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Abstract. Exchanging model updates is a widely used method in the
modern federated learning system. For a long time, people believed that
gradients are safe to share: i.e., the gradients are less informative than
the training data. However, there is information hidden in the gradients.
Moreover, it is even possible to reconstruct the private training data from
the publicly shared gradients. This chapter discusses techniques that
reveal information hidden in gradients and validate the effectiveness on
common deep learning tasks. It is important to raise people’s awareness
to rethink the gradient’s safety. Several possible defense strategies have
also been discussed to prevent such privacy leakage.
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1 Introduction

Federated Learning (FL), has gained increasing attention as both data require-
ments and privacy concerns continue to rise [1-3]. In the Federated Learn-
ing system, the user data is not shared across the network and only model
updates/gradients are transmitted. Therefore, such kind of distributed learn-
ing has been used in real-world applications where user privacy is crucial, e.g.,
hospital data [16] and text predictions on mobile devices [3]. Ideally, any such
approach is considered as safe, as the gradients are thought less informative
than the original data. Shown in Fig.1 below, it is hard to infer from a list of
numerical tensor values that the original image is a cat.

[[ 0.75, 1.26, 0.56, ..., -0.19],
[-0.99, -0.37, -0.93, ..., 2.54],
[ 0.06, -0.96, 0.78, ..., -0.85],
[-0.55, -0.55, -1.31, ..., 0.32]]
a) Training data and label b) Corresponding gradients
g 2g

Fig. 1. It is easy to compute gradients from the training, but not intuitive to perform
vice versa. As shown in the Figure, human cannot read the cat (either image or label)
from raw numerical values.
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FL provides default participant privacy because only the gradients are shared
across while the sensitive training never leaves the local device. However, is the
protocol really safe? Do the gradients contain zero information about training
data? If not, then how much information can we recover from them? In this
section, we will explore the hidden information in the gradients and rethink the
safety of gradients sharing scheme.

2 Information Leakage from Gradients

Parameter Server

VWI _ )
EO%K S0 B0 |EoEE—]Eo

(a) Federated learning with a centralized (b) Federated learning without a centralized
server server

F]ower Cat Flower Cat

Fig. 2. The information leakage in two types of federated learning. The little red demon
appears in the location where the leakage might happen.

From a privacy perspective, we are interested in possible leaks against an honest-
but-curious server: It faithfully aggregates the updates from participants and
delivers the updated model back, but it may be curious about the participant
information and attempt to reveal it from the received updates. To study the
question, we consider a key question: What can be inferred about a par-
ticipant’s training dataset from the gradients shared during federated
learning?

Given that gradients and model updates are mathematically equivalent, the
local model updates can easily be obtained with the gradients and the learn-
ing rate. In the following discussion, gradient-based aggregation is used without
loss of generality. We care what kind of information can be inferred from the
gradients. Such an attack happens in the parameter server for centralized fed-
erated learning (Fig.2a), or any neighbours in decentralized federated learning
(Fig. 2b). We focus on centralized federated learning because it is more widely
used [4,5]. In this setting, several studies have been made to show that it is
actually possible to infer some hidden information from the gradients.
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Fig. 3. Membership inference [6] in the federated setting. It uses the predicted results
and ground truth labels to infer whether the record was in or out of the victim training
datasets.

Membership-Inference. [6] is the basic privacy violation in this setting: Given
an exact data point and pre-trained model, determine whether the data point
was used to train the model. In Federated Learning, the gradients are sent to
the server every round and the server thus knows the trained model based on
local data. With membership-inference, the server is able to infer whether a
specific data point exists in the local training set or not. In some cases, it can
directly lead to privacy breaches. For example, finding that a specific patient’s
clinical record was used to train a model associated with a disease can reveal
the fact that the patient has the disease. In practice, Melis et al. [7] shows that
a malicious attacker can convincingly (precision 0.99) tell whether a specific
location profile was used to train a gender classifier on the FourSquare location
dataset [8] (Fig.3).

1 Partial Leakage!
' - VIV Attack(F, W, VW, cat ) Does fraining set
o — > su 4
e n E? contain images with
o Yo ‘Cat’ label?
Flower Cat Dog .

Fig. 4. Property inference [7] in the federated setting. It infers whether the victim’s
training set contains a data point with certain property.

Property-Inference. [7] is a similar attack: Given a pre-trained model, deter-
mine whether the corresponding training set contains a data point with certain
properties. It is worth noting that the property is not necessarily related to the
main task. When a model is trained to recognize gender or race on the LEFW
dataset [9], the property-inference can not only reveal the people’s race and gen-
der in the training set, but also tell they wear glasses or not. In practice, this also
brings the potential risk of privacy leakage. It is easy to identify the patient if
knowing his/her age, gender, race and glass-wearing, even the name and clinical
record remain hidden.
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Fig. 5. Model inversion [10] in the federated setting. It first trains a GAN model from
model updates and attacker’s own training data. Then it uses the GAN model to
generate look alike images from the victim’s updates.

Model Inversion. [10] is another powerful attack that leaks the participant
privacy. The attack exploits the real-time nature of the learning process and
allows the adversary to train a Generative Adversarial Network (GAN) [11] to
generate a prototypical sample of the targeted training set, which was meant to
private. As shown in Fig. 5, the leaked images are almost identical as the original
one, because the samples generated by the GAN are intended to come from the
same distributions as the training data. This attack is powerful especially when
all class members look alike (e.g., face recognition).

The three attack strategies above reveal a certain level of information hidden
in the gradients, but they all have their own limitations. Membership inference
requires an existing data record to perform the attack. This may be hard to get
when the input data is not text (e.g., image, voice). Property inference relaxes
the constraints and only require a label to execute the leakage. However, the
attack results only reduce the range and cannot guarantee to find a record-
level identity. As for model inversion, though it can directly generate synthetic
images from the statistical distribution of training data, the results are look-
alike alternatives (not the original data) and only works when all class members
are similar. Here we consider a more challenging question: Without prior about
the training data, can we completely steal the training data from gradients?
Conventional wisdom suggests that the answer is no, but we will show it is
actually possible.

3 Training Data Leakage from Gradients

Full Leakage!

:.| vW >Li DLG(F, W,VW) > Original training data
R & B -£2

Flower Cat Dog Flower Cat Dog

Fig. 6. Deep Leakage in federated settings. Given model updates/gradients received
from victim, it aims to reserve the gradients and fully reconstructs the private training
set.
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While information leakage already intrudes participants’ privacy in Federated
Learning, we are curious about the limit of the leakage — can we completely
reconstruct the private training set from shared information? Federated Learn-
ing aims to train a robust model without sharing data, but now knowing the
gradients is knowing the data. This question is critical as it raises a serve chal-
lenge to the fundamental privacy assumption. In this section, we will study the
challenge and demonstrate the potential risks brought by such leakage (Fig. 6).

3.1 Partial Leakage in Specific Layers

To begin with, we start with several special layers. The first one is Fully Con-
nected (FC) layers. FC layers are widely used in both Neural Networks (NN) and
Convolutional Neural Networks (CNN). For a biased FC layer, we can show that
the corresponding input can be computed from the gradients regardless where
the layer’s position is and the types of preceding and succeeding layers.

Lemma 1. Let a neural network contain a biased fully-connected layer, i.e. for
the layer’s input X € R™, its output Y € R™ is calculated as

Y=WX+B (1)
with weight W € R™*"™ and bias B € R’” The input X can reconstructed from
% and dL if there exists index i s.t. d(B # 0.

Proof 1. Tt is know that d(dBLi) = g{; ;((;,)) = XT. Therefore

dL dL d(Y;)  dL T @)

d(W;) — d(Y:) d(W;) — d(B;)
where the Y;, W; and B; denote the i*" row of output Y, weights W and biases
B. Thus X can be reconstructed as long as d— # 0. O

The knowledge of the derivative w.r.t. the bias < @ is essential for recon-
structing the layer’s input. To make the leakage more general, Geiping et al. [12]
further proved that even without biases, the input could also be reconstructed
as long as a proper activation follows (e.g., ReLU). The proof procedure is sim-
ilar and no optimization is required to reconstruct the training set from a fully
connected network.

Even without inverting the derivatives, the gradients from some layers
already indicate certain information about the input data. For example, the
Embedding layer in language tasks only produces gradients for words appeared
in the data, which reveals what words have been used in other participant’s
training set [7]. Another example is the Cross Entropy layers in classification
tasks, which only generate negative gradients for class marked as corrected in
the training set [13]. This property implies what the ground truth label is.

However, it is not trivial to extend to Conwvolution layers (CONV), where
the dimension of features is far larger than the size of gradients. The analyti-
cal reconstruction like Lemma 1 is no longer practical. A more general attack
algorithm is required for modern convolutional neural networks.
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Fig. 7. The overview of DLG algorithm. Variables to be updated are marked with a
bold border. While normal participants calculate VW to update parameter using its
private training set, the malicious attacker updates its dummy inputs and labels to
minimize the gradients distance. When the optimization finishes, the evil user is able
to steal the training set from honest participants.

3.2 Complete Leakage from Gradients

To overcome the limitation, Zhu et al. [14] proposes an iterative method to
fully reconstruct the training set, which was meant to be local and private,
by only intercepting the corresponding gradients on the same neural network.
The technique is named as Deep Leakage from Gradients (DLG), because of the
“deep” threat it raises to user data’s privacy.

DLG is a gradient-based feature reconstruction attack. The attacker receives
the gradient update VW, from other participant k£ at round ¢, and aims to
steal participant k’s training set (xy,y:r) from the shared the information.
Figure 7 presents how it works for federated learning on images: The algorithm
first initializes a dummy image with the same resolution as real one’s and a
dummy label with probability representation followed by a softmax layer. DLG
runs a test of this attack on the intermediate local model to compute “dummy”
gradients. Note the model architecture F'() and weights W; are shared by default
for most federated learning applications.

Then a gradient distance loss between dummy gradients and real ones is cal-
culated as the optimization objective. The key point of this reconstruction attack
is to iteratively refine the dummy image and label so that the attacker’s dummy
gradients will approximate the actual gradients. When the gradient construction
loss is minimized, the dummy data will also convergence to the training data
with high confidence (examples shown in Sect. 3.3).

= UF (X' W),y
X'y = argming o [|[VW' — VW]||? = arg min ¥ ||% - VW|]? (3)

x!
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Algorithm 1. Deep Leakage from Gradients for Masked Language Model

Input: F(): Differentiable machine learning model; W: parameter weights; VIV:
gradients calculated by training data; n: learning rate used for DLG optimization.
Output: the original private training data x and label y
procedure DLG(F, W, VW)
x'1 — N(0,1) , ¥y, «— N(0,1) > Initialize dummy inputs and labels.
for i — 1 ton do

1:
2
3
4: L'; = softmaz(y’;)

¥ VW] «— 04(F(x';, W),L';) /oW, > Compute dummy gradients.
6: D; — [|[VW] — VW|?

7 Xip1 — X; =V, D > Update data to match gradients.
8: Vie1 — Vi — nVyélD)i > Update label to match gradients.
9: end for

10: return x,,,1,yni1

11: end procedure

Note that the distance |[VW' — VW||? is differentiable w.r.t dummy inputs
x’ and labels y’ can thus be optimized using standard gradient-based methods.
Therefore this optimization requires 2"% order derivatives. A mild assumption
that F' is twice differentiable is made here. This holds for the majority of modern
machine learning models (e.g., most neural networks) and tasks.

Iters=0 Iters=10 Iters=50 Iters=100 Iters=500|Melis [7]|Ground Truth

SESESHES
ry

W
3

Fig. 8. The visualization showing the deep leakage on images from MNIST [15], CIFAR-
100 [16], SVHN [17] and LFW [9] respectively. Our algorithm fully recovers the four
images while previous work only succeeds on simple images with clean backgrounds.

3.3 DLG Attack on Image Classification

Given an image containing objects, images classification aims to determine
the class of the item. The power of DLG attack is first evaluated on modern
CNN architectures ResNet [18] and pictures from MNIST [15], CIFAR-100 [16],
SVHN [17] and LFW [9]. Note that two changes have been made here: (1)
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Fig. 9. Layer-i means MSE between real Fig.10. Compassion of the MSE of
and dummy gradients of i‘" layer. When images leaked by different algorithms
the gradients’ distance gets smaller, the and the ground truth. DLG method
MSE between leaked image and the orig- consistently outperforms previous app-
inal image also gets smaller. roach by a large margin.

For model architecture, all ReLU operators are replaced with Sigmoid and the
strides in CONYV are removed, as our algorithm requires the model to be twice-
differentiable (2) For image labels, instead of directly optimizing the discrete
categorical values, we random initialize a vector with shape N x C' where N is
the batch size and C' is the number of classes, and then take its softmax output
as the classification label for optimization and DLG attack.

The leaking processes are visualized in Fig.8. All DLG attacks start with
random Gaussian noise (first column) and tried to match the gradients produced
by the dummy data and real ones. As shown in Fig.9, minimizing the distance
between gradients also reduces the gap between data and makes the dummy data
gradually converge to the original one. It is observed that monochrome images
with a clean background (MNIST) are easiest to recover, while complex images
like face (LFW) take more iterations to recover (Fig.8). When the optimization
finishes, the reconstructed results are almost identical to ground truth images,
despite few negligible artifact pixels.

We compare the effectiveness of DLG attack with the GAN Inversion
results [7] (discussed in Sect.2) in Fig.8 (visually) and Fig. 10 (numerically).
The previous GAN based inversion requires the class label to be known and
only works well on MNIST. On the 3" row and 6! column of Fig.8, though
the revealed image on SVHN is still visually recognizable as digit “9”, it is far
different from the original training image. The cases are even worse on LFW and
totally collapse on CIFAR. Figure 10 shows a numerical comparison by perform-
ing leaking and measuring the mean square error (MSE) on all dataset images.
Images are normalized to the range [0, 1] and DLG appears much better results
(<0.03 v.s. previous >0.2) on all four datasets.
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3.4 DLG Attack on Masked Language Model

Table 1. The progress of deep leakage on language tasks.

Example 1

Example 2

Example 3

Initial Sentence

tilting fill given
**less word **itude
fine **nton
overheard living
vegas **vac **vation
*f forte **dis
cerambycidae ellison
**don yards marne
**kali

toni **enting
asbestos cutler km
nail **oof **dation
**ori righteous **xie
lucan **hot **ery at
**tle ordered pa
**eit smashing proto

[MASK] **ry
toppled **wled
major relief dive
displaced **lice
[CLS] us apps -
**face **bet

Tters = 10 tilting fill given toni **enting [MASK] **ry
**less full solicitor asbestos cutter km | toppled identified
other ligue shrill nail undefeated major relief gin dive
living vegas rider **dation hole displaced **lice doll
treatment carry righteous **xie us apps _ **face
played sculptures lucan **hot **ery at | space
lifelong ellison net **tle ordered pa
yards marne **kali | **eit smashing proto

Tters = 20 registration, we welcome one **ry toppled
volunteer proposals for tutor | hold major ritual ’
applications, at **jals on either core |dive annual
student travel machine denver conference days
application open softly or topics of 1924 apps novelist
the; week of played; |emerging dude space
child care will be importance for
glare machine learning

Iters = 30 registration, we welcome we invite
volunteer proposals for tutor | submissions for the

applications, and
student travel
application open the
first week of
september. Child
care will be available

**ials on either core
machine learning
topics or topics of
emerging
importance for
machine learning

thirty - third annual
conference on neural
information
processing systems

Original Text

Registration,
volunteer
applications, and
student travel
application open the
first week of
September. Child
care will be available

We welcome
proposals for
tutorials on either
core machine
learning topics or
topics of emerging
importance for
machine learning

We invite
submissions for the
Thirty-Third
Annual Conference
on Neural
Information
Processing Systems

25
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For language tasks, DLG is evaluated on Masked Language Model (MLM)
task. In each sequence, 15% of the words are replaced with a [MASK] token and
MLM model attempts to predict the original value of the masked words from
a given context. BERT [19] is chosen as the backbone and all hyperparameters
are adopted from the official implementation?.

Different from vision tasks where RGB inputs are continuous values, lan-
guage models need to preprocess discrete words into embeddings. Therefore, on
language model DLG attack is applied on embedding space and the gradients
distance between dummy embeddings and real ones is minimized. After opti-
mization finishes, the original words are derived by finding the closest entry in
the embedding matrix reversely.

Table 1 exhibits the leaking history on three sentences selected from NeurIPS
conference page. Similar to the vision task, DLG attack starts with randomly
initialized embedding: The reconstructed results at iteration 0 is meaningless.
During the optimization, the gradients produced by dummy embedding gradu-
ally match the original data’s gradients and the dummy embeddings also con-
verges to the original data’s embeddings. In later iterations, part of the original
sequence appears. In example 3, at iteration 20, “annual conference” shows up
at iteration 30 and the leaked sentence is already close to the original one. When
DLG finishes, though there are few mismatches caused by the ambiguity in tok-
enizing, the main content is already fully leaked.

3.5 Extensions to DLG Attack

In Algorithm 1, many factors can affect the leakage results such as the data
initialization (line 2), the distance measurement between two gradients (line 6),
and the optimization method (line 7 & 8). Besides these, hyper-parameters in
Federated Learning like batch size and local steps also matters. In some cases,
DLG may fail to reveal (e.g., with a bad initialization). To improve the stability
of DLG, several approaches have been explored.

Leakage of Label Information on Classification Tasks. DLG attack is
based on the belief that there is a one-to-one mapping between gradients and
training data. Therefore if DLG does not discover the ground truth data, the
attack will fail to converge. For tasks with cross entropy loss, Zhao et al. [13] pro-
poses an analytical solution to extract the ground-truth labels from the shared
gradients. When the differentiable model is trained with one-hot supervisions,
the loss is computed as

e¥e

L(X7C) = —IOgW
J

(4)

where the corresponding derivative is

eYi e
OL(X,c) -1+ S e ifi=c
e
Y; SR else

! https://github.com/google-research /bert.
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It is known that the softmax probability e¥</ > i eYi € (0,1). Therefore, only
the index with ground truth label yields negative gradients

(—1,0) ifi=c
gi € {(O, 1) else ©)

Through the observation, the ground truth label can directly obtained and the
leakage process becomes more stable and efficient with the extracted label.

Choices of Gradient Distances Loss. In the original DLG algorithm, the
reconstruction optimizes the euclidean distances (also known as mean squared
error) between two gradients via L-BFGS optimizer.

arg ming e (o 1jn ||V F' (2, Y3 w) — Vi F (2, y; w) | |3 (7)

where x* indicates the original training input. Note that here the label y is
assumed known via the trick introduced above. Geiping et al. [12] suggests that
the magnitude appears not to be an important factor. Instead, the direction
of gradients matters more during the leaking process. They propose to recon-
struct based on cosine similarity {(z,y) = % and the optimization objective
becomes

< vwF(Iv Y ’lU), v’LUZ-71(1‘>k7 Y; U}) >
IV F (2, y; )| [V |[F (2%, y; w) |

argming g qjn 1 —

+aTV(x) (8)

The term TV (x) is a simple image prior total variation [20]. They include this as
an extra regularization to ensure the leaked results is realistic. Figure 11 shows

LeNet

Euclidean Cosine Input Euclidean Cosine

66.57
ResNet20
Euclidean Cosine Input Euclidean Cosine

-3.29 23.48 6.81 25.15

Fig. 11. Comparison between euclidean distance and cosine similarity on MNIST [15]
(Left) and LFW [9] (Right) datasets. The number shown below the Figure is the PSNR
(the larger the better).
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the comparison between two losses. The proposed objective (Eq.8) performs
better especially complex CNN architectures.

Different Initialization. Wei et al. [21] analyzes the convergence of DLG
on a single layer neural network, and proves that the convergence rate is

O(w), where T' is the attack iterations. According to the results, the
attack speed is closely related to the initialization of xy. The default way to
initialize dummy data is to sample from a uniform distribution. Though such
initialization works in most scenarios [12-14], it is not optimal and sometimes
may fail to converge. To address the issue, they study various initialization. The
ideal initialization is to use a natural image from the same classes as the private
training set. Though this initialization requires the least iterations to converge,
it needs extra prior about user data, which may not always be available. As an
alternative, the geometric initialization [22] is a more general approach to boost
up the attack.

4 Defense Strategies

4.1 Cryptology

Cryptology can be applied to prevent the leakage: Bonawitz et al. [23] designs
a secure aggregation protocol and Phong et al. [24] proposes to encrypt the
gradients before sending. Among all defenses, cryptology is the most secure one
and can perfectly defend the leakage in theory. However, most cryptology-based
defense strategies have their limitations. Secure aggregation [23] requires gra-
dients to be integers thus not compatible with most CNNs, secure outsourcing
computation [25] only supports limited operations, and homomorphic encryp-
tion [26] involves a large computation overhead and slows the whole pipeline.
Therefore, in practice we are more interested in those lightweight defense
strategies.

4.2 Noisy Gradients

One straightforward attempt to defend DLG is to add noise on gradients before
sharing. To evaluate, we experiment Gaussian and Laplacian noise (widely used
in differential privacy studies) distributions with variance range from 10~! to
10~* and central 0. From Fig.12a and b, we observe that the defense effect
mainly depends on the magnitude of distribution variance and less related to
the noise types. When variance is at the scale of 1074, the noisy gradients do
not prevent the leak. For noise with variance 1073, though with artifacts, the
leakage can still be performed. Only when the variance is larger than 1072 and
the noise is starting affect the accuracy, DLG will fail to execute. We also notice
that Laplacian tends to slightly a better defense when both at scale 1073.

Another common perturbation on gradients is half precision, which was ini-
tially designed to save memory footprints and widely used to reduce communi-
cation bandwidth. We test two popular half precision implementations IEEE
float16 (Single-precision floating-point format) and bfloatl6 (Brain Floating
Point [27], a truncated version of 32 bit float). Shown in Fig. 12¢, unfortunately,
neither half precision format is able to protect the training data.
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(d) Defend with gradient pruning.

Fig. 12. The effectiveness of various defense strategies. The corresponding accuracy is
attached in Table 2.

Table 2. The trade-off between accuracy and defendability. G: Gaussian noise, L:
Laplacian noise, FP: Floating number, Int: Integer quantization. v means it suc-
cessfully defends against DLG while X means fails to defend (whether the results are
visually recognizable). The accuracy is evaluated on CIFAR-100.

Original | G-107* | G-107% | G-1072 | G-10~" | FP-16

Accuracy 76.3% | 75.6% |73.3% |45.3% |<1% 76.1%
Defendability | — X X v v X

L-107* |L-107® L-107> L-107' | Int-8

Accuracy - 75.6% | 73.4% |46.2% | <1% 53.7%
Defendability | — X X 4 v v

4.3 Gradient Compression and Sparsification

We also experimented to defend by gradient compression [28,29]. Gradient com-
pression prunes small gradients to zero, therefore it’s more difficult for DLG to
match the gradients since the optimization target also gets pruned. We evaluate
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how different level of sparsities (range from 1% to 70%) defense the leakage.
When sparsity is 1% to 10%, it has almost no effects against DLG. When prune
ratio increases to 20%, as shown in Fig.12d, there are obvious artifact pixels
on the recover images. We notice that maximum tolerance of sparsity if around
20%. When pruning ratio is larger than 20%, the recovered images are no longer
visually recognizable and thus gradient compression successfully prevents the
leakage.

Previous work [28,29] show that gradients can be compressed by more than
300 times without losing accuracy. In which case, the sparsity is above 99%
and already exceeds the maximum tolerance of DLG (which is around 20%).
It suggests that compressing the gradients can be a good practical approach to
avoid the leakage.
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