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Abstract Assistive robots operate in complex environments and in presence of
human beings, as such they are influenced by several factors which may lead to
undesired outcomes: wrong sensor readings, unexpected environmental conditions
or algorithmic errors represent just few examples. When the safety of the user must
be guaranteed, a possible solution is to rely on a human-in-the-loop approach, e.g.
to monitor if the robot performs a wrong action or environmental conditions affect
safety during the interaction, and provide a feedback accordingly. The proposedwork
presents a human supervised smart wheelchair, i.e. an electric powered wheelchair
with semiautonomous navigation capabilities of elaborating a path planning, whose
user is equipped with a Brain Computer Interface (BCI) to provide safety feedbacks.
During the wheelchair navigation towards a desired destination in an indoor sce-
nario, possible problems (e.g. obstacles) along the trajectory cause the generation of
error-related potentials signals (ErrPs) when noticed by the user. These signals are
captured by the interface and are used to provide a feedback to the navigation task,
in order to preserve safety and avoiding possible navigation issues modifying the
trajectory planning.
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1 Introduction

Human robot cooperation and interaction have experienced a significant growth in
the last years to support peoplewith reducedmotor skills, both from the academia and
industrial point of view. In particular, real time feedback from the user to the robot is
an emerging requirement, with the main goal of ensuring human safety, better than a
common sensory set equipping the robot can ensure. In cooperative tasks, a prompt
feedback from the human to the robot allows to handle possible environmental fac-
tors that can change and affect the cooperative performance, and possibly mitigate
the effects of unexpected factors, as investigated in the literature [1–5].Wrong sensor
readings, unexpected environmental conditions or algorithmic errors are just some of
the factors which can expose the users to serious safety risks. For these reasons, it is
fundamental that the human operator is includedwithin the robot control loop, so that
she/he can modify the robot’s decisions during human-robot interaction if needed
[6]. Different works, such as [7, 8], have investigated these kind of applications
by considering real-time feedbacks about the surrounding environment as well as
robot control architecture and behavior via electroencephalographic (EEG) signals.
In several different robotic applications, the human electroencephalogram encodes
internal states, which can be detected online in single trial and can be used to improve
robotic behavior, e.g., smoother interaction, in rehabilitation tasks and user workload
adjustments [9]. During previous researches [10, 11], a cursor movement was used
to evoke the correct or erroneous potentials. Such a research reported the 80% of
accuracy in detecting the Error-related Potentials (ErrPs), leading to a reduction of
decoding error from 30% to less than 9%. As a consequence, the classification accu-
racy increased from 70% to almost 80% by using the online ErrP-based correction.
Another research [12] supports the feasibility of the ErrPs use by the combination
of BMI (Brain-Machine Interface) signal to decode the action commands, while
the ErrP decoding to correct the erroneous actions. The consequent offline analysis
showed an improvement into the decoding of movement-related potentials, thanks to
the introduction of ErrP classification. The average recognition of the ErrP was about
the 80%, showing a significant reduction of the global error rate in discriminating
movements.

The aim of the present paper is to develop a human-in-the loop approach for
addressing accurate autonomous navigation of an assistive mobile platform, while
simultaneously accounting for unexpected and undetected errors via human correc-
tion. In detail, a specific assistive mobile robot is investigated adding the possibility
of modifying its pre-planned navigation when it receives a message from the human
operator. The robot is a smart wheelchair, capable of performing semiautonomous
navigation, while human-robot communication is performed via Brain Computer
Interface (BCI): this device is especially useful for people who have very limited
mobility and whose physical interaction with the wheelchair must be minimal. In
detail, when the user notices the presence of an obstacle not detected by the sen-
sors installed on the wheelchair, then the ErrP signals generated in his/her brain are
recorded by the BCI system, as investigated in [13]. The ErrPs are evoked poten-
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tials recorded when the subject recognizes an error during a pre-planned task, and
described by a variation in the brain signalwithin 500ms after the erroneous response.
Consequently, an alert message is sent to the mobile robot in order to redefine the
navigation task at the path planning level. The possibility for the user to participate
to the human-robot cooperation task allows to face all those environmental changes
that the system may not be able to manage, as well as to correct possible erroneous
robot decisions due to software and/or hardware problems. The size and shape of any
undetected object, its distance from the wheelchair, together with the relative speed,
as well as EEG signal classification and communication speed, all play an important
role and should be given great consideration.

The paper is organized as follows. The proposed approach is introduced in Sect. 2
mainly focusing on the robot trajectory planning and the EEG methods for human-
robot interaction. The hardware of the system is described in Sect. 3, while Sect. 4
discusses preliminary results of the proposed approach. Conclusions and future
improvements end the paper in the last Sect. 5.

2 Proposed Approach

Assistive robots, employed to support the mobility of impaired users, are usually
equipped with several sensors, especially to detect possible obstacles on the way.
However, in some cases, these sensors can not correctly detect objects (e.g., holes
in the ground, stairs and small objects are often missed by laser rangefinders). The
proposed idea is that of including the human observation within the robot control
loop, by recording ErrP signals to detect possible changes, and sending a feedback to
the robot. The proposed human-in-the-loop approach is sketched in Fig. 1. The ROS
ecosystem was used as a base to build the proposed solution, due to its flexibility
and wide range of tools and libraries for sensing, robot control and user interface.
Description of the core modules of the proposed approach are given in the following
subsections.

2.1 Robot Navigation

The main goal of the navigation algorithm is to determine the global and local trajec-
tories that the robot follows to move to a desired point, defined as navigation goal,
from the starting position, considering possible obstacles not included in the maps
[14]. The navigation task performed by the smart wheelchair is mainly composed by
three different steps: localization, map building [15] and path planning [16]. Each
step is introduced in the following.

• Localization: the estimation of the current robot position in the environment; the
localization method is based on the AMCL (Adaptive Monte Carlo Localization),
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Fig. 1 Scheme of the proposed system that involves the human ErrP signal within a closed-loop
strategy

which exploits recursive Bayesian estimation and a particle filter to determine
the actual robot pose. The Monte Carlo algorithm is used to map the odometry
estimation acquired after the mapping phase [17]. When the smart wheelchair
moves, it records changes in the environment. The algorithm uses the “Impor-
tance Sampling” method [18], a technique that allows to determine the property
of a particular distribution, starting from samples generated by a different distri-
bution with respect to that of interest. The localization approach by Monte carlo
can be resumed into two phases. During the first one, the algorithm predicts the
generation of n new positions and each of this is randomly generated from the
samples determined in the previous step. In the latter, the sensorial recordings are
included and weighted in the pool of samples as it happens with the Bayes rules
in the Markov localization.

• Mapping: the representation of the environment where the mobile robot operates,
which should contain enough information to let the robot accomplishes the task
of interest; it mainly relies on the laser rangefinder, positioned on a fixed support
at the base of the smart wheelchair and able to measure the distance in the space
and to delineate the profile of a possible obstacle, drawing the environment map.

• Path Planning: the choice of the path to reach a desired goal location, given
the robot position; it takes into account possible obstacles detected by the laser
rangefinder. The applied navigation algorithm is the Dynamic Window Approach
(DWA) [19]. The velocity space of the robot is limited by the configuration of
the obstacles in the space and by its physical characteristics. The obstacles near
the robot impose restrictions on the translation and rotation velocities. All the
allowable velocities are calculated by a function that evaluates the distance from
the nearest obstacle to a certain trajectory and gives a score choosing the best
solution among all the trajectories.
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All the steps described above are performed via ROS modules: the wheelchair soft-
ware is basically composed of ROS packages and nodes, which acquire data from
the sensor sets, elaborate the information and command the wheels accordingly. A
description of these functionalities can be found in [20].

2.2 EEG-Based Feedback

In the proposed humal-in-the-loop approach, the wheelchair operator can interact
with the robot when he/she observes a problem during the navigation task (e.g., the
wheelchair is about to fall into something unexpected, such as a hole or an obstacle
not detected by the laser rangefinder). In detail, the system allows the operator to
send a signal to the robot in order to change the predefined path. This interaction
requires the addition of software packages to the navigation modules, whose aim is
to build the link between the BCI and navigation stack of the smart wheelchair. The
new packages implement the following steps:

1. subscribe or listen to the BCI for the trigger;
2. create the obstacle geometry;
3. pose the obstacle within the built map;
4. request a new iteration of the path planning algorithm.

When a trigger from the BCI is received, then a new unexpected obstacle is virtually
created and positionedwithin themap built. In thisway, the path planningmodule can
elaborate a new way to the goal, taking into account the newly introduced obstacle.

The BCI software is used to collect the ErrP signals and specific algorithms are
implemented to recognize them. The ErrP wave and its shape is detectable at almost
500 ms from the error recognition by the user and it is defined by a huge positive
peak, preceded and followed by two negative peaks as in Fig. 2. Consistently to the
literature, the error potentials are most prominent in the central electrodes, i.e. Cz,
Fz and Pz, as occurs in similar researches in the most cases.

As already stated in Sect. 1, authors of [12] supported the feasibility of the ErrPs
use by the combination of Brain-Machine Interface signal to decode the action com-
mands while the ErrP decoding to correct the erroneous actions. This approach has
been reproduced in the present study, simulating the presence of obstacles in the path,
originally chosen by the smartwheelchair, in order to use the generated ErrP signals,
recorded by the BCI system, to give a feedback and try to avoid the obstacles.

2.3 Navigation: EEG Feedback Integration via ROS Nodes

The integration between the smart wheelchair navigation and the EEG feedback was
realized by the creation of dedicated ROS nodes. The ROS navigation stack takes
information from odometry and sensor streams and outputs velocity commands to
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Fig. 2 Example of typical
ErrP wave shape [1]

send to the smart wheelchair. The best way to apply a correction action on the
wheelchair trajectory is by creating imagery obstacles on the map layer. The navi-
gation stack changes dynamically the cost map, by using sensor data or by sending
point cloud. In particular, a new software package has been created which allows a
link between the BCI and the navigation task.

The implemented package is able to:

• subscribe and listen continuously to the robot position;
• transform the robot pose from the robot frame to the map frame;
• subscribe/listen to the BCI for the trigger;
• create the obstacle geometry and position it on the map;
• convert it to ROS point clouds.

Then, the point clouds are published in the ROS navigation stack where the local
and global cost map parameters are modified. The implementation of the nodes
architecture is represented and detailed in Fig. 3, while the flowchart of the algorithm
is introduced in Fig. 4.

3 Experimental Setup

In this section both the smart wheelchair and the BCI used for building a prototype
of the proposed system are presented. A scheme of the system setup is reported in
Fig. 5 in order to show how the different sensors and components of the system are
connected to each other. Please note that the proposed approach can be generalized
to other hardware as well (i.e., different BCI systems, mobile robots or robotic arms).
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Fig. 3 Wheelchair package integrated with the new suggested solution in red colour

3.1 Smart Wheelchair

The mobile robot used for this study is based on the Quickie Salsa R2, an electric
powered wheelchair produced by Sunrise Medical company. Its compact size and its
low seat to floor height (starting from42 cm) gives it flexibility and grant it easy access
under tables, allowing a good accessibility in an indoor scenario. The mechanical
system is composed of two rear driving wheels and two forward caster wheels; these
last are not actuated wheels, but they are able to rotate around a vertical axis. The
wheelchair is equipped with an internal control module, the OMNI interface device,
manufactured by PG Drivers Technology. This controller has the ability to receive
input from different devices of SIDs (Standard Input Devices) and to convert them to
specific output commands compatible with the R-net control system. In addition, an
ArduinoMEGA2560microcontroller, aMicrostrain 3DM-GX3-25 inertialmeasure-
ment unit, two Sicod F3-1200-824-BZ-K-CV-01 encoders, an Hokuyo URG-04LX
laser scanner and a Webcam Logitech C270 complete the smart wheelchair equip-
ment. The encoders, inertial measurement unit and the OMNI are connected to the
microcontroller, while the microcontroller itself and the other sensors are connected
via USB to a computer running ROS. Signals from the Sicod andMicrostrain devices
are converted by the Arduino and sent to the ROS localization module. The infor-
mation provided by the Hokuyo lase scanner is used by the mapping module and by
the path planning module for obstacle avoidance. Once a waypoint is chosen by the
user, the path planning module creates the predefined path: this can be then modified
by a trigger coming from BCI signal as described before.
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EEG signals

ErrP detection by 
BCI
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virtualize the 
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refresh
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Fig. 4 The implemented algorithm flowchart. The creation of an obstacle on the virtual map is
strictly connected with the generation of the ErrP signal recorded by the BCI

3.2 BCI

The EEG data used to classify the ErrP signal were acquired using a BCI system,
constituted by a cap with 8 electrodes, and an amplifier, normally used due to the
weakness of the brain signals. The adopted equipment is composed by:

• g.GAMMAcap, equipped with different kind of active/passive electrodes, specif-
ically for EEG recordings. The disposition of the electrodes follows the Interna-
tional 10–20 System;
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Fig. 5 In the scheme all the sensors and devices involved in the robot planning and in the EEG
acquisition and analysis are reported

Fig. 6 The 8 selected
electrodes are positioned as
represented on the cup
scheme circled with red
colour

• g.MOBIlab +ADC, that collects data from a g.MOBIlab+ device, a tool for record-
ing multimodal biosignal data on the laptop or PC, namely an amplifier which
transmits the data wirelessly via Bluetooth 2.0;

• the software BCI2000.

The device supports 8 analog input channels digitalized at 16 bit resolution and
sampled at a fixed 256Hz sampling rate, which guarantees data quality and an high
signal-to-noise ratio. The selected eight electrodes are AF8, Fz, Cz, P3, Pz, P4,
PO7 and PO8 and they are positioned according to the representation in Fig. 6. The
amplifier has a sensitivity of ±500 µV.
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4 Preliminary Results

The system has been preliminary tested by simulating the smart wheelchair in the
open-source 3D robotics simulator Gazebo, together with its sensor set, and using a
real BCI for triggering the feedback signal from the user.We focus only on step (1) of
the “EEG-based feedback” described in Sect. 2.2. As such, the trials were performed
in two phases, namely the training of participants for the ErrP detection, and the test
in a simulator environment, where the wheelchair moves and the user reacts to the
appearance of a simulated obstacle.

4.1 BCI Training

The experimental trial was composed by two different phases. The first related to
the participants training for the ErrP detection, and the other related to the robot
task simulation in a simulator environment. The defined protocol for the partici-
pant training consisted of a short video with a pointer that flowed horizontally on
the screen, from the left to the right, whose goal was to reach the final destination,
defined as a red X. After that, the recorded ErrP signals were classified in order to
recognize the generated ErrP when the subject observed the obstacles appearance in
the 3D simulated scenario, i.e. Gazebo, on the way of the smart wheelchair trajec-
tory. The video also randomly showed pointers which did not arrive to the expected
goal: this “error” evoked the ErrP, considering the wrong position interpretation with
respect to the human intent. Three participants were enrolled and received the previ-
ous described training before the acquisition. The preliminary results in this training
phase allowed to recognize the ErrP signals applying a logistic classifier [21] that
distinguishes between target and non target stimuli. The average percentage of clas-
sification obtained was of 85% for not target stimuli and of 75% for the target ones.

4.2 Simulation Testing

After the training, the subjects became “virtual users” of the smart wheelchair:
equipped with the BCI system, they were positioned in front of a PC where a virtual
wheelchair was moving in the simulated environment (Gazebo robot simulation).
After choosing the end point and generating the predefined path, new obstacles were
positioned on the screen. The recorded ErrP signals were classified in order to rec-
ognize the generated ErrP when the subjects observed the obstacle appearance.

At the moment, the ErrP signals, generated by each user, were recorded and
recognized by the system and a message was written in a ROS node, interacting
with the navigation system of the smart wheelchair in order to communicate the
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3D representation of the environment in
Gazebo when the obstacle is introduced.

2D representation of the local and global tra-
jectories when the obstacle is introduced.

3D representation of the environment in
Gazebo after the ErrP feedback.

2D representation of the local and global tra-
jectories after the ErrP feedback.

Fig. 7 3D (left) and 2D (right) representation of the obstacle avoidance triggered by the ErrP signal
registration

necessity of recalculating the path. During the ErrP acquisition phase, the velocity of
the wheelchair has been decreased, and once a message was obtained, the wheelchair
was stopped in order to have time to elaborate the new path planning (see Fig. 7).

5 Conclusion

The study investigates the use of ErrP signals in a closed-loop system, proposing a
human-in-the-loop approach for path planning correction of assistive mobile robots.
In particular, this study supports the possibility of a real-time feedback between
the smart wheelchair and the BCI acquisition system, allowing the user to actively
participate to the control of the planned trajectory, avoiding factors in the environment
which may negatively affect user safety. This kind of interaction promotes the user
intervention in robot collaborative task: the user must not only choose where to go
or which object to take, but can also monitor if the task is correctly realized and
provide a feedback accordingly. This approach could be a desirable solution for a
user everyday’s life, especially those users who have limited physical capabilities to
control the wheelchair. The presence of the user in the closed-loop system promotes
his/her involvement in the human-robot interaction allowing a direct participation
and control on the task execution.
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So far, only the BCI trigger has been developed and tested in a ROS simulated
scenario, but all the architecture system has been developed with the creation of ROS
node to interface the BCI system and the smartwheelchair as described in Sect. 2.
Even if the results are at a preliminary stage, the system is able to recognize the ErrPs
generated by the presence of obstacles on the path of the smartwheelchair and send
a feedback to avoid the obstacle.

Future works include the definition of a policy to recalculate the path and avoids
wheelchair stops once the trigger has been activated, and tests in an experimental
environment. Moreover, it is necessary to involve more people in the study both for
the classification of the ErrP signals and to improve the time necessary to recognize
the object on the trajectory of the smart wheelchair. A fast communication of the
feedback from the BCI system results to the smartwheelchair is one of the most
important aspect for the feasibility and the usability of the proposed system.

Acknowledgements Authors desire to thank theM.Sc. students Karameldeen Omer and Valentina
Casadei for their contributions to this work.
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