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Abstract. In recent years, neural networks based algorithms have been widely
applied in computer vision applications. FPGA technology emerges as a promis-
ing choice for hardware acceleration owing to high-performance and flexibility;
energy-efficiency compared to CPU and GPU; fast development round. FPGA
recently has gradually become a viable alternative to the GPU/CPU platform.

This work conducts a study on the practical implementation of neural net-
work accelerators based-on reconfigurable hardware (FPGA). This systematically
analyzes utilization-accuracy-performance trade-offs in the hardware implemen-
tations of neural networks using FPGAs and discusses the feasibility of applying
those designs in reality.

We have developed a highly generic architecture for implementing a single
neural network layer, which eventually permits further construct arbitrary net-
works. As a case study, we implemented a neural network accelerator on FPGA
for MNIST and CIFAR-10 dataset. The major results indicate that the hardware
design outperforms by at least 1500 times when the parallel coefficient p is 1 and
maybe faster up to 20,000 times when that is 16 compared to the implementation
on the software while the accuracy degradations in all cases are negligible, i.e.,
about 0.1% lower. Regarding resource utilization, modern FPGA undoubtedly can
accommodate those designs, e.g., 2-layer design with p equals 4 for MNIST and
CIFAR occupied 26% and 32% of LUT on Kintex-7 XC7K325T respectively.

Keywords: Neural network · FPGA accelerator · Data recognition

1 Introduction

The Development of the Neural Network is the Motivation to Improve Computing
Capability on Different Platforms
In recent years, researches on the neural network have shown a significant advantage
in machine learning over traditional algorithms based on handcrafted models. There
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has been a growing interest in the study of neural networks, inspired by the nervous
system in the human brain. Owing to the high accuracy and good performance, neural
networks have been widely adopted in many applications such as image classification
[1], face recognition [2], smart digital video surveillance [3], and speech recognition [4],
etc. In general, neural network features a high fitting ability to a wide range of pattern
recognition problems, which makes the neural network a promising candidate for many
artificial intelligence applications.

Recent research on the neural network is showing great improvement over traditional
algorithms, various neural network models, like Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), have been proposed. CNN [5] improves the Top-5
image classification accuracy on ImageNet [6] dataset from 73.8% to 84.7% in 2012
and further helps improve object detection [7] with its outstanding ability in feature
extraction. RNN [8] achieves state-of-the-art word error rate on speech recognition.

As neural network models become larger and deeper, numerous operations and data
accesses are demanded in neural network-based implementations while higher accuracy
typically demands more complex models. For example, Krizhevsky et al. [9] achieved
84.7% Top-5 accuracy in Take ImageNet Large-Scale Vision Recognition Challenge
(ILSVRC)with amodel including 5 convolution layers and 3 fully-connected layers, they
get a recognition accuracy [10] of 95.1% surpassing human-level classification (94.9%
[11]) with a 22-layer model and won the ILSVRC-2015 competition for achieving an
accuracy of 96.4% with a model depth of 152 [12]. Such a model can take over 11.3
billion floating-point operations (GFLOPs) for the inference procedure, and even more
for training.

The operations in CNNs are computationally intensive with over billion operations
per input image [13], thus requiring high-performance hardware platforms. The rapidly
changing field of deep learning makes it even more difficult for a generic accelerator
to match for a wide range of neural network algorithms. In this context, there is a
timely need to reform the mapping strategy of neural networks to the hardware platform
and to support modular and scalable hardware customization for specific applications
without losing design flexibility. Choosing an appropriate computing platform for neural
network-based applications is extremely essential.

FPGA, GPU, and ASIC are the widely-applied selections in addition to using the tra-
ditional CPU usage for accelerators available in the market today. For FPGAs, recently
there have been major efforts from technology leaders to better integrate FPGA accel-
erators. There is also a growing number of GPU and ASIC accelerator solutions offered
commercially, such as NVIDIA GPU and IBM PowerEN processor with edge network
accelerators.

Application-SpecificStandardProcessor (ASSP)BasedApproaches forNeuralNet-
work Accelerators. Neural networks are implemented on CPU and GPU platforms,
i.e., currently widely adopted ASSPs; however, they are not efficient either in terms
of implementation speed (CPU) or energy consumption (GPU) [14]. Indeed, a typical
CNN architecture has multiple convolutional layers that extract features from the input
data, followed by classification layers. This essentially requires massive parallel cal-
culations. General-purpose processors (CPUs) rely on a few processing elements and
operate sequentially, hence they are not efficient for CNN implementation and can hardly



Feasibility and Design Trade-Offs of Neural Network Accelerators 107

meet the performance requirement. In contrast to CPU, GPUs can offer Giga to Tetra
FLOPs [15] per second’s computing speed due to their single-instruction-multiple-data
(SIMD) architecture and high clock frequency, therefore they are good choices for high-
performance neural network applications. However, the power consumption of typical
GPUs is exceedingly high - for an NVIDIA Tesla K40 GPU, the thermal design power
(TDP) is 235 W [16], thus GPUs are not suitable for embedded systems such as mobile
devices, robots, etc., which are mostly powered by batteries and low power consumption
becomes essential to them. Besides, both CPU and GPU have the disadvantage of poor
integration capability, neither the CPU nor the GPU is specifically designed for neural
network calculations so they are not optimized for neural networks, resulting in poor
energy efficiency, especially in the real-time applications that require large bandwidth.

Application-Specific IC (ASIC), which is rigorously optimized for neural networks,
could solve both poor performance and high energy consumption of CPU and GPU [17].
This hardware solution undoubtedly is superior to any other platform when performing
calculations on the same neural network.Nonetheless, theASICdesign cycle is relatively
long due to high complexity and very costly for low volume production. More impor-
tant, ASIC is non-hardware-reconfigurable technology, thus, no single ASIC platform
could meet the rapid improvements and the diversity of problems on the neural network
application. Therefore, the implementation of ASIC for neural network accelerators, in
reality, needs to be carefully considered.

Reconfigurable Hardware-Based Approaches for Neural Network Accelerators
As a balancing approach among the mentioned ASSP platforms and ASIC, along with
distinct features, FPGAs present as promising platforms for the hardware acceleration of
CNNs [18]. FPGA-based neural network accelerators have become increasingly popular
thanks to their high reconfigurability, fast turn-around time (compared to ASICs), high-
performance, and better energy efficiency (compared to GPUs) [19].

In a particular study, Marco Bettoni et al. [20] implemented a CNN design on
FPGA and obtained results showing that the proposed implementation is as efficient
as a general-purpose 16-core CPU, and almost 15 times faster than an SoC GPU for
mobile application. Research by Eriko Nurvitadhi et al. [21, 22] implemented on BNN
and RNN networks showed that in comparison to 14-nm ASIC, GPU, and multi-core
CPU, FPGA provides superior performance/watt over CPU and GPU because FPGA’s
on-chip BRAMs, hard DSPs, and reconfigurable fabric allow for efficiently extracting
fine-grained parallelisms. Moreover, newer FPGAs with more DSPs, on-chip BRAMs,
integrated hard accelerators IP cores, and higher frequency have the potential to narrow
the FPGA-ASIC efficiency gap.

Nonetheless, those prior works are targeted at either high accuracy or high perfor-
mance for specific architecture [20–22] and ignore the intrinsical trade-offs between
resource utilization, performance, accuracy, and network architecture. Therefore, the
scalability and the integrability of the neural network design has not fully explored and
studied.

In this work, we developed fundamental and highly generic building blocks that
allow constructing virtually any neural networks. These base components allow us to
systematically study the feasibility of using FPGAs as an accelerator for neural network
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applications. The design trade-offs on aspects including network architecture, resource
utilization, accuracy, and performance for a wide range of devices to understand the real
power and limitation of the FPGAs as the reconfigurable platform for neural network
implementation. These assessments will be the basis for the application of FPGAs as
hardware accelerators for practical neural network applications.

The main contributions of this work are summarized as follows

• Ahigh-performance generic design of neural network accelerator combining software
(for parameters training) with the powerful capability of hardware computation (on
matrix additions and multiplications). In particular, we analyze the design by the-
oretically deriving performance metrics including the memory size and processing
latency of the FPGA-based neural network accelerator. To support the design analy-
sis, a numerical format selection method based on trained parameter values domain
on two considered datasets.

• A methodology is proposed on how to optimize parallelism strategy with different
parallel coefficients for each layer to achieve high throughput.

• An in-depth discussion on the design tradeoffs between resource utilization, model
accuracy, and performance of the image classification models with different param-
eters including numerical formats, parallel coefficients, and network architectures
through the practical accelerators (for the most representative datasets (MNIST and
CIFAR-10).

• On-board demonstrations of FPGA implementation using single or multilayer neu-
ral networks and CNN that achieve mostly the same accuracy as the software
implementation.

The remaining of this paper is organized as follows: Sect. 2 introduces the basic
background of neural networks. Section 3 presents the results of data recognition per-
formed on the software. Section 4 proposes a generic design for the data recognition
problem on the hardware and describes our FPGA-based implementation details upon
this proposed design. Section 5 concludes the paper.

2 Background

2.1 Neural Network

Generally, a fully-connected neural network consists of three consecutive layers: input,
hidden, and output layers as shown in Fig. 1. First, input features (e.g., image data)
are collected and fed into the input layer. Then, input features are fully connected to
hidden layers that learn the underlying patterns of input data. Finally, hidden features
are progressively propagated to the output layer which provides predicted discrete labels
(for classification models) or continuous values (for regression models).

This work considers the case study of image recognition tasks on MNIST [23] and
CIFAR-10 datasets [24]. In the case of the MNIST set, we aim to construct a neural
network-based classifier that can understand the handwritten digits. Specifically, the
classification model should output the most likely digit among 10 possible single digits
with a given input image of 28 × 28 pixels.
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Fig. 1. The basic structure of the neural networks.

Fully-connected neural networks have shown promising performance on image clas-
sification. However, with large and high-resolution image inputs, the fully-connected
neural networks suffer froma complex network architecture,which requires a largemem-
ory size to store training parameters and high-performance computing units. Therefore,
a more effective network architecture should be designed to overcome the drawback
of fully-connected neural networks, and convolutional neural networks (CNN) were
invented for achieving superhuman performance on complex visual tasks.

2.2 Convolutional Neural Network

Emerged from the study of the brain’s visual cortex, CNNs have been widely applied in
image recognition. Typically, CNNs are composed of three types of layers: convolutional
layers, pooling layers, and fully-connected layers. Multiple convolutional and pooling
layers are stacked one after another followed by a series of fully-connected layers. Each
neuron in the convolutional layer corresponds to learn a specific pattern of a limited
area by only connecting to features related to that area. The pooling layer then simply
performsdownsampling on activation units of the previous convolutional layer for further
reducing the number of training parameters. Finally, the fully-connected layers conduct
the same duties found in traditional neural networks and produce class scores from the
extracted features provided by the convolutional and pooling layers.

A CNNmodel consists of two components: the feature extraction part and the classi-
fication part. The convolution layers and pooling layers perform feature extraction. For
example, given an image, the convolution layer detects features such as two eyes, long
ears, four legs, a short tail, and so on. The fully connected layers then act as a classifier
on top of these features and assign a probability for the input image being a dog.

In our study, the popular CIFAR-10 dataset was selected as the case study to evaluate
the implementation of the image classification task on the hardware, using the CNNs.
The 32× 32 pixel RGB images in the CIFAR-10 dataset are sent to the feature extraction
layer to filter out the most basic characteristics of the object.

As shown in Fig. 2, the featured extraction layer consists of 7 component layers and
the output of the feature extraction layer will be transformed into a one-dimensional
vector, which will be the input of the fully connected layer. This input through a multi-
layer perceptual algorithm is used to calculate the probability and draw conclusions: the
input data belongs to which of the 10 labels of the CIFAR-10 dataset.
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Fig. 2. Block diagram of the image recognition model on the CIFAR-10 dataset.

3 Performance Evaluation of Neural Network-Based Classifier
on a Software Tool

Although this work will eventually focus on hardware implementation, implementing
the neural network-based classification model on a software platform is needed for the
parameter learning process and architectural optimization. Parameter training should be
conducted using a software tool since this phase is generally performed only once using
the offline training data, we can perform parameter training on any powerful computing
units. Also, this process runs highly sophisticated learning algorithms and complex
activation functions that are not efficient for implementation on the FPGA. Then, the
inference phase, which requiresmuch less computational resources, can be conducted on
the FPGA board for the real-time data. Therefore, to compare the neural network-based
classifier performance between the software platform and an FPGA board, this section
constructs an optimal neural network-based image classification model and evaluates
the neural network-based classifier performance on a software platform using a variety
of network hyper-parameters.

3.1 Software Platform

There are many software-based approaches for modeling the neural network. Among
those, Python is themost popular andwidely-used programming language for evaluating
neural network-based models. Most data scientists and machine learning developers
(57% [25]) are currently using a variety of Python-based libraries such as TensorFlow,
Keras, Theano, Scikit-learn, PyTorch [26]. In this work, we conduct modeling neural
networks using the programming language Python and TensorFlow library running on
the Ubuntu 16.04 64 bit operating system (Intel Core i5 5200U, RAM 12 GB, SSD
256 GB) as a software platform to conduct model training and evaluation of the entire
image recognition result.

3.2 Analysis of the Recognition Accuracy

Using the above-mentioned software platform, we first conduct the study on the impacts
of design parameters on the accuracy of the model. We consider the following four cases
to calculate the accuracy: 1 layer, 2 layers, 3 layers, and 4 layers. In these cases, the
parameters to be adjusted include the learning rate, epoch, and batch size. The learning
rate shows the degree of adjustment of the weight matrix value W after each learning
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to reduce the value of the loss function. The greater the learning rate, the faster the
loss function decreases. Epoch is the number of times a model is learned in the training
session. Batch size is the amount of data to be included in a training session. The image
recognition results on the two sets ofMNIST andCIFAR-10 databaseswith the presented
software settings are shown in the following figure (Fig. 3).
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Fig. 3. Software-based recognition accuracy for the (a) MNIST dataset and the (b) CIFAR-10
dataset corresponding to different numbers of layers.

Based on the results obtained on the graph, it can be seen that image recognition
accuracy in the MNIST dataset is relatively high (at least 92.1%) compared to object
classification accuracy in the CIFAR-10 dataset (maximum up to 75.4%). The higher
prediction accuracy on the MNIST dataset than CIFAR-10 is expected since CIFAR-10
images are undoubtedly more complex than MNIST ones. Also, the average time to
recognize MNIST images is relatively lower (9.75 ms) compared to CIFAR-10 images
(10.45 ms). This can be explained by the neural network structure for CIFAR-10 image
recognition much larger than that of MNIST, therefore the average inference time for
CIFAR-10 should be longer than that for MNIST pictures.

3.3 Analysis of the Number Format

Most software tools for machine learning techniques by default support floating-point
arithmetic operations and floating-point training parameters, which achieves mostly
absolute calculation accuracy. However, implementing floating-point arithmetic oper-
ations on hardware is inherently complicated and area-inefficient. Therefore, we need to
look for an alternative way to implement a neural network-based classification model on
hardware. First, we analyze the range domain of input data and weight matrix elements
values extracted from the software implementation. Then, an appropriate number for-
mat for parameters and unit values of the neural network is selected. For both MNIST
and CIFAR-10 datasets, as shown in Fig. 4, the weight matrix elements values are
fundamentally concentrated in the range (−0.25 ÷ 0.25).

Based on the statistical analysis, an 8-bit fixed-point for numerical representation,
accuracy can be up to 2−6 (i.e., using 6 bits for representing the fraction) could be enough
for representing the value domain of the parameters we have calculated. Compared to the
floating-point number (single precision), an 8-bit fixed-point number would drastically
reduce the design complexity and resource usage. Nonetheless, to evaluate the proposed
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Fig. 4. Theweightmatrix value domain of the (a)MNISTand the (b)CIFAR-10 image recognition
model.

numerical domain selection and the impacts of the number format on recognition accu-
racy, we still need to conduct the performance assessment of the neural network on the
actual hardware design. This will be presented and discussed in Sect. 5.2.

4 Design of Neural Network Accelerator on FPGA

In this section, we first introduce a standard and fully-parameterized hardware architec-
ture design for a single neural network layer as shown in Fig. 5. Then, this fundamental
design can be used to construct the whole complex neural network with an arbitrary
number of hidden layers. The generic hyperparameters of a single layer are ni and ni+1,
where ni is the number of input units and ni+1 is the number of output units at layer i
(or the number of input units at the layer i + 1), respectively. For each layer, there are
multiple processing units including multiplier-accumulator (MAC), adder, and activa-
tion and memory buffer for input, output, and training parameters. Note that the higher
number of hidden layers results in more resource utilization on the hardware. To reduce
the computational complexity of hardware architecture, the training parameters includ-
ing weights and biases matrices are learned using the neural network software tool and
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Fig. 5. Block diagram of neural network accelerator implemented on reconfigurable hardware.
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are restored in the memory of the hardware. The detailed design of these processing
elements and memory buffer is presented in the following subsections.

4.1 Design of Processing Units

Multiplier-Accumulators (MACs)
Assume that eachMAC unit corresponds to multiplication between two binary numbers:
an input feature and a weight value. During a clock cycle, an input feature and a column
of weight matrix are multiplied in parallel using ni+1 MACs. To complete multiplication
between the input vector and the weight matrix, ni clock cycles corresponding to ni input
features are required.

Taking inputs from the input data buffer and the weight matrix, MACs are the main
processing element used to perform multiplication between input features X of 1 × ni
and theweightedmatrixW of ni × ni+1. TheMACoutput, called vector ck , is calculated
as below.

ck =
ni∑

j=1

xjwjk , 1 ≤ k ≤ ni+1 (1)

Where ck is the kth element of the output vector, xj is the jth element of the input
vector, and wjk is the weight element at column j and row k. Thus, the number of
cumulative adders used is ni+1 and the number of multiplier-accumulators used is ni+1
(Fig. 6).
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t bit

… ...

Fig. 6. Hardware design of the multiplier-accumulator.

Parallel Coefficient
To reduce the number of clock cycles needed for matrix multiplication, it is possible to
read j input units and j columns of the weight matrix at the same time. Then the required
number of clock periods for the matrix multiplication can be reduced by a factor of j;
however, the number of MACs in a clock cycle will increase accordingly by p = ni

/
j

times. Herein, the value of parameter p is called a parallel coefficient. The number of
multipliers, accumulators, and clock cycles are estimated as follows:

NMAC = pni+1; Nadd = pni+1 + 1; Nclocks
i = ni

p
(2)
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where NMAC is the number of multipliers, Nadd is the number of adders, and Nclocks
i is

the number of clocks.

Activation Function
Among themost commonly used activation functions for neural networks, there are some
options, including Sigmod, Tanh, ReLU, or leak ReLU as shown in Fig. 7. From the
hardware design point of view, we essentially selected the Rectified Linear Unit (ReLU)
function because of its simplicity and feasibility for hardware implementation. As we
can see in Fig. 7, the ReLU activation function is a piecewise linear function that outputs
the input directly in case of the positive input value and returns zero otherwise. Using the
ReLU function can accelerate the training process thanks to the fast calculation of the loss
function’s gradient concerning parameters. ReLU is also proven to be good enough for
achieving an adequate level of accuracy for different neural network problems [27–29].

Fig. 7. Common activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU, and (d) LeakyReLU.

4.2 Design of Data Buffer

Input Data Buffer
The input data buffer has memory cells arranged in rows and operates under the FIFO
mechanism. The FIFO width is equal to the number of bits for input representation
multiplied by the parallel coefficient p. This permits p elements that can be read or
written at the same time by issuing a FIFO read and write, respectively. Regardless of
the value of the parallel coefficient, the total memory required for the ith layer with ni
elements, each represented by k bits, is equal to

MemInput
i = kni(bits) (3)

Weight Matrix Memory.
Recall that the weight matrix is optimized during the training process implemented by
the software tool since parameter learning consumes a lot of hardware resources. The
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values of the weight matrix can be represented by the k bits binary number. Similar to the
organization of the input buffer memory, the data width of the weight memory has to be
matched the designed parallel coefficient. The size of the weight matrixW is ni × ni+1.
To represent the address for the ni registers we need to take up to the following hardware
resources:

MemWeight
i = knini+1(bits) (4)

Considering the analysis of number format in Subsect. 3.3, which shows that trained
weight values are real numberswith a limited value range,we design the format ofweight
values as follows. Those values in the actual hardware design if remapped to convenient
fixed-point representation values, in turn, can be treated as the equally scaled-down of
the integer values. This can be done first by multiplied by a scale-up factor m (m is a
non-negative number) and then is rounded to a signed integer number. Therefore, the
actual hardware multiplier eventually is the just an integer multiplier, which is much
simpler than the real-number multiplier as can be shown in Fig. 8.
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conversion
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phase
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matrix 

memory

W11             ...         W1 ni+1

...

Wni 1            ...        Wni ni+1
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Row ni-1
ni+1 x k bit

… …

Row 2
ni+1 x k bit

Row 1
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Fig. 8. Hardware design of the weight matrix.

Bias Vector Memory
The bias matrix extracted from the training phase of the classification model is a vec-
tor with ni+1 elements. Similarly to weight values, each bias-element needs k bits to
represent. The resource occupied by the hardware for the bias vector is estimated as
below:

MemBias
i = kni+1(bits) (5)

Output Data Buffer
The output data buffer with the FIFO mechanism is designed to store the results of the
multiplier-accumulator (vector of ni+1). To overcome the overflow phenomenon when
performing the scalar product between ni-element vectors (each element occupies k
bits), the output result should be represented by

(
log2 ni + 2k

)
(bits). Theoretically, the

number of bits for an output unit is at least 2 times higher than that for an input unit,
which can cause the memory shortage especially in case of a large number of hidden
layers. Therefore, we can reduce the number of bits occupied by each output value by
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m bits. More specifically, before storing in the buffer, the output value is divided by 2m.
Dividing the real-number output value by 2m can be simply implemented in the case
of binary numbers by removing the m lowest bits of the binary data. The output data
buffer consists of ni+1 registers for ni+1 output features and each register is represented
by

(
log2 ni + 2k − m

)
(bits) and requires addb_out = log2 ni(bits) to specify a register

address. Finally, the amount of memory resources on the hardware for the output data
buffer at layer i + 1 equals:

MemOutput
i = ni+1

(
log2 ni + 2k − m

)
(bits) (6)

4.3 Hardware Utilization and Processing Latency

Wehave derived the resource utilization on hardware for the hidden layer i + 1 including
input data buffer, weight matrix, bias vector, output data buffer. If there are L consecutive
hidden layers, the number of matrix multiplication blocks are L + 1. Then, the total
amount of memory occupied is estimated as below:

Memtotal =
L+1∑

i=1

(
MemInput

i + MemWeight
i + MemBias

i

)
+ MemOutput

l+1 (bits) (7)

Given the parallel coefficient p, the total number of MACs is equal to NMAC =∑L+1
i=1 NMAC

i = p
∑L+1

i=1 ni+1 and similarly, the total number of adders is NAdd =∑L+1
i=1 NAdd

i = p
∑L+1

i=1 ni+1.
The processing latency (or the number of clock cycles)Nclocks for the neural network

with parallel coefficient, p is calculated as:

Nclocks =
L+1∑

i=1

Nclocks
i =

L+1∑

i=1

ni
p

(8)

We can infer from hardware consumption and processing delay that the neural
network-based hardware architecture requires hardware resource that is linearly pro-
portional to the parallel coefficient. Meanwhile, the processing delay is linearly reduced
by a factor of p. The selection of parallel coefficients should be considered based on
the FPGA memory, the number of given processing units, and the required delay of
a specific application. The actual performance metrics and resource utilization will be
presented and discussed in the subsequent section.

5 Performance Evaluation of Neural Network Accelerator
on FPGA

5.1 Experimental Setup

In this subsection, we introduce two considered datasets and describe the neural network
architecture for each data. Then, the performance metrics and network parameters are
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also presented. Based on the generic model described in the previous section, we have
implemented the hardware models targeted for MNIST and CIFAR-10 datasets. Those
models are fully described using synthesizable VHDL optimized for FPGA. Those case
studies will be further used for evaluating the performance and other design aspects.

For theMNISTdataset, each input imagewill be converted to a 1× 784binarymatrix.
Input matrix and the network parameters (i.e., weights and biases values) obtained from
the training phase are fed into the Xilinx Vivado Simulator [30] to collect performance
metrics including computational speed and recognition accuracy (Fig. 9).
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Fig. 9. Design model of image recognition on hardware for the (a) MNIST dataset and the (b)
CIFAR-10 dataset.

In cases of the CIFAR-10 dataset, images are larger and more complex than those in
the MNIST database. To temporarily simplify the hardware design, we only implement
fully-connected layers on the hardwarewhile feature extraction layers are pre-processed.
Note that the implementation of those layers follows the classical image classifier and
does not cost much in cases of the small filter kernel [31]. In the first fully-connected
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layer, the number of input units is 1024, the number of output features is 256; in the
second fully-connected layer, the number of output neurons is 10. Therefore, the size of
the weight matrix for the first layer is 1024 × 256, for the second layer is 256 × 10; the
size of the bias vectors for the first layer is 256 × 1, for the second layer is 10 × 1.

To examine the performance of the hardware design of the neural network accelerator,
we have collected the performance of the image classification model on a real FPGA
board as can be seen in Fig. 10.

Fig. 10. Experiments on the FPGA board.

5.2 Experimental Results of Neural Network Accelerator on FPGA

Our entire generic design presented in Sect. 4 has been described by a hardware descrip-
tion language (HDL), where the number format and parallel coefficient are considered
as design parameters and can be set to desired values. The hardware architecture of NN
is evaluated on the Vivado Simulator. The parameters are converted into a fixed-point
number format (with 2, 4, 8, or 16 bits) by an in-house software on C ++. The featured
parameters of the built neural networks are trained and extracted using TensorFlow. The
performance evaluation is conducted on 1,000 samples in the MNIST dataset.

After designing the image recognition model on the hardware, experiments are con-
ducted to evaluate the hardware architecture. First, the extracted image data from the
text files are put into the designed block and processed by the hardware simulator Xilinx
Vivado. The classified label which is the output of the image classification model is then
compared with the true label and the number of correctly recognized images will be
recorded in the counter. When the last image in the test set is classified, the classification
accuracy is obtained.

The Impacts of the Number Formats and Network Architectures
In this subsection, we focus on analyzing the dependence of recognition accuracy on
two main parameters: the number of hidden layers and number format to represent the
values of the weight matrix. The results of MNIST image recognition accuracy with
different parameters are shown in Table 1. It can be seen that the classification accuracy
depends more on the number format than the number of hidden layers.When the number
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of bits used to represent the weight matrix is too small, the recognition accuracy is very
low (e.g., 16% accuracy for 2-bit number format). Meanwhile, the accuracy sharply
improves if the number of bits changes from 2 to 4 or more. However, there is no
significant improvement in cases of using more than 4 bits for each training parameter.
E.g., the accuracy converges to 89% and 96.9% with 1 and 2 hidden layers, respectively.
From Table 1, we observe that the 8-bit format can be used to save hardware resources
while ensuring accurate performance on image classification.

Table 1. Accuracy of MNIST image recognition implemented on the hardware with different
hidden layers and number formats for 1,000 samples.

Number of hidden layers 2-bit 4-bit 8-bit 16-bit

1 16.8% 88.6% 89% 89%

2 16% 96.8% 96.9% 96.9%

Hardware Utilization on Different Chips and with Different Parallel Coefficients
Recall thatwe have derived the hardware resources required forMACs, adders, andmem-
ory in Eq. (2). The number of MACs, the number of adders, and memory size increase
proportionally to the parallel coefficient and the number of hidden layers. Indeed, using
a higher parallel coefficient p results in short prediction time but a significant increase in
the system resources demand. At the same time, multilayer neural networks can produce
higher accuracy while demanding more computing resources. Therefore, it is neces-
sary to study the relationship between these two factors (recognition time and resource
demand) for a better selection of neural network architectures in reality.

To understand the feasibility of FPGA for the neural network application, we first
implemented and compared the designs on some representative FPGA devices from
Xilinx. Then, with the HDL designed and fully logical verified, we have implemented
on the actual FPGAs. The main results are presented in Fig. 11.

In this work, we have chosen some representative and active FPGA families from
Xilin [32], including the low-cost (Artix-7), the best price/performance (Kintex-7), the
performance-optimized (Virtex-7) solutionswith different resource capabilities. In terms
of resources, except for the Artix XC7A100T FPGA, where all DSP is fully utilized, the
remaining FPGA devices are considered large enough for accommodating 2-layer neural
networks in either CIFAR or MNIST. The actual resource utilization of slice registers,
LUT, RAM only accounts for a small proportion of the total availability (e.g., less than
15% LUT for Kintex 7 XC7K325T, or less than 5% LUT for Virtex 7 XC7V980). This is
the strong validation for the feasibility of the implementation of the more sophisticated
recognition and classification engines (e.g., up to 5 hidden layers with more complex
activation functions) on the next generation FPGA. The other high-end devices such as
Ultra-scale [33] and Ultra-scale plus [34] with their extremely large logic and computing
resource are essentially capable not only for neural networks but complete AI system
implementations. In terms of performance, the achievable clock frequencies are techni-
cally dependent mainly on the latency of MAC (i.e., FPGA DSP macro). Therefore, the
reported clock frequencies range from 153 MHz (Artix 7) to ~ 200 MHz (Virtex 7).
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Fig. 11. Hardware utilization and corresponding maximum clock frequency (a) 1-layer MNIST,
(b) 2-layer MNIST, (c) 1-layer CIFAR, and (d) 2-layer CIFAR implementations using an 8-bit
fix-point number format targeted for different Xilinx FPGA devices.

Furthermore, we evaluated the impacts of the parallel coefficient on the resource
utilization and bandwidth of the hardware architecture. Figure 12 presents the resource
utilization for the case of MNIST implementation on the Xilinx Kintex-7 FPGA series
XC7K325T.

Based on the results obtained, we found that the image recognition speed also
increases almost proportionally to the parallel coefficient p. Specifically, when the paral-
lel computing is not applied (i.e., p = 1), the implemented network can process 250,000
images image recognition per second, and when this coefficient increases to 8, the image
recognition speed reaches 1,762,000 images per second for the MNIST dataset. Simi-
larly, for the CIFAR-10 dataset, the recognition speed is 153,000 and 1,084,000 images
per second, respectively. The practical performance hence increases by more than 7X
in either implementation when changing p from 1 to 8. This is explained by a slight
degradation in maximum clock frequencies when the design becomes larger. There is
an inevitable trade-off between increasing image recognition speed and the cost in log-
ical resource, and this is explicitly shown by the dependency of the growth rate of the
resource utilization and the parallelism level.

Performance Comparison Between FPGA-Based Neural Network Accelerator
and Neural Network Using the Software Tool
From the simulation results of the software design and the implementation results of the
design on the hardware, we can see that the achievable accuracy of the image recogni-
tion on the hardware as good as achievable accuracy by software. Meanwhile, hardware
implementation is more beneficial in terms of detection speed than that on software.
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Fig. 12. Resource utilization and recognition speed on Xilinx Kintex-7 FPGA series XC7K325T
of 2-layer neural network for (a) MNIST, (b) CIFAR implementations with different parallel
coefficients and images depicting physical layout on the FPGA chip for (c) MNIST, (d) CIFAR
implementations when parallel coefficient equals 4.

Full comparative figures between image recognition on hardware and software are
given in Tables 2. From this table, we observe that the time to recognize images when
performing on hardware is faster than image recognition on software at least 1500 times
when the parallel coefficient equals 1 (6000 µs vs 4 µs, using one hidden layer for
recognition), and maybe faster up to 20,000 times when the parallel coefficient is 16
(8000 µs vs 0.4 µs with two hidden layers).

Table 2. Comparison of software and hardware performance in MNIST image recognition.

Platform Software Hardware

Number of layers 1 2 1 1 1 1 1 2 2 2 2 2

p(*) N/A N/A 1 2 4 8 16 1 2 4 8 16

T (**)(µs) 6000 8000 4 2 1.1 0.6 0.3 5.3 2.7 1.4 0.8 0.4

(*) Parallel coefficient, (**) Recognition time

6 Conclusion

In this work, we have proposed a generic design for neuromorphic computing upon one
layer, that allows us to construct any other sophisticated neural networks. Along with
the generic design, a systematic study has been conducted on the resource utilization,
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performance, and accuracy of the neural network models and their dependencies on the
design hyper-parameters. From the statistical study,we have practically proven that using
a fixed-point number for hardware implementation could greatly reduce the complexity
and resource for the hardware implementation while still maintaining mostly the same
level of accuracy compared to the software implementation.

As a case study, we implemented the hardware models for MNIST and CIFAR-10
datasets on a reconfigurable hardware platform. Regarding the resource utilization, a
Xilin Virtex 7 device (XC7VX980) can handle the 2-layer CIFAR-10 implementation
with spending less than 5% of LUT and 15% in DSP. Furthermore, at iso-accuracy, the
FPGA-based neural network implementations are notably faster in recognition speed. If
no parallel computing is considered, the proposed hardware accelerator is 1,500 times
quicker than the baseline software implementation and could reach 20,000 with a higher
degree of parallelism. Though our initial design in this work is limited for the neural
networks, the impressive results proved the potential of reconfigurable devices andFPGA
as the flexible and powerful platform for neuromorphic computing and AI applications
in general.
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