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Abstract. Rapid advancement and active research in computer vision
applications and 3D imaging have made a high demand for efficient depth
image estimation techniques. The depth image acquisition, however, is
typically challenged due to poor hardware performance and high com-
putation cost. To tackle such limitations, this paper proposes an effi-
cient approach for depth image reconstruction using low rank (LR) and
total variation (TV) regularizations. The key idea is LR incorporates
non-local depth information and TV takes into account the local spatial
consistency. The proposed model reformulates the task of depth image
estimate as a joint LR-TV regularized minimization problem, in which
LR is used to approximate the low-dimensional structure of the depth
image, and TV is employed to promote the depth sparsity in the gra-
dient domain. Furthermore, this paper introduces an algorithm based
on alternating direction method of multipliers (ADMM) for solving the
minimization problem, whose solution provides an estimate of the depth
map from incomplete pixels. Experimental results are conducted and the
results show that the proposed approach is very effective at estimating
high-quality depth images and is robust to different types of data missing
models.

Keywords: Depth imaging · Depth image reconstruction · Low-rank
matrix factorization · Sparse representation

1 Introduction

Recent development of numerous computer vision (CV) applications and 3D
modeling have increased the research and development of depth sensing tech-
nologies. The capabilities of generating depth information together with the
conventional 2D image of the desired scene, and thereby yielding the 3D model
of the desired scene is very useful in a wide range in CV applications, from
autonomous driving, robot navigation, to augmented reality and action recogni-
tion [6,7,18,19]. However, depth imaging acquisition faces with several technical
difficulties, including poor hardware performance, prolonged data collection, and
high computational cost, though much effort has been made to the development
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of 3D cameras, such as Google Tango, Intel RealSense, and Microsoft Kinect
[20,21]. Thus, new efficient techniques for fast data acquisition and efficient
depth reconstruction are very vital for numerous depth technology applications.

Much interest in depth image estimation has been reported in several studies.
Techniques exploiting the shapes of objects in the depth image were reported
in [19] and [18]. In [19], the depth image quality has been improved by incor-
porating shading shapes. In [18] the defocusing shape of objects was considered
to restore the missing values on the depth map. The other approaches that
combine hand-tuned models and surface orientations were proposed in [14,17].
Image inpainting-based methods have also applied to depth estimate. In [5],
missing depth values were restored by region growing and bilateral filtering. In
[3], a Kalman filter was employed for enhancing smoothness of the depth image,
whereas morphological operators were used in [8]. However, it is worth noting
that the majority of such methods rely on color information of the scene. In
other words, they require collecting the color image, which prolongs the time for
data acquisition and makes a burden to data storage.

Recent approaches based on modern sensing and representations were pro-
posed for depth estimate [11,12]. In [11], a sparse representation (SR) was used to
estimate a depth map from the incomplete observed pixels. This approach relies
on the theory of the powerful compressive sensing (CS) framework, which states
that with high probability, a sparse signal/image can be reconstructed precisely
from incomplete measurements/pixels provided that it is compressible or has a
SR in proper bases [4,9]. In addition, CS enables the reconstruction and com-
pression to be performed simultaneously, resulting in simple and cost-effective
hardware sensing systems. Note that in the sparsity-based technique, the task of
depth reconstruction is posed as a sparsity-regularized least squares (LS) min-
imization problem. A further extension of the sparsity-regularized model was
presented in [12], where the color information was incorporated for enhancing
the quality of image restoration.

Inspired by the SR-based models, this paper introduces a joint LR and
TV regularizations for depth image estimation from incomplete observed pix-
els. Together with SR, the LR representation is incorporated into the imaging
model to capture the low-dimensional structure of the depth images. Moreover,
the TV regularizer is used to promote the local spatial consistency for the depth
map. To this end, the task of depth image estimate is reformulated as a joint
LR-TV regularized minimization problem, whose solution provides an estimate
of the depth map. We present an algorithm based on ADMM technique for
solving the minimization problem. The proposed model is validated by several
experimental evaluations. Analysis and comparisons with other imaging models
are also provided in this study.

The remainder of the paper is organized as follows. Section 2 introduces the
depth image acquisition and the SR-based depth estimation. Section 3 describes
the proposed LR-TV model for depth image reconstruction from incomplete
measurements. Section 4 presents the experimental results. Section 5 gives con-
cluding remarks.
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2 Depth Sparse Imaging Model

This section first presents a brief mathematical model for depth image acquisi-
tion. It then describes a sparse representation approach for depth image recon-
struction.

2.1 Depth Image Acquisition

Let Z ∈ R
h×w denote a depth map of a scene imaged by an active sensor. In the

case of full sensing operations or ideal imaging, the sensor receives m = h × w
depth pixels that represent the distances from the sensor to the surrounding
obstacles. In fact, due to fast sensing or poor hardware performance, only n (n �
m) measurements are acquired. Let z ∈ R

m be a vector obtained by applying
a vectorization operator to the unknown image Z, z = vec(Z), where vec(· ) is
the vectorization operator forming a composite column vector by stacking the
columns of a matrix in lexicographic order. Note also that the image Z can be
obtained from its corresponding vector z through Z = mat(z), where mat(· ) is
the operator converting a column vector having h×w entries into a h×w matrix.
Since the conversion between the image vector and matrix is simple, hereafter
we use z to represent for both the vector and matrix depth image.

Let y ∈ R
n be the vector containing the observed measurements. The incom-

plete image y can be related to the full unknown image z as

y = Φ z, (1)

where Φ ∈ R
n×m is the sampling matrix, mathematically representing the depth

acquisition protocol. In this representation, Φ is a diagonal binary matrix used to
indicate which pixels are selected. Now, given the incomplete and thus corrupted
image y and matrix Φ, our goal is to reconstruct a full and high-quality depth
map z.

2.2 Depth Estimation with Sparse Representation

The full depth image z can be reconstructed by exploring its structures. The
most common structure that has been exploited is its sparsity in a transform
domain. This is because the depth image z typically contains large homogenous
objects with only a few discontinuity at their transitions. This characteristic
leads to a SR for the depth image in proper domains, such as wavelets [12,13].
The sparsity and the wavelet representation can be justified in the aspect that
large homogeneous regions can be compressively represented by only a small
number of significant coefficients. Mathematically, the sparse representation of
image z can be expressed as

z = Ψ x, (2)

where Ψ ∈ R
m×q is the dictionary matrix with its columns q (q ≥ m) being

the wavelet bases, and x ∈ R
q is a vector of coefficients having only s nonzero
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components, i.e., s = ‖x‖0. Due to the sparseness of x, s is much smaller than
q (s � q). Here the �0-norm is used to measure the number of nonzero entries
in vector x. In practice, its counterpart, the �1-norm, is used to regularize the
sparsity as it is a convex relaxation for the �0-norm [16].

It follows from (1) and (2) that y = Φ Ψ x. Given the observation vector y,
an estimate of the coefficient vector x can be obtained by solving the following
�1-regularized LS minimization problem:

minimize
x

1
2
‖y − Φ Ψ x‖22 + λ ‖x‖1, (3)

where λ is a regularization parameter used to balance between the LS and the
�1 penalty terms. Since the dictionary matrix Ψ is typically orthogonal, i.e.,
Ψ ΨT = I. Thus, z = Ψ x and x = ΨT z. This means that Problem (3) can be
written equivalently as

minimize
z

1
2
‖y − Φ z‖22 + λ ‖ΨT z‖1. (4)

The solution to Problem (4) gives an estimate for a full depth image. This
sparse regularization approach, however, is effective only if the observed image y
is corrupted with random missing values. In other words, the obtained estimate is
good if the image does not contain large continuous missing regions. For example,
if pixels are missing along entire rows or columns, then the sparse-regularized
model cannot cope well with this issue. This limitation can be overcome by
introducing more effective regularizations into the imaging model. In this study,
we investigate two more regularizations of LR and TV. The new LR-TV model
is described in the next section.

3 LR-TV Depth Reconstruction

This section first presents the proposed LR-TV model for depth estimate prob-
lem in Subsect. 3.1, followed by an algorithm based on ADMM to solve the
LR-TV regularized minimization problem in Subsect. 3.2.

3.1 LR-TV Problem Formulation

LR and TV regularizers are introduced to further strengthen the depth imaging
model. The motivation of using LR is due to the fact that natural images can
be well approximated by their LR components. Furthermore, principal image
structures typically reside in a low-dimensional subspace, thereby having a LR
representation. Therefore, incorporating LR depth structure can improve the
reconstruction quality. To this end, we extend the minimization problem (4) as

minimize
z

1
2
‖y − Φ z‖22 + λ ‖ΨT z‖1 + β ‖z‖∗. (5)
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Here, ‖z‖∗ is the nuclear-norm of the matrix z, which the sum of its singular
values, ‖z‖∗ =

∑p
i=1 λi(z) with λi(z) being the ith largest singular value of

matrix z of rank at most p. It is worth noting that the nuclear-norm is the
convex relaxation for the LR constraint imposed on a matrix [2].

The LR is regarded as a non-local (global) regularizer since it considers the
information throughout the image. As a result, LR may neglect the useful local
information that often relates to the detail map. To fill this gap, a TV regularizer
is added to guarantee the local spatial consistency. The proposed LR-TV model
becomes

minimize
z

1
2
‖y − Φ z‖22 + λ ‖ΨT z‖1 + β ‖z‖∗ + γ ‖z‖TV. (6)

Here, ‖z‖TV is the anisotropic TV defined as

‖z‖TV = ‖D z‖1 = ‖Dx z‖1 + ‖Dy z‖1, (7)

where D = [Dx;Dy] is the first-order forward finite difference operator in the
x-horizontal and y-vertical directions. In (6), the penalty parameters β and γ are
used to control the importance of LR and TV terms, respectively. The remaining
task is to solve Problem (6), which yields an estimate of the depth image.

3.2 ADMM-Based Algorithm

This subsection presents an algorithm to solve Problem (6) using ADMM tech-
nique [1,10]. The ADMM is a powerful framework for solving regularized opti-
mization problems as it allows the entire problem to be decomposed into sub-
problems that can be handled more effectively. For efficiently handling the sub-
problems, it is vital to choose suitable auxiliary variables. Here, we introduce
four auxiliary variables s = z, r = ΨT z, t = z, and u = D z. This way, the
minimization problem in (6) is rewritten as

minimize
z,s,r,t,u

1
2
‖y − Φ s‖22 + λ ‖r‖1 + β ‖t‖∗ + γ ‖u‖1,

subject to s = z, r = ΨT z, t = z, u = D z.
(8)

Problem (8) has its augmented Lagrangian function given by

L(z, s, r, t,u,w,b,h,v) =
1
2
‖y − Φ s‖22 + λ ‖r‖1 + β ‖t‖∗ + γ ‖u‖1

− wT (s − z) − bT (r − ΨT z) − hT (t − z) − vT (u − D z)

+
μ

2
‖s − z‖22 +

ρ

2
‖r − ΨT z‖22 +

ξ

2
‖t − z‖22 +

κ

2
‖u − D z‖22.

(9)

In (9), w, b, h, and v are the Lagrange multipliers associated with their con-
straints, and μ, ρ, ξ, and κ are regularization parameters associated with the
corresponding quadratic penalty terms.
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The idea of ADMM is to find a saddle point of the Lagrangian function L(· ),
that is also the solution to Problem (6). The stationary point can be found by
solving the following sequence of subproblems, in which the next estimate of each
variable at the (k + 1)th iteration is obtained by fixing the current estimates of
the other counterparts,

zk+1 = arg min L(z, sk, rk, tk,uk,wk,bk,hk,vk),
sk+1 = arg min L(zk, s, rk, tk,uk,wk,bk,hk,vk),
rk+1 = arg min L(zk, sk, r, tk,uk,wk,bk,hk,vk),
tk+1 = arg min L(zk, sk, rk, t,uk,wk,bk,hk,vk),
uk+1 = arg min L(zk, sk, rk, tk,u,wk,bk,hk,vk).

(10)

The Lagrange multipliers are updated as

wk+1 = wk − μ(sk+1 − zk+1), (11)

bk+1 = bk+1 − ρ(rk+1 − ΨT zk+1), (12)
hk+1 = hk − ξ(tk+1 − zk+1), (13)
vk+1 = vk − κ(uk+1 − D zk+1). (14)

Now, our task is to solve Subproblems in (10). For notation simplicity, we drop
the loop index k in the following description.

z-Subproblem: The z-subproblem is obtained by keeping only terms involving
z in (9) yielding

zk+1 = arg min{−wT (s − z) − bT (r − ΨT z) − hT (t − z) − vT (u − D z)

+
μ

2
‖s − z‖22 +

ρ

2
‖r − ΨT z‖22 + +

ξ

2
‖t − z‖22 +

κ

2
‖u − D z‖22}.

(15)

Applying the first-order optimal condition to Problem (15), we have

[(μ + ρ + ξ)I + κDTD]zk+1 = ΨT (ρr − b) + (μs − w)

+ (ξt − h) + DT (κu − v).
(16)

Note that DTD is a circulant matrix, and thus the matrix (μ+ρ+ξ)I+κDTD is
diagonalizable. Therefore, the solution to Problem (16) can be found efficiently
using fast Fourier transforms. In particular, a closed form solution is obtained
by

zk+1 = F−1

[
F(g)

(μ + ρ + ξ)I + κ|F(D)|2
]

. (17)

In (17), g is the right hand side of (16), i.e., g = ΨT (ρr−b) + (μs−w) + (ξt−
h)+DT (κu−v). The notation F(· ) is the 2D Fourier transform, whereas F−1(· )
is the 2D inverse Fourier transform. The term |F(D)|2 is the square magnitude
of the eigenvalues of the differential operator matrix D.
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s-Subproblem: the s-subproblem is obtained by holding only s-related terms
in (9):

1
2
‖y − Φ s‖22 − wT (s − z) +

μ

2
‖s − z‖22. (18)

Performing the first-order optimal condition produces

(ΦT Φ + μI) s = ΦT y + w + μz. (19)

As Φ is a diagonal binary matrix, the solution for sk+1 is computed efficiently
through an element-wise manner.

r-Subproblem: The r-subproblem is obtained by keeping only r-related terms
in (9) yielding

λ ‖r‖1 − bT (r − ΨT z) +
ρ

2
‖r − ΨT z‖22. (20)

Define an element-wise soft-thresholding operator,

T (x, τ) = sign(x)max(|x| − τ, 0) =
x

|x| max(|x| − τ, 0). (21)

This way, Problem (20) has a closed-form solution,

rk+1 = T (ΨT z +
b
ρ

,
λ

ρ
) = sign(ΨT z +

b
ρ

) max(
∣
∣
∣
∣Ψ

T z +
b
ρ

∣
∣
∣
∣ − λ

ρ
, 0). (22)

Hereafter, the soft-thresholding operator T (· ) is used in element-wise manner.

t-Subproblem: likewise, the t-subproblem is obtained by holding only t-terms
in (9) having

β ‖t‖∗ − hT (t − z) +
ξ

2
‖t − z‖22. (23)

This problem can be solved efficiently through a singular value soft-thresholding
(SVT) operator S(· ),

tk+1 = S(z +
h
ξ

,
β

ξ
). (24)

Here, the SVT operator in the form S(x, τ) is computed by applying the soft-
thresholding operator with τ to the singular values of the input matrix x,

S(x, τ) = u T (λ, τ) vT , (25)

where x = u λ vT is the singular value decomposition of the input matrix x.

u-Subproblem: the u-subproblem is obtained by keeping only u-related terms
in (9) yielding

γ ‖u‖1 − vT (u − D z) +
κ

2
‖u − D z‖22. (26)

The solution to Problem (26) is obtained by,

uk+1 = T (D z +
v
κ

,
γ

κ
) = sign(D z +

v
κ

) max(
∣
∣
∣D z +

v
κ

∣
∣
∣ − γ

κ
, 0). (27)
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In summary, the ADMM-based algorithm is presented in Algorithm 1. This
algorithm starts by the initialization of the variables and iteratively updates
them until convergence. Here, the stopping condition is satisfied if the relative
change of the image z is negligible, i.e., ‖zk+1−zk‖2/‖zk‖2 < tol. The algorithm
is computational efficient because the variable updates have closed-form solutions
with element-wise computation.

Algorithm 1. LR-TV regularized depth estimation.
1: Input: y, Φ
2: Initialize z0 = ΦTy, s0 = z0, r0 = ΨT z0, t0 = z0, u0 = D z0.
3: repeat
4: Update z using (17).
5: Update s by solving (19).
6: Update r, t, and u using (22), (24), and (27), respectively.
7: Update the multipliers w, b, h, and v using (11)–(14), respectively.
8: until ‖zk+1 − zk‖2/‖zk‖2 < tol.

4 Experimental Results

This section gives experimental evaluations on depth image benchmark datasets.
Subsection 4.1 presents the setup for experiments, followed by imaging results,
performance analysis and comparisons in Subsects. 4.2 and 4.3.

4.1 Experimental Setup

The proposed approach is evaluated using the Middlebury Stereo Dataset1 [15],
where the ground truth depth maps are available. To measure the performance
accuracy, the peak signal-to-noise ratio (PSNR) is used (in dB):

PSNR = 10 log10

(
I2peak
MSE

)

, (28)

where Ipeak is the peak intensity of reconstructed image I, and MSE is the mean-
square-error between the reconstructed image I and the ground-truth image Ig
defined as

MSE =
1

h × w

h∑

i=1

w∑

j=1

|I(i, j) − Ig(i, j)|2 . (29)

The algorithm requires a set of parameters that need to be set appropri-
ately. The basis matrix Ψ is constructed from wavelets with Daubechies 2 and
3 decomposition levels. Although the algorithm gives satisfactory results for a
range of parameters, the typical settings for the regularization parameters are
given in Table 1. The algorithm converges if the relative change of the recon-
structed image is smaller than tol = 10−4 (see Step 8 in Algorithm 1).
1 http://vision.middlebury.edu/stereo/data/.

http://vision.middlebury.edu/stereo/data/
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Fig. 1. Depth image reconstructed by the proposed LR-TV algorithm: (a) ground-
truth depth image of art, (b) the random missing mask keeping only 50% pixels, (c)
corrupted depth image with only 50% data measurements (PSNR = 7.08 dB), and (d)
reconstructed image by the proposed LR-TV model (PSNR = 31.28 dB).

Fig. 2. PSNRs of the depth image reconstructed by the proposed LR-TV algorithm
(solid line) and the relative change of the image z, ‖zk+1 − zk‖2/‖zk‖2 (dashed line)
recorded during the minimization using 50% of total measurements.
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Table 1. Parameter settings.

Parameters Related terms Values

λ Sparsity penalty 4 × 10−5

β LR penalty 1 × 10−2

γ TV penalty 1 × 10−3

μ s-quadratic penalty 1 × 10−2

ρ r-quadratic penalty 1 × 10−3

ξ t-quadratic penalty 1 × 10−3

κ u-quadratic penalty 1 × 10−1

4.2 Evaluation and Analysis of LR-TV Model

In the first experiment, we aim to evaluate the performance of the LR-TV model
for depth image reconstruction. In doing so, Fig. 1(a) shows the ground-truth
depth image of art with a size of h × w = 277 × 347 used to evaluate the
performance. Now, only 50% measurements of the total pixels are randomly
selected using the mask shown in Fig. 1(b). Because only 50% measurements
are kept, the depth image is corrupted as shown in Fig. 1(c) with a PSNR =
7.08 dB. Using the 50% data measurements, the depth image reconstructed by
the LR-TV model is presented in Fig. 1(d). It can be observed that the LR-TV
model estimates the depth image well and yields a high quality image with a
PSNR = 31.28 dB.

For further insights into the proposed algorithm, we report here the PSNR
values of the estimated image and the relative change of the depth image, ‖zk+1−
zk‖2/‖zk‖2, during the minimization. Figure 2 shows the PSNRs of the images
estimated during minimization as a function of iterations. It can be observed
from the figure that the image quality is enhanced during the update, and the
quality in terms of PSNR is not changed much after 60 iterations. Furthermore,
it can be seen that the algorithm is deemed to converge after 116 iterations when
the relative change reaches 9.5 × 10−5.

4.3 Comparison with Other Imaging Approaches

In the second experiment, we aim to compare the performance of the proposed
LR-TV model with those by other imaging models. Two other imaging mod-
els are considered here. The first approach is the sparsity-based method for
depth estimate that exploits only the sparseness of depth representation [11].
The second method considers both the sparsity and TV regularization for depth
reconstruction [12]. We evaluate these models using two missing scenarios: ran-
dom missing and entire (large) column missing. The random missing is generally
related to compressive sensing data acquisition, whereas the large column missing
is typically due to poor hardware performance. The ground-truth depth image
and the corrupted images due to the masks for the two missing cases are shown
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Fig. 3. Depth image reconstructed by the different imaging models with two miss-
ing data patterns: (a) the ground-truth depth image, (b) the corrupted image by the
missing mask representing missing values (black pixels), (c) the corrupted image by
the columns-missing mask representing missing values (black pixels); for the random
missing case, the depth images reconstructed by (d) the sparsity-based model, (e) the
sparsity-TV model, and (f) the LR-TV model; for the large column missing case, the
depth images reconstructed by (g) the sparsity-based model, and (g) the proposed
LR-TV model.
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in Figs. 3(a)–(c), respectively. Here, the random missing mask is generated by
keeping 50% pixels, and the missing column width is 5 pixels. The same input
corrupted data and the same input parameters are used for all the evaluated
models.

For the random missing case, Figs. 3(d)–(f) show the images recovered by the
sparsity-based, the sparsity-TV, and the proposed LR-TV method, respectively.
It can be observed that all the three models can reconstruct the depth images
well, but the sparsity-TV and the proposed LR-TV produce better reconstruc-
tions compared with the sparsity method. For the large column missing case,
the imaging result of the sparsity-based method is very poor, as demonstrated
in Fig. 3(g). The sparsity-based model is unable to recover the missing column
pixels. The proposed LR-TV, on the other hand, reconstructs the image well, as
shown in Fig. 3(h).

To quantify the performances of the different imaging approaches, the PSNRs
of the reconstructed images are computed and listed in Table 2. The most notice-
able feature from the table is the considerable improvement of the sparsity + TV
and the LR+TV over the sparsity model, especially for the large missing data
case. Furthermore, for both missing data patterns, the proposed LR+TV model
has the highest PSNR values among the tested methods; it archives 38.22 dB for
the random missing data case, and 40.39 dB for large missing data case.

Table 2. PSNRs in dB of the depth images reconstructed by the different imaging
models for two missing data patterns.

Imaging methods Random missing pattern Large missing pattern

Sparsity 22.07 17.65

Sparsity + Total variation 37.81 39.01

Low rank + Total variation 38.22 40.39

5 Conclusion

This paper presented a new LR-TV imaging model for depth image reconstruc-
tion from incomplete data measurements. The proposed approach formulates
the task of depth image estimate as a joint LR and TV regularized minimiza-
tion problem and proposes an algorithm based on ADMM to solve it, yielding
a reconstructed depth image. By incorporating the LR and TV regularizers, the
proposed model yields high quality image reconstruction for different missing
data cases. Experimental evaluations are provided and the results show the pro-
posed model is very promising that it enhances the quality of image estimation
and outperforms the other evaluated state-of-the-art imaging models in terms
of PSNR metric.
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