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Abstract In a near future, robots will permeate our daily life; indeed, they have
the potential to proactively support the senior citizen in tedious and different daily
tasks (i.e. cleaning, gaming, walking activity, promote socialization). However, to
efficiently cooperate with human-beings, robots should have enhanced human–robot
interaction capabilities. This work addresses the challenge of designing a robotic
model by simulating the modality human beings interact with each other. The first
objective of this work concerns the identification of the social cues which correctly
describe the user’s emotional and engagement state during the interaction. Based
on selected descriptors, a perceptual system has been proposed to detect elderly’s
behavior in a social context. The proposed architecture is inspired to the human
brain structure as concern the functionalities modules and analogies in the modules’
location. The proposed perceptual system aims at transforming raw data coming from
three kinds of sensors (camera, microphone, and laser) into behavioral patterns by
mimicking the abstraction evolution which characterizes the consciousness process
of the human brain.
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1 Introduction

As fertility declines and life expectancy rises, the proportion of the population above
a certain age rises as well. This phenomenon, known as population aging, is occur-
ring throughout the world. The population aged 60 or above is growing at a rate of
about 3 percent per year. Currently, Europe has the greatest percentage of the popu-
lation aged 60 or over (25%) [1]. For this reason, several global initiatives focus on
defining solutions for satisfying the needs of the aging population in order to prolong
independent living. Indeed, most elderly people prefer to live independently in their
homes as long as possible, as this leads to a richer social life and it is paramount to
maintaining established habits [2].

In this context, Social Assistive Robots (SAR) can play an important role in the
promotion of quality of life by integrating activities with independent-living older
adults [3]. Using robots as home-health aids is one promising solution to support
older adults’ needs. If we want to integrate a social robot for a long-term period in
a house, one of the main goals of the robot is to create stimulating and engaging
interactions in which a user actively participates for an extended period of time.

One strategy is to provide the robot with social intelligence. Thanks to this ability,
the robot recognizes the current social behavior of the user and it is able to adapt
its behavior so that to enhance the interaction in a polite and pleasant manner [4].
It highlights the importance of developing an automated assessing of user’s social
behaviors.

The attitude of a person towards social interaction is expressed by a set of social
signals which conveys information about mental state, feelings and other personal
traits (i.e. eye gazing, postures, voice quality) [5]. In human–human interaction, the
listener automatically assesses the emotional and engagement state of the speaker.
This human inherent ability in a social context is the effect of specific processes
happening at the level of the brain, as described by Theory of Mind [6].

The challenge is how to develop a computational model that can simulate the
modality human beings interact with each other. The first objective of this work is
the identification of the social cues that are meant to describe the user’s behavior
during interaction. Among all, the ones listed in this work have been chosen as
the most representative descriptors of the human emotional and engagement state.
Secondly, this work aims at modelling a perceptual system able to recognize human
social behavior. The importance of this system is twofold. Firstly, by recognizing
human behavior online, the robot can act accordingly performing the most appro-
priate behavior (i.e. the perceptual system represents the sense block in the sense-
plan-act loopwhich characterizes any human–robot interaction system). On the other
side, the perceptual system can be used to assess human feedback on the sequence
of actions performed by the robot.

The proposed system has beenmodeled in a brain-inspired way. It implies that our
perceptual system aims at transforming raw data coming from the sensory equipment
into behavioral patterns bymimicking the abstraction process occurring in the human
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brain. The proposed perceptual model re-creates the flow of information exchanged
by the thalamus and brain cortex areas to infer the social behavior of the user.

The paper is structured as follows. Section 2 reviews the current state of the art
of brain-inspired systems. Section 3 summarized the neuroscientific findings that
guided the development of the proposed architecture. Section 4 details the social
cues of interest and the description of the system. Discussion and conclusions are
listed in Sect. 5.

2 Related Works

Biological systems provide a new source of inspiration for developing intelligent and
autonomous robots. Biological principles coming from plants or animals models are
becoming widely used in the design of robots that can sense, think, walk, swim,
crawl, or fly [7]. The innovative structures developed with this emerging field allow
achieving intelligence, flexibility, stability, and adaptation for emergent robotic appli-
cations, such as manipulation, learning, and control [7]. In this context, human brain
activity is also used as an inspiration model for robotic control architectures.

Neuro-robotic models are conceptualized as networks that produce and combine
information [8]. The information captured by the sensory channel from the environ-
ment or other neurons is integrated and distributed along with the artificial neural
network [9]. Neurophysiological insights were used to develop artificial architec-
tures. According to the task the robot needs to perform, specific functionalities of the
brain areas are replicated by neuro-robotic models. Several examples are reported in
Table 1.

Computation models of the thalamus and limbic system are implemented to repli-
cate a range of cognitive processes such as emotional feedback, selection of appro-
priate actions and memory in robotic platforms. In this context, the functionality of
the thalamus consists in pre-processing the stimuli collected from the environment.
The raw representation of the collected data is then elaborated at a higher level by
the sensory cortex. Both areas communicate with other brain-inspired modules (i.e.
amygdala) to infer the relative emotion, given the condition generating it, as shown
in [10] and [11]. The flow of information from the thalamus to the limbic system is
frequently mimicked not only to recreate some emotions, as in [10] and [11], but also
to assess user’s engagement state in human–robot interaction. The work described
in [12] shows a complete architecture that allows a robot to recognize the level of
attention of children and to react accordingly. The robotic model has been developed
by mimicking thalamus, limbic system, and prefrontal cortex’s functionalities. The
only limitation of the system described by [12] is that the child behavior assessment
is performed by detecting one social cue, the postural gesture.

To detect human behavior, multiple social cues need to be identified [5]. Multiple
social signals imply multiple sensors mounted over the robot. Due to the complexity
of information flow during the perception phase, our work proposes a brain-inspired
perceptual system able to identify the behavior of the user from the multimodal data



180 A. Sorrentino et al.

Table 1 Overview of brain-inspired applications

References Robot task Robot Input signals Brain areas

[10] Emotional
learning

None Visual and audio
data. Exchange of
information
between brain
areas

Thalamus, sensory cortex,
orbitofrontal cortex and
amygdala

[11] Artificial fear
generating

None Environmental
data

Sensory system, amygdala
system, hippocampal system
and working memory

[16] Goals
generation

NAO Visual data (colors
and shape of
objects)

Amygdala-thalamus-cortical
circuit at its functional level

[12] Joint attention
detection

Robotis
Bioloid
humanoid
robot

Visual data
(child’s posture)

Amygdala, hypothalamus,
hippocampus and basal
ganglia

[13] Person
recognition

Pioneer 3DX
(P3-DX)

Environmental
data, visual data
(body and face of
the user) and
biometric features

Hierarchical structure of the
sensory cortex and
replication of the
spatial–temporal binding
criteria

collected during the interaction. Concerning the work described in [13], our model
does not replicate the brain structures at the level of neuron configurations, but the
modules composing our system mimic functionalities of the brain areas involved. In
details, computational models of the thalamus and brain cortex are implemented.

We propose a brain-inspired model which includes insights of the Theory ofMind
to improve the human–robot interaction. Theory of Mind is commonly referred as
the inference mechanism of identifying the mental state (i.e. emotions, intentions,
beliefs) of a person, which is automatically performed by the human brain in social
situations [14, 14]. Theory of Mind can be replicated artificially by combining the
identification of multiple social cues defined in the Social Signal Processing (SSP)
field [5], as proposed by the authors of [15]. This approach opens two challenges. The
first issue is related to the identification of social cues which are more representative
of the human mental state. The sources of information of our perceptual system are
images, audio and laser data. Consequently, specific social cues have been selected
according to each modality of perception. The second challenge is relative to the way
the social signals should be combined so that to express the user’s behavior. Our work
focuses on two specific aspects of social behavior: emotional and engagement state.
Each aspect is encoded by specific patterns, expressed by a sequence of multimodal
data. Thanks to this structure, the proposed brain-inspired system can assess the
current social behavior of the user in real-time.
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3 Neuroscientific Background

In the following, we delineate the most significant functionalities of brain areas
mimicked by our perceptual system.

3.1 Thalamus

The thalamus is the biggest group of neurons, which is encompassed in the dien-
cephalon and it represents the antechamber of the brain. It receives inputs from
several systems, such as the sensory, the motor, and the limbic systems, but also
from the reticular formation. The fibers that carry this information outreach different
nuclei in the thalamus, which, in turn, send these fibers to a very discrete portion of
the ipsilateral brain cortex, except for the thalamic-reticular nucleus. This nucleus is
the only thalamic nucleus with an inhibitory activity, and it does not project directly
to the brain cortex. The thalamic networks represent the first preprocessing station
of information and the first structure related with the integration of this informa-
tion, and their neural activity is related with the consciousness state of the subjects,
indeed thalamic neurons own two different fashion to fire; tonic firing, related with
awake state, and burst firing, related with drowsiness and sleep state. The thalamic
networks represent an important stop station also for descending fibers, which travel
in the opposite direction from the Central Nervous System (CNS) to the Peripheral
Nervous System (PNS) [17].

3.2 Brain Cortex

Human brain cortices are several and they accomplish for different goals. Particu-
larly, concerning the aim of this work, sensory and associative cortices will be taken
into account. Sensory cortices are the brain areas responsible to the processing of
sensory information, such as hearing, touch, vision, proprioception, and others. Infor-
mation gathered from human sensory organs travel from the PNS to the CNS passing
throughout the thalamus nuclei, since they reach primary sensory cortices. Each
sensorial modality refers to a specific neural substrate, which elaborates the sensorial
inputs at a low level of complexity and integration. After that, the information travels
towards others sensory cortices, belonging to the same sensorial modality, which
cooperates among them analyzing different aspects of the sensorial inputs, assem-
bling them, to reach a higher level of integration and complexity. Subsequently, the
information is sent towards associative areas, in which it is merged with other types
of information. At this step, the information is not strictly related to the unimodality
nature of the stimuli. It is shaped by an increasing level of abstraction and complexity.
These areas are not related to a specific sensorial modality, quite the opposite, they
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handle the integration of several types of information together, to accomplish a higher
level of processing. That represents one of the prerequisites to create consciousness
[18].

4 Brain-Inspired Perceptual System

This work proposes reverse engineering of the human brain functionality to improve
human–robot interactions.

In the designing phase, a set of social cues representative of the human behavior
has been selected based on the findings highlighted by the SSP research field [5].
The chosen social cues belong to three input modalities: image, audio, and laser. It
is the explanation behind the installation of the camera, microphones, and laser scan
over the robotic platform.

In the implementation phase, the ability of the brain to process stimuli from the
environment is mimicked by the interconnection of threemodules: thalamus, sensory
cortex and associative cortex. The functionality of eachmodule shows analogies with
the abilities of the corresponding human-beings’ neural structure. Besides, the flowof
information across the modules is characterized by an increasing level of abstraction,
which extends structure complexity and recalls the “convergence-zone” described
by Damasio [19].

Theoverall architecture of the system is shown inFig. 1.Thefirstmodule coincides
with a lower level of abstraction (thalamus). In this layer, raw data collected during
the interaction are preprocessed to reshape them. The medium level of abstraction
corresponds with the second module (sensory cortex), where the system processes
the reshaped data to extract social cues defined in the design phase. At the higher
level of abstraction (associative cortex), the social signals are merged together to be
descriptors of a particular social behavior. Descriptors are conveniently combined to
perform the automatic assessment of human behavior online.

4.1 Social Cues

Data recorded by the sensors mounted over the robot are used to detect social cues.
Social cues are descriptors of the behavioral state of the user during the interaction.
Among the social cues described in [5], this work focuses on the following ones.

1. Posture and body movements: since it is assumed unconsciously, body posture
represents honest information to assess the engagement of the user during the
interaction [20]. In this work, the identification of inclusive and non-inclusive
postures is performed. In details, the features of interest consist of body orien-
tation and interpersonal distance between the user and the robot. The quantity
of motion performed by the user during the interaction expresses the current
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Fig. 1 Architecture of the proposed brain-inspired perceptual system

emotional state. Based on Darwin’s discoveries [21], specific changes in arm
movements and walking parameters (i.e. gait) express social affective states. For
example, frequent changes of posture and high quantity of motion are usually
related to embarrassment [22]. The recognition of the body postures and counting
of their occurrences aims at assessing the engagement level of the user in the
social context.

2. Facial expressions: they directly communicate the affective state of a person
[23]. In details, facial expressions allow the identification of six emotions: fear,
sadness, happiness, anger, disgust, and surprise.

3. Head orientation: it is described by the eye-gazing. It is the key component of
the joint attention mechanism in the human–human interaction. By focusing on
a certain object, one person keeps the eyes in the direction where the object is
located and automatically bring the other person to look at the same direction
(joint attention) [24]. Besides, when two people are engaged in eye contact, the
interaction is perceived more likable [25]. Eye gazing provides an insight on the
engagement level of the user and a feedback on the attention captured by the
robot during the interaction [12].

4. Verbal messages: this category of social cues includes repetition, incomplete
words, amount of silence during the interaction. The repetition of words in a
small amount of time can be connected to a particular cognitive state of the user
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(i.e. confusion) or it can be used as an input to modify the current behavior of the
robot. The presence of incomplete words during the dialog can be an evidence of
cognitive decline. In this context, the absence of speech is an important indicator
to understand not only the role of the user in the interaction (speaker or listener)
but also to evaluate the current emotional and engagement state [5].

5. Voice quality: it is described by a set of prosodic features of the speech signal
to detect the emotional state of the user [26]. Tempo, energy and pitch are the
prosodic features of interest. Tempo is defined as the speaking rate detected
in the signal, i.e. the number of phonetically relevant units. Together with the
information carried by energy feature, tempo is an emotional descriptor [27].
Pitch provides insights relative to the personality traits, such as lack of hesitations
[27].

6. Vocalizations: they encode the emotion of the person speaking. Identifying two
groups of vocalizations is possible. Linguistic vocalizations include small words
(i.e. “ehm-ehm”, “ah-ah”) which occur more often when a person is feeling
difficulty for the situation [28]. Non-linguistic vocalizations belong to the non-
verbal sounds like sobbing, crying, laughing and they are more representative of
the overall emotional state of the user.

4.2 Data Acquisition and Pre-processing

The model has been developed to enrich the interaction of the elderly user with
ASTRO robot. ASTRO is a service robot designed to assist an elderly person with
mobility needs. The first version of this robot was developed under ASTRO mobile
project [29] and it was refined under ACCRA project [30]. ASTRO is based on
the Scitos G5 robotic platform (Metralabs GmbH, Germany). Concerning safety,
SCITOS G5 is equipped with a bumper and a couple of emergency-stop buttons to
the stopmotor. About Human–Machine-Interface (HMI) two touch screens for direct
access to the services were mounted on the front and on the back side of the robot.
External sensors were integrated into the system to extend the sensing abilities of
ASTRO.

On the front, the platform is improved with an additional laser (Laser Sick 300)
for the perception of the surrounding environment and the detection of walking
parameters. SICK 30B-2011BA is a 2-dimensional laser sensor for area scanning.
The light source of the sensor is a pulsed light laser diode (infrared) of wavelength
785 nm with laser class 1 safety. The scan area is 270º semicircle with an angular
resolution of 0.5º. Scans are performed at a frequency of 12,5 Hz. The detection
distance range is 30 m. These sensors can acquire a different type of information.

The ORBBEC Astra Pro1 camera is mounted on the front of ASTRO to collect
visual data from the environment and from the user. It is an RGB-D camera which
provides, at the frame rate of 30 fps, RGB images with a resolution of 1280 × 720
pixels and depth images with a resolution of 640 × 480 pixels. One of the main

1https://orbbec3d.com/.

https://orbbec3d.com/
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Table 2 Summary of social
cues

Behavioral
aspect

Social cue Features Sensor

Engagement
state

Body
posture

Body
orientation

Camera

Interpersonal
distance

Laser

Head
orientation

Eye gazing Camera

Emotional state Expression Facial
expression

Camera

Voice quality Tempo Microphone

Energy Microphone

Pitch Microphone

Engagement
and emotional
state

Quantity of
motion

Arm
movements

Camera

Walking
parameters

Laser

Verbal
messages

Repetitions Microphone

Incomplete
words

Microphone

Amount of
silence

Microphone

features of the Astra Pro camera is the range it can cover. The range of the camera
covers up to 8 m of distance. The camera integrates two built-in microphones, which
can be used to record the surrounding sound and user’s speech.

Multidata recording is handled by the thalamus module which collects the
incoming signals and pre-processes them in terms of synchronization and filtering.
Furthermore, the thalamus module reshapes the collected data accordingly to the
requirements of the feature extraction’s algorithms of the sensory cortex module.
The detection of the aforementioned social cues is performed by integrating appro-
priate sensors and implementing dedicated machine learning algorithms over the
robotic platforms. Table 2 summarizes the relation between social cues, the sensor
used to collect corresponding raw data and the aspect of the human behavior they
are more representative of.

4.3 Features Extraction

The second module is composed of the set of feature extraction techniques, each of
them aims at detecting a certain cue from the incoming signals. This module consists
of three blocks. Mimicking the functionality of the sensory cortex, which processes
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unimodal signals in the human brain, each block composing the second module
takes as input one interaction modality. In details, an image for the visual modality,
a speech signal for the audio modality and a laser data for the motion modality.

On the image data, the following feature extraction techniques are applied.

• Pose estimator: to detect the posture of the user during the interaction. It consists of
a skeleton tracker which extracts the 3d position of joints and compare the current
joint configuration with a set of given meaningful poses. The methods developed
by [31] allows the identification of joint poses in real-time with high accuracy
without taking as input depth information. It can accelerate the perception process.

• Facial expression recognizer: to recognize the emotional state of the user when
the face is visible from the robot perspective. Among all the available algorithm,
a face detector based on Viola and Jones algorithm ([32]) is used to detect the face
in the image. The face profile is then sent to a cloud face expression recognition
API (i.e. Microsoft Face API) to select the emotion with the higher confidence
level.

• Eye gazing estimator: to evaluate the engagement state of the user in interaction
and to guide the attention of the robot towards the direction the user is looking at.
Eye gazing estimator relies on the 2D data coming from the camera by using the
more reliable technique among the ones described in [33].

On the speech signal, the following feature extraction algorithms are applied.

• Verbal messages detector: to identify the repetition of specific words and count
the number of incomplete words, automatic transcription of dialog can be used
to identify the repetition of specific words of interest. Given the speech-to-text
output, the assessment of the number of times sequence of words are repeated
can be performed. On the other hand, the recognition of incomplete words is out
of the current development due to the challenges related to it. The presence of
silence in the speech can be recognized by applying a Voice Detection Activity
(VAD) algorithms. They allow the machine to distinguish from an audio frame
containing silence from another with data.

• Voice quality estimator: to calculate the prosodic features (tempo, energy, and
pitch), the tools listed in [5] can be combined;

• Vocalizations recognizer: it can be built over an automatic speech recognizer to
identify specific linguistic elements (“uhm”, “ehm”, “ah-ah”) and certain sounds
expressing emotional states of the user. Automatic speech recognition algorithm
(i.e. Google Speech API, Microsoft Speech API) can be used to detect specific
words of interest.

On the laser data, the following feature extraction techniques are applied.

• Leg’s centroid detector: this technique permits the computation of the interper-
sonal distance between the user and the robot. The distance is an indicator of the
established relationship between the user and the robot (proximity feature) [5].

• Walking parameter recognizer: to evaluate the quantity of motion of the user. The
quantity ofmotion expresses the feelings towards the social situation. Thewalking
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parameter detected in this work is the gait parameter, which is computed terms of
velocity and acceleration of the walking performance in front of the robot.

Most of the techniques described above rely on pre-trained models available
on the Cloud. The novelty of this work is to combine them successfully by paral-
lelizing the procedures. Due to the high workload, the strategy adopted to perform
the feature extraction online is to process the data on Cloud so that to reduce the
amount of running processes on the robotic platform. Furthermore, the pre-trained
models strictly depend on the data they are trained on. Since in most of the cases
the models are trained on datasets composed by young people’s features, the models
will be re-trained on a larger dataset including elderly data.

4.4 Behavioral Pattern Generation

The term behavior refers to (human) actions associated with emotions, personality,
and psychological state [34]. In this work, the behavior of the user is analyzed in two
different aspects: engagement in the conversation and emotional perception of the
situation, which are representative of the current mental state of the user. The two
aspects characterize the prototypical nature of human behavior in a social situation.
The strategy adopted in this work is to combine the unimodal attributes extracted by
the sensory cortex based on the behavioral aspects they represent the most. The idea
is to represent the behavior as a tensor of multimodal data.

To automatically exploits the complementarity and redundancy ofmultiplemodal-
ities, an artificial neural network model is implemented to construct a joint mutual
representation [35]. By using a joint representation, it is possible to compute similar-
ities between the features in the representational space which reflects the similarities
in the corresponding semantic concepts [36], that in this work are the behaviors. The
neural network for multimodal representation is fed by the features of each modality.
The architecture is composed of individual neural layers (one for each modality)
alternated by hidden layers, which project the features into the joint space [35].

As shown in Table 2, it is possible to identify features that are more likely to
be a meaningful descriptor of a particular behavior (i.e. the interpersonal distance
and body posture of the user are meaningful descriptors of the engagement aspect).
Tensor composed by the features belonging to a certain behavioral aspect can be
used as training data of the neural network. Even if neural networks require a large
amount of training data, they provide superior performances in joint representations
tasks [35].
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5 Discussion and Conclusion

Our work represents a new strategy for human behavior recognition in human–robot
interaction. Since human being is a social animal and it can handle a social situation
in a fast and appropriate way, the idea is to develop a multimodal perceptual module
inspired to the human brain. Concerning previous works, the proposed architecture
is composed by a confined number of modules organized in a hierarchical structure,
influenced by findings of Theory of Mind. Furthermore, the hierarchical structure
underlines the abstraction process developed to transform raw data into meaningful
behavioral descriptors. This work provides a solution to the proper features selection
and descriptors to capture human social signals by combining insights coming from
social signal processing. By automatic assessing of human behavior, the system
contributes to the implementation of a robotic social intelligence.

A limitation of the proposed system is relative to the absence of decision-making,
planning, and acting modules. A possible approach is to re-create them in a brain-
inspiredway and to provide a complete interaction system. For example, the decision-
making process can be included by adding an orbital prefrontal module, able to select
the most appropriate robot’s response based on the detected human behavior.

Another limitation regards the lack of availability of datasets to train the features
extractionmodels. Tomake the systemworking for elderly users, the learningmodels
should be trained on them. One possibility to overcome this issue is to organize an ad-
hoc experimental session to collect raw data of interest. By increasing the features
datasets, it is possible to increase the training dataset also fed into the behavioral
pattern generation model. It will lead to a more reliable recognition system.

As specified above, the aim of this work is to describe a novel perceptual model
for human behavior recognition based on selected social cues, expressed by the user
involved in the interaction.Thisworkdetails the theorical backgroundand the insights
behind some designing choices. As future works, we will organize specific experi-
mental sessions to test the proposed architecture, developed by using the approaches
described in this paper. Besides, we will like to improve the system by enhancing the
abstraction process. Future development involves the abstraction of social signals
into social actions so that to have a system able to detect the social role [37] and the
intentions of a person. It is possible to reach this aim by integrating the perception
module with a memory structure continually updated with robot’s experiences.
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