2. To this end we list nine algebras that will play a basic
role in what follows.

Next we denote byUTn = UTn(F ) the algebra of n×n upper triangular matrices
over the field F . We consider the following two algebras with involution:

1. F ⊕ F, a two dimensional algebra endowed with the exchange involution
(a, b)∗ = (b, a);

2. M = F(e11+e44)⊕F(e22+e33)⊕Fe12⊕Fe34, the subalgebra ofUT4 endowed
with the reflection involution. Here the eij s are the usual matrix units.

Such algebras were extensively studied in [5] and [16].
Now we consider some algebras with involution introduced in [4] in order to

characterize the varieties of ∗-exponent ≤ 2 :
1. D1 = Fe11 ⊕ F(e22 + e33) ⊕ Fe44 ⊕ Fe12 ⊕ Fe34 ⊆ UT4 with reflection

involution ∗;
2. D2 = G0e11⊕G0(e22+e33)⊕G0e44⊕G1e12⊕G1e34 ⊆ UT4(G) is the algebra

with involution defined on a basis by

(geij )
◦ =

{
−ge∗ij if (i, j) ∈ {(1, 2), (3, 4)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT4(G);
3. D3 = F(e11 + e66) ⊕ F(e22 + e55) ⊕ F(e33 + e44) ⊕ Fe12 ⊕ Fe13 ⊕ Fe23 ⊕
Fe45 ⊕ Fe46 ⊕ Fe56 ⊆ UT6 with reflection involution ∗;

4. D4 = G0(e11+e66)⊕G0(e22+e55)⊕G0(e33+e44)⊕G0e12⊕G1e13⊕G1e23⊕
G1e45 ⊕ G1e46 ⊕G0e56 ⊆ UT6(G) is the algebra with involution defined on a
basis by

(geij )
◦ =

{
−ge∗ij if (i, j) ∈ {(1, 3), (2, 3), (4, 5), (4, 6)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT6(G);
5. D5 = G0(e11+e66)⊕G0(e22+e55)⊕G0(e33+e44)⊕G1e12⊕G0e13⊕G1e23⊕
G1e45 ⊕ G0e46 ⊕G1e56 ⊆ UT6(G) is the algebra with involution defined on a
basis by

(geij )
◦ =

{
−ge∗ij if (i, j) ∈ {(2, 3), (4, 5)}
ge∗ij otherwise

,

where ∗ denotes the reflection involution on UT6(G);
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6. D6 = (M2(F ), s) is the algebra of 2 × 2 matrices over F with symplectic
involution;

7. D7 = (M2(F ), t) is the algebra of 2 × 2 matrices over F with transpose
involution;

8. D8 =M1,1(G) =
(
G0 G1

G1 G0

)
with involution:

(
g0 g1

g′1 g′o

)∗
=

(
g′o g1

−g′1 go
)
;

9. D9 = G ⊕ Gop with involution (a, b)∗ = ((−1)degbb, (−1)degaa), for a, b ∈
G0 ∪G1.

In what follows we denote by var∗(A) the variety of algebras with involution
generated by A.

Theorem 5 ([4]) Let A be a PI-algebra with involution ∗ over a field F of
characteristic zero. Then

(a) exp∗(A) ≤ 2 if and only if Di � var∗(A), for any i ∈ {1, . . . , 9}.
(b) exp∗(A) = 2 if and only if Di � var∗(A), for any i ∈ {1, . . . , 9} and either

F ⊕ F orM ∈ var∗(A).
(c) exp∗(A) ≤ 1 if and only if F ⊕ F, M � var∗(A).

Notice that last item in the previous theorem is equivalent to the following result,
which was obtained in [5] without using the ∗-exponent.

Theorem 6 ([4, 5]) Let A be a PI-algebra with involution ∗ over a field F of
characteristic zero. Then the sequence c∗n(A), n = 1, 2, . . . , is polynomially
bounded if and only ifM,F ⊕ F � var∗(A).
We recall that two algebras are T ∗-equivalent if they satisfy the same ∗-identities.
As a consequence of the above theorem we get the only two ∗-algebras, up to T ∗-
equivalence, generating varieties of almost polynomial growth, i.e., such that they
grow exponentially but any proper subvariety grows polynomially. Here the growth
of a variety is the growth of the ∗-codimension sequence of a generating algebra.

Corollary 1 The algebras M and F ⊕ F are the only algebras, up to T ∗-
equivalence, generating varieties of almost polynomial growth.

Much interest was put into the study of the varieties of almost polynomial growth.
In [12] all subvarieties of the varieties generated byM and F ⊕ F were completely
classified and a complete list of finite dimensional ∗-algebras generating them was
given.

Moreover the authors classified all the minimal subvarieties of polynomial
growth of the varieties generated byM and F ⊕F ; minimal varieties of polynomial
growth are varieties V∗ satisfying the property: c∗n(V∗) ≈ qnk for some k ≥ 1, q >
0, and for any proper subvariety U∗

� V∗, c∗n(U∗) ≈ q ′nt with t < k.
Now, we recall that a variety V∗ of algebras with involution is minimal with

respect to the ∗-exponent if for any proper subvariety U∗ we have that exp∗(V∗) >
exp∗(U∗). Here the ∗-exponent (resp. the nth ∗-codimension) of a variety is the
∗-exponent (resp. the nth ∗-codimension) of a generating algebra.
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By using this definition we can say that the algebrasM and F ⊕ F are the only
algebras, up to T ∗-equivalence, generating minimal varieties of ∗-exponent 2.

We finish this section by giving an equivalent formulation of Theorem 6 through
another numerical sequence.

Let Hn be the hyperoctahedral group of degree n, i.e., Hn = Z2 / Sn, the wreath
product of the multiplicative group of order two with Sn. The space P ∗

n has a natural
left Hn-module structure induced by defining for h = (a1, . . . , an; σ) ∈ Hn, hyi =
yσ(i), hzi = zaσ(i)σ (i) = ±zσ(i).

Since P ∗
n ∩Id∗(A) is invariant under thisHn-action, the space P ∗

n /(P
∗
n ∩ Id∗(A))

has the structure of a left Hn-module and its character χ∗n (A), called the nth ∗-
cocharacter of A, decomposes as

χ∗n (A) =
∑

|λ| + |μ| = n
mλ,μχλ,μ, (6)

where λ � r, μ � n − r, r = 0, 1, . . . , n and mλ,μ ≥ 0 is the multiplicity of the
irreducibleHn-character χλ,μ associated to the pair (λ, μ).

Also

l∗n(A) =
∑

|λ| + |μ| = n
mλ,μ

is called the nth ∗-colength of A.

Theorem 7 ([15]) Let A be an algebra with involution over a field F of charac-
teristic zero. Then c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if
l∗n(A) ≤ k, for some constant k and for all n ≥ 1.

Notice that if l∗n(A) ≤ 3, then for n large enough, l∗n(A) is always constant.
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Context-Free Languages and Associative
Algebras with Algebraic Hilbert Series

Roberto La Scala and Dmitri Piontkovski

Abstract In this paper, homological methods together with the theory of formal
languages of theoretical computer science are proved to be effective tools to
determine the growth and the Hilbert series of an associative algebra. Namely, we
construct a class of finitely presented associative algebras related to a family of
context-free languages. This allows us to connect the Hilbert series of these algebras
with the generating functions of such languages. In particular, we obtain a class of
finitely presented graded algebras with non-rational algebraic Hilbert series.

Keywords Algebraic generating functions · Associative algebras · Graded
homology

1 Introduction

The Hilbert series (or growth series) of graded and filtered structures is one of the
most important invariants for infinite dimensional algebraic objects. In particular for
associative algebras, such series is the most natural tool for finding the growth. For
a number of important classes of algebras, Hilbert series are of special form, so that
they are useful to characterize Koszul algebras, Noetherian algebras, some classes
of PI algebras, algebras of small homological dimensions (such as noncommutative
complete intersection) and many other algebras (see, for instance [16, 22]).

For many important classes, the Hilbert series is a rational function. It was
Hilbert himself who proved this property for (finitely generated) commutative
algebras. Govorov [6] proved in 1972 that finitely presented monomial algebras
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have rational Hilbert series. After that, the rationality of Hilbert series has been
proved for a number of classes of associative algebras, such as, for example, prime
PI algebras [3] and relatively free PI algebras [4].

Moreover, Ufnarovski have introduced [21] a general class of algebras with
rational Hilbert series by connecting the theory of algebras with the theory of
formal languages of theoretical computer science. The regular languages are the
ones that are recognized by finite-state automata and it is well-known that such
languages have rational generating functions (see, e.g., [17]). A finitely generated
algebra defined by a monomial set of relations is called automaton (or Ufnarovski
automaton) if the set of relations forms a regular language, see details in Sect. 2.2.
Moreover, the set of normal words of such an algebra is also a regular language.
Since regular languages are known to have rational generating functions, the Hilbert
series of automaton algebras are always rational. Moreover, the finitely presented
monomial algebras are automaton, so that the Govorov’s rationality theorem follows
from this result as a particular case. Optimal algorithms to compute the rational
(univariate and multivariate) Hilbert series of an automaton algebra are due to La
Scala and Tiwari [10, 11].

Govorov had conjectured in 1972 that all finitely presented graded algebras
have rational series. However, a couple of counterexamples were found by Shearer
[20] in 1980 and Kobayashi [13] in 1981. We remark that the corresponding non-
rational Hilbert series were algebraic functions, that is, roots of polynomials with
coefficients in the rational function field. At the same time, classes of finitely
presented universal enveloping algebras with intermediate growth (having hence
transcendental Hilbert series) were also discovered in [22]. Examples of such
algebras have been recently introduced also by Koçak [14, 15]. Other examples
of finitely presented algebras with transcendental Hilbert series are recently given
in [8, 19]. Note that for important classes of algebras (such as Koszul algebras or
graded Noetherian algebras) the question about rationality of Hilbert series is still
open.

Whereas a number of algebras with either rational or transcendental Hilbert series
are known, there are only few examples of algebras with non-rational algebraic
Hilbert series. We have therefore defined the class of homologically unambiguous
algebras [12]. These are the monomial algebras such that their relations together
with the monomial bases of their homologies are unambiguous context-free lan-
guages (see details in Sect. 2.3). If such an algebra has finite homological dimension,
then its Hilbert series is algebraic. An example of a finitely presented graded algebra
with non-rational algebraic Hilbert series is constructed in [12]. This is in fact an
algebra such that the associated monomial algebra is homologically unambigous.

In this paper, we give a general method to construct a finitely presented algebra
of finite homological dimension (in fact, we provide three of them) such that for the
associated monomial algebra, both the set of relations and the monomial bases of
the homologies are context-free languages. Namely, for each context-free language
L which is a homomorphic image of the Dyck language over a finite alphabet, we
construct a finitely presented algebra such that its Hilbert series is calculated in
terms of the generating functionHL(z) of the language L.
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The paper is organized as follows. In Sect. 2, we briefly recall the notions
of Hilbert series of associative algebras, monomial algebras, and context-free
languages. In Sect. 3, we discuss a construction that assigns a finitely presented
algebra to such a language and give explicit formulae for the homologies and the
Hilbert series of the algebra. Finally, we describe several examples of such algebras
with particular choices of L. These are new examples of finitely presented graded
algebras with non-rational algebraic Hilbert series.

2 Preliminaries

2.1 Associative Algebras and Their Hilbert Series

The free monoid generated by a set X is denoted by X∗. Following theoretical
computer science, we call the elements of X∗ words and the subsets of X∗
languages.

Let A be a unital associative algebra over a field k generated by a finite subsetX.
The words and languages then correspond to elements and subsets of A which we
denote by the same symbols.

Let us define a degree function on A by putting deg xi = di ∈ Z>0 for all
xi ∈ X. Then, we put degw = di1 + · · · + dis for a word w = xi1 · · · xis ∈ X∗ and
deg a = max{degwi} for an element 0 � a = ∑

i ciwi ∈ A (ci ∈ k). This gives an
ascending filtration F0 = k1, Fd = k{a | deg a ≤ d} on A.

The Hilbert series of A is then defined as the formal power series

HA(z) =
∑

n≥0

zn dim(Fn/Fn−1).

The algebra A is graded if it is equal to the direct sum A0 ⊕ A1 ⊕ A2 ⊕ . . . ,
where A0 = k1 and Ad = k{w | degw = d}. In this case, we have HA(z) =∑
n≥0 z

n dimAn.
We assume now that the reader is familiar with the theory of noncommutative

Gröbner bases which are also called Gröbner-Shirshov bases (see, for instance,
[5, 18, 22]). We recall here some basic foundations. Let I be a two-sided ideal of
the free associative algebra F = k〈X〉 such that A = F/I . Suppose we have a
multiplicative well-ordering ≺ on X∗. This gives a monomial ordering on F . Then,
let 0 � f = ∑s

i=1 ciwi ∈ F with 0 � ci ∈ k,wi ∈ X∗ and w1 , w2 , . . . , ws .
The word lm(f ) = w1 is called the leading monomial of f . A (possibly infinite)
subset U ⊂ I is called a Gröbner-Shirshov basis, briefly a GS-basis of I , if
lm(U) = {lm(f ) | 0 � f ∈ U} ⊂ X∗ is a monomial basis of the monomial
ideal

LM(I) = 〈lm(f ) | 0 � f ∈ I 〉 ⊂ F.
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The GS-basis U is called minimal if the monomial basis lm(U) is such. We
call LM(I) the leading monomial ideal of I . If J = LM(I), one defines the
corresponding monomial algebra B = F/J .

If the algebra A is graded, then it is easy to prove that HS(A) = HS(B).
Moreover, the same is true for non-graded algebras if the ordering is degree-
compatible, that is, w1 ≺ w2 provided that degw1 < degw2. So, to compute the
Hilbert series of the general algebraA it is sufficient to calculate it for the associated
monomial algebra B.

2.2 The Homology and Hilbert Series of Monomial Algebras

In this sections, we recall some basic facts about monomial algebras and their
homology. We have discussed this topic in details in [12]. For a complete intro-
duction, we refer the reader to [9, 22].

Let A = k〈X〉/〈L〉 be an associative algebra generated by a finite set X =
{x1, . . . , xn} subject to a monomial set of relations L1 ⊂ X∗. We assume that this
set of relations is minimal, that is, the language L1 is subword-free.

The homology TorA· (k, k) of monomial algebras are calculated via so-called
chains [1, 2]. More precisely, we have TorA0 (k, k) = k, while for n ≥ 0 the
graded vector space TorAn+1(k, k) is isomorphic to the span of a language Ln called
the language of n-chains of the monomial algebra A. Denote L = X∗L1X

∗ and
X+ = X∗ \ {1}. Then, for all t ≥ 1 it holds that

L2t = (X+Lt ∩ LtX+) \ (X+LtX+ ∪ Lt+1),

L2t−1 = (X+Lt−1X+ ∩ Lt ) \ (X+Lt ∪ LtX+).

In particular, L0 = X, and for t = 1 we get L1 both on the left- and right-hand
sides.

Note that the classical definition of chains is recursive and the above one is based
on the Govorov’s formulae for homologies of associative algebras [7]. We discuss
these definitions in [12].

Given a degree function on X∗, one can define a generating function of any
language W ⊂ X∗ by HW(z) = ∑

w∈W zdegw. Then, the Hilbert series of the
graded vector space TorAn+1(k, k) is equal to HLn(z). From the exact sequence
corresponding to the minimal free resolution of the A-module k, one gets the
following formula for its Hilbert series:

HA(z) =
(

1 −
k∑

i=0

(−1)iHLi (z)

)−1

. (1)
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2.3 Automaton Algebras and Homologically Unambiguous
Algebras

The automaton algebras were introduced by Ufnarovski [21]. In our terms, one can
defined them as follows.

Definition 1 A monomial algebra is called automaton, if the following equivalent
conditions hold:

(i) the set S of nonzero words in A is a regular language;
(ii) the set of relations L1 is a regular language;

(iii) the chain languages Ln are regular, for all n.

We refer the reader to [10, 11, 21, 22] for details on automaton algebras. In
particular, the Hilbert series of each automaton algebra is a rational function. It
can be calculated using the methods of formal language theory as the generating
function of the regular language S (see [10–12]).

If an algebra A has a non-rational Hilbert series, it cannot be automaton. So,
for such algebras the condition that the corresponding languages are automaton
should be weakened. A more general class of languages is the class of context-
free (c-f for short) languages. Unfortunately, there does not exist an algorithm to
calculate the generating function of any c-f language. However, for some classes of
c-f languages such algorithms do exist. The most important result in this direction
is a theorem by Chomsky and Schützenberger stating that the generating function of
each unambiguous c-f language is an algebraic function. Moreover, the theorem
provides a way to construct a system of algebraic equations which defines the
generating function. For a detailed description of these methods, see [12, 17].

A monomial algebra is called (homologically) unambiguous if all chain lan-
guages Ln are unambiguous c-f. We refer the reader to [12] for the discussion and
examples of such algebras. Note that unlike the automaton case, it is not sufficient
to check this condition for L1 [12, Example 5.4]. If the unambiguous algebra A has
finite homological dimension, then it follows from (1) that the Hilbert series HA(z)
is an algebraic function.

Suppose that a finitely generated algebra A is not monomial. If the associated
monomial algebra Â is unambiguous, then HA(z) is algebraic. In [12], we have
provided an example of a finitely presented algebra of that kind such that its Hilbert
series is not rational.
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3 Finitely Presented Algebras Associated to Context-Free
Languages

3.1 The General Construction

Let us describe a class of finitely presented associative algebras. Each algebra of
this class is related to an arbitrary context free language L which is a homomorphic
image of a Dyck languageDn = Dn(a1, b1, . . . , an, bn). Recall thatDn consists of
the words with balanced parentheses of n possible kinds, where ai is the opening
parenthesis and bi is the closing parenthesis of the i-th pair. Note that a classical
theorem by Chomsky and Schützenberger provides that each context-free language
is an intersection of such a language L with a regular one, so that this class of
languages is quite general.

SupposeL = φ(Dn) ⊂ T ∗ with T = {t1, . . . , tm}. LetA be an algebra generated
by the set X of variables ai, bi, a

j
i , b

j
i , x, e, y, tk , where i, j run in {1, . . . , n} and k

runs in {1, . . . ,m}. The relations are defined for each i, j, l ∈ {1, . . . , n} as follows:

(i) aii x − xaii , b1
1x − xe;

(ii) aji al − aiajl , aji bl − aibjl , bji al − biajl , bji bl − bibjl , aji e − aibj , bji e − bibj ;
(iii) aiy − yφ(ai), biy − yφ(bi), aji y, bji y;
(iv) xye.

We denote by R the set of the above relations.
Denote d = max{degφ(a1), degφ(b1), . . . , degφ(an), degφ(bn)}. We intro-

duce a new degree function on the variables as follows: |ai| = |bi| = |aji | = |bji | =|x| = |y| = |e| = D and |tk| = 1 for all possible i, j, k. Set a deglex ordering over
the words on all variables by putting a•• > b•• > a• > b• > e > x > y > t•.

Theorem 1 The minimal Gröbner basis of the ideal generated by R is the disjoint
union of the set of the relations (i)–(iii) with the set of monomials

xPnyLe,

where Pn = (Dne)∗ is the language consisting of the empty word and the words of
the form

ei0w1e
i1 . . . wse

is

for all s, i0 ≥ 0 , i1, . . . , is > 0 and w1, . . . , ws ∈ Dn.
Proof First, note that the relations (i)–(iii) form the minimal Gröbner basis of the
ideal generated by them. Indeed, the first term of each relation is equal to its leading
monomial. The only overlapping of them are between the ones of the first four
types of relations (ii) and the leading monomials to the first two types of relations
(iii). In all cases, the resulting s-polynomials are reduced to zero. For example, the
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intersection of the leading monomials of aji bl − aibjl and bly − yφ(bl) gives an
s-polynomial

(a
j
i bl − aibjl )y − aji (bly − yφ(bl)) = aji yφ(bl)− aibjl y,

which is immediately reduced to zero by the last two elements of (iii). All other
cases of overlapping are similar.

Now, we are ready to prove that the Gröbner basis mentioned in the theorem
consists of the relations (i)–(iv) and a subset of xPnyLe. We proceed by the
induction on the length d of the leading monomial of a Gröbner basis element which
we denote by g. The induction base d = 2 follows immediately.

Let d ≥ 3. The element g is obtained as a complete reduction of an s-
polynomial based on the elements having leading monomials with lower lengths.
By the induction, the only possible (new) overlappings of such leading monomials
are between the relations of type (i) and some element g′ ∈ xPnyLe of the
Gröbner basis. Let g′ = xpyev (with p ∈ Pn, v ∈ L). Then, g is the complete
reduction of one of the s-polynomials s1 = aii g′ − (aii x − xaii )pyve = xaii pyve or
s2 = b1

1g
′ − (b1

1x − xe)pyve = xepyve. Here s2 belongs to xPnyLe, so that we
can assume that g is the complete reduction of s1.

If p = 1, then s1 = xaii yve is reduced to 0 by (iii).
Suppose that p ∈ Dne; then either p = e or p = p̃bje for some subword p̃ and

some j . In the first case, s1 = xaii eyve is reduced to g = xyφ(aibi)ve ∈ xyLe ⊂
xPnyLe. In the second case, s1 = xaii p̃bj eyve is reduced by (ii) to the monomial
xaip̃bjbiyve. This monomial is reduced by (iii) to the monomial g = xyφ(w)ve,
where w = aip̃bjbi ∈ Dn. We see that in this case again g ∈ xyLe.

Now, let p � 1 and p ∈ Pn \ Dne. We have p = wep′ for some w ∈ Dn, p′ ∈
Pne. Then, the complete reduction g = xaiwbip′yve of s1 = xaiiwep′yve belongs
to xPneyL.

Now, it remains to prove that all elements of the set xPnyLe belong to the
minimal Gröbner basis. Indeed, let us define a homomorphism α : {ai, bi, e | i =
1, . . . , n}∗ → {aii , b1

1, e | i = 1, . . . , n}∗ by putting α : ai �→ aii , bi �→ b1
1, e �→ b1

1.
Then, for each two words v ∈ Dn,w ∈ Pn the element xwyve is the complete
reduction of the word α(wv)xye. Since this word α(wv)xye is divisible by the
monomial (iv), it belongs to the ideal 〈R〉, so that the (normal) element xwyφ(v)e
belongs to the minimal Gröbner basis, for all v ∈ Dn,w ∈ Pn. ��

Note that the generating series of the languages Dn and Pn (with the standard
degree functions) are

HDn(q) =
1 −√

1 − 4nq2

2nq2
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and

HPn(q) = H(Dne)∗(q) =
1

1 − qHDn(q)
= 2nq

2nq − 1 +√
1 − 4nq2

.

Corollary 1

(a) For the associated monomial algebra Â to the algebra A above, the graded
vectors spaces TorÂi (k, k) are spanned, respectively, by the following sets
Li−1

• X (for i = 1),
• the disjoint union of the set of the first terms of (i)–(iii) with the set xPnyL

(for i = 2),
• the set {a1

1, a
2
2, . . . , a

n
n, b

1}xPnyL (for i = 3),
• and the empty set for each i ≥ 4.

In particular, all these languagesLi−1 are c-f. Moreover, they are unambigu-
ous c-f if the language L is unambiguous c-f.

(b) The generating functions of these graded vectors spaces with respect to the
degree function | · | are

(2n2 + 2n+ 3)zd +mz for i = 1,

z2d
(

4n3 + 4n2 + 3n+ 1
)
+ z3dHPn(z

d)HL(z) for i = 2,

(n+ 1)z4dHPn(z
d)HL(z) for i = 3,

and 0 for i ≥ 4.

(c) Both algebras A and Â have global dimension 3.
(d) The Hilbert series of both algebras A and Â with respect to the degree function

| · | is
(

1 −mz− zd(2n2 + 2n+ 3)+ z2d(4n3 + 4n2 + 3n+ 1)

+z3d(1 − (n+ 1)zd)HPn(z
d)HL(z)

)−1
.

In particular, both algebras have exponential growth.

Remark 1 The graded vector space TorA3 (k, k) has Hilbert series

z3d − z3d
(

1 − (n+ 1)zd
)
HPn(z

d)HL(z).



Context-Free Languages and Associative Algebras 287

This formula follows from the equalityHA(z)−1 = HÂ(z)−1, where for each of the
two 3-dimensional algebras A and Â the inverse of the Hilbert series is equal to the
Euler characteristic 1 −HTor·1(k,k)(z)+HTor·2(k,k)(z)−HTor·3(k,k)(z).

3.2 Graded Algebras Examples

In this subsection, we give new examples of graded finitely presented algebras
with non-rational algebraic Hilbert series. These examples are based on the general
construction described above.

Example 1 With the above notations, let L be the Dyck langauge on the alphabet
T = {t1, . . . , t2n}, so that φ is the obvious isomorphism and d = 1. Then, the
algebra A is graded with the standard degree function with Hilbert series

(
1 − z(2n2 + 4n+ 3)+ z2(4n3 + 4n2 + 3n+ 1)

+z3(1 − (n+ 1)z)HPn(z)HDn(z)
)−1

.

Note that here

HPn(z)HDn(z) =
1 −√

1 − 4nz2

z
(

2nz− 1 +√
1 − 4nz2

) = 1 − 2z−√−4 nz2 + 1

2z (nz+ z− 1)
,

so that the Hilbert series

HA(z) =
(

1 − z(2n2 + 4n+ 3)+ z2(4n3 + 4n2 + 3n+ 1

2
)+ z3

+z
2
√

1 − 4 nz2

2

)−1

is not rational. This algebra is homologically unambiguous.

Example 2 Now, let L be the language consisting of all words on t1 and t2 with
the same number of t1-s and t2-s. It is the image of D2 under the homomorphism
φ : a1 �→ t1, b1 �→ t2, a2 �→ t2, b2 �→ t1. So, here d = 1 (so that the algebra A is
graded with the standard grading) and n = m = 2. Then, the Hilbert series of A is

(
1 − 17z+ 55z2 + z3(1 − 3z)HP2(z)HL(z)

)−1
,

whereHL(z) = ∑
n≥0

(2n
n

)
z2n = 1/

√
1 − 4z2.
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Example 3 Finally, let L be the language over the 26 capital letter alphabet
consisting of all words with balanced pairs of the words “BEG”, “END” and
of the words “FOR, END”. It is the image of D2 under the homomorphism
φ : a1 �→ BEG, b1 �→ END, a2 �→ FOR, b2 �→ END. Then, we have
n = 2,m = 26, d = 3. Since all generators of L have the same length 3, the
algebra A is graded with the Hilbert series

(
1 − 26z− 15z3 + 55z6 + z9(1 − 3z3)HP2(z

3)HL(z)
)−1

,

where

HL(z) = D2(z
3) = 1 −√

1 − 8z6

4z6 .

In the explicit form, we have therefore

HA(z) =
(

1 − 26z− 15z3 + 109

2
z6 + z9 + z6

√
1 − 8z6

2

)−1

.
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On Almost Nilpotent Varieties of Linear
Algebras

Sergey P. Mishchenko and Angela Valenti

To Antonio Giambruno for his 70th birthday

Abstract A variety V is almost nilpotent if it is not nilpotent but all proper
subvarieties are nilpotent. Here we present the results obtained in recent years about
almost nilpotent varieties and their classification.

Keywords Varieties · Almost nilpotent · Codimension growth

1 Introduction

Let F be a field of characteristic zero and let F {X} be the free non associative
algebra on a countable set X over F. If A is a non necessarily associative algebra
over F we denote by Id(A) the T-ideal of polynomial identities ofA. In the study of
Id(A) an important role is played by the sequence {cn(A)}n≥1 of the codimensions
of A. In fact a general strategy in the study of Id(A) is that of studying the space
of multilinear polynomials in n fixed variables modulo the identities of the algebra
A through the representation theory of the symmetric group Sn on n symbols. Then
one attaches to Id(A) a sequence of Sn-modules, n = 1, 2, . . ., and studies the
corresponding sequence of characters.

More precisely, for every n ≥ 1, we consider the space Pn of multilinear
polynomials of F {X} in the first n variables x1, . . . , xn. Since charF = 0, the
sequence of spaces Pn ∩ Id(A), n = 1, 2, . . . , carries all informations about
Id(A). The symmetric group Sn acts on Pn by permuting the variables: if σ ∈ Sn,
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f (x1, . . . , xn) ∈ Pn,

σf (x1, . . . , xn) = f (xσ(1), . . . , xσ(n)).

The space Pn ∩ Id(A) is invariant under this action and one studies the structure of
Pn(A) = Pn/(Pn ∩ Id(A)) as an Sn-module. The Sn-character of Pn(A), denoted
χn(A), is the n-th cocharacter of A. By complete reducibility one writes

χn(A) =
∑

λ�n
mλχλ,

where χλ is the irreducible Sn-character corresponding to the partition λ of n and
mλ ≥ 0 is the corresponding multiplicity (see for example [8] for the representation
theory of the symmetric group).

The number of irreducible summands in χn(A), i.e., the length of the Sn-module
Pn(A), is called the n-th colength of A, and is denoted ln(A). Its degree cn(A) =
dimPn(A) is the n-th codimension of A and gives a quantitative estimate of the
polynomial identities satisfied by A. Then clearly

ln(A) =
∑

λ�n
mλ

and

cn(A) =
∑

λ�n
mλdλ,

where dλ = degχλ is the degree of the irreducible character χλ.
In the language of varieties if V = var(A) is the variety generated by an algebra

A, then we write Id(V) = Id(A), χn(V) = χn(A), ln(V) = ln(A) and cn(V) =
cn(A). The growth of V is the growth of the sequence of codimensions of A.

The first result on the asymptotic behavior of cn(V) is due to Regev [23]. He
proved that if V is a non-trivial variety of associative algebras, then the sequence
of codimensions is exponentially bounded, i.e., there exist constants α, a > 0 such
that cn(V) ≤ αan, for all n. In case V is a variety of non associative algebras, such
sequence has a much more involved behavior and can have overexponential growth
(see [3, 6, 22, 25]).

If the sequence of codimensions cn(V) is exponentially bounded then one
naturally defines, Exp(V), the exponent of the variety. Let

Exp(V) = lim sup
n→∞

n
√
cn(V), Exp(V) = lim inf

n→∞
n
√
cn(V)
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the upper and lower exponent respectively of the variety V. If Exp(V = Exp(V)
then

Exp(V) = Exp(V) = Exp(V).

Let us recall that a variety V has polynomial growth if there exist α, t such that
cn(V) = αnt . Moreover V has intermediate growth if for any k > 0, a > 1 there
exist constants C1, C2, such that, for any n, takes place the inequality

C1n
k < cn(V) < C2a

n.

We say that a variety V has subexponential growth if for any constant B >

1 there exists n0 such that for all n > n0, cn(V) < Bn. Clearly varieties with
polynomial growth or intermediate growth have subexponential growth and it can
be shown that varieties realizing each growth can be constructed. For instance a
class of varieties of intermediate growth was constructed in [7].

Recall that an algebraA is nilpotent if, for some k ≥ 1, any product of k elements
of A (with all possible arrangements of the brackets) is zero. Clearly if A is a
nilpotent algebra then cn(A) = 0, for n large. Accordingly we say that a variety
is nilpotent if it is generated by a nilpotent algebra. So we say that a variety V is
almost nilpotent if it is not nilpotent but all proper subvarieties are nilpotent.

Almost nilpotent varieties exist and not only those having linear growth, which is
not surprising, but also almost nilpotent varieties with exponential growth. In fact in
[16] an almost nilpotent variety of exponent two was constructed and, in [15], this
example was extended to prove the existence of almost nilpotent varieties with any
integral exponent.

The aim of this paper is to review on the results obtained in recent years about
almost nilpotent varieties and their classification.

We present nine almost nilpotent varieties in different classes of algebras and we
characterize those having subexponential growth. Moreover we recall some results
about infinite series of almost nilpotent varieties with polynomial growth and we
describe almost nilpotent varieties of exponential growth.

We next recall some basic properties of the representation theory of the sym-
metric group that we shall use in the sequel. Let λ � n be a partition of n and
let Tλ be a Young tableau of shape λ � n. We denote by eTλ the corresponding
essential idempotent, i.e., e2

Tλ
= αeTλ, 0 � α ∈ F, of the group algebra FSn.

Recall that eTλ = R+
Tλ
C−
Tλ

where R+
Tλ

= ∑
σ∈RTλ σ, andC−

Tλ
= ∑

τ∈CTλ (sgnτ )τ
and RTλ, CTλ are the groups of row and column stabilizers of Tλ, respectively.
Recall that if Mλ is an irreducible Sn-submodule of Pn(A) corresponding to
λ there exists a polynomial f (x1, . . . , xn) ∈ Pn and a tableau Tλ such that
eTλf (x1, . . . , xn) � Id(A). Let e′Tλ = C−

Tλ
R+
Tλ
C−
Tλ
. Since R+

Tλ
C−
Tλ
R+
Tλ
C−
Tλ
� 0 then

e′Tλ is a nonzero essential idempotent that generates the same irreducible module
and so also e′Tλf (x1, . . . , xn) � Id(A).
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In what follows we shall also denote by g(λ) the polynomial obtained from
the essential idempotent corresponding to a tableau of shape λ by identifying the
elements in each row. Recall that g(λ) is an highest weight vector of the general
linear groupGLk(F ) where k is the number of distinct part of λ (see [4]).

We recall that for an algebra A, Ra denotes the operator of right multiplication
by a ∈ A. From now on we shall write Xi = Rxi for the right multiplication in
F {X} by the variable xi. In order to simplify the notation we shall also use the
following convention: a monomialM in which some variables are overlined by the
same sign (say ,̄ ˜etc), must be read as the polynomial in which those variables are
alternated. Moreover through the paper we shall omit the parenthesis in left normed
monomials, i.e. xyz = (xy)z.

2 Almost Nilpotent Varieties Generated by One or Two
Dimensional Algebra

It is well known that a not nilpotent one dimensional algebraA0 is isomorphic to the
basic field F . Clearly the variety generated by this algebra V0 = var(A0) = var(F )
is an almost nilpotent variety and χn(V0) = χ(n), where (n) � n is a partition of n.

Let’s now consider four two-dimensional algebras A1, A2, A3, A4 with basis
{a, b} and with the following tables of multiplication:

A1 a b

a 0 a
b 0 0

A2 a b

a 0 0
b a 0

A3 a b

a 0 a
b a 0

A4 a b

a 0 a

b −a 0

The purpose of this section is to prove that these two-dimensional algebras
generate almost nilpotent varieties.

Definition 1 Let V1 be the variety of algebras satisfying the following identities:

(1) x(yz) ≡ 0;
(2) (xy)z ≡ (xz)y + x(yz).

Let 2N denote the variety of left nilpotent algebras of index two, that is the variety
of algebras satisfying the identity x(yz) ≡ 0. In others words V1 is the variety of
Leibniz algebras contained in 2N. From (1) and (2) it follows that

(3) xyz ≡ xzy

holds in V1.
Let A1 be the algebra with basis {a, b} and such that ab = a and a2 = b2 =

ba = 0. Clearly A1 ∈ V1.We have the following (see [17])

Proposition 1 V1 = var(A1) and χn(V1) = χ(n) + χ(n−1,1).
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Proof Let P in be the space of left normed multilinear polynomials in x1, . . . , xn
starting with xi. Then clearly

Pn(V1) = P 1
n (V1)+ . . .+ Pnn (V1).

Since by (3) dim P in(V1) = 1 it follows that cn(V1) ≤ n.
Let χn(A1) = ∑

mλχλ. Clearly the polynomial g((n)) = x1X
n−1
1 is not an

identity of A1 therefore m(n) ≥ 1. Notice that modulo the identities of A1 all non-
zero monomials of the free algebra are left normed then m(n)(A1) = d(n) = 1.

Consider now the partition λ = (n − 1, 1) and let g((n − 1, 1)) = x̄1x̄2X
n−2
1 .

It is easy to see that g((n − 1, 1)) is not an identity of A1 therefore we obtain that
m(n−1,1) ≥ 1. Since d(n) = 1 and d(n−1,1) = n− 1, it follows that

n ≥ cn(V1) ≥ cn(A1) ≥ d(n) + d(n−1,1) = n.

Hence cn(V1) = cn(A1) = n,V1 = var(A1), χn(V1) = χ(n) + χ(n−1,1) and we
are done.

��
A characterization of the algebra A1 is given in the following

Proposition 2 (Mishchenko and Valenti [17]) Let V be a variety of algebras
satisfying the identity x(yz) ≡ 0. Then A1 � V if and only if x0X

m
1 ≡ 0 holds

inV, for some m ≥ 1.

Proof Consider the basis {a, b} ofA1. Since aRmb � 0, then x0X
m
1 � Id(A1), for all

m ≥ 1. Hence if, for some m, x0X
m
1 ≡ 0 is an identity of V we have that A1 � V.

Viceversa if A1 � V, then for some n, there exists an irreducible Sn-character
χλ appearing with multiplicity m′

λ in χn(A1) and mλ in χn(V) with m′
λ > mλ.

Since χn(A1) = χ(n)+χ(n−1,1) it follows that either g((n)) = x1X
n−1
1 ≡ 0 holds

in V or g((n− 1, 1)) = ∑n−2
s=0 αsx̄1X

s
1x̄2X

n−s−2
1 ≡ 0 holds in V, for some (not all

zero) coefficients αs ∈ F. Notice that here g((n − 1, 1)) is a highest weight vector
ofGL2(F ) written as a linear combination of highest weight vectors corresponding
to standard tableaux of shape (n− 1, 1).

If g((n)) = x1X
n−1
1 ≡ 0 in V we make the substitution x1 = x1 + x0x1 and we

get x0X
n
1 ≡ 0.

If g((n − 1, 1)) = ∑n−2
s=0 αsx̄1X

s
1x̄2X

n−s−2
1 ≡ 0 after the substitution x2 = x2

1

we get (
∑n−2
s=0 αs)x

2
1X

n−2
1 ≡ 0. If (

∑n−2
s=0 αs) = 0 then g((n − 1, 1)) is an identity

also for A1, and this is a contradiction. Then (
∑n−2
s=0 αs) � 0 and this implies that

x2
1X

n−2
1 ≡ 0 holds in V. If we now make the substitution x1 = x1 +x0x1 we obtain

that x0X
n
1 ≡ 0 is an identity of V and we are done. ��

Remark 1 The variety V1 is generated by the free Liebniz algebra of rank 1.

Note that x0X
n
1 � 0 is not an identity of V1 so V1 is not a nilpotent variety. Let’s

prove that
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Theorem 1 V1 is an almost nilpotent variety.

Proof Let W � V1 be a proper subvariety of V1, we want to prove that W is
nilpotent. If A1 ∈ W then W = V1. So A1 �W and, by Proposition 2, we have
that, for some m, x0X

m
1 ≡ 0 is an identity of W. Clearly g((m + 1)) ≡ 0 and

we claim that g((m + 1, 1)) ≡ 0. In fact let’s make the substitution x0 = x2x1 or
x0 = x1x2. We obtain that x2X

m+1
1 ≡ 0 and x1x2X

m
1 ≡ 0. Combining these two

identities we obtain that g((m+ 1, 1)) = x̄1x̄2X
m
1 ≡ 0 as claimed.

Therefore χn(W) = 0 for all n ≥ m+ 2 and W is a nilpotent variety. ��
Let’s now consider the algebra A2 with basis {a, b} such that ba = a and a2 =

b2 = ab = 0.

Remark 2 The algebra A2 is right nilpotent and satisfies the identities (xy)z ≡ 0,
x(yz) ≡ x(zy). All properties of A2 coincide with the properties of the previous
algebra A1 in fact we have only to consider right-normed polynomials instead
of left-normed polynomials. As before we have that V2 = var(A2) is an almost
nilpotent variety.

Let’s now look at the algebra A3 with basis {a, b} and the following table of
multiplication ab = ba = a and a2 = b2 = 0. The algebra A3 is commutative and
metabelian hence

Remark 3 var(A3) is a commutative metabelian variety.

Definition 2 Let V3 be the variety satisfying the following identities

xy ≡ yx, (1)

(xy)(zt) ≡ 0, (2)

xyzt ≡ xytz, (3)

xỹzt̃ = xyzt − zyxt − xtzy + ztxy ≡ 0. (4)

The following results are proved in [20].

Proposition 3 V3 = var(A3) and χn(V3) = χ(n) + χ(n−1,1).

Proof First we prove thatA3 ∈ V3. Since the identities definingV3 are multilinear,
it is sufficient to verify them on the basis elements of the algebra A3. By definition,
the algebra A3 is a commutative metabelian algebra, so, the identities (1) and (2)
hold in A3. The identity (4) is skew-symmetric on the pairs of generators x, z and y,
t , hence if we substitute the same elements of A3 in at least one pair of alternating
elements we obtain zero. If we substitute different elements in each alternating pairs
then we get at least two elements of A2

3 and so the result of the substitution is also
equal to zero. Therefore the identity (4) holds in A3. Direct calculations show that
also the identity (3) holds in A3 hence A3 ∈ V3.
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Now we show that, modulo the identities of the variety V3, any multilinear
monomial of degree n ≥ 3 is equal to a linear combination of n monomials of
the following type:

xn−1xn−2xnxn−3 . . . x1, (5)

xnxixi1xi2 . . . xin−2 , i = 1, . . . , n− 1, i1 > i2 > . . . > in−2. (6)

If n = 3 from the commutativity we have that P3(V3) is the linear span of the
monomials x3x1x2, x3x2x1, x2x1x3. It follows that c3(V3) ≤ 3.

If n > 3, the identity (3) allows us to sort the indices of the generators of each
monomial starting from the third position in decreasing order, therefore, taking into
account the commutativity of the multiplication, we have to consider monomials of
the following type xixjxi1xi2 . . . xin−2 , i > j , i1 > i2 > . . . > in−2.

If one of these monomials is different from the monomials (5), (6), then it can be
one of the following three types:

xixjxnxn−1xn−2 . . . , 1 ≤ j < i < n− 2; (7)

xn−1xjxnxn−2 . . . , 1 ≤ j < n− 2; (8)

xn−2xjxnxn−1 . . . , 1 ≤ j < n− 2. (9)

If we apply the identity (4) to monomials of the first type we have that

xixjxnxn−1xn−2 . . . ≡ xixn−1xnxj . . .+ xnxjxixn−1 . . .− xnxn−1xixj . . . .

In the sum obtained the second and third term are identically equal to monomials of
type (6) and the first term has the second form.

So let’s apply the identity (4) to monomials of type (8), we obtain

xn−1xjxnxn−2 . . . ≡ xn−1xn−2xnxj . . .+ xnxjxn−1xn−2 . . .− xnxn−2xn−1xj . . . .

On the right side of the equality, the first term is identically equal to the monomial
(5), the second and third term refer to monomials of the form (6).

It remains to consider monomials of type (9). As before, applying the identity
(4), we obtain that

xn−2xjxnxn−1 . . . ≡ xn−2xn−1xnxj . . .+ xnxjxn−2xn−1 . . .− xnxn−1xn−2xj . . . .

It follows that any multilinear monomial of degree n is a linear combination of
monomials of type (5) and (6) hence for n ≥ 3, cn(V3) ≤ n.

Let’s now estimate a lower bound of cn(A3). The one-dimensional irreducible
submodule of the modulePn(A3) corresponding to the partition (n) � n is generated
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by the complete linearization of the monomial g(n)(x) = xXn−1. Notice that

g(n)(a + b) = (a + b) . . . (a + b)︸��������������������︷︷��������������������︸
n

= 2a � 0.

Since modulo the identities ofA3 all non-zero monomials of the free algebra can
be rewritten as left normed monomials it follows that m(n)(A3) = d(n) = 1.

The irreducible submodule of the module Pn(A3) corresponding to the partition
(n − 1, 1) � n is generated by the complete linearization of the polyhomogeneous
polynomial

g(n−1,1)(x, y) = xxyXn−3 = xxyXn−3 − yXn−1.

This polynomial is not identically zero in the algebra A3, in fact

g(n−1,1)(b, a) = bba b . . . b︸���︷︷���︸
n−3

−a b . . . b︸���︷︷���︸
n−1

= −a.

It follows that m(n−1,1)(A3) ≥ 1. Now, by the hook formula, d(n) = 1 and
d(n−1,1) = n− 1 hence cn(A3) ≥ n.

Since A3 ∈ V3 we have thatmλ(A3) ≤ mλ(V3) hence cn(A3) ≤ cn(V3) and so

n ≤ cn(A3) ≤ cn(V3) ≤ n.
It follows that V3 = var(A3) and χn(V3) = χ(n) + χ(n−1,1). ��
A characterization of the algebra A3 is given in the following

Proposition 4 (Mishchenko et al. [20]) The algebra A3 does not belong to a
commutative metabelian variety V if and only if in the variety V, for some k ≥ 1,
the identity x0X

k ≡ 0 holds.

Proof Clearly if the identity x0X
k ≡ 0 holds in the variety V then the algebra A3

does not belong to V.
If the algebra A3 � V then, by Proposition 3, for some n ≥ 3, the identities

corresponding to the partition (n) or (n−1, 1) hold in the variety V but do not hold
in the algebra A3. Note that the proof in the cases n = 1, 2 is obvious.

Suppose that for the partition (n) the identity xXn−1 ≡ 0 holds in the variety V,
then we substitute the sum x0x + x instead of x0 and, by virtue of the commutative
and metabelian identities, we get that x0X

n ∈ Id(V).
Let’s now consider the polyhomogeneous elements corresponding to the standard

tableaux of shape λ = (n − 1, 1) whose linearizations generate irreducible
submodules of the module Pn(V). They are polynomials of the form xXs−2yXn−s ,
s = 2, 3, . . . , n, therefore in the variety V holds the following identity

n∑

s=3

αsxX
s−2yXn−s ≡ 0. (10)
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The summation begins with s = 3, since for s = 2 the identity x yXn−2 ≡ 0 holds
in any commutative variety. If in (10) the sum

∑n
s=3 αs = 0 then it is an identity in

A3 since by (3), for 3 ≤ s ≤ n, xXs−2yXn−s ≡ xxyXn−3.

Therefore, suppose that
∑n
s=3 αs � 0, and in the identity (10) we substitute y

with x0x. We get the identity

(
n∑

s=3

αs

)
x0X

n ≡ 0,

and as consequence we obtain the desired identity x0X
n ≡ 0. The proposition is

proved. ��
Now we are able to prove

Theorem 2 V3 is an almost nilpotent variety.

Proof Let W be a proper subvariety of V3 then, by Proposition 4, in the variety
W the identity x0X

k ≡ 0 holds for some k ≥ 1. We replace x0 by the product x1x2
and x by x3 + x4 + . . .+ xk+2. Taking the multilinear part and using (3) we get that
x1x2x3 . . . xk+2 ≡ 0. ��

Let A4 be the algebra having two basic element a, b and defining relations:

1. ab = −ba = a,
2. a2 = b2 = 0.

A4 is a two dimensional not nilpotent metabelian Lie algebra and it is well known
that the variety generated by A4,V4 = var(A4), is the variety of all metabelian Lie
algebras.

Proposition 5 ([1, p. 186]) The varietyV4 has the following numerical character-
istics

c1(V4) = 1, χ1(V4) = χ(1), l1(V4) = 1,

cn(V4) = n− 1, χn(V4) = χ(n−1,1), ln(V4) = 1, n = 2, 3, . . . . (11)

Moreover V4 is one of three varieties whose colength is identically equal to 1
(see [10]).

We denote by MA the variety of all anticommutative metabelian algebras.

Proposition 6 (Shulezhko and Panov [24]) The variety V4 is not a subvariety of
V ⊂ MA if and only if, for some k ≥ 1, the identity x0X

k ≡ 0 holds inV.

Proof By the definition of the algebra A4, for any k ≥ 1, we have that aRkb = a,
therefore the identity x0X

k ≡ 0 does not hold in the variety V4 and it remains to
prove the necessary condition.
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Let’s assume that V4 is not a subvariety of V, then by (11) the identities
corresponding to the Young diagram associated to λ = (n − 1, 1), n ≥ 2, hold
in the variety V but do not hold in the variety V4. The different standard tableaux
of this diagram correspond to the polyhomogeneous polynomials x1X

i
1x2X

n−2−i
1 ,

i = 0, . . . , n− 2, and in the variety V we have that

n−2∑

i=0

αix1X
i
1x2X

n−2−i
1 ≡ 0, αi ∈ F. (12)

Using the anticommutativity we obtain that

(
2α0 +

n−2∑

i=1

αi

)
x2X

n−1
1 ≡ 0.

Since, by assumption, (12) does not hold in the variety V4, we have that 2α0 +∑n−2
i=1 αi � 0. Thus, for some k ≥ 1, the identity x0X

k
1 ≡ 0 holds in the variety

V. ��
The following result is well known (see for example [1]).

Theorem 3 V4 is an almost nilpotent variety.

3 Almost Nilpotent Varieties and Skew Symmetric
Polynomials

In this section we consider almost nilpotent varieties of subexponential growth for
which x0x̄1 · · · x̄n is not an identity (see [17]).

Definition 3 Let V5 be the variety of algebras satisfying the following identities:

(1) x(yz) ≡ 0.
(2) xyz ≡ −xzy.

Clearly V5 is a variety contained in 2N. Next we find an algebra A5 generating
the variety V5.

Definition 4 Let A5 be the algebra over F generated by the countable set of
elements e1, e2, . . . satisfying the following relations

(1) ueiej = −uej ei for any nonempty word u in e1, e2, . . . ,

(2) uv = 0, for any non empty words u, v in e1, e2, . . . , with |v| ≥ 2.

From the definition it follows that x(yz) ≡ 0 and xyz ≡ −xzy are polynomial
identities of A5. Hence V5 ⊇ var(A5).

We have the following
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Proposition 7 (Mishchenko and Valenti [17]) V5 = var(A5) and χn(V5) =
χ(1n) + χ(2,1n−2).

Proof Let P in be the space of left normed multilinear polynomials in x1, . . . xn
starting with xi. Then

Pn(V5) = P 1
n (V5)+ . . .+ Pnn (V5).

Since xyz ≡ −xzy, dim P in(V5) = 1 and this implies that cn(V5) ≤ n.
Let χn(A5) = ∑

mλχλ. Consider the partition (1n) and the polynomial
g((1n)) = x̄1x̄2 · · · x̄n. We claim that g((1n)) is not an identity of A5. In fact if
we make the substitutions x1 = e2

1 and xi = ei for i � 1, then, modulo the relations
(1) and (2) of A5, we obtain that g((1n)) = (n− 1)!e2

1e2 · · · en � 0.
Since d(1n) = 1 and only left normed monomials can have a nonzero evaluation

on A5 then it follows that m(1n) = d(1n) = 1.
Consider now the partition (2, 1n−2) and let g((2, 1n−2)) = x̄1x1x̄2 · · · x̄n−1.

We claim that g((2, 1n−2)) is not an identity of A5. In fact, from the relations
satisfied by A5, if we substitute xi = ei, for i ≥ 1 we obtain g((2, 1n−2)) =
(n− 1)!e2

1e2 · · · en−1 � 0. Since d(2,1n−2) = n − 1, it follows that n ≥ cn(V5) ≥
cn(A5) ≥ d(1n) + d(2,1n−2) = n. Hence cn(V5) = cn(A5) = n, V5 = var(A5) and
χn(V5) = χ(1n) + χ(2,1n−2). ��

Our aim is to prove that V5 is an almost nilpotent variety. Let W � V5 be a
proper subvariety of V5 then there exists n ≥ 1 and an irreducible Sn-character χλ
appearing with multiplicity m′

λ in χn(W) and mλ in χn(V5) with m′
λ < mλ. Since

χn(V5) = χ(1n) + χ(2,1n−2)

it follows that either g((1n)) ≡ 0 or g((2, 1n−2)) ≡ 0 holds in W. Notice that,
modulo the identities (1) and (2), any highest weight vector of GLn−1(F ) can be
reduced to the form g((2, 1n−1)).We claim that g((1n+1)) ≡ 0 and g((2, 1n−1)) ≡
0.

In fact suppose first that g((1n)) = x̄1 · · · x̄n ≡ 0. Then x̄1 · · · x̄nRx1 ≡ 0 and this
implies that g((2, 1n−1)) ≡ 0.Moreover x̄1 · · · x̄nRxn+1 ≡ 0. Hence if we apply the
operator of alternation, taking into account (1) and (2), we obtain

∑

σ∈Sn+1

(sgnσ)x̄σ (1) · · · x̄σ (n)xσ(n+1) ≡ 0.

This implies that x̄σ (1) · · · x̄σ (n+1) = g((1n+1)) ≡ 0 and we are done in this case.
Now suppose that g((2, 1n−2)) = x̄1x1x̄2 · · · x̄n−1 ≡ 0. Then if we make the

substitution x1 = x1 + xnxn+1, since x(yz) ≡ 0, we obtain that

xnxn+1x1x̄2 · · · x̄n−1 ≡ 0
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and, so,

∑

σ∈Sn+1

(sgnσ)xσ(n)xσ(n+1)xσ(1)x̄σ (2) · · · x̄σ (n−1) ≡ 0.

This implies that x̄1x̄2 · · · x̄n+1 ≡ 0.
Moreover from g((2, 1n−2)) ≡ 0 we also obtain x̄1x1x̄2 · · · x̄n−1xn ≡ 0 and, so,

by applying the operator of alternation,

∑

σ∈Sn
(sgnσ)x̄σ (1)x1x̄σ (2) · · · x̄σ (n) ≡ 0.

This says that g((2, 1n−1)) ≡ 0 and the claim is proved.
It follows (see [17])

Proposition 8 Any proper subvariety ofV5 is nilpotent.

We complete this section with a characterization of the algebra A5.

Theorem 4 (Mishchenko and Valenti [17]) LetV be a variety such that x(yz) ≡
0. Then A5 � V, if and only if x0x̄1 · · · x̄m ≡ 0 inV, for some m ≥ 1.

Proof Clearly if x0x̄1 · · · x̄m ≡ 0 holds in V then A5 � V. Conversely suppose that
A5 � V. Since χn(A5) = χ(1n) + χ(2,1n−2) it follows that

g((1n)) = x̄1 · · · x̄n ≡ 0

or

g((2, 1n−2)) =
n−1∑

s=0

αsx̄1 · · · x̄sx1x̄s+1 · · · x̄n−s ≡ 0

hold in V but not in A5, for some n ≥ 1.
Suppose that g((1n)) = x̄1 · · · x̄n ≡ 0 holds in V. If we make the substitution

x1 = x0x1, then we get that x0x1x̄2 · · · x̄n ≡ 0 holds in V. This implies that

∑

σ∈Sn
(sgn σ)x0xσ(1)x̄σ (2) · · · x̄σ (n) ≡ 0

and so (n− 1)!x0x̄1 · · · x̄n ≡ 0 holds in V.
Now suppose that g((2, 1n−2)) ≡ 0. Let

g1
λ = x1x̄1x̄2 · · · x̄n−1

g2
λ = x̄1x1x̄2 · · · x̄n−1
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...

gnλ = x̄1x̄2 · · · x̄n−1x1

be the polynomials obtained from the essential idempotents corresponding to the
standard tableaux of shape λ = (2, 1n−2). Notice that, since x1x̄1x̄2 = x̄1x1x̄2 −
x̄1x̄2x1, g

1
λ is a linear combination of giλ, i = 2, . . . , n. It follows that

g((2, 1n−2)) =
n∑

i=2

αig
i
λ =

n∑

i=2

αi x̄1x̄2 · · · x̄i−1x1xi · · · x̄n−1.

If we now make the substitutions x1 = x0x1+x2 and, for i = 2, . . . , n−1, xi = xi+1
we obtain

(
n∑

i=2

αi

)
x0x1x2x̄3 · · · x̄n ≡ 0.

If
∑n
i=2 αi = 0 then g((2, 1n−2)) is an identity for A5, a contradiction. It follows

that
∑n
i=2 αi � 0 and by alternating x1, x2, . . . , xn we obtain

∑

σ∈Sn
(sgn σ)

(
n∑

i=2

αi

)
x0xσ(1)xσ(2)x̄σ (3) · · · x̄σ (n) ≡ 0.

Therefore (n− 2)!(∑n
i=2 αi)x0x̄1 · · · x̄n ≡ 0 holds in V and we are done. ��

Remark 4 Let’s now consider A6 the opposite algebra of the algebra A5, that is the
algebra with the same elements of A5 and the same addition operation but with the
multiplication performed in the reverse order. Clearly A6 has the same properties
of A5 but instead of left-normed polynomials we have to consider right-normed
polynomials.

Let V6 be the variety defined by the following identities

1. (zy)x ≡ 0.
2. z(yx) ≡ −y(zx).

Then V6 = var(A6) and we have another example of almost nilpotent variety.

4 A Commutative Metabelian Algebra with Skew Symmetric
Polynomials (a Jordan Algebra)

In this section the almost nilpotent variety considered will be generated by a
commutative metabelian Jordan algebra.
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Definition 5 LetA7 be the algebra with generators b, ei , i = 1, 2, . . ., and defining
relations

(1) ueiej = −uej ei ,
(2) eiej = 0,
(3) uei = eiu,
(4) uv = 0, degb u+ degb v ≥ 2,

where u, v ∈ A7 are monomials.

Since char F = 0 from the first relation we have that, for i = j, ueiei = 0.
Moreover from (2) (3), and (4) it follows that A7 is a commutative metabelian
algebra.

A basis of the algebra A7 is given by the left-normed monomials

b, ei, i = 1, 2, . . . ,

bej1ej2 . . . ejn , j1 < j2 < . . . < jn, n = 1, 2, . . . .

Proposition 9 (Mishchenko et al. [20]) In the commutative metabelian algebra
A7 the following identities hold:

xyzt ≡ −xytz, (13)

x3 ≡ 0, (14)

xyz+ yzx + zxy ≡ 0. (15)

Proof Let’s verify the multilinear identity (13) by substituting basis elements of
the algebra A7. Notice that if we substitute the variables z or t with the element b
or with a monomial u then both part of the identity (13) vanish and we are done.
Therefore we substitute z with ei and t with ej and also in this case, by the defining
relations (1), for any substitution of x, y we obtain an equality of A7.

Consider now the identity (14). From the commutative identity we obtain that
x(xx) ≡ (xx)x. Let’s consider the evaluation φ such that

φ(x) = αb +
∑

i

αiei + u, α, αi ∈ F,

where the sum over the index i is finite, and the element u ∈ A2
7 is a linear

combination of a finite number of basis elements. By the definition of the algebra
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A7 we have that u2 = b2 = ub = bu = 0, and so

φ(x3) =
(
αb + u+

∑

i

αiei

)(
αb + u+

∑

i

αiei

)(
αb + u+

∑

i

αiei

)
=

=
(
(αb + u)

(
∑

i

αiei

)
+
(
∑

i

αiei

)
(αb + u)

)(
∑

i

αiei

)
=

= 2αb

(
∑

i

αiei

)(
∑

i

αiei

)
+ 2u

(
∑

i

αiei

)(
∑

i

αiei

)
=

= 2α
∑

i,j
i<j

αiαj (beiej + bej ei)+ 2
∑

i,j
i<j

αiαj (ueiej + uej ei) = 0.

The Jacobi identity (15) follows directly from the complete linearization of the
identity (14) and the commutativity identity. ��

The algebra A7 is a Jordan algebra, i.e., it satisfies the identities

xy ≡ yx, (x2y)x ≡ x2(yx).

In fact from the metabelian identity, it suffices to show that (x2y)x ≡ 0. This
follows from (13) and (14) indeed (x2y)x ≡ −((xx)x)y ≡ 0.

Proposition 10 (Mishchenko et al. [20]) For the algebra A7 the following equali-
ties hold:

c1(A7) = 1, χ1(A7) = χ(1), l1(A7) = 1,

cn(A7) = n− 1, χn(A7) = χ(2,1n−2), ln(A7) = 1, n = 2, 3, . . . .

Let’s now consider the variety V7 = var(A7) generated by A7.

We want to show that V7 is also generated by the algebra defined by Zhevlakov
(see [26, p. 86] and [27, p. 103, Example 1]) in the following way.

Let Z = {z1, z2, . . .} be a countable set. We say that a word in the alphabet Z,
zi1zi2 . . . zin , is correct if it satisfies the condition i1 < i2 < . . . < in. On the set of
correct words, a lexicographic linear order is given as follows. Let d(u) denote the
length of the word u. If i < j then zi > zj and if u = vv1 with d(v1) ≥ 1, then
u > v. For example we have the inequalities

z1z2z3 > z1z2 > z1z3 > z1 > z2z3 > z2 > z3.



306 S. P. Mishchenko and A. Valenti

Definition 6 Let AZ be the algebra over a field F of characteristic zero, with
multiplication ∗, having as its basis the set of all regular words in the alphabet Z,
and with the following table of multiplication: for any u, v regular words, then

(1) u ∗ v = v ∗ u,
(2) u ∗ v = 0, d(u) > 1 and d(v) > 1,
(3) u ∗ zi = 0, if zi is contained in u,
(4) u ∗ zi = 0, if d(u) > 1 and zi > u,
(5) zi ∗ zj = zizj , if i < j ,
(6) u ∗ zj = (−1)θv, if d(u) > 1, zj < u, the word u does not contain zj , v

is a correct word consisting of all elements of the word u and zj , and θ is the
number of inversions in the permutation θ = (i1, . . . , in, j).

We have that

Proposition 11 V7 = var(A7) = var(AZ).

Proof By the defining relations (1), (2), the algebraAZ is a commutative metabelian
algebra. Moreover in [27] it was proved that the Jacobi identity (15) holds in the
algebra AZ.

Let us show that the algebra AZ also satisfies the identity (13)

xyzt ≡ −xytz.

Denote by φ an evaluation on the algebraAZ. By the definition of the algebraAZ, if
both sides of this identity after the evaluation are not equal to zero then the following
conditions must be simultaneously satisfied: φ(xy) � 0, d(φ(z)) = d(φ(t)) =
1, the elements φ(z) and φ(t) are different and are not contained in φ(xy), and
φ(z), φ(t) < φ(xy). In this case, by the defining relation (6), we obtain an equality
and we are done.

Since the identities (13) and (15) hold in the commutative metabelian algebraAZ,
as in the proof of the Proposition 10, we obtain that cn(AZ) ≤ n− 1, n = 3, 4, . . ..
Moreover, for any n ≥ 2 and any permutation σ ∈ Sn, such that σ(1) = 1 we have
that

z1 ∗ zσ(2) ∗ . . . ∗ zσ(n) = (sgnσ)z1z2 . . . zn.

Therefore, the polynomial xnx1 . . . xn−1, n ≥ 2, is not identically equal to zero in
the algebra AZ and, as for the algebra A7, for any n ≥ 3 we obtain

m(2,1n−2)(AZ) = m(2,1n−2)(A7) = 1.

So, for any n ≥ 2, the irreducible submodules of the modules Pn(AZ) and
Pn(A7) corresponding to the partition (2, 1n−2) coincide.



On Almost Nilpotent Varieties of Linear Algebras 307

Thus, similarly to what proved in Proposition 10, we obtain that:

cn(AZ) = n− 1, χn(AZ) = χ(2,1n−2), ln(AZ) = 1, n = 2, 3, . . . ,

c1(AZ) = 1, χ1(AZ) = χ(1), l1(AZ) = 1.

We conclude that Pn(A7) = Pn(AZ) and V7 = var(AZ), the proposition is
proved. ��

Now we show that the algebra A7 can be defined using the algebra AZ.
Let’s denote by IZ the ideal of the algebra AZ generated by the regular words u,

which simultaneously satisfy two conditions: d(u) > 1 and u < z1. By the defining
relation (2) of the algebra AZ, the product of any two elements of IZ is equal to
zero. Moreover:

1. z1 ∗ u = z1v ∗ u = 0, u, v ∈ IZ , d(v) ≥ 1,
2. zi ∗ zj ∈ IZ , i, j = 2, 3, . . ..

Since the algebra AZ is commutative IZ is a two-sided ideal.
Let zi = zi + IZ ∈ AZ/IZ . Then a basis of the algebra AZ/IZ is composed by

the elements

zi, i = 1, 2, . . . ,

z1zj1 . . . zjn , 1 < j1 < j2 < . . . < jn, n = 1, 2, . . . .

Let φ : {z1, z2, . . .} → A7 the evaluation such that

φ(z1) = b,

φ(zi) = ei−1, i = 2, 3, . . . .

By the defining relations of both algebras A7 and AZ and by the definition of the
ideal IZ , the mapping φ uniquely extends to an isomorphism of algebras AZ/IZ �
A7.

Let’s now consider the algebra defined by Shestakov (see [27, p. 104, Example
2]) as follows.

Let ∧(M) be the outer algebra of the vector spaceM with basis {x1, x2, . . .}, and
∧0(M) be the subalgebra of ∧(M) generated by the set M . Let AJ = ∧0(M)⊕M
be the algebra with multiplication

(u+ x)(v + y) = v ∧ x + u ∧ y,

where u, v ∈ ∧0(M), x, y ∈ M .
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Let J = var(AJ ) be the variety generated by the algebra AJ . If we consider the
variety of all associative commutative algebras V0 and the variety of all metabelian
Lie algebras V4, then the main result of [10] is the following

Theorem 5 Let V be the variety of linear algebras over a field of characteristic
zero. If ln(V) = 1, for n = 1, 2, . . ., then the variety V coincides with one of the
following three varieties:V0,V4 or J.

By Proposition 10, it follows that, for n ≥ 1, ln(A7) = 1, therefore by the
previous theorem we have

Proposition 12 V7 = J.

5 Anti-Commutative Metabelian Algebra with Skew
Symmetric Polynomials

In this section we consider the almost nilpotent variety V8 generated by the
following anticommutative metabelian algebra A8.

Definition 7 Let A8 be the algebra with generators e1, e2, . . . and with the
following defining relations:

(1) uei = −eiu, u ∈ A8,
(2) u1u2 = 0, u1, u2 ∈ A2

8,
(3) eiσ(1) eiσ(2) . . . eiσ(n) = (sgnσ)ei1ei2 . . . ein , σ ∈ Sn, n ≥ 3.

In the algebra A8, by the defining relation (3), any monomial of degree ≥ 2 in
only one generator is equal to zero. By definition a basis of the algebra A8 consists
of the following elements

ei, i = 1, 2, . . . ,

ej1ej2 . . . ejn, j1 < j2 < . . . < jn, n = 2, 3, . . . .

Note that A2
8, by the defining relation (2), is an algebra with zero multiplication.

Let V8 = var(A8), we have the following

Proposition 13 (Shulezhko and Panov [24]) In the variety V8 the following
identities hold

xyzt ≡ −xytz, (16)

xyzt + zyxt + xtzy + ztxy ≡ 0. (17)

Proof Let’s consider various substitutions of the variables of the identities (16) and
(17) with basis elements of the algebra A8.
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If in (16) we substitute z or t by an element of the algebraA2
8, then by the defining

relation (2), both parts of the identity will be equal to zero. Instead if we replace z
and t by ei, i = 1, 2, . . . , then by the defining relation (3) we obtain the correct
equality.

In the identity (17), let’s substitute one of the free generators with the basis
element b ∈ A2

8 and the remaining variables with the elements ei , i ≥ 1. By the
defining relations (1), (2), as a result of the substitution, there remains a pair of
terms of the same sign, in each of which the element b is in the first position, and the
permutations of the generators ei differ by one transposition. Thus, by the defining
relation (3), we obtain an equality.

Since the terms zyxt , xtzy are obtained from the monomial xyzt by one
transposition of generators, and the monomial ztxy from two transpositions, by
the defining relation (3) the identity (17) turns into the correct equality when we
substitute all variables with the elements ei . The Proposition is proved. ��
Proposition 14 (Shulezhko and Panov [24]) For the variety V8 we have:

c1(V8) = 1, χ1(V8) = χ(1), l1(V8) = 1,

c2(V8) = 1, χ2(V8) = χ(1,1), l2(V8) = 1,

cn(V8) = n, χn(V8) = χ(2,1n−2) + χ(1n), ln(V8) = 2, n = 3, 4, . . . .

Proof The proof of the equalities for n = 1, 2 is obvious, therefore, we further
estimate the values of cn(V8) for n ≥ 3. First we determine an upper bound for
cn(V8). If n = 3 then by the anticommutativity it follows that there are no more
than three linearly independent multilinear monomials. Therefore, c3(V8) ≤ 3.

If n ≥ 4, we show that any multilinear monomial, modulo the identities of the
variety V8, is equal to a linear combination of the n monomials

xn−1xn−2xnxn−3 . . . x1, (18)

xnxixj1xj2 . . . xjn−2, i = 1, . . . , n− 1, j1 > j2 > · · · > jn−2. (19)

Since n ≥ 4, by virtue of the identity (16) any monomial different from the
monomials (18) and (19), is identically equal to one of the monomials of the
following three types:

(1) xn−1xixnxn−2 . . . , 1 ≤ i < n− 2,
(2) xn−2xixnxn−1 . . . , 1 ≤ i < n− 2,
(3) xixjxnxn−1 . . . , 1 ≤ j < i < n− 2.
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If we apply the identity (17) to these monomials we obtain:

xn−1xixnxn−2 . . . ≡ −xnxixn−1xn−2 . . .− xn−1xn−2xnxi . . .− xnxn−2xn−1xi . . . ,

xn−2xixnxn−1 . . . ≡ −xnxixn−2xn−1 . . .− xn−2xn−1xnxi . . .− xnxn−1xn−2xi . . . ,

xixj xnxn−1 . . . ≡ −xnxjxixn−1 . . .− xixn−1xnxj . . .− xnxn−1xixj . . . .

On the right side of the last identity, the second term, up to a sign, is identically equal
to a monomial of the first kind. All other monomials, up to a sign, are identically
equal to the monomials (18) or (19). Thus we obtain that cn(V8) ≤ n, n = 3, 4, . . ..

Let’s now determine a lower bound for cn(V8), n = 3, 4, . . . . Consider the
polynomial

g(2,1n−2)(x1, x2, . . . , xn−1) = x1x2 . . . xn−1x1

corresponding to the standard Young tableau of shape λ = (2, 1n−2) where the first
line contains 1, n. Let b ∈ A2

8 a non-zero monomial such that degei b = 0, for
i = 1, . . . , n− 1, then

g(2,1n−2)(b + e1, e2, . . . , en−1) = (b + e1)e2 . . . en−1(b + e1) =
= b e2 . . . en−1e1−e2b . . . en−1e1 = 2be2 . . . en−1e1 = 2(n−2)!be2 . . . en−1e1 � 0.

Therefore, for n ≥ 3, m(2,1n−2)(V8) ≥ 1.
Let g(1n)(x1, . . . , xn) = x1x2 . . . xn the polynomial corresponding to the unique

standard Young tableau of shape (1n). By the defining relation (3) of the algebra A8
we have that g(1n)(e1, . . . , en) = n!e1e2 . . . en. Therefore, for n ≥ 3, m(1n)(V8) ≥
1.

Thus, for n ≥ 1,

cn(V8) ≥ m(2,1n−2)(V8)d(2,1n−2)+m(1n)(V8)d(1n) = (n−1)m(2,1n−2)(V8)+m(1n)(V8) ≥ n.

Since cn(V8) ≤ n, then for n ≥ 3, cn(V8) = n, m(2,1n−2)(V8) = m(1n)(V8) = 1
and we are done. ��
Proposition 15 (Shulezhko and Panov [24]) Let V ⊂ MA. The varietyV8 is not
a subvariety ofV if and only if, for some l ≥ 1, x0x1x2 . . . xl ∈ Id(V).
Proof Let f (x0, x1, . . . , xk) = x0x1x2 . . . xk , k ≥ 1, then

f (e1, e2, . . . ek+1) = k!e1 . . . ek+1, ei ∈ A8.

This implies that f � Id(V8) and it remains to prove the necessary condition.
If V8 � V then, by Proposition 14, the identities corresponding to the partition

(1n) or (2, 1n−2), n ≥ 3, hold in V but not in V8. Note that the proof in the cases
n = 1, 2 is obvious.
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Fix n ≥ 3. Suppose first that x1x2 . . . xn ∈ Id(V). Since the variety V
is anticommutative and metabelian by replacing x1 with x0x1 we obtain that
x0x1x2 . . . xn ≡ 0.We rewrite it in the form

∑

σ∈Hn
(sgnσ)x0xσ(1)xσ(2) . . . xσ(n) ≡ 0,

where Hn is the group of all permutations σ ∈ Sn such that σ(1) = 1. Let’s write
out the result of the skew-symmetrization of the last identity with respect to the
indices 1, . . . , n,

∑

σ∈Hn
(sgnσ)x0xσ(1)xσ(2) . . . xσ(n) ≡ 0.

We use the relation

x1x2 . . . xn = (sgnσ)xσ(1)xσ(2) . . . xσ(n), σ ∈ Sn,
and we obtain that (n− 1)!x0x1x2 . . . xn ≡ 0 is an identity of V.

The identity corresponding to the partition (2, 1n−2) has the form

g(x1, . . . , xn−1) =
n−1∑

i=1

αix1 . . . xix1xi+1 . . . xn−1 ≡ 0, (20)

where for i = n− 1 we have the term αn−1x1 . . . xn−1x1.
Using the anticommutative identity, we represent the term with coefficient α1 in

the form

x1x1x2 . . . xn−1 ≡ −x1x1x2 . . . xn−1 ≡
n−1∑

j=2

(−1)j x1x2 . . . xj x1xj+1 . . . xn−1.

(21)

In the original identity (20), instead of x1 let’s substitute the sum x0x1 + xn and, by
using the identities (20) and (21), we obtain

α1

n−1∑

i=2

(−1)i(x0x1 + xn)x2 . . . xi(x0x1 + xn)xi+1 . . . xn−1+

+
n−1∑

i=2

αi(x0x1 + xn)x2 . . . xi(x0x1 + xn)xi+1 . . . xn−1 ≡

≡
n−1∑

i=2

(
(−1)iα1 + 2αi

)
x0x1x2 . . . xixnxi+1 . . . xn−1 ≡ 0.
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We write out the skew-symmetrization of this identity with respect to the indices
1, . . . , n. Let’s denote by H̃n the subgroup of Sn of all permutations that leave 1 and
n fixed and consider the result of skew symmetrization of the term with coefficient
(−1)iα1 + 2αi , for 2 ≤ i ≤ n− 1,

∑

σ∈H̃n
sgnσx0xσ(1)xσ(2) . . . xσ(i)xσ(n)xσ(i+1) . . . xσ(n−1) =

=
∑

σ∈H̃n
x0x1x2 . . . xixnxi+1 . . . xn−1 = (−1)n−1−i (n− 2)!x0x1x2 . . . xn.

Thus,

(
(−1)n−1(n− 2)α1 +

n−1∑

i=2

(−1)n−1−i2αi

)
x0x1x2 . . . xn ≡ 0 (22)

is an identity of V.We want to show that the sum of the coefficients in parentheses
is nonzero.

Consider the polynomial (20) modulo the identities of the variety V8. By virtue
of (16) we have that

x1 . . . xix1xi+1 . . . xn−1 ≡ (−1)ix1x2x1x3 . . . xn−1, i = 2, . . . , n− 1,

where for n = 3 we have the polynomial x1x2x1. So

g(x1, . . . , xn−1) ≡ α1x1x1x2 . . . xn−1 +
(
n−1∑

i=2

(−1)iαi

)
x1x2x1x3 . . . xn−1.

(23)

We write the first term in the form

x1x1x2 . . . xn−1 = x1x1x2 . . . xn−1 −
n−1∑

i=2

xix1x2
2
. . .
...
x1
i
. . .
...
xn−1
n−1

≡

≡ (n− 2)!
n−1∑

i=2

x1xix2
2
. . .
...
x1
i
. . .
...
xn−1
n−1

≡ (n− 2)!
n−1∑

i=2

(−1)ix1xix1 . . . x̂i . . . xn−1,

where for n = 3 we get the monomial x1x2x1.
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Note that a monomial of the form xy . . . z . . . z . . . , by virtue of (16), is an
identity and we transform the second term of (23) as follows,

x1x2x1x3 . . . xn−1 ≡ x1x2x1x3 . . . xn−1 − x2x1x1x3 . . . xn−1 ≡ 2x1x2x1x3 . . . xn−1 ≡

≡ 2(n− 3)!x1x2x1x3 . . . xn−1 − 2(n− 3)!
n−1∑

i=3

x1xix1x3
3
. . .
...
x2
i
. . .
...
xn−1
n−1

≡

≡ 2(n− 3)!
n−1∑

i=2

(−1)ix1xix1 . . . x̂i . . . xn−1,

where for n = 3 we get the monomial 2x1x2x1. Adding the resulting polynomials
we obtain,

g(x1, . . . , xn−1) ≡

≡ (n− 3)!
(
(n− 2)α1 +

n−1∑

i=2

(−1)i2αi

)
n−1∑

i=2

(−1)ix1xix1 . . . x̂i . . . xn−1.

Thus, if in the identity (22) the sum of the coefficients in parentheses is zero, then
the polynomial g(x1, . . . , xn−1) is identically equal to zero in the variety V8, a
contradiction. Therefore, for some l ≥ 1, x0x1x2 . . . xl ≡ 0 is an identity of V and
the proposition is proved. ��
Proposition 16 (Shulezhko and Panov [24]) The varietyV8 is almost nilpotent.

Proof By the previous proposition for any proper subvariety V of the variety V8
there exists l ≥ 1 such that x0x1x2 . . . xl ≡ 0 is an identity of V. If we substitute
x0 with the product x0y0 and we use the identity (16) then we get the identity
x0y0x1 . . . xl ≡ 0. Therefore, any proper subvariety of the variety V8 is nilpotent,
and the proposition is proved. ��

6 A Characterization of Almost Nilpotent Varieties in
Different Classes of Algebras

If we consider varieties of associative algebras it is not hard to prove that the only
almost nilpotent variety is the variety V0 of commutative algebras satisfying the
identities:

xy ≡ yx, (xy)z ≡ x(yz).
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For the sequence of codimensions we have that cn(V0) = 1, n ≥ 1.
Also in case of varieties of Lie algebras it is well known that there is only one

almost nilpotent variety, the variety V4 of metabelian Lie algebras satisfying the
identities:

xy ≡ −yx, (xy)z ≡ (xz)y + x(yz), (x1x2)(x3x4) ≡ 0.

For this variety we have that cn(V4) = n− 1, n ≥ 1.
In [5] it was proved that there exist only two almost nilpotent varieties of Leibniz

algebras, the varieties V1 and V4, and both varieties have at most linear growth.
What about varieties with subexponential growth in the class 2N of left nilpotent

algebras of index two? In [17] it was proved that there exist only two almost
nilpotent varieties having subexponential growth. More precisely

Theorem 6 (Mishchenko and Valenti [17]) LetV be a subvariety of 2N. IfV has
subexponential growth then eitherV1 ⊆ V orV5 ⊆ V orV is nilpotent.

Corollary 3 Let V be an almost nilpotent subvariety of 2N with subexponential
growth, then eitherV = V1, orV = V5.

For commutative or anticommutative metabelian algebras similar results were
obtained in [20] and [14].

Theorem 7 (Mishchenko et al. [20]) Let V be a variety of commutative
metabelian algebras whose growth is not higher than subexponential, then either
V3 ⊆ V, orV7 ⊆ V, or the varietyV is nilpotent.

Corollary 4 Let V be an almost nilpotent variety of commutative metabelian
algebras with subexponential growth, then eitherV = V3, orV = V7.

In [24] it was proved the existence of only two almost nilpotent anti-commutative
metabelian varieties with subexponential growth.

Theorem 8 Let V be an almost nilpotent subexponential growth variety of anti-
commutative metabelian algebras, then eitherV = V4, orV = V8.

7 An Infinite Series of Almost Nilpotent Metabelian Varieties
with Polynomial Growth

In this section we recall some results about the existence of two families of almost
nilpotent varieties. The first is a countable family of varieties of at most linear
growth and the second is an uncountable family of at most quadratic growth (see
[12, 13, 18]).

Throughout A will be the algebra generated by one element a such that every
word in A containing two or more subwords equal to a2 must be zero.
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Note that in particular the algebra A is metabelian, i.e., it satisfies the identity

(x1x2)(x3x3) ≡ 0.

Next for every real number between 0 and 1 we shall construct a quotient algebras
of A.

We need to recall that a Sturmian word is an infinite word such that for every
n = 0, 1, . . . admits exactly n+ 1 different subwords of length n.

Moreover a lower mechanical word is the word wα,ρ with parameters α ∈ [0, 1]
and ρ ≥ 0, in which the letter wα,ρn appearing in the position n = 0, 1, 2, . . ., is
given by

wα,ρn = #α(n+ 1)+ ρ$ − #αn + ρ$ ,

where #x$ is the largest integer less than or equal to x.α is the slope of the word.
Also, an infinite wordw = w1w2 · · · is periodic with period T if wi = wi+T for

i = 1, 2, . . . .
We are going to associate to every finite word in the alphabet {0, 1} a monomial

in End(A) in left and right multiplications: if u(0, 1) is such a word we associate to
u the monomial u(La,Ra) obtained by substituting 0 with La and 1 with Ra .

Let α be a real number, 0 < α < 1, and let wα be a Sturmian or periodic infinite
word in the alphabet {0, 1} whose slope is π(wα) = α.

Let Iα be the ideal of the algebraA generated by the elements a2u(La,Ra)where
u(0, 1) is not a subword of the word wα .

Let Aα = A/Iα denote the corresponding quotient algebra and let Vα be the
variety generated by the algebra Aα.

We have the following

Theorem 9 For any real number α, 0 < α < 1, the variety Vα is almost nilpotent
and has linear or quadratic growth according as wα is a periodic or a Sturmian
word. Moreover for words with different slopes the varieties are different.

8 Almost Nilpotent Varieties with Exponentional Growth

The existence of almost nilpotent variety with exponential growth was proved in
[15, 16, 21].

Let Bm be the algebra with generator z, a1, . . . , am and relations

aiu = 0, u ∈ Bm, 1 ≤ i ≤ m,
(
zw(Ra1 , . . . , Ram)

)(
zw′(Ra1, . . . , Ram)

) = 0, degw, degw′ ≥ 0,
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z(Ra1 . . . Ram)
kRai1

. . . Rais Rais+1
. . . Rait+

z(Ra1 . . . Ram)
kRai1

. . . Rais+1
Rais . . . Rait = 0, k ≥ 0,

where 1 ≤ s < t ≤ m, 1 ≤ i1, . . . , it ≤ m, and Ra is the operator of right
multiplication on a.

A basis of Bm is given by the monomials:

a1, . . . , am, z(Ra1 . . . Ram)
k, z(Ra1 . . . Ram)

kRai1
Rai2

. . . Rait ,

k ≥ 0, 1 ≤ t < m, 1 ≤ i1 < i2 < . . . < it ≤ m.

For the variety generated by Bm we have the following

Theorem 10 For anym ≥ 2 var(Bm) is an almost nilpotent variety of exponentm.

The existence of almost nilpotent varieties with non-integer exponent was proved
in [11]

Theorem 11 There is an almost nilpotent variety with upper and lower growth
exponents belonging to the interval (1, 2).

We finish by suggesting the following

Problem Construct almost nilpotent varieties having over exponential growth or
prove that such varieties do not exist.

Acknowledgement A. Valenti was partially supported by INDAM-GNSAGA of Italy.
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(δ, ε)-Differential Identities of UTm(F )

Vincenzo C. Nardozza

Abstract Let δ and ε be the inner derivations of UTm(F) induced by the unit
matrices e1m and emm respectively. We study the differential polynomial identities of
the algebra UTm(F) under the coupled action of δ and ε. We produce a basis of the
differential identities, then we determine the Sn-structure of their proper multilinear
spaces and, for the minimal cases m = 2, 3, their exact differential codimension
sequence.

Keywords Differential polynomial identities · Upper triangular matrices ·
Differential codimensions · Lie algebras · Derivation action

1 Introduction

Differential polynomial identities are certainly not a brand new topic in PI-theory.
Significant contributions to this subject may be dated back to the late 1970s, due
to a series of fundamental papers by Kharchenko involving both derivations and
automorphisms, but in fact a vast literature on this topics is available (a good source
is [1] and its bibliography to this and related topics). In present days, however, new
interest is flowing into this subject, mainly because of a new unifying approach
towards the several areas related to PI-theory.

As a consequence of the evolution of classic (so to say) PI-theory, almost every
special PI-theory has developed a suitable set of tools, techniques and results
modeled on those available for the classic case. So, for instance, when dealing
with algebras with involutions, superalgebras, or with more general graded algebras,
one can properly define universal objects, identities, cocharacters, codimensions
and so on, resembling what happens in the ordinary case. It turns out that several
results holding for the classic case can be restated for the special ones, although
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under some suitable, reasonable, assumptions. This is the case, for instance, for
the growth behaviour of codimensions of superalgebras, algebras with involution,
graded algebras, algebras with derivations. On the contrary, other central results of
classical PI-Theory are more eluding. Among them, the most prominent ones are
Kemer’s Representability Theorem and the finite basis property holding in classic
PI-Theory [2]. A generalization of these results has been obtained for algebras
graded by a finite group in [3].

Starting from a sparkling intuition of Berele in his influential paper [4] (more
precisely, the Remark at page 878), an effort to a unifying approach started,
turning around the notion of Hopf-algebra action. This is for instance the case
of the relatively recent paper by Gordienko [5]. The Specht property and the
Representability theorem have been recently faced within this framework in [6].

In the case of algebras under the derivation action of a Lie algebraL, the involved
Hopf-algebra is the universal enveloping algebra U(L) of L, a more than natural
connection. Of course, even when a final unifying theory should be established,
it could conceal but not cancel the differences among concrete situations, so
differential identities, as well as other types of identities, will still have to be treated
and studied according to their specific features, although empowered perhaps with
some new profitable idea coming from some other specific situation.

The present paper is based on a very recent joint work with Di Vincenzo [7]
which, at the moment, has been just submitted for publication, so it partially serves
as an announcement for the results contained in [7] and concerning the description
of the differential polynomial identities satisfied by algebras UTm(F) under the
derivation actions of the two-dimensional non abelian Lie algebra, a problem which
was in some sense inspired by the recent paper of Giambruno and Rizzo [8].

At the same time, I wanted this paper to be an expository one, hoping to convey
the reader the same pleasure I sensed working on this problem. So in writing these
notes I chose to present the material in a maybe rather unusual way, that is from
an operative point of view rather than from a formal one. The basic definition of
differential polynomial identity is therefore given in the next section within this
perspective, together with all the necessary background and tools needed to quickly
understand the problem and how to attack it, in the same spirit. The subsequent
sections are devoted to give the answers, in case the Lie algebra acts faithfully
(coupled actions of δ, ε) on UTm(F) or not (separate actions). Due to the nature
of this paper, technical details and proofs have been omitted, but I tried to at least
address the reader to the main ideas involved in them. By the way, a couple of
statements which were missing on the original paper have been added here, and
their proofs are therefore provided within these pages. The last section is instead
devoted to present the general topics within a more theoretical setup, in order to
confer the objects and tools presented in the preceding sections a more sound and
deeper sense.
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2 The Problem

Let F denote a field of characteristic zero and let A be an associative F -algebra.
An F -linear map d : A → A is called an F -derivation if the usual Leibniz
rule (ab)d = adb + abd holds for all a, b ∈ A. Throughout the paper, we will
adopt the exponential notation for derivations, hence derivations will compose from
left to right. It is easy to produce concrete derivations on A: for any a ∈ A, just
consider the map [·, a] sending x ∈ A into the Lie product [x, a] = xa − ax.
It is called the inner derivation induced by a. For some relevant algebras, these
derivations are actually the only ones available: this is the case for the full matrix
algebraMm(F) and its subalgebra UTm(F) of upper triangular matrices [9]. In this
paper, we are going to deal with the latter one. More precisely, let δ and ε be the
inner derivations ofUTm(F) induced by the unit matrices e1m and emm respectively,
that is δ = [·, e1m] and ε = [·, emm]. The algebra UTm(F) is enriched with these
derivation actions on it, and we denote Um this structure, to distinguish it from the
simpler algebra structure UTm(F). Then the identity relations among the elements
of UTm(F) are still valid in Um, but they are just a part of those holding in Um:
new relations, involving both elements of UTm(F) and derivations of elements of
UTm(F), appear. For instance, for any a, b, c ∈ UTm(F), it holds aεbc = aεcb.
These more general identity relations are called differential identities, and the basic
problem we are going to face is the following:

Determine and describe the differential identities holding in Um.

Some clarifications are in order: first of all, we need to be more precise on what
a differential identity is. Then, we have to agree on what the verbs determine and
describe should mean. About the first point, we are going to pursue a very intuitive
approach. It will fit perfectly the operative aspects of our investigations, though is
a bit too naïve to be fully satisfying. A more sound and solid approach will be
postponed to the last section.

Let us start with a countable set of indeterminates X, and define a new one,
namely

XD := {xw | x ∈ X, w word in δ, ε}.

So, for instance, xδεδ ∈ XD for all x ∈ X. We will call letters the elements of
XD . More precisely, if w is not the empty word, we call xw a differential letter; the
letters inXD which are not differential are substantially indistinguishable from their
parent indeterminate, so we identify the letter x ∈ XD (corresponding to the empty
word) with the indeterminate x ∈ X, and call it an ordinary letter. Hence we write
X ⊆ XD .

The free associative unitary F -algebraF 〈XD〉 generated byXD inherits a formal
derivation action of δ, ε: just define (xw)α := xwα, for α ∈ {δ, ε}, on the letters
xw ∈ XD , and then extend this (right) action to the wholeF 〈XD〉 by F -linearity and
the Leibniz rule. The elements of F 〈XD〉 are called differential polynomials; in case
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f ∈ F 〈XD〉 involves ordinary letters only, it will be called an ordinary polynomial.
The natural inclusion F 〈X〉 ⊆ F 〈XD〉 then follows from the definition.

Definition 1 An element f (x1, . . . , xn) ∈ F 〈XD〉 is a differential polynomial
identity of Um if f (a1, . . . , an) = 0 for all a1, . . . , an ∈ Um. The set of all
differential polynomial identities of Um is denoted by TD(Um).

Notice that the writing f (x1, . . . , xn) points just to the parent indeterminates of the
letters occurring in the polynomial: this is legitimate for the following fact

Lemma 2 Let A be an F -algebra with derivation actions of δ, ε. Any map
ϕ0 : X → A uniquely extends to an algebra homomorphism ϕ : F 〈XD〉 → A

commuting with the derivation action of δ, ε.

As a first sign of the naïve nature of our definitions notice that, at the moment, just
two algebras with derivation action of δ and ε are available: Um, from which δ and ε
have been constructed, and F 〈XD〉 itself. Hence what a generic algebra with (δ, ε)-
derivation actions should be is left too vague and subject to criticism, not to mention
the definition of TD(A) for a generic algebra A. Nevertheless, we shall pursue our
intuitive perpsective for the moment, and interprete the first statement of the Lemma
as a shortcut to mean A ∈ {F 〈XD〉, Um}, while we merely focus on TD(Um). Also,
a homomorphism ϕ : F 〈XD〉 → A commuting with δ and ε will be called a D-
homomorphism, for short.

It is worth noticing that the set T (UTm(F)) of usual polynomial identities
satisfied by the algebra UTm(F) coincides with the set of ordinary polynomial
identities of Um and is a subset of TD(Um), as a consequence of our definitions;
this is consistent with the idea that we are adding more general identity relations to
the ones related to the mere algebra structure.

The set TD(Um) is clearly a two-sided ideal of F 〈XD〉, but actually is more than
this: it is invariant under allD-endomorphism of F 〈XD〉, and is called a TD-ideal. If
I ⊆ F 〈XD〉, it makes sense to consider the least TD-ideal containing I , and call
it the TD-ideal generated by I . So a possible, acceptable answer for determine the
differential polynomial identities of Um, is to exhibit a few differential polynomial
identities of Um generating the whole TD(Um) as a TD-ideal.

This also gives a first, very rough, sense to what we may mean by describing the
TD-ideal TD(Um): in fact, even when a generating set I is given, it is extremely
hard to decide if a random polynomial f ∈ F 〈XD〉 follows from I (that is if f
belongs to the TD-ideal generated by I ). Since F has characteristic zero, a more
refined description of TD(Um) is provided by its multilinear spaces:

Definition 3 Define PDn := spanF 〈xw1
σ(1) . . . x

wn
σ(n) | σ ∈ Sn, wi word in δ, ε〉 for

all n � 1, and let PDn (Um) denote the factor space PDn /
(
PDn ∩ TD(Um)

)
.

Any element of PDn is called a multilinear differential polynomial of degree n, and
those in PDn ∩ TD(Um) are named multilinear differential polynomial identities of
Um of degree n. From here on, we shall abbreviate it in multilinear D-PI.
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The slices PDn ∩ TD(Um) completely characterize TD(Um), because their union
generates TD(Um), by standard Vandermonde argument and multilinearization
process. Moreover, each PDn ∩ TD(Um) is actually a submodule of the Sn-module
PDn , where the (left) action of Sn on the multilinear differential polynomials is
the natural one; namely, the one defined on the letters by σ • xwi := xwσ(i) for all

σ ∈ Sn. Hence PDn (Um) is a left Sn-module as well, and its Sn-character χDn (Um),
called the n-th D-cocharacter of Um, indirectly gives a picture of the Sn-structure
of PDn ∩ TD(Um). Moreover, the dimension cDn (Um) := dimF PDn (Um), called
the n-th codimension of Um, gives a quantitative measure on how big the slice
PDn ∩ TD(Um) is: the greater cDn (Um), the smaller is the space of multilinear D-
PI’s PDn ∩ TD(Um). A word of caution is due to this proposal: there is no reason, at
the moment, to believe that PDn (A) is finite dimensional. Indeed, by definition, PDn
is infinite-dimensional: for instance the set {xδi1 x2 . . . xn | i ∈ N} is an infinite set of
F -independent elements of PDn .

Since the multilinear spaces do provide so many useful information on TD(Um),
both of qualitative and quantitative nature, it is more than agreeable to accept the
Sn-cocharacter sequence of Um as a description of the D-PI of Um. So our tasks
are now operatively clear: to answer the problem, we have to find a small set of
D-PI generating TD(Um), and give the decomposition of the n-th D-cocharacter
χDn (Um) into irreducible Sn-characters. The D-codimension sequence cDn (Um),
once computed, will give the quantitative description on how big TD(Um) is.

These tasks can be made easier if we exploit the fact thatUm is a unitary algebra.
In this case, all features of PDn (Um) are encoded in smaller multilinear spaces,
consisting of the so-called proper multilinear polynomials. There are several ways
of presenting the notion of proper polynomials, and the easiest is the following

Definition 4 A polynomial f ∈ F 〈XD〉 is called a proper polynomial if
∂f

∂x
= 0

for all ordinary letters x ∈ X.

A word of caution is needed, also with this definition: we are pointing to the
elements of XD as free generators, so there is no interaction among the formal
derivations δ, ε and the usual formal partial derivatives ∂

∂x
. Explicitly, ∂x

δ

∂x
= 0,

and the same holds for xε: x, xδ and xε are different elements among those
freely generatingF 〈XD〉. Actually, talking ofX-proper polynomialswould be more
precise. So, in particular, xδ and xε are among the proper polynomials. What is the
form of a generic proper polynomial? We need the following

Definition 5 Let n � 2 and let z1, . . . , zn ∈ XD . The higher commutator
[z1, . . . , zn] is defined recursively by [z1, z2] = z1z2 − z2z1 and, for n �
3, [z1, z2, . . . , zn] := [[z1, . . . , zn−1], zn]. The number n is the length of the
commutator.

Higher commutators are therefore a (left-normed) generalization of the Lie product
among letters ofXD . We may extend the notion to commutators of lengths 0 and 1: a
commutator of length 0 is simply an element a ∈ F , while by commutator of length
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1 we mean any differential letter. Actually, the proper polynomials are precisely the
elements of the unitary subalgebra BD of F 〈XD〉 generated by the commutators of
any length. Hence, they are F -linear combinations of products of commutators.

Much more could be said on proper polynomials and their general properties. We
address the interested reader to the book [10] for the basic definitions and results.
Actually, Drensky re-discovered and gave new life to this class of polynomials,
turning them into an amazing and powerful tool employed in several papers. By
the way, we just need to focus on a specific type of proper polynomials:

Definition 6 Define �D0 := F , and for n � 1 let �Dn := PDn ∩ BD . The elements
of the set �D := ⋃

n∈N �Dn are called proper multilinear polynomials.

Proper multilinear polynomials share the same basic property of multilinear poly-
nomials in our settings:

Lemma 7 TD(Um) is generated, as TD-ideal, by �D ∩ TD(Um).
Therefore the proper multilinear polynomials in TD(Um) completely determine the
TD-ideal, as the multilinear polynomials do. Moreover, since �Dn is an Sn-module as
well, the factor space�Dn (Um) = �Dn /

(
�Dn ∩TD(Um)

)
is an Sn-module. Let ξDn (Um)

be its Sn-character (the n-th proper differential cocharacter ofUm), and γDn (Um) be
its dimension (the n-th proper codimension of Um). Then the cocharacter sequence
χDn (Um) is simply the so-called Young-derived sequence of (ξDn (Um))n∈N, that is
χDn (Um) is obtained from the cocharacters ξD0 (Um), . . . , ξ

D
n (Um) via the Young–

Pieri rule (see [11], but also the most comprehensive exposition in [10] illustrating
the interplay between proper and ordinary polynomials not only in the multilinear
case, but in the more general case of multi-homogeneous one, involving the action
of the general linear groups); hence the codimension sequence can be computed
from the proper codimension sequence by the simple relation

cDn (Um) =
n∑

k=0

(
n

k

)
γDk (Um).

Therefore, a significatively simpler meaning for the verb describe is made available:
in order to describe TD(Um), it is sufficient to get the decomposition of the proper
cocharacters of Um for all n ∈ N; the quantitative information on TD(Um) are
carried from the proper codimension sequence.

A further, last simplification towards this description is possible, by selecting a
particular basis for the vector spaces �Dn (see [12]. Proper polynomials with respect
to a distinct set of indeterminates were first presented in [13]). Let us fix a total order
� on XD , such that ordinary letters precede the differential ones.

Definition 8 A higher commutator [z1, . . . , zn] is normal if z2, . . . , zn are ordinary
letters. Moreover, the normal commutator [z1, . . . , zn] is standard if z1 > z2 <

· · · < zn.
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We include the commutators of lengths 0 and 1 among the normal standard
commutators. Of course, if z1 is a differential letter in the normal commutator
[z1, z2, . . . , zn] then just the order among z2, . . . , zn matters in being standard. The
reason for bringing up normal standard commutators is that, as a Corollary of a
stronger statement (Proposition 7 in [12]), it holds

Theorem 9 The elements of �Dn which are products of normal standard commuta-
tors constitute an F -basis of �Dn .

Proof The products of normal semistandard commutators (that is: normal commu-
tators [z1, . . . , zn] such that z1 > z2 � · · · � zn) form a basis for the algebra
BD of proper polynomials. Since �Dn = PDn ∩ BD , any polynomial in �Dn is
a linear combination of products of normal semistandard commutators but, being
multilinear, it is actually a linear combination of products of normal standard
commutators. Then, just note that normal standard commutators are in particular
semistandard, to get the linear independence. ��

3 The Coupled Actions of δ and ε on UTm(F)

As elements of EndF (Um), the operators δ and ε satisfy the following relations:

δ2 = 0, ε2 = ε, δε = δ, εδ = 0

(recall that their compositions are computed from left to right in our notation).
Therefore the following D-PI’s are readily available, and depend just upon the
selected derivations:

Lemma 10 The polynomials xδ
2

1 , xε
2

1 − xε1 , xδε1 − xδ1 , xεδ1 are in TD(Um).

Notice that they are all in �D1 . Moreover, they cause any differential letter xw related
to a wordw of length � 2 to be congruent, modulo TD(Um), either to 0 or to a single
differential letter xε, xδ . Therefore just ordinary letters or the differential letters xδ,
xε need to be considered in the sequel.

The following monomial identities also belong to TD(Um):

Corollary 11 The monomials xδ1x
ε
2 , x

ε
1x
δ
2 , x

δ
1x
δ
2 , x

ε
1x
ε
2 follow from the identities

listed in the previous Lemma. In particular, they are all in TD(Um).

Proof Let I be the TD-ideal generated by the polynomials listed in Lemma 10. Then
(x1x2)

εδ ∈ I . Explicitly, one has

(x1x2)
εδ = xεδ1 x2 + xε1xδ2 + xδ1xε2 + x1x

εδ
2 ∈ I. Hence xε1x

δ
2 + xδ1xε2 ∈ I.

Replacing x1 by xε1 yields xε
2

1 x
δ
2 + xεδ1 x

ε
2 ∈ I , so xε

2

1 x
δ
2 ∈ I . By the way, since

xε
2 ≡ xε (mod I), it follows xε1x

δ
2 ∈ I .
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The other identities follow easily. Then, since I ⊆ TD(Um), they are in particular
differential polynomial identities of Um. ��
Hence, any nonvanishing multilinear monomial will involve at most a single
differential letter.

There are other basic identities, not depending just on the selected inner
derivations but more properly on the interplay of δ and ε with the algebra structure.
They are listed in the following

Lemma 12 Let x, y, xi, yi denote distinct elements of X. The following polynomi-
als are all in TD(Um):

(1) [x1, x2]δ;
(2) xδ[x1, x2], [x1, x2]xδ, xε[x1, x2];
(3) [x1, y1] . . . [xm−1, ym−1]xε;
(4) [x1, y1] . . . [xm, ym];
(5) [x1, y1] . . . [xm−2, ym−2]

(
[x, y]ε − [x, y]

)
.

A different, maybe better, way to write the identity (1) is [xδ1, x2] + [x1, x
δ
2]. The

identity (3) may be considered, in some sense, the ε-analogous of [x1, x2]xδ. The
identity (4) is the one generating the whole T -ideal of ordinary polynomial identities
of the algebraUTm(F), as proved in [14] . The last identity of the list is undoubtedly
the most remarkable one, and the most difficult to find.

Collecting together the polynomials of Lemmas 10 and 12 we get all the
necessary identities we need to generate the whole TD(Um). Precisely, it holds

Theorem 13 Let I be the TD-ideal generated by the following differential polyno-
mials

(1) xδ
2
, xε

2 − xε, xδε − xδ, xεδ
(2) [x1, x2]δ
(3) xδ[x1, x2], [x1, x2]xδ, xε[x1, x2]
(4) [x1, y1] . . . [xm−1, ym−1]xε
(5) [x1, y1] . . . [xm, ym]
(6) [x1, y1] . . . [xm−2, ym−2]

(
[x, y]ε − [x, y]

)
,

where all indeterminates x, y, xi, yi belong to X. Then TD(Um) = I .
It is worth noticing that all these polynomials are multilinear proper polynomials,
and are expressed as linear combinations of products of normal standard commuta-
tors. The proof of this theorem is quite direct although rather structured, and brings
up some objects which turn useful in describing the multilinear spaces, so I am
giving the reader a glimpse of the main ideas involved in it.
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Of course, I ⊆ TD(Um), and in order to prove the reverse inclusion it is enough
to compare the proper multilinear parts of the two TD-ideals. The first thing to do is
therefore to exhibit a set of polynomials spanning�Dn modulo I for each 0 < n ∈ N,
and then prove that this spanning set is linearly independent modulo TD(Um). From
this, the fact that TD(Um) ⊆ I follows immediately.

The spanning set Sn we are looking for is partitioned according to the differential
letters occurring in its elements, if any. So let us separately construct the sets
S 1
n ,S

δ
n ,S

ε
n partitioning Sn.

• S 1
n : take any product c1 . . . ck ∈ �Dn of k < m normal standard commutators

ci involving ordinary letters only. Of course S 1
1 = ∅, while S 1

2 = {[x2, x1]}.
Notice that S 1

n is actually an F -basis for �n(UTm(F)).
• S δ

n : it is a singleton. More precisely, S δ
1 = {xδ1} and, if n � 2, S δ

n =
{[xδn, x1, . . . , xn−1]}.

• S ε
n : take any product c1 . . . ck ∈ �Dn of k < m normal standard commutators

such that

– c1, . . . , ck−1 involve only ordinary letters. In particular, each of them has
length � 2;

– if k < m − 1 then the last commutator ck is any [xε, y1, . . . , yl], that is any
normal standard commutator involving the remaining indeterminates

– if k = m−1 then the last commutator is uniquely determined. More precisely,
if y1 < y2 < · · · < yl < x are the remaining indeterminates, it is
[xε, y1, . . . , yl].

Our candidate set is therefore Sn = S 1
n ∪S δ

n ∪S ε
n , and it is almost easy to see

that Sn in fact spans �Dn modulo I .
To prove that Sn is linearly independent modulo TD(Um) is more tricky.

Essentially, we produce a sort of elimination algorithm:

1. initialize S := Sn
2. produce a substitution ϕ : X → Um such that ϕ(w) = 0 for all w ∈ S but a

single element w0
3. delete w0 from S and repeat the previous step until S = ∅.

We may now proceed in describing the Sn-structure of the multilinear spaces
�Dn (Um). Since we are going to work modulo TD(Um), we will simply write f
instead of f +TD(Um) and so on, in order to keep the notation as simple as possible.

As a byproduct of the preceding proof, �Dn (Um) is finite-dimensional, since it
has Sn as an F -basis. Moreover, setting �αn (Um) = FS α

n for α ∈ {1, δ, ε}, each
�αn (Um) is an Sn-submodule of �Dn (Um), so we get the decomposition �Dn (Um) =
�1
n(Um) ⊕ �δn(Um) ⊕ �εn(Um) and then consider the three summands separately in

order to get the Sn-proper cocharacter of Um.
Recall that the isomorphism classes of irreducible Sn-modules are in a bijective

correspondence with the integer partitions λ of n (which we express by λ � n). If
λ = �λ1, . . . , λk� � n, the corresponding irreducible character will be denoted by
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λ as well, thus committing a slight abuse of notation. The character of �αn (Um) will
be denoted ξαn (Um).

It is easy to see that �D0 (Um) = F and �D1 (Um) = Fxδ1 ⊕ Fxε1. For n � 2, just
ξεn(Um) needs to be investigated. Indeed,

• ξδn (Um) = �n� is clear,
• ξ1

n (Um) is the proper Sn-cocharacter of the algebra UTm(F) by [15].

In order to study ξεn(Um), let us denote (l1, . . . , lk) � n any weak k-composition of
n, that is any sequence of integers l1, . . . , lk � 0 such that l1 + · · · + lk = n.

Theorem 14 ξεn(U2) = �n� and, if m � 3,

ξεn(Um) = ξεn(Um−1)+
∑

(λ1,...,λm−2)�n
λ1,...,λm−2�2

(
�λ1 − 1, 1�⊗ · · · ⊗ �λm−2 − 1, 1�

)Sn

+
∑

(λ1,...,λm−1)�n
λ1,...,λm−2�2
λm−1�1

(
�λ1 − 1, 1�⊗ · · · ⊗ �λm−2 − 1, 1�⊗ �λm−1�

)Sn

There is a certain amount of indetermination in both ξ1
n (Um) and in ξεn(Um), due to

the induced characters involved in their description. The Littlewood–Richardson
rule would turn them into a sum of irreducible Sn-characters, but this explicit
decomposition, even if possible in principle, could hardly be accepted as a better
one. By the way, at least in the small cases m = 2 and m = 3, they are worth of
being computed, to get at least an idea of the general case.

Recall that �D0 (Um) = F and �D1 (Um) = Fxδ1 ⊕ Fxε1 for all m � 2. Then

Corollary 15 For any n � 2 it holds ξDn (U2) = �n − 1, 1� + 2�n�. In particular,
for all n ∈ N, it holds γDn (U2) = n+ 1.

The differential cocharacter sequence χDn (U2) and the differential codimension
sequence cDn (U2) follow easily and, of course, coincide with the results in [8]

Corollary 16 For any n � 1 it holds χDn (U2) =
∑

λ�n
mλλ, where

• λ = �n� has multiplicity 2n+ 1;
• λ = �a + b, a�, with a > 0, has multiplicity 3(b + 1);
• λ = �a + b + 1, a + 1, 1� has multiplicity b + 1.

In particular, for all n ∈ N it holds cDn (U2) = 2n−1(n+ 2).

It is interesting to notice that the effective contribution of ξδn (U2) and ξεn(U2) to
ξDn (U2) is limited to the trivial Sn-character �n�. This however is far from being the
general situation, as evidence shows already for U3:
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Corollary 17 The proper differential cocharacter sequence of U3 is the follow-
ing:

• ξD2 (U3) = 2�1, 1�⊕ 2�2�,
• ξD3 (U3) = 2�3�⊕ 3�2, 1�⊕ �1, 1, 1�
and, for n � 4, ξDn (U3) =

∑

λ�n
mλλ with multiplicities mλ determined according to

the table

ξ1
n (U3) ξ

δ
n(U3) ξ

ε
n (U3) ξ

D
n (U3)

�n� 1 1 2
�n− 1, 1� 1 n n+ 1

�a + b, a� (if a � 2) b + 1 b + 1 2(b + 1)
�n− 2, 1, 1� n− 3 n− 2 2n− 5

�1 + a + b, 1 + a, 1� (if a � 1) 2(b + 1) b + 1 3(b + 1)
�2 + a + b, 2 + a, 2� b + 1 b + 1

�1 + a + b, 1 + a, 1, 1� b + 1 b + 1

In particular, γD0 (U3) = 1, γD1 (U3) = 2, γD2 (U3) = 4, γD3 (U3) = 9 and, for n � 4,
γDn (U3) = n(n− 3)2n−2 + 3n.

It is evident that, even in this small case, the main contribution to ξDn (U3) comes
from the ordinary proper cocharacter ξn(UT3(F )) but the contribution due to ξεn(U3)

is very close to it, while ξδn(U3) = �n�.
The explicit decomposition of the n-th differential cocharacter of U3 would

already result in an awkward list of partitions and multiplicities, so it is hard
to conceive it as a better description of TD(U3) than the one provided through
proper characters. It is however interesting to compute the differential codimension
sequence:

Corollary 18 It holds cD0 (U3) = 1 and, for n � 1,

cDn (U3) = n(n− 4)3n−2 + 3n2n−1 + 1.

4 The Separate Actions of δ and ε on UTm(F)

We are going to consider the action of the single derivations δ and ε on the
identities of UTm(F). Denote Uδm and Uεm these two structures, respectively. The
considerations made for Um may be replied in each case, and we want to determine
and describe the differential identities of Uδm and Uεm. It is now easy to get the
following results
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Theorem 19 TD(U
δ
m) is generated by the following differential polynomials:

• xδ
2

• [x1, y1] . . . [xm, ym]
• xδ[x1, x2], [x1, x2]xδ, [x1, x2]δ
where all indeterminates belong to X.

Theorem 20 TD(U
ε
m) is generated by the following differential polynomials

• xε
2 − xε

• [x1, y1] . . . [xm, ym]
• xε[x1, x2], [x1, y1] . . . [xm−1, ym−1]xε

• [x1, y1] . . . [xm−2, ym−2]
(
[x, y]ε − [x, y]

)

where all indeterminates belong to X.

Also the proper cocharacters and codimensions follow easily; actually, they can be
read off from the proper cocharacter decomposition of Um, and summarized in

• ξDn (U
δ
m) = ξn(UTm(F ))+ �n� for all n � 1, so a bit more than the usual proper

cocharacter of UTm(F);
• ξDn (U

ε
m) = ξDn (Um)− �n� for all n � 1, so a bit less than the other extreme, the

differential proper cocharacter of Um.

This is hardly surprising. Informally speaking, in fact, the two chosen derivations
have extreme, opposite, features: δ is a nilpotent transformation of class 2 while ε is
an idempotent transformation. These differences are concealed by the case m = 2
(the algebra is too small), but emerge already in case m = 3.

We record here the codimension sequences for these small cases:

Corollary 21 The proper codimension sequence and the codimension sequence of
Uδ2 and Uε2 are the following:

• γDn (U
δ
2 ) = n = γDn (Uε2 ) (for n � 1),

• cDn (U
δ
2 ) = n2n−1 + 1 = cDn (Uε2 ) (for n ∈ N).

The proper codimension sequence and the codimension sequence of Uδ3 and Uε3 are
the following:

• γDn (U
δ
3 ) = 2n−2(n− 1)(n− 4)+ 2n− 1 (for n � 4),

• γDn (U
ε
3 ) = 2n−2n(n− 3)+ 3n− 1 (for n � 4),

• cDn (U
δ
3 ) = 3n−2(n2 − 7n+ 9)+ 2n(n− 1)+ 1

6 (2n
3 − 3n2 + n+ 6) (for n � 1),

• cDn (U
ε
3 ) = 3n−2n(n− 4)+ 2n−1(3n− 2)+ 2 (for n � 1).

In particular we get back the sequences χDn (U
ε
2 ) and cDn (U

ε
2 ) computed in [8].
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5 Behind the Scenes

It is high time we gave a more precise and sound grounding to the notions employed
so far. Let us start by recalling that the set Der(A) of all derivations on A is a
Lie algebra laying inside EndF (A). If L is any Lie algebra, we say that L acts
on A by derivation if A is a Lie L-module. It amounts to say that there is a Lie-
homomorphism from L to Der(A). By a fundamental property of the universal
enveloping algebra U(L) of the Lie algebra L, this is equivalent to say that A is
turned into an U(L)-module (in our settings, a right U(L)-module). We summarize
these facts in the following

Definition 22 Let L be a Lie algebra over F and let A be an associative F -algebra.
We say that A is an L-algebra, or that L acts on A by derivations, if A is a U(L)-
module.

One can define a universal object in the class of L-algebras: start by a countable
set of indeterminates X, and consider the F -vector space V := FX ⊗ U(L). Then
the tensor algebra of V , denoted F 〈X | L〉, is an associative, unitary F -algebra,
spanned by the (tensor) products of the simple tensors x ⊗ w for x ∈ X and w ∈
U(L). The regular right action of U(L) on the simple tensors x ⊗ w, defined by
(x ⊗ w) • u := x ⊗ wu, turns F 〈X | L〉 into a right U(L)-module, therefore
induces a derivation action of L on the tensor algebra and turns it into an L-algebra.
Moreover, if A is any L-algebra, any map ϕ0 : X→ A uniquely defines an algebra
homomorphism from F 〈X | L〉 commuting with the derivation action of L (which
we call an L-homomorphism), due to the general properties of the tensor algebra of
a vector space and to the defining right action of U(L) on it. It is therefore natural
to define TL(A) as the intersection of all the kernels of L-homomorphisms from
F 〈X | L〉 to A.

In order to keep the notation under control, it is a good idea to write xu to denote
the simple tensor x⊗u for x ∈ X and u ∈ U(L); if u = 1 (the unit element ofU(L))
one identifies x ⊗ 1 with x. Hence, for the “critical” (for one’s own understanding)
case of V ⊗2, the spanning tensors (x ⊗ u) ⊗ (y ⊗ v), with x, y ∈ X and u, v ∈
U(L), can be written in the simpler form xuyv; moreover, the action of L (which
is canonically embedded in U(L) by the Poincaré–Birkhoff–Witt Theorem) can be
written in the usual form (xuyv)a = xuayv + xuyva , that is the Leibniz rule.

Example 23 Let L = Fa be the one-dimensional Lie algebra, spanned by the
basis element a. Then its universal enveloping algebra is the (infinite dimensional)
polynomial algebra F [a], and F 〈X | L〉 is the noncommutative associative
unitary F -algebra generated by the (countable) set {xai | x ∈ X, i ∈ N}. Each
indeterminate xa

i
is just a simpler writing for the simple tensor x⊗ai ∈ FX⊗U(L).

So, when we considered Uδm and Uεm, what we really did was to choose a
derivation α ∈ Der(UTm(F)), and fix a Lie homomorphism ϕ : L = Fα →
EndF (UTm(F)). This uniquely defines an algebra homomorphism ϕ∗ : U(L) →
EndF (UTm(F)), turningUTm(F) into a rightU(L)-module. Moreover, the algebra



332 V. C. Nardozza

we intuitively produced as F 〈XD〉 is nothing more than the free algebra F 〈X | L〉,
with the once formal letters xw now becoming the generators x ⊗ w of the tensor
algebra F 〈X | L〉.

A natural question, at this point, arises: it does not matter if α = δ or α = ε,
because the Lie algebras Fδ and Fε are isomorphic, being one dimensional.
Therefore in both cases U(L) is the same algebra, up to isomorphisms. What makes
the differences among them? It is, of course, the kernel of the action: U(L) acts
on UTm(F) in both cases, but the in case α = δ the kernel is the two-sided
ideal generated by the generator α2, in the other case it is the ideal generated by
α2 − α. These relations affect the differential polynomial identities of Uδm and Uεm,

and correspond precisely to the identities xδ
2

and xε
2 − xε, respectively.

When we considered the coupled action of δ and ε, that is Um, a similar process
was in action: this time, the Lie algebra L acting on UTm(F) is a two-dimensional
Lie algebra and, since δ and ε do not commute, it must be the two-dimensional
non commutative Lie algebra (sometimes named the two-dimensional metabelian
Lie algebra). It is well known that one can choose a linear basis {a, b} in L such
that [ab] = a (this is the true Lie product in L, so we are writing it without the
separating comma), and the obvious map carrying a and b in δ and ε respectively
provides a faithful representation of L. Once again, this uniquely defines an algebra
homomorphism from U(L) to EndF (UTm(F)), thus turning UTm(F) into a right
U(L)-module, whose kernel is the two-sided ideal generated by the elements
a2, b2 − b, ab− a, ba, from which the differential identities xδ

2
, xε

2 − xε, xδε− xδ
and xεδ, respectively, arise.

This also explains why the differential identities of Uδm and Uεm resemble
so closely the ones of Um involving separately the δ- and ε-letters: any map
ϕ : L → EndF (UTm(F)) such that [ϕ(a), ϕ(b)] = ϕ(a) uniquely defines a Lie
homomorphism of L = Fa ⊕ Fb in EndF (UTm). The map ϕ involved in forming
Um of course does the job, but the same do the maps ϕδ sending a → 0 and b→ δ

and ϕε carrying a in 0 and b in ε. In this case, the differences with Uδm and Uεm
are little more than formal, and depend on adding the generator xa to the kernel of
the U(L) action (that is, respectively, to add the differential identity xε or xδ). Of
course, choosing ϕ as the zero map still yields a Lie homomorphisms. In this case
L acts trivially on UTm(F), and the ideal of differential identities coincides with
the usual T -ideal of UTm(F) (that is: formally xε and xδ are among the differential
identities).

Another natural question is the following: how tightly the differential polynomial
identities depend upon the Lie algebra L? The answer is: very weakly. An easy
example has been already provided by the one-dimensional algebra L = Fa.
Indeed, Uδm and Uεm have very different differential identities. One can think that
this is due just to the different types of δ and ε: a nilpotent versus an idempotent
transformation. This is true, but it is not the only reason. Let us consider the
following example: let η := [·,−e11] = [e11, ·] be the inner derivation induced
on UTm(F) by the matrix −e11, and let θ be the map defined by θ(a) = η. This of
course defines a Lie homomorphism from the one-dimensional Lie algebra L = Fa
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in EndF (UTm(F)). Since η2 = η, the U(L) action on UTm(F) is exactly the same
as the one we got assigning a → ε (both the kernels are generated by a2 − a). By
the way, the differential polynomial identities satisfied by Uηm differ from the ones
of Uεm. For instance, the basic identity xa[x1, y1] in the latter (where the differential
letter xa means xε) is no longer holding in the former, where it is replaced by
[x1, y1]xa (so the differential letter changes side). Thus, the only direct part played
by L in determining the differential polynomial identities of UTm(F) is limited to
the identities arising from the kernel of the U(L)-action, but the relations among the
selected derivations and the algebra structure play a decisive role in determining the
actual differential identities of the algebra.
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Identities in Group Rings, Enveloping
Algebras and Poisson Algebras

Victor Petrogradsky

Abstract This is a short survey of works on identical relations in group rings,
enveloping algebras, Poisson symmetric algebras and other related algebraic struc-
tures. First, the classical work of Passman specified group rings that satisfy
nontrivial identical relations. This result was an origin and motivation of close
research projects. Second, Latyshev and Bahturin determined Lie algebras such
that their universal enveloping algebra satisfies a non-trivial identical relation. Next,
Passman and Petrogradsky solved a similar problem in case of restricted enveloping
algebras. Third, Farkas started to study identical relations in Poisson algebras. On
the other hand, Shestakov proved that the symmetric algebra S(L) of an arbitrary
Lie algebra L satisfies the identity {x, {y, z}} ≡ 0 if, and only if, L is abelian. Also,
Giambruno and Petrogradsky determined when a truncated symmetric Poisson alge-
bra satisfies a non-trivial multilinear Poisson identical relation. We survey further
results on existence of identical relations in (truncated) symmetric Poisson algebras
of Lie algebras. In particular, we report on recent results on (strong) Lie nilpotency
and (strong) solvability of (truncated) symmetric Poisson algebras and related nilpo-
tency classes. Also, we discuss constructions and methods to achieve these results.

Keywords Poisson algebras · Identical relations · Solvable Lie algebras ·
Nilpotent Lie algebras · Symmetric algebras · Truncated symmetric algebras ·
Restricted Lie algebras.

1 Introduction

Now, there is an established theory of identical relations in associative and Lie
algebras [4, 13]. It has many applications to group theory such as the solution of
the Restricted Burnside Problem. Also, identical relations were applied to study
other algebraic structures.
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In the present review, we discuss existence of identical relations in three classes
of algebras. First, the starting point is the result of Passman on existence of identical
relations in group rings [37] (Theorem 1). This result caused an intensive research
on different types of identical relations in group rings, such as Lie nilpotence,
solvability, non-matrix identical relations, classes of Lie nilpotence, solvability
lengths, etc. There are at least 50 papers published in this area.

Second, Latyshev [26] and Bahturin [2] started to study identical relations in
universal enveloping algebras of Lie algebras. Passman [38] and Petrogradsky [40]
specified existence of identical relations in restricted enveloping algebras (Theo-
rem 5). There are many papers in this area studying different types of identical
relations, such as Lie nilpotence, solvability, non-matrix identical relations, classes
of Lie nilpotence, solvability lengths, etc. In particular, Riley and Shalev determined
necessary and sufficient conditions for restricted Lie algebras under which the
restricted enveloping algebra is Lie nilpotent or solvable [44]. The research was
further extended to new objects, such as Lie superalgebras, color Lie superalgebras,
smash products. These problems were studied in numerous papers by Bahturin,
Bergen, Kochetov, Lichtman, Passman, Petrogradsky, Riley, Shalev, Siciliano,
Spinelli, Usefi et al.

Poisson algebras appeared in works of Berezin [8] and Vergne [62]. Free Poisson
(super)algebras were introduced by Shestakov [47]. A basic theory of identical
relations for Poisson algebras was developed by Farkas [16, 17]. Identical relations
of symmetric Poisson algebras of Lie (super)algebras were studied by Kostant [24],
Shestakov [47], and Farkas [17]. The third starting point for our research is the
result of Giambruno and Petrogradsky [18] on existence of non-trivial multilinear
Poisson identical relations in truncated symmetric Poisson algebras of Lie algebras
(Theorem 15). Finally, we review recent results on Lie identities of truncated
symmetric Poisson algebras [32].

By K denote the ground field, as a rule of positive characteristic p. By 〈S〉 or
〈S〉K denote the linear span of a subset S in aK-vector space. LetL be a Lie algebra.
The Lie brackets are left-normed: [x1, . . . , xn] = [[x1, . . . , xn−1], xn], n ≥ 1. One
defines the lower central series: γ1(L) = L, γn+1(L) = [γn(L),L], n ≥ 1. Also,
L2 = [L,L] = γ2(L) is the commutator subalgebra. By U(L) denote the universal

enveloping algebra and S(L) = ∞⊕
n=0
Un/Un−1 the related symmetric algebra [4, 6,

12]. For the basic theory of restricted Lie algebras and restricted enveloping algebras
see [4, 22]. Let us note that all our Lie algebras over a field of positive characteristic
need not be restricted.

2 Identical Relations of Group Rings

In this section we review results on existence of nontrivial polynomial identities in
group rings. This is the origin of this research direction.

Passman obtained necessary and sufficient conditions for a group ring K[G] to
satisfy a nontrivial polynomial identity over a field K of arbitrary characteristic p.
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A groupG is said to be p-abelian if G is abelian in case p = 0 and, in case p > 0,
G′, the commutator subgroup of G, is a finite p-group.

Theorem 1 ([37]) The group algebra K[G] of a group G over a field K of
characteristic p ≥ 0 satisfies a nontrivial polynomial identity if and only if the
following conditions are satisfied.

1. There exists a subgroup A ⊆ G of finite index;
2. A is p-abelian.

All our associative algebras are with unity. Recall the notions of a (strong) Lie
nilpotence and (strong) solvability for associative algebras. Let A be an associative
algebra, andA(−) the related Lie algebra. Consider its lower central series: γ1(A) =
A, γi+1(A) = [γi(A),A], i ≥ 1. The algebra A is said to be Lie nilpotent of class s
if and only if γs+1(A) = 0 and γs(A) � 0. Also consider upper Lie powers defined
by A(0) = A and A(n+1) = [A(n), A]A, n ≥ 0 (we use the shifted enumeration in
comparison with [35, 45] because one checks that {A(n) | n ≥ 0} is a filtration). Now,
A is strongly Lie nilpotent of class s if and only if A(s) = 0 and A(s−1) � 0. One
defines the derived series ofA by setting δ0(A) = A, δi+1(A) = [δi(A), δi(A)], i ≥
0. The algebra A is solvable of length s if and only if δs(A) = 0 and δs−1(A) � 0.
Consider also the upper derived series: δ̃0(A) = A, δ̃i+1(A) = [δ̃i(A), δ̃i(A)]A, i ≥
0. Now, A is strongly solvable of length s if and only if δ̃s(A) = 0 and δ̃s−1(A) � 0.

Passi, Passman and Sehgal characterized the Lie nilpotence and solvability of
K[G] [35].

Theorem 2 ([35]) Let K[G] be the group ring of a group G over a field K ,
charK = p ≥ 0. Then

1. K[G] is Lie nilpotent if and only if G is p-abelian and nilpotent;
2. K[G] is solvable if and only if G is p-abelian, for p � 2;
3. K[G] is solvable if and only if G has a 2-abelian subgroup of index at most 2,

for p = 2.

Using the upper Lie powers, one defines Lie dimension subgroups of a group (our
enumeration is shifted) [34]:

D(n),K(G) = G ∩ (1 +K[G](n)), n ≥ 0.

One also has the following description [10]:

D(n),K(G) =
∏

(i−1)pk≥n
γi(G)

pk , n ≥ 0. (1)

There is a formula for the Lie nilpotency class of a modular group ring.
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Theorem 3 ([10]) LetG be a group,K a field of characteristic p > 3 such that the
group ring K[G] is Lie nilpotent. Then the Lie nilpotency class of K[G] coincides
with its strong Lie nilpotency class and is equal to

1 + (p − 1)
∑

m≥1

m logp
∣∣D(m),K(G) : D(m+1),K(G)

∣∣.

The original work caused more research projects. So called generalized polynomial
identities of (twisted) group rings were studied in [36, 39]. Also, a relation with
gradings of PI-algebras see in [1].

A group G is said to have the n-rewritable property Qn if for all elements
g1, g2, . . . , gn ∈ G, there exist two distinct permutations σ, τ ∈ Symn such that
gσ(1)gσ(2) · · · gσ(n) = gτ(1)gτ(2) · · · gτ(n) [11]. The following result is a further
application of delta-sets (see definitions below).

Theorem 4 ([11, 14]) If a group G satisfies Qn, then G has a characteristic
subgroup N such that |G : N | and |N ′| are finite and have sizes bounded by
functions of n.

Problem 1 We suggest a problem to find an analogue of the rewritable property
and characterise it in case of Lie algebras.

3 Identical Relations of Enveloping Algebras

Latyshev proved that the universal enveloping algebra of a finite dimensional Lie
algebra over a field of characteristic zero satisfies a nontrivial polynomial identity if
and only if the Lie algebra is abelian [26]. Bahturin noticed that the condition of a
finite dimensionality is inessential (see e.g. [4]).

Bahturin settled a similar problem on the existence of a nontrivial identity for
the universal enveloping algebra over a field of positive characteristic [2]. Also,
Bahturin found necessary and sufficient conditions for the universal enveloping
algebra of a Lie superalgebra over a field of characteristic zero to satisfy a non-trivial
polynomial identity [3]. PI-subrings and algebraic elements in universal enveloping
algebras and their fields of fractions were studied by Lichtman [28].

Passman [38] and Petrogradsky [40] described restricted Lie algebras L whose
restricted enveloping algebra u(L) satisfies a nontrivial polynomial identity.

Theorem 5 ([38, 40]) LetL be a restricted Lie algebra over a field of characteristic
p > 0. The restricted enveloping algebra u(L) satisfies a nontrivial polynomial
identity if and only if there exist restricted idealsQ ⊆ H ⊆ L such that

1. dimL/H <∞, dimQ <∞;
2. H/Q is abelian;
3. Q is abelian and has a nilpotent p-mapping.
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Riley and Shalev determined when u(L) is Lie nilpotent, solvable (for p > 2),
or satisfies the Engel condition [44].

Theorem 6 ([44]) Let u(L) be the restricted enveloping algebra of a restricted Lie
algebra L over a fieldK of characteristic p > 0.

1. u(L) is Lie nilpotent if and only if L is nilpotent and L2 is finite dimensional and
p-nilpotent;

2. u(L) is n-Engel for some n if and only if L is nilpotent, L2 is p-nilpotent, and L
has a restricted ideal A such that both L/A and A2 are finite dimensional.

3. u(L) is solvable if and only if L2 is finite dimensional and p-nilpotent, for p � 2.

Let L be a restricted Lie algebra, charK = p > 0. Similarly to the dimension
subgroups, using upper Lie powers (see the previous section), Riley and Shalev
defined Lie dimension subalgebras [45]:

D(n)(L) = L ∩ u(L)(n), n ≥ 0.

(Recall that our enumeration is shifted.) They also gave the following descrip-
tion [45]:

D(n)(L) =
∑

(i−1)pk≥n
γi(L)

[pk], n ≥ 0. (2)

Siciliano proved [49] that in case p > 2, the strong solvability of the restricted
enveloping algebra u(L) is equivalent to its solvability. Moreover, the strong
solvability in case p = 2 is described by the same conditions of Part 3 of Theorem 6.
Also, in case p = 2 he provided an example of the restricted enveloping algebra
u(L) that is solvable but not strongly solvable.

The following is an analogue of results on the Lie nilpotency classes of group
rings (Theorem 3).

Theorem 7 ([45]) Let L be a restricted Lie algebra over a fieldK of characteristic
p > 0 such that u(L) is Lie nilpotent. Then

1. The strong Lie nilpotency class of u(L) is equal to

1 + (p − 1)
∑

m≥1

m dim(D(m)(L)/D(m+1)(L)).

2. In case p > 3, the Lie nilpotency class coincides with the strong Lie nilpotency
class.

The solvability of restricted enveloping algebras in case of characteristic 2
was settled in [55]. Lie nilpotence, solvability, and other non-matrix identities
for (restricted) enveloping algebras of (restricted) Lie (super)algebras are studied
in [9, 41, 50, 51, 53, 54, 57, 60, 61]. For other results on derived lengths, Lie
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nilpotency classes for u(L), or identities for skew and symmetric elements of u(L),
etc., see the survey [56].

More general cases of (restricted) enveloping algebras for (color) Lie p-(super)-
algebras are treated in [6]. Further developments have been obtained for smash
productsU(L)#K[G] and u(L)#K[G], where a groupG acts by automorphisms on
a (restricted) Lie algebra L [5]. Identities of smash products U(L)#K[G], where L
is a Lie superalgebra in characteristic zero were studied by Kotchetov [23]. The Lie
structure of smash products has been investigated in [58]. The results on identities
of smash products are of interest because they combine, as particular cases, both,
the results on identities of group ring and enveloping algebras.

4 Poisson Algebras and Their Identities

4.1 Poisson Algebras

Poisson algebras naturally appear in different areas of algebra, topology and physics.
Probably Poisson algebras were first introduced in 1967 by Berezin [8], see also
Vergne [62]. Poisson algebras are used to study universal enveloping algebras
of finite dimensional Lie algebras in characteristic zero [24, 33]. In particular,
abelian subalgebras in symmetric Poisson algebras are used to study commutative
subalgebras in universal enveloping algebras of finite-dimensional semisimple Lie
algebras in characteristic zero [59, 63]. Applying Poisson algebras, Shestakov and
Umirbaev managed to solve a long-standing problem: they proved that the Nagata
automorphism of the polynomial ring in three variables C[x, y, z] is wild [48].
Related algebraic properties of free Poisson algebras were studied by Makar-
Limanov, Shestakov and Umirbaev [29, 30].

The free Poisson algebras were defined by Shestakov [47]. A basic theory of
identical relations for Poisson algebras was developed by Farkas [16, 17]. See
further developments on the theory of identical relations of Poisson algebras, in
particular, the theory of so called codimension growth in characteristic zero by
Mishchenko et al. [31], and Ratseev [43].

Recall that a vector space A is a Poisson algebra provided that, beside the
addition, A has two K-bilinear operations which are related by the Leibnitz rule.
More precisely,

• A is a commutative associative algebra with unit whose multiplication is denoted
by a · b (or ab), where a, b ∈ A;

• A is a Lie algebra whose product is traditionally denoted by the Poisson bracket
{a, b}, where a, b ∈ A;

• these two operations are related by the Leibnitz rule

{a · b, c} = a · {b, c} + b · {a, c}, a, b, c ∈ A.
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4.2 Examples of Poisson Algebras

Typical examples are as follows.

Example 1 Consider the polynomial ring H2m = K[X1, . . . , Xm, Y1, . . . , Ym]. Set
{Xi, Yj } = δi,j and extend this bracket by the Leibnitz rule. We obtain the Poisson
bracket:

{f, g} =
m∑

i=1

(
∂f

∂Xi

∂g

∂Yi
− ∂f

∂Yi

∂g

∂Xi

)
, f, g ∈ H2m.

The commutative product is the natural multiplication. We obtain the Hamiltonian
Poisson algebra H2m.

Example 2 Let L be a Lie algebra over an arbitrary field K , {Un | n ≥ 0} the
natural filtration of its universal enveloping algebra U(L). Consider the symmetric

algebra S(L) = grU(L) = ∞⊕
n=0
Un/Un−1 (see [12]). Recall that S(L) is identified

with the polynomial ring K[vi | i ∈ I ], where {vi | i ∈ I } is a K-basis of L. Define
the Poisson bracket as follows. Set {vi, vj } = [vi, vj ] for all i, j ∈ I , and extend to
the whole of S(L) by linearity and using the Leibnitz rule. For example,

{vi · vj , vk} = vi · {vj , vk} + vj · {vi, vk}, i, j, k ∈ I.

Thus, S(L) has a structure of a Poisson algebra, called the symmetric algebra of L.

Example 3 Let L be a Lie algebra with aK-basis {vi | i ∈ I }, where charK = p >
0. Consider a factor algebra of the symmetric (Poisson) algebra

s(L) = S(L)/(vp | v ∈ L) � K[vi | i ∈ I ]/(vpi | i ∈ I),

we get an algebra of truncated polynomials. Observe that

{vp, u} = pvp−1{v, u} = 0, v ∈ L, u ∈ s(L).

So, the Poisson bracket on S(L) yields a Poisson bracket on s(L). Thus, s(L) is
a Poisson algebra, we call it a truncated symmetric algebra. Remark that the Lie
algebra L need not be restricted.

Example 4 LetK be a field of positive characteristic p. We introduce the truncated
Hamiltonian Poisson algebra as

h2m(K) = K[X1, . . . , Xm, Y1, . . . , Ym]/(Xpi , Y pi | i = 1, . . . ,m),

where we define the bracket as in Example 1 using the observation of Example 3.
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The Hamiltonian algebras h2m(K) and H2m(K) in the class of Poisson algebras
play a role similar to that of the matrix algebras Mn(K) for associative algebras.

4.3 Poisson Identities

The objective of this subsection is to supply basic facts on polynomial identities of
Poisson algebras.

Consider the free Lie algebra L = L(X) generated by a set X and its symmetric
algebraF(X) = S(L(X)). Then,F(X) is a free Poisson algebra inX, as was shown
by Shestakov [47]. For example, let L = L(x, y) be the free Lie algebra of rank 2.
Consider its Hall basis [4]

L = 〈x, y, [y, x], [[y, x], x], [[y, x], y], [[[y, x], x], x], . . .〉K.

We obtain the free Poisson algebra F(x, y) = S(L) of rank 2, which has a canonical
basis as follows:

F(x, y) = 〈
xn1yn2{y, x}n3 {{y, x}, x}n4 {{y, x}, y}n5 {{{y, x}, x}, x}n6 · · ·

∣∣∣ ni ≥ 0
〉
K
,

where only finitely many ni , i ≥ 1, are non-zero in the monomials above.
A definition of a Poisson PI-algebra is standard, identities being elements of

the free Poisson algebra F(X) of countable rank. We assume that basic facts on
identical relations of linear algebras are known to the reader (see, e.g., [4, 13]).
Farkas introduced so called customary identities [16]:

∑

σ∈S2n

σ (2k−1)<σ(2k), k=1,...,n
σ (1)<σ(3)<···<σ(2n−1)

μσ {xσ(1), xσ(2)} · · · {xσ(2n−1), xσ(2n)} ≡ 0, μσ ∈ K.

where μe = 1, for the identity permutation. Denote by T2n the set of permutations
τ ∈ S2n appearing in the some above. The importance of customary identities is
explained by the following fact.

Theorem 8 ([16]) Suppose that V is a nontrivial variety of Poisson algebras over
a field K of characteristic zero. ThenV satisfies a nontrivial customary identity.

Let us show the idea of the proof. Let a Poisson algebra R satisfy the identity
f (X, Y,Z) = {{X,Y }, Z} ≡ 0. Then, R also satisfies the identity:

0 ≡ f (X1X2, Y, Z)−X1f (X2, Y, Z)− X2f (X1, Y, Z)

= {{X1X2, Y }, Z} −X1{{X2, Y }, Z} − X2{{X1, Y }, Z}
= {X1, Y }{X2, Z} + {X1, Z}{X2, Y },
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which is customary. Farkas called this process a customarization [16], it is an
analogue of the linearization process for associative algebras. The arguments of [16]
actually prove the following.

Theorem 9 ([16]) Suppose that a Poisson algebra A over an arbitrary field
satisfies a nontrivial multilinear Poisson identity. Then A satisfies a nontrivial
customary identity.

Remark 1 Let us explain why we need all polynomials to be multilinear in case
of positive characteristic p. The linearization process is simply not working for
Poisson algebras in positive characteristic as it does for associative and Lie algebras.
For example, the Poisson identity {x, y}p ≡ 0 is given by a nonzero element of the
free Poisson algebra F(X). Observe that its full linearization is trivial:

∑

σ,π∈Sp
{xσ(1), yπ(1)} · · · {xσ(p), yπ(p)} = p!

∑

π∈Sp
{x1, yπ(1)} · · · {xp, yπ(p)} = 0.

Moreover, let us check that any truncated symmetric algebra s(L) satisfies the
identity {x, y}p ≡ 0. Indeed, let a, b ∈ s(L), then {a, b} is a truncated polynomial
without constant term, its pth power is zero by the Frobenius rule (v + w)p =
vp + wp . Thus, it does not make sense to study nonlinear Poisson identities for
truncated symmetric algebras.

In the theory of Poisson PI-algebras, the analogue of the standard polynomial is
[16, 17]:

St2n = St2n(x1, . . . , x2n) =
∑

σ∈T2n

(−1)σ {xσ(1), xσ(2)} · · · {xσ(2n−1), xσ(2n)}.

This is a customary polynomial, skewsymmetric in all variables [16]. One has the
following fact similar to the theory of associative algebras.

Theorem 10 ([31]) In case of zero characteristic, any Poisson PI-algebra satisfies
an identity (St2n)m ≡ 0, for some integers n,m.

This result was proved by establishing an analogue of Regev’s theorem on codimen-
sion growth. Moreover, it was proved that so called customary codimension growth
is exponential with an integer exponent [31].

Another important fact on the standard identity is as follows.

Lemma 1 ([16]) Let A be a Poisson algebra over an arbitrary field K and A is k-
generated as an associative algebra. Then it satisfies the standard identity St2m ≡ 0,
whenever 2m > k.
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5 Multilinear Identities of Symmetric Poisson Algebras

The following result is an analogue of the classical Amitsur-Levitzki theorem on
identities of matrix algebras. Kostant used another terminology, but as observed by
Farkas [17], this is a result on identities of symmetric Poisson algebras.

Theorem 11 ([17, 24]) Let L be a finite dimensional Lie algebra over a field of
characteristic zero. The symmetric algebra S(L) satisfies the standard Poisson
identity St2d ≡ 0 as soon as 2d exceeds the dimension of a maximal coadjoint
orbit of L.

The Lie nilpotence of class 2 of symmetric algebras S(L), where L is a Lie
superalgebra, was characterized by Shestakov. The next statement follows from
Theorem 4 and Theorem 5 of [47].

Theorem 12 ([47]) The symmetric algebra S(L) of a Lie algebra L over a field K
satisfies the identity {x, {y, z}} ≡ 0 if and only if L is abelian.

Farkas proved the following statement that generalizes Kostant’s Theorem 11.

Theorem 13 ([17]) Let L be a Lie algebra over a field of characteristic zero. Then
the symmetric algebra S(L) satisfies a nontrivial Poisson identity if and only if L
contains an abelian subalgebra of finite codimension.

Giambruno and Petrogradsky extended this result to an arbitrary characteristic [18].

Theorem 14 ([18]) Let L be a Lie algebra over an arbitrary field. Then the
symmetric algebra S(L) satisfies a nontrivial multilinear Poisson identity if and
only if L contains an abelian subalgebra of finite codimension.

The following result was obtained for the truncated symmetric algebra s(L) of a
restricted Lie algebra L.

Theorem 15 ([18]) LetL be a restricted Lie algebra. Then the truncated symmetric
algebra s(L) satisfies a nontrivial multilinear Poisson identity if and only if there
exists a restricted idealH ⊆ L such that

1. dimL/H <∞;
2. dimH 2 <∞;
3. H is nilpotent of class 2.

6 Lie Identities of Symmetric Poisson Algebras

Now we discuss special cases of identities of symmetric Poisson algebras. Remark
that the identities of the (strong) Lie nilpotence and (strong) solvability are
multilinear, thus Theorem 15 can be applied for such algebras.
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6.1 Lie Nilpotence of Truncated Symmetric Algebras s(L)

Let R be a Poisson algebra. Consider the lower central series of R as a Lie algebra,
i.e., γ1(R) = R and γn+1(R) = {γn(R),R}, n ≥ 1. We say that R is Lie nilpotent of
class s if and only if γs+1(R) = 0 but γs(R) � 0. Clearly, the condition γs+1(R) = 0
is equivalent to the identity of Lie nilpotence of class s:

{. . . {{X0,X1},X2}, . . . , Xs} ≡ 0.

Similarly to the associative case, one defines upper Lie powers. At each step
we take the ideal generated by commutators, namely, put R(0) = R and R(n) =
{R(n−1), R} · R for all n ≥ 1 (the enumeration is shifted, because {R(n)|n ≥ 0} is
a filtration, see also [42]). A Poisson algebra R is strongly Lie nilpotent of class s
iff R(s) = 0 but R(s−1) � 0. The condition R(s) = 0 is equivalent to the identical
relation of the strong Lie nilpotence of class s:

{{. . . {{X0,X1} · Y1,X2} · Y2, . . . , Xs−1} · Ys−1,Xs} ≡ 0.

Observe that

γn(R) ⊆ R(n−1), n ≥ 1. (3)

So, the strong Lie nilpotence of class s implies the Lie nilpotence of class at most
s. The Lie nilpotence of class 1 is equivalent to the strong Lie nilpotence of class 1
and equivalent that R is abelian.

Theorem 16 ([32]) Let L be a Lie algebra over a field of positive characteristic p.
Consider its truncated symmetric Poisson algebra s(L). The following conditions
are equivalent:

1. s(L) is strongly Lie nilpotent;
2. s(L) is Lie nilpotent;
3. L is nilpotent and dimL2 <∞.

Let L be a Lie algebra over a field K (charK = p > 0). Using the upper Lie
powers, define the Poisson dimension subalgebras (truncated Poisson dimension
subalgebras, respectively) of L as:

DS(n)(L) = L ∩ (S(L))(n), n ≥ 0;
Ds(n)(L) = L ∩ (s(L))(n), n ≥ 0.
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We obtain a description of these subalgebras [32] similar to that for group rings (1)
and restricted enveloping algebras (2) (compare with the first term of that products):

DS(n)(L) = γn+1(L), n ≥ 0;
Ds(n)(L) = γn+1(L), n ≥ 0.

We compute the classes of Lie nilpotence and strong Lie nilpotence. We get
an analogue of the formulas known for group rings (Theorem 3) and restricted
enveloping algebras (Theorem 7). The analogy is better seen in terms of truncated
Poisson dimension subalgebras.

Theorem 17 ([32]) Let L be a Lie algebra over a field of positive characteristic
p > 3, such that the truncated symmetric Poisson algebra s(L) is Lie nilpotent. The
following numbers are equal:

1. the strong Lie nilpotency class of s(L);
2. the Lie nilpotency class of s(L);
3.

1 + (p − 1)
∑

n≥1

n · dim(γn+1(L)/γn+2(L)).

In cases p = 2, 3, the numbers (1) and (3) remain equal.

In case p = 2, 3, the number above yields an upper bound for the Lie nilpotency
class. Also, we have a lower bound for the Lie nilpotency class, L being non-
abelian [32]:

2 + (p − 1)
∑

n≥2

(n− 1) · dim(γn+1(L)/γn+2(L)).

6.2 Solvability of Truncated Symmetric Algebras s(L)

Let R be a Poisson algebra. Consider its derived series as a Lie algebra: δ0(R) =
R, δn+1(R) = {δn(R), δn(R)}, n ≥ 0. Polynomials of solvability are defined as:
δ1(X1,X2) = {X1,X2} and

δn+1(X1,X2, . . . , X2n+1) = {
δn(X1, . . . , X2n), δn(X2n+1, . . . , X2n+1)

}
, n ≥ 1.

A Poisson algebraR is solvable of length s if, and only if, δs(R) = 0 and δs−1(R) �
0, or equivalently, R satisfies the above identity of Lie solvability δs(. . .) ≡ 0, s
being minimal.
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Define the upper derived series: δ̃0(R) = R and δ̃n+1(R) = {δ̃n(R), δ̃n(R)} · R,
n ≥ 0. Define polynomials of the strong solvability δ̃1(X1,X2, Y1) = {X1,X2} ·Y1,
and

δ̃n+1(X1, . . . , X2n+1, Y1, . . . , Y2n+1−1) =
{
δ̃n(X1, . . . , X2n , Y1, . . . , Y2n−1),

δ̃n(X2n+1, . . . , X2n+1, Y2n, . . . , Y2n+1−2)
}
· Y2n+1−1, n ≥ 1.

A Poisson algebraR is strongly solvable of length s iff δ̃s(R) = 0 and δ̃s−1(R) �
0, or equivalently R satisfies δ̃s(. . .) ≡ 0, s being minimal. Observe that

δs(R) ⊆ δ̃s(R), s ≥ 0. (4)

So, strong solvability of length s implies solvability of length at most s. The
solvability of length 1 is equivalent to the strong solvability of length 1 and
equivalent that R is an abelian Lie algebra.

Theorem 18 ([32]) Let L be a Lie algebra over a field of positive characteristic
p ≥ 3. Consider its truncated symmetric Poisson algebra s(L). The following
conditions are equivalent:

1. s(L) is strongly solvable;
2. s(L) is solvable;
3. L is solvable and dimL2 <∞.

In case p = 2, conditions (1) and (3) remain equivalent.

Solvability length of symmetric Poisson algebras was further studied in [52].
Namely, an upper and lower bounds for the strong derived length of s(L) are
obtained. It is established when s(L) is metabelian, that is, it has derived length
2. For a non-abelian Lie algebra, a lower bound for the derived length of s(L)
is obtained. Finally, necessary and sufficient conditions under which that value is
attained are determined.

Observe that the description of solvable group rings in characteristic 2 looks very
nice (Theorem 2). But the answer to a similar question for the restricted enveloping
algebras is rather complicated and was obtained only recently [55].

The problem of solvability of s(L) in case charK = 2 is open. We show that
the situation is different from other characteristics. Namely, in case charK = 2,
we give two examples of truncated symmetric Poisson algebras that are solvable
but not strongly solvable, see Lemmas 6 and 7. A close fact is that the Hamiltonian
algebras H2(K) and h2(K) are solvable but not strongly solvable in case charK = 2
(Lemma 8). This is an analogue of a well-known fact that the matrix ring M2(K) of
2 × 2 matrices over a field K , charK = 2, is solvable but not strongly solvable.
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6.3 Nilpotency and Solvability of Symmetric Algebras S(L)

The following extension of a result of Shestakov [47] is proved.

Theorem 19 ([32]) Let L be a Lie algebra over a field K , and S(L) its symmetric
Poisson algebra. The following conditions are equivalent:

1. L is abelian;
2. S(L) is strongly Lie nilpotent;
3. S(L) is Lie nilpotent;
4. S(L) is strongly solvable;
5. S(L) is solvable (here assume that charK � 2).

In case charK = 2, the solvability of the symmetric Poisson algebra S(L) is an
open question. Two examples of Lie algebras mentioned above also yield solvable
symmetric algebras which are not strongly solvable (Lemmas 9 and 10).

Remark 2 Formally, our statements on ordinary Lie nilpotency and solvability are
concerned only with the Lie structure of the Poisson algebras s(L) and S(L). But
our proof heavily relies on Theorem 22 of [18], which in turn uses the existence of
a nontrivial customary identity given by Theorem 9 (Farkas [16]). In this way, we
need the Poisson structure of our algebras to prove our results. We do not see ways
to prove them using the theory of Lie identical relations only.

6.4 Delta-Sets and Multilinear Poisson Identical Relations

Now we present an important instrument to prove our results on Poisson identities
in enveloping algebras. Delta-sets in groups were introduced by Passman to study
identities in the group rings [37]. Namely, letG be a group, then

�n(G) := {a ∈ G | |aG| ≤ n}, n ≥ 0;

�(G) := ∞∪
n=0
�n(G) = {a ∈ G | |aG| <∞}.

A crucial step to specify group ring with identical relations was to establish that
there exist integers n,m such that |G : �n(G)| ≤ m, see [37].

In case of Lie algebras, the delta-sets were introduced by Bahturin to study
identical relations of the universal enveloping algebras [2]. Let L be a Lie algebra,
one defines the delta-sets as sets of elements of finite width as follows:

�n(L) := {x ∈ L | dim[L, x] ≤ n}, n ≥ 0;

�(L) := ∞∪
n=0
�n(L) = {x ∈ L | dim[L, x] <∞}.
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Note that�n(L), n ≥ 0, is not a subalgebra or even a subspace in a general case.
The basic properties of the delta-sets are as follows.

Lemma 2 ([6, 41]) Let L be a (restricted) Lie algebra, n,m ≥ 0.

1. �n(L) is invariant under scalar multiplication;
2. if x ∈ �n(L), y ∈ �m(L), then αx + βy ∈ �n+m(L), where α, β ∈ K;
3. if x ∈ �n(L), y ∈ L, then [x, y] ∈ �2n(L);
4. if x ∈ �n(L) and L a restricted Lie algebra, then x[p] ∈ �n(L);
5. �(L) is a (restricted) ideal of L.

Lemma 3 ([44]) Let L be a Lie algebra.

1. if I is a finite dimensional ideal of L, then �(L/I) = (�(L)+ I)/I ;
2. if H is a subalgebra of finite codimension in L, then �(H) = �(L) ∩H .

Suppose that W is a subset in a K-vector space V . We say that W has finite
codimension in V if there exist v1, . . . , vm ∈ V such that V = {w + λ1v1 + · · · +
λmvm |w ∈ W, λ1, . . . , λm ∈ K}. If m is the minimum integer with such property,
then we write dimV/W = m. We also introduce the notationm ·W = {w1 + · · · +
wm |wi ∈ W }, wherem ∈ N.

Lemma 4 ([5, Lemma 6.3]) Let V be a K-vector space. Suppose that a subset
T ⊆ V is stable under multiplication by scalars and dimV/T ≤ n. Then the linear
span is obtained as: 〈T 〉K = 4n · T .

We need a result on bilinear maps.

Theorem 20 (P.M. Neumann [4]) Let U,V,W be vector spaces over a field K
and ϕ : U × V → W a bilinear map. Suppose that for all u ∈ U and v ∈ V ,
dimϕ(u, V ) ≤ m and dimϕ(U, v) ≤ l. Then dim〈ϕ(U, V )〉K ≤ ml.

The following facts were indispensable in our approach to study Poisson identical
relations in symmetric algebras of Lie algebras. Actually the following result was
proved for restricted Lie algebras [18], but its proof remains valid for truncated
symmetric algebras as well.

Theorem 21 ([18]) Let L be a Lie algebra. Suppose that the symmetric algebra
S(L) (or the truncated symmetric algebra s(L)) satisfies a multilinear Poisson
identity. Then there exist integers n,N such that dimL/�N(L) < n.

It yields the following reduction step, which is actually contained in [18].

Theorem 22 ([18]) Let L be a Lie algebra such that the symmetric algebra S(L)
(or the truncated symmetric algebra s(L)) satisfies a multilinear Poisson identity.
Let � = �(L). Then there exist integers n,M such that

1. � = �M(L);
2. dimL/� < n;
3. dim�2 ≤ M2.
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6.5 Products of Commutators in Poisson Algebras

Now, we supply technical results on products of commutators in Poisson algebras
that were used to get a lower bound on the Lie nilpotency class of s(L).

Products of terms of the lower central series for associative algebras appear in
works of many mathematicians, the results being reproved without knowing the
earlier works. We do not pretend to make a complete survey here. Probably, the
first observations on products of commutators in associative algebras were made by
Latyshev in [27] and Volichenko in [64]. There are further works, see e.g. [7, 15, 19,
20, 25].

In case of associative algebras, Claim 1 of Theorem 23, probably, first was
established by Sharma-Shrivastava in [46, Theorem 2.8]. As was remarked in [45],
the proof of the associative version of Claim 2 of Theorem 23 is implicitly contained
in [46], where it is proved for group rings. A weaker statement (the associative
version of Lemma 5) is established by Gupta and Levin [21, Theorem 3.2].

The following statement is a Poisson version of respective results for associative
algebras. The validity of it is not automatically clear and it was checked directly,
following a neat approach due to Krasilnikov [25].

Theorem 23 ([32]) Let R be a Poisson algebra over a field K , charK � 2, 3.

1. Suppose that one of integers n,m ≥ 1 is odd, then

γn(R) · γm(R) ⊆ γn+m−1(R)R.

2. For all x1, . . . , xn ∈ R, n,m ≥ 1, we have

{x1, . . . , xn}m ∈ γ(n−1)m+1(R)R.

The following is an analogue of a result for associative algebras, see [21,
Theorem 3.2]. It is weaker than Claim 1 of Theorem 23, but it is valid for an arbitrary
characteristic.

Lemma 5 ([32]) Let R be a Poisson algebra over arbitrary field K . Then

γm(R)γn(R) ⊆ γm+n−2(R)R, n,m ≥ 2.

6.6 Solvability of Symmetric Algebras s(L) and S(L) in Case
char K = 2

We supply two examples of truncated symmetric algebras that are solvable but not
strongly solvable.



Identities in Group Rings, Enveloping Algebras and Poisson Algebras 351

Lemma 6 ([32]) Let L = 〈x, yi | [x, yi] = yi, i ∈ N〉K , charK = 2, the
remaining commutators being trivial. Then

1. L2 = �(L) = �1(L) = 〈yi | i ∈ N〉;
2. s(L) is solvable of length 3;
3. s(L) is not strongly solvable.

Lemma 7 ([32]) Let L = 〈x, yi, zi | [x, yi] = zi, i ∈ N〉K , charK = 2, the
remaining commutators being trivial. Then

1. �(L) = �1(L) = 〈yi, zi | i ∈ N〉 and L2 = 〈zi | i ∈ N〉;
2. s(L) is solvable of length 3;
3. s(L) is not strongly solvable.

Two examples above are closely related to the following observation.

Lemma 8 ([32]) Consider the truncated Hamiltonian Poisson algebra P = h2(K)

(or the Hamiltonian Poisson algebra P = H2(K)), charK = 2. Then

1. P is solvable of length 3.
2. P is not strongly solvable.

Proof Let P = h2(K) = K[X,Y ]/(X2, Y 2) = 〈1, x, y, xy〉K , where x, y denote
the images of X,Y . We have δ1(P ) = {P,P } = 〈1, x, y〉K , δ2(P ) = 〈1〉K , and
δ3(P ) = 0. Also, one checks that P is not strongly solvable.

Let P = H2(K) = K[X,Y ]. The Poisson brackets of monomialsXnYm, n,m ≥
0 depend on parities of n,m of multiplicands. For simplicity, denote by X0̄Y 1̄ all
monomials XαYβ ∈ K[X,Y ] such that α is even and β odd, etc. We get non-zero
products only in the cases:

{X1̄Y 0̄,X0̄Y 1̄} = X0̄Y 0̄;
{X1̄Y 1̄,X1̄Y 0̄} = X1̄Y 0̄;
{X1̄Y 1̄,X0̄Y 1̄} = X0̄Y 1̄.

Thus, δ1(P ) is spanned by monomials of three types obtained above. Consider their
commutators, the first line yields that δ2(P ) is spanned by monomials of type Y 0̄Y 0̄.
Finally, δ3(P ) = 0. ��
Thus, the Poisson algebras h2(K), H2(K) in characteristic 2 behave similarly to the
associative algebra M2(K) of 2 × 2 matrices in characteristic 2.

The question of the solvability of the symmetric algebra S(L) in case charK = 2
is more complicated as shown below. The algebras of Lemmas 6 and 7, also yield
solvable symmetric algebras which, of course, are not strongly solvable by that
Lemmas.
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Lemma 9 ([32]) Let L = 〈x, yi | [x, yi] = yi, i ∈ N〉K , the other commutators
being trivial, charK = 2. Then the symmetric Poisson algebra S(L) is solvable of
length 3 but not strongly solvable.

Proof Put H = 〈yi | i ∈ N〉K . For a monomial v = yi1yi2 · · · yik ∈ S(H) we define
its length |v| = k. Then v′ = {x, v} = |v|v. A basis of S(L) is formed by xαv,
α ≥ 0, where v ∈ S(H) are respective basis monomials. Consider the products:

{xαv, xβw} = xα+β−1(α|w| + β|v|)vw. (5)

These products depend on the parities of α, β, |v|, |w|. For simplicity, denote by
x 0̄v1̄ all monomials xαv ∈ S(L) such that α is even and |v| is odd, etc. The only
non-zero products (5) are of types:

{x 1̄v0̄, x 0̄v1̄} = x 0̄v1̄;
{x 1̄v1̄, x 1̄v0̄} = x 1̄v1̄;
{x 1̄v1̄, x 0̄v1̄} = x 0̄v0̄.

Thus, δ1(S(L)) is spanned by monomials of the three types obtained above.
Consider their commutators, the last line yields that δ2(S(L)) is spanned by
monomials of type x 0̄v0̄. Finally, δ3(S(L)) = 0. ��
Lemma 10 ([32]) LetL = 〈x, yi, zi | [x, yi] = zi, i ∈ N〉K , the other commutators
being trivial, charK = 2. Then the symmetric Poisson algebra S(L) is solvable of
length 3 but not strongly solvable.
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Notes on the History of Identities
on Group (and Loop) Algebras

C. Polcino Milies

Abstract We survey the development of the theory of polynomial and group
identities in group algebras, including properties of the unit groups that imply on
group identities, starting from the very beginning of the theory. We also include the
history of similar results for alternative loop algebras.

Keywords Group algebra · Loop algebra · Units · Polynomial identity · Group
identity

1 Introduction

In this paper we survey some aspects of the historical development of the theory
of polynomial and group identities for group algebras and a brief extension of
these results. Fist we describe the progress made in establishing conditions for the
existence of polynomial identities and conditions relating the degree of the identity
to the index of a special subgroup of the given group.

In the late 70s Brian Hartley conjectured that if G is a torsion group and K a
field such that U(KG) satisfies a group identity, thenKGmust satisfy a polynomial
identity. We examine the circumstances in which this conjecture was formulated to
show that it was a quite natural supposition, at that time.

Finally, we describe how these results were extended to the case of alternative
loop algebras, the closest analogue to group algebras in a non associative context.
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2 Existence of Polynomial Identities

According to a well-known paper which covers the early history of the theory of
polynomial identities due to Amitsur [2] the origins of this theory goes back to a
paper of Dehn [5], written in 1922. However, he also observes that:

The modern approach was founded by Kaplansky in 1948 [16], based upon two forerunners,
namely the methods introduced by Jacobson [14] and Levitzki [20].

Interestingly enough the initial work on polynomial identities for group algebras
started almost immediately, in 1949, and it is also due to Kaplanski [17].

The paper starts with the definition of what we now call the standard identity of
degree n, and his first lemma shows that if A is an algebra of dimension n over a
fieldK , then A satisfies the standard identity of degree n+1. It should be noted that
he assumes that all fields considered in the paper are of characteristic 0.

Then, he defines a special class of groups; in his own words: a group G satisfies
the condition Pn(n ≥ 2) if the following is true: for any n elements in G the set
of n!/2 products obtained from even permutations coincides with the n!/2 products
obtained from odd permutations, and proves that a group extension of an abelian
group by a finite group of order n satisfies Pn2+1. i.e., we have the following.

Theorem 2.1 Let K be a field of characteristic 0. If G is a group containing an
abelian subgroup of index n thenKG satisfies the standard identity of degree n2+1.

The eventual converse was left as an open problem.
In 1961 Amitsur [1] showed that, under the conditions above, KG actually

satisfies the standard identity of degree 2n.
He also obtained a first step in the direction of a converse. Actually, he proved

the following:

Theorem 2.2 All the absolutely irreducible representations of a group G are of
degree less than or equal to 2 if and only if one of the following conditions holds:

(i) G is abelian.
(ii) G contains an abelian subgroup of index 2.

(iii) IfZ(G) denotes the center ofG, then G/Z(G) is an Abelian 2-group of order
8.

Clearly, this result implies that if KG satisfies and identity of degree n ≤ 4 then
G contains an abelian subgroupA such that [G : A] ≤ 2.

A complete answer in the case when char(K) = 0 came only in 1964.

Theorem 2.3 (D.S. Passman and M. Isaacs, [13]) Let K be a field of characteris-
tic 0 andG a group.

(i) If G contains an Abelian subgroup of finite index n then KG satisfies the
standard polynomial identity of degree 2n.

(ii) If KG satisfies a polynomial identity of degree n then G contains an Abelian
subgroup of index bounded by a fixed function of n.
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The first result in the case when char(K) = p > 0 came in 1970 in Martha K.
Smith’s PhD thesis [35], a student of I.N. Herstein at the University of Chicago who
published her results in [36]. This is a rather long paper containing many results
on ideals and rings of quotients of group algebras. In section §8 she considered
polynomial identities and proved the following.

Theorem 2.4 LetK be a field andG a group such thatKG is prime. IfKG satisfies
a polynomial identity of degree n then G has an Abelian normal subgroup of index
less than or equal to [d/2]2.

Given a group G, we shall denote by &(G) its FG-subgroup; i.e. the set of
elements of G that have a finite number of conjugates.

Theorem 2.5 Let K be a field and G a group such that KG is semiprime. If KG
satisfies a polynomial identity of degree n then [G : &(G)] ≤ [d/2]8 andG contains
and Abelian subgroup of finite index.

The complete answer in the case when char(K) = p ≥ 0 is due to Passman
[26], in 1972. To state the result shall need the following.

Definition 2.6 Let p be a prime rational integer. A group G is called p-abelian if
G′, its commutator subgroup, is a finite p-group.

Theorem 2.7 Let K be a field of characteristic p > 0 andG a group.

• If G contains a p-abelian subgroup of finite index n then KG satisfies a
polynomial the standard polynomial identity of degree 2n|A′|.

• If KG satisfies a polynomial identity of degree n then G contains a p-abelian
subgroup and [g : A′] · |A′| is bounded by a fixed function of n.
If we agree that 0-Abelian means Abelian, we can state the main results of this

section in a very condensed way.

Theorem 2.8 Let K be a field of characteristic p ≥ 0 andG any group. Then KG
satisfies a polynomial identity if and only if G contains a p-abelian subgroup of
finite index. Details proofs of these results can be found in [27];

3 Group Theoretical Properties of Unit Groups

In the late 60s and through the 70s abundant research was conduced in an effort to
characterize group algebras whose unit groups satisfy some algebraic properties:

• Starting this trend, Bateman and Coleman characterized group algebras of finite
groups whose units were nilpotent in 1968.

• This work was extended by Khripta [18] in 1972 and Motose and Tominaga [24]
to the case of infinite groups.
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• The study of the solvabiliy of the unit group was started independently by Motose
and Tominaga [25] in 1969 and by Bateman [3] in 1971 and complemented by
Motose and Ninomiya [23] in 1972.

• An alternative characterization was given by Bovdi and Khripta [4] and a nice
and complete exposition by Passman [28] both in 1977. See also [6].

Similar research was conduced for unit groups of integral group rings.

• The nilpotency of the unit group of ZG, in the case whenG is finite, was studied
by Polcino Milies [30] in 1976.

• For arbitrary groups, results were obtained by Sehgal and Zassenhaus [33] in
1977.

• Solvability was discussed by Sehgal [31, Theorem VI.4.8] in 1978.
• Moreover, integral group rings with FC unit groups were characterized by Sehgal

and Zassenhaus [34] also in 1977.

In the early stages of the theory, Higman showed, in 1940, that ifG is finite, then
all torsion units on ZG are trivial if and only ifG is either Abelian or a Hamiltonian
2-group, a result he used to prove that the so-called Isomorphism Problem has a
positive solution for these families of groups; namely, if G and H are finite groups
such that ZG � ZH then G � H .

In the case of finite groups, all the above characterization of groups with nice
algebraic properties on the unit groups of ZG reduce to this one.

The reason became obvious with a result of Hartley and Pickel [12] in 1980.

Theorem 3.1 Let G be a finite group. Then, the group of units of ZG contains a
free group on two generators if and only if G is neither Abelian or a Hamiltonian
2-group.

In the same direction we have the following.

Theorem 3.2 (Gonçalves, [6])

• A noncommutative division ring finite dimensional over its center contains a
multiplicative free group on two generators.

• IfG is a finite noncommutative group andK is a field such that char(K) � |G|
then the units of KG contain a free group on two generators.

4 Group Indentities

Definition 4.1 A group identity for a group U is a nontrivial reduced word w =
w(x1, . . . , xn) of the free group on x1, . . . , xn vanishing in U ; i.e., such that for
every choice of elements u1, . . . , un ∈ U , we have w(u1, . . . , un) = 1.

In the late 70s Brian Hartley conjectured that if G is a torsion group and U(FG)
satisfies a group identity, then FG must satisfy a polynomial identity.
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Obviously, if a group contains a free subgroup of rank 2, it cannot verify a
group identity so the last two results on the previous section seem to suggest that
unit groups of group rings will seldom verify such an identity. On the other hand,
algebraic properties of groups such as nilpotency or solvability can be described
in terms of identities, so all the examples above are of unit groups verifying some
kind of group identity. When one checks the descriptions of the groups in question,
it is easy to see that their group rings do satisfy a polynomial identity so Hartley’s
conjecture seems quite natural under these circumstances.

Remark

• The hypothesis of G being torsion is essential: In fact, if G is a torsion free
nilpotent group, thenG can be ordered and it is easy to see that U(FG) has only
trivial units i.e., U(FG) = F ∗ ×G. Hence U(FG) satisfies a group identity

• The converse is not true. In fact, if R is any non commutative finite dimensional
simple algebra over a field F , then R satisfies a polynomial identity (since it is
finite dimensional). Now, by Theorem 3.2, U(R) contains a free group of rank 2
and thus cannot satisfy a group identity.

Hartley’s conjecture was proved in a series of papers:

• For semiprime group algebras by Giambruno et al. [7] in 1994.
• For group algebras of arbitrary groups over infinite fields by Giambruno et al. [8]

in 1997.
• The case of finite fields was completed by Liu and Passman in [21] and [22] in

1999.
• Passman [29] extended this result, obtaining a complete classification of those

groupsG which satisfy the hypotheses of Hartley’s conjecture also in 1997.

Theorem 4.2 Let F be any field and G a torsion group. Then U(FG) satisfies a
group identity if and only if one of the following conditions holds.

(i) If char F = 0, U(FG) satisfies a group identity if and only if G is abelian.
(ii) If char F = p > 0, U(FG) satisfies a group identity if and only if G has a

normal p-abelian subgroup of finite index, and

(a) either G′ is a p-group of bounded period (and U(FG) satisfies to
(x, y)p

k = 1 for some k ≥ 0).
(b) or G has bounded period and F is finite (and U(FG) satisfies xn = 1 for

some integer n).

It is natural to ask whether the hypothesis of G being torsion can be removed
and still obtain a characterization of groups G such that the group of units U(FG)
satisfies a group identity. A result in this direction was given by Giambruno et al.
[9] in 2000.

Theorem 4.3 Suppose thatG is a group with an element of infinite order and let F
be a field of characteristic p ≥ 0. We have the following
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(a) If U(FG) satisfies a group identity then P is a subgroup.
(b) If P is of unbounded exponent and U(FG) satisfies a group identity then

(i) G contains a p-abelian subgroup of finite index.
(ii) G′ is of bounded p-power exponent.

Conversely, if P is a subgroup and G satisfies (i) and (ii) then U(FG) satisfies
a group identity.

(c) If P is of bounded exponent and U(FG) satisfies a group identity then

(1) P is finite orG has a p-abelian subgroup of finite index.
(2) T (G/P) is an abelian p′-subgroup and so T is a group.
(3) Every idempotent of F(G/P) is central.

Conversely, if P is a subgroup, G satisfies (1), (2), (3) and G/T is nilpotent then
U(FG) satisfies a group identity.

All results on this conjecture, up to 2010 are discussed in detail in [32] and more
recent results in a paper by E. Spinelli [37] in this same volume.

5 Loop Algebras

Roughly speaking, a loop is a group which is not necessarily associative; more
precisely, we have the following.

Definition 5.1 A em loop is a set L together with a (closed) binary operation
(a, b) �→ ab for which there is a two-sided identity element 1 and such that the
right and left translation maps

Rx : a �→ ax and Lx : a �→ xa

are bijections for all x ∈ L. This requirement implies that, for any a, b ∈ L, the
equations ax = b and ya = b have unique solutions.

The loop algebra of L over an associative and commutative ring with unity R
was introduced in 1944 by R.H. Bruck as a means to obtain a family of examples of
nonassociative algebras.

It is defined in a way similar to that of a group algebra; i.e., as the free R-module
with basis L, with a multiplication induced distributively from the operation in L.

Definition 5.2 A ring R is alternative if

x(xy) = (xx)y and (xy)y = x(yy) for all x, y ∈ R.

In 1983, E.G. Goodaire: [10] proved the following.
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Theorem 5.3 LetL be a loop andR an associative ring with unity, of characteristic
different from 2. Then RL is alternative loop ring if and only if the following
properties hold:

(i) If three elements associate in some order then they associate in all orders and
(ii) If g, h, k ∈ L do not associate, then gh.k = g.kh = h.gk.

It follows that if RL is alternative over one ring R as in the Theorem above, then
it is also alternative over all such rings. Also, it can be shown that, in this case, RL
is alternative also for rings of characteristic 2. However if we assume, conversely,
that char(R) = 2 and that RL is alternative, besides loops as in the theorem, there
are a few other cases. It is then natural to formulate the following.

Definition 5.4 An RA loop (ring alternative loop) is a loop whose loop ring RL
over any ring with unity R is alternative, but not associative.

A better characterization of this family of loops can be given.

Definition 5.5 A group G, with center Z(G), is called an LC group (or, that it has
limited commutativity) if it is not commutative and for any pair of elements x, y ∈ G
we have that xy = yx if and only if either x ∈ Z(G) or y ∈ Z(G) or xy ∈ Z(G).

Theorem 5.6 A loop L is RA if and only if it is not commutative and, for any two
elements a and b of L which do not commute, the subloop of L generated by its
center together with a and b is a group G such that

(i) for any u � G, L = G ∪Gu is the disjoint union of G and the cosetGu;
(ii) G is an LC group.

(iii) G has a unique nonidentity commutator s, which is necessarily central and of
order 2.

(iv) the map

g �→ g∗ =
{
g if g is central
sg otherwise

is an involution ofG (i.e., an antiautomorphism of order 2);
(v) multiplication in L is defined by

g(hu) = (hg)u
(gu)h = gh∗u

(gu)(hu) = g0h
∗g

where g, h ∈ G and g0 = u2 is a central element ofG.

Definition 5.7 A group G is called an SLC group if it is LC and contains a unique
non-trivial commutator s.
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Proposition 5.8 A group G, with center Z(G), is an SLC group if and only if
G/Z(G) � C2 × C2.

Theorem 5.9 (Leal–Polcino Milies [19]) A group G is SLC if and only if G can
be written in the formG = D×A, where A is abelian andD is an indecomposable
2-group generated by its center and two elements x and y which satisfy

(i) Z(D) = C2m1 ×C2m2 ×C2m3 , where C2mi is cyclic of order 2mi for i = 1, 2, 3,
m1 ≥ 1 and m2,m3 ≥ 0;

(ii) (x, y) ∈ C2m1 ;
(iii) x2 ∈ C2m1 × C2m2 and y2 ∈ C2m1 × C2m2 × C2m3 .

Indecomposable groups as above can be classified.

Theorem 5.10 (Jespers et al. [15]) LetG be a finite group. ThenG/Z(G) � C2×
C2 if and only if G can be written in the form G = D × A, where A is abelian and
D = 〈Z(D), x, y〉 is of one of the following five types of indecomposable 2-groups:

Type Z(D) D

D1 〈t1〉 〈x, y, t1 | (x, y) = t2m1−1
1 , x2 = y2 = t2m1

1 〉
D2 〈t1〉 〈x, y, t1 | (x, y) = t2m1−1

1 , x2 = y2 = t1, t2m1 = 1〉
D3 〈t1〉 × 〈t2〉 〈x, y, t1, t2 | (x, y) = t2m1−1

1 , x2 = t2m1
1 = t2m2

2 = 1, y2 = t2〉
D4 〈t1〉 × 〈t2〉 〈x, y, t1, t2 | (x, y) = t2m1−1

1 , x2 = t1, y2 = t2, t2m1
1 = t2m2

2 = 1〉
D5 〈t1〉 × 〈t2〉 × 〈t3〉 〈x, y, t1, t2, t3 |

(x, y) = t2m1−1
1 , x2 = t2, y2 = t3, t2m1

1 = t2m2
2 = t2m3

3 = 1〉

Using these results, all indecomposable finite RA loops were classified in the
same paper.

Because of the particular nature of RA loops, alternative loop algebras always
satisfy a polynomial identity.

Theorem 5.11 (Goodaire–Polcino Milies [11]) Over any (commutative, associa-
tive) coefficient ring R (with 1), the loop ring of an RA loop satisfies the polynomial
identity [(XY − YX)2, Z] = 0.

Just as the set of units of an associative ring is a group, so the units of an
alternative ring form a Moufang Loop.

A Moufang loop is diassociative—that is, the subloop generated by any two
elements is associative.

Since a free group on n generators can always be embedded in a free group on
just two generators, we can always assume that if the units of an alternative loop
algebra satisfy a group identity, then it is a word on only two variables.

Because of diassociativity, the notion of a group identity extends to Moufang
loops:
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A Moufang loop L satisfies a group identity if and only if there is a nonempty
reduced word w = w(x1, x2) in the free group on two variables such that
w(�1, �2) = 1 for all �1, �2 ∈ L.

Theorem 5.12 (Goodaire and Polcino Milies [11]) Let L be a torsion RA loop
and let F be a field of characteristic p ≥ 0. Then U(FL) satisfies a group identity
if and only if p = 2, in which case U(FL) satisfies (u, v)2 = 1.

It might be interesting to note that the polynomial identity given above is
Wagner’s identity, the first polynomial identity obtained for the ring of 2×2 matrices
over a field in 1937 [38].

Theorem 5.13 ([11]) Let F be a field of characteristic p ≥ 0 and let L be an
RA loop with torsion subloop T that is different from L. Then U(FL) satisfies a
group identity if and only if either p = 2, or T is an abelian group and every
idempotent of FT is central in FL. In the latter case, U(FL) satisfies the identity
((u1, u2), (u3, u4)) = 1.

The statement of the theorem above contains the condition “every idempotent of
FT is central in FL,” where T is the torsion subloop of an RA loop L. This might
seem somewhat unnatural, but it is equivalent to conditions on F and L that are well
established.
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Cayley Hamilton Algebras

Claudio Procesi

Abstract In this paper we first review the main ideas of Cayley Hamilton algebras
and then, in Theorem 3.18, we give a different approach and formulation of the
Theorem of Zubkov on the relations among invariants of matrices. In this approach
the relations appear as those of a universal Cayley Hamilton algebra.

Keywords Cayley–Hamilton identity · Invariants · T –ideals

1 Introduction

All algebras are associative and over a commutative ring A, sometimes we use F
when A is a field. A basic fact for an n× n matrix a with entries in a commutative
ring A is the construction of its characteristic polynomial χa(t) := det(t − a) =
tn + ∑n

i=1(−1)iσi(a)tn−i and the Cayley Hamilton theorem χa(a) = 0. If F is
an algebraically closed field then the elements σi(a) are the elementary symmetric
functions in the eigenvalues of a.

The notion of Cayley Hamilton algebra (CH algebras for short) was introduced
in 1987 by Procesi [13], Definition 2.5, as an axiomatic treatment of the Cayley
Hamilton theorem. This was done in order to clarify the Theory of n-dimensional
representations, of an associative and in general noncommutative algebra R (from
now on just called algebra).

The theory was developed only in characteristic 0, for two reasons, the first being
that at that time it was not clear to the author if the characteristic free results of
Donkin [6] and Zubkov [30] were sufficient to found the theory in general. The
second reason was mostly because it looked not likely that the main Theorem 3.9
could possibly hold in general.
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The first concern can now be considered to have a positive solution due to the
contributions of several people and we may take the book [5] as reference. As for
the second, that is the main theorem in positive characteristic, the issue remains
unsettled. The present author feels that it should not be true in general but has no
counterexamples.

Independently, studying deformations of representations of Galois groups, see
Mazur [9] or [14], the theory of pseudocharacters or pseudorepresentations,
Definition 2.7, was developed by several authors, see Wiles [29], Taylor [24],
Nyssen Louise [10] and R. Rouquier [22]. The strict connection between these two
concepts is given in Proposition 2.8.

2 The Cayley–Hamilton Identity

Let us quickly recall some basic facts, for the proofs the reader is referred to the
books [1, 5] and [15].

Let us denote by det(t − X) = tn + ∑n
i=1(−1)iσi(X)tn−i the characteristic

polynomial of an n× n matrix X. The Cayley–Hamilton identity is thus

det(t −X) = tn +
n∑

i=1

(−1)iσi(X)tn−i , Xn +
n∑

i=1

(−1)iσi(X)Xn−i = 0. (1)

A general fact on matrices is that (F an infinite field):

Proposition 2.1 The algebra of polynomial functions on Mn(F) invariant under
conjugation restricted to diagonal matrices is isomorphic to the algebra of symmet-
ric polynomials.

Under this isomorphism the function σi(X) restricts to the elementary symmetric
function ei(x1, . . . , xn). While the function tr(Xk) restricts to the Newton powers
sums ψi = ψi(x1, . . . , xn) = xi1 + . . .+ xin.

Over Q one may express the elementary symmetric function ei(x1, . . . , xm) in
terms of the powers sums ψi = ψi(x1, . . . , xm) = xi1 + . . .+ xim. Using the Taylor

expansion for log(1 + y) = ∑∞
j=1(−1)j+1 yj

j
, we get

m∑

i=0

σi(x1, . . . , xm)y
i =

m∏

r=1

(1 + xry) = exp(
∞∑

j=1

(−1)j+1ψj (x1, . . . , xm)

j
yj ).

One then has the following formula for a matrix X in characteristic 0:

σr (X) =
∑

h1+2h2+···rhr=r
h1≥0,...,hr≥0

r∏

j=1

((−1)j+1tr(Xj ))hj

hj !jhj
. (2)
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Finally we need

Proposition 2.2 For each j one has a universal expression of σi(Xj ) as polynomial
in the σk(X) obtained from the theory of symmetric functions.

Proof One considers the symmetric function ei(x
j

1 , . . . , x
j
n), n ≥ i · j .

This is given by a polynomial Pi,j (e1, . . . , ei·j ) independent of n, by the basic
theorem on symmetric functions. Then:

σi(X
j ) = Pi,j (σ1(X), . . . , σi·j (X)). (3)

��
Example σ2(X

2) = σ2(X)
2 − 2σ1(X)σ3(X)− 2σ4(X). (4)

In characteristic 0 the invariants tr(Xi), i = 1, . . . , n generate the algebra of all
invariants.

It is convenient to use also the multilinear form of the Cayley–Hamilton identity
and of the symmetric functions σi(X) which can be obtained by full polarization,
cf. [15]. For this, given a permutation σ ∈ Sm (the symmetric group), we decompose
σ = (i1i2 . . . ih) . . . (j1j2 . . . j�)(s1s2 . . . st ) in cycles and set:

Tσ (X1,X2, . . . , Xm) (5)

:= tr(Xi1Xi2 . . . Xih ) . . . tr(Xj1Xj2 . . . Xj�)tr(Xs1Xs2 . . . Xst ). (6)

In the basic invariants Tσ , of Formula (5), take m = k + 1. We may assume
that the last cycle ends with st = k + 1 so the last factor is of the form
tr((Xs1Xs2 . . . Xst−1)Xk+1). Hence we have that

Tσ (X1,X2, . . . , Xk+1) = tr(ψσ (X1,X2, . . . , Xk)Xk+1) (7)

where ψσ (X1,X2, . . . , Xk) is the equivariant map given by the formula

ψσ (X1,X2, . . . , Xk)

= tr(Xi1Xi2 . . . Xih) . . . tr(Xj1Xj2 . . . Xj�)Xs1Xs2 . . . Xst−1 .
(8)

Then we have the (see also Lew [8]):

Proposition 2.3 For each k ≤ n the polarized form of σk(X) is the expression

Tk(x1, . . . , xk) =
∑

σ∈Sk
εσ Tσ (x1, . . . , xk). (9)
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The polarized form of CHn(X) is

CHn(x1, . . . , xn) = (−1)n
∑

σ∈Sn+1

εσψσ (x1, x2, . . . , xn). (10)

Here εσ denotes the sign of σ .

Example n = 2 (polarize CH2(x))

CH2(x) = x2 − t (x)x + det (x) = x2 − t (x)x + 1

2
(t (x)2 − t (x2)). (11)

x1x2 + x2x1 − t (x1)x2 − t (x2)x1 − t (x1x2)+ t (x1)t (x2)

= CH2(x1 + x2)− CH2(x1)− CH2(x2).

Also from the decomposition into cosets Sn+1 = Sn⋃n
i=1 Sn(i, n + 1) one has the

recursive formula

Tn+1(x1, . . . , xn+1) = Tn(x1, . . . , xn)tr(xn+1)−
n∑

i=1

Tn(x1, . . . , xixn+1, . . . , xn)

(12)

One then axiomatizes the idea of trace.

Definition 2.4 An associative algebra with trace, over a commutative ring A is an
associative A algebra R with a 1-ary operation

t : R→ R

which is assumed to satisfy the following axioms:

1. t is A-linear.
2. t (a)b = b t (a), ∀a, b ∈ R.
3. t (ab) = t (ba), ∀a, b ∈ R.
4. t (t (a)b) = t (a)t (b), ∀a, b ∈ R.

From these axioms it follows that the image t (R) of R under t is an algebra in
the center of R, called the trace algebra and t is t (R) linear.

We then have the two definitions

Definition 2.5 An algebraR over Q with a trace t is an n-Cayley Hamilton algebra
if it satisfies the trace identity (10) and t (1) = 1.

In fact, since we are assuming that the algebra is over Q, by the classical method
of polarization and restitution the algebra satisfies (10) if and only if each of its
elements satisfy its associated n characteristic polynomial, defined abstractly from
the formal trace t as in Formula (1) using Formula (2).
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Remark 2.6 Definition 2.5 can be made also if algebra R is not over Q. Then one
cannot define the n characteristic polynomial using Formula (2) since in this formula
there are integers in the denominator.

So in general this definition is not useful and we need a different approach
through determinants, see Definition 3.5.

Definition 2.7 A pseudocharacter (or pseudorepresentation) of a group G, of
degree n with coefficients in a commutative ring A, is a map t : G→ A satisfying
the following three properties:

1. t (1) = n.
2. t (ab) = t (ba), ∀a, b ∈ G.
3. Tn+1(g1, . . . , gn+1) = 0, ∀gi ∈ G (Formula (9)).

Frobenius [7], discovered already that this is a property of an n-dimensional
character.

The connection between the two definitions is the following. One considers the
group algebra A[G] and then extends the map t to a trace. Next one considers the
Kernel of the trace, that is

K := {a ∈ A[G] | t (ab) = 0, ∀b ∈ A[G]}.

It is then an easy fact to see that, if t is a pseudocharacter of G of degree n, then
A[G]/K is a n-Cayley Hamilton algebra. In particular if A ⊃ Q one can apply
Theorem 3.9. In general we have:

Proposition 2.8 If R is an algebra with trace and the trace satisfies

Tn+1(x1, . . . , xn+1) =
∑

σ∈Sn+1

εσ Tσ (x1, . . . , xn+1) = 0

then CHn(x1, . . . , xn) ∈ K and R/K is an n-Cayley Hamilton algebra.

Then, as a consequence of the strong embedding Theorem 3.9 one has that R/K
embeds into n × n matrices over some commutative ring and one has that the
pseudocharacter is in fact a true character.

3 The First and Second Fundamental Theorem

3.1 The Free Trace Algebra

The free trace algebra over a set X of variables will be denoted by FT 〈X〉, it can
be described as follows. Start from the usual free algebra F 〈X〉, then consider the
classes of cyclic equivalence of monomials M , which we formally denote t (M).
The algebra FT 〈X〉 = F 〈xi〉i∈I [t (M)] is the polynomial ring in the infinitely
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many commuting variables t (M) over the free algebra F 〈X〉. Its trace algebra is
the polynomial ring F [t (M)] in the infinitely many commuting variables t (M). The
map t : M �→ t (M) is the formal trace.

Each element of FT 〈X〉 can be evaluated in n × n matrices giving rise to an
equivariant polynomial map from I -tuples of n× n matrices to n× n matrices. The
elements of FT 〈X〉 which vanish when evaluated in n × n matrices are the trace
identities of n × n matrices. They form a T -ideal, that is an ideal of FT 〈X〉 closed
under all trace compatible endomorphisms, i.e. substitutions of variables xi �→ fi ∈
FT 〈X〉.

The first and second fundamental Theorem for matrix invariants for algebras over
Q, see §12.1 of [1], may be stated as:

Theorem 3.2 The algebra FT,n〈X〉 of equivariant polynomial maps from I -tuples
of n×nmatrices to n×nmatrices, is the free algebra with trace modulo the T -ideal
generated by the nth Cayley Hamilton polynomial and t (1) = n.

FT,n〈X〉 := FT 〈X〉/〈CHn(x), t (1) = n〉 . (13)

3.3 A Characteristic Free Approach

In order to develop the Theory over a field of any characteristic or over the integers
one needs to start from some axiomatization of the determinant rather than of the
trace. Recall that, in [20] and [21], Roby defines:

Definition 3.4 A polynomial law between two F modules M,N is a natural
transformation of the two set valued functors on the category CF of commutative F
algebras:

fB : M ⊗F B → N ⊗F B, B ∈ CF . (14)

Such a law is homogeneous of degree n if:

fB(ba) = bnfB(a), ∀b ∈ B, ∀a ∈ M ⊗F B, ∀B ∈ CF .

If we have two algebras R, S we have the notion of multiplicative polynomial law
d : R→ S that is

d(ab) = d(a)d(b), ∀a, b ∈ R ⊗F B, ∀B.
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For the general definition of Cayley Hamilton algebra for any characteristic or even
for any commutative ring A we can follow Chenevier [4]:

Definition 3.5

1. Given an algebra R over a commutative ring A and n ∈ N, an n-norm is a
multiplicative polynomial law N : R → A homogeneous of degree n (see
Definition 3.4).

2. An algebra R over a commutative ring A with an n-norm N : R → A is a
Cayley Hamilton algebra if each a ∈ R satisfies its characteristic polynomial
χa(x) := N(x − a), that is χa(a) = 0.

Remark 3.6 It is not hard to prove that, if A contains Q, then Definition 3.5 is
equivalent to Definition 2.5 by taking, as trace t (a) of an element a, minus the
coefficient of xn−1 in χa(x) := N(x − a) = xn − t (a)xn−1 + . . ..

Although this is certainly the correct definition in general, there are several
technical problems with this definition. The first is to develop the theory in such
a way that an analogue of Theorem 3.2 holds. This in fact can be done but it is
particularly difficult and to this is devoted the book with De Concini [5].

The second and main question we want to address is, under which conditions
an n-Cayley Hamilton algebra R can be embedded in an algebra of n × n matrices
over a commutative A algebra B so that the Norm is the restriction to R of the
determinant.

In fact this question can be reformulated as follows. One constructs a universal
map jR of R in n× n matrices and then asks if jR is injective.

The construction of jR is in two steps. First let R = A〈xi〉i∈I be a free algebra
over a commutative ring A then:

Definition 3.7 Let A[ξ(i)h,k] be the polynomial algebra over A in the variables

ξ
(i)
h,k, i ∈ I, h, k = 1, . . . , n and set jR(xi) := ξi := (ξ

(i)
h,k) the generic matrix

with entries ξ(i)h,k .

The subalgebra A〈ξi〉 of Mn(A[ξ(i)h,k]), i ∈ I, h, k = 1, . . . , n is called the
algebra of generic matrices.

Next consider the subalgebra Tn〈ξi〉 of A[ξ(i)h,k] generated by all the coefficients
of the characteristic polynomial of all elements of A〈ξi〉 and finally the algebra
Tn〈ξi〉 · A〈ξi〉. A first fact is that Tn〈ξi〉 · A〈ξi〉 is closed under the determinant, this
follows from Amitsur’s Formula (24) and hence it is a n-Cayley–Hamilton algebra.
In fact if A = Q it coincides with the algebra FT,n〈X〉 of Formula (13). If A is any
field or the integers, its main property is that it behaves as a free n-Cayley–Hamilton
algebra. In general this is explained as follows.

One may present a general algebra R as a quotient R = A〈xi〉/I .
If R is an n-Cayley–Hamilton algebra one can prove, see Theorem 3.18, that in

fact R is also a quotient of the algebra Tn〈ξi〉 · A〈ξi〉 and the quotient is compatible
with the two norms, where the first is the determinant.
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Let thus R = Tn〈ξi〉 · A〈ξi〉/I. The ideal I generates in Mn(A[ξ(i)h,k]), i ∈
I, h, k = 1, . . . , n an ideal which is, as any ideal in a matrix algebra, of the form
Mn(J ), with J an ideal of A[ξ(i)h,k].

Then the universal map is given by jR : R → Mn(A[ξ(i)h,k]/J ). By the universal
property this is independent of the presentation of R.

Question Under which conditions one has that jR : R → Mn(A[ξ(i)h,k]/J ) is
injective?

This is equivalent to ask ifMn(J )∩Tn〈ξi〉 = I . The main Theorem is that this is
true when R is an n-Cayley–Hamilton algebra over the rational numbersQ, Procesi
[13].

The reason why this Theorem holds over Q is strictly related to invariant theory
and the fact that the groupGL(n) of invertible n × n matrices in characteristic 0 is
linearly reductive.

The groupGL(n) of invertible n× n matrices acts by conjugation on I -tuples of
matrices and thus on the polynomial ring in the entries ξ(k)i,j of the generic matrices
ξk . The action is via the formula

ξk �→ X−1ξkX, ξ
(k)
i,j �→

∑

a,b

yi,aξ
(k)
a,bxb,j , X

−1 = (yi.j ).

First fact is a generalization of Theorem 3.2, that is (Theorem 1.10 of [5]):

Theorem 3.8 Tn〈ξi〉 ·A〈ξi 〉 is the ring of polynomial maps ϕ from I -tuples of n×n
matrices to n × n matrices which are equivariant under the action of conjugation
that is

Xϕ(X−1ξ1X, . . . , X
−1ξjX, . . .)X

−1 = ϕ(ξ1, . . . , ξj , . . .) (15)

In this setting the commutative algebra Tn〈ξi 〉 is the ring of polynomial invariants
under conjugation.

This Theorem proved by Procesi in [11] but also implicit in Sibirskii [23] in
characteristic 0, and it follows in general from the work of Donkin [6].

The next point is when presenting R = Tn〈ξi 〉 ·A〈ξi〉/I, the ideal I generates in
Mn(A[ξ(i)h,k]), i ∈ I, h, k = 1, . . . , n an ideal Mn(J ), with J an ideal of A[ξ(i)h,k]
which is stable under the conjugation action ofGL(n).

Then the universal map, given by jR : R → Mn(A[ξ(i)h,k]/J )GL(n) maps R into
the GL(n) invariants.
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Theorem 3.9 (Strong Embedding) We have a commutative diagram in which, if
R is a Q n-CH algebra, the first horizontal arrows are isomorphisms the second
injective and the vertical maps surjective:

Tn ξi A ξi
j−−−−→ Mn[A[ξ(i)

h,k]]GL(n) −−−−→ Mn[A[ξ(i)
h,k]]

R = Tn ξi A ξi /I
jR−−−−→ Mn[A[ξ(i)

h,k]/J ]GL(n) −−−−→ Mn[A[ξ(i)
h,k]/J ]

(16)

Notice that the previous commutative diagram exists in general, and j is always
an isomorphism. The fact that in characteristic 0, jR is an isomorphism depends
upon the fact that GL(n), in characteristic 0, is linearly reductive, and then the
proof, see [13] or [1] Theorem 14.2.1, of this Theorem is based on the so called
Reynold’s identities.

The main open question is thus to understand for general R the map jR . For
this a useful remark is that an n Cayley–Hamilton algebra satisfies all polynomial
identities of n × n matrices since it is a quotient of the free CH algebra. The norm
algebra of R is NR := Tn〈ξi 〉/Tn〈ξi〉 ∩ I . Then one may apply the known results
on PI algebras in particular Artin’s characterization of Azumaya algebras [3]. In
particular if for all maximal ideals m of NR we have that R/mR is a central simple
algebra of rank n2 over NR/m then R is a rank n2 Azumaya algebra, cf. [22] and
for such algebras jR is an isomorphism, see [1] §10.4.

Determinants Given an algebra R let us denote, for S any algebra, by Mn(R, S)

the set of multiplicative polynomial maps homogeneous of degree n from R to S.
This is a functor on algebras S and, by Roby’s Theory it is representable.

This is done by constructing the divided powers�n(R) (over the baseA) together
with the map iR : r �→ r [n] of R to �n(R).

One proves that, if R is an algebra, then �n(R) is also an algebra and iR is a
universal multiplicative polynomial map, homogeneous of degree n. That is any
multiplicative polynomial map, homogeneous of degree n from R to an algebra
S factors through iR and a homomorphism of algebras �n(R) → S giving an
isomorphism of functors.

Mn(R, S) � homR(�n(R), S), S ∈ R. (17)

The divided powers �n(R) are constructed by generators and relations.
In fact in most applications there is a more concrete description of �n(R). For

instance if R is a free (or just projective)A module one describes the divided power
as symmetric tensors:

�n(R) � (R⊗n)Sn , R⊗n = R ⊗A R ⊗A R . . .⊗A R, iR : r �→ r [n] = r⊗n.
(18)
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The algebra structure on �n(R) is induced by the tensor product of algebras.
When we restrict, in Formula (17), to S commutative, this functor, on commutative
algebras, is also representable and studied in [21], Roby. It is represented by the
abelianization π : �n(R)→ �n(R)ab that is �n(R) modulo the ideal generated by
the commutators [a, b].

Mn(R,A) � homC(�n(R)ab,A), A ∈ C. (19)

The Approach of Zieplies Vaccarino This is based on a very remarkable fact, the
ring of invariants Tn(ξ1, . . . , ξn) ofm-tuples of n×nmatrices can be defined making
no reference to matrices!

In fact if A is a field or the integers Tn(ξ1, . . . , ξn) is isomorphic to

�n(A〈x1, . . . , xm〉)ab, A〈x1, . . . , xm〉 the free algebra.

According to Vaccarino [26] the relationship between the two rings arises by
composing the map j : A〈xi〉i∈I → A〈ξi〉i∈I to generic matrices with the
multiplicative map det : A〈ξi〉i∈I → Tn〈ξi 〉.

From Roby one has then a factorization:

A xi

j

i

A ξi

det

Γn(A xi )ab

D

Tn ξi (20)

We have a fundamental result, Theorem 20.24 of [5].

Theorem 3.10 If R = A〈X〉 is a free algebra, in some variables X = {xi}i∈I with
either A = F a field or A = Z the integers.

Then D : �n(A〈xi〉)ab → Tn〈ξi〉 is an isomorphism.
This Theorem is proved by Zieplies [27] and Vaccarino [25] and [26], when A =

Q. The proof is based on a Theorem of Procesi and Razmyslov (see [11, 12, 16–18]).
The general case is fully treated in [5]. It is based on the characteristic free results of
Donkin [6] and Zubkov [30] on the invariants of matrices ad a careful combinatorial
study of �n(A〈X〉) (we call it a symbolic approach Sect. 3.12) inspired by the work
of Zieplies [28].

In fact since A〈X〉 is a free A module, its divided power is more conveniently
described as the symmetric tensors:

�n(A〈X〉) � (A〈X〉⊗n)Sn.

Since, using the basis of monomials, the space A〈X〉⊗n is a permutation representa-
tion of Sn, one has a combinatorial description of (A〈X〉⊗n)Sn. The abelian quotient,
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isomorphic to the ring of invariants of matrices, does not have a combinatorial
description and it is a rather hard object to study.

Example 3.11 If X = {x} is a single variable we have that A〈X〉 = A[x] is the
commutative ring of polynomials. We identify A[x]⊗n = A[x1, . . . , xn] by setting
xi := 1⊗i−1 ⊗ x ⊗ 1n−i , so �n(A[x]) is the algebra of symmetric polynomials in
n-variables, commutative.

This algebra is the polynomial ring in the elementary symmetric functions ei
given by:

(1+x)⊗n =
n∏

i=1

1⊗i−1⊗(1+x)⊗1n−i =
n∏

i=1

(1+xi) = 1+e1+e2+. . .+en. (21)

The mapD maps (1+ x)⊗n to det(1+ ξ), so the elementary symmetric function ei
maps to σi(ξ) with tn+∑n

i=1(−1)iσi(ξ)tn−i , the characteristic polynomial det(t−
ξ) of a generic matrix ξ = (ξi,j ), cf. Proposition 2.1.

3.12 Symbolic Approach

The proof of Theorem 3.10 given in [5] is based on several steps, which involve in
particular the development of a symbolic method.

Formula (2) can be developed in the framework of a purely symbolic calculus.
We fix an alphabet X and want to define an integral form of the free trace algebra
Q〈xi〉i∈I [t (M)]. For a monomialM we set:

m∑

i=0

σi(M)y
i := exp(

∞∑

j=1

(−1)j+1 t (M
j )

j
yj ). (22)

Recall that two monomials NP,PN are called cyclically equivalent and t (M)
depends only on monomials up to cyclic equivalence.

There is a canonical choice of a representative in cyclic equivalence class of
monomials: the one minimal, in the lexicographic order, in its class of cyclic
equivalence.

Recall that a monomial M of positive length, is called primitive if it is not a
power Nk, k > 1. In particular a Lyndon word, is a primitive monomial minimal,
in the lexicographic order, in its class of cyclic equivalence.

One then defines the integral form of the free algebra Q〈xi〉i∈I [t (M)], whereM
runs over all monomials up to cyclic equivalence, to be the polynomial algebra

Z〈xi〉i∈I [σj (M)]j∈N, M runs over Lyndon words (23)

in the variables σj (M), withM a Lyndon word.
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This algebra can then be extended by base change to A〈xi〉i∈I [σj (M)], forA any
commutative ring. In particular one has

Q〈xi〉i∈I [t (M)] = Q⊗ Z〈xi〉i∈I [σj (M)]j∈N = Q〈xi〉i∈I [σj (M)]j∈N.

Where in the L.H.S. M runs over all monomials while in the R.H.S. only primitive
monomials, both up to cyclic equivalence.

Then A〈xi〉i∈I [σj (M)] can be evaluated, for each positive integer n, as equiv-
ariant polynomial maps from I -tuples of n × n matrices (over any commutative A
algebra) to matrices. The Theorem of Donkin states that this map is surjective for A
a field or the integers, and the Theorem of Zubkov, Theorems 1.14, 16.3 and 18.4 of
[5], gives a description of the kernel.

3.12.1 The Approach of Zieplies and Vaccarino

In the approach of Zieplies and Vaccarino the algebra A〈xi〉i∈I [σj (M)] appears in
a different and useful way which then explains better the relations of Zubkov. It is
constructed as the abelian quotient of a limit of divided powers of the free algebra.

After this is done one will finish with Theorem 3.17, which over the integers or
any field of any characteristic is proved in [5] Theorem 20.13 Formula (111) and
Theorem 20.24.

First remark that the construction R �→ �n(R) is functorial in R so given r ∈ R
the map A[x] → R, x → r induces a map ei → τi(r), with τi(r) defined by
(1 + r)⊗n = 1 + τ1(r)+ τ2(r)+ . . .+ τn(r).

One can prove, Theorem 20.13 of [5] that:1

Proposition 3.13 The elements τi(M), i = 1, . . . , n asM runs over the primitive
monomials generate �n(A〈X〉).
Denote by Sn〈X〉 the abelian quotient of �n(A〈X〉) and by σi(M) the class of τi(M)
in Sn〈X〉. We shall presently show why this notation is compatible with that of
Formula (22), Proposition 3.14.

One can prove, Proposition 20.20 of [5], that if M = NP one has σi(NP) =
σi(PN).

As for the theory of symmetric functions one can pass to the limit as n→ ∞ of
the algebras �n(A〈X〉) and their abelian quotients.

If ε : A〈X〉 → A is the evaluation of X in 0, we have the map

πn : A〈X〉⊗n+1 → A〈X〉⊗n, πn(a1 ⊗ . . .⊗ an⊗ an+1) = a1 ⊗ . . .⊗ an⊗ ε(an+1).

1In [5] the symbol τi is replaced by σi while our σi is σ̄i .
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This induces a map, still called πn : �n+1(A〈X〉)→ �n(A〈X〉). We have

πn(τi(M)) =
{
τi(M) if i ≤ n
0 if i = n+ 1

.

One can then define a limit algebra �∞(A〈X〉) generated by the elements
τi(M), i = 1, . . . ,∞ as M runs over the primitive monomials and its abelian
quotient S〈X〉.

Theorem 20.22 of [5] states that in S〈X〉 one has σi(NP) = σi(PN) for all
monomials N,P and finally that S〈X〉 = A[σi(M)], is the free polynomial ring in
the variables σi(M) asM varies among the Lyndon words.

Proposition 3.14 In this way we recover the algebra of Formula (23) (for any A,
but in fact it is enough to do it for A = Z).

S〈X〉 � A〈xi〉i∈I [σj (M)]j∈N
Let TA(X), respectively TA,+(X), denote the monoid of endomorphisms ofA〈X〉

given by mapping each variable xi ∈ X to some element fi ∈ A〈X〉, respectively
fi ∈ A〈X〉+. The second condition imposes that the endomorphism preserves the
ideal kernel of ε of elements with no constant term. Each endomorphismϕ ∈ TA(X)
induces an endomorphism of each �n(A〈X〉) and on the quotient Sn.

If ϕ ∈ TA,+(X) the endomorphisms induced in �n(A〈X〉) are compatible with
the maps πn and hence ϕ induces an endomorphism on �∞(A〈X〉) and S〈X〉.
Definition 3.15 A T -ideal I of A〈X〉 or of �n(A〈X〉), or Sn〈X〉, n = 1, . . . ,∞ is
a multigraded ideal closed under all endomorphisms induced by TA(X).

For �∞(A〈X〉) or S〈X〉 the condition is to be closed under all endomorphisms
induced by TA,+(X).

Remark 3.16 The condition of I to be multigraded can be replaced by the condition
that, for every commutative A algebra B, the ideal I ⊗A B is closed under all
endomorphisms induced by TB(X), as in polynomial laws.

For each i = 1, 2, . . . we have the maps

f �→ τi(f ), A〈X〉+ → �∞(A〈X〉); f �→ σi(f ), A〈X〉+ → S.

They are both polynomial laws, of A-modules, homogeneous of degree i which
commute with the action of the endomorphisms TA,+(X).

There is an explicit Formula which allows us to compute these laws. It is due to
Amitsur, [2], (who stated it for matrix invariants), see also [19] or Theorem 4.15 of
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[5] or Theorem 3.3.8. of [1]. Given non commutative variables xi and commutative
parameters ui :

σn(
∑

i

uixi) =
∑

(p1 < . . . < pk) ⊂ W0,

j1, . . . , jk ∈ N, ∑ ji�(pi) = n

(−1)n−
∑
ji u

∑k
i=1 ji ν(pi)σj1(p1) . . . σjk (pk)

(24)

with W0 the set of Lyndon words ordered by the degree lexicographic order, and,
for a word p, ν(p) is the vector (a1, . . . , an) with ai counting how many times the
variable xi appears in p. Finally u(a1,...,an) := ∏n

i=1 u
ai
i .

In particular one can collect, in Formula (24) the terms of the same degree in the
variables xi and have an explicit expression of the polarized forms of σn(x):

σn(
∑

i

uixi) =
∑

(a1,...,an)|∑i ai=n

n∏

i=1

u
ai
i σn;a1,...,an(x1, . . . , xn). (25)

Example:

σ3;1,1,1(a, b, c)

= σ1(a)σ1(b)σ1(c)−σ1(a)σ1(bc)−σ1(b)σ1(ac)−σ1(c)σ1(ab)+σ1(abc)+σ1(acb)

(26)
σ3;2,1(a, b) = −σ1(a)σ1(ab)+ σ1(b)σ2(a), σ3;3(a) = σ3(a).

Substituting for a variable x a linear combination
∑
j ujMj of monomials and

applying Formula (24) to σn(
∑
j ujMj ) one obtains an element of S〈X〉 provided

one has a further law. In fact a primitive word computed in monomials need no more
be primitive so we also need the expression of the elements σi(xj ) in terms of the
σk(x), k ≤ i · j.We then use Formula (3).

One has from [5] Theorem 20.13 Formula (111) and Theorem 20.24:

Theorem 3.17 The Kernels of the maps �∞(A〈X〉) → �n(A〈X〉), respectively
S → Sn are the T -ideals generated by all the elements τi(f ), i > n, respectively
the T -ideal generated by all the elements σi(f ), i > n, f ∈ A〈X〉+.

In other words, in the case Sn〈X〉, the Kernel of πn is the ideal generated by all
the polarized forms σm;a1,...,an(p1, . . . , pm),m > n with p1, . . . , pm monomials of
positive degree.

The Theorem of Zubkov then states that the ring of invariants of matrices has the
same generators and relations as Sn〈X〉 hence the isomorphism of Theorem 3.10.
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The following example shows for n = 2 an explicit deduction of the multiplica-
tive nature of the determinant from these relations.

σ3;1,1,1(a, b, ba) =
+ σ1(a)σ1(b)σ1(ab)− σ1(a)σ1(ab

2)− σ1(b)σ1(a
2b)+ σ1(a

2b2)− 2σ2(ab)

σ4;2,2(a, b) =
− σ1(a)σ1(b)σ1(ab)+ σ1(a)σ1(ab

2)+ σ1(b)σ1(a
2b)− σ1(a

2b2)+ σ2(ab)+ σ2(b)σ2(a)

σ3;1,1,1(a, b, ba)+ σ4;2,2(a, b) = σ2(ab)− σ2(b)σ2(a).

One can in fact take the basic identity for invariants of n× n matrices.

det(ab) = det(a) det(b) ⇐⇒ σn(ab)− σn(a)σn(b) = 0. (27)

Then consider the polynomial ring A[σi(p)], p ∈ W0, i ≤ n. Using Formula (24)
one defines for each f = ∑

i uiMi ∈ A〈X〉 the element σk(f ), k ≤ n as follows.
If one substitutes each xi with Mi in Formula (24) one has a formal expression

containing symbols σi(M), i ≤ k where M may be an arbitrary monomial
(including 1). Then M is cyclically equivalent to some power Nj with N ∈ W0
a Lyndon word. One then sets, using Formula (3):

σi(N
j ) = Pi,j (σ1(N), . . . , σn(N), 0, . . . , 0), σi(1) :=

(
n

i

)
. (28)

Given f = ∑
i uiMi, g =

∑
i viMi ∈ A〈X〉 one may consider

σn(fg) − σn(f )σn(g) =
∑

h,k

uhvkϕh,k, ϕh,k ∈ A[σi(p)]. (29)

Evaluating the variables ξi ∈ X in the generic n × n matrices one has a
homomorphism ρ : A〈X〉 → A[ξi] to the algebra of generic matrices which
extends to a homomorphism, ρ : A[σi(p)] → A[ξki,j ]PGL(n), of the symbolic
algebra to the ring of invariants of matrices. By the Theorem of Donkin this is
surjective. Moreover clearly the identity given by (28) holds for the corresponding
matrix invariants. As for (29) we have that σn(ρ(fg)) − σn(ρ(f ))σn(ρ(g)) =
det(ρ(f )ρ(g))− det(ρ(f )) det(ρ(g)) = 0 so all the elements ϕh,k map to 0.

Theorem 3.18 The Kernel of ρ is the ideal K of A[σi(p)] generated by the
elements ϕh,k of Formula (29), when computed using Formula (28) and (24).

Proof The previous relations express the identity σn(fg) = σn(f )σn(g). Consider
the algebra A[σi(p)]/K , and the map A〈X〉 → A[σi(p)]/K mapping f ∈ A〈X〉 to
the class σ̄n(f ) of σn(f ) moduloK .
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By construction this is a multiplicative map homogeneous of degree n so it

factors through a map A〈X〉 → �n(A〈X〉)ab ρ̄→ A[σi(p)]/K . On the other
hand �n(A〈X〉)ab is generated by the elements σi(p) and the generators of K
are 0 in �n(A〈X〉)ab hence ρ̄ is an isomorphism and so the claim follows from
Theorem 3.10. ��
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Growth of Differential Identities

Carla Rizzo

Abstract In this paper we study the growth of the differential identities of some
algebras with derivations, i.e., associative algebras where a Lie algebra L (and
its universal enveloping algebra U(L)) acts on them by derivations. In particular,
we study in detail the differential identities and the cocharacter sequences of
some algebras whose sequence of differential codimensions has polynomial growth.
Moreover, we shall give a complete description of the differential identities of the
algebra UT2 of 2 × 2 upper triangular matrices endowed with all possible action
of a Lie algebra by derivations. Finally, we present the structure of the differential
identities of the infinite dimensional Grassmann G with respect to the action of a
finite dimensional Lie algebra L of inner derivations.

Keywords Polynomial identity · Differential identity · Codimension ·
Cocharacter

1 Introduction

Let A be an associative algebra over a field F of characteristic zero and assume that
a Lie algebra L acts on it by derivations. Such an action can be naturally extended
to the action of the universal enveloping algebra U(L) of L and in this case we say
that A is an algebra with derivations or an L-algebra. In this context it is natural
to define the differential identities of A, i.e., the polynomials in non-commutative
variables xh = h(x), h ∈ U(L), vanishing in A.

An effective way of measuring the differential identities satisfied by a given
L-algebra A is provided by its sequence of differential codimensions cLn (A),
n = 1, 2, . . . . The nth term of such sequence measures the dimension of the
space of multilinear differential polynomials in n variables of the relatively free
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algebra with derivations of countable rank of A. Since in characteristic zero, by the
multilinearization process, every differential identity is equivalent to a system of
multilinear ones, the sequence of differential codimensions of A gives a quantitative
measure of the differential identities satisfied by the given L-algebra. Maybe the
most important feature of this sequence proved by Gordienko in [6] is that in case
A is a finite dimensional L-algebra, cLn (A) is exponentially bounded. Moreover,
he determined the exponential rate of growth of the sequence of differential
codimensions, i.e., he proved that for any finite dimensional L-algebra A, the
limit limn→∞ n

√
cLn (A) exists and is a non-negative integer. Such integer, denoted

expL(A), is called the differential PI-exponent of the algebra A and it provides
a scale allowing us to measure the rate of growth of the identities of any finite
dimensionalL-algebra. As a consequence of this result it follows that the differential
codimensions of a finite dimensional L-algebra A are either polynomially bounded
or grow exponentially. Hence no intermediate growth is allowed.

When studying the polynomial identities of an L-algebra A, one is lead to
consider varL(A), the L-variety of algebras with derivations generated by A, that
is the class of L-algebras satisfying all differential identities satisfied by A. Thus
we define the growth of V = varL(A) to be the growth of the sequence cLn (V) =
cLn (A), n = 1, 2, . . . and we say that a variety V has almost polynomial growth if V
has exponential growth but every proper subvariety has polynomial growth. Since
the ordinary polynomial identities and corresponding codimensions are obtained
by leting L act on A trivially (or L is the trivial Lie algebra), the algebra UT2 of
2 × 2 upper triangular matrices regarded as L-algebra where L acts trivially on it
generates an L-variety of almost polynomial growth (see [4, 8]). Clearly another
example of algebras generating an L-variety of almost polynomial growth is the
infinite dimensional Grassmann algebraG where L acts trivially on it (see [8, 13]).
Notice that in the ordinary case Kemer in [8] proved that UT2 and G are the only
algebras generating varieties of almost polynomial growth.

Recently in [4] the authors introduced another algebra with derivations gener-
ating a L-variety of almost polynomial growth. They considered UT ε2 to be the
algebra UT2 with the action of the 1-dimensional Lie algebra spanned by the inner
derivation ε induced by 2−1(e11 − e22), where the eij ’s are the usual matrix units.
Also they proved that when the Lie algebra Der(UT2) of all derivations acts onUT2,
the variety with derivations generated by UT2 has no almost polynomial growth.

Notice that if δ is the inner derivation of UT2 induced by 2−1e12, then Der(UT2)

is a 2-dimensional metabelian Lie algebra with basis {ε, δ}. Here we shall study
the differential identities of UT δ2 , i.e., the algebra UT2 with the action of the
1-dimensional Lie algebra spanned by δ. In particular we shall prove that UT δ2
does not generate an L-variety of almost polynomial growth. Moreover, in order
to complete the description of the differential identities of UT2, we shall study
the TL-ideal of the differential identities of UT2 with the action of an arbitrary 1-
dimensional Lie subalgebra of Der(UT2).

Furthermore, we shall study the differential identities of some particular L-
algebras whose sequence of differential codimensions has polynomial growth. In
particular we shall exhibit an example of a commutative algebra with derivations
that generates a L-variety of linear growth.
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Finally, we shall give an example of an infinite dimensional L-algebra of
exponential growth. We shall present the structure of the differential identities
of G̃, i.e., the infinite dimensional Grassmann algebra with the action of a finite
dimensional abelian Lie algebra and we shall show that, unlike the ordinary case, G̃
does not generate an L-variety of almost polynomial growth.

2 L-Algebras and Differential Identities

Throughout this paper F will denote a field of characteristic zero. Let A be an
associative algebra over F . Recall that a derivation of A is a linear map ∂ : A→ A

such that

∂(ab) = ∂(a)b + a∂(b), for all a, b ∈ A.

In particular an inner derivation induced by a ∈ A is the derivation ad a : A→ A of
A defined by (ad a)(b) = [a, b] = ab− ba, for all b ∈ A. The set of all derivations
of A is a Lie algebra denoted by Der(A), and the set ad(A) of all inner derivations
of A is a Lie subalgebra of Der(A).

Let L be a Lie algebra over F acting on A by derivations. If U(L) is its universal
enveloping algebra, the L-action on A can be naturally extended to an U(L)-action.
In this case we say that A is an algebra with derivations or an L-algebra.

Let L be a Lie algebra. Given a basis B = {hi | i ∈ I } of the universal enveloping
algebra U(L) of L, we let F 〈X|L〉 be the free associative algebra over F with free
formal generators xhij , i ∈ I , j ∈ N. We write xi = x1

i , 1 ∈ U(L), and then we set
X = {x1, x2, . . . }. We let U(L) act on F 〈X|L〉 by setting

γ (x
hi1
j1
x
hi2
j2
. . . x

hin
jn
) = xγhi1j1

x
hi2
j2
. . . x

hin
jn

+ · · · + xhi1j1 x
hi2
j2
. . . x

γ hin
jn

,

where γ ∈ L and x
hi1
j1
x
hi2
j2
. . . x

hin
jn

∈ F 〈X|L〉. The algebra F 〈X|L〉 is called the
free associative algebra with derivations on the countable set X and its elements are
called differential polynomials (see [4, 7, 9]).

Given an L-algebra A, a polynomial f (x1, . . . , xn) ∈ F 〈X|L〉 is a polynomial
identity with derivation of A, or a differential identity of A, if f (a1, . . . , an) = 0
for all ai ∈ A, and, in this case, we write f ≡ 0.

Let IdL(A) = {f ∈ F 〈X|L〉 | f ≡ 0 on A} be the set of all differential
identities of A. It is readily seen that IdL(A) is a TL-ideal of F 〈X|L〉, i.e., an
ideal invariant under the endomorphisms of F 〈X|L〉. In characteristic zero every
differential identity is equivalent to a system of multilinear differential identities.
Hence IdL(A) is completely determined by its multilinear polynomial.

Let

PLn = span{xh1
σ(1) . . . x

hn
σ(n) | σ ∈ Sn, hi ∈ B}



386 C. Rizzo

be the space of multilinear differential polynomials in the variables x1, . . . , xn, n ≥
1. We act on PLn via the symmetric group Sn as follows: for σ ∈ Sn, σ(xhi ) = xhσ(i).
For every L-algebra A, the vector space PLn ∩ IdL(A) is invariant under this action.
Hence the space PLn (A) = PLn /(PLn ∩IdL(A)) has a structure of left Sn-module. The
non-negative integer cLn (A) = dimPLn (A) is called nth differential codimension of
A and the character χLn (A) of PLn (A) is called nth differential cocharacter of A.
Since charF = 0, we can write

χLn (A) =
∑

λ�n
mLλχλ,

where λ is a partition of n, χλ is the irreducible Sn-character associated to λ and
mLλ ≥ 0 is the corresponding multiplicity.

Let L be a Lie algebra and H be a Lie subalgebra of L. If A is an L-algebra,
then by restricting the action, A can be regarded as a H -algebra. In this case we say
that A is an L-algebra where L acts on it as the Lie algebra H and we identify the
TL-ideal IdL(A) and the TH -ideal IdH (A), i.e., in IdL(A) we omit the differential
identities xγ ≡ 0, for all γ ∈ L\H .

Notice that any algebra A can be regarded as L-algebra by letting L act on A
trivially, i.e., L acts on A as the trivial Lie algebra. Hence the theory of differential
identities generalizes the ordinary theory of polynomial identities.

We denote by Pn the space of multilinear ordinary polynomials in x1, . . . , xn and
by Id(A) the T -ideal of the free algebra F 〈X〉 of polynomial identities ofA. We also
write cn(A) for the nth codimension of A and χn(A) for the nth cocharacter of A.
Since the field F is of characteristic zero, we have χn(A) = ∑

λ�n mλχλ, where
mλ ≥ 0 is the multiplicity of χλ in the given decomposition.

Since U(L) is an algebra with unit, we can identify in a natural way Pn with a
subspace of PLn . Hence Pn ⊆ PLn and Pn∩ Id(A) = Pn∩ IdL(A). As a consequence
we have the following relations.

Remark 1 For all n ≥ 1,

1. cn(A) ≤ cLn (A);
2. mλ ≤ mLλ , for any λ � n.

Recall that if A is an L-algebra then the variety of algebras with derivations
generated by A is denoted by varL(A) and is called L-variety. The growth of V =
varL(A) is the growth of the sequence cLn (V) = cLn (A), n = 1, 2, . . . .

We say that the L-variety V has polynomial growth if cLn (V) is polynomially
bounded and V has almost polynomial growth if cLn (V) is not polynomially
bounded but every proper L-subvariety of V has polynomial growth.
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3 On Algebras with Derivations of Polynomial Growth

In this section we study some algebras with derivations whose sequence of
differential codimension has linear growth.

Let us first consider the algebra C = F(e11+ e22)⊕Fe12 where the eij ’s are the
usual matrix units. The Lie algebra Der(C) of derivations of C is a 1-dimensional
Lie algebra generated by ε where

ε(α(e11 + e22)+ βe12) = βe12,

for all α, β ∈ F .
Let Cε denote the L-algebra C where L acts on it as the Lie algebra Der(C).

Thus we have the following.

Theorem 1

1. IdL(Cε) = 〈[x, y], xεyε, xε2 − xε〉TL .
2. cLn (C

ε) = n+ 1.
3. χLn (C

ε) = 2χ(n) + χ(n−1,1).

Proof LetQ = 〈[x, y], xεyε, xε2 − xε〉TL . It is easily checked thatQ ⊆ IdL(Cε).
Since xεwyε ∈ Q, where w is a (eventually trivial) monomial of F 〈X|L〉, we
may write any multilinear polynomial f , modulo Q, as a linear combination of
the polynomials

x1 . . . xn, x
ε
kxi1 . . . xin−1, i1 < · · · < in−1.

We next show that these polynomials are linearly independent modulo IdL(Cε).
Suppose that

αx1 . . . xn +
n∑

k=1

βkxi1 . . . xin−1x
ε
k ≡ 0 (modPLn ∩ IdL(Cε)).

By making the evaluation xj = e11 + e22, for all j = 1, . . . , n, we get α = 0. Also
for fixed k, the evaluation xk = e12 and xj = e11 + e22 for j � k gives βk = 0.
Thus the above polynomials are linearly independent modulo PLn ∩ IdL(Cε). Since
PLn ∩Q ⊆ PLn ∩ IdL(Cε), this proves that IdL(Cε) = Q and the above polynomials
are a basis of PLn modulo PLn ∩ IdL(Cε). Hence cLn (C

ε) = n+ 1.
We now determine the decomposition of the nth differential cocharacter of this

algebra. Suppose that χLn (C
ε) = ∑

λ�n mλχλ. Let us consider the standard tableau

T(n) = 1 2 . . . n
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and the monomials

f(n) = xn, f ε(n) = xεxn−1 (1)

obtained from the essential idempotents corresponding to the tableau T(n) by
identifying all the elements in the row. Clearly f(n) and f ε(n) are not identities of

Cε . Moreover, they are linearly independent modulo IdL(Cε). In fact, suppose that
αf(n) + βf ε(n) ≡ 0(mod IdL(Cε)). By making the evaluation x = e11 + e22 we get
α = 0. Moreover, if we evaluate x = e11 + e22 + e12, we obtain β = 0. Thus it
follows that m(n) ≥ 2.

Since degχ(n) = 1 and degχ(n−1,1) = n− 1, if we find a differential polynomial
corresponding to the partition (n − 1, 1) which is not a differential identity of Cε ,
we may conclude that χLn (C

ε) = 2χ(n) + χ(n−1,1).
Let us consider the polynomial

f(n−1,1) = (xεy − yεx)xn−2

obtained from the essential idempotent corresponding to the standard tableau

T(n−1,1) = 1 3 . . . n
2

by identifying all the elements in each row of the tableau. Evaluating x = e11 + e22
and y = e12 we get f(n−1,1) = −e12 � 0 and f(n−1,1) is not a differential identity
of Cε . Thus the claim is proved. ��

Let us now consider the algebraM1 = Fe22⊕Fe12 and let ε and δ be derivations
ofM1 such that

ε(αe22 + βe12) = βe12, δ(αe22 + βe12) = αe12, (2)

for all α, β ∈ F .

Lemma 1 Der(M1) is a 2-dimensional metabelian Lie algebra spanned by ε and δ
defined in (2).

Proof Let us consider the Lie algebraD spanned by ε and δ. Since [ε, δ] = δ, D is
a 2-dimensional metabelian Lie algebra andD ⊆ Der(M1).

Now consider γ ∈ Der(M1). Notice that γ (e22e12) = γ (e22)e12 + e22γ (e12) =
e22γ (e12). Since γ (e22e12) = 0, it follows that

γ (e12) = αe12,
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for some α ∈ F . On the other hand, γ (e12) = γ (e12e22) = αe12 + e12γ (e22). Thus
it follows that e12γ (e22) = 0. Hence

γ (e22) = βe12,

for some β ∈ F . Thus we have that γ = αε + βδ ∈ D and the claim is proved. ��
Similarly, if we consider the algebra M2 = Fe11 ⊕ Fe12 and we assume that ε

and δ are derivation ofM2 such that

ε(αe11 + βe12) = βe12, δ(αe11 + βe12) = αe12, (3)

for all α, β ∈ F , then we have the following.

Lemma 2 Der(M2) is a 2-dimensional metabelian Lie algebra spanned by ε and δ
defined in (3).

Let L be any Lie algebra. We shall denote byM1 andM2 the L-algebrasM1 and
M2 where L acts trivially on them. Since xγ ≡ 0 for all γ ∈ L, in this case we are
dealing with ordinary identities. Thus we have the following result.

Theorem 2 ([3, Lemma 3])

1. IdL(M1) = 〈x[y, z]〉TL and IdL(M2) = 〈[x, y]z〉TL .
2. cLn (M1) = cLn (M2) = n.
3. χLn (M1) = χLn (M2) = χ(n) + χ(n−1,1).

Denote by Mε
1 and Mε

2 the L-algebras M1 and M2 where L acts on them as
the 1-dimensional Lie algebra spanned by the derivation ε defined in (2) and (3),
respectively.

Theorem 3

1. IdL(Mε
1 ) = 〈xyε, xεy−yεx−[x, y], xε2−xε〉TL and IdL(Mε

2 ) = 〈xεy, xyε−
yxε − [x, y], xε2 − xε〉TL .

2. cLn (M
ε
1 ) = cLn (Mε

2 ) = n+ 1.
3. χLn (M

ε
1 ) = χLn (Mε

2 ) = 2χ(n) + χ(n−1,1).

Proof If Q is the TL-ideal generated by the polynomials xyε, xεy − yεx −
[x, y], xε2 − xε, then it easy to check thatQ ⊆ IdL(Mε

1 ).
Since xεyε, x[y, z] ∈ Q, the polynomials

xjxi1 . . . xin−1, x
ε
1x2 . . . xn, i1 < · · · < in−1,

span PLn modulo PLn ∩Q and we claim that they are linearly independent modulo
IdL(Mε

1 ). In fact, let f ∈ PLn ∩ IdL(Mε
1 ) be a linear combination of these

polynomials, i.e.,

f =
n∑

j=1

αjxjxi1 . . . xin−1 + βxε1x2 . . . xn ≡ 0 (mod PLn ∩ IdL(Mε
1 )).
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For fixed j � 1, from the substitutions xj = e12 and xk = e22 for k � j we get
αj = 0, j � 1. By making the evaluation xk = e22 for all k = 1, . . . , n, we obtain
α1 = 0. Finally by evaluating x1 = e12 and xk = e22 for k � 1, we get β = 0.
Thus the above polynomials are linearly independent modulo PLn ∩ IdL(Mε

1 ). Since
PLn ∩Q ⊆ PLn ∩IdL(Mε

1 ), this proves that IdL(Mε
1 ) = Q and the above polynomials

are a basis of PLn modulo PLn ∩ IdL(Mε
1 ). Clearly cLn (M

ε
1 ) = n+ 1.

We now determine the decomposition of the nth differential cocharacter χLn (M
ε
1 )

of this algebra. Suppose that χLn (M
ε
1 ) =

∑
λ�n mλχλ. We consider the tableau T(n)

defined in Theorem 1 and let f(n) and f ε(n) be the corresponding polynomials defined
in (1). It is clear that f(n) and f ε(n) are not identities of Mε

1 . Moreover, they are

linearly independent modulo IdL(Mε
1 ). In fact, suppose that αf(n)+βf ε(n) ≡ 0(mod

IdL(Mε
1 )). By making the evaluation x = e22 we get α = 0. Moreover, if we

evaluate x = e22 + e12, we obtain β = 0. Thus it follows that m(n) ≥ 2. By
Remark 1 and Theorem 2 we have m(n−1,1) ≥ 1. Thus, since degχ(n) = 1 and
degχ(n−1,1) = n− 1, it follows that χLn (M

ε
1 ) = 2χ(n) + χ(n−1,1).

A similar proof holds for the algebraMε
2 . ��

Let Mδ
1 and Mδ

2 be the L-algebras M1 and M2 where L acts on them as the
1-dimensional Lie algebra spanned by the derivation δ defined in (2) and (3),
respectively. The proof on the next theorem is similar to the above proof and is
omitted.

Theorem 4

1. IdL(Mδ
1 ) = 〈x[y, z], xyδ, xδy − yδx, xδ

2〉TL and IdL(Mδ
2 ) =

〈[x, y]z, xδy, xyδ − yxδ, xδ2〉TL .
2. cLn (M

δ
1) = cLn (Mδ

2 ) = n+ 1.
3. χLn (M

δ
1 ) = χLn (Mδ

2 ) = 2χ(n) + χ(n−1,1).

Let now L be a 2-dimensional metabelian Lie algebra. Let denote by MD
1 the

L-algebraM1 where L acts on it as the Lie algebra Der(M1) andMD
2 the L-algebra

M2 where L acts on it as the Lie algebra Der(M2).

Remark 2

1. xδy − yδx ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .
2. xyδ − yxδ ∈ 〈xεy, xyε − yxε − [x, y], xεδ − xδ〉TL .

Proof First notice that [x, y]δ ∈ 〈xyε, [x, y]ε − [x, y]〉TL . Thus, since [x, y]ε ≡
[x, y](mod 〈xyε, xεy − yεx − [x, y]〉TL), it follows that

[x, y]δ ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .
Moreover, since xyδ ∈ 〈xyε, xεδ − xδ〉TL , we get

xδy − yδx ∈ 〈xyε, xεy − yεx − [x, y], xεδ − xδ〉TL .
A similar proof holds for the other statement. ��
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We do not present the proof of next theorem since it can be easily deduced by
using the strategy of proof given in Theorem 3.

Theorem 5

1. IdL(MD
1 ) = 〈xyε, xεy − yεx − [x, y], xε2 − xε, xδε, xεδ − xδ〉TL and

IdL(MD
2 ) = 〈xεy, xyε − yxε − [x, y], xε2 − xε, xδε, xεδ − xδ〉TL .

2. cLn (M
D
1 ) = cLn (MD

2 ) = n+ 2.
3. χLn (M

D
1 ) = χLn (MD

2 ) = 3χ(n) + χ(n−1,1).

4 The Algebra of 2 × 2 Upper Triangular Matrices and Its
Differential Identities

In this section we study the growth of differential identities of the algebra UT2 of
2 × 2 upper triangular matrices over F .

Let L be any Lie algebra over F and denote by UT2 the L-algebra UT2 where
L acts trivially on it. Since xγ ≡ 0, for all γ ∈ L, is a differential identity of UT2,
we are dealing with ordinary identities. Thus by Malcev [11], Kemer [8] and by the
proof of Lemma 3.5 in [1], we have the following results.

Theorem 6

1. IdL(UT2) = 〈[x1, x2][x3, x4]〉TL .
2. cLn (UT2) = 2n−1(n− 2)+ 2.
3. If χLn (UT2) = ∑

λ�n mλχλ is the nth differential cocharacter of UT2, then

mλ =

⎧
⎪⎪⎨

⎪⎪⎩

1, if λ = (n)
q + 1, if λ = (p + q, p) or λ = (p + q, p, 1)
0 in all other cases

.

Theorem 7 varL(UT2) has almost polynomial growth.

Let now ε be the inner derivation of UT2 induced by 2−1(e11 − e22), i.e.,

ε(a) = 2−1[e11 − e22, a], for all a ∈ UT2, (4)

where the eij ’s are the usual matrix units. We shall denote by UT ε2 the L-algebra
UT2 where L acts on it as the 1-dimensional Lie algebra spanned by ε. In [4] the
authors proved the following.

Theorem 8 ([4, Theorems 5 and 12])

1. IdL(UT ε2 ) = 〈[x, y]ε − [x, y], xεyε, xε2 − xε〉TL .
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2. cLn (UT
ε
2 ) = 2n−1n+ 1.

3. If χLn (UT
ε
2 ) =

∑
λ�n mελχλ is the nth differential cocharacter of UT ε2 , then

mελ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n+ 1, if λ = (n)
2(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0 in all other cases

.

Theorem 9 ([4, Theorem 15]) varL(UT ε2 ) has almost polynomial growth.

Let now δ be the inner derivation of UT2 induced by 2−1e12, i.e.,

δ(a) = 2−1[e12, a], for all a ∈ UT2. (5)

Denote byUT δ2 theL-algebraUT2 whereL acts as the 1-dimensional Lie algebra
spanned by δ. The following remarks are easily verified.

Remark 3 [x, y][z,w] ≡ 0, [x, y]δ ≡ 0, xδyδ ≡ 0, xδ[y, z] ≡ 0 and xδ
2 ≡ 0 are

differential identities of UT δ2 .

Remark 4 xδy[z,w], [x, y]zwδ, xδyzδ ∈ 〈xδyδ, xδ[y, z], [x, y]δ〉TL .

Remark 5 For any permutations σ ∈ St , we have

[xδσ(1), xσ(2), . . . , xσ(t)] ≡ [xδ1, x2, . . . , xt ] (mod 〈xδ[y, z], [x, y]δ〉TL).

Proof Let u1, u2, u3 be monomials. We considerw = u1xixju2y
δu3. Since xixj =

xjxi + [xi, xj ], it follows that w ≡ u1xjxiu2y
δu3 (mod 〈xδ[y, z], [x, y]δ〉TL).

In the same way we can show that u1y
δu2zizju3 ≡ u1y

δu2zj ziu3 (mod
〈xδ[w, z]〉TL). Hence in every monomial

xi1 . . . xit y
δzj1 . . . zjp

we can reorder the variables to the left and to the right of yδ. Since
[x, y]δ = [xδ, y] − [yδ, x], we can reorder all the variables in any commutator
[xδi1, xi2, . . . , xit ] as claimed. ��
Lemma 3 The TL-ideal of identities of UT δ2 is generated by the following polyno-
mials

[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2
.

Proof LetQ = 〈[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2〉TL . By Remark 3,Q ⊆
IdL(UT δ2 ).
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By the Poincaré-Birkhoff-Witt Theorem (see [12]) every differential multilinear
polynomial in x1, . . . , xn can be written as a linear combination of products of the
type

x
α1
i1
. . . x

αk
ik
w1 . . . wm (6)

where α1, . . . , αk ∈ U(L), w1 . . . , wm are left normed commutators in the
x
αj
i s, αj ∈ U(L), and i1 < · · · < ik . Since [xα1

1 , x
α2
2 ][xα3

3 , x
α4
4 ] ∈ Q, with

α1, α2, α3, α4 ∈ {1, δ}, then, modulo 〈[xα1
1 , x

α2
2 ][xα3

3 , x
α4
4 ], xδ2〉TL , in (6) we have

αj ∈ {1, δ} and m ≤ 1, so, only at most one commutator can appear in (6). Thus
by Remark 4 every multilinear monomial in PLn can be written, moduloQ, as linear
combination of the elements of the type

x1 . . . xn, xh1 . . . xhn−1x
δ
j , xi1 . . . xik [xγj1, xj2, . . . , xjm],

where h1 < · · · < hn−1, i1 < · · · < ik , m+ k = n, m ≥ 2, γ ∈ {1, δ}.
Let us now consider the left normed commutators [xγj1, xj2, . . . , xjm] and suppose

first that γ = 1. Since [x1, x2][x3, x4] ∈ Q, then it is already known that (see for
example [5, Theorem 4.1.5])

[xj1, xj2, . . . , xjm] ≡ [xk, xh1 , . . . , xhm−1] (modQ),

where k > h1 < · · · < hm−1.
Suppose now γ = δ, then by Remark 5 we get

[xδj1, xj2, . . . , xjm] ≡ [xδ1, x2, . . . , xt ] (mod 〈xδ[y, z], [x, y]δ〉TL).

It follows that PLn is spanned, modulo PLn ∩Q, by the polynomials

x1 . . . xn, xi1 . . . xim[xk, xj1 , . . . , xjn−m−1],
xh1 . . . xhn−1x

δ
r , xi1 . . . xim [xδl1, xl2, . . . , xln−m], (7)

where i1 < · · · < im, k > j1 < · · · < jn−m−1, h1 < · · · < hn−1, l1 < · · · < ln−m,
m � n− 1, n.

Next we show that these polynomials are linearly independent modulo
IdL(UT δ2 ). Let I = {i1, . . . , im} be a subset of {1, . . . , n} and k ∈ {1, . . . , n} \ I
such that k > min({1, . . . , n} \ I), then set XI,k = xi1 . . . xim[xk, xj1, . . . , xjn−m−1].
Also for I

′ = {i1, . . . , im} ⊆ {1, . . . , n}, 0 ≤ |I ′ | < n − 1, set Xδ
I
′ =

xi1 . . . xim[xδl1, xl2, . . . , xln−m] and suppose that

f =
∑

I,J

αI,kXI,k +
∑

I
′
αδ
I
′Xδ
I
′ +

n∑

k=1

αδr xh1 . . . xhn−1x
δ
r

+ βx1 . . . xn ≡ 0 (mod PLn ∩ IdL(UT δ2 )).
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In order to show that all coefficients αI,k , αδ
I
′ , αδr , β are zero we will make some

evaluations. If we evaluate x1 = · · · = xn = e11 + e22 we get β = 0. For a fixed r ,
by setting xh1 = · · · = xhn−1 = e11 + e22 and xr = e22 we get αδr = 0. Also, for
a fixed I

′ = {i1, . . . , im}, by making the evaluations xi1 = · · · = xim = e11 + e22,
xl1 = · · · = xln−m = e22 we obtain αδ

I
′ = 0. Finally, for fixed I = {i1, . . . , im}

and J = {j1, . . . , jn−m−1}, from the substitutions xi1 = · · · = xim = e11 + e22,
xk = e12, xj1 = · · · = xjn−m−1 = e22, it follows that αI,k = 0.

We have proved that IdL(UT δ2 ) = Q and the elements in (7) are a basis of PLn
modulo PLn ∩ IdL(UT δ2 ). ��

We now compute the nth differential cocharacter of UT δ2 . Write

χLn (UT
δ

2 ) =
∑

λ�n
mδλχλ. (8)

In the following lemmas we compute the non-zero multiplicities of such cocharacter.

Lemma 4 In (8)mδ(n) ≥ n+ 1.

Proof We consider the following tableau:

T(n) = 1 2 . . . n .

We associate to T(n) the monomials

a(x) = xn, (9)

a
(δ)
k (x) = xk−1xδxn−k, (10)

for all k = 1, . . . , n. These monomials are obtained from the essential idempotents
corresponding to the tableau T(n) by identifying all the elements in the row. It is

easily checked that a(x), a(δ)k (x), k = 1, . . . , n, do not vanish in UT δ2 .

Next we shall prove that the n + 1 monomials a(x), a(δ)k (x), k = 1, . . . , n, are
linearly independent modulo IdL(UT δ2 ). In fact, suppose that

αa(x)+
n∑

k=1

αδka
(δ)
k (x) ≡ 0 (mod IdL(UT δ2 )).

By setting x = e11+e22 it follows that α = 0. Moreover, if we substitute x = βe11+
e22 where β ∈ F , β � 0, we get

∑n
k=1(1− β)βk−1αδk = 0. Since |F | = ∞, we can

choose β1, . . . , βn ∈ F , where βi � 0 and βi � βj , for all 1 ≤ i � j ≤ n. Then we
get the following homogeneous linear system of n equations in the n variables αδk ,
k = 1, . . . , n,

n∑

k=1

βk−1
i αδk = 0, i = 1, . . . , n. (11)
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Since the matrix associated to the system (11) is a Vandermonde matrix, it follows
that αδk = 0, for all k = 1, . . . , n. Thus the monomials a(x), a(δ)k (x), k = 1, . . . , n,
are linearly independent modulo IdL(UT δ2 ). This says that mδ(n) ≥ n+ 1. ��
Lemma 5 Let p ≥ 1 and q ≥ 0. If λ = (p + q, p) then in (8) we have mδλ ≥
2(q + 1).

Proof For every i = 0, . . . , q we define T (i)λ to be the tableau

i + 1 i + 2 . . . i + p − 1 i + p 1 . . . i i + 2p + 1 . . . n
i + p + 2 i + p + 3 . . . i + 2p i + p + 1

.

We associate to T (i)λ the polynomials

b
(p,q)

i (x, y) = xi x . . . x̃︸���︷︷���︸
p−1

[x, y] y . . . ỹ︸���︷︷���︸
p−1

xq−i , (12)

b
(p,q,δ)

i (x, y) = xi x . . . x̃︸���︷︷���︸
p−1

(xδy − yδx) y . . . ỹ︸���︷︷���︸
p−1

xq−i , (13)

where the symbols − or ∼ means alternation on the corresponding variables. The
polynomials b(p,q)i , b(p,q,δ)i are obtained from the essential idempotents correspond-

ing to the tableau T (i)λ by identifying all the elements in each row of the tableau. It

is clear that b(p,q)i , b(p,q,δ)i , i = 0, . . . , q , are not differential identities of UT δ2 . We
shall prove that the above 2(q + 1) polynomials are linearly independent modulo
IdL(UT δ2 ). Suppose that

q∑

i=0

αib
(p,q)
i +

q∑

i=0

αδi b
(p,q,δ)
i ≡ 0 (mod IdL(UT δ2 )).

If we set x = βe11 + e22, with β ∈ F , β � 0, and y = e11, we obtain

q∑

i=0

(−1)p−1βiαδi = 0.

Since |F | = ∞, we can take β1, . . . , βq+1 ∈ F , where βj � 0, βj � βk , for all
1 ≤ j � k ≤ q + 1. Then we obtain the following homogeneous linear system of
q + 1 equations in the q + 1 variables αδi , i = 0, . . . , q ,

q∑

i=0

βijα
δ
i = 0, j = 1, . . . , q + 1. (14)
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Since the matrix of this system is a Vandermonde matrix, it follows that αδi = 0,
for all i = 0, . . . , q . Hence we may assume that the following identity holds

q∑

i=0

αib
(p,q)

i ≡ 0 (mod IdL(UT δ2 )).

If we evaluate x = βe11 + e12 + e22, where β ∈ F , β � 0, and y = e11, then we
get

q∑

i=0

(−1)p−1βiαi = 0. (15)

Since |F | = ∞, we choose β1, . . . , βq+1 ∈ F , where βj � 0, βj � βk , for all
1 ≤ j � k ≤ q+1. Then from (15) we obtain a homogeneous linear system of q+1
equations in the q+1 variables αi , i = 0, . . . , q , equivalent to the linear system (14).
Therefore αi = 0, for all i = 0, . . . , q . Hence the polynomials b(p,q)i , b(p,q,δ)i ,
i = 0, . . . , q , are linearly independent modulo IdL(UT δ2 ) and, so, mδλ ≥ 2(q + 1).

��
As an immediate consequence of Remark 1 and Theorem 6 we have the

following.

Lemma 6 Let p ≥ 1 and q ≥ 0. If λ = (p + q, p, 1), then in (8) we have mδλ ≥
q + 1.

We are now in a position to prove the following theorem about the L-algebra
UT δ2 .

Theorem 10

1. IdL(UT δ2 ) = 〈[x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2〉TL .
2. cLn (UT

δ
2 ) = 2n−1n+ 1.

3. If χLn (UT
δ
2 ) =

∑
λ�n mδλχλ is the nth differential cocharacter of UT δ2 , then

mδλ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n+ 1, if λ = (n)
2(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0 in all other cases

. (16)

Proof By Lemma 3 the TL-ideal of differential identities of UT δ2 is generated by

the polynomials [x, y][z,w], [x, y]δ, xδ[y, z], xδyδ, xδ2
and the elements in (7) are

a basis of PLn modulo PLn ∩ IdL(UT δ2 ). Thus by counting these elements we get that
cLn (UT

δ
2 ) = 2n−1n+ 1.
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Finally, as a consequence of Lemmas 4, 5, 6 and by following verbatim the
proof of [4, Theorem 12] we get the decomposition into irreducible characters of
χLn (UT

δ
2 ). ��

Notice that varL(UT δ2 ) has exponential growth, nevertheless it has no almost
polynomial growth. In fact, the algebra UT2 (ordinary case) is an algebra with Fδ-
action where δ acts trivially on UT2, i.e., xδ ≡ 0 is differential identity of UT2.
Then it follows that UT2 ∈ varL(UT δ2 ), but varL(UT2) growths exponentially. Thus
we have the following result.

Theorem 11 varL(UT δ2 ) has no almost polynomial growth.

Now denote by UT η2 the L-algebra UT2 where L acts on it as the 1-dimensional
Lie algebra spanned by a non-trivial derivation η of UT2. Notice that since any
derivation of UT2 is inner (see [2]), it can be easily checked that the algebra
Der(UT2) of all derivations of UT2 is the 2-dimensional metabelian Lie algebra
with basis {ε, δ} defined in (4) and (5), respectively. Thus

η = α ε + β δ, for some α, β ∈ F not both zero.

Remark 6 [x, y]η − α[x, y] ≡ 0, xηyη ≡ 0, xη
2 − αxη ≡ 0, [x, y][z,w] ≡

0, xη[y, z] ≡ 0 are differential identities of UT η2 . Moreover, if α � 0, then
[x, y][z,w], xη[y, z] ∈ 〈[x, y]η − α[x, y], xηyη〉TL .

We do not present the proof of next theorem since it can be deduced by using the
strategy of proofs given in [4, Theorems 5 and 12] and Theorem 10.

Theorem 12

1. If α � 0, then IdL(UT η2 ) = 〈[x, y]η − α[x, y], xηyη, xη2 − αxη〉TL . Otherwise,
IdL(UT η2 ) = 〈[x, y][z,w], xη[y, z], [x, y]η, xηyη, xη2〉TL .

2. cLn (UT
η

2 ) = 2n−1n+ 1.
3. If χLn (UT

η

2 ) =
∑
λ�n m

η
λχλ is the nth differential cocharacter of UT η2 , then

m
η
λ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n+ 1, if λ = (n)
2(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0 in all other cases

.

Notice that if α = 0, varL(UT η2 ) = varL(UT δ2 ). Thus by Theorem 11 and by
following closely the proof of [4, Theorem 15], taking into account the due changes,
we get the following.

Theorem 13 If α � 0, then varL(UT η2 ) has almost polynomial growth. Otherwise
it has no almost polynomial growth.
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Finally let us assume that L is a 2-dimensional metabelian Lie algebra and
denote by UT D2 the L-algebra UT2 where L acts on it as the Lie algebra Der(UT2).
Giambruno and Rizzo in [4] proved the following result.

Theorem 14 ([4, Theorems 19 and 25])

1. IdL(UT D2 ) = 〈[x, y]ε − [x, y], xεyε, xε2 − xε, xδε, xεδ − xδ〉TL .
2. cLn (UT

D
2 ) = 2n−1(n+ 2).

3. If χLn (UT
D
2 ) =

∑
λ�n mDλ χλ is the nth differential cocharacter of UT D2 , then

mDλ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n+ 1, if λ = (n)
3(q + 1), if λ = (p + q, p)
q + 1, if λ = (p + q, p, 1)
0 in all other cases

.

Since xδ ≡ 0 is a differential identity of UT ε2 , varL(UT ε2 ) ⊆ varL(UT D2 ). Then
by Theorem 8, we have the following.

Theorem 15 ([4, Theorem 26]) varL(UT D2 ) has no almost polynomial growth.

5 On Differential Identities of the Grassmann Algebra

In this section we present an example of infinite dimensional algebra with deriva-
tions of exponential growth.

Let L be a finite dimensional abelian Lie algebra and G the infinite dimensional
Grassmann algebra over F . Recall that G is the algebra generated by 1 and a
countable set of elements e1, e2, . . . subjected to the condition eiej = −ej ei , for
all i, j ≥ 1.

Notice that G can be decomposed in a natural way as the direct sum of the
subspaces

G0 = spanF {ei1 . . . ei2k | i1 < · · · < i2k, k ≥ 0}

and

G1 = spanF {ei1 . . . ei2k+1 | i1 < · · · < i2k+1, k ≥ 0},

i.e., G = G0 ⊕G1.
Now consider the algebra G where L acts trivially on it. Since xγ ≡ 0, for all

γ ∈ L, is a differential identity of G, we are dealing with ordinary identities. Thus
by Krakowski and Regev [10] we have the following results.



Growth of Differential Identities 399

Theorem 16

1. IdL(G) = 〈[x, y, z]〉T .
2. cLn (G) = 2n−1.

3. χLn (G) =
∑n
j=1 χ(j,1n−j ).

Theorem 17 varL(G) has almost polynomial growth.

Recall that if g = ei1 . . . ein ∈ G, the set Supp{g} = {ei1, . . . , ein} is called the
support of g. Let now g1, . . . , gt ∈ G1 be such that Supp{gi} ∩ Supp{gj } = ∅, for
all i, j ∈ {1, . . . , t}. We set

δi = 2−1 ad gi, i = 1, . . . , t.

Then for all g ∈ G we have

δi(g) =
{

0, if g ∈ G0

gig, if g ∈ G1
, i = 1, . . . , t.

Since for all g ∈ G, [δi, δj ](g) = 0, i, j ∈ {1, . . . , t}, L = spanF {δ1, . . . , δt } is a
t-dimensional abelian Lie algebra of inner derivations of G. We shall denote by G̃
the algebraG with this L-action.

Recall that for a real number x we denote by #x$ its integer part.

Theorem 18 ([13, Theorems 3 and 9])

1. IdL(G̃) = 〈[x, y, z], [xδi , y], xδiδj 〉TL , i, j = 1, . . . , t .

2. cLn (G̃) = 2t2n−1 −∑#t/2$
j=1

∑t
i=2j

(
t
i

)(
n

i−2j

)
.

3. If χLn (G̃) =
∑
λ�n mLλχλ is the nth differential cocharacter of G̃, then

mLλ =

⎧
⎪⎪⎨

⎪⎪⎩

∑r
i=0

(
t
i

)
, if λ = (n− r + 1, 1r−1) and r < t

2t , if λ = (n− r + 1, 1r−1) and r ≥ t
0 in all other cases

.

Recall that two functions ϕ1(n) and ϕ2(n) are asymptotically equal and we write
ϕ1(n) ≈ ϕ2(n) if limn→∞ ϕ1(n)/ϕ2(n) = 1. Then the following corollary is an
obvious consequence of the previous theorem.

Corollary 1 cLn (G̃) ≈ 2t2n−1.

Notice that by Corollary 1 varL(G̃) has exponential growth, nevertheless it has
no almost polynomial growth. In fact, the Grassmann algebra G (ordinary case) is
an algebra with L-action where δi , i = 1, . . . , t , acts trivially on G, i.e., xδi ≡ 0,
i = 1, . . . , t , are differential identities of G. Then it follows that G ∈ varL(G̃), but
by Theorem 16 cLn (G) = 2n−1. Thus we have the following result.

Theorem 19 ([13, Theorem 6]) varL(G̃) has no almost polynomial growth.
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Derived Lengths of Symmetric Poisson
Algebras

Salvatore Siciliano

Abstract Let L be a Lie algebra over a field of positive characteristic. We survey
the known results about the Lie structure of the symmetric Poisson algebra S(L)
and the truncated symmetric Poisson algebra s(L) of L. In particular, some results
about the derived lenghts of s(L) are discussed.

Keywords Symmetric Poisson algebra · Truncated symmetric Poisson algebra ·
Poisson identity · Derived length · Metabelian Lie algebra.

1 Introduction

We recall that a Poisson algebra over a field F is a triple (A, ·, {, }) where A is a
commutative associative F-algebra with unity, (A, {, }) is a Lie algebra, and the two
operations are related by the Leibniz rule, that is, for all a, b, c ∈ A one has

{a · b, c} = {a, c} · b + a · {b, c}.

Poisson algebras have many applications in algebra, differential geometry and
mathematical physics, and attracted a lot of attention over the decades.

Now, for a Lie algebra L over F, we identify the symmetric algebra S(L) of L
with the polynomial ring F[x1, x2, . . .], where x1, x2, . . . is an F-basis of L over F.
By linearity and the Leibniz rule, the Lie bracket of L can be uniquely extended
to a Poisson bracket of S(L) so that this commutative algebra becomes a Poisson
algebra, called the symmetric Poisson algebra of L. Moreover, if the ground field
has positive characteristic p, then the Poisson bracket of S(L) naturally induces a
Poisson bracket on s(L) = S(L)/I , where I is the ideal generated by the elements
xp with x ∈ L. The Poisson algebra s(L) is called the truncated symmetric Poisson
algebra of L.
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Poisson identities of symmetric Poisson algebras of Lie algebras started to be
investigated by Kostant [6], Shestakov [15], and Farkas [3, 4]. In [4] Farkas showed
that, in characteristic zero, S(L) satisfies a nontrivial Poisson identity if and only
if L contains an abelian subalgebra of finite codimension. Some years later, in [5]
Giambruno and Petrogradsky generalized Farkas’ result to arbitrary characteristic.
Furthermore, in the same paper they established when the truncated symmetric
Poisson algebra of a restricted Lie algebra satisfies a nontrivial multilinear Poisson
identical relation. In [9], Monteiro Alves and Petrogradsky studied the Lie identities
of S(L) and s(L). In particular, they determined necessary and sufficient conditions
on L such that S(L) or s(L) is Lie nilpotent, studied the Lie nilpotence class of s(L)
and, in odd characteristic, established when S(L) and s(L) are solvable. Further
developments of these topics have been recently carried out by the author in [18].
It should be mentioned that similar problems have been also considered in other
settings, such as restricted enveloping algebras (see [2, 13, 16, 17, 19, 20]) and group
algebras (see e.g. [8, 10, 14]).

In this note we survey the known results about solvable (truncated) symmetric
Poisson algebras and their derived lengths. In Sect. 3 we recall some theorems about
the Lie structure of ordinary and restricted enveloping algebras, which originally
motivated the present subject. In Sect. 4 we summarize results on the existence
of nontrivial Poisson identities in symmetric and truncated symmetric Poisson
algebras, and in Sect. 5 we consider Lie nilpotence and solvability of these Poisson
algebras. Finally, in Sect. 6 some results on the derived lengths of a truncated
symmetric Poisson algebras are collected.

2 Definitions and Notation

We fix some notation and terminology. Let F be a field. We denote by 〈S〉F the
subspace spanned by a subset S of a F-vector space. For a Lie algebra L, we use
the symbol Z(L) for denoting the center of L. The terms of the derived series of L
are defined by δ0(L) = L and δn(L) = [δn−1(L), δn−1(L)] for n > 0. Moreover,
we denote by γn(L) (n ≥ 1) the terms of the descending central series of L. The
derived subalgebra γ2(L) = δ1(L) of Lwill be also denoted byL′. For every x ∈ L,
the adjoint map of x is defined by ad x : L→ L, a �→ [x, a].

Let A be a unital associative algebra over a field F. Then A can be regarded as
a Lie algebra via the Lie bracket defined by [x, y] = xy − yx, for all x, y ∈ A.
Longer Lie products in A are interpreted using the left-normed convention.

We say that A is Lie nilpotent when A is nilpotent as a Lie algebra. The algebra
A is bounded Lie Engel if there exists a positive integer n such that A satisfies
the identity [x, y, . . . , y] = 0, where y appears n times in the expression. The nth
upper Lie power of A is the ideal defined inductively by A(1) = A and A(i) =
[A(i−1), A]A. We say that A is strongly Lie nilpotent if A(i) = 0, for some positive
integer i.
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Moreover, we say that A is Lie solvable if A is solvable as a Lie algebra.
The upper derived series of A is defined by setting δ̃0(A) = A and δ̃n(A) =
[δ̃n−1(A), δ̃n−1(A)] · A for every n > 0. We say that A is strongly solvable
if δ̃n(A) = 0 for some n. Obviously, strong Lie nilpotence (strong solvability,
respectively) implies Lie nilpotence (solvability, respectively), but the converse is
in general not true.

Let X be a set. By the free Poisson algebra on X we mean a Poisson algebra
F(X) together with a map i : X → F(X) such that for every map f : X → B

into a Poisson algebra B there exists a unique Poisson algebra homomorphism θ :
F(X)→ B such that the following diagram commutes

X
i→ F(X)

f↓ ↙θ

B

It was shown by Shestakov in [15] that if L(X) is the free Lie algebra on X, then
S(L(X)) is a free Poisson algebra on X.

One says that a Poisson algebra P satisfies a nontrivial Poisson identity if
there exists a nonzero element in the free Poisson algebra of countable rank which
vanishes under any substitution in P .

3 The Lie Structure of Enveloping Algebras

As the study of the Lie structure of symmetric and truncated symmetric Poisson
algebras is also motivated by similar problems for ordinary and restricted enveloping
algebras, in this section we illustrate the picture for these algebras.

Let L be a restricted Lie algebra over a field of characteristic p > 0 and denote
by u(L) the restricted enveloping algebra of L. We recall that a subset S of L is said
to be p-nilpotent if there exists a positive integer n such that x[p]n = 0 for every
x ∈ S. The characterization of restricted enveloping algebras has been obtained by
Passman in [11] and, independently, by Petrogradsky in [12]. Their result can be
stated as follows:

Theorem 1 ([11, 12]) LetL be a restricted Lie algebra over a field of characteristic
p > 0. Then the restricted enveloping algebra u(L) satisfies a polynomial identity
if and only if L has restricted subalgebras B ⊆ A such that:

(i) dimL/A <∞ and dimB <∞;
(ii) A/B is abelian and B is central in A;

(iii) B is p-nilpotent.

The conditions under which u(L) is Lie nilpotent, bounded Lie Engel, or Lie
solvable in odd characteristic were determined by Riley and Shalev in the following
theorems.
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Theorem 2 ([13]) Let L be a restricted Lie algebra over a field of characteristic
p > 0. The following statements are equivalent:

1. u(L) is Lie nilpotent;
2. u(L) is strongly Lie nilpotent;
3. L is nilpotent and L′ is finite-dimensional and p-nilpotent.

Theorem 3 ([13]) Let L be a restricted Lie algebra over a field of characteristic
p > 0. Then u(L) is bounded Lie Engel if and only if L is nilpotent, L′ is
p-nilpotent, and L contains a restricted ideal I such that L/I and I ′ are finite-
dimensional.

Theorem 4 Let L be a restricted Lie algebra over a field of characteristic p > 2.
The following statements are equivalent:

1. u(L) is Lie solvable;
2. u(L) is strongly Lie solvable;
3. L′ is finite-dimensional and p-nilpotent.

The equivalence of (1) and (3) in Theorem 4 is shown in [13] whereas it is
shown in [16] that (2) and (3) are equivalent for all p > 0. On the other hand,
the characterization of Lie solvable restricted enveloping algebras in characteristic
2 has been settled quite recently. We recall that a restricted Lie algebra is said to be
strongly abelian if it is abelian and its power mapping is trivial. In a joint paper with
Usefi, the following theorem was proved:

Theorem 5 ([20]) Let L be a restricted Lie algebra over a field F of characteristic
2. Let F̄ be the algebraic closure of F and set L = L⊗F F̄. Then u(L) is Lie solvable
if and only if L has a finite-dimensional 2-nilpotent restricted ideal I such that
L̄ = L/I satisfies one of the following conditions:

(i) L̄ has an abelian restricted ideal of codimension at most 1;
(ii) L̄ is nilpotent of class 2 and dim L̄/Z(L̄) = 3;

(iii) L̄ = 〈x1, x2, y〉F̄ ⊕ Z(L̄), where [x1, y] = x1, [x2, y] = x2, and [x1, x2] ∈
Z(L̄);

(iv) L̄ = 〈x, y〉
F̄
⊕ H ⊕ Z(L̄), where H is a strongly abelian finite-dimensional

restricted subalgebra of L̄ such that [x, y] = x, [y, h] = h, and [x, h] ∈ Z(L̄)
for every h ∈ H ;

(v) L̄ = 〈x, y〉
F̄
⊕H ⊕Z(L̄), where H is a finite-dimensional abelian subalgebra

of L̄ such that [x, y] = x, [y, h] = h, [x, h] ∈ Z(L̄), and [x, h][2] = h[2], for
every h ∈ H .

Note that the cases (ii)–(v) can occur only when L′ is finite-dimensional. In other
words, if u(L) is Lie solvable and L′ is infinite-dimensional, then L has a restricted
ideal of codimension at most 1 whose derived subalgebra is finite-dimensional and
2-nilpotent.

Now, let L be an ordinary Lie algebra over an arbitrary field F and denote by
U(L) the universal enveloping algebra of L. Latysěv in [7] proved that over a
field of characteristic zero, U(L) satisfies a polynomial identity if and only if L
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is abelian. Subsequently, Bahturin in [1] extended Latyshev’s result to the positive
characteristic:

Theorem 6 ([1]) Let L be a Lie algebra over a field of characteristic p > 0.
Then U(L) satisfies a polynomial identity if and only if the following conditions
are satisfied:

1. L has an abelian ideal of finite codimension;
2. all inner derivations adx, x ∈ L, are algebraic of bounded degree.

In [13] Riley and Shalev showed that if L is defined over a field of characteristic
different from 2, thenU(L) is Lie solvable only when L is abelian. This is no longer
true in characteristic 2. However, one can apply Theorem 5 with respect to the
restricted Lie algebra L̂ consisting of all the primitive elements of the Hopf algebra
U(L). In this way, by using the fact that u(L̂) � U(L), necessary and sufficient
conditions on L such that U(L) is Lie solvable can be obtained, thereby completing
the classification also in the ordinary case. Indeed, in [20] the following result was
proved:

Theorem 7 ([20]) Let L be a Lie algebra over a field F of characteristic 2. Then
U(L) is Lie solvable if and only if one of the following conditions is satisfied:

(i) L contains an abelian ideal of codimension 1 and, for every x ∈ L, one has
(adx)2 = λadx for some λ ∈ F;

(ii) L is nilpotent of class 2 and dimF L/Z(L) = 3;
(iii) L = 〈x1, x2, y〉F ⊕ Z(L), where [x1, y] = x1, [x2, y] = x2, and [x1, x2] ∈

Z(L).

4 Symmetric Poisson Algebras Satisfying a Poisson Identity

In characteristic zero, the characterization of symmetric Poisson algebras satisfying
a nontrivial Poisson identity is given by the following result of Farkas:

Theorem 8 ([4]) Let L be a Lie algebra over a field of characteristic zero. Then
S(L) satisfies a nontrivial Poisson identity if and only if L contains an abelian
subalgebra of finite codimension.

Afterwards, in [5] Giambruno and Petrogradsky extended Farkas’ result to Lie
algebras defined over arbitrary fields:

Theorem 9 ([5]) Let L be a Lie algebra over an arbitrary field. Then S(L) satisfies
a nontrivial multilinear Poisson identity if and only if L contains an abelian
subalgebra of finite codimension.

Furthermore, Giambruno and Petrogradsky established when the truncated sym-
metric Poisson algebra of a Lie algebra satisfies a nontrivial multilinear Poisson



406 S. Siciliano

identical relation. In fact, they proved the following theorem for restricted Lie
algebras, but their proof holds for arbitrary Lie algebras as well.

Theorem 10 ([5]) Let L be a restricted Lie algebra over a field of characteristic
p > 0. Then s(L) satisfies a nontrivial multilinear Poisson identity if and only if
there exists a restricted ideal H of L such that

1. dimL/H <∞;
2. dimH ′ <∞;
3. H is nilpotent of class 2.

5 Lie Nilpotence and Solvability of S(L) and s(L)

In this section we focus on Lie identities of symmetric Poisson algebras. Let P be a
Poisson algebra. One says that P is Lie nilpotent if P is nilpotent as a Lie algebra.
In this case, the minimal n such that γn+1(L) = 0 is called the Lie nilpotence class
of L. The upper Lie power series of P is the chain of Poisson ideals of P defined by
P (1) = P and P (n) = {P (n−1), P (n−1)} · P for every n > 1. The Poisson algebra P
is said to be strongly Lie nilpotent of class c if P (c+1) = 0 and P (c) � 0.

Moreover, we say that P is solvable if P is solvable as a Lie algebra. In this case,
the minimal n such that δn(P ) = 0 is called the derived length of P and denoted by
dlLie(P ). In particular, P is said to be metabelian if δ2(P ) = 0. The upper derived
series of P is defined by setting δ̃0(P ) = P and δ̃n(P ) = {δ̃n−1(P ), δ̃n−1(P )} · P
for every n > 0. Note that δ̃n(P ) is a Poisson ideal of P for every n. The Poisson
algebra P is said to be strongly solvable if δ̃n(P ) = 0 for some n. In this case, the
minimal n with such a property is called the strong derived length of P and denoted
by dlLie(P ).

The Lie properties of symmetric and truncated symmetric Poisson algebras have
been studied by Monteiro Alves and Petrogradsky in [9]. In the following theorem,
a characterization of Lie nilpotence of s(L) is obtained:

Theorem 11 ([9]) Let L be a Lie algebra over a field of characteristic p > 0. The
following conditions are equivalent:

(1) s(L) is strongly Lie nilpotent;
(2) s(L) is Lie nilpotent;
(3) L is nilpotent and dimL′ <∞.

In the next result, an explicit formula for the strong Lie nilpotence class of s(L)
is provided.

Theorem 12 ([9]) Let L be a Lie algebra over a field of characteristic p > 3. The
following numbers are equal:

(1) the strong Lie nilpotence class of s(L);
(2) the Lie nilpotence class of s(L);
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(3)

1 + (p − 1)
∑

n≥1

n · dim(γn+1(L)/γn+2(L)).

In cases p = 2, 3, the numbers (1) and (3) remain equal.

In characteristics p = 2, 3, the possible equality of (2) and (3) in the previous
theorem remains unclear, and (3) only yields an upper bound for the Lie nilpotence
class in these cases.

As shown in the next result, a symmetric Poisson algebra S(L) is strongly
solvable only when L is abelian, and the same conclusion holds for solvability
provided that the ground field has characteristic different from 2.

Theorem 13 ([9]) Let L be a Lie algebra over a field F, and S(L) its symmetric
Poisson algebra. Then the following statements hold.

(1) S(L) is strongly solvable if and only if L is abelian.
(2) If F has characteristic different from 2, then S(L) is solvable if and only if L is

abelian.

Finally, in [9] the following characterization of solvable truncated symmetric
Poisson algebras over fields of odd characteristic is obtained:

Theorem 14 ([9]) Let L be a Lie algebra over a field of characteristic p ≥ 3.
Consider its truncated symmetric Poisson algebra s(L). The following conditions
are equivalent:

(1) s(L) is strongly solvable;
(2) s(L) is solvable;
(3) L is solvable and dimL′ <∞.

In the case p = 2, conditions (1) and (3) remain equivalent.

In characteristic 2, solvability and strong solvability are not equivalent properties
for S(L) or s(L) (see [9, Lemmas 11.1 and 11.2]). In this respect, Monteiro Alves
and Petrogradsky conjectured in [9, §5.3] that a symmetric Poisson algebra S(L)
over a field F of characteristic 2 is solvable if and only if L = 〈x〉F⊕A, whereA is
an abelian ideal of L on which ad x acts algebraically. However, this conjecture was
disproved by the author in [18]. In fact, one has

Proposition 1 ([18]) Let L be a Lie algebra over a field of characteristic 2. If L is
nilpotent of class 2 and dimL/Z(L) = 3, then S(L) is solvable of derived length 3.

For an explicit counterexample to the aforementioned conjecture in [9, §5.3], let
L be the relatively free nilpotent Lie algebra of class 2 on three generators over a
field of characteristic 2. Then L does not contain any abelian ideal of codimension 1
inL. On the other hand, by Proposition 1, S(L) is solvable as Z(L) has codimension
3 in L.
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As for restricted enveloping algebras, solvability of S(L) and s(L) in character-
istic 2 turns out to be a rather complicated problem, whose solution will appear in a
forthcoming paper.

6 Derived Lengths of s(L)

In this section we deal with the derived lengths of truncated symmetric Poisson
algebras. While Theorem 12 provides a rather satisfactory method to determine the
Lie nilpotence classes of s(L), the computation of the derived lengths is a more
difficult task. A lower and a upper bound for the strong derived length is given by
the following result. As usual, we will denote by %t& the upper integral part of the
real number t .

Proposition 2 ([18]) Let L be a Lie algebra over a field F of characteristic p > 0.
If s(L) is strongly solvable, then

%log2(2 + (p − 1)d)& ≤ dlLie(s(L)) ≤ 1 +
∑

i≥1

%log2(1 + (p − 1)di)&,

where d = dimL′ and di = dim δi(L)/δi+1(L) for every i ≥ 1.

When L is metabelian, the previous result almost determines the strong derived
length of s(L), as in this case the difference between the upper and the lower bound
is at most 1. In particular, if L is nilpotent of class 2, then we obtain the exact value
of dlLie(s(L)):

Corollary 1 Let L be a nilpotent Lie algebra of class 2 over a field F of
characteristic p > 0. If s(L) is strongly solvable, then

dlLie(s(L)) = %log2(2 + (p − 1) dimL′)&.

If P is a strongly solvable Poisson algebra, then we clearly have dlLie(P ) ≤
dlLie(P ). For truncated symmetric Poisson algebras, the derived lengths can be
actually different. For instance, let n > 6 and consider the Lie algebra L over
a field F of characteristic 2 having an F-basis x, y1, . . . , yn, z1, . . . , zn such that
[x, yi] = zi and other commutators are zero. By [9, Lemma 11.2] and Corollary 1
we have

dlLie(s(L)) = %log2(2 + (p − 1) dimL′)& > 3 = dlLie(s(L)).

Lie algebras whose truncated symmetric Poisson algebras is metabelian are
described in the following theorem:
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Theorem 15 ([18]) Let L be a nonabelian Lie algebra over a field F of character-
istic p > 0. Then s(L) is metabelian if and only if one of the following conditions is
satisfied:

(1) p = 3, L is nilpotent and dimL′ = 1;
(2) p = 2 and dimL′ = 1;
(3) p = 2, L is nilpotent of class 2 and dimL′ = 2.

The next result provides a lower bound for the derived length of s(L) for a non-
abelian Lie algebra L.

Theorem 16 ([18]) Let L be a nonabelian Lie algebra over a field of characteristic
p > 0. If s(L) is solvable, then dlLie(s(L)) ≥ %log2(p + 1)&. Moreover, if equality
holds and p > 2, then L is nilpotent.

Let L be a nonabelian Lie algebra over a field of characteristic p > 0. We say
that s(L) has minimal derived length if the lower bound in Theorem 16 is attained.
We have the following characterization:

Theorem 17 ([18]) Let L be a nonabelian Lie algebra over a field of characteristic
p > 0. Then s(L) has minimal derived length if and only if one of the following
conditions is satisfied:

(1) p > 2, L is nilpotent and dimL′ = 1;
(2) p = 2 and dimL′ = 1;
(3) p = 2, L is nilpotent of class 2 and dimL′ = 2.

Plainly, the lower bound in Theorem 17 also represents the smallest possible
value for the strong derived length of a nonabelian truncated symmetric Poisson
algebra over a field of characteristic p > 0. We say that s(L) has minimal strong
derived length if this bound is attained. A combination Theorem 17, Proposition 2
and Corollary 1 yields

Corollary 2 Let L be a nonabelian Lie algebra over a field of characteristic p > 0.
Then s(L) has minimal derived length if and only it has minimal strong derived
length.
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Group and Polynomial Identities
in Group Rings

Ernesto Spinelli

To Antonio Giambruno on his 70th birthday.

Abstract In the 1980s Brian Hartley conjectured that if the unit group, U(FG), of
a torsion group ring FG satisfies a group identity, then FG satisfies a polynomial
identity. The aim of this survey is to review the most relevant results that arose
from the proof of this conjecture and discuss some recent developments and open
questions concerning ∗-group identities for U(FG) and group identities for the
subgroup of its unitary units.

Keywords Group Algebras · Unit Group · Group Identities · Polynomial
Identities · Involution

1 Introduction

Throughout let F be a field of characteristic p ≥ 0 and G a group. Write U(FG)
for the unit group of the group ring FG. We say that a subset S ⊆ U(FG) satisfies
a group identity if there exists a non-trivial reduced word w(x1, . . . , xn) in the free
group on countably many generators, 〈x1, x2, . . .〉, such that w(g1, . . . , gn) = 1 for
all g1, . . . , gn ∈ S.

In the attempt to connect the algebraic structure of FG with the group structure
of its unit group, Brian Hartley made the following conjecture.
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Conjecture 1.1 LetG be a torsion group. IfU(FG) satisfies a group identity, then
FG satisfies a polynomial identity.

We recall that a subset V ⊆ FG satisfies a polynomial identity if there
exists a non-zero element f (x1, . . . , xm) in the free algebra on non-commuting
indeterminates F {x1, x2, . . .} such that f (a1, . . . , am) = 0 for all ai ∈ V .

When F is infinite, after a first result of Gonçalves and Mandel [13] dealing with
the special case of semigroup identities (that is, identities of the form xi1 · · · xik =
xj1 · · · xjl ), Giambruno, Jespers and Valenti [6] confirmed Hartley’s Conjecture
under the assumption that G does not contain elements of p-power order if p > 0.
Some years later Giambruno, Sehgal and Valenti [7] were able to remove the
hypothesis on G.

Finally, modifying the original proof of [7], Liu [22] positively answered the
question for fields of any size.

Many years before, Isaacs and Passman (see Corollaries 5.3.8 and 5.3.10 of [24])
characterized group rings satisfying a polynomial identity. Recalling that a group
G is called p-abelian if its commutator subgroup, G′, is a finite p-group, and that
0-abelian means abelian, their result was as follows.

Theorem 1.2 The group ring FG satisfies a polynomial identity if, and only if, G
has a p-abelian subgroup of finite index.

From this theorem one deduces that if FG satisfies a polynomial identity, then
U(FG) does not necessarily satisfy a group identity. In fact, one of the easiest
consequences of the solution of Conjecture 1.1 is that, in characteristic 0, U(FG)
satisfies a group identity if, and only if, G is abelian (see Corollary 1.2.21 of [17]).
Thus, if you take any finite non-abelian group G, then CG satisfies a polynomial
identity, but U(CG) does not satisfy a group identity.

Anyway, the positive solution of Hartley’s Conjecture was the crucial step
leading to the establishment of necessary and sufficient conditions for U(FG) to
satisfy a group identity. This was first done by Passman [25] for infinite fields and
then by Liu and Passman [23] for arbitrary fields.

Theorem 1.3 Let p > 0 and G a torsion group. If G′ is a p-group, then the
following are equivalent:

(i) U(FG) satisfies a group identity;
(ii) U(FG) satisfies the group identity (x−1

1 x−1
2 x1x2)

pr = 1 for some positive
integer r;

(ii) FG satisfies a polynomial identity andG′ has bounded exponent.



Group and Polynomial Identities in Group Rings 413

Theorem 1.4 Let p > 0 and G a torsion group. If G′ is not a p-group, then the
following are equivalent:

(i) U(FG) satisfies a group identity;
(ii) U(FG) has bounded exponent;
(ii) FG satisfies a polynomial identity, G has bounded exponent and F is finite.

It turns out that the solution for finite fields is different if G′ is not a p-group,
but, in any case, if the unit group of a torsion group ring satisfies a group identity,
then it satisfies an identity of a particularly nice form.

Once that the torsion case was settled, it was natural to investigate what happens
when the group G contains elements of infinite order. Here the situation is much
more complicated because of the difficulty in handling the torsion-free part of
the group. Indeed, for any such result, a restriction will occur for the sufficiency,
pending a positive answer to the following celebrated conjecture by Kaplansky.

Conjecture 1.5 Let G be a torsion-free group. Then U(FG) contains only trivial
units, that is, units of the form λg, where 0 � λ ∈ F and g ∈ G.

In this setting Hartley’s Conjecture is not expected to hold in general. In fact, ifG
is isomorphic to the direct product of infinitely many copies of a non-abelian torsion-
free nilpotent group, for any field F , U(FG) has only trivial units, and hence is
nilpotent, but, according to Theorem 1.2, FG does not satisfy a polynomial identity.
But it is true if one restricts the assumptions onG, as deduced from Theorem 5.5 of
[9].

Theorem 1.6 Let p > 0 and G a group with an element of infinite order and
infinitely many p-elements. IfU(FG) satisfies a group identity, then FG satisfies a
polynomial identity.

In [9] Giambruno, Sehgal and Valenti proved more, classifying group rings of
non-torsion groups whose group of units satisfies a group identity. In more detail,
they proved that under this assumption the torsion elements of G form a subgroup,
T . For the converse, a suitable restriction on G/T was required, namely that it is a
unique product group, that is, for every pair of non-empty sets H1 and H2 of G/T
there exists an element g ∈ G/T that can be uniquely written as g = h1h2 with
hi ∈ Hi , in order to force the units of F(G/T ) to be trivial. For the complete result
(which is quite technical and split in several cases), we refer to the original paper
or to Chapter 1 of [17]. We confine ourselves to report here the only part which
does not require any restriction on the torsion-free part of G, as summarized in
Theorem 1.5.16 of [17].

Theorem 1.7 Let p > 0 andG a group with an element of infinite order and let the
p-elements of G have unbounded exponent. Then U(FG) satisfies a group identity
if, and only if, FG satisfies a polynomial identity and G′ is a p-group of bounded
exponent.
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All these results allowed researchers to solve problems open for decades, such
as, for instance, the classification of group rings whose unit group is solvable,
concluded by A. Bovdi [3] after a series of papers over many years beginning with
Bateman [2]. For these and other results of the same type we refer to the monograph
[17]. The aim of this note is to present some recent developments concerning group
identities for symmetric and unitary units (with respect to an involution) of FG
and discuss some open questions which naturally arise in these frameworks. To this
end, we recall that for what concerns symmetric units one can find a comprehensive
outline of the known results for the classical involution in [17]. For this reason, in
the sequel we avoid reporting in detail what is already collected in that book.

2 ∗-Group Identities for U(FG)

Assume that the group G is endowed with an involution ∗. The F -linear extension
of ∗ to FG is an involution of FG, also denoted by ∗. An element α ∈ FG is said
to be symmetric (with respect to ∗) if α∗ = α. Write FG+ for the set of symmetric
elements and U+(FG) for the set of symmetric units of FG. One of the problems
of main interest is to understand if group identities satisfied by U+(FG) can be
lifted to U(FG) or, if this is not the case, how they influence the structure of FG.

Since the 1990s a lot of attention has been devoted to the classical involution
of FG, that is, the one induced from the map g �→ g−1 on G. In the last
decade Giambruno, Polcino Milies and Sehgal considered involutions as above
other than the classical one, and recently they framed the problem in a different
setting, inspired by a classical result of Amitsur. Specifically, let R be an F -
algebra with F -linear involution ∗. We say that R satisfies a ∗-polynomial identity
if there exists a non-zero element f (x1, x

∗
1 , . . . , xm, x

∗
m) in the free algebra with

involution F {x1, x
∗
1 , x2, x

∗
2 , . . .} such that f (a1, a

∗
1 , . . . , am, a

∗
m) = 0 for all ai ∈

R. Obviously, if the symmetric elements of R satisfy the polynomial identity
f (x1, . . . , xm), then R satisfies the ∗-polynomial identity f (x1+x∗1 , . . . , xm+x∗m).
Amitsur [1] proved that also the converse is true: indeed, if R satisfies a ∗-
polynomial identity, then R satisfies a polynomial identity and, consequently, also
R+ does the same.

Following this direction, in [11] they considered ∗-group identities for U(FG).
We say that U(FG) satisfies a ∗-group identity if there exists a non-trivial word
w(x1, x

∗
1 , . . . , xn, x

∗
n) in the free group with involution 〈x1, x

∗
1 , x2, x

∗
2 , . . .〉 such

that w(a1, a
∗
1 , . . . , an, a

∗
n) = 1 for all ai ∈ U(FG). It is clear that if U+(FG)

satisfies the group identityw(x1, . . . , xn), thenU(FG) satisfies the ∗-group identity
w(x1x

∗
1 , . . . , xnx

∗
n). In the same paper the torsion case was settled proving a quite

surprising result for the formulation of which we need the notion of an SLC-
group. We recall that a non-abelian group G is said to be an LC-group (for lack
of commutativity) if, for any pair of commuting elements g, h ∈ G, at least one
among g, h and gh is central. According to Proposition III.3.6 of [15], G is an LC-
group with a unique non-identity commutator if, and only if, G/ζ(G) � C2 × C2,
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where ζ(G) is the center ofG. An LC-groupG with involution ∗ is called a special
LC-group, or SLC-group, if it has a unique non-identity commuator z, and for all
g ∈ G we have g∗ = g if g ∈ ζ(G), and otherwise g∗ = gz. In group ring theory
SLC-groups have a special role, since they occur in the characterization of group
rings whose symmetric elements commute, as proved by Jespers and Ruiz Marin in
[16]: in more detail, they stated that if p � 2 and G is a non-abelian group with
involution linearly extended to FG, then FG+ is commutative if, and only if, G
is an SLC-group. In particular, if ∗ is the classical involution, G is a Hamiltonian
2-group.

The main result of [11], as formulated in the survey paper [18], is the following.

Theorem 2.1 Let F be an infinite field of characteristic p � 2 and G a torsion
group with involution linearly extended to FG. Then the following are equivalent:

(i) U(FG) satisfies a ∗-group identity;
(ii) U+(FG) satisfies a group identity;

(iii) one of the following occurs:

(a) U(FG) satisfies a group identity,
(b) p = 0 andG is an SLC-group, or
(c) p > 2, FG satisfies a polynomial identity, and G contains a ∗-invariant

normal p-subgroup N of bounded exponent such that G/N is an SLC-
group.

For the sake of completeness, we recall that, under the same assumptions,
Giambruno, Polcino Milies and Sehgal [10] had already provided necessary and
sufficient condition so that U+(FG) satisfies a group identity, and the same result
was previously established by Giambruno, Sehgal and Valenti [8] for the classical
involution.

According to the above statements, ∗-group identities on U(FG) do not force
group identities on U(FG), but Hartley’s Conjecture remains true under the weaker
assumption that U(FG) satisfies a ∗-group identity.

Very recently in [12] the non-torsion case was investigated. Here the situation
is much more involved and an analogue of Theorem 2.1 was proven with some
restrictions upon G. For the rest of the section, let us denote by T the set of torsion
elements of G, and by P that of p-elements, respectively. For the semiprime case
the result is the following.

Theorem 2.2 Let F be an infinite field of characteristic p � 2 andG a group with
involution ∗ linearly extended to FG. Assume that G contains no 2-elements and
T is a subgroup of G. If FG is semiprime and U(FG) satisfies a ∗-group identity,
then

(a) T is an abelian p′-subgroup such that every idempotent of FT is central in FG
(and, consequently, every subgroup of T is normal in G), and

(b) G/T satisfies a ∗-group identity.
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Conversely, if (a) holds and G/T is a unique product group satisfying a group
identity, thenU(FG) satisfies a group identity.

Assume now that F , G and U(FG) are as in Theorem 2.2, but FG is not
necessarily semiprime. As stressed at the beginning of Section 4 of [12], P is a
(normal) subgroup of G. The solution for the general case is split in two parts, just
according to the structure of P , as shown in the following

Theorem 2.3 Let F be an infinite field of characteristic p � 2 andG a group with
involution ∗ linearly extended to FG. Assume that G contains no 2-elements, T is
a subgroup ofG and FG is not semiprime.

(1) If U(FG) satisfies a ∗-group identity and P is of bounded exponent, then

(a) T/P is abelian and every idempotent of F(T/P) is central in F(G/P),
and

(b) G/T satisfies a ∗-group identity.
Conversely, if (a) holds and G/T is a unique product group satisfying a group
identity, thenU(FG) satisfies a group identity.

(2) IfU(FG) satisfies a ∗-group identity and P is of unbounded exponent, then

(a’) FG satisfies a polynomial identity, and
(b’) G′ has bounded p-power exponent.

Conversely, if G satisfies (a’) and (b’), thenU(FG) satisfies a group identity.

Of particular interest is the following

Corollary 2.4 Let F and G be as in Theorem 2.3. If P is of unbounded exponent,
then U(FG) satisfies a ∗-group identity if, and only if, U(FG) satisfies a group
identity.

A first question naturally arises from the above mentioned results.

Question 2.5 Let F be an infinite field of characteristic p � 2 and G a group with
involution ∗ (and, if it helps, with no 2-elements) linearly extended to FG. Assume
that U(FG) satisfies a ∗-group identity (or, if it helps, that U+(FG) satisfies a
group identity). Is it true that T is a subgroup ofG?

Sehgal and Valenti in [26] gave a positive answer in the case in which the
symmetric units of FG with respect to the classical involution satisfy a group
identity, and characterized when this happens (under the same restrictions on G/T
discussed before Theorem 1.7). Among other things (for the complete result we
refer to the original paper or to Chapter 2 of [17]), they proved that

• the statement of Theorem 1.6 remains true under the weaker assumption that
U+(FG) satisfies a group identity, and

• if FG is as in Theorem 1.7, U+(FG) satisfies a group identity if, and only if,
U(FG) satisfies a group identity.
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In particular, unlike in [12], they allow the presence of 2-elements in G. This
generates a second question.

Question 2.6 How to modify the above Theorems if G contains 2-elements, even
under the assumption that T is a subgroup of G (and, if it helps, that U+(FG)
satisfies a group identity).

Let us briefly discuss the possible obstacles just in the semiprime case. First of
all, we must be careful with Remark 3.3 of [12], as it will not work if g has even
order. This becomes an issue in Lemma 3.8 of [12], as in the final part of the proof,
we cannot be sure that 1 + π is not a zero divisor. But in any case, that result
cannot extend to the case where H is an SLC-group. Indeed, assuming that F is
algebraically closed, we see that FH must include non-commutative matrix rings
among its Wedderburn components, and therefore it has idempotents that are not
even central in FH , let alone in FG. And such a case can arise. If H is any finite
SLC-group, then let G = H × 〈x〉, where x is a symmetric element of infinite
order. Then G is an SLC-group, and hence U+(FG) is commutative. Why is this
important? Let us come back to the classical involution. In Theorem 4 of [26] it
was established that, if p = 0 and U+(FG) satisfies a group identity, then T is
either abelian or a Hamiltonian 2-group and every idempotent of FT is central in
FG. According to the previously discussed characterization of group rings whose
symmetric elements commute, one could expect to generalize the result of [26] just
replacing Hamiltonian 2-groups with SLC-groups, but, as seen above, this cannot
be the case.

3 Group Identities for Unitary Units of FG

It is natural to ask the same questions discussed for symmetric units of FG for the
subgroup of its unitary units

Un(FG) := {α | α ∈ FG, αα∗ = 1}.

But the picture is not as clear here, and just a few general results have been proved.
Assume for the rest of this section that FG is equipped with the classical

involution. In [14] Gonçalves and Passman studied group rings whose unitary units
contain no non-abelian free subgroup (in the paper they call a group satisfying this
property 2-related). In more detail, suppose that G is finite. If F is an absolute
field, that is, algebraic over a finite field, then U(FG) is locally finite and, hence,
Un(FG) contains no non-abelian free subgroup. Therefore it has sense to ask the
question when F is non-absolute (in other words, when either p = 0 or p > 0 and
F has an element trascendental over its prime subfield). The main result they proved
is the following
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Theorem 3.1 Let F be a non-absolute field of characteristic p � 2 and G a finite
group. Then Un(FG) contains no non-abelian free subgroup if, and only if,

(a) G has a normal Sylow p-subgroup P (by convention, P = {1} if p = 0), and
(b) either G := G/P is abelian or it has an abelian subgroup A of index 2.

Furthermore, if the latter occurs, then either G = A � 〈y〉 is dihedral, or A
is an elementary abelian 2-group.

Obviously, if Un(FG) contains a non-abelian free subgroup, it cannot satisfy a
group identity. This means that if one wants to classify group rings whose unitary
units satisfy a group identity, one has to concentrate on the class of groups appearing
in Theorem 3.1. This inspired the work of Giambruno and Polcino Milies [5], where
they reached this objective when this identity is 2-free, that is, it does not vanish
on elements of order 2 (for instance nilpotency and the bounded Engel condition),
provided F a field of characteristic 0 and G a torsion group, as shown in the
following

Theorem 3.2 Let p = 0 and T the set of torsion elements ofG. IfUn(FG) satisfies
a group identity which is 2-free, then T is a subgroup ofG and one of the following
conditions holds:

(a) T is abelian,
(b) A := 〈g | g ∈ T , o(g) � 2〉 is a normal abelian subgroup ofG and (T \A)2 =

{1}, or
(c) T contains an elementary abelian 2-subgroup B of index 2.

Conversely, if G is a torsion group satisfying one of the above conditions, then
Un(FG) satisfies a group identity.

Going through the details of [5], we notice that one of the main issues is the
relation between the existence of free groups in Un(FG) and the nilpotency of
the Lie algebra of skew elements, FG− := {x | x ∈ FG, x∗ = −x}, of FG
(that should not be surprising if one looks at the general linear group, as stressed
in the Introduction of [5]). More generally, the Lie structure of FG− (which has
been extensively investigated in the last decades: for an overview we refer to
[20]) seems to deeply influence the structure of Un(FG) and Lee, Sehgal and
Spinelli used Lie methods as a main tool to explore the conditions under which
the subgroup of unitary units of FG satisfies certain group identities ([19] and
[21]).

In particular, in [21] they studied the question of when Un(FG) is both bounded
Engel and solvable (as a natural extension of what done in [19]). Of course, every
nilpotent group satisfies these properties, but even the bounded Engel property and
solvability together are not enough to guarantee nilpotence (see Section 4 of [27]
for examples): according to a classical result of Gruenberg, under these hypotheses
one can only conclude that it is locally nilpotent. However, Fisher, Parmenter
and Sehgal [4] showed that if FG is not modular (recall that FG is said to be
modular if p > 0 and G has an element of order p), then whenever U(FG) is
both bounded Engel and solvable, it is also nilpotent. Inspired by this result, Lee,
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Sehgal and Spinelli asked if it is sufficient to assume that the unitary units are
both bounded Engel and solvable, in order to prove that the entire unit group is
nilpotent. They showed that, under certain restrictions upon the field, this is the
case.

Theorem 3.3 Let F be an infinite field of characteristic p > 2 andG a group such
that FG is modular. Then the following are equivalent:

(i) Un(FG) is bounded Engel and solvable;
(ii) U(FG) is nilpotent;

(iii) G is nilpotent and p-abelian.

When FG is not modular, one has

Theorem 3.4 Let p � 2 and G a torsion group such that FG is not modular and
G has no elements of order 2. Then Un(FG) is bounded Engel and solvable if, and
only if, G is abelian.

However, restricting the field suitably, we obtain

Theorem 3.5 Let F be an algebraically closed field of characteristic p � 2 and G
a group such that FG is not modular. Then the following are equivalent:

(i) Un(FG) is bounded Engel and solvable;
(ii) U(FG) is nilpotent;

(iii) G is nilpotent and the torsion elements ofG are central.

The assumption on the field in the above statement is not imposed frivolously;
indeed, in [19], it was pointed out that if F is the field of 5 elements and G is
the dihedral group of order 8, then Un(FG) is nilpotent; however, U(FG) is
neither bounded Engel nor solvable (see Theorems 5.2.1 and 6.2.2 of [17]). Thus
Theorem 3.4 fails for an arbitrary field if we allow 2-elements.

In particular, we see that if F is algebraically closed and p � 2, then U(FG) is
nilpotent whenever Un(FG) is nilpotent. This is quite different from the situation
for the symmetric units, where there are counterexamples (recall that when G is
isomorphic to a Hamiltonian 2-group, U+(FG) is commutative, but, according to
Proposition 4.2.6 of [17], U(FG) is not nilpotent). Anyway, the state of the art
for what concerns unitary units is still too fragmentary and we are very far from
a knowledge comparable with that of symmetric units. A classification of when
Un(FG) satisfies a group identity would be a very appreciable result, but, at the
moment, the tools to attack it still seem unclear. Maybe, as in the ordinary case,
a decisive step could be to give an answer to the following question, which is an
analogue of Hartley’s Conjecture,

Question 3.6 Let G be a torsion group (and, if it helps, F an infinite or alge-
braically closed field of characteristic p � 2). Is it true that if Un(FG) satisfies
a group identity, then FG satisfies a polynomial identity?
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