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Preface

We are delighted to introduce the proceedings of the 16th EAI International Conference
on Security and Privacy in Communication Networks (SecureComm 2020). This
conference has brought together researchers, developers, and practitioners from around
the world who are leveraging and developing security and privacy technology for a safe
and robust system or network.

These proceedings contain 60 papers, which were selected from 120 submissions
(an acceptance rate of 50%) from universities, national laboratories, and the private
sector from across the USA as well as other countries in Europe and Asia. All the
submissions went through an extensive review process by internationally-recognized
experts in cybersecurity.

Any successful conference requires the contributions of different stakeholder groups
and individuals, who have selflessly volunteered their time and energy in disseminating
the call for papers, submitting their research findings, participating in the peer reviews
and discussions, etc. First and foremost, we would like to offer our gratitude to the
entire Organizing Committee for guiding the entire process of the conference. We are
also deeply grateful to all the Technical Program Committee members for their time
and effort in reading, commenting, debating, and finally selecting the papers. We also
thank all the external reviewers for assisting the Technical Program Committee in their
particular areas of expertise as well as all the authors, participants, and session chairs
for their valuable contributions. Support from the Steering Committee and EAI staff
members was also crucial in ensuring the success of the conference. It was a great
privilege to work with such a large group of dedicated and talented individuals.

We hope that you found the discussions and interactions at SecureComm 2020,
which was held online, enjoyable and that the proceedings will simulate further
research.

October 2020 Kun Sun
Sara Foresti
Kevin Butler

Nitesh Saxena
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A Practical Machine Learning-Based
Framework to Detect DNS Covert
Communication in Enterprises
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Abstract. DNS is a key protocol of the Internet infrastructure, which
ensures network connectivity. However, DNS suffers from various threats.
In particular, DNS covert communication is one serious threat in enter-
prise networks, by which attackers establish stealthy communications
between internal hosts and remote servers. In this paper, we propose
D2C2 (Detection of DNS Covert Communication), a practical and flex-
ible machine learning-based framework to detect DNS covert communi-
cations. D2C2 is an end-to-end framework contains modular detection
models including supervised and unsupervised ones, which detect multi-
ple types of threats efficiently and flexibly. We have deployed D2C2 in a
large commercial bank with 100 millions of DNS queries per day. During
the deployment, D2C2 detected over 4k anomalous DNS communica-
tions per day, achieving high precision over 0.97 on average. It uncovers
a significant number of unnoticed security issues including seven com-
promised hosts in the enterprise network.

Keywords: DNS · Malicious domain detection · Data exfiltration ·
DGA

1 Introduction

As a core infrastructure on the Internet, the Domain Name System (DNS)
is commonly used in all kinds of Internet applications, to translate easy-to-
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
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2 R. Tang et al.

Fig. 1. Examples of (a) normal DNS lookups, (b) DNS-based data exfiltration, and (c)
DNS-based C&C.

recognize domain names into IP addresses. Unfortunately, the DNS system suf-
fers from known vulnerabilities, such as DDoS [27], spoofing [24] and other
exploits [8,30,36]. To defend against these attacks, approaches such as [10,18,24]
have been proposed. Unlike those traditional attacks which target DNS system
itself, DNS covert communication is leveraged to transmit messages cross the
boundary between an enterprise’s LAN (i.e., office network and datacenter) and
the Internet, through DNS messages in a stealthy and unauthorized manner.
However, the defense against DNS covert communication in enterprises is still
not well-studied, and is the focus of this paper.

In enterprises, security tools are commonly deployed to closely monitor the
traffic between the enterprise’s LAN and the Internet to detect serious security
attacks such as data exfiltration (which transmits valuable internal data to the
Internet), command-and-control (C&C) of internal hosts by external attackers,
and so on. However, those data exfiltration and C&C using covert communication
via the DNS traffic [7,8,22,23,28] are still hard to detect.

Figure 1 shows examples of normal DNS lookup and DNS covert communi-
cation. In the normal DNS lookup in Fig. 1(a), a normal host queries its local
DNS server about google.com, and the local DNS server then iteratively queries
DNS root server and .com top-level domain server (both are omitted in the
figure) and relays the response (which indicates the corresponding IP address is
172.217.164.100 ) from the authoritative name server for google.com to the host.
Figure 1(b) shows an example of real point of sale (POS) malware, in which POS
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malware exfiltrated credit card information in the domain names of the DNS
queries [20]. Such exfiltration incidents (e.g., MULTIGRAIN [20], UDPoS [28])
caused many loss to the users and providers. The compromised host encodes the
stolen credit card information as subdomains in the domain name to be queried,
and when the query arrives at the authoritative name server controlled by the
attacker, the attacker can then easily decode the credit card information from
the queried domain name. Figure 1(c) shows an example of DNS C&C [22] where
a malware-infected host talks to and receives command from its C&C server by
sending a DNS query message to and receiving corresponding DNS response from
the compromised authoritative name server, which is the C&C server. In this
example, the seemingly-random domain name (rohgoruhgsorhugih.nl) queried
are actually dynamically generated by Domain-Generation-Algorithms (DGAs)
and automatically synchronized between the compromised host and the C&C
server [9,13,29,30,35,36].

Therefore, new detection methods are needed to detect these DNS covert
communication because traditional security tools based on blacklists, rules,
signatures cannot enumerate or capture the dynamically changing subdomain
names in the DNS covert communications exemplified in Fig. 1 (b)(c).

Our intuitive idea in detecting DNS covert communication is to apply
machine learning (ML) to capture a suspicious domain based on its features
(see the feature list in Table 2, e.g., the length of the domain). Although this
idea is promising, previous ML-based approaches along this direction have not
been deployed in the real-world enterprises yet, to the best of our knowledge,
due to the following the three challenges.

First, the performance of different ML algorithms might be different for dif-
ferent enterprises because the DNS traffic data distribution might be different.
Furthermore, the machine learning algorithms used in previous works, super-
vised models perform better and are preferred for some kinds of known threat
types, while unsupervised models are more preferred for some unknown but rare
threats. Thus, the algorithms used should be generic and flexible (as opposed to
being fixed) in the detection system. Second, different DNS covert communica-
tion threats might have different patterns, thus previous machine-leaning based
approaches, to the best of our knowledge, so far only focuses on specific types
of such attacks, e.g., [7,8] only detect data exfiltration, and [30] only detects
DGA domains. However, enterprises in the real-world are interested in detect-
ing various attacks, thus are reluctant to deploy the aforementioned piece-meal
approaches that can detect only one type of DNS covert communication. Third,
a practical ML-based detection system needs to have feedback mechanisms to
either add labeled data for re-training in the supervised approaches and/or tune
the parameters in the unsupervised approaches, and also fully utilize (as opposed
to replacing) the traditional DNS security tools such as the domain blacklist.

To tackle the above challenges, in this paper we propose a practical, flexi-
ble and end-to-end ML-based framework, called D2C2 (Detecting DNS Covert
Communication), to effectively detect various DNS covert communications in
enterprises by leveraging supervised and unsupervised classifiers trained by var-
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ious types of features extracted from DNS logs. It is an end-to-end framework
and consists of several modules with an intuitive but efficient workflow, which
is easy to be deployed and maintained in enterprise environments. One flexible
detection module is used to detect all types of covert communication threats
via domain names in DNS traffic. D2C2 also uses feedback to take advantage of
manual investigations on alerts to improve detection performance. The results
of detection are aggregated and visualized, for better display for the operators,
to make D2C2 more friendly to the users.

In the flexible detection module, modular multiple detection models are used,
including supervised and unsupervised approaches so that, for each type of
threat, the most suitable model (detector) for it can be applied. Based on all
results aggregated from detectors, D2C2 is able to reveal covert communication
threats in a comprehensive way. The flexible and modular design of multiple
detectors also makes it very flexible. Each detector can be adjusted easily and
individually for updating or modification, e.g., model tuning or re-training.

Our major contributions can be summarized as follows.

– We propose the first practical, flexible, and end-to-end ML-based framework,
D2C2, which is easy to be deployed in enterprises to detect DNS covert com-
munication threats, to the best of our knowledge.

– We design a modular threat detection component which consists of super-
vised and unsupervised methods in series, and can be modified flexibly and
individually to handle different data distribution in different enterprises.

– We deployed D2C2 in a large commercial bank with more than 25K hosts,
detecting more than 100 millions DNS queries per day. D2C2 is the first large-
scale deployment of DNS covert communication detection system in the wild,
to the best of our knowledge.

– Based on our evaluation over 5 billion DNS logs, D2C2 detected 4k anomalous
logs per day efficiently, and achieved high precision (over 0.97). It uncovered
real covert communication threats in the wild, including 7 compromised hosts
unknown to the operators previously.

2 Background

2.1 Domain Name System

A DNS log contains several important fields: NAME (the queried domain name),
TYPE (A for IPv4 address, CNAME for canonical names, TXT for text records
and etc.), and RDATA (the resource) [21]. For example, the query in Fig. 1(a)
contains the queried name (www.google.com), class (IN ), type (A). The response
log contains the response: RCODE (Response Code), TTL (Time to Live) and
the answer, and the corresponding query. The answer is the IPv4 address(es) for
the queried name. RCODE indicates the condition of the answer, NOERROR
(in this example) means a normal answer, and NXDomain indicates that the
queried name does not exist.
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Fig. 2. Typical types of DNS external exploits threats.

Although DNS is a fundamental system that many services rely on, some
enterprise operators treat DNS as a “set and forget” infrastructure, and do not
update them from time to time with the latest security mechanisms [17]. For
example, DNSSEC [12] is one security extension of DNS proposed early, but its
adoption is quite slow till recently [10,15]. Some operators may be interested in
the availability of DNS only when DNS servers go wrong.

Figure 2 shows some typical exploits against DNS [17]. Attacks against DNS
infrastructure itself (i.e., DDoS and spoofing) are much easier to be noticed
because it leads to the failures or errors in DNS servers. DDoS (Distributed
Denial of Service) attacks compromise the availability of DNS, and spoofing (to
redirect users to attackers) leads to wrong or unreachable destinations. Besides
these, some attackers take advantage of the lack of monitoring on DNS traffic,
and choose DNS as a channel for covert communication (in bold in Fig. 2), which
is more difficult to notice.

2.2 Covert Communications in DNS Channel

In this paper, we focus on DNS Covert Communication, which is one of the
most important DNS-related threats in enterprise environments, where operators
pay close attention to malicious communication to the Internet. In a covert
communication case, attackers use DNS to establish a communication channel
between compromised hosts and remote servers, without being monitored by
other security measures.

A common attack is to encode data in certain fields in the DNS packet
[8,17,31]. Attackers can simply use the subdomains as payloads, encoding data
into the NAME field like “<encoded...information>.evildomain.com.” as shown
in Fig. 1(b), which is known as data exfiltration. Such encoded data are usually
long strings that are not commonly seen in normal domain names. Some attackers
also use DNS channel to transmit C&C communication between compromised
hosts and remote C&C servers. In this way, the compromised hosts can inform
the attackers of their current status. Figure 1(c) shows an example of a host
querying a C&C domain, which is generated by an algorithm (IRCBot). Obvious
differences can be seen between popular domain names and this domain name,
which contains no recognizable words or abbreviation.

In general, malicious communication through DNS channel can be deter-
mined by two indicators: whether the DNS packets carry malicious payloads or
the hosts connect to malicious destinations. As mentioned before, the domain
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name directly tells where the host is looking for, and it also can be used to carry
messages. Besides domain name in NAME field, RDATA field in response also
provides a good payload for attackers. RDATA fields in TYPE CNAME or TXT
packets allow more characters to be sent, which means larger “bandwidth” for
attackers [17,23]. However, TYPE A (and AAAA) logs account for the vast
majority of all DNS logs (see data trace statistics in Sect. 5), therefore in this
paper we consider anomalies in domain names as our primary threats
to be detected in this paper.

In this paper, we only focus on domains that are related to covert communi-
cation threats (mainly data exfiltration and C&C threats). However, not all mali-
cious domains are related to covert communication. Some malicious domains are
disguised for phishing, e.g., Domain Shadowing (hijack normal domains and cre-
ate new subdomains to redirect users [19]) and Typo-Squatting (register domain
names which are similar to popular websites and leverage typos of users [34]),
which are not considered as covert communication.

2.3 Related Work

Exfiltration in domain names, by nature, contain more information because of
the extra payload, thus are longer than normal ones. Thus, some security engi-
neers detect suspicious domains using a domain name length threshold. However,
such signature-based methods do not always work due to the static threshold
and can be easily evaded. In recent years, anomaly detection based approaches
are proposed to detect exfiltration based on features in DNS traffic. Das et al.
detect encoded data in DNS traffic related to exfiltration and tunneling [11].
Ahmed et al. present an Isolation Forest approach to detecting exfiltration in an
enterprise [7,8]. However, these approaches have not been tested on real attacks
in the wild, but only on synthetic data generated by toolkits.

Many prior work about C&C communications focused on DGA [9,13,29,
30,35,36], which are widely used to generate seemingly random domain names
(Algorithmically-Generated Domains, AGDs). AGDs appear in many security
events, for instance, botnets, to avoid traditional blocking mechanisms like black-
lists, sinkholes or signature-based firewalls. Many prior studies used classifiers to
detect AGDs because they are different from normal domain names. Antonakakis
et al. present an approach to detecting DGA based on Bipartite Graph Recursive
Clustering and multi-class Alternating Decision Trees from NXDomains (queries
for non-existed domains) [9]. Schüppen et al. propose FANCI, using Random
Forests (RF) and Support Vector Machines (SVM) to detect DGAs with a high
accuracy [30]. Sun et al. use a Heterogeneous Information Network to model the
DGAs and detect them via transductive classification [33]. Tong et al. propose
D3N, a system using Convolutional Neural Networks (CNN) to detect DGA
domains from NXDomains [35]. Most of these classifiers are supervised because
researchers can easily get DGA domains as positive samples by synthetic gener-
ating, but there are also unsupervised approaches used in detecting them. Gao
et al. use X-Means to cluster domains, also from NXDomains [13]. Zang et al.
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Fig. 3. The framework overview of D2C2. Figure (a) shows the overview of three stages
in D2C2. Figure (b) shows the detailed workflow of the Threats Detection module.
Dashed lines denote malicious samples detected and dotted denote benign ones.

extract features from domain names and other registration information and use
X-Means algorithm to detect AGDs related to Fast-flux [36].

Summary: Each of the aforementioned prior studies focus on just one specific
type of anomalous domain names. However, in enterprises, operators have to
face threats of all kinds, thus would need lots of efforts to assemble and tune the
above “piecemeal” solutions. Therefore, we hope to design a generic framework
that is directly deployable, detecting multiple types of covert communication
threats with high flexibility.

3 Framework Overview

In this section, we present the core idea for our design and the overview of D2C2.

3.1 Design Goal

Our design goal is to develop a practical framework to detect covert
communication in DNS traffic in enterprise environments. Such a framework
should be easy to deploy in real-world enterprise environments, and it should be
able to achieve high performance with low overhead.

DNS covert communication consists of data exfiltration, C&C communica-
tion and other kinds of threats. To detect these threats, a multi-class classifier
seems suitable. However, using one detection model for all the above threats will
be inflexible, and such a complex model makes it hard for parameter tuning,
which we want to avoid as much as we can, since data distribution changes over
time and over different enterprises. Therefore, we use multiple individual detec-
tion models (each one is called a detector and focuses on certain types of DNS
covert communication threats) instead of one complex model. For each detector,
we can choose the most effective algorithm, based on their performance and feed-
back. Such a modular detection module enables us to update or replace models
flexibly. For example, in case the data distribution changes (e.g., over time or
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Table 1. Alternative models for each detector.

Detector Alternative models

Data exfiltration Random forest (RF)

Support vector machine (SVM)

Multi-layer perceptron (MLP)

DGA RF, SVM & MLP

Outlier Isolation forest (iForest)

X-Means

when new APIs deployed), the re-training or model tuning can be done indi-
vidually, without the need to adjust the overall system workflow. Such updates
can be triggered periodically or manually based on the feedback. As a result,
the workflow of D2C2 stays the same, making it easy to be deployed in practice.
Meanwhile, our detection models are very flexible for modification to achieve
better performance in real-world detection.

The manual investigation is very necessary for a security system to confirm,
analyze and mitigate reported threats. We hope that D2C2 is able to learn
from these manual investigations. Thus we design D2C2 as a human-in-the-loop
(HITL) one with feedback from security engineers. All investigation results can
be further utilized for threshold adjusting, model tuning or re-training.

3.2 Overview

An system overview of D2C2 is shown in Fig. 3(a), which can be divided into
three major stages: Processing Stage is used to read and parse raw data. Detec-
tion Stage is used to extract certain features and detect threats in DNS logs via
machine learning based algorithms. Investigation Stage is to confirm the results
from detection results and generate the overall reports to operators.

Processing Stage: This stage has only one Data Parsing module. First,
D2C2 parses the raw data, extracting user demographics, DNS packets and
other network information. The raw data consists of both DNS queries and
DNS responses. As mentioned in Sect. 2.1, a DNS response already contains its
corresponding query, thus for a query which has a response, D2C2 only parses
the response as the input. A query without response (due to time-out or other
errors) will be used directly as input with an added tag “no response”.

Detection Stage: The detection stage is composed of three modules: Blacklist,
Feature Extraction and Threats Detection. Blacklist module first filters the
logs, to efficiently detect known malicious domains with low overhead. It is cre-
ated from the enterprise blacklist maintained by the operators and is updated by
manual investigation feedback and threat intelligence. Second, Feature Extrac-
tion module extracts features from the remaining logs. Last, we detect multiple
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Table 2. Features extracted from the domain names.

# Feature Type D-Exfil D-DGA

1 Length of domain name Integer � �
2 Length of subdomain Integer �
3 No. of labels Integer � �
4 Longest label length Integer � �
5 Contains one-character label Boolean

6 Contains IPv4 Boolean

7 Has “WWW” prefix Boolean

8 Alphabet size Integer �
9 No. of uppercase characters Integer �
10 The ratio of digits Float � �
11 Ratio of hexadecimal parts Float �
12 Ratio of vowels Float �
13 Ratio of underscore Float

14 Ratio of repeat characters Float �
15 Ratio of consecutive consonants Float �
16 Ratio of consecutive digits Float � �
17 Shannon entropy [16] Float � �
18 Gibberish score [26] Float �
19 Bigram of domain name Vector �

types of threats using Threats Detection module. The threats detection mod-
ule contains multiple chosen classifiers (detectors), each of which focuses on one
or more specific types of threats. Detectors can be modified according to the
change of data. Results combined from all detectors will be aggregated and then
sent for further investigation.

A more detailed architecture of Threats Detection is shown in Fig. 3(b), with
three detectors in series. Simply, a sample detected as malicious by one detector
will be stored, and a benign sample will be moved to the next detector. After
all detectors are done, the results will be aggregated and sent to the investiga-
tion module. For each detector, different models can be applied based on their
performance in practice. Table 1 lists the algorithms we used for these detectors
during deployment. The detector workflow will be described in Sect. 4.

Investigation Stage: The investigation stage is divided into three modules:
Whitelist, Manual Investigation and Visualization. When receiving the detection
results, Whitelist module is used to flag some certain samples before them
reaching the operators. This is because some queries generated by certain trusted
applications (usually security products from different vendors) whose behavior
is similar to that of the attackers, e.g., sending data through DNS channel,
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which may result in unnecessary alerts. Similar to the blacklist module, the
whitelist is created and updated based on enterprise operators. The remaining
results are further reported to Manual Investigation module, where operators
and security engineers are involved. Operators and security engineers check the
detection results. The false alerts are used as feedback to our detectors, which
may trigger alterations of thresholds, feature weights or even re-training of the
machine learning algorithms. True threats confirmed are reported and visualized
for analysis and display in Visualization module.

4 Features and Detectors

In this section, we first present the features we extract from domain names.
Then we explain the detailed implementation workflow of threat detectors and
alternative algorithms used in these detectors.

4.1 Features Extraction

The performance of machine learning-based detection relies on feature engineer-
ing. Thus the feature extraction module must be carefully designed. Queried
domain names indicate whether the host is connecting to a dangerous target or
not. Therefore, if we can flag a suspicious domain, we are able to flag a suspicious
DNS query as well. Data exfiltration domains, which encode messages in the sub-
domain names, are likely to contain more characters in their domains. On the
other hand, domain names generated by DGAs, as mentioned in Sect. 2.3, often
appear more random than normal domains. For example, the ratio of numerical
characters and the length of the longest meaningful substring (LMS) show DGA
domains’ disparities from others [17], which indicate the different construction
of suspicious domain names. In summary, we choose features widely used in data
exfiltration detection [7,8] and DGA detections [9,25,29,30] for our detectors.
Not all features from prior work are used, some of them are removed because
of their low feature importances via the evaluation feedback on small scale of
labeled data experiments. In addition, we added two features, feature #18 and
#19 in Table 2, where we list all the features used in D2C2. Note that we do not
claim the features in Table 2 as our contributions.

Structural Features: The differences in the construction of domains can be
indicated by structural features. Length (#1 & #2 in Table 2) is an important
feature since more characters mean more information, and many DGA families
generate domains in a certain range of length. #3 & #4 are structural features
of Labels (split by dot, e.g., “www.foo.com” has three labels: “www”, “foo”
and “com”), since certain patterns in labels can be observed in data exfiltration
traffic [7]. #5-7 check whether the domain names contain a certain pattern.

Linguistics Features: As domain names can be treated as strings, we also
extract linguistics features (#8-16) to capture the differences in types of charac-
ters, including uppercase character, digit, hex, vowel, consonant and underscore.
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Most features are self-explanatory, and we discuss the rest. Alphabet size is the
number of unique characters in the domain name. Ratio of repeat characters
(#14) is defined as the number of unique characters (each of which is repeated)
divided by alphabet size. Ratio of consecutive consonants (#15) is defined as
the sum of all lengths of consequent consonants (which larger than 1), divided
by the domain name length. Ratio of consecutive digits (#16) is similar to #15.

Statistics Features: We choose three statistics features commonly used in
determining the information in a sequence, Shannon Entropy (#17), Gibberish
Score (#18) and N-Gram. The Gibberish Score we implemented is based on
Hidden Markov Chain [6,26]. It is used to determine the “meaningful” contents
from domains, and a string with more meaningful words will get a higher score.
Furthermore, we use bigram (#19) in feature extraction. We calculated the top-
200 bigrams on historical benign domains and Majestic Top Websites [5]. Then
we checked the presences of these 200 bigrams in each domain name to form a
N × 200 matrix (N denotes the number of all domains for feature extraction).
While not all of the bigrams have high feature importance, to lower the overhead,
we use Principal Component Analysis (PCA) to reduce the 200 dimensions to
15. Thus for each domain name, we get a 1 × 15 vector as its feature.

Different features are used for different detectors, based on feature impor-
tance. The features used for Data Exfiltration Detector (D-Exfil) and DGA
Detector (D-DGA) are marked in Table 2. As Outlier Detector aims to catch
any threats missed by the two previous detectors, it uses all features in the list.

4.2 Anomaly Detection Methods

As mentioned before, in enterprise environments, two popular targets of covert
communication are Data Exfiltration and C&C Communication, and DGA
domains are most commonly seen in C&C scenarios while other manually forged
domain names are very rare. Therefore we design two specific detectors, the Data
Exfiltration Detector and the DGA Detector for these two main threats,
respectively. For other suspicious domains left in the DNS logs, we use an extra
Outlier Detector in order to cover as many threats as possible.

The implementation of multiple standalone detectors grants D2C2 with high
flexibility. For each individual detector, the algorithm can be updated or replaced
easily, according to the performance of different algorithms.

During our study, the chosen algorithms are listed in Table 1. To bet-
ter evaluate the flexibility and performance of our system, for each detector,
we picked several popular algorithms for these detectors based on the prior
research [8,19,30,32]. Detectors for Data Exfiltration and DGA Communication
use supervised algorithms, including random forest (RF), support vector
machine (SVM) and multi-layer perceptron (MLP). Outlier Detector uses
unsupervised algorithms, including isolation forest (iForest) and X-Means.
Note that X-Means is a clustering algorithm, thus we calculate the distances from
each sample to its clustering center as an indicator of anomaly in two ways: 1)
if the distance is larger than a given threshold, then the sample is labeled as
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an outlier; 2) if the average of all samples in the same cluster is larger than
the threshold, then the whole cluster is marked as an outlier cluster. The other
algorithms are all binary classifiers and we directly use their predicted labels as
classified results. All these methods use features described in Sect. 4.1.

4.3 Workflow of All Detectors

The threat detection module is the primary module in D2C2 and is also one
main contribution in this paper. It contains multiple detectors, including super-
vised and unsupervised approaches. Thus the workflow of all detectors should be
well designed to make them work together efficiently. The general idea of differ-
ent approaches’ cooperation is: supervised approaches focus on detecting known
threats, while unsupervised approaches trying to catch rare unknown threats.

All three detectors are to flag covert communication threats based on sus-
picious domains, which are mainly data exfiltration and C&C communication
cases. As mentioned before, supervised methods are more suitable in detecting
known threats, thus we implemented two supervised detectors (Data Exfiltration
Detector and DGA Detector) for these two primary types of threats. While there
will be other suspicious domains that do not fall into these two categories, we
use an unsupervised outlier detection model (Outlier Detector) to capture these
domains with no specific types.

Figure 3(b) shows the implementation of threats detection module in D2C2

framework, consisting of the three detectors running in series. During the detec-
tion, all malicious samples detected by a detector will be stored in a database,
and all benign samples remaining will be sent to the next detector for testing.
The first two supervised detectors will detect known threats which are majori-
ties of all the threats. Thus they will filter most of the threats in the data.
The remaining suspicious domains are very rare compared to the other normal
domains. Such distribution of data will be suitable for the unsupervised outlier
detection algorithm. After all detectors are applied, the results will be aggre-
gated and sent to the next stage for investigation and visualization. Besides, the
detected outliers could also be used to improve the supervised approaches, in
cases that some missed data exfiltration or DGA threats (which are false neg-
atives of the two detectors) are caught as outliers and then confirmed by the
manual investigation, thus are used as feedback.

5 Deployment in a Large Enterprise

In this section, we evaluate our design by a real-world deployment in a large
enterprise environment with substantial DNS traffic. Then we present insights
into the threats and security issues in the enterprise environments.

5.1 Data Trace

We have deployed D2C2 in an enterprise environment with a large scale of Inter-
net traffic. In this enterprise, there are more than 25k hosts, including servers
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Table 3. Distribution of different DNS types in a one-month dataset.

Types # of Queries (Responses) Total %

A 2,310,206,811 (2,175,715,764) 4, 485, 922, 575 75.98%

AAAA 443,000,848 (441,857,308) 884, 858, 156 14.98%

PTR 245,185,527 (244,886,490) 490, 072, 017 8.30%

SOA 5,751,338 (5,722,695) 11, 474, 033 0.19%

SRV 5,651,489 (5,611,368) 11, 262, 857 0.19%

NS 4,790,185 (4,788,276) 9, 578, 461 0.16%

TXT 3,392,785 (3,389,870) 6, 782, 655 0.11%

CNAME 630,267 (630,246) 1, 260, 513 0.02%

MX 327,305 (320,792) 648, 097 0.01%

Other 958,983 (963,691) 1, 922, 674 0.03%

Total 3,019,895,538 (2,883,886,500) 5, 903, 782, 038 −

in IDC and desktops/laptops in office networks. Some sensors were deployed in
the DNS servers controlled by this enterprise to collect DNS logs in its network
from all hosts. The average number of DNS logs per day is around 100 millions.

The detailed statistics for 1-month dataset with over 5 billion DNS logs are
shown in Table 3. The number of queries is ∼5% more than that of responses.
This is because not all queries have responses due to time-out, packet loss or other
kinds of network errors. As mentioned before, all responses will be input into
D2C2, since each response contains its corresponding query. For queries without
responses, the queries will be input into D2C2 directly. We also count different
types in DNS logs, and list the numbers in Table 3. Type A (IPv4 address) and
type AAAA (IPv6 address) dominate in all logs, take up 75.98% and 14.98%,
respectively. PTR (pointer) also accounts for 8.30% among all types. PTR query
is commonly used for reverse DNS lookups, which are the opposite of A or AAAA
queries. It is also used for DNS service discovery, replying with service names.
The ratios of other types, i.e., CNAME (canonical name), MX (mail exchange),
NS (name server), SOA (state of authority), SRV (service locator) and TXT
(descriptive text), are all very small. “Other” contains multiple types which are
very rare in our traffic, including TKEY (transaction key), SPF (sender policy
framework) and etc..

The operators and security engineers in the enterprise also maintain a black-
list and a whitelist. Both lists are parsed and all the entries are fed into D2C2

as the domain names in Blacklist module and Whitelist module. The blacklist
consists of known malicious domains found previously or reported in take-downs
and security databases including DGArchive [25], 360 Netlab Opendata [4] and
other threat intelligence services used by the enterprise. The whitelist contains
domains controlled by the studied enterprise, security vendors and several pop-
ular websites from Majestic Top Websites [5].
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Table 4. Evaluation metrics on labeled dataset.

Detector Precision Recall Accuracy F1

D-Exfil RF 1.0000 1.0000 1.0000 1.0000

MLP 0.9999 0.9995 0.9995 0.9993

SVM 0.9997 0.9998 0.9998 0.9997

D-DGA RF 0.9580 0.9787 0.9945 0.9682

MLP 0.9290 0.9660 0.9910 0.9471

SVM 0.8049 0.9558 0.9765 0.8793

D-Outlier iForest 0.8495 0.9190 0.9988 0.8829

X-Means 0.6708 0.5371 0.9981 0.5965

Table 5. Processing speed of different models on labeled dataset.

Model Processing speed (logs/s)

Supervised RF 49344.9

MLP 9210.2

SVM 24150.2

Unsupervised iForest 9149.0

X-Means 4090.6

5.2 Evaluation Results

During the deployment, we used the following evaluation metrics:

– precision = |TP |/(|TP | + |FP |), recall = |TP |/(|TP | + |FN |)
– accuracy = (|TP | + |TN |)/(|TP | + |FP | + |TN | + |FN |)
– f1-measure = (2 × precision × recall)/(precision + recall)

TP, FP, TN and FN stand for true positives, false positives, true negatives
and false negatives, respectively.

Because in a large volume of real-world traffic, it is difficult to get all data
labeled. Thus we evaluate our models in two ways: on a labeled historical
data (an extra trace of over 764k labeled logs) and on the un-labeled real-
time traffic for a month (which is shown in Table 3). The labeled historical
data trace were collected in the enterprise before D2C2 was deployed. It consists
of historical logs previously labeled and verified by operators. This data trace
is used to evaluate all the algorithms we chose in Sect. 4.2. However, during
deployment, it is very difficult to label all logs because of the large volume
of traffic. In this case, since all positives (alerts) will be checked by operators
according to the workflow of D2C2, the precision is accurate. But the recall can
only be approximately obtained (since there may be unlabeled threats in the
dataset). So we only present precision for these detection results.

For a practical detection framework used in the real world, the false alert
rate is also a critical metric. This is because all alerts need to be investigated
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Table 6. Deployment results of detectors.

Detector Precision #TP/day #FP/day

D-Exfil RF 0.9755 155.6 3.9

MLP 0.9934 1070.0 7.1

D-DGA RF 0.9986 3958.9 5.6

MLP 0.9764 3871.0 93.5

D-Outlier iForest 0.9214 29.3 2.5

Total (RF + iForest) 0.9971 4143.8 12.0

by operators, and too many alerts will overwhelm the operators. On average,
it takes over 20 min for an operator to investigate one security alert [14]. Thus
we present number of true positives and false positives per day for our models
(#TP/day and #FP/day in Table 6).

Evaluation of Algorithms on Historical Labeled Data: Table 4 shows the
precision, recall, accuracy and F1-measure of all chosen models on the labeled
historical data set. From this table we can see that all models achieve high
accuracy in the evaluation experiments. This is because of the imbalance of
positives and negatives in the data, and the numbers of true negatives dominate
in the calculation of the accuracy. In this case, F1 Measure values (last column
in Table 4) show more disparities among these methods.

In general, all three binary classifier models used in the data exfiltration
detector (D-Exfil) achieve high precision and recall, with an average F1-measure
over 0.99. The results in DGA detector (D-DGA) show that random forest (RF)
and multi-layer perceptron (MLP) still achieve high performance. But the perfor-
mance of support vector machine (SVM) is worse, especially in precision, which
is only 0.80. This is because some DGA domains also have differences between
each other (due to DGA families), which influence SVM’s performance.

For the outlier detector (D-Outlier), isolation forest model (iForest) achieves
much higher performance than X-Means, with a precision of 0.85 and a recall of
0.92. This is mainly because that X-Means is basically a clustering method. The
clustering results of X-Means are highly influenced by the distribution of different
patterns of samples, and the static thresholds used for anomaly detection may
not be suitable for all clusters.

The evaluation results on labeled data trace demonstrated which chosen algo-
rithms are efficient in our environment. That is, based on the above results, RF,
MLP and iForest (in bold in Table 4) could be more suitable in the enterprise
where we deployed D2C2, because of their higher precision and recall values in
both detection of exfiltration and DGA domains.

Another concern of a practical framework is the overhead. Since systems
with high overhead are not suitable to be deployed in practice, especially in enter-
prise environments. Thus we also tested these models’ overheads on the historical
data, by calculating the processing speeds (using numbers of logs processed per
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second). The tests were done on a server with two Intel(R) Xeon(R) Gold 6148
CPU 2.40 GHz and 512 GB RAM, and the results are shown in Table 5. For those
three supervised models used in D-Exfil and D-DGA, RF achieves the fastest
speed, with a processing speed of 49344.9 logs/s, following by SVM (24150.2)
and MLP (9210.2). Although SVM has a relatively high speed during the evalu-
ation on historical data, please note that the time complexity of SVM is actually
much higher than others, which is O(n2). Thus the processing speed of SVM
decreases rapidly as the data size increases. The two models in D-Outlier, iFor-
est and X-Means, achieve speeds of 9149.0 logs/s and 4090.6 logs/s, respectively.
As a reference, the average number of input DNS logs during the deployment is
1165.1 logs/s.

Considering both detection performance and overhead, RF and MLP models
are more practical for D-Exfil and D-DGA, and iForest is more suitable for
D-Outlier. Thus we picked these algorithms for the real-world deployment.

Results on Real-Time Traffic During Deployment: Based on the per-
formance and overhead of different methods shown above, during real-world
deployment, we picked random forests (RF) and multi-layer perceptron (MLP)
for D-Exfil and D-DGA, and isolation forest (iForest) for D-Outlier. SVM and
X-Means models are not used due to their lower precisions and higher overheads.

The results in Table 6 show that all chosen models achieve high precisions
during the deployment (over 0.97 on average) with low false positives. iForest
model has the least FPs, only 2.5 per day. RF models in two detectors both got
less FPs than MLP models (3.9 and 5.6 per day, respectively), which demon-
strates that RF models are more practical considering the investigation labor
cost (12.0 FPs in total per day).

Considering true positives, D-Outlier has 29.3 TPs/day on average. D-Exfil
has more (155.6 if use RF, 1070.0 if use MLP), while D-DGA has much more.
This is due to the data distribution in our data trace: in which data exfiltration
related domains and DGA-domains are more common. For exfiltration, the hosts
often send multiple DNS queries for a large file or a series of multiple small files.
While DGA often generates a large number of AGDs in a certain time interval.

As a result, considering performance, overhead and false alerts altogether,
random forest model and isolation forest model appear more practical in the
studied enterprise (which are shown in bold in Table 6).

5.3 Detection Results on Different Types of Threats

On average, over 4k logs were detected as malicious per day. D2C2 further aggre-
gates these results based on internal hosts and remote IPs to reduce the inves-
tigation overhead for operators, and generate visualized results. Based on the
results of different detectors, we list several types of threats below.

Data Exfiltration: The data exfiltration samples detected (TPs in Table 6)
during our deployment are all conversations by security vendors (e.g., McAfee [3]
and Asiainfo [1]). They use DNS to transmit messages with their servers for
a fast connection (usually UDP) bypassing the firewalls. This situation is also
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observed in other prior work [8]. These domain names were detected as malicious
by D2C2’s detectors, and then labeled as benign in the investigate phase, and
then added to D2C2’s whitelist, so that these samples did not trigger alerts of
D2C2. Please note different enterprises might have different security vendors
thus would end up with different whitelists.

DGA-Domains: DGA-domains are usually used to establish a connection with
remote C&C servers. Persistent attempts of AGD querying indicate the host is
likely compromised. D2C2 further aggregated them based on source and destina-
tion IPs for visualization and analysis, as shown in Fig. 4. From these results, we
found that AGDs queries are mainly sent from 10 hosts. The top 2 of them are
local DNS servers, but the remaining 8 hosts are desktop or data servers, which
are very likely to have been compromised. Many of those domains are related to
C&C and botnets. However, only 1 of these hosts was reported as malicious by
other security measures (e.g., Capsa Enterprise Edition by Colasoft [2]). That
is, D2C2 detected at least 7 compromised internal hosts previously unknown to
the operators of the enterprise.

Outliers: The Outlier Detector does not focus on one specific type, but tries
to catch all samples deviated from normal ones. The results are further divided
into the following categories:

FNs of Exfiltration and AGDs are those threats of data exfiltration or DGA-
domains missed by the first two detectors. This may be caused by the labels in
training data, which cannot cover all kinds of threats in the wild. Thus these
results were used as feedback during our periodic updating and re-training, to
improve the performance of the former two detectors.

Malware Related domains are related to some malicious activities, e.g., tro-
jans or worms, and are detected because of their abnormal strings hidden in
their domains, which indicate malicious resource files or other contents.

Illegal Formats are those queried “domains” which are not actually domain
names. Most of these domain-like strings contain illegal characters/substrings
which are uncommon in normal domain names. These queries are usually caused
by mistakes of employees, or configuration errors and bugs in hosts or other
services (e.g., a wrong hyperlink in an e-mail).

Typos are misspelling of popular websites. Some attackers register some
domains which are very similar to popular websites for phishing. We further
check the RCODE of the responses and find that they are actually harmless,
mainly caused by the manual misspelling of the enterprise’s name.

5.4 Visualization on Hosts

To better understand the causes of all these threats, and the impact on hosts in
the enterprise, we built a visualization tool to display the relationships between
hosts, remote IPs and threats. A snapshot of our visualized results on malicious
domains is shown in Fig. 4, which is a graph displaying the relationship between
hosts and remote IPs, with the different conditions in responses. Dots stand for
hosts, remote IPs and connection state (RCODE), edges stand for DNS logs.
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Fig. 4. A snapshot of threat graph generated by D2C2. Black dots denote hosts, red
dots denote remote IPs and others denote RCODE (pink for NOERROR, blue for
NXDOMAIN, green for SERVFAIL and yellow for REFUSED). An edge denotes a
query or a response. (Color figure online)

The center cluster (highlighted due to its large number of related dots and
edges) in Fig. 4 show a same remote IP which is the query response of multiple
malicious domains (detected by D2C2), queried by dozens of hosts in the enter-
prise. We can see obviously that two of these hosts generated a large volume of
malicious DNS query logs to this remote IP. Actually, these are DGA-domains
(the types of detected anomalies are also labeled in the visualization, but are not
shown in Fig. 4 due to the limited size of this figure). Based on such figures, the
operators could further determine which of those threats are more urgent and
have more security impact. In our deployment, most of these threats are from
certain internal hosts, which are likely to be compromised. On the other hand,
many hosts only have one or two attempts of malicious domain query. Operators
can also tell which of those threats are from the same attackers, indicated by
the shared vertexes of the corresponding edges in the visualization graph.

One byproduct of D2C2’s visualization is that other suspicious activities
(e.g., cache poisoning) could also be found. For example, some remote IPs are
the query responses not only for many malicious domains detected by D2C2 but
also for benign domains. These are likely to be cache poisoning. For example,
in the studied enterprise, one of such IPs we found is seen in the responses for
101k different domain names.



A Practical Machine Learning-Based Framework 19

6 Conclusion

In this paper, we present a practical machine learning based framework, D2C2,
to detect DNS covert communication threats. D2C2 is an end-to-end framework,
which is easy to be deployed in enterprise environments and has high flexibility.
D2C2 has been deployed in a large enterprise network with more than 25k hosts
and more than 100 million DNS logs per day. We extensively evaluated D2C2

based on over 5 billion real-world DNS logs during a month. D2C2 achieved a
high precision over 0.97. Furthermore, D2C2 successfully detected over 4k mali-
cious DNS logs per day on average with low overhead and captured real-world
security issues which are previously unknown to the operators, including seven
compromised hosts with multiple C&C communication attempts.
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Abstract. In nowadays’ Internet, websites rely more and more on
obtaining users’ geolocation to provide customized services. However,
besides Internet giants such as Google, who retains a large amount of
detailed user information, most websites still rely on IP addresses for
user geolocation, which is proven inaccurate and misleading by existing
studies. In this paper, we propose a novel approach, namely CacheLoc,
for coarse-grained user geolocation leveraging widely-deployed content
delivery networks (CDNs). This work is motivated by the fact that CDN
providers deploy a number of edge servers that are geographically dis-
tributed across the world. Many of these edge servers are assigned with
unique identifiers that are tied to their location, which can be easily
retrieved by inspecting HTTP responses headers served by these edge
servers. As a result, a website can infer coarse-grained user location by
asking a user to send an HTTP request to an arbitrary domain that
is known being served by a CDN, and inspecting the corresponding
responses. To evaluate the usability and accuracy of the cache-based
user geolocation, we conducted practical experiments based on a com-
mercial VPN with over 160 endpoints distributed in 94 countries. Our
experiments demonstrate that cache-based geolocation can achieve at
least accurate country-level granularity in the regions where CDN edge
servers are densely deployed. Our work sheds light on a novel light-weight
and self-contained user geolocation solution.

Keywords: Content delivery networks · User geolocation

1 Introduction

Websites in today’s Internet rely more and more on obtaining users’ geolocation
to provide customized services, such as regional campaigns or promotional activ-
ities. Currently, the primary method to obtain a user’s location is based on the
user’s IP address, to which there are two major approaches. The first approach
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is to directly obtain the user’s IP address, and search it against known databases
such as IP2Location [1] and Whois [2]. And the second approach is to leverage
web APIs provided by Internet giants such as Google, who maintains substantial
user information collected via multiple means (WiFi war-driving [3], for exam-
ple). Both approaches, however, have their shortages. For the former IP-based
user geolocation, the major issues lie in the lack of official ground truth to val-
idate the correctness and accuracy of existing databases. It has been found by
existing studies that for the same IP address, the distance between the locations
obtained from two different databases can be as large as 800 Km [4]. The API-
based approach, one the other hand, can obtain very accurate results. However,
modern browsers have built-in mechanisms to block such APIs from operating.
For instance, Google’s geolocation API [5] will trigger a pop-up window asking
the user’s permission to explicitly allow his/her location to be shared with the
website he is visiting. As Internet users’ concern regarding their privacy is daily
increasing, more likely than not, the user is going to block such location requests
unless there are legitimate reasons to allow them.

In this paper, we propose a novel approach for user geolocation by leveraging
the popularly used content delivery networks (CDNs). The new cache-based
geolocation, namely the CacheLoc, is motivated by the fact that CDN providers
deploy a large number of edge servers geographically distributed. Many of these
edge servers are assigned with unique identifiers that are tied to their geolocation,
which can be easily retrieved from HTTP responses served by these edge servers.
By asking a client to issue a regular HTTP request to a domain that is served
by CDNs and inspect corresponding response headers, a website can infer the
location of the user who is currently visiting it. Such cache-based geolocation,
although coarse-grained, can be sufficient for purposes such as regional campaign
or advertisement. Furthermore, it can be used as a side-channel knowledge to
cross-validate the results obtained from conventional IP-based geolocations.

Compared to conventional IP-based user geolocation, the cache-based app-
roach has the following advantages.

1. The mechanism of the cache-based geolocation is very straightforward. While
IP-based geolocation requires a website to interact with databases leveraging
web APIs, the cache-based approach can be implemented with just a few lines
of JavaScript embedded in the web document, which asks the client to issue
one regular HTTP request and retrieve one value from response headers.

2. IP-based geolocation relies on third party databases that may incur subscrip-
tion fees, while the cache-based approach is self-contained and completely
free since all that required is to ask the user to issue an HTTP request to a
public domain.

3. The correctness and accuracy of IP-based geolocation are hard to be validated
because there lacks any official ground truth. Cache-based approach, on the
other hand, is based on publicly known and reliable information and therefore
bears higher reliability.

In the following, we present the details of the cache-based user geolocation
solution. The content of the rest of this paper is organized as follows. In Sect. 2,
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we introduce necessary background knowledge that assist the reader to under-
stand CacheLoc. In Sect. 3, we present the details of the novel cache-based user
geolocation. In Sect. 4, we discuss the usability of CacheLoc with preliminary
experiment results. We conduct practical experiments and present their results
in Sect. 5 to evaluate the accuracy and granularity of CacheLoc. Finally, we con-
clude our work in Sect. 6.

2 Background

In this section, we briefly introduce related works in user geolocation and the
necessary background knowledge for content delivery networks.

2.1 Existing Works in User Geolocation

Most browsers use IP addresses to determine a user’s location due to its sim-
plicity. For IP-based user geolocation, the webserver subscribes to the access to
geolocation IP databases, which maps ranges of IP addresses with the corre-
sponding latitudes and longitudes coordinates. The pair of coordinates provides
the sever with the location of the IP address, such as time, country, and city
[6]. There are abundantly available IP geolocation databases, including ip2c.org,
GeoLite2Geo Targetly, IP2Location Lite, and GeoIP Nekudo. While using such
databases allows a server to locate a user without the need for GPS receivers
or complicated configuration switching, it suffers from plentiful of drawbacks.
For instance, IP-based geolocation is far from reliable and accurate since it only
provides a rough estimate of users’ locations. For example, the literature in [7,8]
shows that the locations obtained from different databases suffer huge accuracy
errors up to 800 km in some cases. During our experiments, we also experienced
many such cases. For instance, we found one IP address was located in Hong
Kong by one database, but Australia by another. Further, IP databases come
with many operation overheads such as paid subscriptions for support, frequent
updates to guarantee better data accuracy, scalability, and management issues.

Li et al. [4] proposed city-level IP geolocation based on network topology
community detection method to improve the accuracy of geolocation. They use
the community detection algorithm in complex networks to find the different
communities in the network topology and determine the location of the com-
munities. The geographical position of target IP is obtained according to the
communities of target IP. The experiment shows that its location accuracy ratio
is above 96%. Triukose et al. examine IP address allocation in cellular data net-
works, with emphasis on understanding the feasibility of IP-based geolocation
techniques. The authors used two commercial IP geolocation databases, Max-
Mind [9] and IPinfoDB [10] to test the ability of the databases to determine the
ability of these databases to return host location based on IP addresses seen by
the application’s server.

API-based geolocation is a new approach that uses the browser’s HTML5
Geo-location feature along with the Maps JavaScript API [11] to detect users’
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locations, all leveraged by Google’s comprehensive database about the user’s
profile. While this approach brings higher location accuracy, the location is only
shared if the user allows location sharing in a pop-up window. With more and
more Internet users begin to concern about their privacy, a user will likely deny
such request unless necessary.

2.2 Content Delivery Networks

Origin server

Cache 
server

Client

Fig. 1. Content delivery network

Content delivery network, or CDN, is a type of web cache that has undergone
substantial growth in the recent decade [12]. It provides a scalable and cost-
effective mechanism for accelerating web document dissemination among the
Internet [13] by deploying a large number of edge servers around the globe.
These edge servers sit between HTTP clients and origin servers, which cache
static web documents served by origin servers, and use the cached copies to
serve subsequent duplicate requests. Consequently, requests sent by a user in a
certain location will always be served by the nearest CDN edge server, regardless
of the origin server location. For example, as shown in Fig. 1, users located in
the U.S. will be served by the servers in North America instead of the origin
server in Africa. As a result, users will not only experience shorter page loading
time, but the origin server will also see reduced workload in terms of the volume
of HTTP requests. Because of these advantages, CDN has been adopted by a
plethora of websites in recent years.

3 Cache Based Client Geolocation

The idea of CacheLoc is motivated by the fact that HTTP responses served
by CDN edge servers are usually appended with CDN specific information.
For some CDNs, such information reveals the location of the edge servers by
whom the request was served. For example, Listing 1.1 presents typical response
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headers served by a Cloudfront’s [14] edge server, where the request was sent
via an HTTP proxy that locates in Texas, U.S. As highlighted in line 6, the
X-Amz-Cf-Pop response header is a customized header appended by all edge
servers belong to Amazon Cloudfront, and whose value indicates the request is
served by the edge server DFW55-C1. This header value implies that the request
is served by the edge server near Dallas, TX, because it is a common practice
among many CDNs to name their edge servers with the three-letter IATA airport
codes that are close by [15], and DFW refers to the Dallas/Fort Worth Interna-
tional Airport. Furthermore, because CDNs always serve HTTP requests with
the edge servers closest to the user, we can infer that the user who issued the
request must be somewhere close to the city Dallas. In the following, we describe
how such information can be leveraged to identify users’ locations.

1 HTTP /1.1 200 OK

2 Content -Type: text/html; charset=UTF -8

3 ...

4 X-Cache: Miss from cloudfront

5 Via: 1.1 5d52966f37c4378fd883294634452d6b .cloudfront.net (

CloudFront)

6 X-Amz -Cf -Pop: DFW55 -C1

Listing 1.1. Typical response headers served by a Cloudfront edge server.

3.1 Mechanism of CacheLoc

In Fig. 2, we present the flowchart explaining how a website can infer a user’s
geolocation leveraging CDN response headers. To facilitate the following illus-
tration, we use the term publisher to refer the owner of the website that is visited
by a user and wants to infer the user’s location. We assume the publisher owns
the domain origin.com. We also assume another domain, i.e., pilot.com, is
a domain that is served by a CDN whose edge servers append location related
headers to the responses.

As shown in Fig. 2, a user visits origin.com’s default main page (i.e.,
index.html) by sending a HTTP GET request, and the webserver will respond
with the requested document once the request is received. In order to infer the
user’s location, the webserver inserts a JavaScript snippet as a part of index.html,
which requests the user to issue an HTTP request to the pilot domain pilot.com.
Because we are only interested in the response header, a HEAD request is suffi-
cient.

After the document origin.com/index.html is received by the user’s
browser, the browser will execute the JavaScript and issue the request, which will
be served by the closest edge server and append customized header indicating its
identity. Once the response from the edge server is received at the user’s browser,
the JavaScript will inspect the response headers, retrieve the edge server iden-
tifier, and send it back to origin.com, which can be attached as the content of
a POST request, or simply appended as a query string using a GET request. The
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User origin.com pilot.com

GET /index.html

<script>
fetch(
http://pilot.com)
...

HEAD /index.html

200 OK
…
X-Served-By: DFW

POST /
...
location=DFW

Closest CDN 
edge server

Dallas, TX

Fig. 2. Flowchart

publisher, knowing that DFW implies Dallas, can then infer the user is located in
Texas and close to the city Dallas.

We demonstrate the necessary requirements of the pilot domain in order to
implement CacheLoc in the following.

3.2 Pilot Domain Configuration

As depicted in Fig. 2, origin.com takes two steps to infer the user’s geolocation:
1) it requests the user to issue an HTTP request to a pilot domain, and 2) it
inspects the response to retrieve the value of a specific response header. While
issuing the request and inspect response header can be easily done with just a
few lines of JavaScript as presented in Listing 1.2, a barrier that may prevent
the header information from being accessed lies in the same-origin policy (SOP)
set forth by most modern web browsers [16].

1 var xhr = new XMLHttpRequest ();

2 var url = ’https :// pilot.com/’;

3 xhr.open(’HEAD ’, url);

4 xhr.send()

5 xhr.onreadystatechange = function () {

6 if(xhr.readyState == 4 ) {

7 var p = xhr.getResponseHeader(’X-Served -By ’);

8 }

Listing 1.2. Typical response headers served by a Cloudfront edge server.

In specific, the same-origin policy is a critical security mechanism that is
implemented on all modern web browsers, which restricts the interaction between
a resource request issued from one origin and the actual resources reside on
another origin, where the origin is composed of the three parts: scheme, the
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host, and the port number. Two origins are not considered identical unless all
three parts match. With strict SOP being enforced, the web browser does not
allow JavaScripts in one origin to access resources, including sending requests to
or reading responses from, another origin. However, because cross-origin resource
referencing is prevalent in today’s Internet, SOP is loosened by the cross origin
resource sharing (CORS) policy, which allows scripts from one origin to access
resources from another origin under certain circumstances.

Particularly, for one origin to access resources from another origin, the lat-
ter origin must allow the resource sharing by explicitly appending a set of
CORS response headers [17]. For example, assume the JavaScript in Listing 1.2
is included in origin.com/index.html and is parsed by a user’s web browser.
Prior to sending the actual HEAD request, the browser will first send a OPTIONS
request to pilot.com (known as the pre-flight request) as shown in Listing 1.3,
and check the response headers. The subsequent HEAD request will be sent only
if the header Access-Control-Allow-Origin exists in the response and either
origin.com or the wildcard symbol * presents as the value. Otherwise, the
browser will not sent the HEAD request at all because pilot.com does not allow
origin.com to access its resources.

1 OPTIONS /index.html

2 Access -Control -Request -Method: GET

3 Origin: https :// example.com

4 ...

Listing 1.3. Typical response headers served by a Cloudfront edge server.

Furthermore, even if Access-Control-Allow-Origin exists and origin.com
is explicitly allowed, the browser still restricts origin.com that only the
7 CORS-safelisted response headers [18] can be accessed: Cache-Control,
Content-Language, Content-Length, Content-Type, Expires, Last-
Modified, and Pragma. In order to access the CDN specific header, for exam-
ple, the X-Served-By header, another CORS header, i.e., Access-Control-
Expose-Headers, must also exist and explicitly specify either X-Served-By or
* as the value.

Therefore, in order to successfully obtain the CDN related response header
by issuing HTTP request and reading the response, origin.com must find a pilot
domain that explicitly appends the headers Access-Control-Allow-Origin
and Access-Control-Expose-Headers, and specify origin.com or *, and
X-Served-By or * as the values, correspondingly.

The most straightforward way to obtain such a pilot domain is for the pub-
lisher to set up a dedicated domain and subscribe to CDN services, where the
pilot domain can simply be a subdomain of origin.com. For instance, the pub-
lisher can create the subdomain cloudfront.origin.com and subscribed it to
Cloudfront’s service. Because this domain is entirely controlled by the publisher,
the two CORS headers can be directly inserted into response headers by con-
figuring the webserver. Because origin.com is only interested in the response
headers, the pilot domain does not need to be substantiated with any real con-
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tent. For example, a completely blank HTML page will suffice the purpose.
Because many CDNs offers free tier services based on limited traffic amount or
cost (for example, Cloudflare offers free tier service, Fastly provide $50 worth
credit for new customers, and Cloudfront set the first 50GB traffic free of charge),
a HEAD request only incurs minimal traffic and negligible cost at best.

Another approach to find a suitable pilot domain is to scan the Internet
and attempt to find an independent domain that subscribed to a specific CDN
service, and also includes the two headers Access-Control-Allow-Origin and
Access-Control-Expose-Headers and the desired value (which should be *,
because the specific value origin.com and X-Served-By is unlikely to be set
by an independent third-party domain). This task could be laborious but not
impossible. For instance, by scanning the first 50K domains against the Majestic
Million domain list [19], we found the domain cwtv.com is subscribed to Cloud-
flare’s CDN service, and has the above two headers being present and value set to
be *. Compared with the first approach, this approach only requires a one time
task and is simpler since it eliminates the complexities to set up the subdomain
and subscribe to CDN services.

4 CacheLoc Usability

Compared with conventional IP-based user geolocation, the cache-based geolo-
cation has the advantages that 1) It incurs very low overhead. The publisher
only needs to insert a few lines of JavaScript code, while the user only needs
to issue two HTTP requests, one to the pilot domain to obtain CDN related
information and one to the publisher to inform such information. 2) It is self-
contained and does not rely on any third party service. And 3) It’s information is
obtained from CDN edge servers, which is publicly available and thus verifiable.
On the other hand, it is evident that the granularity of cache-based geolocation
is limited by the edge server’s density and distribution, and is unlikely to achieve
high accuracy. Nevertheless, we argue that such coarse-grained granularity may
be sufficient in many scenarios. For example, a political campaign or commer-
cial advertisement may target a broad region where fine-grained user location is
favorable but unnecessary. Further, this cache-based geolocation can also serve
as cross-validations to conventional IP-based geolocation to improve the results’
reliability. For instance, during our experiment, we encounter many cases where
an IP address was located in two different countries, where the cache-based
geolocation can then be used to narrow down the results to the correct one. We
discuss the usability and limitations of cache-based geolocation in the following.

4.1 Suitable CDN Services for CacheLoc

CDN is a relatively new business model emerged in recent decade [12], and their
distribution of services shows strong regional characters. Major CDN providers
in North America include both traditional Internet companies, including Google,
Amazon, and Akamai, and relatively new ones founded in the last decade, such
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as Cloudflare and Fastly. According to an online survey [20], currently, there
are 23 CDN providers in the United States, however, not all of them are suit-
able for geolocation purposes. In order to be used for user geolocation, a CDN
must present the following two properties: its edge servers’ locations are publicly
known, and their locations are identifiable from HTTP response headers.

For the first factor, i.e., publishing edge servers’ information, different CDN
shows different tendencies. Some providers are very transparent and actively
publish detailed information regarding their CDN network. For example, Cloud-
flare publishes its up-to-date data centers’ location (also known as the point of
presence, or PoP) and the number of servers at each location [21]. On the other
hand, providers such as Akamai are relatively conservative and only provide very
brief information about their data centers’ location.

For the second factor, different CDN providers also take different approaches.
Some providers, including Cloudflare, Cloudfront, and Fastly, append a cus-
tomized response header to identify the edge server that served the request.
In particular, Cloudflare appends the CF-RAY header, for example, CF-RAY:
572244ec8cadd266-DFW, whose last section identifies the edge server; Cloudfront
appends X-Amz-Cf-Pop header, for example, X-Amz-Cf-Pop: DFW55-C2, to indi-
cate not only the location (i.e., DFW), but also specific edge server at this location
(i.e., C2); and Fastly inserts X-Served-By header, for example, X-Served-By:
cache-dfw18677-DFW, whose last section identifies the edge server. On the other
hand, CDN providers such as Googles’ Cloud CDN only inserts a simple Via:
1.1 google header to indicate the request is served by Google, Akamai does
not have any header that reveals its edge server’s identification either.

4.2 CDN’s Data Center Locations

Based on the above discussions, in this study, we chose three CDNs to validate
the proposed cache-based user geolocation, which are Cloudflare [22], Cloudfront
[14], and Fastly [23]. In order to obtain a preliminary knowledge of the accuracy
the cache-based geolocation can achieve, our first step is to collect and analyze
information regarding each CDN, as described in the following.

Table 1. Statistics from website description. (* one cite can have multiple PoPs.)

Cloudflare Cloudfront Fastly

Number of PoPs* N/A 216 75

Number of countries 90 42 N/A

Number of cities 200 84 60

To begin with, we collected information regarding the data centers’ location
from each CDN’s official website, and present the result in Table 1. Comparing
the three, Cloudflare has the largest CDN network, which spans over 200 cities
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in more than 90 countries. A CDN provider may place multiple PoPs in one city,
but may not necessarily differentiate them. For instance, according to the website
description, Cloudfront has 6 PoPs in Dallas, TX, and during our experiment,
we found these data centers are assigned with different names including DFW3,
DFW50, DFW52, DFW53, DFW55 (we were only able to see 5 PoP names). On the
other hand, Flastly states that it has 2 PoPs present at Dallas, but we were
only able to see the unified identifier DFW and thus unable to distinguish the two
servers.

Based on our preliminary evaluation, we suspect that the information pub-
lished on CDN providers’ website may not be up-to-date. Therefore, as the sec-
ond step, we conducted a live scan to verify existing and identify new infor-
mation. In specific, all three providers publish the range of IP addresses they
owned on their website [24–26]. We start the experiment by scanning the whole
IP range for TCP port 80. In specific, Cloudflare, Cloudfront and Flastly have
1,786,881, 1,422,793, and 222,208 unique IP addresses, respectively, among which
96,671, 140,347, and 65,969 are alive, i.e., responded to the scan. Note that these
results are likely transient because CDN providers usually dynamically assign
IP addresses to edge servers due to reasons such as load balancing [27], however,
our results provide a snapshot of these CDN networks, based on which we can
conduct the following analysis.

Then, we wrote a simple python script leveraging the requests library to send
a HEAD request to each live IP address. For simplicity purposes, for each request,
we set the Host header to be a random string (e.g., Host: aaa) rather than any
valid host names. Because the host header is not recognizable by the edge servers,
whey will respond with an error page indicating the specified host name is not
accessible (500 Domain Not Found from Fastly, 409 Conflict from Cloudflare,
and 403 Forbidden from Cloudfront), which nonetheless satisfied our purpose
because even the error page still contains response header that includes edge
servers’ identifier. After we received all responses, we inspect the response head-
ers and strip edge servers’ identifier and summarize the result in Table 2. Specif-
ically, we obtained a total of 283 unique edge server IDs from Cloudfront, which
is much larger than the number of PoPs stated on its website (i.e., 216), imply-
ing the information on its website is obsolete. We also observe Fastly presents a
slight difference, i.e., 78 obtained by scanning v.s. 75 stated on the website. We
were not able to scan Cloudflare’s CDN network because Cloudflare’s CDN net-
work uses Anycast [28]. As a result, even though we specifically send a request
to a specific IP address, the request will always be routed to and served by the
closest edge server. Therefore, we can only see the single edge server identifiers
that is closest to us.

4.3 Limitation

From the edge server maps of the three CDNs [21,29,30], it is evident that
their edge servers are densely deployed only in North America and Europe.
Therefore, we can only expect higher accuracy and finer granularity in these
regions. However, as a proof of concept, we do not aim to practically geolocate
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Table 2. Statistics from experiment.

Cloudflare Cloudfront Fastly

Total IP addresses 1,786,881 1,422,793 222,208

Live IP addresses 96,671 140,347 65,969

Unique IDs N/A 283 78

users worldwide. Further, such a shortage can be easily addressed by leveraging
more regional CDNs. For example, Alibaba CDN, a China-based cloud service
provider, has 39 data centers deployed in major cities in China [31], which can
be used to geolocate China-based users with much higher accuracy.

5 Experiment

In this section, we conduct empirical experiments to evaluate the usability and
accuracy of the cache-based user geolocation.

5.1 Experiment Setup

In order to evaluate the usability and accuracy of the cache-based geolocation,
the ideal approach would be issuing HTTP requests at multiple locations around
the world and verify if the correct location could be obtained. Originally, we
planned to leverage the Planet Lab [32], a research project incorporated more
than 2000 research institutions across the world, where a user can request access
to any of these nodes. However, it seemed to us the Planet Lab project had been
discontinued, as we have attempted a few times to email the support staff and
never get any reply. Therefore, we finally decided to take an alternative approach
by using VPN services. In specific, we purchased access to Express VPN [33],
a VPN provider that has 160 VPN endpoints across 94 countries, which has
the largest number of endpoints among all VPN providers that we are aware of.
Express VPN also has a Linux command-line interface that allows us to write
scripts and conduct experiments in batch.

Because we do not own a domain by ourselves, we are unable to completely
replicate the scenario described as in Fig. 2. However, since our objectives are to
validate the usability and evaluate the accuracy of the cache-based user geolo-
cation, we design the following experiment as an alternative, which achieves our
objectives nonetheless.

In specific, we first scan against the Majestic Million domain list [19] as men-
tioned above, and find three arbitrary domains that use Cloudfront, Cloudflare,
and Fastly’s service, respectively. Then, we wrote a script, which can automat-
ically log in to each VNP endpoint, and issue three HTTP requests to each of
these three domains. Then, we collect the response from these three domains,
and extract the edge server identifier and save them into a log file.
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It is noteworthy that because we do not know the exact location of any
of these VPN endpoints, but only the country (or city, for a few cases) each
endpoint is placed, in this experiment, we do not seek to pinpoint or verify
their accurate locations using cache-based geolocation. Instead, our objective is
to evaluate to what extent these 160 locations can be uniquely differentiated
using the proposed cache-based geolocation method. However, we argue that
this restricted experiment does not diminish the effectiveness of the cache-based
geolocation as a general solution for user geolocation. This is because as long as
we can uniquely differentiate these endpoints, knowing the identity and accurate
location is only a trivial and laborious task. For instance, a capable publisher can
gradually build its own database based on users’ information. Specifically, the
publisher can enable the cache-based location and still ask to access the user’s
GPS based location. Although such requests may be rejected by most users, it is
still likely to be allowed by a few users due to reasons such as carelessness or by
accident. Once the publisher obtains one accurate location, it can associate this
accurate location with the specific CDN edge server identifier, and be informed
that users with the same CDN identifier must from a place that is close to
this known accurate location. Gradually, the publisher is able to build a quite
accurate geolocation map, which can be further refined each time a user allows
his/her accurate location to be accessed.

5.2 Experiment Results and Analysis

Statistical and Geological Results. During our experiment, we were able
to successfully connect to 148 endpoints among 160 that is claimed on Express
VPN’s official website [33], and collected a total of 444 HTTP responses. These
148 endpoints span in 93 countries, which covers most countries in America and
Europe, many countries in Southeast Asia, and a few countries in the Middle
East and Africa, which is consistent with the official website description. Most
endpoints were named by the country name where they locate. Figure 3 presents
the countries that were covered by Express VPN’s endpoints. Among these 93
countries, 13 countries have more than one VPN endpoints present, in which
case, these endpoints were named by the country name append with the city’s
name and a numerical index. In the following, we analyze the usability and
accuracy of cache-based geolocation from both the country level and the city
level.

Country Level Geolocation. As explained, the three CDNs that we have cho-
sen, i.e., Cloudfront, Cloudflare, and Fastly, are U.S. based CDN providers and
have their market focus in North America and Europe. Therefore, we expect the
accuracy of cache-based geolocation bears much higher accuracy in differentiat-
ing European countries. In the following description, we separately demonstrate
the results for European countries and the rest of the world.

We first present the geolocation result with a single CDN. In total, these
93 countries were served by 41 Cloudfront edge servers, 24 Fastly edge servers,
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Fig. 3. Countries where Express VPN’s endpoints present.

and 31 Cloudflare edge servers, respectively. Among which, 46 European coun-
tries were served by 23, 12, and 18 edge servers from Cloudfront, Fastly, and
Cloudflare, and 47 non-European countries were served by 20, 14, and 15 edge
serves from the same three CDN providers. This implies that, for example, using
Cloudfront’s edger server, we are able to at least narrow a user’s location down
to two countries on average, if the user is within Europe (i.e, 46/23/ = 2). We
present the visualized map of Cloudfront’s result in Fig. 4, in where we use differ-
ent colors to identify countries being served by different edge servers. The same
result from Fastly and Cloudflare are presented in the Appendix as in Figs. 8
and 7.

Observing these figures, we are able to find edge server deployment does
present strong regional characters. Take Fig. 7 as an example, we can observe that
the few adjacent countries in middle Europe including Austria, Slovenia, Croatia,
Serbia, and Slovakia are all served by one edge server (i.e., all colored with the
same Grey color). Furthermore, by comparing the maps between different CDNs,
we notice different CDN’s have different edge server deployment strategies. For
instance, in Fastly’s edge server map, we can see while Austria and Slovakia are
still served by the same edge server, Solvenia was instead served by the edge
server that also serves Italy. And Croatia and Serbia were served by another
different edge server. This implies that a finer granularity of user geolocation
can be achieved by leveraging multiple CDNs, similar to user location using
cellular towers with triangulation [34].

In specific, by holistically considering these 3 CDNs, the 93 countries now
see 57 different Cloudfront-Cloudflare-Fastly edge server combinations, a higher
resolution than any of the three single CDNs. For the 46 European countries,
they can now be separated into 35 categories, a 25% increase in accuracy, i.e.,
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a European user can now be narrowed down into an average 1.3 countries. For
the 47 non-European countries, they can be separated into 23 categories. We
present the new geolocation map leveraging all 3 CDNs in Fig. 5. Comparing
with Figs. 4, 7, and 8, it is obvious that higher accuracy has been achieved, as
less adjacent countries shares the same color.

Fig. 4. European countries served by different Cloudfront’s edge servers.

State and City Level Geolocation. Next, we present the result to identify
states and cities in the U.S. Totally, Express VPN has 27 endpoints locates
within the United States, which were distributed among 13 cities that belong to
10 states (excluding Washington, D.C.). Metropolitan cities such as Los Angeles
have more than one endpoint. Shown in Fig. 6 is the result when all 3 CDNs
are leveraged to geolocate the states where these endpoints are located. Because
these states are geographically sparse, we found any one of the 3 CDNs alone
is capable of uniquely identify these states. Among these ten states, Florida
State has two endpoints located in Tampa and Miami. California State has two
endpoints located in Los Angeles and San Francisco. All these cities can also be
uniquely identified by either one of these 3 CDNs.

Sub-city Level Geolocation. Finally, we evaluate the accuracy of cache-
based geolocation within the sub-city level. In particular, within the U.S., five
metropolitan cities have more than one endpoints, which are: Los Angeles that
has seven endpoints, Dallas, Miami, New York, and Washington, D.C., each has
two endpoints. According to our experiment result, Cloudflare has the lowest res-
olution in identifying sub-city level locations, for example, all seven endpoints in
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Fig. 5. European countries served by leveraging 3 CDNs’ edge servers.

Los Angeles were served by the edge server LAX, while Cloudfront has the highest
resolution on the other hand, which alone can identify five endpoints located in
LA. When putting together, the seven endpoints can be differentiated into six
categories, implying satisfactory resolution in high population cities. Detailed
such result is demonstrated in Table 3. For the other four cities, except the two
endpoints in New York, all other endpoints can be uniquely identified when three
CDNs being utilized.

Table 3. 7 VPN endpoints in Los Angeles served by 3 CDN edge serves.

Endpoints’ name Cloudfront Fastly Cloudflare

Los Angeles LAX3-C1 BUR LAX

Los Angeles-1 LAX3-C3 LAX LAX

Los Angeles-2 LAX3-C4 BUR LAX

Los Angeles-3 LAX3-C1 BUR LAX

Los Angeles-4 LAX50-C1 BUR LAX

Los Angeles-5 LAX3-C3 BUR LAX

Santa Monica LAX3-C2 LAX LAX

5.3 Discussion and Future Works

As demonstrated by the experiments, the cache-based user geolocation is able to
achieve at least country-level granularity in the regions where CDN servers are
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Fig. 6. U.S. states identified by leveraging 3 CDNs.

densely deployed. Due to our limited resource, we were not able to evaluate at
smaller granularity, however, based on the results we have obtained, it is evident
that finer granularity can be achieved. In specific, the VPN we used only has
46 endpoints present in Europe, which touched only 23, 12, and 18 edge servers
belong to Cloudfront, Fastly, and Cloudflare, respectively. However, according
to their official websites, these 3 CDNs posses 59, 13, and 47 total edge servers in
Europe correspondingly. Therefore, if we were able to obtain more endpoints for
evaluation, we can achieve much finer granularity. As such, our future work will
focus on seeking more endpoints and conduct more comprehensive evaluations.

6 Conclusions

In this paper, we proposed the CacheLoc as a novel user geolocation solution.
This cache-based user geolocation solution is easier, cost-free, and more reliable
compared to conventional IP-based ones. With limited resources, we conducted
multiple experiments to evaluate the usability and accuracy of CacheLoc, and our
results demonstrate the cache-based approach is feasible and effective for coarse-
grained user geolocation. We will be focusing on obtaining more resources for
more comprehensive CacheLoc evaluation for our future works.
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A Appendix

Fig. 7. European countries served by different Cloudflare’s edge servers.

Fig. 8. European countries served by different Fastly’s edge servers.
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Abstract. Today energy delivery systems (EDS) face challenges in deal-
ing with cyberattacks that originate by exploiting the communication
network assets. Traditional power systems are highly complex and het-
erogeneous. These systems focus on reliability, availability, and contin-
uous performance and, thus, not designed to handle security issues.
Network administrators often utilize attack graphs to analyze security
in EDS. Although attack graphs are useful tools to generate attack
paths and estimate possible consequences in a networked system, they
lack incorporating the operational or functional dependencies. Localiz-
ing the dependencies among operational missions, tasks, and the hosting
devices in a large-scale cyber-physical network is also challenging. Cur-
rent research works handle the system dependency and the attack sce-
nario modeling separately using dependency graphs and attack graphs,
respectively. To address the gap of incorporating the mission operational
dependencies with possible attack scenarios, in this work, we offer an
approach to assess the cyberattack impact on the operational mission of
the EDS by combining the logical attack graph and mission functional
dependency graph. We provide the graphical modeling details and illus-
trate the approach using a case study of SCADA (supervisory control
and data acquisition) operations within an EDS environment.

Keywords: Energy delivery systems · Attack graph · Mission
dependency · Impact propagation graph · Impact assessment ·
Operability

1 Introduction

The energy delivery systems (EDS) increasingly rely on the communication net-
work for monitoring, operation, and control. The EDS broadly divides itself
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into the physical, control, and cyber layer. The physical layer is responsible for
supporting power generation, transmission, and distribution. The control layer
is responsible for sensing and reporting field-level data and corrects the set-
points as necessary through automated or manually initiated commands. At the
same time, the cyber layer comprises the communication networks to monitor
and evaluate performances of the physical layer devices and business-level oper-
ations. EDS’s key component is the supervisory control and data acquisition
(SCADA) system, which provides facilities to monitor, report, and controls dif-
ferent types of physical processes simultaneously. Therefore, the power system’s
reliable operation is heavily dependent on the attack-resilient functioning of the
SCADA and the associated cyber systems.

Because of the heterogeneity and complex interconnectivity among the cyber
and physical layers, the energy systems face challenges in assessing the overall
mission impact of cyberattacks originating from the cyber layer. There are two
research questions as yet not entirely analyzed by the research community:

1. How could we incorporate the critical operational dependencies to the tradi-
tional security analysis models to get a comprehensive assessment of mission
impact and cyber resilience due to a potential exploit? Here, by dependen-
cies, we mean mapping of the business mission to operation-critical func-
tions/tasks, tasks to software programs/applications/services, and services
to the underlying devices.

2. To develop preventive resilience methodologies, how could we assess and quan-
tify the effects of cyberattacks on the operations of the physical layer, which
comes from the stepping-stone exploitation of the cyber layer?

To identify the potential exploitable attack paths in the enterprise networks
and CIs, researchers often rely on the analysis based on attack graph tech-
niques. Although attack graphs provide insights in analyzing the network secu-
rity flaws, they do not incorporate the mission-specific operational dependencies
while depicting the attack paths. Thus, there remains a gap in evaluating over-
all mission impact and system operability during adverse attack scenarios. To
address the gap of incorporation of mission dependency in attack graph anal-
ysis, Sun et al. [1] propose a technique to model the dependency relations by
utilizing the service dependency graph and attack graph. Cao et al. [2] present
a quantitative metric for business process impact assessment for Enterprize net-
works using attack graphs and entity dependency graphs. Both the works give a
concrete reason to incorporate the dependency into the attack graph. Still, the
works lack in providing formal guidance on how to correlate the attack graph and
dependency graph; thus, it is not clear how to apply the methods in a specific
cyber-physical systems environment.

In this work, we have addressed some of the above research gaps. We introduce
new graph types specific to mission, more specifically, mission functional depen-
dency graph, mission impact propagation graph, and mission impact assessment
graph. We have developed a NIST defense-in-depth [3] architecture-based SCADA
operational case study illustrating the approaches that we formalize under the con-
text of this paper. The main contributions of this work are as follows:
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i) A graph-theoretic modeling approach to incorporate the critical mission
dependencies (e.g., mapping the mission to tasks, tasks to applications,
and applications to hosts) to the logical attack graph model

ii) Quantifying the overall mission impact of cyberattacks and operability of
EDS originating by exploiting the communication network assets and

iii) A realistic SCADA operations case study to systematically illustrate the
modeling approach and ways to implement.

We organize the rest of the paper as follows. Section 2 presents the defini-
tions and assumptions. Section 3 describes the system model for mission impact
assessment. Section 4 explains the modeling approach in detail. Section 5 illus-
trates the case study and analysis. Section 6 provides some insights on the related
works. Finally, Section 7 concludes the article with future directions.

2 Preliminaries: Definitions and Assumptions

Definition 1. Mission: A mission is an objective to maintain the operational
functionality of the constituent parts of the system through securing the perfor-
mance of the required tasks according to the design or specifications. A mission
relies on a set of functions termed as ‘tasks’ to get accomplished.

Definition 2. Task: A task is the component of a mission that has its specific
function/functions to be carried out to maintain the proper operational level of
the underlying programs/processes/devices.

Definition 3. Application: An application is an individual or combined
licensed or open-source software (commonly known as ‘programs’) in use by the
network that supports the functions of the task. Here, we use the term ‘applica-
tion’ instead of ‘program’ or ‘service’ to mean the same.

Definition 4. Host: A host is a network device that houses programs or soft-
ware applications. The types of hosts include but not limited to:

– IT Devices: Servers, desktops, databases, other computing devices, etc.
– Network Devices: Firewalls, routers, switches, Wi-Fi access points, etc.
– SCADA Devices: Historians, human-machine interfaces (HMI), engineer-

ing workstations, master terminal units (MTU), etc.
– Physical Controllers: PLC (programmable logic controller), RTU (remote

terminal unit), IED (intelligent electronic device), PMU (phasor measure-
ment unit), sensors, transducers, actuators, etc.

Definition 5. Operability: Operability is the state of a host functioning at
some level of performance. The unit of operability is equivalent to a von
Neumann-Morgenstern utility measure (expressed in utils as in FDNA [4]). We
denote here the utils as a real-valued number within the interval [0,1].
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Definition 6. Present Operational Capability (POC): POC is a time-
dependent operational capability of the host indicating the operability level of
the host/device at the given time instant. POC 1.0 means fully operable and
POC 0.0 means fully inoperable.

Definition 7. Strength of Dependency (SOD): It depicts to what extent the
operability level of the parent node can influence the child node’s operability level.
For example, an SOD between a task and a host indicates the extent/fraction
of the operability level of the host that can be reduced due to the malfunc-
tion/compromise/impact on the task.

Definition 8. Impact Factor: ‘Impact’ means the effect or consequence of
an event, incident, or occurrences on the operability of the constituent parts of
the system or network. The impact factor is the fraction or amount of loss or
reduction in the associated device’s performance/operability.

Assumption 1. Paths between single component nodes of mission graphs are
acyclic. For example, if there is an inter-dependency of task t1 on application
a1, then there is no reverse path of dependency from a1 to t1. Similarly, if there
is an intra-dependency of task t1 to t2, then there exists only one path from
t1 → t2, and no paths from t2 → t1.

3 System Mission Impact Assessment Model

We provide a high-level mission impact assessment model in Fig. 1. The input
system comprises network vulnerability and mission dependency data. We utilize
open-source network scanning tools (such as Nessus1, OpenVAS2, etc.) to collect

Fig. 1. System mission impact assessment model

1 NESSUS Vulnerability Assessment (https://www.tenable.com/products/nessus).
2 OpenVAS - Open Vulnerability Assessment Scanner (https://www.openvas.org/).

https://www.tenable.com/products/nessus
https://www.openvas.org/
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the network vulnerability information. We use Snort for IDS (intrusion detection
system) alerts. There are other vulnerability scanning tools available specific to
the ICS environment, such as Nextnine’s ICS shield, Radiflow, Darktrace ICS,
and Splunk, etc. We extract the required network logs from vulnerability scan,
IDS alert, and firewall rules to generate the logical attack graph (LAG). We
use quantitative score of the vulnerabilities from CVSS3 and NVD4. We utilize
host-level scanning and system operational documents to identify the mission-
critical operational tasks and their dependencies on the devices. There are some
open-source/commercial tools to identify the network application-level depen-
dencies, such as ManageEnige’s application discovery and dependency mapping
(ADDM), Device42, AppDynamics, etc. The extracted system dependency data
leads to the modeling of the mission functional dependency graph (MFDG). We
build the mission impact propagation graph (MIPG) by reversing the edges and
using transitivity rules. We combine the logical attack graph (LAG) and mission
impact propagation graph (MIPG) using Datalog5 clauses. We also define and
add our custom interaction rules for the open-source MulVAL [5] security ana-
lyzer. The MulVAL provides the mission impact assessment graph (MIAG) as
an output. Based on the network size, we may need to prune the mission impact
assessment graph to handle the scalability issue. We then compute the tasks’
impacts and relate that to the operability of hosts and impact on the mission as
we provide in Subsect. 4.6 and 4.7.

Let us consider an example of the operation & maintenance of a manufactur-
ing plant (i.e., the mission). The process depends on real-time data collections by
the sensor devices, and a historian device stores those data (i.e., the task). The
historian is of ‘SIEMENS,’ and the historian software application is ‘SIMATIC
2014 SP3 Basic’ (i.e., the app). This application is installed and running in a
Windows Server 2008 SP2 (i.e., the host). The Windows Server software has
a ‘remote code execution’ vulnerability with the ID ‘CVE-2017-0148’. In this
case, the attack graph depicts a vulnerability that would lead to the privilege
of code execution in the Windows Server. The ‘Network Vulnerability’ block
captures these pieces of information in the above diagram. Now, the operational
mission depends on data collection and storing tasks, which again depend on the
‘SIMATIC’ application, which is hosted by Windows-based Server. The MFDG
captures these dependency scenarios. Therefore, we find that if there is an exec-
utive privilege on the host (i.e., Windows Server), then this privilege would lead
to the impact on the associated applications, tasks, and propagate to the over-
all mission. MIPG captures this scenario, which we construct by reversing the
MFDG and using transitivity rule. The block ‘Mission Dependency Graph
Construction’ reflects this whole dependency scenario. Finally, we consolidate
the Datalog codes and use custom made interaction rules in the MulVAL simu-
lation. We present detailed formal definitions of the graphs in Sect. 4.

3 Common Vulnerability Scoring System (https://www.first.org/cvss/).
4 National Vulnerability Database (https://nvd.nist.gov/).
5 Declarative Logic Programming.

https://www.first.org/cvss/
https://nvd.nist.gov/
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4 Graphical Modeling Approach Details

In this section, we provide formal definitions of the graph-theoretic modeling
approaches and computation processes to derive the mission impact and system
operability.

4.1 Logical Attack Graph (LAG)

We utilize the logical attack graph definition by Gonda et al. [6]. The LAG has
three types of nodes: (1) Primitive fact nodes (Nc) represent facts about
the system, such as network connectivity, access control or firewall rules, user
accounts on host machines, etc.; (2) Derivation nodes (Ne) also known as
rule/action/execution/exploit nodes represent an action the attacker can
take or satisfy certain conditions to gain a privilege in the system; (3) Derived
fact nodes (Np) (also known as privilege nodes) represent a capability an
attacker gains after performing an action by satisfying the pre-conditions. There
are three relationships possible among the nodes. An ‘AND’ relation implies
that all the pre-conditions need to be satisfied; an ‘OR’ relation means that
either of the pre-conditions to be fulfilled; a ‘FLOW’ relation suggests that the
information flows its effects to the successor node. In a LAG, we have:

– Set of vertices, V = Nc ∪ Ne ∪ Np

– Set of edges, E ⊆ (Ne × Np) ∪ ((Np ∪ Nc) × Ne)
– If the set of all existing vulnerabilities is V ′, then vertex intrinsic weight,

fv =

⎧
⎪⎨

⎪⎩

1.0 ifv ∈ Nc ∪ Np and v /∈ V ′

0.8 ifv ∈ Ne, i.e., 80% probability of exploit as in MulV AL
CV SSv

10 ifv ∈ Nc and v ∈ V ′

4.2 Mission Functional Dependency Graph (MFDG)

Definition 9. A mission functional dependency graph Gb is a directed
acyclic graph denoted by Gb = (Nm, Nt, Na, Nh, E, fi, we, L, α, γ) where Nm, Nt,
Na, and Nh represent mission, task, application, and host nodes, respectively; E
is a set of edges denoted as (u, v) that represents direction of dependency; fi
is a non-negative weights associated with the nodes representing the intrinsic
operability of the nodes; we is the edge weights; L is a mapping of vertices to the
type (AND, OR, FLOW) of logical dependence among the vertices (i.e., mission,
task, application, or host); α : N × N → [0, 1] is the score assignment function
representing strength of inter-dependency (inter-SOD). Similarly, γ : N × N →
[0, 1] represents strength of intra-dependency (intra-SOD).

– Set of vertices, V = Nm ∪ Nt ∪ Na ∪ Nh

– If the task t depends on application a (i.e., t → a), and host h is housing
application a (means, a → h), then using the transitivity rule, we can say,
t → h, which means task t has dependency on host h. Thus, we can prune
the MFDG to remove the application nodes and establish direct dependency
between task to host.
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– Nm×Na = Ø, and Nm×Nh = Ø; this indicates there is no direct dependence
of the mission on the applications or hosts.

4.3 Mission Impact Propagation Graph (MIPG)

We generate the mission impact propagation graph (MIPG) by applying a recur-
sion on the pruned MFDG. Formally, we define the MIPG as follows.

Definition 10. A mission impact propagation graph. Gc is a directed
acyclic graph represented by the tuple Gc = (Nhp, Nit, Nim, Nd, E, fv, we, α,
γ, h); node Nhp represents an execution privilege on host; Nit is task impact
node; Nim represent mission impact node; Nd represents rule node to satisfy to
propagate the effect to child node; E is a set of edges denoting the direction of
dependency; fv is the node intrinsic score as in LAG; we is the edge weights com-
puted using the logical dependence; α is the inter-SOD; γ is the intra-SOD, and
h is a mapping of vertices to the type (i.e., AND, OR, FLOW) of dependence.

– Set of vertices, V = Nhp ∪ Nd ∪ Nit ∪ Nim

– Set of edges, E ⊆ (Nhp × Nd) ∪ (Nd × Nit) ∪ (Nit × Nd) ∪ (Nd × Nim)

4.4 Integrating LAG and MIPG Using Subgraph Merging
Technique to Generate MIAG

We apply here a subgraph merging technique to combine LAG and MIPG. First,
we present the types of edges in LAG and MIPG to help the audience understand
the merging concepts.

Types of Edges in LAG. There are three types of edges in the LAG as shown
in Fig. 2a. An edge (c, e) connecting primitive node (i.e., preconditions) (Nc) to
the exploit (i.e., action) node (Ne) implies that by satisfying the condition c
an attacker can execute exploit e. An edge (e, p) that connects an exploit node
(Ne) to a derived node (i.e., privilege node) (Np) means that by exploiting e
an attacker can gain privilege p. An edge (p, e) from a derived node (Np) to a
exploit (i.e., action or rule) node (Ne) states that p is again a precondition to
next exploit e.

Types of Edges in MIPG. In Fig. 2b(1), a gained host execution privilege p
leads to exploit the next dependency relation d. In Fig. 2c(2), the dependency
relation d implies flow of impact i on the next task or mission node (Nit, orNim).

Subgraph Merging. We apply here a subgraph merging techniques utilizing
the graph union operation [7]. We consider the LAG as the first subgraph and
MIPG as the second subgraph. We then apply the graph union operations on
LAG and MIPG to build the combined MIAG. We only consider the nodes
and edges for this illustration as the other attributes are same for both LAG
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and MIPG. Formally, if LAG Ga := G(V1, E1) where V1 = Nc ∪ Ne ∪ Np and
E1 ⊆ (Ne × Np) ∪ ((Np ∪ Nc) × Ne) and MIPG Gc := G(V2, E2) where V2 =
Nhp∪Nd∪Nit∪Nim and E2 ⊆ (Nhp×Nd)∪(Nd×Nit)∪(Nit×Nd)∪(Nd×Nim),
then we can utilize the sub-graph union operator (⊕) as follows with the help of
the mapping function λ : Np �→ Nhp. The mapping function λ indicates that the
privilege node Np (i.e. execution privilege p) in LAG maps to host exploitation
node Nhp (which is also execution privilege p) in MIPG. Thus, we can formulate
the mission impact assessment graph MIAG as Gd = G(V,E) := Ga⊕Gc, where
Ga and Gc are the LAG and MIPG respectively. Then, V := V1⊕V2 = V1∪(V2 \
u) = Nc ∪ Ne ∪ Nhp ∪ Nd ∪ Nit ∪ Nim, u = Nhp. Also, E := E1 ⊕ E2 = E1 ∪ E2.

cNc

eNe

(c, e)

(1)

eNe

pNp

(e, p)

(2)

pNp

eNe

(p, e)

(3)

(a)

pNhp

dNd

(p, d)

(1)

d Nd

i Nit/Nim

(d, i)

(2)

(b)

e

p

p

d

i

e

p

d

i

G1 G2 G

(c)

Fig. 2. (a) Edge types in LAG, (b) Edge types in MIPG, (c) Applying subgraph
merging technique on LAG and MIPG to get MIAG (Subsect. 4.5)

4.5 Mission Impact Assessment Graph (MIAG)

Definition 11. A Mission Impact Assessment Graph (MIAG) is a
directed acyclic graph represented as Gd = (V,E, fv, h, α, γ, λ) where V is a
set of vertices that represents host information, pre-conditions, vulnerabilities,
exploits, impacts on tasks, and impact on missions; E is a set of edges; fv is a
non-negative weights associated with the vertices; h is a mapping of vertices to
the type (i.e., AND, OR, FLOW) of logical dependence among the vertices; α
represents inter-SOD; γ represents intra-SOD; λ : p �→ hp is a mapping function
that maps an privilege p in LAG to the host privilege hp in MIPG.

4.6 Impact Score Quantification Process Using MIAG

We associate each node (V ) in the MIAG with two scores; the intrinsic score fv
and the derived score P : V → [0, 1]. The intrinsic score stands for the inherent
likelihood of an action/exploit e to execute, given that all the pre-conditions
required for performing e in the given attack sequence are satisfied. The derived
score measures the overall likelihood that an attacker successfully reaches and
execute the exploit e and gain privilege p. We assume here that the events that
an attacker may execute different exploits are independent of each other for
simplicity. For shortening the illustration, we only consider conditions, exploits,
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and privilege nodes in MIAG to illustrate the computation process, which we
also extend for the task and mission nodes. Given an MIAG, we formalize the
derived scores for exploit and privilege P (e) and P (p) respectively as below:

– P (e) = fv(e) · ∏
c∈Re

P (c), where Re ⊆ (Nc × Ne) ∪ (Np × Ne)
– P (p) = fv(p), if Rp(p) = Ø, and P (p) = fv(p) · ⊗

e∈Rp(p)
P (e) otherwise;

where Rp(p) ⊆ (Nc × Np) ∪ (Ne × Np), and the operator
⊗

P (e) = P (e1) ∪
P (e2) = P (e1) + P (e2) − P (e1) · P (e2), where {e1, e2} ⊆ Rp(p).

Similar computation process we apply for computing the derived scores/
impacts of task nodes.

4.7 Computing Device and System Operability Using Dependency
Relations and Task Impacts

We present here six different cases to compute the operability considering the
inter and intra-dependency relations among tasks and hosts. Here, we utilize
FDNA by Garvey et al. [4] and mission impact assessment by Jakobson et al.
[8] to formulate the impact factor and the operability. Here, we use the nota-
tions as follows: hn denotes nth host/device; tn indicates nth task; Itn is the
impact on task tn found from MIAG; OChn

is the computed operability of
host hn; POChn

(t) depicts present operational capability before any attack inci-
dent; IFhn

(t+) is the impact factor (i.e., the fraction of reduction in operability)
on host hn at time t+; t+ are discrete time instances, where t+ > t. There
are two different dependency relations: inter-dependency and intra-dependency.
αij = f(OCti , POChj

) is the strength of inter-dependency (inter-SOD) (having
value in [0, 1]) of task ti on host hj which is a function of operability of task ti
(i.e, OCti), and present operational capability of host hj (i.e., POChj

); Simi-
larly, γij = g(OCti , OCtj ) is the intra-SOD (having value in [0, 1]) of task ti on
another task tj which is a function of the operability of task ti (i.e, OCti), and
task tj (i.e, OCtj ). We can formulate these values utilizing the feeder-receiver
dependency methods described by Guariniello et al. [9]. In case, if we have no
way to measure αij , and γij , we can utilize the values of 1.0, 0.5, and 0 for
fully-dependent, partially-dependent, and non-dependent cases respectively.

Case I: ‘FLOW’ Inter-dependency. In Fig. 3(a1) we have a task tn ‘FLOW’
depends on the host machine hn with a strength of dependency between them
αn. Figure 3(a2) shows their dependency in the form of MIDG. Here the impact
on task tn (i.e., Itn) has a ‘FLOW’ dependency on the operability of host hn

(i.e., OChn
). We can compute the operability OChn

at a discrete time instant t+

using the present operational capability of hn (i.e., POChn
) before the attack

incident (i.e., time instant t) and the flow of task impact as follows, where t+ > t.

IFhn
(t+) := αnnItn(t+) (1)

OChn
(t+) := max(POChn

(t) − IFhn
(t+), 0) (2)
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Fig. 3. Dependency relations and operability computation reference figure; (a1) and
(a2) task to host ‘FLOW’ dependency; (b1) and (b2) multiple tasks ‘AND’ depend on
single host; (c1) and (c2) multiple tasks ‘OR’ depend on single host; (d1) and (d2)
single task ‘AND’ depend on multiple hosts; (e1) and (e2) single task ‘OR’ depend on
multiple hosts; (f1) and (f2) task to task intra-dependency

POChn
(t+) = OChn

(t+) (3)

In Eq. 1, we compute the impact factor at time t+. We utilize IFhn
(t+) in

Eq. 2 to compute POChn
(t+) which is updated operational capability of host hn

after the attack incident reduces the current operability; In Eq. 3, the POChn
(t+)

is updated with the computed OChn
(t+) from Eq. 2, which assist in determining

the operability in future time instances. We can get POChn
(t) from the design

documents or initialize to 1.00 if not available otherwise.

Case II: Multiple Tasks to Single Host ‘AND’ Inter-dependency. As
shown in Fig. 3(b1), tasks t1 to tn have ‘AND’ dependencies on host machine hn

with the strength of dependencies α1n to αnn. Figure 3(b2) depicts the relation-
ships in the form of MIDG. We compute the operability of host hn at the time
instant t+ (i.e., OChn

(t+)) using POChn
(t) and the ‘AND’ dependency of task

impacts {It1(t
+), . . . , It1(t

+)}. The combined impact factor due to the ‘AND’
dependency relations are as follows.

IFhn
(t+) := min(α1nIt1(t

+), α2nIt2(t
+), . . . , αnnItn(t+)) (4)

We utilize IFhn
(t+) from Eq. 4 in Eq. 2 to compute the operability and in

Eq. 3 to update the present operability.

Case III: Multiple Tasks to Single Host ‘OR’ Inter-dependency. As
shown in Fig. 3(c1), tasks t1 to tn have an ‘OR’ dependency on host hn with
the strength of dependencies α1n to αnn respectively. Figure 3(c2) shows the
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node relationships in the form of MIDG. Similar to previous cases, first we
compute the combined impact factor IFhn

(t+) due to the ‘OR’ dependency of
task impacts {It1(t

+), . . . , It1(t
+)} as in Eq. 5. We then utilize Eqs. 2 and 3 to

compute OChn
(t+) using the present operational capability of POChn

(t).

IFhn
(t+) := max(α1nIt1(t

+), α2nIt2(t
+), . . . , αnnItn(t+)) (5)

Case IV: Single Task to Multiple Host ‘AND’ Inter-dependency. As
in Fig. 3(d1) a task tn has an ‘AND’ dependency on hosts h1 to hn with the
strength of dependency α1n to αnn, respectively. Here, we can formulate the
impact factor IFhn

(t+) on host hn, and operational capability OChn
(t+) of hn

as follows.

IFhn
(t+) := min(αn1, αn2, . . . , αnn)Itn(t+) (6)

We then utilize Eqs. 2 and 3 to compute and update the operability.

Case V: Single Task to Multiple Hosts ‘OR’ Inter-dependency. Similar
to previous case, we can formulate the impact factor IFhn

(t+) on host hn as
follows.

IFhn
(t+) := max(αn1, αn2, . . . , αnn)Itn(t+) (7)

Again, we then utilize Eqs. 2 and 3 to compute and update the operability.

Case VI: Single Task to Single Host ‘FLOW’ Inter-dependency and
Task to Task Intra-dependency. As shown in Fig. 3(f1) and (f2), we have
two tasks tm, and tn having ‘FLOW’ dependency on host hm, and hn. There is
also an intra-dependency between tasks tm and tn with the strength of intra-
dependency γmn, where tm precedes tn, meaning tm needs to be completed first
to perform tn. Here, we compute the corresponding impact factors as below.

IFhm
(t+) := αmmItm(t+)

IFhn
(t+) := 1

N

[
αnnItn(t+) + γmnIFhm

(t+)
]

}

(8)

In Eq. 8, N is the total number of dependency of task tn which includes both
intra and inter-dependencies, which is equal to 2 in this case. If γmn = 0, means
there is no intra-dependency, then N = 1, and the Eq. 8 becomes same as the
‘FLOW’ dependency as in Eq. 1. We then compute the operability of hn and hm

as below.

OChm
(t+) := max(POChm

(t) − IFtm(t+), 0)
OChn

(t+) := max(POChn
(t) − IFtn(t+), 0)

}

(9)
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Mission Impact and Overall Operational Capability. Let us consider, a
mission m can be accomplished using a set of task paths {TP1, TP2, . . . , TPn},
where each task path TPn itself includes a sequence of tasks {tn1 , tn2 , . . . , tnm

}
to perform to complete the task path TPn. Also, the corresponding host paths
{HP1,HP2, . . . , HPm}, where each host path HPm itself includes a sequence
of hosts {hn1 , hn2 , . . . , hnm

}. Then, we can compute the overall mission impact
Im(t+) and overall operational capability measure of the mission OCMm(t+)
using the below equation.

Im(t+) = max
k∈TP

(
∑

j∈TPk
IFkj(t

+)

|TPj |

)

OCMm(t+) = min
n∈HP

(
∑

j∈HPn
OChnj

(t+)

|HPj |

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(10)

Here, |TPj | is the cardinality of the task path TPj , IFkj(t+) is the impact
factor of task j in task path k. Similarly, |HPj | is the cardinality of the host path
HPj . OChnj

(t+) is the operational capability of dependent host j (associated
with task j) in host path path n (associated with task path k) at time instance
t+. The interpretation of Eq. 10 is that we take the maximum of the average of
all impact factors in the task paths for mission impact computations. We take
the minimum of the average of all operability measures for the corresponding
host paths to compute system operability due to mission impact.

5 Case Study Formulation and Evaluation

We have set up a case study of SCADA operations in EDS, as shown in Fig. 4.
The mission here is to maintaining proper functioning of the SCADA operations.
Here, we have eight tasks associated with this mission. Task T1 is to sense the
field-device data by the sensors. T2 is the I/O communications to the sensors. T3

is to collate information from the sensors and I/O modules and provide them to
the control screen in HMI. T4 presents the real-time graphical schematic/mimic
diagrams of the plant operations. T5 accumulates the time-series historical data.
T6 is the alarm and event log monitoring using real-time and historical data. T7

is to manually monitor the operational levels of the field-devices by the oper-
ators using appropriate CLIs (command-line interface). Finally, T8 is to initi-
ate supervisory commands to set the operational levels if necessary. Because of
redundant operational logic and intra-dependencies of the tasks, the mission can
be accomplished by the sequence of tasks T3 → T6 → T8 (i.e., task path1), or
T3 → T5 → T7 → T8 (i.e., task path2), where T3 := T1 ∧ T2, and T6 := T4 ∧ T5.
Here, ∧ means logical ‘AND’. By task path, we mean the sequence of tasks
needed to perform to have the mission successful.
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Mission Dependency for the Case Study. The tasks that we have men-
tioned in Fig. 4 depend on the programs or applications running on the under-
lying hosts or network devices. Here, we only consider the task-host interdepen-
dency bypassing the task-application-host dependency using transitivity rule.
For example, the job T1 of sensing relies on the sensors, T2 relies on the I/O
modules (RTU/IED). T3 depends on both T1 and T2. Similarly, we present other
task-host inter-dependencies and task-task intra-dependencies associated with
the mission in Fig. 4. The associated network devices are h1 to h8, as in Fig. 4.

5.1 Network Architecture and Possible Exploitation Scenarios

We have set up a six subnet EDS network based on NIST recommended
defense-in-depth architecture [3] and following the standards IEC 60870-5
(SCADA) in Fig. 5. Here, we have webServer, and workStation1 in the cor-
porate network. The webServer allows http and https traffic from the internet.
In the control layer, we have controlF irewall, historian, and workStation2.
historian allows ftp from workStation1. workStation2 allows ssh from
workStation1. The supervisory computers WS3 collates information from
DataAcquisitionServer(DAS) which itself collects data from the sensors and
PLC/RTU/IED devices. The historian can do ftp to DAS; historian allows
pulling data from workStation2 as they are on the same subnet. Also, WS3

Fig. 4. Mission dependency for the case
study. Double underlines indicate direct
impact because of the vulnerabilities in
associated devices; single underline shows
an indirect impact

Fig. 5. NIST defense-in-depth archi-
tecture based network setup for the
case study
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Table 1. Network vulnerability information

Vulnerability CVSS

score

Associated host Exploitation result

CVE-2020-5847a 9.8 webServer Remote code

execution

CVE-2019-18822b 5.9 workStation1 Privilege escalation

CVE-2020-0796c 10.0 workStation2 Remote code

execution

CVE-2019-11013d 6.5 Historian Directory traversal

CVE-2020-1008e 8.8 DataAcquisitionServer Remote code

execution
ahttps://nvd.nist.gov/vuln/detail/CVE-2020-5847
bhttps://nvd.nist.gov/vuln/detail/CVE-2019-18822
chttps://nvd.nist.gov/vuln/detail/CVE-2020-0796
dhttps://nvd.nist.gov/vuln/detail/CVE-2019-11013
ehttps://nvd.nist.gov/vuln/detail/CVE-2020-1008

directly connects with the HMI. workStation2 houses programs/CLI applica-
tions for direct monitoring of PLC/- RTU/IED devices. From the HMI, it is
possible to initiate corrective commands to set/adjust the operational levels of
some physical devices which pass to the actuators.

Irrespective of the network administrators efforts to make the network free of
any exploitation points, there are a couple of vulnerabilities existing on the net-
work, as shown in the Table 1. At first, the attacker can exploit CVE-2020-5847
of the webServer1 to by executing codes remotely and gain privilege in corpo-
rate LAN. Then, the attacker can exploit another privilege escalation vulnera-
bility CVE-2019-18822 in workStation1 to gain access to the control LAN. From,
workStation1 the attacker can exploit CVE-2019-11013 in the historian, which
allows directory traversal. Also, the attacker may reach to workstation2 through
exploiting CVE-2020-0796 and gain remote code execution privilege in control
LAN. Again, from the historian, the attacker can exploit DataAcquisitionServer
by exploiting the vulnerability CVE-2020-1008. Thus, the attacker can utilize two
different attack paths, marked as 1© and 2©. The attacker can not reach HMI or
WS3 because these devices don’t have any vulnerabilities. Thus, the attacker can
directly impact tasks T3, T5, T7, as shown by double underline marks in Fig. 4.
The impact on these three tasks impacts tasks T4, T6, T8 indirectly (as shown by
single underline mark) because of the dependency relationships. Either way, the
attacker’s goal is to disrupt the SCADA operations, and our mission is to secure
the same.

https://nvd.nist.gov/vuln/detail/CVE-2020-5847
https://nvd.nist.gov/vuln/detail/CVE-2019-18822
https://nvd.nist.gov/vuln/detail/CVE-2020-0796
https://nvd.nist.gov/vuln/detail/CVE-2019-11013
https://nvd.nist.gov/vuln/detail/CVE-2020-1008
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23:0.98

17:0.784

16:0.784 25:0.88

12:0.552

27:0.65 11:0.552 36:1.0

7:0.287 31:0.442

29:0.78 6:0.287 30:0.442

2:0.179

37:0.179

40:0.179 42:0.415

45:0.059 46:0.674

44:0.059

48:0.693

Fig. 6. Pruned mission impact
assessment graph for the case study
(nodes Datalog clauses are given in
Table 2)

Table 2. Datalog clauses of Fig. 6

Node Datalog clauses

23 vulExists(webServer,‘CVE-2020-

5847’,httpd,remoteExploit,privEscalation)

17 RULE 2 (remote exploit of a server program)

16 execCode(webServer,root)

25 vulExists(workStation1,‘CVE-2019-

18822’,sshd,remoteExploit,privEscalation)

12 RULE 2 (remote exploit of a server program)

11 execCode(workStation1,root)

36 vulExists(workStation2,‘CVE-2020-

0796’,sshd,remoteExploit,privEscalation)

27 vulExists(historian,‘CVE-2019-

11013’,ftpd,remoteExploit,privEscalation)

7 RULE 2 (remote exploit of a server program)

6 execCode(historian,root)

31 RULE 3 (local exploit of a server program)

30 execCode(workStation2,root)

29 vulExists(dataAcquisitionServer,‘CVE-2020-

1008’,ftpd,remoteExploit,privEscalation)

2 RULE 3 (local exploit of a server program)

37 taskImpact(t3CollateFieldData)

40 taskImpact(t4GraphicDisplay)

42 taskImpact(t5AccumulateEventLogs)

45 RULE 35 (An and-dependent task impacts later

task)

44 taskImpact(t6MonitoringAlarms)

46 taskImpact(t7ManualStatusCheck)

48 taskImpact(t8InitiateCorrectiveCommands)

5.2 Result Analysis and Interpretations

We present the complete MIAG in Fig. 8 in Appendix because of space constraints.
We utilize a pruning process on the MIAG as in Fig. 6, where we eliminate the
condition nodes except the vulnerability nodes; we keep the privilege and task
impact nodes, including the dependency rule nodes. On the pruned MIAG, we
apply the score quantification process discussed in Subsect. 4.6 and 4.7.

Task Impact Computation: From, Fig. 6, we find the computed derived
scores for the task impacts. Thus, taskImpact(t1Sensing) = 0.0, taskImpact
(t2IOCommunication) = 0.0, taskImpact(t3CollateF ieldData) = 0.179, task
Impact(t4GraphicDisplay) = 0.179, taskImpact(t5AccumulateEventLogs) =
0.415, taskImpact(t6MonitoringAlarms) = 0.059, taskImpact(t7ManualSta
tusCheck) = 0.674, taskImpact(t8InitiateCorrectiveCommand) = 0.693.

Task Impact Interpretation: There is no way the attacker can impact T1

and T2 because these devices have no vulnerability and exploitation path. Thus,
both task impacts are zero. Although task T3 ‘AND’-depends on T1 and T2,
because of the vulnerability exploitation in DataAcquistionServer, the task T3

can be impacted; thus the score is 0.179 as derived from the pruned MIAG graph.
T4 ‘Flow’-depends on T3, and has no other associated vulnerability. Thus, the
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impact on task T4 is equal to the derived impact of task T3, which is 0.179.
Task T5 ‘Flow’-depends on T3 and also can be impacted by exploitation of
historian. Thus, the derived score of T5 is (6 : execCode(historian, root))∨(37 :
taskImpact(t3CollateF ieldData)) = 0.287 ∨ 0.179 = 0.287 + 0.179 − 0.287 ∗
0.179 = 0.415. Similarly, we can compute the other derived scores for the task
impacts on T6, T7, T8. From the pruned MIAG, we see that even if T4, T6, and T8

don’t have direct vulnerabilities on the associated host devices, but these tasks
are getting impacted because of their dependency relations on other preceding
tasks. The task impact score represents the fraction of disruption on the task on
a scale of 0–1. The higher the score, the greater is the possible disruption on the
task.

Overall Mission Impact and Operability Computation and Interpre-
tation: We provide the computed impact factor and operability for the two task
paths (i.e., the two ways the mission can be established) in Tables 3, 4, 5, and
6, for different combinations of the strength of dependency factors. Here, sce-
nario 1© means all αii = 1.0, and γij = 1.0. Scenario 2©, 3©, and 4© means
all αii is equal to 0.75, 0.5, and 0.25, respectively keeping γij = 1.0. Finally,
we compute the mission impact and overall system operability using Eq. 10 and
Tables 3, 4, 5, and 6. We have assumed POC(hi) = 1.0 for this illustration,
where i = 1, 2, . . . , 8. For the scenario 1© of equal inter-SOD and intra-SOD,
the mission impact is max(0.1382, 0.2305) = 0.2305, and operational capabil-
ity is min(0.8618, 0.7695) = 0.7695 utils. This means the SCADA operational
mission would have 76.95% predictive operability having 23.05% impacts (i.e.,
disruptions) posed by the existing vulnerabilities during a cyberattack incident.

Table 3. Impact factor for task path1: T3 → T6 → T8 (T3 = T1 ∧ T2, T6 = T4 ∧ T5)

Scenario Impact Factor (IF)

IFh1 IFh2 IFh3 IFh4 IFh5 IFh6 IFh8 Average

1© 0.00 0.00 0.0895 0.1343 0.2523 0.0966 0.4011 0.1382

2© 0.00 0.00 0.0671 0.1007 0.1892 0.0725 0.3008 0.1037

3© 0.00 0.00 0.0448 0.0671 0.1261 0.0483 0.2005 0.0691

4© 0.00 0.00 0.0224 0.0336 0.0631 0.0242 0.1003 0.0346

Table 4. Impact factor for task path2: T3 → T5 → T7 → T8 (T3 = T1 ∧ T2)

Scenario Impact Factor (IF)

IFh1 IFh2 IFh3 IFh5 IFh7 IFh8 Average

1© 0.00 0.00 0.0895 0.2523 0.4631 0.5781 0.2305

2© 0.00 0.00 0.0671 0.1892 0.3473 0.4335 0.1729

3© 0.00 0.00 0.0448 0.1261 0.2316 0.2890 0.1152

4© 0.00 0.00 0.0224 0.0631 0.1158 0.1445 0.0576
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Table 5. Host operability for task path1: T3 → T6 → T8 (T3 = T1 ∧T2, T6 = T4 ∧T5),
associated hosts = {h1, h2, h3, h4, h5, h6, h8}

Scenario Operational Capability (OC)

OCh1 OCh2 OCh3 OCh4 OCh5 OCh6 OCh8 Average

1© 1.00 1.00 0.9105 0.8658 0.7478 0.9034 0.6052 0.8618

2© 1.00 1.00 0.9329 0.8993 0.8108 0.9275 0.7039 0.8963

3© 1.00 1.00 0.9553 0.9329 0.8739 0.9517 0.8026 0.9309

4© 1.00 1.00 0.9776 0.9664 0.9369 0.9758 0.9013 0.9654

Table 6. Host operability for task path2: T3 → T5 → T7 → T8 (T3 = T1 ∧ T2),
associated hosts = {h1, h2, h3, h5, h7, h8}

Scenario Operational Capability (OC)

OCh1 OCh2 OCh3 OCh5 OCh7 OCh8 Average

1© 1.00 1.00 0.9105 0.7478 0.5369 0.4219 0.7695

2© 1.00 1.00 0.9329 0.8108 0.6527 0.5665 0.8271

3© 1.00 1.00 0.9553 0.8739 0.7684 0.7110 0.8848

4© 1.00 1.00 0.9776 0.9369 0.8842 0.8555 0.9424

5.3 Evaluation of Scalability

In our mission impact model, generating the mission impact assessment graph
takes time depending on the network size and, thus, related to the scalability.
Therefore, we present here a comparison of the simulation time to generate the
MIAG. We consider the full SCADA case study as one unit and then replicate
and grouped the units together (i.e., no. of simulation units termed as ‘NoU’).

We utilize an Ubuntu 18.04 OS version Virtual Box (VB) image with 50 GB
hard drive and 8 GB memory to install MulVAL and perform the simulation. We
use the VB in a Dell Laptop with Windows 10 OS, 16 GB RAM, and 1 TB hard
disk. We present the number of nodes and edges and the average graph generation
time in Fig. 7. With the increase of simulation units, the graph generation time
increases exponentially. Still, as we can see, it can generate the graph with nearly
3000 nodes and 3300 edges in around 182 s (∼3 min) on average. Cao et al. [2]
also present a detailed evaluation of scalability using the MulVAL simulation
platform. We encourage readers to follow the explanations presented by Cao et
al. [2] in Subsect. 5.3 to get a good insight on scalability using MulVAL.
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(a) (b)

Fig. 7. Evaluation of scalability: (a) Network size in terms of number of nodes and
edges, (b) Graph generation time (in sec.) vs. number of simulation units

5.4 Generalization Challenges and Way Forward

We demonstrate the model for energy systems. The model applies to other cyber-
physical systems as well. There may be some challenges in identifying the depen-
dencies and determining the strength of dependencies. We can overcome these
utilizing artificial intelligence techniques and Hidden-Markov models (HMM)
using system process calls. We may also utilize FDNA [4] for dependency mod-
eling. There can be issues with cyclic graphs, and the MulVAL engine is capable
of handling the cycling problems [6]. Choosing the right tool to simulate large-
scale CPS is also challenging. Open-source tools such as MulVAL, NetworkX
can help in this regard. The most critical challenge would be to incorporate real-
time services as comprehensive as possible. Rather than considering the complete
system as a single mission, dividing the whole mission into several sub-missions
and performing mission-critical dependency modeling and impact assessment
for each subdivided mission could provide some guidance. The creation of cus-
tomized rule sets based on the dependency scenario is another challenge to take
into considerations.

6 Related Work

Gabriel [8] presents mission security situation assessment using impact depen-
dency graphs. The article presents a conceptual framework for the cyberattack
model and uses logical constraint graphs to assess the assets’ operational capacity
and mission impact. Albanese and Jajodia [10] present a graphical model to eval-
uate the effects of multi-step attacks. The authors propose an impact assessment
graph utilizing the vulnerability dependency graph. Changwei et al. [11] model
intrusion evidence dependency using probabilistic evidence graph and attack
graph. The use of qualitative evaluation questions the applicability of the model
in practical settings. Jajodia et al. [12] present ‘Cauldron,’ a mission-centric
cyber situational awareness tool. Cauldron focuses more on the implementation
side and does not disclose the underlying modeling details because of the nature
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of operations. Haque et al. [13,14] utilize graph theory in analyzing impact and
security in cyber-physical systems.

Sun et al. [1,15] propose a technique to model the dependency relations by
utilizing the mission or service dependency graph and attack graph. Cao et al. [2]
present a quantitative metric for business process impact assessment using the
attack graphs and entity dependency graph. The works offer some directions on
integrating system dependency in the security models where we get our primary
motivations for this work. However, the articles focus on Enterprise networks
and lack in providing formal mathematical reasoning to integrate the attack
graph and dependency graph. Also, the correlation of the impact with system
operability is missing. We have clearly defined different graph types and the
integration process to use irrespective of the system type and the simulation
platform. Although we have used the MulVAL simulation platform, our detailed
mathematical formulations illustrate that the model is implementable regardless
of the simulation platform. The significant difference between our model and the
previous models is that we relate the impact to system operability. This would
guide in developing mitigation strategies and defensive actions. The model is
also applicable to the impact assessment of other cyber-physical systems with
necessary adjustments.

7 Conclusion and Future Directions

This work addresses two existing modeling problems in the security domain for
the energy delivery systems. The first problem deals with the incorporation of
the mission functional dependency into the traditional attack graph model. The
second problem is to quantify and assess the mission impact and system oper-
ability. We provide detailed formal explanations of the graphical models that we
use to address the above problems. We offer a case study of SCADA operations
for energy delivery systems and present the details of how the mathematical
models can help assess the mission impact and system operability in the pres-
ence of vulnerabilities on the mission-critical devices. We plan to optimize our
model by including control measures that would assist in minimizing the mis-
sion impact and maximizing the system operability to provide cyber resilience
guidance. We only consider operational dependencies in this work. We have the
plan to incorporate strategic and tactical dependencies in our future extension
of this work.
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Fig. 8. Complete mission
impact assessment graph
for the case study (nodes
Datalog clauses are given
in Table 7)

Table 7. Datalog clauses of Fig. 8

NodeDatalog clauses

20 hacl(internet,webServer,httpProtocol,httpPort)

21 attackerLocated(internet)

19 RULE 11 (direct network access)

18 netAccess(webServer,httpProtocol,httpPort)

22 networkServiceInfo(webServer,httpd,httpProtocol,httpPort,root)

23 vulExists(webServer,‘CVE-2020-
5847’,httpd,remoteExploit,privEscalation)

17 RULE 2 (remote exploit of a server program)

15 hacl(webServer,workStation1,sshProtocol,sshPort)

16 execCode(webServer,root)

14 RULE 10 (multi-hop access)

13 netAccess(workStation1,sshProtocol,sshPort)

24 networkServiceInfo(workStation1,sshd,sshProtocol,sshPort,root)

25 vulExists(workStation1,‘CVE-2019-
18822’,sshd,remoteExploit,privEscalation)

12 RULE 2 (remote exploit of a server program)

10 hacl(workStation1,historian,ftpProtocol,ftpPort)

11 execCode(workStation1,root)

34 hacl(workStation1,workStation2,sshProtocol,sshPort)

9 RULE 10 (multi-hop access)

33 RULE 10 (multi-hop access)

26 networkServiceInfo(historian,ftpd,ftpProtocol,ftpPort,root)

27 vulExists(historian,‘CVE-2019-
11013’,ftpd,remoteExploit,privEscalation)

8 netAccess(historian,ftpProtocol,ftpPort)

32 netAccess(workStation2,sshProtocol,sshPort)

35 networkServiceInfo(workStation2,sshd,sshProtocol,
sshPort,root)

36 vulExists(workStation2,‘CVE-2020-
0796’,sshd,remoteExploit,privEscalation)

7 RULE 2 (remote exploit of a server program)

31 RULE 2 (remote exploit of a server program)

5 hacl(historian,dataAcquisitionServer,ftpProtocol,ftpPort)

6 execCode(historian,root)

4 RULE 10 (multi-hop access)

30 execCode(workStation2,root)

28 networkServiceInfo(dataAcquisitionServer,ftpd,ftpProtocol,
ftpPort,root)

29 vulExists(dataAcquisitionServer,‘CVE-2020-
1008’,ftpd,remoteExploit,privEscalation)

3 netAccess(dataAcquisitionServer,ftpProtocol,ftpPort)

2 RULE 2 (remote exploit of a server program)

1 execCode(dataAcquisitionServer,root)

39 task(t3CollateFieldData,dependency,dataAcquisitionServer)

38 RULE 32 (An impacted host impacts dependent task)

37 taskImpact(t3CollateFieldData)

41 RULE 33 (An impacted task impacts Flow-dependent succeeding
task)

43 RULE 34 (An impacted task or an impacted host impacts
dependent task)

40 taskImpact(t4GraphicDisplay)

42 taskImpact(t5AccumulateEventLogs)

45 RULE 35 (An and-dependent task impacts following task)

47 RULE 36 (An impacted task or an impacted host impacts
dependent task)

44 taskImpact(t6MonitoringAlarms)

46 taskImpact(t7ManualStatusCheck)

49 RULE 37 (Both impacted tasks impacts dependent task)

48 taskImpact(t8InitiateCorrectiveCommands)

Note: Node numbers are in the order from top to bottom as in
Fig. 8
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Abstract. With the surge in popularity of blockchain, more and more
Decentralized Applications (DApps) are deployed on blockchain plat-
forms. DApps bring convenience to people, but cause security and effi-
ciency problems. In this paper, we focus on the security and efficiency
problems of DApps on Ethereum. Our research is divided into three
application scenarios. In DApps classification, we analyze characteristics
of DApps and extract efficient features to recognize 11 representative
DApps. In DApps user behaviors classification, we propose behavior-
sensitive features and improved time features to recognize 88 DApps user
behaviors, which would help to identify malicious behaviors in encrypted
traffic. In general user behavior classification, different categories of fea-
tures are proposed to recognize 15 general user behaviors which represent
the performance of DApps. DApps developers can obtain valuable data to
improve the quality of service through analyzing the classification results.
Experimental results in the three application scenarios achieve excellent
performance (99.5% accuracy for DApps classification, 95.65% accuracy
for DApps user behaviors classification, 98.58% accuracy for general user
behaviors classification) and outperform the state-of-the-art methods.

Keywords: DApps and user behaviors · Encrypted traffic
classification · Features extraction · Traffic analysis · Machine learning

1 Introduction

Ethereum [4] is the first major blockchain to support the Turing-complete script-
ing via smart contracts, which allow parties to create virtual trusted third parties
that behave according to arbitrary agreed-upon rules. It attracts people to write
smart contracts for building Decentralized Applications (DApps), which run on
a peer-to-peer network of computers. DApps become one of the development
trends of the internet. As of May 2020, there are more than three thousand
DApps, and 82% of them are deployed on Ethereum [1].
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DApps deployed on Ethereum use SSL/TLS protocols to encrypt trans-
mission data between entities. There is no difference in encrypted protocol
details between different DApps, because these DApps are adopted on the same
blockchain platform, so the dissimilarity of encrypted traffic generated by dif-
ferent DApps is reduced. Some traditional classification methods begin to lose
effect, such as deep packet inspection [11]. There are lots of research on applica-
tion identification [3,5,18,21], with few articles mentioned DApps. In [20], the
authors use high-dimensional features for DApps classification, which results in
low efficiency. So in the case of ensuring high accuracy, how to improve the
efficiency of DApps classification is a challenge.

DApps are similar to traditional apps, with privacy and security risks [7,22].
As for the classification on DApps user behaviors, it can identify specific
user behaviors (e.g., checking account, communication, purchase, comment) in
encrypted traffic, which may help network operators detect suspicious behav-
iors, thereby enhancing the protection of user privacy. For example, the attacker
recruits employees through posts in Ethlance, which are actually phishing posts.
This classification may help to identify the dubious behavior which is repeated
many times by the same IP in a short period of time. Additionally, some DApps
containing Trojan codes disguise as normal DApps, which steal confidential data
of unwitting users, and the classification may help to identify suspicious behav-
iors other than normal ones. The operator could then take appropriate actions to
protect user privacy. Researchers have been studying user behaviors classification
for many years, but most of them focus on traditional applications [7,8,24]. Due
to the invisibility and confusion of DApps user behaviors traffic, some features
do not perform well, such as packet sizes [17], packet flags [13,19], statistical
features of packet length [21]. Statistical-time features are used to identify Bit-
coin wallets and user actions [2], but these statistics have little improvement on
DApps user behaviors classification. Therefore, we need to propose a specific set
of features according to the characteristics of DApps user behaviors.

Improving Qos is a topic of ongoing interest in many aspects, such as appli-
cations [12,15], distributed multimedia services [10], cloud services [16]. As an
emerging technology, most DApps cannot provide good quality of user experi-
ence. DApps run on a decentralized network and each node can be regarded as a
central server, which bring challenges to improve Qos of DApps. As for the clas-
sification on general user behaviors, it ignores the differences between DApps.
Combined with traffic data, it can provide valuable information (e.g., user pref-
erences, throughput, latency) within an organization. The data is invaluable for
network administrators to optimize the networks. For example, the administra-
tors can trigger the automated re-allocation of network resources for priority
behaviors after getting user preferences through the usage frequency of general
user behaviors. They can obtain the latency of each behavior by extracting time
series from the traffic data. Administrators could configure their networks to
help DApps perform more efficiently, thereby improving Qos of DApps.

In this paper, we focus on the classification for three application scenarios
of DApps encrypted traffic. After analyzing the characteristics of DApps and
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user behaviors, we propose different sets of features for three scenarios to get
better performance. Then, we use three classification models to conduct the
classification and compare their performance. In addition, we find that most
flows of DApps traffic are short flows through experiment. The contributions of
this article are as follows:

– We classify encrypted DApps traffic. After analyzing DApps characteristics
and network traffic, we use less features to improve the efficiency of DApps
classification. The effectiveness of the proposed features is verified by exper-
imenting on encrypted traffic collected from 11 representative DApps. The
experimental results are better than the state-of-the-art methods.

– We explore the fine-grained classification on encrypted DApps traffic and
research on DApps user behaviors. After analyzing DApps, 88 available user
behaviors are totally extracted. We propose DApps user behaviors-sensitive
features and the improved time features, which strengthen the discrimina-
tion of DApps user behaviors in encrypted traffic. The experimental results
demonstrate that our method can identify DApps user behaviors with up to
95% accuracy. To the best of our knowledge, we are the first one to classify
user behaviors of multiple types of DApps.

– We categorize 88 user behaviors into 15 general user behaviors which represent
the performance of DApps. Different kinds of features are proposed according
to the characteristics of general user behaviors. Compared with the existing
methods, the performance of our proposed method is preferable to them, with
98% accuracy. This work is the first to perform classification on general user
behaviors.

The rest of this paper is organized as follows. Section 2 briefly reviews related
work. Next, we elaborate the process of extracting features for different applica-
tion scenarios in Sect. 3. Section 4 details the dataset and shows the experimental
results. Finally, we conclude this paper in Sect. 5.

2 Related Work

Researches on traffic classification emerge in an endless stream. According to
our research, we provide an overview of related work in three aspects: encrypted
application traffic classification, application user behavior classification and anal-
ysis of network traffic of blockchain.

Encrypted Application Traffic Classification. In [6], Chen et al. found that
despite encryption, web applications also suffered from side-channel leakages.
They leveraged fundamental features of web applications: stateful communica-
tion, low entropy input and significant traffic distinction. But web applications
consist of browser-side and server-side components, DApps can be split into
browser-side and smart contracts. Cai et al. presented a website fingerprinting
attack and proved its effectiveness through traffic analysis countermeasures [5].
They used an SVM with a custom kernel based on an edit-distance. The edit dis-
tance allowed for delete and transpose operations, that are supposed to capture
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drop and re-transmission of packets respectively. Shen et al. incorporated the
certificate packet length clustering into the second-order homogeneous Markov
chains [18]. The work could lead to a 29% improvement on average compared
with existing Markov-based methods, in terms of classification accuracy. In [17],
the authors presented a website fingerprinting method at Internet Scale. The
accumulated sum of packet sizes was used to represent the progress of webpage
loading. Gil et al. extracted time related features such as flow bytes per second,
inbound and outbound inter-arrival time to characterize the network traffic by
using C4.5 and KNN [9]. They detected six major classes of VPN traffic including
browsing, streaming, chat, email, file transfer and VoIP. Alan et al. found that
popular Android apps can be identified with 88% accuracy, only using packet
sizes of the first 64 packets [3]. Vincent et al. used 54 statistical features of packet
length on Random Forest to build an Appscanner [21] which can identify 110
applications with 96% accuracy. They also proved that app fingerprints persist
in varying extents across devices and app versions.

Application User Behaviors Classification. Coull et al. utilized the size of
exchanged packet between the target user and Apple’s server to identify iMessage
user actions, such as start writing, stop writing, message sending, attachment
sending [8]. In [24], the authors used a suite of inference techniques to reveal
a specific user action (i.e., send a tweet) on the Twitter app installed on an
Android smartphone. Condi et al. clustered the streams of each application user
behavior by clustering methods [7], then they calculated the dynamic warping
distance for each stream, in terms of packet length. But they experimented on
each app and ignored the similarity of encrypted traffic between different apps.
Yan et al. segmented WeChat traffic into several bursts to describe different
actions [23], and extracted packet length, number of TCP handshakes, statistics
from each burst to identify red packet transactions and fund transfers.

Analysis of Network Traffic of Blockchain. In 2014, Koshy et al. developed
heuristics to apply highly conservative constraints to Bitcoin network traffic [14],
and they found that nearly 1,000 Bitcoin addresses can be mapped to IPs by
leveraging anomalous relaying behaviors. Shen et al. generated high-dimensional
features by fusing time series, packet length and packet burst [20]. The accuracy
of DApps traffic classification reached 90%. But the training time and testing
time of this method is much longer than other methods because of the large input
vector, which results in low efficiency. Aiolli et al. identified bitcoin wallet apps
and user actions only through statistical-time features, such as length, maximum,
minimum, mean, etc. [2]. The classifier was trained by SVM and Random Forest
algorithm, and the accuracy achieved 95%.

Due to the same encrypted protocol and blockchain platform, how to effec-
tively and accurately classify DApps and user behaviors in encrypted traffic are
challenging. In this paper, we propose suitable features for three application
scenarios, and explain them with DApps characteristics.
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3 Methodology

In this section, we introduce the features we extracted for three application
scenarios: DApps classification, DApps user behaviors classification and general
user behaviors classification. The main process of our model is shown in Fig. 1.
At first, we collect DApps network traffic and pre-process DApps traffic. After
analyzing characteristics of different application scenarios, we propose different
features. Finally, we apply different sets of features to the existing machine
learning algorithms for different application scenarios classification.
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Fig. 1. Main process of Modeling. Sum PAT, mean PAT represent sum of packet arrival
time, mean of packet arrival time. IATS, BRC and PR statistics represent statistical
features of inter-arrival time series, byte rate change and packet rate. TPIF, TPOF
and FPAT represent total packets of inbound flow, total packets of outbound flow and
the first packet arrival time.

3.1 Feature Extraction for DApps Classification

There are many different characteristics between DApps and traditional applica-
tions, such as operation mode (e.g., decentralized), data storage (e.g., Ethereum
platform, IPFS), construction (e.g., web applications consist of browser-side and
server-side components, DApps consist of browser-side and smart contracts),
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etc., which result in the differences of packet arrival time and packet length for
different DApps.

Selected DApps Features
Selected DApps features consist of packet length distribution and time series.
The features are detailed as follows.

Packet Length Distribution. The size of the payloads for the first 100 packets of a
session are recorded in dataset. We assume a 1500 byte Maximum Transmission
Unit, and create 150 bins of 10 bytes each. Then, the number of packets whose
length is in the range [0,10) is taken as the value of the first bin, the number of
packets whose length is in the range [10,20) is taken as the value of the second
bin, and so on. We get the number of packets that fell into different intervals in
a flow. Finally, we construct a length-150 array.

Time Series. The packet arrival time for the first 100 packets of a session are
recorded. we construct a length-100 array.

3.2 Feature Extraction for DApps User Behaviors Classification

Compared with DApps classification, DApps user behaviors classification is more
fine-grained. We divide proposed features into three categories: selected DApps
features, behavior-sensitive features and improved inter-arrival time series.

Selected DApps Features
We use the two features which are mentioned in Sect. 3.1: packet length distri-
bution and time series.

Behavior-Sensitive Features
Behavior-sensitive features consist of sum of packet arrival time, mean of packet
arrival time, and byte distribution. The features are detailed as follows.

Sum of Packet Arrival Time and Mean of Packet Arrival Time. For some behav-
iors, such as creating project, users can submit applications to rent things in
Staybit. If other users want to rent, they need to pay through Ethereum accounts.
This process causes distinction of transmission data, so sum of packets arrival
time may be different. Each behavior has different sequence of actions. For exam-
ple, behavior ‘like the artwork’ needs five actions in a precise order, behavior
‘comment’ needs seven actions, behavior ‘open Superrare’ needs three actions.
An action could be simple (e.g., a click on a button, a selection of edit box) or
complex (e.g., a connection of Ethereum wallet, type a text, which is randomly
selected from a set of sentences). So the number of packets and response time of
each behavior are different. We propose two features: sum of packet arrival time
and mean of packet arrival time.
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Byte Distribution. DApps utilize encrypted protocol to encrypt transmission
data between entities. For different DApps user behaviors, DApps need to call
different part of smart contracts, and the action sequence of each behavior is also
unique. Although the communication data is encrypted, the encrypted payload
is subtle distinction due to the difference of the original payload. So we extract
byte distribution which is a length-256 array that keeps a count for each value
encountered in the payloads of the packets for each packet in the flow. We
use Principal Components Analysis to reduce the 256-dimensional data to 2-
dimensional data. Each behavior is represented by two-dimensional data in the
figure.

Fig. 2. Byte Distribution of DApps user behaviors. Each color represents a user behav-
ior. Behavior 1–16 refer to the ID in Table 5

We only show the results of 16 DApps user behaviors in Fig. 2 because of
space limitation. There are some DApps user behaviors overlap, such as ‘open
Superrare’ and ‘view details of the artwork’ in Superrare, probably because the
action sequences and the required data resources of the two behaviors are similar.
However, it can be seen from the figure that the byte distribution is obviously
effective in distinguishing DApps user behaviors.

The Improved Inter-arrival Time Series
Users use DApps through web user interface which interacts with wallets (e.g.,
Metamask, TrustWallet, Imtoken) for some user behaviors (e.g., comment on a
post, like or dislike an artwork, etc., but not all user behaviors need this step),
then it interacts with blockchain nodes rather than central servers. User behav-
iors that must connect to wallets are marked with ✩ in Table 5. The back-end
code (smart contract) of DApps runs on the nodes of decentralized peer-to-
peer network. Some DApps may store data as the metadata of transactions
on Ethereum. Some DApps may build separate storage system on IPFS, but
the developer needs to consider some complex things while building it, such
as access management system. Therefore, the response time from Ethereum
nodes to the front-end is different for different user behaviors. we improve
inter-arrival time series as follows. We convert the original inter-arrival time
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series PTS = (s1, s2, . . . , sj , . . . , sn−1) to the improved inter-arrival time series
G PTS = (a1, a2, . . . , aj , . . . , an−1), where sj = tj+1− tj. The aj is computed by:

aj = Δt · b +
Δt

2
(1)

where b satisfies the condition, Δt · b � sj < Δt(b + 1), we select Δt = 0.005 s
after testing.

Figure 3 reports the statistical distribution of the improved inter-arrival time
of bidirectional flows for each user behavior. The first quartile, the median and
the third quartile are highlighted by using a notched box plot. Some behaviors
have a long tail distribution for the improved inter-arrival time such as behavior
33, 34, 46, 50. User behaviors in the same DApps (e.g., Thomas Crown Art,
Latium) are very similar, although they are different behaviors. Behavior 7, 35,
60, 65 show a very long inter-arrival time distribution. From the figure we can
see that the improved inter-arrival time may be a discriminative feature.
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Fig. 3. Statistical distribution of the improved inter-arrival time of bidirectional flows
for each user behavior. The median is represented as the red line. First quartile and
third quartile are represented as the down and up side of the box. The + represents
improved inter-arrival time beyond the first quartile and third quartile. The X-axis
label user behavior 1–88 refer to the ID in Table 5 (Color figure online)
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3.3 Feature Extraction for General User Behaviors Classification

For this application scenario, we select 15 general user behaviors which represent
the performance of these DApps. Each general user behavior consists of the same
type of user behavior of different DApps. For example, all DApps exist behavior
‘opening DApps’ and we group them into a general user behavior. Suitable fea-
tures are proposed for this scenario, and they are divided into four kinds: selected
DApps features, general behavior-sensitive features (behavior-sensitive features
without features related to DApps), series features, and statistical features.

Selected DApps Features
We use the two features which are mentioned in Sect. 3.1: packet length distri-
bution and time series.

General Behavior-Sensitive Features
We also use the behavior-sensitive features which are mentioned in Sect. 3.2. But
we remove features related to DApps to improve efficiency. So we only select byte
distribution.

Statistical Features
Statistical features consist of total packets of inbound flow, total packets of
outbound flow, the first packet arrival time of outbound flow, statistical features
of inter-arrival time series, byte rate change and packet rate.

Total Packets of Inbound Flow, Total Packets of Outbound Flow, and the First
Packet Arrival Time of Outbound Flow. Action sequences of general user behav-
iors of different DApps are similar, but different general user behaviors are
composed of different action sequences. The required data are retrieved from
Ethereum peers, then they are transmitted to the front-end through API and
displayed on the interface. We consider that these proposed features may be
different because of different action sequences.

Statistical Features of Inter-arrival Time Series, Byte Rate Change and Packet
Rate. The ten statistical features of inter-arrival time series are the mean, stan-
dard deviation, maximum, minimum, length of unique number, mode, frequency
of mode, percentile. In particular, we choose 0.25, 0.5, 0.75 percentile of inter-
arrival time series. These statistics are also collected for byte rate change and
packet rate.

Since there is no central server in DApps, the impact of different
DApps on general user behaviors classification is reduced. Many DApps
store data on Ethereum, different general user behaviors may result in dif-
ferent transmission rates at different stages. Bytes rate change, BRC =
(brc1,brc2,brc3, . . . ,brcn−1), calculated through the bytes rate sequence BRS =
(brs1,brs2,brs3, . . . ,brsn−1). brci represents the D-value between brsi+1 − brsi.
brsi represents rate of bytes in Δt time. We try Δt from 0 to 3 s, and we find
the result is the best when Δt = 0.25 s. However, we do not use this feature
directly. Skewness coefficient is a feature that describes the symmetry of data
distribution. The skewness brcs is calculated as follows:
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brcs =
1

n−1

∑n−1
i=1

(
brci − ¯brc

)3

(
1

n−2

∑n−1
i=1

(
brci − ¯brc

)2
) 3

2
(2)

Besides, kurtosis is a descriptor of the shape of a probability distribution.
The kurtosis brck is calculated as follows:

brck =
1

n−1

∑n−1
i=1

(
brci − ¯brc

)4

(
1

n−1

∑n−1
i=1

(
brci − ¯brc

)2
)2 − 3 (3)

Similar to brcs and brck, for packet rate PR =
(
pr1,pr2,pr3, . . . ,prn−1

)
. The

skewness prs and the kurtosis prk are computed by:

prs =
1
n

∑n
i=1 (pri − p̄r)3

(
1

n−1

∑n−1
i=1 (pri − p̄r)2

) 3
2
; prk =

1
n

∑n
i=1 (pri − p̄r)4

(
1
n

∑n
i=1 (pri − p̄r)2

)2 − 3 (4)

Series Features

Inbound and Outbound Arrival Time Series. In order to enhance the impact of
the action sequence on classifier, we consider that packet arrival time series play
an important role, and the inbound and outbound packet arrival time series have
different characteristics. Therefore, we extract not only bidirectional arrival time
series, but also inbound and outbound arrival time series.

4 Performance Evaluation

In this section, we first describe how we collect the labeled DApps traffic. Then,
in order to evaluate the performance of proposed features for three application
scenarios classification, we utilize Precision, Recall, F1-measure and Accuracy.
Ten-fold cross validation is used to evaluate our method. We introduce experi-
mental results from the following subsections: results of different models, evalu-
ation of DApps classification, evaluation of DApps user behaviors classification,
evaluation of general user behaviors classification and proposed features analysis.

4.1 Dataset

Figure 4 depicts our traffic collection platform. Users use DApps through virtual
machines that are connected to the same access point, and all captured files
are transferred to the point for traffic pre-processing and experiments. In order
to assess our proposed features, we select 11 representative DApps of diverse
categories on Ethereum, most of which have a lot of users, and all of them
are close to our lives. After analyzing each DApp, we extract 88 available user
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Fig. 4. Process of DApps traffic capture.

behaviors in total. Then, we categorize 88 user behaviors into 15 general user
behaviors which represent the performance of these DApps. It is noteworthy that
different sets of features proposed for these application scenarios are applicable
to all DApps, the 11 representative DApps are used to evaluate our methods.

Table 1. Flow of 11 DApps

DApps Category Flow Percentage (%)

Superrare Marketplace 17593 9.1

Editional Social 11066 5.8

John Orion Young Property 13937 7.2

Thomas Crown Art Marketplace 12105 6.3

Cryptoboiler Social 15147 7.9

Ethlance Social 12349 6.4

Knownorigin Marketplace 15200 7.9

Staybit Property 15535 8.1

Crowdholding Social 24500 12.7

Latium Exchanges 30245 15.8

Viewly Media 24696 12.8

Total 192373 100

In order to achieve a particular target, a user must perform several actions
in a precise order, which is the same as the action sequence in the real world.
For example, when we comment on a post in Cryptoboiler, we need to perform
exactly seven actions before we comment success: 1) open browser 2) enter Cryp-
toboiler 3) slide window 4) select edit box 5) fill the box with some text, which
is randomly selected from a set of sentences 6) click publish button 7) close
browser. We write 88 automatic scripts with Microsoft Visual Basic Script Edi-
tion, and each script represents a user behavior. Each user behavior is conducted
for 200 times. For some user behaviors, we utilize different content to enrich the
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data set (e.g., for behavior ‘select artwork’ in Superrare, there is an action in the
action sequence to view the detailed information of an artwork, we totally view
the detailed information of 40 artworks, five times for each artwork, instead of
200 times for an artwork). The scripts are used to simulate user behaviors within
DApps, and the traffic generated by DApps was captured.

For some user behaviors (e.g., comment post in Cryptoboiler, agree article
in Crowdholding, like article in Editional), we need two different categories of
users. “Passive” user is used to passively use the DApps, by receiving posts or
comments. “Active” user simulates the behavior of users that actively use DApps
by sending posts, comment, giving “Passive” user a like, etc. The main purpose
of this step is to protect the normal use of other users.

Table 2. Flow of 15 general user behaviors (Color figure online)

Behaviors Flow Percentage (%)

Open DApps 28426 15

Open market 17176 9

View detail 29502 15

Follow a user 4685 2

Like or dislike 10885 6

Create project 16641 9

Search 22872 12

View homepage 17825 9

Activities 6176 3

Add to cart 2871 1

Watch video 2882 1

Comment 4078 2

DApps introduction 4748 3

Refresh cart 2977 2

Else behaviors 20629 11

Total 192373 100

We collected 192,373 flows and millions of packets on two virtual machines
from August 4, 2019 to September 30, 2019. As seen in Fig. 4, we get the multi-
label dataset. For each flow, it has three labels, including DApps label, DApps
user behaviors label, and general user behaviors label. By simulating user behav-
iors through scripts, it is possible to label the flows. Their detailed information
is showed in Table 1, Sect. 4.4, and Table 2, respectively. Finally, we extracted
data from Wireshark capture files to form the Json file. The data includes time,
IP addresses, packet lengths, payload, TCP/IP flags, extension information, etc.
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4.2 Results of Different Models

The evaluated classifiers include Random Forest(RF), Gradient Boosting Deci-
sion Tree(GBDT), Decision Tree(DT), and the experimental results are shown
in Table 3. The Random Forest classifier achieves the best performance for three
application scenarios. So we select the Random Forest classifier for the following
experiments. The classifier is trained using 100 estimators (the tree number of
Random forest).

Table 3. Accuracy of different scenarios with different machine learning algorithms

Accuracy GBDT DT RF

DApps classification 0.9032 0.9884 0.995

DApps user behaviors classification 0.8472 0.9483 0.9565

General user behaviors classification 0.6878 0.9581 0.9858

4.3 Evaluation of DApps Classification

As for the DApps traffic classification, we compare our proposed features with
two other methods to classify 11 DApps, which are summarized as follows:

– Appscanner [21], which uses the statistical features of packet length (e.g.,
mean, percentiles) about incoming, outgoing and bi-directional flows in the
RF classifier.

Table 4. Comparison of Appscanner, FFP and our features

DApps Appscanner FFP Our features

P R F1 P R F1 P R F1

Superrare 0.9809 0.9039 0.9408 0.9870 0.9903 0.9885 0.9989 0.9989 0.9989

Editional 0.9857 0.9972 0.9915 0.9887 0.9866 0.9876 0.9865 0.9813 0.9838

John Orion Young 0.9914 0.9957 0.9936 0.9906 0.9750 0.9825 0.9958 0.9905 0.9931

Thomas Crown Art 0.9993 0.9921 0.9957 0.9898 0.9915 0.9906 0.9947 0.9969 0.9958

Cryptoboiler 0.9936 0.9984 0.9959 0.9967 0.9956 0.9961 0.9985 0.9980 0.9982

Ethlance 0.9987 0.9928 0.9957 0.9917 0.9892 0.9904 0.9944 0.9935 0.9940

Knownorigin 0.9917 0.9926 0.9922 0.9937 0.9976 0.9956 0.9972 0.9992 0.9982

Staybit 0.9999 0.9993 0.9997 0.9983 0.9979 0.9981 0.9999 0.9988 0.9993

Crowdholding 0.9996 0.9988 0.9992 0.9973 0.9977 0.9975 0.9988 0.9980 0.9984

Latium 0.9912 0.9923 0.9917 0.9886 0.9909 0.9898 0.9918 0.9927 0.9922

Viewly 0.9254 0.9744 0.9492 0.9757 0.9778 0.9766 0.9905 0.9944 0.9925

Average 0.9870 0.9852 0.9859 0.9907 0.9885 0.9902 0.9951 0.9947 0.9949

Accuracy 0.9844 0.9901 0.9950

*P and R in this table means the metric Precision and Recall.
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– FFP [20], which uses three sequence features: time series, packet length and
burst. Then these features are fused through a kernel function to become
high-dimensional features, which are used in the RF classifier.

As seen in Table 4, all of the methods perform good, the accuracy of the
worst classifier reaches 98%. The accuracy of our method is 99.50%, which is
higher 1.06% than Appscanner. And our features outperform FFP with about
0.5% improvement. The performance gap between our method and FFP is not
large. However, the vector input into the classifier of FFP is much larger than
the classifier of our method, so FFP takes longer time to build a model. Our
model uses less features to improve efficiency and get better results.

4.4 Evaluation of DApps User Behaviors Classification

To implement our proposed features are better, we compare our approach with
AppScanner (AppS) [21] and Aiolli [2] to classify 88 DApps user behaviors.
Random forest classifier is used in comparison experiments. Aiolli method is
summarized as follows:

– Aiolli, which uses statistical-time features (e.g., mean, median, mode) about
incoming, outgoing and bi-directional flows in the RF classifier.

According to Table 5, the precision of our method is more than 98% for most
DApps user behaviors. But we can see that the accuracy of behavior 1 (open
Superrare) and behavior 3 (select artworks) is really poor according to Table 5.
Since the result of DApps classification reaches 99%, the poor results are not
caused by the similarity of DApps. Our classifier may confuse the two behaviors,
which have similar action sequences. In Fig. 2 and Fig. 3, the distributions of the
two behaviors are close to each other, which reflect the distinctiveness of the two
features (i.e., byte distribution, the packet inter-arrival time series) in DApps
user behaviors classification. The accuracy of the classification is above 95%, so
our proposed features can effectively distinguish DApps user behaviors.

The comparison results are shown in Table 5. Our approach achieves the
best performance, and outperforms the other methods. The accuracy of the
proposed method achieves about 95.66% and the F1 score achieves about 95.53%.
Compared to AppScanner and Aiolli, the accuracy of our features increases by
27.58% and 48.06%, and the F1 score of our features increases by 28.89% and
49.28%. The improvement effect is very obvious. Their approaches are prone to
misclassification on DApps user behaviors. We think our proposed features (e.g.,
behavior-sensitive features: byte distribution, the improved inter-arrival time
series features) can extract more information and details so that our approach
is far more effective than others.
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Table 5. Description of user behaviors and classification results with different methods.
AppS, AF, OF represent AppScanner, Aiolli features, Our features, respectively.

DApps ID User behavior Description AppS AF OF Flow

F1 F1 F1

Superrare 1 open superrare open the Superrare 0.46 0.11 0.54 2819

2 open market browse artworks on market page 0.69 0.24 1.00 4268

3 select artwork view details of an artwork 0.48 0.19 0.56 3018

4 ✩like artwork like or dislike an artwork 0.79 0.01 1.00 2841

5 user homepage browse one’s homepage 0.79 0.68 0.99 1294

6 view activities view activities happened in DApp 0.79 0.69 1.00 1498

7 search search artworks or artists 0.91 0.63 0.98 1855

Average 0.70 0.36 0.87 2513

Editional 8 open editional open the Editional 0.73 0.68 1.00 1419

9 learn DApp look Editional introduction 0.82 0.53 0.99 1220

10 select collectible view details of a collectible 0.85 0.73 0.98 1238

11 artist homepage browse a user homepage 0.75 0.31 0.99 1216

12 artist create look collectibles created by artist 0.86 0.46 0.98 1207

13 artist collect look collectibles collected by artist 0.80 0.18 0.98 1072

14 view support page view the support homepage 0.80 0.65 0.98 1135

15 search support search questions on support page 0.71 0.71 0.99 1329

16 ✩like article like an article and send feedback 0.82 0.70 1.00 1230

Average 0.79 0.55 0.99 1230

John Orion

Young
17 ✩add to shopping cart add things to shopping cart 0.40 0.34 0.99 1428

18 open market browse joys on market page 0.89 0.64 0.97 3085

19 select joy view details of a joy 0.37 0.36 0.94 1350

20 open shop look clothes on the shop page 0.84 0.65 0.94 1342

21 ✩refresh shopping cart refresh the shopping cart page 0.73 0.29 0.98 1585

22 open john orion young open the John Orion Young 0.94 0.48 0.99 2719

23 view collector view a collector homepage 0.87 0.68 0.98 2428

Average 0.72 0.49 0.97 1991

Thomas

Crown Art
24 ✩add to shopping cart add artworks to shopping cart 0.76 0.72 0.99 1443

25 browse all artists browse all artists on page 0.93 0.47 0.94 1117

26 browse all artworks browse all artworks on page 0.87 0.41 0.91 1251

27 open the DApp open the Thomas Crown Art 0.85 0.33 0.99 1264

28 search search artworks or artists 0.80 0.67 0.99 1491

29 view blog view details of a blog 0.74 0.45 0.91 1408

30 look shopping cart open the shopping cart page 0.82 0.25 0.97 1392

31 select artist view details of an artist 0.82 0.28 0.90 1341

32 select artwork view details of an artwork 0.71 0.29 0.99 1398

Average 0.81 0.43 0.95 1345

Cryptoboiler 33 open Cryptoboiler open the Cryptoboiler 0.80 0.52 1.00 1329

34 view questions view questions page 0.80 0.46 0.99 1398

35 ✩comment post comment on a post 0.88 0.81 0.99 2735

36 ✩post a problem post a problem in Cryptoboiler 0.94 0.86 0.99 1631

37 ✩like post like or dislike a post 0.89 0.82 0.99 1832

38 user homepage browse one’s homepage 0.70 0.43 0.99 1662

39 view blog view details of a blog 0.71 0.73 0.98 1678

40 view question view details of a question 0.80 0.40 0.98 1276

41 search search by keywords 0.95 0.84 0.99 1606

Average 0.83 0.65 0.99 1683

Ethlance 42 ✩open Ethlance open the Ethlance 0.47 0.26 0.92 937

43 ✩user homepage browse one’s homepage 0.15 0.27 0.97 659

44 ✩look work look suitable work 0.06 0.10 0.86 737

45 ✩look worker look suitable workers 0.32 0.25 0.90 731

46 ✩become employer fill information to be an employer 0.55 0.29 0.97 2123

47 ✩learn DApp look Ethlance introduction 0.29 0.14 0.87 976

48 ✩different category classified by different categories 0.49 0.38 0.70 1926

49 ✩search search by keywords 0.83 0.36 0.86 2142

50 ✩become employer fill information to be an employee 0.44 0.33 0.97 2118

Average 0.40 0.26 0.89 1372

(continued)
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Table 5. (continued)

DApps ID User behavior Description AppS AF OF Flow

F1 F1 F1

Knownorigin 51 ✩open Knownorigin open the Knownorigin 0.61 0.49 0.98 1578

52 ✩view gallery browse all artworks on the page 0.76 0.61 0.91 1388

53 ✩select artwork view details of an artwork 0.45 0.44 0.85 1714

54 ✩like artwork like or dislike an artwork 0.05 0.02 0.98 2504

55 ✩view activities view activities happened in DApp 0.25 0.16 0.99 1592

56 ✩browse all artists browse all artists on the page 0.71 0.59 0.99 1859

57 ✩select artist view details of an artist 0.29 0.22 0.99 2761

58 ✩search search by keywords 0.04 0.02 0.85 1804

Average 0.40 0.32 0.94 1900

Staybit 59 ✩open Staybit open the Staybit 0.69 0.74 0.98 3909

60 ✩create payment create a payment request to rent 0.73 0.79 1.00 2706

61 ✩view contract view my contracts 0.81 0.83 1.00 4632

62 ✩accept payment retrieve a payment request 0.75 0.76 1.00 4288

Average 0.75 0.78 1.00 3884

Crowdholding 63 open Crowdholding open the Crowdholding 0.87 0.70 1.00 2648

64 select an article view details of an article 0.62 0.35 0.98 2422

65 ✩comment comment on an article 0.63 0.46 1.00 1343

66 ✩agree article agree or disagree an article 0.64 0.39 0.96 2478

67 user homepage browse one’s homepage 0.58 0.37 0.97 2118

68 ✩follow a person follow a person in Crowdholding 0.63 0.44 0.97 2391

69 ✩create a project create a project to find workers 0.35 0.23 0.98 2601

70 view project view details of a project 0.54 0.27 1.00 2749

71 search search by keywords 0.82 0.73 0.99 3198

72 learn DApp look crowdholding introduction 0.59 0.28 1.00 2552

Average 0.63 0.42 0.99 2450

Latium 73 open Latium open the Latium 0.55 0.33 0.97 3800

74 select task view details of a task 0.60 0.27 0.99 3128

75 user homepage browse one’s homepage 0.64 0.24 0.93 3749

76 look transaction web look transaction page 0.76 0.62 0.96 6761

77 look my tasks look my tasks page 0.52 0.26 0.90 3885

78 homepage view homepage 0.58 0.40 0.97 4632

79 ✩create a task create a task to find workers 0.84 0.33 0.98 4290

Average 0.64 0.35 0.96 4321

Viewly 80 open Viewly open the Viewly 0.84 0.75 0.98 6004

81 watch video watch video 0.68 0.45 0.97 2882

82 user homepage browse one’s homepage 0.76 0.54 0.98 2420

83 look video transaction view video trading information 0.48 0.33 0.98 2475

84 ✩follow person follow a person in the Viewly 0.69 0.60 0.98 2294

85 look game rank page look the rank of distribution game 0.65 0.51 0.97 2887

86 ✩create new channel create a channel to store video 0.61 0.48 0.99 1329

87 ✩upload video to draft upload local video to draft 0.73 0.65 0.97 1172

88 search search by keyword 0.78 0.67 0.96 3233

Average 0.69 0.55 0.98 2744

Accuracy 0.6808 0.4760 0.9566

Precision 0.7027 0.4654 0.9617

Recall 0.6541 0.4588 0.9565

F1 score 0.6664 0.4625 0.9553

*✩ means that users need to connect Ethereum wallet.

4.5 Evaluation of General User Behaviors Classification

Since we are the first one to classify encrypted traffic in this scenario, and in
order to confirm the validity of proposed features for general user behaviors clas-
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sification, we compare our proposed features with Appscanner [21], FFP [20] and
the features mentioned in Aiolli [2] to classify 15 general user behaviors. App-
scanner represents the conventional traffic analysis approach, FFP and Aiolli are
the state-of-the-art classification approaches about blockchain network traffic.

Table 6. Experimental results with different approaches

User

behaviors

Appscanner Aiolli features FFP Our features

P R F1 P R F1 P R F1 P R F1

Open

DApps

0.6981 0.5715 0.6081 0.3923 0.394 0.3827 0.642 0.5223 0.5578 0.9861 0.9877 0.9869

Open

market

0.6807 0.5843 0.5254 0.3197 0.2942 0.2631 0.6153 0.5394 0.4729 0.9846 0.9809 0.9828

View

detail

0.3655 0.3452 0.3357 0.2564 0.2697 0.2538 0.3849 0.327 0.3335 0.9784 0.9847 0.9816

Follow a

user

0.6891 0.6073 0.5836 0.5377 0.4822 0.4858 0.6617 0.6065 0.5778 0.9816 0.991 0.9863

Like or

dislike

0.5093 0.4668 0.4514 0.2743 0.2593 0.2409 0.4413 0.4865 0.4243 0.992 0.9923 0.9922

Create

project

0.6160 0.4895 0.5121 0.3302 0.3186 0.3165 0.5532 0.5091 0.4978 0.9883 0.9899 0.9891

Search 0.6304 0.6076 0.5967 0.5033 0.4811 0.4835 0.656 0.6266 0.6191 0.9903 0.9873 0.9889

View

homepage

0.6107 0.5297 0.5434 0.3448 0.3637 0.3447 0.5662 0.5226 0.5271 0.9829 0.9785 0.9807

Activities 0.5923 0.5447 0.5238 0.5172 0.4659 0.4602 0.6089 0.6096 0.5671 0.9864 0.9817 0.984

Add to

cart

0.6764 0.4598 0.5050 0.6257 0.4874 0.5380 0.716 0.5929 0.6108 0.9985 0.9833 0.9909

Watch

video

0.8488 0.5729 0.6470 0.5823 0.3876 0.4209 0.7895 0.5885 0.6302 0.986 0.9972 0.9916

Comment 0.7108 0.7506 0.6718 0.6353 0.6722 0.6238 0.6693 0.7631 0.6838 0.9972 0.9961 0.9967

DApps

introduc-

tion

0.6887 0.5233 0.5120 0.3371 0.2612 0.2874 0.5982 0.5396 0.5021 0.9948 0.9753 0.985

Refresh

cart

0.8006 0.7910 0.7581 0.4871 0.3445 0.3688 0.8136 0.7844 0.7743 0.9821 0.9902 0.9861

Else

behaviors

0.6908 0.7468 0.6980 0.5452 0.5389 0.5178 0.7219 0.6724 0.6750 0.984 0.9847 0.9844

Average 0.65390.57270.56480.44590.40140.39920.62920.57940.56350.98750.98670.9871

Accuracy 0.5485 0.3826 0.5357 0.9857

*P and R in this table means the metric Precision and Recall.

The comparison results are shown in Table 6. Our approach outperforms the
other methods. The average precision of our method is 98.75%. Compared with
Appscanner, FFP and Aiolli method, the precision of our method increases by
about 33.36%, 35.83% and 54.16%, respectively. As for F1 score, our method
also performs best, which can reach 98.71%. Compared with the other classifi-
cation methods, the F1 of our method increases by about 42.23%, 42.36% and
58.79%, respectively. The improvement effect is very obvious. According to the
classification results, we can intuitively see that our classifier is superior to the
current classifiers.
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4.6 Proposed Features Analysis

To implement our proposed method is useful and extracted features are better
for general user behaviors classification. Seven feature sets are conducted from
these features, as you can see in Table 7. PL distribution represents packet length
distribution. IO time series represents inbound and outbound time series. IATS,
BRC and PR statistics represent statistical features of inter-arrival time series,
byte rate change and packet rate. TPIF, TPOF and FPAT represent total packets
of inbound flow, total packets of outbound flow and the first packet arrival time.

The experimental results of different feature sets are shown in Fig. 5, and we
draw some conclusions.

Table 7. Features information of experiments for 15 user behaviors classification

Feature F I F II (base experiment) F III F IV F V F VI F VII

Time series � � � � � � �
Packet length series � - - - - - -

Burst � - - - - - -

PL distribution. - � � � � � �
IO time series - - � - - - �
Byte distribution - - - � - - �
IATS, BRC and PR statistics - - - - � - �
TPIF, TPOF and FPAT - - - - - � �

*F in this table means feature sets.

1. One experiment only used the features mentioned in [20], which is called
Feature I. Feature II is called base experiment. In order to know the impact of
packet length distribution, we compare Feature I to Feature II. The comparison
results show the uselessness of burst and packet length series in this classification.
In terms of general user behaviors classification, packet length distribution is
more useful than packet length series. As for accuracy, the classifier with Feature
II is higher 39.59% points than the classifier with Feature I.

We conduct an additional experiment to find the reason for the poor perfor-
mance of burst feature. Due to characteristics of DApps user behaviors, which
are analyzed in Sect. 3.2, we extract number of packets for each user behavior,
and find that more than 60% flows are short flows. The top-5 number of packets
for each general user behavior are shown in Fig. 6. Most of flows have less than
ten packets. Therefore, the classifier performs bad with this feature.

2. We consider that extracting time series of bidirectional flow may lose detailed
information. The model using Feature III is higher 3.42% points than base exper-
iment. So inbound and outbound time series can provide more details for general
user behaviors classification.

3. Although transmission data is encrypted, behaviors with different action
sequences produce some changes in payload, which cause the changes in traffic.
So we use byte distribution to get more details, which can not be obtained from
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Fig. 6. The top-5 number of packets for each general user behavior. The X-axis label
0–14 represent 15 behaviors: open DApps(0), open market(1), view detail(2), follow
a user(3), like or dislike(4), create project(5), search(6), view homepage(7), activi-
ties(8), add to cart(9), watch video(10), comment(11), DApps introduction(12), refresh
cart(13), and else behaviors(14).

other features. Feature IV have the largest improvement, about 3.78% points in
accuracy.

4. Compared with base experiment, Feature V and Feature VI contain differ-
ent statistical features, and they improved the accuracy of 1.04% and 2.28%,
respectively. These features can extract more information to improve the accu-
racy of the model. For example, byte rate change and packet rate can extract
the intensity of user behaviors (i.e., action sequences).

5. According to Fig. 5, we can see that the result of Feature VII is the best. Com-
pared with base experiment, the accuracy of the model is improved by 5.01%,
the precision is improved by 5.02%, the recall is improved by 5.31%, the F1 is
improved by 5.17%. We think the experiment of Feature VII achieves desirable
results case it combines all features then obtains the maximum information.
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5 Conclusion

In this paper, we focus on classification of DApps encrypted traffic for three appli-
cation scenarios: DApps classification, DApps user behaviors classification and
general user behaviors classification. For different scenarios, we extract different
sets of effective features from DApps encrypted traffic after analyzing DApps
characteristics. The experimental results show that our method has achieved sat-
isfactory results in the encrypted traffic collected from 11 representative DApps.
The accuracy of DApps classification reaches 99.5%, the accuracy of DApps
user behaviors classification reaches 95.65%, and the accuracy of general user
behaviors classification reaches 98.58%. The results demonstrate that our pro-
posed features outperform the state-of-the-art methods. In the future, we plan
to expand more application scenarios of DApps encrypted traffic classification
and improve classification accuracy.
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Abstract. The ever-increasing amount and variety of malware on the
Internet have presented significant challenges to the interconnected net-
work community. The emergence of unseen malware variants has resulted
in a different distribution of features and labels in the training and test-
ing datasets. For widely used machine learning-based detection meth-
ods, the issue of dataset shift will render the trained model ineffective in
the face of new data. However, it is a laborious and tedious undertak-
ing whether relearning features to describe new data or collecting large
amounts of labeled samples to retrain the classifiers. To address these
problems, this paper proposes TransNet, a framework based on deep
transfer learning for unseen malware variants detection. We first convert
the raw traffic represented by sessions containing data from all layers of
the OSI model into fixed-size RGB images through data preprocessing.
Afterward, based on the ResNet-50 model pre-trained on the ImageNet,
we replace Batch Normalization with Transferable Normalization as the
normalization layer to construct our deep transfer learning model. In this
way, our approach leverages deep learning to avoid the problem of tradi-
tional machine learning in relying on expert knowledge and uses transfer
learning to address the issue of domain shift. We test the effectiveness of
different methods with a thorough set of experiments. TransNet achieves
95.89% accuracy and 96.09% F-measure on two public datasets from
the real-world environment, which is higher than comparative methods.
Meantime, our method ranks first on all ten subtasks, showing that it
can detect unseen malware variants with stable and excellent perfor-
mance. Moreover, the distribution discrepancy computed by our method
is much smaller than other approaches, which illustrates that our method
successfully reduces the shift of data distributions.
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1 Introduction

Malicious software (malware), which is the tool for launching cyber attacks, poses
great threats to military, government, and industrial production. Network traffic
analysis plays an important role in addressing the issue of detecting malware [1,2]
and is widely used in Intrusion Detection System (IDS) and advanced firewalls
[3,4]. Over the years, including Advanced Persistent Threat (APT) activities and
attacks using zero-day vulnerabilities, more and more cyber attacks have evaded
detection by making use of the variation and obfuscation of malware [5]. Those
variants have taken a toll on the enterprises, e.g., GandCrab that is a variant of
ransomware has made 2 billion dollars in one and a half years [6]. Conventional
signature-based detection methods are limited to known samples and patterns in
the database, so they cannot handle the increasingly sophisticated and diverse
malware variants [7]. Therefore, building a novel detection system in a rapidly
changing network is essential to weaken the critical challenges that malware
variants pose to detection systems.

In recent years, machine learning techniques have been applied to detect
malware for improving the detection rate. On the one hand, data-driven super-
vised learning models rely on large quantities of labeled data, and their results
depend on known samples in the training set [8,9]. Once the malicious samples
change behavior, the detection rate of the trained classifiers will drop dramati-
cally, making it impossible to detect malware variants effectively. As a result, it
needs recollecting new data to retrain the detection model for accommodating
these changes. However, labeled data are often costly to obtain in the real world,
especially malicious network traffic, as it represents a tiny small percentage of
traffic. On the other hand, unsupervised learning detection methods divide the
samples into distinct clusters based on the similarity among them. They can
detect new threats, but lots of false alerts limit their practical usefulness [10,11].
Similar to signature-based methods, traditional machine learning approaches fail
to detect unseen threats. Consequently, it is necessary to find out an effective
method for understanding and identifying malware variants.

The problem of changing malicious behavior between known malware sam-
ples and unseen variants can be solved by domain adaptation (transfer learning).
According to the concept of transfer learning, samples in the source domain are
considered as already known and labeled, while samples in the target domain
are unlabeled and different from those in the source domain. By transferring
the knowledge learned from the source domain to the target domain, the task of
detecting unseen malware variants is completed. Recently, several papers have
focused on utilizing transfer learning to solve the issue of detecting malware
variants. For example, Bartos et al. learned domain-invariant statistical feature
representation computed from the network traffic to detect unseen malware vari-
ants [12]. Li et al. studied a novel method to identify malware variants based
on adaptive regularization transfer learning [13]. Zhao et al. proposed a feature-
based heterogeneous transfer learning approach HeTL [14] and a hierarchical
transfer learning algorithm with clustering enhancement CeHTL [15] to detect
unseen variants of attacks. However, the above methods are the combination
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of traditional machine learning technology and transfer learning. Conventional
machine learning techniques are limited in their ability to process natural data
in their raw form, as these methods rely on considerable domain expertise to
build a system that could detect patterns in the input [16]. Not only are these
methods time-consuming and labor-intensive, but they are also not as effective.
Meanwhile, with the deployment of TLS 1.3 and ESNI (Encrypted Server Name
Indication), some features in the traditional machine learning methods are no
longer applicable to the fully encrypted traffic analysis. On the contrary, instead
of extracting manually designed features from traffic data, with the help of multi-
ple processing layers, deep learning methods can learn the very complex function
to automatically convert the raw input into representations at a higher and more
abstract level. Hence, methods of combining deep learning with transfer learning
are considered to achieve more satisfactory results.

In the field of network traffic classification, one type of commonly used trans-
fer learning-based approach is to use the models pre-trained on the ImageNet [17]
as feature extractors [18,19]. It freezes the convolutional layers of deep neural
networks and adapts the last layer to the particular task. In this way, the struc-
ture and parameters of pre-trained models are transferred to new tasks, reducing
the computational cost of training from scratch while taking advantage of the
knowledge that pre-trained models bring. However, such methods do not fur-
ther consider the variability of data distribution between datasets, so they still
cannot effectively address the issue of detecting unseen malware variants.

In this paper, we propose TransNet, a framework based on deep transfer
learning to detect unseen malware variants. In the procedure of data preprocess-
ing, we first divide malicious traffic and benign traffic into sessions containing
data from all layers of the OSI model, and then do traffic anonymization and
remove duplicated files. Afterward, we convert the first 900 bytes of data from
each session into fixed-size RGB images. Based on the ResNet-50 [20] model
pre-trained on the ImageNet, we use Transferable Normalization [21] to replace
Batch Normalization [22] as the normalization layer to form our deep transfer
learning model. Finally, these RGB images are used as input of the model to
generate the results. The experiments show that our framework TransNet can
detect unseen malware variants with superior performance and smaller distribu-
tion discrepancy than comparative methods.

In conclusion, the main contributions of our work are briefly summarized as
follows:

1. We present a framework based on deep transfer learning for detecting unseen
malware variants. It combines deep learning with transfer learning to solve
the problem of different data distribution between datasets. It leverages the
powerful representation ability of deep neural networks and uses knowledge
learned from other domains to make decisions about tasks in new domains. In
this way, our method avoids the problem of relying on expert knowledge for
feature extraction in traditional machine learning methods and dramatically
reduces the cost of manually labeling large amounts of data, enabling it to
respond to emerging malware in a relatively short time.
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2. Our method is based on the ResNet-50 model pre-trained on the ImageNet,
which not only utilizes well-established architecture and parameters but also
avoids the computational cost of training from scratch. The decision that uses
Transferable Normalization to replace Batch Normalization as the normaliza-
tion layer has improved the transferability of deep neural networks without
increasing additional overhead.

3. Our method achieves 95.89% accuracy and 96.09% F-measure on public
datasets from the real-world environment, which is higher than comparison
methods. Even though other methods yield good results on the particular
subtasks, our method ranks first on all ten subtasks with stable and excellent
performance, which shows the superiority of our method in detecting unseen
malware variants. Furthermore, MMD (Maximum Mean Discrepancy) of our
method is much smaller than other methods on four typical subtasks, which
suggests that our method successfully reduces the shift of data distributions.

The rest of this paper is organized as follows. We summarize related work
in Sect. 2 and review background knowledge in Sect. 3. In Sect. 4, we describe
our deep transfer learning framework. We discuss the experiments in detail and
analyze the results in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Related Work

The issue of detecting unseen malware variants has become a popular topic
in recent years. A great effort has been devoted to applying different methods
to detect the growing number of variants in the constantly changing network
environment. In this section, we retrospect the most relevant work to our method
in two parts.

2.1 Conventional Methods for Malware Detection

Traditionally, signature-based methods [7,23] find the threats through the pre-
defined signatures extracted from known samples in the database, which means
they cannot be effective against novel attacks. Recently, machine learning tech-
nology has played a major role in the task of malware detection. They are mainly
divided into two parts, namely supervised models [8,9] and unsupervised meth-
ods [10,11]. The models based on supervised learning train data-driven classifiers
to distinguish malware from the benign samples. New data that are different from
the training set will cause the accuracy of the already trained models to decrease.
Unsupervised methods divide the samples into different clusters according to the
similarity of behavior. They can detect unseen threats, but the high false alarm
rate is unbearable in practice. Conventional machine learning-based methods
have the same drawback as signature-based methods in that they work poorly
in the face of new threats. The increasing number of malware variants has grown
up to be a bottleneck in the development of detection systems.
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2.2 Transfer Learning for Unseen Malware Detection

Transfer Learning, a novel machine learning technology, aims to build effective
learners that can leverage the knowledge of rich labeled data from the source
domain and transfer it to the target domain short of labeled data for reduc-
ing the shift in data distributions across different domains [24]. Even if transfer
learning approaches are widely used in the tasks of computer vision and nat-
ural language processing, few studies have utilized them to address the issue
of unseen malware detection. In recent papers, Bartos et al. [12] proposed a
domain-invariant representation to detect previously unseen malware and behav-
ior changes. The optimization method represented network traffic through the
combination of invariant histograms of feature values and feature differences. Li
et al. [13] thought it was not enough for knowledge transfer if only considered
minimizing the difference between marginal distribution of different domains.
Compared to [12], they studied a novel approach to detect unseen variants based
on adaptive regularization transfer learning, which could reduce the marginal dis-
tribution and conditional distribution between the source and target domains.
Zhao et al. proposed HeTL [14] and CeHTL [15] to solve the problem of unknown
network attacks detection, respectively. The former method could find optimized
representations for both training and testing data by transforming them into a
common latent space via the spectral transformation where the difference of
distributions could be reduced. The method CeHTL was proposed to make up
for the shortcoming that the performance of HeTL depended on manual pre-
settings of hyper-parameters. It was a hierarchical transfer learning algorithm
with clustering enhancement, which could cluster the source and target domains
and compute the relevance between them.

3 Background

In this section, to better understand the research in this paper, we review the
relevant background knowledge. Firstly, we list the definitions related to transfer
learning. We then introduce the processing steps of Batch Normalization that
has a strong ability to accelerate network training. Finally, we compare Transfer-
able Normalization and Batch Normalization, showing the changes made by the
former to improve the transferability of the normalization layer. Table 1 summa-
rizes the notations used in this paper and their corresponding descriptions.

3.1 Definition

In this part, we introduce the definitions related to transfer learning, including
the “domain”, the “task”, and domain adaptation.

Definition 1 (Domain). A domain D consists of two components: a feature
space X and a marginal probability distribution P(x), i.e., D = {X , P(x)}, where
x ∈ X [25].
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Table 1. Notations used in our paper and their corresponding descriptions

Notation Description Notation Description

Ds the source domain Dt the target domain

X feature space P marginal probability distribution

Ts the source task Tt the target task

Y label space f predictive function

Q conditional probability distribution B mini-batch

k channel n size of mini-batch

μ mean σ2 variance

x̂ normalized value γ the scaling parameter

β the shift parameter d the domain distance

l size of channel α distance-based probability

In general, if the source domain Ds and the target domain Dt are different,
then they may have different feature spaces or different marginal probability
distributions, i.e., Xs �= Xt ∨ Ps (xs) �= Pt (xt) [26].

Definition 2 (Task). Given a specific domain, D = {X , P(x)}, a task T is
composed of two components: a label space Y and an objective predictive function
f(x), i.e., T = {Y, f(x)}. From the probabilistic viewpoint, f(x) = Q(y|x) can
be considered as the conditional probability distribution, where y ∈ Y, and y is
the corresponding label of an instance x [25].

In general, if the source task Ts and the target task Tt are different, then they
may have different label spaces or different conditional probability distributions,
i.e., Ys �= Yt ∨ Qs (ys|xs) �= Qt (yt|xt) [26].

Definition 3 (Domain Adaptation). Given a labeled source domain Ds =
{(x1, y1) , . . . , (xn, yn)} and an unlabeled target domain Dt = {xn+1, . . . ,xn+m},
where xi is an instance and yi is the corresponding label, the goal of domain
adaptation is to utilize the knowledge learned from the source domain Ds and
the source task Ts for generating a target predictive function ft : xt �→ yt on
the target domain Dt with low error rate, under the assumptions of Xs = Xt,
Ys = Yt, Ps (xs) �= Pt (xt), and Qs (ys|xs) �= Qt (yt|xt) [13].

3.2 Batch Normalization (BN)

Based on the known practice that the network training converges faster if its
inputs are whitened [27], Batch Normalization [22] was designed to accelerate
the training of deep neural networks. It transforms the inputs of each layer to
have zero means and unit variances, and then scales and shifts them with a
pair of learnable parameters to restore the representation power of the network.
To reduce the expensive computation cost of fully whitening the inputs of each
layer, it makes two necessary simplifications: normalize each scalar feature inde-
pendently in each mini-batch. Specifically, in a mini-batch B of size n, for a layer
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with l-dimensional input x =
(
x(1) . . . x(l)

)
, it focuses on a particular dimension

(channel) x(k), which has n values in this channel k. The first is that it calculates
two statistics: the expectation μ(k) and the variance σ2(k) for the channel k using
the training data in a mini-batch B:

μ(k) =
1
n

n∑

i=1

x
(k)
i , (1)

σ2(k) =
1
n

n∑

i=1

(
x

(k)
i − μ(k)

)2

. (2)

It then utilizes the statistics to normalize the inputs of every layer to have the
mean of 0 and the variance of 1. The formula is shown as follows:

x̂(k) =
x(k) − μ(k)

√
σ2(k) + ε

, (3)

where ε is a constant added to the mini-batch variance for numerical stability.
The second step is to learn two trainable parameters for scaling and shifting
the normalized value of the channel k to represent the identity transform and
preserve the network capacity:

y(k) = γx̂(k) + β ≡ BNγ,β

(
x(k)

)
, (4)

where BNγ,β

(
x(k)

)
: x(k) → y(k) is the Batch Normalization Transform.

There is no doubt that Batch Normalization has made outstanding con-
tributions in accelerating network training. However, without considering the
difference between the training data and testing data, BN combines them into
a single batch to feed as the input of the normalization layer. The represen-
tations of data that are following different distributions share the expectation
and the variance, which is unsuitable due to the phenomenon known as dataset
shift [28]. Additionally, all channels are given the same importance in BN, which
is unreasonable in the case of domain adaptation since some channels are more
transferable than the others. Therefore, the transferability of BN needs to be
improved.

3.3 Transferable Normalization (TransNorm)

In order to overcome the aforesaid shortcomings of Batch Normalization when
applied to domain adaptation, Transferable Normalization [21] (TransNorm) was
proposed to improve the transferability of deep neural networks. To bridge dif-
ferent domains in domain adaptation, comparing with BN, TransNorm changes
the shared mean and variance to domain-specific mean and variance, and assigns
different weights to the channels according to the difference of transferability. In
this part, we introduce the processing procedure of TransNorm in three steps:
domain-specific mean and variance, domain-shared learnable parameters, and
domain adaptive weights.



TransNet: Unseen Malware Variants Detection Using Deep Transfer Learning 91

In each BN layer, the inputs coming from the source and target domains are
combined into a single batch to calculate the mean and variance. However, due
to dataset shift, there exists a significant difference in data distribution across
two domains, leading to having different basic statistics between the source and
target domains. Instead of straightforwardly sharing the mean and the variance,
TransNorm separately calculates domain-specific statistics of each channel: the
source statistics μs, σ2

s and the target statistics μt, σ2
t as follows (let us focus on

the particular channel k and omit k for clarity):

μs =
1
ns

ns∑

i=1

xi, σ2
s =

1
ns

ns∑

i=1

(xi − μs)
2
, (5)

μt =
1
nt

nt∑

j=1

xj , σ2
t =

1
nt

nt∑

j=1

(xj − μt)
2
, (6)

where ns and nt correspond to the mini-batch size in the source and target
domains, respectively. After that, the means and the variances are used to nor-
malize the inputs of each normalization layer independently for each domain:

x̂s =
xs − μs√

σ2
s + ε

, x̂t =
xt − μt√

σ2
t + ε

, (7)

where ε is a constant added to the mini-batch variance for numerical stability. In
this way, the representations from the source and target domains are separately
normalized to have the mean of 0 and the variance of 1.

With consideration of simply normalizing each channel of a layer may change
what the layer can represent, BN learns a pair of parameters γ and β to scale and
shift the normalized values for ensuring the transformation inserted in the net-
work can preserve the representation ability of the network. TransNorm retains
the capability of this part of BN, and scales and shifts the normalized values of
each normalization layer with domain-shared parameters for different domains:

ws = γx̂s + β, wt = γx̂t + β. (8)

Both domain-specific basic statistics and domain-shared learnable param-
eters treat all channels equally. However, in the context of different channels
extract different aspects from the input, the information existing in some aspects
is more transferable than the others, resulting in differences in the transferabil-
ity of different channels. Therefore, in the field of domain adaptation, we need
to consider the difference in channel transferability further. To accomplish this,
TransNorm reuses the basic statistics from the source and target domains: μs,
σ2

s and μt, σ2
t to select the channels that are more transferable. For each channel

k, TransNorm calculates the distance across domains d(k) as follows:

d(k) =

∣
∣
∣
∣
∣

μ
(k)
s√

σ2
s(k) + ε

− μ
(k)
t√

σ2
t (k) + ε

∣
∣
∣
∣
∣
, k = 1, 2, . . . , l, (9)
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where l is the size of channels within each TransNorm layer. For enhancing the
understandability and applicability of the method, TransNorm utilizes Student t-
distribution [29] to convert the channel-wise distances to probabilities. It assigns
different weights to the channels according to the transferability calculated by
the distance-based probability α(k):

α(k) =
l
(
1 + d(k)

)−1

∑l
m=1

(
1 + d(m)

)−1 , k = 1, 2, . . . , l, (10)

where l is the number of channels. In doing so, the channels that are more
transferable are assigned with higher weights, improving the transferability of
the normalization layer for domain adaptation. Finally, to avoid overly penaliz-
ing the channels that are less transferable, TransNorm introduces the residual
mechanism to combine the normalized values of Eq. (8) with the transferability-
weighted one to generate the output of each normalization layer:

ys = (1 + α)ws, yt = (1 + α)wt. (11)

We visually show the differences between Batch Normalization and Trans-
ferable Normalization in Fig. 1. Based on BN, the changes made by TransNorm
to improve the transferability are reflected in the following two aspects: the first
is that TransNorm normalizes the representations from the source and target
domains separately, instead of mixing the inputs across domains into a single
batch for normalizing like BN. The second is that TransNorm reuses the basic
statistics from different domains to calculate the transferability for each channel
to select those more transferable channels, making sure the similar patterns are
shareable across domains.

Fig. 1. The processing procedure of Batch Normalization is shown in (a). The process-
ing procedure of Transferable Normalization is presented in (b).
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4 Design of Framework

In this section, we discuss the design of our framework based on deep transfer
learning for unseen malware variants detection. The framework is composed of
two crucial components: data preprocessing and deep transfer learning model.
As the input of the data preprocessing module, the raw traffic of malware vari-
ants and benign applications is converted to images in RGB format. We use
Transferable Normalization to replace Batch Normalization in the ResNet-50
model pre-trained on the ImageNet for forming a classification model based on
deep transfer learning. The model learns the representations of different types of
traffic from the RGB images generated in the previous step, and then produces
the final classification results. The architecture of our framework is shown in
Fig. 2.

Fig. 2. The architecture of our framework TransNet.

4.1 Data Preprocessing

In the initial stage of data preprocessing, we first need to determine the way
of representation for traffic. The flow and the session are commonly used units
for traffic splitting in the field of network traffic classification. A flow is a set
of packets with the same 5-tuple. The 5-tuple is composed of source IP, source
port, destination IP, destination port, and transport layer protocol. Moreover,
a session consists of bidirectional flows between two communication hosts. Gen-
erally speaking, bidirectional flows contain more interactive information than
unidirectional flows. Meanwhile, the representations generated by the data from
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all layers of the OSI model have more comprehensive traffic features than those
from the application layer. Thus, we select the session as the unit for traffic
splitting and reserve the data coming from all layers of the OSI model.

As shown in Fig. 2, to convert raw traffic into RGB images with a size of
300 * 300, we need to go through three steps: traffic segmentation, traffic clean-
ing, and image generation. In the first step, we split raw traffic to large numbers
of sessions containing data from all layers of the OSI model. The input and
output data formats of this step are packet capture files (pcap). In the stage of
traffic cleaning, we first conduct traffic anonymization, that is, randomize MAC
addresses in the data link layer and IP addresses in the IP layer. We then remove
duplicate files generated by packets with the same content for avoiding biases in
the training of deep learning models. In the final step, we first extract the first
900 bytes of data from each session and convert them into RGB images of size
30 * 30. Each byte of original data represents a pixel. If the size of a session is
larger than 900 bytes, it is adjusted to 900 bytes. If the size of a session is smaller
than 900 bytes, the 0×00 is added in the end to complement it to 900 bytes.
There are two ways to expand on why the first 900 bytes of a session are used.
The first is to meet the input size of the deep learning model and to make the
method more lightweight for processing the raw data. The second is that during
the initial phase of the session, the communicating parties exchange important
information, such as communication parameters, which contains important fea-
tures that we need to focus on, while the application data transmitted afterward
is less important by comparison. A similar operation occurs in the papers [18,30]
that are related to malware classification. This choice applies to both the traffic
of malware variants and the traffic of benign applications. To meet the input
data size of deep transfer learning model to be used next, we copy 100 copies
of each image of size 30 * 30 and arrange them separately into images of size
300 * 300.

4.2 Deep Transfer Learning Model

Deep neural networks allow computational models that are composed of mul-
tiple processing layers to learn representations of data with multiple levels of
abstraction, and these methods have dramatically improved the state-of-the-art
in a wide range of tasks, such as image classification, object detection, and other
challenging fields [16]. In recent years, many researchers have proposed numerous
deep learning models and made unremitting efforts to improve the performance
of the methods. Taking the classic image classification task, ILSVRC (ImageNet
Large Scale Visual Recognition Challenge), as an example, different deep neural
networks were trained on the ImageNet [17] to reduce the classification error
rate, e.g., AlexNet [31], VGG [32], and ResNet [20]. Impressed by the powerful
representation capability of deep neural networks, the researchers focusing on
network traffic classification utilize them to promote the improvement of per-
formance. In general, the more complex structure the model has, the better
performance the model can achieve on a dataset. Meantime, the models pre-
trained on large datasets have configured structure and parameters, avoiding
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the cost caused by training from scratch. In our method, after making a trade
off between the performance of models and the computational cost of training,
we choose the ResNet-50 model pre-trained on the ImageNet as our basic deep
learning model.

The purpose of combining deep learning models with transfer learning is
to leverage the deep neural networks for cross-domain representation learning.
We delve into the architecture design of deep neural networks and use Trans-
ferable Normalization (TransNorm) successfully applied in computer vision for
reference. TransNorm, which is a more transferable normalization technique,
fully considers the difference in data distributions between the source and tar-
get domains. Meanwhile, it will not bring additional computational cost and
change other network modules. As marked with red boxes in Fig. 2, based on
the ResNet-50 model pre-trained on the ImageNet, we propose our deep transfer
learning model by leveraging Transferable Normalization as the normalization
layer to replace existing Batch Normalization. Our framework can bridge the
source and target domains, which will also be confirmed in the experiments. As
shown in Fig. 2, the RGB images after being resized and cropped are used as the
input of our deep transfer learning model to produce the final results.

5 Evaluation

In this section, we evaluate our method on the real-world datasets. Firstly, we
introduce the components of two public datasets used in our experiments and
describe the experimental setup. We then construct a series of comparison exper-
iments with different approaches and discuss the corresponding results. The
results support the advantage of our deep transfer learning-based method in
detecting unseen malware variants with superior performance over comparative
methods.

5.1 Dataset and Experimental Setup

In our experiments, we are based on pcap files to carry on the study of malware
variants detection from the perspective of network traffic. We use two public
datasets for evaluating different methods, where the malicious traffic comes from
Malware Capture Facility Project (MCFP) [33], and the benign traffic is com-
posed of data from USTC-TFC2016 [30]. The MCFP is a research project of CTU
(Czech Technical University) aiming to collect different kinds of malicious traffic
from the real-world network environment. We choose malicious traffic generated
by ten types of malware variants from it, including traffic of common categories
of malware such as trojan, botnet, and virus. The benign traffic in the USTC-
TFC2016 dataset consists of the traffic generated by different classes of normal
applications, e.g., data transfer tools, instant messaging applications, email com-
munication systems, databases, and games. As mentioned in Sect. 4.1, we utilize
sessions to describe the raw traffic in the aforementioned public datasets. After
the data preprocessing, we convert the first 900 bytes of each session into RGB
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images with a size of 300*300. The RGB images are the input of the deep trans-
fer learning model, and their number is equal to the number of sessions. Table 2
illustrates a general view of datasets used in our experiments.

Table 2. A general view of datasets used in our experiments

Malicious Traffic Category Sessions Benign Traffic Category Sessions

MCFP Cridex 7373 USTC-TFC2016 BitTorrent 7517

Geodo 9213 Facetime 6000

Htbot 5730 FTP 15000

Miuref 6066 Gmail 8629

Neris 7603 MySQL 15000

Nsis-ay 5462 Outlook 7524

Shifu 8671 Skype 6321

Tinba 7654 SMB 9733

Virut 7448 Weibo 9988

Zeus 9873 WorldOfWarcraft 7883

In terms of the experimental setup, the training and testing data contain
malicious traffic generated by different malware variants, in other words, for
each subtask, we select nine malware variants as a part of training data and
another malware variant to be part of testing data. For example, we choose
malware variants other than Cridex as part of training data, and Cridex as
part of testing data. The purpose of this experimental design is to simulate the
scenario of detecting unseen threats created by malware developers for evading
current detection methods and systems. Meanwhile, the benign traffic in the
training and testing data is also different.

5.2 Basic Result

According to the experimental setup, the evaluation process of each method
is divided into ten subtasks. The purpose of every subtask is to utilize nine
malware variants to discover another novel variant. As mentioned in the intro-
duction, some features in the methods of combining traditional machine learning
technology and transfer learning are no longer suitable for the analysis of fully
encrypted traffic. Therefore, in the comparison experiments, to ensure the com-
parability of methods, we select three pre-trained models commonly used in the
studies related to network traffic classification, such as AlexNet, VGG19 bn, and
ResNet-50, as the comparative methods. All methods are implemented based on
PyTorch. The methods using pre-trained models are model-based transfer learn-
ing methods. Table 3 and Table 4 show the accuracy and F-measure of different
approaches in the task of detecting unseen malware variants, respectively.

First of all, our method TransNet has achieved the best results among the
approaches, with the accuracy of 95.89% and the F-measure of 96.09%. After-
ward, the comparison of the average value of indicators of three pre-trained
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Table 3. Accuracy (%) on our dataset for unseen malware variants detection

Method Subtask

Cridex Geodo Htbot Miuref Neris Nsis-ay Shifu Tinba Virut Zeus Avg

AlexNet 71.30 82.10 71.22 80.23 75.54 63.47 74.40 74.26 71.11 66.95 73.06

VGG19 bn 87.75 85.64 88.72 77.02 79.21 71.38 83.66 91.56 87.39 93.36 84.57

ResNet-50 90.49 90.38 90.70 91.62 83.51 65.39 92.32 92.16 79.84 85.94 86.24

TransNet 96.35 90.90 95.50 95.63 97.58 89.86 99.68 96.11 99.99 97.29 95.89

Table 4. F-measure (%) on our dataset for unseen malware variants detection

Method Subtask

Cridex Geodo Htbot Miuref Neris Nsis-ay Shifu Tinba Virut Zeus Avg

AlexNet 68.63 78.40 71.97 80.71 74.51 63.50 67.91 69.82 68.95 60.64 70.50

VGG19 bn 87.84 85.73 89.08 72.10 78.06 64.09 83.73 91.68 87.41 92.85 83.26

ResNet-50 90.64 90.27 91.29 92.19 83.35 57.48 92.13 92.26 76.88 85.98 85.25

TransNet 96.49 90.35 96.10 96.13 97.66 90.96 99.68 96.19 99.99 97.34 96.09

models, AlexNet, VGG19 bn, and ResNet-50, supports the experienced judg-
ment that the increase in model complexity brings the improvement of per-
formance. Although some comparison methods have achieved good results on
particular subtasks, e.g., VGG19 bn has the accuracy of 93.36% when used to
detect Zeus, but our method ranks first on all subtasks with stable and excellent
performance. Our method is achieved by replacing Batch Normalization in the
ResNet-50 pre-trained model with Transferable Normalization. The results of
these two methods shown in the tables illustrate that TransNorm improves the
transferability of deep neural networks. Specifically, TransNorm calculates the
basic statistical information of different domains separately and assigns different
weights to channels according to the transferability of them. The results show
that our method is capable of detecting unseen malware variants at a superior
performance. It can relieve the challenge caused by continually increasing mal-
ware in the real-world environment through reducing time cost and labor cost
of manually labeling data.

5.3 Further Analysis

MMD (Maximum Mean Discrepancy) [34] is proposed as a criterion for com-
paring different distributions based on the Reproducing Kernel Hilbert Space
(RKHS). It is a measure of the cross-domain discrepancy of distributions, which
is commonly used in domain adaptation. According to the results in Table 3,
among the ten subtasks, our method has the most significant performance gap
with the second-ranked method on Neris and Nsis-ay, while our method has
the smallest performance gap with the second-ranked method on Geodo and
Tinba. Therefore, we compute MMD on the above four subtasks with features
of AlexNet,VGG19 bn, ResNet-50, and TransNet. Figure 3 shows the results of
MMD calculated by different methods on each subtask.
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Fig. 3. The results of MMD calculated by different methods on four subtasks.

As shown in Fig. 3, we observe that MMD using TransNet features (our
method) is much smaller than MMD using features of other methods, which
suggests that TransNet features can close the cross-domain gap more effectively.
Meanwhile, the MMD values of TransNet features in Neris and Tinba are smaller
than those in Nsis-ay and Geodo, which explains better accuracy of TransNet on
the subtasks of detecting Neris and Tinba. Furthermore, compared to the differ-
ence of MMD computed by TransNet and other methods on Geodo and Tinba,
the MMD values of TransNet on Neris and Nsis-ay differ more significantly from
those of other methods, which exactly corresponds to the degree of difference in
performance between our method and the second-ranked method in the above
four subtasks.

6 Conclusion

In this paper, we present a framework using deep transfer learning, namely
TransNet, for unseen malware variants detection. We use data preprocessing to
convert the raw traffic into RGB images as the input of our deep transfer learning
model. Faced with the problem of identifying unseen malware variants, we delve
into the architecture of deep neural networks and find that the operation of the
normalization layer needs to take into account the variability of data distribution
between different datasets. Consequently, to construct our deep transfer learning
model, we replace the Batch Normalization in the ResNet-50 model pre-trained
on the ImageNet with Transferable Normalization to improve the transferabil-
ity of deep neural networks. We test different methods by simulating scenarios
where the testing set contains different malware variants from the training set.
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Our method achieves 95.89% accuracy and 96.09% F-measure on the public
datasets from the real-world environment, which is higher than comparative
methods. Meanwhile, our method ranks first on all ten subtasks with stable and
excellent performance. The above two points show that our method can detect
unseen malware variants. Furthermore, MMD of TransNet is much smaller than
MMD of other approaches, which validates that our method successfully reduces
the shift of distributions through more transferable representations. When new
traffic emerges, instead of re-collecting large amounts of labeled data or learning
novel representations, our framework achieves labeling and detecting malicious
traffic generated by unseen malware variants with the help of the original trained
model and analysis of the distribution of different datasets. In future work, we
will conduct a more extensive analysis to discover more malware variants, such
as malicious Windows PE (Portable Executable) files and malicious Android
APK (Android application package) files. Meanwhile, we will explore the issue
of unbalanced data between malicious traffic and benign traffic to improve the
possibility of applying our method to the real-world environment.
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Abstract. Nowadays, more cloud customers are utilizing multiple cloud
service providers (CSPs) to store their data in the cloud as it provides
better data availability and service reliance than storing in the single
CSP. However, there are several challenges faced by cloud customers to
securely manage their cloud storage resources for cloud end-users (a user
or a service) in the multi-cloud scenario, such as diverse APIs and ser-
vice implementations in multiple CSP as CSP is not required to comply
with cloud computing standards and multi-cloud resource management
skill gap. In this paper, we present a unified multi-cloud storage resource
management framework for managing cloud storage resources and their
configurations for Object Storage and Identity and Access Management
services following the cloud brokerage approach. We propose a unified
cloud storage resource model continuing our previous work to tackle the
various data and cloud access control models of cloud storage resources
in multiple CSPs. Based on the unified model, we introduce a unified
multi-cloud storage resource management platform to manage cloud stor-
age resources and grant/revoke access for the cloud end-user developed
for two popular public CSPs: Amazon Web Services and Google Cloud.
The unified platform collects and processes information about the cloud
storage resources that allows cloud customers to discover, create, delete,
modify, evaluate, and monitor cloud storage resources across various
CSPs.

Keywords: Multi-cloud storage · Cloud brokerage · Resource
management · Access management · Object storage service · Identity
and Access Management service · Cloud management platform

1 Introduction

Storage service is one of the most used cloud computing services as it provides
cheaper data storage and better data availability and scalability compared to in-
house data storage [13]. However, cloud storage services could still be susceptible
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to outage even though they guarantee up to 99.9% uptime. For example, in
2017, Amazon Web Services Simple Storage Service (AWS S3) went down for
4 h causing several web services to be unavailable and massive financial loss [15].

More cloud customers are using storage service from multiple cloud service
providers (CSPs) to store their data in the cloud, or commonly known as multi-
cloud storage approach [17,19]. The approach provides better data availability
and service reliability compared to a single CSP usage as the data could still be
accessed in case one or several CSPs are inaccessible due to outage [13,14].

Due to the cloud shared responsibility model [3], cloud customers subscrib-
ing to the storage service in a CSP are responsible for securely managing their
cloud storage resources, i.e., the buckets and their stored data, the CSP creden-
tial, and the resource configurations. Cloud customers must be able to securely
create, delete, and modify available cloud storage resources for the cloud end-
users, e.g., users, applications, and services, ensure the resources are secure from
unauthorized users and monitor resource activities across multiple CSPs.

However, there are several challenges faced by cloud customers to securely
adopt and manage their storage resources across multiple CSPs. CSPs are not
obligated to follow any cloud computing standards that affect each CSP to have
different data models, service implementations, and APIs with other CSPs [22].
Therefore, cloud customers have to deal with the heterogeneity of the CSPs
to manage their cloud resources on their own where the complexity is growing
with the number of CSPs subscribed by the cloud customers [18]. Meanwhile,
multi-cloud orchestration API and tools might not be sufficient to fulfill cloud
customer’s needs as it does not provide full CSP service functionalities.

In this paper, we present a unified multi-cloud storage resource manage-
ment framework for securely managing cloud storage resources and its access
for Object Storage and Identity and Access Management (IAM) services of vari-
ous CSPs. Our work provides secure storage resource lifecycle management in a
multi-cloud storage environment from the cloud customer’s perspective for cloud
end-users using the cloud brokerage approach [6].

Our contributions in this paper are as follow:

– We propose a unified cloud storage resource model built on top of the CSP’s
native API continuing our previous work of unified cloud access control
model [21] to manage the information of cloud storage resources and its access
for Amazon Web Services (AWS)1 and Google Cloud (GC)2.

– We develop a unified multi-cloud storage resource management platform that
focuses on four resource management processes: resource discovery, resource
orchestration, resource assessment, and resource monitoring.

– We introduce a unified cloud activity log format to normalize cloud activity
log messages of different formats from various CSPs.

The structure of this paper is as follows: Sect. 2 presents several related
works in the multi-cloud storage resource management area. Section 3 explains

1 https://aws.amazon.com/.
2 https://cloud.google.com/.

https://aws.amazon.com/
https://cloud.google.com/


104 M. I. H. Sukmana et al.

the overview of the multi-cloud storage approach and the challenges faced by
cloud customers managing the storage resources in the multi-cloud scenario. In
Sect. 4 we present our unified cloud storage resource model based on our previ-
ous work [21] to tackle various data and access control models of cloud storage
resources from different CSPs. Section 5 introduces our unified multi-cloud cloud
resource management platform based on our unified model that allows cloud
customers to discover, create, delete, modify, monitor, and evaluate the cloud
storage resources across multiple CSPs. Section 6 discusses how our unified plat-
form solves the challenges of multi-cloud storage resource management. Finally,
Sect. 7 summarizes our work and the future work of our platform.

2 Related Works

Although there have been several works regarding resource management in a
multi-cloud environment, very few works are focusing on the multi-cloud storage
resource management and its security area.

Hill and Humprey [7] presented a CSP vendor-agnostic cloud storage abstrac-
tion layer (CSAL) that allows an application to access Blob, Table, and Queue
storage services in the multiple CSPs. It utilizes a single namespace across all
storage services to maintain the metadata of each storage entity. Rafique et
al. [17] introduced an adaptive middleware platform for (semi-)autonomous stor-
age architecture management across multiple CSPs for three different scenarios:
performance optimization, peak-load condition, and evolving pricing scheme. It
continuously monitors the storage system’s metrics that allow for identifying
the changing condition of the system and optimizing the multi-cloud data place-
ment strategy. Krotsiani and Spanoudakis [10] proposed a certification model for
non-repudiation in the cloud storage services to ensure neither data owner nor
CSP could deny the activities happening in the CSP. It uses a non-repudiation
mechanism based on the fair multi-party non-repudiation scheme and continuous
monitoring and assessment to detect the anomaly and suspicious behavior. [4]
developed a multi-cloud storage broker API to provide portability and easier
migration between different CSPs. It is based on a layered ontological frame-
work to map and abstract common functionalities of object storage service.

Our work is different from the works above as we propose a unified storage
resource management framework that would allow cloud customers to securely
manage cloud storage resources and its access for cloud end-users in the multi-
cloud environment continuing our previous work [21]. We propose a unified cloud
storage resource model and a unified cloud activity log format for storing and pro-
cessing the information of cloud storage resources of various formats in multiple
CSPs into a single format. We implement a unified multi-cloud storage resource
management platform following the cloud brokerage approach that allows for
secure cloud storage resource lifecycle management across multiple CSPs.
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3 Background

3.1 Multi-Cloud Storage Resource Management Overview

The usage of storage service from a single CSP is susceptible to vendor lock-in
and service unavailability threats as the data could not be retrieved due to the
CSP outage [16]. Cloud customers could utilize storage service from more than
one CSP to resolve this issue known as the multi-cloud storage approach [17,19].
It provides better data interoperability and availability than utilizing storage
service from a single CSP as the data could migrate between CSPs and still
be retrieved in case one or several CSPs are unreachable [14,16]. The approach
might utilize various data storage strategies by storing multiple objects across
various CSPs, e.g., erasure coding, replication, or fragmentation [13,14].

When cloud customers utilize storage services from one or more CSPs, they
are responsible to comply with the cloud shared responsibility model imple-
mented by the CSPs [3]. Each CSP is responsible to operate and manage the
underlying hardware components to provide the storage services and ensure that
cloud customer’s storage resources could not be accessed by other unauthorized
cloud customers or known as cross-tenant data leakage threats [1,5,22].

Meanwhile, cloud customers are responsible to manage their storage resources
across various CSPs from unauthorized users [21,22]. Cloud resource manage-
ment is a process of managing and allocating available resources in the cloud for
the requiring entity to fulfill its requirements and objectives [9,12]. It helps cloud
customers to utilize cloud resources efficiently and securely while guaranteeing
the Quality of Service for the entities. There are three entities involved in the
cloud resource management process [9]:

– Cloud Service Provider (CSP): The CSP manages its infrastructure to
provide necessary services and its resources for its customers. It is responsible
to fulfill the cloud customer’s expected level of service based on the Service
Level Agreement (SLA) agreed with cloud customers. We assume that the
CSPs are trusted entities as they will execute the commands issued by the
cloud customers using the CSP’s native APIs and will not unauthorizedly
access cloud customer’s data.

– Cloud customers : Cloud customers subscribe to the CSP to use its services
and resources. They are responsible to manage their cloud resources and fulfill
the SLA agreed with the cloud end-user.

– Cloud end-user: Application, service, or a person that requires certain
access to the cloud resources provided by the cloud customers to do its job.

The cloud resource management process for storage service requires cloud
customers to orchestrate cloud storage resources, secure the resources from unau-
thorized users, and monitor its activities [22]. This includes the data uploaded
to the cloud, the buckets where the data is stored, the CSP credential(s), and
the resource configuration that determines who has what kind of access to the
buckets and its stored data. They are also responsible to provide necessary access
to the cloud storage resources for the cloud end-user following the agreed SLA
between cloud customers and cloud end-users.
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3.2 Security Challenges of Multi-Cloud Resource Management

The usage of the multi-cloud storage approach creates several challenges for
cloud customers to securely manage their cloud storage resources across vari-
ous CSPs. Each CSP utilizes various hardware and software resources to build
its cloud environments without any obligation to follow any cloud computing
standards available in the market [21,22]. This affects each CSP to implement
its mechanisms and service implementations of the same cloud service to be
different from other CSPs, such as API and data model.

Therefore, cloud customers have to deal with the heterogeneity of the CSPs
to manage their cloud resources as several CSPs do not provide cloud interoper-
ability functionality to communicate between services in multiple CSPs [13,22].
The resource management process in a multi-cloud environment requires pro-
cessing the information coming from CSP’s complex environment where it could
be difficult to have accurate global information about the cloud resources [12].
They are expected to collect and process the information of the resources across
different CSPs by themselves where the management complexity is growing with
the number of CSPs subscribed by the cloud customers [18].

Cloud customers are also required to ensure that their cloud storage resources
are correctly configured. The configurations of cloud storage resources could
follow cloud security best practices and standards available in the market to
ensure that it is secure from unauthorized users, such as the Center for Internet
Security (CIS) Benchmark3. However, cloud customers might lack the knowledge
and skill of multi-cloud management and cloud security [12]. They often require
to use each CSP’s management platform and API to manage the cloud storage
resources in various CSPs, which could create limited visibility of cloud storage
resources and its activities [3,26]. It could also make it difficult to enforce security
and access control towards their cloud resources due to the heterogeneity of the
security implementation from various CSPs and the loss of physical access control
caused by outsourcing data storage to the cloud [2,22].

There are several multi-cloud APIs and tools available that provide cloud
interoperability and multi-cloud orchestration that can be used to manage the
resources in the multi-cloud scenario, such as jclouds4 and Libclouds5. How-
ever, cloud customers still require to provide an abstraction layer and a unifying
environment to achieve multi-cloud resource management while using the APIs
and tools [26]. Also, these APIs and tools might not provide full CSP native
functionality for all cloud services, e.g., jclouds does not provide user account
management in IAM service or bucket storage configuration functionality.

4 Unified Cloud Storage Resource Model

We propose a unified cloud storage resource model continuing our previous work
of unified cloud access control model [21] to solve the challenges of various data
3 https://www.cisecurity.org/cis-benchmarks/.
4 https://jclouds.apache.org/.
5 https://libcloud.apache.org/.

https://www.cisecurity.org/cis-benchmarks/
https://jclouds.apache.org/
https://libcloud.apache.org/
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models of storage resources from different CSPs due to no obligation of CSP
to follow any cloud computing standard [22]. It combines the information of
cloud storage resources and cloud access control models to solve the challenges
of security in multi-cloud storage resource management explained in Sect. 3.

The unified cloud storage resource model helps cloud customers to manage
the cloud storage resources across multiple CSPs, such as automated cloud stor-
age resource creation. It also can be used to store the state of cloud storage
resources that consists of various data and access control models from different
CSPs in a single format. The cloud resource states in the unified format then
could be analyzed for different use cases, e.g., discover the relationship between
the resources and the entities that have access to it or check the compliance of
the resources against cloud security standards and best practices.

We implement our proposed model to manage cloud storage resources avail-
able in AWS Simple Storage Service (S3)6, AWS IAM7, GC Storage8, GC IAM9,
and GC Cloud Resource Manager (CRM)10. Our unified model could also be
extended for Storage and IAM services from other CSPs. The unified cloud stor-
age resource model consists of nine entities as can be seen in Fig. 1.

Fig. 1. Unified cloud storage resource model and its implementation on top of Object
Storage and Identity and Access Management services in AWS and GC

– Bucket: Bucket is a logical abstraction of object storage where the objects
are stored in the CSP. It represents Bucket both in AWS11 and GC12.

6 https://aws.amazon.com/s3/.
7 https://aws.amazon.com/iam/.
8 https://cloud.google.com/storage/.
9 https://cloud.google.com/iam/.

10 https://cloud.google.com/resource-manager/.
11 https://docs.aws.amazon.com/en pv/AmazonS3/latest/dev/UsingBucket.html.
12 https://cloud.google.com/storage/docs/json api/v1/buckets.

https://aws.amazon.com/s3/
https://aws.amazon.com/iam/
https://cloud.google.com/storage/
https://cloud.google.com/iam/
https://cloud.google.com/resource-manager/
https://docs.aws.amazon.com/en_pv/AmazonS3/latest/dev/UsingBucket.html
https://cloud.google.com/storage/docs/json_api/v1/buckets
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– Object: Object is the logical abstraction of the file stored in the Bucket. It
represents Object in AWS13 and GC14.

– Account: Account is the identity of an entity created in CSP’s IAM service.
It consists of User15 in AWS and Service Account16 in GC.

– Service: Service represents the identity of CSP service.
– Privilege: Privilege is the possible action/permission in the CSP’s services.

It consists of Action17 in AWS and Permission in GC18.
– Policy: Policy is a set of Privileges and its state (allow/deny) that regulates

cloud-level access control between the entity and the cloud resource. Policy is
represented as Policy19 in AWS and Role20 in GC. In general, there are two
types of policy assignment:
1. IAM-level Policy : Policy is attached to an IAM entity that allows or

denies access to CSP services and its resources. In AWS, Policy can be
assigned directly to User, Group, or Role. In GC, Role can be assigned to
Service Account, Google account and group, G Suite domain, and cloud
identity domain.

2. Resource-level Policy : Policy is assigned to a resource (e.g., Bucket) and
its CSP service that determines who is authorized to access the resource.
In AWS, Policy can be assigned to Bucket by specifying the IAM entities
or AWS service accessing it. In GC, a Role can be assigned to Service
Account, Google account and group, G Suite domain, and cloud identity
domain in regards to the Bucket.

– Access Control List (ACL): ACL is a list of access permission to buckets
and/or its object that defines the entity and its type of access. It is a legacy
access control mechanism that predates IAM-level access control. It represents
ACL both in AWS21 and GC22.

– Logging: Logging is the logging configuration of a Bucket2324 where all activ-
ities of a Bucket are logged and delivered to the target Bucket.

– Access Key: Access Key is the credential of Account used for authentication
and allowing programmatic calls to services in multiple CSPs. It contains the
access key ID and secret key. The privileges of Access Key follow the Policy

13 https://docs.aws.amazon.com/en pv/AmazonS3/latest/dev/UsingObjects.html.
14 https://cloud.google.com/storage/docs/json api/v1/objects.
15 https://docs.aws.amazon.com/en pv/IAM/latest/UserGuide/id users.html.
16 https://cloud.google.com/iam/docs/service-accounts.
17 https://docs.aws.amazon.com/en pv/IAM/latest/UserGuide/reference policies

actions-resources-contextkeys.html.
18 https://cloud.google.com/storage/docs/access-control/using-iam-permissions.
19 https://docs.aws.amazon.com/en pv/IAM/latest/UserGuide/access policies.html.
20 https://cloud.google.com/iam/docs/understanding-roles.
21 https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html.
22 https://cloud.google.com/storage/docs/access-control/lists.
23 https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html.
24 https://cloud.google.com/storage/docs/access-logs.

https://docs.aws.amazon.com/en_pv/AmazonS3/latest/dev/UsingObjects.html
https://cloud.google.com/storage/docs/json_api/v1/objects
https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/id_users.html
https://cloud.google.com/iam/docs/service-accounts
https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://cloud.google.com/storage/docs/access-control/using-iam-permissions
https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/access_policies.html
https://cloud.google.com/iam/docs/understanding-roles
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://cloud.google.com/storage/docs/access-control/lists
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html
https://cloud.google.com/storage/docs/access-logs
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set in Account to ensure that it can only access its authorized resources. It
represents Access Key25 in AWS and Service Account Key26 in GC.

5 Unified Multi-Cloud Storage Resource Management
Platform

Fig. 2. Overview of unified multi-cloud storage management platform

We propose a unified multi-cloud storage resource management platform to pro-
vide cloud customers with holistic visibility and management capabilities for all
cloud storage resources across multiple CSPs. It utilizes the unified cloud stor-
age resource model explained in Sect. 4 to manage the information about cloud
storage resources across multiple CSPs. Cloud customers only need to use the
25 https://docs.aws.amazon.com/en pv/IAM/latest/UserGuide/id credentials access-

keys.html.
26 https://cloud.google.com/iam/docs/creating-managing-service-account-keys.

https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/en_pv/IAM/latest/UserGuide/id_credentials_access-keys.html
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
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unified platform to manage the storage resources in various CSPs instead of
utilizing each CSP’s management platform and API.

We chose the cloud brokerage approach [6,23] as the basis for our unified
platform to manage the relationship between cloud customers, cloud storage
resources in multiple CSPs, and cloud end-users. The platform provides cen-
tralized multi-cloud management as it collects, pre-processes, and stores the
information on cloud storage resources with different data models in a unified
format. It utilizes an abstraction layer built on top of Object Storage and IAM
services APIs of various CSPs to support the multi-cloud storage resource man-
agement. This could simplify information asymmetry of cloud storage resources
thus reducing the complexity of decisions taken by the cloud customers to man-
age the storage resources and their configurations access across multiple CSPs [6].

The unified multi-cloud storage resource management platform consists of
the cloud credential store, multi-cloud-connector, and several databases as
it focuses on four main resource management processes: resource discovery,
resource orchestration, resource assessment, and resource monitoring. Figure 2
shows an overview of our unified multi-cloud storage management platform.

5.1 Multi-Cloud Connector

The multi-cloud connector is the gateway between our unified multi-cloud stor-
age management platform with multiple CSPs. It provides an abstraction layer
that is built on top of CSP’s native APIs to ensure that the platform can access
Object Storage and IAM services full native functionalities. We are utilizing the
APIs of AWS S3, AWS IAM, GC Storage, GC IAM, and GC CRM services to
access the cloud storage resources. All commands made by the unified platform
are translated into CSP’s native API commands by the connector. It also down-
loads the cloud activity logs generated by multiple CSPs that will be explained
in Sect. 5.6.

5.2 Cloud Credential Storage

Cloud credential storage securely stores an Access Key for each CSP to allow
the unified platform to access Storage and IAM services across various CSPs.
The key is generated from the Account with adequate privileges to list, create,
modify, and delete cloud storage resources where it can only be accessed via the
platform. When the unified management platform issues a request to a CSP, the
multi-cloud connector first requests the required Access Key to cloud credential
storage before sending the request to the CSP.

5.3 Resource Discovery Process

Resource discovery is the process to detect and register all available created
resources for each service in the CSP [11]. The unified multi-cloud storage man-
agement platform provides resource discovery by automatically gathering the
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Fig. 3. Overview of resource discovery process

information of all cloud storage resources and their configurations across multi-
ple CSPs in a single format. It runs periodically in the background to monitor
any changes in the cloud resources. When it runs for the first time, the platform
does not need to have prior knowledge of cloud storage resources owned by cloud
customers. Figure 3 shows an overview of the resource discovery process.

Multi-cloud connector first sends a request to each CSP service to retrieve
the information of all available cloud storage resources. Depending on the CSP’s
API capabilities, the information about the cloud resources and their configura-
tions, e.g. name, type, Policy, and ACL, are then retrieved by the multi-cloud
connector. Cloud storage resource information that could not be collected dur-
ing the discovery process due to the limitation of the CSP’s API could be added
manually later by the cloud customers, e.g., the secret key of Access Key is only
available once it is newly generated.

The cloud storage resource’s raw information is then processed by the Unified
Cloud Resource Model Processing engine to parse the information with different
data models from various CSPs to our unified cloud storage resource model as
explained in Sect. 4. The processed cloud storage information is then stored in
the Cloud Resource database. An example of unified cloud storage information:

{

"name":"exampleBucket",

"type":"Bucket",

"csp":"AWS",

"creationDate":"2019-01-02T21:27:04.000+0000",

"location":"eu-central-1:Frankfurt",

"bucketConfiguration":{

"logging":{

"enabled":false

},

"accessors":[

{

"name":"TestUser",

"effect":"Allow",

"type":"ACL",
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"entity":"User Grantee",

"privileges":[

"s3:ListBucket",

"s3:PutObject",

"s3:DeleteObject"

]

}

]

},

"deleted":false

}

We incorporate the state transition model into our resource discovery process
to track the changes made into the cloud storage resource [25]. When the resource
discovery process runs for the first time, the cloud storage resource information
in a unified format stored in the Cloud Resource database is regarded as the
expected state. After the initial resource discovery process, the information
of storage resource is then regarded as the cloud state. These states are then
compared using the State Comparison Processing engine. If the states are differ-
ent, cloud customers could decide whether to store the cloud state in the Cloud
Resource database as the expected state or retain the expected state by reversing
any changes happening in the storage resources across multiple CSPs.

Using the information of cloud storage resources and their configurations
stored in the unified format, cloud customers could then associate the cloud
storage resources with the information of the cloud end-users. They could also
maintain a consistent and accurate global state of cloud resources across multiple
CSPs instead of manually list the created cloud resources and their configurations
of each service in each CSP using its management dashboard or API.

5.4 Resource Orchestration Process

Fig. 4. Overview of resource orchestration process
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Resource orchestration is the process of allocating the resources in the CSP to
fulfill the requirements of cloud end-users. We follow the unified cloud storage
resource model from Sect. 4 to help cloud customers create, delete, and modify
cloud storage resources and their configurations for the cloud end-users. Figure 4
shows an overview of the resource orchestration process.

Cloud customers could create, delete, and modify the storage resource in
one or multiple CSPs by providing necessary cloud storage resource specifica-
tion using the user interface to generate resource orchestration command. They
could also create a resource specification template for cloud resources and their
configurations stored in the Resource Specification Template database. The tem-
plate is used to automatically create and configure necessary cloud resources for
the cloud end-users to reduce the possibility of misconfiguration due to human
error.

Cloud customer’s resource orchestration command and resource specification
template are then processed by Resource Orchestration Rule engine to consol-
idate the resource orchestration command. It then updates the expected state
with the information of created, deleted, or modified cloud storage resources
in the Cloud Resource database. The resource orchestration command is then
translated by the multi-cloud connector to the specific CSP’s API commands.

Cloud customers should follow the least privilege principle, privilege separa-
tion concept, or cloud security best practices and standards while orchestrating
cloud resources for the cloud end-users [21]. This is to ensure the cloud end-users
only have limited access to the authorized cloud resources following their roles
or responsibilities, thus avoiding insider threat or over-privileged access.

5.5 Resource Assessment Process

Fig. 5. Overview of resource assessment process

Resource assessment is the process of evaluating the cloud resources against the
specifications set by cloud customers. It ensures that the resources are correctly
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and securely configured that could only be accessed by its authorized cloud end-
users [24]. Figure 5 shows an overview of the resource assessment process.

Our method for resource assessment is as follows: the raw information of cloud
storage resources and their configurations, or cloud state, is first retrieved peri-
odically and parsed with the Unified Cloud Resource Model Processing engine
to follow our unified format. The Resource Assessment engine then compares
the unified cloud state with the expected state stored in the Cloud Resource
database to detect if there are any unauthorized modifications [25].

The Resource Assessment engine also evaluates the unified cloud state and
the expected state against the security specifications and the resource specifica-
tions that are fetc.hed from the Security Specification Template and the Resource
Specification databases, respectively. The specifications could be derived from
cloud computing best security practices or recommendations, such as the Center
for Internet Security’s AWS benchmark27. It could also be derived following the
cloud end-users’ requirements to ensure the cloud end-users could only access
its authorized cloud resources with limited actions.

Finally, the Resource Assessment engine will generate the assessment result
for the cloud customers. If there are unauthorized modifications to the cloud state
or the cloud storage resource configurations do not comply with the security and
resource specifications, the assessment result will include the violations against
the security and resource specifications and recommended actions to be taken to
address the violations. Cloud customers could take necessary actions to improve
the cloud storage resources’ configurations to ensure that the resources are secure
and can only be accessed by authorized cloud end-users.

5.6 Resource Monitoring Process

Fig. 6. Overview of resource monitoring process overview

Resource monitoring is a process of monitoring the usage and the activities of
the resources in the CSP. As cloud customers outsource their files to the cloud,
27 https://www.cisecurity.org/benchmark/amazon web services/.

https://www.cisecurity.org/benchmark/amazon_web_services/
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they lose the full control of files as it could be accessed by anyone. Unauthorized
users and authorized cloud end-users could directly interact with the Buckets
where the files are stored using the CSP management dashboard, API request
using CSP credential or Access Key, signed URL generated from the Access Key,
or unauthenticated URL of Buckets and the files. The information provided by
the local system owned by the cloud customers might not be enough to give full
oversight of cloud activities, therefore they require a new source of information
that informs the activities of cloud storage resources [2].

Therefore, we collect cloud activity logs generated by AWS CloudTrail28 and
Google Cloud Logging29 to monitor the activities happening in cloud storage
resources across multiple CSPs. The log contains the detailed information of all
activities happening in the CSP’s services, e.g., incoming API requests to the
cloud resources and its responses in Object Storage service.

However, there are several challenges in processing cloud activity log from
different CSPs. Although technically these services are already logging the activ-
ities happening in the CSP, the log messages can only be viewed and processed
using the CSP’s logging and monitoring service. It also requires the cloud cus-
tomers to actively store or retrieve the log as it may be deleted after a certain
period of time30. Each CSP has its log format structure and information qual-
ity [20], for example, AWS CloudTrail provides more information with better
data structure’s consistency compared to GC Logging. Cloud customers would
be responsible to actively retrieve and process the cloud activity logs while deal-
ing with different cloud logs from various CSPs to gain necessary information
about the activities happening in the cloud storage resources.

The resource monitoring process follows the data warehouse method [8],
which consists of extraction, transformation, and loading (ETL) steps, to trans-
form semi-structured data of cloud activity log files provided in JSON format
to structured data. We propose a unified cloud activity log format to normalize
different log formats from various CSPs to a single format. We first select the
necessary information needed from the available cloud activity log fields. We
then normalize the value that are in different formats or could contain infor-
mation for multiple log fields. Finally, we combine the information from cloud
activity log files from multiple CSPs to give an overview of the events happening
to the cloud storage resources in multiple CSPs [20]. Our proposed unified cloud
activity log format can be seen in Table 1.

Our method for resource monitoring is as follows: Cloud activity log files are
delivered into a specific sink Bucket that provides inexpensive and long-term
storage for the log files. Depending on the CSP, the cloud activity log file could
be delivered to the Bucket every 5 min31 up to one hour32. Once the cloud log

28 https://aws.amazon.com/cloudtrail/.
29 https://cloud.google.com/logging, formerly Google Cloud Stackdriver.
30 https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-

events.html.
31 https://aws.amazon.com/cloudtrail/faqs.
32 https://cloud.google.com/logging/docs/export/using exported logs.

https://aws.amazon.com/cloudtrail/
https://cloud.google.com
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://aws.amazon.com/cloudtrail/faqs
https://cloud.google.com/logging/docs/export/using_exported_logs
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Table 1. Unified cloud activity log format and the parsing from AWS CloudTrail and
GC Logging

Unified Cloud

Activity Log

AWS CloudTrail GC Logging Description

eventId eventID – Event identifier

timestamp eventTime timestamp Event timestamp

csp “AWS” “GC” CSP type

service eventSource protoPayload.serviceName CSP service name

resourceName requestParameters protoPayload.request

Parameter or protoPayload.

resourceName

Resource name

resourceType requestParameters protoPayload.request Resource type

resourceLocation awsRegion resource.label.location Resource location

method eventName protoPayload.methodName Request method

ipAddress sourceIPAddress protoPayload.request

Metadata.callerIP

Requester IP address

userAgent userAgent protoPayload.request

Metadata.caller

SuppliedAgent

Requester user agent

responseCode errorCode protoPayload.status.code Response status code

responseMessage errorMessage protoPayload.status.message Response message

requesterCredential userIdentity protoPayload.authentication

Info.principalEmail

Requester identity

file has been delivered to the Bucket, the multi-cloud connector then downloads
the log file to our resource management platform.

After the cloud activity log files have been downloaded, it is then stored into
Raw Cloud Log Activity database while it is processed by the Unified Cloud
Activity Log Parser to parse cloud activity log files into our unified log format
and store it in Unified Cloud Log Activity database. Finally, the raw and uni-
fied cloud log messages are then pushed into the analytics pipeline for further
processing. Figure 6 shows an overview of the resource monitoring process.

6 Discussion

Our unified multi-cloud storage resource management framework could solve the
security challenges of managing cloud storage resources across multiple CSPs
faced by the cloud customers as explained in Sect. 3.2.

The unified cloud storage resource model helps to normalize various data
and cloud access control models of storage resources from different CSPs. We
focused on developing our unified model on the storage and IAM services of
AWS and GC as both CSPs employ quite a similar cloud access control model
following role-based access control, which is useful for associating cloud storage
resources with cloud end-users. Our proposed model differs from our previous
work of unified cloud access control model [21] as it includes more cloud storage
resources types and their configurations that could be utilized for various multi-
cloud management strategies, e.g., cloud brokerage [6] or cloud federation [12].
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Our unified multi-cloud storage resource management platform provides
holistic visibility and secure multi-cloud storage resource management. Our
abstraction layer for multiple CSPs implemented in our unified platform is built
on top of CSP’s native APIs to ensure that the unified platform can access the
full functionality of the services provided by the CSP. This is different from the
multi-cloud APIs where it provides abstraction by focusing only on the common
functionalities and data structure of the CSP’s APIs.

The unified platform allows cloud customers to automatically discover cre-
ated cloud storage resources and orchestrate necessary cloud storage resources
for cloud end-users to ensure that the cloud storage resources are not miscon-
figured due to human error. The cloud resources are also evaluated periodically
against cloud computing’s security best practices and standards and cloud cus-
tomer’s system requirements to make the resources are secure and accessible
only for authorized cloud end-users.

We chose to monitor the cloud storage resources using the cloud activity log
instead of the storage event log used in our previous work [20]. This is because
the cloud activity log is not limited only to the Bucket and Object operations in
the Object Storage service but also other services of the CSPs. Our unified cloud
activity log format could be used to normalize cloud activity log files that have
semi-structured and complex data in nested JSON format to be simplified and
structured data that can be used for monitoring the activities in cloud storage
resources. The proposed log format could also be used for different purposes,
e.g., cloud forensic and security analytics.

Our unified platform is not as sophisticated as multi-cloud orchestration ser-
vices available in the market where it provides Infrastructure-as-a-Code abstrac-
tion layer where cloud infrastructures could be defined using a human-readable
configuration template, such as Terraform33 or Chef34. However, our unified plat-
form focuses on resource discovery, resource assessment, and resource monitoring
processes that are not available in multi-cloud orchestration services.

7 Conclusion and Future Works

In the past few years, more cloud customers utilize Object Storage service from
multiple CSPs to store their data to provide better data availability. However,
cloud customers face several challenges of securely managing their cloud storage
resources across different CSPs for the cloud end-users. In this paper, we propose
a unified multi-cloud storage resource management framework that allows cloud
customers to discover, create, delete, modify, evaluate, and monitor cloud storage
resources in various CSPs. We introduce a unified cloud storage resource model
that continues our previous model to tackle different data models of various CSPs
to determine the state of cloud storage resources. We develop a unified multi-
cloud storage resource management platform that collects, pre-processes, stores,
and manages the information on cloud storage resources and their configurations
33 https://www.terraform.io/.
34 https://www.chef.io.

https://www.terraform.io/
https://www.chef.io
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centrally across multiple CSPs. Our unified platform follows the cloud brokerage
approach that will help cloud customers to manage cloud storage resources used
by the cloud end-users. We also propose a unified cloud activity log format
implemented in our platform to normalize cloud activity log messages of different
formats from various CSPs.

We are currently researching various security analytics scenarios in a multi-
cloud storage environment to ensure the cloud storage resources are secure, such
as the correlation process using cloud activity log and storage event log. We are
also extending our unified platform to support different resource types in other
CSPs, e.g., virtual machine or container in Microsoft Azure and Openstack.
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Abstract. Ransomware has been a growing threat to end-users in the
past few years. In response, there is also a burgeoning market for anti-
ransomware defense products, as well as research prototypes that explore
more advanced, behavioral analyses. Intuitively, ransomware should be
amenable to identification through behavioral analysis, since ransomware
recursively walks a user’s files and encrypts them, overwriting or delet-
ing the plaintext. This paper contributes a study of the effectiveness of
these behavior-based ransomware defenses, from both commercial prod-
ucts and academic proposals. We drive the study with a dead simple
ransomware, augmented with a number of both straightforward and new
evasion techniques. Surprisingly, our results indicate that most com-
mercial products are strikingly ineffective. Ten out of 15 commercial
products could not detect our simple ransomware without any evasive
techniques; most of the rest were evaded and able to ransom user data
with some combination of simple techniques. Only one tool appears to
correctly identify our ransomware, but suffers from staggering false pos-
itives, including flagging Windows Explorer, Firefox, and Notepad as
ransomware during routine operation. Our paper identifies a number of
techniques to manipulate entropy to match the original file. The paper
further shows that partial encryption, of as little as 3–5% of a file’s data
is sufficient to ransom most file formats. Finally, we show that a com-
bination of these techniques can render an aggregate malice score that
is well below that of a Linux kernel compile. In summary, these results
indicate that it is highly likely that ransomware will be able to adapt its
behavior to fit within the range of expected benign behaviors, avoiding
detection even by future generations of behavioral ransomware detectors.

Keywords: Ransomware · Malware

1 Introduction

Ransomware is a growing threat for computer users, especially smaller businesses
and less savvy users. For instance, over 16 million US dollars of bitcoins have
been paid in exchange for ransom from roughly 19,750 victims in the years
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2016 and 2017 [13]. In a nutshell, ransomware renders a user’s data unavailable,
typically by encryption, and then charges the data owner a ransom to recover
the data. Encryption is preferred to exfiltrating data, as the attacker need not
store or return the ransomed data, but, rather, can simply sell a decryption key
to the victim. This strategy is adopted by high-profile ransomware, including
CryptoLocker [28], Cerber, and WannaCry [21]. In principle, ransomware should
be a non-issue when users and enterprises follow best practices with respect
to back-ups and least administrative privilege, as data can be restored from a
secured back-up, nullifying the ransomware’s leverage over users. Unfortunately,
many users and businesses often do not follow these best practices, fall victim
to ransomware, and pay the ransom, because the loss of essential data, such as
patient or billing records, is more costly than the ransom.

The rising concern about ransomware has led to both commercial products,
such as CyberSight RansomStopper, Acronis Ransomware Protection, Check-
MAL AppCheck, CryptoDrop [30], and ZoneAlarm Anti-Ransomware as well as
research prototypes, including Redemption [16], ShieldFS [5], and RWGuard [20],
that purport to detect ransomware, in the same vein as inexpensive commercial
virus scanners. Early detection has obvious benefits, primarily that ransomware
can be stopped before much data is lost. Because the behavior of ransomware
follows a fairly straightforward pattern, namely traversing the file system and
encrypting data, there is a basis for optimism that a behavioral malware detec-
tor could be effective against ransomware. Indeed, most of the products and
prototypes listed above use behavioral detection.

This paper studies the efficacy of these ransomware detectors and their
underlying strategies. Although these commercial detectors are generally closed
source, we develop a simple ransomware, a python script in less than 100 lines
of code, and vary its behavior to infer what these detectors are monitoring.
We identify several key features that these detectors use, including file sys-
tem behavior monitoring and decoy file monitoring. Recent research prototypes
have proposed to augment these features with monitoring for changes in file
entropy [5,15,16,20,30]. In most designs, systems combine these features. For
instance, Redemption [16] calculates a weighted average of these features, or
a malice score. For each of these principal features, the paper then explores,
through more targeted experiments, the degree to which these features can be
manipulated or evaded by a more sophisticated ransomware.

In short, our results indicate that, counter-intuitively, the behavioral app-
roach to ransomware detection is fragile in practice, and highly unlikely to
work against a sophisticated adversary. First, we find that several commercial
products cannot detect our “textbook” ransomware (Sect. 4.1). Second,
we consider the individual behaviors that are monitored and combined to form a
malice score. We demonstrate techniques that can effectively ransom users’ data,
while staying within a range that is indistinguishable from benign application
behavior. Specifically, this paper investigates:

– Entropy. (Sects. 3.1 and 3.2) By definition, a good encryption function
should yield a high-entropy ciphertext. A number of research prototypes look
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for a shift in entropy, either in reads versus writes or in original versus over-
written file contents, as an indicator of the presence of ransomware. First, we
observe that many common file formats have high entropy (e.g., pdf, jpg),
and encrypting these files does not shift their entropy outside of the expected
range. Second, for low-entropy files, this paper introduces several techniques
to manipulate entropy that still deprive users of their data. For instance, low
entropy files are necessarily compressible; if the ransomware first compresses
the file, encrypts the compressed contents, and then pads the resulting file to
its original length with regular contents, the encrypted output file’s entropy
will be comparable to the original.

– File Overwrite or Deletion Rate. (Sect. 3.3) Another natural monitoring
strategy is to identify processes that delete a large swath of files (in the case
where the encrypted versions are written elsewhere), or that overwrite a large
number of files in place (with the encrypted version). In the case of monitoring
for file overwrites, we show that one can evade this detection mechanism by
only encrypting portions of a file. For most file formats, there is important
metadata that can be encrypted, and that renders the entire file useless, at
least for the average user. We show that these techniques are not easily undone
by free or inexpensive file recovery tools. Although one might be able to pay
an expert to reconstruct this metadata, these costs are often commensurate
with the ransom.

– Decoy Files. (Sect. 3.4) Another common strategy for ransomware detection
is to place decoy files on the users’ file system, and monitor whether those
specific files are deleted or overwritten. We show that, in practice, the naming
and placement of these decoy files is easy to predict and differentiate from
the user’s “real” data; thus, it is trivial for ransomware to simply avoid these
decoy files.

In summary, this paper demonstrates considerable cause for pessimism about
the behavioral approach to ransomware protection. Although it is possible that
there is room for improvement in behavioral analysis, the margin where it can
identify malware without excessive false positives is likely narrow. We do note
that backups are not a panacea, as backups without security isolation can them-
selves be ransomed. On balance, we find that end users would be better served to
spend their IT budget on incremental backups within a separate administrative
domain and, more generally, securing their infrastructure, than on ransomware-
specific products.

2 Background

This paper focuses on ransomware that holds a user’s data hostage, in order to
extort payment from the user. There are other types of ransomware that are
either scams, such as misleading the user to believe they have a virus and should
pay to remove the virus [17], or that ransom the system, such as by locking the
bootloader, where the data itself is still available on the file system [29]. In this
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paper, we focus on ransoming encrypted data, as this is a growing threat and
harder for users to recover from [29].

The simple problem is that when users pay to recover their data, generally
out of desperation for business-critical data (e.g., billing records) or sentimental
data that was not backed up (e.g., baby photos), there is no guarantee they will
be able to recover their data. A 2018 report [7] states that more than half of
victims who paid a ransom failed to recover their data. There are projects that
can decrypt ransomed data for victims of well-known ransomware [23], but these
typically rely on flaws in the use of cryptography, such as reuse of a common
encryption key; if ransomware makes proper use of cryptography, there is no
reason to believe that any reasonable amount of analysis on the ransomware
binary or source code will lead to a decryption tool. Thus, research in this space
focuses on identifying ransomware attacks as they are in progress, and stopping
the ransomware before the data is lost.

As with most malware, we adopt a common assumption that an attacker will
be able to install and execute the ransomware. System defenses are not foolproof,
and users are prone to exploitable behavior, such as downloading code from the
internet that includes malware [2]. Similarly, anti-virus software can scan for
known static features of ransomware. Such as signatures of ransomware binaries,
encrypted file extensions or static ransom notes. We assume a strong adversary
that is evolving the ransomware over time. For instance, the Cerber ransomware
generates a new binary with a new signature every 15 s [22].

Based on a mixture of documentation, papers, and our own experiments,
Table 1 summarizes the principal features and techniques used by a range of
ransomware detectors, namely: file entropy (Sect. 2.1), file system operations
(Sect. 2.2), or decoy files (Sect. 2.3). This section explains how each feature is
used in greater detail.

Table 1. Detection methods used by state-of-the-art ransomware detection systems

Data entropy File system operations Decoy files

Research prototypes

Redemption [16] ✓ ✓

ShieldFS [5] ✓ ✓

RWGuard [20] ✓ ✓ ✓

Commercial products

CryptoDrop [30] ✓a ✓

CyberSight RansomStopperb ✓ ✓

Acronis Ransomware Protectionb ✓

CheckMAL AppCheckb ✓

ZoneAlarm Anti-Ransomwareb ✓ ✓
aCryptoDrop claims to use entropy to detect ransomware. However, we couldn’t find

evidence that they use entropy in the distributed version.
bThese are closed-source software and do not document their methods; we base this table

on monitoring their behavior.
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2.1 Data Entropy

File entropy [31] is a measurement, typically from 0..1, of how uniformly dis-
tributed the byte values in a file are. At one extreme, when a content of a file
consists of the same byte value, the entropy of the file is 0. At the other, a file
with a uniformly random distribution of byte values should have an entropy
approaching 1. In principle, any strong encryption algorithm should have high-
entropy outputs.
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Fig. 1. Entropy distribution of a corpus of 240
document files, grouped by common formats.

To give a sense of expected
entropy values for common file
types, we measure the entropy of
a corpus of 240 document files,
shown in Fig. 1 and grouped by
type. We selected the first 30 files
of each file type from the Gov-
docs1 corpus [11]. As a result, we
collected 180 Microsoft Office doc-
uments, 30 pdf documents, and 30
jpeg image files. We can see that
the entropy is widely distributed.
Legacy office formats (.doc and .xls) have the lowest entropy. Most media
formats, as well as Microsoft’s Office Open XML documents (e.g., docx, pptx,
xlsx) use compression, which leads to high entropy.

Since ransomware encrypts files, state-of-the-art ransomware detectors use
data entropy as a feature to identify encrypted files by monitoring the entropy.
Entropy is typically used in combination with other features, discussed in the
following subsections. Some detectors just monitor changes in the entropy of a
given file [20]; others, such as Redemption [16] compare the entropy of reads and
writes from a given process. In either approach, the detector looks for a signif-
icant upward shift in entropy, which would indicate that a file is likely being
encrypted. In order to avoid excessive false positives, this approach necessar-
ily involves some sensitivity analysis to “normal” and “abnormal” increases in
entropy. This also relies on a flawed assumption that there is room for entropy
to increase—i.e., that the file format is not already effectively at entropy 1, as
is common for formats such as .jpg and .pptx. In other words, the efficacy of
this feature rests on the assumption that one cannot effectively ransom a file’s
contents via encryption without significantly raising entropy.

2.2 File Overwrite and Deletion

Another common feature monitored by ransomware detectors is file overwrite
and deletion. Intuitively, if one wants to ransom a file by encrypting the contents,
the original contents must be overwritten with ciphertext, or, if the ciphertext
is in a different location, the original file must be deleted or renamed over.

As with entropy, this monitoring requires some sensitivity to differentiate
normal and abnormal behavior. Programs routinely update a portion of a file,
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or even rewrite an entire file. Speaking generally, we have observed a few common
measurement strategies. First, one can measure the percent of bytes overwritten
versus the total size of the file, called the overwrite ratio. Second, one can monitor
the total number of writes or deletions. Third, one can monitor the frequency of
write or delete operations. If one of these values rises above a certain threshold,
the process is flagged as malicious. Thus, for this feature, the goal for ransomware
is to stay below this threshold, but still, deprive the victim of their data.

A related strategy considers the file type or extension written. Benign pro-
grams usually write a small number of specific file types only. For example,
Microsoft Word will mostly write *.doc or *.docx files. The detector will flag
as potentially malicious a process that writes to multiple different types of files.

Directory Traversal. Some ransomware detectors also monitor for recursive direc-
tory scans, typically in concert with other write operations. Because recursive
directory scans are also executed by a number of benign applications, including
backup utilities and virus scanners, it is easy for this feature to create false posi-
tives that irritate users and erode faith in the tool. This paper does not consider
directory traversal in great detail, except to show in Sect. 4.5 that spreading
this work to a separate process than the encryption work is sufficient to avoid
detection by the commercial detectors that use this feature. Moreover, Sect. 5
shows that benign applications, such as git, can easily skew composite metrics
based on this behavior.

2.3 Decoy Files

Ransomware detectors may also create a set of decoy files with various file types
in the file system and monitor any changes to those files. Ransomware tends to
encrypt all documents in the system. Thus when the ransomware tries to encrypt
decoy files, the ransomware detector will notice the change in the expected con-
tents of the file, and flag the writing process as ransomware.

2.4 Combining Techniques

As illustrated in Table 1, most ransomware defenses calculate a weighted average
of a subset of the above techniques to form a global score, sometimes called a
malice score. Redemption [16] calculates a malice score using six features. These
six features are Entropy Ratio of Data Blocks, File Content Overwrite, Delete
Operation, Directory Traversal, Write access to different type of files, and Access
Frequency. Redemption scores each of the six features using different formulas,
and then uses a weighted average of the six individual scores; if this average is
above a threshold, the process is classified as ransomware. In general, combin-
ing features can lead to more robust classification, although setting appropriate
weights can be a challenge.
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3 Avoiding Detection

Section 2 explained the various features that are commonly used by ransomware
detectors, typically as a weighted average or score, to flag processes as ran-
somware. This section explains how each of these mechanisms can be circum-
vented. We note that each of the avoidance techniques in this section also has a
behavior that could be monitored; these behaviors overlap with common, benign
patterns, and the heart of the question is whether there are behaviors that clearly
delineate ransomware from benign software. Our results indicate that the line
between ransomware and benign software is finer than one might expect.
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Fig. 2. Entropy and size of an encrypted
file with a null, padding byte interleaved
after every N bytes of ciphertext. Fully
encrypted has no padding bytes inter-
leaved. File size is measured as a percent,
relative to the original plaintext. There is
a smooth trade-off between size and tar-
get entropy, while still withholding the
user’s data. (Color figure online)
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Fig. 3. A comparison of the original
and encrypted entropy when using the
compress-encrypt-pad strategy, using a
corpus of 240 sample files. Points on the
y = x line represent an encrypted file
with the same entropy and size as the
unencrypted file; points below this line
represent a reduction in entropy with
the same size; points above the line rep-
resent an increase in entropy for the
same size.

3.1 Entropy Laundering

Monitoring for a shift in entropy has an intuitive appeal, as encrypted outputs
are necessarily going to be high entropy. This monitoring can either detect shifts
in the contents of specific files, or in the difference between read and written
data from a process.

As established in Fig. 1, one fundamental challenge is dealing with high-
entropy file formats, such as a compressed Office document. The issue is that
these files already have entropy close to 1, and normal file edits can increase small
the entropy by small amounts—even as high as 1. In other words, for these file
formats, entropy monitoring will have an obnoxiously high false positive rate
and is simply not a good feature to monitor in these cases.
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Thus, this section focuses on the efficacy of monitoring lower-entropy file
formats. In other words, can we encrypt the file contents without changing the
overall entropy of the file? Our basic strategy, which we will iteratively refine, is
simple: we can encrypt the file (in memory) and then lower the entropy before
writing it to disk by appending the same byte value (say zero) to the end of the
file (let’s call these the padding bytes). In practice, a more sophisticated attacker
might instead interleave the padding bytes and the ciphertext.

The resulting entropy for interleaving a null padding byte between every N
bytes of ciphertext is shown in Fig. 2. Fully encrypted shows the entropy and size
of an encrypted file with no padding. The file used here is a PowerPoint slide
(.ppt) and entropy of the file is 0.55 and the file size is 1.9 MB. We encrypt the
file using AES algorithm in CBC mode.

Since entropies of encrypted files are mostly near one, this result is inde-
pendent of the original file’s entropy. When N = 1, this means the resulting
file alternates between a byte of ciphertext and a byte of padding, yielding an
entropy of about 0.6, or at roughly the first quartile of the lowest entropy formats
(e.g., .doc and .xls).

The second, red bar in the figure represents size. There is a fairly smooth
curve from N = 5..N = 1 in terms of trading size for lower entropy, and, although
not pictured, the trend can be extended beyond N = 1 if needed. If changing
the size is no issue, this experiment demonstrates that it is straightforward to
ensure an encrypted output with comparable entropy to the input.

Of course, ransomware detectors can also monitor for changes in a file size
or file overwrites, which we address in the next two subsections, respectively.

3.2 Maintaining File Size

Because many ransomware detectors also factor in file system operations, growth
in a file’s size is noticible; we refine the entropy laundering technique to preserve
a target file size. We remind the reader that entropy monitoring is only effective
for low entropy file formats.

Our second, simple observation is that low entropy files are highly compress-
ible. By using this characteristic, ransomware can first compress then encrypt
the smaller data payload, and finally, interleave the contents with padding to
lower the entropy and yield an output that matches the original file size.

To evaluate this, we first compress a file using the zlib module in Python.
Then we encrypt the compressed contents using the AES algorithm, and then
pad the resulting output to match the original file size. Figure 3 compares the
original file entropy (on the x-axis) to the encrypted file entropy (on the y-axis).
A perfect match in entropy would be a y = x line. The resulting distribution is
almost entirely at or below y = x; i.e., this process often yields a lower entropy
than the original file, and, in the worst case, the entropy is only raised by 3.4%.

This experiment shows that entropy can be lowered while maintaining the
file size, but at the cost of overwriting the entire file. Overwriting the file (or
deleting the file after writing these files elsewhere), is still easily detected by
several ransomware detectors.
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Fig. 4. Entropy changes in percentage
value for the partially encrypted file com-
pared to the original file for a corpus of
240 files. We encrypt a portion of the data
from 20–2.5%. Star (*) represents that we
used the compress-encrypt-pad strategy.
The graph shows that the entropy changes
are small, even when 20% of the file data
is encrypted.
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Fig. 5. Recovery rates for partial
encryption over a corpus of 200 pdf
files, when a portion of the data from
20–2% is encrypted. Block size of 256
bytes is used. Lower is better. The
results indicate that, even if only 5–
20% of the file is encrypted, roughly
half of the data is unrecoverable.

3.3 Partial Encryption

The goal of ransomware is to deny users their file contents. The techniques pre-
sented so far accomplish this goal at the cost of overwriting an entire file, which
can be detected by common techniques. This Subsection presents a technique
that only overwrites a portion of a file, but effectively denies the user access to
their data.

We observe that most file formats are brittle, with essential, non-redundant
metadata or other data whose interpretation is predicated on the previous bytes.
Corrupting (or encrypting) a relatively small portion of the file may be enough to
render the file unusable to most end-users. One can thus mimic small updates to
a file from a legitimate program with a combination of small updates to critical
portions of the file, with the techniques above that can preserve the same average
entropy of the encrypted bytes within the same space.

We first note a caveat to this attack: an expert in a given file format may be
able to recover part of a file’s contents. Specifically, the expert may successfully
recover the data structure of the file format; encrypted data cannot be recovered.
For instance, an engineer on the Adobe Acrobat team might be able to recover
part of a partially encrypted pdf document by hand. We expect that, even if
an end-user could find such an engineer, the hourly rate to recover a large data
set would quickly approach the cost of the ransom (typically on the order of
hundreds for individuals or tens of thousands of dollars for enterprises [9]). Thus,
to evaluate the efficacy of this technique, we primarily consider automated file
repair tools that are free or inexpensive (hundreds of dollars).

We define the success of this attack as: (1) updating only a small portion of
the file (less than 20%), (2) preserving the same size (3) preserving comparable
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entropy, and (4) rendering most files unopenable and unrepairable by free or
inexpensive tools.

As a simple proof-of-concept, we encrypted every N-th block of data in the
file to measure its effect on entropy. For instance, when encrypting 20% of the
file’s data, we encrypted every 5th block. We used the AES algorithm with a
block size of 1024 bytes to encrypt data. We also used compress-encrypt-pad for
the target portion of data to see the entropy changes.

This is an under-approximation of a more targeted encryption, but allows
us to measure the efficacy of the overall approach. Figure 4 shows the entropy
changes in percentage value. The entropy of a file is always increased because we
still encrypt a part of the file. However, when we use the compress-encrypt-pad
strategy described in Sect. 3.2, the maximum entropy change is less than 8%
when encrypting 20% of the file data. Most papers do not specify a particular
threshold for entropy, except RWGuard, which uses 6 (or 0.75 on our scale from
0..1). In this experiment, entropy shift is at most 0.07, even at an aggressive 20%
of encryption. A lower threshold would incur false positives, so we conclude that
this change is unlikely to trigger detection.

To measure whether partial encryption is effective at withholding user data,
we collected 200 different PDF documents from the web using Common Crawl
Document Download [4]. We choose PDF documents with a minimum of 10
pages. We partially encrypted these 200 files and recovered encrypted files using
the pdrepair utility from pdf-tools [25]. In practice, many documents are par-
tially recoverable or corrupted. In order to conservatively quantify the amount of
the document that can be recovered, we measure and compare the ink coverage
of the original and recovered documents using Ghostscript. Ink coverage is a
fraction of paper that is covered in each CMYK ink color.

Figure 5 shows the recovery rate distribution while the amount of encrypted
data changes. We used a block size of 256 bytes in this experiment. The recovery
rates increase as the amount of encrypted data decreases. We can see the average
recovery rate is about 15% when 20% of the file is encrypted. When we encrypted
5% of data, recovery rate increases. However, the average recovery rate is still
about 48%. At even lower percentages (3.3% and below), more than 64% of data
is recoverable. Thus, we see a “sweet spot” when 5–20% of the file is encrypted,
roughly half of the user’s data is withheld.

As another point of comparison, and for more visual intuition about the
data recovery, we did the same experiments with a JPEG image. The sample
encrypted JPEG images are shown in Fig. 6. In this experiment, we change the
percent of the file that is encrypted using a 256 bytes block size.

When we encrypt 10% of image data, it is difficult to recognize the image
contents. However, when we encrypt 2.5% of image data, an encrypted image
is annoying but we can figure out that the original image contains a butterfly
and a flower. Overall, encrypting a modest portion of the file (5% or more) is
effective at rendering the photograph useless to the average user.

We try to recover the partially encrypted images from the first experiment
(Fig. 6a) using Adobe Photoshop. We recover the damaged areas using content-
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Original 10% 5% 2.5%

(a) Sample JPEG image after encrypting a portion of the data, from
10–2.5%.

Original 10% 5% 2.5%

(b) Recovery of partially encrypted images from the first row, using
Photoshop.

Fig. 6. Sample images resulting from various partial encryption parameter settings.

aware fill feature [8]. This feature fills a selected area in an image using information
from the rest of the image. For all three images, Photoshop generates reasonable
images, shown in Fig. 6b. However, Photoshop couldn’t recover the details because
it doesn’t have any information about the damaged area, rather, the encrypted
regions appear more blurred together to mask some of the most noticeable arti-
facts. Nonetheless, for photos with sentimental value, such a baby photos, we
expect this level of recovery would be unacceptable and many users would pay
a ransom to recover high-quality images.

In summary, the partial encryption technique can avoid detection by only
writing to a small portion of a file (effective at 3–5% of total bytes overwritten,
which is commensurate with light edits to the file in a legitimate application),
preserving the same file size, and rendering the majority of the data unrecover-
able for less than the cost of the ransom.

3.4 Decoy Avoidance

Some ransomware detectors generate decoy files in a file system. They moni-
tor these specific files and flag the process when these files are modified. This
subsection analyzes decoy files and their generation pattern.

We examine the decoy files generated by three commercial products,
CyberSight RansomStopper, Cybereason RansomFree, and ZoneAlarm Anti-
Ransomware. All three products create a decoy directory to store decoy files in
important user directories, such as “My Documents” or “Desktop”. Thus decoy
files are not necessarily placed with other user files. In the decoy directory, vari-
ous types of document and multimedia files are generated as decoy files, because
some ransomware encrypts only specific file types. All three ransomware detec-
tors generate one of each file type in the directory. So we start by creating two
handwritten rules to detect a decoy directory: if more than three different types
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of files exist in a directory, and no more than two files of the same type exist in
the directory, we conclude that it is a decoy directory. If a directory meets these
two conditions, ransomware can just avoid this directory. In short, these decoys
in practice are painfully obvious and easy to avoid.

To simulate a more sophisticated ransomware detector, we flatten this direc-
tory structure and collect 350 filenames. Filenames of decoy files are generated
as a combination of random words. Some detector put a message to not delete
the file in every filename, such as “Endpoint Resume Do NotRemove.doc”. We
use collected filenames to train a Naive Bayes classifier. Our classifier can classify
files with 88.5% accuracy and 98.3% recall. High recall means a ransomware can
detect most of the decoy files with very low false negatives.

Of course, more sophisticated decoy file generation is possible. The challenge
is creating files that are truly indistinguishable from a user’s data, and it is likely
that efforts to improve decoy creation would lead to an “arms race” between
decoy detection and decoy generation. The more decoy files look like user files,
the harder it will be for ransomware to avoid; on the other hand, this also
improves the risk of the user deleting a decoy or editing the decoy by accident,
and triggers a false alarm.

3.5 I/O Rate: Slow, Multi-process Attack

In monitoring file system operations, ransomware detectors often factor in the
rate of I/O. As a result, recent ransomware is slowing down the encryption
process to avoid detection [27].

Similarly, we found that most ransomware detectors are sensitive to spread-
ing the work across multiple processes. Sometimes anti-ransomware monitors a
behavior of individual processes. An attacker spreads out the attack on multi-
ple processes. Each process performs small operations and is not suspicious to
detector [26].

4 Commercial Products

We evaluated commercial anti-ransomware products, 9 anti-ransomware prod-
ucts: CyberSight RansomStopper (3.1.1), Acronis Ransomware Protection (Build

1700), CheckMAL AppCheck (2.5.35.2), CryptoDrop (1.5.353.1336), ZoneAlarm Anti-
Ransomware (1.1.1023.17955), Cybereason RansomFree (2.4.2.0), Bitdefender Anti-
ransomware (1.0.12.151), Malwarebytes (3.6.1.2711), and Trend Micro Ransom
Buster (12.0.1150) and 6 anti-virus products: Webroot Secure Anywhere (9.0.24.49),
Kaspersky Anti-Virus (1.1.534.17681), ESET NOD32 (11.2.49.0), AVG AntiVirus
(18.6.3066), Avast Free Antivirus (18.6.2349), and McAfee Total Protection (16.0

R12). We select products that specifically advertise ransomware protection. These
software are closed-source, and thus we cannot confirm in all cases whether they
monitor behavioral features; that said, some products do specify that they mon-
itor behavioral features (e.g., file activities) in their datasheet or website.
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We first test the ability of these products to detect known, real-world ran-
somware samples. Five ransomware samples are used in this experiment: Tes-
laCrypt, Jigsaw, Locky, Cerber, and WannaCry. These ransomware families
infected a large number of victims and were released on or before 2017 [13,34].
Therefore, we expect they are well-known to the anti-malware industry. All
five samples encrypt and ransom user files. We execute these samples on a
system running each anti-ransomware product. Except for Bitdefender Anti-
Ransomware and Webroot Secure Anywhere, all commercial products can suc-
cessfully detect all of these real-world ransomware samples. Bitdefender Anti-
Ransomware is designed to detect only one of three ransomware families, CTB-
Locker, Locky, and TeslaCrypt, but it could not detect any of the five samples.
Webroot Secure Anywhere could detect TeslaCrypt and Jigsaw samples but it
could not detect Locky, Cerber, and WannaCry samples. Four anti-virus prod-
ucts detect these samples right after the binary file is copied to the system, even
before execution, namely: Kaspersky Anti-Virus, ESET NOD32, AVG AntiVirus,
and Avast Free Antivirus. This result shows most of the target products are
effective for known ransomware.

Second, we evaluate commercial products using a simple, hand-written ran-
somware in python. Our ransomware recursively encrypts each file in a user’s
home directory as quickly as possible. The ransomware encrypts a file using
the AES algorithm in CBC mode with Python Cryptography Toolkit (pycrypto).
When encrypting a file, the ransomware overwrites the file with encrypted con-
tents. Unless otherwise specified, the ransomware uses a block size of 1024 Bytes.
We created a Windows 7 VM in Virtual Box and experimented with commer-
cial products in the VM. We place 3,000 files with sizes ranging from 1 KB to
106 MB in the user’s home directory. These files are the first 3,000 files from the
Govdocs1 corpus [11]. We placed the first 1,000 files in the user’s My Documents
directory, the next 1,000 files in the user’s Downloads directory, the last 1,000
files in the user’s desktop. The total size of these files is 1.6 GB. When an anti-
ransomware can’t detect our ransomware, we ran the test at least two times
until seeing the consistent results. We plan to release our ransomware scripts
and supporting data upon publication. With this “toy” ransomware, we mea-
sure the effectiveness of each of the evasion techniques described in the previous
section.

4.1 Basic Ransomware, No Evasion

The most striking result is that our textbook ransomware was not detected
by four of the anti-ransomware products: Cybereason RansomFree, Bitdefender
Antiransomware, Malwarebytes, and Trend Micro Ransom Buster nor by any of
the 6 anti-virus products that advertise ransomware defense. We assume that
the reason is that these products solely rely on static features, such as match-
ing known binary signatures in order to detect ransomware. Our hand-written
ransomware would not match a known signature. The most likely explanation
is that these products are not behavior-based ransomware detectors. Therefore,
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Table 2. Commercial anti-ransomware software, and their ability to detect stealthy
ransomware. A checkmark in the table means anti-ransomware can detect the ran-
somware; a percentage indicates the threshold below which the detector could no longer
detect the ransomware.

Basic ran-

somware

Basic ran-

somware

(New file)

Partial

encryption

Decoy

avoidance

Slow

encryption

Multi-

process

encryption

Anti-ransomware

CyberSight RansomStopper ✓ ✓ ✓ ✓ *

Acronis Ransomware Protection ✓ ✓ ✗ (33%) ✓a

CheckMAL AppCheck ✓ ✓ ✗ (25%) ✓a ✓

CryptoDrop ✓ ✓ ✓ ✓a ✓ ✓

ZoneAlarm Anti-Ransomware ✓ ✓ ✓ ✓
aThese anti-ransomware products don’t use decoy files.

we excluded these products, and did the further analysis on 5 behavior-based
ransomware detectors.

AVG AntiVirus has a feature called strict ransomware protection mode. With
this mode on, it can detect ransomware but any process that writes to a specified
directory is flagged. Consequently, the false positive rate is very high—even a
benign word processor is required to get approval to save a document.

Some ransomware creates a new file with encrypted data and deletes the
original. Thus, we create a variant of basic ransomware that creates encrypted
versions and then deletes the user files. However, most commercial products we
tested behave the same toward both variants of the basic ransomware. Only
one anti-ransomware product, ZoneAlarm Anti-Ransomware, can’t detect ran-
somware when it creates a new encrypted file and deletes the original.

Table 2 shows these anti-ransomware products and their effectiveness on
evasion techniques, explained in more detail below. Anti-ransomware products
which couldn’t detect the basic ransomware are excluded. A checkmark in the
table means that the ransomware detector can detect the ransomware with the
feature. In partial encryption, the percentage value indicates the highest portion
of encryption that the anti-ransomware cannot detect; a checkmark means the
tool can detect any amount of encryption.

4.2 Partial Encryption

We implement partial encryption (Sect. 3.3) in our basic ransomware. Ransom-
Stopper, CryptoDrop, and ZoneAlarm Anti-Ransomware can detect the ran-
somware regardless of the portion of data encrypted. However, Acronis Ran-
somware Protection cannot detect when N ≥ 3 which means the ransomware
encrypts less than or equal to 33% of file data. AppCheck can’t detect when
N ≥ 4 that the ransomware encrypts less than or equal to 25% of file data.As
discussed in Sect. 3.3, a user will lose more than 75% of the contents of a file,
when only 10% of the data in the file is encrypted.
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4.3 Avoiding Decoy Files

Two of the products in Table 2 generate decoy files: CyberSight RansomStop-
per and ZoneAlarm Anti-Ransomware. Interestingly, these monitors will tolerate
small changes to these decoy files without flagging the process as ransomware.
Thus deleting or overwriting on one of the decoy files won’t trigger the detector.
This implies that these detectors monitor a combination of other features to
make a decision. This makes some intuitive sense, as decoy files are user-visible
and may be accidentally removed by a user.

We avoided encrypting decoy files using the hand-written rules described in
Sect. 3.4. This was sufficient to avoid detection by CyberSight RansomStopper.
ZoneAlarm can detect the ransomware even when we didn’t modify any decoy
files.

4.4 Slow Encryption

We measure the impact of encryption rate on the ransomware detectors. We mod-
ified the basic ransomware to wait 60 s between encrypting each file. To evaluate
slow encryption, we used 300 target files instead of 3000 files. We choose the first
100 files in each of 3 directories. Since we waited 60 s per one file encryption,
total encryption time was approximately 330 min, whereas the basic ransomware
took less than 10 min to encrypt entire user files (3000 files). This change was
sufficient to elide detection in Acronis Ransomware Protection.

4.5 Multi-process Encryption

To measure the sensitivity to dividing the work across processes, one process
recursively traverses directories and then forks workers that encrypt a single file
and then exit. This was sufficient to evade three of the ransomware detectors:
Acronis Ransomware Protection, CheckMAL AppCheck, and ZoneAlarm Anti-
Ransomware. A fourth detector, RansomStopper, shows an interesting result: it
detects modifications on decoy files, but only kills the worker process, letting
processes continue encrypting all of the other files.

4.6 False Positives on CryptoDrop

In the previous experiments, CryptoDrop shows strong performance on detec-
tion; it detected all of our evasion strategies. Upon further investigation, how-
ever, we find that CryptoDrop is simply monitoring heavy writes to multiple
files, and tested whether it would also trigger high false positives. First, we open
a new Windows Notepad and write around 1 KB text and save in My Documents
directory. When we save copies of this file with 20–30 different names using
the “Save As...” menu, CryptoDrop labels Windows Notepad as ransomware.
Next, we extract a zip file which consists of 50 files in My Documents directory.
We used 7zip and Windows Explorer to extract the file, and CryptoDrop flags
both 7zip and Windows Explorer as ransomware. Finally, we browse the web
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normally using Firefox. We downloaded a file to My Documents directory after
every 3–5 pages. When we downloaded the 5th file, CryptoDrop labels Firefox
as ransomware.

Although CryptoDrop can detect all of our evasion techniques, it comes at
a cost of excessive false positives for users. This result is consistent with the
overall hypothesis that there is a very slim range of behaviors that are unique
to ransomware.

4.7 Entropy

Although several proposed ransomware detection methods use file entropy as a
feature [5,15,16,20], we observed that most commercial ransomware detectors
seemed insensitive to the entropy of a file write.

As a simple experiment, we modified our basic ransomware to simply over-
write 25% of file data with null bytes instead of encrypted bytes, which would
lower the entropy. In this case, all of the commercial ransomware detectors
flagged our ransomware based on the volume of data that was written. Although
we cannot confirm that these detectors are not considering data entropy, the fact
that they flag code as ransomware that issues large writes but lowers entropy
indicates that these tools are likely insensitive to data entropy. It is possible
that our ransomware was so simple that entropy detection was not triggered,
and a more complex ransomware would trigger entropy monitoring; nonetheless,
the observation that the entropy-lowering ransomware is detected is disquiet-
ing. We will return to the entropy experiment in Sect. 5, when we consider a
state-of-the-art research prototype.

5 Research Prototypes

We contacted the authors of both Redemption [16] and ShieldFS [5]; neither
provided us with a source or a binary drop. Thus, we instead did our best to
reimplement the malice score as described in the Redemption paper.

To evaluate Redemption’s malice score technique, we ran three benign appli-
cations and two variants of our basic ransomware: the non-evasive version, and
the version that performs partial encryption (at 10% of the files’ contents), and
at a rate of one file per 2 s. 10% is selected as a relatively generous threshold; our
experiments indicate we could easily drop to 3–5% if needed. The three benign
applications are a git clone of Linux kernel, Linux kernel build, and bzip2 com-
pression of Linux kernel code. This experiment is done on Linux, and we use
strace to trace each process and score features using the trace.

We made two assumptions while scoring because some features are not clearly
described in the Redemption paper [16]. First, when measuring the file over-
writes, we didn’t count newly created files as overwritten. Second, to score a
directory traversal, we counted the maximum number of files that are accessed
sequentially in the same directory; Redemption scores the “additive inverse of
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the number of privileged accesses to unique files in a given path.” The paper
does not provide values for the thresholds.

Redemption calculates a malice score per process. All three benign applica-
tions invoke multiple processes. For computing the malice score, we merged I/Os
from these processes, treating them as a single application.

The malice score over time is shown in Fig. 7. The highest malice score among
the benign applications is a Linux kernel compile, which is consistently around
0.5. This is attributable to the build process frequently writing files in multiple
directories. In Fig. 7a, git clone does not trigger a high malice score most of
the time. Most of the time git downloads objects in a file without an extension.
At the end of the cloning process, git creates a local branch from the master
branch. At this moment, git creates a lot of source code files, with known
extensions, in the file system. Consequently, the malice score increases to 0.61.
Two features, high scores from directory traversal, and write access to different
type of files contribute to git’s spike in malice score. Finally, bzip2 has a low
malice score. Unlike other workloads, bzip2 does not delete any files, writes to a
single document class, and only traverses directories with read access. In total,
we expect that these applications show the range of expected malice scores. In
order to avoid heavy false positives, a ransomware detector would likely need to
flag applications that spent significant time over 0.6.
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Fig. 7. Redemption [16]’s malice score over time of three benign application executions,
a naive ransomware, and a more evasive ransomware. Lower is less likely to be malware.
Our evasive ransomware has a consistently lower malice score than a Linux kernel
compilation.
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Results from our ransomware are in Fig. 7d and e. In the basic ransomware
experiment (Fig. 7d), the malice score increases as high as 0.65, and would likely
be flagged. This is primarily attributable to the directory traversal component.
We observe that the malice score is more sensitive to directory traversal than
the entropy ratio.

Partial and slow encryption lowers the malice score—usually at or below 0.4
and, at most, 0.51. Recall that anything below 0.6 is unlikely to be flagged as
ransomware with this method.

6 Related Work

Similar to this work, Genç et al. studied ransomware detection and evasion
techniques for key-oriented protection and behavioral analysis [12]. Similar to our
work, the authors describe two evasion methods: pseudo-random permutation
for encryption and partial encryption. Our work advances the state of the art
in three ways. First, their proposed permutation method avoids entropy-based
detection, but is less robust to reverse engineering by a victim than a standard
cipher; our paper shows how to use a standard cipher with the compress-encrypt-
pad method and still avoid using entropy-based detection. Second, the authors
mentioned 20% encrypted files are unusable, but they didn’t discuss the efficacy
of the partial encryption. This paper shows that partial encryption is effective to
extort user files even when a victim used the recovery tools. Finally, our paper
studies additional evasion techniques, such as slow encryption, multi-process
encryption, and decoy avoidance to evade more detecting methods.

One significant component of an attack, orthogonal to this paper, is load-
ing malware onto the target system. Malware can get onto a computer by a
user’s explicit mistake, such as downloading an attachment from a phishing
email or malicious website; more stealthily by using a system vulnerability [32];
or via a malware distribution service [2]. Most related to this paper, Gangwar
et al. analyze these delivery methods and try to detect ransomware by delivery
method [10].

Most ransomware needs to communicate with the ransomers who will collect
the payment. Malware often has a command and control (C&C) server to control
it remotely. In ransomware, C&C server is used to exchange encryption key or
other client details. Several works are available to detect ransomware at the
network level by monitoring and identifying these communications between the
C&C server and the victim host [1,6]. Our toy ransomware uses a static key and
does not perform any network communication. To evade detection by network
activity some ransomware locally generates a key instead of getting one from a
C&C server [24].

Some anti-ransomware create hooks in common cryptographic libraries.
When ransomware tries to encrypt a file, the anti-ransomware can intercept
and save the key. Then it decrypts the files using the saved decryption key. Pay-
Break [18] successfully retrieves the key from ransomware that uses Microsoft
Cryptographic API [33]. The authors showed that it can even detect ransomware
that statically links known cryptographic libraries, such as Crypto++.
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Cheng et al. studied partial encryption methods on media files [3], in order to
reduce encryption/decryption costs. Here, the goal is different—confidentiality
of these files—whereas the goal of this paper is to explore the efficacy of partial
encryption to ransom a user’s data.

A system can implicitly provide a backup. Ransomware needs to overwrite
the data in the hard drive. Modern hardware, such as Solid State Drives (SSDs),
tend to leave the old files untouched because the device can only erase at the
granularity of an erase block. FlashGuard [14] modifies SSD garbage collection
to retain the copies of the old files for the file recovery when encrypted by
ransomware.

Most general-purpose malware detectors such as signature-based are looking
for ransomware. More precisely, for known ransomware. Marpaung et al. survey
malware evasion techniques [19]. Since ransomware is a kind of malware, the
attacker can use these methods to evade traditional malware detectors.

7 Conclusion

This paper demonstrates that there is considerable cause for pessimism about
the effectiveness of host-level ransomware detectors. A “textbook” ransomware
cannot be detected by a number of commercial anti-ransomware products; rela-
tively straightforward evasive techniques can thwart the rest, yet still effectively
ransom user’s data. More sophisticated behavioral analyses are unlikely to fare
better; a deeper exploration of each of the features proposed in the literature,
as well as aggregate metrics, are unlikely to accurately distinguish ransomware
from benign software.
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Abstract. In blockchain technology, consensus protocols serve as mech-
anisms to reach agreements among a distributed network of nodes. Using
a centralized party or consortium, private blockchains achieve high trans-
action throughput and scalability, Hyperledger Sawtooth is a promi-
nent example of private blockchains that uses Proof of Elapsed Time
(PoET) (SGX-based) to achieve consensus. In this paper, we propose a
novel protocol, called Proof of Queue (PoQ), for private (permissioned)
blockchains, that combines the lottery strategy of PoET with a spe-
cialized round-robin algorithm where each node has an equal chance
to become a leader (who propose valid data blocks to the chain) with
equal access. PoQ is relatively scalable without any collision. Similar to
PoET, our protocol uses Intel SGX, a Trusted Execution Environment,
to generate a secure random waiting time to choose a leader, and fairly
distribute the leadership role to everyone on the network. PoQ scales
fairness linearly with SGX machines: the more the SGX in the network,
the higher the number of chances to be selected as a leader per unit
time. Our analysis and experiments show that PoQ provides significant
performance improvements over PoET.

Keywords: Blockchain · Consensus · Permissioned · SGX · Fairness

1 Introduction

At the core of any blockchain platform, there is a ledger that is maintained by
a trustless P2P network. Due to the untrustworthy nature of the network, there
needs to be a way for the nodes in the network to reach an agreement among
them on the valid transactions that can be appended to the ledger. Consensus
protocols are designed to handle faults in a distributed system and agreeing to a
single version of the truth by all nodes on the network. The most common types
of consensus protocols are leader election based and traditional Byzantine Fault
Tolerance (BFT)-based. In a leader election-based consensus, a leader is chosen
randomly (by using a protocol) and proposes final valid blocks. The BFT-based
consensus is a more traditional method as per rounds of votes. While existing
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protocols solve the consensus problem fairly well, they also have their own short-
comings. A consensus protocol in a blockchain system is typically required to
support three properties: liveness (transactions are added to the ledger in a rea-
sonable time), consistency (all parties have the same view), and fairness (all
nodes are equally likely to mine the next block) [4].

Public blockchain networks (e.g. Bitcoin [19] and Ethereum [7]) that use
proof of work (PoW ) [19], proof of capacity [15] or proof of activity [6], require
a large amount of computational power, which is a misuse of resources and limits
transaction throughput (usually expressed as transactions per second). On the
other hand, proof of stake [17] and proof of burn1 [4] are environment-friendly
consensus protocols due to the insignificant computation requirements; however,
they suffer from the “rich get richer” problem [5].

Private blockchains, on the other hand, require a centralized party (or a
consortium of them) to control who joins the system and at what capacity (mine,
view, transact, etc). Such reliance on the centralized party leads to a reduced
cost for reaching consensus, high transaction throughput, improved scalability to
support new nodes and services, and higher efficiency. In private blockchains, the
level of access, visibility, and execution can be controlled. Private blockchains are
more appropriate to a consortium of organizations, like the banking sector or the
insurance industry, where participation is selective with known identity and may
operate under a shared governance model [14]. Examples of private blockchains
include Ripple (XRP) [20] and Hyperledger [3]. Hyperledger Sawtooth project
was introduced by Intel as a modular blockchain that uses Proof of Elapsed
Time (PoET ) consensus protocol to implement a leader election lottery system
[8,13]. In PoET , each miner node is randomly assigned a waitTime, and as soon
as this waitTime expires, the specific node creates and publishes the next block
on the network [8]. The protocol acts as a mix of first-come-first-serve (FCFS)
and random lottery [21].

Contribution. In this paper, we propose a variant of PoET , we call it PoQ,
that regulates how nodes compete to finish their waitTime (to become a leader)
such that the average wait time and number of leadership of each node will remain
approximately same after a certain period. Our goal is to optimize the performance
of the network concerning throughput and scalability.PoQ determines which node
should execute its waitTime when there are multiple run-able nodes in the queue.
To achieve this, we introduce the concept of dynamic Quantum Time (QT ) indi-
cating the amount of time a node will get the chance to execute for a single pass,
which has a major impact on resource utilization and overall performance of the
network. Some of the extended characteristics that differentiate our work over oth-
ers include fast transaction processing, low energy consumption, fair distribution,
and easy verification (deterministic). PoQ avoids high resource utilization and
replaces it with a true randomized system. Similar to PoET , PoQ uses execu-
tion environments in trusted hardware, more specifically Intel SGX [10] (secure
computing enclave to generate a random wait time and to perform remote attesta-
tion), to achieve consensus while preventing tampering. Through the use of Intel
SGX enabled CPUs, we enforce correct execution of code and guarantee the “one
1 https://en.bitcoin.it/wiki/Proof of burn.

https://en.bitcoin.it/wiki/Proof_of_burn
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node one machine” policy (to prevent Sybil attacks) for all nodes in the network.
We implemented PoQ in a distributed SGX environment, and our analysis and
experiment results show that PoQ provides significant performance improvement
over PoET.

2 Related Work

In recent years separate approaches are used to extend the performance of PoET .
Research has been conducted to achieve a good overall performance in a pri-
vate environment. In addition, there are existing related works that spotlight
the perfections behind the intention of Trusted Execution Environment (TEE)
design. Hardware-based TEE like ARM TrustZone (available on smartphones)
or Trusted Platform Module and Intel SGX (for x86-based computer) are gen-
erally obtainable in commodity computing platforms. In the paper [8], authors
provide remarks on the design of Sawtooth. In order to reduce potential col-
lision, they discussed waiting times need to be longer. While [12] focusing on
reducing the stale block rate by restricting the number of nodes which they call
PoET+. A stale block is an accurate, previously announced block that does not
belong as part of the longest chain. A stale block appears at any time when more
than one node announces a valid block within a short duration. Proof of Luck
(PoL) [18] is another consensus protocol based on TEE and similar to PoET
because it also generates random numbers from SGX into the block referred to
as ‘luck ’ of the block. The protocol selects the chain with the highest accumu-
lative luck as the winner and is determined the luckiest. The luckiest block is
then added to the chain. It will generate forks when the network is periodically
portioned because the partitions will ensure various largest accumulative luck.
In [2], the authors proposed Proof of TEE-Stake (PoTS), that leveraging func-
tionality from TEE for public blockchain, where each node in PoTS ensures the
same structure to bootstrap a TEE program. In [11], the authors explore the
response of throughput of PoET and propose a simple adjustment to it (they
termed as “S − PoET”) which leads to a higher throughput as the network
becomes larger. According to the authors, if the shortest waitTime and another
waitTime are conflicted by fewer than the propagation delay then that will result
in a stale block.

At the beginning, PoET was preferred to replace the PoW with the exception
of the longest-chain rule [22]. Due to its access control nature, it is most appro-
priate for permissioned blockchains, where certain works will be executed on
TEE by certain authenticated nodes. Unlike permissionless, most permissioned
blockchains don’t require any rewards mechanism. Each consensus protocol is
unique based on the way it creates a block, discloses the evidence (block propa-
gation), the procedure of validation inside the network, and the rewards system
for an honest effort. Table 1 shows an assessment among some of the protocols
designed for TEE based or not [5]. The throughput measurements derive from
the complimentary white paper or formal demonstration of the implementation
of that protocol and indicate the scales of fastness, i.e. high or low.
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Due to dynamic QT in PoQ, all nodes are approximately given the same
priority to execute depending on its tier (A relationship engaging level between
a set of nodes. PoQ is a multi-tier approach to the early recognition of nodes
and provides necessary data to them), thus no nodes are left behind which leads
to more speed in the system. PoQ progresses in a round-robin way, wherein each
round, a selected node within all the nodes in the network will get a chance to
reduce its waitTime and if it is successful to reduce all its waitTime, then that
particular node proposes the potential block (a successive set of transactions).
Thus, a node cannot get a total allocation of time above its assigned time. We
can say that PoET is suitable for a limited network with small waitTime while in
PoQ arrival time of a node puts great importance on becoming the leader quickly
as it maintains a dynamic queue that pushes the nodes based on their arrival
time. That means when a node appears in the network it starts to compete
with other nodes and the leadership cannot be predetermined. It is suitable
for a large number of participants, easy to implement, and also offers similar
average waitTime and average elapsed time for all its nodes. Due to no hashing
is required in PoQ, we can say it also saves energy too. As PoQ is suitable
for private blockchain network, it does not provide incentives for participants.
To the very best of our knowledge, no work has been done to make the lottery
election system fairer for PoET .

Table 1. Assessment of blockchain consensus protocols. Symbols for binary values:
✓ means yes, ✗ means no. Symbols for non-binary values: means high, means
medium, ◦ means low and � indicates undefined in the protocol white paper.
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3 Background

3.1 SGX

Intel Software Guard Extension (SGX) is fully implemented in the CPU hard-
ware and yields a partial element to execute within an isolated environment,
referred to as an enclave [10]. Generally, SGX breaks down an application into
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Table 2. Comparison of SGX based system. Symbols: means fully-provided, ✗ means
unsupported and � means unspecified.
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two logical segments: enclave and untrusted part (conventional application). Fur-
thermore, an SGX application can handle 5–20 enclaves. The code in the enclave
is used to handle the secret data. On the other hand, the remaining portion of
the code, along with all its modules, keeps in the untrusted part. Interaction
within these two parts happens via the call gate. A function call that enters the
enclave from the untrusted portion is called an Enclave CALL (ECALL). A call
within the enclave to an untrusted portion is called an Outside Call (OCALL).
Figure 1 provides a high-level view of ECALL and OCALL communication. By
definition, an OCALL is made from within an ECALL because an ECALL needs
to enter the trusted portion. Figure 2 shows the execution of an SGX application
and the way SGX safeguards an enclave from any envious program, including
OS, BIOS, drivers, and firmware which pretends to steal application secrets2

(Table 2).

Fig. 1. Interaction between enclave and untrusted part in an SGX application.

SGX depends on remote attestation to prove to remote users that the par-
ticular portion of code is executing in a genuine SGX-enabled CPU [10]. It also
presents a reliable source of random number via its sgx read rand API which
calls the hardware-based pseudorandom generator (PRNG) over RDRAND on
Intel CPUs. Many researchers have already established that this random num-
ber generator is secure and cannot be modified from outside the enclave [9].
2 https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-

part-1-foundation.

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-1-foundation
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Fig. 2. Flow of execution in SGX application.

Presently, C and C++ are supported by Intel’s Software Development Kit (SDK)
which is available for both Windows and Linux.

3.2 Abstract Model of PoET

PoET is usually used on the permissioned blockchain networks to determine
the leaders of the block on a specific network. After joining the network, each
node must ask for a waitTime from an enclave and then wait for that randomly
chosen waitTime. A node who finishes the waitTime first – that is, the node
with the shortest wait time for an appropriate transaction block, establishes a
remote attestation that provides information for verification about its honesty,
carries out a new block to the blockchain, and announces the mandatory data
to the network. To find the next block, an identical procedure is required. By
remote attestation, PoET ensures that the nodes select a random waitTime (not
purposely chosen a curtailed waitTime) and the leader has actually waited the
allocated waitTime.

3.3 Remote Attestation Architecture

Remote attestation (RA) is an exceptional property of Intel SGX, to establish
a secure environment between the server and the node (client) [16]. Simply in
computing, the term attestation means, a procedure to verify the identity of
a software and/or hardware. More specifically, RA is a medium to verify the
interaction between the software and the hardware that has been founded on
a trustworthy platform. By following remote attestation flow, a client enclave
ensures three things: its identity, its pureness (has not been altered), and a cer-
tain piece of code executing in a genuine SGX-enabled CPU. A server sends a
remote attestation request to a node and it responds to the request by announc-
ing information about the platform configuration. Node executes the client code
while the server runs the server’s side code. Both parties are interacting over a
network, which is not recognized to be part of any side or secured. The whole
operation contains fifteen steps with the server (also called challenger) and the
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Fig. 3. SGX remote attestation.

node. Figure 3 shows the interactions between the entities engaging in RA. It
is worth mentioning that RA adopts a modified version of the sigma proto-
col to support Diffie-Hellmann key exchange (DHKE) among the node and the
server. The sigma protocol is proof that consists of commitment, challenge, and
response. SCIFER [1] uses RA to verify the identity of users. Finally, we trust
Intel to execute SGX RA service correctly (similar to [1,23]).

4 Consensus Protocol: PoQ

4.1 Overview

This paper introduces a modified version of PoET consensus protocol called
PoQ based on SGX. As part of this protocol, each participating node generates
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a random waitTime using the enclave E , called SGX time SGX t and waits for
it to be expired. After SGX t is finished, the node becomes the leader and is
authorized to generate the next block. The waitTime and leadership for each
node will be approximately the same after a certain period which achieves the
equality issue of the consensus protocol.

Remote Attestation Protocol
1. In reply to the challenge request from the server, the node will do the following:

1a) Initialize the enclave by sgx_create_enclave (.., enclave_id, ..)

and perform ECALL to go into the encalve.
1b) Initialize the RA flow by calling enclave_init_ra(enclave_id,..,b_pse,

context). Here, pse means platform service.
2. If b pse is true then call sgx_create_pse_session() before establishing the

RA and key session.
3. Call sgx_ra_init(&sp_pub_key,b_pse,context) by passing the server’s pub-

lic key. Key is in little-endian byte order and must be hardcoded into enclave.
4. Close PSE session by sgx_close_pse_session().
5. Return context to the untrusted part from the enclave.
6. The untrusted part of the node call sgx_get_extended_epid_group_id() to

get active extended group ID (GID) of enhanced privacy group ID. EPID is
an anonymous signature scheme for attestation.

7. This is send to the server as a body of msg0.
7a) Verify by the server. If it is not valid, server terminate the attestation

flow.
8. The untrusted part of the node calls sgx_ra_get_msg1(...,enclave-id,g_a)

where g a is a public key of a node enclave and this enclave id is going to be
attested.

9. The untrusted Key Exchange (uKE) part of the node builds a message, msg1
that contains g a || GID.

10. Send msg1 to the server. All elements of msg1 are in little-endian byte order.
10a) Server translate all elements into little-endian order to check.

11. Server replies with msg2 that contains g b, spid, quote-type, kdf-id, sigRL,
etc. The public key of the server, also known as g b is based on NIST-256.
Signature Revocation List (sigRL), is a list of unfaithful signatures, signed by
the revocation authority.

12. After receiving msg2, the untrusted part calls the function
sgx_ra_proc_msg2(context,enclave_id,sgx_ra_proc_msg2_trusted_t,

sgx_ra_proc_msg3_trusted_t, msg2, msg2_size, ...)

12a) By calling sgx_ra_proc_msg2, node builds msg3.
13. sgx_ra_proc_msg2() builds msg3 that contains mac, g a, and platform secu-

rity property.
14. The node sends msg3 to the server and expect to get the attestation result.
15. Upon receiving msg3 from the node, the server will do the following:

15a) The server verifies the msg3 by calling
sgx_ra_proc_msg3_req(msg2,msg3_size,att_result_msg), to compare
g a w.r.t. g a of msg1 and verify the msg mac using sigma protocol (SMK).

15b) Send attestation result message to the node.
15c) The node will receive the result and checks the MAC using MK.

Protocol 1.1: Remote attestation
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PoQ Server

Initialization. The server S establishes a public key directory of permitted
nodes, creates an empty Q (contains node id) and SGXT, and then starts
listening to requests from nodes interested to join the network.

Node Registration Register(NPk , Sign(NPk )). Upon receiving a registration
request from a node, the server performs the following:
1. Check whether NPk exists in the public key directory. Otherwise termi-

nate the connection.
2. Check the validity of the signature. Otherwise terminate the connection.
3. Create an identification number, Nid.
4. Send an acknowledgment back to the node, along with Nid and SGXmax.

Attestation Remote Att(SPk ).The server and a node jointly execute the RA
protocol (Protocol 1.1): Sends a RA request to the client to establish a secure
channel.
– The server gets some information from the node which helps to decide

whether the program functioning on the node is malicious or fair.
SGX Verification. V erify(SGX t). Upon receiving SGX t, which is a randomly

generated time by the node’s E from Nid, the server performs the following:
– Check whether SGX t is within the range [SGXmin,SGXmax]. Otherwise

terminate the connection.
– Add Nid to Q and build SGXT that has Qt and ST for all nodes based

on available information.
– Send meta-data (Nn, NAt , NQT , Tr, NRT ) to Nid.

Status. Server will perform the following operation in meta-data:
– Continuously updates the SGXT, queue and dequeue the winner nodes

to keep a track.
– Broadcast the result to the network.

Protocol 1.2: PoQ Server side protocol.

Random SGX t. In our protocol, when a node joins the network, it gets a range
from the server to generate a random waitTime, SGX t from its E . After having
an SGX t, the node needs to submit it to the server for further verification.
To ensure TEE platforms exists, nodes generally require to register with the
hardware manufacturer to set up RA services. For instance, Intel SGX RA service
needs registration with Intel Attestation Service (IAS)3. During manufacturing,
each processor of SGX is equipped with a key that is certified by Intel [1]. After
successful verification, the server adds the node id, Nid of that node to the queue,
Q as it arrives. Subsequently, the node determines which tier, Ti it belongs to
and then calculates its Qt for that particular Ti for that time being which is

3 Intel, “Software sealing policies– intel R© software guard extensions developer
guide,” 2017. [Online]. Available: https://software.intel.com/en-us/documentation/
sgx-developer-guide.

https://software.intel.com/en-us/documentation/sgx-developer-guide
https://software.intel.com/en-us/documentation/sgx-developer-guide
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PoQ Node

1. The node signs its public key and then sends a node registration request
Register(NPk , Sign(NPk )) to S. Upon successful registration, the node re-
ceives an acknowledgment with its Nid and SGXmax.

2. Initialized by the server, the node jointly executes the Remote Att(SPk ) (Pro-
tocol 1.1) with the server to ensures its identity and it is running on an Intel
SGX enabled platform without tampering.

3. The node performs the following steps in order to participate into the PoQ
protocol:
(a) Generate a random SGX t from E within a range of [SGXmin,SGXmax].
(b) Broadcast and request V erify(SGX t) to S, hence gets meta-data that

states information about the existing nodes in the network.
(c) Determine tier Ti it belongs to according to the following:

Ti =
⌈
Tr

SGX t

SGXmax

⌉
(1)

(d) Calculate the local Qt using the following formula:

Qt =

⌈∑Nn
i=1 RT
Nn

2

⌉
(2)

where Nn is the number of active nodes in the specific Ti.
(e) Obtain ST using the information from SGXT.

4. Once it gets ST , SGX t will be reduced for the calculated Qt.
While Remaining Time RT �= 0, then:
(a) Generate a new Qt and determine the next ST .

otherwise:
i. A new block is propagated and the local leadership count is incre-

mented by one.
ii. Broadcast the winning result to S and announce new block.

5. To rejoin the network, steps 2 to 4 are repeated.

Protocol 1.3: Individual node side protocol.

equal to the amount of time it can be executed for its first pass. If it remains
in the waiting part of the Q and any node joins which belong to its Ti then it
needs to recalculate the Qt again based on available data. A new node can also
be added at the end of the Q. While a node is executing and a new node joins
that belongs to the same Ti it won’t affect the Qt of the executing node at that
moment. However, if the node is unable to finish the entire SGX t during that
pass of Qt, it will be popped up from the Q and added again at the end of it
without changing its Ti but this time it needs to recalculate the Qt for its next
pass. Then, the node who is in the starting point (starting time, ST = current
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time) of the Q will get the chance to reduce its SGX t. After completion of each
node’s Qt, the remaining SGX t of the currently executing node is checked. A
function “Time Left” keeps track of the Remaining Time (RT ) over SGX t after
each pass and once it has zero as its value, it will broadcast the result for claiming
the leadership. A participating node is required to finish all its SGX t to become
the leader and propagates a new block. It is worth mentioning that, the total
waiting time of a node is not equal to its SGX t (Fig. 5).

Fig. 4. Interactions corresponding to client-server communication in PoQ.
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Fig. 5. The various state of a node before becoming a leader.

4.2 Principals

Our protocol consists of two phases: server and client. The initial step is regis-
tration. In this phase, nodes need to join the network for authentication. Nodes
are the major principals in the PoQ consensus protocol and rely on TEE. TEE
can generate an independent identical random digit, which cannot be controlled
by an advisory. RDRAND command is available in Intel SGX. Our design uses
minimal energy consumption and exploits the Intel SGX floor.

4.3 Protocols

In the initial phase, Intel SGX plays a crucial part. Our protocol develops an
information flow between a local SGX and the server proposed in protocols 1
and 2.

Protocol 1.2 - Server Side Protocol. The server will always wait
for a join request from nodes, N . Whenever it gets a request, it calls
Register(NPk

, Sign(NPk
)) method where it verifies the authentication with the

directory of permitted public keys, NPk
. If it is valid, the server generates an

identification number, Nid, inserts it into the Q and sends an acknowledgment
to the newly joined node with the range of the SGX t and Nid. Immediately after
receiving SGX t from an node, N ′

1, it calls the V erify(SGX t) method where it
checks the SGX t

′
1. If it does not fit in the range, it aborts the connection. Thus,

no node can go after the smallest number that is beyond the range to generate
too many blocks. After successful verification of SGX t

′
1, the server stores the

time when it’s submitted and treats it as its arrival time, At
′
1 of N ′

1. Then cal-
culates Qt

′
1 according to its tier Ti and obtains the first starting time, ST ′

1, of
that particular node N ′

1. Then the server builds an SGX Table, SGXT based on
available data that contains the number of nodes, Nn, arrival time NAt

, quan-
tum time, NQT

, and remaining SGX t for all active nodes NRT with numbers
of tiers.

The server sends this meta-data to all active nodes. Thus, all Nid have access
to a similar database concurrently that server has, and almost every data will
replicate to all N which accelerates the speed of the network. The server always
monitors the scheme of finding a new leader. When a new leadership has been
claimed, a node N ′

1, is supposed to announce that it has completed its SGX t
′
1,
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so that it is considered as a leader and get appended to the blockchain and
dequeued from the Q. If that particular node wants to rejoin in the network its
Nid will remain the same with different credentials. Whenever a new node, N ′

2,
join or a node N ′

1 leaves, the server continuously updates the Q based on all
available data. However, the server can compute Average Elapsed Time, AET
and Average Waiting Time, AWT by the following formulas:

AET =
1
N

N∑

i=1

ET i (3)

AWT =
1
N

N∑

i=1

WT i (4)

Definition 4.1. Waiting Time. The inactive time of a Ni after consider its Ati.
Simply, the amount of idle time WT i spent by a Ni in the Q before the last pass
to finishes its SGX ti for a single round can be calculated by Eq. (6); where Ati

refers to At of Ni and SGX ti refers to the time generated from E of Ni. AWT
is the average value of wait time of N nodes and can be calculated by Eq. (4).

Definition 4.2. Elapsed Time. The entire time requires a Ni to become a leader.
That means the time elapsed between Ati of a Ni and its termination. Elapsed
time for a Ni can be calculated by Eq. (5); where WT i refers to WT of Ni and
SGX ti refers to the time generated from E of that Ni. The average elapsed time
of N nodes AET can be calculated by using Eq. (3).

Protocol 1.3 - Individual Node Side Protocol. At first, a participant node
needs to register for joining the network. After joining, a local SGX acts as
a client node that requires to download the PoQ code and execute it. When
a local SGX connects to the server, it gets Nid and the range to generate a
random SGX t (which is subject to change subsequently after each round) from
the trusted code inside E and needs to submit it to the server for verification,
which is done on the same platform. If there is more than one node (N ′

2, N ′′
21)

Fig. 6. Top level architectural diagram of the system.
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who produces SGX t at the same time then they will be added into the Q as
ascending order of Nid. If Q is null then Nid is added at the front of Q. If Q
is not null but the RT of the current executing node is zero then Nid is added
in FIFO manner, otherwise, Nid will insert into the Q after the Nid of the
executing node. Later, the node gets the SGXT from the server that consists
of its Qt, ST and At along with some meta-data (Nn, NAt

, NQT
, Tr, NRT ).

If we consider there are only three nodes (N ′
2, N ′′

21, N ′
3) in the network where

N ′
2, N ′′

21 has same At and N ′
3 join after two units of time, then the start time

of N ′
2 which is ST ′(N ′

2) immediately when it arrives and ST ′′(N ′′
21) is after the

amount of quantum time of N ′
2. The ST ′(N ′

3) is the addition of all the nodes Qt

left to execute, who are in front of it in the Q at the moment it arrives. Based
on all available information, a particular node, N ′, can also calculate which Ti

it belongs to, Qt
′ of that specific Ti and ST ′. For a specific tier whoever comes

first will start first. When a new N is added to a particular Ti, the Qt
′ of that

Ti is recalculated according to the available updated information based on RT
of all nodes in that Ti. When ST is equivalent to the current time, nodes will
execute to reduce its RT . When a node joins, the amount of its RT is equivalent
to its SGX t.

After a single pass, if a particular node, N ′
1, is not able to finish its SGX t

′
1 as

a whole, RT ′
1 will be updated by deducting the time spent on that pass and it

will put itself at the end of the updated queue, then calculates its next ST ′′
1 and

needs to wait for another pass. If there is no N in the overall Q than the current
node may carry on. It is mentioned that, at any stage, for a particular N ′

1, if
SGX t

′
1 or RT ′

n is less than the Qt
′
Ti

then the Qt
′
1 will be updated and assigned to

the equal portion of that specific RT ′
n. If any node finishes its SGX t, then it will

be withdrawn from the Q and becomes the leader and the number of leadership is
assigned to it will be increased by one. Thus, a new block is propagated. Figure 6
elucidates the top-level architecture of PoQ and Fig. 4 shows the inter-process
communication between the nodes and server. However, the node can compute
its Elapsed Time and Wait Time by the following formulas:

ET i = SGX ti + WT i (5)
WT i = EndTimei − (SGX ti + Ati) (6)

5 Experimental Evaluation

5.1 Goals

The design of a good consensus protocol must satisfy the following goals: (i) back-
ing up a large-scale network (ii) obtain a higher throughput, and (iii) achieve
fairness. To better motivate and illustrate our design, we performs these exper-
iments to achieve those goals throughout the experiments.
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5.2 Setup

We built a prototype of PoQ (in C++) to evaluate its performance. All practi-
cal experiments performed below were done using a system equipped with SGX
PSW 2.X of version 2.5.100.2 and SGX SDK 2.X of version 2.5.100.2 which acts
as a in-house client-server network. The system has Windows 10 OS with the
latest updates, Intel R© CoreTM i7-7567U processor (3.5 GHz to 4.0 GHz Turbo,
Dual Core 4 MB cache, 28W TDP), 32 GB RAM, 64 Mb Flash EEPROM, and
34.1 GB/s Max Memory Bandwidth4. We assume that every full node is a poten-
tial validators.

5.3 Throughput

The purpose of this experiment is to measure and compare the throughput of
PoQ and PoET. We ran multiple experiments with different parameters. We
measure the number of leaderships per second for ten different nodes and three
SGX t ranges: [1,100], [1,500], and [1,1000]. In the baseline case, we assume that
all nodes arrive approximately at the same time: within the first two (Fig. 7.a),
ten (Fig. 7.c), and twenty (Fig. 7.e) seconds. Then, we allow those ten nodes to
join randomly at different times within a certain range of At with the same
Tr which is 5. We ran each test 50 times where SGX t and At were generated
randomly. The time duration for each run for Fig. 7.a and b were 90 s (At ∈
[0,300] s), 450 s (At ∈ [0,1500] s) for Fig. 7.c and d, and 900 s (At ∈ [0,3000] s)
for Fig. 7.e and f. In Fig. 7, the graph with different arrival times deals with the
average result of tests where 20% of nodes leave the network randomly at any
time after becoming a leader at least once. Note that the protocol was slightly
modified when performed 20% nodes left. For baseline case, experiments were
run with the same settings as discussed above and the final result is averaged
where node does not leave the network. For comparison, we implement PoET and
run the same experiments with the same attributes to evaluate the performance
with respect to PoQ.

By comparing PoQ with PoET in Fig. 7, we observe that the throughput
of PoQ is higher in both cases: all nodes join approximately at the same time
(baseline case), and when they join at different times. The difference between
the two protocols’ throughput could be as low as 0.3 (Fig. 7.2) and as high as
3.5 (Fig. 7.d).

4 Max Memory Bandwidth is the maximum rate at which data can be read from or
stored into a semiconductor memory by the processor (in GB/s).
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Fig. 7. Throughput evaluation results among ten nodes for PoQ and PoET. Each data
point in our plots is averaged over 50 independents measurements.

5.4 Scalability

In this section, we evaluate the scalability of our protocol. We start with a
network of 2000 nodes then double the network size 5 times, raising to 10,000
nodes in the last setting. In Fig. 8 we keep the same parameters involved in
Fig. 7.a but with a larger number of nodes. We ran the experiment only once
until all the nodes become exactly one leader. It should be noted that epoch
time is longer (e.g., 100 s in 2000 nodes to 504 s in 10,000 nodes) since it requires
relatively more times when the total number of nodes increases.

By observing the graph we conclude that AWT , AET for different sizes of
network increase linearly as the network size grows. We also measured RA which
takes roughly 2 ms and we did not consider it in result data.
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Fig. 8. Overview of bridging between AWT and AET in PoQ in response to scalability
(up to ten thousands of nodes).

5.5 Fairness

A consensus protocol is fair if a miner/validator with p share of the overall
resource ratio can produce a block with a probability p. In this section, we
trying to measure the relation between the number of SGX machines a node has
and the number of leadership it can reach. We conducted this experiment with
the same parameter elaborated in Fig. 7.a. We ran the experiment 50 times and
the Fig. 9 reported below are averaged over fifty independent runs. The graph
shows the cumulative average leadership of a validator who has a certain number
of SGX per node. The X-axis indicates the total number of SGX a node has and
the Y-axis shows the average leadership.

After running our experiments, described above, we observe that the proba-
bility of being chosen to be a leader scaled linearly, in relation to the number of
SGX machines per node.
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Fig. 9. A linear growth in experimentation over nodes.

6 Conclusions

In this paper, we proposed Proof of Queue (PoQ), a leader based consensus pro-
tocol for private (permissioned) blockchains that utilizes Intel SGX to ensure all



158 G. D. Bashar et al.

nodes in the system honestly run trusted code to become a leader. PoQ main-
tains queues for different tiers, keeps tracks of the quantum times executed by all
nodes, and updates the state changes to all nodes. PoQ is specifically designed
to avoid the collision in leader election than existing PoET protocol. Also, our
protocol is suitable for a large number of nodes with an enormous wait time.
The design of PoQ shows that it maintains approximately similar wait times
and elapsed times for all the nodes. Finally, based on the simulation and large-
scale evaluation of PoQ, we showed that no nodes are left behind. We evaluate
PoQ against three metrics; throughput, scalability, and fairness. The results
show that PoQ can offer enhanced scalability. Besides, PoQ scales fairness lin-
early with SGX machines. As future work, we plan to modify the node-side
protocol by adjusting the quantum time depending on the time left of executing
nodes to optimize the overall fairness of the protocol.

A Appendix

Abbreviations
The following abbreviations are used in this manuscript (Table 3):

Table 3. Summary of notation used throughout this paper

Symbol Description Symbol Description

Q Queue EndTime End Time

N SGX Node ST Starting Time

E SGX Node enclave RT Remaining Time

S SGX Server AET Average Elapsed Time

SGX t SGX time WT Wait Time

SGXmin Minimum value of SGX t AWT Average Wait Time

SGXmax Maximum value of SGX t σ Standard deviation

SGXT SGX Table Qt Quantum Time

Nn Number of active nodes in a
specific tier

QT Quantum Time of all nodes

Nid Node id generated by the
SGX Server

Pk Public key

Ti Tier id for i-th node Sk Private key

Tr Total number of tiers
available. This value is
defined by the SGX Server
and is uniformly distributed

NPk Node public key

At
(i) Arrival Time of i-th node NSk Node private (secret) key

At Arrival Times from all nodes

ET Elapsed Time
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Abstract. Cryptocurrency achieves distributed consensus using proof
of work or PoW. Prior research in blockchain security identified finan-
cially incentivized attacks based on withholding blocks which have the
attacker compromise a victim pool and pose as a PoW contributor by
submitting the shares (earning credit for mining) but withholding the
blocks (no actual contributions to the pool). We advance such threats to
generate greater reward advantage to the attackers while undermining
the other miners and introduce the share withholding attack (SWH).
SWH withholds shares to increase the attacker’s reward payout within
the pool, in contrast to the prior threats withholding blocks focusing on
the inter-pool dynamics. SWH rather builds on the block-withholding
threats in order to exploit the information about the impending block
submission timing, challenging the popularly established assumption
that the block submission time is completely random and unknown to
miners. We analyze SWH’s incentive compatibility and the vulnerability
scope by identifying the critical systems and environmental parameters
which determine the attack’s impact. Our results show that SWH yields
unfair reward advantage at the expense of the protocol-complying victim
miners and that a rational miner will selfishly launch SWH to maximize
its reward profit. We inform the blockchain and cryptocurrency research
of the SWH threat to facilitate further research and development to
secure the blockchain consensus protocol.

Keywords: Cryptocurrency · Blockchain · Rational mining · Block
withholding

1 Introduction

Blockchain builds a distributed ledger and has emerged as the enabling technol-
ogy for cryptocurrencies, which generate and process the financial transactions
without relying on a centralized authority such as a bank, e.g., Bitcoin [23]
and Ethereum [5,26]. Cryptocurrencies operate in a permissionless environment
lacking the pre-established trust in identities, and the underlying distributed
consensus protocols based on proof of work (PoW) enable the nodes to agree on
the ledger transactions by making the consensus fair with respect to the compu-
tational power (as opposed to the number of identities/votes); the probability of
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finding a block and winning the corresponding reward is designed to be propor-
tional to the computational power/hash rate by the PoW consensus protocol.
Such PoW-based distributed consensus protocol is the most popular consensus
protocol in the real-world blockchain implementations. The miners participate in
the PoW consensus to generate new currency and process the transactions and
are financially incentivized to do so by the block rewards, which are winnings
from solving the probabilistic PoW computational puzzles. To lower the variance
of such reward income, the miners join and operate as mining pools to share the
computational power and the corresponding reward winnings. Within a mining
pool, to better estimate the individual miner members’ contributions, mining
pools use shares which correspond to solving the same PoW computations as
the blocks but with easier difficulty, providing greater number of samples for the
contribution estimation. If a block is found within the mining pool, instead of
the miner finding the block getting the entire reward, the reward gets distributed
across the shares so that the miners have lower variance in their reward earnings.

Despite the consensus protocol indicating that the miner submits a block
(a valid PoW solution) once found [23], recent research in blockchain security
identified practical and relevant attacks which have the attacker withhold and
control the timing of the block submission (including permanently withholding
and discarding the block, as is in the classical block-withholding attack or BWH)
for unfair reward advantage over the protocol-complying strategy of immediately
submitting the found block. In such block-withholding threats, the attacker com-
promises a victim mining pool and undermines the pool winnings by posing as a
PoW contributor without honestly contributing; while the reward winnings are
shared in the victim pool, the attacker additionally has a separate reward chan-
nel in its main pool/solo mining, in which it does not need to share the reward
with others. These attacks are in the forms of block-withholding attack (BWH),
fork-after-withholding (FAW), and uncle-block attack (UBA). FAW builds on
selfish mining and BWH to advance and generalize BWH, and UBA further
advances FAW by exploiting uncle blocks and making use of all the withheld
blocks. These threats are discussed in greater details in Sect. 3.

In this paper, we advance the withholding-based attacks and introduce the
share-withholding (SWH) attack. SWH withholds and delays the submission of
the shares (as opposed to just the blocks) to increase the reward payout within
the victim mining pool. In SWH, the misbehaving attacker exploits that it can
gain some/probabilistic information about the impending block submission tim-
ing, which challenges the previous belief that block arrival timing is completely
random to the miners thanks to the block arrival being a Poisson process [23].
Because knowing the block submission timing is critical for incentivizing SWH
(as we show in Sect. 7.2), SWH builds on the aforementioned block-withholding
threats, in which the attacker withholding and controlling the timing of the block
submission opens opportunities for SWH gain. SWH further amplifies the reward
gain beyond the state of the art block-withholding threats (where FAW and
UBA already outperform protocol compliance and forgo the miner’s dilemma) by
increasing the attacker reward at the expense of the other miners within the vic-
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tim pool. The additional reward gain is from the payout/contribution-estimation
manipulation within the victim pool (which is different from the source of the
reward gain for BWH/FAW/UBA as the block-withholding threats increase the
reward of the main pool) as discussed in Sect. 5.

Our analyses show significant gains and incentives for launching SWH even
though our reward/payout analyses is conservative in measuring the attacker’s
performances. For example, we use lower bounds and quantify the performances
when the attacker loses the forking race and its fork-after-withheld block (which
distinguishes FAW from BWH) does not become the main chain. SWH remains
effective even when the probability of the attacker’s withheld block becoming
main chain is zero (and the FAW attack reduces to the suboptimal BWH).
Furthermore, when uncle rewards are implemented (as in Ethereum [5,26]), SWH
further exploits the shares for even greater reward advantage than UBA or FAW.

Our work is generally applicable to all mining-based blockchains and to all
rational miners. We use formal modeling and analyses to identify the blockchain
components which yield the SWH vulnerability, define the attack scope, and
determine its impact and the impact dependency on the parameters. Our model
is driven by the real-world blockchain system designs and implementations and
is applicable to all PoW-consensus-driven blockchains. Throughout the paper,
we construct the model and introduce additional complexities/parameters as
they are used; the following sections often build on the previous sections and
analyses. Furthermore, in addition to sabotaging and undermining the other
protocol-complying miners, our threat model supports a rational miner driven
by its self profit since we analyze the incentive compatibility. A mining strategy
is incentive compatible if its expected reward is greater than other known mining
strategies, including protocol compliance, and the miners driven by self profit
would be incentivized to launch SWH as long as they are uncooperative and
willing to diverge from the given protocol. Therefore, our threat model is stronger
and more applicable than assuming only malicious and irrational miner which
focuses only on disrupting the performances of the other victim miners.

2 Background in Blockchain and Mining

The PoW consensus protocol participation is incentivized by financial rewards
for generating a valid PoW which becomes the new block in the ledger. The
protocol participation is called mining and the participants miners because the
reward for finding the block include new currencies. Only the miner which solves
the PoW puzzle and finds the block the earliest1 wins the corresponding reward
in that round (where each round increases the blockchain’s block height by one),
since the rest of the miners accept the newly found block and start a new round

1 To determine which block was found the earliest can be a challenge in a distributed
environment. To provide greater details about such resolution, we describe fork-
ing and how that can be resolved later in this section, and we describe uncle
blocks/rewards adopted by Ethereum and newer cryptocurrencies which provide
rewards to more than one miner in Sect. 3.
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of mining by updating the chain with the found block. The PoW consensus
protocol is designed to be computationally fair, distributing the reward winning
proportionally to the computational power of the miners in expectation. For
example, assuming the protocol compliance of the miners, hundred miners, each
of which has an equal hash rate of x H/s, collectively earns the same reward
amount as one miner with a hash rate of 100x H/s in expectation.

Because a miner is competing with a global-scale group of other miners and
the mining difficulty gets adjusted accordingly, solving a block is sporadic and of
high variance. To lower the variance and to get a more stable stream of reward
income, miners form a pool to combine their computational power and share the
corresponding mining rewards. The increased computational power by pooling
them together increases the occurrence of winning a block and the correspond-
ing reward gets split across the pool miners according to their computational
contributions (which reward split within the pool is called payout). To estimate
each miner’s contributions, the mining pool samples more PoW solutions by
using shares, which correspond to solving the same computational puzzle with
the same block header as the block but with easier difficulty. The PoW solution
corresponding to a share fixes fewer number of bit 0’s in the most significant bits
of the hash output and therefore has a weaker constraint and a greater occur-
rence/probability than the PoW solution corresponding to a block. In other
words, if the block corresponds to finding a preimage/input x which satisfies
H(x) < τblock where τblock is the target threshold of the PoW puzzle, then the
share corresponds to finding x satisfying H(x) < τshare, where τshare > τblock,
and thus a block solution is/implies a share but a share is not necessarily a block.
To manage the mining pool, the pool manager keeps track of the share count, reg-
isters/broadcasts the block upon its discovery, and distributes the reward-payout
to the pool members according to their share submissions. While optional, join-
ing the mining pool to get a more stable, low-variance reward income is popular;
for example, in Bitcoin, more than 89% of the mining computation came from
known mining pools [4], which figure is a conservative lower bound because there
are unidentified mining pools.

Due to the imperfect/asynchronous networking to submit and broadcast the
blocks, forking occurs when two block solution propagations result in a collision
(i.e., some nodes receive one block earlier than the other while the other nodes
receive the other block first), creating a disagreement/partition between the
miners on which block was mined first and which to use for its impending round
of mining. Forking gets resolved by having the miners choose the longest chain
(where the length of the chain can be measured by the number of blocks or the
total difficulty), e.g., if one partition finds a second block and propagates that
to the other partition, then the miners in the other partition accept that chain
which is one block longer than the one that they have been using.

3 Related Work in Blockchain Mining Security

Following the consensus protocol of timely block submissions has been believed
to be incentive compatible, as the block submission monotonically increases the
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reward at the time of the submission. However, given the same computational
power, more sophisticated attacks emerged to further increase the mining reward
by operating against the protocol and controlling/delaying the timing of block
submission, including permanently withholding the submission in certain situa-
tions. Selfish mining withholds a block so that the miner can get a heads-start on
computing the next block and have the rest of the miners discard and switch from
the blocks that they were mining [12,16]. However, the confirmation mechanism,
introduced by Bitcoin and inherited by most blockchain implementations, resists
selfish mining by waiting until multiple blocks are further mined after a block is
found, decreasing the probability of successful selfish mining exponentially with
the number of blocks needed for confirmation [23].

Against mining pools, there are even more advanced threats. The block-
withholding (BWH) attack withholds the mined block in the victim pools in
order to increase the attacker’s overall reward (and specifically that of the main
pool) at the expense of the rest of the victim pool members [24]. In BWH, to
sabotage the victim mining pool, the attacker simply never submits the found
block while submitting the shares. As a consequence, the attacker still reaps the
benefits from submitting the shares to the victim pool (pretending to contribute
and getting the credit for it) while never actually contributing to the pool (since
it never submits the actual block solution which will benefit the victim pool).

Fork-after-withholding (FAW) attack [19] builds on selfish mining and BWH
but creates intentional forks in cases when there is a block being broadcasted by
a third-party pool (with which the attacker has no association). In other words,
while always submitting the shares to gain greater payout on the victim pool,
the attacker withholds the found block and either discards it (if the attacker’s
main pool finds another block or if another miner from the victim pool finds a
block) or submits it only when there is another competing block that is being
propagated by another third-party pool (creating an intentional fork). Unlike
BWH yielding no reward if the third-party pool submits a block, FAW causes a
fork to yield a statistically positive reward (i.e., the attacker wins the forking race
sometimes) when the third-party finds and submits a block. FAW is significant
because it forgoes the miner’s dilemma (motivating the pools to cooperate with
each other) [11], and there is a real incentive (unfair reward gain) to launch FAW
for rational miners.

Uncle-block attack (UBA) [9] exploits the uncle blocks which provide partial
rewards for the blocks which got mined but did not become the main chain, e.g.,
Ethereum to provide greater fairness in the miners’ networking conditions. UBA
builds on FAW, inheriting the attacker-desirable properties, but advances it to
generate greater unfair rewards to the attacker by making use of all the withheld
blocks (in contrast to FAW discarding some withheld blocks) and by making it
relevant and impactful even when the attacker has suboptimal networking and
loses the forking race (in which case, FAW reduces to the suboptimal BWH).

The research and development for defending against such block-withholding
threats and aligning the incentives to protocol compliance is ongoing, e.g., [3,6,
8,24]. Rosenfeld [24] (which introduced the aforementioned BWH attack) also
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introduces payout algorithms to build resistance against pool-hopping attacks,
in which the attackers dynamically hop between pools for increased reward. His
seminal work and the analyses of the payout schemes are widely adopted in the
modern-day mining pool practices. Unfortunately, we later see in Sect. 7.2 that
one of Rosenfeld’s main inventions for defeating pool hopping (decaying payout,
as we call it) yields a critical vulnerability for our novel threat of SWH.

4 Threat Model

We define honest miners to be cooperative and follow the consensus protocol
and the mining pool protocol, including the timely block and share submissions.
The other non-honest miners can launch other mining strategies (e.g., those
described in Sect. 3 or SWH) and are rational (choose the strategy achieving
greater reward). More specifically, the non-honest miners intelligently control
the timing of the PoW solution submissions (blocks or shares). If the non-honest
and rational miners violate the consensus protocol, we call them attackers as
they operate at the expense of the other honest miners.

Fig. 1. The SWH setup is the same as BWH, FAW, or UBA and includes compromising
the victim pool. The attacker splits its computational power between mining honestly
in the main pool and infiltrating the victim pool to launch the mining threats. However,
while FAW or UBA increase the reward for the main pool from such infiltration at the
expense of the victim pool as a whole, SWH increases the attacker’s reward split within
the victim pool.

4.1 The Same Setup for SWH as BWH

We investigate the attacks launched by the miners. We assume the threat model
of BWH (the same as FAW and UBA), in which the attacker compromises mul-
tiple pools and separates the main pool vs. the victim pool, as depicted in Fig. 1.
The attacker behaves honestly in the main pool while it can launch an attack
by diverging from the protocol in the victim pool , i.e., the attacker compromises
a victim pool by joining the pool with the intention of launching an attack. As
a realistic setup and for simplicity, we assume that the main pool is comprised
of the attacker only (equivalent to solo mining); the attacker shares the reward
winnings in the victim pool while there is no sharing and the attacker takes all
the rewards in the main pool. Our model also generalizes to the case of multiple
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pools/miners (e.g., the main pool or the victim pool can be a collection of mining
pools) as long as those comprising the main pool are under the attacker control
since the PoW consensus is designed to be power-fair as opposed to identity-fair,
as is described in Sect. 2 and captured in our mining-game model in Sect. 6.

The attacker setup is realistic since cryptocurrencies operate in permissionless
environments with loose control of identities and is designed for anonymity. For
example, in 2014, Eligius became a victim pool of BWH attack and lost 300
BTC [14], which got detected because the attacker only used two accounts for
the attack (which resulted in the detection of abnormal behavior where the
accounts submitted only shares but no blocks for too long of a time). Combining
such attack with Sybil attack (or just simply following Nakamoto’s suggestion to
use new accounts for new transactions for anonymity [23]) instead of just using
two accounts would have made such detection significantly more difficult.

5 Share Withholding Attack

Share withholding attack (SWH) withholds shares in order to manipulate the
intra-pool payout (shifting the share-based payout and the reward distribution
within the pool), which is in contrast to the prior miner threats withholding
blocks in Sect. 3 increasing the probability of winning in the attacker-main pool
(at the expense of that of the compromised victim pool). SWH is therefore funda-
mentally different from the threats withholding blocks and can be launched sep-
arately with UBA/FAW/BWH. However, SWH provides reward gain (incentive
compatible and relevant to rational miners) if the attacker has some knowledge of
the block submission timing as we will see in Sect. 7.2. While there can be other
cases to fulfill such condition requirement, we identify the block-withholding-
based threats as practical cases where the attacker fulfills the requirement of
having knowledge of the block submission time (since the attacker has control
over the timing of the withheld blocks). More specifically, when the attacker
launches SWH with FAW or UBA, it submits its shares right before its withheld
blocks. Therefore, we introduce SWH not only by itself but also in conjunction
with the block-withholding-based attacks of UBA/FAW/BWH. When analyzing
the impact of SWH in Sects. 8 and 10, we focus more on UBA and FAW because
UBA generalizes FAW and FAW generalizes BWH; UBA is more advanced than
FAW and FAW more advanced than BWH where, in both cases, the former
strategy can be reduced to the latter in certain mining environments (e.g., when
uncle reward is zero, UBA gets reduced to FAW).

6 Mining Game

This section builds on and adapts the models in the prior literature analyzing
the withholding-based attacks, e.g., [9,19,21]. On the other hand, Sects. 7 and 8
extend the model to introduce a more complex model and a framework to analyze
the intra-pool dynamics and SWH. As discussed in Sect. 5, while block with-
holding increases the main pool reward and focuses on the inter-pool dynamics
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(this section), SWH manipulates the share-driven reward payouts within the
pool (Sects. 7 and 8).

6.1 Mining and Computational Power Model

To investigate the incentive compatibility of the attacks, we model the min-
ing game between the miners and quantify the expected reward. The expected
reward depends on the miner’s computational power, and we normalize the fol-
lowing variables with respect to the total miner network’s computational power,
e.g., the entire miner network has a computational power of 1. The attacker’s
computational power is α (where 0 ≤ α ≤ 1 − β) while the victim pool’s mining
power excluding the attacker’s power is β (where 0 ≤ β ≤ 1 − α). The power of
the other pools/miners outside of the attacker and the victim pool is therefore
1 − α − β. Building on the attacker setup in Sect. 4.1 and in Fig. 1, the attacker
splits its power between its main pool (honest mining) and the victim pool (pos-
sibly adopting mining attack strategies to increase the attacker’s reward at the
expense of the fellow miners in the victim pool), and the fraction of the attacker’s
power for infiltration of the victim pool is τ (where 0 ≤ τ ≤ 1). Therefore, the
attacker’s power on the victim pool is τ ·α, and the total mining power on the vic-
tim pool is τα+β even though the attacker’s power does not fully contribute to
the pool earning reward. For example, in the simpler block-withholding attack of
BWH, the attacker does not submit block at all in the victim pool so the actual
power contributing to block earnings of the pool is only β, while the attacker
still earns the reward/credit through share submissions and the reward earning
gets split by τα + β.

A miner’s expected reward is denoted with R. For example, if an attacker
chooses to behave honestly (one of its possible choices), its expected reward
(Rhonest) is proportional to its computational power by the design of the PoW
consensus and the mining pools,

Rhonest = α (1)

The following summarizes the variables for analyzing block withholding
threats.

α: Attacker’s computational power
β: Computational power of the victim pool
τ : Fraction of attacker’s power for infiltration of victim
c: Probability that the attacker wins the reward given that there is a fork
(collision with another block propagation)

6.2 BWH, FAW, and UBA Analyses

To provide baselines and examples of the use of our model in Sect. 6.1, we
analyze the expected reward of BWH and FAW. This section adapts the prior
work in the block-withholding-based threats [9,19,21], and we only extract the
parts most relevant to our work in this section.
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For BWH, the attacker has two possible events for earning a positive reward
(in other events, the attacker earns zero reward). The first event is when the
attacker finds a block in its honest-mining main pool (A) while the second event
corresponds to when another miner from the victim pool, not the attacker, finds
a block (B). Because the probability of winning a block is proportional to the
computational power spent on mining the block and because 1 − τα amount of
power from all miners actually contributes to finding the block and ending the
round (the attacker uses τα to only submit shares while withholding the blocks),
the probability of A is (1 − τ)α

1 − τα and the probability of B is β
1−τα . Assuming negli-

gible probability for natural forking, the expected reward for block-withholding
attack (RBWH) is:

RBWH = E[R|A] · Pr(A) + E[R|B] · Pr(B)

=
(1 − τ)α
1 − τα

+
τα

β + τα
· β

1 − τα
(2)

The FAW attack builds on the block-withholding attack but provides an extra
channel for attacker reward. In addition to the events A and B, the attacker can
earn reward by broadcasting the withheld block when a third-party miner outside
of the attacker-involved main pool and victim pool finds a block, causing a fork
and hence the name fork-after-withholding (FAW). This event of the attacker
finding a block and a third-party miner finding a block is C. The expected reward
for FAW attack (RFAW) is:

RFAW =
(1 − τ)α

1 − τα
+

τα

β + τα

(
β

1 − τα
+ cτα

1 − α − β

1 − τα

)
(3)

The technical report [7] includes the reward analysis for UBA in Appendix A.
We summarize the three events which yield the attacker positive rewards, as we
also use them for our analyses of the rewards for the other attacks:

A: Attacker’s main pool finds a block
B: Another miner from the victim pool finds a block
C: Third-party miner, not affiliated to attacker, finds a block

7 Mining Pool Game and SWH Scope Analyses

While the mining game model in Sect. 6.1 characterized the miners’ activities at
the inter-pool level, SWH requires greater details in the modeling of the intra-
pool operations at the share/block submission level; the model needs to capture
the individual submissions of the blocks/shares and the reward split distribution
within the mining pool (which we call payout). To support such model, in this
section, we introduce the mining pool game and model (Sect. 7.1) and use it to
analyze the SWH feasibility and scope (Sect. 7.2). Afterward, we analyze the
SWH performance (Sect. 8). Section 8 builds on Sect. 7, focusing on the SWH-
vulnerable scope, and provides greater details and increasing complexity in the
model and analyses. The variables are introduced as they are used, for example,
Sect. 8 focuses on the decaying-payout scheme (which is one of the two types of
payout-schemes in Sect. 7.2).



170 S.-Y. Chang

7.1 Mining Pool and Share Model: f and s

In a mining pool, there are n miners, each of which is denoted with m ∈
{1, 2, ..., n}. For example, if n = 1, then m ∈ {1} and it is solo mining (e.g.,
the attacker’s main pool). We characterize the i-th share submission (si) using
a pair of random variables: the index of the member who submitted the i-th
share mi and the time of submission ti (recorded by the mining pool manager).
In other words, si = (mi, ti). The collection of these share submissions over time
is denoted with s. In other words, s = {si}i is the share history and s grows with
the number of share submissions. For example, from the beginning of the round,
if the member 4 submitted the first share at time 6 and the member 10 shared
the second share at time 9.5, then s = ((4, 6), (10, 9.5)) if the second share is the
most recent share. The share list s is an implicitly ordered list in the share’s time
order (i.e., the shares get added at the end as they are found) and continues to
grow until the block is found and submitted (the end of the round), after which
s resets to ∅. When a new i + 1-th share arrives, s with i submissions/elements
gets updated by s||(mi+1, ti+1) where a||b denotes the concatenation of a and
b. We assume that share rules and validity are enforced so that an invalid share
submission (which gets rejected by the mining pool system) is equivalent to no
submission.

The payout to determine how the pool reward gets split between the pool
members (as opposed to the final reward which accounts for the rewards from
the other pools as well) depends on the share submissions. To model the payout
and generalize it to different payout schemes (how to divide the reward between
the share submissions), we introduce the payout function f which divides the
reward using the share submissions and produces a vector in which the i-th
element corresponds to the payout to the corresponding submitter mi. In other
words, f : s → R, i.e., f uses the share history (s) to generate the reward
for each miners (R) where R is either a zero vector if the pool does not win
the reward or a vector with non-negative scalar elements with a size of n and
‖R‖1 = 1 (the element adds up to one so that each element corresponds to the
fraction of the reward winnings). From f , fj takes the j-th element of R and
derives the reward for miner j, i.e., fj : s → Rj . For example, for Pay-Per-Share
(PPS) scheme, fj counts for the number of shares submitted for each miner
member j and, for Proportional payout scheme, fj counts for the number of
shares for each miner j and divides it by the total number of shares.

7.2 SWH Vulnerability Scope

SWH is based on withholding shares and delaying their submissions (in contrast
to block-withholding-based attacks which control block submissions). While we
study the attack’s implementation and impact in Sect. 8, we first investigate
if delaying shares can be relevant and incentive-compatible and establish the
vulnerability scope in which the share-withholding attack is relevant in this
section. We analyze how the payout function f (distributing the pool reward
to the members) plays a critical role in determining the system’s vulnerability
against SWH.



Share Withholding in Blockchain Mining 171

Payout Scheme Definition. The payout function f is designed to increase
the reward for a miner when it submits a share. We define f to be unilaterally
increasing if, given any share history s, the submission of a share monotonically
increases (i.e., either increases or remains constant as its input increases) the
payout of the submitter of that share. For any miner j, f unilaterally increases
with j’s share submission if any new share submission by j at time t, corre-
sponding to (j, t) in the share list, monotonically increases j’s payout.

Definition 1. f unilaterally increases the payout with shares if fj(s||(j, t)) −
fj(s) ≥ 0, ∀s, ∀t, ∀j.

The real-world mining pools implement f so that it unilaterally increases
with a share, and any share submission does not harm the subject miner’s reward
earnings.

f implementation is divided into two classes, which are mutually exclusive
and cover all f implementations. The first class of f called fixed payout corre-
sponds to when the payout for each share submission remains the same in time
(as long as the share list remains the same) and the other class called decaying
payout corresponds to when the share payout gets decayed over time from the
time of its submission. We say that the share has a fixed payout if the time of
the share submission does not affect the share attribution to the payout as long
as the share list s remains constant (e.g., a new submission changes the share
list s and can further spread the reward between the submissions). Implied in
the fixed-payout definition is that the share remains valid and stays within the
same round because s remains the same; this is an important clarification for
the SWH attack because there is a risk in delaying the share submission and
losing its payout value (which occurs if any other miner found a block and the
pool moves on to a new block header/round making the attacker’s share stale).

Definition 2. f is a fixed payout scheme if fj(s||(j, t + Δt)) − fj(s||(j, t)) =
0, ∀t, ∀Δt, ∀j,∀s.

In real-world f implementations, Proportional, Pay-Per-Share (PPS), Pay-
Per-Last-N-Shares (PPLNS) fall within the fixed-payout schemes [24]. In con-
trast to PPS, the share payout can vary as there are new submissions, e.g., by
having the payout depend on the number of shares and the size of s size (which
may grow in time), as in the Proportional payout scheme. Even in such cases, the
share’s payout attribution remains the same as long as the share is submitted
within the same round.

On the other hand, other schemes for f has a decaying payout [24], i.e.,
a share’s payout value decays in its value in time, and the more recent share
submissions have a larger payout than an older share submission.

Definition 3. f is a decaying payout scheme if fj(s||(j, t+Δt))−fj(s||(j, t)) >
0, ∀t, ∀Δt, ∀j,∀s.

In real-world f implementations, score-based/Slush’s payout and Geometric
payout fall under decaying-payout schemes.
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Fixed Payout Case. We show that the attacker has no incentive to conduct
share-withholding attack if f has a fixed payout. In other words, the attacker’s
choosing Δt > 0 does not increase its payout.

Theorem 1. Attacker has no reward gain to delay its share if the payout scheme
f unilaterally increases the attacker’s payout and has a fixed payout.

Proof. Suppose the attacker j, for any j, finds a share at time t and it is valid at
the time. It is sufficient to show that, given any s and any Δt > 0, the expected
payout is less than that corresponding to Δt = 0. By definition of f being fixed
payout, j’s payout for submitting the share at time t + Δt, fj(s||(j, t + Δt)) is
either fj(s||(j, t + Δt)) = fj(s||(j, t)) or fj(s||(j, t + Δt)) = fj(s), the latter of
which is smaller than fj(s||(j, t)) because f unilaterally increases with j’s share.
Since E[fj(s||(j, t))] is a linear combination of the payouts corresponding to the
two events (which partitions and comprises the entire possibilities - the share
either remains valid or becomes invalid, e.g., no longer valid block header because
it is a new round) by law of total probability, E[fj(s||(j, t))] ≥ E[fj(s||(j, t+Δt))].

Decaying Payout Case. Suppose the mining pool system uses f such that it
unilaterally increases the payout for every miners and has a decaying payout.
Given such f , the attacker has an incentive to conduct SWH if the attacker
knows the block submission time (the end of the round) ahead of time. The
knowledge of the block-submission timing is critical for SWH, as we will see in
this section. While there can be other cases where such assumption holds and
our analyses still applicable, we identify a concrete case when the attacker does
have the block-submission time information in FAW/UBA. In FAW or UBA,
an attacker knows the block submission timing and can launch SWH, because
an attacker having found and withholding the block has the knowledge of the
block submission time. The attacker can further increase its knowledge of the
block submission time in advance by combining the withholding with networking-
based attacks [2,10,17]. Therefore, we focus on an attacker launching SWH in
conjunction with FAW/UBA and analyze the SWH attack impact in such case
in Sect. 8.3.

We first analyze the case when the attacker has the full information about
when the block will get submitted (i.e., the attacker has the correct information
about the block submission timing all the time). Then, we build on the full-
information case to analyze the case when the attacker has the information
sometimes and those cases occur with a non-zero probability (we later introduce
c′ for such probability when incorporating share-withholding attack with FAW
attack in Sect. 8).

Lemma 1. Given a payout scheme f which unilaterally increases the attacker’s
payout and has a decaying payout, attacker has a positive reward gain to delay its
share if the attacker has full information about when the block will get submitted.
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Proof. Suppose the share is found at time t and the block is found/submitted at
tB, known to the attacker. Let’s prove by contradiction. Assume that the attacker
choosing Δt = 0 maximizes the expected payout, which is E[fj(s||(j, t+Δt))] =
E[fj(s||(j, t))]. Let attacker withhold the share and choose Δt = tB−t−ε, ∀ε > 0.
Then, by definition of f having decaying payout, fj(s||(j, t + tB − t − ε)) =
fj(s||(j, tB−ε)) > fj(s||(j, t)). Therefore, the attacker is incentivized to withhold
shares.

Theorem 2. Given a payout scheme f which unilaterally increases the
attacker’s payout and has a decaying payout, attacker has a positive reward gain
to delay its share if the attacker has the information about when the block will
get submitted with a non-zero probability.

Proof. Lemma 1 states that the attacker is incentivized to launch share-
withholding attack if the attacker has the full information of the block sub-
mission timing. The attacker can either withhold a share or promptly submit
it. If the attacker only withholds shares when it has the knowledge of the block
submission timing, then the expected payout of such strategy is a linear combina-
tion between the payout when share-withholding attack with perfect knowledge
and the payout with no share-withholding, which is greater than the latter (no
share-withholding) if there are cases when the attacker has the knowledge with
non-zero probability.

7.3 SWH Vulnerable Scope in Real-World Practice

The payout function f is critical in determining whether the mining pool is vul-
nerable against SWH. More specifically, if f is of decaying payout (as opposed to
fixed payout), then the mining pool is vulnerable against SWH. In our investiga-
tion, more than 12% of the miner computations in Bitcoin (measured by the com-
putational power) use decaying-payout scheme and are vulnerable against SWH;
this is a conservative figure since it only counts the mining pools whose designs
are known, and there are many pools which obscure their payout functions. For
example, SlushPool (well regarded in cryptocurrency community thanks to its
transparency and state of the art security practices) is within the vulnerable
against SWH.

8 SWH Payout and Reward

In SWH, the attacker withholds shares for submission until the blocks get sub-
mitted in order to increase the payout of the shares. Since the attacker blindly
delaying shares risks the shares becoming stale/outdated lowering its payout,
we analyze two cases: the case when the attacker has the full information about
the block submission timing and the case when the attacker combines share-
withholding with block-withholding-based attacks (where the attacker has prob-
abilistic control over the block submission timings). We build on the analyses of
the former case for the analyses of the latter case to provide a concrete scenario



174 S.-Y. Chang

where the attacker has the information of the block submission timing because
it actively controls the submission timing.

SWH is incentivized because the withholding increases the attackers’
expected payout. While Sect. 7.2 established the vulnerability scope of SWH
(SWH is incentivized when f has a decaying payout and when the attacker knows
the block submission timing), we analyze the attack impact in the attacker’s pay-
out/reward while assuming that the victim pool adopts decaying payout in this
section. We first study SWH payout (within a pool) and then incorporate that
to the reward analyses of SWH coupled with FAW and UBA (not only incor-
porating the payout from the victim pool but also accounting for other reward
channels from other pools, e.g., the attacker’s main pool).

8.1 Decaying Payout Model

We build on the mining and computational power model in Sect. 6.1 and the min-
ing pool model in Sect. 7.1. This section focuses on the additions to the model to
analyze the share-withholding attack. More specifically, it introduces additional
parameters to better describe the decaying-payout function f , as opposed to
leaving it as an abstract function as in Sect. 7.1.

As described in Sect. 7.2, a payout scheme with a fixed payout is not vulnera-
ble to SWH by a rational, incentive-driven attacker. However, a decaying-payout
scheme does incentivize a rational attacker to withhold shares and delay their
submissions. A popular implementation of a payout with a decaying payout is in
the form of scores, which quantify the share values for the payout and have each
share experience exponential decay in its payout value. Such scoring-based pay-
out is used in Slush, geometric, and double-geometric payout implementations.
In such payout systems, the share’s contribution to the payout (the weight for
the score) follows the exponential function and decays by de−dT where T is the
time elapsed (recorded by the mining pool manager) since the share submission
and d is some constant for the decaying factor. In other words, a share which
has been submitted at time x will have e−dΔx less payout value than the share
submitted at time x + Δx for any x and any Δx > 0. Because it decays by
exponential, a share’s average score is 1

d . The payout is then distributed propor-
tionally to the shares’ contribution to the scores, i.e., the attacker’s payout is
the sum aggregate of the scores of the shares submitted by the attacker divided
by the total sum aggregate of all the shares’ scores. The score for any miner j,
denoted by Sj , is the sum-aggregate of the scores of the shares submitted by j.

For every block, there are multiple shares by design, and the impact of SWH
depends on the number of shares submitted in a round, which number corre-
sponds to ‖s‖ (where ‖x‖ is the number of elements of any vector x). We also
define γ to be the ratio between the block difficulty and the share difficulty, i.e.,

γ =
Dblock
Dshare

where Dblock is the measure for difficulty for finding a block and

is inversely proportional to the solution threshold τblock (described in Sect. 1)
and Dshare is the share difficulty and inversely proportional to τshare. Dblock
is controlled by the blockchain system, e.g., Bitcoin adjusts Dblock according to
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the total computational power so that a block gets mined every ten minutes in
expectation, and Dshare is to increase the contribution-estimation samples to
lower the variance, e.g., aggregating more samples converge better to the mean

by law of large numbers. γ =
Dblock
Dshare

corresponds to the number of shares per

blocks, i.e., for every block, a miner finds γ shares on average.
SWH is analyzed within the pool since it unfairly increases the attacker’s

payout, the attacker’s fraction of the victim pool reward. We introduce the nor-
malized payout Γ , which is the fraction of fj with respect to the aggregate-sum
of the norm of all the elements of f assuming that the miner j is the attacker.
For example, if Γ = 1, then the attacker earns all the pool reward and no other
members within the pool receives the pool reward. To simplify the analyses and
focus on the intra-pool perspective, we also introduce an intermediate variable α′

which is the attacker’s computational power within the victim pool and α′ = ατ
(as defined in Sect. 6.1). For example, the victim pool has a computational power
of α′ + β from both the attacker and the other miner members.

To quantify the attacker’s reward, we define c′ as the attacker’s withheld
share’s payout given that another miner within the victim pool broadcasts a
block. In other words, given that the attacker withholds shares and that it
detects the block submission from another miner within the victim pool, c′ quan-
tifies the fraction of the payout which can be earned from the withheld shares
if the attacker submits the shares at the time of the detection. c′ is analogous
to c from FAW in that it is random and dependent on the attacker’s network-
ing topology and environment, e.g., the attacker can increase c′ by optimizing
routing and forwarding and regularly checking/maintaining the connectivity to
the pool manager or, if the attacker is capable of launching a networking-based
attack of eclipse attack on the pool manager [17], c → 1 and c′ → 1. However, in
contrast to c, c′ also has a deterministic factor which is the stale share reward
given by the mining pools, which can be motivated to do so since the “stale”
shares solving the puzzle in the previous round can result in uncle rewards (stale
block rewards). c′ is lower-bounded by such factor; if the mining pool provides x
reward for stale pools where 0 ≤ x ≤ 1, then c′ ≥ x. We investigate the impact
of c′ on SWH and the attacker’s reward in Sect. 10.1.

The technical report [7] includes the payout analysis of the honest mining
in Appendix B to provide an example case of using our mining-pool model.
The following summarizes the additional variables used for the payout/reward
analyses.

d: Decaying factor of the share’s payout
Sj : Score for the miner j
γ: Ratio of the block difficulty and share difficulty
Γ : Payout to the attacker
α′: Attacker’s computational power in the victim pool
c′: Fraction/probability of payout earned from the withheld shares given that
attacker detects another block within the victim pool
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8.2 SWH Payout

Suppose the attacker knows when the block will get submitted (tB). To maximize
its reward, the share-withholding attacker submits all the shares right before tB
(at tB −ε where ε is small), so that all shares experience no decay in their payout
weight (score) and have the maximum payout weight of one.

While each share’s score contribution individually is d times greater than have
the attacker behaved honestly and submitted the shares as they were found so
that they experienced the decay, the final payout is distributed proportionally
to the miner members’ scores. Therefore, share-withholding attacker j increases
its payout from Γhonest = α′

β + α′ to ΓSWH = E
[

Sj

Sj +
∑

i�=j Si

]
where Sj is from

the SWH shares which do not experience decay while Si are normal shares
experiencing decay for the other miners i where i 	= j. The share history s and
the payout function f determine the attacker’s payout, ΓSWH.

Theorem 3. The expected payout of SWH is:

ΓSWH ≥
∞∑

y=1

y∑
x=1

(
y

x

)
x

x + y−x
d

· α′xβy−x

(α′ + β)y
· (γ − 1)y−1

γy
(4)

Proof. The proof is in the technical report [7] in Appendix C.

Corollary 1. The expected payout of SWH is:

ΓSWH ≈ α′d
α′d + β

(5)

Proof. The proof is in the technical report [7] in Appendix C.

Corollary 1 provides an approximation of the attacker’s payout which is sim-
pler than the iteration-based expression in Eq. 4 and is therefore easier to observe
its behaviors with respect to its dependent variables. Using Eq. 5, the SWH
attack impact in the payout grows with the attacker’s power (α′), decreases
with the rest of the mining pool’s power (β), and increases with the share score’s
decaying factor (d). We observe these behaviors in our simulations in the tech-
nical report [7] in Appendix F.

8.3 Share and Block Withholding: SWH-FAW and SWH-UBA

FAW attack provides a concrete case when the attacker controls the timing of the
block submissions (reactive to a third-party miner submitting a block, causing
collision) and is therefore an opportune platform for share-withholding attack
(SWH). An FAW attacker submits the withheld block only when it discovers
that there is a block getting propagated by a third-party pool. In addition, a
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share-withholding attacker coupled with FAW attack (SWH-FAW) withholds
the shares and submits them right before the withheld blocks.

Building on our analyses of FAW and UBA in Sect. 6.2, the expected reward
of SWH-FAW attack is the following, given the SWH attack payout ΓSWH (e.g.,
Eq. 4):

RSWH-FAW =
(1 − τ)α

1 − τα
+ ΓSWH

(
c′ β

1 − τα
+ cτα

1 − α − β

1 − τα

)
(6)

Similarly, the reward of SWH-UBA attack is the following:

RSWH-UBA ≥ (1 − τ)α

1 − τα
+ ΓSWH

(
κ

(τα)2

β + τα
· (1 − τ)α

1 − τα
+ c′ β

1 − τα
+ κτα

1 − α − β

1 − τα

)

9 The Equilibrium Analysis

So far we assumed that there exist both rational miners and honest miners (pro-
tocol complying and no withholding), i.e., not all miners are rational, because
implementing rational miner requires the change in strategy and the update in
the mining software from the default code, e.g., for Bitcoin or Ethereum. In this
section, we analyze the case where all the miners are rational as a miner’s goal
is to earn financial profit in general. We summarize our analysis in this section
and include more details in the technical report [7] in Appendix D. A rational
miner equipped with FAW or UBA (the mining strategies described in Sect. 3
except for BWH) yield the Nash equilibrium where the miners attack each other
by launching FAW or UBA without Miner’s Dilemma. If the rational miner can
also join the mining pool with the greatest aggregate computational power (e.g.,
because it is an open pool), the rational miners congregate to the pool in Nash
equilibrium, resulting in mining centralization [19,20]. SWH only reinforces such
equilibrium because it further amplifies the reward gain of the attacks beyond
protocol compliance.

10 Simulation Analyses

To analyze SWH, our model introduces environmental parameters (α, β),
attacker’s control parameters (τ), and the blockchain system control parameters
(κ, λ, γ, d). We focus our analyses from the attacker’s perspective (observing the
attacker’s reward) and thus vary the attacker’s parameters (α, τ) while using
β = 0.24, γ = 25, and d = 25 (the technical report [7] describes how these
system parameters are derived from modern cryptocurrency implementations in
Appendix E). The technical report [7] presents our simulation results for ana-
lyzing the SWH payout within a pool in Appendix F, while Sect. 10.1 studies
the SWH reward performances and compare them with the existing schemes in
FAW, UBA, and honest mining.
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(a) c′=0 (b) c′ = 1
3 (c) c′ = 1

Fig. 2. Reward comparison for SWH combined with block withholding threats (FAW
and UBA), UBA only, and honest mining across different c′

10.1 SWH Reward

Because SWH requires the block submission timing information as discussed
in Sect. 7.2, we analyze when SWH attack is combined with UBA or FWA.
Assuming that the attacker dynamically controls τ , Fig. 2 compares the rewards
of the attacks of combining SWH and UBA (SWH-UBA), combining SWH and
FAW (SWH-FAW), UBA attack without SWH (UBA), and honest mining with
no withholding (honest mining). For the non-SWH strategies, we focus on honest
mining and UBA since UBA generalizes and outperforms FAW, which in turn
outperforms the original BWH. For SWH-enabled attacks, Fig. 2 shows the
worst-case for c (c = 0 which yields the “c independent” reward) and the best-
case for c (c = 1) in different curves; any networking environment in between
will yield performances between these two extreme reward performances.

We study the attack impact/performances in different environments in c′

(which can be influenced by the mining pool implementations and the networking
environments, as described in Sect. 8.1). Because it characterizes the general
racing condition inside the pool (as opposed to between pools as c does), c′

only affects SWH and does not affect the block-withholding based attacks of
UBA and FAW. The reward performances behave differently according to the
magnitude of c′. When c′ is low, the SWH-enabled attacks of SWH-UBA and
SWH-FAW force the optimal attacker strategy to become that of either UBA
(without SWH) or honest mining (no withholding of blocks and shares), as seen
in Fig. 2(a). The SWH-UBA attack becomes better than honest mining when
c′ ≥ 0.153 and better than UBA-only attack when c′ ≥ 0.201 when α = 0.1;
as the attacker’s computational capability α increases, the SWH-UBA attack
outperforms honest mining and UBA attack with even lower c′. However, an
attacker can manipulate networking to increase c′ as described in Sect. 8.1. The
technical report [7] includes greater details about the reward gain analysis.

For other environments with c′ of intermediate magnitudes (e.g., Fig. 2(b)),
to maximize its reward, the attacker will choose between SWH-UBA and UBA
depending on its power capability α. A lower-power attacker (smaller α) will
choose SWH-UBA while a power-capable attacker (large α) will choose UBA
attack (without SWH) for maximizing its reward, since the SWH-UBA attack
increases more rapidly with α than UBA. The SWH-UBA attacker will opt
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to UBA-only when c′ ≤ 0.201 at α = 0.1, but this changeover point for the
optimal attack strategy will occur at greater c′ with greater α capabilities (e.g.,
UBA-only attack is optimal when c′ ≤ 0.304 if α = 0.24). In other words,
with smaller power capabilities (α), the attacker will more likely choose SWH-
UBA over UBA without SWH to optimize its reward capacity with varying
pool/networking environments (c′). Lastly, for large c′ (e.g., Fig. 2(c)), SWH-
UBA attack outperforms UBA attack regardless of α.

11 Conclusion

Blockchain uses PoW to achieve consensus in cryptocurrencies and other per-
missionless applications. From real-world blockchain and mining system imple-
mentations, we identify and analyze the blockchain system components causing
vulnerabilities for unfair reward exploitation and introduce the SWH threat.
SWH attacks the victim mining pool and increases the payout within the pool,
in contrast to the block-withholding based threats which consider the inter-pool
dynamics to increase the attacker’s main pool reward by sabotaging the victim
pool. If launched along with the block-withholding threats, SWH is effective in
gaining unfair reward advantage at the expense of the other protocol-complying
honest miners and is aligned with the incentives of rational and financially driven
miners. Since the attack requirements for launching such threat is comparable
to that of BWH, FAW, or UBA (and there are already reported incidents of
BWH in real world), we expect the more impactful SWH-UBA or SWH-FAW
to occur against vulnerable systems in practice, such as Slush Pool and other
mining pools implementing decaying payout.

We intend to inform the blockchain R&D community of the realistic and
impactful SWH threat to facilitate further research and development to secure
the blockchain’s PoW consensus protocol. Potential countermeasures to SWH
include the detection based on monitoring the reward, block, or share, the pay-
out and reward control to mitigate or disincentivize SWH, and the cryptographic
protocols to make the block and the shares indistinguishable at the time of the
submissions. The technical report [7] discusses about these potential counter-
measures in greater details in Appendix G.

Acknowledgments. This research is supported in part by Colorado State Bill 18-086.
We would also like to thank the anonymous reviewers for their helpful feedback. We
publish a technical report to supplement this conference publication [7]. The techni-
cal report includes the supplementary additions as appendices to better highlight the
differences. The additional materials in the technical report include: more theoretical
analyses and proofs, the more detailed Nash equilibrium analyses, the simulations with
greater discussions about the setup and the SWH payout results, and the discussions
about the potential countermeasures.
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Appendix A UBA Reward Analysis

UBA builds on FAW but adapts its strategy so that the attacker submits
the withheld block in Event B and earns additional rewards in Event C. The
expected reward for UBA (RUBA) is:

RUBA ≥ (1 − τ)α
1 − τα

+
τα

β + τα

(
κ

(τα)2

β + τα
· (1 − τ)α

1 − τα

+ (1 + κτα)
β

1 − τα
+ κτα

1 − α − β

1 − τα

)
(7)

where κ < 1 is the partial reward to the uncle blocks. The right-hand side
assumes that there is only one uncle block reward, which yields the inequality.
If there are more uncle block rewards, e.g., Ethereum’s GHOST algorithm, then
the reward increases beyond the right-hand side in Eq. 7.

Appendix B Payout Analysis for Honest Mining

To provide an example case for using the model in Sect. 8.1, we analyze the case
of honest mining. We assume decaying payout and each share’s score for payout
is 1

d = 1
γ in expectation since γ is the expected number of shares per block if the

mining pool wins the block (if the mining pool collectively does not find a block,
then the payout becomes zero regardless of the share scores). Therefore, d = γ;
while we focus on d = γ, we analyze the impact of varying d in Appendix F.

An attacker behaving honestly receives a reward of (α′ +β) · 1
γ · α′

α′+β γ = α′ in
expectation where α′ + β corresponds to the probability that the pool wins the
block (against the other pools), and 1

γ and α′
α′+β γ correspond to the reward per

share and the number of shares (the total number of shares is γ in expectation),
respectively, given that the pool won the block. The resulting expected reward for
the attacker behaving honestly is α′, which is its computational power invested
on the victim pool and agrees with Eq. 1.

With no SWH, the attacker’s payout is Γhonest = α′
α′ + β = τα

τα + β in expec-
tation, agreeing with our analyses in Sect. 6.

Appendix C SWH Payout Analyses: Proofs of Theorem
and Corollary

In this appendix section, we prove Theorem 3 and Corollary 1 in Sect. 8.2.

Theorem 4. The expected payout of SWH is:

ΓSWH ≥
∞∑

y=1

y∑
x=1

(
y

x

)
x

x + y−x
d

· α′xβy−x

(α′ + β)y
· (γ − 1)y−1

γy
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Proof. The expected payout of the miner j launching SWH with a power of α′

is:

ΓSWH = E

[
Sj

Sj +
∑

i�=j Si

]

=
∞∑
y=1

y∑
x=1

E

[
x

x +
∑

i�=j Si

∣∣∣∣∣ Si = x, ‖s‖ = y

]
· Pr[Sj = x

∣∣∣∣‖s‖ = y] · Pr[‖s‖ = y]

=
∞∑
y=1

y∑
x=1

E

[
x

x +
∑

i�=j Si

∣∣∣∣∣ Si = x, ‖s‖ = y

]

·
(

y

x

) (
α′

α′ + β

)x (
β

α′ + β

)y−x

·
(

1 − 1

γ

)y−1
1

γ

≥
∞∑
y=1

y∑
x=1

x

x + E
[∑

i�=j Si

] ·
(

y

x

) (
α′

α′ + β

)x (
β

α′ + β

)y−x

·
(

1 − 1

γ

)y−1
1

γ

=
∞∑
y=1

y∑
x=1

(
y

x

)
x

x + y−x
d

· α′xβy−x

(α′ + β)y
· (γ − 1)y−1

γy

(
y
x

)
is the binomial coefficient, i.e.,

(
y
x

)
= y!

x!(y−x)! , and E[X|Y ] and Pr[X|Y ],
respectively, are the expected value and the probability of event X given event
Y for some events X and Y . The second equality is from the Bayes’ rule (con-
ditioned on the attacker’s final score Sj and the number of shares in the round
s), and the third equality is derived because Sj has a binomial distribution with
y trials and α′

α′+β probability (in each share, there is a α′
α′+β chance that the

share is being submitted by an attacker), given ‖s‖ = y, and s has a geometric

distribution with the parameter/probability of 1
γ =

Dshare
Dblock

(the last share in

s is the one that is also a block). The inequality is due to Jensen’s Inequality
and that E

[
Sj

Sj+
∑

i�=j Si

]
is convex with Sj +

∑
i�=j Si given Sj . Finally, linear

algebra yields the final equality, which provides a lower bound on the attacker
j’s payout.

Corollary 2. The expected payout of SWH is:

ΓSWH ≈ α′d
α′d + β
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Proof. We approximate the gain of SWH with respect to honest mining by taking
E

[
Sj

Sj+
∑

i�=j Si

]
≈ E[Sj ]

E[Sj ]+E[
∑

i�=j Si]
.

ΓSWH ≈ E[Sj ]
E[Sj ] + E[

∑
i�=j Si]

=
α′

α′+β γ

α′
α′+β γ + β

α′+β γ 1
d

=
α′d

α′d + β

E[Sj ] = α′
α′+β γ because the expected number of share for the attacker j is α′

α′+β γ

and each share is weighted by one because of no decay, and E[
∑

i�=j Si] = β
α′+β γ 1

d
because the expected number of share fore the rest of the miners excluding j is

β
α′+β γ and each share’s score contribution is decayed by 1

d on average.

Appendix D The Equilibrium Analysis

In this section, we analyze the case where all the miners are rational as the
miner’s goal is to earn financial profit. We build on prior research in the min-
ing strategies described in Sect. 3 for our analysis and corroborate with the
prior research yielding that rational miners congregate to the mining pool with
the greatest computational power resulting in mining centralization [19,20], i.e.,
SWH only reinforces such equilibrium analyses. (While such analysis is valid,
Appendix G discusses a potential measure introducing a distributed mining pool,
as opposed to having a centralized pool manager, to mitigate the centralization
issue.).

FAW, building on selfish mining and BWH, forgoes the miner’s dilemma [11],
i.e., the Nash equilibrium of the FAW-capable miners do not result in the subopti-
mal tragedy-of-the-commons (where collaboration and coordination, as opposed
to each miner’s adopting their unilateral strategies, would have provided better
performances for all the miners involved). As a result, if there is no restriction in
joining any pool, the rational miners join and congregate to the mining pool with
greater computational power and attack the other pools until no rational miner
is left in the other pools. UBA further takes advantage of the rewards for the
uncle blocks to further reinforce such Nash equilibrium. (In contrast, for BWH,
because of the miner’s dilemma, the Nash equilibrium is to leave the mining pools
and mine directly in the blockchain’s consensus protocol.). SWH, requiring FAW
or UBA for incentive compatibility (greater reward than honest mining), only
increases the reward beyond FAW and UBA and utilizes an orthogonal chan-
nel for the reward gain because, while FAW and UBA increases the chance of
the attacker’s main pool of winning the reward, SWH increases the attacker’s
reward payout within the mining pool. Section 7.2 establishes the blockchain-
and pool-settings for SWH to be relevant for rational strategy for reward gain,
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and Sect. 10.1 analyzes the attacker’s power and networking conditions which
make SWH more profitable than launching UBA or FAW only. Because SWH
provides further reward gains for UBA/FAW, it reinforces the Nash equilibrium
of UBA/FAW, i.e., the rational miners equipped with the SWH strategies are
even more incentivized to congregate to the pool with the greatest mining power.
On the other hand, if there is a mechanism to control the joining of the pool
(e.g., some closed pools require registration but these pools are rarer because the
miner gives up the cryptocurrencies’ permissionless and anonymization proper-
ties) and the greater-power pool uses such mechanism, then the pools launch
SWH and UBA/FAW against each other and the larger pool wins by earning
greater reward gains than the smaller pools.

Appendix E Simulation Setup and Parameters

This section explains the simulations setup and the parameter choices to char-
acterize the blockchain system and the victim pool system under attack.

Our blockchain system simulation setup is influenced by modern blockchain
implementations. For the pool system, β = 0.24, which value corresponds to the
strongest mining pool in real-world mining at the time of this manuscript writ-
ing [4]. The attacker attacking the stronger pool as its victim pool (as opposed to
a weaker pool of β → 0) provides greater reward and is aligned with its incentive,
which we verify in our simulations and agree with previous literature [3,19]. The
pool difficulty of the victim pool corresponds to γ = 25, i.e., the share difficulty is
5 bits (32 times) less than the block difficulty. This falls within the typical range
of γ [1], which parameter provides a pool-system-controllable tradeoff between
networking/bandwidth and reward variance. The decaying factor for the pool’s
reward payout is d = 25; we have d = γ = 25, so that the shares scores decay
by e−dT in time T and the scores add up to one in expectation, as described
in Sect. 8.1. These parameters are fixed unless otherwise noted (we vary the
variables to analyze the dependency and the impacts).

We also consider the 51% attack where the attacker can fully control the
blockchain if the attacker’s computational power exceeds the 50% of the net-
work’s; in our context, the attacker can conduct withholding-based selfish mining
to reverse the transactions/blocks on the chain and to waste the other miner’s
computational resources on blocks that the attacker can reverse and make stale.
Therefore, we limit our analyses to 0 ≤ α ≤ 0.5 (the attacker is capable of 51%
attack if α > 0.5) in addition to the constraint of α + β ≤ 1 from the definitions
of α and β.

Appendix F SWH Payout

SWH yields an unfair payout advantage to the attacker. Assuming that the
victim pool uses a decaying-payout scheme for distributing the pool reward and
that the attacker can submit the shares on time (i.e., c′ = 1), we study the
payout advantage of the SWH attacker. Corollary 1 in Sect. 8.2 provides an
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(a) Payout Γ with respect to
γ

(b) Payout Γ with respect to
the share’s decaying factor d

(c) SWH-UBA’s reward
gain analyses assuming
worst-case networking of
c = 0

Fig. 3. SWH payout analyses (Figs. 3(a) and (b)) and SWH-UBA’s reward gain anal-
yses (Fig. 3(c))

approximation for the attacker’s payout in Eq. 5, which can characterize the
payout’s dependency on α, β, and d. For example, the attacker’s payout increases
with d, the decaying factor of the share’s payout, as is also shown in simulations in
Fig. 3(b). We observe such behaviors in our simulations. We also summarize our
findings here when comparing the approximated payout in Eq. 5 and the more
precise payout in Eq. 4. The approximation generally provides a higher payout
than the more precise lower bound, and the difference ranges from 0% (when the
attacker’s power on the victim pool is very low) to 21.1%. Since the difference
is significant between the approximation and the lower bound we identified, we
use the lower bound in Eq. 4 to quantify the attacker’s payout rather than the
approximation in Eq. 5. In addition, the resulting payout from launching SWH
significantly outperforms honest mining (where the attacker does not withhold
shares and submits them as soon as they are found); while there is no payout
difference between SWH and honest mining when α = 0, the difference quickly
becomes the maximum of 0.5813 at α = 0.06 and then monotonically decreases
and becomes 0.292 at α = 0.5.

The block-to-share difficulty ratio γ establishes how often the shares occur
for every block/round; in expectation, there are γ shares per block. The greater
the number of shares per round the greater the impact of the share-withholding
attack, since the share-withholding attack can occur for every shares, as is seen
in Fig. 3(a). In practice, mining pools typically control γ and d together so that
they are aligned/correlated with each other, i.e., as there are more shares (γ
increases), the payout per share decreases more quickly (d increases). However,
to isolate the effect of d from γ, Fig. 3(b) plots the payout Γ with respect to d
while fixing γ = 25 and shows that the attacker’s payout Γ increases with d.

Appendix G Discussions About Potential
Countermeasures

While this paper focuses on the discovery and the analyses of SWH attack, we
discuss potential countermeasures for future work in this section.
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Behavior-Based Detection of Withholding Threats. The withholding-
based threats, including SWH, result in abnormal reward behaviors. For exam-
ple, SWH decreases the variance and the entropy of the share arrivals. Such
phenomenon can be sensed and measured for attack detection, which can be
then used for mitigation purposes. While we identify behavior-based detection
as promising, we do not recommend relying on identity-based detection and
mitigation such as blacklisting public keys or IP addresses because, in permis-
sionless environment, there is no identity control/registration and it is cheap for
the attacker to generate multiple identities (Sybil attack).

Payout and Reward Function Control. Controlling the payout and reward
functions, for example, the system parameters κ, λ, γ, d in our model, provides
a low-overhead countermeasure because it requires the changes in the pool man-
ager only and is backward-compatible to the rest of the miners’ software. Prior
research [3,25] distinguish between block submissions and share submissions (dif-
ferent weights) against BWH attack. Such approach can not only be used for
BWH but also for FAW and UBA, which in turn defends against SWH because
SWH relies on FAW or UBA for its incentive compatibility (SWH requires the
attacker to have some/probabilistic information of the block arrivals).

Oblivious Share. Similar in purpose to the oblivious transfer protocols and
building on commit-and-reveal approach, oblivious share deprives the miner of
the knowledge of whether it is a block or a share until it submits them [13,
24]. The attacker therefore cannot dynamically adopt the withholding-based
threats which require distinguishing the share and the block before submission.
While effective against the withholding-based attacks, such approach requires
a protocol change (including an additional exchange between the mining pool
manager and the miners) and is not backward compatible (does not work with
the existing system unless the protocol change/update is made) [19,21], causing
protocol/communication overheads and making such schemes undesirable for
implementation to the blockchain network (which includes closed pools and solo
miners, free of withholding vulnerabilities and thus lacking the incentives for
such addition and change).

Unified Distributed Mining Pool. To have all miners join one distributed
mining pool eliminates the notion of sabotaging/victimizing another pool. A
useful platform for this can be distributed mining pools, e.g., SmartPool [22]
and P2Pool, which eliminates the centralized mining pool manager and replaces
it with a distributed program/computing, motivated to make the blockchain
computing more decentralized without the reliance on trusted third party (the
mining pool manager in this case) [15,18]. Since the mining pool is distributed,
the mining and the consensus protocol does not have the centralization issue,
e.g., there is no centralized pool manager capable of controlling the rewards or
blocking/nullifying a share or a block. In fact, the authors of SmartPool [22]



186 S.-Y. Chang

envisions that their platform can be used to unify the mining pools citing that
the elimination of the mining pool fee (charged by the centralized mining pool
manager for their services) and the reduced variance (compared to independent
mining) will attract incentive-driven miners. However, despite such desirable
properties (and even if the claimed superior performance is true), such approach
is a radical solution and it can be difficult to enforce the change in behaviors
in the miners and have all miners mine at the designated pool, especially for
an existing blockchain implementation with the existing miners having already
joined a pool. Enforcing such pool restriction for the miners is not backward-
compatible to the existing miners and can also be controversial since it can be
viewed as a violation of the freedom of the miners.
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Abstract. In recent years, wireless local area networks (WLANs) have
become one of the important ways to access the Internet. However, the
openness of WLANs makes them vulnerable to the threat of the evil
twin attack (ETA). Existing effective ETA detection solutions usually
rely on physical fingerprints. Especially fingerprints made by informa-
tion extracted from channel state information (CSI) are more reliable.
However, demonstrated by our experiment, the fingerprint of the state-
of-the-art ETA detection scheme, which is based on phase error extracted
from CSI, is not stable enough, and it results in a large number of false
negative results in some cases. In this paper, we present a novel ETA
detection scheme, called PEDR, which uses range fingerprint extracted
from CSI to identify the evil twin (ET). Inspired by the significant obser-
vation that the phase error will drift over time, the concept of drift range
fingerprints is proposed and exploited to improve ETA detection accu-
racy in real-world attack scenarios. Range fingerprints are not affected
by drift in phase error and can be uniquely identified. The proposed
range fingerprint is implemented and extensive performance evaluation
experiments are conducted in the large-scale experiment with 27 devices.
The experimental results demonstrate that the detection rate of PEDR is
close to 99% and the false negative data is only 1.11%. It is worth men-
tioning that PEDR is outstanding in the scenario with similar device
fingerprints.

Keywords: Evil twin attack · Rogue access point detection · WLAN
security · Wi-Fi security · Channel state information

1 Introduction

In recent years, wireless local area networks (WLANs) are rapidly gaining popu-
larity due to the widespread development of wireless network technology and the
explosive growth of portable devices. Compared with wired networks, WLAN is
more flexible and easier to be installed and expanded, so many wireless access
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points (APs) are deployed in various places such as homes, campuses, hotels, fast
food restaurants, airports and shopping centers. As the core device of WLAN,
AP provides an effective connection between wired networks and WLANs. Users
can access the network freely through APs. Therefore, WLANs provide users
with great convenience to access the network and become an integral part of
life.

However, the openness and convenience of WLANs bring enormous security
risks to wireless users [1]. The ETA is the most prominent one. The ET, also
known as the phishing AP, refers to a fraudulent AP established by an attacker.
ET tricks wireless users through mimicking the Service Set Identity (SSID) and
MAC address (BSSID) of a legitimate AP, as shown in Fig. 1. According to
the IEEE 802.11 standard, the client operating system usually selects the AP
with the same SSID based on Received Signal Strength Indicator (RSSI). The
attacker will exploit this weakness to induce the user to connect to ET by using
various means. For example, the attacker can conduct the denial-of-service attack
against the legitimate AP or provide a stronger RSSI than the legitimate AP.

Fig. 1. Illustration of ETA attack scene. The attacker establishes ET by imitating the
parameters of the legitimate AP. ET attracts users by providing stronger RSSI.

Once a user has inadvertently connected to an ET, she will face serious
consequences such as sensitive information leakage, traffic hijacking and other
malicious attacks. For example, the attacker can snoop on the sensitive personal
information of the victim, such as photos, emails, various login passwords and
bank card information, according to the packets sent to ET by the user. The
attacker can also manipulate DNS server/communication, launch a DNS spoof-
ing attack [2], hijack the victim to visit the malicious website [3], and cause
direct economic loss to the victim. Moreover, the victim connected to ET may
suffer SSL Strip Attacks [4], which strip the SSL layer from the original HTTPS
connection and force the victim’s data to be sent in plain text format. Thus
encryption function is deprived.



190 J. Zhang et al.

Because ETA poses a significant threat to wireless users, researchers have done
much work on the ETA detection. Based on whether it can be deployed indepen-
dently on the client and provide real-time detection for wireless users, the existing
detection schemes can be divided into two types in this paper: admin-based and
client-based. Specifically, although admin-based detection schemes defend ETA to
a certain extent, they all require additional hardware equipments or higher permis-
sions to achieve detection. It means that independent real-time detection cannot
be provided by admin-based detection schemes. For example, Brik et al. [5] and
Nguyen et al. [6] proposed schemes based on radio frequency fingerprint (RFF);
In the study [7], researchers determined the target AP’s legitimacy according to
its network access method which is judged by the wireless traffic flowing through
the gateway. On the other hand, some researchers proposed client-based detection
schemes. For example,Arackaparambi et al. [8] detected ETAbyusing inter-packet
arrival time (IAT) and clock skew. Lu et al. [9] used the forwarding behavior of ET.
ETA can be determined by comparing the 802.11 data frames sent by target APs
to users. The state-of-the-art research [10] proposed a detection scheme based on
the non-linear phase errors extracted from CSI. Although these schemes can pro-
vide users with independent security detection, there are still many limitations in
terms of detection rate and attack model.

In this paper, we innovatively use the phase error drift range as the physical
device fingerprint for ETA detection on the basis of the study [10]. Specifically,
Liu et al. [10] discovered that the non-linear phase error in CSI can be used
as the device fingerprint. However, a large number of experimental results con-
firm that the phase errors have drift phenomenon. Drift phenomenon may cause
fingerprints of different devices to overlap each other, and result in failure of
Liu’s method [10]. In addition, we found that the phase error drift range always
remains relatively stable in the time dimension. Based on this observation, PEDR
uses the drift range of phase errors as the wireless device fingerprints. In our
scheme, the phase error drift range, instead of the phase errors, is used as the
device fingerprint, which overcomes the shortcomings of false positives and false
negatives due to drift phenomenon. At the same time, PEDR is deployed on the
user client, and it can provide users with real-time detection without additional
hardware equipments or protocol modification.

In summary, we make the following contributions to the field of WLAN secu-
rity in our paper:

– Through a large number of experimental observations, we find that the non-
linear phase errors extracted from the CSI have drift phenomenon. In other
words, if only the phase error is used as the fingerprint, the wireless device
cannot be uniquely identified.

– Based on the phase error drift phenomenon, we innovatively use the phase
error drift range as the physical fingerprint of the device to identify the ETA.
A new detection scheme PEDR deployed on the client is proposed. Compared
with admin-based solutions, PEDR can better meet the needs of users, and
does not require any additional overhead on wireless devices.
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– Extensive simulation experiments are performed with 27 devices. The exper-
imental results prove that the detection rate of ETA by PEDR was close to
99%. Especially for devices with similar phase errors, the detection effect of
PEDR is more noticeable than Liu’s method [10].

The rest of the paper is organized as follows: Sect. 2 introduces the work
related EAT detection. Section 3 briefly introduces the background of CSI and
the empirical research of PEDR. Section 4 details the modules of PEDR. In
Sect. 5, we demonstrate the feasibility of fingerprints and perform a performance
evaluation of PEDR. Finally, we summarize the paper in Sect. 6.

2 Related Work

Due to the great perniciousness of ETA, researchers in the field of wireless net-
work security have conducted extensive research on ETA detection, and they
proposed several solutions. A large amount of existing work is usually classified
based on the detection model, additional hardware and advanced permissions
requirements, etc. [11]. In this paper, whether the detection scheme can provide
users with real-time efficient and independent detection is used as the classi-
fication standard. We accordingly divide existing detection schemes into two
categories: admin-based and client-based.

2.1 Admin-Based ETA Detection Schemes

In the admin-based ETA detection schemes, higher permissions, additional hard-
ware equipments, or protocol modification are required to achieve the ETA detec-
tion. In other words, it is difficult for users to conduct real-time ETA detection
independently by using admin-based schemes, because most admin-based solu-
tions require information that is hard for ordinary users to collect.

Gonzales et al. proposed a scheme to defend ETA by modifying the existing
protocol, called Simple Wireless Authentication Technique (EAP-SWAT) [12,13],
which is an extension of the Extensible Authentication Protocol (EAP). EAP-
SWAT leverages SSH’s Trust On First Use (TOFU) security model. Specifically,
if the security of the first connection with the AP can be assured, TOFU can
ensure that subsequent connections to this AP will not be spoofed. In addition,
researchers in the study [14] also proposed a method that required protocol modi-
fication, Secure Open Wireless Access (SOWA). SOWA binds the SSID of the AP
with a digital certificate to verify the operator of the AP and determines whether
the target AP is legitimate. The solution proposed by Kumar et al. [15] uses a con-
nection count table established between each client and AP to assist users in ETA
detection. The connection counts of both parties will increase while the client and
the AP are successfully connected. By comparing the values in both tables, the
counts of successful connections between each client and AP are confirmed to pre-
vent wireless users from accessing the ET. Unfortunately, this solution has many
flaws. For example, both the AP and probe response frame must be adjusted, and
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the client operating system also needs to be modified to establish a counter. The
above solutions could defend ETA to a certain extent, but all need to modify the
existing protocol, driver, or firmware. Therefore, all of the above solutions are dif-
ficult to be implemented easily.

Some researchers [5,6,16] proposed RFF-based methods to identify ETA. By
monitoring Radio Frequency (RF) waves, the hardware defects in the network
card can be obtained. RFF can be acquired by combining hardware defects
and other information such as the SSID and RSSI of the device. In short, the
researchers utilize the physical characteristics obtained from the radio signal to
identify the ETA. The scheme based on RFF can resist the influence of mobility,
noise, and hardware aging, and it achieves a very high detection rate in the
experimental scenario. However, the detection in a real scenario requires special
wireless sensors to continuously monitor the RF signal sent by the AP. Obviously,
this kind of schemes is difficult to be deployed on a large scale.

Wei et al. [7] proposed the method of using the network traffic passing
through the gateway to detect ETA, and similar schemes were also proposed
in studies [17–22]. Specifically, two parameters, the fraction of TCP flows and
the degree of belief that a TCP flow traverses a WLAN inside the network, can
be calculated by the iterative Bayesian inference algorithm; they can be used to
determine whether client traffic comes from wireless or wired connection accord-
ing to the difference of network protocol. Unfortunately, capturing the wireless
traffic flowing through the gateway requires advanced permissions that ordinary
users cannot obtain. In addition, the algorithm used in the study requires a cer-
tain amount of time to converge. Therefore, it is difficult to provide users with
real-time security detection.

2.2 Client-Based ETA Detection Schemes

The second type of detection scheme is client-based detection schemes which can
be independently deployed on the client. Compared with admin-based solutions,
it can provide users with real-time ETA detection. However, the existing client-
based solutions still have limitations in several aspects, such as detection rates,
detection efficiency [23] and detection scenarios, etc.

Jana et al. [24] first used clock skew as the unique fingerprint for ETA detec-
tion. Clock skew is calculated by the timing synchronization function timestamp
extracted from the beacon frame. Arackaparambil et al. [8] improved the above
work and proposed a more accurate detection. It can be achieved by comparing
the beacon frame timestamp generated by the AP with the IAT of the client pack-
ets. The IAT is extracted from the Radiotap header and represents the difference
between the arrival times of two sequential frames. Song et al. [25,26] believed
that additional propagation delays will be introduced due to the wireless connec-
tion between ET and legitimate APs. The user can determine whether the client
is directly connected to the legitimate AP by using the IAT. Neumann et al. [27]
evaluated a variety of network parameters and concluded that using IAT as a sig-
nature to identify the ETA is ideal. Although the above methods are effective, the
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IAT lacks robustness and will change due to various factors [28], such as the fluctu-
ation of wireless signals and the increase of wireless traffic. Therefore, the detection
rates are difficult to satisfy users. In addition, the diversity of attack models will
directly cause the failure of the detection.

Alotaibi et al. proposed a method that uses Radiotap length (PLL) as the fin-
gerprint in the study [29]. ETA can be detected by comparing the PLL extracted
from the target AP with the legitimate device fingerprint in the fingerprint
library. Although this method has a high detection rate and does not require
additional equipments, unfortunately, collecting information about all legitimate
APs results in a huge amount of work and the scheme is only valid for ETs built
by soft APs.

The application of CSI has gradually matured in recent years [30]. As physical
layer information, CSI has been widely used in localization and action recogni-
tion. Therefore some researchers have begun to use CSI for ETA detection. For
example, Liu et al. [31] proposed that the ETA detection can be implemented
by using the amplitude information in CSI. Specifically, this solution combines
the amplitude and the position information as a device fingerprint to detect
ETA. However, multiple monitors are required to collect wireless packets in the
scheme. In addition, the scheme requires that the detection terminal equipment
must be static, which is impractical in a real scenario. Hua [32] used the carrier
frequency offset (CFO) estimated from CSI as the device fingerprint to realize
the ETA detection. CFO is based on the instability of the oscillator drift caused
by the crystal imperfection. Compared with directly using CSI, CFO is not
affected by the environment and remains stable with time. Although the scheme
based on CFO achieves successful detection, it is difficult to meet the condition
that the equipment needs to be stationary during the detection process, which
will lead to unsatisfactory detection results. Zhuo et al. [33] first proposed the
existence of non-negligible non-linear phase errors in CSI, and they pointed out
that non-linear phase errors are caused by I/Q imbalance. Based on the above
achievements, Liu et al. [10] used non-linear phase errors as fingerprints for ETA
detection. The phase error is not affected by temperature, physical location, and
it can play a good effect on some attack scenarios. However, according to our
experiments and observations, the detection scheme will produce false negative
results in scenarios where the phase errors of the equipments are similar. The
specific content will be detailed in Sect. 3.

3 Empirical Study

In this section, the basic knowledge of CSI is first introduced, and the experiment
in the study [10] is reproduced. We describe the phenomenon, phase errors drift,
found in the experimental results, and further observe the characteristics of the
phase error drift phenomenon.
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3.1 Background

CSI is the channel attribute of wireless communication links. It describes the
attenuation characteristics of wireless signals on each propagation path. The
attenuation characteristics combine multiple effects such as delay, ambient scat-
tering, amplitude attenuation and phase offset. Besides, CSI includes the ampli-
tude and phase information of each subcarrier in the frequency domain space.
The amplitude and phase contain the inherent properties of the wireless com-
munication devices. Therefore, CSI is widely used in the fields of localization,
identification, and environmental perception.

In the study [10], the non-linear phase errors were proposed as a fingerprint
of the hardware device to detect ETA. Non-linear phase errors are caused by the
I/Q imbalance and oscillator defects. Liu et al. derived the Eq. (1) for calculating
the non-linear phase error E. The equation is as follows:

E = Φ − (2πλ · K + Z∗), (1)

where Φ is the phases of subcarriers measured at the receiver. The parameter
K contains subcarrier index. Z∗ includes the true phase and a constant. The
parameter λ is also a constant and will change across sampled CSIs. It is related
to frame detection delay (FDD), sampling frequency offset (SFO) and time of
flight (TOF) which affect the phase error. In order to obtain a stable fingerprint,
the author used special λ which makes the phase errors of the subcarrier −28
and 28 equal to 0 to remove the effects of FDD, SFO and TOF.

Fig. 2. Experiment scene: 1–9 are the positions of the target devices; 0 is the position
of the detection terminal.

3.2 Setup

In order to reproduce the experiment, the same experimental scenario was set
up according to the study [10]. The detection terminal of the experiment was
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a Thinkpad SL410 equipped with Intel 5300 NIC and it ran Ubuntu 12.04 LTS
system. The Linux 802.11n CSI Tool was installed to collect CSI. We selected
four different wireless devices and placed them in positions 1–4 in Fig. 2. The
laptop was placed in position 0 as the detection terminal to connect target
devices and collect the CSI information. In order to collect CSI, the detection
terminal first sent ICMP messages to the wireless AP and estimated the CSI
based on the response frame. The shortest interval of ICMP messages in the
experimental scenario of study [10] was 5 ms, and the collection time was 10 s.
Therefore, in the verification experiment, we used the same sending interval and
collecting time. That is, about 200 frames containing CSI were collected every
second. For each wireless AP, a total of 10 groups of data were collected, the
interval between each group was 30 s. Each group of data collection took 10 s,
and a total of 2000 packets containing CSI information were collected.

3.3 Observation

According to the method mentioned by Liu et al. in the study [10], the expected
experimental results are shown in Fig. 3a. The abscissa represents the subcarrier
index, and the ordinate represents the value of phase error. Each hardware device
has an invariable and unique phase error fingerprint. Unfortunately, from the
results of the reproduction experiment, we can observe the following phenomenon
which is obviously different from the expected experimental results.

Phase Error Drift Phenomenon (PEDP): PEDP refers to the phenomenon
that the phase errors will change to some extent at different times. In other
words, the phase error curve will drift instead of staying fixed. This phenomenon
will have many effects. For example, devices with similar phase errors will overlap
due to PEDP, which will lead to the failure of detection based on phase errors.

(a) Experimental result obtained by a sin-
gle collection according to Liu et al.’s
method.

(b) Experimental result obtained by mul-
tiple collections according to Liu et al.’s
method.

Fig. 3. Expected experimental results and actual experimental results.
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The common occurrence of PEDP in hardware devices will lead to the fail-
ure of detection work based on phase error. Figure 3b depicts the phase errors of
four devices. Apparently, all devices produced PEDP with intervals of only 30 s.
In addition, it can be clearly observed that the fingerprints of UTT-A655W-2
and TL-WDR4310 partially overlap due to PEDP. In small-scale experiments
with only four wireless AP devices, there are two devices that have phase errors
overlapping because of the PEDP. Then, the overlapping phenomenon could not
be ignored in large-scale experiments. Therefore, in order to verify the univer-
sality of overlapping phenomenon caused by the PEDP, we expanded the scale
of the experiment to 27 devices. Table 1 shows the specific types and quantities
of devices. The experimental results show that the overlapping phenomenon is
common in AP equipment. In addition to the overlapping phenomenon of phase
errors that occurred in the above equipment, we also found the other two groups
of AP equipment also have similar overlapping phenomenon, as shown in Fig. 4a
and b. Therefore, attackers can make use of the phenomenon that overlap caused
by PEDP to deceive detection. If an attacker deliberately chooses a device with
a fingerprint similar to a legitimate AP, Liu’s method will generate a lot of false
negatives, which will lead to a failure of detection.

(a) Case 1 of phase error overlap. (b) Case 2 of phase error overlap.

Fig. 4. Devices with similar phase errors overlap due to PEDP.

In summary, although the scheme based on phase error will achieve a high
detection rate when the phase errors between ET and the legitimate device are
significantly different, it could produce non-negligible false negatives when the
target device and the legitimate device have similar phase errors. In short, due to
the instability of the phase error caused by PEDP, the fingerprints will overlap.
The overlap phenomenon provides an opportunity for attackers to cause the
failure of the Liu’s method. At the same time, we found that the drift of the
phase error is regular, and the phase error of each device drifts within a unique
range. Therefore, we consider that using the drift range of phase errors as the
fingerprint will achieve higher accuracy detection.
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4 Proposed Approach

A novel ETA detection system PEDR is proposed, which is used to detect the
legitimacy of target APs. PEDR uses the drift range of the phase errors as the
fingerprint, it overcomes the shortcoming of false negatives caused by PEDP.
In this section, we will introduce the components of the PEDR system and the
process of detecting the target device.

4.1 Overview of PEDR

The PEDR we proposed is a novel and effective ETA detection scheme. As shown
in Fig. 5, PEDR is divided into two parts: the fingerprint library establishment
and the legitimacy detection.

Fingerprint Library Establishment: This module is responsible for estab-
lishing a legitimate fingerprint library. The legitimate fingerprint library is used
for verification and comparison with the fingerprint of target AP during the
legitimacy detection process. For each legitimate AP device, fingerprint can be
obtained by collecting and processing enough CSI data. The fingerprint is divided
into two parts: function expressions and distribution area. The function expres-
sions represent the upper and lower boundaries of the phase error drift range;
the distribution area is used to represent the area of the phase error drift. Both
are regarded as the fingerprint and added to the legitimate fingerprint database.

Fig. 5. The overview of PEDR.

Legitimacy Detection: This module is the core part of the PEDR system
which is responsible for the legitimacy detection of target APs. The detection
terminal collects CSI data by connecting to the target AP and the fingerprint can
be made by phase errors extracted from the CSI data. Based on the SSID and
MAC of the target AP, the corresponding legitimate fingerprint is extracted from
the legitimate fingerprint database, and it will be used to check the legitimacy
of the target AP.
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Algorithm 1. Generating the device’s fingerprint
Require: InfoLAP : the SSID, MAC and phase error set of legitimate AP;
Ensure: FPi: Legitimate device fingerprint;
1: Calculating the max and min phase error values from InfoLAP on each subcarrier;
2: Getting new functions by separately fitting the max and min values with AX3 +

BX2 + CX + D;
3: FPi[

′Fmax
′]= αX3 + βX2 + γX + θ;

4: FPi[
′Fmin

′]= α′X3 + β′X2 + γ′X + θ′;
5: Calculating the distribution area S by the definite integral;
6: FPi[

′S′]= The value of the distribution area S;
7: Output FPi;

4.2 Fingerprint Library Establishment

Before the legitimacy detection, each legitimate device needs to be constructed
a unique fingerprint to establish the legitimate fingerprint database. PEDR uses
the drift range of phase errors as the device fingerprint. The feasibility of the
fingerprint is verified in Sect. 5.

For each experimental device, in order to make a fingerprint based on phase
error drift range, the maximum range of phase error drift must be obtained.
Therefore, the detection terminal needs to collect a sufficient amount of CSI
data and estimates the phase error from it. The bound functions (Fmax, Fmin)
of the drift range are obtained by fitting the extrema of phase errors on each
subcarrier with the function AX3 + BX2 + CX + D. PEDR uses the functions
obtained by the fitting technique to represent the drift range of the phase error,
which is more intuitive. In addition, the phase error distribution area S on the
phase error graph is determined by the definite integral method. The fitting
functions (Fmax, Fmin) and the distribution area S are stored in the dictionary
FPi as the fingerprint of the device. The construction algorithm of FPi is shown
in Algorithm 1, and the data structure of FPi is shown as Eq. (2). Finally, finger-
prints of all legitimate APs are collected to establish the legitimate fingerprint
library.

Compared with the phase error-based scheme, PEDR overcomes the defect
of false negatives caused by PEDP. The result of the verification experiment in
Sect. 5 further determined the feasibility using the phase error drift range as the
fingerprint.

FPi = {SSID : XXXX,

MAC : XX : XX : XX : XX : XX : XX,

Fmax : αX3 + βX2 + γX + θ,

Fmin : α′X3 + β′X2 + γ′X + θ′,
S : 0.00}

(2)
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4.3 Legitimacy Detection

The core of legitimacy detection is to compare the target AP fingerprint with the
corresponding legitimate fingerprint. The fingerprint of the target AP needs to
be made before comparing it with the legitimate fingerprint. When the detection
terminal is connected to the target AP, it sends ICMP messages with an interval
of 5 ms to the target AP for 10 s. Each time the target AP returns response
packets, the detection terminal collects a group of CSI data. The collected data
is used to make the fingerprint FP ′ of the target AP, that is, the upper and
lower bound fitting functions (F ′

max, F ′
min) and the distribution area S′. The

legitimate fingerprint FPi is extracted from the legitimate fingerprint library
according to the SSID and MAC address of the target AP. The first step in
comparison verification is determining the difference between two fingerprints
based on the number of intersections between the upper and lower bounds of
the target AP and the legitimate AP.

On the one hand, if there are three intersections between Fmax and F ′
max

(or Fmin and F ′
min), the two fingerprints are in a cross relationship, as shown

in Fig. 6a. PEDR considers that the target AP fingerprint is different from the
legitimate AP fingerprint. That is, the target AP is an illegitimate AP. Specifi-
cally, since phase errors of subcarriers 28 and −28 are both 0, there are at least
two intersections between the boundary functions. Therefore, if there is a third
intersection between Fmax and F ′

max (or Fmin and F ′
min) in the range of sub-

carriers −28 to 28, it means that the boundaries in the fingerprints crosse each
other, and the two fingerprints are clearly different. The target AP is considered
an ET.

On the other hand, if there is no third intersection, it means that the tar-
get AP fingerprint and the legitimate fingerprint are contained, separated, or
partially overlapped, as shown in Fig. 6b, c, d, e and f. The legitimacy of the
target AP needs to be further judged. We define the values of Fmax(0), F ′

max(0),
Fmin(0), and F ′

min(0) as the zero value of boundaries, and Fmax(0) − F ′
max(0),

Fmin(0) − F ′
min(0) are respectively defined as the upper and lower bound zero

point difference values Dup, Dbot. Based on this, the specific positional relation-
ship between the two fingerprints can be distinguished. If the result of Dup×Dbot

is positive, it means that the fingerprints are partially overlapped or separated,
and the target device is judged as an ET. Otherwise, the Dup is used for further
judgment. If Dup < 0, it means that the upper and lower bounds of the target
AP are outside the range of the legitimate fingerprint, as shown in Fig. 6c. The
target AP fingerprint contains the legitimate fingerprint, and the device is ille-
gitimate. If Dup > 0, it means that all phase errors of the target AP are within
the range of legitimate fingerprint. In other words, the legitimate fingerprint
contains the target fingerprint, but there may be some differences in the finger-
print distribution range, as shown in Fig. 6b and f. Therefore, the phase error
distribution area S is used to distinguish the fingerprint distribution of the two
devices. At this moment, the threshold TSV is introduced. If the absolute value
of the difference between S′ and S is less than TSV, PEDR considers that the
two fingerprints are coincident and the target AP is legitimate. Otherwise, the
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Algorithm 2. Detecting the legitimacy of target AP
Require: InfoTAP : the SSID, MAC and fingerprint of target AP;

DictLF : the dictionary stored legitimate devices’s fingerprints;
Ensure: The legitimacy of the target AP;
1: Extracting Legitimate fingerprint FP from DictLF based on the SSID and MAC

of target AP;
2: Seeking the intersection number Nmax of Fmax and F ′

max on the subcarriers −28
to 28;

3: Seeking the intersection number Nmin of Fmin and F ′
min on the subcarriers −28

to 28;
4: if (Nmax = 3) or (Nmin = 3) then
5: Triggering a rogue AP alarm;
6: Return rogue AP is detected;
7: else
8: calculating Fmax(0), Fmin(0), F ′

max(0), F ′
min(0);

9: calculating Dup = Fmax(0) − F ′
max(0), Dbot = Fmin(0) − F ′

min(0);
10: if (Dup × Dbot < 0) and (Dup > 0) and (|S − S′| < STSV ) then
11: Return the target AP is legitimate;
12: else
13: Triggering a rogue AP alarm;
14: Return rogue AP is detected;
15: end if
16: end if

fingerprints are considered included, and the target AP is determined to be an
ET. The threshold TSV will be discussed in detail in the verification experiment.
The process of verifying legitimately is shown in Algorithm 2.

5 Evaluation

In this section, the experimental setup and experimental environment are first
described. Then, it is verified that the drift range of phase errors remains rel-
atively stable, so using phase error drift range as the fingerprint is feasible.
Finally, the performance evaluation of PEDR was performed in a simulated sce-
nario. We compared the PEDR system with the existing physical fingerprint
detection method, and further explained the rationality and superiority of the
fingerprint based on phase error drift range.

5.1 Setup

Hardware Implementation: In the experiment, the detection terminal uses
the laptop Thinkpad SL410 equipped with Intel 5300 NIC, and the CPU is Intel
T6670. It runs Ubuntu 12.04 LTS system. There are 27 devices to be detected,
such as wireless routers that can release hotspots, laptops which can turn on
soft APs and smartphones. Table 1 shows the specific types and quantities of
devices. The validity of fingerprints based on the phase error drift range can be
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(a) Fingerprints cross each other. (b) The target fingerprint is contained.

(c) The legitimate fingerprint is contained. (d) Fingerprints are separated from each
other.

(e) Fingerprints partially overlap. (f) Fingerprint coincidence.

Fig. 6. Position relationship of PEDR fingerprint.

more scientifically explained by using different types of devices as target APs.
In addition, experiment results verify that device fingerprints of the same model
are also different, which means that attackers cannot use the devices with same
model to circumvent PEDR.
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Table 1. Type and quantity of device.

Device Quantity Device Quantity

TL-WDR5620 2 UTT-A655W 3

Laptop with AR9588 1 Laptop with AR9580 1

TL-WR824N 4 Huawei mate 30 4

TL-WDR4310 2 Samsung 1

LB-LINK 2 Device with openwrt and AR9531 2

Others 5

Software Implementation: In terms of software, the kernel of the detection
terminal laptop is changed to Linux 4.2.0, and the Linux 802.11n CSI Tool is
installed on the detection terminal to collect CSI data under the 802.11n wireless
network. In particular, Hostapd is installed in the detected laptop, it can help
the laptop to turn on the soft AP.

The experiments are scheduled in the laboratory which is a typical office envi-
ronment with the size of 11 m × 6 m, and contains desks and other furniture. As
shown in Fig. 2, the position of the serial number 1–9 is used to place the target
equipment, and the detection equipment is placed in the position 0. Obviously,
the target devices in different positions can provide different CSI information,
which is more helpful to verify the validity of the fingerprint.

5.2 Verification

In this section, experiments in a real network environment have confirmed that
the phase errors drift in a relatively stable range. At the same time, the experi-
mental results show that the difference in fingerprints of different devices is obvi-
ous and using the phase error range as the device fingerprint can be uniquely
identified. Therefore, the feasibility of using phase error drift range as the fin-
gerprint can be explained.

Fingerprint Feasibility: In order to verify the feasibility of using the phase
error drift range as the fingerprint, it must be investigated whether the device
fingerprint can remain relatively stable. By studying the change of the phase
error distribution area of the device over a period of time, the stability of the
device fingerprint can be judged. We randomly selected 4 different types of APs
and successively placed them in the same place (e.g., position 1 in Fig. 2). For
each AP device, data collection was performed daily, and 10 groups of data were
collected each time for 15 consecutive days. When collecting each set of data, the
detection terminal needed to connect to the target AP. Considering the packet
loss rate and network conditions, we set the sending interval to 5 ms. That is, the
detection terminal sent the ICMP messages with the interval of 5 ms to the target
AP for 10 s. When the target AP returned response packets, the CSI information
was collected and processed to obtain the drift range of the phase errors over



PEDR: A Novel Evil Twin Attack Detection Scheme 203

time. In order to intuitively display the variation of fingerprints, we plotted the
change of the phase error distribution area within 15 days, and evaluated the
stability of the phase error drift range on the time dimension. Figure 7 shows
the curve of the phase error distribution area of the four devices at different
time periods. Obviously, the phase error distribution area of the 4 devices can
remain stable in the time dimension, and we can design the legitimacy detection
threshold TSV accordingly. The experimental results prove that the phase error
drift range remains relatively stable in time.

According to our experimental results, the phase error drift range fingerprint
is relatively stable, and the fingerprints are significantly different between dif-
ferent devices. Therefore, fingerprints based on the phase error drift range are
feasible.

Fig. 7. Variation of phase error distribution area of four devices.

Efficiency: We conducted extensive experiments on the PEDR system, and
evaluated both the detection rate and the false negative rate. Besides, we com-
pared PEDR with the latest Liu’s method to illustrate the superiority of the
fingerprint based on phase error drift range.

The ETA scenario was simulated, and the two parameters, detection rate
and false negative rate, were introduced to evaluate the system performance.
The detection rate indicates the probability that the detection system can suc-
cessfully detect the ET in the attack scenario. The false negative rate refers to
the probability that ET is not found. In the experiment, 9 devices were randomly
selected from 27 experimental devices as illegitimate devices to simulate ETA.
In the simulation experiment scenario, the PEDR and Liu’s method were used
for detection respectively, and the experimental results of the two were com-
pared. During the experiment, the detection terminal extracted CSI information
from each target device and made fingerprints to detect its legitimacy. In order
to ensure the accuracy and rationality of the experiment, we performed a legiti-
macy detection experiment 10 times a day for 10 days, and took the average value
of the attack detection rate measured multiple times a day for statistics. The



204 J. Zhang et al.

results of PEDR and Liu’s method are shown in Figs. 8 and 9 respectively. Due
to the existence of devices with similar phase errors in the experiment, the phase
errors of these devices have overlapped each other due to PEDP. Liu ’s method
which based on phase error is difficult to distinguish such target devices, and it is
easy to generate false negative results. Therefore, the false negative rate of Liu’s
method is as high as 15.56%, while the attack detection rate is only maintained
at about 84.44%. Compared with Liu’s method based on phase error, PEDR uses
the phase error drift range as the fingerprint. Although it takes a certain amount
of time to collect fingerprints, it overcomes the defect of false negative results
caused by phase errors drift with time and can achieve more accurate detection.
After 10 days of the simulation experiment. The detection rate of PEDR is still
stable and as high as 98.89%, and only a few cases have a false negative rate of
1.11%.

The experimental results prove that the PEDR system can implement the
legitimacy detection more successfully. Especially when the devices with only
slight differences in phase errors, PEDR can also achieve high-precision detec-
tion. We believe that the detection environment and target devices will be more
complicated in actual scenarios, and the probability of devices with similar phase
errors will increase significantly. PEDR has a higher detection rate, which can
effectively detect ETA and protect the safety of the device.

Fig. 8. Detection rate and false negative
rate of PEDR.

Fig. 9. Detection rate and false nega-
tive rate of Liu’s method.

6 Conclusion

Validated by our experiments, the phase error drift phenomenon, i.e. PEDP, is
widespread in wireless devices, which may cause the failure of detection scheme
based on phase errors. In order to achieve higher precision ETA detection, we
proposed the legitimacy detection scheme PEDR based on the phase error drift
range. Because the phase error drift range remains stable in the time dimension,
PEDR can effectively detect ETA. Especially for devices with similar phase
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errors, the detection effect of PEDR is outstanding. Therefore, attackers cannot
use the equipment with the same model to avoid detection, which improves the
security between the AP and client devices. In addition, PEDR is based on the
user client and does not require additional hardware equipment, which makes it
more lightweight and practical. Compared with the active detection scheme, it is
not easy for attackers to find and deceive during the entire detection process. We
have conducted extensive experiments and proved that the fingerprint based on
the phase error drift range is more effective and reliable than the fingerprint only
based on phase error for detecting ETA. In the future, we plan to improve the
efficiency of legitimacy detection and on the premise of ensuring the detection
rate.
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Abstract. Social networks typically include a community structure, and the con-
nections between nodes within the same community are very close; however, the
connections between communities are sparse. In this study, we analyze the main
challenges behind the problem and then resolve it using differential privacy. First,
we choose the Louvain algorithm as a benchmark community detection algorithm
for the algorithmic perturbation scheme. We introduce an exponential mechanism
that uses modularity as a score. Secondly, by transforming each community into
a hierarchical random graph model, and its edge connection probability is noisy
by differential privacy mechanism to ensure the security of relevant information
in the protected community.

Keywords: Differential privacy · Community detection · Social network

1 Introduction

Techniques for identifying the groupings in social networks and then analyzing these
groupings for further use have become a key research topic in sociology—this is referred
to as “community detection”. Through community detection, we can reduce both the
network size and the computational complexity of the algorithm used to process it,
thereby improving the accuracy of the analysis. However, most of the methods are
performed without privacy protection, and the results of community detection are output
in the form of the node-set. In order to protect the privacy of users, it is necessary to
protect the privacy of community detection.

Existing social network differential privacy protection schemes focus on a centralized
model; they assume that third-party data collectors who possess the information are
trustworthy, which is a practical assumption of real-world applications. Therefore, we
use a local differential privacy (LDP) model to protect the privacy of social networks, by
releasing the sanitized graph at local devices after differential privacy processing. The
published data mask the interconnections between nodes and preserve the characteristics
of the network structure, enabling researchers to achieve a reasonable balance between
the utility of the algorithm and its ability to protect privacy when data are used for feature
analysis and data mining.
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2 Related Work

2.1 Local Differential Privacy

The differential privacy protection methods applied to social networks can be roughly
divided according to two approaches. The first approach focuses on publishing certain
types of noisy mining results; these include degree distributions, subgraph counts, fre-
quent graphics patterns, and cut queries [4, 5]. This approach uses the properties of the
original graph for general purposes, perturbs the graph, and publishes the aggregated
results. It is theoretically proven that noise addition ensures strong privacy preserva-
tion. The second approach is to publish the entire social network for general purposes
[6, 7]. These methods differ in the intermediate structures used for publishing and the
corresponding definitions of differential privacy.

2.2 Community Detection with Differential Privacy

The task of finding node groups using connection relationships in the network is referred
to as community detection. The Louvain algorithm [9] is based on multi-level optimiza-
tionmodularity and performswell in terms of efficiency and effectiveness.Moreover, the
Louvain algorithm can identify hierarchical community structures; thus, it is considered
one of the best community detection algorithms.

Recently, researchers have applied differential privacy for community detection.
Nguyen et al. [10] chose the Louvain method as the backend community detection
method of the input perturbation scheme and proposed the LouvainDP method. Ye et al.
[11] proposed the first LDP-enabled graph metric estimation framework for a variety
of graph analysis tasks, which address data correlation among nodes by two efficient
perturbation algorithms based on adjacency bit vector and node degree.

3 Preliminaries

3.1 Louvain Algorithm

The Louvain algorithm [9] is based on multi-level optimization modularity, which is
efficient to identify hierarchical community structures. According to [9], when assigning
node i to a community, the modularity of the community changes as
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3.2 Local Differential Privacy

Definition 1 (ε-Differential Privacy): Given a random algorithmA, let S represent the
set of all output spaces ofA on the two neighbor graphs G1 and G2(which differ at most
one element). The algorithm A satisfies ε-differential privacy if:

Pr[A(G1) ∈ S] ≤ eε × Pr[A(G2) ∈ S] (2)

Theorem 1 (Laplace Mechanism): For any function f : G → R
d, the mechanism A

AG = f G +
(
Lap1

(
� f
ε

)
, . . . , Lapd

(
� f
ε

))
(3)

provides ε-differential privacy, where Lapi
(

� f
ε

)
represents Laplacian independent and

identically distributed variable samples with scale parameter � f
ε

.

Theorem 2 (Exponential Mechanism): Given a function f : (G × OS) → R, where
OS is output space. For a graph G, the mechanism A that samples an output O with a

probability proportional to exp
(

ε·f(G,O)
2�f

)
satisfies ε-differential privacy.

Theorem 3 (Sequential Composition): Let each Ai provide εi-differential privacy. A
sequence Ai(G) over the entire graph G provides

∑
εi-differential privacy.

4 Problem Solution

4.1 Differentially Private Louvain Algorithm

We propose a solution to the privacy problems in community detection. Our scheme is
divided into two phases. First, the social network is partitioned intomultiple independent
communities by adopting the community detection algorithm. Then, the privacy of the
edges within each independent community is protected.

Algorithm 1: Differentially Private Louvain Algorithm
Input: Input graph , privacy parameter
Output: a private partition set { }
1 Calculate the sensitivity
2 Randomly select initial node sequences and each node as a partition
3 for each node in sequences S do
4 for neighbor partition from partition set do
5 compute the modular gain

6 with the probability

7 Record the partition in which is obtained
8 end for
9 move node into the partition

10 if the partition of all nodes no longer changes
11 return private partition set { }
12 end for

Algorithm 1 first calculates the sensitivity of the social graph according to its number
of nodes (Line 1), and we will explain in detail how to calculate � f later. Based on
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the first phase of the Louvain algorithm, each node in the original graph is treated
as a separate community (Line 2). Then, according to the node sequence, mining the
neighboring nodes/communities of each node (lines 3–4). Then moving the node to
different communities and calculating the current modularity gain. Finally, we introduce
the exponential mechanism, and the maximum modularity gain is selected, otherwise,
it is unchanged (lines 5–9). When the movement of all nodes no longer causes changes
of the modularity gain, the first round is completed and the results of the first round of
community detection are returned (lines 10–12).

4.2 Edge Probability Perturbation

Community detection makes edge connection within the same community more salient
and therefore requires additional protection. We use the same model in [15], which
converts each community into an HRGmodel, then combined the generated HRGmodel
with the edge-connection probability by adding Laplace noise in Algorithm 2.

Algorithm 2: Edge Probability Perturbation
Input: Input partition set { }, privacy parameter
Output: Sanitized graph
1 for each partition in set { } do
2 Convert to HRG model
3 for each internal node of do

4 Calculate noisy probability

5 end for
6 for any two nodes , of do
7 Find the lowest common ancestor of and
8 Place an edge in between and with independent probability
9 end for

10 end for
11 Connect partition
12 return Sanitized graph

After we convert the community into an HRG model, we calculate the connection
probability of each internal node separately. Further, we introduce the Laplacian mech-
anism. Subsequently, for any two nodes i and j in the community, we find the lowest
common ancestor r and establish a connection between the two nodes i and j using
the connection probability of the internal node r . Because the inter-community edges
are relatively sparse and have low correlations, these direct connections do not provide
additional privacy protection.

4.3 Sensitivity Analysis

The sensitivity � f should be analyzed to complete the selection probability equation,
whereG ′ is the neighbor ofG. The neighbor of a graph is the graph obtained by changing
only one edge. Because the addition or removal operations are similar, only the former
is considered in our proof. There are two cases to consider: (1) The connection is an
edge inside the community P . (2) The connection is an edge between the community P
and S. Finally, we obtain � f ≤ 3

m .
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5 Experiment Evaluation

5.1 Experimental Setup

For comparison purposes, two techniques that are similar to our method were imple-
mented as references. They are the basic differential privacy algorithms for the HRG
model, which use the same privacy criteria as [13] and the algorithm perturbation pre-
sented in [10]; the results of the previously centralized differential privacy scheme and
the algorithm perturbation scheme and our proposed scheme are labeled as “DP”, “MD”
and “LLDP” respectively. We performed experiments on two real datasets to evaluate
our algorithm. The details of datasets are shown in Table 1.

Table 1. Statistics of the datasets.

Datasets Nodes Edges Average clustering
coefficient

Ego-Facebook [12] 4039 88234 0.6055

Enron [13] 36692 183831 0.4970

5.2 Experiment Evaluation of Community Detection

The real social network dataset we chose did not have standard community detection
results. Thus, we chose the output of the Louvain algorithm as a standard control because
the evaluation of the data had been performed in [15], and the Louvain method had been
proven there to provide high-quality results.

(a) Ego-Facebook (b) Enron

Fig. 1. The modularity of two social network datasets under different ε

The partitioning results of different privacy budgets are shown in Fig. 1. For both
datasets, the results given by our algorithm increased with the increase of the privacy
budget and gradually stabilized after reaching a certain value. This provides an effective
reference for the selection of a privacy budget. In general, the effectiveness of algorithm
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perturbations is higher than that of input perturbations. The input disturbance used for
comparison also followed a similar trend; however, the overall value was low, which is
significantly different from its typical value. Newman [8] suggested that the value of
Q in a general network is between 0.3 and 0.7, which can explain a good community
structure. Therefore, although the modularity of the results obtained by our algorithm
was lower than the real situation, it still retained an effective community structure.

6 Conclusion

We analyzed the privacy problems of community detection can lead to and proposed a
differentially private detection procedure based on the Louvain algorithm.Moreover, we
proposed to further protect the relational data within the community by converting the
individual community into a subgraph of anHRGmodel and subsequently calculating the
edge connection probability by adding Laplacian noise. Experimental results indicated
an improved performance on real data.
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Abstract. Vehicle manufacturers are installing a large number of Elec-
tronic Control Units (ECU) inside vehicles. ECUs communicate among
themselves via a Controller Area Network (CAN) to ensure better user
experience and safety. CAN is considered as a de facto standard for
efficient communication of an embedded control system network. How-
ever, it does not have sufficient built-in security features. The major
challenges of securing CAN are that the hardware of the ECUs have
limited computational power and the size of a CAN message is small. In
this paper, a lightweight security solution, LaaCan is designed to secure
CAN communication by adopting the Authenticated Encryption with
Associated Data (AEAD) approach. The architecture ensures confiden-
tiality, integrity, and authenticity of data transmission. The experimen-
tal results show that the delay of LaaCan can be reduced depending on
hardware configurations. We consider it lightweight since it adds a low
overhead regardless of performing encryption and authentication. We
evaluate LaaCan using four metrics: communication overhead, network
traffic load, cost of deployment, and compatibility with CAN specifica-
tion. The evaluation results show that the proposed architecture keeps
the network traffic unchanged, has low deployment cost, and is highly
compatible with the specification of the protocol.

Keywords: CAN bus · In-vehicle network security · AEAD

1 Introduction

Vehicles were considered as mechanical machines before the introduction of soft-
ware inside them. Components such as engines, brakes, and gears were assembled
into a car in coherence with the principle of mechanics. Yet, the limited accu-
racy of mechanics led to undetectable failures, and vehicle safety was in threat.
The automotive industry moved towards the adaption of digital electronics and
software controls in the vehicle to improve the scenario. Manufacturers started
installing electronic sensors in vehicles for driving safety and assistance. The
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automotive industry introduced Electronic Control Unit (ECU) in 1970 to col-
lect information from the sensors and control the mechanical components. An
ECU can request another ECU for its sensor information to make a collective
decision. These ECUs form an in-vehicle network to communicate with each
other. For in-vehicle communications, the most widely used medium is the Con-
troller Area Network (CAN).

With the revolution of ECUs, new features are added to vehicles to enable
them to make intelligent decisions. These features provide autonomous driving
support as well as safety and convenience to users. However, they expose the pre-
viously isolated vehicle system to cyberspace, which introduces the opportunity
of cyberattacks. These attacks endanger the privacy and safety of a vehicle.

Attacks try to control vehicle functionalities illegally. ECUs are responsible
to control these functionalities and they communicate via a CAN bus. There-
fore, these attacks highly relate to CAN communications and the security of
these communications must be a concern. The two most significant purposes of
CAN development were to reduce the wiring complexity and cost. At that time,
the security of communication between vehicular components was not a concern
as a vehicle was a closed system without communications with other devices or
vehicles. Hence, the automotive engineers implemented CAN following the con-
cept of broadcast-based serial communication. As a result, any ECU connected
to the network can read or send messages.

In-Vehicle Infotainment (IVI) system is connected to the CAN bus. It
increases the security risks as IVI connects external devices through the wire-
less medium such as Bluetooth and Wi-Fi. There are third-party applications
available for IVI to provide entertainment and navigation services [18]. Besides,
third party dongles can be plugged into the OBD-II diagnostic port to monitor
the status of vehicle systems such as the engine and transmission. These don-
gles connect to smartphones via Bluetooth. A malicious application installed on
a phone that is connected to the OBD-II dongle can help the attacker to read
the network traffic [33]. The reverse engineering of recorded communication may
lead to an attack. The lack of confidentiality, integrity, and authenticity features
in the CAN protocol are the reasons for these attacks.

In this paper, we design LaaCan, a security architecture that implements a
lightweight authenticated encryption based on a pre-shared secret key to assure
confidentiality, integrity, and authenticity. Authenticated encryption ensures the
privacy and authentication of data. It is implemented by adopting Authenti-
cated Encryption with Additional Data (AEAD) cipher. To find the best appli-
cable AEAD cipher in CAN, we explore five AEAD-based ciphers and the anal-
ysis shows that ChaCha20-Poly1305 has the best credibility in low powered
ECUs. ChaCha20-Poly1305 authenticates data using Message Authentication
Code (MAC) that has to be transmitted with the message. The CRC field in
CAN frame is used for error detection and error detection is part of data integrity
process [23]. Since LaaCan ensures data integrity, we replace the CRC data with
MAC that helps to maintain unchanged network traffic and low overhead. The
experimental results show that LaaCan provides strong security with low com-
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Table 1. Standard CAN frame description.

Field Length Description

Start of frame 1 bit Indicates the beginning of a frame

Arbitration 12 bits Contains the type and priority of
the message

Control 6 bits Includes the length of the data

Data 64 bits Holds the transmitted data

CRC 16 bits Cyclic redundancy check field used
for detecting error of the
transmitted data

ACK 2 bits Acknowledges reception of valid
CAN messages

EOF 7 bits Specify the end of the frame

munication overhead and protects the network from the most common form of
attacks. The evaluation results show that LaaCan does not have any effect on
network traffic load, has low deployment cost, and is highly compatible.

The remainder of the paper is organized as follows. In Sect. 2, we provide an
overview of CAN protocol and discuss the related work by providing a classifi-
cation of existing solutions. Section 3 presents the design of LaaCan. The imple-
mentation details and evaluation results are described in Sect. 4. We conclude
the paper in Sect. 5 with a discussion on limitations and future work.

2 Related Work

In this section, we discuss the existing CAN security solutions. Here, we compare
and contrast LaaCan with the related work qualitatively. Before presenting the
related work, we briefly discuss the Controller Area Network (CAN). CAN is a
multi-master broadcast-based bus system with a bandwidth up to 1 Mbit/s. It
is widely used for embedded system communication as it is efficient and cost-
effective. In standard CAN protocol, broadcast messages do not contain any
receiver information [7]. Therefore, adding and removing nodes is easier. Table 1
describes each field of a CAN message.

Considering the different implementation techniques of security countermea-
sures, we present the related work as a classification of existing security solutions.
We classify the security measures in terms of security enforcement procedures.
Figure 1 depicts the classification. The communication is primarily secured by
adopting cryptographic architecture and intrusion detection systems (IDS) or
both. The cryptographic architectures mostly involve different ways of encryp-
tion and authentication mechanisms to secure network transmission from adver-
saries. A number of works in this category are discussed in the following subsec-
tions. In contrast, the IDS learn the predefined activities and policies to detect
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Fig. 1. Classification of CAN security solutions.

and report any malicious activity. The existing IDS of in-vehicle networks can
be categorized into behavior-based and knowledge-based techniques [16]. For the
sake of space limitation and relevance, we do not discuss the IDS further.

2.1 Distributed Approach

In the distributed cryptographic architecture, security features are implemented
inside ECUs and there is no need for a central authority. Although an ECU
gets compromised by adversaries, they cannot control the full network. The
distributed methods can be further divided into three categories: encryption,
authentication, and encrypted-authentication. The encryption-based approaches
involve data encryption for security purposes; however, it does not include an
authentication mechanism. On the other hand, authentication-based approaches
only authenticate data. These approaches lack confidentiality as they do not
encrypt data. The authenticated encryption approaches encrypt and authenti-
cate data. Though it may require more processing time, authenticated encryption
provides strong security. We present the related work for each category in the
following paragraphs.

Distributed Encryption. CANTrack [14] only encrypts the message using the
message counter to prevent the replay attacks. It does not include any authenti-
cation mechanism. All ECUs maintain a message counter for each message type
and use the counters as encryption keys.

Distributed Authentication. VeCure [32] introduces trust-based grouping of
ECUs along with Message Authentication Code (MAC) for authentication pur-
poses. It divides ECUs into two groups. ECUs with external interfaces such as
OBD-II and infotainment system are assigned to low-trust group. The other
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ECUs with no external interfaces are assigned to high-trust group. Authentica-
tion is only performed for the communication of high-trust ECUs. They share a
common secret key to generate MAC. MAC is transmitted using an extra mes-
sage, which increases network traffic and message processing time. LaaCan does
not affect the network traffic as no additional message is used for MAC trans-
mission. Herrewege et al. [31] uses HMAC (Hash-based Message Authentication
Code) to generate the message authentication code using shared secret keys.
CAN+ [35] is used to share secret keys as it allows additional 120 bits to be
attached to a frame. Each message type has a unique secret key, and all secret
keys are stored in the participating ECUs. Therefore, compromising of an ECU
can reveal all secret keys. Though we use a shared secret key, LaaCan ensures
message freshness by involving a counter. The message freshness value makes
it harder for attackers when the secret key is compromised as attackers need
to keep track of freshness value. LiBrA-CAN [15] authenticates messages using
Mixed-Message Authentication Codes (M-MACs). It divides the ECUs into mul-
tiple small groups. Each group of ECUs share a secret key. The authentication is
performed by employing a helper ECU to compute MAC. Both the sender and
the helper computes MAC partially. The receiver ECU performs authentication
by merging the partially generated MAC. LiBra-CAN has high communication
overhead and uses CAN+ [35], which is not well recognized. Therefore, it is not
compatible with the standard CAN.

Distributed Authenticated Encryption. Woo et al. [33] assure data confidentiality,
integrity, and authenticity based on MAC. The MAC is transmitted using both
the extended ID field and the CRC field. Thus, the payload of the network stays
unchanged after the initial key distribution. However, a widely used standard
SAE J1939 [17] uses the extended ID field to transmit Parameter Group Number
(PGN). Hence, reserving extended id field for MAC excludes existing standards.
LASAN [22] ensures three security features as well. A centralized security mod-
ule authorizes all the general ECUs. AES-128 is used in Cipher Block Chaining
(CBC) mode. AES requires hardware support and resource constraint ECUs do
not have hardware acceleration support for cryptography [11]. Also, the installa-
tion of a central ECU brings hardware change, which increases the deployment
cost. LaaCan does not require any hardware support and is adaptable by soft-
ware updates. TOUCAN [8] assures confidentiality, integrity, and authenticity.
It also applies AES-128 for data encryption, and Chaskey [20] for MAC com-
putation. The data payload is reduced to 40 bits to fit 24-bit MAC. However,
reducing the size of payload makes it incompatible to existing designed proto-
cols that make use of the full length of the payload. Alam et al. [5] introduce
identity-based access control for ECU authorization. The symmetric key cryp-
tography and digital signature are applied to assure confidentiality, integrity,
and authenticity. The symmetric keys are shared using elliptic curve-based Pub-
lic Key Encryption (PKE). Though digital signature ensures non-repudiation,
it is slow. LaaCan falls in the category of distributed authenticated encryption.
The AES cryptographic algorithm is used by [33] and [8]. AES consumes more
resources and requires hardware support to reduce the processing delay. Thus,
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AES is not suitable for resource-constrained ECUs. Besides, we avoid using the
extended id field to transmit authentication code to assure backward compatibil-
ity. We also refrain from reducing payload size, which makes LaaCan adaptable
to existing implementations.

2.2 Centralized Approach

In a centralized cryptographic architecture, data is authenticated by central
ECU. There is no involvement of encryption in a centralized approach. Although
these approaches may involve some processing in participant ECUs related to
authentication code generation, the authentication process is served by the cen-
tral ECU. CaCAN [25] installs a monitor ECU in the bus. The monitor ECU
compares both the received and calculated MAC for message authentication.
TCAN [9] authenticates based on the physical location of the ECU in the net-
work. Two dedicated node repeater and monitor are used to identify the physical
location of ECUs from the message reception time difference. Although TCAN
authenticates the messages using the physical location, it involves cryptography
for the communication between the general ECUs and the monitor in the ini-
tialization phase. CaCAN [25] and TCAN [9] lack confidentiality as messages
are not encrypted. Moreover, installing dedicated ECUs for authentication is
expensive and not adaptable to already manufactured vehicles. Also, they are
vulnerable to man-in-the-middle (MITM) attacks.

3 LaaCan Design

In the preceding section, we discussed existing CAN security solutions and their
shortcomings. Among the different approaches of cryptographic implementa-
tions, only the distributed authenticated encryption architecture is capable of
ensuring confidentiality, integrity, and authenticity. Intrusion detection systems
highly depend on the trained model, which is heavy computation for resource
constraint devices. Considering the limited resources of ECUs and the conse-
quences of in-vehicle security attacks, we design a lightweight security solution
by adopting distributed authenticated encryption architecture.

In this section, the architecture of LaaCan is presented. Since a security
architecture should be integrable with the existing standards, the design is ana-
lyzed to verify the compliance with standard CAN and AUTOSAR [1]. Later,
the design challenges and solution options are explained.

3.1 Authenticated Encryption Design

We propose a lightweight authentication architecture for CAN communication.
We implement Authenticated Encryption with Associated Data (AEAD) scheme
as it is capable of ensuring confidentiality, integrity, and authenticity. We iden-
tify available AEAD schemes used in industry and compare the performance to
determine the best fit in CAN protocol. The experimental analysis shows that



A Lightweight Authentication Architecture for Vehicle CAN 221

Fig. 2. Design of the authenticated encryption.

among five widely used AEAD algorithms, ChaCha20-Poly1305 has the best
performance based on the communication overhead and security measures.

Figure 2 shows the architecture of LaaCan. AEAD requires four inputs: a
secret key, nonce, plain text, and additional data. The secret key has to be
random. The nonce is used to keep the keystream unique for each operation.
Both the sender and the receiver have to know the secret key and nonce. The
outputs of AEAD are ciphertext and MAC. The ciphertext is privacy protected
plain text, and MAC is a tag to ensure data accuracy.

In the first phase, the message is encrypted using the ChaCha20 stream cipher
to assure confidentiality. For encryption, ChaCha20 generates a block using the
key block, nonce, and constant characters. Then, it splits the block to form a
matrix and runs 20 rounds of alteration between cells. Each round performs
four quarter-rounds to process both column and diagonal values. Every quarter-
round involves bit operations of add, XOR, and rotate. After the 20 rounds,
the matrix is serialized to generate a keystream block. The ChaCha20 performs
XOR operation with plain text to generate ciphertext [24]. The keystream block
generation process does not involve the plain text. Therefore, it is possible to
generate a keystream block earlier to reduce the encryption process delay. After
sending a message, a keystream is generated for the next message, which is
referred to as a forward key generation. Thus, during the encryption of the
next message, the keystream block will be ready to XOR with plain text. Since
the forward keystream generation is performed, a keystream block is generated
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during initialization for the first message. Forward keystream generation reduces
the delay by 15% 16 MHz micro-controllers for each message transmission.

The message authentication is necessary to ensure authenticity and integrity.
The authentication scheme generates MAC to achieve message authentication.
However, each CAN message has an identifier, and alteration of it is considered
as an attack. As a result, the authentication of the message identifier is nec-
essary. AEAD provides authentication for associated data. Hence, we feed the
message identifier as additional data to AEAD. We use the message counter as
the nonce, which gives freshness to the secret key. The ECUs have non-volatile
storage to store system and user data [34]. The freshness value can be stored
in the non-volatile storage so that it can be retained in each run. Since CAN
is a broadcast-based protocol, all the ECUs receive all transmitted data in the
network. Therefore, it is not required to attach the counter with a transmit-
ted message. Besides, CAN protocol has a message filtering feature, which uses
the identifiers for filtering. Therefore, we do not encrypt the message identifier.
However, if the identifier is altered during the transmission, the authentication
fails.

Due to the limited payload, CAN protocol cannot accommodate additional
data bits in the message. Message encryption using ChaCha20 does not increase
the length of the encrypted message. However, MAC has to be transmitted to the
receiver to complete the authentication process. Wang et al. [32] used an extra
message to carry MAC. Additional message transmission increases the traffic of
the network. It also increases the delay in message processing as the receiver has
to wait for the MAC. Moreover, no other ECU can communicate between the
transmission of the original message and MAC. CAN protocol uses a 15-bit CRC
field for error detection of transmitted data. Since LaaCan ensures the integrity
of data and error detection is part of data integrity [23], we use the CRC field
to attach a 15-bit authentication code. Two existing work [10,33] demonstrated
a similar approach of using the CRC field to transmit MAC and showed the
feasibility of the solution.

We follow the distributed approach of ensuring security where the network
traffic is encrypted and authenticated by all the ECUs. MAC is generated and
appended to the message by a sender ECU. There is no need for a central ECU,
which allows integrating the solution to existing vehicles with software updates
only. Furthermore, LaaCan does not transmit any extra message for security
purposes. It does not involve any modified version of the standard protocol also.
Therefore, it is feasible to integrate it with the standard CAN protocol as well
as standards widely implemented, such as SAE J1939 [17].

3.2 Design Requirement Analysis

To make LaaCan adaptable with the existing systems and standards, we identify
two major design requirements: standard CAN and AUTOSAR compliant. The
analysis of the design requirements is discussed in the next paragraphs.
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Table 2. AUTOSAR profile of LaaCan.

Parameter Configuration value

Algorithm ChaCha20-Poly1305

Length of Freshness Value (parameter
SecOCFreshnessValueLength)

0 bit

Length of Truncated Freshness Value
(parameter SecOCFreshnessValueTxLength)

0 bit

Length of Truncated MAC (parameter
SecOCAuthInfoTxLength)

15 bits

Standard CAN Compatibility
The CAN protocol is standardized under ISO (International Organization for
Standardization) 11898-1 [2] that describes the data transmission process and
message format. The compliance with standard protocol gives solution flexibility
of integration with the majority of the existing systems and standards. A secu-
rity solution should be able to run on existing ECUs and networks to achieve the
standard CAN compliance. Some security solutions [15,31] use CAN+ [35] pro-
tocol that requires hardware change in transceiver [8]. LaaCan does not require
any hardware changes. Unlike some other related work [9,15,22,25,30], we do
not install any dedicated ECU. Therefore, we claim LaaCan is standard CAN
compliant.

AUTOSAR Compatibility
The AUTOmotive Open System ARchitecture (AUTOSAR) [1] is a develop-
ment partnership of automotive stakeholders to implement standardized soft-
ware architectures for ECUs [3]. The specification of AUTOSAR describes stan-
dard development practices. To verify the compliance with the AUTOSAR stan-
dard, we study the release document of AUTOSAR 4.3.1, Specification of Secure
Onboard Communication [6]. According to the specification, sender and receiv-
ing nodes require to maintain freshness value. Though, it is not mandatory to
add the freshness value to the payload, it has to be considered during the MAC
generation. LaaCan maintains a message counter to assure message freshness.
In the standard CAN protocol, all the broadcasted messages are received by the
participating nodes. Thus, there is no need to add the freshness value to the
payload as all the ECUs can maintain the counter. AUTOSAR applies security
solution based on the security profile. Table 2 shows the security profile of Laa-
Can for AUTOSAR. The first parameter “Algorithm” stands for the name of the
cryptography algorithm, which is ChaCha20-Poly1305, in this case. SecOCFresh-
nessValueLength and SecOCFreshnessValueTxLength parameters are related to
the freshness value. The configuration values for these parameters are 0 bit as the
freshness value is not added to the payload. SecOCAuthInfoTxLength denotes
the length of the truncated MAC, and we use 15-bit of the truncated MAC.
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3.3 Design Challenges and Solutions

There exist three main challenges in the design of LaaCan: choosing the cryp-
tographic algorithm, deriving the shared secret key, and fixing the MAC size
and transmission process. We discuss these challenges and solution choices in
the next paragraphs.

Choosing Cryptographic Algorithm
We use authenticated ciphers to ensure data confidentiality, integrity, and
authenticity. There are several authenticated ciphers available. However, we need
to select one that provides strong security with efficient performance in ECUs.

The in-vehicle communication has to be real-time. However, security mea-
sures add a delay in communication. The delay highly depends on the hardware
components on which the security solution is running. The vehicle ECUs are
resource-constrained. Thus, a solution must have strong security with low com-
munication delay, less memory consumption, and less power consumption. We
choose widely used authenticated ciphers and compare the execution time to
encrypt and authenticate 8 bytes of data. We take 8 bytes of data because a
single CAN frame can have up to 8 bytes of data. We shortlist AES-GCM,
Speck-GCM, ChaCha20-Poly1305, Ascon, and Acorn for the comparison as they
are widely used. We run the them in three different hardware configurations. We
discuss experimental setups in detail in Sect. 4.1.

Figure 3 shows the execution times of the shortlisted ciphers. Chacha20-
Poly1305 has the lowest execution time in all three configurations. It is sig-
nificantly faster than the most widely used AES-GCM. The AES-based ciphers
perform better when the hardware has AES support. However, for resource-
constrained devices without hardware support, Chacha20-Poly1305 takes less
time while consuming low memory and power than some widely used authenti-
cated ciphers [13].

Shared Secret Key
The cryptographic algorithms use a secret key for data encryption. The key
selection is essential as the security strength depends on it. The same key can
be used for encryption and decryption in case of symmetric-key cryptography.
In asymmetric key cryptography, one key is used in the encryption process and
a different key is required for the decryption process.

The asymmetric key technique is significantly slower than symmetric key and
consumes more resources [27]. Hence, we choose the symmetric key cryptography.
In symmetric-key cryptography, the sender and receiver need to share a common
secret key. However, key generation and sharing between ECUs is complex as
the network is multicast-based, and there is no central authority. If the same
key is used throughout the lifetime of the vehicle, an adversary can analyze the
network traffic to retrieve the secret key. Therefore, we generate a session key at
the starting of a vehicle. To generate a session key, we use a long term symmetric
key and a session id of 128 bits each.

A 128-bit session-id allows 220 or 1.04 million distinctive sessions, which are
enough for a vehicle lifetime. At the starting of a vehicle, the session-id incre-
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Fig. 3. Execution times of authenticated ciphers.

ments and a session key is generated. ChaCha20 generates the session key using
the session id and long term symmetric key. A new session key is also generated
when the message counter value reaches its limit. The key establishment and
share process are resource consuming and increases the network traffic, which
we avoid by deriving the session key. We use the session key for a limited time.
Hence, even if an adversary retrieves a key by analyzing network traffic, it can
bypass the security measures for only one session as session key changes every
time the vehicle starts. The session key generation and key setup process require
a maximum of 1.83 ms, which is very low. As it is only done at the starting of
the vehicle, it is acceptable.

MAC Size and Transmission
LaaCan authenticates messages based on MAC. The security strength of MAC
depends on its length. A MAC with a bigger length has better security strength.
However, the size of the CAN frame is limited. CAN frame has a 15-bit CRC
field, which provides error detection support only. CRC check can recognize an
error that occurs during transmission. LaaCan ensures data accuracy based on
MAC. The MAC authentication at the receiver end fails if any bit in the original
data changes due to a noisy transmission channel. Therefore, we decide to replace
CRC with MAC. The replacement of CRC with MAC allows keeping the traffic
of the network the same as standard CAN. Otherwise, data payload has to be
reduced [8], or additional message transmission is required [32]. Woo et al. [33]
and Bittl [10] also propose overwriting CRC field with MAC.

The probability of guessing MAC is 2-mac length [20]. We generate 128-bit
MAC and truncate it to 15 bits for transmission. Therefore, the probability of
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guessing MAC is 2-15 . In other words, an attacker requires 215 or 32,768 attempts
to guess the MAC that is not feasible considering the limited resources available
in ECUs.

4 Implementation and Experimental Evaluation

To assess the effectiveness of LaaCan, we validate the security features through
experiments and preform security analysis against attacks. In this section, the
implementation details are provided and the security analysis is discussed. Later,
the evaluation results and comparison with some of the existing work are pre-
sented.

4.1 Implementation

LaaCan has to be integrated into Electronic Control Unit (ECU) software by
installing in the ECU micro-controller. A micro-controller works as a core pro-
cessing unit of an ECU. Several exiting work [8,25,30,33] used micro-controllers
for experiments. To simulate an in-vehicle network consisting of multiple ECUs
connected by a CAN bus, we connect multiple Arduinos by the CAN bus. An
Arduino is a programmable micro-controller. However, it does not have the capa-
bility of CAN transmission. Hence, we install CAN-Bus Shield V2.0 [28] on top
of Arduino that provides CAN transmission ability to Arduino.

Micro-controllers come in different hardware configurations. CAN security
researchers mostly use ARM-based micro-controllers with CPU clock speeds
between 40–150 MHz for their experiments. However, AVR-based microcon-
trollers are widely used in vehicle ECUs. Therefore, we consider microcontrollers
with three different configurations, which are Arduino Uno (16 MHz 8-bit AVR),
Arduino Zero (48 MHz 32-bit ARM), and Arduino Due (84 MHz 32-bit ARM).
Among them, Arduino Uno has computationally weak hardware, which helps to
verify the performance on resource-constrained devices. Figure 4 demonstrates
the diagram of our experimental setup.

4.2 Security Threat Analysis

General Security Requirements
First, we analyze that LaaCan satisfies confidentiality, integrity, and authenticity.
For the purpose of analysis, we name the ECUs as ECUT (transmitter), ECUR

(receiver), and ECUA (attacker). We assume ECUT and ECUR are legitimate
nodes and ECUA is an attacker for the following scenarios.

Confidentiality. ECUT sends data to ECUR, and ECUA tries to sniff the data.
We observe that before installing LaaCan, ECUA receives the original data.
After applying LaaCan, ECUA receives the encrypted data. Encrypted data is
completely different from the original data and meaningless to the attacker node.
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Fig. 4. The experimental setup diagram.

Integrity. ECUT tries to send data after encryption. However, one or more bit(s)
of transmitted data changes due to transmission error or attacker’s manipulation
and ECUR receives the fabricated data. We observe that ECUR does not process
the altered data because of the mismatch in the MAC.

Authenticity. Similar to integrity, MAC also ensures data authenticity. ECUT

sends data to ECUR. However, the message identifier got altered due to trans-
mission error or attacker’s manipulation. ECUR generates the MAC with respect
to the altered identifier and discards the message because of mismatch in MAC.

Some Attack Defenses
We analyze the defense potential of LaaCan against five security attacks: eaves-
dropping, spoofing, replay, Man-in-the-Middle (MITM), and remote attacks.
These attacks are considered for protection analysis as they are the most com-
mon form of attacks in CAN protocol [4,29]. Denial of Service (DoS) attacks are
not considered as preventing them in CAN protocol is impossible [31] and the
existing solutions also struggle against it [26].

Eavesdropping Attacks. In a broadcast network, all the participant nodes receive
all the transmitted packets. Hence, an adversary ECU can read the data trans-
mission to retrieve information, which may lead to future attacks. Data trans-
mission is encrypted in LaaCan. Therefore, eavesdropping attacks cannot com-
promise data.

Spoofing Attacks. Spoofing attacks are done by impersonating another ECU. An
adversary can mislead a vehicle subsystem by performing this kind of attack.
These attacks are possible if the network lacks authenticity and integrity. LaaCan
ensures the authenticity and integrity of the transmitted messages to protect
against spoofing attacks.

Replay Attacks. In a replay attack, a copy of a previously recorded valid message
is transmitted. As messages are exchanged in broadcast form, any attacker node
connected to the network can perform a replay attack if no security measures
are not taken [19]. The receiving node cannot differentiate between a valid and
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replayed message when message freshness is not ensured. LaaCan eliminates
replay attacks by involving a message counter in the keystream derivation process
that assures message freshness.

Man-in-the-Middle (MITM) Attacks. MITM attacks control the communication
between two legitimate nodes secretly. Buttigieg et al. [12] demonstrated a MITM
attack by installing an attacker node between an instrument cluster and a vehicle
simulator. In LaaCan, the attacker node cannot retrieve the actual information
from the encrypted message. Also, the possible altered relayed message cannot
bypass the authentication process. Hence, LaaCan prevents MITM attacks.

Remote Attacks. Modern vehicles have an OBD-II port that provides self-
diagnostic and reporting support. OBD-II is connected to in-vehicle network.
Woo et al. [33] presented a remote attack that connects a malicious mobile
application to a third party OBD-II diagnostic tool. These attacks are possible
due to the lack of data authenticity. LaaCan provides authenticity to prevent
these attacks. The secret-key and cryptography mechanism have to be shared
with trusted manufacturers of OBD-II dongles to make them compatible with
the proposed architecture. If a dongle is vulnerable and a secret key is compro-
mised, then the attacker may bypass the security measures. However, it applies
to all the cryptographic approaches to some extent as they operate based on the
secret key.

4.3 Evaluation Metrics and Comparison

We evaluate LaaCan based on four metrics: communication overhead, bus load,
deployment cost, and compatibility. The metrics are discussed in next para-
graphs. Afterwards, it is compared with some existing solutions based on security
requirements and performance.

Evaluation Metrics
Communication Overhead. CAN is meant for real-time communication. There-
fore, communication overhead is the most important evaluation criteria. LaaCan
involves encryption and authentication, which requires processing of every mes-
sage. It has a total delay of 1.52 ms 16 MHz configuration, 0.25 ms in 48 MHz, and
0.07 ms in 84 MHz. We observe that communication delay significantly depends
on the hardware configuration of ECUs. All the delays are for 8 bytes of data,
which is the maximum payload of the protocol. We do not include transmission
delay here as it solely depends on the setup environment.

Bus Load. If security measures increase the load of the bus, it must have an
impact on the message processing latency. Woo et al. [33] use an extra message
to transmit MAC for each message, which at least double the traffic of the
network. LaaCan avoids transmission of additional messages by replacing the
CRC field with the MAC. Hence, LaaCan does not have any effect on the bus
load.
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Deployment Cost. A huge number of already manufactured vehicles are using
CAN protocol. Hence, a new security solution must have a low installation cost.
Some of the existing solutions [9,25] install one or more new dedicated ECUs for
security purposes, which is costly. LaaCan has a low deployment cost as it can
be integrated by software updates only.

Compatibility.1 LaaCan integration does not have any impact on the core CAN
protocol. No additional bits are added to the message. LaaCan replaces the CRC
field with MAC to avoid use of CAN+ [35] or any other customized version of
the protocol. However, error checking is part of integrity process and LaaCan
assures integrity. Hence, the modification follows the core specification of CAN.

Comparative Analysis
Table 3 illustrates the security features and performance comparison of the pro-
posed design with some related work discussed in Sect. 2. Since LaaCan adapts
the cryptographic architecture, IDS-based solutions are excluded from the com-
parison.

Table 3. Security and performance comparison.

Solution Confiden

tiality

Integrity Authenti

city

Bus load Deployment

cost

Compati

bility

Overhead

CANTrack [14] ✓ ✕ ✕ Unchanged Low High -

VeCure [32] ✕ ✓ ✓ High Low High 0.05 ms (40MHz)

CANAuth [31] ✕ ✓ ✓ Unchanged Low Low -

LiBrA-CAN [15] ✕ ✓ ✓ High High Low 2.54ms

WooCAN [33] ✓ ✓ ✓ Medium Low High 0.38ms (60MHz)

LASAN [22] ✓ ✓ ✓ Medium Very High High 4.6ms (168MHz)

TOUCAN [8] ✓ ✓ ✓ Unchanged Low Very Low 2.35ms

(168MHz)

CaCAN [25] ✕ ✓ ✓ Medium High Low 0.03ms (50MHz)

TCAN [9] ✕ ✕ ✓ Medium Very High Low 0.03ms

LaaCan ✓ ✓ ✓ Unchanged Low High 1.52ms (16MHz)

0.25ms (48MHz)

0.07ms (84MHz)

CANTrack [14] only encrypts data to ensure confidentiality. Along with Laa-
Can, there are three solutions [8,22,33] that ensure confidentiality, integrity,
and authenticity. The other solutions implement an authentication mechanism
to ensure integrity and authenticity.

The additional message transmission needed for security purposes increases
the traffic of the network. CANTrack [14], TOUCAN [8], VeCure [32], and Laa-
Can have unchanged network traffic. As CANTrack does not authenticate the
message, it does not need to transmit MAC. TOUCAN reduces the payload size
to append MAC to it. VeCure and LaaCan replace the CRC field with MAC to
avoid additional message transmission.
1 Compatibility indicates the degree of change required in standard CAN protocol and

it is a subjective metric.
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LASAN [22] and TCAN [9] have very high deployment costs as multiple
dedicated ECUs are required to be installed for security. LiBrA-CAN [15] and
CaCAN [25] require the installation of one dedicated ECU. Also, the dedicated
ECUs used for security purposes increase the coupling among them and gen-
eral ECUs, which is considered as a weakness [21]. The other considered solu-
tions including LaaCan, have low deployment cost as no hardware changes are
required.

The highly compatible solutions do not change the specifications of the stan-
dard protocol and do not involve a different variant of the protocol. TOUCAN
[8] has very low compatibility as it reduces the payload size. Also, CANAuth
[31] and LiBrA-CAN [15] have low compatibility as they use CAN+ [35] that
requires hardware changes in transceiver [8]. Though we replace the CRC field
with MAC, LaaCan can run on existing hardware and network configurations
without any modification. Therefore, LaaCan is highly compatible with standard
CAN.

A comparative analysis with other work in terms of communication overhead
is challenging as the overhead depends on hardware configurations. Since the
clock speed of the processor is considered as one of the significant factors behind
the performance, we perform the analysis based on the clock speed. VeCure
[32], CaCAN [25], and TCAN [9] outperform LaaCan in terms of overhead.
However, they fail to assure at least one feature of confidentiality, integrity,
and authenticity. Also, CaCAN and TCAN have high deployment cost, and low
compatibility with the standard CAN protocol. Though WooCAN [33], LASAN
[22], and TOUCAN [8] ensure the three security features, they have significantly
high communication delay than LaaCan.

The remote attacks are usually initiated through the In-Vehicle Infotainment
(IVI) system and OBD-II. The secret key and cryptographic mechanism have to
be shared with these systems to make them compatible with LaaCan. However,
if these systems do not have protected memory and compromise the secret key,
then adversaries can bypass the authentication system. VeCure [32] attempts to
mitigate this issue by sharing the secret key only with the high-trust ECUs that
do not have any external interfaces. It only authenticates the communications
between high-trust ECUs and does not assure confidentiality, which makes the
ECUs with external interfaces such as IVI and OBD-II vulnerable. Any non-
trusted OBD-II tool can read and learn from the data as there is no encryption
in place. Also, it can send malicious messages to IVI that will not be discarded
as there is no authentication done in IVI.

5 Conclusion and Future Work

5.1 Conclusion

The automotive industry is advancing towards the adoption of information tech-
nology and electronic components. The involvement of information technology
has opened up the in-vehicle communication networks to the cyber world. Adver-
saries can gain access to an in-vehicle network by exploiting the vulnerabilities
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of the Controller Area Network (CAN). In this work, we design a lightweight
authentication architecture called LaaCan to secure CAN network communi-
cation. We classify the existing security solutions for CAN on the basis of
security enforcement procedures in order to compare LaaCan with the existing
work. LaaCan is an Authenticated Encryption with Additional Data (AEAD)-
based security architecture that implements ChaCha20-Poly1305 for one pass
encryption-authentication process. It protects the network from eavesdropping,
spoofing, replay, Man-in-the-Middle (MITM), and remote attacks by ensur-
ing the integrity, authenticity, and confidentiality of the transmitted data. The
experimental results illustrate that the communication delay can be reduced to
0.07 ms. We evaluate LaaCan based on the communication delay, traffic load,
deployment cost, and compatibility with the standard protocol. The comparative
analysis shows that the proposed architecture suffers from less overhead com-
pared to the solutions with similar security measures. LaaCan does not increase
network traffic. A software update can incorporate the solution without any
hardware changes, and it has high compatibility. Lastly, LaaCan is compliant
with the CAN and AUTOSAR standards.

5.2 Limitations and Future Work

The cryptographic algorithm requires a secret key, message counter, session id,
and session key. These values have to be stored, which consume memory storage.
Besides, we generate a session key from the pre-shared secret key. If an adversary
compromises a session key, it can bypass the security measures for that particular
session. While compromising the session key requires the knowledge of the pre-
shared secret key and session id, the attacker may compromise the encryption
algorithm that generates the key. We assume that these values are stored in more
protected memory. LaaCan uses a message counter to assure message freshness.
However, we do not transmit freshness value due to the limited size of a CAN
message. Since CAN is a broadcast-based network, all the ECUs receive the
transmitted messages in network. Thus, the counter increments upon receiving
every message, which keeps all the ECUs synchronized. If an ECU somehow does
not receive some messages, then it cannot synchronize with the network.

If the pre-shared key is compromised, an adversary can create a legitimate
session key. A sophisticated secret key generation and sharing mechanism can
address the issue so that an adversary cannot create a legitimate session key from
a compromised pre-shared key. However, the generation of secret keys requires a
lot of processing power. As a result, we plan to implement a secret key sharing
mechanism for low powered ECUs. Also, we conduct our experiments with micro-
controllers that are not real ECUs. Therefore, we plan to install our solutions
in ECUs with a real vehicle system running. It will help us reach more concrete
conclusions concerning the actual performance and feasibility.
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Abstract. With affordable open-source software-defined radio (SDR)
devices, the security of civilian Global Position System (GPS) is at risk
of spoofing attacks. Spoofed GPS signals from SDR devices have indi-
cated that spoofed signals have higher values of signal-to-noise ratios
(SNRs). Utilizing these values along with other parameters, we propose
a machine learning (ML) based GPS spoofing detection system for classi-
fying spoofed signals. To build our detection system, we launch spoofing
attacks on a GPS receiver using a low-cost SDR device, LimeSDR, and
apply ML algorithms on SNR values and the number of tracked and
viewed satellites. A performance comparison between different ML algo-
rithms shows that Random Forest (RF) and Support Vector Machine
(SVM) achieve 99.5% accuracy, followed by K-Nearest Neighbors (KNN)
(99.4%). To demonstrate easy integration of the algorithm with GPS
enabled devices, we develop an Android-based smartphone app that suc-
cessfully notifies the user about the spoofing signals.

Keywords: GPS spoofing · Machine learning · Security · Smartphone
app

1 Introduction

From mobile phones to aviation and autonomous vehicles, the use of Global
Positioning System (GPS) for navigation and timing has become ubiquitous. As
more people and devices rely on GPS, the threat of spoofing attacks increases
[2,5]. GPS signals are vulnerable to being spoofed, thus displaying incor-
rect/inaccurate locations to the user. Civilian GPS signals are not encrypted,
and their receiving devices lack effective defense mechanisms, thereby posing a
higher risk of a spoofing attack. A GPS defense system must at least detect a
spoofed signal and notify the user.

In this work, a machine learning (ML) based GPS spoofing detection mecha-
nism that uses parsed information from the National Marine Electronics Associ-
ation (NMEA) sentences is proposed. These sentences are standard data format
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supported by most GPS modules. The defense mechanism extracts signal-to-
noise ratio (SNR) values and the number of tracked and viewed satellites from
NMEA sentences to classify GPS signals. To demonstrate effectiveness of the
defense mechanism and its integration flexibility with GPS enabled devices,
we implement it as an Android app that notifies the user when a false signal
is received and stops updating the spoofed location. Detecting GPS spoofing
attacks based on ML techniques have been previously explored in many works
[7,9,10]. A work similar to ours demonstrated GPS Spoofing attack on mobile
phones, external GPS modules, and car navigation system through RINEX files
which provide only raw satellite data [4]. Our work differs in a way that we
use ML algorithms for spoofing detection with the help of features extracted
from NMEA sentences, which are supported by most GPS modules. Besides, we
develop a smartphone app that can use the ML model to detect spoofed GPS
signals. A GPS Anti-Spoof app is available on the Google Play that uses celestial
navigation instead of analyzing any GPS signals or NMEA sentences [1].

2 Methodology

To design and implement the defense mechanism against a GPS spoofing attack,
we setup the necessary hardware and software to generate and collect authentic
and spoofed GPS signals. A software-defined radio (SDR) kit, LimeSDR [6], is
used. The kit is connected to a PC via a USB cable and integrated with GNU-
Radio and GPS-SDR-SIM software. Ephemeris data downloaded from NASA’s
Archive of Space Geodesy on its Crustal Dynamics Data Information System
(CDDIS) is used to launch the spoofing attack. The data provides information
on current and predicted location, timing, and health of GPS satellites [8]. The
downloaded ephemeris files for the desired date and time are in compressed
format. They are first decompressed and converted into binary files of GPS
baseband signal data streams using GPS-SDR-SIM. GNURadio converts these
binary files into radio frequency signals and transmits such signals to a GPS
receiver via LimeSDR. The transmission successfully spoofs the GPS receiver to
a false location. Spoofing attacks are also launched using the setup on a smart-
phone equipped with a built-in GPS module to validate the defense mechanism
of our developed app against the attack.

An Arduino microcontroller interfaced with a u-blox NEO-6M GPS module
receiver is chosen to collect and parse GPS data. The output of the GPS module
is NMEA sentences shown in Fig. 1. These sentences include all the information
provided by GPS signals such as latitude, longitude, number of satellites being
tracked, and SNR. The two most important NMEA sentences are “GPGGA” and
“GPGSV”. GPGGA sentences contain location information (latitude, longitude,
altitude, and the number of satellites). The GPGSV sentences contain informa-
tion on the satellites within the view. One of its parameters also describes the
SNR of each satellite that played a key role in our ML implementation [3].
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Fig. 1. Sample NMEA sentences captured in Arduino interfaced with a GPS receiver.

2.1 Machine Learning Based Defense Mechanism

The stages that are involved to develop the prototype for the defense mechanism
against a GPS spoofing attack are as follows:

Capturing GPS Data. The defense mechanism detects a spoof according to
the parsed information from NMEA sentences. Thus, NMEA sentences are col-
lected from the GPS module in two scenarios, one of authentic locations and
other for spoofed locations. For the former locations, the GPS module is set to
operate without interference from the LimeSDR, and NMEA sentences are col-
lected for 20 min each at ten different true geographical locations. After the data
for true locations is collected, the LimeSDR is set up about 40 ft from the GPS
receiver. False versions of the true locations are generated with the corresponding
ephemeris data and transmitted from the LimeSDR. With any distance greater
than 40 ft, the GPS receiver was unable to receive signals. NMEA sentences for
these false locations were collected for 20 min as well. Later, these NMEA sen-
tences for authentic and false locations are used to prepare the dataset for the
development of an ML model.

Detecting Spoofing Attacks Using Machine Learning. The ML algo-
rithm classifies locations as authentic or spoofed based on a given set of input
features. These features are extracted from collected NMEA sentences. The infor-
mation about each satellite is listed in GPGSA and GPGSV sentences includ-
ing the number of satellites within range and their SNR values. It is observed
that a valid GPS signal has lower SNR as compared to spoofed signals by the
LimeSDR device. Therefore, for each position in the parsed data, the average
SNR value and standard deviation are considered as features to identify a loca-
tion as spoofed or authentic. Other information from NMEA sentences, such as
the number of satellites in view and tracked and horizontal dilution is analyzed.
After a close examination, there is not enough evidence to conclude that hori-
zontal dilution could help differentiate between authentic and spoofed locations.
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However, the number of satellites in view and being tracked did show promis-
ing results. Hence, we created a dataset that consists of one output class for a
location to be genuine or spoofed and four input features: i) average SNR, ii)
standard deviation in SNR, iii) number of satellites in view, and iv) number of
satellites being tracked.

Table 1. Accuracy, precision, recall, and f-measure for each machine learning algorithm

Accuracy (%) Precision (%) Recall (%) F-measure (%)

KNN 99.46± 0.001 99.62 99.57 99.60

RF 99.53± 0.002 99.70 99.70 99.67

SVM 99.55± 0.002 99.65 99.59 99.62

LR 99.10± 0.007 98.46 98.27 98.35

NB 97.83± 0.008 98.29 97.97 98.10

From the collected NMEA sentences, 19,925 records are extracted for the
dataset. These records are split into training, validation, and testing using a 60-
20-20 split, respectively. We considered five traditional ML classification algo-
rithms for the detection mechanism: K-Nearest Neighbors (KNN), Random For-
est (RF), Support Vector Machines (SVM), Logistic Regression (LR), and Näıve
Bayes (NB). Table 1 displays the performance of each ML algorithm for well-
known performance metrics for classification including accuracy, precision, recall,
and f-measure. Results are recorded after using cross-validation of five-fold for
each classifier using data from the test set. It is found that KNN, RF, and SVM
models performed better than LR and NB models in terms of accuracy and f-
measure. The first three algorithms achieved an accuracy of around 99.5% and
f-measure of 99.6%.

3 Smartphone App Implementation

To implement the ML based detection mechanism in a device, we devel-
oped an Android app and installed it on a smartphone. The predefined
LocationListener interface from Android API detects any location change and
updates the smartphone’s position (longitude and latitude) regularly through
the onLocationChange() method. We use Google Maps for a visual display of
the location. Once the app is ready to read the GPS data, we broadcast spoofed
signals, and the map shows the spoofed location. For the ML algorithm, we used
KNN due to its easy implementation and comparable performance with RF and
SVM. The KNN algorithm for detection is written in Java as a separate module
for integration with the app, and the initial collected data used by the algorithm
are stored as a text file. Since the algorithm uses parsed information from NMEA
sentences, they are extracted using the LocationManager class, which can read
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the NMEA sentences (code snippet shown in Fig. 2). The app parses each string
starting with GPGSA and GPGSV, and extracts information. It then sends the
data to the algorithm to predict whether the received signal is faulty or not. An
alert pop-up indicates that the GPS signal is spoofed.

Fig. 2. Code snippet of the Android app

We evaluated the Android app on a Samsung Galaxy S9 smartphone at one
of the author’s residence. We downloaded the ephemeris data and followed the
steps discussed in Sect. 2 to spoof the location to other place. The spoofed radio
frequency signals were received by the smartphone. The Android app successfully
identified the spoofed signal and displayed a warning to the user and stopped
further location updates. Figure 3 shows the app interfaces before and after the
GPS spoofing attack. Airplane mode was turned on to prevent the smartphone
from using Wi-Fi and mobile data to refine location estimations.
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Fig. 3. Android app graphical interfaces for genuine and spoofed locations

4 Conclusion and Future Work

In this work, we implemented an ML based defense mechanism against GPS
spoofing attack and embedded it in an Android app. We found that ML algo-
rithms such as KNN, RF, and SVM can detect such attacks with an accuracy of
around 99.5%, which predominately utilizes SNR values, the number of satellites
viewed, and being tracked from NMEA sentences to categorize spoofed signals.
We implemented the KNN algorithm in an Android app that would notify the
user of a spoofed signal and prevent the map from displaying the spoofed loca-
tion.

Our experiments and defense mechanism are setup keeping amateur attackers
in mind who can launch attacks by using low-cost SDR kits and following the
available online resources. The defense mechanism can defend against attacks by
those attackers who are not familiar with manipulating hardware and software
of SDRs to mimic authentic signals more closely. In future, we will investigate
the impact of manipulating SNRs and the number of satellites in view on the ML
based defense mechanism to make it robust and widely applicable. Integrating
an accelerometer and a gyroscope with the smartphone app can be used to
cross-reference measured data from GPS satellites. Furthermore, the app will be
profiled to optimize memory and CPU usage for better user experience.
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Abstract. Android with its large market attracts malware developers.
Malware developers employ obfuscation techniques to bypass malware
detection mechanisms. Existing systems cannot effectively detect obfus-
cated Android malware. In this paper, We propose a novel approach to
identify obfuscated Android malware. Our proposed approach is based
on the intuition that opcode sequences are more resilient to the obfusca-
tion techniques. We first propose an effective approach based on TFIDF
algorithm to identify distinctive opcode sequences. Then we represent
the opcode sequences as images and reduce the problem of identifying
an obfuscated malware to the problem of transforming two images to
one another, i.e. unobfuscated malware representation to the obfuscated
one. In order to achieve the above, we resort to the transfer learning. We
implemented a prototype dubbed AOMDroid based on the proposed app-
roach and extensively evaluated its performance of accuracy and detec-
tion time. AOMDroid outperforms four related works that we compared
with, and has an accuracy rate of 92.26% in detecting Android obfus-
cated malware. In addition, AOMDroid supports the detection of 21
Android malware family types. Its malware family detecion accuracy
rate is 87.39%. The average time spent by AOMDroid to detect a single
Android application is 0.963 s.

Keywords: Android security · Malware detection · Malicious behavior
family · Obfuscation · Transfer learning

1 Introduction

Android attracts many attackers. A recent report on Android malware from
a security vendor shows that in 2019 alone, a total of 1.809 million malware
samples, and 950 million malware attacks on mobile devices [1] were intercepted.
In order to detect Android malware, existing systems resort to machine learning
and report an acceptable detection rate. However, attackers can use obfuscation
techniques to greatly reduce the effectiveness [2].
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We observe that opcodes are more resilient to obfuscation techniques. The
ultimate behavior of an application is summarized in the opcode. In addition,
we note that learning based on opcodes takes a short time, detection based
on opcode features looks promising. Based on above intuitions, we design and
implement a method for detecting Android obfuscated malware. We aim to make
a correspondence between opcode features before and after obfuscation. A key
challenge is an effective feature selection since not all opcodes are distinctive. So
we design a feature selection algorithm based on a TFIDF [3] matrix.

Another challenge is making a mapping between opcode features before and
after obfuscation. Hence, we resort to transfer learning. The goal of the learning
task is effectively transforming obfuscated samples to their unobfuscated ones,
or in other words, reducing the difference in opcode features before and after
obfuscation. We represent the selected opcode features as images and adopt a
domain adaptive method. The underlying assumption is that the source and
target domains have the same feature and category space, but there is a certain
difference between the feature distribution of two domains. The goal of domain
adaptation is to use the labeled source domain data and unlabeled target domain
data, to learn a classifier and predict the label of the target domain data. Finally,
we take the unobfuscated sample set as the source domain and the obfuscated
sample as the target domain. The loss function used in the image transfer model
includes the classification loss and the adaptive loss, the adaptive loss represents
the difference between the feature distribution of source and target domains.

We implemented our proposed approach in a prototype called AOMDroid,
and evaluated it with four different related works. AOMDroid outperforms all
related works in terms of detection accuracy of obfuscated malware and the
detection time. In summary, our main contributions are:

– We propose a novel anti-obfuscation feature selection algorithm. Our key
insight is to apply TFIDF to opcode features before and after obfuscation and
group opcode sequences based on constructs such as classes and methods.

– We propose a classification algorithm based on transfer learning that effec-
tively identifies obfuscated malware. Our key idea is to represent the opcode
sequences as images, and hence reduce the problem of obfuscated malware
detection to the problem of minimizing difference between image pixels before
and after obfuscation of an application via an image transformation.

– We implement a prototype based on the proposed approach and evaluate it
extensively from accuracy and detection time. In terms of accuracy, our pro-
totype, AOMDroid, achieves 92.26% on obfuscated samples outperforming
four related works. For two related works that do not claim anti-obfuscation,
AOMDroid is faster in detection time, and offsets their detection accuracy by
16% to 18%. Compared to other two anti-obfuscation related works, AOM-
Droid is more than 20 times faster while achieving a better accuracy.

2 Background

Obfuscation. Application obfuscation can convert files in the application instal-
lation package into forms that functionally equivalent but hard to understand.
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It mainly include string encryption, benign code insertion, variable name obfus-
cation, class name obfuscation, resource obfuscation, API reflection obfuscation,
and permission obfuscation. For instance, Permission obfuscation will modify
permissions in AndroidManifest.xml. API reflection obfuscation will convert sys-
tem calls into Java reflection calls. String encryption, variable name obfuscation,
and class name obfuscation will obfuscate strings, variable names, and developer-
defined class names that is incomprehensible. Due to the low coverage and effi-
ciency in dynamic detection, we consider the static detection method. However,
the effect of static detection methods will be significantly reduced due to obfus-
cation technology. A study shows that attackers can use obfuscation technology
for 2000 Android malware samples, to reduce the detection accuracy from 65%
to 5.8% of 58 mainstream antivirus engines [2].

Example. We review the malware code for intercepting SMS as shown below.
The code uses the Broadcast to steal the SMS, employs the Intent with SMS
to start a Service. In addition, It sends SMS content with the device ID to the
malicious server. A detection method based on API calls can be constructed by
detecting a sequence of getDeviceId, concat and sendData calls. This sequence
contains three operations that can describe the behavior of obtaining a device
ID, adding it to a message, and sending a message stealing the privacy. When the
application adopts obfuscation techniques, it may use benign code obfuscation,
insert irrelevant API to interrupt the API subsequence used to judge malicious
code. It may also use API reflection obfuscation to convert an API direct call
into an indirect API call, which makes it impossible to extract the API features.

public class monitorMessage extends BroadcastReceiver {

public void onReceive(Context context , Intent intent) {

SmsMessage mSms = SmsMessage.create ();

Intent mIntent = new Intent(Malicious.class );

mIntent.putExtra("mSms", encrypt(mSms.getMessageBody ()));

startService(mIntent );

}

}

public class sendMessageToNetwork extends Service {

public void onStartCommand(Intent intent) {

TelephonyManager manager = new TelephonyManager ();

String mId = manager.getDeviceId ();

URL maliciousUrl = new URL("http ://xxx.com");

maliciousUrl.sendData(mId.concat(intent.get("mSms")));

}

}



AOMDroid 245

3 Detection Scheme

3.1 Overview

The overview of our system is shown in Fig. 1. It includes: (a) selecting anti-
obfuscation features; and, (b) constructing opcode image transfer model. We
propose a anti-obfuscation malware classifier. The key idea is to select features
for classification that obfuscation would have little effect on them. We start with
a set of opcode sequences which represent three constructs: classes, methods
and words. Class level, method level and word level opcode sequences refer,
respectively, to fragments of opcode sequences for a single class, a single method
and a single opcode within the application. We obfuscate a training sample and
compare its features before and after obfuscation, and select features that have
more weights in identifying malware even with obfuscation in place. We use Term
Frequency-Inverse Document Frequency (TFIDF) to assign weights to different
features and select those with a higher weight. TF is the frequency of opcode
features in applications, and IDF is: if fewer applications contain an opcode
feature, the opcode feature are good for distinguishing between categories. Next,
we represent selected features as an image before and after obfuscation. Finally,
we transfer the problem of classifying malware to image classification.

Fig. 1. Structure of the system.

3.2 Anti-obfuscation Feature Selection

Anti-obfuscation Feature Selection (AOFS) follows two design goals. Our
selected features can distinguish the unobfuscated sample and be slightly affected
by obfuscations. Opcodes, ultimately, characterize the behavior of Android appli-
cations and obfuscations impact relatively little on them. For instance, permis-
sion obfuscation influence little on opcode features. Yet, our experiments show
that feature selection significantly improve the detection effect.
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Algorithm 1: AOSF:anti-obfuscation feature select

Input: Dictionary array of non-zero frequency features and frequencies of
samples in unobfuscated datasets A0, dictionary array of all non-zero
frequency features and their frequencies in the set of obfuscated
variants Aobfuscation = [A1, A2, ·, An], opcode feature name set
featureNames, number of selected features K.

Output: Selected anti-obfuscation opcode feature name set.
1 n, m, t ← size(Aobfuscation, A0, featureNames)
2 initial array tfm, idfm, tfidft, difft as zeros array
3 for i ← 1 to m do
4 foreach name, frequency ∈ A0[i] do
5 tf [i] ← tf [i] + frequency
6 idf [name] ← idf [name] + 1

7 for i ← 1 to m do
8 foreach name, frequency ∈ A0[i] do

9 tfidf [name] ← tfidf [name] + frequency
tf [i]

∗ log2
m

idf [name]+1

10 for i ← 1 to m do
11 for j ← 1 to n do
12 initial array diffTmpt as zeros array
13 featureFreqNot0Set ← Φ
14 foreach name, frequency ∈ A0[i] do
15 diffTmp[name] ← frequency
16 featureFreqNot0Set ← featureFreqNot0Set ∪ name

17 foreach name, frequency ∈ Aj [i] do
18 diffTmp[name] ← abs(diffTmp[name] − frequency)
19 featureFreqNot0Set ← featureFreqNot0Set ∪ name

20 foreach feature ∈ featureFreqNot0Set do
21 diff [feature] ← diff [feature] + diffTmp[feature]

22 for i ← 1 to t do

23 weight[i] =
tfidf[i]

m
+1

diff[i]
m∗n

+1

24 return topK(weight, K, featureNames)

We collect opcode features of an application, and categorize them based on
the granularity of obfuscation techniques. obfuscation techniques can be divided
into three levels: class, method and word. In order to collect opcode features, we
apply an obfuscation technique and extract opcode sequences at the same level
of granularity e.g. for a method level obfuscation, we collect opcode sequences of
a method. We use hash values to represent sequences on method or class levels.
For the word-level opcode sequences, the extracted predefined opcode types, such
as invoke-direct and iput-object. We also collect the frequency of each feature.
Because the method level and class level feature frequency matrix is relatively
sparse, we only extract the frequency information of non-zero frequency features.
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The details of AOFS algorithm is illustrated in Algorithm1. First, we com-
pose a TFIDF matrix based on opcode features. The tfidfjk is the TFIDF
value of the kth opcode feature of the jth Android application in the unob-
fuscated dataset. The difference indicators of the opcode features before and
after obfuscation is the sum of the absolute values of the frequency differences
in the feature frequency matrix before and after obfuscation in the unobfuscated
dataset. Assuming that the number of obfuscations in the obfuscation technique
set is n, the number of Android applications in the unobfuscated dataset is m,
there are t types of opcode features in the obfuscation technique set. Before
the obfuscation, the opcode feature frequency matrix is A(0). After the obfus-
cation, The obfuscated opcode feature frequency matrix is A(1), A(2), · · · , A(n).
A

(i)
j = a

(i)
j1 , a

(i)
j2 , · · · , a

(i)
jt is the opcode feature word frequency vector of the jth

Android application in the ith dataset. a
(i)
jk is frequency of the kth opcode features

of the jth Android application in the ith dataset. Assuming that wk represents
weights of the kth opcode features, it is calculated as shown in Formula 1.

wk =

∑m
j=1 tfidfjk

m + 1
∑m

j=1
∑n

i=1 |a(0)
jk −a

(i)
jk |

m∗n + 1
(1)

AOSF filters out ineffective features in a hierarchical manner. First, it filters
out the class level features that do not meet the preset threshold. Then, it
filters out the method level features from remaining classes. Similarly, the word
level opcode features are filtered out. Next, we sort opcode features. Features of
different class level opcodes are sorted by the class name, and for the same class
name, the order of methods in the class is used as the sort basis. Finally, we get
opcode sequence to represent the application by connecting opcode features.

3.3 Detection Model

We transfer the problem of malware classification to image domain adaptation.
We represent opcode features by the AOSF algorithm as an image. We build a
model based on transfer learning [14] with the Resnet [5]. We train it by feeding
unobfuscated applications with their obfuscated versions. The model goal is to
transfer the obfuscated version to the unobfuscated one with the minimum loss.

Image Representation. We represent the selected opcode sequence features as
a grayscale image. We assign a value between 00 and FF to an opcode based
on Dalvik bytecode encoding rules [4]. Then, we divide opcode sequences to 256
opcodes per line. If the end line is less than 256 opcodes, we fill it with 0. Finally,
The opcode features is converted into a grayscale image, as is shown below.

s11 s12 s21 · · ·
→ invoke − direct return − void sget − object · · ·

→ 112 14 98 · · ·
→ grayscale image of the opcode sequence
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Transfer Learning Model. Android malware detection can be divided into two
tasks: the detection of the existence of malware code and malware families. We
train a transfer learning model such that these two tasks can be done simultane-
ously. We feed two inputs into our network: unobfuscated dataset representation
as the source domain, and the corresponding obfuscated versions as the target
domain. We note that feature and labels of both domains are the same, but
the specific distribution of the images and their labels are different. The model
realizes the transfer the features from the source (unobfuscated) domain to the
target (obfuscated) domain. It can minimize the difference in the distribution
between the source and target domains.

Fig. 2. Training phase of the Android malware obfuscated variants detection model.

Our model is shown in Fig. 2. Both networks share the same network direc-
tion and parameters during the training. Our classification network calculates
classification loss and domain adaptive loss. Hence, the model can improve the
classification accuracy for unobfuscated dataset and reduce the difference of fea-
ture distribution before and after obfuscation. The domain adaptive loss is the
Maximum Mean Discrepancy (MMD) [13] distance between the data distribu-
tion of the unobfuscated application image and the data distribution of the
obfuscated application image. As is shown in Eq. 2, the image distributions of
the unobfuscated application image and the obfuscated application image are
expressed, respectively, by XU and XO. φ(x) represents features of the image
after the network’s input layer and hidden layer. L is the overall loss function,
LC represents the classification loss, and λ is the weight of the adaptive loss.

MMD(XU ,XO) = ||
∑

xu∈XU
φ(xu)

|XU | −
∑

xo∈XO
φ(xo)

|XO| || (2)

L = LC + λ ∗ MMD2(XU ,XO)
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4 Evaluation

We evaluate AOMDroid, a prototype implementation based on the proposed
approach. The evaluation provides insights about the AOMDroid efficiency as
well as detection time. Furthermore, we compare AOMDroid with four related
works and show that it outperforms all of them in analyzing obfuscated malware.

4.1 Dataset and Configuration

The original dataset contains 5560 malware and 4631 benign samples. We use
AVPASS [2] to obfuscate samples. Obfuscation methods include string encryp-
tion, inserting benign code obfuscation, variable name obfuscation, class name
obfuscation, resource obfuscation, API reflection obfuscation and permission
obfuscation. The original malware comes from Drebin [6], and marked with the
malware family label. benign samples come from the application market and
verified by VirusTotal. AVPASS supports seven obfuscation methods by default
that have been cited in the related works [7]. For malware families detection,
unobfuscated dataset contains 4615 samples constructed from 21 malware fam-
ilies, the test dataset contains 32513 obfuscated samples.

For the original dataset, we use the successful decompilation samples. The
unobfuscated and API reflection obfuscated dataset is used as the source and tar-
get domain respectively. All sample labels in the target domain are not added to
the training, so seven obfuscated datasets are selected as the test dataset. When
the learning rate is 0.01 and the batch size is 16, it reaches the highest accuracy
rate. Furthermore, the training epochs are 200. The experiments were done on
a computer with an Intel Core(TM) i7-8750H CPU and 16 GB of memory.

Table 1. Effect evaluation of malware detection based on transfer learning. The result
is accuracy of detection. U is unobfuscated samples. A is API Reflection obfuscated
samples. S is String encryption samples. V is variable obfuscated samples. K is class
name obfuscated samples. E is insert benign class code samples. R is resource obfus-
cated samples. P is permission obfuscated samples. VA is samples of seven obfuscations.

Detection type U VA A S V K E R P

Maliciousness 96.49% 92.26% 91.33% 93.81% 94.20% 83.46% 94.24% 94.30% 94.28%

Malware family 98.22% 87.50% 93.70% 93.81% 55.33% 93.42% 93.83% 93.84% 87.39%

4.2 Detection Effect and Performance of AOMDroid

We measure the accuracy of the proposed model in detecting maliciousness
with and without obfuscation. The detection accuracy rate of the existence of
malicious code in unobfuscated dataset is 96.49%, and the F value is 96.74%.
For obfuscated variants, they are 92.26% and 93.19% respectively, as shown in



250 Y. Jiang et al.

Table 1. We apply seven types of obfuscated variants to the unobfuscated dataset.
The detection effect on class name obfuscation is low, because the class name
obfuscation will change the order of the opcode sequence in the class and change
image structure.

Similarly, we measure the malware family detection accuracy both for unob-
fuscated and obfuscated malware. The detection rate of malicious families
against unobfuscated malware is 98.22%, while for seven malware obfuscated
variants is 87.50%, as shown in Table 1.

The performance evaluation of AOMDroid considers two parts. The feature
selection time is 305.63 s, refers to the time adopted the anti-obfuscation feature
selection algorithm. The average time for malware prediction of one application
is 0.963 s. Feature selection is in one process. For malware prediction, we divide
datasets into 10 subsets, and test in ten processes.

4.3 Comparison with Prior Work

We compare AOMDroid with four related works: Drebin [6], PikaDroid [7],
MCSC [8] and RevealDroid [9]. Drebin and PikaDroid are open source but MCSC
and RevealDroid are not. We implemented MCSC and tested versus that but
for RevealDroid, we rely on their reported numbers. PikaDroid and RevealDroid
claim to support anti-obfuscation. Table 2 and 3 summarize the results.

Table 2. Obfuscated malware detection effect and performance evaluation with prior
advanced methods that don’t claim to support anti-obfuscation. The detection effect is
trained on unobfuscated dataset and API reflection obfuscated variants and tested on
samples in obfuscated dataset. The predict time is in seconds and tested for average
single Android application in unobfuscated dataset by ten progresses.

Method Average accuracy of malware obfuscated variants
detection

Predict time

AOMDroid For permission obfuscated and seven
obfuscated variants are 94.28% and 92.26%
respectively

0.96

Drebin [6] For permission obfuscated variants is 77.17% 0.99

MCSC [8] For seven obfuscated variants is 76.64% 3.67

Comparison with Drebin. Drebin and AOMDroid both train by unobfuscated
dataset and API reflection dataset. AOMDroid detects permission obfuscated
variants with a 94.28% accuracy while Drebin is 77.14%. Drebin is not effective
in detecting obfuscated variants because it does not consider the obfuscation
techniques. In terms of performance, AOMDroid is more efficient than Drebin
in feature extraction. The average prediction time of AOMDroid for a single
application is 0.963 s while Drebin is 0.998 s.
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Comparison with MCSC. MCSC obfuscated variant detection accuracy is 76.64%
while AOMDroid is 92.26%. MCSC is trained by unobfuscated dataset and API
reflection dataset, when detecting malware obfuscated variants. In terms of pre-
diction time and detection effectiveness, many hash calculations are required for
extracting images in MCSC, so AOMDroid has advantages than MCSC.

Table 3. Obfuscated malware detection effect and performance evaluation with prior
advanced methods that claim to support anti-obfuscation. The detection effect of AOM-
Droid and PikaDroid is based on 200 random unobfuscated samples and 1400 obfus-
cated samples. The predict time of AOMDroid and PikaDroid is in seconds and tested
for average single Android application malware of 1600 samples by sixteen progresses.
The detection effect and predict time of RevealDroid are obtained from its paper.

Method Malware obfuscated variants detection accuracy Predict time

AOMDroid For seven obfuscated variants is 93.56% 0.96

PikaDroid [7] For seven obfuscated variants is 93.46% 26.39

RevealDroid [9] For four obfuscated variants drops to 85% 31.37

Comparison with PikaDroid. PikaDroid [7] uses machine learning models to
detect Android malware based on API context features. It supports detection
of obfuscated malware. We randomly selects 100 benign applications and 100
malicious applications from the original dataset, and uses seven obfuscation
methods to generate 1400 obfuscated applications. Unobfuscated applications
and permission obfuscated applications are used as source and target domain
samples respectively, for training of AOMDroid. PikaDroid uses same training
sets. PikaDroid uses program flow graph features based on API context, hence,
AOMDroid has obvious advantages in detection time and detection accuracy.

Comparison with RevealDroid. RevealDroid [9] is not open source and reproduc-
tion is difficult. Obtaining key insights from the paper, AOMDroid has advan-
tages in anti-obfuscation detection accuracy, the breadth of supporting obfusca-
tion technologies, and the prediction time. RevealDroid detects whether the four
obfuscated variants are malicious applications, the accuracy drops by more than
10%. Moreover, AOMDroid takes an average of 0.963 s to predict in parallel,
while RevealDroid takes 31.3682 s.

5 Related Work

Android malware detection involves machine learning [6,7,9–12]. DroidAPI
Miner [10] offers a machine learning approach based on API call features. Mari-
conti et al. [11] build markov chains of system APIs to characterize specific
logical behaviors. Drebin [6], in addition to detecting maliciousness of Android
applications, identifies malicious family. Recently, Hou et al. [12] construct a mal-
ware detection system based on heterogeneous information networks with deep



252 Y. Jiang et al.

learning. The similar work to ours is MCSC [8]. It proposes SimHash to trans-
fer application opcodes to images, and uses convolutional neural networks, but
performs poorly. Similar to MCSC, we represent opcode features as images, but
our method is anti-obfuscation and feature processing and model are different
from MCSC. However, they are all not anti-obfuscation enough.

The accuracy of the aforementioned Android malware detection techniques
would deteriorate when the malware is obfuscated. Several related works tried
to address this problems [7,9]. PikaDroid [7] uses the API context, but it can-
not effectively detect API reflection obfuscated Android malware. Another work,
RevealDroid [9] employs multiple features and is resilient to API reflection obfus-
cation, but still lacks generality.

6 Limitation

AOMDroid would not perform well when analyzing the behavior of packed appli-
cations because the packing technologies will hide the actual behavior of the
application. AOMDroid analyzes the Android application by static analysis.
However, Some application packing technologies encrypt the Android appli-
cation installation package, and the actual application executable file will be
restored only when the application is actually running [15]. Another limitation
is analysing Android applications that use dynamic loading technology to load
the executable file that does not exist in the original installation package [16].

7 Conclusion

This paper proposes a transfer learning based approach to detect Android mali-
cious obfuscated variants. We design a feature selection algorithm based on
TFIDF, and represent selected features as images. Our transfer model learns
the transformation between unobfuscated and their obfuscated applications, and
hence identifies malware even after obfuscation. We evaluated the effectiveness
and efficiency of AOMDroid, a prototype based on our proposed approach, by
comparing it with four related works. AOMDroid outperforms all related works
in terms of detection accuracy of obfuscated malware and the detection time.
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Abstract. In this paper, we present EDIMA, an IoT botnet detection
solution to be deployed at the edge gateway installed in home networks
which targets early detection of botnets. EDIMA includes a novel two-
stage machine learning (ML)-based detector which first employs ML
algorithms for aggregate traffic classification and subsequently Autocor-
relation Function (ACF)-based tests to detect individual bots. Perfor-
mance evaluation results show that EDIMA achieves high bot scanning
detection accuracies with a very low false positive rate.

Keywords: Internet of Things · IoT · Malware · Mirai · Botnet
detection · Machine Learning · Anomaly detection · Intrusion detection

1 Introduction

The Internet of things (IoT) refers to the network of low-power, limited pro-
cessing capability sensing devices which exchange data with each other and/or
systems (e.g., gateways, cloud servers). IoT devices are used in a number of appli-
cations such as wearables, home automation and industrial automation. Unfor-
tunately, hackers are increasingly targeting IoT devices using malware (malicious
software) for a number of reasons such as legacy devices connected to the Inter-
net with little or no security updates, low priority given to security within the
development cycle, weak login credentials, etc.

In a widely publicized attack, the IoT malware Mirai was used to launch the
biggest Distributed Denial-of-Service (DDoS) attack on record in 2016 through
infected IoT devices such as IP cameras and DVR recorders. The source code for
Mirai was leaked in 2017 and since then, there has been a proliferation of IoT mal-
ware. These malware are usually Mirai variants using a similar brute force tech-
nique of scanning random IP addresses for open TELNET ports and attempting
to login using a built-in dictionary of commonly used credentials (e.g., Remaiten,
Hajime), or more sophisticated ones that exploit software vulnerabilities to exe-
cute remote command injections on vulnerable devices (e.g., Reaper, Satori,
Masuta, Linux.Darlloz, Amnesia). Bots compromised by Mirai or similar IoT
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malware can be used for DDoS attacks, phishing, spamming and bitcoin mining.
These attacks can cause network downtime for long periods which may lead to
financial loss to Internet Service Providers (ISP), leakage of users’ confidential
data, and unauthorized exploitation of computational resources. Furthermore,
many of the infected devices are expected to remain infected for a long time.

We propose an IoT botnet detection solution, EDIMA (Early Detection of
IoT Malware Scanning and CnC Communication Activity), which is designed
to be deployed at the edge gateway installed in home networks and targets the
detection of botnets at an early stage of their evolution (scanning and prop-
agation phase) before they can be used for further attacks. EDIMA employs
a two-stage detection mechanism which first uses machine learning (ML) algo-
rithms for aggregate traffic classification based on bot scanning traffic patterns,
and subsequently Autocorrelation Function (ACF)-based tests which leverage
bot-CnC messaging characteristics at the per-device traffic level to detect indi-
vidual bots. We only target IoT botnets with centralized Command-and-control
architecture in this work.

2 EDIMA Architecture

EDIMA is designed to have a modular architecture, as shown in Fig. 1, with the
following components:

– Feature Extractor: This module extracts features from the aggregate traf-
fic at the gateway. These features are then forwarded to the ML-based Bot
Detector (MBD) for classification during the execution phase. The Feature
Extractor (FE) also sends features extracted from the aggregate traffic to the
ML Model Constructor (MC), during the training phase.

– ML-based Bot Detector: This is a 2-stage module with the first stage
being a coarse-grained one that classifies the aggregate traffic samples using
the features obtained from FE and the ML model trained and forwarded by
the MC. Depending on the result of the classification, the second fine-grained
stage attempts to identify the infected IoT device(s) from the set of devices
connected to the gateway.

– Traffic Parser: The traffic parser (TP) sorts the combined gateway traffic
into traffic sessions. During the bootstrap (training) phase of EDIMA, it also
helps replay malware traffic samples along with normal traffic to generate
malicious traffic samples.

– Malware PCAP Database: The database stores malware traffic pcap files
captured from private and professional honeypots targeted at IoT malware.

– ML Model Constructor: The ML model used for classifying edge gateway
traffic is trained by this module. We assume a publish-subscribe model where
multiple gateways subscribe to a MC. A separate ML model is trained for
each gateway for optimal performance. Whenever a gateway comes online,
it registers with the MC. Malicious traffic samples from the Malware PCAP
Database (mDB) are sent to the gateway to generate malicious aggregate
traffic. The feature vectors extracted from benign (normal traffic with no
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malicious scanning packets) and malicious aggregate traffic are subsequently
sent by a gateway’s FE to the MC. The extracted features are used to train
a supervised ML classifier which is then published to the gateway’s MBD.

– Policy Engine: The policy engine (PE) consists of a list of policies defined
by the network administrator, which determine the course of actions to be
taken once an IoT device connected to the edge gateway has been detected
as a bot.

Fig. 1. EDIMA architecture

3 Description of EDIMA’s Components

3.1 Detection of Scanning Activity in Aggregate Gateway Traffic

The first coarse-grained stage of the MBD performs classification on aggregate
gateway traffic rather than per-device traffic. We define two classes of gateway
traffic: benign and malicious. Benign traffic refers to the gateway traffic which
does not include bot scanning packets while malicious traffic refers to gateway
traffic that does. The gateway traffic is captured in the form of traffic sessions
which are defined statically as the set of ingress/egress packets at a network
interface over a fixed time interval. We apply the classification algorithm on
these traffic sessions.

In a traffic session, we extract features from TCP packet headers only and
not the payloads. The steps used for gateway-level traffic classification are given
below:

1. Filter each gateway traffic session to include only TCP packets.
2. Extract the feature vectors for each traffic session.
3. Apply the trained ML classifier on the extracted feature vectors and classify

the corresponding sessions.
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We have carefully identified the following eight botnet-aware features for ML
classification:

– Number of unique TCP SYN destination IP addresses
– Number of packets per unique destination IP address

• maximum
• minimum
• mean

– Number of TCP half-open connections
– TCP packet length

• maximum
• minimum
• mean.

3.2 Detection of Individual Bots Using Bot-CnC Communication
Patterns

Once the aggregate traffic at an edge gateway has been classified as malicious,
the second fine-grained stage of the ML-based bot detector attempts to detect
the underlying bots by checking the ingress/egress traffic from each IoT device
for the presence of bot-CnC communication patterns. In most existing IoT bot-
nets, including the Mirai-variants, there is a periodic exchange of TCP messages
([PSH, ACK], [ACK]) or UDP messages between the bot and the CnC server.
To detect the presence of bot-CnC communication, we propose the following
approach: filter the traffic from a potential bot for UDP packets or TCP packets
(with PSH and ACK flags ON ) and exclude IoT application data packets from
our analysis using appropriate packet capture filters. Subsequently, sample and
encode the filtered packets to produce a uniformly sampled discrete-time signal.
To detect periodicity in time series data obtained above, we use the autocorre-
lation function (ACF) [1].

4 Performance Evaluation

4.1 Testbed Description

To evaluate the performance of EDIMA on real devices, we built a testbed with
IoT and non-IoT devices. The devices were used by 3 staff members in our lab
over a period of 4 weeks, and thus the traffic data collected from those devices
reflects real-world users’ behaviour. The edge gateway where the traffic from all
the above devices was aggregated was a Linksys WRT32X router running Open-
WRT with a 1.8 GHz dual-core processor, 512 MB RAM, and 256 MB NAND
flash memory. The testbed schematic is shown in Fig. 2.
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Fig. 2. Schematic of the testbed

4.2 Data Collection and Processing

As mentioned in Sect. 3.1, we classify the aggregate gateway traffic as benign or
malicious. Therefore, we need training data samples to represent both classes.
Benign traffic is not difficult to generate as it involves the normal operation of
uninfected devices. However, malicious traffic contains both benign traffic as well
as scanning/infection packets generated by malware. Towards this, we obtained
23 live IoT malware samples belonging to different malware categories over a
period of 3 months (May–July, 2019) from APIs provided by New Sky Security
[2] and malware hosting server links posted by Bad Packets Report Twitter
account [3]. The FANTASM framework, provided by DeterLab team for safe
experimentation with live malware based on their paper [4], was used to run the
malware samples and collect the traffic generated by them.

Many of the malware samples were simple variants of each other, as revealed
by analysing their traffic using Wireshark. We ended up with two malware sam-
ples, called loligang and echobot by their authors, which exploited TELNET and
HTTP POST+GET vulnerabilities respectively. We ran both the malware bina-
ries on the FANTASM testbed for 5 min each and captured the corresponding
traffic pcap files. Malicious traffic was then generated by replaying the malware
traffic collected from FANTASM on the edge gateway using the tcpreplay utility.
This approach, in effect, emulates an IoT bot connected to the gateway.

We used a traffic session duration of 15 min for this study. 1000 traffic ses-
sions were captured for benign traffic and a further 1000 sessions for malicious
traffic through our testbed. The malicious traffic sessions consisted of 400 ses-
sions corresponding to loligang, another 400 sessions corresponding to echobot
and the remaining 200 sessions corresponding to both loligang and echobot traf-
fic replayed at the OpenWRT router. The features mentioned in Sect. 3.1 were
extracted from the captured sessions. Appropriate class labels were assigned to
the extracted feature vectors.
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The feature vectors were checked for missing values and handled appro-
priately. Next, all the values in a feature vector were scaled to lie within the
range (0,1). Further, the feature vectors were randomly permuted. The com-
bined benign and malicious feature vectors were randomly divided into training
and test datasets using an 80:20 split. We used the χ2 statistical test to com-
pute the χ2 test statistic for each feature from the sample data. Subsequently,
we selected the best k= 6 features (having test statistic value more than zero)
for training our ML classifiers.

4.3 Results

Scanning Activity Detection Performance. We trained the following ML
models using the final feature vectors obtained in the previous section after
completing all the data processing steps: Gaussian Naive Bayes’ (GNB), Support
Vector Machine (SVM) and Random Forest (RForest). Subsequently, the trained
ML models are used to predict the class labels of the test dataset and thereby,
the detection performance of the models is evaluated and compared. In this
work, a 10-fold cross validation approach is used to tune the hyper-parameters
of the ML classifiers for achieving the highest possible CV scores. The cross
validation is based on training data only without using any information from the
test dataset. Using the tuned hyper-parameters’ values, the average classification
accuracy, precision, recall and F-1 scores obtained for the final classifiers over 50
runs are shown in Table 1. It can be observed that the Random Forest classifier
performs the best in terms of classification accuracy followed by SVM classifier
and Gaussian Naive Bayes’ classifier.

Table 1. Performance of ML classifiers for scanning activity detection

Dataset Session duration Method AC PR RC F1

Testbed 15 min Rforest 1.0 1.0 1.0 1.0

SVM 0.99 0.99 1.0 0.99

GNB 0.97 0.97 1.0 0.97

5 Conclusion

We have proposed EDIMA, a solution for early detection of IoT botnets in home
networks. It detects bots connected to an edge gateway in two stages- first by
looking for scanning and subsequently bot-CnC server communication traffic
patterns. EDIMA consists of a traffic parser, feature extractor, ML-based bot
detector, policy engine, ML model constructor and a malware PCAP database.
A performance evaluation of EDIMA using our testbed setup revealed that it has
a close to 100% accuracy and very low false positive rate in detecting malicious
aggregate gateway traffic with ML algorithms such as the Random Forest.
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Abstract. WireGuard is a new and promising VPN software. It relies
on ECDH for the key agreement and server authentication. This makes
the tunnel vulnerable to future attacks with quantum computers.

Three incremental improvements to WireGuard’s handshake protocol
are proposed, giving differently enhanced levels of post-quantum security.
Performance impacts of these are shown to be moderate.

Keywords: Post-quantum cryptography · VPN · Key exchange

1 Introduction

Security features of VPN software can hide your identity, the actual data, and its
destination. Well-known implementations are OpenVPN, IPsec, and WireGuard,
which was recently integrated into the Linux kernel. We focus on WireGuard
(WG) because it is promising for the future. WG’s handshake is currently based
on ECDH. However, Rötteler et al. [17] have shown that the quantum computer
algorithm by Shor can break it. This allows for retroactive attacks. Therefore,
we need to use post-quantum (PQ) primitives for the key agreement now. WG
allows to use a 256-bit pre-shared key (PSK) [6], which can come from a PQ-
secure handshake. While this ensures basic PQ confidentiality, it has neither
PFS nor identity hiding. Symmetric encryption and hashes are only somewhat
threatened by Grover’s algorithm. Also, there are very reasonable doubts raised
about its impact [2,18], mainly because of bad parallelizability.

2 Related Work

Mullvad is a VPN provider that allows to use WG with a PQ PSK. Therefore,
they also provide neither PFS nor identity hiding. Researchers at Microsoft use
OpenVPN with a full PQ key exchange, with all the advantages and disadvan-
tages of OpenVPN compared to WG. Hülsing et al. also propose an adapted WG
handshake protocol [10]. The biggest difference to our adaptions is that they aim
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to replace ECDH with PQ primitives. They further prove security under exten-
sions of the models used on WG [7,8]. The proposed solution is very promising
for the future. In contrast, we propose a more conservative integration of a full
PQ key exchange in WG, which should also guarantee the same security as WG
against classical adversaries.

3 Protocol Design

First we define four incremental levels of security in a PQ setting:

Level 0 (L0) basic confidentiality (WG specification),
Level 1 (L1) perfect forward secrecy,
Level 2 (L2) identity hiding (same passive security in PQ setting as WG),
Level 3 (L3) active attacks (same security in PQ as WG in classical setting).

Whereas the security levels defined by NIST [12] concern specific costs for
breaking primitives, these are about general security properties of handshake
protocols. We use Roman uppercase numbers I, III, and V for NIST security
levels and Arabic numbers 0, 1, 2, and 3 for handshake security levels.

In the following we present three proposed handshake protocols which are
extensions of the WG handshake and satisfy L1–L3 respectively. By the Noise
construction they are at least as strong as the WG handshake. [15] Note that
WG’s handshake is an L0 handshake. The protocols are written in Noise nota-
tion [15], with the hybrid forward secrecy extension for KEMs [14]. This is further
extended with tokens sX,skemX for static public keys and their ciphertexts.
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4 Performance Analysis

The proof-of-concept implementation is based on BoringTun [5], Cloudflare’s
Rust implementation of WG, and available on GitHub under the BSD 3-Clause
License: https://github.com/qkniep/pqwg-rust. This was originally developed
and explained in more detail in my Bachelor’s thesis. [11]

Message Sizes. Ciphertexts and public keys of PQ KEMs are hundreds of
Bytes large. Since WG is based on UDP and IP packet fragmentation is con-
sidered fragile [3], we need to split datagrams on the application layer. In WG
there is a 5 s timeout if the handshake fails, e.g. because a datagram was lost.
Combined with a study on packet loss [16] this gives about 30 ms per addi-
tional datagram. Choosing cryptographic primitives with small key sizes is
thus essential.

Amplification Attacks. To prevent DoS attacks based on amplification, ini-
tiation messages should be larger than the response. In the following we always
accommodate for the necessary padding in the initiation message.

Memory Exhaustion Attacks. Another problem when splitting messages is
the possibility of memory exhaustion attacks. [3] Malicious initiators may send
incomplete messages until the responder runs out of memory. WG already has
a system against CPU-exhaustion attacks [6], which could be expanded to also
prevent memory exhaustion.

4.1 Benchmark Setup

All benchmark results that follow come from a workstation with the following
specifications: CPU Intel Xeon E3–1230 v3 (4 × 3.3 GHz, 8 MB Cache, AVX2,
AES-NI), RAM 8 GB DDR3–1600, OS Arch Linux x86 64, and Kernel 5.3.7–
arch1–2–ARCH.

The benchmarks are based on the BoringTun handshake test [5], adapted in
the number of packets sent over the WG tunnel, and run through Criterion.rs [9],
with sample size of 100 and measurement time of one minute. Results will be
presented only for some of the most interesting cryptographic primitives, based
on results from Sect. 4 and the speed kem benchmark in liboqs [13].

https://github.com/qkniep/pqwg-rust
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4.2 Use Cases

Fig. 1. Time the L1 handshake takes with different PQ cryptographic primitives.

Home VPN Server (L1). Here, identity hiding is not a priority or its impos-
sible anyways. Kyber-768 seems almost perfect, as it is almost as fast as WG
(see Fig. 1), while fitting into one datagram per message. For NIST level V
there is a trade-off between computation time and additional datagrams, with
NTRU4096 and Kyber-1024.

Trusted Network Access (L2). If we want to protect the data and the
clients’ identities, achieving NIST level V is the most interesting case: It gives
the same security guarantees as WG, while also considering the possibility of
future quantum-capable attackers. While it could be reasoned to go for level III
with Kyber-768, NTRU4096 or Kyber-1024 both have reasonable cost.

Fig. 2. Time the L2 handshake takes with different PQ cryptographic primitives.
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Future Proof System (L3). In cases where a rigid system is built, that can
not be adapted once capable quantum computers arrive, it needs to implement
an L3 handshake. Such a future-oriented system should reasonably target NIST
level V. Then, the handshake needs at least two datagrams more than L2. That is
a lot for preventing attacks that are not possible until strong quantum computers
are in active use. Only NTRU4096 and Kyber-1024 seem suitable.

Fig. 3. Time the L3 handshake takes with different PQ cryptographic primitives.

4.3 Throughput, Ping, Reliability

Notably, nothing about the symmetric cryptography was changed. Therefore, we
expect no noticeable difference in throughput and average packet ping. Especially
when measured over the course of a longer networking session.

Fig. 4. Runtime of the handshakes with different PQ security levels, each performing
the handshake and sending 1 or 2000 packets over the tunnel.
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Sending only 2000 packets, it is apparent that the key exchange has little
impact in practice. This can be seen in Fig. 4. In these examples packets are
sent to localhost, latency and its variance link is thus minimal.

WG also has a feature to ensure a failing handshake will, in most cases, not
harm transmission throughput over the tunnel: After starting a key exchange
there is a sixty second grace period, during which the old key can still be used. [6]

5 Summary

Our analysis has shown that it is already feasible to implement basic PQ security
measures, especially when key exchanges do not happen too frequently. At the
moment, the cost in performance is still relatively high though. Also, threat
models may not even include attacks that far into the future. For almost any use
case, it is probably too expensive to preemptively implement security against
active quantum adversaries.

While our hybrid approach does not fully adhere to WG’s notion of simplicity,
we did try to achieve a practical solution, and for now that means using PQ
primitives in hybrid. This is also explicitly recommended by the BSI (German
Department for IT Security). [4] Once this is no longer necessary, the approach
in [10] seems very reasonable.

5.1 Future Work

Results from this work can be used for estimating the cost of including PQ
measures into key exchanges. From this point one can decide, whether the gain in
security against future attacks is worth the cost in computation and transmission
times today. The work by Hülsing et al. [10], which adapts proofs for WG [7,8] to
their PQ adaption of WG, could be used as strong foundation to make similar
proofs for our hybrid construction. In a future version of this work we would
redefine L1 to achieve identity hiding but not PFS, by using the Tiny WireGuard
Tweak [1], and then, add the same steps now added for L1 in L2 instead.
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Abstract. The methods of cybersecurity costs’ evaluation are inclined
towards the cost of incidents or technological acquirements. At the same
time, there are other, less visible costs related to cybersecurity that
require proper recognition. These costs are associated with the actions
and the time spent by employees on activities connected to cybersecurity
management. The costs form a considerable component of cybersecurity
expenditures, but because they become evident only during scrupulous
analyses, often they are disregarded. CAsPeA is a method that enables
estimating the costs based on a model derived from the Activity-Based
Costing (ABC) and the NIST SP 800-53 guidelines. This paper presents
the application of CAsPeA in a steel structures manufacturing company.

Keywords: Cybersecurity management · Cost · Estimation ·
Information security

1 Method Description

CAsPeA – Cost Assessment of Personnel Activities in Information Security
Management (https://zie.pg.edu.pl/cybsec/caspea) – is a method that comple-
ments the portfolio of available methods for estimating the cost of cybersecurity
management by enabling the estimation of the costs of human effort and time
spent on cybersecurity-related actions during their daily work [1–4]. These costs
regard, for instance, employees’ participation in cybersecurity training, managing
secure configurations of utilised hardware and software or reading cybersecurity
policy documents. Such costs constitute a substantial component of cybersecu-
rity spendings, but because they become evident only during scrupulous analy-
ses, often they are neglected. By enabling their estimations, the method should
provide a more complete view of the costs of cybersecurity.

To enable the calculations, the Activity-Based Costing (ABC) system was
selected and adopted to the costing model [1–4]. The advantage of the ABC
is that it recognises activities (human or machine operations) as fundamental
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objects that induce costs in enterprises. In CAsPeA, the total cost in an organi-
sation is calculated as a sum of costs of all activities performed in an enterprise.
Then, to derive the costs of activities, proper cost centres must be assigned to
them using relevant cost drivers. Duration driver in the form of working time
expressed in hours was chosen as the activity cost driver.

For the reference list of the activities to be included in the model, NIST SP’s
800-53 list of security controls was chosen after a thorough literature analysis.
The list embraces multiple cybersecurity areas that altogether comprehensively
address the organisational cybersecurity context. Examples of the areas include
the AT Awareness and Training, CM Configuration Management or PS Person-
nel Security [5]. Another strength of the document is that it is fully compatible
with ISO/IEC 27001 (see the mapping between the documents in Appendix H,
Table H-1 of NIST SP 800-53) – the most recognised cybersecurity standard
worldwide.

The method enables rough estimations based on a small set of input data
that characterise an organisation, namely:

– the number of employees with access to the IT system,
– the number of cybersecurity professionals,
– the hire rate (the percentage of personnel hired in the current year),
– the termination rate (the percentage of workers that terminated their employ-

ment in the current year),
– the fluctuation rate (associated with employees’ promotions, demotions and

transfers)
– the mobile devices usage index (the number of employees that use mobile

devices divided by the total number of employees),
– and hourly pay rate values for eight categories of employees.

Minimum, maximum, average and usual duration times are assigned to the cost
drivers and the posts of personnel performing or responsible for relevant cyberse-
curity activities (e.g. IT administrators, users or Human Resources Management
professionals) associated with resource cost drivers.

Based on the input data, the total cost of staff activities related to infor-
mation security management, the cost of exclusive IT security professionals’
activities, the minimum amount of work time of information security profes-
sionals indispensable for assuring sufficient level of information security in an
organisation and the related minimum required quantity of information security
professionals are calculated. Each of the parameters is represented by its mini-
mum, maximum, average and the usual (typical, based on other organisations)
value. The application of the method is presented in the next section.

To facilitate calculations, a spreadsheet was developed and updated peri-
odically. It comprises four worksheets that correspond to subsequent steps of
the assessment process. The Organisation data worksheet enables entering all
required input data, such as the number of employees, human resources metrics
or hourly pay rates. The worksheets List of activities and Cost of information
security professionals comprise formulae for calculation of the total cost of activ-
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ities. In the Assessment results worksheet the outcomes of the assessment are
presented. More details on CAsPeA can be found in [1–4].

2 Case Study

This section illustrates the application of CAsPeA for a manufacturer of steel
structures and filtering devices for water purification in crisis situations. The
filters are designed for quick relocation, manoeuvring and deployment. They
remove various types of contaminants, including natural, chemical, biological
and radioactive. In addition, the company produces devices for storing drinkable
water in a field. Figure 1 presents the structure of the IT system of the enterprise.
It is worth to note that the main site and the sales office are located in two
different cities.

2.1 Input Data

The enterprise employs more than 50 workers. In the first step of the cost eval-
uation process, the number of posts with access to the IT system needed to be
determined. Table 1 presents the extract of the company’s employment structure
showing the relevant positions. The wanted value is 40. The hire rate, termina-
tion rate, fluctuation rate and the mobile devices usage index are subsequently
13%, 8%, 3% and 10%. Finally, the average hourly gross pay rates for eight
categories of employees are presented in Table 2.

Table 1. The employment structure of the manufacturer of steel structures and filtering
devices (employees that have access to the IT system).

Position/Department Number of employees

1 Chief Executive Officer 1

2 Director 3

3 Management Assistant 1

4 Plenipotentiary 2

5 Secretariat 2

6 Quality Control 2

7 Managers 7

8 Specialists 11

9 IT officers 2

10 Other employees 9

Total 40
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Fig. 1. The IT system of the manufacturer of steel structures and filtering devices for
water purification in crisis situations.

2.2 Results

Based on the input data, cost estimates presented in Tables 3 and 4 were
obtained. The total cost of personnel activities associated with cybersecurity
is 202,287.20 PLN (Polish Z�loty) which is equivalent to around 55,000 USD or
46,000 EUR. This cost is calculated based on typical (usual) values from other
companies assigned to the activities in the CAsPeA model. Alternatively, the
minimum (when baseline cybersecurity level is maintained), maximum (when
extensive cybersecurity measures are introduced) and average values are conse-
quently 122,934.66 PLN (around 33,000 USD or 28,000 EUR), 1,358,004.10 PLN
(around 370,000 USD or 310,000 EUR) and 740,469.38 PLN (around 200,000
USD or 170,000 EUR). It becomes evident that these values are not negligible.
Contrarily, they can become a visible component in a yearly budget. Thus, they
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Table 2. The average hourly gross pay rates in the analysed enterprise.

Resource cost drivers Average hourly gross pay rate [PLN]

Information security professionals 48

IT administrators 51

Human Resources Management professionals 42

Users 32

Senior-level executives or managers 53.5

Physical secuity officers 20

Physical security officers guards 20

Budget Planning and Control professionals 49

Table 3. The estimate of the total yearly cost of activities associated with cybersecurity
management for the manufacturer of steel structures and filtering devices.

Total yearly cost of activities [PLN]

Minimum Maximum Average Usual

122,934.66 1,358,004.10 740,469.38 202,287.20

Table 4. Estimates of parameters associated with cybersecurity professionals: cost of
their activities, the number of required working hours, and the required number of
posts.

Estimated parameters associated

with cybersecurity professionals

Yearly cost of activities [PLN]

Minimum Maximum Average Usual

35,553.12 250,516.80 143,034.96 91,779.60

Required working hours (yearly)

Minimum Maximum Average Usual

740.69 5,219.10 2,979.90 1,912.08

Required positions

Minimum Maximum Average Usual

0.5 3.0 1.5 1.0

need to be appropriately considered when planning company activities, cyberse-
curity strategies etc.

Further analysis of the results reveals that a substantial part of the costs
is associated with the activities connected to Physical Access Monitoring and
Control (PAMC). These activities include surveillance of both company sites
located in two different cities and require continuous presence of security guards
and specialists. However, the IT system is one of many assets monitored within
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Table 5. The estimate of the total yearly cost of activities associated with cybersecurity
management for the manufacturer of steel structures and filtering devices excluding
Physical Access Monitoring and Control (PAMC) activities.

Total yearly cost of activities

excluding PAMC [PLN]

Minimum Maximum Average Usual

44,554.66 296,284.10 170,419.38 104,607.20

the activities. Thus, the associated cost can be entirely or partially deduced from
the cost of cybersecurity. Table 5 presents the estimate of the total yearly cost
of activities associated with cybersecurity management with PAMC excluded.

3 Conclusions

The paper illustrated the application of CAsPeA to an enterprise that specialises
in manufacturing steel structures and filtering devices. CAsPeA revealed the
hidden costs that normally are not considered, but apparently, constitute a con-
siderable costing component. These costs are associated with employees’ daily
activities connected to cybersecurity (e.g. getting familiar with cybersecurity
policies or ‘processing’ cybersecurity incidents) and should be taken into account
when planning company activities or cybersecurity strategies. Based on a small
set of input parameters, a rough estimation of minimum, maximum, average and
typical cost values was obtained. Also, indications on the required working hours
and posts for cybersecurity officers were provided. Further works on the method
include:

– development of ISO/IEC 27001-based version and comparing it to the current,
NIST SP 800-53-based edition,

– enhancing CAsPeA with activities linked to the security controls of the sec-
ondary and tertiary NIST SP 800-53 baselines,

– and acquiring empirical data on the cost of personnel activities and comparing
them to the results from CAsPeA.
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Abstract. User authentication systems enforce the access control of
critical resources over Internet services. The pair of username and pass-
word is still the most commonly used user authentication credential for
online login systems. Since the credential database has consistently been
a main target for attackers, it is critical to protect the security and pri-
vacy of credential databases on the servers. In this paper, we propose
SGX-Cube, an SGX-enhanced secure Single Sign-On (SSO) login sys-
tem, to prevent credential leakage directly from the server memory and
via brute-force attacks against a stolen credential database. When lever-
aging Intel SGX to develop a scalable secure SSO system, we solve two
main SGX challenges, namely, small secure memory size and the lim-
ited number of running threads, by developing a record-based database
encrypted scheme and placing only authentication-related functions in
the enclave, respectively. We implement an SGX-Cube prototype on a
real SGX platform. The experimental results show that SGX-Cube can
effectively protect the confidentiality of user credentials on the server
side with a small performance overhead.

Keywords: SSO · SGX · Credential leakage

1 Introduction

User authentication is a common security mechanism in Internet applica-
tions to restrict unauthorized access to member-only areas on websites. User-
name/password is still the most commonly used user authentication method for
online login systems. After being securely delivered to the authentication sys-
tem, the user inputted username and password are validated by checking with
the credentials stored in a credential file or database.

It continues as a challenge for Internet service providers to protect user cre-
dentials including passwords, which may be leaked out from either non-volatile
storage (e.g., hard disk) or volatile storage (e.g., RAM). After breaking into
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the target server system, attackers can dump the credential database and then
launch offline brute force attacks. Alternatively, attackers can manage to steal
user credentials in plaintext from RAM. For instance, attackers can remotely
read the memory content from victim servers by exploiting Heartbleed bug in
the OpenSSL library [6]. Even worse, when an attacker successfully breaks into
the victim server, it can observe the entire credential verification process and
easily retrieve credentials from memory. An advanced persistent attacker may
collect most user credentials after stealthily residing in the server for a long
enough time. In cloud environments, curious-but-honest service providers have
the privilege to capture sensitive data in the memory of virtual machines, so
it becomes another security concern on protecting user credentials in untrusted
clouds.

Considering the difficulty in protecting user credentials, more Internet service
providers choose to mitigate the management of various usernames and pass-
words by using Single Sign-On (SSO) services provided by third-party trusted
companies such as Google [1] and Facebook [27]. By verifying a single creden-
tial on the SSO site, one user can obtain different authorized tokens to access
multiple Internet services. It requires both users and Internet service providers
to trust the third-party SSO sites with their credentials. However, similar to
traditional online login systems, the SSO service providers are also troubled by
the credential leakages from either hard disk or RAM [26]. Protecting the user
credential in the SSO system still requires more effort.

Recently, researchers focus more on preventing information leakage during
data processing. For instance, homomorphic encryption schemes [7] can ensure
the credentials staying in ciphertext when being processed. Though it is promis-
ing to enhance the security of sensitive data in memory dramatically, it has to
further reduce the overhead before being widely deployed. Another trend is to
process sensitive data in an isolated and trusted execution environment. Thus,
even if the host OS is malicious, sensitive data can be processed in trusted
environments securely. For instance, Intel Software Guard Extensions (SGX)
provides a process-level isolation mechanism to protect user-level sensitive code
and data from malicious OS [12]. On the client side, SGX has been used to pro-
tect password managers [8]. On the server side, SGX has been used to protect
a credential encryption module [15]. However, it still requires further studies on
using SGX to protect SSO services.

In this paper, we develop SGX-Cube, an SGX-enhanced secure SSO sys-
tem, to protect user credentials on SSO servers. It can not only successfully
prevent credential leakage from memory, but enhance the security of credential
databases against offline brute-force attacks. Our system consists of three major
components, namely, authentication server, credential database, and application
server. As the core of SGX-Cube, the authentication server runs inside the SGX
enclave to process authentication requests. It protects the credentials in the
memory even if the host OS is compromised. When a user requests to access
an application server, the login request will be forwarded to the authentication
server. After successful authentication, the authentication server generates and
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delivers an authorization code to the user. Then the user uses this authorization
code to request the corresponding token and access the desired service from the
application server.

We implement a prototype of SGX-Cube on a computer supporting SGX
v1 instruction set. To protect the transmission of credentials, we implement
an HTTPS server inside the enclave. We use a lightweight database manage-
ment system SQLite as the credential database and a lightweight web server as
the application server supporting OAuth 2.0 scheme. SGX-Cube is flexible to
support other database systems and application servers. Our test-bed supports
up to 4 threads in an enclave concurrently. The experimental results show that
SGX-Cube introduces an average 0.6× extra time cost for a single thread in the
authentication server. For a single request, it only takes about 1.5 ms for each
authentication thread to complete all its tasks. For concurrent 500 requests, the
average request processing time is about 1.7 ms. Our security analysis shows that
SGX-Cube can effectively increase the security of the SSO system by preventing
credential leakage from both memory and hard disk. In summary, we make the
following contributions:

– We propose SGX-Cube, an SGX-enhanced secure SSO system, to increase the
security and privacy of user credentials on the server by placing operations
on credentials inside the SGX enclave. We further propose a record-based
encryption scheme to improve authentication efficiency.

– We formulate the security of SGX-Cube in two aspects: confidentiality and
integrity. Then, we analyze the security of SGX-Cube against both online
attacks and offline attacks.

– We implement a prototype of SGX-Cube using SGX v1. The experimental
results show that it is a practical solution with a small performance overhead.

2 Background

2.1 Intel SGX

Intel Software Guard Extensions (SGX) [12] provides user-level isolated execu-
tion environments (enclave) to protect the confidentiality and integrity of appli-
cation code and data in a reserved memory region named the Enclave Page Cache
(EPC), which is encrypted and authenticated by a Memory Encryption Engine
(MEE) hardware module. SGX protects an application against illegal access
from other applications, OS, and hypervisor. An SGX application is divided
into two components: a trusted component and an untrusted component. The
trusted component contains the code and data that need to be protected inside
the enclave, while the untrusted component contains the rest part. To bridge
these two components, SGX uses the enclave entry call (Ecall) and outside call
(Ocall) mechanisms, where Ecall is the function call that enters the enclave from
outside and Ocall is the function call that calls an untrusted outside function
from an enclave. The code inside an enclave can only be executed in the user
mode. The maximum EPC size is limited (128 MB for SGX v1, 256 MB for
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SGX v2). When the configured enclave size is larger than the EPC size, the
performance overhead becomes inevitably high due to paging between EPC and
normal memory.

2.2 Single Sign-On (SSO) Systems

A single sign-on (SSO) system provides an authentication process that allows
a user to access multiple application servers with one set of login credentials.
Therefore, a user only needs to log in once and then gain access to different
applications without re-entering the login credentials at each application server.
As third-party authentication systems, the SSO systems are trusted by both
end users and a number of application servers. One SSO system contains three
main parties: user, identity provider (IDP), and relying party (RP), where RPs
are the applications/websites to be accessed by the users and the IDPs are
responsible for providing the authentication services. The workflow is described
as follows. First, the client connects to the RP (i.e., application server), which
then sends the authorization request to the client. Next, after verifying the IDP
(i.e., authentication server) via remote attestation, the client sends its login
name and password to the IDP. After successfully verifying the client, the IDP
generates an authentication token and sent it to the client. Next, the client
forwards the authentication token to the RP. After verifying the client with the
provided authentication token, the RP can request the user information (e.g.,
username) from the IDP and grant the services to the client.

3 Threat Model and Assumption

We focus on protecting the server-side login process and ensuring the confi-
dentiality of user credentials on the server side. In this work, we refer user
credentials to the username and password only, though other credentials may
also include sensitive information such as PIN or credit card information. The
credentials experience three states in the complete login procedure, namely, data-
in-motion, data-in-use, and data-in-rest. Therefore, the attacker may commit a
series of attacks against each state of credentials to defeat the user authentica-
tion process and collect valuable username/password and other user credential
information.

In our threat model, we consider a strong attacker, who can commit not only
the offline attack but also the online attack. To commit the offline attack, the
attacker can extract the credential database from the server, then analyze it with
the known information to infer other sensitive information or even brute force
the encrypted credentials directly. To commit the online attack, the attacker
would compromise the authentication server and users. It targets both the data-
in-motion and the data-in-use. The attacker may retrieve plaintext credentials
by eavesdropping on the communication channels connected to the authentica-
tion server, monitoring the memory of the server, manipulating login requests,
or creating new known-plaintext records in our database to launch the chosen-
plaintext attack. If it is result-less to reveal the desired credentials, the attacker
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may try to circumvent the authentication process via manipulating the authen-
tication process in the memory or splicing stored credential records.

We assume the Intel SGX can be trusted. Although the SGX has become
vulnerable to high-cost side-channel attacks [18], lots of efforts have been made
to mitigate these attacks in both software [22] and hardware [13,19]. We target
at protecting the user credentials on the server side, and the credential on the
client side can be protected by other SGX-based solution [8].

4 System Design

4.1 System Overview

Figure 1 shows the overall architecture of our SGX-enhanced secure SSO login
system. When an application server attempts to use our SSO service, its first
step is to authenticate the SSO authentication server. It will request a remote
attestation to ensure the integrity of the authentication server running in the
SGX enclave. An attestation server may be required to facilitate the attesta-
tion [12]. After a successful remote attestation, it can verify the authentication
server.

Fig. 1. The Architecture of SGX-Cube. (0) Attestation; (1) Login Request; (2) Cre-
dential Handling; (3) Authorization Grant; (4) Service Access.

Based on the standard SSO scheme, our SGX-Cube is divided into three main
components: Identity Provider (IDP), Relying Party (RP), and user. These three
components interact with each other during the complete login procedure.

Identity Provider (IDP). As the core component of the SSO login system, the
IDP consists of two main components, namely, an enclave-based authentication
server and a credential database.

The authentication server runs inside the enclaves. It is responsible for con-
ducting remote attestation, receiving the user’s login credentials from clients,
verifying user login credentials against the credential database, generating an
authentication token, and then sending the token to both the client to facili-
tate the authentication of the client to the application server. Here, the user
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Fig. 2. The flow of user login process

login credential contains the username and the password. The authentication
token can be customized according to the requirements of the specific application
server. The authentication server also handles new user registration, password
update/reset, and account revocation. Depending on its function, we split the
authentication server into two modules in two separate enclaves: the response
module and the authentication module. Splitting the authentication server into
two enclaves, we intend to mitigate risks of the credential processing (authen-
tication module) by isolating it from the potential vulnerabilities of network
interaction (response module). The response module is to establish secure com-
munication channels with the outside (the application server and the client)
to defend eavesdropping and tampering. It handles all the requests from them.
The authentication module processes credential related tasks. During the login
procedure, all the credentials are passed from the response module to the authen-
tication module via a secure communication channel of intra-platform.

The credential database stores user credential information for user authenti-
cation. The privacy of the database is protected when stored on the hard disk.
Instead of encrypting the entire database with one key, we protect each column of
the database table with a unique key (subkey). The subkeys are encrypted when
stored on disk and in normal memory and are only decrypted inside the enclave.
Towards achieving record-based encryption, the fields of one record are bound
together [5]; see Sect. 4.3. By using record-based encryption, the query opera-
tions can be applied to the encrypted values directly. The credential database
can be organized by the default DBMS (database management system) without
any modification. After calculating the encrypted value of the inputted user-
name, the authentication server queries the database and reads the encrypted
value of the corresponding password into the enclave.
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Relying Party (RP). The RP could be any kind of off-the-shelf application
server on the internet. It provides Internet services to the user after the user is
correctly authenticated by the IDP. All the login requests are redirected to the
IDP conducting the credential verification. It only receives the authorization code
from the user and verifies the code from IDP via a secure communication channel.
If the code is correct, the IDP would allocate the token and corresponding user
information to the application server. The user information is used as the user
identity on the application server. Based on this identity in its database, the
application server creates or updates the record for the authorized user.

User. In our design, the user should get a seamless, out-of-the-box, easy to use
client. The client could be a typical browser or self-developed application that
supports the SSO scheme. It assists the user to get authorization from IDP and
access the desired Internet service of RP.

4.2 Login Procedure

In this section, we discuss each stage of the login procedure. We divide a complete
login procedure into four stages, as shown in Fig. 2. While the remote attestation
stage is not a part of the login procedure, it is an essential job to be conducted
before the login procedure.

Stage 0: Attestation. Before the application server accepts a login request,
it is necessary to ensure that the IDP is trustworthy. It conducts the remote
attestation to verify that 1) the enclave is running on a genuine SGX enabled
platform, and 2) the authentication server code running inside the enclave has
not tampered with [14]. Literally, the application server should attest to both two
modules of the authentication server. However, since the authentication module
is not accessible from the outside, the remote attestation is only conducted on
the response module directly. To solve this problem, we let the response mod-
ule and authentication module to conduct the local attestation [28] for each
other during the initialization. Until the dual local attestation is successful, the
response module will accept the remote attestation request. The response mod-
ule will generate a response that contains a signed hash value of the software
running inside the enclave and the enclave environment. According to Intel [23],
the application server needs to forward the remote attestation response to the
response module, which stores the keying material to verify the hash value. To
ensure the trustworthiness of IDP, the application server could start the remote
attestation periodically (e.g., 24 h). Otherwise, the remote attestation could be
conducted by a trusted third-party CA. The application server only needs to
verify the certification of the authentication server.

Stage 1: Login Request. When a user requests to access the resource of the
application server, the application will check if the request contains a valid token
generated by itself. If yes, the user can access the desired Internet service directly.
Otherwise, the login request is forwarded to the authentication server. A secure
communication channel is established between the user client and the authentica-
tion server. The certification of the authentication server will be checked during
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the connection construction phase. Then the user client sends the login request
to the authentication server via the new-built secure communication channel.
The authentication server replies to the login request with a login interface (i.e.,
web page), which will be shown on the user’s client.

Stage 2: Credential Handling. After the secure communication channel is
established, the user can input the credential on the client side. The secure chan-
nel ensures that the user credential is directly delivered into the enclave on the
authentication server. Once the authentication server receives the user creden-
tial, it encrypts the username and uses it as the key to query the corresponding
record from the credential database. The encrypted password is read into the
enclave to conduct the password verification. The plaintext of the password won’t
leak out of the enclave. If the credential is valid, the authentication server will
generate an authorization code and return it to this user.

Stage 3: Authorization Grant. For the user, this stage is transparent. No
further operations are required. After receiving the authorization code from the
authentication server, the user client will resend it to the application server
automatically. The application server uses this authorization code to request
the access token from the authentication server. Similar to stage 2, a secure
communication channel is established between the application server and the
authentication server. The authentication server verifies the authorization code.
If valid, an access token is generated and allocated to the application server.

Stage 4: Service Access. In this stage, the application server needs to request
user information from IDP. The authentication server receives the request of
user information with the access token from the application server. If the access
token is valid, the application server will receive corresponding user information.
The user information is used as the user identity on the application server. The
application server stores the user information in its own database allocates a user
token and opens the resource access entrance to the user. After that, the user
can access the desired Internet service. The whole login procedure is completed.

4.3 Credential Storage

The stored user credentials include three major elements: username, password,
and user information. In our scheme, both username and password are encrypted,
which increases the entropy of user credentials against brute-force attacks. More-
over, the username may contain sensitive information and provide the attack-
ers with a good hint, directly or indirectly, to speed up the password cracking
process [16]. The user information stored in the credential database could be
username or other information (e.g., e-mail and address) used in the application
server. It is an identity of the user for the application servers.

Since the database is saved on the hard disk, the user credential data inside
the database are protected by encryption mechanisms. We use three different
subkeys Ku, Kp, and Ki to protect the three columns, i.e., username, password,
and user information, respectively. All three subkeys are encrypted by the enclave



SGX-Cube 283

seal key when stored on the hard disk. First, in the username column, we store
the HMAC of the username with subkey Ku. Its saving value is

hmac(Ku, username) (1)

Since the username serves as the primary key of the database, it should be
unique. Next, for the password column, we compute the hash of the combination
of subkey Kp and username as the key for the HMAC of password. The password
column saves the following value

hmac(hash(Kp, username), password) (2)

Finally, for the user information column, we encrypt this field with a symmetric
encryption scheme. Its key is the hash value of the combination of subkey Ki

and username. The saved value is

{userinfo}hash(Ki,username) (3)

We bind the username into both the password and user information to eliminate
the possibility of field substitution. It is also equivalent to protect each record
with a different key.

5 System Implementation

We develop the SGX-Cube prototype on SGX SDK v2.1.3 [12]. We implement
our authentication server running inside the enclave by using around 4K LOC.
The total size of binary loading into enclave memory is about 9.8 MB, which
includes an OpenSSL library [9]. We use the HTTPS on all communication
channels to protect the data transmission and ensure that credentials enter the
enclave of the authentication server. We use a lightweight relational database
management system, SQLite v3.13.0, as the credential database. We develop a
lightweight web server based on python Flask framework v0.12.2 as the applica-
tion server. Our implementation follows the standard Authorization Code Grant
type of OAuth 2.0 [10]. We use 256-bit SHA256 HMAC to protect username and
password and 128-bit AES in counter mode to protect user information In our
prototype, the authentication server and the credential database are deployed
on the same machine, while the application server and clients are deployed on
another machine in the same local area network.

6 Performance Evaluation

We evaluate the authentication server performance and overall performance of
our SGX-Cube prototype, respectively. We deploy the authentication server on a
machine with Intel(R) Core(TM) i7-6500U CPU @ 2.50 GHz and 8 GB RAM. Its
size of reserved EPC is set to 128 MB (about 93.5 MB available for applications)
on BIOS. The web server and user browser are deployed on another machine
with Intel(R) Core(TM) i7-4790 CPU @ 3.6 GHz and 16 GB RAM. All these
two machines run 64-bit Ubuntu Linux 16.04 with kernel 4.15.
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Fig. 3. Time cost of SGX-Cube

6.1 Authentication Server Performance

The authentication server replies to different types of requests in each stage.
Therefore, we measured the performance of the authentication server in the
login stage. Since there is no built-in timer function in SGX v1, we use the timer
function outside the enclave via Ocall. The Ocall introduces the extra overhead
around 15µs. The extra overhead is compensated in the final results. We run
each experiment 100 times and calculate the average values.

Figure 3(a) shows the measurement of the authentication server in each stage.
From it, we can observe that Stage 1 has the highest time cost. The authenti-
cation server sends a complete HTML login page to the user. Although we only
implemented a simplified login page, it is still the largest size of data to be sent
in all four stages. As mentioned in Sect. 4.2, the authentication server needs to
handle the received credential and access the database in Stage 2. The database
access causes the main overhead in this stage. In Stage 3 and 4, the authentica-
tion server locates the required information and responses to the corresponding
request. Since the authorized user information has been extracted from the cre-
dential database and cached inside the enclave, the time cost of Stage is relatively
low. We re-implement an authentication server without using SGX as the vanilla
SSO system. Compare with it, the overhead of SGX-Cube increases about 0.5×
(Stage 1), 0.3× (Stage 2), 1.1× (Stage 3), and 1× (Stage 4). The total overhead
increases by about 0.6×.

6.2 Overall Performance

To measure the overall time consumption of a complete login procedure, we
record the time length from the user starts the login request to the user gains
the access of web server. The overall overhead includes the authentication server
response, the webserver request handling, and user browser redirection. We mea-
sure the time cost of a complete login procedure with a various number of con-
current requests. We also evaluate the performance with multiple threads. The
response module and authentication module keep the same number of threads.
Note that the number of authentication server threads is limited by the size
of the enclave in SGX v1, which includes heap, stack, code/text segments, etc.
Although the SDK source code sets 128 GB as the maximum enclave size for the
64-bit program, the enclave size cannot reach this theoretical maximum since the
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driver did not support the Version Array (VA) page swapping yet. In our experi-
ment, we set 1 MB max heap size and 256 KB max stack size for the enclave. The
timer is on the user client. Each thread in the experiment handles 100 requests
in total.

As shown in Fig. 3(b), a complete login procedure costs about 11500µs for
a single authentication server thread and a single request. The percentage of
authentication server overhead is about 14%. As the number of concurrent
requests increases, the average time costs for each request increase. That is
because the authentication server cannot handle arriving requests in time. The
requests have to wait in the queue. Although we could add more threads to the
authentication server, the performance is not improved significantly. Even mul-
tiple threads can be created in the authentication server, the number of threads,
that can process the login requests concurrently, is limited and decided by the
platform. When the number of threads exceeds the number of logical processors,
the extra threads will sit idle. In this case, the concurrent requests are processed
in sequence to some degree. We will discuss how SGX-Cube could deal with this
limitation of concurrent requests in system scalability (Sect. 8).

7 Security Analysis

In this section, we give security definitions and briefly demonstrate the security
of SGX-Cube under two types of attacks: offline and online attacks. More details
can be found in [25].

7.1 Data Confidentiality Under Offline Attacks

As the records of credential databases are encrypted under secret keys, attackers
cannot derive any sensitive information from encrypted records without knowing
the keys. To demonstrate the data confidentiality of entire databases under offline
attacks, we adopt real world versus ideal world formalization [4] to define the col-
umn confidentiality under offline attacks. It is parameterized by a stateful leakage
function L1 describing what information leaks in the protocols. More precisely,
we define two games RealA and IdealA with a simulator S [17] and an adversary
A. The simulator S can simulate real protocols and data using a leakage collec-
tion, and the adversary A has the server’s view and can interact with real (or
simulated) protocols. If A cannot distinguish the simulated column data from
the real column data, then we can say the column achieves L1-confidentiality
under offline attacks. Note that the columns of usernames, passwords, and user
information are encrypted by the cryptographic tools HMAC and AES. There-
fore, if the adversary A has finite computational resources and has not held
the secret subkeys of each column, it cannot launch chosen plaintext attacks to
distinguish the simulated column data from real column data.
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7.2 Data Confidentiality Under Online Attacks

Similar to the column confidentiality under offline attacks, the column confi-
dentiality under online attacks is also captured by real world versus ideal world
formalization with an attacker A2 and a simulator S. The attacker A2 is online,
and it has a stronger capability than the online attacker. Specifically, it can
compromise both the server and a subset of users and can utilize them to launch
chosen-plaintext attacks. Since A2 can control users to launch chosen-plaintext
attacks, it can input arbitrary plaintexts into users’ programs and then observe
output ciphertexts. Note that the column data of usernames are encrypted by the
same subkey, and the subkey is held by all users. Therefore, A2 can distinguish
the simulated column data of usernames from the real column data by running
a user’s programs. As the column data of passwords and user information are
encrypted under the subkeys of different users, if A2 do not know corresponding
subkeys, it cannot distinguish the simulated column data of passwords and user
information from the real data.

7.3 Data Integrity Under Online Attacks

Since data can only be manipulated by online attacks, we only demonstrate data
integrity under online attacks.

Data Integrity in Memory. The data integrity in memory is guaranteed by the
security of the SGX enclave. The whole authentication procedure is completed
inside the enclave. The authentication results are delivered to the requester from
the enclave directly via secure communication channels. The results are not
revealed in the server memory and cannot be tampered. Hence, the attacker
can’t compromise the data integrity in the memory.

Data Integrity on Disk. The data integrity on disk means that credential
databases cannot be manipulated to authenticate a user without a correct pair
of username and password. Here, we consider an attacker A3 who can corrupt
both the authentication server and a subset of users. Particularly, A3 can control
a user u1 to generate a password p1 from a known string, and then replace an
honest user u2’s password with p1 in the credential database. Next, A3 may
attempt to impersonate u2 by sending the known string as the password. Recall
that the HMAC value of each user’s password is generated by a unique secret key.
Therefore, attackers have a non-negligible advantage to impersonate an honest
user if HAMC SHA256 is collision-resistant.

8 Practical Usage

Enclave Migration. In traditional enterprise networks, we can deploy a ded-
icated physical machine as the authentication server, which is not moved fre-
quently. However, when the entire network is in the cloud environment, authen-
tication server migration should be supported. Usually, the administrators only
need to perform an offline server migration by shutting down an enclave on one
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physical machine and rebooting it on another physical machine, which has dif-
ferent embedded SGX keying materials. Our system design enables a smooth
offline enclave migration. First, The credential database can be directly copied
or linked to the new enclave without any changes. Second, the subkeys can be
securely sent to the new enclave via either a direct secure network connection or
an out-of-band communication channel. The new enclave encrypts the subkeys
with its own seal key and then saves them on its local storage. We can also
support enclave live migration by adopting the migration mechanism proposed
by Alder et al. [2].

System Portability. The authentication server can be implemented on any
SGX-enabled Intel platform. Moreover, due to the modular design and clear
interfaces between modules, our system is flexible to support various Internet
services and different database systems. First, in addition to web servers in our
prototype system, the application servers could be other types of Internet ser-
vice, such as mail servers, FTP servers, cloud storage servers, and so on. All they
need is a suitable interface supporting the standard SSO scheme. The application
server only needs to support a secure communication channel with the authen-
tication server and the client and handle the authentication token, respectively.
Second, our system design is flexible to integrate various database systems to
store user credentials. Our prototype system uses a lightweight database SQLite,
which is good at storing data locally. To achieve a better data management capa-
bility, more powerful database systems can be adopted, such as MySQL, SQL
Server.

System Scalability. The number of threads in one enclave is limited. Our test-
bed allows configuring at most 7309 threads, given the 1 MB maximal heap size
and 256 KB maximal stack size. In practice, the number of active threads is
much smaller than that number. One straightforward solution is to increase the
number of active threads by deploying multiple enclaves on the same platform,
while those enclaves still share the same EPC. The number of threads running
simultaneously is decided by the number of logical CPU cores. Hence, when
a large number of requests arrive around the same time, only the first several
requests are served, and others have to wait. To serve tens or hundreds of login
requests concurrently, we may deploy multiple SGX cards [3] or physical servers.

9 Related Work

To prevent credential leakage, the login credentials must be protected securely
on the client, the server, and the transmission channel. On the client side, the
credential security mainly depends on how well users could protect their end
devices. SGX has been used to protect password managers, which stores all the
passwords of end-users on the client [8]. To protect the transmission channel,
mature secure protocols (e.g. TLS/SSL) are adopted. On the server side, the
key issue is how to process and store the user credentials securely. By port-
ing the credential processing code in trusted execution environments such as
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SGX, attackers cannot manipulate the control flow of authentication. To pro-
tect credential storage, the common solution is database encryption [24]. Partic-
ularly, subkeys have been used to protect different data records or tables in the
database [5,11]. CryptDB [21] and Seabed [20] are the database systems support-
ing encrypted query. Homomorphic encryption [7] allows more other operations
on the encrypted data, while the high cost still hinders its wide deployment.
Using trusted hardware to protect the credentials is a viable solution with much
smaller system overhead. SafeKeeper [15] is the first SGX-based solution for cre-
dential protection on the server side. It uses the encryption enclave to replace
the PHPass MD5 hash function. To establish a secure channel, SafeKeeper uses
DHKE to establish a shared encryption key between browser add-on and enclave.
Compared to SafeKeeper, our solution provides a more flexible framework that
can integrate with various internet services and database systems. The user can
use the original browser without extra add-on installation.

10 Conclusion

This paper demonstrates SGX-Cube, an SGX-enhanced SSO system that tar-
gets at preventing user credential leaking from both memory and hard disk on
the server side. By utilizing SGX as an isolated execution environment, we can
protect the confidentiality of user credentials when they are processed in the
memory. Besides, we can protect the control flow of the authentication process.
We choose to protect both the username and password to further defeat offline
brute-force attacks. We propose a simple but effective record-based encryption
scheme to protect user credentials stored on the hard disk. Due to the mod-
ular design, it is flexible to port SGX-Cube onto various application servers
and database systems. We implement a prototype of SGX-Cube on a real SGX
platform. Our experiments show that SGX-Cube can effectively protect the con-
fidentiality of login credentials with a small performance overhead.
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Abstract. Selection of a proper elliptic curve is the most important
aspect of Elliptic Curve Cryptography (ECC). Security of ECC is based
on the Elliptic Curve Discrete Logarithm Problem which is believed
to be unsolvable. Some of the well-known elliptic curve standards are
NIST FIPS 186-2, Brainpool, and ANSI X9.62. Among these, NIST-
recommended curves are a popular choice for industrial applications,
in particular, for Internet security as a part of TLS/SSL, and even in
real-time media encryption which uses Voice over IP (VoIP) technology.
Specifically, NIST P-256 curve is widely used in these applications. Some
NIST curves have disadvantages related to security issues, and therefore
it is important to search for secure alternatives. In our work, we propose
a new secure short Weierstrass curve EW256357 at the 128-bit security
level and compare it with the NIST P-256 curve. Our proposed curve is
compatible with NIST P-256 curve but features better security. Based on
the performance analysis of related curves in our previous and present
works in terms of delay and jitter, we say that our proposed curve is
suitable for the real-time media encryption.

Keywords: Elliptic curve · Cryptography · ECC · Security

1 Introduction

Elliptic Curve Cryptography (ECC) is a very popular asymmetric encryption
scheme proposed separately by Victor Miller [28] and Neal Koblitz [24] in 1985.
Since Elliptic curves (EC) have smaller key size and better computational effi-
ciency compare with other asymmetric key encryption techniques such as RSA,
the ECC based key exchange protocols, digital signatures, and message encryp-
tion have become very popular in the computer and network security field.

Different types of ECs of different security levels are available for commercial
or research purposes. Some of the popular ECs are developed by organizations
such as National Institute of Standards and Technology (NIST), Teletrust and
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so on. Usually the ECs are used for key exchange and digital signatures. Elliptic
Curve Diffie-Hellman Key Exchange (ECDHE) and Elliptic Curve Digital Sig-
nature Algorithm (ECDSA) are some well-known applications based on Ellip-
tic curves. Some elliptic curves (other than NIST curves) are Brainpool curves
[2], “Curve25519” curve developed by Bernstein [10], “Ed448-Goldilocks” curve
developed by Hamburg [21] and so on. NIST’s elliptic curves are considered to
be the most popular elliptic curves. Some of them are prime curves and some
of them are binary curves [1]. However, there are some drawbacks to NIST-
recommended curves including debates about the possible presence of backdoor
in the NIST-recommended curves [23,25]. These issues drive the researchers to
develop more secure elliptic curves. In this work, we have developed a new elliptic
curve EW256357 at the 128-bit security level, where E stands for Elliptic curve,
W stands for Weierstrass curve, and 256357 represents the primary number used
in this curve, i.e., 2256 − 357. Our proposed curve is more secure compare with
NIST P-256 curve with respect to the security parameters of Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) and some “ECC security” features (relevant
to short Weierstrass curves) [12] which are discussed in Sect. 7.1. Based on our
present work, we can say that our proposed curve provides better security to
VoIP media, which means real-time audio and video.

2 Related Work

The most popular forms of EC are Weierstrass form, Edward form and Mont-
gomery form. Multiple EC standards are available such as SEC2, NIST FIPS
186-2, Brainpool etc. which use one of these EC forms. NIST standards are
more popular for industrial applications, but due to some drawbacks in NIST-
recommended curves, researchers are developing more secure and efficient curves
in terms of EC operations and security. Brainpool curves, developed by Teletrust,
are generated over the prime field, use short Weierstrass form and use pseudo-
random prime numbers [2]. Bernstein has proposed “Curve25519”, a Mont-
gomery curve which uses an efficient Montgomery ladder for ECDHE operation
[10]. An Edward curve developed by Hamburg is “Ed448-Goldilocks”. It uses
Solinas trinomial prime for fast arithmetic operations in both 32 and 64-bit
machines [21]. J. W. Bos et al. of Microsoft Research have proposed a set of
prime order Weierstrass and (twisted) Edward elliptic curves and analyze them
from a performance and security perspective. Their Weierstrass curves are back-
ward compatible with current prime order NIST curves [18]. Their proposed
curves provide high security by supporting constant time, exception-free scalar
multiplication. The proposed curves’ arithmetic operations are faster than the
corresponding NIST curves.

3 Motivation

In this work, we propose a short Weierstrass prime curve at the 128-bit security
level. A similar type of very popular elliptic curve viz. NIST P-256 curve is
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widely used but it has some serious drawbacks (discussed in Subsect. 3.1) which
motivate us to propose a more secure elliptic curve. In addition, we are interested
in real-time media encryption which uses Voice over IP (VoIP) technology. Use
of VoIP applications is proliferating in every sector of our daily life such as real-
time video streaming, live audio, video-on-demand, webinars and so on. Recent
COVID-19 pandemic has increased the use of real-time applications immensely
throughout the world. The security of these applications has become a major
concern, as well. ECC can be a better choice in this context.

3.1 Some Drawbacks of NIST Curves

– The NIST curve generation process is not fully transparent. The generation
of the second curve coefficient b is not justified. NIST uses a random 160-bit
seed value and a hash function to generate b. Some researchers fear that if
NSA knows any weakness of the curves then the security of the curves may
be compromised [13].
Our curve generation process is fully transparent.

– The so-called “twist security” is an important security feature of ECC [12],
the lack of which may lead to twist-security attack. A curve is twist secure if
its order and its corresponding twist curve’s order are prime [22]. The NIST
P-256 curve does not qualify this, so it is weakly twist secure. Bernstein and
Lange have also mentioned NIST P-256 curve as a weakly twist secure curve
in [13].
Our proposed curve is twist-secure.

– Bernstein and Lange [13] mentioned that, though OpenSSL is the most pop-
ular open-source library (which is used for NIST curves implementation),
there are several reports regarding the cryptographic failures in OpenSSL
and many of them are still not fixed due to implementation difficulty [13].
OpenSSL team has improved their code quality a few years ago [20] but it
is not reported by the coders or researchers yet whether all those issues are
resolved or not.
In our experiment, we have used Java cryptography library “BouncyCastle”
to implement our proposed curve.

– Bernstein and Lange [11] also claimed that “NIST’s ECC standards create
unnecessary complexity in ECC implementations”.
Our proposed curve implementation process is simple and straight forward in
nature.

– There have been questions about probable presence of a backdoor in the Dual
Elliptic Curve Deterministic Random Bit Generator used in the NIST elliptic
curve generation process. This serious matter had been revealed due to the
leakage of some NSA documents [23,25]. Steve Lipner, one of the committee
members of the Committee of Visitors which was formed to review NIST cryp-
tographic processes, recommended in his report that “NIST should ensure
that there are no secret or undocumented components or constants in its
cryptographic standards whose origin and effectiveness cannot be explained.
(Transparency of product) This recommendation would preclude the issuance
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of the EES with its reliance on the then’ secret Skipjack algorithm as well as
the Dual EC DRBG with its reliance on an elliptic curves whose origin was
undocumented and whose security could not be verified.” [5]. Though the
Dual EC DRBG is now excluded from the standards, still there are doubts
over the other pseudo-random generators used to generate NIST curves, espe-
cially after Edward Snowden’s revelation [8].
Our curve generation process is transparent and fully described.

In our previous work [26] we showed that the use of ECC based encryption
schemes would ensure better real-time media protection. We implemented the
ECC encryption scheme in the real-time VoIP systems, and we showed that the
ECC implementation worked well in VoIP applications without degrading the
quality of the VoIP data. The delay and jitter values were within the range
as per the ITU-T G.114 recommendation [4]. Furthermore, we analyzed the
performance of the curves in terms of the video data rate as well. The video data
rate was the ratio of the received video data rate to that video frame’s play time.
It was measured in bytes per second. Usually, the high video data rate yields
better video quality. In our experiment [26], we noticed that during the video
transmission, the video data rates were nearly similar in both AES-encrypted
and NIST P-256 curve encrypted streams. Figure 1 [26] depicts the data rate
comparison of AES-encrypted video streams and ECC-encrypted video streams
using NIST curves. We can see that NIST 256-bit elliptic curve encrypted video
streams’ data rates are nearly same as AES-encrypted video streams’ data rates,
but if the EC key size increases, the data rate decreases for the first few frames
(e.g. NIST 571-bit curve), that deteriorates the video quality. Hence, 256-bit
curve will be more suitable for VoIP media encryption purpose.

This performance has motivated us to develop a new curve which is compat-
ible with the NIST P-256 curve and features better security. The word “com-
patible” is used in the sense that our proposed curve will be compatible with the
applications which support NIST P-256 curve. In this work, we have tested and
confirmed that our proposed 256-bit curve is suitable for real-time media encryp-
tion. We have shown that the proposed curve’s performance is faster compare
with the NIST P-256 curve in terms of basic elliptic curve arithmetic operations
which are essential for elliptic curve key generation and encryption/decryption
tasks. We have also compared the performance of the proposed curve with the
NIST P-256 curve in terms of real-time audio and video encryption. Further-
more, We have proved that the proposed curve is more secure than NIST P-256
curve.

4 Curve Generation

NIST recommends two types of curves for ECC, the pseudo-random prime curves
over GF(p) where p is the prime number, and binary curves over GF(2m) where
m is the degree of the field extension. The coefficients of these types of curves are
generated using a cryptographic hash function. NIST recommends the equation

y2 = x3 − 3x + b (mod p) (1)
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Fig. 1. Data rate comparison between AES and two NIST-recommended curves. Video
data rate of ECC NIST 256-bit encrypted video stream is more than that of NIST 571-
bit key for first 50–55 frames.

for the pseudo-random prime curve over GF(p). The coefficients of these curves
are selected in a way such that the elliptic curve operations’ efficiency can be
optimized [1].

In this work, we have considered prime curves only. Researchers prefer prime
curves over binary curves as the former is more reliable because the discrete loga-
rithm problem can be solved on the binary curves [16]. In general, six parameters
are used to generate the prime curves over GF(p) which is represented in a six-
tuple notation < p, r, a, b,G, h > where:

1. p is a prime number;
2. r is the prime order of the curve;
3. The first curve coefficient a;
4. The second curve coefficient b;
5. G is the base point where x, y are the coordinates of the base point, denoted

as Gx and Gy;
6. h is the cofactor of the curve and h is usually 1.

There are three types of elliptic curves that are commonly used: short Weier-
strass curves, twisted Edward curves and Montgomery curves. The short Weier-
strass model supports all curves which are defined over large prime fields. At the
same time, the twisted Edwards and Montgomery models support only a subset
of elliptic curves [18]. In our work, we have used the short Weierstrass model to
generate the new curve.

Security strength or security level is the most important aspect of cryptogra-
phy. By stating that the security strength is “n-bit”, we imply that 2n operations
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are required to break the system. The security strength of a symmetric key cryp-
tosystem is generally measured as its key size (assuming that no better attacks
than brute-forcing the keys are known). For instance, the security strength of
AES encryption with the 128-bit key is considered to be 128 bits. At the same
time, the security strength of asymmetric key cryptosystems is normally smaller
than their key size, due to the existence of attacks that are more efficient than
brute-force attacks. For instance, ECC generally requires a 256-bit key to sup-
port the 128-bit security level. And in particular, this is the case for our proposal,
which has a 256-bit key and a 128-bit security level.

5 Methodology

We have proposed a short Weierstrass curve of the form y2 = x3−3x+b because
this form is used in all NIST-recommended prime curves. We have chosen short
Weierstrass prime field curve because most of the elliptic curves are defined over
prime fields [19] without sacrificing any security bit which is very important for
ECDLP security [18]. This work is solely based on how we can generate an elliptic
curve suitable for VoIP media encryption which will be more secure than NIST
P-256 curve. Since the NIST P-256 is very popular and widely used curve which
uses short Weierstrass form, we have developed a similar type of curve for the
compatibility, that means our curve can be implemented in those applications
easily which support NIST P-256 curve. No Montgomery or Edward curve is
considered in this work for this reason.

Elliptic curve generation procedure includes choosing different curve param-
eter values. The basic idea of choosing elliptic curve parameter values comes
from the work of J. W. Bos et al. [18]. A very important task for elliptic prime
curve generation is to choose a prime number. Brainpool curves use pseudo-
random prime numbers to generate the prime curves but their performance is
not as good as NIST curves. NIST curves use pseudo-Mersenne prime which
supports efficient modular arithmetic like fast modular reduction [1]. J. W. Bos
et al. [18] used two different forms of primes, pseudo-Mersenne primes, and
Montgomery friendly primes. The pseudo-Mersenne primes have the property
to make the elliptic curves indistinguishable compared to Montgomery-friendly

prime curves, because in Montgomery-friendly prime p,
p + 1

2
is not close to 2n

for any value of n [14]. We have used pseudo-Mersenne prime for our proposed
curve and have chosen the other parameters of the curve deterministically. The
detailed methodology of other curve parameters’ selection is described in the
next section.

6 New Curve Parameter Selection

6.1 Prime Number Selection

Prime number generation is an important operation in ECC. That prime number
is used for the curve’s arithmetic modulus operations. Different EC standards use
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different prime number generation methods. NIST recommends a special type of
prime number which is known as generalized Mersenne number. The advantage
of these prime numbers over general or random prime numbers is that the fast
reduction can be carried out during modular multiplication [1].

There are different forms of primes used for Elliptic curves. One form is
2α − γ. This type of prime is known as a pseudo-Mersenne prime. Another form
of prime is 2α(2β − γ) − 1, known as a Montgomery friendly prime. The later
reduces some computations. The logic behind the Montgomery friendly prime
is based on the concept of Montgomery multiplication which states that during
modular reduction operations, the division operations can be replaced by logical
shift operations which are comparatively less expensive. In both forms α, β, and
γ are positive integers [18].

Though Montgomery friendly primes reduce some computations, the pseudo-
Mersenne prime curves are better in terms of indistinguishability as discussed in
Methodology section [14]. So, in our work, we have used the pseudo-Mersenne
prime of the form 2α − γ. The value of α is 2 times the security level of the
curve in terms of bits. For example, for 128-bit security, the value of α is 256.
Thus, we can choose a very large prime in this way. Based on their work in [18],
J. W. Bos et al. has proposed numsp256d1 curve [17] which uses the largest 256-
bit pseudo-Mersenne prime number 2256 − 189, and the property of this curve is
already tested with the largest 256-bit pseudo-Mersenne prime. During the curve
generation phase we chose the 256-bit second largest pseudo-Mersenne prime
number 2256 − 357 and compared its performance with 2256 − 189. We checked
that this prime number was as good as 2256 −189, and hence we chose 2256 −357
for our proposed curve. The performance analysis of our proposed curve, NIST
P-256 curve and numsp256d1 curves on basic elliptic curve operations are given
in Table 1 and Table 2. The chosen prime for our proposed curve is equivalent
to 3 mod 4 for efficient modular operations [18]. To check the primality of this
number, we have used Miller-Rabin primality test algorithm [6].

6.2 Order of the Curve

Every cryptographically strong prime curve contains a certain number of points,
that number must be a prime. This number is known as the order of that curve.
Determining the order of the curve for a very large prime is a time-consuming
process. One very efficient algorithm, known as Schoof-Elkies-Atkin point count-
ing algorithm based on Schoof’s algorithm [27], is used to get the total number
of points on that elliptic curve and hence the order of the curve over a finite
field. The inputs of this algorithm are values of a, b and the prime p.

The order r is generally calculated as r = p + 1 − t, where t is known as
trace, where 1 < |t| ≤ 2

√
p [18]. In this work, we have used Schoof-Elkies-Atkin

(SEA) point counting algorithm to find a prime order curve (i.e., the number
of points present in the curve is prime). We have executed the algorithm with
a = −3 and b = 1, and the value of b is incremented by 1 until the prime order
is found.
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Another feature of the proposed curve is that, it is twist secure, that means
for a specific value of b, both y2 = x3 − 3x+ b and y2 = x3 − 3x − b curves have
prime order. The second curve is known as the twist of the first curve.

6.3 Coefficients of the Curve

We have chosen the value of the coefficient a as −3 because the elliptic curves
of the form y2 = x3 − 3x + b provide the fastest elliptic curve arithmetic [3].
NIST and Brainpool prime curves also have the same value for the coefficient a.
The parameter b is chosen deterministically, and it belongs to the field Fp. As
mentioned in the previous sub-section, we have found b while determining the
order of the curve using SEA algorithm. The algorithm started with b = 1 and
incremented b by 1 until it found the prime order of the curve. Most importantly,
the coefficient b should support twist-security feature (discussed later). In our
proposed curve, the value of b is 5029.

6.4 Choosing the Base Point

For different applications of the elliptic curve such as key generation or encryp-
tion, the base point plays a very important role. The two coordinates of the base
point x and y should lie between 0 and p, where p is the prime order of the field
Fp. To find the base point of the proposed curve, We started with x = 1. We
have used Algorithm 1 to find the base point G(x, y).

To check the validity of x, we computed the Legendre symbol (c|p) where
c|p = c

p−1
2 (mod p). The Legendre symbol finds whether a number is a quadratic

residue modulo an odd prime. As per the rule, if the (c|p) value is either 0 or
−1, then c is not a quadratic residue, so we need to repeat the process with
the next value of x after incrementing it by 1. To find a valid coordinate x, we
used Cipolla’s algorithm to find the coordinate y by calculating y2 ≡ c (mod p).
Cipolla’s algorithm is used to solve the congruence of the form x2 ≡ n (mod p).
Since the equation was quadratic, y had two roots. We chose the smallest one.
After obtaining y, we checked whether 0 < y < p, and then selected G(x, y) as
the base point.

6.5 Cofactor

The cofactor of the elliptic curve is the ratio of the order of the curve and the
order of the base point. We know that the order of the curve is the total number
of points that lie on the curve. On the other hand, the order of the base point G
of that curve is the smallest value n for which n.G = ∞, where ∞ is the point
at infinity. For any elliptic curve E over a finite field Fp, if the order of the curve
is #E(F ) and the order of the base point is m, then cofactor h is calculated

as
#E(F )

m
. The value of the cofactor should be very small and an integer, that

means #E(F ) should be divisible by m. As per the NIST specification, the
cofactor value should be 1, 2, or 4, and the cofactor of the prime curves must
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Algorithm 1: Choosing the base point G(x, y)
Input: The prime number p, two curve coefficients a and b, and x coordinate of
the base point
Output: y coordinate of the base point
x ← 1;
while true do

c ← x3 + ax + b (mod p);

l ← c
p−1
2 (mod p);

if l = 0 or l = −1 then
x ← x + 1;

else
break the loop;

Solve y2 = c (mod p) using Cipolla’s algorithm;
y has two roots. Select the smallest one;

be 1 [1]. Our proposed curve’s cofactor is 1 also. That means the order of the
proposed curve and the order of the base point are same.

The curves with cofactor 1 are secure against the well-known small-subgroup
attack on Diffie-Hellman. In the small-subgroup attack, the attacker sends a
point of small order as his public key to a legitimate user. The user then computes
the shared secret key using his private key and the attacker’s public key. Since
the attacker’s public key has small order, the secret key does not have many
possibilities, so the attacker can get the information of the user’s private key
from the secret key. This type of attack can be prevented by the elliptic curves
with cofactor 1 [12]. Since the proposed curve’s co-factor is 1, it is secure against
the small-subgroup attack.

6.6 Proposed New Curve

Based on the requirements and methodology defined above, we have generated
a 256-bit twist secure new curve at 128-bit security level whose parameters are
given below:

The curve (EW256357): y2 = x3 − 3x + 5029 over Fp

1. Prime number p = 11579208923731619542357098500868790785326998466564
0564039457584007913129639579

2. Order of the curve r = 11579208923731619542357098500868790785279358597
1461506558239498229566154872651

3. a = −3
4. b = 5029
5. Gx = 1
6. Gy = 1013946800587930341723475908064252010751764830026381060949833

265392864829636
7. Cofactor h = 1



300 N. Sen et al.

7 Performance Analysis of the New Curve

7.1 Performance Comparison Between EW256357 and NIST P-256
Curves Regarding Different Elliptic Curve Operations

We have successfully tested the new curve to check its performance in different
elliptic curve operations viz. point addition, point doubling, scalar multiplica-
tion, fixed-window based scalar multiplication, Elliptic Curve Diffie-Hellman Key
Exchange (ECDHE) and Elliptic Curve Digital Signature Algorithm (ECDSA)
for constant execution time, and have compared the performance of the pro-
posed curve with NIST P-256 curve. The corresponding execution times are also
shown for numsp256d1 curve proposed by J. W. Bos et al. [17]. The system con-
figuration used for this experiment was Intel 3.40 GHz Core i7-3770 processor,
16 GB main memory, and 64-bit Ubuntu OS. The code was written in Java to
implement the curves and the other elliptic curve arithmetic operations. Each
operation was executed 1000 times and average execution time was calculated
for each of them. The comparison results are given in Table 1 and Table 2, the
execution time unit is millisecond.

Table 1. Execution time comparison of different elliptic curve operations (in millisec-
onds)

Curve Point
addition

Point
doubling

Scalar
multiplication

Fixed window- based
scalar multiplication

EW256357 0.0169 0.0196 6.9298 5.7132

NIST P-256 0.0198 0.0254 6.9564 5.7505

numsp256d1 0.0200 0.0269 7.1362 5.9063

Table 2. Execution time comparison of ECDHE and ECDSA operations (in millisec-
onds)

Curve ECDHE ECDSA

EW256357 12.2958 18.5187

NIST P-256 12.3144 18.5280

numsp256d1 12.3964 18.6591

Scalar multiplication is a very important operation required for elliptic curve
key generation and encryption/ decryption operations. Its execution time varies
depending on the size of the secret scalar value. An adversary can guess the
secret scalar by exploiting that information using side-channel attacks [18]. Fixed
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window-based scalar multiplication is one of those scalar multiplication algo-
rithms used for constant execution time irrespective of the size of the secret
scalar. In this experiment, the window size of the fixed window-based scalar
multiplication is 4.

The proposed curve has performed better in basic elliptic curve arithmetic
operations, but the execution time differences are not much in two curves. The
execution times are so close because the proposed curve and the NIST P-256
curve use short Weierstrass form where the value of the coefficient a is −3. The
values of the coefficient b are different for all three curves, but that coefficient
is not used in any of the elliptic curve operations. For instance, the two basic
elliptic curve arithmetic operations are point addition and point doubling. If we
consider two points P (xp, yp) and Q(xq, yq) on the elliptic curve E where xp,
yp and xq, yq are the x and y coordinates of P and Q respectively, then the
addition of P and Q will yield another point R(xr, yr) on E. The point R can
be calculated as follows [9]:

xr =
( yq − yp

xq − xp

)2

− xp − xq (2)

yr =
( yq − yp

xq − xp

)
.(xp − xr) − yp (3)

On the other hand, the point doubling operation, where P + P = 2P ,
P (xp, yp) and 2P (xd, yd) are the points on E and P �= −P , can be calculated as
follows [9]:

xd =
(x2

p + a

2yp

)2

− 2xp (4)

yd =
(x2

p + a

2yp

)
.(xp − xd) − yp (5)

where a is the coefficient of the short Weierstrass form.
From the last four equations we can see that the coefficient b of short Weier-

strass form is not required in the two basic elliptic curve arithmetic operations,
the point addition and point doubling, and these two arithmetic operations are
used in elliptic curve scalar multiplication, ECDHE and ECDSA. This is the rea-
son why the execution times of different EC arithmetic operations are similar in
the two curves. We have stated earlier that the proposed curve is compatible with
the NIST P-256 curve. The primary goal of this work is to propose an elliptic
curve which is suitable for VoIP media encryption and more secure than NIST
P-256 curve.
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7.2 Comparison Between EW256357 and NIST P-256 Curve
Regarding ECDLP and ECC Security

D. J. Bernstein and T. Lange have jointly proposed criteria for Elliptic Curves
which are safe for cryptographic use [12]. Since the proposed curve is a prime
curve and we have used the short Weierstrass equation, we have considered only
those criteria suitable for this curve. we have considered the Elliptic Curve Dis-
crete Logarithm Problem (ECDLP) security and Elliptic Curve Cryptography
(ECC) security criteria to test the proposed curve and compare it with NIST
P-256 curve. The comparison result is shown in Table 3.

Though ECDLP is an important property which ensures the security of the
ECC, in reality the attackers can break ECC without solving ECDLP [12]. For
example, some standard curves may be vulnerable because they may not work
properly for some rare curve points, they may reveal secret data for some points
which do not lie on those standard curves, or attackers may get secret infor-
mation through branch or cache timing attacks. These may happen because
ECDLP security is more theoretical than practical [12]. Since NIST curves are
considered to be the standard curves, they also have the aforementioned prob-
lems. Thus, apart from the ECDLP security, we have to ensure ECC security
as well. The proposed curve satisfies all required criteria of both ECDLP and
ECC security, while the NIST P-256 curve does not satisfy all of the criteria.
The security parameters that we have considered are discussed below. The first
four parameters are ECDLP security parameters and the last one is the ECC
security parameter.

– Rho Complexity: The Pollard Rho method is one of the methods used to
break ECDLP. Rho complexity is calculated as log2(

√
π/4.

√
r) or 0.886

√
r

where r is the order of the curve [18]. ECDLP can be broken easily if the value
of r is small, because 0.886

√
r number of additions are required to break it.

Hence, the value of r should be very large. Since the proposed curve is a
256-bit curve, the Rho complexity of the curve is 2127.8 as in the NIST P-256
curve, which is large enough for ECDLP security.

– Transfer: It is another method where ECDLP can be converted to a linear
algebraic group discrete logarithm problem. One of the transfer methods is

Table 3. Comparison of two curves regarding ECDLP and ECC security

Criteria EW256357 NIST P-256

ECDLP security

Rho complexity 2127.8 2127.8

Transfers Yes Yes

CM field discriminants Yes Yes

Rigidity Fully rigid Manipulative

ECC security

Twist security Strongly secured Weakly secured
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the Additive Transfer method, where the prime number used to generate the
curve over the prime field and the order of that curve are same. Attackers
can exploit this to break the ECDLP which is also known as Smart-ASS
attack [12]. The proposed curve’s prime number and the order of the curve
are different, so it is not vulnerable to this attack.
Second type of transfer is the Multiplicative Transfer method where (pn−1) is
divisible by r, where p is the prime number, r is the order of the curve and n is
an integer, n ≥ 1. The minimum value of n for which (pn−1) is divisible by r is
known as the embedding degree of the group. If the embedding degree is small,
then the curve becomes vulnerable to MOV (Menezes-Okamoto-Vanstone)
attack [12]. This attack uses Weil pairing to convert the discrete logarithm
problem on the points of an elliptic curve to a discrete logarithm problem on
finite fields which can be solved easily [7]. Therefore, the embedding degree
value should be very large to prevent MOV attacks. Different standard curves
support different embedding degrees. The proposed curve supports embedding
degrees large enough to prevent MOV attacks.

– Complex-Multiplication (CM) field discriminants: This parameter is
applicable to the elliptic curves which have very large endomorphism ring.
This is used to find the elliptic curve with proper order. The order of the
elliptic curve should be prime for a cryptographically secure elliptic curve. If
p is the prime number of the prime group Fp, then the order of the group
r = p + 1 − t where t is known as the trace of the curve. According to the
Hasse’s theorem, −2

√
p ≤ t ≤ 2

√
p [12].

Algorithm 2 is used to find the CM field discriminant D [12]:
The value of D is negative. So, the absolute value of D should be large enough
to ensure the ECDLP security. As per Bernstein and Lange’s approach, the
absolute value of D should be more than 2100 [12]. The proposed curve’s D
value is more than 2100.

– Rigidity: This feature prevents the generation of multiple curves from a
specific curve generation process. If the curve generation process is not rigid,
the attackers can generate many curves using that process and can choose
a weak curve which is vulnerable to the secret attack. The curve generation
process is fully rigid if it explains the generation of all parameters in detail, for
instance curve equation, the coefficient of the curve, the base point selection
criteria, etc. If the manipulatable curve generation process is not transparent,
attackers can potentially generate multiple curves from it.
Our curve generation process is fully rigid, because we have explained the
parameter generation procedures of our proposed curve. At the same time,
the NIST P-256 curve generation process is manipulative, because this curve
uses a hash function and a 160-bit random seed to generate the coefficient b.
The random seed is unexplained, so the hash function may be very strong,
but the attackers may try to find a specific seed value from a large set of seed
values to find vulnerability for the secret attack [12].

– Twist security: Twist security is very important feature with respect to
ECC security. It is required to prevent some well-known attacks such as
Invalid-curve attacks [12]. Invalid-curve attacks were proposed by Biehl,
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Algorithm 2: Calculating CM field discriminant
Input: The prime number p, and trace t
Output: The CM field discriminant D
find the largest integer m where t2 − 4p is divisible by m2;

if
t2 − 4p

m2
(mod 4) = 1 then

D ← t2 − 4p

m2
;

else

D ← 4.
t2 − 4p

m2
;

Meyer and Müller [15]. In this attack, the attacker sends a point Q of small
order of another curve to the legitimate user. If the user computes the shared
secret key by multiplying his private key n and the point Q, this may reveal
the information about the user’s private key. For instance, the attacker can
send many such invalid points of small order like 2, 3, 4, etc. After getting
the corresponding secret keys, he will get the values of n mod 2, n mod 3 and
so on. By using Chinese Remainder Theorem, the attacker can compute the
private key of the user. A twist secure curve can prevent such attacks.
A curve E is said to be twist secure if both E and its twist E/ are cryp-
tographically strong, and the minimum criteria is that their orders must be
prime [22]. According to Hasse-Weil theorem, if y2 = x3 +ax+ b is an elliptic
curve E over a prime field Fp, p is a prime number and p > 3, then the
order of the curve E = p + 1 + t, where t is known as trace of Frobenius, and
|t| ≤ 2

√
p. The corresponding twisted curve of E defined over Fp, represented

as E/, has its order calculated as p + 1 − t.
Our proposed curve is twist secure. The equation of the curve is

E : y2 = x3 − 3x + 5029 (6)

The value of the trace of Frobenius of the proposed curve is
t = 476398694179057481218085778346974766929.
The corresponding twist of the curve is

E/ : y2 = x3 − 3x − 5029 (7)

The orders of both E and E/ curves over Fp are prime. But the NIST P-
256 curve is not a strongly twist secure curve. The order of the NIST curve
y2 = x3 − 3x + b is prime (the value of b is given in [1]), but the order of its
corresponding twist curve y2 = x3 − 3x − b is not prime. So, the NIST P-256
curve has weak twist security. Bernstein and Lange have also mentioned in
[13] that NIST P-256 has weaker twist.
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7.3 Performance Comparison Between EW256357 and NIST P-256
Curves Regarding Real-Time Audio and Video Encryption
Using VoIP

We have tested the performance of our proposed curve on the real-time audio
and video encryption and compared the performance with the NIST P-256 curve.
The experiments are done using client-server architecture. We have used Ubuntu
16.04 (64 bits) operating system on both the server and the client machines. Java
and Bouncy Castle (an open-source lightweight cryptography API for Java) are
used for curve implementation, key generation and to implement the encryption
and decryption processes. We have used Elliptic Curve Integrated Encryption
Scheme (ECIES), which was initially proposed by Bellare and Rogaway and later
modified by Shoup [9,29], to encrypt the VoIP packets. Usually, asymmetric key
encryption schemes are not directly used for message encryption. But for this
experiment, we have encrypted RTP payload using the NIST P-256 curve and
our proposed curve to analyze their performance on VoIP applications. In the
experimental setup, the server is connected to the network through the Ethernet
connection and the client is connected through the institutional Wi-Fi. The
audio and video encryption systems follow the same methodology where the
server first receives the client’s ephemeral elliptic curve public key. The server
then encrypts chunks of data using that key and sends the encrypted chunks
one by one to the client. The client decrypts the encrypted payload using its
ephemeral elliptic curve private key. The encrypted stream is sent to the client
as a Real-time Transport Protocol (RTP) payload. UDP is used as the transport
layer protocol. MJPEG and WAV files are used for video and audio encryption
respectively. The machine configurations are given below:

Server Configuration:

1. Intel 3.40 GHz Core i7-3770 processor
2. 16 GB Main memory

Client Configuration:

1. Intel 2.50 GHz Core i5-2450M processor
2. 6 GB Main memory

We have measured the performance of the curves based on the end-to-end
delay and the jitter in milliseconds. We have conducted 5 experiments for each
curve (for audio and video encryption) and then calculated the mean of the
corresponding results. The end-to-end delay is calculated by adding network
latency from the server to the client, the encryption time at the server-end and
the decryption time at the client-end. The corresponding results are depicted in
Fig. 2, 3, 4 and Fig. 5.
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Fig. 2. End-to-end delay graph for audio encryption using EW256357 and NIST P-256
curves. The delay of NIST P-256 curve is less than the EW256357 curve, but the delay
difference between EW256357 and NIST P-256 curve is only 0.07 ms.

Fig. 3. End-to-end delay graph for video encryption using EW256357 and NIST P-256
curves. The delay of NIST P-256 curve is less than the EW256357 curve, but the delay
difference between EW256357 and NIST P-256 curve is only 1.25 ms.
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From the two end-to-end delay graphs for audio and video encryption in Fig. 2
and Fig. 3, we can say that the NIST P-256 curve’s end-to-end delay is less than
the proposed curve. However, the delay differences between the proposed curve
and the NIST P-256 curve is only 0.07 ms in audio encryption and 1.25 ms in
video encryption, which are negligible. Figure 4 and Fig. 5 depict the jitter plots
of two curves. The jitter value of our proposed curve is less than the NIST P-
256 curve. The NIST P-256 curve has 0.03 ms and 0.04 ms more jitter than our
proposed curve in audio and video encryption, respectively.

Fig. 4. Jitter graph for audio encryption using EW256357 and NIST P-256 curves. The
jitter value of NIST P-256 curve is more than EW256357 and the difference is 0.03 ms.

The experiments show that our proposed curve’s execution time is faster than
the NIST P-256 curve in basic EC arithmetic operations. The network jitter is
also low in our proposed curve. Our proposed curve’s end-to-end delay time is
little more than the NIST P-256 curve, but that issue is not as important as far
as the curve’s security is concerned. Since this work’s primary focus is to develop
a more secure curve than the NIST P-256 curve, we can see that our proposed
curve provides more security than the NIST P-256 curve, and its performance is
on a par with the NIST P-256 curve. This experiment proves that the EW256357

curve is a better choice for VoIP applications in security and overall performance.
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Fig. 5. Jitter graph for video encryption using EW256357 and NIST P-256 curves. The
jitter value of NIST P-256 curve is more than EW256357 and the difference is 0.07 ms.

8 Conclusion

In this work, we have discussed the generation of a new 256-bit elliptic curve
EW256357 at 128-bit security level, which is more secure than NIST P-256 curve.
Our work is based solely on generating a better short Weierstrass curve than the
NIST 256-bit curve in terms of security. We have not considered other types of
curves like Edward or Montgomery curves. We have tested the performance of
our proposed curve and compared it with NIST P-256 curves. We have also shown
that the proposed curve’s parameters are well explained, and the entire curve
generation process is transparent, whereas the NIST P-256 curve generation
process is manipulative. The proposed curve is a strongly twist-secure curve
but the NIST P-256 curve is not. Based on the performance analysis of related
curves, we can conclude that our proposed curve is suitable and a better choice
for VoIP media encryption.

The elliptic curves of short Weierstrass form do not support Edward addi-
tions. This operation is supported by the Edward curves. Some ECC security
features such as completeness or indistinguishability are supported by the Mont-
gomery and Edward curve [12]. Montgomery curves support a scalar multipli-
cation method known as Montgomery ladder which is much faster than the
standard multiplication methods used by short Weierstrass curves because unlike
short Weierstrass curves, Montgomery ladder method requires only x-coordinate
of the elliptic curve point for the scalar multiplication [12]. In the future, we will
extend this work to develop Montgomery and Edward curves which will support
more ECC security features and will perform better than the existing curves.
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Abstract. Home IP cameras are consistently among the most popu-
lar smart home devices and recent news stories about home IP cameras
getting hacked frequently have posed serious security and privacy con-
cerns for consumers. In this paper, we propose Ucam, a user-centric,
blockchain-based and end-to-end secure home IP camera system. Ucam
leverages advanced technologies such as blockchain, end-to-end encryp-
tion and trusted computing to address a number of vulnerabilities in
the existing solutions. In the Ucam design, we replace traditional user-
name/password based login approach with a one-click, blockchain-based
passwordless counterpart and apply the resurrecting duckling security
model to secure device binding. In particular, we utilize blockchain
extensively to manage device ownership and provide integrity protec-
tion for the video clips stored locally or remotely. For coping with pri-
vacy, the end-to-end encryption, which is coupled with a user-centric,
secure element enhanced key management scheme, is implemented in
Ucam. Finally, Ucam employs re-encryption with Intel SGX as well as
key refreshing to enable the sharing of encrypted video clips and live
streaming videos, respectively. The security analysis and performance
evaluation demonstrate that Ucam is able to meet the increasing secu-
rity and privacy requirements for home IP camera systems with negligible
performance overhead.

Keywords: Home IP Camera · Blockchain · Passwordless ·
End-to-end encryption · Integrity protection · Trusted computing

1 Introduction

The growing adoption of smart homes and expanding consciousness regarding
security and safety have increased the demand for Internet Protocol (IP) based
camera systems at a staggering rate. With packed features from face recognition
to various image sensors and multiple connectivity options, home IP cameras
offer a number of key benefits such as remote and perimeter video surveillance,
intruder detection and alarms, access control and security management, etc.
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While home IP camera systems redefine safety and protection of properties and
businesses, security and privacy of those systems continue to be major concerns
for consumers [10]. Recent news [8,18,21] about hackers breaking into home IP
camera systems has exposed a number of security design issues, including but
not limited to poor password policies, problematical login process, vulnerable
firmware and leaky database. Those vulnerabilities allow attackers to gain control
of devices remotely and put users’ personal information at risk.

First of all, the traditional password-based login has become the root cause
for many recent hacks against home IP camera systems in which hackers launch
so-called credential stuffing attacks [1] to access an account using a list of compro-
mised login credentials. While these attacks could be mitigated by enabling the
two-factor authentication mechanism [20], the complexity of the login process has
been increased accordingly. Besides cumbersome login hurdles, the device bind-
ing mechanism that associates a user’s account with his/her IP camera poses
another major threat to the device ownership [3]. The third issue involves home
IP camera systems that utilize cloud services for storing video clips, in which
video files are stored either in plaintext or in encrypted form with the encryption
key held by cloud service providers (CSPs) and/or device manufacturers. This
practice exposes users’ private information to third-party entities and allows
them to manipulate the stored video clips in an arbitrary manner. Last but not
least, while most home IP camera systems enable owners to share live camera
feeds with friends and family, the video clips stored on the local SD card or cloud
storage are only accessible by the camera owners. In particular, how to share
encrypted video clips and live streaming videos has not been solved. To address
the aforementioned issues for the existing home IP camera systems, we propose
Ucam, a user-centric and end-to-end secure home IP camera system, in this
contribution. Ucam leverages a blockchain wallet generated on the mobile app
to enhance security of the user login process by realizing a one-click, password-
less user authentication mechanism. Moreover, the resurrecting duckling security
model [17] is applied to cameras in the system for securely binding devices with
their owners. In particular, the critical device ownership information is directly
anchored to the blockchain by cameras in lieu of being maintained by a cen-
tralized database server, which reduces the risk that cameras are taken over
by attackers significantly. For protecting users’ privacy, Ucam realizes end-to-
end encryption coupled with a user-centric key management scheme. To thwart
potential system errors and misbehavior of CSPs, Ucam allows cameras to peri-
odically commit integrity checkpoints to the blockchain via user configuration,
thereby enabling users to check data integrity when downloading video clips from
the local or remote storage. Finally, Ucam realizes effective sharing of encrypted
video clips and live streaming videos through re-encryption with Intel SGX and
key refreshing, respectively.

The rest of the paper is organized as follows. Section 2 gives a brief overview
of blockchain, smart contract, and Intel SGX. Section 3 describes the system
and attacker models. Section 4 presents the detailed design of the Ucam system.
In Sect. 5, we summarize the security and privacy properties of the Ucam design
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and compare it with other home IP camera solutions. The performance impact
of using a secure element in the Ucam system is evaluated in Sect. 6. Finally, we
conclude this paper in Sect. 7.

2 Preliminaries

2.1 Blockchain and Smart Contract

Blockchains are tamper evident and tamper resistant digital ledgers implemented
in a distributed fashion and usually without a central authority [23]. A blockchain
is able to eliminate trusted intermediaries by requiring transactions to be verified
by the rest of the blockchain’s network. In particular, a distributed consensus
protocol, which tolerates faults and adversarial attacks, ensures that all the nodes
agree on a unique order in which blocks are appended. The blockchain provides
an infrastructure where trust is embodied algorithmically in the transaction itself
and effectively liberates data that was previously kept in safeguarded silos. In
the context of blockchain, a smart contract [19] represents a piece of code that
is stored, verified and executed on a blockchain. While the blockchain holds the
storage file of a smart contract, a network of miners execute its business logic and
update the blockchain by reaching a consensus. Users can invoke a smart contract
by sending transactions to the contract address and each of them triggers the
state transition of the contract, with data being written to the contract’s internal
storage. During the run-time, the smart contract performs predefined logic and
may also interact with other accounts by sending messages or transferring funds.
As self-executing codes on a blockchain, smart contracts are able to streamline
processes that are currently spread across multiple parties and systems.

2.2 Intel SGX

The Intel Software Guard Extensions (SGX) [11] is a set of new x86 instruc-
tions provided in newer lines of Intel CPUs that allows application developers
to protect sensitive data from unauthorized modification and access from rogue
software running at higher privilege levels. SGX aims to provide a trusted exe-
cution environment (TEE) for user-space applications by enabling code isolation
within virtual containers called enclaves. The program running inside an enclave
is cryptographically measured and the generated proofs by the enclave can be
reported back to the client. Enclaves feature three salient security properties,
namely isolation, sealing and attestation [4]. Isolation means that program and
data inside an enclave cannot be read/modified by other processes running at
the same or higher privilege levels. On the other hand, sealing is the process of
encrypting enclave secrets for persistent storage to disk, which uses authenticated
encryption (i.e., AES-GCM) and thus allows the enclave to detect whether the
sealed data has been modified externally. Finally, attestation enables an enclave
to cryptographically prove that it is a genuine SGX enclave running on an up-
to-date platform.
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3 System and Attacker Models

3.1 System Model

We consider a blockchain-enabled home IP camera system as shown in Fig. 1,
which consists of the following entities:

Fig. 1. The system model of a blockchain-enabled home IP camera system

– IP camera: An IP camera is a type of digital video camera which can receive
control commands and send image data via the Internet.

– IoT cloud : An IoT cloud is responsible for user account management, device
management, and data storage.

– Peer-to-peer (P2P) service: A P2P service simplifies the linkage between IP
cameras and mobile devices when a user views camera feeds.

– Mobile App: A mobile app facilitates a smartphone user to configure an IP
camera, view the captured video clips as well as live streaming videos, and
share the video clips with friends and family.

– User : A user is the owner of one or multiple IP cameras and utilizes the
mobile app to interact with them.

– Blockchain: A blockchain is a distributed ledger that is used to record trans-
actions in the order agreed by all the peer computers in the network.

In the above home IP camera system, an IP camera, which is equipped with a
secure element for key storage and cryptographic hardware acceleration, starts
running once it is initialized and configured by a user via the mobile app. The IP
camera records a short video clip (e.g., 10 s) and stores it either in the local stor-
age (e.g., an SD card) or on the remote IoT cloud each time a motion is detected.
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The user will receive an alarm and is able to replay the stored video clip using
the mobile app. Moreover, the user can also request to view live streaming videos
through the P2P streaming service in the system. The IoT cloud provides remote
storage and serves users’ requests for retrieving video clips. The blockchain, on
the other hand, enforces device ownership, facilitates device sharing, and ensures
data integrity of the cloud storage.

3.2 Attacker Model

In a typical home IP camera system, an adversary might try to compromise the
user account system on the cloud server for taking over the ownership of IP cam-
eras. A nearby adversary may also launch the attacks against the device binding
process and take control of the victim’s device. In addition, an attacker might
eavesdrop on wireless communications between the IP camera and IoT cloud.
We also consider the scenario in which a cloud provider could behave maliciously
by viewing, inserting, deleting, and modifying the video clips. Furthermore, an
attacker may impersonate a legitimate user and try to access the live streaming
videos via the P2P service.

4 The Ucam Design

4.1 Passwordless User Authentication

To thwart potential credential stuffing attacks and improve user experience, the
Ucam mobile app utilizes the private/public key pair associated with a user’s
blockchain wallet to implement passwordless login to the IoT cloud. In the Ucam
system, the one-click, passwordless user authentication works as follows:

– Once a user opens the Ucam mobile app for the first time, a blockchain
wallet is generated automatically, where the private key privU is stored in
the secure storage of his/her smartphone and the blockchain address addrU ,
which is derived from the public key pubU , is passed to the IoT cloud for
user account creation. In the Ucam system, each user account consists of a
blockchain address addrU and a random challenge rU .

– When the user clicks on the login button, an API call to the IoT cloud is
made for retrieving the random challenge rU associated with the blockchain
address addrU .

– Upon receiving the random challenge rU and displaying it on the Ucam mobile
app, it requires the user’s confirmation for the signed message rU . If the user
accepts it, a signature SignprivU

(rU ) is generated and returned to the IoT
cloud together with the corresponding blockchain address addrU . Otherwise,
the login process is terminated.

– When the IoT cloud receives an authentication response, it first looks up
the user account using the blockchain address addrU and obtains the cur-
rent random challenge rU , followed by verifying the authentication response
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Verify(rU , addrU ,SignprivU
(rU )). If the verification succeeds, the user is con-

sidered as authenticated and a JSON Web Token (JWT) is issued to the user
for accessing the cloud storage. Otherwise, the login attempt is rejected.

– The IoT cloud needs to update the random challenge rU after each login
attempt for thwarting replay attacks.

The above login process uses asymmetric cryptography and blockchain tech-
nology to eliminate the need of cumbersome passwords, thereby achieving better
usability and security than the traditional username/password based approach.

4.2 Blockchain-Based Ownership Management

In the Ucam system, we bind a home IP camera with a user’s account through
the out-of-band (OOB) channel and apply the resurrecting duckling security
model [17] in the context of IoT device binding. Once the camera is powered
on for the first time or the reset button is pressed, the device will look for a
valid blockchain address and recognize the device owner as the first entity that
provides it. Therefore, when the user opens the Ucam mobile app and adds
the camera to his/her account, he/she needs to hold the smartphone in front
of the camera and allow his/her blockchain address, which is encoded as a QR
code on the Ucam mobile app, to be scanned by the camera. Upon receiving
the user’s blockchain address addrU , the camera will invoke SCom, an owner-
ship management smart contract deployed by the camera manufacture on the
blockchain, with parameters addrC and addrU , when the internet connection
becomes available. Here the camera claims its ownership by creating an associa-
tion of its blockchain address (i.e., addrC) with its owner’s one (i.e., addrU ) on
the blockchain. The following three cases might occur: i) If SCom does not have
any entry containing addrC , a new entry (addrC , addrU ) will be created in SCom;
ii) If SCom has already included the same entry (addrC , addrU ), its means that
the camera is reset by its current owner and SCom does not need to update the
state; iii) If SCom has an entry (addrC , addr′

U ) with addr′
U �= addrU , it implies

the transfer of ownership (see Sect. 4.7) and the blockchain address addrU of the
new owner will replace the previous one addr′

U in SCom.

4.3 End-to-End Encryption and User-Centric Key Management

The Ucam system leverages end-to-end encryption to protect confidentiality of
both video clips and live stream videos. The raw video data is encrypted using
user-specified encryption keys with the aid of a hardware-based cryptographic
engine (CE) inside the secure element, before it is stored locally on an SD card,
remotely on the cloud storage, or sent to the P2P streaming service. Given a
video frame v of l bits and a video encryption key kV , the cryptographic engine
encrypts the video frame as follows:

v′ = v ⊕ KSG(l,CE(kV , IV )),
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where KSG(·) is a keystream generator using the underlying CE and the l-bit key
stream is XORed with the video frame v to generate the corresponding ciphertext
v′. Here CE can be instantiated using a stream cipher or a block cipher operating
on the stream cipher mode [5] and IV is an initialization vector.

For enabling a user to update the video encryption key kV in a secure manner,
a Key-Encryption-Key (KEK) kE is first derived from the user’s private key
privU on the Ucam mobile app, i.e.,

kE = KDF(privU , OtherInput),

where KDF can be any standardized key-derivation function [2]. ‘OtherInput’
might include a random salt (i.e., a byte string), the length of the derived key,
and other context-specific data, depending on the choice of a key-derivation
function. Note that kE is derived immediately after the blockchain wallet is
created on the Ucam mobile app and transported to the camera together with
the user’s blockchain address via the QR code. Upon receiving the KEK kE , the
camera stores it inside the secure element. Whenever a user would like to update
the video encryption key kV , he/she first generates a new key k′

V on the Ucam
mobile app and then encrypts it with the KEK kE , i.e.,

c = Enc(kE , k′
V ).

The ciphertext c is then sent to the camera through the public channel and
replaces the previous encryption key in the file system. As a result, the sub-
sequent video clips or live stream videos will be encrypted with the new key
k′
V . Here we utilize two different keys kC and kS to encrypt video clips and

live streaming videos, respectively, for accommodating the corresponding video
sharing mechanisms (see Sects. 4.5 and 4.6) and kV can be either of those keys.

4.4 Blockchain-Based Data Integrity Protection

For ensuring data integrity of video clips stored locally on an SD card or remotely
on the cloud storage, the Ucam system allows the camera to commit integrity
checkpoints to the blockchain according to a user-defined time period. To this
end, the user needs to first enable the data integrity protection feature on the
Ucam mobile app and specify the time period in days for checkpoint commit-
ments, followed by topping up the camera’s wallet with a certain amount of
cryptocurrency tokens. Note that the shorter the time period is set, the more
checkpoints the camera is going to commit on the blockchain.

Once the data integrity protection feature is activated, the camera starts
building a Merkle tree [12] dynamically for the encrypted video clips received
during the user-specified time period. At the end of each time period, the camera
will invoke another manufacture deployed smart contract SCcm, which is respon-
sible for checkpoint management, with parameters (idmt, num, hr), where idmt

is the Merkle tree identifier that is concatenated with a file identifier to indicate
which Merkle tree the file belongs to. hr is the root of the Merkle tree built from
num encrypted video files and acts as the integrity checkpoint for the past time
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period. As soon as integrity checkpoints become available on the blockchain, the
user is able to verify data integrity of encrypted video clips retrieved from the
SD card or cloud storage. After the user sends a request for downloading an
encrypted video clip from the SD card or cloud storage, the camera or cloud
server first identifies all the encrypted video clips that are in the same Merkle
tree as the one in question using the Merkle tree identifier idmt, followed by
the generation of the corresponding Merkle path. The encrypted video clip and
Merkle path are then returned to the Ucam mobile app. Before decrypting the
video clip, the Ucam mobile app obtains hr from the smart contract SCcm and
verifies data integrity of the received video clip using hr and the Merkle path.
In this way, the user is confident that the video clip has not been altered.

4.5 Fine-Grained Secure Video Clip Sharing with Intel SGX

Considering the limited video sharing scenarios of home IP cameras, we describe
a fine-grained secure video clip sharing scheme through a re-encryption pro-
cess using the Intel SGX technology. More specifically, we create a data sharing
enclave DataShare on the application server of the IoT cloud, which is responsi-
ble for re-encrypting the video clip(s) selected by the user for sharing purposes.
The video clip sharing process works as follows:

– Whenever a user wants to share the video clip(s) with others, the Ucam
mobile app will first perform a remote attestation with the DataShare enclave
to verify that the application server has loaded the correct code into the
enclave. During this process, a symmetric session key kse is generated on
both the Ucam mobile app and DataShare enclave, thereby establishing a
secure channel between two entities.

– After the user selects n video clip(s) on the Ucam mobile app and sets a
video sharing key ksh, the list of video file identifiers {idf1 , . . . , idfn}, the
video sharing key ksh, and the video clip encryption key kC are encrypted
using the session key kse and sent to the application server.

– The application server sends the received information to the DataShare
enclave for decryption and retrieves n encrypted video clip(s) from the cloud
storage using the identifier list {idf1 , . . . , idfn}. The retrieved n video clip(s)
are then decrypted and re-encrypted inside the DataShare enclave using kC
and ksh, respectively.

– The application server stores the re-encrypted video clip(s) in the cloud and
returns the Uniform Resource Identifier (URI) to the Ucam mobile app. The
user is then able to share the URI and video sharing key ksh with others via
various communication channels (e.g., QR code, email, etc.).

To save costs for using cloud storage, the URI for the shared video clip(s) is only
valid for a user-defined amount of time and all the shared video clip(s) will be
deleted thereafter. The above secure data sharing scheme enables a user to fully
control which video clip(s) to share with different entities, thereby minimizing
the potential data leakage.
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4.6 Secure Live Streaming Video Sharing with Key Refreshing

Due to the real-time requirements for sharing live streaming videos, we employ
key refreshing in lieu of re-encryption for sharing cameras with other people.
More specifically, the device owner will directly send the current live streaming
video encryption key kS to all the entities with which he/she would like to
share the camera. Whenever the device owner decides to revoke access for one or
multiple people, a new live streaming video encryption key k′

S will be generated
on the fly and distributed to the remaining entities. Moreover, the device owner
also needs to update the live streaming video encryption key on the camera as
described in Sect. 4.3.

Besides distributing the live streaming video encryption key kS , the device
owner also needs to generate access tokens for authorizing other entities to
retrieve live streaming videos via the P2P service. An access token TKOR is
a tuple (pubO, addrR, addrC , Texp,SignprivO

(addrR, addrC , Texp)), where pubO is
the device owner’s public key. addrR and addrC denote the blockchain addresses
of the requester and the owner’s camera, respectively. Texp is the expiry time of
the access token and SignprivO

(addrR, addrC , Texp) is the device owner’s signa-
ture. A data requester can retrieve live streaming videos with the access token
as described below:

– The requester sends a connection request to the P2P service by presenting
his/her public key pubR and access token TKOR.

– The P2P service verifies the validity of the access token TKOR as follows:
• The P2P service checks Texp to ensure that the access toke TKOR is not

expired;
• The P2P service queries the ownership management smart contract SCom

with the device’s blockchain address addrC and then obtains its owner’s
blockchain address addrO;

• The P2P service checks that addrO and addrR are derived from the public
keys pubO and pubR, respectively;

• The P2P service verifies that the signature SignprivO
(addrR, addrC , Texp)

is valid.
If any of the above verification steps fails, the P2P service will reject the
connection request.

– The P2P service sends a random challenge rP to the requester for verifying
that he/she is the owner of the blockchain address addrR.

– The requester generates the signature SignprivR
(rP ) and sends it to the P2P

service as the response.
– The P2P service verifies the validity of the signature SignprivR

(rP ) and then
grants or rejects the P2P service from the requester accordingly.

4.7 Ownership Transfer

Thanks to the ownership management with the smart contract on the blockchain,
the ownership transfer can be easily handled. In the case that the camera is given
to another person, the new owner can simply reset the camera, register a user
account and restart the ownership claim process (see Sects. 4.1 and 4.2).
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5 Security and Privacy Properties

Table 1 presents a comprehensive comparison of Ucam and other popular home
IP camera systems in terms of security and privacy properties. Among the exist-
ing solutions, Ucam is the only one that utilizes secure hardware for protecting
cryptographic keys and blockchain wallet for passwordless user authentication,
respectively. While Haicam [7] and Wyze [22] claim the usage of end-to-end
encryption, it is not clear how this technology is actually implemented and, in
particular, how the encryption key is managed in their systems, due to limited
technical information available on their websites. Regarding device ownership
management, Ucam takes advantage of the decentralized nature of blockchain
to achieve stronger protection of device ownership, when compared to other home
IP camera systems in which centralized cloud servers are used for this purpose.
Furthermore, Ucam offers additional integrity protection for video clips against
storage errors and malicious attacks with the help of integrity checkpoints stored
on the blockchain. As for video sharing, Ucam supports fine-grained sharing of
encrypted video clips as well as secure sharing of live streaming videos. Although
Wyze [22], eufy [6], Ring [15] and Nest [13] also implement (partial) video sharing
functionalities, CSPs are still able to access the shared contents. From Table 1,
we can see that Ucam provides a number of salient features that improve security
and privacy of the state-of-the-art home IP camera systems dramatically.

Table 1. Security and Privacy Properties of Home IP Camera Systems

Ucam Haicam [7] Wyze [22] eufy [6] Ring [15] Nest [13]

Secure Hardware ✓ ✗ ✗ ✗ ✗ ✗

User Login Blockchain Username/ Username/ Username/ Username/ Username/

Wallet Password Password Password Password Password

with 2FA with 2FA with 2FA

End-to-End ✓ ✓ ✓ ✗ ✗ ✗

Encryption

User-Centric ✓ Unknown Unknown N/A N/A N/A

Key Management

Device Ownership Blockchain Cloud Server

Management

Data Integrity ✓ ✗ ✗ ✗ ✗ ✗

Protection (Blockchain)

(Encrypted) Live ✓ ✗ ✓ ✓ ✓ ✓

Streaming Video (Key

Sharing Refreshing)

(Encrypted) Video ✓ ✗ ✗ ✓ ✓ ✓

Clip Sharing (Re-Encryption)

6 Performance Evaluation

In the Ucam design, a secure element serves as the secure key storage and hard-
ware cryptographic accelerator. More specifically, the secure element is respon-
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sible for signing transactions to secure device ownership and commit integrity
checkpoints (see Sects. 4.2 and 4.4) as well as generating keystreams in the
end-to-end encryption (see Sect. 4.3), respectively. In this section, we use the
EdgeLockTM SE050 secure element development board [14] from NXP semicon-
ductors to evaluate the performance impact. In a typical setting, a host controller
communicates with an SE050 secure element through an I2C (Inter-Integrated
Circuit) interface. At the application level, the host controller exchanges mes-
sages with the SE050 secure element using application protocol data units
(APDUs) [9]. To simplify the software development, NXP abstracts the inter-
actions between the host controller with the SE050 secure element through the
Plug & Trust middleware and associated secure sub-system (SSS) APIs.

For implementing the blockchain-based ownership management and data
integrity protection protocols in the Ucam design, the SE050 secure element
is used to sign transactions that are sent from the host controller. We configure
the SE050 secure element to use the Koblitz curve secp256k1 [16] and test the
performance of ECDSA on a message digest of 32 bytes. Our experimental result
shows that a digital signature can be generated in around 45.4 ms. In regard to
the end-to-end encryption in the Ucam system, we use AES-128 in the counter
mode (CTR) [5] to generate keystreams for encrypting video frames. For testing
the throughput of the keystream generation on the SE050 secure element, the
host controller sends 16-byte messages, each of which consists of a 12-byte nonce
and a 4-byte counter, to the AES engine consecutively. The resulting keystream
generation throughput is about 11.3 Kbps. Note that all the performance test
results take the I2C communication between the host controller and the SE050
secure element into consideration. Based on our experimental results, one can
see that secure elements are able to boost security of home IP camera systems
dramatically without incurring significant performance overhead.

7 Conclusion

In this paper, we present the design of Ucam, a user-centric, blockchain-based
and end-to-end secure home IP camera system. When compared to popular
home IP camera solutions, Ucam offers strong security and privacy protection
for multiple core functionalities such as user login, device binding, device own-
ership management, video confidentiality, storage integrity and video sharing.
By leveraging blockchain technology, Ucam is able to support passwordless user
authentication and protect cameras and videos from various malicious attacks.
Moreover, the video data is only accessible by the camera owner and their autho-
rized entities, thanks to the end-to-end encryption and user-centric key manage-
ment. The secure sharing of encrypted video clips and live streaming videos is
addressed using re-encryption based on Intel SGX and key refreshing techniques.
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Abstract. Generative Adversary Network (GAN) is a promising field
with many practical applications. By using GANs, generated data can
replace real sensitive data to be released for outside productive research.
However, sometimes sensitive data is distributed among multiple parties,
in which global generators are needed. Additionally, generated samples
could remember or reflect sensitive features of real data. In this paper, we
propose a scheme to aggregate a global generator from distributed local
parties without access to local parties’ sensitive datasets, and the global
generator will not reveal sensitive information of local parties’ training
data. In our scheme, we separate GAN into two parts: discriminators
played by local parties, a global generator played by the global party.
Our scheme allows local parties to train different types of discrimina-
tors. To prevent generators from stealing sensitive information of real
training datasets, we propose noised discriminator loss aggregation, add
Gaussian noise to discriminators’ loss, then use the average of noised loss
to compute global generator’s gradients and update its parameters. Our
scheme is easy to implement by modifying plain GAN structures. We test
our scheme on real-world MNIST and Fashion MNIST datasets, exper-
imental results show that our scheme can achieve high-quality global
generators without breaching local parties’ training data privacy.

Keywords: GAN · Generator aggregation · Discriminator loss

1 Introduction

Generative Adversary Network (GAN) [9] is a thriving research topic, which
can be used to generate fake (synthetic) data to replace sensitive data to be
released for outside research [2]. Sometimes, data is distributed among different
local parties, developing a global generator can help represent local parties to
generate and release fake (synthetic) data.

We illustrate an example to explain why aggregating global generators are
useful and will have many applications. We take Covid-19 as an example to
explain how global generators can facilitate the understanding of this disease.
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A world organization wishes to use data from some countries to help other
countries lack of data and research resources. Some medical research institutes
from different countries are willing to contribute. However, due to the concern
of patients’ privacy, these research institutes are not willing to disclose their
data. For this kind of situation, global generators can provide a solution. By
developing a global generator, the world organization can generate synthetic
data according to real data from those medical research institutes, then use the
generated synthetic data to analyze and help other countries.

Here,“Global” can be interpreted from two aspects: firstly, the global gen-
erator can be aggregated from only one local party, represent this very local
party to generate synthetic data; or it can be aggregated from a group of local
parties, represent them to generate synthetic data reflecting the distribution of
data from that group.

You may ask why not let those medical research institutes generate synthetic
data themselves, and send the synthetic data to the world organization? The
obstacles of this method are: these medical research institutes probably use dif-
ferent models and generate different quality of synthetic data. In addition, the
actual amount of generated data needed is unknown at this moment, and every
time when new synthetic data is needed, these medical research institutes need to
be involved again. Therefore, a centralized global generator will be much easier
to organize and manage.

Why Traditional Parameter Aggregation Fails. To aggregate a global gen-
erator from different local parties, there are some methods from federated learn-
ing can be referred to. Most of those traditional parameter based aggregation
methods in federated learning are designed to average local models’ parameters
to get a global model [1,3,14,16]. They usually assume local parties and the
global party develop exactly the same type of model and structure. To prevent
private information leaking from local parameters, some works [1,16] release
parameters under differential privacy [4–8] by adding noise to gradients. How-
ever, in fact, averaging local models’ parameters is not always a good choice for
model aggregation. Just simply taking the average of local parameters might not
directly result in an accurate global model, let alone parameters with noise to
achieve differential privacy. Most importantly, local parties might use differ-
ent types of models, in which all different types and structures of parameters
can not be averaged. These obstacles in traditional parameter based aggregation
methods motivate our work.

Since we can not simply borrow traditional aggregation methods into global
generator aggregation, in this paper, we propose a new global generator aggre-
gation method.

To conventionally train a GAN, we usually train the discriminator and the
generator together in one party, then use the generator to generate synthetic
data. While, in our scheme, we separate discriminator and generator among
local parties and the global party, allow multiple discriminators to one gen-
erator. Local parties train discriminators, which can have different types and
structures. Meantime, the global party trains the generator. Because the gen-
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erator might use gradients from discriminators to steal or extract local parties’
sensitive information, we let local discriminators add Gaussian noise to their loss.
To update global generator’s parameters, the discriminators randomly select one
discriminator as a representative, this discriminator will collect all discrimina-
tors’ noised loss, use the average to calculate gradients and help the global gen-
erator to update its parameters. After training the global generator, the global
party can represent local parties to generate synthetic (fake) data.

We test our scheme on real-world MNIST and Fashion MNIST datasets,
experimental results show that our method can achieve high-quality global gen-
erators. To test the quality of generated samples output by the global generator,
we use generated data to train deep learning models, we can achieve 98.02% and
88.54% accuracies for MNIST and Fashion MNIST test datasets respectively.

The contributions of our work are as follows:

– We solve a problem that aggregating global generators from different types of
local discriminators. We achieve two main goals: global generators for local
parties, suitable for different types of local discriminators and privacy pro-
tection for local parties’ sensitive training data.

– We separate GAN into two parts: discriminators in local parties and a global
generator in the global party. In this way, we can achieve global genera-
tors without access to local parties’ private datasets. Since discriminators are
probably in different types, parameters can not be used, therefore, we choose
discriminator loss as vehicle to aggregate the global generators.

– We add noise to discriminators’ loss computed on generated samples, by
adding noise to discriminators’ loss, we can prevent private information leak-
age from discriminators.

2 Preliminary

In this section, we briefly describe the basics of generative adversary networks.
Generative Adversarial Network (GAN) [9] consists of two models: generator

G and discriminator D. Generator G takes random noise z ∼ pz(z) as input,
tries to output fake samples of data with distribution approximates real data’s
distribution x ∼ pdata(x). The discriminator D will estimate the probability that
a sample is a real data comes from the training dataset rather than a fake data
generated from G. These two models are simultaneously trained in a competitive
way, the goal of GAN is training G and D playing a two-player minmax game
with the value function V(G, D):

min
G

max
D

V (G,D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[1 − log(D(G(z)))]

3 Our Approach

In this section, we illustrate our approach to global generator aggregation. We
design our generator aggregation method for local parties, even they develop
different types of discriminators and different structures of parameters.
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3.1 Role of Models

There are two roles in our scheme, local parties and the global party. Local parties
posses sensitive datasets, the global party is in charge of generator aggregation.

We consider an honest but curious global party, who participates by rules
but always wants to steal privacy information from local parties.

We also consider honest but curious local parties, they participate in the
system honestly but also want to steal sensitive information from other local
parties. They might collude with others but will not destroy their collaboration
of aggregation.

3.2 Global Generator Aggregation

In our scheme, we allow local parties to develop different types of discrimina-
tors. The global party will develop a global generator generating fake data for
discriminators. The global generator and local discriminators form a GAN.

Our scheme is described in Algorithm 1. To train the GAN, in every train-
ing epoch t, the generator generates a batch of fake data fake datat from ran-
dom noise z ∼ pz(z), feeds the generated data to discriminators. Every dis-
criminator is trained on a batch of its real data and fake data fake datat. Then
discriminators are set to be untrainable. Next, the generator generates a new
batch of fake data faket from noise z ∼ pz(z), feeds the generated data faket

to the untrainable discriminators. Every discriminator {Di}n computes the loss
function on faket as g lossi. The output of discriminators are binary class classi-
fication (real or fake), we empirically assume all discriminators use binary cross
entropy loss function.

To prevent privacy leakage from discriminators, discriminators will add noise
to loss g lossi:

g lossi ← g lossi + N (0, σ) (1)

Where Gaussian noise has distribution with mean 0 and standard deviation
σ (we will discuss the noise level σ later).

To compute gradients, those discriminators randomly select one discriminator
as a representative to collect other discriminators’ noised loss and average all loss
values:

g losst =
1
n

n∑

1

g lossi (2)

Next, the representative discriminator will use the averaged loss as GAN loss
to do backpropagation and compute the gradients. Then the global generator
will update its parameters according to the gradients.

Because in every epoch, we randomly choose one discriminator as a repre-
sentative to collect other discriminators’ noised loss and compute gradients for
the combination of GAN, it can be seen as this discriminator transfers some
knowledge about its sensitive training dataset to the global generator. Because
every discriminator is selected by random, after several epochs, every local dis-
criminator can have the same chance to be selected and transfer its knowledge
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Algorithm 1. Global Generator Aggregation
Input: n discriminators {Di}n, a generator G, fake dataset fake datatt for epoch t ∈
(0, T ), real datasets {real1, real2, ..., realn} for epoch t ∈ (0, T )
Parameter: Binary cross entropy loss for discriminators.

1: for epoch t in range (0, T ) do
2: Generate fake data
3: The generator G generates a batch of fake data: fake datat ← G(z), z ∼ p(z)
4: Train n discriminators
5: Every discriminator Di calculates the loss: di real ← Di(reali) and di fake ←

Di(fake datat)
6: di losst = 1

2
(di real + di fake)

7: Every discriminator Di computes gradients according to di losst and updates
its parameters.

8: Set discriminators untrainable.
9: Generate fake data

10: The generator G generates a new batch of fake data from noise z. faket ←
G(z), z ∼ p(z)

11: Compute loss
12: Every discriminator Di predicts on that batch of generated fake data and cal-

culates the loss.
13: g lossi ← Di(faket)
14: Add noise
15: g lossi ← g lossi + N (0, σ)
16: Average loss
17: Randomly select one discriminator Ds to collect other discriminators’ noised loss

and average the loss.
18: g losst = 1

n

∑n
1 g lossi

19: Compute gradients
20: The selected discriminator Ds and G calculate the gradients according to g losst

for the GAN.
21: Generator updates parameters
22: The generator G updates its parameters according to the gradients.
23: end for

Output: The global generator G.

to the global generator. Also, the GAN loss is the average of all discriminators’
noised loss. Therefore, the global generator can capture the whole distribution
features of all local parties’ sensitive datasets.

3.3 How We Choose the Noise Level?

Because the scale of loss g lossi will change in every epoch of training, here we
utilize an adaptive method to set the noise level σ.

As we can see, in every training epoch, the generator actually submits two
batches of generated fake samples to discriminators. The first batch is used
to train discriminators, while the second batch is the batch used to compute
discriminators’ loss g lossi.
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In our scheme, we use the discriminator loss on the first batch of generated
samples di fake as the scale of noise added to loss g lossi, which is computed on
the second batch of generated samples. We set σ = 0.5 ∗ di fake.

As we can see, these two batches of generated fake samples come from the
same state of the generator, the loss on the first batch is computed by dis-
criminators before updating, while the loss on the second batch is computed by
discriminators after updating. These two loss will be close to each other. There-
fore we can use the first batch discriminator loss as a reference to add noise. To
avoid adding too much noise, we add a ratio as 0.5 to the noise level. That is
because the discriminator loss on the first batch is supposed to be a little bit
higher than the loss on the second batch, because the loss for the second batch
is computed by the updated discriminator, which is supposed to be better at
classifying samples than the discriminator before updating. So we add a ratio
(less than 1) to reduce the noise scale. Of course, this ratio can be adjusted in
different discriminators.

3.4 Why Adding Noise Can Secure Our Scheme?

Firstly, let’s explain why we should provide privacy protection for discrimina-
tors. Because discriminators are trained based on local parties’ private training
datasets, sensitive information of training data could be encoded or reflected
into discriminators’ parameters. On the other hand, the global generator always
tries to steal sensitive information from discriminators and their private training
datasets.

What the global generator can obtain are the gradients computed based on
discriminators’ parameters. Let’s see how noised discriminators’ noise can pre-
vent the global generator from stealing sensitive information from discriminators’
parameters.

Fig. 1. An example of detailed GAN structure. (Color figure online)

We use a simple example shown in Fig. 1 to demonstrate how noised dis-
criminators’ loss will affect gradients. We only draw one discriminator here to
represent the selected discriminator and the loss is averaged noised loss from all
discriminators.

We take Generator’s parameter W21 (shown in Fig. 1) as an example to com-
pute gradient for W21. We take one specific line (shown as the green line in
Fig. 1) to demonstrate the computation. As we can see, the chain rule is:
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As we can see, because E (discriminators’ loss) in Eq. (3) is noised, ∂E
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31
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, therefore the gradient for W21: ∂E
∂W21

is
noised. What the global generator obtained is the noised gradients.

Gradient for W11 will be a little bit different, because Z11 = W11X, in which
X are input samples, the gradient for W11: ∂W11 will have X as coefficients.
Notice that, those input samples X here are generated fake samples, not real
samples. Even though the global generator might try to leverage well organized
generated fake samples X to extract sensitive information from the gradient
∂W11, because the gradient is noised, this intent will be handicapped due to the
noise involved.

Therefore, adding noise to discriminators’ loss can protect privacy of local
parties’ sensitive training datasets.

4 Evaluation

In this section, we evaluate the performance of our scheme on real-world datasets.

4.1 Implementation

We use deep convolutional generative adversarial network as our GAN structure.
Deep convolutional generative adversarial network (DCGAN) [15] is an extension
of GAN, in which generator and discriminator have deep convolutional network
architectures.

We evaluate the performance of our scheme on MNIST and Fashion MNIST
datasets. MNIST is a 10-class handwritten digit recognition dataset consisting of
60,000 training examples and 10,000 test examples [12], each example is a 28×28
size greyscale image. Similarly, Fashion MNIST is a 10-class dataset of fashion
images, also consisting of 60,000 training examples and 10,000 testing examples
[18], each example is a 28× 28 size gray-level image. MNIST (produced in 1998)
has been as a benchmark for machine learning and data science algorithms for
years, and now Fashion MNIST (produced in 2017) serves as a replacement for
the MNIST dataset for benchmarking machine learning algorithms.

We program our codes in Python, and execute them on Google Colab with
free access to online GPU. We also use Tensorflow and Keras as backend. We
develop different types of discriminators, they vary in numbers of layers and
numbers of parameters. We equally split the training dataset among local parties,
due to the limited number of training samples, we did not assume too many local
parties, because more local parties will result in less training samples for every
local discriminator and less accurate local discriminators can be achieved.
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4.2 Experimental Results

We firstly aggregate a global generator from only one local party, in this case,
the local discriminator will use the whole training datasets from MNIST (60,000
samples) and Fashion MNIST (60,000 samples). We train the global generator
for 100 epochs with batch size as 256. After obtaining the global generator, we
let it generate synthetic samples for MNIST and Fashion MNIST.

We also aggregate global generators from 5 and 10 different local discrimi-
nators, every local discriminator has 12,000 (5 local parties) and 6,000 (10 local
parties) training samples from MNIST, 12,000 and 6,000 training samples from
Fashion MNIST. We train the global generators for 200 epochs with batch size
128. After achieving the global generators, generators generate some fake sam-
ples.

In Fig. 2, we show some generated samples from two global generators. The
left column are real samples from MNIST and Fashion MNIST. The middle
column are generated samples from the global generator aggregated from one
local party. The right column are from global generator aggregated from 5 local
parties.

Fig. 2. Comparison between real samples and generated samples from global genera-
tors. The left column ((a), (d)) are real samples from MNIST and Fashion MNIST, the
middle column ((b), (e)) are generated samples from the global generator aggregated
from one local party, the right column ((c), (f)) are generated samples from the global
generator aggregated from 5 local parties.

As shown in Fig. 2, generated samples look like real samples from MNIST and
Fashion MNIST. Notice that, generated samples are a little bit blurry compared
to real samples. The main reasons come from three aspects: firstly, GAN can
not perfectly simulate real data, the quality of generated samples depend on the
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GAN structure, the number of training epochs, and the training optimizer, etc.
Secondly, because we split training datasets among local parties, the quality of
generators will be affected by the amount of training data. Finally, the noise
added to discriminators’ loss will to some extent affect the ability of generators
capturing features of real training data.

Compared with generated samples from generator aggregated from 5 local
parties (right column of Fig. 2), with more training samples for local discrim-
inators, generator aggregated from one local party produces higher-quality of
generated samples (middle column of Fig. 2).

4.3 Performance Evaluation

After aggregating global generators, the global party can use those generators
to generate synthetic data. To test the quality of generated synthetic data, we
use generated samples to train deep learning models and test accuracies on real
samples.

We let global generators generate the same amount of synthetic samples as
training samples of MNIST and Fashion MNIST, so that, the global party can
mimic the real training datasets of MNIST and Fashion MNIST.

We use generated samples to train deep learning models, then test these mod-
els on test datasets (10,000 test samples from MNIST and 10,000 test samples
from Fashion MNIST).

To compare accuracies achieved by generated samples and local parties’ real
training data, we develop local models (CNNs) for local parties. Every local party
trains its own CNN model on its dataset. We take 5 local parties as an example
to show the accuracies of local models (L1, L2, L3, L4, L5) achieved, shown in
Table 1. As we can see from Table 1, with 12,000 training samples, local models
achieve average 97.81% and 88.26% accuracies for MNIST and Fashion MNIST.

Table 1. Local deep learning models’ performance on their own datasets.

Accuracy L1 L2 L3 L4 L5 Average

MNIST 97.65% 97.40% 98.04% 98.21% 97.74% 97.81%

Fashion MNIST 88.10% 87.75% 87.59% 88.74% 89.10% 88.26%

We list test accuracies achieved by generated samples from global generators,
local models’ test accuracies and baselines in Table 2. The baselines are accura-
cies of machine learning models trained on the whole real MNIST and Fashion
MNIST datasets and tested on real test datasets.

As seen in Table 2, generated synthetic samples from global generators can
achieve accurate models. For MNIST and Fashion MNIST, when there are 5
and 10 local parties, models trained on generated synthetic samples achieve
higher accuracies than local models trained solely on local parties’ local training
datasets. For example, when there are 5 local parties, local models trained on
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Table 2. Accuracies achieved by generated samples from global generators.

Dataset Local party Local Global Baseline Cmp to local Cmp to Baseline

MNIST
1 99.20% 98.35%

99.20%
-0.85%↓ -0.85%↓

5 97.81% 98.02% +0.21%↑ -1.18%↓
10 97.48% 97.65% +0.17%↑ -1.55%↓

Fashion MNIST
1 92.40% 90.16%

92.40%
-2.24%↓ -2.24%↓

5 88.26% 88.54% +0.28%↑ -3.86%↓
10 86.63% 86.87% +0.24%↑ -5.53%↓

12,000 real samples achieve average 97.81% and 88.26% accuracies for MNIST
and Fashion MNIST, while models trained on 60,000 generated samples from
aggregated global generators can achieve 98.02% and 88.54% for MNIST and
Fashion MNIST, increase 0.21% and 0.28% accuracies respectively. Similar
results are shown for 10 local parties as well. These results indicate that aggre-
gated global generators can generate high-quality synthetic samples.

On the other hand, when the global generator is aggregated from only one
local party, compared with the local models with accuracies 99.20% and 92.40%
trained on the whole training datasets of MNIST and Fashion MNIST, gener-
ated samples from global generators achieve less accurate models with 98.35%
and 90.16% accuracies for MNIST and Fashion MNIST correspondingly. Gener-
ated synthetic samples bring 0.85% and 2.24% declines for MNIST and Fashion
MNIST.

Compared with baselines for MNIST and fashion MNIST, which are achieved
by whole real training datasets, generated samples from global generators are
not as precise as real samples and achieve lower accuracies than baselines.

As a conclusion, from the experimental results, our scheme can achieve global
generators with satisfying performance.

5 Related Works and Comparison

In this section, we illustrate some state-of-the-art works related to our study and
compare our scheme with some of these related works.

There are some proposed methods for aggregating generators. Work [10] lets
discriminators return intermediate feedback results of backpropagation for the
generator to update. Work [13,17,19] use differentially private gradient descent
(DP-SGD) to achieve differentially private GANs. Work [11] uses differential pri-
vacy on majority voting labelling plus a simple classifier to achieve a differentially
private GAN.

Notice that, works [10,13] mentioned above only consider aggregating a global
generator from same type and structure of discriminators, while our scheme
can generalize their methods and is also suitable for discriminators
with different types and structures. Moreover, in work [10], simply return-
ing discriminators’ intermediate feedback is not privacy-preserving for sensitive
training datasets.
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Works [11,13,17,19] use differential privacy during training, which need to
use modified Tensorflow library (Tensorflow Privacy). Using this modified Ten-
sorflow library can be extremely inefficient, according to open codes of work
[17], training a differentially private GAN on MNIST can take over two hours
on TPU.

We compare the accuracies achieved by generated samples from generators
in our work and other three works [13,17,19] mentioned above. The compari-
son is presented in Table 3. Because these three related works actually achieve
differentially private GANs (considered as the global generator aggregated from
one local party), we only compare global generators aggregated from one local
party. Due to lack of experimental results on Fashion MNIST dataset from these
related works, we only list accuracies tested on MNIST dataset.

Table 3. Comparison of accuracies among three related works and ours.

Dataset Scheme Accuracy

MNIST DP-GAN [19] 99.00%

DP-CGAN [17] 88.16%

Scalable DP-GAN [13] 80.92%

Our scheme 98.35%

As shown from Table 3, our scheme can achieve higher accuracies compared
with works [13,17]. With high privacy loss, work [19] can achieve slightly higher
accuracy than our scheme.

6 Conclusion

Motivated by providing methods for global generator aggregation from different
types of discriminators. We split GAN into two parts: discriminators in local
parties and the global generator in the global party. Since parameters based
aggregation fails, we use discriminator loss as vehicle to aggregate the global
generator. We achieve two goals, we aggregate a global generator from differ-
ent types of discriminators, and we achieve high-quality generators, from which
generated samples would not reflect private features of local parties’ sensitive
training data. We test our scheme on two real-world datasets, experiments show
that our scheme can achieve high-quality global generators.
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Abstract. Because the smart contract is the core element that enables
blockchain systems to perform diverse and intelligent operations, the
security of smart contracts significantly determines the reliability and
availability of the blockchain applications. This work examines security
from the perspective that, although a smart contract may be program-
matically correct, the environment in which the smart contract is carried
out is vulnerable. Adversaries do not need to necessarily concern them-
selves with how a smart contract is programmed or whether it is vulnera-
ble; the integrity of the smart contract can be undermined by perturbing
the output of smart contract execution. Such an approach does not rely
on exploiting programming errors or vulnerabilities in smart contract
verification and protection frameworks. Instead, it leverages the flaws in
the underlying smart contract lifecycle and virtualization mechanisms.
The Hyperledger Fabric platform is used to demonstrate the feasibility
of the proposed attack.

Keywords: Blockchain · Hyperledger · Docker · Container · Smart
contract · Security · Man in the middle

1 Introduction

A “smart contract” is a computation that is performed on a blockchain. The
term is an oblique reference to the traditional notion of a legal contract in that
it signifies signatories entering into some binding agreement regarding something.
“Smart” signifies that software automatically triggered by the agreement carries
out a series of actions that define the terms of the agreement; “contract” signifies
that the results of the actions are recorded onto an indelible transaction ledger,
such as a blockchain. The transactions themselves, once stored onto a blockchain,
are considered, for the most part, secure. Executing the smart contract, on the
other hand, raises questions. How open to vulnerabilities is the “smart” part of
“smart contracts”?

On the one hand, the security of a smart contract relies on how formal and
secure the contract has been programmed. Since the smart contract is designed
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to be a public application, any internal programming vulnerabilities can incur
enormous influence on all the contract users. Therefore, several evaluation and
verification frameworks at the programming level [1–6] have been proposed.
These frameworks and tools evaluate the validity and security of smart con-
tracts at the programming level by creating certain rules and boundaries for
smart contract programming. With the examination of the smart contract code
context, the smart contract can be converted, compiled, and regulated to a secure
form. These frameworks focus on the security of the smart contract only in the
Ethereum platform1. While there exists another platform, Hyperledger2, which
provides competitive smart contract functionalities, no similar smart contract
security investigation is evident.

On the other hand, the environment in which the smart contract is carried
out also determines security. We take the perspective of an adversary that does
not care how the smart contract is programmed, as long as we can interfere or
manipulate the output of smart contract execution and thus bypass any verifica-
tion and protection frameworks that might be in place. We attempt to illustrate
the flaws of the underlying smart contract life-cycle or virtualization mechanism
(runtime), namely, the Ethereum Virtual Machine in Ethereum and the Docker
container environment in Hyperledger Fabric. Since the smart contract instal-
lation and execution in Ethereum and Fabric are different, we mainly focus to
investigate the potential security risks in the Hyperledger Fabric system.

The contribution of this paper can be summarized as follows:

– We elicit a new attack vector in the smart contract ecosystem. Instead of
focusing on smart contract programming, we propose to perturb the smart
contract execution at the life-cycle and runtime level.

– A detailed case study on Hyperledger Fabric has been performed, which
proves the possibility and feasibility of the proposed attack.

– We briefly discuss and analyze the practicability of launching this attack on
Ethereum and other platforms.

– A new threat model of smart contract systems has been created based on the
findings in this paper.

– We summarize and demonstrate the limitations and countermeasures of the
proposed attack.

2 Background

A smart contract is an automated agreement enforced by tamper-proof execution
of computer code [7]. In the context of blockchain, smart contracts are scripts
stored on a blockchain system and which enable users to perform general-purpose
computations on the blockchain. Smart contracts can be applied to various fields,

1 https://github.com/ethereum/wiki/wiki/White-Paper.
2 https://www.hyperledger.org.

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.hyperledger.org
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including B2B international transfers, central clearing, mortgages, and crowd-
funding [8]. The use of smart contract enhances the integrity, traceability, and
transparency of data, and further benefits the applications in many domains.

To date, only a few platforms provide a full implementation of a smart
contract. Two of the most successful and widely deployed implementations
are Ethereum and Hyperledger Fabric (or Hyperledger, since many other sub-
projects and blockchain applications are developed under the Hyperledger
umbrella). Smart contract can be triggered by different nodes in blockchain
network, these nodes can be different architecture-based and operating system-
based. Ethereum and Hyperledger use different methods to ensure the smart
contract can be run on all nodes and generate the same result. However, the core
concept is the same: via virtualization. Ethereum adopts a virtual machine mech-
anism similar to the Java Virtual Machine, named Ethereum Virtual Machine
(EVM). EVM is a stack machine that executes bytecode transformed from a
high-level smart contract programming language (Solidity or Vyper). EVM is
an embedded component of an Ethereum node client, which automatically runs
in memory. In contrast, Hyperledger uses a Docker container to execute the
smart contract. The smart contract in Hyperledger can be written in Go, Java,
or NodeJS. The code is packaged and instantiated as a Docker container in
the Hyperledger node’s system. Each smart contract runs as a container, more
details are described in Sect. 3.

3 Case Study: Attack on Hyperledger Fabric

In this section, we perform a case study on the Hyperledger Fabric platform to
investigate the feasibility of perturbing the smart contract execution via runtime

Fig. 1. Chaincode life cycle in hyperledger
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vulnerabilities. The entire case study is based on the official Hyperledger net-
work test example, Byfn network. We demonstrate the chaincode (the alias for
the smart contract in Fabric) life-cycle and Docker environment of Hyperledger
Fabric system before introducing the vulnerability itself.

3.1 Chaincode Life Cycle

Figure 1 illustrates the life-cycle of chaincode in the Docker containers that
Hyperledger uses as its runtime environment. The following steps transpire when
a Hyperledger blockchain peer tries to launch and test a piece of chaincode (start-
ing in the top left corner of Fig. 1):

1. Packaging: The Peer first packages the chaincode into a tar format file.
2. Install: The compressed package is delivered to all the peers that need to

run/endorse the chaincode. These peers build, compile, and install the chain-
code locally.

3. Definition Approve: Corresponding channel members vote on and approve the
definition of the chaincode, which includes such information as name, version,
and endorsement policy (i.e., who can execute and validate).

4. Commit: Upon a success approval, a commit transaction proposal is sub-
mitted to the Orderer, which then commits the chaincode definition to the
channel.

5. Instantiate: The complied chaincode is added into a base image to create the
real instance of chaincode container.

6. Operations: Chaincode invoke and query operations are carried out by the
communication between the peer container and chaincode container.

Throughout this procedure, the Orderer and Peer container are active all the
time. The ccenv container, which is the chaincode environment container pro-
vides the functionalities of installation and instantiation. The ccenv is an offline
docker image that only becomes an active container when there is a chaincode
that needs to be processed. The baseos image is always offline.

3.2 Threat Model

In this case study, we identified two threats in the container runtime: insecure
communication and loose image management. In the insecure communication
threat, we assume the adversary may not have root privilege on the host machine,
but he/she has access to the Docker network, images, and containers. This can be
achieved using a pre-planted backdoor, malicious docker image, and/or remote
control. The communication of the victim can be eavesdropped, intercepted, and
modified by the adversary. The adversary can be an unrelated third party or an
insider. The prerequisites of these attacks may enable the adversary to damage
the system in a more severe and obvious way, but the major motivation of the
adversary is to bias, perturb, and stop the service of the chaincode. We further
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assume the adversary can deliver malicious docker images to victims in the loose
image management threat.

The detailed attacks and consequences are presented in Subsects. 3.3, 3.4 and
5.1. For the chaincode invoke operations, the adversary can intercept and manip-
ulate the original input to chaincode using a malicious image, and the faulty
data would be added into the blockchain. The adversary can also modify the
local chaincode execution result returned to the user using Man-in-the-Middle
(MITM) channel (and/or malicious image), thus the transaction proposal of the
chaincode invocation will be failed during the endorsement procedure. Namely,
the DoS of the smart contract can be achieved.

On the other hand, the adversary can intercept the return results of the
chaincode query operations using MITM and/or malicious image, so the query
of chaincode data can be manipulated by the adversary.

3.3 Insecure Communication

The operations to an instantiated chaincode in Hyperledger are based on the
communication between the Peer container and Chaincode container. We sniffed
the communication traffic between these two containers while a query operation
was taking place. As shown in Fig. 2, the communication was TLS v1.2 enabled,
the encryption of the communication was based on ECDH Key Exchange, and
the authentication was provided by mutual certificate verification. Normally, we
should presume the communication is secure and reliable. However, the vulner-
ability came from a permissioned blockchain and Docker container.

Fig. 2. Communication and handshake between the peer and chaincode containers

The permissioned blockchain requires the network to be a designated group of
organizations and entities, and the enforcement of the network regulation relies
on authentication. In other words, all the entities need to have corresponding
certificates and keys for further verification. All the cryptographic materials are
pre-generated and shared in the entire network by loading them into the container
at the point the container is created. This creates a problem: all the keys and
certificates are stored in the user space of both host and container. Figure 3
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Fig. 3. Unencrypted key and certificates stored in host and containers

shows the accessible keys and certificates stored in host and container, which
are also stored in an unencrypted manner.

The Hyperledger project provides a Cryptogen binary to help users tailor
their cryptographic materials. Users can change the location of the keystore,
change the key format and length, and create encrypted keys and certificates,
but such information has to be loaded and stored into containers. Hyperledger
containers come with root privileges, which provides access to keys. As long
as an adversary has access to any container, he/she has access to
this material. Hyperledger adopts ECDH key exchange, which is secure for

Fig. 4. Demonstration of MITM attack on chaincode communication
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key exchange over an unencrypted channel. However, the overall “secure com-
munication” relies on a mutual certificate authentication because the identity of
the opposite entity can not be confirmed without it [9]. We discovered that the
certificates are accessible on all the containers and can be compromised. The
adversary can pretend to be a compromised node and set up a MITM channel
to launch further attacks.

Traffic redirection tools (e.g. iptables and ARP spoofing) and TLS intercep-
tion tools (e.g., SSLProxy3) make it relatively easy for an adversary to redirect
the duo-direction communication between the Peer and Chaincode containers to
a MITM agent. All the operations to the chaincode can be then manip-
ulated by the adversary. An example attack scheme is described in Fig. 4.
Note that, besides the Peer -Chaincode communication, there is another vulner-
able point. The communication between the Client (user command-line
tool/ container that used to send the requests to Peer) and Peer can
be the target of MITM attack as well.

After this stage, the attack becomes an engineering task of forging all the
malicious packets. This is obviously nontrivial, but feasible. We have plans to
explore this further in the future; the aim of the current work is to suggest
looking to the environment within which the secure contract executes for possible
vulnerabilities.

3.4 Loose Image Management

As shown in Fig. 1, the chaincode container is created by loading chaincode
binary file into the baseos image. One potential strategy for circumventing the
integrity of the chaincode would be to poison the base image, thus ensuring
subsequent chaincode containers would be vulnerable if the baseos image were
modified or replaced. The baseos image, along with other Hyperledger container
images, are ill protected. Containers are called via tags instead of hashes. This
means that a benign image can be modified or replaced and still appear to be
valid if it has a tag that corresponds with the original.

Fig. 5. Replace the Hyperledger baseos image

Figure 5 illustrates a simple example of such an image alteration. The original
on Hyperledger v2.1 baseos image was Linux Alpine based, with an image size of
3 https://github.com/sonertari/SSLproxy.

https://github.com/sonertari/SSLproxy
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6.94 MB. We replaced all the versions of baseos image to a Ubuntu-based image of
73.9 MB. In addition, we modified the clean Ubuntu image with Python and some
other libraries installed, which also has been committed to baseos image version
2.1. We observed that all the chaincode containers created after this
image alteration were installed with Python and additional libraries.

In this case, if the adversary can either redirect the user to download a
malicious image or somehow modify/replace the image, the entire system can
be corrupted. The adversary can load customized code, autorun rootkit, revert
channel backdoor, and cryptocurrency miner program into the malicious image.
These malicious images can lead to denial of services, abuse of resources, unau-
thorized access, and information leaking. One can also use the malicious image
to launch the aforementioned MITM attacks.

Fig. 6. Dev-chaincode containers on-the-fly

This naive attack can work because the Hyperledger container life-cycle envi-
ronment calls all the images with tags. Image integrity is guaranteed in the
Docker container system using hashes. The system can ensure a particular image
has not been modified using hash but it cannot stop the tag from being written
another image. The adversary can re-assign the corresponding tag to malicious
images. Although the hashes are inherently provided by Docker engine, it is
apparently more convenient, albeit incautious, to use the human-readable but
less secure tags in the life-cycle. Moreover, besides the baseos image, all the other
Hyperledger images are vulnerable as well. The orderer, CA, and peer images are
all free for modification and replacement. Each installed and instantiated chain-
code will be mapped with a container image as well (shown in Fig. 6), these
images that generated on-the-fly can be also attacked.

3.5 Risks Behind Docker

Hyperledger outsources Docker as the chaincode runtime, and its security is then
bounded with Docker container security, which basically doubles the attack sur-
face. The adversary can utilize the vulnerability of Docker to perform much more
severe attacks. For example, one can combine a malicious image with reverse shell
and Docker escape attack to gain the root access of the host system4. This can
lead the attacker to have full control of the entire system. An example set up
is shown and described in Fig. 7, where upon the invocation of the malicious
image, a reverse shell establishes and returns with the root access of the vic-
tim’s host. If the adversary replaces the baseos image with this malicious one,

4 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5736
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the entire chaincode system is disrupted. Note that the malicious docker images
problem has been of concern for some time. By uploading malicious images into
Docker Hub, an unscrupulous actor can generate $90,000 dollars from the million
downloads and deployments of these malicious images in 10 months5.

Fig. 7. Gain root access on host via malicious image: this attack allows
the adversary to inject any code in docker runtime (runc), and the code
will be executed on host with root privilege. This example simply injects
“bash− i > &/dev/tcp/0.0.0.0/23450 > &1&” into runc, and a reverse shell with root
access on victim’s host will be created.

Complicating things further, Docker and Docker Compose are normally con-
figured to be user-space applications. Since it is not practical, efficient, and secure
in a production environment to ask all the persistent container operations for
root privileges, the Docker environment can be significantly manipulated even
without root access on the host system. Issuing Docker commands on the host
can be another threat to the chaincode system. One can stop and re-run a chain-
code container to break the established TLS connection with Peer container,
thus, the sniffing and MITM can be launched at any time. One can run the
containers with privileged mode, so the iptables and all the other kernel-related
system calls are enabled in the container for further malicious objectives (e.g.,
setup network forwarding rules and divert channels, and load malicious kernel
modules).

5 https://arstechnica.com/information-technology/2018/06/backdoored-images-
downloaded-5-million-times-finally-removed-from-docker-hub/.

https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/
https://arstechnica.com/information-technology/2018/06/backdoored-images-downloaded-5-million-times-finally-removed-from-docker-hub/


Perturbing Smart Contract Execution Through the Underlying Runtime 345

4 What About Ethereum and Others?

Generally, it may seem that Ethereum is more secure than Hyperledger since its
runtime, EVM, is a customized in-memory stack machine. We focus on Hyper-
ledger is not only because it is less discussed or arguably less secure, but also due
to the fact that EVM has already been attacked in a similar form. Both EVM
stack overflow attacks[10,11] and CVE-2018-18920 (an internal flaw of python
implementation of EVM)6 attacks perturb the normal execution of smart con-
tract based on the vulnerabilities in EVM implementation. These two attacks
can infinitely trigger the smart contract functions without corresponding gas
and payments, which also do not rely on any programming faults in the smart
contract. Although these two vulnerabilities have been already fixed, the concept
of our proposed attack is verified.

A research question is whether it is possible to attack the EVM without a
zero-day vulnerability. Because EVM is a program running in the local system,
it can be perturbed if the system owner (or the adversary with the same priv-
ilege) decides to do so. Indeed, any program and applications can be attacked
in this manner as well, this type of attack is beyond the scope of “attack on
the runtime”. A smart contract is different from the other application scenarios.
Since the contracts are immutable and reliable hardcoded programs
in the blockchain, altering the execution or the result of smart con-
tracts even in a more general manner would still be interesting. One
potential direction is to locate the EVM stack and memory locations in physical
memory space and use the process vm writev() system call to transfer and inject
data into that memory location, thus altering execution.

We note that there exist some other smart contract platforms, such as EOSIO
and NEO EOSIO adopts a customized web assembly virtual machine (EOS-
VM) to transform a C++ smart contract, making the code executable across
platforms. NEO uses an enriched EVM-style stack machine to execute the smart
contract. Generally, the threats and concerns of all other VM-like runtimes would
be similar to the EVM.

5 Lessons Learned

5.1 Limitation and Impact of the Proposed Attack

Altering smart contract execution requires access to the runtime environment
and/or certain vulnerabilities present at runtime. Access to the runtime environ-
ment may lead to other security concerns and make the perturbation unneces-
sary. For example, the adversary can simply remove the Docker engine from the
victim’s system, thus achieving DoS. Similarly, one can block the EVM imple-
mentation and Ethereum client from normal functioning by setting up certain
network rules or checkpoints (via debugger). We notice that the assumption of
having partial access to the system is a strong assumption, but note that all the

6 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18920.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-18920
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aforementioned attacks in Hyperledger can still be performed without access to
the system, as long as a malicious image is delivered.

The detailed attack consequences depend on the type of container/commu
nication compromised by the adversary:

– Orderer Container: Gaining control of the orderer container allows an adver-
sary to i) partially DoS the blockchain network by dropping transactions sent
to the orderer node; or ii) perturb the overall transaction propagation in the
orderer cluster.

– Peer Container and/or Chaincode Container: The adversary can use a com-
promised container to send malicious chaincode invocations (the input to
chaincode is manipulated), so the final data uploaded into blockchain can be
manipulated. Although the users can find out the wrong values added in the
blockchain and examine the local system afterward, the faulty data has been
already uploaded.

– Communication between Peer and Chaincode Containers: When the user
invokes/queries a chaincode, an adversary can DoS or perturb this chaincode
execution procedure using the MITM channel. The modification on invoca-
tion execution results leads to the failed transaction endorsements, thus DoS
of chaincode can be achieved. The modification on query execution results
enables the adversary to manipulate the chaincode query functionality and
fool the victim.

5.2 Countermeasure to the Proposed Attack

Aforementioned problems can be solved in the following way:

– Malicious Image: The Hyperledger system should regulate all the invocation
of containers to be bound with hashes instead of tags. Each time a container
image is called, the hash needs to be compared, including the on-the-fly gen-
erated chaincode images.

– Access Control: If it is not necessary, all the Hyperledger containers should be
run in root-less mode. This may need additional libraries installed on the host
and further supports from Docker community 7. This can limit the adversary
from accessing the keys and certificates.

– Communication Security: The adversary can obtain access to the private keys
for further communication manipulation due to the confidential cryptographic
material loaded into containers. This is a side-effect of malicious image and
loose access control, and the problem can be fixed only if the previous two
are properly handled. However, the use of containers also adds an additional
communication layer between the peer and installed chaincode. Note that, the
chaincode is installed locally per Peer, which means the Chaincode container
and Peer container are running in the same machine. For the local system data
exchanging between Chaincode container and Peer container, network-based

7 https://docs.docker.com/engine/security/rootless/.

https://docs.docker.com/engine/security/rootless/


Perturbing Smart Contract Execution Through the Underlying Runtime 347

communication is not the only option. Docker supports shared memory (inter-
process communication (IPC) namespace) for inter-container data exchange.
Using IPC between Chaincode container and Peer container can eliminate
the risk in network-based communication.

5.3 Threat Model of Smart Contract Systems

Based on the findings in this paper, a new threat model of the smart contract
system is established and shown in Fig. 8. The threats can be divided into two
levels, smart contract programming level [11], and runtime level. The threats
in smart contract programming level are either caused by programming flaws
or backdoors. The programming flaws including external dependence (e.g., re-
entrancy, delegatecall injection), improper validations (e.g., integer overflow and
underflow), and inadequate authentication or authorization (e.g., erroneous vis-
ibility, unprotected suicide). The backdoors are intentionally planted malicious
functions, they may not violate any programming rules or fall in any program-
ming flaw definitions. However, they can be used to trigger blockchain operations
that can potentially prejudice the interests of others.

Fig. 8. Threat model of smart contract system

The runtime level threats in Hyperledger-based blockchain are bound to
Docker container security. The integrity and availability of Hyperledger images
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significantly determine the security of the chaincode system. If the access con-
trol in the Docker environment is not appropriately configured, keys and certifi-
cates can be accessed without authorization. The Docker commands that can
be issued as a non-root user can also harm the chaincode system. For exam-
ple, an evil insider can easily stop the containers to perturb and even DoS the
blockchain system. The insecure communication and loose image management
threats presented in this paper also need concerns.

On the other hand, the Ethereum-based smart contract system suffers from
the diversified EVM implementations. Hyperledger adopts a single standardized
runtime Docker as the universal chaincode runtime, whereas Ethereum provides
different implementations of EVMs. As stated in [12], the gas and opcode con-
sistency problem have been already found in different EVM implementations.
Moreover, maintaining and ensuring the security of all the EVM implementa-
tions are non-trivial and challenging tasks. The attack in CVE-2018-18920 just
utilizes the flaws in the Python version of EVM implementation. Some of the
other potential risks are also indicated in the work [13]. As the development and
maintenance of EVM continue, the security of Ethereum runtime needs more
concern. Other VM-based runtime blockchains such as EOSIO and NEO may
confront the same problems, however, the security analysis on these two plat-
forms is limited.

6 Conclusion

Smart contract is the core functionality enabler for blockchain, thus it needs
to be secure and reliable. This paper differs from the state-of-art works, which
instead of analyzing the security of smart contract based on programming vali-
dation, proposes to investigate smart contract security at runtime level. A case
study has been performed on Hyperledger blockchain, and we demonstrate the
potential risks that exist in the Hyperledger chaincode runtime environment.
The analysis and countermeasures are elaborated in detail. In addition, com-
bining with other prior attacks on EVM mechanism, we propose a new threat
model for smart contract systems which includes both programming security
and runtime security.
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Abstract. Traditional searchable encryption schemes focus on prevent-
ing an honest-but-curious server. In practice, cloud servers may delete
user data, perform partial queries and even falsify search results to save
computing and storage resources. Although there is some previous work
to verify the correctness of search results, these verification mechanisms
are highly dependent on the specially appointed index structures.

In this paper, we propose a blockchain based multi-keyword similar-
ity search scheme over encrypted data (BMSSED), which is a general
scheme that keeps users from worrying about potential misbehaviors of
a malicious server. To solve the problem that the size of transactions
is limited, we use an index partition method to divide the traditional
binary tree index into a plurality of sub-indexes. The new structure of
sub-indexes not only circumvents the gasLimit problem, but also reduces
the dimension of file vectors and improves the search efficiency using
smart contracts. In addition, we propose an access control mechanism
for transaction data, which is implemented by a new smart contract.
It can reduce the computation burden of data owners and prevent the
leakage of confidential information. We then define the security model
and conduct repeated experiments on real data sets to test the efficiency.
Experimental results and theoretical analysis show the practicability and
security of our scheme.

Keywords: Searchable encryption · Blockchain · Ethereum · Smart
contract · Access control.

1 Introduction

With the rapid development of computer technology and Internet applications,
the demand for data access and information storage is increasing [1]. Although
cloud computing enables users to enjoy high-quality services and ubiquitous
network access, outsourcing data to cloud servers makes data owners lose the
control over their sensitive data, resulting in data privacy disclosure [2,3]. To
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protect data privacy, the data owners usually opt to encrypt their data before
outsourcing to clouds. This in turn limits the availability of encrypted data,
e.g., the widely used keyword retrieval technology of plaintext information can-
not be directly applied to encrypted data. To address this problem, Song et al.
[4] firstly proposed a searchable encryption scheme based on ciphertext scan-
ning that enables users to store encrypted data in clouds and perform keyword
searches on the ciphertext domain. Their scheme is simple to implement and has
virtually no additional storage overhead. Subsequently, much effort has been
devoted to designing effective mechanisms to enable search over encrypted data.

Traditional searchable encryption (SE) schemes focus on problems brought
by an honest-but-curious server. More severely, any insider attacker may use dis-
covered vulnerabilities and unlawfully alter the computations performed over the
outsourced data. Recently, there is some work proposing verifiable designs that
enable the data owner to verify the correctness and integrity of search results and
outsourced data (e.g., using MHST [5] or verifiable matrix [6]). Unfortunately,
these verification mechanisms are highly dependent on specially appointed index
structures and do not support expressive queries or complex data structures (e.g.,
fuzzy search [7], similarity search [8,10] or multimedia data [9]).

With the emergence of blockchain, symmetric searchable encryption (SSE)
scheme based on Bitcoin was proposed to guarantee the privacy and confiden-
tiality of data. However, the transaction cycle of Bitcoin system is long. Besides,
its script language is not Turing complete and cannot be applied to more scenar-
ios. Therefore, Hu et al.[11] proposed a symmetric searchable encryption scheme
based on Ethereum blockchain and smart contract. This scheme not only ensures
the privacy of data, but also solves the problem of fairness of retrieval. Subse-
quently, there is some work based on Ethereum [12]. Nevertheless, they focus on
single-keyword queries and cannot meet actual demands of users. More impor-
tantly, all of the above schemes control who has access to the data through data
owners. That is to say, if Bob wants to access transactions of Alice, he has to send
the query keywords to Alice. Alice asserts Bob have permissions according to
the access control list stored locally and generates trapdoor for executing query
(or Alice sends the trapdoor to Bob). Meanwhile, Alice has to pay for Search(·)
function in advance. There is no doubt that Alice has a huge computational
burden, which violates the original intention of outsourcing.

1.1 Our Contributions

To address the above concerns, we propose a blockchain based multi-keyword
similarity search scheme over encrypted data (BMSSED), utilizing smart con-
tracts in Ethereum [11] to allow users of different roles to request access permis-
sion and interact with confidential documents. To give an exemplary instan-
tiation, we build BMSSED on the classic binary tree index [10] and design
the corresponding smart contract to circumvent various barriers in Ethereum.
For example, the size of the binary tree index increases as the amount of data
increases. If the size of an index is larger than the maximum of gasLimit, then
blockchain network will reject the transaction. Therefore, we divide the binary
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tree in [10] to break the limit (see discussion in Subsect. 3.1 for details). In addi-
tion, to reduce the computation burden of client and simplify the query process,
we novelly use smart contract to create an access control mechanism, where data
owners write access control policy, roles, permissions and other information of
data users to a smart contract and install it on each node. Before executing the
Search(·) function, the access control policy is executed in advance. Note that
our framework is a general one, which can be better applied to many practical
scenarios (e.g., management of personal electronic medical profiles). Generally,
the main contributions are as follows.

– We design a new index partition method to avoid exceeding gasLimit and
improve the query efficiency. If the size of an index tree is greater than the
maximum value of gasLimit, we divide the traditional binary tree index into
multiple sub-indexes and embed each sub-index into transactions. After that
the transactions are sorted in ascending order of their keys, added to blocks
in turn and written to disk in block order.

– Considering the complicated query process and the huge computational bur-
den of data owners, we novelly use smart contracts to create an access control
mechanism. Meanwhile, to simplify the access control mechanism and avoid
the complexity of individual authorization policies, we use an effective role-
based access control (RBAC) strategy to check whether users have access to
transaction data.

– We accomplish a prototype of our scheme and also deploy it to a locally sim-
ulated network and an Ethereum test network as [11]. We conduct repeated
experiments on real data sets. Experimental results and theoretical analysis
show the practicability and security of our scheme over encrypted data.

1.2 Related Work

To fulfill the retrieval of encrypted data, Song et al. [4] firstly proposed a search-
able encryption scheme based on ciphertext scanning, where each plaintext is
divided into equal length keywords. This scheme uses the double-layered XOR
encryption to encrypt each keyword in plaintext by the stream cipher. Autho-
rized users only provide the encrypted keywords to the server. The server makes
a linear query for the encrypted files and returns the search results. The crypto-
graphic model of the scheme is simple. There is no additional storage space over-
head. However, the statistical distribution of plaintext is vulnerable to attack.
In addition, retrieval performance is limited by the size of files. Considering the
problems of retrieval efficiency and security, much effort has been devoted to
enabling search over encrypted data [13–16].
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However, the above schemes are based on the ideal assumption, that is, cloud
servers are honest-but-curious. In practice, cloud servers may delete user data
and perform partial queries or falsify search results to save computing and stor-
age resources. To verify the correctness and integrity of the search results, Chen
and Zhu [5] designed the structure of minimum hash subtree (MHST). The cloud
server returns the MHST and the root signature to the data owner (or data
user). The client uses the MHST to recalculate the hash value of the node for
verification. To resist the malicious behavior of cloud servers, Wan and Deng [8]
designed a trusted privacy protection keyword search scheme (VPSearch). The
VPSearch scheme generates a binary vector for each keyword and uses homomor-
phic MAC (Message Authentication Code) technology to check the authenticity
of the returned ciphertext. Liu et al. [6] proposed a dynamically verifiable SSE
scheme that allows a user to perform a top-k search on a set of dynamic files
while effectively verifying the correctness of search results. In this scheme, file
nodes are ordered according to their ranks for such a keyword. The information
about a node’s prior/following neighbor is encoded with the RSA accumulator.
Zhang et al. [17] proposed a verifiable keyword ranking retrieval scheme based on
deterrence. Throughout the verification process, the cloud server cannot know
which data owners, or how many data owners exchange anchor data that will
be used for verifying the misbehavior of a cloud server. To recapitulate, these
authentication mechanisms are highly dependent on the encrypted query index
structure. It lacks a verification mechanism suitable for all search schemes.

The decentralized and tamper-proof characteristics of blockchain can prevent
user data from malicious tampering and ensure the correctness of search results.
There are many works about blockchain recently. Ron and Shamir [18] made
a quantitative analysis of the full Bitcoin transaction graph. Vitalik et al. [19]
firstly introduced smart contract to Bitcoin systems and proposed Ethereum.
Andrychowicz et al. [20] and Bentov and Kumaresan [21] introduced Bitcoin
to multi-party computing to solve the fairness problem. Swan put forward sev-
eral blockchain schemes that can be applied to [22], one of which is Blockchain
health. It provides a framework for storing health medical data on the blockchain.
Patients who place their own electronic medical records (EMR) on the blockchain
can obtain a certain amount of healthy coin.

Unfortunately, the above schemes fail to give an effective search method.
Therefore, Li et al. [23] proposed a searchable symmetric encryption scheme
based on blockchain. The scheme stores encrypted data and indexes on the
blockchain and realizes the effective query of encrypted data in blocks. However,
the script language of Bitcoin is not Turing complete and cannot be applied to
more scenarios. Therefore, Tahir and Rajarajan [24] proposed a new privacy pro-
tection framework to fulfill keyword search for ciphertext stored on blockchain
networks. The framework firstly implements a searchable encryption scheme
based on probabilistic trapdoor on Hyperledger Fabric. The probabilistic trap-
door can resist distinguishable attacks and ensure a higher level of security and
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privacy for the scheme. Hu et al. [11] built a decentralized, reliable and fair search
scheme by replacing cloud servers with smart contract to ensure that data own-
ers can obtain correct search results without worrying about malicious servers.
Shortly afterwards, Chen [25] proposed blockchain based searchable encryption
for electronic health records (EHR) sharing on the basis of Hu et al.’s scheme.
The index of EHRs is constructed by complex logical expressions and is stored
in smart contract, so that data users can use expressions to search for indexes.

2 Preparatory Knowledge

2.1 Ethereum

Ethereum is a new and open source blockchain platform where users can write
code that controls digital assets runs exactly as programmed, and is accessible
anywhere in the world. The top layer of its architecture is decentralized appli-
cations (DApp) that exchanges through the web3.js with the smart contract
layer. All smart contracts run on the EVM and call the Remote Procedure Call
(RPC) protocol. The EVM and RPC support four core elements of the Ethereum,
including the Blockchain, the Consensus algorithm, the Miner and the Network
layer. As a whole, Ethereum provides us with two appealing properties:

– Ethereum does not give users a set of preset operations (such as Bitcoin). It
allows users to create complex operations as they wish.

– The design of the Ethereum is very flexible and adaptable. It is easy to create
new applications on the Ethereum.

Smart contracts in Ethereum are applications with a state stored in the
blockchain that can run automatically on each decentralized network node [26].
Similar to the way of the software library works, developers can create smart
contracts to provide functionality for other smart contracts. Alternatively, smart
contracts can be simply used as an application to store information on the
Ethereum.

Gas system is designed to mitigate Denial-of-Service attack on the Ethereum
network. When Alice sends a token, executes a contract or transfers etheric
money, each opcode will cost a certain pre-defined amount of gas, so that Alice
has to pay gasprice∗gasUsed for the gas used. In addition, to avoid unpredictable
fuel consumption caused by errors in contracts, the user sets a maximum allow-
able gas consumption when sending the transactions, that is, gasLimit.

2.2 Notations

Following are the notations used in our manuscript (Table 1).
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Table 1. Notations and descriptions

F : The plaintext collection of m documents F = {f1, ..., fm}. Each file fi in the

collectioncan be considered as a sequence of keywords

m: The number of files in F .

W : The dictionary, namely, the set of keywords, denoted as W = {w1, ..., wn}.
n: The size of W .

C: The encrypted files collection stored in the blockchain, denoted as C = {C1, ..., Cm}.
I: The index tree encompassing multiple sub-indexes for the whole file collection F ,

denoted as I = {I1, I2, . . . , Ic}
c: The number of keyword groups.

̂I: The encrypted form of index tree I.

Tq : The set of query vector.

T̂q : The encrypted form of Tq , named as trapdoor for the search request.

TXID: The identifier of a transaction.

TXinx: The transaction embedded in index.

TXtrap: The transaction embedded in trapdoor.

K: The number of files returned.

h: The number of roles in the access control list.

u: The dimensions added for the security of the files.

l: The upper bound of file size

2.3 System Overview

In Fig. 1, we outline the architecture of our system. There are three entities
in the system model: data owner (Uo), data user (Us) and Ethereum. The Uo
has m files f1, ..., fm. To protect the privacy of confidential documents, the Uo
uses the symmetric encryption algorithm (e.g., AES) to transform them into
ciphertext C1, ..., Cm, which will be uploaded to the Ethereum blockchain in the
form of transaction TXi(i = 1, ...,m). After the transactions are successful, each
of them will have a corresponding transaction identifier TXID. The Uo uses
these TXIDs to generate an index I and encrypts the index to ̂I. Then, the
Uo uploads ̂I to the Ethereum in the form of transaction TXind. The Us is a
data user authorized by the Uo. When the Us queries the encrypted data stored
in Ethereum, he/she sends the transaction TXtrap embedded in the trapdoor
to the Ethereum. After receiving legitimate query requests from Us, the smart
contract executes search algorithms with a search token T̂q and the previously
stored index ̂I and saves the search results (i.e., file identifiers) to its state, which
is publicly known including the Uo. After receiving the search results, the Us
uses the secret keys to decrypt the documents.

2.4 Threat Models

Depending on what information an adversary (e.g., a malicious server node)
knows, we adopt the following two threat models.
Known Ciphertext Model. In this model, the adversary only knows the encrypted
file collection C, the encrypted index tree ̂I, and the search trapdoor T̂q submit-
ted by the Us. It means that the adversary can conduct ciphertext-only attack
(COA) [10].
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Fig. 1. System overview

Known Background Model. In this stronger model, the adversary not only equips
with the knowledge of known ciphertext model, but also some other knowledge,
such as the term frequency statistics of the document collection. That is to say, the
adversary equipped with such statistical information can record how many doc-
uments there are for each term frequency of a specific keyword in F . Specifically,
the adversary can conduct term frequency (TF) statistical attack to infer or even
identify certain keywords through analyzing histogram and value range of the cor-
responding frequency distributions [27].

2.5 Design Goals

Soundness. It indicates that if there is a malicious server that does not correctly
perform a protocol, it will get caught and obtain nothing. Generally, the previous
works achieve this goal through a range of verifications of search results. In
this paper, our scheme can obtain correct query results without verification
operations and effectively prevent malicious nodes from unauthorized access.

Privacy-Preserving. In our scheme, we aim to protect the index and query
confidentiality, query unlinkablitity as well as keywords privacy from adversaries.

– Index and query confidentiality. The adversaries cannot detect or infer the
plaintext information about the content of trapdoor and index.

– Query unlinkablitity. The adversaries cannot identify whether or not two
trapdoors are from the same search request.

– Keywords privacy. The adversaries cannot deduce whether the specific keyword
is contained in a trapdoor through analyzing the TF distribution histogram.
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2.6 Vector Space Mode

Vector space model and the TF × IDF rule are widely used in information
retrieval [10]. In vector space model, for each document fi, the Uo generates an
n-dimensional document vector Di(1 ≤ i ≤ m). If the keyword wj is not included
in fi, Di[j] = 0; otherwise Di[j] = pj == TF (wj)×IDF (wj)√

∑N
n=1 TF (wi)×IDF (wi)

, where pj is

the weight of the keyword wj . The TF (wj) is the frequency of the characteris-
tic item, that is, the times that the keyword wj appears in the document. The
IDF (wj) is the inverse document frequency, inversely proportional to the num-
ber of documents in which the keyword wj appears, IDF = lg N

idf . N denotes
the number of words in the dictionary, and idf denotes the number of documents
containing wj .

3 Design Challenges and Countermeasures

3.1 Binary Indexed Tree

In Ethereum, each operation, including sending/storing data and executing com-
putations, has an upper bound of consumed gas called gasLimit as described in
Subsect. 2.1. This restricts the size of transactions and the complexity of designed
functions. Therefore, we divide the encrypted data to make privacy-preserving
search over a large database feasible. Specifically, the main challenge is to divide
the traditional binary index tree into multiple sub-indexes. The index partition
method is described in detail as follows.

– The Uo produces an inverted index INV = (inv(w1), inv(w2), ..., inv(wn))
for dictionary W , where inv(wi) is an inverted list of wi. Each inverted list
only stores top-P documents corresponding to keyword wi, where P is a
positive integer, P > K.

– The Uo divides the set of keywords W into c groups Wg =
{Wg1,Wg2, ...,Wgc}, where each group Wgi in Wg contains d keywords.
Then, according to the inverted index INV , we generate inverted index set
V g = {V g1, V g2, ..., V gc} for each group Wgi.

– For each keyword group Wgi, the Uo constructs the keyword balance binary
(KBB) tree Ii as the sub-index by the top-P documents and obtains the index
tree I = {I1, I2, ..., Ic} for the whole file collection, where 1 ≤ c. The number
of sub-indexes is determined by the value of d. Suppose Ni represents a node
of index Ii and it is in the form of < TXID, lN , rN , value >, where lN and
rN are the left and right nodes of Ni, and value is a d-dimensional file vector.
If Ni is a leaf node, then TXID is transaction identifier, and value stores the
document vector Di of keyword group Wgi; else, the Ni is an intermediate
node, then the TXID is empty and the value is calculated as follows:

value[j] = max{lN .value[j], rN .value[j]} + |rand()|%max{lN .value[j], rN .value[j]}
As shown in Fig. 2, we give an example to illustrate the detailed process of
partition. In summary, the structure of sub-indexes not only circumvents the
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Fig. 2. An example of dividing the traditional binary tree index in [10] with the file set
F = f1, ..., f6 and the dictionary W = {w1, ..., w4}. In the process of constructing the
index, we divide (a) the traditional binary tree index into (b) two sub-indexes I1 and
I2 by dividing the set of keywords W into two groups Wg1 and Wg2 (where P = 2 and
d = 2). The sub-index of each group Wgi is generated according to the traditional index
generation algorithm in [10]. Note that the file vectors in the figure is unencrypted to
simply describe the partition process.

above gasLimit, but also reduces the n-dimensional file vector to d-dimensional
and lowers the height of index tree to improve the retrieval efficiency in the
smart contract.

3.2 Access Control

Due to the restriction of gasLimit inEthereum, the operation of access controlmay
become significantly expensive when there are abundant and complex expressions
in a smart contract. Therefore, to simplify the whole access control mechanism and
avoid the complexity of individual authorization, we introduce an effective role-
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based access control (RBAC) strategy for transaction data. It can assert who have
permission to access the requested transactions by checking whether the user roles
are the root of the target polynomial. The detailed process is as follows.

Suppose there are h roles in the role set ̂h. A data user whose role is in ηi

will have the right to query transaction TXi, where ηi ⊆ ̂h. Let SC be a smart
contract running on the Ethereum network, Uo be the dispatcher of SC and Us
be a user authorized to invoke SC. The access control process is as follows.

(1) The Uo writes the access control policies, roles information and permissions
of the users to SC and install it on each node.

(2) The Us searches the encrypted data by submitting the transaction TXtrap

that contains the trapdoor T̂q, the transaction identifier TXindi
of the index

and its role information z1.
(3) After receiving the search request of the Us, the SC executes the access

control strategy in advance.
– Construct a variable polynomial of degree z for the transaction TXindi

,

denoted as yi(z) =
∏

rj∈ηi

(z − rj) =
j=h
∑

j=0

r̂jz
j (when j > |ηi|, r̂j = 0).

– Substitute the role z1 of Us into the polynomial yi(z). If the role z1 is the
root of yi(z), the Us can access the transaction TXindi

. Otherwise, the
Us is an unauthorized user and does not have permission to access the
transaction data.

Therefore, the problem of whether the Us has access permission for TXindi

can be reduced to the problem to check whether its role is the root of yi(z).

Correctness. If Us is assigned to a role z1 ∈ ̂h and transaction possesses subset
ηi, it holds that

yi(z) =

{

0 z1 ∈ ηi

yi(z1) �= 0 other
(1)

4 The Detailed Scheme

In this section, we construct a decentralized privacy-preserving search scheme
BMSSED that consists of six polynomial-time algorithm = (Setup, EncFiles,
EcryptIndex, GenTrapdoor, Query, Dec).

(1) Setup(1λ):
– The Uo enters the security parameter λ to generate the key Π =

{sk1, sk2}. Let ε = (ε.Enc, ε.Dec) be a secure symmetric encryption
scheme, and sk1 be the symmetric key of ε for encrypting files. Then, the
Uo shares the key to the authorized users. The key sk2 = {S,M1,M2} is
used to encrypt the index, where S contains the c groups (d + u + 1)
dimension vector, denoted S = {S1, S2, ..., Sc}. M1 and M2 are two
groups of matrices, both of which contain c invertible matrices that are
(d + u + 1) × (d + u + 1). Besides, the Uo sets a price of $offer for each
search.
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– The Us makes a deposit $deposit from $Buser, where $Buser is the
balance of the Us and $deposit is the deposit currency by the Us.

(2) EncFiles(sk1, F ) → C : The Uo uses sk1 to encrypt the document set F =
{f1, f2, ..., fm} and obtains the ciphertext collection C = {C1, C2, ..., Cm}
as follow. Immediately, the Uo embeds the encrypted documents in C into
transactions.

Ci = ε.Enc(sk1, fi)(1 ≤ i ≤ m) (2)

– If Ci > l, the Uo divides Ci into s blocks Ci1, Ci2, ..., Cis, |Cij | + p ≤ l,
∀j ∈ {1, ..., s}, s = 
|Ci|/p�. To store Ci, Ci1, Ci2, ..., Cis are respectively
embedded in the transaction TXfi,k

(k = 1, ..., s), the process is as follows:
• When k = 1 :

∗ Embed Ci1||0p into the transaction TXfi,1 .
∗ Upload it to the blockchain and record its transaction identifier
TXIDfi,1 .
∗ For 2 ≤ k ≤ s :
∗ Embed Cik||TXIDfi,k−1 into the transaction TXfi,k

.
∗ Upload it to the blockchain and record its identifier TXIDfi,k

.
– If |Ci| ≤ l(1 ≤ i ≤ n), it is embedded directly into the transaction TXfi

after signing it, upload it to the blockchain and record its corresponding
transaction identifier TXIDi.

(3) EncryptIndex(sk2, S, F ) → ̂I:
– The Uo uses the TXIDs of encrypted data to generate index I =

{I1, I2, . . . , Ic}. The generation process is described in Subsect. 3.1.
– The dimension of each data vector in the sub-index Ii is extended from

d to d + u + 1. The value of the corresponding positions are randomly
set to 0 or 1. The value of the (d + u + 1)-th dimension is set to 1.

– We use the secure kNN algorithm in [10] to encrypt the index. Suppose
Ni denotes a node in index Ii, NDi represents the stored data vector and
Si is the i-th vector in S.

• Split NDi into two random vectors ND
′
i and ND

′′
i with the splitting

indicator Si as follow. For 1 < j < d + u + 1,
{

ND
′
i[j] = ND

′′
i [j] = NDi[j], Si[j] = 0

ND
′
i[j] + ND

′′
i [j] = NDi[j], Si[j] = 1

• Encrypt these two vectors as {MT
1,iND

′
i,M

T
2,iNDi

′′} and store them
on node Ni, where MT

1,i and MT
2,i represent the i-th matrices in the

matrix groups M1 and M2, respectively. The encryption form of index
I is denoted as

̂I = {{MT
1,1ND

′
i,M

T
2,1ND

′′
i }, ..., {MT

1,cND
′
i,M

T
2,cND

′′
i }}

= {̂I1, ..., ̂Ic},
(3)

where ̂Ii ≤ l and 1 ≤ i ≤ c
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– For each sub-index ̂Ii in ̂I, the Uo embeds it into the transaction TXindi

and submits to the blockchain.
• Embed ̂Ii||0p into the transaction TXind1 , upload it to the blockchain

and record its transaction identifier TXIDind1 that can be seen as a
pointer to the TXind1 .

• For each ̂Ii(2 ≤ i ≤ c), the Uo inserts ̂Ii||TXIDindi−1 into transaction
TXindi

, uploads it to blockchain and records its transaction identifier
TXIDindi

.
(4) GenTrapdoor(wQ, sk1) → TXtrap

– When the Us wants to search with keyword set wQ, he/she generates the
trapdoor Tq = {Tq1, Tq2, ..., Tqc}, where Tqi is a query vector of length
d. If Wgi,j exists in the keyword set wQ, the value of Tqi[j] is 1; else, it
is 0. We emphasize that when all the dimensions of the query Tqi are 0,
remove Tqi from Tq (see an example in Fig. 3).

– The dimension of each query vector Tqi in Tq is extended from d to d+u+1.
The values of the corresponding positions are randomly set to γi,j , where
i ∈ {1, ..., c} and j ∈ {1, ..., u}. The (d + u + 1)-th dimension of query Tqi

is set to another random number ψi. Besides, the first d + u dimensions
of each vector are multiplied by a random positive number r. The process
that the Us encrypts Tqi with sk1 is as follows.

• Split Tqi into two random vectors T
′
qi and T

′′
qi with the splitting indi-

cator Si as follow. For 1 < j < d + u + 1,
{

T
′
qi[j] + T

′′
qi[j] = Tqi[j], Si[j] = 0

T
′
qi[j] = T

′′
qi[j] = Tqi[j], Si[j] = 1

• The encryption form of trapdoor Tq is denoted as

T̂q = {{M−1
1,1T

′
q1,M

−1
2,1T

′′
q1}, ..., {M−1

1,c T
′
qc,M

−1
2,c T

′′
qc}}

= {T̂q1, ..., T̂q1},
(4)

– For each T̂qi in T̂q , the Us embeds it into the transaction TXtrap and
submits it to the smart contract.

• Specify a time limitation T1.
• Embed (T̂q, TXIDind, T1, z1) into the transaction TXtrap and upload

it to the smart contract.
(5) Query(TXtrap, TXind) → Cl:

– Assert current time T < T1.
– Assert that the Us is the authorized user according to the access control

policy described in Subsect. 3.2.
– Assert $deposit > GLsrch × $gasPrice + $offer, where GLsrch is the

gasLimit for calling Search(·) function.
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– Execute algorithm Search (T̂q, ̂I,K), get search result Rlist =
{TXIDρ1, ..., TXIDρK} and obtain corresponding Cl = {Cl1, ..., ClK}
according to Rlist (see an example in Fig. 3). The relevance score is

Score(T̂qi, ˆNDi)

= (M−1
1,i T

′
qi,M

−1
2,i T

′′
qi) · (MT

1,iND
′
i,M

T
2,iND

′′
i )

= r(Score(Tqi, NDi) +
u

∑

j=1

γi,j) + ψi,

(5)

where Score(Tqi, NDi) is real score.
– Let $cost ← $offer+Gsrch ×$gasPrice and send $cost to $Bowner. Gsrch

is the gascost for calling Search(·) function.
– Let $deposit ← $deposit × $cost and send $deposit to $Buser. .

Fig. 3. An example of generating the trapdoor Tq for Case1: wQ = {w1, w2} or Case 2:
wQ = {w1, w3} and returning the search results (K = 2) by querying the sub-indexes
in Fig. 2.

(6) Dec(Cl, sk1) → D :
After receiving the ciphertext set Cl, the Us uses the screct key to calculate
Dρi = ε.Dec(sk1, Cρi)(1 ≤ i ≤ r).
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Algorithm 1. Search (T̂q, ̂I,K) → Rlist

Require: The query T̂q, the searchable index ̂I;
Ensure: K transaction identifiers with highest scores.
1: for query T̂qi in query group T̂q do
2: TOPK( T̂qi, root of ̂Ii, 0,K)
3: Merge top-K transaction identifiers listi of T̂q into RList
4: end for
5: return top-K transaction identifiers of RList
6: TOPK( T̂qi, node, sco,K)
7: if sco < K-th score in listi then
8: return null
9: end if

10: if node is leaf node then
11: Insert the TXID of node into listi
12: else
13: leftScore = Score(T̂qi, node.lN )
14: rightScore = Score(T̂qi, node.rN )
15: if leftScore > rightScore then
16: TOPK( T̂qi, node.lN , leftScore,K)
17: TOPK( T̂qi, node.rN , rightScore,K)
18: else
19: TOPK( T̂qi, node.rN , rightScore,K)
20: TOPK( T̂qi, node.lN , leftScore,K)
21: end if
22: end if

5 Security Proof

In this section, we analyze the security of the BMSSED protocol.

5.1 Soundness

It is obvious that the security of our scheme depends on Ethereum. Therefore,
BMSSED can achieve soundness so long as the security of Ethereum is ensured.
When the smart contracts are correctly executed on Ethereum, the decision and
search results will be stored as contract states permanently and publicly. More-
over, miners in Ethereum network can verify the data. The consensus property
of Ethereum can guarantee that access control policies and search operations are
executed correctly.

5.2 Privacy-Preserving

Index Confidentiality and Query Confidentiality. Adversaries can calcu-
late the real values of indexes and queries by establishing liner equations from
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the exposed ciphertext [10]. In our scheme, we use the (d+u+1)-dimensional seg-
mentation indicator vector Si and the (d+u+1)×(d+u+1) reversible matrices
(M1,i,M2,i) to encrypt each subindex Ii in the index I, where each data vector
is randomly split into two different (d + u + 1)-dimensional vectors, ND

′
i and

ND
′′
i . That is to say, adversaries can establish 2�(d+u+1) equations from the

ciphertext of this index, where � represents the number of nodes that sub-index
̂Ii contains. However, subindex ̂Ii contains 2(d+u+1)2 unknown numbers in each
node. Besides, matrices M1,i,M2,i also have 2(d + u + 1)2 unknown numbers. It
is obvious that the size of unknown numbers is more than the known equations.
Similarly, the query vector T

′
qi and T

′′
qi can be regarded as two (d + u + 1)-

dimensional random vectors. There are 2(d + u + 1) unknown numbers in two
query vectors and 2(d + u + 1)(d + u + 1) unknowns in matrices M1,i,M2,i .
However, adversaries have only 2(d + u + 1) equations, which are less than the
unknown numbers. Therefore, there is not enough information to calculate the
query vector or matrices M1,i,M2,i. Moreover, adversaries always use the known
plaintext-ciphertext pair of queries to construct linear equations to calculate the
value of index [28]. In our scheme, the relevance scores learned by adversaries
are shown in formula (5), where Score(Tqi, NDi) is disturbed by the random
value r, γi,j and ψi. It means that the corresponding values of Score(T̂qi, N̂i) are
different for the same queries. Furthermore, each linear equation may introduce
u unknowns γi,j , two unknowns r and γi,j , that is, the unknowns in equations are
always more than the number of linear equations. Therefore, adversaries cannot
calculate the real value of index and secret key.

In summary, the BMSSED is strong enough to protect the security of index
and query in known ciphertext model.

Query Unlinkability. By introducing the random value r, γi,j and ψi, the
same search requests will generate different query vectors and receive different
relevance score distributions. Thus, adversaries are unable to establish the cor-
respondence between query vectors and documents. However, adversaries can
analyze the similarity of search results to judge whether the retrieved results
come from the same requests. In the proposed BMSSED scheme, the data user

can control the level of unlinkability by adjusting the value of
u
∑

j=1

γi,j . This is a

trade-off between accuracy and privacy, which is determined by the user.

Keyword Privacy. In the known background model, the adversary is equipped
with the TF statistics of the document collection. The proposed BMSSED
scheme is designed to obscure the TF distributions of keywords with the ran-

domness of
u
∑

j=1

γi,j . In order to maximize the randomness of relevance score

distributions, we need to get as many different
u
∑

j=1

γi,j as possible. However, the

query accuracy will be reduced. Therefore, data users can balance the trade off
between query accuracy and keyword privacy by adjusting the value of u.
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6 Performance Evaluation

6.1 Experimental Environment

Implementation. Experiments are performed on a computing system with an
Intel(R)Core(TM) i5-6500 CPU(3.2 GHz) processor, and the Windows 10 (64
bit) operation system. We deploy the smart contract to the locally simulated net-
work TestRPC and the official Ethereum test network Rinkeby, where TestRPC
is initiated with the default configuration, similar to the configuration of the real
Ethereum environment. Its mining block time is set to 0 so that we can focus on
the performance of the search part of the smart contract. The smart contract is
written in Python and combines with Solidity and Javascript as an intermediate
interaction language.

Data. We make an assessment for BMSSED on four different, synthetically gen-
erated test data sets provided by the Natural language processing group, interna-
tional database center, Department of computer information and technology 1.
These data sets have also been used in prior work, such as [8]. A quick summary
of the statistics of the data sets, the size of the resulting encrypted databases,
and the size of keyword set W are shown in Table 2.

Table 2. Database evaluation

DB name #DB EDB Distinct keywords

DB1 348 5.62 MB 709

DB2 742 11.8 MB 1244

DB3 1184 14.8 MB 2176

DB4 1472 23.0 MB 1802

Table 3. Key differences between our scheme and other blockchain based SE schemes

Scheme Query support Application context Access control

Tahir et al. [24] Single keyword General By data owner

Hu et al. [11] Single keyword General By data owner

Chen et al. [25] Boolean, range EHRs By data owner

Ours Similarity search General By smart contract

6.2 Performance in Ethereum

In this section, we design a number of experiments to test the performance
of the proposed BMSSED scheme. It is mainly composed of the overhead on
1 https://download.csdn.net/download/zgj gutou/12009292.

https://download.csdn.net/download/zgj_gutou/12009292
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TestRPC and Rinkeby. The indicators in the experiment are the running time
of the algorithm, where we take the average value of 30 independent runs of
the algorithm as the running time of the algorithm. Prior to presenting our
evaluation, we first provide a comparative summary of our proposed scheme and
other blockchain based SE schemes. As shown in Table 3, our scheme supports
similarity search for the general data and novelly uses smart contracts to create
an access control mechanism, having a certain advantage in terms of function.

On the Locally Simulated Ethereum Network TestRPC. To avoid
exceeding gasLimit, we experimentally set the limited size of a transaction as
l =16 kB and the number of keywords in each sub-index as d = 34. Table 4
presents the time overhead for building an index, uploading encrypted data, and
generating a trapdoor on different data sets. We can observe from the experimen-
tal results that the overhead of uploading the encryption data to the Ethereum
blockchain is much higher than other overheads. This is because data owners
store their confidential data in blockchain by embedding it into thousands of
transactions (e.g., storing DB4 requires 1501 transactions), and each transac-
tion costs about 4 s on average. Besides, we compare the query time overhead
corresponding to the change of matching document numbers on different data
sets. As shown in Fig. 4, the size of DB4 is the largest, with the longest time
of searching. Accordingly, the query time overhead on the DB1 is the least.
We explain that by a larger number of mined blocks leads to a longer time for
loading.

Fig. 4. Search time per matching document in TestRPC

We also observe that the running time of the query algorithm is lower as the
size of search result become larger. This is caused by the constant cost of loading
past mined blocks from disk into memory before each search runs. After the
TestRPC startes, it creates 10 accounts by default and the following Available
Accounts is the account list. Therefore, we use these default accounts to test
the efficiency of access control policies based on smart contracts. As shown in
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Table 4. Evaluations in TestRPC

DB name #Tx Construct index #Tx Upload

encrypted files

and index

Generate

trapdoor

#Tx Search Time

DB1 359 0.0045 s 10 24min ≈ 0.001 s 1 7.23 s

DB2 944 0.0078 s 37 65min ≈ 0.001 s 1 8.13 s

DB3 1258 0.0150 s 64 88min ≈ 0.001 s 1 8.97 s

DB4 1501 0.0201 s 53 99min ≈ 0.001 s 1 10.21 s

Fig. 5, in the case where the number of accounts is determined, the access control
decision time is evenly distributed around 0.4 s and does not change with the size
of the data sets. The exception point in the figure is mainly due to the instability
of the network when the contract is running.

Available Accounts
==================
(0) 0x74650142c29e358b8f94a8c5d43345649009a4cd
(1) 0x450f2896c47c6e8763b6d389c40166584d0ced40
......

Fig. 5. The efficiency of access control policies based on smart contracts

On the Official Ethereum Test Network Rinkeby. Due to the limited
balance, we only use the smallest database DB1 to perform experiments. There
are 359 transactions to store database DB1. The average block time for mining
is 15s and it costs 89 min to upload the whole encrypted data set. Besides, each
command executed in a smart contract has a specific consumption, counted
in units of gas. The average gas usage for a transaction is 4,201,232. However,
when the SSE smart contract is deployed to the Ethereum blockchain for the first
time, the cost is high. After completing the deployment of the smart contract,
the consumption cost that the users invoke the function interface provided by
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the smart contract is obviously reduced. For instance, the search time is about
10 s, 11 s, and 12.5 s for 50, 110, and 150 matched documents respectively in one
transaction. The average gas usage for searching is 1,676,958.

Comparison of Query Efficiency with EDMRS in [10]. As shown in Fig.
6, we compare the search efficiency of our scheme with EDMRS in [10] under
different numbers of retrieved documents to demonstrate the validity of our
partition algorithm. The experimental results reveal that the sub-index structure
is more efficient than the binary tree index of EDMRS. This is because our
method divides the query Tq into c queries {Tq1, ..., Tqc} and only sends those
that are not empty to the cloud server. Therefore, the server does not have to
search all sub-indexes.

Fig. 6. Time cost of search with different numbers of documents that the Us wants to
retrieve

6.3 Search Precision

Data users not only pay attention to search efficiency, but also care about search
precision. The higher the similarity among the documents in search result, the
higher the search precision. In our scheme, without loss of generality, the search
precision SPk is defined as

SPk =
K
∑

i=1

Score(T̂qi, ˆNDi)/
K

′
∑

i=1

Score(Tqi, Ni) (6)

where K is the top-K file returned by the ciphertext retrieval, and K
′

is the
top-K file returned in the plaintext query. Score(T̂qi, ˆNDi) is the similarity
between the encrypted query vectors and the returned documents in result set
and Score(Tqi, NDi) is real score.
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As described in Subsect. 3.1, to avoid exceeding gasLimit and improving the
query efficiency, each sub-index only stores the top-P documents. Obviously, this
method may lead to lower accuracy of queries whereas the Us in BMSSED can
control the accuracy by adjusting the value of P. Figure 7(a) indicates that the
Us wants to get a higher retrieval accuracy, he/she just sets a larger value of
P . Besides, when the value of P is beyond a certain point (such as, P =90 in
Fig. 7(a)), it has little effects on search results. We explain that by the union of
search results for one single keyword query embrace most of the top-K documents
in a multi-keyword query. Note that the search precision of scheme is also affected
by the size of the data set with the same P . The results are shown in Fig. 7(b).
The smaller data set has a higher search precision.

Fig. 7. The impact of the different values P (a) and K(b) on precision

7 Conclusion

In this work, we propose a blockchain based multi-keyword similarity search
scheme over encrypted data (BMSSED). Different from the existing SSE scheme
based on blockchain, our novelty is to use smart contracts to create an access
control mechanism and fulfill multi-keyword similarity query. To avoid exceeding
gasLimit, we divide the traditional binary tree index into a plurality of sub-
indexes. The structure of sub-index not only helps us circumvent the gasLimit,
but also reduces the dimensional of file vector and lower the height of index
tree to improve the retrieval efficiency in the smart contracts. In addition, to
simplify the whole authorization mechanism, we use the polynomial-based RBAC
strategy to assert who have the permission to access the transactions. We conduct
repeated experiments on real data sets. Experimental results and theoretical
analysis show the practicability and security of our scheme over encrypted data.
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The possible further research direction is to establish a protocol that enables
access control crossing the domain on the basis of the present work.

Acknowledgments. We would like to thank anonymous reviewers for their
helpful comments. This work is supported by National Key R&D Program of
China(2018YFA0704703); National Natural Science Foundation of China(61972215,
61702399, 61972073); Natural Science Foundation of TianJin(17JCZDJC30500)

References

1. Shangqi Lai, Sikhar Patranabis, Amin Sakzad. Result pattern hiding searchable
encryption for conjunctive queries, in: the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2018, Toronto, ON, Canada, October
15–19, 2018, pp. 745–762

2. Kermanshahi, S.K., Liu, J.K., Steinfeld, R.: Generic multi keyword ranked search
on encrypted cloud data, In: Proceedings of ESORICS 2019–24th European Sym-
posium on Research in Computer Security, Luxembourg, 23–27 September 2019,
Part II, pp. 322–343 (2019)

3. Xu, L., Yuan, X., Wang, C.: Hardening database padding for searchable encryption.
In: 2019 IEEE Conference on Computer Communications, INFOCOM 2019, Paris,
France, pp. 2503–2511 (2019)

4. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley,
California, USA, pp. 44–55. 14–17 May 2000

5. Chen, C., Zhu, X., Shen, P.: An efficient privacy-preserving ranked keyword search
method. IEEE Trans. Parallel Distrib. Syst. 27, 951–963 (2015)

6. Liu, Q., Nie, X., Liu, X.: Verifiable ranked search over dynamic encrypted data
in cloud computing. In: 25th IEEE/ACM International Symposium on Quality of
Service, IWQoS 2017, Vilanovaila Geltrú, Spain, pp. 1–6. 14–16 June 2017
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Abstract. This work investigates possible methods of adding security
features to building automation networks in the form of intrusion or
tamper detection by using the physical layer. This is a concept that
is widely known in the field of wireless communications but is—as of
now—less prevalent in wired environments. We propose three distinct
and complementary methods which rely on electrical fingerprinting of
devices and the communication medium, as well as active radio-frequency
probing of the network. To assess their effectiveness, we conduct a series
of experiments in a building automation system test environment.

Keywords: Physical layer security · Network security · Building
automation · Network intrusion detection and prevention

1 Introduction

In modern and large public buildings such as hospitals, universities or schools,
a high amount of complex electrical signaling may be required to control its
internal appliances such as lights, heating, air-treatment, or access controls. To
alleviate some of this complexity, there are standards for building automation
systems (BASes) which enable the use of multiplexed control lines in a network
topology.

Unfortunately, there are major security flaws present within widely adopted
BAS protocols [9]. Messages on the network medium are either sent using obso-
lete forms of encryption or none at all. This enables an attacker with physical
access to the cabling to read traffic and potentially send harmful commands
to connected devices. In a public building, it is not easy to prevent this kind
of access as reaching a BAS endpoint can be as easy as popping off a light
switch and connecting to the exposed wires. Even if there are no critical devices
connected to that particular bus line, previous research has shown that logging
seemingly harmless lighting data over an extended period of time provides infor-
mation that may raise privacy and security concerns [16]. This is especially true
if the building employs motion detectors for lighting control.
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Published by Springer Nature Switzerland AG 2020. All Rights Reserved

N. Park et al. (Eds.): SecureComm 2020, LNICST 336, pp. 372–390, 2020.

https://doi.org/10.1007/978-3-030-63095-9_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63095-9_24&domain=pdf
http://orcid.org/0000-0001-9804-8982
http://orcid.org/0000-0002-6783-4080
http://orcid.org/0000-0002-0673-3454
https://doi.org/10.1007/978-3-030-63095-9_24


Using the Physical Layer to Detect Attacks on BA Networks 373

These concerns are now beginning to be addressed by newer standards, exam-
ples being KNX Secure [15] and BACnet/SC [7]. But, given the large number
of insecure devices already installed and still being sold, widespread practical
adoption of secure protocols cannot be expected in the near future.

In this situation, it becomes necessary to think about adding new security
features to existing network installations. Generally, it can be assumed that any
device-specific modifications—for example adding an encryption layer—would
require prohibitive effort and may interfere with other communications on the
bus. This limits the possible interventions to adding special devices which mon-
itor the network and either intervene in and/or report any suspicious activity.
Such devices can be seen as being a part of an intrusion detection system (IDS)
which would safeguard the building network against malicious activity. Gener-
ally, these systems operate by analyzing network traffic, matching patterns and
detecting unusual activity, i.e. they tend to operate on OSI layer 2 and up.

It is common to just assume the inherent security of BAS networks when
they are not directly connected to other wider area networks such as local area
networks or the internet. But as mentioned above, especially in publicly acces-
sible buildings this assumption may be treacherous. Nevertheless, a physically
isolated and reasonably static network structure does offer unique possibilities
of detecting an intrusion. In this paper, we explore ideas on how to make use of
the physical layer characteristics of the network and the connected devices for
attack detection. Our general assumption is that every network and device has
uniquely detectable features when analyzing the bus on an electrical level. At
least in the field of wireless networking, previous research has shown the feasi-
bility of such physical layer approaches, for example using radio-frequency (RF)
fingerprinting in WLAN networks [12].

2 Related Work

2.1 Device Fingerprinting

As a starting point, it makes sense to look at Physical Layer Security research
in wireless networks in the hopes of transporting some of the concepts over
to wired systems. For example, experiments by Brik et al. [4] show promising
results for their method of distinguishing WLAN transceivers which are of the
same model. They are using vector signal analyzer (VSA) hardware devices to
capture WiFi signals. Subsequently, they perform signal analysis and machine
learning on the data using specific WLAN signal characteristics as classifying
features. The authors ascribe the electrical differences between devices to hard-
ware imperfections in the transmitting parts of the chips. While WiFi-specific
signal features are not applicable in our case, the general approach of using pas-
sive signal measurements and extracting device-specific quirks from the data is
relevant to wired use-cases as well.

A method proposed by Wang et al. [21] by contrast does not rely on protocol-
or technology-specific characteristics but uses more abstract mathematical fea-
tures of the captured waveforms. Their method could theoretically be applied to
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any time-series input. For our use-case, this poses the question of how significant
the differences of those features are for technologies other than WLAN.

Also of particular interest is a technique described in a publication by Gerdes
et al. [8] as the authors aim to identify wired Ethernet devices according to
a waveform comparison of their synchronization signals by implementing a
matched filter. On the hardware level they use oscilloscopes with high sample
rates to be able to accurately capture the Ethernet waveforms.

The measured device fingerprints in these methods can be seen as a form
of physically unclonable function (PUF). In these cases, the PUF would be an
intrinsic characteristic of the transmitters in the network stemming from man-
ufacturing variations. This bears some similarity to ring-oscillator PUFs which
can be used to uniquely identify FPGAs or ASICs by measuring the variations
of internal delay lines [14]. In contrast, though, in the above fingerprinting meth-
ods it is not necessarily clear how the variations may present themselves in the
measurements.

2.2 Environment Fingerprinting

As described by Campos and Lovisolo in [5], it is also possible to use these kinds
of physical layer methods to verify a location. This means the fingerprint is tied
to an environment instead of a device. An example of this would be to compare
the received RF spectrum of different locations thereby telling them apart.

A US Patent by Bevan et al. [3] specifies a WLAN localization approach by
mapping the complex channel frequency response between a network node and
multiple static base stations. In a way, this can be applicable to wired environ-
ments as cable length, cable type and physical connection topology can have an
effect on the frequency response of a wire thereby altering signals traveling on
them.

2.3 Tamper Detection

If both environment and device fingerprinting are brought together, then this can
be used to detect if the physical network configuration—that is, both physical
topology and device hardware—has been tampered with. An example of this for
WiFi-networks is proposed by Bagci et al. in [2].

3 Suggested Methods

Given the publications mentioned above, it is safe to say that there is a healthy
research interest in physical layer security in wireless communications with a lot
of well-developed methods in existence. Research is less easy to find, though, in
the area of wired networks and especially communication buses like those used
in building automation. Due to the security problems mentioned in Sect. 1, it is
worthwhile to explore this avenue.
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3.1 Threat Model Definition

In order to come up with specific ideas on how to guard against security threats,
we need to define what the scope of possible attacks may be. As a general
rule we assume that the network systems our methods are applied in do not
have sufficient higher-level security to guarantee secure authentication and/or
confidentiality. Also, we assume that in the age of small battery-powered single-
board computers with universal internet access, a permanent air gap between any
large building network installation and the outside world is near unenforceable,
at least in public and semi-public buildings where a potential attacker is likely
to find some accessible network tap to install an illicit device.

The most obvious kind of attack on such a system is what we will call an
active one, meaning the attacker interacts with other devices in the network by
sending messages. In the initial situation, there is no way to disprove the authen-
ticity of those messages, meaning the attacker may instruct connected devices to
perform potentially harmful acts. Potential high risk examples would environ-
mental controls in laboratories, medical facilities, or similar installations. During
a medical procedure, even only turning off the lights may cause a catastrophic
situation. While this kind of threat clearly has a high potential for serious harm,
we also believe it to be the most detectable as the attacker’s device needs to
openly communicate, thereby revealing its physical layer characteristics.

On the other hand, the possible harmful impact of having an attacker pas-
sively listening to the messages on a BAS network may not be as obvious but
is a serious issue. An example could be a sensitive facility where an attacker
might map guard routes and occupation times of specific offices using the build-
ing’s motion detectors in preparation for a break-in. In contrast to an active
attack, the potential for harm is less direct and momentary but detection may
be more complicated as the attacker does not need to openly send data through
the network. Nevertheless, it is possible that a connected device does change the
electrical characteristics of the medium enough to be detectable.

With the above in mind, we developed three different Physical Layer Security
approaches which can be implemented on BAS networks.

3.2 Passive Waveform Fingerprinting

The most basic, general, and non-invasive approach to look at is passive fin-
gerprinting, i.e. using a method like the ones classifying WiFi transmitters and
applying it to BAS devices. For this, it is necessary to capture the communi-
cation on the bus as analog waveforms. This is possible with a modern digital
oscilloscope. As the fingerprint is generally unique with respect to the currently
active transmitter, such methods are suited to verifying the identities of known
devices in the network. Nevertheless, the cable as the transmission medium does
alter the signal due to its impedance characteristic and possible external inter-
ference. Moreover, even connected but inactive devices represent an alteration of
the network circuit’s electrical characteristics that may be large enough to have
a measurable impact on the fingerprint of all transmitters. This means, given
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suitable equipment and data analysis, passive fingerprinting is potentially able
to detect all possible physical network changes.

As for feature extraction from the measured data, it is a good starting point
to look at very general approaches, such as the RF-DNA method [21] men-
tioned above. It just requires a time-series representation of the signal which is
converted to instantaneous phase and instantaneous frequency data using the
Hilbert transform. Then the authors calculate the mean, variance, skewness and
kurtosis for each of the signal’s amplitude, frequency and phase. This results
in a 12-dimensional feature vector for each device and physical makeup of the
network that is measured.

3.3 Device Noise Characteristics

While the above approach relies on very general signal analysis, it may be bene-
ficial to make use of BAS physical layer specifics. Generally, their local directly-
connected parts rely on some form of bit-based serial bus protocol for simplic-
ity and robustness, typical examples being KNX-TP [19] and BACnet MS/TP
[13]. This means there is a well-defined bit timing which we can use to deter-
mine exactly when a specific device is sourcing or sinking current to alter the
bus wire’s potential for data transmission. Our assumption is that during these
active phases the transmitting device will—in addition to the data signal—emit
a certain amount of noise that can be measured. There are multiple forms of
noise emissions, some of them caused by semiconductor impurities and doping
errors [10] which become apparent when current flows through them. This means
each device has a unique noise level and signature that can be detected given
sensitive enough measuring equipment. To enhance resolution, a form of over-
sampling can be employed by using repeated measurements. For example, it is
possible to repeatedly request a serial number or diagnostic information from a
device and capture the responses which can then be overlaid.

Formally, we assume each measurement is represented by a time-series

{x0, . . . , xM}

of numerical samples captured with a constant sample rate. This is true for digi-
tal oscilloscopes and other analog-digital-conversion-based data capture devices.
If N measurements of messages containing the same bit patterns coming from
the very same device are then aligned by cross-correlation, each sample becomes
a statistical set Xi of measurements where i, i ≤ M denotes the sample position
in the time-series and |Xi| = N . It is possible to compute the sample averages

Xi =
1
N

N∑

j=1

xj with xj ∈ Xi (1)

in order to obtain a finer quantization of the data. Now that we have a set of
measurements and its mean for each sample point, it is possible to also calculate
the sample standard deviations
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sXi
=

√√√√ 1
N − 1

N∑

j=1

(
xj − Xi

)2
with xj ∈ Xi (2)

which gives an indication of the overall noise level during the sampling timepoint
i. This measured noise is a sum of every type of noise generated in the measuring
circuit, including the oscilloscope’s internal components and artifacts of digital
quantization. In order to counteract the latter, it is possible to now superimpose
all equal symbols within a message and calculate the average standard deviation
for every sample point of the active transmission phase, i.e. where the device is
sinking or sourcing current.

Formally, find the smallest i0 where an active transmission phase begins.
Depending on the protocol, this could for example be a falling or rising edge
which can be detected by calculating the slope between Xi0 and Xi0−1. Then
find the width of an active transmission phase

I = ie − i0 (3)

where ie is the endpoint of the active phase following i0. Now, find the indices
of all remaining active phase beginnings im,m ∈ N. Then build a series of sets

Sj =
{
sXi0+j

, . . . , sXim+j

}
with j ≤ I, j ∈ N ∪ {0} (4)

and calculate the means Sj . The resulting time-series
{
S0, . . . , SI

}
can offer a

more accurate picture of a device’s noise characteristics than simply analyzing a
single capture of a bit transmission. If the assumption of detectable differences in
noise characteristics due to manufacturing imperfections holds true, this average
standard deviation time-series is unique to any given device and can be used for
identity verification.

3.4 Active Measurements

The methods described so far all rely on passive measurements as this is straight-
forward and does not interfere with normal bus communications. It may be of
interest, though, to look into active probing of a network. Specifically, it may be
worthwhile to measure the wideband frequency response of the connected bus
line as it should be more sensitive to changes in physical network topology, i.e.
how the cables are interconnected and where. This is generally done by emitting
a test frequency in the RF range at one point in the network and measuring the
received magnitude of the signal at another. By sweeping through a range of fre-
quencies, a response curve can be mapped out. As this reveals the characteristic
of the whole network medium, this method may be better suited than the others
to guard against passive listening attacks.

As the measurements are meant to be done on an active bus, this poses the
question of how the RF path can safely coexist with the BAS communication
bus on the same medium without impairing either. The technical solution to this
problem will likely be unique to a specific bus system.
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4 Experiments

Now, to demonstrate the viability of the above methods we present three exper-
iments as proofs-of-concept. As we intend to show applicability to currently
relevant BASes, we decided on KNX-TP as the physical-layer medium.

4.1 KNX

KNX is a well-known BAS standard which is partly derived from the earlier
European Installation Bus (EIB). The standard has been widely adopted, with
a 2019 press release by the KNX Association [11] claiming over 300 million KNX-
ceritified products to be in use around the world. The protocol is designed to work
across different physical media including standards for IP-tunneled, wireless,
and powerline communication. For a regular wired installation on a BAS-specific
medium though, KNX retains the EIB physical layer which is essentially a shared
serial bus using twisted-pair cabling called KNX-TP [19].

4.2 Technical Background

Fig. 1. A KNX-TP zero-bit waveform measured with a digital oscilloscope, averaged
over N = 171 measurements, with added timing markers. Note that 0 V in this case
denotes the resting potential of about 30 V DC as the oscilloscope was set to AC
coupling.

The KNX-TP physical layer can be described as a multiplexed serial line includ-
ing direct-current (DC) power delivery [19]. In order to provide the latter, the
bus has a resting voltage of 30 V DC supplied by a KNX-specific active trans-
former. The current capability of this power supply is usually around a few
hundred milliamperes while KNX devices draw a few tens. This is enough for
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most switching, control and communication tasks. Devices meant for more power
hungry applications will need an additional external source.

As per the data signaling protocol, the resting potential is interpreted as a
digital 1, while a 0 is actively generated by the transmitting device. At the start
of every zero bit, the transmitter pulls the bus voltage lower by more than 6 V
for exactly 35µs then stops pulling and waits for 69µs until the start of the next
bit [20].

In this waiting phase, a choke coil in the power supply will generate an
equalization pulse which overshoots the resting potential by several volts and
then drops off slowly. The reason for this implementation is to ensure that the
average bus potential does not drop significantly if the bus carries a lot of data
traffic as this might interfere with power delivery. Figure 1 shows a plot of a
KNX-TP zero symbol with timing markers superimposed.

4.3 Passive Waveform Fingerprinting

In our first experiment we adapted the method used in [21] for KNX-TP. Our test
setup is a single KNX line consisting of a KNX push button sensor controlling a
DATEC 1630.03160/61100 switch actuator connected to a MEAN WELL KNX-
20E-640 power supply. For the push button sensor we used two identical models
(MDT BE-TA5508.01), designated as A and B, only one of which is connected
to the line during a test run. To control the amount of variables, the switches
are only connected at a single specific spot in the line. This yields 2 possible
experiment configurations.

We captured N = 320 KNX message waveforms for each configuration with
a PicoScope 2206A USB-oscilloscope connected to a single endpoint of the net-
work. Using the Hilbert transform we calculated mean, variance, kurtosis, and
skewness for the signal amplitude, instantaneous phase, and instantaneous fre-
quency. For visual inspection of the resulting 12-dimensional data we decided
to use principal component analysis (PCA) to find a suitable projection to 2D
without having to discard whole dimensions arbitrarily. Practically, we relied on
a freely available Python implementation included in the scikit-learn1 toolkit.
The aim of PCA is to generate new dimensions (principal components) from the
data as linear combinations of the original ones [1]. Ideally, PCA will maximize
the explained variance in the first principal components in such a way that the
rest may be discarded without much information loss. In our case, two principal
components were enough to retain 99.9994% of the explained variance.

Figure 2 shows a scatter plot of the results where each point represents a
recorded waveform. It is necessary to note that we discarded one of the data
points from the set belonging to Switch B as the measurement seems to be a
result of a spurious trigger of the oscilloscope rather than an actual message
from the switch.

1 scikit-learn is freely available at scikit-learn.org.

https://scikit-learn.org/
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Fig. 2. Dimensionality-reduced scatter plot of the passive device identification test

Fig. 3. PCA loadings plot of the passive device identification test

In the diagram, it is easy to see that the point clouds are scattered around
two distinct averages and that both clouds are largely separate from each other
with only a few outliers. This means, given a high enough N , the two switches
are distinguishable using this method.
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To explain the meaning of the two principal components (PCs), Fig. 3 shows
the corresponding loadings plot of the transform. It indicates that the first PC is
mostly influenced by the variance of the instantaneous frequency (IF) and to a
much lesser extent by the Kurtosis of the if and the Variance of the instantaneous
phase (IP). In contrast, the kurtosis of the IF has the most weight within the
second PC together with small influences from IP variance and IF kurtosis. All
other original dimensions do not have a sizable effect on either.

4.4 Device Noise Characteristics

Table 1. Configurations of the 2nd experiment

Switch Experiment Linecoupler N

A E1 ✓ 170

E2 ✗ 171

E3 ✓ 349

E4 ✗ 351

B E1 ✓ 178

E2 ✗ 165

E3 ✓ 379

E4 ✗ 325

For the next experiment, we used the technique of comparing active transmission
noise characteristics described in Sect. 3.3. The devices and test network were the
same as before with the addition of a third device (a KNX linecoupler) that could
be connected and disconnected using a switch. This addition allows to check if the
method is sensitive to network changes. To also rule out temperature influences
on our data, we used a temperature-controlled lab environment and performed
two sets of measurements for each possible configuration with different lengths
to account for internal device heating. Table 1 lists all 8 test run configurations.

In the KNX-TP physical layer protocol, active transmission phases occur
during the first 35µs of each bit with a value of 0. Throughout that phase
the transmitting device needs to sink enough current to drop the bus voltage
by about 6V or more (see Sect. 4.2). It is possible to find the indices i0, ie by
looking for the corresponding rising and falling edges visible in Fig. 1. Formally,
find the smallest i0 such that

Xi0 − Xi0−1 ≤ s (5)

where s is a suitable slope threshold value. Now, find the smallest ie such that

Xie − Xie−1 ≥ s (6)
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Fig. 4. Results of the transmission noise experiments (Color figure online)

Then use Eq. 3 to determine I and Eq. 4 to build the time series
{
S0, . . . , SI

}
.

Figure 4 shows the resulting plots of all experiments. The differences in N and
the addition of the linecoupler evidently had only a very small effect on the
data when compared to the differences between the two switches. To improve
readability, the plots corresponding to the same switch have the same color
and are drawn semi-transparently, making superimposed lines visible. From the
plotted results, it is easily possible to tell both switches apart graphically.

4.5 Active Measurements Using a NanoVNA

For the third experiment we used a NanoVNA vector network analyzer to mea-
sure the frequency response curve of three different test setups, one with a vari-
able device, one with a variable cable length and a third one also with a variable
device but connected to a larger network. The NanoVNA is a device which is
able to successively transmit a series of radio frequencies and at the same time
measure the amplitude of the returned signal in order to map the spectrum. To
deal with the problem of interfacing to an active communication bus without
functional interference, we developed an RF transmitter amplifier as well as an
attenuator with AC coupling on the receiving end. Figure 5 shows the schematics
of both circuits.

The TX amplifier is capable of subtracting a small analog waveform from the
KNX voltage by modulating a bus load current small enough to not be registered
by any KNX devices. To control the load current, we used two bipolar-junction
transistors (NTE2633) originally designed for high-frequency video amplifica-
tion. The transistors are operating in parallel Class A mode with resistor dividers
providing biasing. An AC coupling capacitor and a resistor at the input roughly
provide a 50 Ω impedance.
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Fig. 5. Circuit diagrams of the NanoVNA/KNX-Adapters

The receiver-side circuit is a simple passive AC coupling capacitor together
with a resistor divider providing at least 40 dB of attenuation or more, depending
on the input impedance of the connected receiver. Together this is enough to
limit the maximum voltage seen by the receiver to safe levels even during KNX
communication causing large AC swings.

To explore if both device and topology changes are significantly reflected in
the system’s frequency response curve, we performed three sets of experiments.
Figure 6 shows their respective setups. As can be seen, the first two have the
same general outline, with the TX and RX circuits connected across a 10 m
length of KNX-TP wire with a center tap. In the first one (Fig. 6a), two different
devices were connected at that position using a 1 m lead. Specifically, the devices
were a custom KNX interface board based on NCN5121 transceiver chip by ON
Semiconductor [17], and one of the MDT push-button switches from before. In
the second one (Fig. 6b) the MDT switch is connected using either a 1 m or a
6 m lead.

The third setup (Fig. 6c) is in essence an extension of the first experiment
where we connected the devices to a KNX test line containing 4 permanently
installed devices (2 KNX-USB dongles, a quad relay, and a line coupler intercon-
nected with about 1.5 m of cabling in total) and attached both VNA input and
output to taps at the far end. Our intention is to determine if a more complex
network and a larger amount of connected devices will make small changes like
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Fig. 6. The NanoVNA experimental setups

Fig. 7. Results of the NanoVNA frequency sweep with device changes (Color figure
online)

swapping out a device less detectable. We also decided to connect both the input
and output of the VNA close together as this most closely mirrors a situation
where a single intrusion detection device is added at a single point in a network.

In all three parts of the experiment, the NanoVNA was configured to produce
a frequency sweep between 50 KHz and 22 MHz in 1010 discrete steps, yielding
a resolution of 21.73 KHz/step.
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To achieve this resolution, the NanoVNA does in fact perform 10 successive
partial sweeps of the spectrum with 101 samples each. The measured quantity is
gain in decibels, i.e. the logarithmic power ratio of the signal transmitted by the
NanoVNA on its TX side versus what it receives back at its RX side. The signal
path includes the damping and amplification circuits as well as the connected
KNX network.

Figure 7 shows the results of the device change experiments. Each of the three
measurements was taken N = 100 times and then averaged per frequency step
to improve accuracy. Average sample standard deviations were 0.02 dB for “no
device”, 0.15 dB for the MDT switch and 0.04 dB for the NCN5121 interface
board. Evidently, there is a significant difference in frequency response between
devices, i.e. their response curves are unique and—as evidenced by the low stan-
dard deviation between measurements—virtually static.

Fig. 8. Results of the NanoVNA frequency sweep with cable length changes

The results of the second experiment plotted in Fig. 8 show that also cable
length has an easily detectable impact on the system’s frequency response with
both plotted curves being largely dissimilar. As before, sample standard devia-
tions are low with an average of 0.12 dB for the 1 m-lead and 0.04 dB for 6 m.
The blue line in this plot is nearly congruent with the blue line of Fig. 7 which is
expected because the experimental setup is the same (see Fig. 6). Interestingly,
some features of the red curve (6 m distance) coincide with the “no devices”
plot from Fig. 7. Namely, the local gain minima at about 8 MHz and 12 MHz
exist in both cases. Yet, the red curve also has local minima at about 4.5 MHz
and 15.8 MHz which are nonexistent in the other. A possible reason for this par-
tial similarity may be that the device’s influence on the frequency response was
damped by the added resistance of the 5 m lead between it and the measurement
path.
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The third experiment’s results can be seen in Fig. 9, this time with N = 99
per curve. Note that in this experiment we have connected two specimens of each
device, labeled A and B. As can be seen, differences between two specimens of the
same device model are visually undetectable. Differences between the switches,
the NCN5121 PCBs, and leaving the tap unconnected, though, are less obvious
than before but still easily discernible when looking at the range from 10 MHz
to 15 MHz and the location of the minima around 6 MHz. The average sample
standard deviations are similarly low to the former experiments with 0.07 dB
being the highest. This means, while the visible differences look small, they are
orders of magnitude larger than the sample standard deviations and thereby
statistically significant.

Fig. 9. Results of the NanoVNA frequency sweep with device changes in a complex
setup

5 Discussion

Given these results, it is clear that our proposed approaches incorporating passive
waveform fingerprinting and device noise characteristics are sensitive to device
changes in the network. Furthermore, we have demonstrated that it is possible
to detect a swapped-out device even if it is from the same make and model as the
original one. This would be a highly valuable feature for tamper and intrusion
detection as no attacker would be able to assume a fake device identity without
fully taking over a known, present device in the network—a significantly higher
hurdle than adding a fake device of their own. With regards to the threat model
specified in Sect. 3.1, this method seems to be suited to counteract an active
attack.

Similarly, the results also show the active probing approach to be sensitive
to both changes in connected devices as well as cabling changes. This means the
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method can be used to counteract the passive kind of attack defined in Sect. 3.1
as this would at the very least entail tampering with a cable endpoint. It is,
though, worth noting that given our limited dataset it is not easily possible to
match a change in frequency response to any specific event. This contrasts with
the other approaches where the offending device can be pinpointed.

Given their respective limitations, it is advisable to not singularly use any
of the methods for attack detection but to combine them with each other. A
combined system would be able to alert the user to a wide range of possible sus-
picious events while also delivering a form of device authentication by hardware
identification. Of course, any or all of the concepts can also be added to exist-
ing higher level intrusion detection systems to provide additional data points
indicating the current network state.

Also, as our practical experiments were limited to KNX networks and devices,
the question remains how easily transferable the methods are to other bus sys-
tems. Nevertheless the concepts introduced in Sect. 3 are sufficiently generalized
to guide the implementation work for any wired electrical bus system. Of course,
depending on the systems’ technical features this can be more difficult in some
cases.

For passive signal analysis, it is necessary to have measuring equipment that
is able to sample the waveforms fast enough. With a constant speed of 9600 bit/s,
KNX-TP is quite slow when compared to other building, industrial and vehicular
serial buses such as RS485/Profibus (up to 12 Mbit/s) and CAN-bus (up to
1 Mbit/s) [6,18]. Speeds like that would require a considerably higher investment
in measurement hardware.

While bus speed is of lesser importance for the active probing method, its
practical implementation is very dependent on the electrical specifications of the
physical medium. Our self-designed RF amplifier could use the KNX DC level to
power itself and modulate an AC waveform on top of it. For other bus systems
this might be possible to do in a similar fashion if there is a positive resting
potential to exploit such as in the CAN bus [6]. If a bus system uses active-high
signaling though the amplifier will need to be powered from an external source
which would lead to a more complicated design.

6 Conclusion

In this work, we introduced three different methods for anomaly or attack detec-
tion intended for the physical layer of BASes fieldbus networks. Two of those are
based on passive observation of the electrical signals on the bus while the third
method relies on actively mapping the high-frequency response spectrum of a
network. To demonstrate their viability, we performed a series of experiments on
a widely adopted BAS fieldbus system. The results comprehensively support our
assumption that physical layer security can be a valuable addition to existing
BASes to help ensure their integrity.
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7 Future Work

The above being said, it is clear that more testing is needed to conclusively
verify that the approaches are universally usable among different BAS network
types and topologies. Also, it would be useful to have a larger database of net-
work setups and devices with their respective measured characteristics. This
could allow us to find feature patterns correlating with certain specific kinds
of network changes leading to better insight into what data anomaly indicates
which actual event or class of events. We plan to conduct further experiments
on more complex setups as well as different physical layer technologies used in
fieldbus-type networks.

As these are problems related to classification and pattern matching, we
also intend to investigate the benefits of applying different machine-learning
algorithms to our data. Especially the RF-DNA-derived passive fingerprinting
approach may be well complemented by high-dimensional classification methods.

Another area of interest is the methods’ practical implementation as a self-
contained physical layer intrusion detection device. At least the first two experi-
ments as described in Sect. 4 use comparatively expensive hardware, specifically
the oscilloscope. Also all three methods so far rely on offline data analysis using
a personal computer. For practical usage, it would be beneficial to limit these
costs. Examples for improvements in this area could be to substitute the oscil-
loscope with cheaper and less versatile analog-digital converters and to use less
expensive computation hardware, e.g. embedded controllers or single-board com-
puters. Given such improvements, it may be possible to devise low-cost physical
layer security devices that can be easily added to existing networks.

Supplementary Material

The measurements and results of the above experiments can be found at https://
opsci.informatik.uni-rostock.de/repos/datasets/bas-pls/bas-pls-res.zip.
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Abstract. We present a formal model for smart contract workflow using
Colored Petri-Net in the context of a blockchain-based healthcare supply
chain in this paper. Ensuring traceability of products is a crucial issue in
a smart healthcare supply chain. Blockchain and smart contracts are two
enabling technologies that ensure the traceability of products and prevent
data tampering in the smart healthcare supply chain. In a blockchain-
based supply chain, a workflow of smart contracts needs to created and
executed based on the input data. The selection of smart contracts in the
workflow is data-driven and dynamic. Hence, it is necessary to verify the
correctness of the dynamic execution of smart contracts. In this paper,
we develop a Colored Petri-Net based formalism to verify the correct-
ness of dynamic behaviors of the smart contract workflow. We conduct
experiments to evaluate the performance of our proposed model.

Keywords: Blockchain · Formal model · Smart contract ·
12 healthcare supply chain · Colored petri-net

1 Introduction

With the help of Internet-of-Things (IoT) and smart devices, the smart supply
chain can play an essential role during the pandemic situation, such as COVID-
19. For example, keeping records of pharmaceutical products in the whole supply
chain process in a contactless manner can be a perfect example of the smart sup-
ply chain in healthcare. However, supply chain participants can tamper data if
they fail to comply with the product handling policy. Therefore, it is neces-
sary to ensure the traceability of the supply chain data and prevention of data
tampering throughout the process.

Blockchain provides data traceability and protection from tampering at the
same time [12,13]. Hence, the blockchain technology has become a new norm in
different applications such as supply chain [15], healthcare [10,17], smart grid [2],
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and smart transport [1,6,7,9]. Data are stored in the blockchain as a transaction
[16]. At present, smart contract [3] is an essential part of blockchain-based sys-
tems. Smart contracts are a great advancement in blockchain technology [11]. A
smart contract is a computer program that is executed automatically when a cer-
tain condition is satisfied. In a blockchain-enabled smart supply chain, business
rules are abstracted as smart contracts and deployed in the blockchain networks.
Smart contracts validate blockchain transactions before they make any changes
to the distributed ledger.

In this paper, we address the issue of verifying the correctness of smart
contract execution that is dynamic in nature and data-driven. The blockchain-
based smart healthcare supply chain (SHSC) involves many stakeholders such as
producers, distributors, logistics service providers, retailers, and consumers. All
stakeholders are connected to a blockchain network to ensure traceability, trans-
parency, integrity, and trust by preventing data modification. Business contracts
among stakeholders are stored in multiple smart contracts. These smart contracts
are executed whenever a particular condition is met. For example, a payment
smart contract, between a supplier and customer, processes the payment to the
supplier if x units of a pharmaceutical item are delivered to the customer. How-
ever, the execution of smart contracts may be dependent on data. For instance,
a supplier may not deliver the required x units of the product. Assume that y
units are delivered at first, and z units are delivered later, such that x = y + z.
Hence, two different blockchain transactions are generated with the respective
number of delivered items. Hence, the payment smart contract should process
the payment only if the sum of units delivered is equal to x. Here, the execution
of the payment smart contract is data-driven and behaves dynamically. As a sup-
ply chain task is a complex task by nature, we need a series of smart contracts,
called smart contract workflow, from different participants to fulfill a particular
supply chain task. Hence, it is necessary to verify if a generated smart contract
workflow is complying with different dynamic conditions in SHSC.

The primary objective of this paper to develop a model that would verify the
correctness of the execution of smart contracts with the dynamic behavior in
the blockchain-based SHSC. In this paper, we model the dynamic behaviors of
smart contracts in a workflow based on the business rules using Colored Petri-
Net (CP-Net). Colored Petri-Net [5,18] is a version of Petri-Net. CP-Net is a
popular formalization method that is used for modeling the dynamic behavior
of entity [14]. This formalization is being used to check the soundness of smart
contracts [4,8,19] in blockchain-based systems. CP-Net allows us to describe
the smart contract behavior and logic through different tokens as colors [4].
Dynamic conditions of smart contracts can be expressed, and vulnerabilities in
smart contracts can be detected easily in CP-Net. Overall, unnecessary loss is
avoided in blockchain-based SHSC.

The rest of the paper is organized as follows. Section 2 discusses some of the
related works. Section 3 describes the proposed Colored Petri-Net based formal-
ism for smart contract workflow. Experimental results and performance of the
proposed framework are analyzed in Sect. 4. We conclude the paper in Sect. 5.
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2 Related Work

In this section, we discuss some of the Colored Petri-Net based formal modeling
approaches for smart contracts in blockchain systems.

The research work in [8] proposes a Colored Petri-Net based formal ver-
ification method that identifies smart contracts’ logical vulnerabilities in the
blockchain system. Initially, the smart contract models with possible attackers
based on hierarchical CP-Net. Next, the smart contract models are executed
for validating the functional correctness. Authors in [8] demonstrate that the
CP-Net-based formalism can detect the smart contract’s logical vulnerabilities
as well as the non-logical vulnerabilities in the contracts, such as the limitations
of the smart contract development platform.

Authors in [4] present a multilevel modeling solution for smart contracts
for analyzing the security of smart contracts. The model improves bytecode’s
program logic rules in the first place. Next, the Hoare logics are used for creating
a CP-Net model. The wrong execution paths are shown by the model to analyze
the security of a smart contract.

However, none of the aforementioned works model the data-driven dynamic
behaviors of smart contract workflow, which is necessary for the safe execution
of smart contracts in blockchain-based SHSC.

3 Proposed Model

In this section, we discussed our proposed Colored Petri-Net based modelling of
smart contract workflow for the blockchain enabled SHSC.

3.1 Overview of Data-Driven Smart Contract Composition

In SHSC, smart contracts take data in terms of transactions and pass data
to functions that implement business rules. Each function has at least one pre-
condition and post-condition known as guard conditions. The blockchain network
should verify an input value of the guard condition before smart contracts are
deployed to the blockchain.

As a task in the supply chain is complex in general, a smart contract may
not be enough to execute all of the business rules when a blockchain transaction
is generated. Hence, multiple smart contracts need to be selected and composed
to execute all business rules. Smart contract composition may be performed
based on the data that is provided in the transaction. Therefore, data-driven
compositions of smart contracts are required to fulfill a supply chain task in the
SHSC.

In SHSC, we introduce four types of smart contract composition logics:(1)
sequential, (2) aggregation, (3) split, and (4) loop. An overview of each of the
composition logic is illustrated in Fig. 1. Assume that the composability between
two smart contracts are represented using the operator “→”. In the sequential
composition logic, a smart contract SC sends a data x to another smart contract
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Fig. 1. overview of data-driven smart contract composition logic

SC
′
. Smart contracts SC and SC is sequentially composable (i.e., SC → SC

′
)

if x = y, where y is the expected value by SC
′

(see Fig. 1(a)). Assume that a
smart contract SC

′
requires a data x1 from the smart contract SC1 and x2 from

another smart contract SC2 such that y = x1 +x2, where y is the expected data
in SC

′
. Here, (SC1 � SC2) → SC

′
is called aggregation composition of smart

contract (see Fig. 1(b)), and “�” is the aggregation operator. A split composition
is a composition logic where a smart contract SC sends data to multiple smart
contracts. Assume that a smart contract SC sends a data x1 to a smart contract
SC

′
1 and x2 to another smart contract SC

′
2. Now, (SC

′
1 ‖ SC

′
2) → SC is a split

composition (see Fig. 1(c)), and “‖” is the split operator. A loop composition
logic can be defined as a series of sequential composition between two smart
contracts SC and SC

′
which can be represented as SC

i→ SC
′
. Here, “ i→”

indicates that the sequential composition SC → SC
′
should be repeated i times

(see Fig. 1(d)). The smart contract SC sends data x to the smart contract SC
′

unless y =
∑

i

x, where y is the expected data at SC
′
.

3.2 Colored Petri-Net Formalism of Composite Smart Contracts

In this section, we present Colored Petri-net formalism of different types of data-
driven smart contract compositions.

Coloured Petri Net (CP-net) has several places. Every place in the net has
a corresponding value type. The set of value types is called a color set. Each
of the tokens in a place has a value that belongs to that type. Every single



Formalizing Dynamic Behaviors of Smart Contract Workflow 395

arc has a variable and transition has a precondition and a postcondition. These
preconditions and postconditions are called the guard. A precondition of an input
arc of a transition is an expression with multiple variables. These variables are
independent. A postcondition is an expression with variables of both input arcs
and output arcs. A transition in a CP-net is enabled if and only if for each
input place a token can are a well-established process modeling technique that
has formal semantics. These semantics are used to model and analyze several
processes, including protocols, manufacturing systems, and business processes.

We assume that a Colored Petri net (CP-Net) represents the behavior of a
smart contract that works based on input data. The CP-Net for smart contracts
consists of one input place and one output place. The input place is used for
absorbing information, and the output place is used for emitting information.
Combinedly, the CP-Net with input and output places facilitates the definition of
the composition operators and the analysis as well as the verification of specific
properties (e.g., reachability, deadlock, and liveness). Each event is activated
when a particular token is obtained. In addition, the output place will have a
certain number of tokens once the required events are fired. Tokens in CP-Net
may have different colors representing the preconditions of smart contracts being
executed. At any given time, a smart contract can be in one of the following
states: initial, ready, processing, postponed, failed, or finished. When a smart
contract is in the ready state, a token is in its corresponding input place, whereas
the finished state means there is a token in the corresponding output.

Definition 3.1 (Smart Contract Net). A Smart Contract Net (SC-Net) is a
CP-Net, i.e., a tuple SCN = (P, T, F,Σ,C) where:

– P is a finite set of places such that P = PI ∪ PD, where:
• PI is the set of internal places, and
• PD is the set of data places. Assume that �p and p� are source and sink

places, respectively. For ∀�p, p� ∈ PD.
– T is a finite set of transitions representing the operations of the service,
– F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs representing flow relation

and (PI , T, F ) is a work flow net. (PI , T, F ) has two special places: i and o.
Place i is a source place: �i = ∅ and Place o is a sink place: o� = ∅. If we
add a transition t to (PI , T, F ) which connects place o with i (i.e., �t = i and
t� = o), then the resulting Petri net is strongly connected.

– Σ is the set of color sets.
– C is the color function. Assume that E = {e} ∈ Σ is the color set that has

only one possible value which stands for the control token in (PI , T, F ). C is
defined from P to Σ such that ∀p ∈ PI , C(p) = e.

Here, the smart contract net is a Colored Petri net. Internal places PI represent
the internal control logic. Data places PD represent the data exchanged between
services. The internal places are tagged with color e that stands for the control
token in (PI , T, F ). The data places are tagged with the color sets that represent
data types. The function F works as a guard function. The condition of the
function F must be satisfied by a color value in E to trigger an event.
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Based on the definition of the smart contract net stated above, a smart
contract can be defined as follows:

Definition 3.2 (Smart Contract). A Smart Contract is a tuple SC =<
addr, owner,Apre, G, tran, type, dom, desc, C, SCN > where:

– addr - is the unique address of the smart contract,
– owner - is the ID of owner of the smart contract,
– Apre - the set of attributes and their values representing the initial state

before the execution,
– G = {G1, G2, . . . , Gf}, where G is the set of f number of functions Gi in the

smart contract,
– tran - is the transaction containing meta data that needs to be verified by

the blockchain,
– type - is a constant value representing the type of the smart contract,
– dom - is the domain of operation the smart contract. For example, if the

smart contract contains the functions related to the manufacturing then the
domain of the smart contract is manufacturer. Other possible domains can
be distributor, retailer, and consumer in SHSC.

– desc - is the textual description of the smart contract.
– CM - is a set of its component smart contracts such that CM =

{CM1, CM2, . . . , CMm}, where CMi is the i-th smart contract in CM and m
is the number of component smart contracts involved in the smart contract.
If CM = {}, then SC is a component smart contract. Otherwise, SC is a
composite smart contract, and

– SCN = (P, T, F,Σ,CM) is the smart contract net modelling the dynamic
behavior of the smart contract using a CP-Net.

We assume that any two smart contracts (SC and SC
′
) that are eligible

for any of the aforementioned data-driven compositions have the same type and
domain description as mentioned in the Colored Petri-net formalism of smart
contract (see Definition 3.2).

Fig. 2. Colored petri-net modelling of sequential composition of SC1 and SC2
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Definition 3.3 (Sequential Composition). A sequential composition (SSC)
of smart contracts SC1 and SC2 is a tuple SSC =< Apre, G, tran, type,
CM,SCN > where:

– CM = CM1 ∪ CM2

– SCN = (P, T, F,Σ,C) such that
• P = P1 ∪ P2,
• T = T1 ∪ T2 ∪ {t},
• F = F1 ∪ F2 ∪ {(o1, t), (t, i2)},
• i = i1 and o = o2,
• PI = PI1 ∪ PI2 ∪ (o1, t),
• PD = PD1 ∪ PD2 ∪ (i2, t),
• Σ = Σ1 ∪ Σ2,
• C = C1 ∪ C2.

Given two smart contracts SC1 and SC2, the invocation of SC2 depends on
the output data of SC1. Therefore, the color function C(o1), C(i2) ∈ C must
satisfy C(i2) ⊆ C(o1). Otherwise, the second smart contract SC2 cannot be
invoked by the first smart contract SC1. Hence, the sequence composition of
smart contracts would fail. Figure 2 presents the CP-Net of sequence composition
of smart contracts.

Fig. 3. Colored petri-net modelling of aggregation composition of SC1, SC2, and SC3

Definition 3.4 (Aggregation Composition). An aggregation composition
(ASC) of smart contracts SC1, SC2, and SC3 that is denoted as:

ASC =< Apre, G, tran, type, CM,SCN >, where:

– CM = CM1 ∪ CM2 ∪ CM3

– SCN = (P, T, F,Σ,C) such that
• P = P1 ∪ P2 ∪ P3 ∪ i, o,
• T = T1 ∪ T2 ∪ T3 ∪ {(t, i1), (t, i1), (t, o)} ∪ {t},
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• F = F1 ∪ F2 ∪ F3 ∪ {(t, i1), (t, i2), (o1, t), (o2, t), (t, i3), (o3, t)},
• i = {i1, i2, o1, o2} and o = {o1, o2, o3},
• PI = PI1 ∪ PI2 ∪ PI3 ∪ {(o1, t), (o2, t)},
• PD = PD1 ∪ PD2 ∪ PD3 ∪ (i3, t),
• Σ = Σ1 ∪ Σ2 ∪ Σ3,
• C = C1 ∪ C2 ∪ C3.

Assume that three smart contracts (SC1, SC2, and SC3) are given. The invo-
cation of SC3 depends on the output data of SC1 and SC2. Therefore, the
color function C(o1), C(o2), C(i3) ∈ C must satisfy C(i3) ⊆ {C(o1) ∪ C(o2)} to
activate the execution of SC3. Otherwise, the aggregation composition of smart
contracts would fail. Figure 3 presents the CP-Net of aggregation composition of
smart contracts.

Fig. 4. Colored petri-net modelling of split composition of SC1, SC2, and SC3

Definition 3.5 (Split Composition). A split composition (SPSC) of smart
contracts SC1, SC2, and SC3 is a tuple SPSC =< Apre, G, tran, type,
CM,SCN > where:

– CM = CM1 ∪ CM2 ∪ CM3

– SCN = (P, T, F,Σ,C) such that
• P = P1 ∪ P2 ∪ P3 ∪ i, o1, o2,
• T = T1 ∪ T2 ∪ T3 ∪ {(t, i1), (t, o1), (t, o2)} ∪ {t},
• F = F1 ∪ F2 ∪ F3 ∪ {(t, i1), (o1, t), (t, i2), (o2, t), (t, i3), (o3, t)},
• i = {i1, o1} and o = {o1, o2, o3},
• PI = PI1 ∪ PI2 ∪ PI3 ∪ {(o1, t)},
• PD = PD1 ∪ PD2 ∪ PD3 ∪ {(t, i1), (o1, t), (o2, t), (o3, t)},
• Σ = Σ1 ∪ Σ2 ∪ Σ3,
• C = C1 ∪ C2 ∪ C3.
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For any three given smart contracts (SC1, SC2, and SC3), the invocation of
SC2 and SC3 depends on the output data of SC1. Therefore, color functions
C(o1), C(i2), C(i3) ∈ C must satisfy {C(i2) ∪ C(i3)} ⊆ C(o1) to activate the
execution of SC2 and SC3. Otherwise, the split composition of smart contracts
would fail. Figure 4 presents the CP-Net of split composition of smart contracts.

Fig. 5. Colored petri-net modelling of loop composition of SC1 and SC2.

Definition 3.6 (Loop Composition). A loop composition (LSC) of smart
contracts SC1 and SC2 is a tuple LSC =< Apre, G, tran, type, CM,SCN >
where:

– CM = CM1 ∪ CM2

– SCN = (P, T, F,Σ,C) such that
• P = P1 ∪ P2,
• T = T1 ∪ T2 ∪ {(t, i1), (o2, t), t},
• F = F1 ∪ F2 ∪ {(t, i), (o1, t), (t, i2), (o2, t), (t, i1), (o, t)},
• i = {i1, o2, } and o = {o1, o2},
• PI = PI1 ∪ PI2 ∪ {(o1, t), (o2, t)},
• PD = PD1 ∪ PD2 ∪ (i1, t), (i2, t),
• Σ = Σ1 ∪ Σ2,
• C = C1 ∪ C2.

Given two smart contracts SC1 and SC2, the invocation of SC2 depends
on the output data of SC1 and vice versa. Therefore, the color function
C(i1), C(o1), C(i2), C(o2) ∈ C must satisfy C(i2) ⊆ C(o1) and C(i1) ⊆ {C(i) ∪
C(o2)}. Figure 5 presents the CP-Net of loop composition of smart contracts.
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4 Experimental Results and Performance Analysis

In this section, we discuss the performance of our proposed framework for model-
ing the blockchain-based supply chain management system. We conduct several
experiments to generate different smart contract workflows and investigate the
performance. We use synthetic supply chain data to generate several supply
chain workflows. The performance is investigated in terms of the ability to iden-
tify workflows that are not sound. We also show the time required to check the
soundness of smart contract workflows under different settings.

Fig. 6. Validation time (sec) for different number of smart contract workflows requested
at a time.

All experiments were executed using a desktop PC with an Intel i5-6600 quad-
core CPU without hyperthreading in Windows 10 operating system. We created
a JAVA based server program using Apache Tomcat 8.0 to handle simultaneous
requests and Petri-net based workflow validation tasks. We consider a collection
of 500 smart contracts of different types from different stakeholders.

Table 1 shows the correctness of the validation process of different number of
smart contract workflows. The smart contract workflows, conforming the Colored

Table 1. Correctness of soundness checking.

No. of workflow Sound Not sound Correctness

25 24 1 100%

50 43 7 100%

75 69 6 100%

100 88 12 100%
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Petri-Net based formalism, are referred as sound. Non-conforming workflows are
referred as not-sound. Results show that our proposed framework identifies the
conforming and non-conforming workflows with 100% accuracy.

Figure 6 shows the validation time for different number of simultaneous smart
contract workflow validation requests. The validation time is measured in sec-
onds. According to the result shown in Fig. 6, the validation time increases almost
exponentially with the increment of validating workflows.

5 Conclusion

In this paper, we present a smart contract workflow validation model for
blockchain-based supply chains for smart healthcare. At first, data-driven smart
contract composition for the workflow is discussed. Next, a formal model is pro-
posed to analyze the correctness of smart contract workflow before executing
the actual blockchain network for different input data. The key benefit of the
framework is that it minimizes the cost of smart contract execution. Experimen-
tal results demonstrate that the validation task can be performed efficiently for
multiple simultaneous validation requests. Our formalism technique can be used
to capture dynamic behaviors in any blockchain-based supply chain and other
systems. However, we plan to model more complex dynamic behaviors in future
work.
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Abstract. Malware has now grown up to be one of the most important
threats in the internet security. As the number of malware families has
increased rapidly, a malware classification model needs to classify the
samples from emerging malware families. In real-world environment, the
number of malware samples varies greatly with each family and some
malware families only have a few samples. Therefore, it is a challenge
task to obtain a malware classification model with strong generalization
ability by using only a few labeled malware samples in each family. In
this paper, we propose an attention-based transductive learning approach
to tackle this problem. To extract features from raw malware binaries,
our approach first converts them into gray-scale images. After visual-
ization, an embedding function is used to encode the images into fea-
ture maps. Then we build an attention-based Gaussian similarity graph
to help transduct the label information from well-labeled instances to
unknown instances. With end-to-end training, we validate our attention-
based transductive learning network on a malware database of 11,236
samples with 30 different malware families. Comparing with state-of-the-
art approaches, the experimental results show that our approach achieves
a better performance.

Keywords: Malware classification · Tranductive learning · Attention
mechanism · Deep learning

1 Introduction

Malware has now become one of the most important threats in the internet
security. The cyber threat report from SonicWall shows that there were 10.52
billion malware attacks in 2018, an increasing of 22% from 2017 [1]. This empha-
sizes the importance of developing robust and efficient approaches to detect as
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well as classify malicious samples. Traditionally, malware analysis methods can
be divided into two main categories including static approaches and dynamic
approaches. In static approaches, malware is analyzed by signatures without
executing. However, the attackers can easily tweak the available malware and
create their own versions to bypass the detection. As even a small change of code
can cause the change of signature, static approaches would fail to detect these
malware variants. In dynamic approaches, malware is analyzed in a controlled
environment such as a virtual environment, simulator, and sandbox. Although
dynamic approaches can solve the code obfuscation problem by executing, they
are time consuming and need significant efforts from security experts with proper
experiences.

As the above hand-crafted malware analysis approaches need a lot of effort
to extract features, new methods are adopted to improve the efficiency. Since
Krizhevsky et al. [2] achieved the first place in ImageNet competition using deep
Convolutional Neural Network (CNN), researchers have introduced deep learning
methods into almost every field including malware classification. Benefited from
deep learning technology, features can be learned automatically and malware
classification model can be built without security experts. Raff et al. (2018)
[3] embedded the malware raw bytes into fixed length and performed malware
classification with both CNN and Recurrent Neural Networks (RNNs). Quan
et al. (2018) [4] proposed a Convolutional Neural Network-Bi Long Short-Term
Memory (CNN-BiLSTM) architecture. Taking the raw binaries as input, their
approach achieved a high accuracy of 98.2% in classifying nine malware families.

Although deep learning-based approaches can efficiently obtain ideal classifi-
cation results, they need large amounts of samples for training. However, when
setting up the malware database, we found the number of samples in different
malware families varies greatly. With the rapidly emerging of malware families,
it is almost impossible to collect malware samples from all the existed families.
Therefore, we introduce a few-shot learning method to learn the classification
model with strong generalization ability from few malware samples. In few-shot
learning, the training instances are randomly divided into support set and query
set. If each of N unique classes contains K labeled instances as the support set,
the target few-shot problem is called N -way K-shot [5]. In each episode, the few-
shot learning network learns from the labeled instances which are in the support
set and predicts the malware families for the unlabeled instances which are in
the query set. The concept of few-shot learning (FSL) was proposed by Fei-Fei
et al. (2006) [6]. And FSL is also called one-shot learning if there is only one
labeled instance in each unique class of the support set. By using three known
categories to derive a priority, they developed a Bayesian learning framework
and achieved a detection performance of around 70–95% on images from 101
categories. Vinyals et al. (2016) [7] proposed matching networks, which used
a cosine similarity matrix following the embedding function to predict classes
for the unlabeled points. Snell et al. (2017) [8] proposed prototypical networks,
which computed the mean of the support instances of each unique class in the
embedding space as class prototype. Then they predicted the labels of query set
by finding the nearest prototype for embedded query instances. Sung et al. (2018)
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[5] proposed Relation Network (RN) which can label the instances of query set
by computing relation scores between the query images and each instance in
the support set. Liu et al. (2018) [9] produced Transductive Propagation Net-
work (TPN) to propagate labels from labeled instances to unlabeled instances.
Their experiments showed the state-of-the-art results on miniImageNet [10]
and tieredImageNet [11].

Considering similar malware samples have similar image textures, Nataraj
et al. (2011) [12] transferred the raw malware binaries into gray-scale images and
used GIST [13,14] to do a wavelet decomposition. By choosing k-Nearest Neigh-
bors (kNN) with Euclidean distance for classification, their method achieved an
accuracy of 98% with 25 malware families, a total of 9,458 samples. Kalash et al.
(2018) [15] obtained 98.52% and 99.97% accuracy on Malimg and Microsoft mal-
ware datasets by using a CNN based on VGG-16 [16]. Ding et al. (2018) [17]
converted the bytecodes exacted from each Android APK file into an image. Of
the total 3,962 malware samples in fourteen families, they obtained an accuracy
of 94% with four convolutional layers. Inspired by these results, we also visualize
the malware binaries into gray-scale images as data preprocessing.

To the best of our knowledge, few researchers have attempted to use few-
shot learning methods on malware classification task. Trung et al. (2018) [18]
converted the API calls into vectors via word2vec. They proposed a Memory
Augmented Neural Network (MANN) [19] with Least Recently Used Access
(LRUA) to classify the unlabeled malware. However, their test dataset had only
430 malicious samples in 5 ransom families. Besides, they compared the exper-
imental results with traditional machine learning methods but not with the
few-shot learning methods. In this paper, we propose an attention-based trans-
ductive learning network, which can learn the label information from the few
samples in each malware family. We evaluate the effectiveness of our method
with traditional machine learning methods, deep learning methods and some
state-of-the-art few-shot learning methods. Our main contributions are:

– We develop an attention-based transductive learning network for malware
classification which can propagate information from labeled instances to unla-
beled instances through an attention-based Gaussian similarity graph.

– We set up a malware database with 11,236 samples in total 30 malware fam-
ilies.

– We conduct our approach with traditional machine learning, deep learning
and few-shot learning experiments on our collected malware database. As
our proposed method has a strong generalization ability, the classification
accuracies are increased by more than 60% compared with the traditional
machine learning methods and 50% compared with the deep learning meth-
ods. In addition, comparing with several state-of-the-art few-shot learning
methods, we can also achieve the best performance in 5-shot and 10-shot
learning experiments.

The rest of this paper is organized as follows. In Sect. 2, we describe our mal-
ware classification approach called attention-based transductive learning network
in detail. The experiments are presented in Sect. 3. We conclude the whole paper
in Sect. 4.
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Fig. 1. The overview of the proposed attention-based transductive learning network.

2 Proposed Method

In this section, we will introduce the proposed attention-based transductive
learning network, which can be divided into two parts: malware visualization
and model learning. With this approach, we can efficiently achieve the malware
classification task by just learning a few malicious instances in each family. The
overview of the proposed method is shown in Fig. 1.

Fig. 2. We can see that different malware samples appear visually similar from a given
family and distinct from those belonging to different families. The images are rescaled
for better visualization.

2.1 Malware Visualization

We consider this part as the data preprocessing module. Inspired by Nataraj et
al. (2011) [12], gray-scale images of different malware samples appear visually
similar from a given family and distinct from those belonging to different families.
We provide some examples extracted from various families that support this
observation in Fig. 2. Therefore, as shown in Fig. 3, we transfer the collected raw
malicious binaries into gray-scale images. We first read the binary file in each
8-bits as unsigned integers which can exactly represent the gray value from 0
to 255. As the input of the CNN need to be a fixed size, we then resize every
gray-scale images into 64 × 64. After this data preprocessing module, our raw
malware database can be converted into the database with gray-scale images.
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Fig. 3. The process of malware visualization module.

2.2 Model Learning

We illustrate our attention-based transductive learning model in Fig. 1, which
consists of three components: feature embedding function with CNNs; Gaussian
similarity graph based on attention mechanism; and label propagation algorithm
which flows the label information from support set to the query set.

In each episode, we randomly select N malware families with K labeled
instances from each of N as the support set S = {(mi, yi)}l

i=1 (l = N · K). Sim-
ilarly, we select T labeled instances in each of these N families for the query
set Q = {(mj , yj)}p

j=1 (p = N · T ). The aim of our model is to learn information
from the support set S and minimize the loss between prediction and the query
set Q.

Feature Embedding. After malware visualization, we put the 64 × 64 gray-
scale images into feature embedding function fϕ to extract features from the
input, where ϕ represents the parameters of the function. The fϕ includes four
convolutional blocks where each block starts with a 2D-convolutional layer with
the filter size of 64 and a 3 × 3 kernel. The convolutional layer is followed by a
batch-normalization layer, a ReLU function and a 2 × 2 2D-Max-Pooling layer
(see Fig. 4). Remarkably, we use fϕ to the instances in both support set and
query set. So we get fϕ(ms) and fϕ(mq) as the output of the feature embedding
function where ms and mq represent the images from support set and query set.

Fig. 4. Detailed architecture of each convolutional block in feature embedding function.

Attention-Based Graph Construction. The output fϕ(·) of the feature
embedding function is a 64-channel 4 × 4 image. We then flatten fϕ(·) and
concatenate the feature vectors of support set and query set. In this way, if we
set N = 5 for selected malware family number, K = 5 and T = 15 as the number
of support and query instances in each of the unique families, we can get the
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feature matrix of 100 × 1024. To represent the similarity between each vector of
the matrix, we choose a Gaussian similarity formulation for graph construction:

Wij = exp

(
−E(fϕ(ma), fϕ(mb))

2σ2

)
(1)

where fϕ(ma), fϕ(mb) (a, b ∈ [1, (N · K + N · T )]) represent each vector in
the feature matrix, σ is a scale parameter and E(·, ·) is defined as a distance
computation function. As Wij deeply depends on σ, we need for optimal this
parameter to achieve the best performance. Therefore, we use a scale select
function gφ to get σ for each feature vector, where φ represents the parameters
of the function.

With learning an independent σ for each feature vector, the Gaussian simi-
larity formulation can be converted as follows:

Wij = exp

(
−1

2
E

(
fϕ(ma)

σ2
a

,
fϕ(mb)

σ2
b

))
(2)

For function E(·, ·), we simply choose the Euclidean distance formula. Inspired
by Woo et al. (2018) [20], different pixels contribute differently to the final classi-
fication accuracy. So we need to show the importance of each feature value after
extracting them from each malicious instance by fϕ(·). Therefore, we introduce
an attention mechanism Aψ to our Gaussian similarity graph, where ψ contains
the parameters of the function. The output of Aψ is a weight vector which shapes
the same as the feature vector. By using the Euclidean distance and adding the
attention mechanism, similarity formulation can finally be defined as follows:

Wij = exp

(
−1

2

∥∥∥∥weight × (
fϕ(ma)

σ2
a

− fϕ(mb)
σ2

b

)
∥∥∥∥
2

)
(3)

The detailed structure of the attention mechanism based graph construction
module is shown in Fig. 5. In general, the module consists of two main functions
which are the scale select function gφ and the attention mechanism function
Aψ. For gφ, it contains a convolutional block, a fully-connected layer, a ReLU
non-linear function and a fully-connected layer. And the convolutional block is
composed of a 3 × 3 convolutional layer with 1 padding, a batch-normalization

Fig. 5. Detailed architecture of the attention-based Gaussian similarity graph con-
struction module.
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layer and a ReLU activation function followed by a 2× 2 max-pooling layer. For
Aψ, it contains two convolutional blocks, a fully-connected layer, a ReLU non-
linear function and a fully-connected layer. And each of the convolutional blocks
is composed of a 3×3 convolutional layer with 1 padding, a batch-normalization
layer and a ReLU activation function followed by a 2 × 2 max-pooling layer.
Specially, inspired by kNN that each instance can be represented by its nearest
k neighbors, we choose the top k of similarity scores for each instance in Wij .

To accelerate the convergence of our network, we normalize the similarity
matrix Wij symmetrically. The formulation of symmetric normalized Lapla-
cian is L = D−1/2WD−1/2, where D is defined as the diagonal matrix D =
diag(d1, d2, · · · , di, · · · , dn). Indicating the sum of the i-th row of W , di is called
the degree of vertex i. Finally, we obtain our attention-based Gaussian similarity
graph L, which is a (N · K + N · T ) × (N · K + N · T ) symmetric matrix.

Label Propagation Algorithm. In this part, we describe how to get labels
of the query set from the support set. The detailed process is shown in Fig. 6.

First, we build a label matrix Y L ∈ R
(N ·K)×N for the support set, where

N is the number of selected malware families and K represents the instances in
each family of the support set. We define i ∈ (N · K) as the instance number
and j ∈ N as the family number. By using one-hot encoding, Y L

ij = 1 if the
label of mi is j and Yij = 0 otherwise, where mi represents the instance of the
support set. Accordingly, we build a label matrix Y U ∈ R

(N ·T )×N for the query
set, where T represents the instances in each malware family of the query set.
As all the instances of the query set are initially unlabeled, we define Y U as a
zero matrix. For convenience, we concatenate the matrix Y L and Y U into a new
matrix Y P ∈ R

(N ·K+N ·T )×N .

Fig. 6. The detailed process of label propagation algorithm.

According to Zhou et al. (2004) [21], each unlabeled instance in the query
set can be labeled in a convergent sequence {F (t)} iteratively. F (0) is supposed
to be Y P . We use the formulation as follow to iterate the matrix Y P :

F (t + 1) = αLF (t) + (1 − α)Y P (4)
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where α is a parameter in the range of 0 to 1, L is the symmetric normalized
Laplacian matrix as mentioned above. And F (t) indicates the predictive label
matrix in the t-th iteration. Through the Eq. (4), we can get the general formula:

F (t) = (αL)t−1Y P + (1 − α)
t−1∑
n=0

(αL)iY P (5)

Considering the ranges of the variables in the formulation, we can get the limit
values when t tends to be the positive infinite:

⎧⎨
⎩

lim
t→+∞(αL)t−1 = 0,

lim
t→+∞

∑t−1
n=0(αL)i = (I − αL)−1 (6)

Therefore, the Eq. (5) can be simplified as follows:

F ∗ = lim
t→+∞ F (t) = (1 − α)(I − αL)−1Y P (7)

where I is the identity matrix. Because (1 − α) denotes to a constant value, we
use F ∗ = (I − αL)−1Y P as the approximate equation. For this reason, we can
now directly obtain the predictive label matrix F ∗ without iterations. And this
equation is used to do the label prediction in the actual experimental studies.

After obtaining the predictive label matrix F ∗, we choose the position of
the max value in each vector as the label of each query instance. Then we use
these predictive labels to calculate the accuracy of our network comparing with
the ground truth. In addition, the classification loss is computed between the
ground truth labels (in both support set and query set) and F ∗. The cross-
entropy method is chosen as the loss function. By using softmax followed by a
logarithmic operator, we transfer the predictive matrix F ∗ into a probabilistic
score matrix.

Pij = log

(
exp(F ∗

ij)∑N
j=1 exp(F ∗

ij)

)
(8)

Then the whole loss function is computed as follows:

J(ϕ, φ, ψ) = − 1
N · (K + T )

N ·(K+T )∑
i=1

N∑
j=1

D(gt, j)Pij (9)

where gt is the label value of ground truth and D(·, ·) is a position function
defined in Eq. (10):

D(gt, j) =
{

1 gt = j
0 gt �= j

(10)

Remarkably, the loss of our learning network is dependent on the parameters
ϕ, φ and ψ.
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3 Experiments

In this section, we first describe the collected malware database in detail. Then
we represent the hyper parameters used in the experiments of our attention-
based transductive learning network. Finally, we evaluate our approach with
traditional machine learning methods, deep learning methods and state-of-the-
art few-shot learning methods on our malware database.

3.1 Malware Dataset

We crawl 11,236 well-labeled malicious samples with 30 categories from several
malware information sharing platforms such as MalShare [22], Hybrid-Analysis
[23] and VirusSign [24]. After visualizing all the malware binaries, we can obtain

Table 1. Detail information of the malware database.

Malware family Train samples Test samples

AdWare.Win32.iBryte 607 261

Downloader.Win32.LMN 240 103

AdWare.Win32.MultiPlug 144 63

Trojan-DDoS.Linux.Ddostf 65 28

Backdoor.Linux.Gafgyt 905 388

Linux.Lightaidra 137 52

Backdoor.Linux.Mirai 108 41

Trojan.Kryptik 158 68

Trojan.MSIL.Crypt 237 102

Trojan.MSIL.Inject 91 40

Trojan.Win32.Generic 147 63

Backdoor.Win32.Androm 55 25

Trojan.JS.Agent 196 84

Trojan.Script.Generic 47 28

Trojan.SuspectCRC 218 94

Trojan.VB.Crypt 79 34

Trojan.VBS.Agent 84 37

AdWare.Win32.Generic 1740 747

Trojan.Win32.Agentb 125 54

Trojan.Win32.Crypt 393 169

Trojan.Win32.Lethic 64 28

Trojan.Win32.Emotet 45 26

Trojan.Win32.Filecoder 60 26

Trojan.Win32.Agent 68 30

Trojan.Win32.MicroFake 58 25

RiskTool.Win32.Generic 60 26

Backdoor.Win32.Hlux 72 31

Trojan.Win32.Ransom 1295 556

Backdoor.Linux.Tsunami 300 129

Trojan-DDoS.Linux 53 27



412 L. Deng et al.

a database of 11,236 well-sorted gray-scale images. The detail of the database is
listed in Table 1. We load our malware database and split it into two sets: 7,851
samples for training and 3,385 samples for testing.

3.2 Experiment Configuration

To make a better comparison with other few-shot learning approaches, we use the
same feature embedding function fϕ with the same parameters as other few-shot
learning methods [5,8]. In addition, we randomly select N (N = 5, 10, 20, 30)
families in the total 30 malware families. Refer to the conclusion mentioned by
Zhou et al. (2004) [21], the parameter k of top k values for each instance in Wij

is set to 20. And α is set to 0.99 [21], which denotes the hyper-parameter of
label propagation information. All the instances are randomly generated from
the malware database. With end-to-end training, we initialize the learning rate
to 10−3 and cut in half every 20 epochs while each epoch has 100 batches. Adam
optimization is applied for training.

The experiments are based on a 64-bit Ubuntu 16.04 system. We use PyTorch
(version 1.2.0) framework to implement our model and NVIDIA Tesla V100
to accelerate the computation. The training model for 5-shot and 10-shot cost
1010.13 s and 1201.37 s while 1-shot costs 847.46 s. Due to the less training time,
we can update our model efficiently with new malware families and samples.

3.3 Experimental Results

In this part, we evaluate and verify the effectiveness of our attention-based trans-
ductive network with three groups of comparison experiments. We compare the
proposed approach with traditional machine learning methods, deep learning
methods and some state-of-the-art few-shot learning methods. We treat the gray-
scale images as input in all groups of experiments. The best performance in each
experimental setting is depicted in bold.

Compare with Traditional Machine Learning Methods. In the first group
of experiments, we compare our approach with several traditional machine learn-
ing methods. In our approach, we treat the support set as training data and
query set as the test data in each episode. We predict the accuracies of query set
after training 100 epochs while each epoch has 100 episodes. In each traditional
machine learning method, we choose the same number of malware samples as
our approach for training and testing. Therefore, we randomly select 5 instances
in each unique family for training and 15 instances for testing. To stabilize the
accuracies for each of the traditional machine learning methods, we train for
10000 episodes. By choosing N (N = 5, 10, 20, 30) in the all 30 malware families,
Table 2 describes the results comparing the proposed approach with SVM, kNN,
Random Forest (RF) and Decision Tree (DT).

As shown Table 2, our approach reaches the classification accuracies of more
than 90% in all the experiments. In addition, even compared with the second
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best score in 5-way experiment, the accuracy of our approach is 60% better.
This group of experiment shows that our approach has a strong feature extrac-
tion ability in multi-class malware classification problem. Comparing with the
traditional learning methods, our proposed network can achieve the best perfor-
mance by learning only a few malware samples.

Table 2. The classification accuracies compared with traditional machine learning
methods.

Model 5-way 10-way 20-way 30-way

SVM 59.50% 47.71% 38.64% 34.34%

kNN 50.49% 37.05% 27.47% 23.70%

RF 49.61% 37.81% 29.83% 26.66%

DT 44.92% 34.26% 27.20% 24.55%

Our approach 95.33% 94.63% 93.33% 92.56%

Compare with Deep Learning Methods. In the second group of experi-
ments, we compare our approach with two malware classification methods in
recent researches using the deep Convolutional Neural Network. Espoir et al.
(2017) [25] designed a network with three-layers CNN and two fully connected
layers while Gurumayum et al. (2020) [26] built a network with two CNN layers
and a fully connected layer. They both got over 97% classification accuracies on
their own malware datasets. Therefore, we compare the performance of malware
classification between our approach and theirs when training only a few sam-
ples. In our approach, we use the same experimental settings as the first group
of experiments. For each deep learning method, we also choose the same number
of malware samples as our approach for training and testing. In each epoch, we
randomly select 5 instances in each unique family for training and 15 instances
for testing. And we train the model for 100 episodes in each training step. To
stabilize the accuracy, we test 1000 epochs and average the results. By choos-
ing N (N=5,10,20,30) in the all 30 malware families, Table 3 shows the results
comparing our approach with two deep learning malware classification methods.

Compared with results in the first group of experiments (Table 2), we can
see that the deep learning methods get better accuracies than the traditional
machine learning methods. It indicates that the deep learning methods have
stronger ability of feature selection. With the increasement of selected malware
families N (N=5,10,20,30), our approach shows more robust in multi-class mal-
ware classification while the accuracies of deep learning methods decrease obvi-
ously. In addition, even compared with the second best score in 5-way exper-
iment, the accuracy of our approach is 50% better. Therefore, our approach
can learn the family features more efficiently from a few numbers of malware
samples.
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Table 3. The classification accuracies compared with deep learning methods.

Model 5-way 10-way 20-way 30-way

Espoir et al. [25] 63.42% 52.28% 41.55% 37.20%

Gurumayum et al. [26] 60.81% 49.71% 38.74% 34.49%

Our approach 95.33% 94.63% 93.33% 92.56%

Compare with State-of-the-art Few-Shot Learning Methods. In the
third group of experiments, we compare our approach with some state-of-the-art
few-shot learning methods in malware classification task. By choosing N(N =
5, 10, 20, 30) categories in the all 30 malware families, Table 4, Table 5 and Table
6 describe the classification accuracies comparing our approach with Matching
Networks [7], Relation Networks [5] and Prototypical Networks [8]. We use the
common training and testing settings in few-shot classification task. In testing
phase, we randomly generated K + T samples in random N families from the
testing set. The model parameters are finetuned by K instances and evaluated
by the rest T instances in each unique family for in each testing episode.

To make a better comparison with other few-shot learning approaches, we
use the same parameters as the other few-shot learning methods [5,8] in Table
4. So the number of support set in each unique malware family is K = 5 while
the number of query set in each unique family is T = 15. From Table 4, We
can notice that the proposed method achieves the best results in all the N -way
5-shot experiments. This experiment shows that the proposed attention-based
transductive learning network achieves the highest classification accuracies and
is more suitable for malware classification task.

Table 4. The classification accuracies compared with state-of-the-art few-shot learning
methods (K = 5).

Model 5-way 10-way 20-way 30-way

Matching networks [7] 66.98% 59.54% 47.46% 45.07%

Relation networks [5] 67.83% 56.46% 48.41% 44.28%

Prototypical networks [8] 73.46% 61.69% 50.44% 45.76%

Our approach 75.41% 63.15% 52.48% 50.41%

Moreover, we also try to set K = 10 as the number of support set in each
unique malware family while the number of query set in each unique family is still
15. By using more 5 instances for training in each malware family, our approach
can still achieve the best performance in all experiments (Table 5). Compared
with the results in the N -way 5-shot experiments above (Table 4), we can find
that the accuracies of our approach are 2–3% higher. This experiment indicates
that our network can achieve a stronger generalization ability by learning from
a few more instances in each malware family.
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Finally, we also try to extend our approach to N -way 1-shot experiments.
By just learning one labeled instance from each selected malware family, we
still use T = 15 as the number of query set in each unique malware family. As
seen from Table 6, our approach can still achieve the best performance in 5-way
and 10-way experiments. However, Matching Network [7] performs better than
our approach in 20-way and 30-way experiments. These results are explicable
because Matching Network [7] is specifically designed for one-shot learning.

Table 5. The classification accuracies compared with state-of-the-art few-shot learning
methods (K = 10).

Model 5-way 10-way 20-way 30-way

Matching networks [7] 68.94% 60.52% 48.80% 45.41%

Relation networks [5] 73.84% 59.92% 50.68% 44.49%

Prototypical networks [8] 76.57% 64.06% 53.74% 48.14%

Our approach 77.95% 66.73% 55.53% 51.39%

Table 6. The classification accuracies compared with state-of-the-art few-shot learning
methods (K = 1).

Model 5-way 10-way 20-way 30-way

Matching networks [7] 60.22% 52.64% 50.61% 49.28%

Relation networks [5] 64.43% 51.84% 42.38% 36.55%

Prototypical networks [8] 63.97% 55.26% 43.83% 38.63%

Our approach 66.89% 55.67% 45.14% 39.83%

With the increasing of epochs, we show the curve of classification accuracy
(Fig. 7) and loss value (Fig. 8) for each approach in 5-way 5-shot. As shown in
Fig. 7, our approach can finally achieve the best performance after 100 epochs
while each epoch contains 100 batches. For Fig. 8, we choose cross-entropy loss
function for the proposed approach and Prototypical Network [8] while MSE
(Mean-Square Error) and NLL (Negative Log Likelihood) loss for Relation Net-
work [5] and Matching Network [7].
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Fig. 7. Training accuracy curve with the increasing of epochs in 5-way 5-shot.

Fig. 8. Training loss curve with the increasing of epochs in 5-way 5-shot.

4 Conclusion

In this paper, we collect 11,236 malware samples from the real-world environ-
ment and build a malware database. To solve the problem of few labeled samples
of malware classification and improve the generalization ability, we propose a
novel malware classification approach called attention-based transductive learn-
ing network. By training with few malware samples, our approach performs the
classification accuracies of 60% more than traditional machine learning methods
and 50% more than the recent deep learning malware classification methods.
Comparing with some few-shot learning approaches, we also achieve the highest
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classification accuracies in few-shot experiments and a considerable performance
in the one-shot experiment.
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2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France
{jean.leneutre,pascal.urien}@telecom-paris.fr

Abstract. Due to the scalability limitations, the secure device pairing
of Internet of Things objects cannot be efficiently conducted based on
traditional cryptographic techniques using a pre-shared security knowl-
edge. The use of Out-of-Band (OoB) channels has been proposed as
a way to authenticate the key establishment process but they require
a relatively long time and an extensive user involvement to transfer the
authentication bits. However, the context-based schemes exploit the ran-
domness of the ambient environment to extract a common secret without
an extensive user intervention under the requirement of having a secure
perimeter during the extraction phase, which is considered as a strong
security assumption.

In this paper, we introduce a novel hybrid scheme, called COOB, that
efficiently combines a state-of-the-art fast context-based encoder with our
Out-of-Band based scheme. This protocol exploits a nonce exponentia-
tion to achieve the temporary secrecy goal needed for the authentication.
Our method provides security against an attacker that can violate the
secure perimeter requirement, which is not supported by the existing
contextual schemes. This security improvement has been formally vali-
dated in the symbolic model using the TAMARIN prover. Based on our
implementation of the Out-of-Band channel, COOB enhances the usabil-
ity by reducing the pairing time up to 39% for an 80-bit OoB exchange
while keeping an optimal protocol cost.

Keywords: Internet of Things · Security · Secure device pairing ·
Out-of-band channel · Context-based pairing · Formal methods

1 Introduction

With the growing demand for personal gadgets and sensors, the use of a decen-
tralized device-to-device (D2D) communication system has become a necessity
for numerous applications in the context of Internet of Things (IoT) like Smart-
Homes, Intelligent Transportation Systems (ITS) and Smart Metering and Mon-
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itoring (SMM). This decision is based on the inefficiency of a centralized commu-
nication solution to meet the scalability and the interoperability goals. There-
fore, the protection of this communication channel requires the use of a secure
key establishment protocol between the devices, known as Secure Device Pair-
ing (SDP). This process ensures that the communicating nodes agree on the
same symmetric encryption key, which represents an initial trust establishment
between devices that have no pre-shared knowledge (a certificate, a shared pass-
word or a symmetric key). The no prior secret condition is motivated by two
reasons. The first one is the unfeasibility of exploiting a Public Key Infrastruc-
ture (PKI) due to the growing numbers of heterogeneous IoT devices. The second
reason is the Zero-Trust policy that disapproves of trusting the manufacturer
with delivering the initial pre-shared pairing keys to avoid any vulnerabilities or
breaches related to a third party.

Two main techniques are used to achieve these goals. The first one uses a
pre-authenticated auxiliary channel that is also known as a location limited or a
human assisted channel [3]. However, in this work we will refer to it as an Out-
of-Band (OoB) channel. These channels suffer from low data-rates, which results
in a long pairing time. This drawback can severely affect the user-experience.
Therefore, the optimization of this usability criteria is considered a necessity for
such protocols. The second technique ensures authentication through a proof of
co-presence based on the randomness of the ambient environment. This method
is better known as Context-based Pairing or Zero-Interaction Protocols (ZIP)
[11]. Even though this type of pairing schemes is optimal in terms of usability and
user-friendliness, it demands a safe zone where no attacker is assumed present
to avoid any risks related to facing a well-equipped adversary. This can be quite
hard to guarantee by a regular user and quite easy to take advantage of by an
adversary that can hide a sensor in that, allegedly, safe environment.

In this work, we propose a novel device pairing scheme that is able to effi-
ciently combine an existing fast contextual key agreement protocol with an
authenticated Out-of-Band channel. Our hybrid protocol, called COOB, has two
distinct components. The first one is a contextual module where we take advan-
tage of any fast and reliable contextual key agreement technique. The second
component is a protected OoB channel that guarantees at least the authenticity
and the integrity of the exchanged information. This design provides a security
improvement in comparison with the existing context-based schemes since it is
robust against a powerful contextual attacker. This adversary can sense and
even control the ambient environment surrounding the two legitimate devices.
Furthermore, it provides a usability improvement by reducing the protocol com-
pletion time in comparison with the existing pairing schemes that rely solely on
a low data-rate OoB channel. In addition, COOB maintains a reduced crypto-
graphic cost of only two hash computations for each device. In order to reach
this level of optimality, a nonce exponentiation is exploited while constructing
the Diffie-Hellman public keys to temporarily hide their real values, as described
in Sect. 3.3.
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The main contributions of this paper are summarized as follows:

(I) We design a novel hybrid pairing protocol that efficiently combines a con-
textual based and an Out-of-Band based pairing techniques to enhance the
security and the usability aspects.

(II) We evaluate the security of our scheme by providing a proof estimating
the attack success probabilities under two adversary models. Also, we for-
mally validate the security of our design in the symbolic model using the
TAMARIN prover.

(III) We implement the Out-of-Band protocol on two Raspberry Pi 4B. Then,
we conduct a time efficiency analysis to estimate the usability improvement
provided by the contextual module.

The rest of this paper is organized as follows. Section 2 discusses relevant
work to OoB and context-based pairing schemes and highlights the limitations
of each category. Section 3 describes our protocol along with the assumptions
and the threat model taken into account. Section 4 evaluates the security of
our scheme and formally validates its robustness in the symbolic model using
the TAMARIN prover. Section 5 describes the protocol implementation on the
Raspberry Pi 4B and outlines the results of the time efficiency estimation and,
lastly, Sect. 6 concludes our work.

2 Related Work

Numerous secure device pairing solutions rely on an Out-of-Band channel with
specific security properties to send information that validates what has been
exchanged on the In-Band channel, referred to as the In-Band channel. This is
due to the unfeasibility of performing the authentication based on a single chan-
nel that is controlled by a Dolev-Yao intruder [9], as demonstrated in [7] using
BAN Logic analysis [6]. This powerful adversary is assumed to have a perfect
knowledge of the protocol and he is able to overhear, block, delay, replay and
forge any transmission over that channel. However, he is not able to perform any
computational attacks against the cryptographic functions. As a consequence of
adopting this intruder model, the usage of the In-Band channel without having
pre-shared secrets is not sufficient to provide the desired security guarantees for
the key exchange process. Therefore, there is a need for an auxiliary communica-
tion link on which the authentication of the exchanged keys can happen. These
channels can be constructed based on audio, visual or haptic transmissions. Due
to their special nature and their communication properties, they provide an ini-
tial level of security that is sufficient to primarily guarantee the integrity of the
data and the demonstrative identification [3], which is ensuring that the com-
municating devices on these channels are the intended ones for pairing. Other
security objectives might be provided in some cases such as the confidentiality
and the data origin authenticity. These assumptions on the OoB channel reduce
the attacker capabilities in comparison with his abilities on the In-Band channel.
In this context, we adopt the Out-of-Band security classification in the work of
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Mirzadeh et al. [25] that defines the three following categories: the confidential
channel which eliminates all attacker capabilities, the protected channel that
limits the adversary powers to intercepting, blocking and delaying the messages
which breaks the confidentiality assumption and affects the guarantee of the
message reception. Finally, the authentic channel grants the attacker the addi-
tional capabilities to replay messages that were exchanged in previous sessions
which violates the data freshness guarantee [30].

Some proposals such as Secure Simple Pairing (SSP) [4] and Push Button
Configuration (PBC) [2] exploit the short-range radio communications, such as
the Near Field Communication (NFC), as an Out-of-Band channel. Unfortu-
nately, this technology is not secured against an attacker that is sufficiently
close to the pairing objects as demonstrated in the work of Akter et al. [1].
Thus, we will not consider it as a secure option of an OoB channel. In the work
of Fomichev et al. [10], a selection of pairing proposals that rely on Out-of-band
channels have been thoroughly described based on their nature (radio [2,4],
visual [26,36], acoustic [13,32] or haptic [21,27]), the degree of the user involve-
ment and the application context of the pairing. The latter criteria classes the
pairing use-cases into categories that have related security threats and objec-
tives. The significant limitations of these channels are their low data-rates and
their need for a extensive user intervention. The former drawback is due to the
quality of the interfaces on the commercial IoT products, which makes the trans-
fer of long hashes or keys not possible. Some of the proposed schemes rely on
the human user to setup the devices for the exchange, to relay an information
from one device to another, to compare a short authentication string on both
objects or to simply generate a secret PIN and to enter it in both devices [10].
As an example, the security of the pairing scheme MANA III [12] is based on
the confidentiality of the PIN entered by the user. Even though the confidential
OoB channels are not considered as a reliable option due to the feasibility of
eavesdropping attacks on the acoustic, the visual and the haptic transmissions
using side-channel analysis techniques [14]. Another prominent threat in the pro-
tocol design is the predictable human input. This vulnerability is considered as
a Human-factor error that, if not well designed, might compromise the effective
security of the protocol [17].

Due to the usability challenges related to the use of Out-of-Band channels
such as the long pairing completion time and the extensive human involvement
as shown in [17,20], the research focus has shifted toward a more autonomous
authentication technique based on a proof of co-presence. These protocols use
the randomness of the ambient environment to extract a contextual informa-
tion on both devices within a specific area called the authentication zone. This
parameter represents the area where the legitimate devices are required to be
placed in order to enhance the usability of the protocol by minimizing the errors
when sensing the environment. The contextual information can be either used
to extract a key for encryption later on [23], a fingerprint of the device location
[15] or as a way to encode a secret between the pairing parties [34]. Based on
the close proximity assumption, the two objects are expected to have similar
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measurements of the chosen environmental metrics, which will result in a sim-
ilar contextual security parameters. The choice of the metrics should be based
on aspects such as: the location dependency that explains the changes in the
contextual measurements when we change the position of the sensor, the static
randomness that guarantees the extraction of contextual information with a
sufficient entropy when the devices are static and finally, the unpredictability
aspect that guarantees the unfeasibility of a prediction attack on the contextual
measurements. There are multiple context-based schemes that use the audio as
a source of randomness such as [18,29]. In the work of Schürmann et al. [29],
the authors used an audio fingerprint of the energy fluctuation between the fre-
quency bands coupled with a fuzzy commitment [16] in order to exchange a key
between two co-located devices. Also, the work of Karapanos et al. [18] exploits
the acoustic environment by computing a similarity score using the average of
the maximum cross-correlation of audio samples applied on a set of one-third
octave bands. This result is then compared to a fixed threshold to decide the
co-presence of the devices. This metric is based on the unpredictability of the
acoustic signals received in the dynamic scenarios where these schemes were
tested. Unfortunately, this choice does not satisfy most of the previously men-
tioned criteria such as the location dependency and the static randomness in
quite environments. In the work of Fomichev et al. [11], it has been proven that
the microphones heterogeneity increases drastically the error rates of the con-
textual pairing, which makes the scheme less robust against contextual attacks.
Also, we can never discard the risk of audio amplification, as discussed in [29],
where the adversary uses a directional microphone to amplify the audio signals,
which makes him able to reconstruct the fingerprint and get hold of the shared
secret.

Another variant of contextual protocols relies on a number of metrics from the
ambient radio environment as a proof of physical proximity such as the Receiver
Signal Strength Indicator (RSSI) [23,28] and the Channel State Information
(CSI) [33,34]. These protocols are based on the assumption that devices within
a close range and using a high frequency radio technology perceive the same
unpredictable changes in the signal strength in short periods of time. Therefore,
they are able to extract high entropy contextual information that can be ulti-
mately used in exchanging a secret or deriving an encryption key. This hypothesis
satisfies our three main criteria mentioned above but it has been recently proven
in [31] that the RSSI can be manipulated by the adversary. This attack has been
demonstrated using a fake Wi-Fi access point on which the transmission power is
adapted to the location of the target device so that it computes the wanted sig-
nal strength indicator. On the other hand, the CSI measurements represent the
propagation of the signal in terms of scattering, fading and power decay with
respect to their physical location. This metric becomes rapidly de-correlated
between two devices as the distance between them increases. It is also highly
unpredictable due to its dependency on the ambient environment as shown in
[34]. Such properties of the CSI are used to provide a high random bit genera-
tion rate that can reach hundreds of bits per second. The authenticity and the
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confidentiality of the secret are guaranteed against a passive attacker outside the
safe zone but its resilience in the face of an active adversary is still considered
under investigation since it has been theoretically proven feasible by the work
of Zafer et al. [35]. In this paper, we combine the two types of secure device
pairing protocols in order to benefit from the fast contextual secret agreement
in the context-based schemes to reduce the pairing completion time in compari-
son with the protocols relying solely on the low data-rate Out-of-Band channels.
Also, we exploit the advantages of the Out-of-Band channels in terms of security
under a threat model which deals with an ambient environment controlled by
the attacker. Such strong intruder represents the Achilles’ heel of any existing
contextual scheme, especially without the requirement of human interactions
such as performing some pattern of movement or taping, as suggested in [15].

3 COOB

3.1 System Model

Our protocol is based on two main building blocks: a contextual module and an
Out-of-Band module. These two components are used in an optimal manner to
benefit from the advantages of both types of pairing. Our scheme does not rely
on a specific sensing technology or a precise choice of an Out-of-Band channel.
It takes as an input a reliable and fast contextual key agreement protocol and a
protected OoB channel that guarantees the integrity and the authenticity of the
information transmitted. The human interaction needed is only limited to placing
the devices in close proximity and pushing a button, which is used as a way to
provide user feedback about the correctness of the pairing process. This modular
design gives the protocol two main advantages: an adaptive nature to the recent
enhancements in both research directions and a flexibility toward the existing
interfaces on the constrained objects. In the upcoming protocol description, we
will apply a contextual extractor proposed in [34] due to its fast generation rate
and a visual communication channel for the Out-of-Band module.

3.2 Assumptions and Threat Models

We take into account the scenario where two devices, Alice and Bob, try to
pair by authenticating their public Diffie-Hellman keys exchanged over the In-
Band channel. We assume that the discovery phase, where the two devices gain
knowledge of each other, has been correctly established by the user. The details of
this phase are considered out of the scope of this work. The target devices of our
protocol need, based on the choice of the contextual part, a Bluetooth module to
communicate on the In-Band channel and a Wi-Fi chipset able to extract the CSI
measurements. Also, we need, based on the choice of the Out-of-Band channel, a
LED and a button as interfaces on the initiator device, named Alice, a LED and
a light-sensor as interfaces on the enrollee, named Bob. Additionally, we need
enough computational power to handle the Diffie-Hellman key computations [8].
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We take into account the existence of a powerful Dolev-Yao [9] adversary that
is able to control both the In-Band channel and the ambient environment sur-
rounding the pairing participants such as the audio, the radio (Wi-Fi, Bluetooth
and GPS) and even the physical environment (temperature, humidity, altitude
and their combinations). This capability is not limited to a single target device
since we assume that the attacker can be in the same context as all of the legit-
imate objects for an unlimited period of time. Furthermore, in our analysis we
consider the feasibility of computational attacks that are targeting the crypto-
graphic functions that rely solely on a short secret as the source of randomness.
This assumption makes the security evaluation of our scheme more realistic with
respect to the use of short secrets to perform the ad-hoc pairing. Therefore, we
assume the existence of two kind of attackers in our evaluation: the first one is
an ordinary contextual intruder that is not able to suppress any existing
contextual information and is not allowed inside a pre-defined safe zone fixed by
the pairing scheme assumptions. The second one is a sophisticated contextual
intruder that is able to sense and ultimately control the ambient environment,
which makes him aware of the secret extraction outcome in both devices. The
latter threat model might seem unrealistic but it has been proven in [31] that
such attacks, against co-presence authentication systems, are possible using a
form of a “ghost-and-leech” technique [19]. Due to the close proximity of the
pairing parties, the adversary might use a leech and a ghost at the same place.
The leech plays the role of an eavesdropping device that senses the environment
and send it back to the attacker using a fast digital communication, i.e a micro-
phone or a photo-sensor. On the other hand, the ghost plays the role of a device
that controls the environment, i.e a speaker or a laser.

3.3 Our Proposal

In this section, we present a novel approach that combines an Out-of-Band based
scheme with a context-based protocol to provide a usability improvement in term
of reducing the pairing time in comparison with the previously proposed OoB-
based protocols relying on a low-bandwidth Out-of-Band channel. Furthermore,
our approach presents a security enhancement against a sophisticated contex-
tual attacker without an extensive user involvement, which is not supported by
the previously proposed contextual schemes. Our protocol takes advantage of
a DH exponentiation that temporarily hides the real values of the public keys
in order to reach the optimal security provided by our two hash verifications.
Furthermore, this technique avoids the additional use of cryptographic commit-
ment schemes to minimize the communication and computation costs required,
as detailed in Sect. 3.3.

Our proposal is split into two main steps. First, we will briefly introduce, in
the background Sect. 3.3, the contextual module where we will highlight the key
aspects of the TDS protocol [34] used in our scheme. Then, we will explain our
choice of the Visible Light Communication (VLC) as our Out-of-Band channel.
Secondly, we will present the exchanges of our protocol, COOB, that combines
the two previously mentioned blocks in an optimal manner in terms of time,



426 S. Khalfaoui et al.

communication and computational efficiency by exploiting the advantages of a
nonce exponentiation technique.

Background

Contextual Module
As mentioned above in Sect. 3.1, we will apply the fuzzy extractor used in the
work of Xi et al. [34] that exploits the channel state readings from a Wi-Fi access
point that is publicly agreed upon. Due to the close proximity of the two legit-
imate devices (within an authentication zone 0.4λ ≈ 5 cm), they receive highly
correlated CSI amplitude measurements as highlighted in Fig. 1. The sensing
of the ambient environment will be initiated by each device respectively at the
beginning of the discovery phase.

Fig. 1. The main steps of TDS [34]

After gathering a sufficient number of samples, Alice will try to synchronize
the sampled data with the other device by sending a sequence of values to Bob
marking the beginning of the valid samples that will be used in the encoding
process. The S-box in our case will represent a (2 × l)-matrix where l is the
bit-length of the secret. Each element of the matrix will include a number m ×
n of CSI samples that uniquely represent a bit value 0 or 1, where m is the
number of sub-carriers used and n is the number of measurements per sub-
carrier. Thus, two consecutive m × n samples need to be distinct in order to
reflect a 0 or a 1 bit. After uniquely identifying each block of the matrix, an
l-bit secret is independently generated by Bob and then, for each bit, he sends
its corresponding block in the S-box. As an example, if the secret starts with
the sequence 0110 then Bob will send the first 0-block, the second 1-block, the
third 1-block and the fourth 0-block as illustrated in Fig. 1. Since Alice has
computed a similar S-box due to the reception of similar CSI samples, she will
decide whether the received ith block represents a 0 or a 1 bit value based on a
comparison with her ith column in her matrix. However, the adversary will not
be able to reconstruct the original message due to his different measurements,
which result in a different matching box. In this design, we will use Reed-Solomon
(RS) codes to ensure that Alice can correct a number of bits fewer than a fixed
limit. This will guarantee the reconstruction of the secret by only a legitimate
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device inside the authentication zone. Readers willing to learn more about the
TDS scheme can consult the original paper [34].

To simplify the protocol description in the upcoming sections, we will model
this technique as a fuzzy-commitment scheme [16] that uses two similar con-
textual bit-values rca and rcb generated respectively by Alice and Bob. These
two variables will represent the S-box process of encoding and decoding based
on the CSI features. The transfer of the blocks Vb by Bob will be modeled as
Vb = rcb ⊕ Encode(rb) where Encode(.) is the Reed-Solomon encoding func-
tion. This message will be decoded on the other side using rca as follows:
rb = Decode(rca ⊕ Vb) where Decode(.) is the Reed-Solomon decoding function.
The feasibility of this modeling is due to the similarity between the concept of
representing a bit by multiple random information and the idea of hiding its
value using a random contextual bit and an XOR operation.

Out-of-Band Module
In our proposal, we need two Out-of-Band channels that limit the attacker capa-
bilities to blocking, delaying and eavesdropping on the transmissions. These
channels will be differentiated based on their nature and their degree of human
interaction as described in Sect. 2. The first Out-of-Band channel will have the
purpose of exchanging an authentication parameter and the second one will
serve as a final validation step of the pairing. Due to the constrained nature
of our target devices, we decided to choose a simple unidirectional visible light
OoB channel based on a LED on the initiator (Alice) and a light sensor on the
enrollee (Bob). This choice is based on the nature of the channel since it is hard
for an attacker to replay or forge a message without being detected by the user.
Also, it is less susceptible to the ambient noise than the acoustic or the haptic
channels and easier to setup due to the close proximity assumption. For the sec-
ond one, we decide to include a very limited user action represented by pushing
a button on Alice after receiving a signal from Bob. This signal can vary between
a vibration, a sound or a simple LED blink. This choice of human-aided channel
will provide the user with an explicit feedback about the state of the pairing
process.

Protocol Description
After the discovery phase, the devices become aware of each other and agree on
the Diffie-Hellman public parameters (the cyclic group G, the generator g and
a big prime p). At the same time, they start sensing the environment in order
to collect a sufficient number of samples to perform the contextual encoding
and decoding operations. They generate their ephemeral DH private keys (a and
b), two secret l-bit nonces (ra and rb) and they dpublic keys (ga−ra mod p
and gb−rb mod p). In addition, Alice generates a hashing key Kh to avoid
any exhaustive search attempts on the nonce ra using a simple hash output
h(IDA, IDB , ga, ra). To simplify the expressions, we will refer to the DH keys as
ga−ra and gb−rb , without the modulus operation. In Fig. 2, we represent the In-
Band exchanges by the black circles 0 , while the blue 0 and the red circles 0

refer, respectively, to the Out-of-Band exchanges that are intended to perform
the verification and the validation of the pairing.
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Alice initiates the pairing process, as depicted in Fig. 2, by sending ga−ra

to Bob along with its identifier IDA and the keyed hash hKh
(IDA, IDB , ga, ra)

in the message 1 on the In-Band channel. Afterwards, she begins the con-
struction of her S-box using the CSI values that come after the sequence
SA, which has been shared with Bob for synchronization purposes. At this
point, the enrollee starts constructing his S-box using the CSI values that
come after SA. This operation is modeled by the construction of a contex-
tual nonce rcb . Then, he transmits the parameters IDB, gb−rb along with the
fuzzy commitment scheme Vb = rcb ⊕ Encode(rb||[ga−ra ]i+l−1

i ) to Alice in the
message 2 on the In-Band channel. The parameter i is computed as follows
i = rb modulus (|ga−ra |− l) where the values |ga−ra | and [ga−ra ]i+l−1

i represent,
respectively, the number of bits and an l-bit truncation of the modified public
key ga−ra starting at the bit number i. At the reception of the previous message,
Alice extracts the secret parameter r̂b using her contextual parameter rca as fol-

lows r̂b|| ̂[ga−ra ]
î+l−1

î = Decode(rca ⊕ ̂Vb). Then, she verifies the correctness of the

reconciliation of r̂b based on the verification of ̂[ga−ra ]
î+l−1

î . The l-bit verification
of ga−ra is used to improve the contextual mismatch detection time, which pro-
vides a way to enhance the usability in the case of an inattentive user placing the
devices far apart. At this point, Alice sends the XOR of the three values r̂b, ra and
̂[gb]

ĵ+l−1

ĵ in the message 3 over the protected OoB channel. The parameter ĵ is
computed as follows ĵ = r̂b modulus (|gb| − l) and the symbol x̂, in our descrip-
tion, represents an expected value x that is suspected to be modified by the

adversary. Subsequently, Bob recomputes r̂a = ra⊕ r̂b⊕̂[gb]
ĵ+l−1

ĵ ⊕rb⊕ [gb]j+l−1
j

and sends to Alice a keyed hash hK(IDA, IDB , ̂ga, gb), using the shared key
K = (ga−ra .gr̂a)b, in the message 4 on the In-Band channel. Then, Alice verifies
the keyed hash received in the previous message and she confirms the verifica-
tion by sending the hashing key Kh to Bob in the message 5 on the In-Band
channel. Finally, Bob verifies the keyed hash received in message 1 . Then, he
provides a signal to the user, in the message 6 , to notify Alice of his validation
by asking him to push a button on the other device.

The reason behind the use of the nonce exponentiation is to temporarily
hide the real values of the legitimate devices DH public keys from the attacker.
This secrecy is needed to guarantee the correctness of the hash verification of
Alice. To better explain this requirement, we will describe an attack scenario.
First, we start by assuming that we use the real DH keys instead of the hidden
ones. The adversary injects his own DH public key gx in the message 2 . At this
point, the adversary has a perfect knowledge of the secret DH key computed by
Alice, KA = gxa. Therefore, he has all the parameters needed to recompute the
keyed hash sent in message 4 which will lead to bypassing the verification on
Alice’s side even when the value of Bob’s nonce in the contextual commitment,
sent in message 2 , has not been revealed by the attacker. As a consequence,
the use of the real values of the DH public keys bounds the protocol security
to a single hash verification instead of two. Thus, we will have only l bits of
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Fig. 2. COOB: Hybrid key agreement scheme (Color figure online)

security when we used 2l bits of authenticated exchanges against an ordinary
contextual intruder which is not optimal. One possible solution to this issue is
to use a commitment scheme, which needs two separate messages to provide
the temporary secrecy property for a single public key. This requirement adds
in a computation and communication cost of 4 exchanges for the two keys.
This complexity can be easily avoided using the DH exponentiation to hide the
public values while relying on a fuzzy commitment scheme that is based on a
random ambient information source. Also, this contextual technique makes the
ordinary contextual attacker unable to reveal the values of the nonces for the
entire protocol run with the exception of a successful random guess. Accordingly,
this provides a permanent confidentiality of these security parameters instead
of a temporary property. This approach makes the protocol optimal in term of
security with less computational cost than the first proposal and, most of all,
without adding a communication cost.

This novel approach combines two pairing techniques using two short nonces
as a way of hiding the legitimate DH public keys from the attacker in order to
prove their authenticity later on based on two hash verifications. The values ra
and rb are protected by the discrete logarithm problem, which makes it hard for
an adversary to retrieve them from the keys ga−ra and gb−rb , especially without
the knowledge of the private keys a and b. To the best of the authors’ knowledge,
COOB is the first scheme that combines the contextual and the OoB based
pairing. This has been made possible using the exponential challenge-response
technique that hides Alice’s DH public key ga. This security measure makes the
adversary unable to recompute the keyed hash and fail to bypass the verification.
Our hybrid protocol relies on a very constrained set of human interactions that
consists of placing the devices in close proximity and pushing a button on the
initiator (Alice) to confirm the pairing.

There are two main advantages with respect to each category of pairing
mechanisms. In comparison with the previously proposed context-based
schemes, we provide an attack success probability of 2−l against a sophisticated
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contextual attacker that is able to violate the safe zone without detection and
to completely control the environment. In comparison with the same OoB-
based protocol structure that only uses the Out-of-Band channel to
transfer 2 × lbits, we provide less pairing completion time due to the fast
generation of the contextual information relying on TDS [34], which takes at
maximum 2 s to agree on a 256-bit key. However, an average time of 8.6 s is
required for a 6-digit numerical comparison, performed by the user, with a 10%
mismatch rate related to human factor errors, as stated in the work of Kumar
et al. [20]. The usage of automated pairing schemes that are highly preferred
by the study participants, such as HAPADEP [32] and Blinking Lights [26],
scores between 10.6 and 28.8 s only for exchanging a 15-bit authentication string.
Therefore, for sending 2l bits on the out-of-Band channel, we would need twice
the time, which is not convenient for the user.

4 Security Analysis

4.1 Security Evaluation

We begin our analysis by assuming, at this moment, that the attacker is out-
side the safe zone, which makes him unable to predict or to collect the same
contextual information measured by the two legitimate devices. Therefore, he is
unable to send his own contextual commitment.

A MitM attack scenario starts by blocking the message of Alice 1 and by
replacing it with the following construction: IDA, ga

′−r′
a , hK′

h
(IDA, IDB , ga

′
, r′

a),
where x′ represents an attacker induced value. Then, the adversary blocks the mes-
sage 2 and sends to Alice his own version: IDB , gb

′−r′
b , Ve. The parameter Ve can

be a legitimate contextual commitment computed by Bob or an old one replayed
by the attacker. Afterwards, Alice retrieves the nonce r̂b = Decode(rca ⊕ Ve) and

sends the message 3 , that contains the value ra ⊕ r̂b ⊕ ̂[gb′−r′
b+r̂b ]

ĵ+l−1

ĵ , over the
protected Out-of-Band channel which guarantees the integrity and the authentic-
ity. Subsequently, Bob retrieves r̂a using the following equation:

r̂a = ra ⊕ r̂b ⊕ ̂[gb′−r′
b+r̂b ]

ĵ+l−1

ĵ ⊕ rb ⊕ [gb]j+l−1
j (1)

Using r̂a, Bob recomputes the public key of Alice ̂ga = ga
′−r′

a+r̂a and the
DH secret key ̂KB = gba

′
. Then, he uses it to compute the second verification

hash h
̂KB

(IDA, IDB , ga
′−r′

a+r̂a , gb) and sends it to Alice in the message 4 . The
initiator verifies the hash using her key KA = ga(b

′−r′
b+r̂b) and sends the hashing

key Kh to Bob in the message 5 , which will be blocked and replaced by K ′
h.

At this moment, Bob is able to verify the keyed hash received in the message 1

using the parameter K ′
h induced by the adversary, the nonce r̂a and the public

key ̂ga = ga
′−r′

a+r̂a .
The easiest way for the attacker to bypass the hash verification of Alice,

hash verification I, is to block the message 4 and recompute the initiator
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key KA = ga(b
′−r′

b+r̂b) but he can only compute KE = gb
′(a−ra+r′

a). This means
that the optimal solution for the attacker is to use the legitimate contextual
information Ve = Vb in order to have the equality r̂b = rb and to satisfy the
equation

r′
b = rb (2)

As for the hash verification of Bob, hash verification II, the attacker needs
to satisfy the following equation when constructing the message 1 :

r′
a = r̂a (3)

To summarize the results of the previous security analysis, the attacker needs
to satisfy two main conditions

{

r′
a = r̂a

r′
b = rb

The parameters r′
a and r̂a are completely independent as shown in Eq. 1,

which means that we have an attack success probability PsB = 2−l. The same
property applies on the values r′

b and rb, which provides an attack success prob-
ability of PsA = 2−l.

The two verifications are sequential, which means that the execution
of the second phase depends on the success of the first one. Therefore, the total
success probability of the whole MitM attack is Ps = PsA × PsB = 2−2l. This
analysis is better highlighted in Table 1 where the assumptions on Eq. 3 and
Eq. 2 are made and the corresponding success probabilities are computed. In
this context, mA = |hK(IDA, IDB , ̂ga, gb)| and mB = |hKh

(IDA, IDB , ga, ra)|
were used to express the probability of a collision on the hash functions. Based
on this analysis, the MitM attack success probability is bounded by 2−2l.

In the case of an ordinary contextual attacker, we will have the same
results as the ones indicated in Table 1. This fact is explained by the confiden-
tiality assumption on the contextual information, which protects the parameters
ra and rb from being revealed by the adversary.

In the case of a sophisticated contextual attacker, he has the capacity
to gain knowledge of Bob’s secret rb based on computing an S-box similar to the

Table 1. MitM attack success probability

Verification phases

r′
a = r̂a r′

a �= r̂a r′
a �= r̂a r′

a = r̂a

& & & &

r′
b �= rb r′

b �= rb r′
b = rb r′

b = rb

Hash verification I ✗ ✗

Hash verification II ✗ ✗ ✗

Upper bound of the successful 2−mA 2−(mA+mB) 2−mB 2−2l

attack probability
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ones constructed by the legitimate devices. Even though he knows Bob’s true DH
public key gb and Alice’s secret based on the message 3 , he still has to satisfy
Eq. 3, which still guarantees the mutual authentication with an attack success
probability Ps = 2−l. To the best of the authors’ knowledge, this property is not
maintained by any context-based protocol relying on the unpredictability aspect
of the ambient environment.

4.2 Formal Validation

To validate the correctness of the protocol in the symbolic model, we perform
a formal verification using the TAMARIN prover [24], a powerful validation
tool for security protocols. In our analysis, we begin with the evaluation of the
confidentiality of the secret keys and nonces of Alice and Bob. Then, we evaluate
an authentication property referred to as injective agreement [22]. This lemma
verifies that the protocol guarantees to Alice that if she completes a protocol
run with Bob to agree on a key K, then Bob has been apparently running the
protocol with Alice and the two devices agreed on the same value. This property
will be tested in both ways to guarantee a mutual authentication as mentioned
in our code1. The multiple-session attack was not considered in our evaluation
since we have no persistent secret during multiple protocol executions. These
assumptions reflect the consequences of a Man-in-the-Middle attack where the
adversary performs the actions described in Sect. 4.1.

This tool adopts the Dolev-Yao intruder model on its public channel, which
grants the attacker with a complete control over it. Thus, it satisfies our attacker
model requirements on the In-Band channel. However, the protected Out-of-
Band channel is modeled in the tool such that it prevents the attacker from
forging or replaying any messages. As for the blocking and the delaying actions,
the adversary is already able to temporarily or permanently stop the process of
sending an information, even on the protected channel. Our sophisticated contex-
tual attacker is represented as a Dolev-Yao intruder that has perfect knowledge
of contextual information of the two devices, rca and rcb , which grants him a
perfect reconstruction of the nonce rb. Even though there is a lack of a modular
exponentiation in the tool, we can model, to a certain degree, these operations
to reach the full capabilities of the intruder. Nonetheless, the XOR properties
were recently modeled in TAMARIN v1.4.1 but the tool does not support mul-
tiple executions of this operation, as required in message 3 on the Out-of-Band
channel. This computational burden is caused by the multiple algebraic proper-
ties of the XOR. To ease the computation, we modeled our own approximation
of the XOR operation using a simpler constructor functions xorc(., .) to apply
the operation on two variable inputs.

To guarantee the correctness of the protocol execution, a set of restrictions
must be indicated in the TAMARIN model. We enforced the use of an initializa-
tion rule that provides all the devices with the same contextual information. We

1 The TAMARIN model of COOB can be found in https://github.com/
samehkhalfaoui/COOB-TAMARIN-model/blob/master/COOB model.spthy.

https://github.com/samehkhalfaoui/COOB-TAMARIN-model/blob/master/COOB_model.spthy
https://github.com/samehkhalfaoui/COOB-TAMARIN-model/blob/master/COOB_model.spthy
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imposed also the uniqueness of the private DH keys and of the authentication
nonces to avoid any multi-session attack. Finally, we apply the hash equality
restriction that stops the protocol run when the hash verification does not hold,
which represents the case of an attack detection.

Table 2. COOB evaluated properties in the symbolic model

Result

Property Ordinary Sophisticated

contextual attacker contextual attacker

Secrecy of rc ✗

Secrecy of ra ✗

Secrecy of rb ✗

Secrecy of Alice’s key

Secrecy of Bob’s key

Alice-to-Bob injective agreement

Bob-to-Alice injective agreement

The results of the lemmas highlighted in Table 2 validate the robustness of our
protocol in the symbolic model even in the presence of a sophisticated contextual
attacker that can break the secrecy of the authentication nonces during the
protocol run. The outcomes are either when the property is validated or ✗
when the property does not hold and an attack trace is provided by the tool.
We use the automated proofs with the default heuristic and the default proof
tree exploration. The validation lasts 84 mins and is conducted on a computer
with an Intel(R) CoreTM i5 − 9400H CPU @ 2.5 GHz × 8 processor, 32 GB of
RAM, running Ubuntu 18.04.4 LTS.

Moreover, this analysis shows that an attacker will not be able to mount an
MitM attack resulting in the agreement on different keys on each device and
guarantees the secrecy of the computed key has been validated for both Alice
and Bob. Therefore, this analysis validates the mutual authentication property
between the legitimate pairing parties chosen by the user and the secrecy of the
communication link established for the post pairing phase. The case of multi-
session attacks has not been addressed in this validation for two reasons. First
of all, it adds significant computation cost due to the unbounded number of
sessions that needs to be considered. Secondly, our scheme regenerates fresh
parameters at the beginning of each session, which makes the assumption of
having persistent security knowledge between two distinct protocol runs invalid.
Therefore, relying on the security parameters from an earlier execution of the
scheme is considered as a MitM attack where the adversary is trying to guess
the appropriate nonce values, as explained in Sect. 4.1.
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5 Implementation

5.1 Experimental Setting

We implement COOB using Python 2 on two Raspberry Pi 4B. This choice of
cards is mainly motivated by the simplicity of the extraction and the manipu-
lation of the CSI measurements for a future implementation of the contextual
module. The first Raspberry Pi is connected to a source of light, for example an
LED, and the second one is connected to a photo-resistor in order to construct a
protected visual OoB channel. We use the Elliptic Curve Diffie-Hellman (ECDH)
key exchange protocol based on a Koblitz curve secp256k1, SHA-256 for hashing
and Bluetooth as our In-Band channel. As for the choice of the elliptic curve
domain parameters, we use by default in our implementation the recommended
specifications provided in [5].

The Out-of-Band module apply an On-Off Keying (OOK) modulation and
it takes 0.2 s to send one bit value. This transmission rate is explained by the
choice of the photo-resistor and the capacitor at the receiving side as shown in
Fig. 3. This RC light detection circuit is used because of the digital nature of
the Raspberry Pi pins and their inability to read analogue inputs. Therefore, the
charging time of the RC circuit is used as a reference when applying an internal
counter to detect the existence of a light pulse when compared with a threshold
computed with regard to the ambient luminosity level at the time of pairing.

Fig. 3. Visual Out-of-Band channel design

The contextual module is assumed to apply a reconstruction threshold that
represents the maximum number of bits that can be corrected by the Reed-
Solomon codes during the secret reconciliation phase. We fixed the value of the
threshold to 20% of the total hidden value bit-length |rb|+ |[gb−rb ]j+l−1

j | = 2× l
to tolerate any encoding errors by the legitimate devices. This fault tolerance
is expected to increase the contextual secret message bit-length |Vb| = �2.4 × l�
while providing a more reliable encoding scheme.

5.2 Preliminary Performance Evaluation

For the moment, we compute an estimation of the time needed by the chosen
contextual module, based on the published results of the TDS protocol perfor-
mance in the work of Xi et al. [34], in order to approximate the pairing time
required by our hybrid protocol COOB. First, we refer to a metric denoted bit
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generation rate that represents the number of secret bits that are agreed upon
by both devices over the whole protocol execution time. This measure includes
the time required for the CSI information extraction, the S-Box computation
and the transfer of the encoded bits. For a distance separating the two devices
ranging between 3 and 4 cm, the TDS secret bit generation rate ranges between
100 to 180 bits per second for multiple scenarios, both static and mobile. In our
analysis, we take the average value of 140 bits per second to approximate the
required time for pairing to estimate the performance COOB in comparison with
an OoB-based pairing protocol that transfers 2l bits. These two scheme provide
the same level of security. In order to clearly evaluate the performance of our
scheme, we compare it to the same protocol design in terms of exchanges, key
manipulation and cryptographic primitives but without the contextual module.
The pairing time of the 2l-bit Out-of-Band scheme was averaged over 10 proto-
col runs that were conducted for a number of bits l varying between 16 and 80
bits. The results were analyzed to provide a time percentage gain that reflects
the added value of our modular hybrid design.

Fig. 4. Pairing time performance comparison: COOB vs 2l-OoB scheme

As highlighted in Fig. 4-(a), the pairing time imposed by a solely OoB-based
scheme that sends 2l bits on the Out-of-Band channel grows rapidly to reach 40
s for a bit-length l = 80 bits. Our implemented OoB-based protocol achieves a
better performance compared to the published usability results in the work of
Kumar et al. [20] that take on average 28.8 s for l = 15 bits on a visual chan-
nel. Therefore, we will be using our OoB pairing protocol performance results
to conduct a more realistic comparative study. Our hybrid scheme takes advan-
tage of the fast contextual agreement module to keep the required association
time within a reasonable limit equal to 25 s. This comparison is better described
using a time percentage gain that reflects COOB pairing time reduction while
maintaining the same level of security. This time optimization ranges between
22 and 39%, as shown in Fig. 4-(b), for a nonce bit-length l between 16 and
80. In a high security level scenario, a higher secret bit-length is required for
both the DH keys and the nonces, which makes the use of a typical OoB-based
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scheme extremely unsuitable. Furthermore, the risk of dealing with a sophisti-
cated contextual attacker prevents the use of a context-based pairing scheme.
These inconveniences can be mitigated using COOB since the time gain can
exceed 50% of the whole pairing time required by the other OoB-based schemes
and a level of security can be assured by the use of an Out-of-Band channel that
only transfers half of the authentication bits.

Our hybrid design guarantees a optimal pairing time in comparison with
the other schemes that rely on low-bandwidth Out-of-Band channels. This time
reduction enhances the usability aspect of the device pairing process without
demanding an extensive user involvement. Also, this can also be handy in the case
of a group device pairing where the time of use of an Out-of-Band channel grows
linearly with the number of paired devices. Thus, applying our pairwise pairing
scheme to this scenario will provide a further time optimization in comparison
with the use of multiple OoB communications.

6 Conclusion

In this paper, we designed a hybrid secure device pairing protocol that efficiently
combines the use of an Out-of-Band channel with an existing fast contextual
encoding scheme. Our protocol exploits a Diffie-Hellman nonce exponentiation
approach, applied in the context of device pairing, that achieves the temporary
secrecy goal desired in the key authentication process. The use of this technique
results in an optimal computation and communication cost in comparison with
the traditional cryptographic commitment schemes. This technique imposes an
optimal computation and communication cost in comparison with the traditional
cryptographic commitment schemes.

COOB provides security against a sophisticated contextual attacker that
completely controls the ambient environment. This adversary model is not sup-
ported by the existing context-based device pairing protocols. In addition, we
formally validated our design in the symbolic model using the TAMARIN prover.
Furthermore, our scheme reduces the pairing time up to 39% compared to the
OoB-based schemes by relying on a state-of-the-art fast contextual pairing pro-
tocol. This optimization enhances the usability and the reliability aspects in
comparison with the existing OoB-based schemes.
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Abstract. Implementing a watermarking algorithm with high security
and low computational complexity is a challenge, especially at a limited
distortion level. A novel watermarking scheme is proposed in this paper,
which is based on Tent-Logistic-Cosine Map (TLCM) and Direct Cur-
rent (DC) coefficient modification. Firstly, the watermark is encrypted
by a matrix obtained from TLCM. Then, the cover image is divided into
non-overlapping 4×4 sub-blocks and some blocks are selected randomly.
Thereafter, the DC coefficients of selected blocks are calculated directly
in the spatial domain without performing two-dimensional discrete cosine
transform. Finally, using the proposed watermark embedding procedure,
DC coefficients of selected blocks are updated according to the encrypted
watermark bits. Results show that the proposed watermarking algorithm
has high security and low computational complexity at a limited distor-
tion.

Keywords: Watermark · TLCM · DC coefficient · Spatial domain

1 Introduction

Digital data is continuously transmitted and shared owing to the recent advance-
ments in Internet technologies, which makes the copyright infringement issue
serious. To resolve this problem, digital watermarking schemes [1–6] and image
encryption schemes [7–10] are presented. In this paper, the watermarking scheme
is investigated as it is considered to be an effective copyright protection method
[11]. Watermarking technology is used to embed digital information into digital
content. Then, the copyright can be proved via the extracted digital informa-
tion from the digital content by related computing operations [4]. There are
two methods to insert the watermark: spatial domain insertion and transform
domain insertion [12]. Specifically, the former is that the pixel values of cover
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image are changed directly to embed a watermark, which has lower computa-
tion but the ability of resisting to geometric and image processing attacks is
relatively weaker [13]. The latter is that the transform coefficients of the cover
image are used to embed the watermark. The latter has better robustness but its
computation complexity is higher than the former [14]. Therefore, many water-
marking schemes are based on the transform domain. For example, Discrete
Cosine Transform (DCT) is commonly used in watermarking schemes [15–17].
However, it is a recent research hotspot to design a watermarking algorithm that
can simultaneously satisfy the advantages of two watermark embedding methods
[18]. For example, in [1], a new watermarking method based on Direct Current
(DC) coefficients is designed. Firstly, the luminance Y of 512×512 colour image
is partitioned into non-overlapping 8 × 8 blocks. Then, the DC coefficients of
all blocks calculated in spatial domain are used to embed 64 × 64 binary water-
mark. In [2], the watermarking technology is also based on pixel domain. The
binary watermark with size of 64 × 64 is encrypted by a chaotic sequence which
is generated via iterating generalized Logistic map. Then the grey cover image
is partitioned into non-overlapping 8× 8 blocks and the encrypted watermark is
embedded into the DC coefficients of all blocks.

Security is also the main consideration for designing watermarking schemes
[19,20]. Therefore, one-dimensional (1D) chaotic maps are widely used in digi-
tal watermarking schemes to improve security due to their complex dynamical
behaviour [21,22]. However, some watermarking schemes have been proved that
the embedded watermark can be extracted by an attacker due to the limited key
space of the chaotic system [23]. Specifically, in [21], the watermark is scrambled
by the chaotic sequence of Logistic map. Then, the 2-level wavelet transform is
performed on the cover image and the scrambled watermark is embedded into the
approximation coefficients. However, the security of this algorithm is not high
because the embedded watermark can be extracted by an attacker. In [22], the
embedding positions are determined by combining Logistic map and Arnold cat
map, and the initial conditions of chaotic systems are used as secret keys. But the
embedded watermark can also be removed. Based on aforementioned discussion,
by combining Tent-Logistic-Cosine Map (TLCM) and DC coefficient modifica-
tion, a novel watermarking algorithm with high security and low computational
complexity at a limited distortion level is designed in this paper. The designed
scheme is based on previous works [1,2]. The main contributions of this work are
as follows: (1) The 512 × 512 grey cover image is divided into non-overlapping
4×4 sub-blocks, and some blocks are used for embedding watermark, which can
improve the imperceptibility. (2) The proposed watermark embedding procedure
can further improve the robustness. (3) The binary watermark is encrypted via
the proposed watermark encryption scheme, which can achieve higher security.
(4) The DC coefficients of selected blocks are computed in pixel domain, which
can shorten the execution time. (5) Three state-of-the-art watermark schemes
are chosen for a comparative study, and the proposed technology outperforms
other algorithms in both imperceptibility and robustness.
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The rest of this paper is organized as follows. The basic knowledge of TLCM
and mathematical theoretical analysis about 2D-DCT are provided in Sect. 2.
The proposed watermark scheme is given in Sect. 3. Experimental results and
performance analysis are reported in Sect. 4. Finally, Sect. 5 presents the conclu-
sion.

2 Preliminaries

2.1 Chaotic Systems

TLCM is a 1D chaotic map by combing Tent map, Logistic map and Cosine
map [24]. Moreover, it has been demonstrated that TLCM has more complex
dynamical behaviour than its seed maps. The control parameter u ∈ [0, 1]. TLCM
is defined by

xn+1 =
{

cos (π (2uxn + 4(1 − u)xn (1 − xn) − 0.5)) , if xn < 0.5,
cos (π (2u (1 − xn) + 4(1 − u)xn (1 − xn) − 0.5)) , if xn ≥ 0.5.

(1)

2.2 Mathematical Theoretical Analysis

(a) DC coefficient is obtained in pixel domain. DCT is used to transform
real numbers into frequency domain. A transformed matrix can be obtained by
performing DCT. In transform matrix, the coefficient in the upper left corner is
named as DC coefficient, whereas remainders are the Alternating Current (AC)
coefficients. Suppose the size of matrix f(ϕ, ω) is s × t, (ϕ = 0, 1, 2, . . . , s-1, ω
= 0, 1, 2, . . . , t−1), the 2D-DCT of f(ϕ, ω) is introduced by

F(u, v) = cucv
s−1∑
ϕ=0

t−1∑
ω=0

f(ϕ, ω) cos
π(2ϕ + 1)u

2s
cos

π(2ω + 1)v
2t

, (2)

where F(u, v) is DCT coefficient of f(ϕ, ω), u (u = 0, 1, 2, . . . , s−1) is horizontal
frequency, v (v = 0, 1, 2, . . . , t − 1) is vertical frequency, cu and cv are two
compensation factors and they are given by

cu =
{√

1/s,u = 0,√
2/s, 1 ≤ u < s − 1,

(3)

and

cv =
{√

1/t, v = 0,√
2/t, 1 ≤ v < t − 1.

(4)

The inverse 2D-DCT is given by

f(ϕ, ω) = cucv
s−1∑
ϕ=0

t−1∑
ω=0

F(u, v) cos
π(2ϕ + 1)u

2s
cos

π(2ω + 1)v
2t

. (5)
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According to Eq. (2), when u = 0 and v = 0, the DC coefficient of 2D-DCT
can be obtained directly by

F(0, 0) =
1√
st

s−1∑
ϕ=0

t−1∑
ω=0

f(ϕ, ω). (6)

Thus, the DC coefficient F(0, 0) can be obtained directly by calculating the
average of all values of the matrix in spatial domain, and the specific result is
detailed in [1].

(b) Modifying DC coefficient in spatial domain. Each value in the
matrix will be updated after executing inverse 2D-DCT if the DC coefficient is
changed. The relation between the changed amount of DC coefficient and each
value update in spatial domain is discussed below. According to Eq. (5), the
inverse 2D-DCT can be written by

f(ϕ, ω) =
1√
st

F(0, 0) + f(ϕ, ω)AC, (7)

where f(ϕ, ω)AC denotes the reconstructed matrix from AC coefficients. If the
DC coefficient is altered and the altered amount is recorded as Δm, the modified
DC coefficient F(0, 0)∼ can be obtained by

F(0, 0)∼ = F(0, 0) + Δm. (8)

Therefore, the recovered matrix f(ϕ, ω)∼ is written by

f(ϕ, ω)∼ =
1√
st

F(0, 0)∼ + f(ϕ, ω)AC. (9)

According to the Eq. (7) and Eq. (8), Eq. (9) is written as

f(ϕ, ω)∼ =
1√
st

F(0, 0)∼ + f(ϕ, ω)AC

=
1√
st

[F(0, 0) + Δm] + f(ϕ, ω)AC

=
Δm√

st
+

1√
st

F(0, 0) + f(ϕ, ω)AC

=
Δm√

st
+ f(ϕ, ω)

. (10)

Therefore, if the changed amount of DC coefficient is Δm, the recovered
matrix can be obtained directly by adding Δm√

st
to each value in the original

matrix without performing inverse 2D-DCT.

3 The Proposed Watermarking System

3.1 Watermark Encryption Scheme

A binary matrix generated by TLCM is used to encrypt the watermark,
which can enhance the watermarking scheme security. The watermark and the



A Robust Watermarking Scheme 443

encrypted watermark are shown in Fig. 1. Suppose the size of binary watermark
W is m × n, watermark encryption process is as follows. Firstly, the TLCM is
iterated for m × n/8 times, and a chaotic sequence x =

(
x1, x2, . . . , xm×n/8

)
is obtained. Then, x is quantified by x′ = floor

(
mod

(
x × 1014

)
, 256

)
, where

floor(·) denotes rounding down function. Furthermore, the decimal sequence x′

is converted into corresponding binary sequence and the length is 1 × m × n,
labelled as x′′ =

(
x′′
1 , x′′

2 , . . . , x′′
m×n

)
. Besides, the x′′ is reshaped into m×n two-

dimensional matrix, and the result is labelled as x′′
R which is used for watermark

encryption. Finally, the encrypted watermark WE is obtained by performing
WE = W ⊕ x′′

R, where ⊕ is XOR operation.

Fig. 1. Watermarks: (a) Original watermark; (b) Encrypted watermark.

3.2 Watermark Embedding

In this section, the watermark embedding process is given. Specifically, the M×N
gray cover image C is divided into non-overlapping 4×4 blocks. Each sub-block is
embedded with one-bit watermark information, so the number of sub-blocks and
the number of watermark bits should meet M/4 × N/4 ≥ m × n. The flow chart
of the watermarking embedding is shown in Fig. 2 and its detailed embedding
process is as follows.

Fig. 2. The flow chart of watermark embedding.

Step 1. The m×n binary watermark W is encrypted by performing the steps of
Sect. 3.1. The encrypted watermark is recorded as WE(s, t), where s = 1,2,. . . ,m,
t = 1,2,. . . ,n and (s, t) denotes the coordinates of encrypted watermark bits.

Step 2. The M × N gray cover image C is divided into non-overlapping 4 × 4
sub-blocks Bi,j, where i = 1, 2, . . . ,M/4, j = 1, 2, . . . ,N/4, (i, j) represents the
coordinates of sub-blocks.
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Step 3. m×n blocks are randomly selected according to a given key and their
positions are recorded.

Step 4. DC coefficient of each selected block is calculated directly in pixel
domain, which is expressed by DC =

[∑4
p=1

∑4
q=1 Bi,j(p, q)

]
/4, where (p,q)

denotes the coordinates of pixel values in the block.
Step 5. According the encrypted watermark WE, if WE(s, t) = 1, DC coeffi-

cient of selected block is modified by
{

DC1 = floor
(
DC
α

)
α + γα,

DC2 =
[

floor
(
DC
α

)
+ 1

]
α + γα,

(11)

where DC1 and DC2 are two different modified DC coefficients, respectively, α
is scaling factor, γ is fine-tuning coefficient and γ ∈ [0, 1]. If WE(s, t) = 0, DC
coefficient of selected block is modified by

{
DC1 =

[
floor

(
DC
α

) − 1
]
α + (1 − γ)α,

DC2 = floor
(
DC
α

)
α + (1 − γ)α.

(12)

Step 6. Select the optimal modified DC coefficient DCopt according to the
rules: if |DC1 − DC| ≤ |DC2 − DC|, DCopt = DC1, or else, DCopt = DC2.

Step 7. The changed amount of selected block is calculated by DCch =
DCopt − DC, where DCch denotes changed amount of DC coefficient.

Step 8. The DCch is distributed averagely to all pixels of the block. Then, the
block with one-bit watermark information is obtained by Bw

i,j = Bi,j + DCch/4,
where Bw

i,j is the watermarked sub-block.
Step 9. Repeating the steps 4–8 until all the selected blocks are embedded

with encrypted watermark bits. Finally, the watermarked image Cw is obtained.

3.3 Watermark Extraction

The positions of sub-blocks containing watermark information and the matrix
x′′
R are required in watermark extraction. The extraction flowchart is shown in

Fig. 3 and its specific steps are as follows. Firstly, the watermarked image Cw

is divided into non-overlapping 4 × 4 sub-blocks, and the sub-blocks containing
watermark bits Bw

i,j are selected according to the recorded positions. Thereafter,

calculate DC coefficient of Bw
i,j by DCw =

[∑4
p=1

∑4
q=1 BW

i,j (p, q)
]
/4, where

DCw denotes the DC coefficient which contains one-bit watermark information.
Furthermore, according to the extracted rule, if mod

(
round

(
DCW

)
, α

)
< α/2,

the extracted watermark bit is 1, otherwise the extracted watermark bit is 0,
where round(·) rounds the element to the nearest integer. Repeating the step 2
and step 3 until all the watermark bits W∗

E are extracted from Cw. Finally, the
embedded watermark W∗ is recovered by performing W∗ = W∗

E ⊕ x′′
R.
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Fig. 3. The flow chart of watermark extraction.

4 Experiment Simulation and Analysis

In this section, the main required performances for a watermarking algorithm,
including imperceptibility, robustness, security and computational complexity
are analysed. The 64 × 64 watermark in Fig. 1(a) and eight 512 × 512 grey
cover images in Fig. 4 are used to test. The performance’s metrics definitions,
simulation results are given in the following subsections.

Fig. 4. Cover images: (a) Lena; (b) Boat; (c) Man; (d) Peppers; (e) F16; (f) Lake; (g)
Elaine; (h) House.

4.1 Metrics

Imperceptibility is measured by Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index Measure (SSIM). SSIM ranges in [0,1]. A higher PSNR
and SSIM indicate that the algorithm has a high imperceptibility. According to
[14], the imperceptibility is acceptable when PSNR ≥ 37dB and SSIM ≥ 0.93.
The PSNR is defined by

PSNR (C,Cw) = 10 lg
C2

max

MES
, (13)

where Cmax is the maximum pixel value in C, MES refers to the mean square
error between C and Cw, which is defined by

MES =
1

M × N

M∑
i=1

N∑
j=1

[C(i, j) − Cw(i, j)]2 , (14)
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where M × N represents the size of C and Cw. Moreover, SSIM is calculated by

SSIM (C,Cw) =
(μCμCW + d1) (σCCW + d2)(

μ2
C + μ2

CW + d1

) (
σ2
C + σ2

CW + d2

) , (15)

where μC and μCw are the averages of C and CW, σ2
C and σ2

Cw are the variances
of C and CW, σCCW is the covariance between C and Cw, d1 and d2 are two
variables.

In addition, Normalized Correlation (NC) and Bit Error Rate (BER) are
utilized to measure the robustness of the extracted watermark. The ranges of
NC and BER are both in [0,1]. When the NC value equals 1 or the BER value
equals 0, the extracted watermark is consistent with the original one. NC is
defined by

NC (W,W∗) =

∑m
i=1

∑n
j=1 W(i, j) · W∗(i, j)√∑m

i=1

∑n
j=1[W(i, j)]2 ·

√∑m
i=1

∑n
j=1 [W∗(i, j)]2

, (16)

where m, n represent the length of W and W∗, respectively. In addition, BER is
defined by

BER (W,W∗) =
∑m

i=1

∑n
i=1 W(i, j) ⊕ W∗(i, j)

m × n
. (17)

4.2 Imperceptibility and Robustness Analysis

The imperceptibility is a vital performance for watermarking scheme. When the
imperceptibility is acceptable, other performances can be discussed further. The
watermark is embedded into eight cover images by using the proposed scheme,
and Fig. 5 gives the experimental results. Results show that the PSNRs of eight
watermarked images are greater than 42 dB and their SSIMs are larger than
0.98. Moreover, both PSNR and SSIM are significantly larger than acceptable
values 37 dB and 0.93, respectively, which indicates that the proposed method
has excellent imperceptibility.

Figure 6 presents the PSNR comparison for three watermarked images
obtained by the proposed algorithm and three state-of-the-art schemes [2–4].
From the Fig. 6, the PSNRs of three watermarked images obtained by this work
are higher than other algorithms. Especially compared with [3], the 512 × 512
grey cover image can only contain a 32 × 32 binary watermark in their work,
while the 512×512 grey cover image can embed with a 64×64 binary watermark
in this work. The watermark capacity of this work is four times than that of [3],
and the PSNR of this work is still higher than [3]. Therefore, it is proved again
that the proposed method has excellent imperceptibility.

The robustness is another important feature of watermarking scheme. There-
fore, the robustness is further investigated when the invisibility is acceptable.
In this work, the robustness is evaluated by using different attacks, including



A Robust Watermarking Scheme 447

Fig. 5. Experimental results.

Fig. 6. PSNR comparison.

Gaussian Noise (GN), Speckle Noise (SN), Salt & Peppers Noise (SPN), Average
Filter (AF), Wiener Filter (WF), Gaussian Low-pass Filter (GLPF), Median Fil-
ter (MF), JPEG compression (JPEG), Rescaling (RE), Cropping (CR), Motion
Blur (MB), Sharpening (SH) and Rotation (RO). Figure 7 shows the water-
marked image “Lena” under aforementioned attacks. Fig. 8 shows the extracted
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watermarks from the watermarked images “Lena” under those attacks by using
the proposed algorithm, and their corresponding NC and BER are listed in
Table 1. The NC values are greater than 0.9 and BERs are less than 11.89%.
Especially for JPEG (QF = 70) and RE (2) attacks, the NCs are equal to 1 and
BERs are equal to 0, which indicate that the extracted watermark is consistent
with the embedded one. Therefore, there is no obvious perceptual distortion
between the extracted watermark and the original one. For other cover images,
similar results are also obtained, and their corresponding NC and BER are shown
in Fig. 9 and Fig. 10, respectively. The NCs shown in Fig. 9 are basically greater
than 0.85 and the BERs shown in Fig. 10 are basically less than 15% for other
cover images. Therefore, the proposed scheme has a superior behaviour against
various attacks.

Fig. 7. Watermarked image “Lena” suffered different attacks, and a–n represent GN
(0.02%), SN (0.1%), SPN (1%), AF (3×3), WF (3×3), GLPF (3×3), MF (3×3), JPEG
(QF = 70), RE (0.5), RE (2), CR (10%), MB (4, 7), SH (0.8), RO (5◦), respectively.

Fig. 8. Extracted watermark from watermarked image “Lena” under different attacks,
and a–n represent GN (0.02%), SN (0.1%), SPN (1%), AF (3× 3), WF (3× 3), GLPF
(3 × 3), MF (3 × 3), JPEG (QF = 70), RE (0.5), RE (2), CR (10%), MB (4, 7), SH
(0.8), RO (5◦), respectively.
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Table 1. NC and BER (%) of watermark extracted from cover image “Lena” under
various attacks.

Attack index Description NC BER

a GN (0.02%) 0.9971 0.29

b SN (0.1%) 0.9840 1.61

c SPN (1%) 0.9079 9.23

d AF (3 × 3) 0.9040 5.59

e WF (3 × 3) 0.9762 2.39

f MF (3 × 3) 0.9799 2.03

g GLPF (3 × 3) 0.9554 4.49

h JPEG (QF = 70) 1 0

i RE (0.5) 0.9823 1.78

j RE (2) 1 0

k CR (10%) 0.9437 5.67

l MB (4, 7) 0.8813 11.89

m SH (0.8) 0.9998 0.02

n RO (5◦) 0.9474 5.27

Fig. 9. NCs of extracted watermarks for different watermarked images.
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Fig. 10. BERs of extracted watermarks for different watermarked images.

Fig. 11. The NCs and BERs of extracted watermark under JPEG and GLPF attacks
with different parameters. (a) NCs under JPEG; (b) BERs under JPEG; (c) NCs under
GLPF; (d) BERs under GLPF.

Besides, the robustness is further evaluated by using JPEG and GLPF
attacks with dynamic parameters, and Fig. 11 shows the NCs and BERs of
extracted watermarks. Figure 11 (a) and (b) represent the JPEG attacks, and
the JPEG’s quality factor is set from 90 to 30 with a step of −10. As the quality
factor decrease, the NCs slowly decrease and the BERs slowly increase. Even the
quality factor reaches 30, the NCs are larger than 0.9 and BERs are less than
10%. Moreover, when the quality factor is larger than 70, the NC of extracted
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watermark is 1 and BER is 0. Figure 11 (c) and (d) represent the results under
the GLPF attack, and the parameter sigma is set from 0.5 to 4.5 with a step
of 0.5 under 3 × 3 filter window size. Results show that the NCs of extracted
watermark are greater than 0.84 and BERs are lower than 16% for eight cover
images. Thus, the proposed algorithm has great ability to defend against JPEG
and GLPF attacks.

What’s more, the robustness of this work is compared with two related works
to prove the great robustness of this scheme. Table 2 and Table 3 present the BER
comparison of this work and two state-of-the-art methods for cover image “Lena”
[2,3]. As shown in Table 2, the BERs of extracted watermark are lower than [2]
under various attacks. Especially for GN (0.02%) and SH, BER is 14.16% under
GN (0.02%) and BER is 32.3% under SH in [2], while BER is 0.29% under GN
(0.02%) and BER is 0.02% under SH in this work. The BER comparison with [3]
is presented in Table 2. The results show that the BERs in this work are also lower
than [3]. Especially for JPEG (QF = 70) and SH, BER is 2.05% under JPEG
(QF = 70) and BER is 0.1% under SH in their work, while BER is 0 under JPEG
(QF = 70) and BER is 0.02% under SH in this work. Therefore, the proposed
algorithm has good performance in both imperceptibility and robustness.

4.3 Security Performance Analysis

Since the embedded watermark is encrypted by the matrix x′′
R, it is necessary

to perform XOR operation between extracted watermark and x′′
R to get the

final correct watermark. In this paper, the binary matrix x′′
R is generated by

iterating the TLCM. Specifically, the initial value x1 and control parameter u
of the TLCM are related to x′′

R. If the x1 and u are wrong, a wrong matrix x′′
R

is obtained. Then, the extracted watermark cannot be recovered correctly by

Table 2. BER (%) of [2] and this work for cover image “Lena”.

Attack [2] This work

GN (0.02%) 14.16 0.29

SPN (1%) 27.19 9.23

MF (3 × 3) 5.53 4.49

GLPF (3 × 3) 8.52 2.03

SH 32.30 0.02

JPEG (QF = 70) 0 0

JPEG (QF = 80) 0 0

RO (10◦) 7.18 7.18

RO (45◦) 19.49 12.65

CR (Centre) 9.91 1.61

CR (Top left corner) 21.09 12.40

CR (Top right corner) 22.31 12.92
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Table 3. BER (%) of [3] and this work for cover image “Lena”.

Attack [3] This work

JPEG (QF = 20) 20.70 9.70

JPEG (QF = 30) 15.82 6.98

JPEG (QF = 50) 7.91 0.98

JPEG (QF = 70) 2.05 0

SPN (1%) 16.50 9.28

SPN (2%) 22.17 15.84

SH 0.10 0.02

RE (2) 0 0

using wrong x′′
R. In other words, the correct watermark cannot be obtained even

the attacker knows the watermark embedding algorithm. Besides, the accuracy
of computer is limited, assuming it is 10−15. Thus, the entire key space is 2104

in this work, which has reached the required key space 2100 [25]. The x1 and u
used in this paper cannot be simultaneously found by force attack. Therefore,
the proposed algorithm has high security.

4.4 Computational Complexity Analysis

This section analysis the computational complexity. Table 4 gives the running
time comparison of two different methods during embedding and extraction pro-
cesses. The results indicate that the proposed scheme is faster than the perform-
ing true 2D-DCT in terms of both watermark embedding and extraction pro-
cesses. Specifically, the average total time of watermark embedding and extrac-
tion of this work is ∼5 times faster than that of conventional DCT.

Table 4. Times comparison of conventional DCT and this work [unit: second].

Image Conventional DCT This work

Embedding Extraction Total Embedding Extraction Total

Lena 0.2538 0.1590 0.4128 0.0325 0.0441 0.0766

Boat 0.2231 0.1803 0.4034 0.0376 0.0402 0.0778

Man 0.2053 0.1514 0.3567 0.0390 0.0448 0.0838

Peppers 0.2246 0.1582 0.3828 0.0331 0.0403 0.0734

F16 0.2096 0.1492 0.3588 0.0316 0.0443 0.0759

Lake 0.2261 0.1483 0.3744 0.0332 0.0394 0.0726

Elaine 0.2252 0.1502 0.3754 0.0359 0.0440 0.0799

House 0.2156 0.1817 0.3973 0.0362 0.0407 0.0769

Average 0.2230 0.1598 0.3827 0.0349 0.0422 0.0771
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5 Conclusion

In this work, a novel robust watermarking scheme with high security and low
computational complexity watermarking scheme is proposed. To achieve high
security, the watermark is encrypted by a binary matrix obtained via TLCM
before it is embedded into the cover image. In the meantime, the cover image is
divided into non-overlapping 4 × 4 sub-blocks and some blocks are selected to
embed with watermark, which can improve the imperceptibility. In watermark
embedding process, the DC coefficient is calculated directly in spatial domain to
shorten the execution time. Experimental results demonstrate that the proposed
watermarking algorithm has high security, low computational complexity, good
imperceptibility and great robustness. Future work will investigate the colour
watermarking scheme.
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Abstract. The rising number of IoT devices enables the provisioning
of novel services in various domains, such as the automotive domain.
This data, however, is often personal or otherwise sensitive. Providers
of IoT-based services are confronted with the problem of collecting the
necessary amount and quality of data, while at the same time protecting
persons’ privacy using privacy enhancing technologies (PETs). Select-
ing appropriate PETs is neither trivial, nor is it uncritical since apply-
ing an unsuitable PET can result in a violation of privacy rights, e.g.
according to the GDPR. In this paper, we propose a process to select
data-dependent PETs—i.e. technologies which manipulate data, e.g. by
distorting values—for IoT-based services. The process takes into account
two perspectives on the selection of PETs which both narrow down the
number of potentially applicable PETs: First, a data-driven perspective
which is based on the data’s properties, e.g. its longevity and sequen-
tiality; and second, a service-driven perspective which takes into account
service requirements, e.g. the precision required to provide a particu-
lar service. We then show how the process can be applied for automotive
services proposing a taxonomy for automotive data and present an exem-
plary application.

In this way, we aim at providing a reproducible method of select-
ing PETs that is more specific than existing approaches, and which can
be applied both as a standalone process and complementary to existing
ones.

Keywords: Privacy enhancing technologies · Automotive data ·
Privacy-Preserving IoT

1 Introduction

The increasing amount of IoT devices is enabling the provisioning of many novel
services, like predictive maintenance and usage-based insurance. These services
collect data from a multitude of IoT devices with the purpose of processing the
data in a remote backend. Commercial solutions for implementing such services

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

N. Park et al. (Eds.): SecureComm 2020, LNICST 336, pp. 455–474, 2020.

https://doi.org/10.1007/978-3-030-63095-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63095-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-63095-9_29


456 I. Kunz et al.

are already available provided, e.g., by Amazon Web Services1 for general IoT
services, and by BMW for the automotive domain2.

Yet, IoT data often contains personal or otherwise sensitive information and
it is in the interest of the user as well as the service provider to preserve users’
privacy when collecting this data. The need for privacy protection results from
legal requirements regarding the collection of personal data, e.g. the General
Data Protection Regulation (GDPR). Two of its central principles are data mini-
mization and purpose limitation, and it makes violations against these principles
punishable by considerable fines. Also, the GDPR demands that personal data is
secured appropriately and that certain rights are provided to the data subjects,
e.g. to access and rectify their personal data. Therefore, minimizing processing
and storage of personal data seems only reasonable when acting as an IoT service
provider who wants to minimize this liability.

A multitude of general and specialized techniques to protect personal
data, usually referred to as Privacy Enhancing Technologies (PETs), has been
researched and developed in the past. Selecting suitable PETs for a given set
of data, however, is not trivial. First, not all PETs are applicable to any type
of data, e.g. to numeric or categorical data. Second, service providers usually
require collected data to satisfy certain properties to conduct meaningful anal-
ysis, for instance, regarding its precision.

Research in the area of privacy requirements engineering focuses on risk-
driven approaches [5,18] where data flows throughout a system are analyzed and
privacy risks are identified which are then mitigated using appropriate PETs.
Yet, there is not a clear mapping of privacy risks to mitigative PETs, so they can
often only suggest large amounts of PETs that are potentially applicable, leaving
the actual selection to the user. For some types of PETs it is still possible to
make a more granular selection taking into account whether they can be applied
in a meaningful manner, i.e. if a PET can practically be applied to the data
type, and if the results are usable considering the service’s purposes.

In this paper, we propose a process to select PETs for IoT-based services
which aims at providing a more granular selection process. It focuses on data-
dependent PETs, i.e. such technologies whose applicability depends on the char-
acteristics of the data that is processed, and takes also into account service-
specific requirements. As such, it complements existing risk-driven approaches.
Its contribution is twofold:

– A general process for the selection of data-dependent PETs including data-
driven and service-driven elicitation criteria, and

– a proposal for its application in the automotive domain including a taxonomy
of automotive data that is mapped to applicable PETs.

The remainder of this paper is structured as follows: The following section
describes the classes of PETs that we cover with our approach. Next, Sect. 3
describes the selection process including the relevant criteria we identified for a
1 https://aws.amazon.com/iot/.
2 https://aos.bmwgroup.com/.

https://aws.amazon.com/iot/
https://aos.bmwgroup.com/
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data-driven and service-driven elicitation of PETs. Section 4 presents our appli-
cation of the process to the automotive domain proposing a taxonomy for auto-
motive data and presents an example. Section 5 discusses the process based on
several requirements, such as reproducibility. Finally, Sect. 6 describes related
work and Sect. 7 concludes the paper.

2 Background: Data-Dependent PETs

Many IoT-based services face considerable privacy challenges due to several rea-
sons. First, IoT devices often generate large amounts of data that can be personal
or otherwise sensitive, e.g. location data and usage statistics. Second, devices like
the ones used in connected cars and smart homes, are often used throughout sev-
eral years. And third, they are usually owned by the same person or group of
persons over that time period which allows the creation of long-term tracking
profiles. These conditions make it difficult to satisfy privacy goals like anonymity
of users and unlinkability of individual data items.

A multitude of PETs has been proposed in the past to solve these problems.
While different types of PETs exist, in this paper we focus on those whose
applicability directly depends on their input data. This dependency results from
the fact that these PETs manipulate data somehow, for instance by modifying,
replacing or deleting values. Other types of PETs, e.g. based on encryption
techniques or based on usage control, usually can be applied independently from
the kind of data that is processed, and are not considered in this paper.

The following enumeration is extracted from an existing collection of PETs
by Hundepool et al. [15]. They also map these PETs to two kinds of data they
can process: continuous and categorical data. Continuous data is numeric data
on which arithmetic operations can meaningfully be applied, while categorical
data assumes values from a finite set on which arithmetic operations do not
make sense. Note that categorical data can additionally be ordinal meaning that
it can be sorted in a meaningful order. This enumeration and their mapping to
continuous and categorical data forms the basis for our approach.

This way, we do not analyze specific PET-algorithms, but treat a PET as a
function taking either continuous- or categorical-valued inputs and generating
a privacy-enhancing output. Our analysis therefore does not consider any spe-
cific PET algorithm but only classes of PETs. Still, it aims at preserving their
semantics without loss of generality.

We further categorize the PETs into deterministic distortion PETs, i.e. PETs
which manipulate data using deterministic values, and randomized distortion
PETs, i.e. PETs which manipulate data using randomized values.

Deterministic Distortion—Recoding. Recoding techniques aim at reduc-
ing the precision of data. As such, they implement a form of discretization, for
example by summarizing two categorical values or by rounding numeric values.
Hence, they can be applied to both categorical and continuous data [15]. Spe-
cial types of recoding techniques are top and bottom recoding where the top
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and/or bottom values in a set are summarized into one category. These tech-
niques require that the values can be ranked, i.e. they are either continuous, or
they are categorical and ordinal.

Deterministic Distortion—Suppression. This technique means the removal
of a value or a group of values and can be applied to both value types as well. One
way to apply suppression is to use local suppression meaning that one particular
value is suppressed, e.g. with the aim to eliminate an identifying combination of
values (see Fischetti and Gonzáles [9]). Another possibility is to suppress certain
attributes, e.g. when they contain identifying information, or certain records,
e.g. when they represent easily identifiable outliers.

Deterministic Distortion—(Micro-)Aggregation. Aggregation techniques
take a set of values and replace them by a statistic. Various micro-aggregation
techniques are presented in [15]. When applying micro-aggregation to continuous
data, records are clustered, i.e. a number of groups with a certain minimum
size are built, and the values are replaced by their respective group average.
Concerning categorical data, micro-aggregation can only be applied for ordinal
values since only in this case can the data be assigned to groups of similar values
(see Torra [27]).

Randomized Distortion—Swapping. With this technique, values of a con-
tinuous or categorical attribute are swapped between records. Hence, they are
preserved within the data set and allow certain statistical analyses but cannot
be traced back to a certain data subject. This is useful when sensitive attributes
exist in the data set whose distribution is interesting but their connection to
other entries of its original record is not necessary (see Moore [19]).

Randomized Distortion—Noise Masking. Noise masking aims at distort-
ing data by adding a randomized value to, or multiplying it with, the origi-
nal value. Different techniques exist that preserve certain statistical properties
within a data set when applying noise masking, see for example Domingo-Ferrer
et al. [7]. Practically, it can only be applied to continuous data since it requires
the possibility to perform arithmetic operations.

Randomized Distortion—Post-randomization Method (PRAM). This
method, proposed by Gouweleeuw et al. [4], can only be applied to categorical
values. It changes each value independently with a certain probability. This way,
its application results in a diminished certainty of the linkability between two
attributes. Still, meaningful statistics can be computed afterwards—depending
on the probability that has been applied in the method and the size of the data
set.
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Randomized Distortion—Synthetic Data. Three approaches can be distin-
guished to introduce synthetic data into a data set which are generally applicable
to both continuous and categorical data. In the first approach, the data set is
fully replaced by synthetic data, yet preserving certain properties, like the dis-
tribution of an attribute (see e.g. Rubin [24]). The second approach partially
replaces original data with synthetic data, for example by only replacing sensi-
tive values (see Little [17]). The third approach, combines original and synthetic
data into a hybrid data set containing either more original data or more synthetic
data (first proposed by Dandekar et al. [3]).

In the next section, a process for the selection of these PETs is proposed,
considering how data types and service requirements influence their applicability.

3 A Process for the Selection of PETs in IoT-Based
Services

The goal of the process proposed in this Section is to present a systematic way
of eliciting a usable set of PETs for a given set of data. More concretely, we aim
at fulfilling three requirements. First, the set of PETs it suggests for a given
set of data and service requirements should be reproducible. Second, it should
be applicable as a standalone process as well as be applicable to the results of
other approaches, such as LINDDUN (see Sect. 6). Third, it should facilitate
data minimization: it should guide users of the process towards selecting a set
of PETs such that their application results in the minimal quantity and quality
of data that is still sufficient to fulfill the service’s purposes. We discuss the
fulfillment of these requirements in Sect. 5.

The typical environment we assume for this process to be applied in is an IoT-
based service, i.e. a service which continuously collects a pre-defined set of data
from several data-generating devices. Such a service may, e.g., offer a predictive
maintenance service using data generated by industrial IoT devices. Note that
some of the criteria we propose here deterministically suggest or oppose a certain
PET, while others only strengthen or weaken the applicability of certain PETs
to some extent.

Figure 1 shows our selection process consisting of the following four steps:

1. Service description: The service is described including its actors and data
required to provide the service.

2. Data-driven PET-elicitation: The applicability of the PETs presented in the
last Section is assessed based on several data-dependent criteria. This way,
practically applicable PETs are elicited. In Sect. 4.1, we will show how this
can be done proposing a taxonomy for automotive data.

3. Service-driven PET-elicitation: The set of PET candidates is further refined
based on the requirements of the automotive service towards the data. This
step considers the required data precision as well as other requirements result-
ing in a usable set of PETs.

4. PET-selection: From the resulting set of usable PETs, a combination is
selected.
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Fig. 1. The PET-selection process. It takes two inputs—a list of PET candidates and
a list of service requirements—and provides a set of usable PETs.

3.1 Step 1: Service Description

In this first step, the service is described, including its participants, the required
data and its processing purposes. The participants include the service provider,
the users and possibly subcontractors. This step captures whose personal data
is processed and by whom. The data that is required to run the service rep-
resents an input to the data-driven elicitation (Step 2). The description of its
purposes is needed as an input to the service-driven elicitation (Step 3) since they
reveal the requirements that the service has towards the data. Finally, out of the
required data, it is identified which data needs to be protected, e.g. anonymized
or pseudonymized.

To decide this, it is helpful to distinguish between the categories identifying
and quasi-identifying information as well as confidential and non-confidential
information, as proposed by Hundepool et al. Note that these categories are not
necessarily disjoint.

– Identifiers: This category includes directly identifying information like full
name, exact address etc.

– Quasi-identifiers: quasi-identifiers are sets of variables that can identify
a person if combined, possibly with external information (see Dalenius [2]
and Samarati [25]). The problem that quasi-identifiers pose is that every
variable is potentially part of a quasi-identifier and consequently they cannot
be excluded from any dataset.

– Confidential variables: This is sensitive, but usually not identifying, infor-
mation for instance someone’s religion or health conditions.

– Non-confidential variables: This kind of information contains non-sensi
tive information, for example the country of residence.

It is always use case-dependent whether certain data needs to be protected
to preserve users’ privacy. Still, the categorization above suggests that identifiers
should be removed and confidential, i.e. sensitive, information should be unlink-
able to a person. A more complex and use case-dependent task is to specify the
quasi-identifiers and to decide which of their variables should also be removed
or distorted.
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3.2 Step 2: Data-Driven Elicitation

Step 2 of the process elicits PETs based on the data characteristics and proposes
several criteria to that end. Every criterion either specifies that a certain class of
PETs is applicable, has limited applicability to some extent, or is not applicable.
Their relevance is evaluated for all data that was defined in step 1. This way, the
list of possibly applicably PETs is narrowed down in a bottom-up elicitation. We
also give some examples from the automotive domain to illustrate the criteria.

Continuous and Categorical Data. One simple criterion in the elicitation of
data-dependent PETs is the given data’s value type. In Sect. 2, we have described
that PRAM only accepts categorical, and noise masking only accepts continuous
data. Other PETs, in contrast, can be applied to both (i.e. recoding, suppression,
aggregation, swapping, synthetic data).

Set Size. Set size refers to the number of values the data can assume. With a
decreasing set size, the applicability of PETs in general decreases as well. The
reason is that a small set size does not leave much possibility for distorting
a value. For example, noise masking can only be applied using a small ran-
domized value in the case of a small set size. So, either only a small distortion is
applied—leaving a greater possibility to infer sensitive information—or a greater
distortion is applied—resulting in a strongly decreased information content. For
instance, appropriately distorting data that expresses a vehicle’s engaged gear is
more difficult than distorting data expressing the vehicle’s horsepower. A further
example is data that only expresses a binary value, e.g. a crash sensor which only
measures if a crash has occurred or not.

Ordinal and Nominal Data. As seen in Sect. 2, among categorical data, ordi-
nal and nominal data can be distinguished. Nominal categorical values cannot
be compared to each other apart from equality. Ordinal categorical values can
be ranked such that a minimum and maximum can be found and different values
can be compared. Consider, for instance, a car which generates data about its
driving mode, e.g. eco and sport, and about the seat positions. While the driving
modes can only be compared for equality, different seat positions can be ranked
and their differences can be quantified.

If the data is categorical, but not ordinal, aggregation PETs cannot be
applied [15].

Data Longevity. This criterion expresses how often a specific data value
changes. The longer a value lives, the more limited is the applicability of ran-
domized distortion PETs since the resulting data may allow to infer properties
of the raw data in the long-term. Applying, for instance, noise masking to a
sensitive attribute with a constant distribution, may allow to infer the raw value
in the long term. Also the appropriate parametrization of randomized distortion
PETs becomes more difficult for long-lived data.
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Value Sequences. Some kinds of data can only assume values in a specific
sequence, like the state of a car’s assistance system. In this case, the applicability
of randomized distortion PETs, such as swapping, is limited since the resulting
values can exhibit a non-valid sequence. This limitation also concerns suppression
since suppressed values may be reconstructed using the expected value sequence.

Metadata and Identifiers. Data may transport identifiers and other metadata
that is required for a correct transmission and linkability of data items. This data
therefore does not transmit information that is directly required for the service’s
purposes.

When anonymizing identifiers, randomized distortion PETs are technically
applicable, but not in a meaningful way. A MAC address, for example, contains
an identifier for the device’s manufacturer. Applying a randomized distortion
PET like noise masking to this address would result in an anonymization of the
manufacturer but would also result in falsely identifying a different manufacturer.
The identity information, however, is the only information contained in this data
and would effectively be erased by a randomized distortion. Other techniques,
like recoding, can still be applied in a meaningful way, e.g. by masking a number
of digits of an identifier.

In Sect. 4.1 we show how a taxonomy of the data can be built based on these
criteria. This way, a direct mapping of data categories to applicable PETs can
be established.

3.3 Step 3: Service-Driven Elicitation

The data-driven elicitation in step 2 results in a set of meaningfully applicable
PETs. Yet, this set does not allow any statement about the usefulness of the can-
didate PETs considering the purposes of the service. For instance, an applicable
PET may be suppression which, however, may not only suppress sensitive data,
but also important information for the service’s processing purposes. Therefore,
also a service-driven elicitation—based on the service’s requirements towards
the data utility—can be conducted to further specify which PETs are useful.
This step can be seen as a top-down mapping since it is based on the service’s
requirements.

Three criteria for the service-driven elicitation are examined in the following.

Value Precision. One service-dependent criterion is the required precision of
collected values since it determines the scope in which PETs may be used. Value
precision can be changed, for example, by rounding values to a certain decimal
place or by masking the last digits of an identifier. The precision of categorical
data can only be changed by generalizing the values, i.e. by finding new, more
general categories that comprise two or more original ones. Also, PETs that
distort values using random values, like noise masking and PRAM, reduce the
values’ precision. In contrast, applying synthetic data, suppression or aggregation
does not preserve the original values at all.
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In case a service requires high precision of collected data, this criterion there-
fore limits the applicability of all PETs seen in Sect. 2 except swapping since
swapping preserves all exact values and only swaps them between records. In
contrast, a scenario in which a service does not require exact values but rather
requires statistics about the data, endorses the application of randomized dis-
tortion PETs. Synthetic data, for instance, can be designed to manipulate data
while preserving certain statistical properties.

Data Freshness. Data freshness expresses how long ago data has been gen-
erated. High requirements towards data freshness, e.g. requiring near real-time
data, can limit the applicability of aggregation PETs since their application
relies on collecting data from one or multiple data sources introducing a certain
latency into the processing.

Attribute Dependency. A further criterion that influences the usefulness of
PETs concerns the dependency between attributes. If a service provider needs
to collect a certain combination of attributes, it may not be possible to obtain
meaningful results when processing them independently from each other using
different PETs. Consider, for example, a connected car generating distance and
speed data. If the service’s purpose is to infer a correlation between the two
kinds of data, the data’s usefulness may be reduced if the distance data would
be perturbed using noise masking but the speed data would be recoded using
generalization.

Such a set of data can also originate from multiple vehicles. Consider, for
example, a fleet of vehicles whose average fuel consumption shall be determined.
In this case, too, the statistic cannot be reliably computed anymore if the vehi-
cles’ consumption values have been processed using different PETs. In some case-
specific, this problem can be avoided altogether if data is collected on a higher
level of abstraction, i.e. the inference computations are done locally, inside the
vehicle.

A special case of attribute dependency concerns the identifiability of users,
i.e. the requirement to associate certain data items with a particular person or a
group. If only the data values are needed, e.g. for statistical analysis, identifica-
tion of a user is not necessary which suggests the suppression or pseudonymiza-
tion of the identifier. Hence, if data needs to be traceable to a certain individ-
ual, the applicability of suppression and pseudonymization is limited. It may,
however, be the case that identifying attributes need to be collected by a ser-
vice together with other attributes. If there is no dependency between the two,
swapping can be a useful PET since it can be used to break the link between
identifying values and other, otherwise sensitive, values and still preserve them
within the data set.

3.4 Step 4: PET-Selection

After the two elicitation steps, a set of usable classes of PETs results from which
appropriate ones can be selected. This last selection step poses the question of
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how to select PETs from a set of usable ones. In the following, we briefly describe
criteria that may be relevant for this question. As it is highly application- and
use case-specific, however, we consider a further investigation out of scope for
this paper.

To select a final set of PETs, a service provider may consider the implemen-
tation cost and complexity of the PETs. If, for instance, suppression results as
an option, it may be considered first, since it is relatively easy to implement and
reliably protects the respective data. Also, the service provider may want the
collected data to satisfy certain privacy metrics, like k-anonymity, that result
from legal requirements or internal compliance requirements. These metrics may
only be satisfiable by certain PETs.

Furthermore, it is possible that step 3 results in an empty set of useful PETs,
i.e. there is no possibility to anonymize the given set of data such that it still
meets the service’s requirements. In this case, the consequence may be that
the service provider needs to obtain the users’ consent to the collection and
processing of the raw personal data. Otherwise the service may simply not be
implementable.

4 Selecting PETs for Automotive Services

In this section, we show how the process proposed above can be applied in
the context of IoT-based automotive services. As seen in Sect. 3.2, the mean-
ingful applicability of PETs depends on the data’s characteristics, such as set
size, longevity, and value sequences. In what follows, we propose a taxonomy
for automotive data that is created based on the criteria we proposed, and we
map the resulting categories to applicable PETs. This way, we aim at provid-
ing a domain-specific data-driven elicitation that can generally be applied to
IoT-based services in the automotive domain. Finally, we show an exemplary
application of the process which uses this taxonomy for the data-driven elicita-
tion step.

4.1 A Taxonomy for Automotive Data

In the following, we present our taxonomy for automotive data and discuss to
what extent the PETs described above are applicable for their processing. It
comprises the categories of Communication Metadata, Vehicle Attributes, Stream
Data, State Variables, Event Data and Complex Data. The mapping is summa-
rized in Table 1 (at the end of this Subsection).

Communication Metadata. Communication metadata includes data that is
needed for the transmission of messages, for instance: SIM card ID, IP address,
MAC address, Bluetooth address and Vehicle Identification Number (VIN).
While this data is numeric, it is actually categorical data since these identifiers
assume values from a finite set and follow a fixed format that usually does not
allow to perform arithmetic operations on them. This consideration influences
the applicability of PETs as explained in Sect. 3.3.
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Vehicle Attributes. Vehicle attributes include rather long-lived data that
describes the vehicle, for example: Transmission information (e.g. number of
gears), fuel type (e.g. gasoline, diesel, electric, hybrid), engine information (e.g.
number of cylinders, battery type, construction type), vehicle dimensions (e.g.
width, length, height), tire and wheel dimensions (e.g. diameter and width) and
number of doors and seats.

Vehicle attributes are similar to communication metadata since they also
assume values from a finite set and meaningful arithmetic operations cannot be
performed on them, i.e. they pertain to the categorical value type. Yet, they also
differ from communication data. First, they are often not numeric, and second,
the application of randomized distortion PETs can yield meaningful results. In
comparison to a MAC address, for example, the number of seats in a vehicle can
be perturbed using a PET like PRAM. Still, the applicability of these PETs is
limited due to the data’s longevity and limited set size.

Vehicle attributes can, for instance, be used to fingerprint a vehicle for track-
ing purposes since they expose long-lived information.

Stream Data. This category contains data that is generated continuously by
sensors, for example: Location, temperature (e.g. cabin, outside, motor), pressure
(e.g. tire pressure), speed, distance (e.g. LiDAR, RADAR, ultrasound), battery
status (e.g. charging cycles), steering angle and yaw rate.

This data is continuous, therefore all PETs except PRAM can be used to
process it. A special kind of stream data is location data. It has a high privacy-
relevance since it often reveals identifying and sensitive information about users.
A number of specialized PETs exist for anonymizing location data, which can
also be classified according to the PET classes included in our approach. For
example, existing works have proposed recoding techniques [8,12,13], synthetic
data [16] and aggregation PETs [6] for location data.

As an example, consider a predictive maintenance service which analyzes
stream data to recognize anomalies in the generated data. It can use this data
to predict when certain sensors or parts need to be replaced or maintained, for
instance suggesting an oil or tire change.

State Variables. State variables express the state of a system, for example
of an assistance system or the state of cabin settings. Examples are: Assistance
systems (e.g. system state of cruise control, adaptive cruise control, lane-keeping
assistance), cabin settings (e.g. positions of seats, mirrors, steering wheel), info-
tainment usage data (e.g. used media types and infotainment services), driving
mode (e.g. eco, sport) and light settings (e.g. daytime running light, long distance
light).

State variable data is categorical. Similar to communication metadata and
vehicle attributes, it can be processed using recoding while the application of
other techniques is either limited or not given at all. It still differs from other
data categories since it is rather short-lived. Consider, for example, the light
setting: It is often changed by a rotary switch where the setting can only be
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changed to one of its neighboring settings. This way, a sequence for the light
setting is implicitly established.

For example, this data may be used in a car-sharing service which automat-
ically prepares the cabin settings, for instance seat and mirror positions, for the
driver’s preferences when she rents a vehicle.

Event Data. This data is sensor data that is generated irregularly indicating
that a certain event has taken place, for example: Automatic safety belt tighten-
ing, diagnostic trouble codes, ESP intervention, lane departure warning, fatigue
warning and emergency assist.

Event data can be treated as categorical data. Yet, it can only assume one
value rendering most PETs non-applicable. Event data can neither be recoded—
e.g. no generalized categories can be found—nor can the data be perturbed
by noise masking, swapping or PRAM since the one possible value cannot be
changed or replaced. Neither can aggregation be applied since no statistics of
the data’s values can be built. The only class of PETs which can be applicable
without limits is synthetic data. Using synthetic data, events can be gener-
ated which preserve the original events’ statistical properties, e.g. average time
elapsed between occurrences, while at the same time masking their real occur-
rences.

For instance, crash detection data can be used by an application that triggers
an automatic emergency call. The automatic safety belt tightenings can further
be used to infer information about the driving behavior of the driver.

Complex Data. This category summarizes data which cannot be assigned to
any of the above categories and is thus not included in Table 1. Consider, for
example, combined data structures collected from various sources, e.g. repre-
sented as n-tuples, potentially requiring the application of a different PET to
each n-th element. Further examples of complex data are image and sound data
used for voice assistants and for inward-facing and outward-facing cameras. Their
privacy-enhancement cannot be ensured by reducing precision since this does not
necessarily ensure that persons recorded by a camera or a microphone are prop-
erly de-identified. Hence, specialized PETs are required for their anonymization,
such as proposed in [1] and [23]. Other examples for complex data are: Installed
applications, account information (e.g. user names, passwords, payment infor-
mation), voice and video recordings, contact list, call history and data induced
by the driver (e.g. query data for location-based services).

Table 1 summarizes the results of the mapping showing which classes of PETs
(recoding, suppression, aggregation, swapping, noise masking, PRAM and syn-
thetic data) are applicable to which automotive data categories (communication
metadata, vehicle attributes, stream data, state variables, event data, location
data). X represents applicable, (X) represents limited applicability and a gray box
represents not applicable. Note that the general mapping between PET classes
and value types is taken from [15] (as described in Sect. 2), and the granular
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mapping of automotive data categories to PET classes is our contribution (as
described in Sect. 4.1).

Table 1. Applicability of PET classes to automotive data categories. The mapping of
the general applicability of value types (categorical, continuous) to PET classes is taken
from Hundepool et al. [15]; our contribution extends this mapping to the automotive
data categories and proposes a granular discussion of their grade of applicability.

Automotive Value PET classes

data type Det. Dist. Rand. Dist.

Recod. Suppr. Aggr. Swapping Noise M. PRAM Synthet.

Metadata Cat X

Vehicle Attr. Cat X (X) (X) (X) (X) (X) (X)

Stream data Cont X X X X X X

State vars Cat X (X) (X) (X)

Event data Cat X

Location Cont X (X) X (X) (X) (X)

4.2 Example Process Application

In the following, we describe a fictitious example service to show how the process
proposed above can be applied in a real-world scenario.

In our example, we consider an insurance company as the service provider
who wants to collect data about the driving behavior of customers to offer a
risk-based payment model. To calculate the risk-based price for the user, the
service provider wants to collect a set of data from the customers’ vehicles.

1) Service Description. In this first step, the required data as well as the
actors in the service are described. The actors in this example include the insur-
ance company as the service provider as well as the service users who are assumed
to be the owners of the vehicles from which data is collected. To determine the
driving behavior of the driver, the service provider wants to collect data about
the vehicle’s speed, the operating times (e.g. driving times in the morning or the
evening) as well as data about the interventions of the Electronic Stability Con-
trol (ESC) assistance system. Also, the insurance company wants to know the
vehicle’s horsepower (HP) as vehicles with a higher number of HP are associated
with a higher risk of causing accidents.

While this data is not directly identifying, it can be classified as sensitive as
it reveals information about the concerned person’s driving behavior.

2) Data-Driven Elicitation. The data-driven elicitation represents the sec-
ond step of our selection process, identifying applicable PETs for the required
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data. First, speed data can be categorized as stream data since it is generated
continuously by the respective sensors. Hence, all considered classes of PETs
except PRAM are applicable. The vehicle’s operating times can be seen as a
status variable that assumes values from the sequence of possible time values. It
can therefore best be processed using recoding techniques. Third, the ESC inter-
ventions represent event data since they represent irregularly generated events.
They can be processed using the PETs synthetic data or, applied to its timely
occurrences, aggregation. Fourth, the vehicle’s HP pertains to the category of
vehicle attributes. Due to its longevity, only recoding PETs are applicable here.

3) Service-Driven Elicitation. In the third process step, the service require-
ments towards the data are considered to further specify the set of applica-
ble PETs. The first criterion concerns the value precision the service provider
requires to be able to provision the service. Regarding the speed data, the service
provider does not need to know exact speed values but rather speed intervals
in which the vehicle is operated. We assume that the required precision for the
speed data equals to intervals of 20 km/h. Similarly, the HP is only needed in
intervals of 20 HP to evaluate the risk that the car model induces. The operat-
ing times of the vehicle are required only to infer the time of day, i.e. day- or
night-time. Lastly, the ESC interventions are required as the exact number of
occurrences in the preceding month.

Data freshness is the second criterion of the service-driven elicitation consid-
ering how fast the service provider needs the data after it has been generated. In
our example, the service provider does not have any freshness requirements since
the risk assessment can also be conducted on old data. Also, the third criterion,
value dependency, does not further narrow down the set of applicable PETs.

4) PET-Selection. From the set of meaningfully applicable PETs that result
from the service-driven elicitation, in step 4 it can be selected as follows.

All speed data can be rounded down to the nearest multiple of 20 km/h to
meet the service provider’s minimal requirement towards the precision of the
data, i.e. a recoding technique can be applied. Applying randomized distortion
PETs is possible as well, e.g. by applying additive noise masking with a random-
ized value between −10 and +10.

The only meaningfully applicable class of PETs for the horsepower value
is recoding PETs. Since the required precision equals intervals of 20 km/h, a
rounding PETs with this granularity can be applied.

Concerning the status variable of operating times, the service provider is
especially interested in the information at which times of the day the vehicle
is operated. Therefore, a generalization is suggested to the values day time and
night time. Other PETs are not usable here. For example, applying a randomiza-
tion with PRAM would result in an easily reversible sequence where the variable
can be matched with the actual time of day when the data was received.

The event data showing ESC interventions can be processed using an aggre-
gation of the events, e.g. building a statistic of the average occurrences in a
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certain time frame. Alternatively, synthetic data could be generated to mimic
the real occurrences of the events preserving relevant statistics.

In this Section we have shown a case study of the application of our process
building a taxonomy of automotive data and using it in a concrete example.
While this case study is specific to the automotive domain, we expect our pro-
cess to be equally well applicable to other IoT-related domains. Considering the
proposed taxonomy, it can be transferred, for instance, to smart home appliances
as well as these devices also generate stream data (e.g. a fridge’s temperature),
event data (e.g. a finished washing machine), state variable data (e.g. the lighting
state) and metadata and they may as well possess long-lived attributes.

5 Discussion

In what follows, we discuss to what extent the proposed process can satisfy the
three requirements we defined in Sect. 3, namely its reproducibility, its applica-
bility as a standalone process as well as complementary to other approaches, and
its ability to facilitate data minimization.

5.1 Reproducibility

Since the reproducibility of the process depends on the reproducibility of the
two elicitation steps 2 and 3, we discuss this requirement for these two steps.
Meanwhile, step 1 only provides the service description and the selection in step
4 is not examined in detail in this paper.

Step 2 provides data-driven criteria which indicate to what extent certain
PETs are applicable. On the one hand, these criteria are not completely unam-
biguous since in some cases, they only indicate a “limited” applicability which
does not allow a deterministic decision. On the other hand, we have described the
application-specific criteria which determine the applicability if it is limited, e.g.
regarding the PETs’ parametrization. For example, if the data values at hand fol-
low a specific sequence, swapping can only be applied if the resulting states still
contain sufficient randomness. The results of step 2 are therefore reproducible
to the extent where a limited applicability might be evaluated differently by
different users.

Step 3 includes service-driven criteria, like precision and freshness of the
data. These criteria are more use case-dependent. For instance, a high value
precision limits the applicability of most PETs. It is, however, use case-dependent
how the required value precision influences the usability of a PET. The service-
driven criteria therefore rather provide guidelines for service providers that have
to be evaluated using the specific purpose and data at hand. As such, their
reproducibility depends on how a user of the process evaluates the degree of
precision and freshness the service requires.

In summary, the process steps are reproducible to the point where
application-specific criteria need to be considered. Given the same set of input
data, step 2 results in a reproducible set of applicable and non-applicable PETs,
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while a result of limited applicability may be interpreted differently by differ-
ent users. Step 3 includes two criteria that also may be evaluated differently by
different users since their evaluation depends on the specifics of the service.

To further enhance the reproducibility of the process, it may be beneficial
to make the results of the single process steps more comparable. To that end,
appropriate metrics could be defined for the PETs to make the selection and
parametrization of a certain PET comparable to other use cases. For instance,
identifying a metric that measures the randomness in a state variable sequence
would make the evaluation of the applicability of noise-masking PETs more com-
parable and its application more reproducible given a certain set of requirements.

5.2 Standalone and Complementary Applicability

The proposed process is applicable as a standalone process given a service
description which includes the required data and its purposes. Applying the
process standalone can be especially useful if it is integrated into the require-
ments engineering process during a system design. The process can be applied
early on in the system design to assess whether useful PETs can be found for the
required data and to assess to what extent the data collection can be minimized.
Since its applicability does not require a complete system design or data flow
analysis, it may be applied many times for such an assessment during a system
design.

The process can, however, also be applied complementary to other existing
approaches (see Sect. 6). As such it may be utilized to narrow down a list of
potentially applicable PETs that have been elicited from a risk analysis. In the
following, we first discuss how our process compares to existing approaches and
then explain how a complementary application can be conducted.

One difference between risk-driven approaches and our process is that risk-
based approaches suggest a list of PETs based on privacy threats. As such, they
do not elicit practically applicable PETs—which is ensured in our approach by
the data-driven elicitation—but suggest PETs that generally may apply to the
identified threats. Furthermore, they leave the service-driven elicitation to the
user applying the approach.

The LINDDUN methodology, proposed by Deng et al. [5], defines six steps to
systematically approach the elicitation of privacy requirements. LINDDUN is an
acronym for the considered privacy threats which are linkability, identifiability,
non-repudiation, detectability, disclosure of information, unawareness of users as
well as policy and consent non-compliance. Following this methodology, first a
Data Flow Diagram (DFD) is created and privacy threats are identified. Then,
threats are prioritized, mitigation strategies are established and in the last step
PETs are selected. Note that we do not discuss policy and consent compliance
here since they do not influence the selection of data-dependent PETs.

Consider again the example application described above, where data about
operating times, ESP interventions and the vehicle’s HP is collected. When iden-
tifying threats for these data flows, none of the threats described above can be
excluded. Two trips may, for instance, be linkable if the driver has consistently
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high numbers of ESP interventions due to her driving style. Apart from this, a
vehicle may always be identifiable by the metadata that is included in a mes-
sage. Consequently, a risk-driven approach generates a considerable number of
threats for the data flows and will suggest a large number of potentially applica-
ble PETs. Here, the proposed process can narrow down the list of PETs to the
ones which are practical and usable.

A complementary application can be conducted based on the data flows that
are identified in the risk-based approach. LINDDUN, for example, includes the
creation of a data flow diagram. This diagram can also be used as the service
description which corresponds to the result of step 1 of our process. Furthermore
the process takes two inputs as illustrated in Fig. 1: PET candidates and the
service requirements. As PET candidates, the results from the risk-based analysis
are used. Note, however, that only data-dependent PETs can be taken into
account here. The service requirements are needed as input to step 3. We assume
these to be known since a service description including necessary data flows is
already required for the risk-based analysis.

5.3 Data Minimization

The proposed process goes beyond the decision of collecting certain data items
or not, but aims at selecting data-dependent PETs that can limit the quan-
tity of data—e.g. suggesting suppression—as well as the quality of data—e.g.
suggesting randomized distortion PETs—to what is necessary for the service’s
purposes. It does so by applying data-driven as well as service-driven criteria to
the PET elicitation. The process is, however, limited to the PETs it is scoped to
(see Sect. 2). Also, the appropriate minimization of data collection depends on
the parametrization of the chosen PETs. Still, we would argue that it provides
many important criteria towards data minimization as it is required by various
data protection regulations, such as the GDPR which requires the collection of
personal data to be “limited to what is necessary in relation to the purposes for
which they are processed” (Article 5).

6 Related Work

6.1 Privacy Requirements Engineering

Existing work on privacy requirements engineering focuses on risk-based
approaches. In Sect. 5, we have already discussed LINDDUN.

A further approach by Luna et al. [18] is called Quantitative Threat Model-
ing Methodologies. Here, similar to LINDDUN, first a DFD is created and it is
mapped to privacy and security threats. Next, possible misuse case scenarios are
examined, i.e. use cases from the perspective of an attacker. In a fourth step,
the threats are quantified using attack trees and finally, mitigation strategies are
chosen. The methodologies of Deng et al. and Luna et al. are both based on the
threat modeling approach developed by Microsoft called STRIDE [22].
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Oliver [21] proposes a privacy requirements framework. It describes ontologi-
cal structures for the description of data and system properties, like information
types (e.g. location or identifier) and usage types (e.g. advertising or profiling).
From these, privacy requirements can be generated.

Spiekermann and Cranor [26] identify three types of system activities from
which privacy requirements can be deduced: data transfer, data storage and data
processing. Additionally, they include user expectations and behavior, as well as
the threat model—which can vary between users—in their requirements analysis.
Furthermore, they differentiate between two basic approaches in engineering
privacy requirements, namely privacy by architecture and privacy by policy.

In comparison to these mostly risk-driven approaches, our selection process
is data- and service-driven. As such, it can complement risk-driven approaches
since it does not target specific privacy threats but aims at providing a more
granular selection. Following the classification by Notario et al. [20], our process
is a goal-oriented approach rather than a risk-based one.

6.2 Categorizing Automotive Data

A further contribution of this paper is a taxonomy of automotive data. Existing
proposals focus on building taxonomies according to the functional parts of a
car rather than for the applicability of PETs.

One similar approach to categorizing automotive data was proposed by
Hornung [14] who identifies four categories: local data (e.g. Bluetooth ID,
MAC addresses), environment data (e.g. concerning the infrastructure and the
weather), third-party data (e.g. about installed applications) and personally-
identifiable information (e.g. biometric data and voice recordings). He also
suggests other categories based on the complexity of data which are: vehicle
attributes (e.g. model), communication data (e.g. Car-2-Car communication),
sensor data (e.g. temperature), processed data for the driver (e.g. navigation
data) and infotainment data.

The GENIVI Alliance3 suggests a list of automotive data specifying the value
type and unit in a tree structure4. Version 2.0 of this specification defines as top-
level branches vehicle parts, like drive train and chassis, but also concrete signals
like drive time and ambient air temperature which do not directly pertain to any
of these vehicle parts. Hence, these categories are especially useful in the design
of on-board automotive software systems where it is important to have a well-
arranged structure that provides access to the required data.

Concerning concrete sensor data, Fleming [10,11] lists automotive sensors
and categorizes them based on their functionality or the respective vehicle part
power train, chassis or body.

In comparison to these approaches, our taxonomy proposed in Sect. 4.1 is
based on data-driven criteria for the applicability of PETs.

3 https://www.genivi.org.
4 https://github.com/GENIVI/vehicle signal specification.

https://www.genivi.org
https://github.com/GENIVI/vehicle_signal_specification
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7 Conclusion and Future Work

In this paper, we have proposed a process for the selection of PETs, focusing on
two subproblems of the PET selection problem. First, we have focused on specific
classes of PETs, namely PETs which manipulate data. Second, we have focused
on IoT-based services establishing data-driven and service-driven criteria for the
elicitation of PETs. We have shown that within this scope the applicability of
PETs can be elicited more granularly than in previously proposed approaches.
We have then shown how the process may be applied specifically for the auto-
motive domain proposing a novel taxonomy for automotive data. We have fur-
thermore discussed to what extent the proposed process satisfies reproducibility,
standalone and complementary applicability, as well as data minimization.

Future work includes the development of criteria for the elicitation of other
types of PETs, e.g. PETs based on encryption-techniques or based on usage-
control, and further criteria for the selection of PETs in step 4 of the process.
Also, we will examine the application of our selection process to other domains,
such as smart homes and medical devices. We further plan to extend the pro-
cess integrating the quantification of privacy using metrics like k-anonymity (as
discussed in Sect. 5), and improve its usability by transforming it to an iterative
approach.

Acknowledgment. This work was partly funded by the Bavarian Ministry of Eco-
nomic Affairs and Media, Energy and Technology, within the project Bayern-Cloud.
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Abstract. Secure contact tracing has proven challenging to implement,
because even if a user’s contact data is encrypted, it is still difficult to
hide the user’s metadata, which could be used to determine a user’s
identity, furthermore, many existing contact tracing software implemen-
tations may require a user to send sensitive information such as location
data to be processed by a central authority. Current systems such as DP-
3T [9] and COVIDSafe [10] do not provide anonymity or much privacy
protection. It is also not guaranteed that the data collected will not be
used for marketing, commercial gain, or law enforcement.

Khopesh is a new secure contact tracing system that offers strong
privacy guarantees, hiding both a user’s contacts and location data.
This is made possible through the use of identity-based encryption, mix
networks, and a novel technique called secure-contact contract signing,
which enables groups of users to view each other’s reports.

Keywords: Anonymity · Privacy · Communication

1 Introduction

In the wake of the Covid-19 virus, we find that the world is underprepared to
track the spread of pandemics. Existing methods to track the spread of the virus
heavily rely on the government to deploy large-scale surveillance operations to
track people. These existing methods provide users with almost no privacy and
anonymity whatsoever. However, many of these contact tracing services allow
users to opt-in or opt-out, but if governments expect the number of users using
contract tracing apps to increase, the designers need to design protocols with
stronger privacy guarantees. Users should not have to sacrifice their privacy to
help stop the spread of the Covid-19 virus, and companies should not be able to
take advantage of the current situation to increase their profits.

Many users would like secure contact tracing, but current contact tracing
software does not guarantee privacy. Even if the data is encrypted, adversaries
can still learn a lot about a user based on metadata, which can be observed
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through traffic analysis. Contact tracing software needs to be designed for secu-
rity, adding encryption on top of an insecure protocol does not make it more
secure.

Covid-19 is indeed a pandemic, and current tracing technology, such as
COVIDSafe [10], VirusRadar [1], etc, help monitor the spread of Covid-19 and
provide users with some security. However, these systems still do not provide
users with anonymity.

This paper presents Khopesh, a secure contact tracing system that protects
the identity and contact data of its users. Khopesh efficiently tracks the spread
of infectious diseases like Covid-19 while providing users with anonymity and
privacy. Khopesh can keep its users completely anonymous as long as two users
are active. Furthermore, it is still possible for a user to know whether a friend
or family member has been infected with the virus despite their anonymity.
Khopesh does not collect location data for contact tracing.

Khopesh keeps passive adversaries that monitor network traffic from learning
the identity of its users by exploiting a mixnet. Users will generate a random
permutation of mixer public keys. Next, they will onion-encrypt their report data
with the public keys in the order determined by the permutation and send it
to the mixnet, which will shuffle reports and decrypt layers of encryption before
sending it to a mailbox server where users will download their reports. Khopesh
operates in rounds, and each round users will follow this process.

Khopesh’s drawback is that to protect its users from a passive attacking
adversary that monitors network traffic, it must make some performance sacri-
fices. For example, Khopesh’s users must download and decrypt many reports
before viewing their reports because many users will share a mailbox, and
inside each mailbox are encrypted reports for specific users. This downloading
and decrypting of reports exploits significant amounts of bandwidth and CPU
resources.

Nevertheless, Khopesh is still more secure than traditional contact tracing
systems. Khopesh may use more computing resources than other contract trac-
ing systems, but the extra computing resources are all used to protect a user’s
personal information, providing Khopesh with stronger privacy guarantees.

All in all, we make the following contributions:

– Analyze the design of Khopesh, a secure contact tracing system that keeps
its users anonymous and their contacts protected.

– Introduce a novel technique called secure-contact contract signing, which
allows users to form groups and share their reports securely.

2 Threat Model and Goals

Khopesh aims to keep its users anonymous and their contacts private, while
effectively tracing the spread of infectious diseases. In this section, we describe
Khopesh’s threat model and goals.
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2.1 Threat Model

Khopesh’s design assumes that a passive attacking adversary is monitoring all
of Khopesh’s traffic, controls all but one of Khopesh’s mixer servers (users do
not need to know which one), and controls an arbitrary number of users. We
also assume that the adversary can block, delay, or inject traffic. A user, Alice,
sending reports through Khopesh should have their communication protected
as long as one mixer is uncompromised. Since users will send their reports over
multiple rounds, we assume that the adversary may interfere with the users more
than one round. The adversary’s goals include finding out who is in the network
and who is sending reports to whom.

All cryptographic assumptions are standard (the adversary will be unable
to break cryptographic primitives). We assume secure public key encryption,
hash functions, and key-exchange mechanisms. We assume that Khopesh’s mixer
public keys are known to all users.

Finally, we assume that honest Khopesh servers and users correctly imple-
ment the Khopesh protocol, and no data leakage exists through side channels. In
the case of a server or client being controlled by an adversary, it is assumed that
they are not following the protocol, but honest servers and users are assumed to
be running bug-free implementations of Khopesh.

Khopesh is not a fault-tolerant system. Khopesh can recover from minor
server failures, but it does not protect against server component failures or
denial-of-service attacks. Since we do not cover availability attacks on Khopesh,
we will leave this out of scope.

Cryptographic Primitives. Khopesh relies on the following cryptographic
primitives.

Identity Based Encryption. Khopesh exploits the Boneh-Franklin Identity-Based
encryption scheme [5] to create public and private key pairs for secure-contact
contracts and for users, which consists of the following algorithms:

– (mk, params) ← Setup(k). Generates the system parameter params and the
master-key mk, from a security parameter k.

– (d) ← Extract(params,mk, ID). Generates the user’s private key d given the
params, mk, and the user’s id ID.

– (C) ← Encrypt(params, ID,M). Encrypts a message M from params and ID
to create a ciphertext C

– (M) ← Decrypt(params,C, d). Decrypts C from d, params, and mk to gen-
erate M.

XSalsa20 Authenticated Encryption. Khopesh exploits XSalsa20, which provides
immunity to timing attacks. Each mixnet server and user in Khopesh uses
XSalsa20 for encrypting and decrypting reports.

– (C) ← AEncrypt(n,M, pk). Encrypts a message M from a public key pk and
a cryptographic nonce n to create a ciphertext C

– (M) ← ADecrypt(n, pk,C, sk). Decrypts C from the recipients pk, private key
sk, and n.
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2.2 Goals

Khopesh has three primary goals.

Correctness. Informally, Khopesh is correct if every honest user can successfully
send her report to the central authority, and the central authority can process
that data and inform users about infected users.

Anonymity. Khopesh achieves the goal of keeping the identity of its users anony-
mous if the passive attacking adversary described in Sect. 2.1 is unable to uncover
the identity of Khopesh’s users by no more than random guessing.

Privacy. Khopesh achieves the goal of protecting privacy if users can have their
contacts hidden from the passive attacking adversary described in Sect. 2.1 and
can inform other trusted users of their current status.

Fig. 1. An overview of Zephyr’s protocol.

3 Design

We will now explain the details of Khopesh and how it protects itself from the
passive attacking adversary that is described in Sect. 2.1.

3.1 Private Key Generators

Traditional key distribution servers leak data about who a user is communicating
with based on the public-key the user receives from the server. To avoid key
distribution, Khopesh exploits a private key generator (PKG), which is a trusted
third-party server that is responsible for generating the IDs of users and private
keys for secure-contact contracts using IBE.
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When users start the Khopesh protocol, they will first authenticate them-
selves by sending their phone numbers to the PKG. Once the PKG has received
the user’s phone number, it will send a text message containing a unique code
to the user’s phone. Once the user returns the code to the PKG, the PKG will
send the user her ID, which is a hash of their encrypted phone number using a
cryptographically secure string as the public key.

To create a secure-contact contract, the users will authenticate themselves
again but instead receive a shared ID and private key. The shared ID is computed
by hashing an encrypted concatenation of each group member’s phone number
with a cryptographically secure string as the key. The PKG will store each user’s
ID and shared ID.

3.2 Mixnet

Khopesh exploits a mixnet to prevent reports from being traced back to their
senders.

Fig. 2. Users send their data through a mixnet.

Once a mixer in the mixnet has received reports, it will shuffle them, remove
layers of encryption, and send them to the next mixer. Figure 2 shows a group of
users Bob, Alice, and David each has onion-encrypted their reports with mixer
public keys in different orders after first encrypting their reports with the central
authority’s public key. Each report passes through the mixnet, and the last mixer
to decrypt the final layer of encryption of a report sends the report to the central
authority. As long as one mixer is honest, an adversary will be unable to figure
out the destination of a user’s report because each mixer shuffles their reports
before sending them to the next mixer.

It is necessary to make sure that mixers are shuffling the reports. If the reports
are not shuffled, it will be easier for adversaries to figure out the identities of
Khopesh’s users. To ensure that mixers are not misbehaving, Khopesh exploits
zero-knowledge shuffle proofs for verifying the shuffling process of each mixer.
These proofs prove that each shuffle output is a permutation of each shuffle input
without revealing any knowledge of the permutation.
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3.3 Mailboxes

Mailboxes are publicly known memory locations that reside in the central author-
ity. Mailboxes provide Khopesh’s users with greater identity protection because
each mailbox is determined by the user’s phone number modulus the number of
mailboxes, which means that several users will share the same mailbox. Adver-
saries will be unable to figure out the identity of a user because every other
user will download their reports from the same server, creating no distinction
between other users.

The central authority will send all infection reports to a single mailbox and
shared reports (reports created with secure-contact contracts) will be placed into
the mailboxes of their recipients.

3.4 Users

We will now describe how users operate in Khopesh.

Receiving Contacts. Users advertise themselves as Khopesh users and scan
for each other using Bluetooth Low Energy (BLE). Once a connection has been
formed, users will exchange their contact data with each other using BLE and
store the contact data in a general tree. This data structure will contain all
the people a user was in contact with and any indirect interactions. However,
the phone numbers nor the identity of the people a user interacts with will be
stored. What will be stored in the data structure are the IDs of each person a
user encounters. For example, Fig. 4 shows the user 8DK9S0D0 (Alice) who has
been in contact with multiple users. As you can see, the names/phone numbers
of all of the connected users are not shown. Alice’s indirect connections are the
two leaf nodes that are under the user with the ID D7G9ZZQ2 (Fig. 3).

Fig. 3. Khopesh BLE handshake.

This general tree data structure makes it easy for users to receive reports
about possible infections. If the central authority releases a report that a user
has been infected, other users can check if they have been possibly infected by
searching their trees for the infected user’s ID.
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Fig. 4. Structure of user contacts.

Receiving Infection Reports. When a user gets infected, she will send her
report through the mixnet to the central authority with a flag that shows that
she has the virus. The central authority will send this report to a report mailbox,
which is the mailbox Bob used to download Alice’s infection report in Fig. 1.
Users will download this report mailbox, which will contain the IDs of users that
have the virus. If a user finds one or more of these IDs in their contact data,
there is a chance they could have the virus.

Sending Reports. To protect their contact reports from being traced back to
their identity, infected users are required to send their reports to be processed
through the mixnet before reaching the central authority. At the end of each
round, users will encrypt their report with the central authority’s public key.
Next, they will generate a random permutation of mixer public keys and encrypt
their reports with each public key in the order determined by the generated
random permutation, forming encapsulated layers of encryption. Upon adding a
layer of encryption, a user will add the destination IP address of the mixer that
is to decrypt the encrypted layer.

When reports are sent, any known information about a user’s contacts such
as names and phone numbers will be removed. The central authority will only
be able to view the user’s ID.

Secure-Contact Lists. Secure-contact lists enable groups of users to share
their contact reports with each other securely. By sharing contact reports users
in the group will be able to check the likelihood that group members have been
infected. The creator of the contract will send a request to the PKG. The PKG
will then show the contract to each user after authenticating them by sending a
code to their phone as described in Sect. 3.1. If every user agrees to the contract
then the contract is valid, and users in the group will be able to view each other’s
reports. Now users can use the shared public key to encrypt their reports. Users
will add the mailbox address to their reports and send the to the central authority
just as they would for an infection report. The central authority will place the
reports in the mailboxes. If all users on the contract do not agree to the contract,
it is invalid, and the group will not form (Fig. 5).
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Fig. 5. An overview of secure-contact contracts.

4 Analysis

4.1 Correctness

If the protocol is carried out faithfully, then Khopesh’s mixers will shuffle the
reports, and the last mixer will send the reports to the central authority for pro-
cessing. Infection reports will be placed in the user’s mailboxes. Thus, Khopesh
satisfies the correctness property.

4.2 Sender Anonymity

Sender anonymity relies on the verifiability and zero-knowledge property of the
verifiable shuffle. In the mixnet, every upstream mixer is the prover, and every
downstream mixer is the verifier of the verifiable shuffle. Verifiability ensures
that the protocol is carried out correctly. If it is not, the verifier will halt and
throw an error. Apart from this, every honest mixer’s permutation is unknown
to the adversary. Therefore, the final permutation of the reports will also be
unknown to the adversary, so the adversary will be unable to link the report to
a user.

To protect itself from N-1 attacks, Khopesh’s mixnet implements Mixmin-
ion’s [6] “timed-dynamic-pool” batching strategy; mixers process reports every
t seconds but wait until they have a threshold of reports before beginning pro-
cessing.
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4.3 Receiver Anonymity

The anonymity of mailbox downloads depends on whether or not the adversary
knows which mailbox a user uses. If the adversary does know the mailbox of a
user, receiver anonymity is still achieved to an extent because the user could be
any user that uses that mailbox. However, if the adversary does not know the
mailbox a user uses, then full receiver anonymity is achieved because the user
could be any user in the network.

4.4 Privacy

Secure-Contact Contracts. Khopesh’s secure-contact contracts enable users
to create groups where each member can view the reports of each other group
member. Communication to and from the PKG is encrypted, so an adversary
will be unable to tamper with the secure-contact contract. All users are shown
the list and choose to agree to the contract. If one or more users disagree, the
contract will be invalid, and the group will not form. The privacy of secure-
contact contracts depends on the integrity of each user in the group. If one user
in the group leaks another group member’s report, privacy is lost.

Regular Reporting. Traditional reporting (no secure-contact contracts) does
not leak any information to the adversary. Users send their reports to the mixnet,
and the mixnet sends their reports to the central authority for processing.

Bluetooth Sending. Reports contain no information about any user since
phone numbers are removed from reports before being sent to other users. Only
IDs of users remain and these cannot be linked to any user’s phone number.
Even if the adversary obtains these contact reports they will only be able to find
relationships between anonymous users.

5 Limitations and Vulnerabilities

5.1 Bluetooth

Using Bluetooth to detect other users can lead to an increased number of false
positives because the distance between users is not very accurate. To solve this
problem, Khopesh could use Bluetooth localization techniques to improve loca-
tion accuracy [2,11].

5.2 Verifiable Shuffling

Khopesh implements Bayer and Groth’s [4] verifiable shuffle algorithm, which
takes 2 min to prove and verify 100,000 reports. This is a fast algorithm, but it
has not been optimized for Khopesh; its current implementation does not exploit
parallelism, which is a performance loss for Khopesh. This implementation could
be made faster by including support for multiple cores.
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5.3 Forward Secrecy

Khopesh’s current design does not include forward secrecy. This allows an adver-
sary to collect reports of users from the mailboxes and decrypt them later once
she has obtained a user’s private key. To mitigate this, Khopesh could regener-
ate keys every round. However, this means users would have to reauthenticate
themselves to receive their new private keys from the PKG.

5.4 PKG Attacks

Khopesh’s PKG creates the private keys for secure-contact contracts and users
and also authenticates users, which makes it a potential target. If the PKG
is compromised, an adversary will be able to view all the phone numbers of
users that will authenticate themselves with their phone numbers in the future.
However, the phone numbers of current users will be protected as long as they
do not create a secure-contact contract, which requires reauthentication.

6 Implementation

A prototype of Khopesh is available at https://github.com/MutexUnlocked/
khopesh. The prototype implements every component of Khopesh’s protocol,
including a user prototype for Android smartphones.

7 Evaluation

Our evaluation quantitatively answers the following question:

– Can Khopesh support a large amount of users and reports?

7.1 Experimental Setup

To answer the above question, we ran an experiment on DigitalOcean Droplet
servers (Linux-based virtual machines). All servers used had an Intel Xeon Sky-
lake 2.7 GHz CPU with 4 cores, 8 GB of RAM, and 1 Gbps of network bandwidth.
The servers run Linux version 5.7.7.

We use the following parameters in our experiment. Our mixnet consisted
of 3 mixers, 1 PKG, and a central authority each corresponding to one VM.
All reports are premade with a fixed size of 1192 bytes (including 144 bytes
of encryption overhead). To ensure that clients do not bottleneck, clients are
simulated using 4 additional VMs. Each user sends their reports regularly (no
secure-contact contracts).

7.2 Server Performance

Figure 6 shows that Khopesh scales linearly with the number of users and
reports. The end-to-end latency for Khopesh includes authentication with the
PKG, processing reports with the mixnet, and sending reports to the central
authority.

https://github.com/MutexUnlocked/khopesh
https://github.com/MutexUnlocked/khopesh
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Fig. 6. Performance of Khopesh’s protocol when varying the number of online users.
Every user sends a report every round.

8 Related Work

8.1 Covid-19 Tracing Protocols

BlueTrace [3] is a privacy-preserving contact tracing protocol that is also the
foundation for Covid-19 tracing apps such as COVIDSafe [10]. BlueTrace pro-
tects the contacts of users. However, it gives health authorities the power to
obtain and use personally-identifiable information of infected users. In contrast,
Khopesh’s central authority is unable to view any information associated with
users, which includes phone numbers. The central authority only processes the
hashes of encrypted phone numbers.

DP-3T [9] is a decentralized Covid-19 tracing protocol that protects the con-
tacts of users, thus, providing users with more privacy and security than tradi-
tional centralized Covid-19 tracing systems. However, DP-3T is subject to the
targeted identification attack [8]. In contrast, Khopesh is not vulnerable to any
such attack and keeps its infected users and non-infected users equally anony-
mous.

8.2 Protocols that Provide Anonymity

Khopesh implements a free-route mixnet similar to Mixminion’s [6] mixnet, for
example, both mixnet designs rely on TLS over TCP for communication between
mixers. However, Khopesh’s mixnet does not provide the same flexibility as
Mixminion. For example, replies and message forwarding are not supported. In
Khopesh every report that travels through the mixnet is treated the same.

Alpenhorn [7] is a protocol used for initiating connections between two users
without leaking metadata. Khopesh uses Alpenhorn’s idea of using IBE to cre-
ate private keys for its users without revealing much metadata. However, Alpen-
horn’s PKG implements forward secrecy, making it safer from attackers that
later compromise a user’s private key.
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9 Conclusion

Khopesh is a new secure contact tracing system that provides users with both
anonymity and privacy. This is made possible through the use of identity-based
encryption, mix networks, and a novel technique called secure-contact contract
signing, which enable users to be notified if one or more of their contacts, whom
they trust, have been affected.
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