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Preface

Machine learning (ML) has shown significant potential for revolutionizing many
important applications such as fraud detection in finance, medical diagnosis in
healthcare, or speech recognition in automatic customer service. The traditional
approach of training ML models requires large-scale datasets. However, with rising
public concerns for data privacy protection, such an approach is facing tremendous
challenges. Trust establishment techniques such as blockchains can help users ascertain
the origin of the data and audit their usage. Nevertheless, we still require a viable
approach to extract value from such trustworthy data and fairly distribute such values to
promote collaboration.

Federated learning (FL) is an emerging ML paradigm that aims to help the field of
ML adapt to and thrive under the new normal of heightened data privacy concerns and
distributively owned data silos. It offers a promising alternative to enable multiple
participants to train a globally shared model by exchanging model information without
exposing private data.

The protection of data privacy is often mandated by the regulatory requirements
(e.g., GDPR) in business-to-consumer scenarios. Violations of such regulations can
incur hefty fines amounting to the billions. Moreover, in business-to-business settings,
participants from the same business sectors may be competitors. This poses further
unique challenges for the design of federated incentives to fairly account for their
contributions and sustain collaboration in the presence of competition. Research works
pertaining data privacy protection and incentive mechanism design under FL settings
are crucial for the formation and healthy development of FL ecosystems. This is what
makes FL unique compared to existing distributed ML paradigms. Therefore, our book
focuses on these two main themes.

Although FL training processes are decentralized, without exposing private data,
one crux of data privacy protection is to avoid the shared model parameters being
exploited by potential adversaries. In this book, we have collected multiple studies on
privacy-preserving ML to show the readers potential approaches that can strengthen the
privacy aspect of FL.

Despite a wealth of literature on incentive mechanism design exists, the unique
settings and challenges facing FL requires meaningful extensions to these approaches.
In this book, we have gathered multiple studies on motivating participants to join FL
training through rewards (monetary or otherwise) in order to build a sustainable FL
ecosystem.

Knowing the theories and techniques about privacy preservation and incentivization
under FL is one thing, but successfully applying them in practice also requires non-
trivial effort. In this book, we have also included a number of studies on the application
of FL in important fields such as recommendation systems and banking.

This book consists of 19 chapters, each of which is a single-blind peer-reviewed
submission. Most of the chapters are extensions from workshop or conference



contributions. By providing a well-balanced collection of recent works on privacy,
incentive and the applications of FL, the book can help readers gain a more nuanced
understanding on how to build a robust and sustainable FL ecosystem and translate the
research outcomes into real-world impact. The book is therefore expected to be useful
for academic researchers, FL system developers as well as people interested in
advanced artificial intelligence topics.

Last but not least, we would like to express our gratitude towards our amazing
colleagues, specially Lanlan Chang and Jian Li from the Springer team. Without their
help, the publication of this book would not be possible.

September 2020 Qiang Yang
Lixin Fan
Han Yu

vi Preface
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Threats to Federated Learning

Lingjuan Lyu1(B), Han Yu2, Jun Zhao2, and Qiang Yang3,4
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Abstract. As data are increasingly being stored in different silos and
societies becoming more aware of data privacy issues, the traditional
centralized approach of training artificial intelligence (AI) models is fac-
ing strong challenges. Federated learning (FL) has recently emerged
as a promising solution under this new reality. Existing FL protocol
design has been shown to exhibit vulnerabilities which can be exploited
by adversaries both within and outside of the system to compromise
data privacy. It is thus of paramount importance to make FL system
designers aware of the implications of future FL algorithm design on
privacy-preservation. Currently, there is no survey on this topic. In this
chapter, we bridge this important gap in FL literature. By providing a
concise introduction to the concept of FL, and a unique taxonomy cover-
ing threat models and two major attacks on FL: 1) poisoning attacks and
2) inference attacks, we provide an accessible review of this important
topic. We highlight the intuitions, key techniques as well as fundamental
assumptions adopted by various attacks, and discuss promising future
research directions towards more robust privacy preservation in FL.

Keywords: Federated learning · Attacks · Privacy · Robustness

1 Introduction

As computing devices become increasingly ubiquitous, people generate huge
amounts of data through their day to day usage. Collecting such data into cen-
tralized storage facilities is costly and time consuming. Another important con-
cern is data privacy and user confidentiality as the usage data usually contain
sensitive information [1]. Sensitive data such as facial images, location-based
services, or health information can be used for targeted social advertising and
recommendation, posing the immediate or potential privacy risks. Hence, private
data should not be directly shared without any privacy consideration. As soci-
eties become increasingly aware of privacy preservation, legal restrictions such
c© Springer Nature Switzerland AG 2020
Q. Yang et al. (Eds.): Federated Learning, LNAI 12500, pp. 3–16, 2020.
https://doi.org/10.1007/978-3-030-63076-8_1
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Table 1. Taxonomy for horizontal federated learning (HFL).

HFL Number of participants FL training participation Technical capability

H2B Small Frequent High

H2C Large Not frequent Low

as the General Data Protection Regulation (GDPR) are emerging which makes
data aggregation practices less feasible [48].

Traditional centralized machine learning (ML) cannot support such ubiqui-
tous deployments and applications due to infrastructure shortcomings such as
limited communication bandwidth, intermittent network connectivity, and strict
delay constraints [26]. In this scenario, federated learning (FL) which pushes
model training to the devices from which data originate emerged as a promising
alternative ML paradigm [35]. FL enables a multitude of participants to con-
struct a joint ML model without exposing their private training data [12,35]. It
can handle unbalanced and non-independent and identically distributed (non-
IID) data which naturally arise in the real world [34]. In recent years, FL has
benefited a wide range of applications such as next word prediction [34,36], visual
object detection for safety [29], etc.

1.1 Types of Federated Learning

Based on the distribution of data features and data samples among participants,
federated learning can be generally classified as horizontally federated learn-
ing (HFL), vertically federated learning (VFL) and federated transfer learning
(FTL) [47].

Under HFL, datasets owned by each participant share similar features but
concern different users [24]. For example, several hospitals may each store similar
types of data (e.g., demographic, clinical, and genomic) about different patients.
If they decide to build a machine learning model together using FL, we refer to
such a scenario as HFL. In this chapter, we further classify HFL into HFL to
businesses (H2B), and HFL to consumers (H2C). A comparison between H2B
and H2C is listed in Table 1. The main difference lies in the number of par-
ticipants, FL training participation level, and technical capability, which can
influence how adversaries attempt to compromise the FL system. Under H2B,
there are typically a handful of participants. They can be frequently selected
during FL training. The participants tend to possess significant computational
power and sophisticated technical capabilities [48]. Under H2C, there can be
thousands or even millions of potential participants. In each round of training,
only a subset of them are selected. As their datasets tend to be small, the chance
of a participant being selected repeatedly for FL training is low. They generally
possess limited computational power and low technical capabilities. An example
of H2C is Google’s GBoard application [36].

VFL is applicable to the cases in which participants have large overlaps
in the sample space but differ in the feature space, i.e., different participants
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hold different attributes of the same records [46]. VFL mainly targets business
participants. Thus, the characteristics of VFL participants are similar to those
of H2B participants.

FTL deals with scenarios in which FL participants have little overlap in both
the sample space and the feature space [48]. Currently, there is no published
research studying threats to FTL models.

1.2 Threats to FL

FL offers a privacy-aware paradigm of model training which does not require data
sharing and allows participants to join and leave a federation freely. Neverthe-
less, recent works have demonstrated that FL may not always provide sufficient
privacy guarantees, as communicating model updates throughout the training
process can nonetheless reveal sensitive information [8,37] even incur deep leak-
age [52], either to a third-party, or to the central server [2,36]. For instance, as
shown by [3], even a small portion of gradients may reveal information about
local data. A more recent work showed that the malicious attacker can com-
pletely steal the training data from gradients in a few iterations [52].

FL protocol designs may contain vulnerabilities for both (1) the (potentially
malicious) server, who can observe individual updates over time, tamper with
the training process and control the view of the participants on the global param-
eters; and (2) any participant who can observe the global parameter, and con-
trol its parameter uploads. For example, malicious participants can deliberately
alter their inputs or introduce stealthy backdoors into the global model. Such
attacks pose significant threats to FL, as in centralized learning only the server
can violate participants’ privacy, but in FL, any participant may violate the

Fig. 1. A typical FL training process, in which both the (potentially malicious) FL
server/aggregator and malicious participants may compromise the FL system.
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privacy of other participants in the system, even without involving the server.
Therefore, it is important to understand the principles behind these attacks.
Existing survey papers on FL mostly focused on the broad aspect of how to
make FL work [23,27,47]. In this chapter, we survey recent advances in threats
to compromise FL to bridge this important gap in the artificial intelligence (AI)
research community’s understanding in this topic. In particular, we focus on two
specific threats initiated by the insiders on FL systems: 1) poisoning attacks that
attempt to prevent a model from being learned at all, or to bias the model to
produce inferences that are preferable to the adversary; and 2) inference attacks
that target participant privacy. The properties of these attacks are summarized
in Table 2.

Table 2. A summary of attacks against server-based FL.

Attack

type

Attack targets Attacker role FL scenario Attack complexity

Model Training

data

Participant Server H2B H2C Attack iteration Auxiliary

knowledge

requiredOne round Multiple rounds

Data

poisoning

YES NO YES NO YES YES YES YES YES

Model

poisoning

YES NO YES NO YES NO YES YES YES

Infer class

representa-

tives

NO YES YES YES YES NO NO YES YES

Infer mem-

bership

NO YES YES YES YES NO NO YES YES

Infer

properties

NO YES YES YES YES NO NO YES YES

Infer

training

inputs and

labels

NO YES NO YES YES NO NO YES NO

2 Threat Models

Before reviewing attacks on FL, we first present a summary of the threat models.

2.1 Insider v.s. Outsider

Attacks can be carried out by insiders and outsiders. Insider attacks include
those launched by the FL server and the participants in the FL system. Out-
sider attacks include those launched by the eavesdroppers on the communication
channel between participants and the FL server, and by users of the final FL
model when it is deployed as a service.

Insider attacks are generally stronger than the outsider attacks, as it strictly
enhances the capability of the adversary. Due to this stronger behavior, our
discussion of attacks against FL will focus primarily on the insider attacks,
which can take one of the following three general forms:
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1. Single attack: a single, non-colluding malicious participant aims to cause the
model to miss-classify a set of chosen inputs with high confidence [4,7];

2. Byzantine attack: the byzantine malicious participants may behave com-
pletely arbitrarily and tailor their outputs to have similar distribution as
the correct model updates, making them difficult to detect [11,14,15,40,49];

3. Sybil attack: the adversaries can simulate multiple dummy participant
accounts or select previously compromised participants to mount more pow-
erful attacks on FL [4,17].

2.2 Semi-honest v.s. Malicious

Under the semi-honest setting, adversaries are considered passive or honest-but-
curious. They try to learn the private states of other participants without devi-
ating from the FL protocol. The passive adversaries are assumed to only observe
the aggregated or averaged gradient, but not the training data or gradient of
other honest participants. Under the malicious setting, an active, or malicious
adversary tries to learn the private states of honest participants, and deviates
arbitrarily from the FL protocol by modifying, re-playing, or removing mes-
sages. This strong adversary model allows the adversary to conduct particularly
devastating attacks.

2.3 Training Phase v.s. Inference Phase

Attacks at training phase attempt to learn, influence, or corrupt the FL model
itself [9]. During training phase, the attacker can run data poisoning attacks
to compromise the integrity of training dataset collection, or model poisoning
attacks to compromise the integrity of the learning process. The attacker can
also launch a range of inference attacks on an individual participant’s update or
on the aggregate of updates from all participants.

Attacks at inference phase are called evasion/exploratory attacks [5]. They
generally do not tamper with the targeted model, but instead, either cause it
to produce wrong outputs (targeted/untargeted) or collect evidence about the
model characteristics. The effectiveness of such attacks is largely determined by
the information that is available to the adversary about the model. Inference
phase attacks can be classified into white-box attacks (i.e. with full access to the
FL model) and black-box attacks (i.e. only able to query the FL model). In FL,
the model maintained by the server not only suffers from the same evasion attacks
as in the general ML setting when the target model is deployed as a service, the
model broadcast step in FL renders the model accessible to any malicious client.
Thus, FL requires extra efforts to defend against white-box evasion attacks. In
this survey, we omit the discussion of inference phase attacks, and mainly focus
on the training phase attacks.

3 Poisoning Attacks

Depending on the attacker’s objective, poisoning attacks can be either a) random
attacks and b) targeted attacks [22]. Random attacks aim to reduce the accuracy
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of the FL model, whereas targeted attacks aim to induce the FL model to output
the target label specified by the adversary. Generally, targeted attacks is more
difficult than random attacks as the attacker has a specific goal to achieve.
Poisoning attacks during the training phase can be performed on the data or on
the model. Figure 2 shows that the poisoned updates can be sourced from two
poisoning attacks: (1) data poisoning attack during local data collection; and (2)
model poisoning attack during local model training process. At a high level, both
poisoning attacks attempt to modify the behavior of the target model in some
undesirable way. If adversaries can compromise the FL server, then they can
easily perform both targeted and untargeted poisoning attacks on the trained
model.

Fig. 2. Data v.s. model poisoning attacks in FL.

3.1 Data Poisoning

Data poisoning attacks largely fall in two categories: 1) clean-label [42] and 2)
dirty-label [19]. Clean-label attacks assume that the adversary cannot change
the label of any training data as there is a process by which data are certified
as belonging to the correct class and the poisoning of data samples has to be
imperceptible. In contrast, in dirty-label poisoning, the adversary can introduce
a number of data sample it wishes to miss-classify with the desired target label
into the training set.

One common example of dirty-label poisoning attack is the label-flipping
attack [10,17]. The labels of honest training examples of one class are flipped to
another class while the features of the data are kept unchanged. For example, the
malicious participants in the system can poison their dataset by flipping all 1 s
into 7 s. A successful attack produces a model that is unable to correctly classify
1 s and incorrectly predicts them to be 7 s. Another weak but realistic attack
scenario is backdoor poisoning [19]. Here, an adversary can modify individual
features or small regions of the original training dataset to embed backdoors
into the model, so that the model behaves according to the adversary’s objec-
tive if the input contains the backdoor features (e.g., a stamp on an image).
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However, the performance of the poisoned model on clean inputs is not affected.
In this way, the attacks are harder to be detected.

Data poisoning attacks can be carried out by any FL participant. The impact
on the FL model depends on the extent to which participants in the system
engage in the attacks, and the amount of training data being poisoned. Data
poisoning is less effective in settings with fewer participants like H2C.

3.2 Model Poisoning

Model poisoning attacks aim to poison local model updates before sending them
to the server or insert hidden backdoors into the global model [4].

In targeted model poisoning, the adversary’s objective is to cause the FL
model to miss-classify a set of chosen inputs with high confidence. Note that
these inputs are not modified to induce miss-classification at test time as under
adversarial example attacks [45]. Rather, the miss-classification is a result of
adversarial manipulations of the training process. Recent works have investigated
poisoning attacks on model updates in which a subset of updates sent to the
server at any given iteration are poisoned [7,11]. These poisoned updates can be
generated by inserting hidden backdoors, and even a single-shot attack may be
enough to introduce a backdoor into a model [4].

Bhagoji et al. [7] demonstrated that model poisoning attacks are much more
effective than data poisoning in FL settings by analyzing a targeted model poi-
soning attack, where a single, non-colluding malicious participant aims to cause
the model to miss-classify a set of chosen inputs with high confidence. To increase
attack stealth and evade detection, they use the alternating minimization strat-
egy to alternately optimize for the training loss and the adversarial objective,
and use parameter estimation for the benign participants’ updates. This adver-
sarial model poisoning attack can cause targeted poisoning of the FL model
undetected.

In fact, model poisoning subsumes data poisoning in FL settings, as data
poisoning attacks eventually change a subset of updates sent to the model at
any given iteration [17]. This is functionally identical to a centralized poisoning
attack in which a subset of the whole training data is poisoned. Model poison-
ing attacks require sophisticated technical capabilities and high computational
resources. Such attacks are generally less suitable for H2C scenarios, but more
likely to happen in H2B scenarios.

4 Inference Attacks

Exchanging gradients in FL can result in serious privacy leakage [37,41,44,52].
As illustrated in Fig. 3, model updates can leak extra information about the
unintended features about participants’ training data to the adversarial partic-
ipants, as deep learning models appear to internally recognize many features of
the data that are not apparently related with the main tasks. The adversary can
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also save the snapshot of the FL model parameters, and conduct property infer-
ence by exploiting the difference between the consecutive snapshots, which is
equal to the aggregated updates from all participants less the adversary (Fig. 4).

Fig. 3. Attacker infers information unrelated to the learning task.

Fig. 4. Attacker infers gradients from a batch of training data.

The main reason is that the gradients are derived from the participants’ pri-
vate data. In deep learning models, gradients of a given layer are computed using
this layer’s features and the error from the layer above. In the case of sequential
fully connected layers, the gradients of the weights are the inner products of the
error from the layer above and the features. Similarly, for a convolutional layer,
the gradients of the weights are convolutions of the error from the layer above
and the features [37]. Consequently, observations of model updates can be used
to infer a significant amount of private information, such as class representatives,
membership as well as properties associated with a subset of the training data.
Even worse, an attacker can infer labels from the shared gradients and recover
the original training samples without requiring any prior knowledge about the
training set [52].
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4.1 Inferring Class Representatives

Hitaj et al. [21] devised an active inference attack called Generative Adversarial
Networks (GAN) attack on deep FL models. Here, a malicious participant can
intentionally compromise any other participant. The GAN attack exploits the
real-time nature of the FL learning process that allows the adversarial participant
to train a GAN that generates prototypical samples of the targeted training data
which were meant to be private. The generated samples appear to come from
the same distribution as the training data. Hence, GAN attack is not targeted
at reconstructing actual training inputs, but only class representatives. It should
be noted that GAN attack assumes that the entire training corpus for a given
class comes from a single participant, and only in the special case where all class
members are similar, GAN-constructed representatives are similar to the training
data. This resembles model inversion attacks in the general ML settings [16].
However, these assumptions may be less practical in FL. Moreover, GAN attack
is less suitable for H2C scenarios, as it requires large computation resources.

4.2 Inferring Membership

Given an exact data point, membership inference attacks aim to determine if it
was used to train the model [43]. For example, an attacker can infer whether a
specific patient profile was used to train a classifier associated with a disease.
FL presents interesting new avenues for such attacks. In FL, the adversary’s
objective is to infer if a particular sample belongs to the private training data of a
single participant (if target update is of a single participant) or of any participant
(if target update is the aggregate). For example, the non-zero gradients of the
embedding layer of a deep learning model trained on natural-language text reveal
which words appear in the training batches used by the honest participants
during FL model training. This enables an adversary to infer whether a given
text appeared in the training dataset [37].

Attackers in an FL system can conduct both active and passive membership
inference attacks [37,38]. In the passive case, the attacker simply observes the
updated model parameters and performs inference without changing anything in
the local or global collaborative training procedure. In the active case, however,
the attacker can tamper with the FL model training protocol and perform a
more powerful attack against other participants. Specifically, the attacker shares
malicious updates and forces the FL model to share more information about
the participants’ local data the attacker is interested in. This attack, called
gradient ascent attack [38], exploits the fact that SGD optimization updates
model parameters in the opposite direction of the gradient of the loss.

4.3 Inferring Properties

An adversary can launch both passive and active property inference attacks
to infer properties of other participants’ training data that are independent of
the features that characterize the classes of the FL model [37]. Property infer-
ence attacks assume that the adversary has auxiliary training data correctly
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labelled with the property he wants to infer. An passive adversary can only
observe/eavesdrop the updates and perform inference by training a binary prop-
erty classifier. An active adversary can use multi-task learning to trick the FL
model into learning a better separation for data with and without the property,
and thus extract more information. An adversarial participant can even infer
when a property appears and disappears in the data during training (e.g., iden-
tifying when a person first appears in the photos used to train a gender classifier).
The assumption in property inference attacks may prevent its applicability in
H2C.

4.4 Inferring Training Inputs and Labels

The most recent work called Deep Leakage from Gradient (DLG) proposed an
optimization algorithm that can obtain both the training inputs and the labels in
just a few iterations [52]. This attack is much stronger than previous approaches.
It can recover pixel-wise accurate original images and token-wise matching orig-
inal texts. [50] presented an analytical approach called Improved Deep Leakage
from Gradient (iDLG), which can certainly extract labels from the shared gra-
dients by exploiting the relationship between the labels and the signs of cor-
responding gradients. iDLG is valid for any differentiable model trained with
cross-entropy loss over one-hot labels, which is the general case for classification.

Inference attacks generally assume that the adversaries possess sophisticated
technical capabilities and large computational resources. In addition, adversaries
must be selected for many rounds of FL training. Thus, it is not suitable for
H2C scenarios, but more likely under H2B scenarios. Such attacks also highlight
the need for protecting the gradients being shared during FL training, possibly
through mechanisms such as homomorphic encryption [48].

5 Discussions and Promising Directions

There are still potential vulnerabilities which need to be addressed in order
to improve the robustness of FL systems. In this section, we outline research
directions which we believe are promising.

Curse of Dimensionality: Large models, with high dimensional parameter
vectors, are particularly susceptible to privacy and security attacks [13]. Most
FL algorithms require overwriting the local model parameters with the global
model. This makes them susceptible to poisoning and backdoor attacks, as the
adversary can make small but damaging changes in the high-dimensional models
without being detected. Thus, sharing model parameters may not be a strong
design choice in FL, it opens all the internal state of the model to inference
attacks, and maximizes the model’s malleability by poisoning attacks. To address
these fundamental shortcomings of FL, it is worthwhile to explore whether shar-
ing model updates is essential. Instead, sharing less sensitive information (e.g.,
SIGNSGD [6]) or only sharing model predictions [13] in a black-box manner may
result in more robust privacy protection in FL.
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Vulnerabilities to Free-Riding Participants: In FL system, there may exist
free-riders in the collaborative learning system, who aim to benefit from the
global model, but do not want to contribute any real information. The main
incentives for free-rider to submit fake information may include: (1) one partic-
ipant may not have any data to train a local model; (2) one participant is too
concerned about its privacy to release any information that may compromise
privacy; (3) one participant may not want to consume any local computation
power to train any model [32,33]. In the current FL paradigm [34], all par-
ticipants receive the same federated model at the end of collaborative model
training regardless of their contributions. This makes the paradigm vulnerable
to free-riding participants [28,32,33].

Threats to VFL: In VFL [20], there may only be one participant who owns
labels for the given learning task. It is unclear if all the participants have equal
capability of attacking the FL model, and if threats to HFL can work on VFL.
Most of the current threats still focus on HFL. Thus, threats on VFL, which is
important to businesses, are worth exploring.

FL with Heterogeneous Architectures: Sharing model updates is typically
limited only to homogeneous FL architectures, i.e., the same model is shared
with all participants. It would be interesting to study how to extend FL to
collaboratively train models with heterogeneous architectures [13,18,25], and
whether existing attacks and privacy techniques can be adapted to this paradigm.

Decentralized Federated Learning: Decentralized FL where no single server
is required in the system is currently being studied [32,33,36,48]. This is a
potential learning framework for collaboration among businesses which do not
trust any third party. In this paradigm, each participant could be elected as a
server in a round robin manner. It would be interesting to investigate if existing
threats on server-based FL still apply in this scenario. Moreover, it may open new
attack surfaces. One possible example is that the last participant who was elected
as the server is more likely to effectively contaminate the whole model if it chooses
to insert backdoors. This resembles the fact in server-based FL models which are
more vulnerable to backdoors in later rounds of training nearing convergence.
Similarly, if decentralized training is conducted in a “ring all reduce” manner,
then any malicious participant can steal the training data from its neighbors.

Weakness of Current Defense: FL with secure aggregation are especially
susceptible to poisoning attacks as the individual updates cannot be inspected. It
is still unclear if adversarial training can be adapted to FL, as adversarial training
was developed primarily for IID data, and it is still a challenging problem how
it performs in non-IID settings. Moreover, adversarial training typically requires
many epochs, which may be impractical in H2C. Another possible defense is
based on differential privacy (DP) [30–33,36,51]. Record-level DP bounds the
success of membership inference, but does not prevent property inference applied
to a group of training records [37]. Participant-level DP, on the other hand, is
geared to work with thousands of users for training to converge and achieving
an acceptable trade-off between privacy and accuracy [36]. The FL model fails
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to converge with a small number of participants, making it unsuitable for H2B
scenarios. Furthermore, DP may hurt the accuracy of the learned model [39],
which is not appealing to the industry. Further work is needed to investigate if
participant-level DP can protect FL systems with few participants.

Optimizing Defense Mechanism Deployment: When deploying defense
mechanisms to check if any adversary is attacking the FL system, the FL server
will need to incur extra computational cost. In addition, different defense mech-
anisms may have different effectiveness against various attacks, and incur dif-
ferent cost. It is important to study how to optimize the timing of deploying
defense mechanisms or the announcement of deterrence measures. Game theo-
retic research holds promise in addressing this challenge.

Federated learning is still in its infancy and will continue to be an active
and important research area for the foreseeable future. As FL evolves, so will
the attack mechanisms. It is of vital importance to provide a broad overview
of current attacks on FL so that future FL system designers are aware of the
potential vulnerabilities in their designs. This survey serves as a concise and
accessible overview of this topic, and it would greatly help our understanding of
the threat landscape in FL. Global collaboration on FL is emerging through a
number of workshops in leading AI conferences1. The ultimate goal of developing
a general purpose defense mechanism robust against various attacks without
degrading model performance will require interdisciplinary effort from the wider
research community.
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Abstract. Exchanging model updates is a widely used method in the
modern federated learning system. For a long time, people believed that
gradients are safe to share: i.e., the gradients are less informative than
the training data. However, there is information hidden in the gradients.
Moreover, it is even possible to reconstruct the private training data from
the publicly shared gradients. This chapter discusses techniques that
reveal information hidden in gradients and validate the effectiveness on
common deep learning tasks. It is important to raise people’s awareness
to rethink the gradient’s safety. Several possible defense strategies have
also been discussed to prevent such privacy leakage.

Keywords: Federated Learning · Privacy leakage · Gradients’ safety

1 Introduction

Federated Learning (FL), has gained increasing attention as both data require-
ments and privacy concerns continue to rise [1–3]. In the Federated Learn-
ing system, the user data is not shared across the network and only model
updates/gradients are transmitted. Therefore, such kind of distributed learn-
ing has been used in real-world applications where user privacy is crucial, e.g.,
hospital data [16] and text predictions on mobile devices [3]. Ideally, any such
approach is considered as safe, as the gradients are thought less informative
than the original data. Shown in Fig. 1 below, it is hard to infer from a list of
numerical tensor values that the original image is a cat.

[[ 0.75,  1.26,  0.56,  ..., -0.19],
 [-0.99, -0.37, -0.93,  ...,  2.54],
 [ 0.06, -0.96,  0.78,  ..., -0.85],
 ...,
 [-0.55, -0.55, -1.31,  ...,  0.32]]

cat

(a) Training data and label (b) Corresponding gradients

Fig. 1. It is easy to compute gradients from the training, but not intuitive to perform
vice versa. As shown in the Figure, human cannot read the cat (either image or label)
from raw numerical values.

c© Springer Nature Switzerland AG 2020
Q. Yang et al. (Eds.): Federated Learning, LNAI 12500, pp. 17–31, 2020.
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FL provides default participant privacy because only the gradients are shared
across while the sensitive training never leaves the local device. However, is the
protocol really safe? Do the gradients contain zero information about training
data? If not, then how much information can we recover from them? In this
section, we will explore the hidden information in the gradients and rethink the
safety of gradients sharing scheme.

2 Information Leakage from Gradients

Parameter Server

Flower Cat

Leak∇W

∇W

?

(a) Federated learning with a centralized
server

∇W

Flower Cat

Leak∇W ?

(b) Federated learning without a centralized
server

Fig. 2. The information leakage in two types of federated learning. The little red demon
appears in the location where the leakage might happen.

From a privacy perspective, we are interested in possible leaks against an honest-
but-curious server: It faithfully aggregates the updates from participants and
delivers the updated model back, but it may be curious about the participant
information and attempt to reveal it from the received updates. To study the
question, we consider a key question: What can be inferred about a par-
ticipant’s training dataset from the gradients shared during federated
learning?

Given that gradients and model updates are mathematically equivalent, the
local model updates can easily be obtained with the gradients and the learn-
ing rate. In the following discussion, gradient-based aggregation is used without
loss of generality. We care what kind of information can be inferred from the
gradients. Such an attack happens in the parameter server for centralized fed-
erated learning (Fig. 2a), or any neighbours in decentralized federated learning
(Fig. 2b). We focus on centralized federated learning because it is more widely
used [4,5]. In this setting, several studies have been made to show that it is
actually possible to infer some hidden information from the gradients.
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Partial Leakage! 

∈ training set ?
Cat

Attack(F,W, ∇W, , )Cat

Flower Cat Dog

∇W

Fig. 3. Membership inference [6] in the federated setting. It uses the predicted results
and ground truth labels to infer whether the record was in or out of the victim training
datasets.

Membership-Inference. [6] is the basic privacy violation in this setting: Given
an exact data point and pre-trained model, determine whether the data point
was used to train the model. In Federated Learning, the gradients are sent to
the server every round and the server thus knows the trained model based on
local data. With membership-inference, the server is able to infer whether a
specific data point exists in the local training set or not. In some cases, it can
directly lead to privacy breaches. For example, finding that a specific patient’s
clinical record was used to train a model associated with a disease can reveal
the fact that the patient has the disease. In practice, Melis et al . [7] shows that
a malicious attacker can convincingly (precision 0.99) tell whether a specific
location profile was used to train a gender classifier on the FourSquare location
dataset [8] (Fig. 3).

Does training set
contain images with 

Attack(F,W, ∇W, )Cat∇W

Flower Cat Dog

Partial Leakage! 

Fig. 4. Property inference [7] in the federated setting. It infers whether the victim’s
training set contains a data point with certain property.

Property-Inference. [7] is a similar attack: Given a pre-trained model, deter-
mine whether the corresponding training set contains a data point with certain
properties. It is worth noting that the property is not necessarily related to the
main task. When a model is trained to recognize gender or race on the LFW
dataset [9], the property-inference can not only reveal the people’s race and gen-
der in the training set, but also tell they wear glasses or not. In practice, this also
brings the potential risk of privacy leakage. It is easy to identify the patient if
knowing his/her age, gender, race and glass-wearing, even the name and clinical
record remain hidden.
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Fig. 5. Model inversion [10] in the federated setting. It first trains a GAN model from
model updates and attacker’s own training data. Then it uses the GAN model to
generate look alike images from the victim’s updates.

Model Inversion. [10] is another powerful attack that leaks the participant
privacy. The attack exploits the real-time nature of the learning process and
allows the adversary to train a Generative Adversarial Network (GAN) [11] to
generate a prototypical sample of the targeted training set, which was meant to
private. As shown in Fig. 5, the leaked images are almost identical as the original
one, because the samples generated by the GAN are intended to come from the
same distributions as the training data. This attack is powerful especially when
all class members look alike (e.g., face recognition).

The three attack strategies above reveal a certain level of information hidden
in the gradients, but they all have their own limitations. Membership inference
requires an existing data record to perform the attack. This may be hard to get
when the input data is not text (e.g., image, voice). Property inference relaxes
the constraints and only require a label to execute the leakage. However, the
attack results only reduce the range and cannot guarantee to find a record-
level identity. As for model inversion, though it can directly generate synthetic
images from the statistical distribution of training data, the results are look-
alike alternatives (not the original data) and only works when all class members
are similar. Here we consider a more challenging question: Without prior about
the training data, can we completely steal the training data from gradients?
Conventional wisdom suggests that the answer is no, but we will show it is
actually possible.

3 Training Data Leakage from Gradients

Full Leakage! 
DLG(F,W, ∇W )∇W

Flower Cat Dog Flower Cat Dog

Original training data

Fig. 6. Deep Leakage in federated settings. Given model updates/gradients received
from victim, it aims to reserve the gradients and fully reconstructs the private training
set.
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While information leakage already intrudes participants’ privacy in Federated
Learning, we are curious about the limit of the leakage – can we completely
reconstruct the private training set from shared information? Federated Learn-
ing aims to train a robust model without sharing data, but now knowing the
gradients is knowing the data. This question is critical as it raises a serve chal-
lenge to the fundamental privacy assumption. In this section, we will study the
challenge and demonstrate the potential risks brought by such leakage (Fig. 6).

3.1 Partial Leakage in Specific Layers

To begin with, we start with several special layers. The first one is Fully Con-
nected (FC) layers. FC layers are widely used in both Neural Networks (NN) and
Convolutional Neural Networks (CNN). For a biased FC layer, we can show that
the corresponding input can be computed from the gradients regardless where
the layer’s position is and the types of preceding and succeeding layers.

Lemma 1. Let a neural network contain a biased fully-connected layer, i.e. for
the layer’s input X ∈ R

n, its output Y ∈ R
m is calculated as

Y = WX + B (1)

with weight W ∈ R
m×n and bias B ∈ R

m. The input X can reconstructed from
dL
dW and dL

dB if there exists index i s.t. dL
d(Bi)

�= 0.

Proof 1. It is know that dL
d(Bi)

= dL
dYi

d(Yi)
d(Wi)

= XT . Therefore

dL

d(Wi)
=

dL

d(Yi)
· d(Yi)
d(Wi)

=
dL

d(Bi)
· XT (2)

where the Yi, Wi and Bi denote the ith row of output Y , weights W and biases
B. Thus X can be reconstructed as long as dL

d(Bi)
�= 0. ��

The knowledge of the derivative w.r.t. the bias dL
dB is essential for recon-

structing the layer’s input. To make the leakage more general, Geiping et al . [12]
further proved that even without biases, the input could also be reconstructed
as long as a proper activation follows (e.g., ReLU). The proof procedure is sim-
ilar and no optimization is required to reconstruct the training set from a fully
connected network.

Even without inverting the derivatives, the gradients from some layers
already indicate certain information about the input data. For example, the
Embedding layer in language tasks only produces gradients for words appeared
in the data, which reveals what words have been used in other participant’s
training set [7]. Another example is the Cross Entropy layers in classification
tasks, which only generate negative gradients for class marked as corrected in
the training set [13]. This property implies what the ground truth label is.

However, it is not trivial to extend to Convolution layers (CONV), where
the dimension of features is far larger than the size of gradients. The analyti-
cal reconstruction like Lemma 1 is no longer practical. A more general attack
algorithm is required for modern convolutional neural networks.
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[0.2, 0.7, 0.1]Differentiable Model Pred Loss

[0, 1, 0]Differentiable Model 
F(x, W) Pred Loss

Normal Participant

Malicious Attacker Try to match

∂D/∂X ∂D/∂Y
D = ||∇W − ∇W ||2

∇W

∇W

Fig. 7. The overview of DLG algorithm. Variables to be updated are marked with a
bold border. While normal participants calculate ∇W to update parameter using its
private training set, the malicious attacker updates its dummy inputs and labels to
minimize the gradients distance. When the optimization finishes, the evil user is able
to steal the training set from honest participants.

3.2 Complete Leakage from Gradients

To overcome the limitation, Zhu et al . [14] proposes an iterative method to
fully reconstruct the training set, which was meant to be local and private,
by only intercepting the corresponding gradients on the same neural network.
The technique is named as Deep Leakage from Gradients (DLG), because of the
“deep” threat it raises to user data’s privacy.

DLG is a gradient-based feature reconstruction attack. The attacker receives
the gradient update ∇Wt,k from other participant k at round t, and aims to
steal participant k’s training set (xt,k,yt,k) from the shared the information.
Figure 7 presents how it works for federated learning on images: The algorithm
first initializes a dummy image with the same resolution as real one’s and a
dummy label with probability representation followed by a softmax layer. DLG
runs a test of this attack on the intermediate local model to compute “dummy”
gradients. Note the model architecture F () and weights Wt are shared by default
for most federated learning applications.

Then a gradient distance loss between dummy gradients and real ones is cal-
culated as the optimization objective. The key point of this reconstruction attack
is to iteratively refine the dummy image and label so that the attacker’s dummy
gradients will approximate the actual gradients. When the gradient construction
loss is minimized, the dummy data will also convergence to the training data
with high confidence (examples shown in Sect. 3.3).

x′∗,y′∗ = argminx′,y′ ||∇W ′ − ∇W ||2 = argminx′,y′ ||∂�(F (x′, W ),y′)
∂W

− ∇W ||2 (3)
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Algorithm 1. Deep Leakage from Gradients for Masked Language Model
Input: F (): Differentiable machine learning model; W : parameter weights; ∇W :

gradients calculated by training data; η: learning rate used for DLG optimization.
Output: the original private training data x and label y

1: procedure DLG(F , W , ∇W )
2: x′

1 ← N (0, 1) , y′
1 ← N (0, 1) � Initialize dummy inputs and labels.

3: for i ← 1 to n do
4: L′

i = softmax(y′
i)

5: ∇W ′
i ← ∂�(F (x′

i, W ),L′
i)/∂Wt � Compute dummy gradients.

6: Di ← ||∇W ′
i − ∇W ||2

7: x′
i+1 ← x′

i − η∇x′
i
Di � Update data to match gradients.

8: y′
i+1 ← y′

i − η∇y′
i
Di � Update label to match gradients.

9: end for
10: return x′

n+1,y
′
n+1

11: end procedure

Note that the distance ||∇W ′ − ∇W ||2 is differentiable w.r.t dummy inputs
x′ and labels y′ can thus be optimized using standard gradient-based methods.
Therefore this optimization requires 2nd order derivatives. A mild assumption
that F is twice differentiable is made here. This holds for the majority of modern
machine learning models (e.g., most neural networks) and tasks.

Iters=0 Iters=10 Iters=50 Iters=100 Iters=500 Melis [7] Ground Truth

Fig. 8. The visualization showing the deep leakage on images from MNIST [15], CIFAR-
100 [16], SVHN [17] and LFW [9] respectively. Our algorithm fully recovers the four
images while previous work only succeeds on simple images with clean backgrounds.

3.3 DLG Attack on Image Classification

Given an image containing objects, images classification aims to determine
the class of the item. The power of DLG attack is first evaluated on modern
CNN architectures ResNet [18] and pictures from MNIST [15], CIFAR-100 [16],
SVHN [17] and LFW [9]. Note that two changes have been made here: (1)
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Fig. 9. Layer-i means MSE between real
and dummy gradients of ith layer. When
the gradients’ distance gets smaller, the
MSE between leaked image and the orig-
inal image also gets smaller.
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Fig. 10. Compassion of the MSE of
images leaked by different algorithms
and the ground truth. DLG method
consistently outperforms previous app-
roach by a large margin.

For model architecture, all ReLU operators are replaced with Sigmoid and the
strides in CONV are removed, as our algorithm requires the model to be twice-
differentiable (2) For image labels, instead of directly optimizing the discrete
categorical values, we random initialize a vector with shape N × C where N is
the batch size and C is the number of classes, and then take its softmax output
as the classification label for optimization and DLG attack.

The leaking processes are visualized in Fig. 8. All DLG attacks start with
random Gaussian noise (first column) and tried to match the gradients produced
by the dummy data and real ones. As shown in Fig. 9, minimizing the distance
between gradients also reduces the gap between data and makes the dummy data
gradually converge to the original one. It is observed that monochrome images
with a clean background (MNIST) are easiest to recover, while complex images
like face (LFW) take more iterations to recover (Fig. 8). When the optimization
finishes, the reconstructed results are almost identical to ground truth images,
despite few negligible artifact pixels.

We compare the effectiveness of DLG attack with the GAN Inversion
results [7] (discussed in Sect. 2) in Fig. 8 (visually) and Fig. 10 (numerically).
The previous GAN based inversion requires the class label to be known and
only works well on MNIST. On the 3rd row and 6th column of Fig. 8, though
the revealed image on SVHN is still visually recognizable as digit “9”, it is far
different from the original training image. The cases are even worse on LFW and
totally collapse on CIFAR. Figure 10 shows a numerical comparison by perform-
ing leaking and measuring the mean square error (MSE) on all dataset images.
Images are normalized to the range [0, 1] and DLG appears much better results
(<0.03 v.s. previous >0.2) on all four datasets.
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3.4 DLG Attack on Masked Language Model

Table 1. The progress of deep leakage on language tasks.

Example 1 Example 2 Example 3

Initial Sentence tilting fill given
**less word **itude
fine **nton
overheard living
vegas **vac **vation
*f forte **dis
cerambycidae ellison
**don yards marne
**kali

toni **enting
asbestos cutler km
nail **oof **dation
**ori righteous **xie
lucan **hot **ery at
**tle ordered pa
**eit smashing proto

[MASK] **ry
toppled **wled
major relief dive
displaced **lice
[CLS] us apps
**face **bet

Iters = 10 tilting fill given
**less full solicitor
other ligue shrill
living vegas rider
treatment carry
played sculptures
lifelong ellison net
yards marne **kali

toni **enting
asbestos cutter km
nail undefeated
**dation hole
righteous **xie
lucan **hot **ery at
**tle ordered pa
**eit smashing proto

[MASK] **ry
toppled identified
major relief gin dive
displaced **lice doll
us apps **face
space

Iters = 20 registration,
volunteer
applications, at
student travel
application open
the; week of played;
child care will be
glare

we welcome
proposals for tutor
**ials on either core
machine denver
softly or topics of
emerging
importance for
machine learning

one **ry toppled
hold major ritual ’
dive annual
conference days
1924 apps novelist
dude space

Iters = 30 registration,
volunteer
applications, and
student travel
application open the
first week of
september. Child
care will be available

we welcome
proposals for tutor
**ials on either core
machine learning
topics or topics of
emerging
importance for
machine learning

we invite
submissions for the
thirty - third annual
conference on neural
information
processing systems

Original Text Registration,
volunteer
applications, and
student travel
application open the
first week of
September. Child
care will be available

We welcome
proposals for
tutorials on either
core machine
learning topics or
topics of emerging
importance for
machine learning

We invite
submissions for the
Thirty-Third
Annual Conference
on Neural
Information
Processing Systems
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For language tasks, DLG is evaluated on Masked Language Model (MLM)
task. In each sequence, 15% of the words are replaced with a [MASK] token and
MLM model attempts to predict the original value of the masked words from
a given context. BERT [19] is chosen as the backbone and all hyperparameters
are adopted from the official implementation1.

Different from vision tasks where RGB inputs are continuous values, lan-
guage models need to preprocess discrete words into embeddings. Therefore, on
language model DLG attack is applied on embedding space and the gradients
distance between dummy embeddings and real ones is minimized. After opti-
mization finishes, the original words are derived by finding the closest entry in
the embedding matrix reversely.

Table 1 exhibits the leaking history on three sentences selected from NeurIPS
conference page. Similar to the vision task, DLG attack starts with randomly
initialized embedding: The reconstructed results at iteration 0 is meaningless.
During the optimization, the gradients produced by dummy embedding gradu-
ally match the original data’s gradients and the dummy embeddings also con-
verges to the original data’s embeddings. In later iterations, part of the original
sequence appears. In example 3, at iteration 20, “annual conference” shows up
at iteration 30 and the leaked sentence is already close to the original one. When
DLG finishes, though there are few mismatches caused by the ambiguity in tok-
enizing, the main content is already fully leaked.

3.5 Extensions to DLG Attack

In Algorithm 1, many factors can affect the leakage results such as the data
initialization (line 2), the distance measurement between two gradients (line 6),
and the optimization method (line 7 & 8). Besides these, hyper-parameters in
Federated Learning like batch size and local steps also matters. In some cases,
DLG may fail to reveal (e.g., with a bad initialization). To improve the stability
of DLG, several approaches have been explored.

Leakage of Label Information on Classification Tasks. DLG attack is
based on the belief that there is a one-to-one mapping between gradients and
training data. Therefore if DLG does not discover the ground truth data, the
attack will fail to converge. For tasks with cross entropy loss, Zhao et al . [13] pro-
poses an analytical solution to extract the ground-truth labels from the shared
gradients. When the differentiable model is trained with one-hot supervisions,
the loss is computed as

L(X, c) = − log
eYc

∑
j eYj

(4)

where the corresponding derivative is

gi =
∂L(X, c)

∂Yi
=

⎧
⎨

⎩

−1 + eYi
∑

j eYj
, if i = c

eYi
∑

j eYj
, else

(5)

1 https://github.com/google-research/bert.

https://github.com/google-research/bert
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It is known that the softmax probability eYc/
∑

j eYj ∈ (0, 1). Therefore, only
the index with ground truth label yields negative gradients

gi ∈
{

(−1, 0) if i = c

(0, 1) else
(6)

Through the observation, the ground truth label can directly obtained and the
leakage process becomes more stable and efficient with the extracted label.

Choices of Gradient Distances Loss. In the original DLG algorithm, the
reconstruction optimizes the euclidean distances (also known as mean squared
error) between two gradients via L-BFGS optimizer.

arg minx∈[0,1]n ||∇wF (x, y;w) − ∇wF (x∗, y;w)||22 (7)

where x∗ indicates the original training input. Note that here the label y is
assumed known via the trick introduced above. Geiping et al . [12] suggests that
the magnitude appears not to be an important factor. Instead, the direction
of gradients matters more during the leaking process. They propose to recon-
struct based on cosine similarity l(x, y) = <x,y>

||x||||y|| and the optimization objective
becomes

arg minx∈[0,1]n 1 − < ∇wF (x, y;w),∇wF (x∗, y;w) >

||∇wF (x, y;w)||∇w||F (x∗, y;w)|| + αTV (x) (8)

The term TV (x) is a simple image prior total variation [20]. They include this as
an extra regularization to ensure the leaked results is realistic. Figure 11 shows

Input Input

0.82 66.57 37.82 29.85

Input Input

-3.29 23.48 6.81 25.15

Cosine

CosineCosine

CosineEuclidean

Euclidean

Euclidean

Euclidean
ResNet20

LeNet

Fig. 11. Comparison between euclidean distance and cosine similarity on MNIST [15]
(Left) and LFW [9] (Right) datasets. The number shown below the Figure is the PSNR
(the larger the better).
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the comparison between two losses. The proposed objective (Eq. 8) performs
better especially complex CNN architectures.

Different Initialization. Wei et al . [21] analyzes the convergence of DLG
on a single layer neural network, and proves that the convergence rate is
O( ||X0−X∗||22

T ), where T is the attack iterations. According to the results, the
attack speed is closely related to the initialization of x0. The default way to
initialize dummy data is to sample from a uniform distribution. Though such
initialization works in most scenarios [12–14], it is not optimal and sometimes
may fail to converge. To address the issue, they study various initialization. The
ideal initialization is to use a natural image from the same classes as the private
training set. Though this initialization requires the least iterations to converge,
it needs extra prior about user data, which may not always be available. As an
alternative, the geometric initialization [22] is a more general approach to boost
up the attack.

4 Defense Strategies

4.1 Cryptology

Cryptology can be applied to prevent the leakage: Bonawitz et al . [23] designs
a secure aggregation protocol and Phong et al . [24] proposes to encrypt the
gradients before sending. Among all defenses, cryptology is the most secure one
and can perfectly defend the leakage in theory. However, most cryptology-based
defense strategies have their limitations. Secure aggregation [23] requires gra-
dients to be integers thus not compatible with most CNNs, secure outsourcing
computation [25] only supports limited operations, and homomorphic encryp-
tion [26] involves a large computation overhead and slows the whole pipeline.
Therefore, in practice we are more interested in those lightweight defense
strategies.

4.2 Noisy Gradients

One straightforward attempt to defend DLG is to add noise on gradients before
sharing. To evaluate, we experiment Gaussian and Laplacian noise (widely used
in differential privacy studies) distributions with variance range from 10−1 to
10−4 and central 0. From Fig. 12a and b, we observe that the defense effect
mainly depends on the magnitude of distribution variance and less related to
the noise types. When variance is at the scale of 10−4, the noisy gradients do
not prevent the leak. For noise with variance 10−3, though with artifacts, the
leakage can still be performed. Only when the variance is larger than 10−2 and
the noise is starting affect the accuracy, DLG will fail to execute. We also notice
that Laplacian tends to slightly a better defense when both at scale 10−3.

Another common perturbation on gradients is half precision, which was ini-
tially designed to save memory footprints and widely used to reduce communi-
cation bandwidth. We test two popular half precision implementations IEEE
float16 (Single-precision floating-point format) and bfloat16 (Brain Floating
Point [27], a truncated version of 32 bit float). Shown in Fig. 12c, unfortunately,
neither half precision format is able to protect the training data.
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Fig. 12. The effectiveness of various defense strategies. The corresponding accuracy is
attached in Table 2.

Table 2. The trade-off between accuracy and defendability. G: Gaussian noise, L:
Laplacian noise, FP: Floating number, Int: Integer quantization. ✓ means it suc-
cessfully defends against DLG while ✗ means fails to defend (whether the results are
visually recognizable). The accuracy is evaluated on CIFAR-100.

Original G-10−4 G-10−3 G-10−2 G-10−1 FP-16

Accuracy 76.3% 75.6% 73.3% 45.3% ≤1% 76.1%

Defendability – ✗ ✗ ✓ ✓ ✗

L-10−4 L-10−3 L-10−2 L-10−1 Int-8

Accuracy – 75.6% 73.4% 46.2% ≤1% 53.7%

Defendability – ✗ ✗ ✓ ✓ ✓

4.3 Gradient Compression and Sparsification

We also experimented to defend by gradient compression [28,29]. Gradient com-
pression prunes small gradients to zero, therefore it’s more difficult for DLG to
match the gradients since the optimization target also gets pruned. We evaluate
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how different level of sparsities (range from 1% to 70%) defense the leakage.
When sparsity is 1% to 10%, it has almost no effects against DLG. When prune
ratio increases to 20%, as shown in Fig. 12d, there are obvious artifact pixels
on the recover images. We notice that maximum tolerance of sparsity if around
20%. When pruning ratio is larger than 20%, the recovered images are no longer
visually recognizable and thus gradient compression successfully prevents the
leakage.

Previous work [28,29] show that gradients can be compressed by more than
300 times without losing accuracy. In which case, the sparsity is above 99%
and already exceeds the maximum tolerance of DLG (which is around 20%).
It suggests that compressing the gradients can be a good practical approach to
avoid the leakage.
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Abstract. This chapter investigates capabilities of Privacy-Preserving
Deep Learning (PPDL) mechanisms against various forms of privacy
attacks. First, we propose to quantitatively measure the trade-off
between model accuracy and privacy losses incurred by reconstruction,
tracing and membership attacks. Second, a novel Secret Polarization Net-
work (SPN) is proposed to thwart privacy attacks, which is highly com-
petitive against existing PPDL methods. Extensive experiments showed
that model accuracies are improved on average by 5–20% compared with
baseline mechanisms, in regimes where data privacy are satisfactorily
protected.

Keywords: Federated learning · Differential privacy · Privacy attack

1 Introduction

Federated learning aims to collaboratively train and share a deep neural network
model among multiple participants, without exposing to each other informa-
tion about their private training data. This is particularly attractive to business
scenarios in which raw data e.g. medical records or bank transactions are too
sensitive and valuable to be disclosed to other parties [14,23]. Differential pri-
vacy e.g. [1,18] has attracted much attentions due to its theoretical guarantee
of privacy protection and low computational complexity [4,5], however, there is
a fundamental trade-off between privacy guarantee vs utility of learned models,
i.e. overly conservative privacy protections often significantly deteriorate model
utilities (accuracies for classification models). Existing solutions e.g. [1,18] are
unsatisfactory in our view—low ε privacy budget value does not necessarily lead
to desired levels of privacy protection. For instance, the leakage of shared gradi-
ents may admit complete reconstruction of training data under certain circum-
stances [10,21,22,24], even though substantial fraction of gradients elements are
truncated [18] or large random noise are added [1].
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In order to make critical analysis and fair evaluations of different privacy
preserving (PP) algorithms, we argue that one must employ an objective evalu-
ation protocol to quantitatively measure privacy preserving capabilities against
various forms of privacy attacks. Following a privacy adversary approach [6,15],
we propose to evaluate the admitted privacy loss by three objective measures i.e.
reconstruction, tracing and membership losses, with respect to the accuracies of
protected models. To this end, Privacy-Preserving Characteristic (PPC) curves
are used to delineate the trade-off, with Calibrated Averaged Performance (CAP)
faithfully quantifying a given PPC curve. These empirical measures complement
the theoretical bound of the privacy loss and constitute the first contribution of
our work (see Fig. 5 for example PPC).

As demonstrated by experimental results in Sect. 4, the leakage of shared
gradients poses serious challenges to existing PP methods [1,18,24]. Our sec-
ond contribution, therefore, is a novel secret polarization network (SPN) and a
polarization loss term, which bring about two advantages in tandem with pub-
lic backbone networks—first, SPN helps to defeat privacy attacks by adding
secret, element-wise and adaptive gradients to shared gradients; second, the
added polarization loss acts as a regularization term to consistently improve
the classification accuracies of baseline networks in federated learning settings.
This SPN based mechanism has demonstrated strong capability to thwart three
types of privacy attacks without significant deterioration of model accuracies.
As summarized by CAP values in Fig. 1, SPN compares favorably with existing
solutions [18] and [1] with pronounced improvements of performances against
reconstruction, membership and tracing attacks.

1.1 Related Work

[1] demonstrated how to maintain data privacy by adding Gaussian noise to
shared gradients during the training of deep neural networks. [18] proposed to
randomly select and share a small fraction of gradient elements (those with large
magnitudes) to reduce privacy loss. Although both methods [1,18] offered strong
differential privacy (DP) guarantees [4,5], as shown by [15,24] and our empirical
studies, pixel-level reconstructions of training data and disclosing of membership
information raise serious concerns about potential privacy loss.

Dwork et al. [6] have formulated privacy attacks towards a database, as a
series of queries maliciously chosen according to an attack strategy designed
to compromise privacy. Among three privacy attacks i.e. reconstruction, tracing
and re-identification discussed in [6], the detrimental reconstruction attack is
formulated as solving a noisy system of linear equations, and reconstruction
errors are essentially bounded by the worst-case accuracies of query answers
(Theorem 1 in [6]). However, this formulation is not directly applicable to deep
learning, since queries about private training data are not explicitly answered
during the training or inferencing of DNNs.

In the context of deep learning, membership attacks was investigated in [19]
while [9] demonstrated that recognizable face images can be recovered from confi-
dence values revealed along with predictions. [15] demonstrated with both CNNs



34 L. Fan et al.

(a) Attack Batch Size 1

(b) Attack Batch Size 8

Fig. 1. Comparison of Calibrated Averaged Performances (CAPs) for the proposed
SPN, PPDL [18] and DP [1] methods, against reconstruction, membership and trac-
ing attacks (CAP the higher the better, see threat model and evaluation protocol in
Sect. 2.1). (a): CIFAR10/100 models attacked with batch size 1; (b): CIFAR10/100
models attacked with batch size 8.

and RNNs that periodical gradient updates during training leaked information
about training data, features as well as class memberships. Possible defences
such as selective gradient sharing, reducing dimensionality, and dropout were
proved to be ineffective or had a negative impact on the quality of the collab-
oratively trained model. Based on the assumption that activation functions are
twice-differentiable, recent attacks were proposed to reconstruct training data
with pixel-level accuracies [10,21,22,24]. These recent reconstruction attacks
were adopted in the present work to evaluate capabilities of privacy-preserving
strategies proposed in [1,15,18,24], with extensive experiments conducted over
different networks and datasets (see Sect. 4).

Homomorphic-Encryption (HE) based [2,11,12] and Secure Multi-Party
Computation (MPC) based privacy-preserving approaches [16,17] demonstrated
strong privacy protection via encryption, but often incur significantly more
demanding computational and communication costs. For instance, [2] reported
2–3 times communication overheads and [3,16] had to speed up highly-intensive
computation with efficient implementations. In this chapter our work is only
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(a) Reconstruction attacks Ar, with
relative MSE between reconstructed
and original data ‖x̄−x‖

‖x‖ . Membership
attacks Am, with categorical distance
between reconstructed and original
labels distm(ȳ, y).

(b) Tracing attacks At, with categor-
ical distance between recovered and
actual participant IDs distm(pid, p).

Fig. 2. Three privacy attacks considered in this chapter (see text in Sect. 2).

compared with Differential Privacy based mechanisms [1,18], and we refer read-
ers to [20,23] for thorough reviews of HE and MPC based privacy-preserving
methods therein.

2 Threat Model: Privacy Attacks on Training Data

In this chapter we consider a distributed learning scenario, in which K(K ≥ 2)
participants collaboratively learn a multi-layered deep learning model without
exposing their private training data (this setting is also known as federated learn-
ing [14,23]). We assume one participant is the honest-but-curious adversary. The
adversary is honest in the sense that he/she faithfully follows the collaborative
learning protocol and does not submit any malformed messages, but he/she may
launch privacy attacks on the training data of other participants, by analyzing
periodic updates to the joint model (e.g. gradients) during training.

Figure 2 illustrates three privacy attacks considered in this chapter. The goal
of reconstruction attack is to recover original training data x as accurate as
possible by analyzing the publicly shared gradients, which might be perturbed
by privacy-preserving mechanisms. Subsequent membership attack and tracing
attack are based on reconstruction attacks—for the former, membership labels
are derived either directly during the reconstruction stage or by classifying recon-
structed data; for the latter, the goal is to determine whether a given training
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data item belongs to certain participant, by comparing it against reconstructed
data1.

2.1 Evaluation of Trade-Off by Privacy Preserving Mechanism

We assume there is a Privacy-Preserving Mechanism (PPM)2 M that aims to
defeat the privacy attacks A by modifying the public information G to Ḡm =
M(G,m), that is exchanged during the learning stage and m is the controlling
parameter of the amount of changes E exerted on G (where Em = Ḡm − G).
This modification protects the private information x from being disclosed to the
adversary, who can only make an estimation based on public information i.e.
x̄m = A(Ḡm), where A is an estimation function. Needless to say, a PPM can
defeat any adversaries by introducing exorbitant modification so that dist(x̄m, x)
is as large as possible, where dist() is a properly defined distance measure such as
MSE. The modification of public information, however, inevitably deteriorates
the performances of global models i.e. Acc(Ḡm) ≤ Acc(Gm), where Acc() denotes
model performances such as accuracies or any other metrics that is relevant to
the model task in question. A well-designed PPM is expected to have Acc(Ḡm)
as high as possible.

We propose to plot Privacy Preserving Characteristic (PPC) to illustrate the
trade-off between two opposing goals i.e. to maintain high model accuracies and
low privacy losses as follows,

Definition 1 (Privacy Preserving Characteristic). For a given Privacy-
Preserving Mechanism M, its privacy loss and performance trade-off is delin-
eated by a set of calibrated performances i.e. {Acc(Ḡm) · dist(x̄m, x)|m ∈
{m1, · · · ,mn}}, where Acc() is the model performance, dist() a distance mea-
sure, Ḡm = M(G,m) is the modified public information, x is the private data,
x̄m = A(Ḡm) is the estimation of private data by the attack and m the controlling
parameter of the mechanism.

Moreover, Calibrated Averaged Performance (CAP) for a given PPC is
defined as follows,

CAP (M,A) =
1
n

mn∑

m=m1

Acc(Ḡm) · dist(x̄m, x). (1)

Figure 5 illustrates example PPCs of different mechanisms against privacy
attacks. CAP can be defined as area under a PPC. One may also quantitatively
summarize PPCs with CAP—the higher the CAP value is, the better the mecha-
nism is at preserving privacy without compromising the model performances (see
Table 1).

1 Note that membership inference in [15] is the tracing attack considered in our work.
2 We do not restrict ourselves to privacy mechanisms considered by differential

privacy[1,4,5,18].
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2.2 Formulation of Reconstruction Attack

Consider a neural network Ψ(x;w, b) : X → R
C , where x ∈ X , w and b are

the weights and biases of neural networks, and C is the output dimension. In a
machine learning task, we optimize the parameters w and b of neural network
Ψ with a loss function L(

Ψ(x;w, b), y
)
, where x is the input data and y is the

ground truth labels. We denote the superscript w[i] and b[i] as the i-th layer
weights and biases. The following theorem proves that the reconstruction of
input x exists under certain conditions (proofs are given in Appendix A 5).

Theorem 1. Suppose a multilayer neural network Ψ := Ψ [L−1] ◦ Ψ [L−2] ◦ · · · ◦
Ψ [0]( · ;w, b) is C1, where the i-th layer Ψ [i] is a fully-connected layer3 Then,
initial input x∗ of Ψ exists, provided that: if there is an i (1 ≤ i ≤ L) such
that

1. Jacobian matrix Dx

(
Ψ [i−1] ◦ Ψ [i−1] ◦ · · · ◦ Ψ [0]

)
around x is full-rank;

2. Partial derivative ∇b[i]L
(
Ψ(x;w, b), y

)
4 is nonsingular.

If assumptions in Theorem 1 are met, we can pick an index set I from row
index set of ∇w[i],b[i]L

(
Ψ(x;w, b), y

)
such that the following linear equation is

well-posed,

BI · x = WI ,

where BI := ∇I
b[i]

L(
Ψ(x;w, b), y

)
and WI := ∇I

w[i]L
(
Ψ(x;w, b), y

)
. According to

Theorem 1, the initial input x∗ is
(
Ψ [i−1] ◦ Ψ [i−1] ◦ · · · ◦ Ψ [0]

)−1(x).
The linear system can be composed from any subsets of observed gradients

elements, and the reconstruction solution exists as long as the condition of full
rank matrix is fulfilled. For common privacy-preserving strategies adopted in
a distributed learning scenario such as sharing fewer gradients or adding noisy
to shared gradients [1,15,18], the following theorem proves that input x can be
reconstructed from such a noisy linear system, if condition (2) is fulfilled.

Theorem 2. Suppose there are perturbations EB , EW added on BI ,WI , respec-
tively, such that observed measurements B̄I = BI + EB , W̄I = WI + EW . Then,
the reconstruction x∗ of the initial input x can be determined by solving
a noisy linear system B̄I · x∗ = W̄I , provided that

‖B−1
I · EB‖ < 1; (2)

Moreover, the relative error is bounded,

‖x∗ − x‖
‖x‖ ≤ κ(BI)

1 − ‖B−1
I · EB‖

(‖EB‖
‖BI‖ +

‖EW ‖
‖WI‖

)
, (3)

in which B−1
I is the inverse of BI and condition number κ(BI) := ||BI ||·||BI

−1||.
3 Any convolution layers can be converted into a fully-connected layer by simply stack-

ing together spatially shifted convolution kernels (see proofs in Appendix A).
4 We write the partial derivative as a diagonal matrix that each two adjacent diagonal

entries in an order are two copies of each entry in ∇b[i]L
(
Ψ(x; w, b), y

)
, see proofs in

Appendix A.
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Fig. 3. Our proposed SPN architecture that consists of a public and a private network
(see text in Sect. 3).

In the deep leakage approach [24], the recovery of initial image requires model
parameters W and the corresponding gradients ∇W such that a minimization
of gradient differences Ep := ||∇W ′ − ∇W|| yields a recovery x̄ of initial image.
The minimizing error Ep introduces more errors to the noisy linear system.
Therefore, for any iterative reconstruction algorithms like [24] to be success-
ful, condition ‖B−1

I · EB‖ < 1 is necessary. In other words, a sufficiently large
perturbation ‖EB‖ > ‖BI‖ such as Gaussian noise is guaranteed to defeat recon-
struction attacks. To our best knowledge, (2) is the first analysis that elucidates
a theoretical guarantee for thwarting reconstruction attacks like [24]. Neverthe-
less, existing mechanisms [1,18] have to put up with significant drops in model
accuracy incurred by high levels of added noise (see Sect. 4.2).

3 Privacy Preserving with Secret Polarization Network

In [8] proved that the reconstruction attack will not be successful if sufficiently
large perturbations M(G,m) are added to gradient G. We illustrate in this section
a novel multi-task dual-headed networks, which leverages private network param-
eters and element-wise adaptive gradient perturbations to defeat reconstruction
attacks and, simultaneously, maintain high model accuracies.

3.1 Secret Perturbation of Gradients via Polarization Loss

Figure 3 illustrates a Secret Polarization Network (SPN), in which fully con-
nected polarization layers are kept private with its parameters not shared during
the distributed learning process.

Formally, the proposed dual-headed network consists of a public and a
private SPN network based on a backbone network: Ψ

(
ϕ( · ;w, b);wu, bu

) ⊕
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Fig. 4. Distributions of gradients at each layer. Left: distributions of gradients w.r.t.
weights, w layer 1; Right: distributions of gradients w.r.t. weights, w at layer 4;
Top: gradients by polarization loss; Bottom: gradients by CE loss. Cosine similar-
ities between gradients by polarization and CE losses are (from left to right): −0.0033
and 0.1760 respectively.

Φ
(
ϕ( · ;w, b);wv, bv

)
: X → [0, 1]C ⊕ R

K , i.e. u ⊕ v = Ψ
(
ϕ(x;w, b);wu, bu

) ⊕
Φ

(
ϕ(x;w, b);wv, bv

) ∈ [0, 1]C ⊕ R
K , where ϕ( · ;w, b) is the backbone network.

The multi-task composite loss is as follows,

L(
Ψ ⊕ Φ, y ⊕ t

)
:=α1 · LCE(u, y) + α2 · LP (v, t) (4)

= α1 ·
C∑

c=1

−yc · log(uc)

︸ ︷︷ ︸
CE loss

+α2 ·
C∑

c=1

K∑

k=1

max(m − vk · tkc , 0)

︸ ︷︷ ︸
polarization loss

, (5)

where α1 and α2 are hyper-parameters with α1 + α2 = 1. yc is an one-hot
representation of labels for class c, and tc ∈ {−1,+1}K is the target K-bits
binary codes randomly assigned to each class c for c = 1, · · · , C. Note that by
minimizing the polarization loss [7], Hamming distances between threshold-ed
outputs Bin(vk) of intra-class data items are minimized and, at the same time,
Hamming distances are maximized for inter-class data items (where Bin(vk) ∈
{−1,+1}, see proofs in [8]). The polarization loss therefore joints forces with the
CE loss to improve the model accuracies.
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At each step of the optimization, the gradient of the loss 
w,bL
(
Ψ ⊕Φ, y⊕ t

)

is a linear combination of gradient of CE loss and polarization loss as follows,


w,bL = α1 ·
C∑

c=1

(yc − uc) · ∂uc

∂w, b
+ α2 ·

C∑

c=1

∑

k∈Ic

(−tkc ) · ∂vk
∂w, b

︸ ︷︷ ︸
secret perturbation

, (6)

where Ic :=
{

k ∈ {1, · · · ,K}
∣∣∣m − vk · tkc > 0

}
.

Note that wv is kept secret from other participants including the adversary.
The summand due to the polarization loss in (6) is therefore unknown to the
adversaries, and acts as perturbations to gradients ascribed to the CE loss. Per-
turbations introduced by polarization loss, on the one hand, protect training
data with α2 controlling the protection levels. On the other hand, SPN gradi-
ents back-propagated to the backbone network layers exhibit strong correlations
with CE gradients (see distributions and cosine similarities between gradients
by polarization and CE losses in Fig. 4). We ascribe improvements of the model
accuracies brought by SPN to element-wise adaptive perturbations introduced
by polarization loss.

4 Experimental Results

4.1 Experiment Setup and Evaluation Metrics

Dataset. Popular image datasets MNIST and CIFAR10/100 are used in our
experiments. Implementation of DP [1] method from Facebook Research Team5

is used. Implementation6 of PPDL [18] method from Torch/Lua are re-
implemented in PyTorch/Python. PPDL is similar to gradient pruning which
is one of the suggested protections in [24]. We only show in this chapter results
with 5% and 30% of selected gradients, named respectively, as PPDL-0.05 and
PPDL-0.3. Implementation of Deep Leakage attack [24], network architec-
ture and default setting from the official released source code7 are used in all
experiments with training batch size set as {1, 4, 8} respectively. Following anal-
ysis in [22], we adopt pattern-initialization for higher reconstruction successful
rates.

Relative Mean Square Error (rMSE) (= ||x∗−x||
||x|| ) is used to measure the dis-

tances between reconstructed xx and original data x. Membership Distance
(distm(y∗, y)) is the averaged categorical distances between recovered data labels
y∗ and original labels y. Tracing Distance (distt(x∗)) is the averaged categor-
ical distances between recovered participant IDs and original IDs, to which the
reconstructed data x∗ belongs.

5 https://github.com/facebookresearch/pytorch-dp.
6 https://www.comp.nus.edu.sg/∼reza/files/PPDL.zip.
7 https://github.com/mit-han-lab/dlg.

https://github.com/facebookresearch/pytorch-dp
https://www.comp.nus.edu.sg/~reza/files/PPDL.zip
https://github.com/mit-han-lab/dlg
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Fig. 5. Privacy-Preserving Characteristics (PPC) of different mechanisms (dash-dotted
PPC curves); orange curves and y-axis (left): Acc of models; blue curves and y-axis
(right): distances for attacks; x-axis: controlling param (perturbation strength increases
from left to right). Left to Right: Reconstruction Attack, Tracing Attack and Mem-
bership Attack. See Fig. 6 for example reconstruction images. (Color figure online)

The averaged categorical distance dist is defined as followed:

dist(a, b) =
1
n

n∑

i=1

δ(ai, bi) (7)

δ(ai, bi) =

{
0 if ai = bi

1 otherwise
(8)
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(a) 1.05 (b) 1.05 (c) 0.48

Fig. 6. Reconstructed images from different region in Fig. 5. (a) Green region (b)
White region (c) Red region. The values are mean of rMSE of reconstructed w.r.t.
original images.

(a) CIFAR10

(b) CIFAR100

Fig. 7. Comparison of test accuracies for standalone local models, FedAvg, PPDL-0.3,
PPDL-0.05, DP-0.1 and Federated SPN models. Improvements over standalone models
increase with the number of clients.

4.2 Comparison of Privacy Preserving Mechanisms

Figure 5 illustrates example Privacy-Preserving Characteristic (PPC) of different
mechanisms against reconstruction, membership and tracing attacks, in which
the controlling parameter along x-axis is the ratio m of gradient magnitudes G
with respect to magnitudes of added perturbations Em. It is shown that privacy
attacks pose serious challenges to differential privacy based methods DP and
PPDL.
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Reconstruction attacks (top row): when the ratio ranges between tens
to thousands in red regions, errors decrease rapidly and pixel-level information
about original training data are almost completely disclosed (see Fig. 6c). In the
white regions, increased magnitudes of perturbations lead to large reconstruction
errors (rMSE ≈1.0) with noticeable artifacts and random noisy dots in Fig. 6b.
However, model accuracies for DP and PPDL methods also decrease dramati-
cally. Pronounced drops in accuracies (with more than 20% for CIFAR10 and 5%
for MNIST) are observed when added perturbations Em exceed magnitudes of
original gradients G (in green regions), beyond which condition of reconstruction
attacks is no longer fulfilled and attacks are guaranteed to be defeated (see [8]
for theoretical proof and Fig. 6a).

Table 1. CAP performance with different batch size and dataset for reconstruction,
membership and tracing attack. Higher better. BS = Attack Batch Size, [1] = DP,
[18]∗ = PPDL-0.05, [18]� = PPDL-0.3

BS CIFAR10 CIFAR100

Reconstruction Membership Tracing Reconstruction Membership Tracing

1 4 8 1 4 8 1 4 8 1 4 8 1 4 8 1 4 8

[1] 0.57 0.63 0.63 0.00 0.45 0.47 0.42 0.57 0.58 0.23 0.31 0.30 0.01 0.22 0.25 0.14 0.24 0.24

[18]∗ 0.55 0.55 0.55 0.00 0.37 0.44 0.50 0.50 0.50 0.18 0.18 0.18 0.02 0.13 0.16 0.16 0.16 0.16

[18]� 0.57 0.61 0.61 0.00 0.43 0.49 0.54 0.54 0.54 0.21 0.26 0.26 0.00 0.19 0.22 0.19 0.19 0.19

SPN 0.69 0.70 0.70 0.24 0.50 0.55 0.60 0.62 0.64 0.35 0.35 0.36 0.17 0.28 0.31 0.29 0.30 0.30

Tracing attacks (middle row): similar trends were observed for distances of
tracing attacks. In addition, the distance increases as the number of participants
increases.

Membership attacks (bottom row): the disclosing of memberships is more
detrimental, with distances between reconstructed memberships and ground
truth labels almost being zero, except for PPDL-0.05 in the green region. With
the increase of the number of classes (for CIFAR100) and the training batch size
(8), success rates of membership attacks dropped and the distances increased.
One may mitigate membership attacks by using even larger batch sizes, as sug-
gested in [22,24].

In a sharp contrast, Secret Polarization Network (SPN) based mechanism
maintains consistent model accuracies, even though gradient magnitudes due to
polarization loss exceed gradient magnitudes of original CE loss. Superior perfor-
mances of SPN mechanism in this green region provide theoretically guaranteed
privacy-preserving capabilities, and at the same time, maintain decent model
accuracies to be useful in practice. This superiority is ascribed to the adaptive
element-wise gradient perturbations introduced by polarization loss (see discus-
sions near Eq. (6)).

4.3 Secret Polarization Network for Federated Learning

The dual-headed Secret Polarization Network (SPN) brought improvements
in model accuracies in a federated learning setting, in which CIFAR10 and
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CIFAR100 datasets are evenly distributed among all clients, resulting in small
local training datasets on each client (for instance, there are only 500 CIFAR10
training data when the number of clients is 100).

Substantial performances deterioration were observed for local standalone
models with large numbers of e.g. 100 clients (see Fig. 7). Since local training
data are i.i.d., the FedAvg algorithm [14] effectively improved the global model
accuracies about 12–35% for CIFAR10 and 26–32%for CIFAR100 on AlexNet.
The proposed SPN, once integrated with the FedAvg algorithm, consistently
improved further model accuracies ranging between 2–3% for CIFAR10 dataset
while maintaining comparable performance for CIFAR100 (around 2% drops
when number of clients 100). By comparing with the same privacy guarantee
(same perturbation strength) provided by DP-0.1 and SPN, SPN outperforms
DP-0.1 in terms of test accuracy for CIFAR10 by 12 28% improvement while
CIFAR100 by 18 22% improvement on AlexNet. SPN also outperforms PPDL-
0.05 (sharing 5% gradients) and PPDL-0.3 (sharing 30% gradients) for CIFAR10
by 2–16% and 1–8% improvement respectively and CIFAR100 by 4–11% and 1–
2% improvement respectively on AlexNet. Similar improvements of SPN over
DP-0.1, PPDL-0.05, and PPDL-0.3 are observed on VGG16. The improvements
are ascribed to element-wise gradients introduced by polarization losses (see dis-
cussion in Sect. 3), which in our view advocate the adoption of SPN in practical
applications.

5 Discussion and Conclusion

The crux of differential-privacy based approaches is a trade-off between pri-
vacy vs accuracy [1,18]. As shown in [15] and our experiments, existing defenses
such as sharing fewer gradients and adding Gaussian or Laplacian noise are
vulnerable to aggressive reconstruction attacks, despite the theoretical privacy
guarantee [8].

We extricated from the dilemma by hiding a fraction of network parameters
and gradients from the adversary. To this end, we proposed to employ a dual-
headed network architecture i.e. Secret Polarization Network (SPN), which on
the one hand exerts secret gradient perturbations to original gradients under
attack, and on the other hand, maintains performances of the global shared
model by jointing forces with the backbone network. This secret-public network
configuration provides a theoretically guaranteed privacy protection mechanism
without compromising model accuracies, and does not incur significant compu-
tational and communication overheads which HE/SMPC based approaches have
to put up with. We find that the combination of secret-public networks pro-
vides a preferable alternative to DP-based mechanisms in application scenarios,
whereas large computational and communication overheads are unaffordable e.g.
with mobile or IOT devices.

As for future work, the adversarial learning nature of SPN also makes it an
effective defense mechanism against adversarial example attacks. To formulate
both privacy and adversarial attacks in a unified framework is one of our future
directions.
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Appendix A: Proofs of Reconstruction Attacks

Consider a neural network Ψ(x;w, b) : X → R
C , where x ∈ X , w and b are

the weights and biases of neural networks, and C is the output dimension. In a
machine learning task, we optimize the parameters w and b of neural network
Ψ with a loss function L(

Ψ(x;w, b), y
)
, where x is the input data and y is the

ground truth labels. We abbreviate loss function as L and denote the superscript
w[i] and b[i] as the i-th layer weights and biases.

Suppose a multilayer neural network Ψ := Ψ [L−1] ◦ Ψ [L−2] ◦ · · · ◦ Ψ [0]( · ;w, b)
is C1, where the i-th layer Ψ [i] is a fully-connected layer with the step forward
propagation as follows,

o[i+1] = a
(
w[i] · o[i] + b[i]

)
,

where o[i], o[i+1], w[i] and b[i] are an input vector, an output vector, a weight
matrix and a bias vector respectively, and a is the activation function in the i-th
layer.

By the backpropagation, we have the matrix derivatives on Ψ [i] as follows,

∇w[i]L = ∇o[i+1]L · a′(w[i] · o[i] + b[i]
) · o[i]

T
(9)

∇b[i]L = ∇o[i+1]L · a′(w[i] · o[i] + b[i]
) · I, (10)

which yield the following output equations:

∇w[i]L = ∇b[i]L · o[i]
T
, (11)

where gradients ∇w[i]L and ∇b[i]L are supposed to be shared in a distributed
learning setting, and known to honest-and-curious adversaries who may launch
reconstruction attacks on observed gradients.

Remark 1. Any convolution layers can be converted into a fully-connected layer
by simply stacking together spatially shifted convolution kernels, as noted in
Footnote 3. A simple illustration refers to Fig. 8 and detailed algorithm refers to
a technical report [13].

Remark 2. Suppose ∇w[i]L ∈ R
M ·N , ∇b[i]L ∈ R

M and o[i] ∈ R
N , we write

∇w[i]L :=
(

∂L
∂w

[i]
mn

)
1≤m≤M ;
1≤n≤N.

, ∇b[i]L :=
(

∂L
∂b

[i]
1

, . . . , ∂L
∂b

[i]
M

)T
, and o[i] :=

(
o
[i]
1 , . . . , o

[i]
N

)T
.

By the piecewise matrix multiplication, Eq. 11 becomes as a linear system in a
formal convention as follows,

∂L
∂w

[i]
mn

=
∂L
∂b

[i]
m

· o[i]n , for 1 ≤ m ≤ M and 1 ≤ n ≤ N.

Hence, we can write the partial derivative ∇b[i]L as an mn×mn diagonal matrix
that each n adjacent diagonal entries in an order are copies of each entry, and
partial derivative ∇w[i]L as an mn-dimensional vector.
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Fig. 8. A pictorial example illustrating how to switch a convolution operator to a
matrix multiplication.

In the following paragraph, we always abbreviate equation coefficients ∇w[i]L
and ∇b[i]L to W [i] and B[i] respectively.

Lemma 1. Suppose d[0] and d[1], · · · , d[L] are dimensions of input image x and
output vectors o[1], · · · , o[L] respectively. x and o[i] can be estimated by solving
the following d[i] · d[i+1]-dimensional linear system if it is well-posed,

W [0] = B[i] · x (12)

or W [i] = B[i] · o[i]
T
, for i = 1, · · · , L − 1. (13)

Remark 3. Output vectors o[1], · · · , o[L] are outputs of neural networks
Ψ( · ;w, b) on input image x. However, solving Linear System (13) are always
numerically unstable in that minor numerical perturbation of B[i] around 0
would yield the infinity solution even if it is a well-posed problem. Hence, it is
not typically to directly recover input image x and output vectors o[1], · · · , o[L]

by simple matrix computations in practice.
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Lemma 2. Assume the linear system B · x = W is corrupted in coefficients
written as B̄ · x̄ = W̄ . If B is nonsingular, we have the following inequality,

||x − x̄|| ≤ ||B−1|| · (||W − W̄ || + ||B − B̄|| · ||x̄||).
Proof. Obviously, we have

B · (x − x̄) = (W − W̄ ) + (B − B̄) · x̄, (14)

which yields this lemma if B is nonsingular. �
According to Lemma 1 and Lemma 2, we have the following existing theorem.

Theorem 3. Suppose a multilayer neural network Ψ := Ψ [L−1] ◦ Ψ [L−2] ◦ · · · ◦
Ψ [0]( · ;w, b) is C1, where the i-th layer Ψ [i] is a fully-connected layer. Then,
initial input x∗ of Ψ exists, provided that: if there is an i (1 ≤ i ≤ L) such
that

1. Jacobian matrix Dx

(
Ψ [i−1] ◦ Ψ [i−1] ◦ · · · ◦ Ψ [0]

)
around x is full-rank;

2. Partial derivative ∇b[i]L
(
Ψ(x;w, b), y

)
is nonsingular.

Moreover, we have the following inequality around x∗,

||x − x∗|| ≤ M · ||∇w[i],b[i]L
(
Ψ(x;w, b), y

) − ∇w[i],b[i]L
(
Ψ(x∗;w, b), y

)||. (15)

Proof. WLOG, we suppose i yields that Jacobian matrix Dx

(
Ψ [i−1] ◦ Ψ [i−1] ◦

· · · ◦ Ψ [0]
)

around x is full-rank. By the implicit function theorem, there exists a
bounded inverse function

(
Ψ [i−1] ◦ Ψ [i−1] ◦ · · · ◦ Ψ [0]

)−1(· ;w, b) around x, s.t.
∣∣(Ψ [i−1] ◦ Ψ [i−1] ◦ · · · ◦ Ψ [0]

)−1(· ;w, b)
∣∣ ≤ M [i]. (16)

Since partial derivative ∇b[i]L is nonsingular, vector o[i] is solved by matrix
computations in Lemma 1, and thus the initial image x∗ :=

(
Ψ [i−1] ◦Ψ [i−1] ◦ · · · ◦

Ψ [0]
)−1(o[i]).
By Lemma 2 and Inequality (16), in an open neighborhood of x∗, we have

||x − x
∗|| =||(Ψ

[i−1] ◦ Ψ
[i−1] ◦ · · · ◦ Ψ

[0])−1
(o

[i]
; w, b) − (

Ψ
[i−1] ◦ Ψ

[i−1] ◦ · · · ◦ Ψ
[0])−1

(o
[i]∗

; w, b)||

≤M
[i] · ||o[i] − o

[i]∗||

≤M
[i] · ||∇

b[i]
L−1|| · (||∇

w[i]L(Ψ(x; w, b), y) − ∇
w[i]L(Ψ(x

∗
; w, b), y)||

+ ||x∗|| · ||∇
b[i]

L(Ψ(x; w, b), y) − ∇
b[i]

L(Ψ(x
∗
; w, b), y)||)

≤M · ||∇
w[i],b[i]

L(
Ψ(x; w, b), y

) − ∇
w[i],b[i]

L(
Ψ(x

∗
; w, b), y

)||,

where we pick enough big number M := M [i] · ||x∗|| · ||∇b[i]L−1|| + 1. �
Remark 4. 1) In the deep leakage approach [24], the recovery of initial image

requires model parameters W and the corresponding gradients ∇W such that
a minimization of gradient differences ||∇W ′−∇W|| yields a recovery of initial
image if the initial image exists. Our theorem provides sufficient conditions
of the initial image existence, and Inequality (15) confirms the effectiveness
of the deep leakage approach.
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2) Essentially, deep leakage approach is a trade-off computational technique for
the matrix approach in the meaning that a loss in accuracy is trade-off with
the existence of approximate solution by the optimization approach. Both
approaches require model parameters W and the corresponding gradients
∇W.

3) If Jacobian matrix is not full-rank or ∇b[i]L is singular, the inverse problem
is ill-posed and a minimization of gradient differences might yield multiple
solutions or an infeasibility which is observed as noisy images.

If assumptions in Theorem 3 are met, we pick an index set I from row index
set of B[i] and W [i] such that the following linear equation is well-posed,

BI · x = WI ,

where BI := B
[i]
I and WI := W

[i]
I .

Theorem 4. Suppose there are perturbations EB , EW added on BI ,WI , respec-
tively, such that observed measurements B̄I = BI + EB , W̄I = WI + EW . Then,
the reconstruction x∗ of the initial input x can be determined by solving a
noisy linear system B̄I · x∗ = W̄I , provided that

‖B−1
I · EB‖ < 1; (17)

Moreover, the relative error is bounded,

‖x∗ − x‖
‖x‖ ≤ κ(BI)

1 − ‖B−1
I · EB‖

(‖EB‖
‖BI‖ +

‖EW ‖
‖WI‖

)
, (18)

in which B−1
I is the inverse of BI .

Proof. According to the construction, we have

(B̄I − BI) · x∗ + BI · (x∗ − x) = W̄I − WI ,

which yields

x∗ − x = BI
−1 · (

W̄I − WI − (B̄I − BI) · x∗). (19)

Consider the relative error: since ||WI || ≤ ||BI || · ||x||, Eq. (19) becomes

||x∗ − x||
||x|| ≤ κ(BI) ·

( ||EB ||
||BI || · ||x∗||

||x|| +
||EW ||
||WI ||

)
, (20)

where condition number κ(BI) := ||BI || · ||BI
−1||.

Moreover, according to Lemma 2, we have

BI · (x − x∗) = EB · x∗ − EW .

A simplification of the above equation, we have

x + (BI
−1 · EB − I) · x∗ = −BI

−1 · EW .
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Take a norm on both sides, we have

‖x‖ + ‖BI
−1 · EB − I‖ · ‖x∗‖ ≥ 0.

Since ‖B−1
I · EB‖ < 1, we have

‖x∗‖
‖x‖ ≤ 1

1 − ‖BI
−1 · EB‖ . (21)

Combine Eq. (20) and Eq. (21), we get Eq. (18).
�

Remark 5. ‖B−1
I · EB‖ < 1 alone is a necessary condition for the iterative

reconstruction algorithm to converge. In other words, a big perturbation with
||EB || > ||BI ||, such as Gaussian noise with a sufficiently big variance, is guar-
anteed to defeat reconstruction attacks like [24].
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Abstract. The availability of various large-scale datasets benefits the
advancement of deep learning. These datasets are often crowdsourced
from individual users and contain private information like gender, age,
etc. Due to rich private information embedded in the raw data, users
raise the concerns on privacy leakage from the shared data. Such privacy
concerns will hinder the generation or use of crowdsourcing datasets
and lead to hunger of training data for new deep learning applications.
In this work, we present TAP, a task-agnostic privacy-preserving repre-
sentation learning framework to protect data privacy with anonymized
intermediate representation. The goal of this framework is to learn a fea-
ture extractor that can hide the privacy information from the intermedi-
ate representations; while maximally retaining the original information
embedded in the raw data for the data collector to accomplish unknown
learning tasks. We adopt the federated learning paradigm to train the
feature extractor, such that learning the extractor is also performed in
a privacy-respecting fashion. We extensively evaluate TAP and compare
it with existing methods using two image datasets and one text dataset.
Our results show that TAP can offer a good privacy-utility tradeoff.

Keywords: Task-agnostic · Privacy-preserving · Representation
learning · Federated learning

1 Introduction

Deep learning has achieved unprecedented success in many applications, such as
computer vision [11,16] and natural language processing [2,28,36]. Such success
of deep learning partially benefits from various large-scale datasets (e.g., Ima-
geNet [5], MS-COCO [20], etc.), which can be used to train powerful deep neural
networks (DNN). The datasets are often crowdsourced from individual users to
train DNN models. For example, companies or research institutes that want to
implement face recognition systems may collect the facial images from employees
or volunteers. However, those data that are crowdsourced from individual users
for deep learning applications often contain private information such as gender,

c© Springer Nature Switzerland AG 2020
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age, etc. Unfortunately, the data crowdsourcing process can be exposed to seri-
ous privacy risks as the data may be misused by the data collector or acquired
by the adversary. It is recently reported that many large companies face data
security and user privacy challenges. The data breach of Facebook, for exam-
ple, raises users’ severe concerns on sharing their personal data. These emerging
privacy concerns hinder generation or use of large-scale crowdsourcing datasets
and lead to hunger of training data of many new deep learning applications. A
number of countries are also establishing laws to protect data security and pri-
vacy. As a famous example, the new European Union’s General Data Protection
Regulation (GDPR) requires companies to not store personal data for a long
time, and allows users to delete or withdraw their personal data within 30 days.
It is critical to design a data crowdsourcing framework to protect the privacy of
the shared data while maintaining the utility for training DNN models.

Existing solutions to protect privacy are struggling to balance the trade-
off between privacy and utility. An obvious and widely adopted solution is to
transform the raw data into task-oriented features, and users only upload the
extracted features to corresponding service providers, such as Google Now and
Google Cloud. Even though transmitting only features are generally more secure
than uploading raw data, recent developments in model inversion attacks [6,7,23]
have demonstrated that adversaries can exploit the acquired features to recon-
struct the raw image, and hence the person on the raw image can be re-identified
from the reconstructed image. In addition, the extracted features can also be
exploited by an adversary to infer private attributes, such as gender, age, etc.
Ossia et al. [29] move forward by applying dimentionality reduction and noise
injection to the features before uploading them to the service provider. However,
such approach leads to unignorable utility loss. Inspired by Generative Adver-
sarial Networks (GAN), several adversarial learning approaches [13,18,21,27]
have been proposed to learn obfuscated features from raw images. Unfortu-
nately, those solutions are designed for known primary learning tasks, which
limits their applicability in the data crowdsourcing where the primary learn-
ing task may be unknown or changed when training a DNN model. The need
of collecting large-scale crowdsourcing dataset under strict requirement of data
privacy and limited applicability of existing solutions motivates us to design a
privacy-respecting data crowdsourcing framework: the raw data from the users
are locally transformed into an intermediate representation that can remove
the private information while retaining the discriminative features for primary
learning tasks.

In this work, we propose TAP – a task-agnostic privacy-preserving repre-
sentation learning framework for data crowdsourcing. The ultimate goal of this
framework is to learn a feature extractor that can remove the privacy infor-
mation from the extracted intermediate features while maximally retaining the
original information embedded in the raw data for primary learning tasks. How-
ever, training the feature extractor also requires to crowdsource data from indi-
vidual users. In order to keep data private, we adopt the federated learning
(FL) [15] method for training the feature extractor. FL is a popular distributed
machine learning framework that enables a number of participants to train a
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Fig. 1. The overview of TAP.

shared global model collaboratively without transferring their local data. A cen-
tral server coordinates the FL process, where each participant communicates
only the model parameters with the central server while keeping local data pri-
vate. By applying FL, we can train the feature extractor with decentralized data
in a privacy-preserving way.

As Fig. 1 illustrates, there are two phases of applying TAP: the training phase
and the deployment phase. In the training phase, we train the feature extractor
in a federated fashion. In the deployment phase, users can locally run the learned
feature extractor and submit only those intermediate representations to the data
collector instead of submitting the raw data. The data collector then trains DNN
models using these collected intermediate representations, but both the data col-
lector and the adversary cannot accurately infer any protected private informa-
tion. Compared with existing adversarial learning methods [13,18,21,27], TAP
does not require the knowledge of the primary learning task and, hence, directly
applying existing adversarial training methods becomes impractical. It is chal-
lenging to remove all concerned private information that needs to be protected
while retaining everything else for unknown primary learning tasks. To address
this issue, we design a hybrid learning method to learn the anonymized interme-
diate representation. This learning method is performed locally by each partic-
ipating user in federated learning process. The learning purpose is two-folded:
(1) hiding private information from features; (2) maximally retaining original
information. Specifically, we hide private information from features by perform-
ing our proposed privacy adversarial training (PAT) algorithm, which simulates
the game between an adversary who makes efforts to infer private attributes
from the extracted features and a defender who aims to protect user privacy.
The original information are retained by applying our proposed MaxMI algo-
rithm, which aims to maximize the mutual information between the feature of
the raw data and the union of the private information and the retained feature.
In summary, our key contributions are the follows:

– We propose TAP – a task-agnostic privacy-preserving representation learning
framework for data crowdsourcing without the knowledge of any specific pri-
mary learning task. By applying TAP, the learned feature extractor can hide
private information from features while maximally retaining the information
of the raw data.
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– We propose a privacy adversarial training algorithm to enable the feature
extractor to hide privacy information from features. In addition, we also
design the MaxMI algorithm to maximize the mutual information between
the raw data and the union of the private information and the retained fea-
ture, so that the original information from the raw data can be maximally
retained in the feature.

– We quantitatively evaluate the utility-privacy tradeoff with applying TAP on
two real-world datasets, including both image and text data. We also com-
pare the performance of two synchronization strategies in federated learning
process.

The rest of this chapter is organized as follows. Section 2 reviews the related
work. Section 3 describes the framework overview and details of core modules.
Section 4 evaluates the framework. Section 5 concludes this chapter.

2 Related Work

Data Privacy Protection: Many techniques have been proposed to pro-
tect data privacy, most of which are based on various anonymization methods
including k -anonymity [35], l -diversity [23] and t-closeness [19]. However, these
approaches are designed for protecting sensitive attributes in a static database
and hence, are not suitable to our addressed problem – data privacy protection
in the online data crowdsourcing for training DNN models. Differential privacy
[1,3,8,9,32,33] is another widely applied technique to protect privacy of an indi-
vidual’s data record, which provides a strong privacy guarantee. However, the
privacy guarantee provided by differential privacy is different from the privacy
protection offered by TAP in data crowdsourcing. The goal of differential privacy
is to add random noise to a user’s true data record such that two arbitrary true
data records have close probabilities to generate the same noisy data record.
Compared with differential privacy, our goal is to hide private information from
the features such that an adversary cannot accurately infer the protected private
information through training DNN models. Osia et al. [29] leverage a combi-
nation of dimensionality reduction, noise addition, and Siamese fine-tuning to
protect sensitive information from features, but it does not offer the tradeoff
between privacy and utility in a systematic way.

Visual Privacy Protection: Some works have been done to specifically
preserve privacy in images and videos. De-identification is a typical privacy-
preserving visual recognition approach to alter the raw image such that the iden-
tity cannot be visually recognized. There are various techniques to achieve de-
identification, such as Gaussian blur [26], identity obfuscation [26], etc. Although
those approaches are effective in protecting visual privacy, they all limit the
utility of the data for training DNN models. In addition, encryption-based
approaches [10,38] have been proposed to guarantee the privacy of the data, but
they require specialized DNN models to directly train on the encrypted data.
Unfortunately, such encryption-based solutions prevent general dataset release
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and introduce substantial computational overhead. All the above practices only
consider protecting privacy in specific data format, i.e., image and video, which
limit their applicability across diverse data modalities in the real world.

Tradeoff Between Privacy and Utility Using Adversarial Networks:
With recent advances in deep learning, several approaches have been proposed to
protect data privacy using adversarial networks and simulate the game between
the attacker and the defender who defend each other with conflicting utility-
privacy goals. Pittaluga et al. [31] design an adversarial learning method for
learning an encoding function to defend against performing inference for specific
attributes from the encoded features. Seong et al. [27] introduce an adversarial
network to obfuscate the raw image so that the attacker cannot successfully
perform image recognition. Wu et al. [37] design an adversarial framework to
explicitly learn a degradation transform for the original video inputs, aiming to
balance between target task performance and the associated privacy budgets on
the degraded video. Li et al. [18] and Liu et al. [21] propose approaches to learn
obfuscated features using adversarial networks, and only obfuscated features will
be submitted to the service provider for performing inference. Attacker cannot
train an adversary classifier using collected obfuscated features to accurately
infer a user’s private attributes or reconstruct the raw data. The same idea
behind the above solutions is that using adversarial networks to obfuscate the
raw data or features, in order to defending against privacy leakage. However,
those solutions are designed to protect privacy information while targeting some
specified learning tasks, such as face recognition, activity recognition, etc. Our
proposed TAP provides a more general privacy protection, which does not require
the knowledge of the primary learning task.

Differences Between TAP and Existing Methods: Compared with prior
arts, our proposed TAP has two distinguished features: (1) a more general app-
roach that be applied on different data formats instead of handling only image
data or static database; (2) require no knowledge of primary learning tasks.

3 Framework Design

3.1 Overview

There are three parties involved in the crowdsourcing process: user, adversary,
and data collector. Under the strict requirement of data privacy, a data collector
offers options to a user to specify any private attribute that needs to be protected.
Here we denote the private attribute specified by a user as u. According to the
requirement of protecting u, the data collector will learn a feature extractor
Eθ(z|x, u) that is parameterized by weight θ, which is the core of TAP. The
data collector distributes the data collecting request associated with the feature
extractor to users. Given the raw data x provided by a user, the feature extractor
can locally extract feature z from x while hiding private attribute u. Then, only
extracted feature z will be shared with the data collector, which can train DNN
models for primary learning tasks using collected z. An adversary, who may
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be an authorized internal staff of the data collector or an external hacker, has
access to the extracted feature z and aims to infer private attribute u based on
z. We assume an adversary can train a DNN model via collecting z, and then the
trained model takes a user’s extracted feature z as input and infers the user’s
private attribute u.

The critical challenge of TAP is to learn the feature extractor, which can hide
private attribute from features while maximally retaining original information
from the raw data. Note that we train the feature extractor via federated learning
to defend against the privacy leakage.

The ultimate goal of the feature extractor Eθ(·) is two-folded:

– Goal 1: make sure the extracted features conveys no private attribute;
– Goal 2: retain as much information of the raw data as possible to maintain

the utility for primary learning tasks.

To achieve the above goals, we design a hybrid learning method to train the
feature extractor, including the privacy adversarial training (PAT) algorithm
and the MaxMI algorithm. The hybrid learning method is performed locally by
each participant in federated learning process. In particular, we design the PAT
algorithm to achieve Goal 1, which simulates the game between an adversary
who makes efforts to infer private attributes from the extracted features and a
defender who aims to protect user privacy. By applying PAT to optimize the
feature extractor, we enforce the feature extractor to hide private attribute u
from extracted features z. Additionally, we propose the MaxMI algorithm to
achieve Goal 2. By performing MaxMI to train the feature extractor, we can
enable the feature extractor to maximize the mutual information between the
information of the raw data x and the joint information of the private attribute
u and the extracted feature z.

Fig. 2. The hybrid learning method performed by each participant in federated
learning.
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As Fig. 2 shows, there are three neural network modules in the hybrid learning
method: feature extractor Eθ(·), adversarial classifier Eψ(·) and mutual infor-
mation estimator Eω(·). These three modules are parameterized with θ, ψ, and
ω, respectively. The feature extractor is the one we aim to learn by performing
the proposed hybrid learning algorithm. The adversarial classifier simulates an
adversary in the PAT algorithm, aiming to infer private attribute u from the
eavesdropped features. The mutual information estimator is adopted in MaxMI
algorithm to measure the mutual information between the raw data x and the
joint distribution of the private attribute u and the extracted feature z. All three
modules are end-to-end trained by each participant using our proposed hybrid
learning method.

3.2 Privacy Adversarial Training Algorithm

We design the PAT algorithm to achieve Goal 1. Formally, we can formulate
Goal 1 as:

min
θ

I(z;u), (1)

where I(z;u) represents the mutual information between z and u. It is widely
accepted in the previous works that precisely calculating the mutual information
between two arbitrary distributions are likely to be infeasible [30]. Therefore,
we replace the mutual information objectives in Eq. 1 with their upper bounds
for effective optimization. For Goal 1, we utilize the mutual information upper
bound derived in [34] as:

I(z;u) ≤ Eqθ(z)DKL(qθ(u|z)||p(u)), (2)

for any distribution p(u). Note that the term qθ(u|z) in Eq. (2) is hard to estimate
and hence we instead replace the KL divergence term with its lower bound
by introducing a conditional distribution pψ(u|z) parameterized with ψ. It was
shown in [34] that:

Eqθ(z) [log pψ(u|z) − log p(u)]
≤ Eqθ(z)DKL(qθ(u|z)||p(u)) (3)

Hence, Eq. 1 can be rewritten as an adversarial training objective function:

min
θ

max
ψ

Eqθ(z) [log pΨ (u|z) − log p(u)] , (4)

As log p(u) is a constant number that is independent of z, Eq. 4 can be further
simplified to:

max
θ

min
ψ

−Eqθ(z) [log pψ(u|z)] , (5)

which is the cross entropy loss of predicting u with pψ(u|z), i.e., CE [pψ(u|z)].
This objective function can be interpreted as an adversarial game between an
adversary pψ who tries to infer u from z and a defender qθ who aims to protect
the user privacy.
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Based on the above formulation, the PAT algorithm is designed by simulating
the game between an adversary who makes efforts to infer private attributes from
the extracted features and a defender who aims to protect user privacy. We can
apply any architecture to both the feature extractor and the classifier based on
the requirement of data format and the primary learning task. The performance
of the classifier (C) is measured using the cross-entropy loss function as:

L(C) = CE(y, u) = CE(EΨ (Eθ(x), u), (6)

where CE [·] stands for the cross entropy loss function. When we simulate an
adversary who tries to enhance the accuracy of the adversary classifier as high
as possible, the classifier needs to be optimized by minimizing the above loss
function as:

Ψ = arg min
Ψ

L(C). (7)

On the contrary, when defending against private attribute leakage, we train the
feature extractor in PAT that aims to degrade the performance of the classifier.
Consequently, the feature extractor can be trained using Eq. 8 when simulating
a defender:

θ = arg max
θ

L(C). (8)

Based on Eqs. 7 and 8, the feature extractor and the classifier can be jointly
optimized using Eq. 9:

θ, Ψ = arg max
θ

min
Ψ

L(C), (9)

which is consistent with Eq. 5.

3.3 MaxMI Algorithm

For Goal 2, we propose MaxMI algorithm to make the feature extractor retain
as much as information from the raw data as possible, in order to maintain the
high utility of the extracted features. Similarly, we also formally define Goal 2
based on the mutual information as:

max
θ

I(x; z|u). (10)

In order to avoid any potential conflict with the objective of Goal 1, we need to
mitigate counting in the information where u and x are correlated. Therefore,
the mutual information in Eq. 10 is evaluated under the condition of private
attribute u. Note that

I(x; z|u) = I(x; z, u) − I(x;u). (11)

Since both x and u are considered fixed under our setting, I(x;u) will stay as a
constant during the optimization process of feature extractor fθ. Therefore, we
can safely rewrite the objective of Goal 2 as:

max
θ

I(x; z, u), (12)
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which is to maximize the mutual information between x and joint distribution of
z and u. In addition, we adopt the previously proposed Jensen-Shannon mutual
information estimator [12,25] to estimate the lower bound of the mutual infor-
mation I(x; z,u). The lower bound is formulated as follows:

I(x; z, u) ≥ I(JSD)
θ,ω (x; z, u)

:= Ex [−sp(−Eω(x; fθ(x), u))] − Ex,x′ [sp(Eω(x′; fθ(x), u))] , (13)

where x′ is an random input data sampled independently from the same distri-
bution of x, sp(z) = log(1+ez) is the softplus function and Eω is a discriminator
modeled by a neural network with parameters ω. Hence, to maximally retain the
original information, the feature extractor and the mutual information estimator
can be optimized using Eq. 14:

θ, ω = arg max
θ

max
ω

I(JSD)
θ,ω (x; z, u). (14)

Considering the difference of x, z and u in dimensionality, we feed them into
the Eω from different layers as illustrated in Fig. 2. For example, the private
attribute u may be a binary label, which is represented by one bit. However, x
may be high dimensional data (e.g., image), and hence it is not reasonable feed
both x and u from the first layer of Eω.

Finally, the feature extractor is trained by alternatively performing PAT algo-
rithm and MaxMI algorithm. As aforementioned, we also introduce an utility-
privacy budget λ to balance the tradeoff between protecting privacy and retain-
ing the original information. Therefore, combining Eq. 9 and 14, the objective
function of training the feature extractor can be formulated as:

θ, ψ, ω = arg max
θ

(λ min
ψ

L(C) + (1 − λ)max
ω

I(JSD)
θ,ω (x; z, u)), (15)

where λ ∈ [0, 1] serves as a utility-privacy budget. A larger λ indicates a stronger
privacy protection, while a smaller λ allowing more original information to be
retained in the extracted features.

3.4 Federated Learning

We adopt the federated learning method to train the feature extractor,
each participant will perform the proposed hybrid learning method locally.
Algorithm 1 summarizes the federated learning method of TAP. Within each
training batch, each participant performs PAT algorithm and MaxMI algorithm
to update ψ and ω, respectively. Then, the parameter of feature extractor θ
will be updated according to Eq. 15. The server performs aggregations on θ, ψ,
and ω via FedAvg [24] to update corresponding global parameters θ̂, ψ̂, and ω̂,
respectively.
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Algorithm 1. Federated Learning Algorithm of TAP.
Output: θ̂
Server:

initialize the global model θ̂, ψ̂, and ω̂
k ← max(N × K, 1) � N available participants, random sampling rate K
St ← {C1, . . . , Ck} � randomly selected k participants indexed by k
for each round t = 1, 2, . . . do

for each participant k ∈ St in parallel do
θ̂ = 1

k

∑i=k
i=1 θ, ψ̂ = 1

k

∑i=k
i=1 ψ, ω̂ = 1

k

∑i=k
i=1 ω

end for
end for

Participant:
for every epoch do

for every batch do
L(C) → update ψ (performing PAT)
−IJSD

θ,ω (x; z, u) → update ω (performing MaxMI)
−λL(C) − (1 − λ)IJSD

θ,ω (x; z, u) → update θ
end for

end for

4 Evaluation

In this section, we evaluate TAP’s performance on two real-world datasets, with
a focus on the utility-privacy tradeoff. We also compare the impact of different
synchronization strategies in federated learning on the performance.

4.1 Experiment Setup

We evaluate TAP, especially the learned feature extractor, on one image dataset
and one text dataset. We apply mini-batch technique in training with a batch size
of 64, and adopt the AdamOptimizer [14] with an adaptive learning rate in the
hybrid learning procedure. We adopt the same model architecture configurations
as presented in [17]. In terms of the federated learning, we assume there are 100
available clients, and only 20 participants are randomly selected to participate in
each training around. For evaluating the performance, given a primary learning
task, a simulated data collector trains a normal classifier using features processed
by the learned feature extractor. The utility and privacy of the extracted features
Eθ(x) are evaluated by the classification accuracy of primary learning tasks and
specified private attribute, respectively. We adopt CelebA [22] and the dialectal
tweets dataset (DIAL) [4] for the training and testing of TAP.

4.2 Evaluations on CelebA

Impact of the Utility-Privacy Budget λ: An important step in the hybrid
learning procedure (see Eq. 15) is to determine the utility-privacy budget λ. In
our experiments, we set ‘young’ and ‘gender’ as the private labels to protect in
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CelebA, and consider detecting ‘gray hair’ and ‘smiling’ as the primary learn-
ing tasks to evaluate the utility. To determine the optimal λ, we evaluate the
utility-privacy tradeoff on CelebA by setting different λ. Specifically, we evaluate
the impact of λ with four discrete choices of λ ∈ {1, 0.9, 0.5, 0}. As Fig. 3 illus-
trates, the classification accuracy of primary learning tasks will increase with
a smaller λ, but the privacy protection will be weakened. Such phenomenon is
reasonable, since the smaller λ means hiding less privacy information in features
but retaining more original information from the raw data according to Eq. 15.
For example, in Fig. 3 (a), the classification accuracy of ‘gray hair’ is 82.17%
with λ = 1 and increases to 90.35% by setting λ = 0; the classification accuracy
of ‘young’ is 67.75% and 82.34% with decreasing λ from 1 to 0, respectively.
Overall, λ = 0.9 is an optimal utility-privacy budget for experiment settings in
CelebA.
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Fig. 3. The impact of the utility-privacy budget λ on CelebA

Impact of the Different Synchronization Strategies: In our study, we
train the feature extractor using the proposed federated learning method. There
are three parameter sets for the feature extractor (θ), the classifier (ψ), and
the mutual information estimator (ω) need to be communicated between the
central server and clients. In this experiment, we compare two types of synchro-
nization strategies in federate learning process: Sync All synchronizes all the
three parameter sets between the each client and the central server; Sync FE
synchronizes only the feature extractor (θ) between the each client and the cen-
tral server. In addition, we also compare these two synchronization strategies of
the federated learning method with the Centralized method, where the feature
extractor is trained in a centralized way rather than the federated fashion. In
this experiment, the private labels and primary learning tasks in CelebA are set
as same as the above experiments. In addition, we set λ = 0.9 when training the
feature extractor.

Figure 4 shows the experiment results on CelebA. In general, the Centralized
method outperforms the other two federated learning methods in terms of the
privacy-utility tradeoff. However, Sync All only has a slight performance decrease
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compared with the Centralized method, but the federated learning method can
mitigate the privacy leakage due to data movement compared with the Central-
ized method. For example, in Fig. 4 (a), the classification accuracy of ‘gray hair’
is 87.97% with the Centralized method and decreases to 86.96% by applying the
Sync All strategy in federated learning. In addition, the privacy-utility tradeoff
when applying the Sync FE strategy is slightly degraded compared with apply-
ing the Sync All strategy. For example, in Fig. 4 (b), the classification accuracy
of ‘gray hair’ is 84.21% with the Sync All strategy and decreases to 81.56% by
applying the Sync FE strategy; the classification accuracy of ‘gender’ is 62.18%
and 65.75% when switching the strategy from Sync All to Sync FE, respectively.
Moreover, by synchronizing the feature extractor only instead of all the three
parameter sets, the communication costs can be reduced by about two thirds in
both upload and download streams. The trade-off between improving communi-
cation efficiency and offering better privacy-utility tradeoff should be considered
case-by-case.
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Fig. 4. The impact of the synchronization strategies on CelebA

4.3 Evaluation on DIAL

To quantitatively evaluate the utility-privacy tradeoff of TAP on DIAl, we
choose ‘race’ as the private attribute that needs to be protected and predict-
ing ‘mentioned’ as the primary learning task. The binary mention task is to
determine if a tweet mentions another user, i.e., classifying conversational vs.
non-conversational tweets. Similar to the experiment settings in CelebA, we
evaluate the utility-privacy tradeoff on DIAL by setting different λ with four
discrete choices of λ ∈ {1, 0.9, 0.5, 0}. As Fig. 5 shows, the classification accuracy
of primary learning tasks will increase with a smaller λ, but the privacy pro-
tection will be weakened, showing the same phenomenon as the evaluations on
CelebA. For example, the classification accuracy of ‘mentioned’ is 65.31% with
λ = 1 and increases to 75.12% by setting λ = 0, and the classification accuracy
of ‘race’ increases by 20.35% after changing λ from 1 to 0.
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Fig. 5. The impact of the utility-privacy budget λ on DIAL.

5 Conclusion

We proposed a task-agnostic privacy-preserving representation learning frame-
work TAP. A feature extractor is learned via federated learning to hide pri-
vacy information features and maximally retain original information from the
raw data. By applying TAP, a user can locally extract features from the raw
data using the learned feature extractor, and the data collector will acquire the
extracted features only to train a DNN model for the primary learning tasks.
Evaluations on two benchmark datasets show that TAP offers a desired privacy-
utility tradeoff, indicating the usability of proposed framework.
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Abstract. For nowadays real-world data mining task, multiple data
holders usually maintain the different feature part of the common data
which is called as vertically partitioned data. Accompanying by the
emerging demand of privacy persevering, it is hard to do data mining
over this kind of vertically partitioned data by legacy machine learning
methods. In consideration of less literature for non-linear learning over
kernels, in this chapter, we propose a vertical federated kernel learning
(VFKL) method to train over the vertically partitioned data. Specifi-
cally, we first approximate the kernel function by the random feature
technique, and then federatedly update the predict function by the spe-
cial designed doubly stochastic gradient without leaking privacy in both
data and model. Theoretically, our VFKL could provide a sublinear con-
vergence rate, and guarantee the security of data under the common
semi-honest assumption. We conduct numerous experiments on various
datasets to demonstrate the effectiveness and superiority of the proposed
VFKL method.

Keywords: Vertical federated learning · Kernel method · Stochastic
gradient descent · Random feature approximation · Privacy
preservation

1 Introduction

To be suitable for various data in modern society, current data mining applica-
tions face new challenges. Data now always distribute in multiple data holders
(such as private finance and E-business companies, hospitals and government
branches) where each one keeps its different feature part. In such situation, this
kind of data is called vertical partitioned data [21]. For a practical example, a
digital finance company, an E-business company, and a bank maintain different
information from the same person. The digital finance company keeps online
consumption, loan, and repayment information. The E-business company keeps
online shopping information. The bank has customer information such as average
monthly deposit, account balance, account statement. If the person applies for
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a loan to the digital finance company, the digital finance company might assess
the credit risk of this financial loan by collaboratively utilizing the information
stored in these three parts.

However, with the policy of the government and the commercial profit
requirement of the company, it is impractical to directly access the data from
other holders. Specifically, aim to answer the emerging concerns about personal
privacy from users, the European Union draw up the General Data Protection
Regulation (GDPR) [8]. As for the company, on the one hand, users’ data is the
valuable property, therefore, the company have an obligation to protect it. The
recent data leakage from Facebook has attracted wide protests [1]. On the other
hand, the real user data is useful for the company to train a superior commercial
learning model (such as recommendation model). Therefore, it is necessary to
do federated learning over vertical partitioned data without leaking privacy.

Nowadays, researchers have proposed numerous vertical federated learning
algorithms in various fields, for example, linear regression [9,10,14,20], k-means
clustering [23], logistic regression [13,16], random forest [15], XGBoost [4], sup-
port vector machine (SVM) [27], cooperative statistical analysis [7] and asso-
ciation rule-mining [22]. From the optimization view, Wan et al. [24] proposed
privacy-preservation gradient descent algorithm for vertically partitioned data.
Zhang et al. [28] proposed a feature-distributed SVRG algorithm for high-
dimensional linear classification.

However, current federated learning algorithms are training based the
assumption that the learning models are implicitly linearly separable, i.e.,
f(x) = G ◦ h(x) [24], where G is any differentiable function, h(x) is a linearly
separable function with the form of

∑m
�=1 h�(wg�

, xg�
) and {g1, g2, . . . , gm} is a

features partition. However, it is widely known that non-linear models could
achieves superior performance than linear ones. Therefore, almost all we men-
tioned above methods are constrained by linearly separable assumption and
then have limited performance. Kernel methods are a vital branch of non-linear
learning approaches. The kernel methods are always formulated as the form:
f(x) =

∑N
i αik(xi, x) which do not satisfy the assumption of implicitly linear

separability, where k(·, ·) is a kernel function. To the best of our knowledge,
PP-SVMV [27] is the only privacy-preserving non-linear kernels method to learn
vertically partitioned data. Nevertheless, PP-SVMV [27] has to gather the local
kernel matrices from different workers and then sum them as a global kernel
matrix, which leads to high communication cost. Thus, it still challenging to
efficiently and scalably train over vertically partitioned data by kernel methods
without disclosing privacy.

In order to solve this problem, in this chapter, we propose a novel vertically
partitioned federated kernel learning (VFKL) method to train over the verti-
cally partitioned data. Specifically, we first approximate the kernel function by
the random feature technique, and then federatedly update the predict function
by the special designed doubly stochastic gradient without leaking privacy in
both data and model. Theoretically, our VFKL could provide a sublinear conver-
gence rate (near O(1/t)), and guarantee the security of data under the common
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semi-honest assumption (i.e., Assumption 2). We conduct numerous experiments
on various datasets to demonstrate the effectiveness and superiority of the pro-
posed VFKL method. This chapter extends the content of our KDD paper [11].

2 Brief Review of Doubly Stochastic Kernel Methods

In this section, we first introduce the random feature approximation technique,
and then give a brief review of doubly stochastic gradient (DSG) algorithm,
finally, discuss between DSG and our VFKL. DSG [5,12,25] is a scalable and
efficient kernel method which uses the doubly stochastic gradients w.r.t. samples
and random features to update the kernel function. We extend DSG to vertically
partitioned data scenario, and then propose VFKL method.

2.1 Problem Formulation

Given a training set {(xi, yi)}N
i=1, where xi ∈ R

d and yi ∈ {+1,−1} for binary
classification or yi ∈ R for regression. We denote l(u, y) as a convex loss function
(such as square loss, hinge loss and logistic loss). Given a positive definite kernel
function k(·, ·) and the corresponding reproducing kernel Hilbert spaces (RKHS)
H [2], kernel methods usually try to find a predictive function f ∈ H for solving
the following optimization problem:

arg min
f∈H

L(f) = E(x,y)l(f(x), y) +
c

2
‖f‖2H, (1)

where c > 0 is a regularization parameter.

2.2 Random Feature Approximation

Random feature [17,18] is a powerful technique to scale kernel methods. It uti-
lizes the intriguing duality between positive definite kernels which are continuous
and shift invariant (i.e., k(xi, xj) = k(xi−xj)) and stochastic processes as shown
in Theorem 1.

Theorem 1 ([19]). A continuous, real-valued, symmetric and shift-invariant
function k(xi, xj) = k(xi − xj) on R

d is a positive definite kernel if and only if
there is a finite non-negative measure P(ω) on R

d, such that

k(xi − xj) =
∫

Rd

eiωT (xi−xj)dP(ω) (2)

=
∫

Rd×[0,2π]

2 cos(ωT xi + b) cos(ωT xj + b)d(P(ω) × P(b)),

where P(b) is a uniform distribution on [0, 2π], and φω(x) =
√

2 cos(ωT x + b).
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According to Theorem1, for effective computation, we approximate the ker-
nel function with Monte-Carlo sampling as follow:

k(xi − xj) ≈ 1
D

D∑

z=1

φωz
(xi)φωz

(xj) = φω(xi)φω(xj), (3)

where D is the number of random feature and ωz ∈ R
d are drawn from P(ω),

for convenience, w in last equality is stacked into a matrix, i.e., ω ∈ R
d×D.

Specifically, for Gaussian RBF kernel k(xi, xj) = exp(−||xi −xj ||2/2σ2), P(ω) is
a Gaussian distribution with density proportional to exp(−σ2‖ω‖2/2). For the
Laplace kernel [26], this yields a Cauchy distribution. Notice that computing
random feature map φ requires to compute a linear combination of the raw
input features, which can be partitioned vertically. This character makes random
feature approximation well-suited for the federated learning setting.

2.3 Doubly Stochastic Gradient

Based on the definition of the function f ∈ H, we easily obtain ∇f(x) =
∇〈f, k(x, ·)〉H = k(x, ·), and ∇‖f‖2H = ∇〈f, f〉H = 2f . Consequently, the
stochastic gradient of ∇f(x) w.r.t. the random feature ω can be rewritten as
the following (4):

ˆ∇f(x) = k̂(x, ·) = φω(x)φω(·). (4)

Given a randomly sampled instance (xi, yi), and a random feature ωi, the
doubly stochastic gradient of the loss function l(f(xi), yi) on RKHS w.r.t. the
sampled instance (xi, yi) and the random feature ωi can be formulated as follows.

ξ(·) = l′(f(xi), yi)φωi
(xi)φωi

(·). (5)

Since ∇||f ||2H = 2f , the stochastic gradient of L(f) can be formulated as
follows:

ξ̂(·) = ξ(·) + cf(·) = l′(f(xi), yi)φωi
(xi)φωi

(·) + cf(·). (6)

Note that we have E(x,y)Eω ξ̂(·) = ∇L(f). According to the stochastic gradient
(6), we can update the solution by stepsize ηt. Then, let f1(·) = 0, we have that:

ft+1(·) =ft(·) − ηt (ξ(·) + cf(·)) =
t∑

i=1

− ηi

t∏

j=i+1

(1 − ηjc)ζi(·) (7)

=
t∑

i=1

−ηi

t∏

j=i+1

(1 − ηjc)l′(f(xi), yi)φωi
(xi)φωi

(·) =
t∑

i=1

αt
iφωi

(·)

According to (7), the function f(·) could be viewed as the weighted sum about
φωi

(·) where the weights are αt
i, for i = 1, · · · , t. Same to the kernel model form

f(x) =
∑N

i αik(xi, x) mentioned in Section.1, the predictive function f(x) in
(7) do not satisfy the assumption of implicitly linear separability.
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Discussion. The key that DSG could be extended to vertical partitioned data
scenario is that the computation of random features can be linearly separable.
Therefore, we compute the partitioned random feature of the vertical partitioned
data in local worker, and when we need the entire kernel function to compute the
global functional gradient, we could easily reconstruct the entire random feature
from local workers by summing local random feature.

3 Vertical Federated Kernel Learning

In this section, we provide the non-linear problem restatement in vertical par-
titioned data scenario. Then, we give the overall method structure. Finally, we
provide the detailed description of our VFKL algorithm.

3.1 Problem Restatement

As mentioned previously, in numerous real-world data mining and machine learn-
ing applications, the training instance (x, y) is divided vertically into m parts,
i.e., x = [xg1 , xg2 , . . . , xgm

], and xg�
∈ R

d� is stored on the 
-th worker and∑m
�=1 d� = d. According to whether the label is included in a worker, we divide

the workers into two types: one is active worker and the other is passive worker,
where the active worker is the data provider who holds the label of a instance,
and the passive worker only has the input of a instance. The active worker would
be a dominating server in federated learning, while passive workers play the role
of clients [4]. We let S� denote the data stored on the 
-th worker, where the
labels yi are distributed on active workers. S� includes parts of labels {yi}l

i=1.
Thus, our goal in this chapter can be presented as follows.

Goal. Solving the nonlinear learning problem (1) by collaborating with these
active workers and passive workers on the vertically partitioned data {S�}m

�=1

while keeping data privacy.

3.2 Method Structure

Same to the vertical federated learning setting, each worker keeps its local ver-
tically partitioned data. Figure 1 presents the system structure of VFKL. As we
mentioned above, the main idea of VFKL is that the computation of the random
features can be vertically divided. Specifically, we give detailed descriptions of
data privacy, model privacy and tree-structured communication, respectively, as
follows:

– Data Privacy: To keep the vertically partitioned data privacy, we need to
divide the computation of the value of φωi

(xi) =
√

2 cos(ωT
i xi + b) to avoid

transferring the local data (xi)G�
to other workers. Specifically, we send a

random seed to the 
-th worker. Once the 
-th worker receive the random seed,
it can generate the random direction ωi uniquely according to the random
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Workers

Data privacy

Model privacy

Active

Passive

Aggregator
Tree-structured 
communication

Databases

Fig. 1. System structure of VFKL.

seed. Thus, we can locally compute (ωi)T
g�

(xi)g�
+ b which avoids directly

transferring the local data (xi)g�
to other workers for computing ωT

i xi + b.
In the next section, we will discuss it is hard to infer any (xi)g�

according to
the value of (ωi)T

g�
(xi)g�

+ b from other workers.
– Model Privacy: The model coefficients αi are stored in different workers

separately and privately. According to the location of the model coefficients
αi, we partition the model coefficients {αi}t

i=1 as {αΓ�
}m

�=1, where αΓ�
denotes

the model coefficients at the 
-th worker, and Γ� is the set of corresponding
iteration indices. We do not directly transfer the local model coefficients αΓ�

to
other workers. To compute f(x), we locally compute f�(x) =

∑
i∈Γ�

αiφωi
(x)

and transfer it to other worker, and f(x) can be reconstructed by summing
over all the f�(x). It is difficult to infer the local model coefficients αΓ�

based
on the value of f�(x) if |Γ�| ≥ 2. Thus, we achieve the model privacy.

– Tree-Structured Communication: Zhang et al. [28] proposed an efficient
tree-structured communication mechanism to get the global sum which is
faster than the simple strategies of star-structured communication [24] and
ring-structured communication [27]. We adopt this mechanism for efficiently
and privately accumulating the local results from different workers.

Algorithm. To extend DSG to federated learning on vertically partitioned
data while keeping data privacy, we need to carefully design the procedures of
computing ωT

i xi + b, f(xi) and the solution updates, which are presented in
detail as follows.
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Algorithm 1. VFKL Algorithm on the 
-th active worker
Input: P(ω), local normalized data S�, regularization parameter c, constant learning

rate η, total iteration number t.
1: keep doing in parallel
2: Pick up an instance (xi)g� from the local data S� with index i.
3: Send i to other workers using a reverse-order tree structure T0.
4: Sample ωi ∼ P(ω) with the random seed i for all workers.
5: Use Algorithm 3 to compute ωT

i xi + b and locally save it.
6: Compute f�′(xi) for �′ = 1, . . . , m by calling Algorithm 2.
7: Use tree-structured communication mechanism based on T0 to compute f(xi) =∑m

�=1 f�(xi).
8: Compute φωi(xi) according to ωT

i xi + b.
9: Compute αi = −η (l′(f(xi), yi)φωi(xi)) and locally save αi.

10: Update αj = (1 − ηc)αj for all previous j in the �-th worker and other workers.
11: end parallel loop
Output: αΓ � .

Algorithm 2. Compute f�(x) on the 
-th active worker
Input: P(ω), αΓ � , Γ�, x.
1: Set f�(x) = 0.
2: for each i ∈ Γ� do
3: Sample ωi ∼ P(ω) with the random seed i for all workers.
4: Obtain ωT

i x + b if it is locally saved, otherwise compute ωT
i x + b by using Algo-

rithm 3.
5: Compute φωi(x) according to ωT

i x + b.
6: f�(x) = f�(x) + αiφωi(x)
7: end for
Output: f�(x)

1. Computing ωT
i xi + b: We generate the random direction ωi according

to a same random seed i and a probability measure P for each worker.
Thus, we can locally compute (ωi)T

g�
(xi)g�

. To keep (xi)g�
private, instead

of directly transferring (ωi)T
g�

(xi)g�
to other workers, we randomly generate

b� uniformly from [0, 2π], and transfer (ωi)T
g�

(xi)g�
+ b� to another worker.

After all workers have calculated (ωi)T
g�

(xi)g�
+ b� locally, we can get the

global sum
∑m

�̂=1

(
(ωi)T

g�̂
(xi)g�̂

+ b�̂

)
efficiently and safely by using a tree-

structured communication mechanism based on the tree structure T1 for work-
ers {1, . . . , m} [28].
Currently, for the 
-th worker, we get multiple values of b with m times.
To recover the value of

∑m
�̂=1

(
(ωi)T

g�̂
(xi)g�̂

)
+ b, we pick up one b�′ from

{1, . . . , m}/{
} as the value of b by removing other values of b� (i.e., remov-
ing b�′ =

∑
�̂�=�′ b�̂). In order to prevent leaking any information of b�, we use
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Algorithm 3. Compute ωT
i xi + b on the 
-th active worker

Input: ωi, xi

{// This loop asks multiple workers running in parallel.}
1: for �̂ = 1, . . . , m do
2: Compute (ωi)

T
g

�̂
(xi)g

�̂
and randomly generate a uniform number b�̂ from [0, 2π]

with the seed σ�̂(i).
3: Calculate (ωi)

T
g

�̂
(xi)g

�̂
+ b�̂.

4: end for
5: Use tree-structured communication mechanism based on the tree structure T1 for

workers {1, . . . , m} to compute Δ =
∑m

�̂=1

(
(ωi)

T
g

�̂
(xi)g

�̂
+ b�̂

)
.

6: Pick up �′ ∈ {1, . . . , m}/{�} uniformly at random.
7: Use tree-structured communication mechanism based on the totally different tree

structure T2 for workers {1, . . . , m}/{�′} to compute b�′ =
∑

�̂�=�′ b�̂.

Output: Δ − b�′ .

a totally different tree structure T2 for workers {1, . . . , m}/{
′} (please see
Definition 1) to compute b�′ =

∑
�̂ �=�′ b�̂. The detailed procedure of comput-

ing ωT
i xi + b is summarized in Algorithm 3.

Definition 1 (Two Different Trees). For two tree structures T1 and T2,
they are totally different if there does not exist a subtree with more than one leaf
which belongs to both of T1 and T2.

2. Computing f(xi): According to (7), we have that f(xi) =
∑t

i=1 αt
iφωi

(xi).
However, αt

i and φωi
(xi) are stored in different workers. Thus, we first locally

compute f�(xi) =
∑

i∈Γ�
αt

iφωi
(xi) which is summarized in Algorithm 2. By

using a tree-structured communication mechanism, we can get the global
sum

∑m
�=1 f�(xi) efficiently which is equal to f(xi) (please see Line 7 in

Algorithm 1).
3. Updating Rules: Since αt

i are stored in different workers, we use a commu-
nication mechanism with a reverse-order tree structure to update αt

i in each
workers by the coefficient (1 − ηc) (please see Line 10 in Algorithm 1).

Based on these key procedures, we summarize our overall VFKL algorithm in
Algorithm 1. Different to the diminishing learning rate used in DSG, our VFKL
uses a constant learning rate η which can be implemented more easily in the
parallel computing environment. However, the convergence analysis for constant
learning rate is more difficult than the one for diminishing learning rate. We give
the theoretic analysis in the following section.

4 Theoretical Analysis

In this section, we provide the convergence, security and complexity analysis of
the proposed VFKL. All detailed proofs are provided in KDD [11] Appendix1.
1 https://drive.google.com/open?id=1ORqXDM1s1eiA-XApy4oCpGhAnhFbrqKn.

https://drive.google.com/open?id=1ORqXDM1s1eiA-XApy4oCpGhAnhFbrqKn
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4.1 Convergence Analysis

As the basis of our analysis, our first lemma states that the output of Algorithm
3 is actually equal to ωT

i x + b.

Lemma 1. The output of Algorithm 3 ( i.e.,
∑m

�̂=1

(
(ωi)T

g�̂
(x)g�̂

+ b�̂

)
− b�′ is

equal to ωT
i x + b, where each b�̂ and b are drawn from a uniform distribution on

[0, 2π], b�′ =
∑

�̂�=�′ b�̂, and 
′ ∈ {1, . . . , q}/{
}.
Based on Lemma 1, we can conclude that the federated learning algorithm

(i.e., VFKL) can produce the same doubly stochastic gradients as that of a DSG
algorithm with constant learning rate. Thus, under Assumption 1, we can prove
that VFKL converges to the optimal solution almost at a rate of O(1/t) as shown
in Theorem 2. Note that the convergence proof of the original DSG algorithm in
[5] is limited to diminishing learning rate.

Assumption 1. Suppose the following conditions hold.

1. There exists an optimal solution, denoted as f∗, to the problem (1).
2. We have an upper bound for the derivative of l(u, y) w.r.t. its 1st argument,

i.e., |l′(u, y)| < M .
3. The loss function l(u, y) and its first-order derivative are L-Lipschitz contin-

uous in terms of the first argument.
4. We have an upper bound κ for the kernel value, i.e., k(x, x′) ≤ κ. We have

an upper bound φ for random feature mapping, i.e., |φω(x)φω(x′)| ≤ φ.

Theorem 2. Set ε > 0, min{ 1
c , εc

4M2(
√

κ+
√

φ)2
} > η > 0, for Algorithm1, with

η = εϑ
8κB for ϑ ∈ ( 0, 1 ], under Assumption 1, we will reach E

[
|ft(x)−f∗(x)|2

]
≤

ε after

t ≥ 8κB log(8κe1/ε)
ϑεc

(8)

iterations, where B =
[√

G2
2 + G1 + G2

]2
, G1 = 2κM2

c , G2 = κ1/2M(
√

κ+
√

φ)
2c3/2

and e1 = E[‖h1 − f∗‖2H].

Remark 1. Based on Theorem 2, we have that for any given data x, the evaluated
value of ft+1 at x will converge to that of a solution close to f∗ in terms of the
Euclidean distance. The rate of convergence is almost O(1/t), if eliminating the
log(1/ε) factor. Even though our algorithm has included more randomness by
using random features, this rate is nearly the same as standard SGD. As a result,
the efficiency of the proposed algorithm is guaranteed.

4.2 Security Analysis

We discuss the data security (in other words, prevent local data on one worker
leaked to or inferred by other workers) of VFKL under the semi-honest assump-
tion which is commonly used in previous works [4,13,24].
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Assumption 2 (Semi-honest Security). All workers will follow the protocol
or algorithm to perform the correct computations. However, they may retain
records of the intermediate computation results which they may use later to infer
the data of other workers.

Because each worker knows the parameter ω given a random seed, we can
have a linear system of oj = (ωj)T

g�
(xi)g�

with a sequence of trials of ωj and oj . It
has the potential to infer (xi)g�

from the linear system of oj = (ωj)T
g�

(xi)g�
if the

sequence of oj is also known. We call it inference attack. Please see its formal
definition in Definition 2. In this part, we will prove that VFKL can prevent
inference attack (i.e., Theorem 3).

Definition 2 (Inference Attack). An inference attack on the 
-th worker is
to infer a certain feature group g of sample xi which belongs to other workers
without directly accessing it.

Theorem 3. Under the semi-honest assumption, the VFKL algorithm can pre-
vent inference attack.

As discussed above, the key of preventing the inference attack is to mask the
value of oj . As described in lines 2–3 of Algorithm 3, we add an extra random
variable b�̂ into (ωj)T

g�
(xi)g�

. Each time, the algorithm only transfers the value
of (ωi)T

g�
(xi)g�

+ b�̂ to another worker. Thus, it is impossible for the receiver
worker to directly infer the value of oj . Finally, the 
-th active worker gets the

global sum
∑m

�̂=1

(
(ωi)T

g�̂
(xi)g�̂

+ b�̂

)
by using a tree-structured communication

mechanism based on the tree structure T1. Thus, lines 2–4 of Algorithm 3 keeps
data privacy.

As proved in Lemma 1, lines 5–7 of Algorithm 3 is to get ωT
i x+b by removing

b�′ =
∑

�̂ �=�′ b�̂ from the sum
∑m

�̂=1

(
(ωi)T

g�̂
(xi)g�̂

+ b�̂

)
. To prove that VFKL

can prevent the inference attack, we only need to prove that the calculation of
b�′ =

∑
�̂�=�′ b�̂ in line 7 of Algorithm 3 does not disclose the value of b�̂ or the

sum of b�̂ on a node of tree T1, which is indicated in Lemma 2.

Lemma 2. In Algorithm 3, if T1 and T2 are totally different tree structures, for
any worker 
̂, there is no risk to disclose the value of b�̂ or the sum of b�̂ to other
workers.

4.3 Complexity Analysis

The computational complexity for one iteration of VFKL is O(dmt). The total
computational complexity of VFKL is O(dmt2). Further, the communication
cost for one iteration of VFKL is O(mt), and the total communication cost of
VFKL is O(mt2). The details of deriving the computational complexity and
communication cost of VFKL are provided in Appendix.
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5 Experiments

In this section, we first present the experimental setup, and then provide the
experimental results and discussions.

5.1 Experimental Setup

Design of Experiments. To demonstrate the superiority of VFKL on feder-
ated kernel learning with vertically partitioned data, we compare VFKL with
PP-SVMV [27], which is the state-of-the-art algorithm of the field. Additionally,
we also compare with SecureBoost [4], which is recently proposed to generalize
the gradient tree-boosting algorithm to federated scenarios. Moreover, to ver-
ify the predictive accuracy of VFKL on vertically partitioned data, we compare
with oracle learners that can access the whole data samples without the feder-
ated learning constraint. For the oracle learners, we use state-of-the-art kernel
classification solvers, including LIBSVM [3] and DSG [5]. Finally, we include
FD-SVRG [24], which uses a linear model, to comparatively verify the accuracy
of VFKL.

Table 1. The benchmark datasets used in the experiments.

Datasets Features Size

gisette 5,000 6,000

a9a 123 48,842

real-sim 20,958 72,309

epsilon 2,000 400,000

defaultcredit 23 30,000

givemecredit 10 150,000

Implementation Details. Our experiments were performed on a 24-core two-
socket Intel Xeon CPU E5-2650 v4 machine with 256GB RAM. We implemented
our VFKL in python, where the parallel computation was handled via MPI4py
[6]. We utilized the SecureBoost algorithm through the official unified frame-
work2. The code of LIBSVM is provided by [3]. We used the implementation3

provided by [5] for DSG. We modified it to constant learning rate case. Our
experiments use the following binary classification datasets as described below.

2 The framework code is available at https://github.com/FederatedAI/FATE.
3 DSG code: https://github.com/zixu1986/Doubly Stochastic Gradients.

https://github.com/FederatedAI/FATE
https://github.com/zixu1986/Doubly_Stochastic_Gradients
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Datasets. We summarizes the datasets used in experiment (including four
binary classification datasets and two real-world financial datasets) at Table 1.
The first four datasets are obtained from LIBSVM website4, the defaultcredit
dataset is from UCI5, and the givemecredit dataset is from Kaggle6. We split the
dataset as 3:1 for train and test partition, respectively. Note that in the exper-
iments of the real-sim, givemecredit and epsilon datasets, PP-SVMV always
runs out of memory, which means this method only works when the number
of instance is below around 45,000 when using the computation resources spec-
ified above. Since the training time is beyond 15 h, the result of SecureBoost
algorithm on epsilon dataset is absent.
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Fig. 2. The results of binary classification above the comparison methods.

5.2 Results and Discussions

We provide the test errors v.s. training time picture on four state-of-the-art
kernel methods in Fig. 2. Obviously, our algorithm always achieves fastest con-
vergence rate compared to other state-of-art kernel methods.

We also present the test errors of three state-of-the-art kernel methods, tree-
boosting method (SecureBoost), linear method (FD-SVRG) and our VFKL in

4 Datasets can be found at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/data
sets/.

5 https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients.
6 https://www.kaggle.com/c/GiveMeSomeCredit/data.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
https://www.kaggle.com/c/GiveMeSomeCredit/data


78 Z. Dang et al.

gisette a9a real-sim epsilon defaultcredit givemecredit
0

0.05

0.1

0.15

0.2

0.25

0.3

Te
st

 E
rro

r

VFKL

FD-SVRG

PP-SVMV

SecureBoost

DSG

LIBSVM

Fig. 3. The boxplot of test errors of three state-of-the-art kernel methods, tree-boosting
method (SecureBoost), linear method (FD-SVRG) and our VFKL.
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Fig. 4. The sensitive results of hyper-parameters on our VFKL methods.

Fig. 3. All results are averaged over 10 different train-test split trials. From the
plot, we find that our VFKL always achieves lowest test error and variance. In
addition, tree-boosting method SecureBoost performs poor in high-dimensional
datasets such as real-sim. It is easy to found that linear method normally has
worse results than other kernel methods.
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Finally, we provide the sensitive results of hyper-parameters such as the step-
size η and the regularization parameter c in Fig. 4. At experiments, we select η
from the interval [1 : 1e−3] and c from the interval [1e1 : 1e−5]. According to the
results, our method always achieves better performance at smaller stepsize eta.
And our method seems not sensitive to smaller regularization parameter.

6 Conclusion

To do privacy-preservation federated learning over vertically partitioned data is
raring in current data mining application. In this chapter, we proposed VFKL
algorithm to deal with vertically partitioned data, which breaks the limitation of
implicitly linear separability used in the existing federated learning algorithms.
We proved that VFKL has a sublinear convergence rate, and can guarantee
data security under the semi-honest assumption. To the best of our knowledge,
VFKL is the first efficient and scalable privacy-preservation federated kernel
method. Extensive experimental results show that VFKL is more efficient than
the existing state-of-the-art kernel methods particularly in high dimensional data
while retaining a similar generalization performance.
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Abstract. Federated learning (FL) is a distributed machine learning
approach where many participants collaboratively train a model while
keeping the training data decentralized. The distributed setting makes
FL vulnerable to Byzantine failures and malicious participants, lead-
ing to unusable models or compromised model with backdoor. Although
several robust statistics based methods have been proposed to address
the robustness of FL against Byzantine failures, recent works has shown
the insufficiency of their defenses because that non-i.i.d data distribu-
tion and high variance of gradients among participants in practical FL
settings disrupt their common assumptions. To address this problem,
we propose a simple but efficient group-wise robust aggregation frame-
work, which clusters model parameters into different groups and applies
robust aggregation with-in each cluster. We apply our framework with a
number of popular Byzantine-robust aggregation methods, and evaluate
its resiliency against the attack that can successfully circumvent these
methods in their original settings. Our experimental results demonstrate
that the group-wise robust aggregation effectively improves the robust-
ness against Byzantine failures and highlights the effect of clustering for
addressing the gap between practical FL and theoretical assumptions of
robust statistics based defense.

Keywords: Federated learning · Byzantine attacks · Robustness ·
Machine learning security · Poisoning attack

1 Introduction

Federated Learning (FL) is a recent approach of distributed machine learn-
ing that attracts significant attentions from both industry and academia [7,9],
because of its advantages on data privacy and large-scale deployment. In FL, the
training dataset is distributed among many participants (e.g., mobile phones,
IoT devices or organizations). Each participant maintains a local model with
its local training dataset and collaboratively updates a global model under the
coordination of a central server. By keeping the training datasets locally along
with data owners, FL mitigates data privacy risks while enabling the harvest of
c© Springer Nature Switzerland AG 2020
Q. Yang et al. (Eds.): Federated Learning, LNAI 12500, pp. 81–92, 2020.
https://doi.org/10.1007/978-3-030-63076-8_6
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decentralized information and computing resources. Despite of its significance
and advantages, FL can be vulnerable to various kinds of failures and attacks.
The participants can behave arbitrarily during the learning process, which is
typically modeled as Byzantine failure, due to software crashes, faulty hard-
ware, or compromised devices by malicious attackers. Therefore, the updates
from a participant can deviate arbitrarily from true values, which can create
major degradation in learning performance [5] and vulnerable models that suf-
fers evasion attacks [11] and backdoor attacks [3].

In FL, the coordinator computes a new global model via aggregation of the
model updates from every participant round by round. A standard aggrega-
tion function is to compute the mean of local model parameters received from
participants [9]. It has been shown that the mean aggregation is not Byzan-
tine resilient, in the sense that the global model can be arbitrarily deviated
even if only one participant is compromised [5]. To improve the robustness of
FL against Byzantine failures of certain participants, a number of works have
been proposed [1,5,10,13,14] to replace the mean aggregation with a robust
estimate of the mean, such as median [14], Trimmed mean [14], Krum [5] and
Bulyan [10]. Their theoretical analysis have shown provable robustness against
Byzantine failure.

All the robust aggregation based defenses lie some important basis assump-
tions: the data samples are independent and identically distributed (i.i.d.) among
participants and so as well for model parameters; the variance of model param-
eters between different participants is limited such that large changes on model
parameters can be removed with robust estimates. However, those two assump-
tions often do not hold in practical FL settings. A fundamental characteristic
of FL in realistic applications is unbalanced and non-i.i.d partitioning of data
across different participants. Previous work [6] has shown that the error rate of
models trained with robust aggregation increases with the degree of non-i.i.d,
which indicates the ineffectiveness of robust aggregation when the FL setting
has highly non-i.i.d data. For the second assumption, recent work [4] showed
that the variance is indeed high enough even for simple datasets which allows
sufficient malicious changes to subvert the final model.

To combat the mismatch between the basis assumed by robust aggregation
and realistic FL settings, in this chapter we propose a group-wise aggregation
framework. In our approach, every round the coordinator runs a clustering algo-
rithm on the model updates from different participants and group similar model
updates into different clusters. Robust aggregation is applied to each cluster to
estimate the average center of the cluster. The global model is updated as the
aggregation of all cluster centers, each of which is weighted by its cluster size or
an evaluation score.

Intuitively, the group-wise aggregation addresses the mismatch mentioned
above to a certain extent. For the i.i.d assumption, through clustering the model
parameters in the same group share similar values and thus more likely they are
from dataset with similar or identical distributions. The robust aggregation is
performed group-wise, which allows the aggregation to yield a good estimator



Towards Byzantine-Resilient Federated Learning 83

for the desired cluster average center. For the second variance assumption, the
clustering reduces with-in cluster variance of model parameters, which limits the
malicious changes to each cluster center. The final weighted average of differ-
ent clusters further limits the malicious inference from Byzantine participants.
Our experiment result shows that our framework improves the resiliency against
Byzantine participants.

2 Background and Problem Statement

2.1 System Model

A standard FL training process [7] repeats a number of steps round by round
until the training is stopped:

– Participant selection: The coordinator selects m number of participants that
meet certain eligibility requirements such as the mobile phones with battery
powered. Each participant is denoted by pi, which has a local training dataset
Di.

– Broadcast: The coordinator sends the current global model parameters w to
all m participants.

– Local model update: Each participant pi aims to solve the optimization prob-
lem minwi

F (wi,Di) where the model parameters wi is initialized with global
model parameters w and F is the objective loss function that measures the
accuracy of the predictions made by the model wi on each data point. A pop-
ular method to solve the optimization problem is stochastic gradient descent,
which in each iteration t updates wi by w′

i = wi- γ ∂F (wi,Bt)
∂wi

where Bt is a
batch of random samples from Di and γ is learning step size.

– Aggregation: The coordinator collects local models from every participant
and aggregate them via an aggregation function A as w′ = A(w1, . . . ,wm)

– Model update: The global model is updated, i.e., w ← w′.

A variant of local model update step is the participant pi sends the difference
Δwi = w − wi to the coordinator and the aggregation step instead computes
w′ = w − A(Δw1, . . . , Δwm) which is equivalent to A(w1, . . . ,wm) for certain
aggregations such as average [9] and coordinate-wise median aggregation [14].

Notation. In the rest of the chapter we use the following notations: Let Sw be
the set {wi : i ∈ [m]}, d be the number of dimensions (parameters) of the model,
and (wi)j be the j-th dimension parameter of wi (j ∈ [d]).

2.2 Byzantine Failure and Attack Model

We consider Byzantine failure model [8] for participants in FL setting, which
means that some participants may behave completely arbitrarily and send any
model parameters to the coordinator. We assume the coordinator is trusted and
secure, which means the computation at the coordinator server is always correct.
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However, with arbitrary local model updates as input, the learned global model
can deviate arbitrarily from an intact learning result.

The Byzantine failures can be caused either by non-malicious reasons such as
unreliable network communication and software crash on participant devices, or
malicious participants that aim to subvert the normal learning process through
model poisoning attacks. The malicious failures are generally more damag-
ing than non-malicious ones, since the adversaries can have capability to con-
struct sophisticated, coordinated and undetectable attacks with maximizing
their objectives.

There are two types of model poisoning attacks, to which it has been shown
FL is vulnerable, untargeted poisoning attacks [6,10] and targeted poisoning
attacks [2,4,12]. The goal of untargeted poisoning attack is to prevent the
global model from reaching good accuracy or even convergence. It incurs a high
error rate indiscriminately for testing examples. For targeted poisoning attacks,
the adversary manipulates the model the training time such that it produces
attacker-targeted prediction at the inference time for some particular testing
examples, e.g. predicting a spam with some specific text as non-spam. Because
this type of attacks only affect a small set of testing examples of interest while
maintaining the overall accuracy, they are also known as backdoor attacks.

Because the participants in FL may be IoT devices, mobile phones etc., it
is easy for an attacker to join the learning process with multiple devices fully
under his control. In this chapter we assume the adversary can control up to
f participants (f < m), and we call them malicious participants. The adver-
sary has full access to the machine learning model, local training datasets, FL
training plan at every malicious participants. Moreover, malicious participants
can conclude with each other under the adversary’s coordination in poisoning
attacks. Also, in accordance with Kerckhoffs’s principle, we assume the attacker
has full knowledge of the defense mechanism used by FL.

2.3 Robust Aggregation Based Defense

In this section we provide an overview of the state-of-the-art defense mecha-
nisms for FL using robust aggregation. It is worth to note that these methods
are proposed in the context of distributed learning with synchronous SGD, in
which the coordinator estimates the average of gradients collected from partici-
pants and use it to update the global model with a gradient descent step. It is
actually equivalent to collecting and aggregating local model parameters when
the same learning rate is used at the participants. Following our system model,
we interpret each method with regard to model parameters.

Median [14]: It computes coordinate-wise median of local parameters across
different participants. Formally, the aggregation can be expressed as

Amed(Sw) =
{

xj = median
({(wi)j : i ∈ [m]}) : j ∈ [d]

}



Towards Byzantine-Resilient Federated Learning 85

Trimmedmean [14]: It computes coordinate-wise trimmed mean at each dimen-
sion of the model parameter. It can be represented as

Atrimmedmean(Sw) =
{

xj =
1

|Uj |
∑
i∈Uj

(wi)j : j ∈ [d]
}

where Uj is the indices of elements in the vector {(wi)j : i ∈ [m]}. The definition
of Uj can vary: in [14] it can be obtained by removing the largest and smallest
k elements from {(wi)j : i ∈ [m]}, which means |Uj | = m − 2k; in [10] Uj

is defined as the indices of top m − 2k values in the vector {(wi)j : i ∈ [m]}
that are closest to the median of the vector. They aim to defend against up to
f = �m

2 � − 1 malicious participants.

Krum [5]: Krum chooses one from the m local models that has minimum average
distance to its n − f − 2 closest neighbors as the global model. The model
parameter that differ significantly with its nearest parameters are outliers and
discarded. Formally it can written as:

AKrum(Sw) = (wi : i = argmini∈[m]

∑
i→j

||wi − wj ||2)

where i → j represents the set of wj that are n − f − 2 closest vectors to
wi. Similarly, it is also designed to defend against up to �m

2 � − 1 malicious
participants.

Bulyan [10]: Due to the high dimensionality of the model parameters, the
Euclidean distance may not capture the disagreement between two model param-
eters on a single coordinate. Therefore, the malicious participant can introduce a
large change on a single parameter without significantly affecting the Euclidean
distance, and render Krum ineffective. El Mhamdi et al. [10] proposed Bulyan to
address this issue. Specifically, Bulyan first applies Krum iteratively to select a
set of n − 2f probably good candidates from Sw. After that, Bulyan aggregates
the candidates’ model parameters with coordinate-wise robust aggregation such
as TrimmedMean. By discarding outlying coordinates with TrimmedMean, it
overcomes the above issue.

2.4 Why Defense Fails

Recent works [4,6,10] have shown that the defense mechanisms such as Krum,
Trimmedmean, and Bulyan can be successfully defeated by carefully constructed
attacks. The reasons for their failures fall into two categories.

– Non-IID data and high variance of model parameters disrupt the common
assumption of Byzantine-robust aggregation methods [4,6]. The robust aggre-
gation methods described above all assume i.i.d data (thus i.i.d gradient)
among participants such that the averaging of model parameters can yield
a good estimator. However, in practical FL settings the data can be highly
unbalanced and Non-IID, which render the robust estimators less robust than
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Algorithm 1: Group-wise Robust Aggregation Framework
Input: model updates {Δwi = w − wi : i ∈ [m]}, current model w

1 {Ci : i ∈ [k]} ← Clustering({Δwi = w − wi : i ∈ [m]}) ;
2 for i ∈ [k] do
3 ci ← Arobust(Ci) ;
4 ai ← Scoring(ci) ;

5 end
6 Δw ← 1∑

i∈[k] ai

∑
i∈[k] aici ;

7 return w − Δw

assumed theoretically. Most robust aggregation methods also assume that
the variance of model parameters among benign participants are sufficiently
bounded and malicious changes within that bound are not able to subvert
the global model. As pointed out by [4], however, the variance can be high
enough in practice (caused by Non-IID data and randomness of mini-batch
SGD), which provides the attacker a large room to craft byzantine updates to
deviate the global model as far as possible from the correct ones. The attack
against Krum and Trimmedmean proposed in [6] searches the maximal pos-
sible model deviation that can be accepted and the inherent high variance
ensures the attack a high chance to find the solution.

– Under the high dimensionality of model parameters, the lp norm distance cri-
teria is not sufficient for measuring deviation of model parameters from the
unbiased one [10]. Therefore, lp norm distance based outlier detection and
robust aggregation (e.g. Krum) may not achieve desired resiliency against
the attacks which: 1).exploit large deviation on a single dimension of model
parameters, which can be sufficient enough to achieve desired malicious objec-
tive but without affect much the Euclidean distances with benign models; 2),
for the infinite norm, only modify non-maximal coordinates to deviate the
global model without substantially affecting the distance.

3 Group-Wise Robust Aggregation Framework

Our group-wise robust aggregation framework aims to improve the resiliency
of robust aggregation against the adversarial attacks that exploit the weakness
described in the previous section. In the framework, the updates of model param-
eters from participants {Δwi = w − wi : i ∈ [m]} are clustered into different
groups by similarity. Each cluster of model updates is further aggregated with a
robust aggregation method to compute a cluster center. The final model update
is a weighted average of cluster centers. Algorithm 1 gives a formal description
of our framework. It also has a scoring function to weight each cluster center
and the final model update is a weighted combination of all cluster centers.

The clustering step is to reduce in-cluster variance of model parameters, for
improving the resiliency of robust aggregation per-cluster. In realistic FL setting,
each participant has its own source to collect or generate his local dataset. Thus,
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we can assume that each participant draw samples from one of data distributions
independently. Yet, considering a large-scale FL setting with many participants,
for each data distribution, there are multiple participants of which the local
dataset is drawn from it. Following this assumption, the clustering of model
updates by similarity is expected to implicitly group their source participants
by the similarity of underlying data distributions, which means within a cluster
data among participants satisfies i.i.d.

As a result of clustering, there are two cases for malicious participants: 1)
they may be spread among groups or 2) majority of them are clustered into one
group where the attacker try to deviate the cluster center from the correct one. In
the first case, the number of malicious participants in a cluster can be small, the
robust aggregation can effectively eliminate their impact. In the second case, the
malicious updates can collectively drive the cluster center to the target desired
by the attacker. However, they have very limited effect on other clusters of which
the majority is benign. Since the global model update is computed as the sum
of the cluster centers with each weighted by a scoring function, the deviation
introduced by malicious participants can be further reduced.

3.1 Algorithm Details

Clustering: For the clustering of model parameter updates, we consider the
popular k-means algorithm for cluster analysis. It is an iterative approach to
partition n data points to k clusters. It minimizes within-cluster variances, which
helps to deal with large variance weakness of existing robust aggregation meth-
ods. It requires a specified number of clusters k, which indicates a trade-off
between resiliency and model quality, which we will discuss later.

Robust Aggregation per Cluster: Within each cluster, we can apply existing
robust aggregation method such as Trimmed mean, Median, Krum and Bulyan
to compute the center of the cluster. The reduced variance within each cluster
improves the robustness of these methods and achieve a good estimate of correct
cluster centers.

Scoring and Weighted Sum of Cluster Centers: The framework uses a
scoring function to weight the quality and importance of each cluster center.
A straightforward scoring function is to compute ai = |Ci|

m for cluster center
ci, i.e., each cluster is weighted by its normalized cluster size. Larger cluster
size means that the corresponding center has more participants that support it.
Another approach is to individually evaluate the model that is only updated
with a single cluster center by the change of loss function over a small validation
dataset. The cluster center with a higher accuracy or loss reduction is assigned
with a higher weight. In this way, we further limit the impact of compromised
clusters.

On one end, when k = 1 which means no group partitioning, our framework
falls back to the original robust aggregation methods that work on the whole
set of participants. On the other end which has k = m, each participant forms
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a cluster on its own and aggregation on a single point is itself. Therefore, the
framework just computes the simple average aggregation of all local updates,
but usually achieve the best model quality compared with robust aggregation
methods under no attacks. We demonstrate that by have multiple clusters 1 <
k < m, our approach can achieve better resiliency than existing defenses based on
robust aggregation, while in the case of no malicious participants it can achieve
better accuracy.

Security Analysis:
To understand the resiliency of our framework, we consider a simple case with
k = 2 and present an informal analysis. Suppose in our framework A(S) can
defend against up to � |S|

2 �−1 malicious inputs in S. We can show with clustering
can be strictly stronger than without clustering. Without clustering, A fails when
there are �m

2 � malicious participants. With clustering, it may not completely fail
even there are �m

2 � malicious participants. If the clustering is a random partition
of input data, in each cluster the malicious participants can take up to half of
members and all clusters are compromised. In this case the resiliency is equivalent
to the case of no clustering. However, in our framework the inputs are clustered
by similarity. Because state-of-the-art attacks tend to let one targeted Byzantine
update accepted via having all other malicious updates to support it, they have
a larger chance to be grouped together. As a result, only one cluster center is
compromised and another cluster center is intact. With a scoring function to
evaluate their quality, the benign cluster center is assigned with higher weight
and the global model can get closer to the true result. For a formal analysis, we
leave it to our future work.

4 Evaluation

We evaluate the resiliency of our framework against the attacks recently proposed
that evades all state-of-the-art robust aggregation based defenses [4] within dif-
ferent scenarios.

4.1 Experiment Setup

Our experiment follows the set-up in most previous defense and attack works [4,
10,14].

Datasets: We consider two datasets: MNIST and CIFAR10. MNIST includes
60,000 training examples and 10,000 testing examples, each of which is an 28× 28
grayscale image of hand-written digits. CIFAR10 consists of 32× 32 color images
with three channels (RGB) in 10 classes including ships, planes, dogs and cats.
Each class has 6000 images. There are 50,000 examples for training and 10,000
for testing.

Models and FL: We choose the same model architectures for the classification
task on the two datasets and the same FL setting as the previous work [4]. For
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MNIST, we use a simple feed-forward neural network that has a 100-dimensional
hidden layer with ReLU activation and train it with cross-entropy objective. For
CIFAR10, we use a 7-layer CNN with cross-entropy objective.

The models are trained with m = 51 participants in the Federated learning.
Each participant performs one iteration of SGD on a batch of examples. For
simplicity, in our experiments the gradients are broadcast and aggregated, which
is equivalent to using model differences. By default, FL runs for 300 epochs and
remembers the global model with maximal accuracy among all epochs.

Attack: At default we set f = 12 malicious participants, about 24% of total
participants. We apply the untargeted model poisoning attack with the same
parameter settings as [4]. The untargeted model poisoning attack, also referred to
as convergence attack in [4], aims to make the global model to suffer high testing
error rate, with small changes to model parameters. The attack searches the
model changes within a perturbation range (μ−zσ, μ+zσ) where μ and σ are the
average and standard deviation of benign model updates, which can be estimated
by the attacker with all the controlled malicious participants. z is determined in
the way that there are s non-malicious participants reside farther away from the
mean than malicious participants, so the defense prefer to select malicious model
updates. With assuming normal distribution, z can be calculated accordingly by
using cumulative standard normal distribution function. With 12 malicious ones
out of 51 participants, we have z = 1.5.

Framework Setup: Our experiment chooses k-means as the clustering algo-
rithm with k = 10 at default, and simply use cluster size based weight for combin-
ing cluster centers. We combine our framework with different robust aggregation
functions, so there are three variants of our framework: GroupRA, GroupRA-
Median, and GroupRA-Trimmed Mean. Each uses trivial average and two robust
aggregation methods Median and Trimmed Mean respectively. The trivial aver-
age aggregation result is simply the cluster centers that can be directly obtained
by k-means. They are also very similar to Krum that chooses the vector that has
minimum sum of squared Euclidean distance with n − f − 2 nearest neighbors.
Therefore, we do not consider the combination of our framework with Krum and
Bulyan in this work. In addition, we observed the framework with Median and
Trimmed Mean already outperform Krum and Bulyan in our experiment.

4.2 Experiment Results

Untargeted Model Poisoning Attack. We applied the untargeted model poi-
soning attack, and compared the resilience of existing defenses with our frame-
work by measuring the maximal accuracy achieved during the training process.
Result can be found in Table 1. With no defense, we can see the attack can
reduce the model accuracy by about 10% for MNIST and 28% for CIFAR10.
All the robust aggregation based defenses cannot improve accuracy at all com-
pared with the no defense case. What is even worse is they achieve less accuracy
than no defense, which confirms the previous results in [4]. We conjecture that
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it could be caused by i.i.d assumption of robust aggregation. The local models
trained on non-i.i.d data may have large variance. The average combines mod-
els trained with data from different distributions, but the robust aggregation
may regard some updates as outliers and remove them in the aggregation, which
causes significant information loss.

Our framework GroupRA with different aggregation methods all achieve bet-
ter accuracy than existing defense mechanisms. More importantly, on MNIST
dataset, it achieves a higher accuracy than no defense in contrast to robust
aggregation. It demonstrates that our framework indeed improves the resiliency
against the untargeted poisoning attack.

Table 1. Untargeted model poisoning attack results

MNIST CIFAR10

No Attack 97.2 55.8

No Defense 87.84 27.14

Median 87.52 21.7

Trimmed Mean 84.28 23.05

Krum 79.59 25.79

Bulyan 85.83 22.91

GroupRA 91.31 26.45

GroupRA-Median 91.06 24.97

GroupRA-Trimmed Mean 90.89 26.16

Effect of Number of Clusters k. We evaluate the effect of k on the resiliency
of GroupRA on MNIST. The results are presented in Table 2. We qualitatively
discussed the behavior with k ranging from 1 to m in the previous section.
Here we look into the specific behavior quantitatively. For GroupRA, the mean
aggregation of all cluster centers is used. Thus, the result with k = 1 is equivalent
as k = m. At the same time, we observe that the resiliency (indicated by testing
accuracy) show a trend from increment to decrement, which indicates that an
optimal k exists in between for the best resiliency.

Table 2. Untargeted model poisoning attack results on MNIST

k 1 2 3 4 5 6 10 20 51

GroupRA 87.84 90.28 90.71 90.81 91.02 91.23 91.31 90.97 87.8
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5 Conclusion and Future Work

In this chapter we overview the existing robust aggregation based defense and
discuss their vulnerabilities caused by inherent characteristics of federated learn-
ing: no-i.i.d data, high variance among local models, and high dimensionality
of model parameters. To address these problems, we propose a new defense
framework with group-wise robust aggregation to improve the robustness. Our
experiment demonstrate that applying robust aggregation with our framework
effectively improves the resiliency against powerful attacks that evades all state-
of-the-art defenses.

There are a number of directions we will examine in our future work.

– Our experimental work demonstrates the benefit of clustering and group-
wise robust aggregation for improving resiliency. However, it is essential to
understand the effect of clustering and if the framework has any provable
robustness against Byzantine failure.

– Our experiment shows optimal k number of cluster exist for strongest
resiliency. It is highly correlated with underlying data distribution among
participants and can vary among different learning scenarios and even across
rounds due to participants may leave and join dynamically. At the same time,
the clustering can be costly, especially for high dimensional models. There-
fore, it is important to effectively identify the best k or try clustering without
pre-specifying k such as DBSCAN.

– In this chapter we use simple sum combination of cluster centers weighted
by cluster sizes. We are considering how to exploit the cluster structure and
different scoring functions to produce more robust results.
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Abstract. Federated learning has received wide attention in both aca-
demic and industrial communities recently. Designing federated learning
models applicable on the streaming data has received growing interests
since the data stored within each participant may often vary from time to
time. Based on recent advancements on soft gradient boosting machine,
in this work, we propose the federated soft gradient boosting machine
framework applicable on the streaming data. Compared with traditional
gradient boosting methods, where base learners are trained sequentially,
each base learner in the proposed framework can be efficiently trained in a
parallel and distributed fashion. Experiments validated the effectiveness
of the proposed method in terms of accuracy and efficiency, compared
with other federated ensemble methods as well as its corresponding cen-
tralized versions when facing the streaming data.

Keywords: Federated learning · Gradient boosting · Streaming data

1 Introduction

Gradient boosting machine (GBM) has proven to be one of the best tools for
descrete data modeling [11]. Its efficient implementations such as XGBoost [4],
LightGBM [17] and CatBoost [25] are still the dominant tools for real-world
applications ranging from click through rate (CTR) prediction [15], collaborative
filtering [2], particles discovery [1], and many more.

Recently, there have been many attempts trying to marry the power of gra-
dient boosting and deep learning. For instance, multi-layered gradient boosting
decision trees [9] is the first non-differentiable system while having the capabil-
ity of learning distributed representations, which was considered only achievable
using neural networks. However, just like other GBMs, each base leaner has to be
trained after the previous base learners, making the whole system less efficient
in terms of parallel computing.
c© Springer Nature Switzerland AG 2020
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Soft gradient boosting machine (sGBM) [8], on the other hand, is the first
differentiable gradient boosting system that all base learners can be simultane-
ously trained, a huge gain in terms of the training efficiency. To do so, the sGBM
first wires multiple differentiable base learners together, and injects both local
and global objectives inspired from gradient boosting. Since the whole struc-
ture is differentiable, all base learners can then be jointly optimized, achieving
a linear speed-up compared to the original GBM. When using differentiable soft
decision trees as the base learner, such device can be regarded as an alterna-
tive version of the (hard) gradient boosting decision trees (GBDT) with extra
benefits, especially on handling the streaming data.

Federated learning is considered to be the next generation of distributed
learning [28]. It has several benefits compared to the traditional distributed sys-
tems (e.g., MapReduce [6] and Ray), such as less communication costs and more
advanced data privacy protection guarantees of local nodes. Such system is best
practiced when facing non-iid data from multiple data sources, each with strong
privacy concerns. In this work, we propose the federated soft gradient boost-
ing framework, aiming to provide a more efficient distributed implementation of
sGBM while keeping all the benefits of federated learning and GBMs.

The rest of the paper is organized as follow: First, some related works are
discussed; Second, preliminaries are discussed to make the chapter more self-
contained; Third, the problem setting and details on the proposed method are
presented; Finally, experiment results on the proposed method are reported, and
we conclude in the last section.

2 Related Work

Federated learning is a framework recently proposed by Google [22], which is
capable of building a learning model based on the local data distributed across
different participants. Meanwhile, the local data on each participant remain
private, and is invisible to other participants. It has already been successfully
applied to several applications such as Gboard for query suggestions [14]. Fed-
erated learning can be roughly categorized into three classes [28]: Horizontal
federated learning (HFL) focuses on the scenarios where each participant has
different samples in the same feature space; Vertical federated learning (VFL)
focuses on the scenarios where participants are with different feature spaces;
Federated transfer learning (FTL) locates in the intersection of horizontal and
vertical federated learning [21], where data in different participants may have
different feature spaces and label spaces. Throughout the paper, we focus on the
horizontal federated learning setting.

Gradient Boosting Machine (GBM) is a sequential ensemble algorithm that
can be used to optimize any differentiable loss function [30]. Base learners in
GBM are fitted in an iterative fashion. Concretely, at each iteration, a new base
learner is fitted to bridge the gap between the output of fitted base learners
in GBM and the ground-truth. The entire learning procedure of GBM can be
interpreted as conducting gradient descent in the functional space [11]. The deci-
sion tree extension of GBM, Gradient Boosting Decision Tree (GBDT), is one
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of the most widely-used ensemble algorithms in the literature. Efficient imple-
mentations on GBDT, such as XGBoost [4], LightGBM [17], and CatBoost [25],
achieve excellent predictive performance on a broad range of real-world tasks
such as particle discovery [1], click through rate prediction [15], and many more.
Recently, Feng et al. shows that GBDT can also be used for learning distributed
representations [9], which is originally believed to be the special properties of neu-
ral networks. Due to the fact that base learners in GBM are fitted sequentially,
the original GBM suffers from large training costs. Furthermore, it cannot be
directly applied to the streaming data as base learners cannot be modified once
they were fitted. More recently, the soft Gradient Boosting Machine (sGBM) is
proposed [8], which is able to jointly fit all base learners by assuming that they
are differentiable. Apart from achieving competitive performance to the tradi-
tional GBMs, sGBM also greatly reduces the training costs by fitting all base
learners jointly.

Recently, there have been growing interests on extending GBM to the frame-
work of federated learning. SecureBoost is a seminal tree-based gradient boost-
ing algorithm that solves the vertical federated learning problem [5]. It is able
to achieve the same performance as the non-federated version of decision tree
based GBM that requires all local data to be aggregated before the training
stage. SecureGBM is another GBM framework that focuses on the scenarios
in federated learning where participants may have different features, and only
one participant owns the ground-truth [10]. Li et al. proposes a novel gradient
boosting decision tree model for horizontal federated learning, which achieves
much higher training efficiency through a relaxation on the privacy constraints
[19]. However, to the best of our knowledges, there is no work on studying the
federated version of GBM applicable on the streaming data.

3 Preliminaries

To make our work more self-contained, we give a detailed introduction on related
topics in this section: (1) Horizontal federated learning; (2) Gradient boosting
machine (GBM) and soft gradient boosting machine (sGBM).

3.1 Horizontal Federated Learning

Federated learning is able to build a learning model using distributed datasets
across all participants without any leakage on the private datasets [28]. Both the
theoretical studies and experiments show that the privacy and security prob-
lems can be greatly mitigated using federated learning. For horizontal federated
learning, a standard procedure on building a federated model can be roughly
summarized as four steps: (1) Each participant builds a model using local data,
and sends the model parameters or training gradients to the coordinator (e.g., a
central server) after encryptions; (2) The coordinator aggregates all local param-
eters or training gradients to updated the federated model; (3) The coordinator
broadcasts the updated model to all participants after model encryptions; (4)
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Each participant updates the local model after receiving the shared model from
the coordinator. The procedure above can be iteratively conducted for many
rounds to achieve better performance. Figure 1 is a graphical illustration on
building a federated model in horizontal federated learning.

Fig. 1. A paradigm of horizontal federated learning (HFL) [28].

For many applications in federated learning, a central problem is how to effec-
tively utilize the training data arriving in a streaming fashion [16]. A federated
learning model applicable on the streaming data is able to improve the perfor-
mance on both learning tasks and security, as the transmission costs between
participants and the coordinator, and inconsistencies in dynamically evolving
datasets can both be greatly reduced.

3.2 GBM and sGBM

Gradient boosting machine (GBM) is a popularly-used ensemble algorithm in the
literature [11]. Given M base learners {hm}Mm=1, with each of them parametrized
by {θm}Mm=1, the goal of GBM is to determine their parameters such that the
additive output of all base learners

∑M
m=1 hm(x;θm) is able to minimize a pre-

defined empirical loss function l over the training dataset {xi, yi}Ni=1. Formally,

θ∗
1,θ

∗
2, · · · ,θ∗

M = arg min
θ1,θ2,··· ,θM

N∑

i=1

l(yi,
M∑

m=1

hm(xi;θm)). (1)

The original GBM determines the learner parameter θm in a sequential way,
resulting in a total number of M training iterations [11]. Concretely, during the
m-th iteration, the learner parameter θ∗

m is determined by:

θ∗
m = arg min

θm

N∑

i=1

(rim − hm(xi;θm))2, (2)
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where rim denotes the residual defined in GBM, defined as the negative gra-
dient of the loss function with respect to the additive output of fitted base
learners before hm. Therefore, the learning target of the m-th base learner in
gradient boosting can be considered as a regression problem on a new training
dataset {xi, rim}Mm=1 using the squared error. Once the learner parameter θ∗

m is
determined, the training procedure of GBM moves on to the next iteration.

x

ModelMModel2Model1

OMO2O1y y y

Residual1 ResidualM

LossMLoss2Loss1

Soft Gradient Boosting Machine (sGBM)

sGBM Loss

Fig. 2. The graphical illustration on soft gradient boosting machine [8].

On the other hand, sGBM jointly fits all base learners based on the assump-
tion that base learners are differentiable. To be brief, given the output of all base
learners on a sample xi: {oi1, oi2, · · · , oiM}, sGBM then simultaneously computes
the residuals for all base learners. For the m-th base learner, its residual rim on
a sample xi is defined as follows:

rim = − l(yi,
∑m−1

j=0 oij)
∑m−1

j=0 oij
, (3)

where oi0 is a pre-defined null output, and returns zero for any given input
xi. Therefore, the residual for a base learner in sGBM is defined as the negative
gradient of the additive output of base learners before it with respect to the
loss function. Note that a key difference on the definition of residual between
GBM and sGBM is that sGBM does not require a base learner to first be fit-
ted before computing the residual for subsequent base learners. Given the set
{oi1, oi2, · · · , oiM}, the residuals for all base learners {ri1, ri2, · · · , riM} can be com-
puted in parallel. Given the computed residuals {rim}Mm=1, a final sGBM loss on
each sample xi is then defined as:

Li =
M∑

m=1

(oim − rim)2. (4)
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Assuming that all base learners are differentiable, sGBM then is able to adopt
the error back-propagation and online optimization techniques (e.g., stochastic
gradient descent) to simultaneously update parameters for all base learners.
Figure 2 presents the computation graph of sGBM to obtain a final loss L.

3.3 Streaming Data

With a rapid growth on the volume of datasets (e.g., ImageNet [7], COCO [20]),
it becomes increasingly difficult to deploy learning models under the traditional
offline setting. For example, computation devices in many scenarios have very
limited computation power and memory storage (e.g., smartphones, wireless
sensors, and many more), making deploying learning models in the offline setting
onto them prohibitively expensive. Meanwhile, these methods cannot properly
handle the concept drift, such as distribution changes on the training data [13].
As a result, many algorithms focusing on streaming data have been developed.
For example, models lying in the offline setting can be combined with model
reuse to handle the streaming data [26,29]. On the other hand, models that
can be directly fitted using some variants of online optimization techniques can
naturally adapt to the streaming data, such as the deep neural network.

4 The Proposed Method

In this section, we formally present the proposed Fed-sGBM. First, the problem
setting is presented; Second, details on the training stage of Fed-sGBM are intro-
duced; Third, we introduce the extension of Fed-sGBM when using decision trees
as the base learner. We conclude this section with a discussion on the commu-
nication costs of Fed-sGBM.

4.1 Problem Setting

In the section, we formally introduce the problem setting. Given K participants
{P1, P2, · · · , PK}, with each of them equipped with a local dataset Dk, the prob-
lem is to build a GBM model based on all local datasets {Dk}Kk=1 with the exis-
tence of a coordinator C. Meanwhile, it is required that the local dataset of each
participant remains private to the coordinator and other participants. Follow-
ing [5], we make the assumption that the coordinator C is trustable, and the
communication between C and each participant Pk is securely encrypted using
schemes such as homomorphic encryption. Furthermore, each local dataset Dk

evolves with the time. Upon a new local dataset D(t)
k arriving at the time t, the

old dataset D(t−1)
k will be instantly discarded and no longer available for the

training stage. Such streaming setting is more realistic in the real-world because
participants in federated learning can be cheap devices such as smartphones,
which are unable to store a large volume of local data. Figure 3 is a graphical
illustration on our problem setting.
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Fig. 3. Graphical illustration of local participants over time

4.2 Federated Soft Gradient Boosting Machine

Gradient Boosting Machine is a powerful ensemble algorithm that achieves excel-
lent predictive performance on many real-world problems [23]. However, it can-
not be directly applied to our problem setting illustrated above because of its
inherently sequential training procedure: a base learner is required to be fixed
before fitting the next base learner. We propose to extend the sGBM onto the
framework of federated learning to solve the targeted problem, where base learn-
ers can be trained in a parallel and distributed fashion. Our results are a novel
GBM model under the framework of federated learning. The rest of this section
focuses on the training details on the proposed Fed-sGBM.

First, the training stage of Fed-sGBM is initiated by the coordinator C. After
determining the kind of base learner and the number of base learners M , the
coordinator then builds M base learners of the specified type {hm}Mm=1, and
the learner parameters {θm}Mm=1 are randomly initialized. Second, the model
parameters are updated iteratively for a total number of T rounds via the com-
munications between the coordinator and all participants. At last, the coordina-
tor aggregates the local model parameters from all participants, and computes
a final model via learner-wise model averaging:

hm(x;θm) =
1
K

K∑

k=1

hm,k(x;θm,k) ∀m ∈ {1, 2, · · · ,M}, (5)

where hm,k(x;θm,k) denotes the parameter of the m-th base learner in the
participant Pk. To prevent the local datasets from leaking, the communica-
tions between the coordinator and participants are restricted to transmitting
the model parameters. Furthermore, the homomorphic encryption is used to
improve the security on transmissions.

Concretely, at each round t, each participant Pk first receives a copy of model
parameters from the coordinator C via broadcasting. After then, each partici-
pant splits the local dataset into non-overlapping batches {B1, B2, · · · , B|B|} for
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Algorithm 1: Training stage of Fed-sGBM

Input: Number of rounds T , learner parameters from the coordinator
{θm}M

m=1, local training data {Dk}K
k=1

Output: Updated model parameters {θ∗
m}M

m=1

1 for t = 1, 2, · · · , T do
2 // The side of participants

3 for k = 1, 2, · · · ,K do
4 Receive the learner parameters from the coordinator:

θm,k ← θm ∀m ∈ {1, 2, · · · ,M} ;
5 Split the local training data Dk into batches: B ← {B1, B2, · · · , B|B|} ;
6 for b = 1, 2, · · · , |B| do
7 Conduct data forward: oi

m ← ∑m−1
j=0 hj(x

i; θm,k) ∀xi ∈ Bb ;

8 Compute the residual: ri
m ← − ∂l(yi,oi

m)

∂oi
m

∀xi ∈ Bb ;

9 Compute the training loss on the current data batch:

Lb,k ← ∑
xi∈Bb

∑M
m=1(o

i
m − ri

m)2 ;

10 Update {θm,k}M
m=1 w.r.t Lb,k using gradient descent ;

11 end

12 Send {θm,k}M
m=1 to the coordinator C ;

13 end
14 // The side of the coordinator

15 Receive parameters from all participants: {θm,k}K
k=1 ∀m ∈ {1, 2, · · · ,M} ;

16 θm ← 1
K

∑K
k=1 θm,k ∀m ∈ {1, 2, · · · ,M} ;

17 end

18 {θ∗
m}M

m=1 ← {θm}M
m=1;

19 Return {θ∗
m}M

m=1;

efficient model updating. For each batch of data, a training loss defined in Eq. (4)
is first computed. After then, each participant adopts error back-propagation and
first-order optimization techniques to update local model parameters, following
the routine in sGBM [8]. At last, the updated model parameters is transmitted
to the coordinator after encryptions. Upon receiving model parameters from all
participants, the coordinator uses model averaging to compute a final model as
in Eq. (5), and the training stage moves to the next round. Algorithm 1 presents
details on the training stage of Fed-sGBM.

Since the local model on the side of participants can be efficiently updated
in a mini-batch fashion using back propagation, the proposed Fed-sGBM can be
naturally applied to the streaming data. Suppose that at time t, a new batch of
data D(t)

k arrives at the participant Pk and replaces the old data D(t−1)
k , there

is no need for the participant to train a new local model from scratch. The only
modification needs to be made is to update parameters on the batches of the
new data D(t)

k . All base learners in the existing local model then can be jointly
trained to adapt to the newly-coming batch of data.

According to the Algorithm 1, the communication cost between the coordi-
nator and each participant is 2 × T × M × |θ|, where M is the number of base
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learners in Fed-sGBM, |θ| denotes the size of model parameters. As an ensemble
algorithm in federated learning, a larger value of M is able to effectively improve
the overall performance of Fed-sGBM, yet the communication cost also increases
linearly. Therefore, a trade-off exists between the performance of Fed-sGBM and
the communication cost.

4.3 Federated Soft Gradient Boosting Decision Tree

Decision tree models, such as Classification And Regression Tree (CART) [3], are
popularly used as the base learner in gradient boosting. State-of-the-art gradient
boosting decision tree (GBDT) libraries such as XGBoost [4], LightGBM [17],
and CatBoost [25] achieve excellent predictive performance on a variety number
of real-world tasks. Due to the fact that building a single decision tree is a
one-pass procedure that requires all data to first be aggregated before training,
extending GBDTs to the horizontal federated learning setting is non-trivial. In
this section, we extend the proposed Fed-sGBM to the cases where tree-based
model is used as the base learner, and the result is a novel GBDT model for
horizontal federated learning: Fed-sGBDT.

Concretely, a novel soft decision tree model is used in Fed-sGBDT to ensure
that the entire model can still be updated using back propagation [12]. Compared
to classic tree-based models that assign each sample to a single leaf node, soft
decision tree assigns each sample to all leaf nodes with different probabilities.
To achieve this, each internal node in the soft decision tree is equipped with a
logistic regression model that splits each sample to its child nodes with different
probabilities. The output of the entire model on a sample is the weighted average
of predictions from all leaf nodes, where weights correspond to the probabilities
assigned to each leaf node. Due to the fact that the soft decision tree is differ-
entiable, it can be naturally integrated into the proposed Fed-sGBM, leading to
the proposed Fed-sGBDT. Since the entire Fed-sGBDT model can still be trained
using online optimization techniques such as stochastic gradient descent, it is
capable of quickly adapting to the streaming data.

5 Experiment

Experiments are divided into five sub-sections, and the goals are to validate
that: (1) The proposed method is an effective ensemble algorithm for horizontal
federated learning; (2) The proposed method applies well to the streaming data
setting in federated learning, which are frequently encountered in the real-world.

First, we introduce the setup of the experiments; Second, we compare the
performance of Fed-sGBM with different contenders; After then, we investigate
the performance under different number of participants and base learners, sepa-
rately; At last, the performance of Fed-sGBM on the streaming data is presented.
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5.1 Experiment Setup

Dataset. Three benchmark datasets on classification are selected to evaluate the
performance of Fed-sGBM: Letter, MNIST, and CIFAR-10. Letter is a dataset
that contains samples belonging to 26 capital letters in the English alphabet.
Each sample is associated with 16 features that contain statistical information
such as edge counts. MNIST is a dataset on handwritten digit recognition, and
each sample corresponds to a gray image of size 28 × 28. CIFAR-10 is another
image classification dataset with 10 classes, and each sample is a colorful image
of size 3 × 32 × 32. All datasets are normalized to its mean and unit variance
before the training stage. Table 1 presents basic statistics on the datasets used.

Table 1. Basic statistics on the datasets used

Dataset name # Training # Evaluating # Features # Classes

Letter 16000 4000 16 26

MNIST 60000 10000 28 × 28 10

CIFAR-10 50000 10000 3 × 32 × 32 10

Base Learner. Three different kinds of base learners are included to evaluate
Fed-sGBM: SoftTree, MLP, and CNN. For SoftTree, we set the tree depth as 5.
We also use a regularization term introduced in [12] during the training stage to
encourage the SoftTree to exploit its leaf nodes. The coefficient of this regular-
ization term is set as 0.001. For MLP, since it is difficult to find the best network
architecture for each dataset in practice, we directly use the architecture reported
in the literature [31]. Concretely, the architecture of MLP on Letter dataset is
Input−70−50−Output, and the architecture on MNIST and CIFAR-10 dataset
is Input−512−512−Output. For CNN, we adopt a modified version of LeNet-5
[18] with Relu activation and dropout [27].

Computation. All experiments are conducted on a single machine with 32GB
RAM, a Xeon E5-2650v4 CPU, and a RTX-2080Ti GPU. We implement the
Fed-sGBM using PyTorch [24]. The distributed communication package Torch-
Distributed is used to simulate the distributed setting in federated learning.

Simulation. Given K participants exist in federated learning, we split the train-
ing data into K non-overlapping parts with relatively equal size, and each part
is treated as the local dataset on a participant Pk.

5.2 Performance Comparison

In this section, we evaluate the performance of Fed-sGBM as an ensemble algo-
rithm in federated learning. For performance comparison, we also report the
results of Fed-Voting, sGBM [8], and the original GBM [11]. In Fed-Voting,
the coordinator and all participants jointly learn a voting-based ensemble model
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without sharing the local data. Notice that sGBM and GBM requires local data
from all participants, and cannot be directly applied to the federated learn-
ing setting. We keep the type of base learner same in three methods, and set
the number of base learner as 10. The number of participants in Fed-sGBM and
Fed-Voting is set as 2. Experiment results on different configurations of datasets
and base learners are presented in Table 2. The performance of CNN on the Let-
ter dataset is ignored since it cannot be applied to tabular datasets.

According to Table 2, it can be observed that the performance of Fed-sGBM is
slightly worse than sGBM, which is reasonable considering that the Fed-sGBM is
trained in a distributed fashion. On the other hand, the performance of Fed-sGBM
outperforms Fed-Voting by a large margin on different configurations of base
learner and dataset except the Tree@Letter, validating its effectiveness as a
general ensemble method in federated learning.

Table 2. Performance comparison between Fed-sGBM and different baselines

Configuration Fed-sGBM Fed-Voting sGBM GBM

Tree@Letter 88.43 94.88 89.15 87.43

MLP@Letter 94.10 89.78 95.60 95.83

Tree@MNIST 96.37 94.34 97.02 95.88

MLP@MNIST 98.82 97.44 98.70 98.49

CNN@MNIST 99.52 99.04 99.53 99.34

Tree@CIFAR-10 50.70 41.57 51.86 50.92

MLP@CIFAR-10 58.10 51.62 57.46 55.89

CNN@CIFAR-10 74.92 71.97 75.02 74.68

5.3 Performance Under Different Number of Base Learners

In this section, we investigate the performance of Fed-sGBM when increasing the
number of base learners. The goal is to validate that increasing the number of
base learners is able to effectively improve the performance of Fed-sGBM.

Based on the datasets and base learners presented above, we set the num-
ber of base learners as {1, 5, 10, 15, 20}, and evaluate the testing accuracy of
Fed-sGBM. The experiment results are presented in Fig. 4. It can be shown that
the testing accuracy of Fed-sGBM consistently increases on all combinations of
datasets and base learners with more base learners added. The experiment results
validate our claims: increasing the number of base learners effectively improves
the performance of Fed-sGBM on different datasets.

5.4 Performance Under Different Number of Participants

In this section, we evaluate the performance of Fed-sGBM with different number
of participants existing in federated learning. The goal is to validate that the
performance of Fed-sGBM is robust to the number of participants.
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Fig. 4. Performance of Fed-sGBM with different number of base learners

Concretely, we train a shared Fed-sGBM model when there are {2, 3, 4} partic-
ipants in federated learning, respectively. The experiment results are presented
in Fig. 5. According to the experiment results, it can be observed that the per-
formance of Fed-sGBM only deteriorates slightly on three datasets with more
participants added. Since the volume of the local dataset on each participant
decreases drastically based on our experiment setup, the experiment results val-
idate that the performance of Fed-sGBM is robust to the number of participants.
Notice that the performance of Fed-sGBM even improves with the number of par-
ticipants increasing when using the MLP base learner on CIFAR-10 dataset. We
conjecture that the reason is that the procedure of obtaining a jointly learned
Fed-sGBM model can be considered as one kind of ensemble on all local models
(i.e., model averaging). Therefore, the final performance of Fed-sGBM improves
with more participants added, despite the fact that each participant has less
volume of training data.

5.5 Performance on Streaming Data

In this section, we evaluate the performance of Fed-sGBM under the streaming
data setting in federated learning. Given a dataset, we first randomly split the
training part into 5 non-overlapping batches to simulate the streaming data
setting. At each time t (t = 1, 2, · · · , 5), each participant Pk will receive a newly-
coming batch of data D(t)

k , and the local model will then be fitted on D(t)
k . We

report the performance of Fed-sGBM on the testing data after the shared model
is fitted on each batch of data from all participants, leading to a total number
of five testing accuracy records. The experiment results on three combinations
of base learner and dataset (MLP@Letter, Tree@MNIST, CNN@CIFAR-10) are
presented in Table 3. The number of base learners and participants in Fed-sGBM
is set as 10 and 2, separately.
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Fig. 5. Performance of Fed-sGBM with different number of participants

Table 3. Performance of Fed-sGBM on the streaming data setting

Learner@Dataset Timestamp ID

1 2 3 4 5

MLP@Letter 79.00 83.75 85.00 86.78 86.93

Tree@MNIST 94.57 95.62 96.34 96.73 96.73

CNN@CIFAR-10 60.77 62.12 63.54 64.92 65.45

According to the experiment results in Table 3, it can be observed that
the performance of Fed-sGBM consistently improves with more batches of data
coming. Meanwhile, a better performance can also be achieved by tuning the
parameters and training the local model on each batch of data for more epochs.
Such results cannot be easily achieved by the original GBM because at each
time t, a new model has to be trained from scratch, with the learned local model
before totally wasted.

6 Conclusion

In this chapter, we propose a novel gradient boosting model for horizontal fed-
erated learning. The proposed method is able to utilize local datasets from all
participants to efficiently build a shared model without any leakage on the local
data. Compared to existing works on combining gradient boosting with federated
learning, the proposed Fed-sGBM can be applied onto the streaming data, and
is robust to the number of participants in federated learning. Extensive exper-
iments are conducted to evaluate the performance of Fed-sGBM as an ensemble
algorithm in the framework of federated learning, along with the performance
on streaming data.
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Abstract. Federated Learning (FL) is highly useful for the applications
which suffer silo effect and privacy preserving, such as healthcare, finance,
education, etc. Existing FL approaches generally do not account for dis-
parities in the quality of local data labels. However, the participants tend
to suffer from label noise due to annotators’ varying skill-levels, biases
or malicious tampering. In this chapter, we propose an alternative app-
roach to address this challenge. It maintains a small set of benchmark
samples on the FL coordinator and quantifies the credibility of the par-
ticipants’ local data without directly observing them by computing the
mutual cross-entropy between performance of the FL model on the local
datasets and that of the participant’s local model on the benchmark
dataset. Then, a credit-weighted orchestration is performed to adjust
the weight assigned to participants in the FL model based on their cred-
ibility values. By experimentally evaluating on both synthetic data and
real-world data, the results show that the proposed approach effectively
identifies participants with noisy labels and reduces their impact on the
FL model performance, thereby significantly outperforming existing FL
approaches.

Keywords: Federated Learning · Label quality · Credit-weighted

1 Introduction

With the development of edge computing, the growth of End-Edge-Cloud sys-
tems makes the collection and processing of massive amounts of personal data a
possibility. This has raised privacy concerns and may hinder the development of
such technologies if not addressed. Federated Learning (FL) has emerged to be
a useful machine learning paradigm to help leverage personal data in a privacy-
preserving manner [9]. Under FL, multiple participants collaborate to train an
c© Springer Nature Switzerland AG 2020
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FL model without exchanging raw data. Nevertheless, one key challenge that
remains open and hinders wide spread adoption of FL, especially in the health-
care domain, is label quality disparity.

The quality of labels in participants’ local datasets influences the performance
of the FL model. Existing FL approaches implicitly assume that there is no
significant difference among the quality of labels from local datasets [3]. Thus,
popular FL approaches such as FedAvg treat model parameters from different
participants equally [6]. Due to difference in the annotators’ skills, biases or
malicious tampering, label noise is common in data collected by FL systems
[10,12]. Taking healthcare as an example, hospitals across China are at a different
level and there are generally more cases of mis-diagnosis in smaller hospitals
than in better-staffed larger hospitals, even if the patient cases are the same.
Apparently, a noisy-label participant can negatively impact the learned model in
FL since it gives the wrong knowledge [3]. What makes it more challenging is that
the noisy participant is hard to be detected for the raw data is forbidden to share
in the FL setting, let alone the noisy participant can be not self-aware. Therefore,
enabling the FL system to effectively detect and deal with label quality disparity
is of vital importance to its success.

In this chapter, we propose Federated Opportunistic Computing (FOC) app-
roach to address this challenging problem. It is designed to identify participants
with noisy labels and aggregate their model parameters into the FL model in an
opportunistic manner. FOC works for the cross-silo federated settings. It main-
tains a small set of benchmark samples in the central coordinator, which is not
enough to train a strong model. During the FL training process, the local model
(which is trained on the local data in each participant) and the FL model (which
is the aggregated model) on the coordinator will form a Twin Network, where
both of them share the same model architecture but different parameters. By
defining a mutual cross-entropy loss of the Twin Network, the credibility of each
participant’s data can be measured, which is then used to determine the extent
to which the corresponding participant is allowed to participate in FL. In each
round, FOC performs credibility-weighted orchestration on the coordinator to
avoid update corruption. The term “Opportunistic” is used to indicate that a
participant model is not aggregated into the FL model by simple averaging (as
in the case of FedAvg [5]), but weighted by its credibility.

To evaluate FOC, we firstly test it on a synthetic human activity recognition
dataset in which labels are tampered in different ways in a subset of the par-
ticipants. Then, it is tested on a real-world dataset from hospitals with diverse
label qualities for detecting Parkinson’s Disease symptoms. The experimental
results show that FOC can detect participants with noisy labels and reduce their
impact on the FL model performance more effectively compared to existing FL
approaches.

2 Related Work

Label noise is a common problem in machine learning and may lead to label
quality disparity across the participants in the federated learning. Unlike the
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non-IID problem in federated learning that participants may have different data
distributions but with correct labels, label quality disparity instead focuses on
the situation where the labels may be inconsistent even if the participants are
given the same set of instances.

In the conventional machine learning settings, there are two categories of
methods to deal with this problem: 1) at the data level and 2) at the algo-
rithm level. At the data level, existing methods generally aim to sanitize the
noisy labels to mitigate their impact. Cretu et al. [2] used small slices of the
training data to generate multiple models and produce provisional labels for
each input. This is used to determine if noisy labels are present. Xie et al. [8]
designed Byzantine-robust aggregators to defend against label-flipping data poi-
soning attacks on convolutional neural networks. However, Koh et al. [4] recently
found that a federated approach to data sanitization is still vulnerable to data
poisoning attacks.

At the algorithm level, existing methods generally aim to train noise-tolerant
models. Natarajan et al. [7] studied the impact of label noise in binary classifi-
cation from a theoretical perspective, and proposed a simple weighted surrogate
loss to establish a strong empirical risk bounds. Since deep learning models can
easily overfit to the label noise, Zhang et al. [13] used meta-learning to train
deep models, where synthetic noisy labels were generated to updates the model
before the conventional gradient updates. Nevertheless, these existing methods
cannot be directly applied in the context of federated learning as they require
access to raw data.

In FL, label noise is also related to non-IID issue. Zhao et al. [14] found
that the non-IID participants produced a poor global model in FL since the
large Earth Mover’s Distance (EMD) among the participants’ data made their
models diverse. However, the proposed data sharing strategy requires more com-
munication and risks diluting the participants’ information. Furthermore, the
calculation of EMD requires the FL coordinator to have access to participants
raw data, which is not permissible under FL settings.

To the best of our knowledge, there is currently no published work on miti-
gating the impact of label noise under FL settings.

3 Traditional FL Model Training

Under FL, the training data are distributed among K participants, each storing
a subset of the training data Dk = (Xk,Yk), k = 1, . . . , K. Each participant
trains its local model Mk by minimizing the loss function on its own dataset
only and any raw data exchange between participants is forbidden.

Many different machine learning algorithms can be trained with FL [9]. For
simplicity of exposition, we use the convolutional neural networks (CNN) archi-
tecture as the basis to train an FL classification model in this chapter. In this
context, the cross entropy as the objective function which needs to be minimized:

L = − 1
nk

nk∑

i=1

yi log P (yi|xi). (1)
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|nk| denotes the amount of the training data owned by the k-th participant.
After that, the FL coordinator collects the model updates from the participants,
and aggregates them to form the new global FL model Ms. The most widely
used FL aggregation method is the Federated Averaging FedAvg algorithm [6],
which is given by:

Ms
t =

K∑

k=1

nk

n
Mk

t (2)

where Ms
t denotes the FL model updates at time t, n is the total amount of

data used for FL model training by the participants involved, n =
∑K

k=1 nk.
Apparently, in the traditional FL model training, all the data labels are

assumed to be absolutely correct. While such setting is meaningful, it can be far
from practical situations where each participant can have a large variety of data
which may be incorrectly annotated.

4 The Proposed FOC Approach

The proposed FOC approach quantifies label noise in the dataset from each FL
participant under horizontal federated learning. It measures the quality of each
participant’s data and aggregates their local model updates into the FL model
in an opportunistic manner. For clarity, we only present the case where each
participant sends local model updates to the coordinator in plaintext. Neverthe-
less, added protection mechanism, such as homomorphic encryption and secret
sharing, can be added into FOC following methods explained in [9].

Fig. 1. The pipeline of FOC.
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The pipeline of FOC is shown in Fig. 1. Once each participant has received
the current global model from the FL coordinator, and sent the local model
updates to the FL coordinator after training on the local dataset:

1. Each participant i evaluates the global FL model on its own local dataset,
and sends the evaluation result, LLi, to the FL coordinator along with its
model updates.

2. The FL coordinator evaluates each participant i’s local model M i one by one
on the small set of benchmark dataset and records the model performance as
LSi.

3. Once the corresponding LLi value is received by the FL coordinator, it com-
putes the mutual cross-entropy loss between LLi and LSi to produce a cred-
ibility measure which reflects the quality of participant i’s local labels.

4. Finally, the credibility measure for each participant i is used as its weight in
a weighted FedAvg operation to produce a new global FL model.

In the following parts of this section, we provide more details on the FOC
pipeline.

4.1 Participant Label Quality Measurement

Since there is no prior knowledge about the participant label quality, FOC con-
siders a small set of benchmark samples Ds = (Xs,Ys) in the FL coordinator,
where there is little noise (i.e., the instances are labeled accurately). This may
require working closely with specialists in the target field, which is beyond the
scope of this chapter. Once this requirement is satisfied, then given a benchmark
dataset Ds in the FL coordinator, a participant’s data Dk follows an identical
distribution to the benchmark dataset if the trained local model Mk performs
well on Ds. As Ds has accurate annotations, a similar data distribution indicates
that the participant dataset also has accurate annotations. However, the inverse
proposition is not always correct due to the potential concept drift. Thus, FOC
additionally considers the performance of the global FL model on a given local
dataset, in order to measure participants’ label quality. For this purpose, we
define a mutual cross-entropy Ek between the global FL model and the local
model from participant k to quantify its latent probability of noise, which is
given by:

Ek = LSk + LLk (3)

LSk = −
∑

(x,y)∈Ds

y log P (y|x;Mk) (4)

LLk = −
∑

(x,y)∈Dk

y log P (y|x;Ms) (5)

Ek combines participant k’s local model performance on the benchmark
dataset (LSk) and the performance of the global FL model on participant k’s
local dataset (LLk). There are three possible cases when analyzing Ek:
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– Small Ek: A small Ek indicates that the local data follows a similar distribu-
tion as the benchmark dataset, meaning that participant k’s dataset possesses
accurate labels.

– Large Ek: If both the global FL model and the local model perform badly
when tested on each other’s dataset, it will result in a large Ek. This means
the participant’s dataset follows a different data distribution compared to the
benchmark dataset. Thus, participant k is likely to possess noisy labels.

– Medium Ek: If either one of the two models performs badly, it will lead to
a medium Ek. In this case, it is not sufficient to determine that participant
k has noisy labels. If the local model is the one with poor performance, it
means that the local dataset is not large enough to train a good model; if the
global FL model is the one with poor performance, it means that there exist
noisy labels in other participants which contribute to training the FL model.

Therefore, the mutual cross-entropy loss is strongly correlative with the qual-
ity of participant’s data label. For normalization, we define a participant k’s
credibility Ck to reflect the quality of their local data labels, as:

Ck = 1 − eαEk

∑
i eαEi . (6)

α is the temperature during the normalization. With this measure, we propose
an opportunistic model aggregation for FL, which is based on the participants’
credibility to improve the traditional FedAvg.

4.2 Opportunistic FL Model Aggregation

To leverage the measured participant’s credibility, we rewrite the FedAvg model
aggregation rule from Eq. 2 as:

Ms
t =

K∑

k=1

W k
t−1Mk

t . (7)

Unlike FedAvg, the aggregation weight for each participant not only is related
to the amount of local instances, but also involves the participants’ credibility
values which may vary in different rounds. Given the participant credibility value
Ck

t is assigned to participant k in round t, W k
t is defined as:

W k
t =

nkCk
t∑K

i=1 niCi
t

. (8)

As the mutual cross-entropy is based on both the local models and the global
one at round t, the opportunistic aggregation is weighted by the latest credibility
values which is calculated at round t − 1. Note that since

∑K
k=1 W k

t+1 = 1, the
convergence of the proposed FOC approach is guaranteed as long as the FedAvg
algorithm in Eq. 2 converges.



114 Y. Chen et al.

Communication Cost. During the training, FOC requires two communica-
tions per round: 1) broadcasting the global model, and 2) participants submit
local model parameter updates to the FL coordinator for aggregation. During
the broadcasting, the central coordinator sends the current FL model Ms to all
the participants. During the aggregation, all or part of the K participants send
their local model parameters, (LLk,Mk), k = 1, . . . ,K, to the FL coordinator.
Compared with FedAvg, the only item that needs to be transmitted in addition
to model parameters is the performance value of the global FL model on each
local dataset.

5 Experimental Evaluation

5.1 Experiment Settings

We evaluated the proposed FOC by the experiments in the cross-silo scenarios.
Two healthcare-related datasets are adopted in our experiments. They are:

– USC-HAD [11]: This dataset is a public benchmark dataset for human activ-
ity recognition, which contains 12 most common types of human activities in
daily life from 14 subjects. The activity data were captured by a 6-axis inertial
sensor worn by the subjects on their front right hip. The data were collected
over 84 h (Fig. 2a).

– PD-Tremor [1]: This dataset was collected from Parkinson’s Disease (PD)
patients by measuring their tremor, which is one of the most typical motor
symptoms. The subject was required to hold a smartphone for 15 s in a relax-
ing status. The hand motion data were collected by sensors embedded in
the smartphone including the accelerometer and the gyroscope. Data was
collected from 99 subjects in 3 hospitals (Fig. 2b).

(a) USC-HAD[11] (b) PD-Tremor[1]

Fig. 2. Two testbed datasets.

A sliding-window is employed to preprocess and segment the data stream. A
convolutional neural network (CNN) is used to train a model through Stochastic
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Gradient Descent (SGD), where each axis of the multi-modal sensors is regarded
as a channel. We compare FOC with the traditional FedAvg in our experiments.
The dataset is split into the training set and the testing set. Accuracy of the
global FL model on the testing set is used as the evaluation metric.

5.2 Evaluation on the Synthetic Dataset

In this experiment, we study the negative impact of noisy participants in fed-
erated learning. USC-HAD is a dataset in which all the samples are correctly
annotated. To simulate a federated learning setting, the whole dataset is divided
into 5 parts, one of which is selected at random to be the benchmark dataset
on the FL coordinator and the others are distributed to the participants. To
synthesize a noisy participant, one of the 4 participants is randomly selected
and all its labels are randomized.

There are two scenarios for federated learning: one is referred to as “Normal”,
where all the four participants are annotated with correct labels; the other is
referred to as “Noisy”, where one of participants has noisy labels. The testing
accuracy comparison between FedAvg and FOC under these two scenarios is
shown in Fig. 3. It can be observed that under the “Normal” scenario, FOC and
FedAvg achieved a similar performance in terms of accuracy. In this sense, FedAvg
can be regarded as a special case of FOC, which assumes all the participants
are 100% trustworthy. Under the “Noisy” scenario, due to incorrect labels of the
noisy participant, some valuable information is lost and performance degrada-
tion is significant for both FedAvg and FOC. Since all the local models includ-
ing that from the noisy participant are aggregated indiscriminately in FedAvg,
its performance is poorer than FOC. Through noisy participant detection and
opportunistic model aggregation, FOC alleviates the impact of the noisy partic-
ipant by assigning a lower aggregation weight, which results in the advantage
over FedAvg by 5.82% in terms of accuracy.

The opportunistic aggregation weights produced by FOC for the 4 partici-
pants when convergence are shown in Fig. 4. As the data on normal participants
follows an identical data distribution, they are assigned almost equal weight dur-
ing FL model aggregation. However, the weight for the noisy participant which
has been significantly reduced by FOC, shows that the proposed method can
correctly detect noisy participant and take appropriate actions.

Figure 5 shows the training loss comparison during each FL training round
with a same learning rate setting. The training loss at round t is defined as the
average loss of K participants, which can be calculated as:

ltfl =
1
K

K∑

k=1

L(Mk
t ,Dk) (9)

L is the cross-entropy loss in our experiments.
Both FedAvg and FOC take longer time to converge under the “Noisy” sce-

nario compared to under the “Normal” scenario. Nevertheless, the convergence
rate of FOC under both scenarios is faster than that of FedAvg. Because of the
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Fig. 3. The test accuracy comparison on USC-HAD.

Fig. 4. The weights assigned to the participants by FOC.

incorrect labels, the data distribution of the noisy participants is different from
the others, resulting in larger Earth Mover’s Distance values and diverse model
parameters [14]. Thus, during the aggregation in the coordinator under FOC,
the global model is less impacted by the noisy participant due to its reduced
weight.

Another evidence for the reduced impact of the noisy participant on the FL
model is that the final loss achieved by FOC is larger than that of FedAvg. This
is because the global FL model under FOC does not fit the noisy data as well
as the normal data, which results in a larger training loss on the noisy data. In
other words, FOC is capable of avoiding over-fitting the noisy data.
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Fig. 5. The training loss comparison results on USC-HAD.

Furthermore, we explore and analyze the performance of FOC in the “Noisy”
scenario with different noisy degree. To quantify the degree of noise, a metric is
defined as:

D =
|ŷ �= y|

|y| (10)

where ŷ indicates the label used in training and y indicates the correct label.
The comparative result of FOC and FedAvg is shown in Fig. 6.

When D is low, e.g. 20%, the noisy labels are overwhelmed by the local
data and the noisy participant has nearly no negative impact on the FL model.
Thus, FedAvg shows a similar performance to FOC. With the increment of D,
more labels are randomized in the participant and the FL model gets more
influence and worsen its performance in terms of testing accuracy. However, since
FOC learns a lower weight for the noisy participant, it shows more robustness
than FedAvg, especially when D is as large as over 60%. The learned weights
of noisy participant under different Ds are given in Fig. 7. With more noise,
the participant gains a lower weight for model aggregation, which makes FOC
outperform FedAvg.

5.3 Evaluation on the Real-World Dataset

In this section, we evaluate FOC onto a real-world practical dataset for Parkin-
son’s Disease symptom recognition, PD-Tremor, by comparing it with the pop-
ular FedAvg approach.

Among the three hospitals from which this dataset was collected, two of them
are top-tier hospitals, and the third one is considered a lower-tier hospital. We
regard each hospital as a participant in the federation. All the data are annotated
by doctors from the 3 hospitals. As doctors from the lower-tier hospital tend to
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Fig. 6. Testing accuracy under different noise degree.

Fig. 7. Noisy participant’s weight under different noise degree.

be less experienced and are more likely to make wrong annotations, we test FOC
on this dataset to evaluate its effectiveness.

To collect a set of benchmark samples, two experts were invited to make con-
sistent annotations on a sample dataset. The benchmark samples are divided into
two parts. One of them is used as the benchmark dataset on the FL coordinator;
and the other is used as the test set.

The results in terms of testing accuracy and participant weights in FOC are
shown in Figs. 8 and 9, respectively. “Base” denotes the base model trained with
the benchmark dataset.
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Fig. 8. The test accuracy comparison on PD-Tremor.

Fig. 9. The weights assigned to the hospitals by FOC.

It can be observed that both FL-based approaches, FOC and FedAvg, are able
to learn more information from the participants and train stronger models. FOC
outperformed FedAvg in terms of accuracy by 7.24%, which also confirmed our
suspicion that there are noises in the participants. By observing the opportunistic
weight of each participant, we find that the lower-tier hospital is assigned a
smaller weight, which indicates that its data are of low-quality and contain noisy
labels.

6 Conclusions and Future Work

Label quality disparity is an important challenge facing today’s federated learn-
ing field. So far, it remains open. Noisy labels in FL participants can corrupt
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the learned FL model. Since under FL, sensitive local data cannot be transmit-
ted out of the owner participant’s data store in order to protect user privacy.
This makes the problem of noisy local labels even more challenging to resolve.
In this chapter, we propose the Federated Opportunistic Computing (FOC) to
address this challenging problem. FOC maintains a small set of benchmark sam-
ples in the coordinator. A novel mutual cross-entropy based credibility score is
designed to compute the label quality of a participant’s dataset without requir-
ing access to raw data. Based on the measured credibility, we further proposed
a modification to the popular FedAvg algorithm to opportunistically aggregate
participant model updates into a global FL model. In this way, only a parameter
which carries the local loss is extra communicated. Extensive experiments on
both synthetic and real-world data demonstrated significant advantage of FOC
over FedAvg. With FOC, we empower FL systems to effectively identify partic-
ipants with noisy label and improve their model training strategy to mitigate
the negative effects. To the best of our knowledge, it is the first FL approach
capable of handling label noisy in a privacy preserving manner.

Although FOC is proved to be effective in the federated learning with label
quality disparity, there are still interesting problems which require further inves-
tigation. For example, how to distinguish participants who maliciously attack the
FL system by faking their labels and those facing genuine difficulties in providing
correct labels is an important issue which affects how these participants should
be dealt with. In subsequent research, we will focus on tackling this problem.
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Abstract. Federated learning (FL) is an emerging collaborative
machine learning method to train models on distributed datasets with
privacy concerns. To properly incentivize data owners to contribute their
efforts, Shapley Value (SV) is often adopted to fairly and quantita-
tively assess their contributions. However, the calculation of SV is time-
consuming and computationally costly. In this chapter, we propose Fed-
Coin, a blockchain-based peer-to-peer payment system for FL to enable
a feasible SV based profit distribution. In FedCoin, blockchain consensus
entities calculate SVs and a new block is created based on the proof of
Shapley (PoSap) protocol. It is in contrast to the popular BitCoin net-
work where consensus entities “mine” new blocks by solving meaningless
puzzles. Based on the computed SVs, we propose a scheme for dividing
the incentive payoffs among FL participants with non-repudiation and
tamper-resistance properties. Experimental results based on real-world
data show that FedCoin can promote high-quality data from FL partic-
ipants through accurately computing SVs with an upper bound on the
computational resources required for reaching block consensus. It opens
opportunities for non-data owners to play a role in FL.

Keywords: Federated learning · Blockchain · Shapley value

1 Introduction

Nowadays, many businesses generate a large volume of data through connecting
massive end devices, and machine learning (ML) supported decision-making sys-
tems boost novel and intelligent applications [21,24]. With changing regulatory
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scene, ML is facing increasingly difficult challenges with respect to the usage
of such data [20]. Data are often owned by multiple distributed entities, which
are often sensitive and not feasible to be stored in a centralized server without
violating privacy protection laws. In recent years, federated learning (FL) has
emerged as a promising solution to these challenges [13,14,22].

In FL, each entity trains its local model and contributes the model parameter
gradients to a central server towards a more powerful global model. Compared
with centralized ML methods, FL not only reduces communication costs by
transmitting model updates instead of raw data, but also reduces the compu-
tational costs of the server by leveraging computing power from participants.
Moreover, as local data never leaves its owner, FL improves user privacy [3,16].

From the above description, it is clear that FL participants are making sig-
nificant contributions towards the FL model. Thus, in order to sustain an FL
community, it is important for FL participants to be properly incentivized. For
this to happen, FL participants must be treated fairly [23]. Existing FL incentive
schemes generally agree that fair treatment of FL participants shall be based on
a fair assessment of their contributions to the FL model [9]. Currently, the most
widely adopted method for fair assessment of FL participant contribution is that
of Shapley Values (SVs) [8,19].

SV is a popular notion in fairly distributing profits among a coalitional con-
tributors. It has been applied in various fields, ranging from economics, informa-
tion theory, and ML. The reason for its broad application is that the SV divides
the payoff with attractive properties such as fairness, individual rationality, and
additivity. However, SV based distribution solution often takes exponential time
to compute with a complexity of O(n!) where n is the number of data items. Even
though the computational complexity can be reduced through approximating SV
with marginal error guarantees [8], it is still computationally costly.

In order to help FL systems compute SVs to support sustainable incentive
schemes, we propose a blockchain-based peer-to-peer payment system FedCoin.
The Shapley value of each FL participant, reflecting its contribution to the global
FL model in a fair way, is calculated by the Proof of Shapley (PoSap) consensus
protocol which replaces the traditional hash-based protocol in existing proof
of work (PoW) based blockchain systems. All the payments are recorded in
the block in an immutable manner. Under FedCoin, paying out incentives to
FL participants does not need to rely on a central FL server. Based on this,
FedCoin provides a decentralized payment scheme for FL so that incentives for
all participants can be delivered in third-party-free manner with nonrepudiation
and tamper-resistance properties.

Extensive experiments based on real-world data show that FedCoin is able to
properly determine FL participants’ Shapley Value-based contributions to the
global FL model with an upper bound on the computational resources required
for reaching consensus. To the best of our knowledge, FedCoin is the first attempt
to leverage the blockchain technology in federated learning incentive scheme
research. It opens up new opportunities for entities which has computational
resources but without local data to contribute to federated learning.
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2 Related Work

The incentive mechanism design is an important research direction in the field
of federated learning [9,22]. In [10], the contract theory is employed to improve
the accuracy of model training considering the unreliable data contributors. A
consortium blockchain architecture is applied to build a decentralized reputa-
tion system. In [11], a Stackelberg-game based incentive mechanism is designed
to optimize the utilities of both FL participants and the FL server. These works
focus on optimizing the rewards for self-interested FL participants and FL cus-
tomers who pay to use the FL model. Our study is compatible with these works
in terms of determining the payment budget for the FL customers.

In field of ML, SV has also be studied widely for various purpose. SV can be
applied in feature selection, ranking the importance of training data, which is
further applied in explaining the behavior of ML models [15]. Since the computa-
tion complexity is O(n!), approximations of SV also attract many attentions. In
[1], a polynomial-time approximation of SV is proposed for deep neural network.
Group sampling based approximation is studied in [8]. In this work, our objec-
tive is not to decrease the computational complexity, but to establish a scheme
so that distributed computational resources, which are otherwise wasted, can be
leveraged to help FL systems calculate SVs.

Blockchain has been widely applied in addressing the security problems in
FL applications [5,9,22]. FLChain [2] and BlockFL [12,13] have been proposed
to record and verify the local model parameter updates in the temper-resistant
manner. A blockchain-based FL was proposed in [18] so as to remove the need
for an FL server. A blockchain-based trust management system was proposed
in [10] to assist FL server to select reliable and high quality data owners as FL
participants. These blockchain systems are used as immutable ledgers to record
local gradients and aggregate them in a trusted manner. Our work will adopt the
blockchain network as a computational engine and payment distribution ledger,
which is the first of its kind in the current literature.

3 Preliminaries

For a typical FL scenario, we take F i(w) = �(xi, yi;wt) as the loss of prediction
on a sample (xi,yi) with model parameters w at the t-th round. The parameters
wt is a d-dimensional vector. We assume that there are K participants, and
each participant has a local data set Dk with nk = |Dk|. The overall dataset
is D = {D1, . . . ,DK} with n = |D| =

∑K
k=1 nk. The objective function to be

optimized is:

min
w∈Rd

F(w) where F(w) =
1
n

K∑

k=1

∑

i∈Dk

F i(w) (1)

This optimization problem is generally solved by stochastic gradient descent
(SGD) [7] based methods. For example, based on the current model wt,
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the federated averaging algorithm [16] computes the average gradient gtk =
1
nk

∑
i∈Dk

∇Fi(wt) on the local data of participant k. Each participant updates
its local model wk

t+1 ← wt − ηgtk, and the FL server aggregates the local models
as the global FL model.

wt+1 ← A({wk
t+1|k = 1, . . . , K}) (2)

where A is an aggregation function.

4 FedCoin

There are two networks of participants in our system: 1) the FL network, and
2) the peer-to-peer blockchain network (Fig. 1). A FL model requester or FL
training task requester refers to the entities who need to train an FL network
and with a budget of V . In the FL network, there is a centralized server, referred
as FL server, in coordinating the executing of model training and receiving
payment V from the FL model requester.

Fig. 1. Overview of the proposed model

The distributed data owners, called as FL participants, participate in a col-
laborative training task and receive a payment V . Each FL participant trains
its local model and submits the parameter updates to the FL server. The FL
server plays three roles. Firstly, it publishes a training task to FL partici-
pants with price TrainPrice. Secondly, it aggregates local updates through a
secure aggregation protocol [4] and earns a computation payment (ComPrice).
Thirdly, it transfer a processing fee SapPrice to the blockchain network to enlist
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its members’ help in calculating the FL model. The total payment of the task
(TrainPrice + ComPrice + SapPrice) should be not greater than V in order to
sustain payment balance without relying on external transfer of values into this
system.

After each global model update epoch, the FL server publishes a task to calcu-
late the contribution of each FL participant. The consensus nodes in blockchain
network then collaboratively calculate SVs, and the block winner receives a
payment of TrainPrice+SapPrice. The winner then divides TrainPrice to FL
participants according to their respective SVs by creating transactions in the
blockchain. In our current design, we only reward participants with positive
contributions, but refrain from penalizing participants with negative contribu-
tions. All the transactions are recorded in the new block and further updated to
the chain.

Therefore, the connection between the FL network and the blockchain net-
work is a special type of task. The task includes the received local update set
W = {wk|k = 1, . . . ,K}, the aggregation function A, the loss function F(w),
and SapPrice and TrainPrice for each update round. Note that SapPrice and
TrainPrice decreases as the number of training rounds increases, and the total
payment for training can be divided among the rounds equally or not. Without
loss of generality, the following description focuses on a single training round.

4.1 Shapley Value Based Blockchain Consensus

Upon receiving a Shapley value calculation task from the FL network, the miners
in the blockchain network are to calculate the SV vector S = [sk]k∈[1,K] where
sk is the SV of the participant in providing wk ∈ W . Each miner independently
calculates the SV vector following Algorithm 1. Since the objective of the min-
ing process is to competitively calculate SV vectors so as to prove the miner’s
computation power, we name the algorithm as “Proof of Shapley (PoSap)”. The
input of Algorithm 1 comes from the task specifications from the FL network.
The output is a new generated block.

In Algorithm 1, a miner first initializes the SV vector as an all-zero vector,
and sets the calculation iteration number as 0 (Line 1–2). The SV computation
continues as long as one of the following two conditions are satisfied: 1) there is
no new block received; or 2) the received block fails to pass the verification which
is specified in Algorithm 2 (Line 3). The SV calculation process is described in
Line 4 to Line 13. The miner initializes a temporary SV vector St to record the
calculated value in this iteration (Line 4). Then, the miner randomly generates a
rank of the K FL participants (Line 5). According to the rank, an SV of the first
entity is calculated as in Line 6, which is the contribution of the entity to the
loss function (Line 6)). For the next entity i, the Shapley value is calculated as
its marginal contribution (Line 7–10). S is updated by averaging all the previous
iterations and the current St (Line 11). The iteration time is then incremented
by 1 (Line 12). Then, the entity broadcast S and time (Line 13).

Whenever a miner receives S and time, the miner calculates the aver-
age results S of all the received S (Line 16). Then, the miner calculates the
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Algorithm 1: Proof of Shapley (PoSap)
Input: F : Loss function;

A: Aggregation function;
W : Contribution of FL participants in size K;
D: Difficulty in Mining;

Output: Blk: a new block
1 Initialize S = [sk = 0|k = 1, . . . ,K];
2 time=0;
3 while No received Blk OR !VerifyBlock(Blk) do
4 St = [sk = 0|k = 1, . . . ,K]% temporary store S
5 Random generate a rank R = [rk|k = 1, . . . ,K];
6 St(R(1)) = F(A(W (R(1))));
7 for i from 2 to K do
8 St(R(i)) = F(A(W (R(1 : i))));

9 St(R(i)) = St(R(i)) − ∑i−1
j=1 St(R(j));

10 end

11 S = S×time+St
time+1

;

12 time=time+1;
13 Broadcast S and time;

14 end
15 if Receive a new S then

16 Average the Received S to S =
∑

time×S∑
time

;

17 if ‖S − S‖p ≤ D then
18 Create a new block Blk after longest chain;
19 Broadcast Blk;
20 return Blk;

21 end

22 end
23 if Receive a new Blk then
24 if VerifyBlock(Blk)==ture then
25 Update Blk to its chain;
26 return Blk;

27 end

28 end

P -distance between its own S and S. When the distance is no greater than the
mining difficulty D, the miner becomes the winner and generates a new block
Blk (Line 18). The difficulty D is adapted dynamically as explained in Sect. 4.2.
The illustration of the Shapley based verification is shown in Fig. 2. The new
block is then appended to the current longest chain.

Whenever a miner receives a new block Blk, the miner verifies this block
according to Algorithm 2. Once the verification passes, the block is appended to
the miner’s chain, and the mining process terminates (Line 23–28).

The structure of a block is shown in Fig. 3, including block header and block
body. The block header includes seven pieces of information, Table 1 presents
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Fig. 2. Shapley valued based consensus protocol

Algorithm 2: VerifyBlock (new Blk)
Input: Blk: Received new block;

S: Local average of received Shapley Value;
D: Difficulty in Mining;

Output: ValuationResult: True OR False
1 St = Blk.S; St = Blk.S;

2 if ‖St − St‖p ≤ D then

3 if ‖S − St‖p ≤ D then
4 if Blk.ID≥ longest chain length then
5 return ValuationResult=ture;
6 end
7 else
8 return ValuationResult=false;
9 end

10 end
11 else
12 return ValuationResult=false;
13 end

14 end
15 else
16 return ValuationResult=false;
17 end

the explanation about each header item. The block body records two types of
data: (1) The task specification including all the inputs for Algorithm 1; and
(2) The transactions in the blockchain network. Here, a transaction is denoted
as a certain amount of FedCoins transferred from a user account to another,
which is similar to that in BitCoin [17]. The block winner has the privilege to
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create special transactions: transferring TrainPrice from its own account to FL
participants according to S. The detailed design is explained in Sect. 4.3.

Fig. 3. Block structure in FedCoin

Table 1. Explanation of Block Header

Type Explanations

Block ID The block height

Winner’s ID Identity of the block generator

Averaged S The calculated Shapley vector in Line 15 of Algorithm 1

Previous Hash Hash of previous block based on a hash function, e.g. SHA 256

Winner’s S The Shapley vector calculated by the winner

Difficulty The required difficulty D

Merkel Tree Root Root of Merkel tree organized with transactions in block body

The verification procedure is described as in Algorithm 2. Three conditions
must be satisfied for a block to successfully pass the verification. The first condi-
tion is ‖St−St‖p ≤ D which aims to verify whether the winner has generated the
block with a valid SV calculation result. The second condition is ‖S −St‖p ≤ D
which requires that the S value of the block should be close enough to the local
aggregated S. S should be equal to St when the blockchain network is syn-
chronized. In an asychronized network, this condition requires that the winner
should aggregate a sufficient number of results from other entities. Thirdly, the
current block ID should be the largest to ensure that only the longest chain is
acceptable. This longest chain principle can effectively avoid forking, resulting
in consistent chain status in a distributed network.
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4.2 Dynamic Mining Difficulty

The difficulty level in mining new blocks can be adapted dynamically. There are
two main factors influencing the difficulty updates: 1) the total mining power of
the miners and 2) the speed of generating a block. Given the same mining power,
the difficulty level should be decreased as the block generation speed increases.
Given the same block generation speed, the difficulty level should be increased
as the mining power increases. Difficulty update can be achieved by deploying
a smart contract. For example, in BitCoin, a block is generated in every ten
minutes and the difficulty level is updated in every two-week duration.

4.3 The Payment Scheme

With the FedCoin system in place, an FL model requester starts by depositing V
FedCoins at the FL server. The value of V shall be no greater than the value of
the FL model for the requester. To divide V among FL participants, blockchain
miners, and the FL server, all the entities should register a transaction account.
The value of V is then divided into three parts.

– TrainPrice: payments to the FL participants;
– ComPrice: payment to the FL sever for processing the model aggregation;
– SapPrice: payments to the blockchain network miners for calculating the

Shapley value of each participant.

The division can be determined by a pre-agreed smart contract. For example,
the division contract could specify that TrainPrice:ComPrice:SapPrice = 7:1:2.
Then, TrainPrice = 0.7V , ComPrice = 0.1V , and SapPrice = 0.2V . The specific
payment scheme is shown in Algorithm 3.

In Algorithm 3, a model training task is successfully accepted by the FL server
whenever the server receives payment V from the FL model requester. The pay-
ment of V is confirmed when the transfer transaction (requester V−→ server) is
recorded in the blockchain. The server then calculates TrainPrice and SapPrice
and leaving ComPrice = V-TrainPrice-SapPrice as its own payment for process-
ing the task (Line 2). The training task is then published to FL participants with
price TrainPrice (Line 3). When the training task is completed, the server then
publishes a SV calculation task to the blockchain network with price SapPrice
(Line 4–6). As the blockchain network completes the task by successfully mining
a new block, the server creates a transaction to transfer TrainPrice + SapPrice
to the block winner. The block winner creates the transactions in dividing Train-
Price to the FL participants with positive Shapley value. All the transactions as
well as submitted unconfirmed transactions are stored in the new block.

5 Analysis

Under FedCoin, the decentralized payment scheme is reliable based on the secu-
rity of proposed PoSap consensus protocol. Each miner who successfully calcu-
late the sufficiently converging SV is allowed to record a set of transactions and
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Algorithm 3: The Payment Scheme in FedCoin
Input: V: The value paid by a model requester;

S: The final aggragated Shapley Value;
Output: An allocation of V

1 while FL server receives V from a model requester do
2 Calculate TrainPrice and SapPrice;
3 Publish traing task with price TrainPrice;
4 if The model is well trained then
5 Publish a Shapley task to blockchain network with pirce SapPrice;
6 end

7 end
8 while a new block is mined do
9 FL server transfers TrainPrice+SapPrice to the block winner; for each FL

participant i do
10 if Si > 0 then

11 pi = Si∑
Sj>0 Sj

TrainPrice;

12 block winner transfers pi to i;

13 end

14 end

15 end

receive payment from the FL server. The more mining power (i.e. resources) a
miner applies, the higher its chances to become a block winner. PoSap provides
incentives for miners to contribute their resources to the system, and is essential
to the decentralized nature of the proposed payment system.

The security of PoSap is also similar to that of the BitCoin system. Empir-
ical evidence shows that Bitcoin miners may form pools in order to decrease
the variance among their incomes. Within such pools, all members contribute
to the solution of each cryptopuzzle, and share the rewards proportionally to
their contributions. Ideally, a feasible payment system should be designed to
resist the formation of large mining pools. Bitcoin system has been shown to be
vulnerable when a mining pool attracts more than 50% of the miners. Similarly,
the proposed system can also only resist upto 50% of the miners colluding.

Next we discuss how our system fares against the selfish mining strategy [6].

Observation 1. When the FL server processes FL training model requests
sequentially, it is not rational for colluders to follow the selfish mining strategy.

According to Algorithm 3, each public block winner is paid by the FL server
before creating a new block containing the block reward payment transactions.
When the training task is processed one by one, if a selfish miner becomes
the winner but does not publish this result immediately, it cannot receive the
block rewards. Meanwhile, the selfish miner cannot mine the next block without
publishing its private block since the next SV task must wait for the completion
of payment in the current block in the setting of sequentially training models.
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Observation 2. When the FL server processes FL training model requests in
parallel, and all the miners have the same block propagation delay to the FL
server, the expected revenue for selfish miner is greater than that for honest
miners when the selfish pool attracts more then 25% of the total mining power
in the blockchain network.

If the tasks are published in parallel, a selfish miner can reserve a block
and continue to mine the next block. The state transition and revenue analysis
is same as that in [6], resulting the condition of the threshold of selfish pool’s
mining power to be 1/4 under the condition of the same propagation delay to
the FL server. Thus, processing FL training model requests in parallel under the
proposed scheme is not recommended.

6 The Demonstration System

(a) Client Configuration (b) Task Training

(c) Blockchain Mining (d) Finished Status

Fig. 4. The interfaces of the demonstration system

FedCoin is demonstrated on a well-known digit classification dataset - MNIST -
which includes 70,000 images, with a widely used software environment - Tensor-
Flow - to perform federated digit classification tasks. The network participants
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are generated based on Dockers. Participants can independantly communicate
with each other by sending messages, performing FL training tasks or Shapley
value calculation tasks following PoSap to sustain a full copy of the blockchain.
The total computation power is equal to that of our simulation platform (CPU
Interl i7-7700, GPU 2G, RAM 8g, ROM 1t, SSD 256M). We adopt FedAvg [4]
for FL model aggregation. It averages the collected local model parameters to
derive the global FL model parameters.

The FedCoin system interface can be divided into four panels: 1) setting
panel (Fig. 4(a)), 2) task specification panel (Fig. 4(b)), 3) control panel (Fig.
4(c)), and 4) presentation panel (Fig. 4(d)). In the setting panel, a user can set
the number of participants and the initial dataset of each participant. In the task
specification panel, the task model for each FL participant can be selected from
a list of classification models (e.g., CNN). The payment and training time for the
task are also specified in this panel. In the control panel, a user can commence
the FL task. In the presentation panel, the status of each participant and the
statistic information of the blockchain network are shown in real time.

When the mining is over, one of the participants (Participant 3 in Fig. 4(d))
becomes the winner. It then divides the task rewards among the FL participants
based on their Shapley values. All the rewards transactions are written in the
new block and all the participants update their chain by appending the new
block to their local chains. A video of the demonstration can be found online1.

7 Chapter Summary

In this chapter, we introduce FedCoin - a blockchain-based payment system to
enable a federated learning system. It can mobilize free computational resources
in the community to perform costly computing tasks required by FL incentive
schemes. The Shapley value of each FL participant, reflecting its contribution to
the global FL model in a fair way, is calculated by the proof of Shapley (PoSap)
consensus protocol. The proposed PoSap which replaces the traditional hash-
based protocol in existing Bitcoin based blockchain systems. All the payments
are recorded in the block in an immutable manner. Under FedCoin, paying out
incentives to FL participants does not need to rely on a central FL server.

Experimental results show that FedCoin is able to properly determine FL
participants’ Shapley Value-based contribution to the global FL model with an
upper bound on the computational resource required for reaching consensus. To
the best of our knowledge, FedCoin is the first attempt to leverage blockchain
technology in federated learning incentive scheme research. Thereby, it opens up
new opportunities for non-data owners to contribute to the development of the
FL ecosystem.

1 https://youtu.be/q2706lpR8NA.

https://youtu.be/q2706lpR8NA
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Abstract. Availability of big data is crucial for modern machine learn-
ing applications and services. Federated learning is an emerging paradigm
to unite different data owners for machine learning on massive data sets
without worrying about data privacy. Yet data owners may still be reluc-
tant to contribute unless their data sets are fairly valuated and paid. In
this work, we adapt Shapley value, a widely used data valuation metric
to valuating data providers in federated learning. Prior data valuation
schemes for machine learning incur high computation cost because they
require training of extra models on all data set combinations. For efficient
data valuation, we approximately construct all the models necessary for
data valuation using the gradients in training a single model, rather than
train an exponential number of models from scratch. On this basis, we
devise three methods for efficient contribution index estimation. Evalu-
ations show that our methods accurately approximate the contribution
index while notably accelerating its calculation.

Keywords: Federated learning · Data valuation · Incentive
mechanism · Shapley value

1 Introduction

The success of modern machine learning is largely attributed to the availability
of massive data. Although machine learning systems’ appetite for data continue
to grow, free access to massive data is becoming difficult. On the one hand,
data providers have realized the value of data and are unwilling to contribute
their data for free. On the other hand, regulations such as the General Data
Protection Regulation (GDPR) [4] impose strict restrictions on raw data access.

To comply with the regulations on raw data access, machine learning pro-
duction is shifting to federated learning, a paradigm that trains a global model
across multiple data providers without sharing their raw data [3,9,11,15]. Of
our particular interest is horizontal federated learning, where the data set of
every data provider has the same attributes [15]. Horizontal federated learning
c© Springer Nature Switzerland AG 2020
Q. Yang et al. (Eds.): Federated Learning, LNAI 12500, pp. 139–152, 2020.
https://doi.org/10.1007/978-3-030-63076-8_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63076-8_10&domain=pdf
https://doi.org/10.1007/978-3-030-63076-8_10


140 S. Wei et al.

is common in practice. For example, a medical company may want to develop
a new medical image classification technique for pneumonia by acquiring the
corresponding patient data from multiple hospitals.

To motivate data owners to contribute their data for model training, incen-
tive mechanisms are necessary. In commercial machine learning production, data
providers often get profits based on the valuation of their data sets. Pioneer stud-
ies [5,7,8] have proposed the adoption of the Shapley value, a classical concept
in game theory [12], for fair valuation of data points in machine learning.

To this end, we investigate data valuation for federated learning, a critical
step to enable federated learning in commercial machine learning applications.
We instantiate Shapley value from general machine learning to federated learning
and define the Contribution Index (CI), a metric to evaluate the contribution
of the data set of each data provider on training the global model. However,
directly calculating the CI by definition is time-consuming because it involves
accessing the accuracy of models trained on all possible combinations of data
sets. For example, if a company trains a model via federated learning with n
data providers (i.e., in effect, the model is trained on the union of the n data
sets) for applications, it needs to train another 2n − 2 models via federated
learning simply for valuation of the n data providers.

In this work, we explore efficient data valuation schemes for horizontal feder-
ated learning. Our key observation is that the gradients during federated learn-
ing on the union of the data sets suffice to approximately construct the models
learned on all combinations of the data sets, which are necessary data valuation.
Therefore, valuation of data providers only involves training the global model
for applications. No extra model training on other combinations of data sets are
necessary, which saves notable computation overhead.

The main contributions of this work are summarized as follows.

– We instantiate the Shapley value for federated learning and define the Con-
tribution Index (CI) to quantify contributions of data providers in federating
learning.

– We design three approximate algorithms to efficiently calculate the CIs with-
out extra model training on all data set combinations.

– We verify the effectiveness and efficiency of our algorithms in various settings.
Experimental results show that our algorithms closely approximate the exact
CI while accelerating its calculation by 2 to 14×.

A preliminary version of this work can be found in [14] and we make following
new contributions: (i) We design a new algorithm TMR, which is more effective
and efficient by overcoming the drawbacks of MR. (ii) We conduct extensive
experiments to study the effectiveness and efficiency of the new algorithm.

In the rest of this chapter, we define our problem in Sect. 2, introduce our
efficient data valuation algorithms in Sect. 3, present their evaluations in Sect. 4
and finally conclude our work in Sect. 5.
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2 Background and Problem Definition

In this section, we define the Contribution Index (CI), a valuation metric for
data providers in federated learning. The metric is an adaptation of the general
Shapley value [13] to federated model training, as explained below.

2.1 Federated Learning

In federated learning [11], a server trains a global model with n data providers
(a.k.a participants), each with data set Di, i ∈ N = {1, 2, · · · , n}. The model is
trained iteratively. Each round t ∈ {0, 1, · · · , R − 1} works as follows.

– Step 1: The server sends a global model M (t) to all the participants.
– Step 2: Each participant, take participant i as an example, trains M (t) based

on its own data Di and returns the updated sub-model M
(t)
i to the server.

– Step 3: The server integrates the sub-models {M
(t)
i |i ∈ N} and gets a new

global model M (t+1) for the next round. Specifically, the server first calculates
the gradient of each participant Δ

(t+1)
i = M

(t)
i − M (t). Then the overall

gradient is calculated as the weighted average of all participants’ gradients:
Δ(t+1) =

∑n
i=1

|Di|∑n
i=1 |Di| · Δ

(t+1)
i , where |Di| is the size of training data Di.

Finally the global model for the next round M (t+1) = M (t) + Δ(t+1).

Note that during each round of model training, the gradients of all participants
are calculated based on the same global model, which offers a common refer-
ence to compare and evaluate the contribution of different participants. Our
main contribution is to exploit these gradients for data evaluation during model
training rather than data valuation by training and evaluating extra models.

2.2 Contribution Index for Participant Valuation

We define the Contribution Index (CI) to evaluate the contribution of each par-
ticipant on the global model in federated learning. Our CI metric is an instance
of the general concept of the Shapley value [13].

The Sharply value is widely used for data evaluation. Assume a cooperative
game [12] with n agents and a utility function U : S → R+, S ⊆ N , where N
is the set of agents and U(S) measures the utility of a subset of agents S. The
Shapley value [13] assigns each agent a reward based on their utility as follows:

φi = C ·
∑

S⊆N\{i}

U(S ∪ {i}) − U(S)
(n−1
|S| )

(1)

In federated learning, we can consider each participant as an agent and the
accuracy of the global model as the utility function. Accordingly, we can define
the Contribution Index for each participant in federated learning as follows.
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Definition 1 (Contribution Index (CI)). Assume n participants with data
sets D1,D2, · · · ,Dn, a machine learning algorithm A and a test set T . We use
DS which is a multi-set to denote ∪i∈SDi where S ⊆ N = {1, 2, · · · , n}. A model
trained on DS by algorithm A is denoted by MS(A), or MS for abbreviation.
The accuracy of M evaluated on test set T is denoted by U(M,T ), or U(M)
for abbreviation. We use φ(A,DN , T,Di), or φi for abbreviation, to denote the
contribution index of Di in the context of DN ,A and T , which is defined as:

φ(A,DN , T,Di) = C ·
∑

S⊆N\{i}

U(MS∪{i}) − U(MS)
(n−1
|S| )

(2)

The definition of CI inherits the desirable properties of Shapley value for fair data
valuation. (i) If Dj has no effect on the accuracy of algorithm A on test set T ,
the CI of Dj is zero, i.e., if for any subset S ⊆ N we have U(MS) = U(MS∪{j}),
then φj = 0. (ii) If Di and Dj have the same contribution on the accuracy of A
on test set T , their CIs are the same, i.e., if for any subset S ⊆ N\{i, j} we have
U(MS∪{i}) = U(MS∪{j}), then φi = φj . (iii) CI is linear with respect to test set
T , i.e., for any two disjoint test sets T1, T2 and any i ∈ N = {1, 2, · · · , n}, we
have φ(A,DN , T1 ∪ T2,Di) = φ(A,DN , T1,Di) + φ(A,DN , T2,Di).

2.3 Inefficiency of Contribution Index Calculation

Directly calculating Shapley value by definition can be computation-expensive,
because it requires calculating the utility of all agent combinations. In the context
of CI, quantifying the utility of one combination of participant data sets means
training a model using this data set combination and evaluating its accuracy on
the test set. If there are n participants, we have to quantify the utility for 2n −1
combinations of participant data sets. Note that the model training on each data
set combination is the same as the federated learning workflow in Sect. 2.1 (R
rounds). However, in addition to training one model using all the participant
data sets, we need to train 2n − 2 extra models to calculate the CIs naively
based on Definition 1.

Fig. 1. An illustration of directly calculating CIs by definition for 3 participants.

Figure 1 shows the process of calculating CIs for three participants. We first
train a model using the data sets of all the 3 participants and get the utility
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U(M{1,2,3}). Then we quantify the utilities of combinations of 2 participants,
U(M{1,2}), U(M{1,3}) and U(M{2,3}). Finally we train models using the data
sets of each participant individually, and get the utilities U(M{1}), U(M{2}) and
U(M{3}). The CI of each participant is calculated based on these 7 utilities. In
this example, 6 extra models, {M{1,2}, M{1,3}, M{2,3}, M{1}, M{2}, M{3}}, are
trained to calculate the CIs.

3 Efficient Contribution Index Calculation

As mentioned in Sect. 2, directly calculating CI based on Definition 1 incurs
heavy computation overhead for its need to train an exponential number of
extra models. In this section, we present three efficient CI calculation methods
exploiting the gradients during federated learning. The overall idea is to use
the participants’ gradients returned to the server to approximately construct the
models trained on different data set combinations, which are essential to calculate
the CIs of each participant. As next, we explain our three CI calculation methods
in detail.

3.1 One-Round Reconstruction (OR)

Our first method, One-Round Construction (OR), gathers the gradients updated
by the participants in different training rounds and aggregates them according
to all the subsets S ⊆ N = {1, 2, · · · , n}. Then it approximately constructs all
the models {MS |S ⊆ N} using these aggregated gradients. Figure 2 illustrates
its workflow.

Fig. 2. Schematic diagram for One-Round Construction.

Algorithm 1 presents the details of OR. In line 2 we initialize a global model
M (0) and constructed models {M̃

(0)
S |S ⊆ N} based on different nonempty sub-

sets S ⊆ N using the same randomized model. In lines 3–12, in each training
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round, the server first distributes an initial model M (t) to each participant in
line 4 and then receives the updated sub-models {M

(t)
i }i=1,2,··· ,n from the par-

ticipants in line 5. In line 6, the gradients of the participants {Δ
(t)
i }i=1,2,··· ,n are

calculated for model aggregation. In line 7, the global model is updated accord-
ing to Step 3 in Sect. 2.1. In lines 8–11, we construct M̃

(t+1)
S approximately based

on the gradients from the participants. Specifically, for each S ⊆ N , we calculate
the corresponding gradients by weighted averaging according to the data size in
line 9 and use the aggregated gradients to update the corresponding model in
line 10. In lines 13–15, the CIs of different participants are calculated. Specifi-
cally, for each participant i, we calculate its CI based on Definition 1 using the
models constructed in line 14.

Algorithm 1. One-Round (OR)
1: N ← {1, 2, · · · , n}
2: Initialize M (0), {˜M

(0)
S |S ⊆ N}

3: for each round t ← 0, 1, 2, ..., R − 1 do
4: Send M (t) to all the participants
5: M

(t)
i ← Update(i, M (t)) for participant i ∈ N

6: Δ
(t+1)
i ← M

(t)
i − M (t) for participant i ∈ N

7: M (t+1) ← M (t) +
∑

i∈N
|Di|∑

i∈N |Di| · Δ
(t+1)
i

8: for each subset S ⊆ N do
9: Δ

(t+1)
S ← ∑

i∈S
|Di|∑

i∈S |Di| · Δ
(t+1)
i

10: ˜M
(t+1)
S ← ˜M

(t)
S + Δ

(t+1)
S

11: end for
12: end for
13: for i ← 1, 2, ..., n do

14: φi = C · ∑

S⊆N\{i}

U(M̃
(R)
S∪{i})−U(M̃

(R)
S

)

(n−1
|S| )

15: end for
16: return M (R) and φ1, φ2, ..., φn

3.2 λ-Multi-Rounds Construction (λ-MR)

One drawback of OR is that it mixes the gradients in every training round, which
may not capture the key gradients. This is because as the training continues, the
global model and the gradients are more and more influenced by all data sets.
Accordingly, the gradients in certain rounds become less valuable. In response,
we propose to differentiate the gradients in different rounds and devise a second
CI estimation method, λ-Multi-Rounds Construction (λ-MR).
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Fig. 3. Schematic diagram for λ-Multi-Rounds Construction.

Algorithm 2. λ-Multi-Rounds (λ-MR)
1: N ← {1, 2, · · · , n}
2: Initialize M (0), {˜M

(0)
S |S ⊆ N}

3: for each round t ← 0, 1, 2, ..., R − 1 do
4: M

(t)
i ← Update(i, M (t)) for participant i ∈ N

5: Δ
(t+1)
i ← M

(t)
i − M (t) for participant i ∈ N

6: M (t+1) ← M (t) +
∑

i∈N
|Di|∑

i∈N |Di| · Δ
(t+1)
i

7: for each subset S ⊆ N do
8: Δ

(t+1)
S ← ∑

i∈S
|Di|∑

i∈S |Di| · Δ
(t+1)
i

9: ˜M
(t+1)
S ← M (t) + Δ

(t+1)
S

10: end for
11: for i ← 1, 2, ..., n do

12: φ
(t+1)
i = C · ∑

S⊆N\{i}

U(M̃
(t+1)
S∪{i})−U(M̃

(t+1)
S

)

(n−1
|S| )

13: end for
14: end for

15: φi =
R
∑

t=1

λt · φ
(t)
i

∑n
i=1 φ

(t)
i

for participant i ∈ N

16: return M (R) and φ1, φ2, ..., φn

Figure 3 illustrates the idea of λ-MR. Instead of estimating CIs all at once, λ-
MR estimates a set of CIs in each training round, which are then aggregated into
the final CIs. In each round, λ-MR constructs the models related to different data
set combinations using the gradients on the global model of the current round.
Then it calculates the CIs based on Definition 1 by evaluating the accuracy of
these constructed models on the test set. The weighted average of these sets of
CIs from different training rounds are considered as the final CIs.

Algorithm 2 shows the details of λ-MR. Lines 1–6 show the calculation of the
global model, which is the same as in Algorithm 1. The key difference is embodied
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in lines 7–15. In lines 7–10, we approximately construct models M̃
(t+1)
S based on

the gradients from the participants and the global model in the last round. In
lines 11–13, we estimate the normalized CI of the constructed models in the tth
round, which is referred to as round-CI φ

(t+1)
i . In line 15, we use a parameter

λ ∈ (0, 1) (a decay factor) to control the weights of round-CIs in the final result.
The idea is that in later rounds of training, the global model is more and more
influenced by all the data sets. Thus, we give higher weights for the earlier
rounds.

3.3 Truncated Multi-Rounds Construction (TMR)

This subsection presents Truncated Multi-Rounds Construction (TMR), a third
CI estimation algorithm which improves λ-MR from two aspects. (i) We take
the accuracy of each round into consideration and assign higher weights to the
training rounds with higher accuracy when performing weighted averaging. The
rationale is that, at the very beginning of the training, the randomly initialized
models cannot well indicate contributions of the participants. With the increase
of accuracy, the accuracy improvement of models then start to reflect the con-
tributions of the participants. (ii) We eliminate unnecessary model construction
to improve efficiency. Due to the decay factor λ, the weights of round-CIs in
the last few rounds are negligible. Thus we only construct and evaluate models
which have an effective impact on the final result.

Algorithm 3. Truncated Multi-Rounds (TMR)
1: N ← {1, 2, · · · , n}
2: Initialize M (0), {˜M

(0)
S |S ⊆ N}

3: for each round t ← 0, 1, 2, ..., R − 1 do
4: M

(t)
i ← Update(i, M (t)) for participant i ∈ N

5: Δ
(t+1)
i ← M

(t)
i − M (t) for participant i ∈ N

6: M (t+1) ← M (t) +
∑

i∈N
|Di|∑

i∈N |Di| · Δ
(t+1)
i

7: if λt > δ then
8: for each subset S ⊆ N do
9: Δ

(t+1)
S ← ∑

i∈S
|Di|∑

i∈S |Di| · Δ
(t+1)
i

10: ˜M
(t+1)
S ← M (t) + Δ

(t+1)
S

11: end for
12: for i ← 1, 2, ..., n do

13: φ
(t+1)
i = C · ∑

S⊆N\{i}

U(M̃
(t+1)
S∪{i})−U(M̃

(t+1)
S

)

(n−1
|S| )

14: end for
15: end if
16: end for

17: φi =

� lg δ
lg λ

�
∑

t=1

λt · U(M(t))·φ(t)
i

∑n
i=1 φ

(t)
i

for participant i ∈ N

18: return M (R) and φ1, φ2, ..., φn
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Algorithm 3 explains the details of TMR. Lines 1–6 show the calculation of
the global model, which is the same as in Algorithm 1 and Algorithm 2. The key
difference from λ-MR lies in line 7 and line 17. In line 7, once the round-CIs are
negligible to the final result, we do not construct or evaluate the models. In line
17, we use the decay factor λ and the accuracy in various rounds to control the
weights of round-CIs in the final result.

4 Evaluation

This section presents the evaluations of our proposed methods.

4.1 Experimental Setup

Data Sets. We experiment on the MNIST data set [10]. It contains 60,000+
training images and 10,000+ testing images for handwritten digits 0 to 9. Since
the number of training images for each digit varies from 5421 to 6742, we ran-
domly pick 5421 images for each digit so that each digit has the same amount of
training images. Similarly, we randomly pick 892 testing images for each digit.
Hence the sizes of the training and test set are 54210 and 8920, respectively.

Training Setups. Since the data sets owned by participants may vary in size,
distribution and quality, we evaluate our methods using the following settings.

– Same-Size-Same-Distribution. We randomly split the training set into
five partitions of the same size. The number of images with the same label is
the same among the five partitions.

– Same-Size-Different-Distribution. We randomly split the training set
into five partitions of the same size. Participant 1 has 40% of label ‘0’, 40%
of label ‘1’ and the data points with the remaining eight labels share the
remaining 20% of data provider 1’s data. The training set of the other four
participants can be generated in a similar way.

– Different-Size-Same-Distribution. We randomly split the training set
into five partitions with their ratios of data size 2:3:4:5:6. The number of
images with the same label is the same among the five partitions.

– Same-Size-Noisy-Label. We randomly split the training set into five par-
titions of the same size. Each partition also has the same amount of images
with the same label. We then change 0%, 5%, 10%, 15%, 20% of the labels
of the five partitions into one of other nine labels with equal probability.

– Same-Size-Noisy-Image. We randomly split the training set into five par-
titions of the same size. We generate the Gaussian noise with mean 0 and
variance 1, and then multiply the noise by 0.00, 0.05, 0.10, 0.15 and 0.20
respectively to get different levels of noise. Finally we add different levels of
noise to all the input images.

Compared Algorithms. We compare the following algorithms.



148 S. Wei et al.

– Exact. It directly calculates the CIs of the participants according to Defi-
nition 1. Specifically, it trains models based on different combinations of the
data sets and these models are evaluated on the test set.

– Extended-TMC-Shapley. It is an extension of a state-of-the-art data val-
uation scheme for general machine learning [5]. We extend Algorithm 1
Truncated Monte Carlo Shapley (TMC-Shapley) of [5] to federated learn-
ing. Extended-TMC-Shapley first samples a random permutation π of all n!
permutations of 1, 2, · · · , n which is denoted by Π. Then it trains models
based on permutation π and calculates the CI of each participant according
to

φi = Eπ∼Π [U(Mπi
) − U(Mπi−1)]. (3)

where πi is the set of the first i numbers in π and thus Mπi
means the model

trained on the first i data sets in permutation π.
– Extended-GTB. It is an extension of another state-of-the-art data valua-

tion scheme for general machine learning [8]. We extend Algorithm 1 Group
Testing Based SV Estimation of [8] as follows. It samples some subsets S of
N = {1, 2, · · · , n} and trains models MS . Based on the accuracy of these
models, it solves a feasibility problem to estimate the CIs of each participant
under some constraints. The feasibility problem is solved by Mathematica
11.2 [6]. If the feasibility problem has no solutions, we relax the constraints
until it has one. We set the same convergence condition for Extended-GTB
and Extended-TMC-Shapley. The results of models trained on different com-
binations of the data sets are recorded for reuse as well.

– One-Round. Our Algorithm 1 in Sect. 3.1.
– λ-Multi-Rounds. Our Algorithm 2 in Sect. 3.2.
– Truncated Multi-Rounds. Our Algorithm 3 in Sect. 3.3.

Note that at the beginning of training, the global model may perform poorly
since it is randomly initialized. Consequently, some CIs may be negative. In this
case, we adopt the egalitarianism and assign each participant the same CI.
Evaluation Metrics. We compare the performance of different algorithms using
the following metrics.

– CI Calculation Time. We evaluate the efficiency of CI calculation using
the time to calculate CIs. The time of model training is excluded.

– CI Estimation Error. We evaluate the effectiveness of different approxi-
mate CI estimation algorithms using the mean absolute error (MAR):

MAR =
∑n

i=1 |φi − φ∗
i |

n
, (4)

where φ∗
1, φ

∗
2, · · · , φ∗

n denote the normalized CIs of the n participants esti-
mated by an approximate algorithm, and φ1, φ2, · · · , φn denote the normal-
ized CIs calculated according to Definition 1.

Implementation. All the algorithms are implemented in python 3.6 with Ten-
sorFlow [2] 1.14.0 and TensorFlow Federated [1] 0.8.0. The experiments are con-
ducted on a machine with Intel(R) Xeon(R) Platinum 8163 CPU @ 2.50 GHz
and 32 GB main memory.
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4.2 Experimental Results

We present the experimental results in the five settings in sequel.

Results on Same-Size-Same-Distribution. Figure 4(a) plots the time cost
of different methods. OR has the lowest time cost. λ-MR and TMR takes twice
time as OR to calculate CIs. All of our three methods are more efficient than the
methods with extra model retraining. For comparison, the time cost of Extended-
GTB and Exact is 6–15× as OR and TMR. Figure 4(b) compares the MAR of
different methods. The MAR of OR, λ-MR and TMR are almost to 0, i.e., the
CIs estimated via our methods are almost the same as the exact values. The
MAR of Extended-TMC-Shapley is 17.3× of that of TMR. Extended-GTB also
performs poorly in estimation error.
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Fig. 4. Results on Same-Size-Same-Distribution.

Results on Same-Size-Different-Distribution. From Fig. 5(a), OR is still
the fastest, and TMR is still the second fastest. Extended-TMC-Shapley incurs
a high time cost in case of Same-Size-Different-Distribution. Its time cost is
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Fig. 5. Results on Same-Size-Different-Distribution.
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9.2× higher than OR and 4.5× higher than TMR. From Fig. 5(b), OR performs
better than the others in estimation error. The CIs estimated by OR are almost
as accurate as the exact one. With much lower calculation time, TMR and λ-
MR are still more accurate than Extended-TMC-Shapley and Extended-GTB.
Overall, OR and TMR outperform the others in this setting as well.

Results on Different-Size-Same-Distribution. From Fig. 6(a), OR and
TMR still have much lower time cost than the others. From Fig. 6(b), OR and
TMR also approximate the exact CIs well and outperform the others in terms of
estimation error. Extended-TMC-Shapley is less accurate and Extended-GTB’s
performance is unsatisfactory.
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Fig. 6. Results on Different-Size-Same-Distribution.

Results on Same-Size-Noisy-Label From Fig. 7(a), OR and TMR are the
most efficient. From Fig. 7(b), we can observe that OR’s MAR decline oblivi-
ously. The MAR of λ-MR and TMR is stable. The MAR of Extended-TMC-
Shapley is 1.5× of TMR and the MAR of Extended-GTB is 7.3× of TMR. OR
is more accurate than Extended-GTB but worse than Extended-TMC-Shapley.
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Fig. 7. Results on Same-Size-Noisy-Label.
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The results indicate that OR may be sensitive to noisy labels. In contrast, TMR
is robust to noisy labels and is more accurate than other approximate algorithms.

Results on Same-Size-Noisy-Image. Overall, OR is slightly better than
TMR in time cost while TMR is slightly better than OR in estimation error
(see Fig. 8). Both OR and TMR are notably better than the two baseline algo-
rithms. From Fig. 8(b), the MAR of Extended-TMC-Shapley is 6.9× larger than
TMR and the MAR of Extended-GTB is 28.6× larger than TMR.
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Fig. 8. Results on Same-Size-Noisy-Image.

4.3 Summary of Results

Our main experimental findings are as below.

– CI Calculation Time. Extended-TMC-Shapley and Extended-GTB are the
most time consuming. They are similar in time efficiency. The cost time of
our OR and TMR algorithms are consistently fast in different settings. OR
is better than TMR.

– CI Estimation Error. Our TMR algorithm has low estimation errors in all
settings and the error. Our OR algorithm approximates the exact CIs best
in most settings. However, it is sensitive to the noisy labels. Extended-TMC-
Shapley and Extended-GTB perform the worst.

5 Conclusion

In this chapter, we study data valuation metrics for federated learning. We define
the Contribution Index, a Shaply valued based metric to quantify the contribu-
tion of data providers on training a global model via federated learning. Naively
calculating the contribution index by definition is computation-intensive since
it involves training a series of models on all data set combinations. For effi-
cient Contribution Index calculation, we exploit the gradients in the training of
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the global model to construct all the models necessary for Contribution Index,
thus avoiding training an exponential number of models simply for data valua-
tion. Following this idea, we design three efficient Contribution Index estimation
methods. Evaluations on MNIST show that our methods accurately approximate
the exact Contribution Index while accelerating its calculation by 2 to 14 times.
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Abstract. Federated learning (FL) is a popular technique to train
machine learning (ML) models on decentralized data sources. In order to
sustain long-term participation of data owners, it is important to fairly
appraise each data source and compensate data owners for their contri-
bution to the training process. The Shapley value (SV) defines a unique
payoff scheme that satisfies many desiderata for a data value notion. It
has been increasingly used for valuing training data in centralized learn-
ing. However, computing the SV requires exhaustively evaluating the
model performance on every subset of data sources, which incurs pro-
hibitive communication cost in the federated setting. Besides, the canon-
ical SV ignores the order of data sources during training, which conflicts
with the sequential nature of FL. This chapter proposes a variant of the
SV amenable to FL, which we call the federated Shapley value. The fed-
erated SV preserves the desirable properties of the canonical SV while
it can be calculated without incurring extra communication cost and is
also able to capture the effect of participation order on data value. We
conduct a thorough empirical study of the federated SV on a range of
tasks, including noisy label detection, adversarial participant detection,
and data summarization on different benchmark datasets, and demon-
strate that it can reflect the real utility of data sources for FL and has the
potential to enhance system robustness, security, and efficiency. We also
report and analyze “failure cases” and hope to stimulate future research.

Keywords: Data valuation · Federated learning · Shapley value

1 Introduction

Building high-quality ML models often involves gathering data from different
sources. In practice, data often live in silos and agglomerating them may be
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https://doi.org/10.1007/978-3-030-63076-8_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63076-8_11&domain=pdf
https://doi.org/10.1007/978-3-030-63076-8_11


154 T. Wang et al.

intractable due to legal constraints or privacy concerns. FL is a promising
paradigm which can obviate the need for centralized data. It directly learns
from sequestered data sources by training local models on each data source and
distilling them into a global federated model. FL has been used in applications
such as keystroke prediction [8], hotword detection [22], and medical research [3].

A fundamental question in FL is how to value each data source. FL makes
use of data from different entities. In order to incentivize their participation, it
is crucial to fairly appraise the data from different entities according to their
contribution to the learning process. For example, FL has been applied to finan-
cial risk prediction for reinsurance [1], where a number of insurance companies
who may also be business competitors would train a model based on all of their
data and the resulting model will create certain profit. In order to prompt such
collaboration, the companies need to concur with a scheme that can fairly divide
the earnings generated by the federated model among them.

The SV has been proposed to value data in recent works [6,10,11]. The SV
is a classic way in coopereative game theory to distribute total gains generated
by the coalition of a set of players. One can formulate ML as a cooperative game
between different data sources and then use the SV to value data. An important
reason for employing the SV is that it uniquely possesses a set of appealing
properties desired by a data value notion: it ensures that (1) all the gains of
the model are distributed among data sources; (2) the values assigned to data
owners accord with their actual contributions to the learning process; and (3)
the value of data accumulates when used multiple times.

Despite the appealing properties of the SV, it cannot be directly applied to
FL. By definition, the SV calculates the average contribution of a data source
to every possible subset of other data sources. Thus, evaluating the SV incurs
prohibitive communication cost when the data is decentralized. Moreover, the
SV neglects the order of data sources, yet in FL the importance of a data source
could depend on when it is used for training. For instance, in order to ensure
convergence, the model updates are enforced to diminish over time (e.g., by using
a decaying learning rate); therefore, intuitively, the data sources used toward the
end of learning process could be less influential than those used earlier. Hence,
a new, principled approach to valuing data for FL is needed.

In this chapter, we propose the federated SV, a variant of the SV designed to
appraise decentralized, sequential data for FL. The federated SV can be deter-
mined from local model updates in each training iteration and therefore does not
incur extra communication cost. It can also capture the effect of participation
order on data value as it examines the performance improvement caused by each
subset of players following the actual participation order in the learning process.
Particularly, the federated SV preserves the desirable properties of the canoni-
cal SV. We present an efficient Monte Carlo method to compute the federated
SV. Furthermore, we conduct a thorough empirical study on a range of tasks,
including noisy label detection, adversarial participant detection, and data sum-
marization on different benchmark datasets, and demonstrate that the federated
SV can reflect the actual usefulness of data sources in FL. We also report and
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analyze cases in which the proposed federated SV can be further improved and
hope to stimulate future research on this emerging topic.

2 Related Work

Various data valuation schemes have been studied in the literature, and from a
practitioner’s point of view they can be classified into query-based pricing that
attaches prices to user-initiated queries [18,28]; data attribute-based pricing that
builds a price model depending on parameters such as data age and credibility
using public price registries [9]; and auction-based pricing that sets the price
dynamically based on auctions [21,25]. However, one common drawback of the
existing strategies is that they cannot accommodate the unique properties of
data as a commodity; for instance, the value of a data source depends on the
downstream learning task and the other data sources used for solving the task.

The SV uniquely satisfies the properties desired by a data value notion. The
use of the SV for pricing personal data can be traced back to [4,16] in the con-
text of marketing survey, collaborative filtering, recommendation systems, and
networks. Despite the desirable properties of the SV, computing the SV is known
to be expensive. In its most general form, the SV can be #P-complete to com-
pute [5]. The computational issue becomes even more serious when the SV is
used to value training data for ML, because calculating it requires re-training
models for many times. Most of the recent work on the SV-based data valuation
has been focused on the centralized learning setting and improving its compu-
tational efficiency [6,10,11,13]. Two important assumptions of the canonical SV
are that the training performance on every combination of data points is mea-
surable and that the performance does not depend on the order of training data.
These two assumptions are plausible for centralized learning because the entire
data is accessible to the coordinator and the data is often shuffled before being
used for training. However, they are no longer valid for the federated setting.

Existing work on pricing data in FL can be roughly categorized into two
threads. One thread of work [14,15] studies the mechanism design to incentivize
participation given the disparity of data quality, communication bandwidth,
and computational capability among different participants. In these works, the
authors assume that the task publisher (i.e., the coordinator) has some prior
knowledge about the data quality of a participant and design an optimal con-
tract to maximize the utility of the coordinator subject to rationality constraints
of individual participants. However, it remains a question how to precisely char-
acterize data quality in FL. Another thread of work investigates the way to
measure data quality and share the profit generated by the federated model
according to the data quality measurement. [29] and [27] apply the canonical SV
to value each data source; however, as discussed earlier, the direct application
of the SV is intractable in practice due to the decentralized data and concep-
tually flawed due to the sequential participation of participants. Recently, [30]
has studied at the intersection of two threads by proposing a fair profit sharing
scheme while considering individual costs incurred by joining FL as well as the
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mismatch between contribution and payback time. Our work can be potentially
integrated with their work to better characterize the data contribution.

3 Data Valuation Based on SV

Cooperative game theory studies the behaviors of coalitions formed by game
players. Formally, a cooperative game is defined by a pair (I, ν), where I =
{1, . . . , N} denotes the set of all players and ν : 2N → R is the utility function,
which maps each possible coalition to a real number that describes the utility of
a coalition, i.e., how much collective payoff a set of players can gain by forming
the coalition. One of the fundamental questions in cooperative game theory is to
characterize the importance of each player to the overall cooperation. The SV [26]
is a classic method to distribute the total gains generated by the coalition of all
players. The SV of player i with respect to the utility function ν is defined as
the average marginal contribution of i to coalition S over all S ⊆ I \ {i}:

sν
i =

1
N

∑

S⊆I\{i}

1(
N−1
|S|

)
[
ν(S ∪ {i}) − ν(S)

]
(1)

We suppress the dependency on ν when the utility used is clear and use si to
represent the value allocated to player i.

The formula in (1) can also be stated in the equivalent form:

si =
1

N !

∑

π∈Π(I)

[
ν(Pπ

i ∪ {i}) − ν(Pπ
i )

]
(2)

where π ∈ Π(I) is a permutation of players and Pπ
i is the set of players which

precede player i in π. Intuitively, imagine all players join a coalition in a random
order, and that every player i who has joined receives the marginal contribution
that his participation would bring to those already in the coalition. To calculate
si, we average these contributions over all the possible orders.

Applying these game theory concepts to data valuation, one can think of
the players as data contributors and the utility function ν(S) as a performance
measure of the model trained on the set of training data S. The SV of each
data contributor thus measures its importance to learning an ML model. The
following desirable properties that the SV uniquely possesses motivate many
prior works [4,6,10,12,13,16] to adopt it for data valuation.

1. Group Rationality: The value of the model is completely distributed among
all data contributors, i.e., ν(I) =

∑
i∈I si.

2. Fairness: (1) Two data contributors who are identical with respect to what
they contribute to a dataset’s utility should have the same value. That is,
if data contributor i and j are equivalent in the sense that ν(S ∪ {i}) =
ν(S ∪ {j}),∀S ⊆ I \ {i, j}, then si = sj . (2) Data contributor with zero
marginal contributions to all subsets of the dataset receive zero payoff, i.e., if
ν(S ∪ {i}) = 0, ∀S ⊆ I \ {i}, then si = 0.
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3. Additivity: The values under multiple utilities sum up to the value under a
utility that is the sum of all these utilities: sν1

i + sν2
i = sν1+ν2

i for i ∈ I.
The group rationality property states that any rational group of data con-

tributors would expect to distribute the full yield of their coalition. The fairness
property requires that the names of the data contributors play no role in deter-
mining the value, which should be sensitive only to how the utility function
responds to the presence of a seller. The additivity property facilitates efficient
value calculation when data are used for multiple applications, each of which
is associated with a specific utility function. With additivity, one can compute
value shares separately for each application and sum them up.

There are two assumptions underlying the definition of the SV:

1. Combinatorially Evaluable Utility: The utility function can be evaluated
for every combination of players;

2. Symmetric Utility: The utility function does not depend on the order of
the players.

Both of the assumptions are plausible for centralized learning. Since the entire
data is accessible to the coordinator, it is empowered to evaluate the model
performance on the data from an arbitrary subset of contributors. Furthermore,
in centralized learning, the data is often shuffled before being used for training.
Hence, it is reasonable to consider the model performance to be independent the
order of data points in the training set. In the next section, we will argue that
these two assumption are no longer valid for FL and propose a variant of the SV
amenable to the federated setting.

4 Valuing Data for FL

4.1 Federated Shapley Value

A typical FL process executes the following steps repeatedly until some stopping
criterion is met: (1) The coordinator samples a subset of participants; (2) The
selected participants download the current global model parameters from the
coordinator; (3) Each selected participant locally computes an update to the
model by training on the local data; (4) The coordinator collects an aggregate
of the participant updates; (5) The coordinator locally updates the global model
based on the aggregated update computed from the participants that participate
in the current round.

Let I be the set of participants that participate in at least one round of
the FL process. Our goal is to assign a real value to each participant in I to
measure its contribution to learning the model. Suppose the learning process
lasts for T rounds. Let the participants selected in round t be It and we have
I = I1 ∪ · · · ∪ IT .

In FL, different participants contribute to the learning process at different
time and the performance of the federated model depends on the participation
order of participants. Clearly, the symmetric utility assumption of the SV does
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not hold. Moreover, FL is designed to maintain the confidentiality of participants’
data and in each round, only a subset of participants are selected and upload their
model updates. Hence, the coordinator can only know the model performance
change caused by adding a participant’s data into the subset of participants’
data selected earlier. However, computing the SV requires the ability to evaluate
the model performance change for every possible subset of participants. Unless
the participants are able to bear considerable extra communication cost, the
combinatorially evaluable utility assumption is invalid for FL. Hence, the SV
cannot be used to value the data of different participants in the federated setting.

We propose a variant of the SV amenable to the federated setting. The key
idea is to characterize the aggregate value of the set of participants in the same
round via the model performance change caused by the addition of their data
and then use the SV to distribute the value of the set to each participant. We
will call this variant the federated SV and its formal definition is given below.
We use ν(·) to denote the utility function which maps any participants’ data
to a performance measure of the model trained on the data. Note that unlike
in the canonical SV definition where ν(·) takes a set as an input, the argument
of ν(·) is an ordered sequence. For instance, U(A + B) means the utility of the
model that is trained on A’s data first, then B’s data. Furthermore, let I1:t−1 be
a shorthand for I1 + · · · + It−1 for t ≥ 2 and ∅ for t = 1.

Definition 1 (The Federated Shapley Value). Let I = {1, · · · , N} denote the
set of participants selected by the coordinator during a T -round FL process. Let
It be the set of participants selected in round t and It ⊆ I. Then, the federated
SV of participant i at round t is defined as

sν
t (i) =

1
|It|

∑

S⊆It\{i}

1
(|It|−1

|S|
)
[
ν(I1:t−1 + (S ∪ {i})) − ν(I1:t−1 + S)

]
if i ∈ It (3)

and st(i) = 0 otherwise. The federated SV takes the sum of the values of all
rounds:

sν(i) =
T∑

t=1

st(i) (4)

We will suppress the dependency of the federated SV sν(i) on ν whenever
the underlying utility function is self-evident.

Due to the close relation between the canonical SV and the federated SV,
one can expect that the federated variant will inherit the desirable properties of
the canonical SV. Indeed, Theorem 1 shows that the federated SV preserves the
group rationality, fairness, as well as additivity.

Theorem 1. The federated SV defined in (4) uniquely possesses the following
properties:

1. Instantaneous group rationality:
∑

i∈It
st(i) = ν(I1:t) − ν(I1:t−1).
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2. Fairness: (1) if ν(I1:t−1 + (S ∪ {i})) = ν(I1:t−1 + (S ∪ {j})), ∀S ⊆ It/{i, j}
for some round t, then st(i) = st(j). (2) ν(I1:t−1 +(S ∪{i})) = ν(I1:t−1 +S),
∀S ⊆ It/{i} for some round t, then st(i) = 0.

3. Additivity: sν1+ν2(i) = sν1(i) + sν2(i) for all i ∈ I.

The proof of the theorem follows from the fact that the federated Shapley
value calculates the Shapley value for the players selected in each round which
distributes the performance difference from the previous round.

By aggregating the instantaneous group rationality equation over time, we
see that the federated SV also satisfies the long-term group rationality:

N∑

i=1

s(i) = U(I1 + · · · + IT ) (5)

The long-term group rationality states that the set of players participates in a
T -round FL process will divide up the final yield of their coalition.

4.2 Estimating the Federated SV

Similar to the canonical SV, computing the federated SV is expensive. Evaluating
the exact federated SV involves computing the marginal utility of every partic-
ipant to every subset of other participants selected in each round (see Eq. 3).
To evaluate U(I1:t−1 +S), we need to update the global model trained on I1:t−1

with the aggregate of the model updates from S and calculate the updated model
performance. The total complexity is O(T2m), where m is the maximum number
of participants selected per round. In this section, we present efficient algorithms
to approximate the federated SV. We say that ŝ ∈ R

N is a (ε, δ)-approximation
to the true SV s = [s1, · · · , sN ]T ∈ R

N if Pr[||ŝi −si||∞ ≤ ε] ≥ 1−δ. These algo-
rithms utilize the existing approximation methods developed for the canonical
SV [12,23] to improve the efficiency of per-round federated SV calculation.

The idea of the first approximation algorithm is to treat the Shapley value
of a participant as its expected contribution to the participants before it in a
random permutation using Eq. 2 and use the sample average to approximate
the expectation. We will call this algorithm permutation sampling-based approx-
imation hereinafter and the pseudocode is provided in Algorithm 2. An appli-
cation of Hoeffding bound indicates that to achieve (ε, δ)-approximation in each
round of updating, the number of utility evaluations required for T rounds is
Tm(2r2

ε2 ) log(2m
δ ).

The second approximation algorithm makes use of the group testing tech-
nique [11] to estimate the per-round federated SV and we will call this algorithm
group testing-based approximation. In our scenario, each “test” corresponds to
evaluating the utility of a subset of participant updates. The key idea of the
algorithm is to intelligently design the sampling distribution of participants’
updates so that we can calculate Shapely differences between the selected par-
ticipants from the test results with high-probability bound on the error. Based
on the result in [11], the number of tests required to estimate the Shapley
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differences up to ( ε
Cε

, δ
Cδ

) is T1 = 4
(1−q2

tot)h( 2ε

ZrCε(1−q2tot)
)
log(Cδ(m−1)

2δ ), where

h(u) = (1 + u) log(1 + u) − u and other variables are defined in Algorithm 3.
We can then take any participant i and estimate the corresponding SV using
the permutation sampling-based approximation, denote it as s∗. Then, the SV
of all other m − 1 users can be estimated using the estimated difference of the
SV with participant i (we choose the mth participant as the pivot participant
in the pseudo-code in Algorithm 4). The number of utility evaluation required
for estimating s∗ up to ( (Cε−1)ε

Cε
, (Cδ−1)δ

Cδ
) is T2 = 4r2C2

ε

(Cε−1)2ε2 log( 2Cδ

(Cδ−1)δ ). Cε, Cδ

are chosen so that T1 + T2 are minimized. Algorithm 1, 2, 3, and 4 present the
pseudo-code for both permutation sampling and group testing.

If we treat ε, δ as constant, T1 + T2 ∼ O((log m)2) while permutation
sampling-based approximation is O(m log m). Therefore, when the number of
selected participants in each round is large, group testing-based approximation
is significantly faster than permutation sampling-based one. One the other hand,
when the number of selected participants is small, permutation sampling-based
approximation is more preferable since its utility evaluation complexity tends to
have a smaller constant.
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5 Empirical Study

In this section, we conduct the first empirical evaluation on a range of real-world
FL tasks with different datasets to study whether the proposed data value notion
can reflect the real utility of data. The tasks include noisy data detection, adver-
sarial participant removal and data summarization. We would expect that a good
data value notion will assign low value to participants with noisy, adversarial,
and low-quality data, which will in turn help us remove those participants.

5.1 Baseline Approaches

We will compare the federated SV with the following two baselines.

Federated Leave-One-Out. One natural way to assign the contribution to a
participant update i at round t is by calculating the model performance change
when the participant is removed from the set of participants selected at round
t, i.e., loot(i) = U(I1:t) − U(I1:t−1 + It/{i}), and loot(i) = 0 if participant i is
not selected in round t. The Leave-One-Out (LOO) value for FL takes the sum
of the LOO values of all rounds: loo(i) =

∑T
t=1 loot(i).

Random. The random baseline does not differentiate between different partic-
ipants’ contribution and just randomly selects participants to perform a given
task.

In the figures, we will use Fed. LOO and Fed. SV to denote federated leave-
one-out and federated Shapley Value approach, respectively.

5.2 Experiment Setting

For each task, we perform experiments on the MNIST [20] as well as the
CIFAR10 dataset [19]. Following [24], we study two ways of partitioning the
MNIST data over participants: IID, where the data is shuffled, and then parti-
tioned into 100 participants each receiving 600 examples, and Non-IID, where
we first sort the data by digit label, divide it into 200 shards of size 300,
and assign each of 100 participants 2 shards. For MNIST, we train a simple
multilayer-perceptron (MLP) with 2-hidden layers with 200 neurons in each
layer and ReLu activations as well as a simple CNN. For all experiments on
CIFAR10, we train a CNN with two 5 × 5 convolution layers (the first with 32
channels, the second with 64, each followed by 2 × 2 max pooling), a fully con-
nected layer with 512 neurons with ReLu activation, and a final softmax output
layer. In each round of training, we randomly select 10 participants out of 100,
unless otherwise specified. We run 25 rounds for training on MNIST, achieving
up to 97% and 92% global model accuracy for the IID and the non-IID setting,
respectively. For CIFAR10, we run up to 50 to 200 rounds of training. We achieve
up 77% and 70% test accuracy in IID and non-IID setting, respectively, for 200
rounds of training. As a side note, the state-of-the-art models in [17] can achieve
test accuracy of 99.4% for CIFAR10; nevertheless, our goal is to evaluate the
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proposed data value notion rather than achieving the best possible accuracy. We
use the permutation sampling approach in Algorithm 2 to estimate the Shapley
value in all experiments since the number of participants is small.

5.3 Noisy Label Detection

Labels in the real world are often noisy due to annotators’ varying skill-levels,
biases or malicious tampering. We show that the proposed data value notion can
help removing the noisy participants. The key idea is to rank the participants
according to their data value, and drop the participants with the lowest values.

We set 20 participants’ local data to be noisy where noise flipping ratio is
10% for MNIST, and 3% for CIFAR10. The performances of different data value
measures are illustrated in Fig. 1a and 1b. We inspect the label of participant’s
local training instances that have the lowest scores, and plot the change of the
fraction of detected noisy participants with the fraction of the inspected par-
ticipants. We can see that when the training data is partitioned in IID setting,
federated LOO and federated SV perform similarly. However, in the Non-IID
setting, the federated SV outperforms federated LOO. We conjecture that this
is because for Non-IID participants, the trained local models tend to overfit,
diverge from the global model, and exhibit low accuracy. In comparison with
the federated SV, federated LOO only computes the marginal contribution of a
participant to the largest subset of other selected participants and therefore the
noisy participants are harder to be identified by federated LOO.

We also find that, with the number of training rounds increases, the total
contribution of participants in each round will decrease, as shown in Fig. 2a. This
makes sense since the federated SV satisfies instantaneous group rationality in
Theorem 1, and the improvement of global model’s utility will slowdown when
it is close to convergence. That is, it is relatively easy to improve the global
model’s utility in earlier rounds, while harder to further improve the utility in
later rounds. Hence, the contribution of participants selected in early rounds is
inflated. This inspires us to consider a variant of data value measures, which
normalize the per-round data values by their norms and then aggregate them
across all rounds. The performance of noisy label detection with the normalized
versions of federated SV and federated LOO is shown in Fig. 1c and 1d. As we
can see, it is much easier to separate noisy participants from benign participants
with the normalized version of data value notions. However, the normalized
federated SV no longer preserves the group rationality and additivity property.
We leave developing more detailed analysis of different variants of data value as
future work.

5.4 Backdoor Attack Detection

Motivated by privacy concerns, in FL, the coordinator is designed to have no
visibility into a participant’s local data and training process. This lack of trans-
parency in the agent updates can be exploited so that an adversary controlling
a small number of malicious participants can perform a backdoor attack. The
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(a) MNIST (b) CIFAR10

(c) MNIST - norm. (d) CIFAR10 - norm.

Fig. 1. Experiment results of (a) (b) noisy label detection; (c) (d) noisy label detection
with normalized federated LOO/SV.

adversary’s objective is to cause the jointly trained global model to misclassify
a set of chosen inputs, i.e. it seeks to poison the global model in a targeted
manner, while also ensures that the global model has a good performance on the
clean test data. We focus on backdoor attacks based on the model replacement
paradigm proposed by [2].

For CIFAR10, following the settings in [2], we choose the feature of vertically
stripped walls in the background (12 images) as the backdoor. For MNIST, we
implement pixel-pattern backdoor attack in [7]. We set the ratio of the partic-
ipants controlled by the adversary to be 30%. We mix backdoor images with
benign images in every training batch (20 backdoor images per batch of size 64)
for compromised participants, following the settings in [2].

In Fig. 3a and 3b, we show the success rate of backdoor detection with
respect to the fraction of checked participants. Both of the figures indicate that
federated SV is a more effective than federated LOO for detecting compromised
participants. In the Non-IID setting, both compromised participants and some
benign participants tend to have low contribution on the main task performance,
which makes the compromised participants more difficult to be identified by the
low data values. Hence, we also test the performance of normalized version of
federated SV/LOO for this task and Fig. 3c and 3d show that the performance
improves a lot compared with the original definitions.
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(a) Norm (b) MNIST (c) CIFAR10

Fig. 2. (a) Norm of contribution varies with different rounds for MNIST-IID; (b) (c)
illustrations of backdoor image

5.5 Data Summarization

In our data summarization experiments, we investigate whether the federated SV
can facilitate federated training by identifying the most valuable participants.
Per communication round, a percentage of the selected participants is ignored
for the update of the global model. We use data value measures to dismiss par-
ticipants that are expected to contribute the least to the model accuracy. The
data values are calculated on a separate validation set, which contains 1000 and
800 random samples for MNIST and CIFAR10, respectively. During each com-
munication round of FL, we compute the data value summands. After training
has finished, we compute the total data value.

We then repeat training, while maintaining an identical selection of par-
ticipants per round. During each round, we dismiss a certain fraction q ∈
[0, 0.1, . . . , 0.9] of the selected participants. We compute and average the results
for the random baseline three times per run.

We train a small CNN model on the MNIST dataset. The CNN consists of
two 5 × 5 convolution layers, each followed with 2 × 2 max pooling and ReLu
activations. Two fully connected layers (input, hidden and output dimensions of
320, 50, 10, respectively) with intermediate ReLu activation follow the second
convolution layer. We apply dropout on the second convolution and first fully
connected layer. For CIFAR10, we operate on 1000-dimensional feature vectors
extracted with an imagenet-pretrained MobileNet v2 mode.1 We train a MLP
with 2-hidden layers with 1000 neurons in each layer and ReLu activations.

We evaluate our algorithm for FL of 10 rounds on MNIST and 100 rounds on
CIFAR10. The results of our experiments are shown in Fig. 4. For the MNIST
IID case, the federated SV approach outperforms both baselines. While it also
consistently outperforms the random baseline in the non-IID setting, federated
LOO achieves higher test accuracies for lower fractions of dismissed samples.
Here, analysis of the federated SV per participant shows that it tends to be higher
for participants that are selected throughout the FL. Furthermore, we observe
that participants that were sampled few times also are more likely to have a
negative federated SV, compared to the IID setting. We hypothesize that this
bias negatively affects the performance of the federated SV-based summarization
in the non-IID setting.
1 We use preprocessing and the pretrained model as provided by PyTorch Hub.
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(a) MNIST (b) CIFAR10

(c) MNIST - norm. (d) CIFAR10 - norm.

Fig. 3. Experiment results of (a) (b) backdoor detection; (c) (d) backdoor detection
with normalized LOO/SV.

(a) MNIST, IID, T = 10 (b) MNIST, non-IID, T = 10

(c) CIFAR, IID, T = 100 (d) CIFAR, non-IID, T = 100

Fig. 4. Data summarization experiments on MNIST (top) and Cifar10 (bottom).
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We also observe that both federated SV and LOO perform worse on the
CIFAR10 dataset summarization. We hypothesize that selection of good partic-
ipant subsets is more effective on the MNIST dataset, as it contains a larger
portion of redundant samples. Consequently, valuable information is less likely
to be lost by dismissal of a fraction of participants.

6 Conclusion

This chapter proposes the federated SV, a principled notion to value data for
the process of FL. The federated SV uniquely possesses the properties desired by
a data value notion, including group rationality, fairness, and additivity, while
enjoying communication-efficient calculation and being able to capture the effect
of participant participation order on the data value. We present algorithms to
approximate the federated SV and these algorithms are significantly more effi-
cient than the exact algorithm when the number of participants is large. Finally,
we demonstrate that the federated SV can reflect the actual utility of data
sources through a range of tasks, including noisy label detection, adversarial
participant detection, and data summarization.
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Abstract. Federated Learning (FL) enables multiple participants to
collaboratively train AI models in a privacy-preserving manner, which
incurs cost during the training processing. This can be a significant issue
especially for business participants [8]. These costs include communica-
tion, technical, compliance, risk of market share erosion and free-riding
problems (i.e., participants may only join FL training with low-quality
data) [6]. Motivating participants to contribute high-quality data contin-
uously and maintain a healthy FL ecosystem is a challenging problem.
The key to achieving this goal is through effective and fair incentive
schemes. When designing such schemes, it is important for researchers
to understand how FL participants react under different schemes and
situations.

In this chapter, we present a multi-player game to facilitate researchers
to study federated learning incentive schemes – FedGame (A demon-
stration video of the platform can be found at: https://youtu.be/
UhAMVx8SOE8. Additional resources about the platform will contin-
uously be made available over time at: http://www.federated-learning.
org/.), by extending our previous work in [5]. FedGame allows human
players to role-play as FL participants under various conditions. It serves
as a tool for researchers or incentive mechanism designers to study the
impact of emergent behaviors by FL participants under different incen-
tive schemes. It can be useful for eliciting human behaviour patterns in
FL and identifying potential loopholes in the proposed incentive scheme.
After learning the behaviour pattern, FedGame can, in turn, further test
any given incentive scheme’s competitiveness again schemes based on
real decision patterns.

Keywords: Federated learning · Incentive mechanism

1 Categories of Incentive Schemes

Before going into the details of the FedGame’s design, we first present some
existing research in incentive scheme related to our game design. The existing
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approaches most closely related to our FL settings comes from the field of profit-
sharing games [8,9]. In general, there are three categories of widely adopted
profit-sharing schemes:

1. Egalitarian: any unit of utility produced by a data federation is divided
equally among the data owners who help produce it.

2. Marginal gain: the payoff of a data owner in a data federation is the utility
that the team gained when the data owner joined.

3. Marginal loss: the payoff of a data owner in a data federation is the utility
that the team would lose if the data owner were to leave.

Equal division is an example of egalitarian profit-sharing [7]. Under this
scheme, the available profit-sharing budget is equally divided among all par-
ticipants. Under the Individual profit-sharing scheme [7], each participant’s con-
tribution to the community is used to determine his share of the profit.

The Labour Union game-based [2] profit-sharing scheme is a marginal gain
scheme. It shares the profit based a participant’s marginal contribution to the
utility of the community formed by his predecessors. Each participant’s marginal
contribution is computed based on the sequence they joined the collective.

The Shapley game-based profit-sharing scheme [1] is also a marginal con-
tribution based scheme. It is designed to eliminate the effect of the sequence of
joining the collective by the participants in order to fairly estimate their marginal
contributions. It averages the marginal contribution for each participant under
all different permutations of its order of joining the collective relative to other
participants. [3] computes a Shapley value to split rewards among data owners.
Such computations tend to be expensive.

2 System Architecture

The architecture of FedGame is shown in Fig. 1. In the game, a number of
AI players and Federations are created to simulate the FL environment. A
human player plays the role of a business (with an arbitrary amount of data
and resources allocated to him at the beginning of the game) joining the fed-
eration. His business is assumed to be from the same market sector as the AI
players’, which means contributing his data to the federation might result in an
FL model that helps himself as well as his competitors [5].

Key information such as resource quantity, data quality, data quantity and
payment are involved in decision-making. AI players follow existing approaches
to determine how much data they want to contribute during the FL model
training [8]. The human players decide how to allocate their resources that they
want to contribute to the training of FL model independently. The Federations
will receive payoffs from the virtual marketplace based on the market share
their FL models occupy. Participants will be rewarded with a portion of their
federation’s payoff according to the incentive scheme adopted by Federation
during a game session. The players’ in-game behaviour data are recorded.
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Fig. 1. FedGame system architecture.

3 Interaction Design

Each game session ends after a fixed number of turns have passed. The ultimate
goal for a player is to obtain as much payoff as possible at the end of a game
session. In order to motivate participants to contribute high-quality data to FL
model training and truthfully report private cost types, the game first focuses
on illustrating the FL environment from the perspective of business enterprises.
A player can decide to join, leave or remain in a Federation at any point in
the game. The game system provides functions for game designers to modify
existing incentive schemes or add new incentive schemes by creating new levels
in the game. Each time when a player enters the game, he/she will be randomly
assigned with a set of starting characteristics in terms of the amount and quality
of the local data and local computational resources. This will be done through
the randomization of allocated variables to players. This design aims to provide
opportunities for the players to adapt their behaviors.

Each Federation will be initialized with a fixed amount of credit for paying
out incentives. The credit will change over time based on the market share
its FL model occupies. A player can choose not to join any Federation and
just train models with their local dataset, or participate in a Federation. The
process for joining a Federation involves three different stages: 1) Bidding, 2)
FL model training, and 3) Profit-sharing. In the bidding stage, participants bid
to join a given Federation with his stated resources, data quality, data quantity
and expected payout. At the end of the bidding stage, the Federation processes
the bids and accepts the players as participants it deems to offer good cost-
benefit trade-offs into the training stage. In the FL model training stage, the
game simulates the training of the FL model. In the profit-sharing stage, the
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Federation delivers payoffs to each participant following the incentive scheme it
adopts before transitioning to the next bidding stage.

Under different incentive schemes, players have to consider a boarder range
of factors during the game and adapt to their strategy. Currently, FedGame
supports the following incentive schemes [8,9].

Linear: a participant i’s share of the total payoff P (t) is proportional to the
usefulness of its contributed data in a given round t, denoted as ûi(t). The payoff
is computed as:

ûi(t) =
ui(t)

∑N
i=1 ui(t)

P (t), (1)

where ui(t) is i’s share of P (t) among his peers computed following a given
scheme.

Equal: the federation profit P (t) is equally divided among its N participants
at a given round t. Thus, we have:

ui(t) =
1
N

. (2)

Individual: a participant i’s share of the total payoff is proportional to its
marginal contribution to the federation profit, ui(t):

ui(t) = v({i}), (3)

where v(P ) is a function evaluating the utility of federation profit P .
Union: participant i’s share of the total payoff P (t) follows the Labour Union

game [2] payoff scheme and is proportional to the marginal effect on the FL model
by predecessors F if i were to be removed. Under this scheme, i’s share of the
profit is determined by:

ui(t) = v(F ∪ {i} − v(F )). (4)

Shapley: the federation profit P is shared among participants according to
their Shapley values [1]. Each participant i’s payoff is:

ui(t) =
∑

P⊆Pj\{i}

|P |!(|Pj | − |P | − 1)!
|Pj | [v(P ∪ {i}) − v(P )] (5)

where a Federation is divided into m parties (P1, P2, ..., Pm).
At the same time, the system variables which make up the context within

which the players make decisions are also recorded to support further analysis
of participant behaviors.

4 System Settings

Figure 2 illustrates how a user can interact with the FedGame system. The
player with detailed information on market condition and model performance is
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Fig. 2. Use case diagram for FedGame.

Fig. 3. An example of the FedGame user interface.

able to start a new bid and record new data about his/her in-game behaviors.
The game system can track the decision made by the players and record their
behaviors for further analysis.

Figure 3 shows a screenshot for a player of the FedGame system. The game
visualizes information including Federation information, game session overview,
player’s statistics, and game session summary to facilitate decision-making.
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It provides a continuous real-time view of the participants’ data quality, quan-
tity, change of market share, profit/loss, and participants joining each Federa-
tion. This simulates the information available to a sophisticated business joining
FL to help researchers study possible reactions to given incentive mechanisms.

Below is an example sequence of activities in a game session:

1. Start Game: starts a new game instance.
2. Reinitialize Settings: a new Settings.xml file with default settings is created

in the directory.
3. View Settings: a window part containing the current settings (from the

Settings.xml file) is displayed to the player.
4. Exit Game: the application will be closed.
5. Bid: a window part containing decision selections is selectable to the player.

User is able to select the Federation to bid for, amount of resource, data
quality, data quantity, payment during the bidding stage.

6. Submit Bid: bid is created with the specified amount.
7. Edit Bid: bid or training object is edited with the specified amount.
8. Remove Bid: bid or training object is removed.
9. View Help: a window containing a simple textual guide detailing background

and instructions of the game is displayed.
10. End Round: after the player selects end round, the system will process and

simulate the FL environment.

The game system is configured using a text file that follows the XML format.
Specified game settings, such as the number of players, types of Federations can
be adjusted in FedGame through this configuration file. This facilitates game
designers to modify the FL environment the players are exposed to. Besides the
environment variables, designers can adjust the time for FL model training, and
the time taken for each round of training. Modification of these variables will
allow for a shorter or longer game duration which can influence participants’
behaviour.

5 Tracking Environment Variables

The recording of a human players’ decisions is a significant reference for
researchers to design a new FL incentive schemes. Information, parameters and
fields are recorded in a database for analyzing human behaviors. At each point
of time whereby the players ends a round of game, environment variables are
stored into the local database.

The initial FL environment will be set up following predefined settings defined
in the XML file. This file can be modified by the player or the person presiding
over the experiment to decide the type of FL environment to construct. Variables
are initialized in a random manner. Examples of these variables can be seen in
Table 1.

The game system mainly alternates between the bidding stage and the train-
ing stage during the game. In the bidding stage, the player can perform the
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Table 1. List of environment variables

Variable Brief description

Resource quantity • Resource quantity will be randomly allocated between the
minimum and maximum specified quantity, normally between
1 to 10 (integer)
• Resource determines whether a player can bid for a
Federation, more resource means wider spread or faster local
training

Data quality • Data quality will be randomized between the minimum and
maximum range specified, normally between 0 to 1 (decimal)

Data quantity • Data quantity will be randomized between the minimum
and maximum range specified, normally between 0 to 1
(decimal)

operations as described in the previous section. Simultaneously, simulation on
AI players’ bidding actions is performed following each agent’s assigned strategy.
A bidding list is then created for each player who will be evaluated by the respec-
tive Federations subsequently. After a round of game, environment variables will
be recorded and stored into the local database.

At the end of the game, the system is able to access the specified database
and update the environment variables that were previously recorded throughout
the progression of the game to a central storage.

6 Conclusions and Future Work

In this chapter, we reviewed existing literature on incentive schemes under profit-
sharing games which are used to develop our gamified platform for supporting
incentive mechanism design research in federated learning. The system is, to the
best of our knowledge, the first game for studying participants’ reactions under
various incentive mechanisms under federated learning scenarios. Data collected
can be used to analyse behaviour patterns exhibited by human players, and
inform future FL incentive mechanism design research.

Current FedGame is able to support the basic foundation to illustrate FL
participation behaviour. There is still much room for improvement. One task is
to add or formulate more complex actions for human behaviour analysis. More
controllable variables can be added to simulate different federation set-ups. For
example, participants’ data quality can be verified by the federation through
additional pre-training based on small samples from each participant. These
additional variables can both serve as a new FL paradigm/assumption or part
of proposed incentive mechanism. We also plan to further extend FedGame to
support non-monetary incentive schemes under the emerging trust-based self-
organizing federated learning paradigm [4].

Another task is adding new incentive schemes when FL settings become more
complicated. Specifically, some incentive schemes can only work under particular
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FL settings. It might be a privacy assumption or extra processing procedures.
Furthermore, in current setting, human players can play against AI players,
which means that we can improve our system by training agents to mimic real
human behaviour patterns.
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Abstract. We consider federated learning settings with independent,
self-interested participants. As all contributions are made privately, par-
ticipants may be tempted to free-ride and provide redundant or low-
quality data while still enjoying the benefits of the FL model. In Feder-
ated Learning, this is especially harmful as low-quality data can degrade
the quality of the FL model.

Free-riding can be countered by giving incentives to participants
to provide truthful data. While there are game-theoretic schemes for
rewarding truthful data, they do not take into account redundancy of
data with previous contributions. This creates arbitrage opportunities
where participants can gain rewards for redundant data, and the federa-
tion may be forced to pay out more incentives than justified by the value
of the FL model.

We show how a scheme based on influence can both guarantee that
the incentive budget is bounded in proportion to the value of the FL
model, and that truthfully reporting data is the dominant strategy of
the participants. We show that under reasonable conditions, this result
holds even when the testing data is provided by participants.

Keywords: Federated learning · Data valuation · Incentives

1 Incentives in Federated Learning

Federated Learning [1] allows a set of participants to jointly learn a predictive
model without revealing their data to each other. In this chapter, we assume that
a coordinator communicates with the participants and distributes the Federated
Learning (FL) model equally to all of them. Participants can contribute actual
data or changes that improve the current FL model based on the data, which
may be more compact.

There is then clearly an incentive to free-ride: a participant can benefit from
the joint model without contributing any novel data, for example by fabricating
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data that fits the current model, or using random noise. We call such strate-
gies that are not based on actual data heuristic strategies. A participant may
also wrongly report its data, for example by obfuscating it to achieve differen-
tial privacy [10]. There is no way for the coordinator to tell if data has been
manipulated, and given that it can strongly degrade the FL model, it is impor-
tant to protect the process against it. Even worse, a malicious participant could
intentionally insert wrong data and poison the FL model; we do not consider
malicious behavior in this chapter and assume that participants have no interest
in manipulating the FL model.

Free-riding can avoided by incentives that compensate for the effort of a con-
tributing participant. For federated learning, an incentive scheme will distribute
rewards to participants in return for providing model updates, data, or other
contributions to the learning protocol. Incentives should influence two behavior
choices faced by participants:

– observation strategy: make the necessary effort to obtain truthful data and
compute the best possible model update, rather than use a heuristic strategy
to make up data with no effort, and

– reporting strategy: report the data truthfully to the coordinator, rather than
perturb or obfuscate it.

We call participant behavior that is truthful in both regards truthful behavior.
We observe that both properties can be satisfied if contributions are rewarded
according to their influence [9] on the FL model. Influence is defined formally
as the effect of the contribution on the loss function of the FL model:

– if the contribution is a model update, the improvement in the loss function
through applying the update;

– if the contribution is data, the improvement in the loss function after adding
the data to the training set.

For simplicity, we will refer to both cases as the contribution of a data point,
even if data is often supplied in batches or in the form of a model update. The
incentives for a batch of data is given as the sum of the incentives for the data
points contained in it.

Clearly, influence is a good measure from the point of view of the coordina-
tor, since it rewards contributions that make the FL model converge as fast as
possible. The total expense is bounded by a function of the total reduction in
the loss function, and so the coordinator can obtain the necessary budget for the
rewards. It also allows participants to decide on their level of privacy protection
and accept the corresponding reduction in their reward.

On the other hand, it is less clear what behavior such incentives induce in
the participants. In this chapter, we answer the following questions:

– We show that when the coordinator evaluates contributions on truthful test
data, the dominant strategy for participants is to invest effort in obtain-
ing true data and to report it accurately. Thus, it avoids both aspects of
free-riding.
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– We show that participants will provide their data as soon as possible, so that
there is no risk of participants holding back data hoping that it will gain
higher rewards later.

– We show that when some or all of the testing data is supplied by particpants,
truthful behavior is a Bayes-Nash equilibrium of the induced game. Further-
more, if a minimum fraction of the testing data is known to be truthful,
truthful reporting is the dominant strategy for participants.

2 Related Work

The topic of learning a model when the input data points are provided by strate-
gic sources has been the focus of a growing literature at the intersection of
machine learning and game theory. A related line of work has been devoted to
the setting in which participants are interested in the outcome of the estimation
process itself, e.g., when they are trying to sway the learned model closer to their
own data points [6,8]. Our setting is concerned with the fundamental question
of eliciting accurate data when data acquisition is costly for the participants, or
when they are not willing to share their data without some form of monetary
compensation. Another line of work considers settings in which the participants
have to be compensated for their loss of privacy [7].

A similar question to the one in our chapter was considered by [5], where
the authors design strategy-proof mechanisms for eliciting data and achieving a
desired trade-off between the accuracy of the model and the payments issued.
The guarantees provided, while desirable, require the adoption of certain strong
assumptions. The authors assume that each participant chooses an effort level,
and the variance of the accuracy of their reports is a strictly decreasing convex
function of that effort. Furthermore, these functions need to be known to the
coordinator. In this chapter, we only require that the cost of effort is bounded
by a known quantity. Furthermore, our strategy space is more expressive in the
sense that, as in real-life scenarios, data providers can choose which data to
provide and not just which effort level to exert.

Our ideas are closely related to the literature of Peer Consistency mechanisms
[11] such as the Bayesian Truth Serum or the Correlated Agreement mechanism,
or the Peer Truth Serum for Crowdsourcing [12,16]. The idea behind this liter-
ature is to extract high-quality information from individuals by comparing their
reports against those of randomly chosen peers. This approach has been largely
successful in the theory of eliciting truthful information. The main problem with
using such mechanisms for federated learning is that they also pay for redundant
data that does not improve the model. If multiple participants submit exactly
the same data, the coordinator would still have to pay the full reward to each
of them. Thus, it is not possible to bound the budget of the coordinator.

Recently, Liu and Wei [2] proposed an incentive scheme for federated learning
based on the correlated agreement mechanism [17]. However, it also does not
satisfy budget-balance and allows arbitrage where participants gain rewards by
replicating the existing FL model.

More generally, the issue of economics of federated learning and the impor-
tance of budget-balance has recently been discussed in [3], where particular



Budget-Bounded Incentives for Federated Learning 179

attention is paid to keep participants from dropping out of the federation due
to insufficient rewards.

Finally, [13] recently considered a setting where the value of the provided data
is determined via the Shapley value. Their approach does not support rewarding
data incrementally, as is required for federated learning, but computes rewards
only when all data has been received. However, it is worth noting that they
consider the influence approximation of [14] for approximating the Shapley value.

3 Incentives Based on Influence

In our setting, there is a coordinator that wants to learn a model parametrized
by θ, with a non-negative loss function L(z, θ) on a sample z = (x, y). The
samples are supplied by a set A of participants, with participant i providing
point zi = (xi, yi). To simplify the exposition, we consider the contribution of
a single data point as the most general case, but the results in this chapter
also apply to batches of data points or model updates based on batches of data
points, as is common in federated learning.

We will denote by A−i the set of participants excluding participant i. Given
a set of test data Z = {zi}n

i=1, the empirical risk is R(Z, θ) = 1
n

∑
i L(zi, θ). The

coordinator uses a scoring function s(z) to determine the reward it pays for the
data z.

3.1 Computing Influence

Fig. 1. The setting in this chapter: self-interested strategic participants observe data,
translate it into model updates, and report to a coordinator. The coordinator maintains
and broadcasts a joint FL model. To evaluate the quality of the contributions, the
coordinator constructs an independent test set via other participants, a database, or
other forms of prior knowledge. The coordinator scores model updates and rewards
participants according to their influence on this test set.

The influence [9] of a data point is defined as the difference in loss function
between the model trained with and without the data point. We generalize the
notion to data sets and model updates as the analogous difference between loss
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functions. We consider payments to participant i that are proportional to the
influence I(D) of its contribution D: payi(D) = αI(D), where α is the same for
all participants.

Computing loss functions requires access to a set of test data. In many fed-
erated learning settings, the coordinator actually never has access to data, but
only model updates. In this case, it needs to ask participants to perform this
evaluation. Figure 1 illustrates the process.

We distinguish two cases: the easier case where the center has access to
independent and trusted test data, where we show that truthful behavior is
a dominant strategy, and the more complex case where the center needs the
cooperation of the strategic participants to perform this evaluation, and truthful
behavior is a game-theoretic equilibrium.

Influence can be approximated [14] quite accurately (see the example in
Fig. 2) and this can greatly speed up computation and allows to protect pri-
vacy using multiparty computation [4]. Good approximations exist for linear
and logistic regression models, and to some extent also for complex models such
as neural networks. This approximation is based on taking the Taylor expan-
sion of the loss function and down-weighting a training point to remove it from
the dataset in a smooth manner. We find that taking only the first term of the
expansion is not sufficient because then the expected influence of a point over
the whole training set will be 0. Taking up to the second term of the expansion
is sufficient for accuracy, speed, and good theoretical properties. Figure 2 shows
that this second-order approximation for a linear regression example tracks the
true influence extremely closely.

3.2 Budget Properties of Influence

In general, the share of an additional data point in a model based on n−1 earlier
datapoints is 1/n. Many loss functions, such as the variance or the cross entropy,
decrease as 1/n with the number of samples. The influence is proportional to
the derivative of the loss function and thus decreases as 1/n2.

Figure 2 shows an example of the actual decrease of influence on a regression
model. We can observe two phases: an initial phase, where additional data is
necessary to make the model converge, and a converged phase where the expected
influence is close to zero. We believe that this is because the FL model is never a
perfect fit to the data, but will always leave some remaining variance. Once this
variance is reached, additional data will not help to reduce it, and no further
incentives should be given to provide such data.

Using influence as an incentive has the following properties:

– the expected reward is either close to 0, or it decreases as 1/n2. Therefore, it
is always best for participants to report data as early as possible.

– the expected reward for redundant or random data is zero.
– for the coordinator, the total expense is proportional to the decrease in the

loss function.
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Fig. 2. Empirically observed decrease of influence on a typical regression model as
more and more data is collected. Each batch corresponds to 100 data points. Both the
exact influence and the 2nd order approximation are shown.

The last point has to be put in relation to the value of the model. If the
value f of the model is increasing linearly with its loss R, i.e. f(R) = C − βR,
choosing α = β means that the budget matches the cost exactly.

If the value increases faster, to avoid a loss the coordinator will have to choose
α to be at most the average β over the loss reduction it intends to achieve. This
means that the cost of obtaining the data may exceed its value during the initial
phase, and the coordinator has to take some risk during the initial phase. If, on
the other hand, it increases more slowly, the coordinator runs no risk, but may
stop collecting data before the minimum variance is reached.

3.3 Assumptions

Our approach differs from other chapters on this topic in that we make relatively
few assumptions about participant beliefs and effort models. We consider the
participant and coordinator models as follows:

Participant: In the federated learning model, participants obtain data and con-
tribute it to the federation, often in the form of a model update. For generality,
we consider that participants contribute data points in some form.

Observation Strategy: Each participant i must decide to either exert effort ei(o)
to observe data point o, exert 0 effort and obtain a data point based on some
heuristic, for example a random or constant point1 When the participant decides
1 It is straightforward to extend the results in this chapter to a setting where increased

effort results in increased quality, but this would require to characterize the exact
relation which depends on the application.
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to make an observation, it knows the expected effort δi over the distribution of
observable data points. This value can vary amongst the participants. An obser-
vation oi = g(φi|ψi), where φi is drawn from some shared underlying distribution
Φ, ψi is a hidden latent random variable drawn from a shared distribution Ψ ,
and g is a function that applies noise to φi given ψi. The participants believe
that their noise is unbiased, formulated as follows: ∀φ ∈ Φ, ∀i, EΨ [g(φ|ψi)] = φ.

Reporting Strategy: Besides the observation, a participant also has to decide on a
reporting strategy r(o) that specifies what data it reports to the coordinator. We
would like the participant to report truthfully, where r is the identity function.
However, a participant may also report differently, for example because it hopes
to obtain a higher reward by a non-truthful report, or because it wants to protect
the privacy of its data by adding noise or otherwise misreporting it.

Finally, we assume that participants are free to opt-out, and not provide any
data nor obtain any reward. This strategy would in particular be adopted when
the rewards are insufficient to cover the cost of effort.

The coordinator will employ a scoring function s(·) to provide rewards to
the participants, dependent on their reports; we postpone details about this
scoring function until the next section. The scoring function is chosen to influence
the strategy choices of participants among different options. Participants are
rational, so they will choose the strategy that maximizes their expected utility.

We make one further assumption about participant beliefs. For this we intro-
duce the notion of risk-monotonicity, which is the notion that a model learner
is monotonic in the true risk over the number of data points in the training set.
While [15] show that not all empirical risk minimizers are risk-monotonic in the
number of training points, their counter-examples are adversarially constructed.
As participants have no prior information about the distributions, we consider
it reasonable to make the following formal assumption:

The participants believe the coordinator’s model is risk-monotonic with
respect to the true distribution Φ, i.e. a participant expects that a point
drawn from Φ will not worsen the model’s expected risk when evaluated
on Φ.

Coordinator: The coordinator wishes to construct a model because they believe
they can extract some profit from this model. We assume the profit is a function
f(R) of the model risk. The expected utility of the coordinator is then the profit
f(R) − c(R), where c(R) is the expected cost of constructing a model with risk
R. We assume that f(R) is monotonically decreasing, as discussed in Sect. 3.2.

Given a profit function f(R), the utility of the coordinator is at least f(R)−∑
i αcInfl(oi). The coordinator needs to choose αc to ensure that this profit is

positive. At the same time, αc determines the reward paid to participants, and
must at least cover their cost of participation. Otherwise, participants may decide
to opt out, and there is a risk that the federation could be left with too little
data. Therefore, the coordinator must tune αc to achieve both budget balance
and sufficient participation.



Budget-Bounded Incentives for Federated Learning 183

For evaluating the model risk R, we consider two cases: (a) the coordinator
may possess an independent test set, or (b) it may have to acquire a test set from
participants.

4 Game-Theoretic Incentives for Participants

As the score of the data provided by a participant depends on the data provided
by others, the choice of participant strategies is a game-theoretic problem.

Following standard game-theoretic terminology, we will say that a partici-
pant supplying point rj is best responding to the set of strategies r−j chosen by
the other participants, if the strategy that it has chosen maximizes the quantity
E[s(rj |r−j) − ei(rj)] over all possible alternative reports r′

j , where the expec-
tation is over the distribution of reports of the other participants. We will say
that a vector of strategies (i.e., a strategy profile) (r1, . . . , rn) is a Bayes-Nash
equilibrium (BNE) if, for each participant j, rj is a best response. If rj is a best
response to any set of strategies of the other players, we will say that rj is a
dominant strategy.

An incentive scheme is a function that maps data points zi to payments
s(zi); intuitively, a good incentive scheme should overcome the cost of effort (as
otherwise participants are not incentivized to submit any observations) but also,
crucially, to reward based on the effect that the data point zi has on improving
the accuracy of the trained model. For this reason, we will design incentive
schemes via the use of influences. Let Z−j = {zi}i�=j and let

θ̂ = arg min
θ

R(Z, θ) and θ̂−j = arg min
θ

R(Z−j , θ).

We will assume that the coordinator is in possession of an test set T = {zk}.
Then the influence of zj on the test set is defined as

Infl(zj , T, θ) = R(T, θ̂−j) − R(T, θ̂).

We will simply write Infl(zj), when T and θ are clear from the context. Then,
we can design the following incentive scheme:

– Case 1: The coordinator possesses an independent test set: s(ri) = αc ·
Infl(ri) − ε, where ε > 0 is a very small value.

– Case 2: The coordinator draws its test set from the reported data; they are
rewarded in the same way as data used for the FL model, but not used in
learning the model.

4.1 Using Independent and Truthful Test Data

For the lemmas and theorems in this section, we make the following assumptions:
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– Observation noise is unbiased and non-trivial, as stated in the previous
section.

– participants have no prior knowledge of the true distribution Φ or the model
of the coordinator.

Theorem 1. A participant having made no observation of the data believes the
expected influence of any particular report to be 0.

Proof. Let D be the domain of all possible sets of reports. The coordinator
defines some non-negative loss function L : D → R

+
0 , which serves as a blackbox

that incorporates both training and testing. Given some set of reports {z} ∈ D,
define B(L|{z}) as the random variable that represents the ex-ante belief of
a participant on the value of L({z}). Lack of knowledge about both L and Φ
induces the relation B(L|{z}0) = B(L|{z}1) for all {z}0, {z}1 ∈ D. For some
report r and some set of other reports {z}, the influence score is defined as
infl({z}, r) = L({z})−L({z}∪r). Then a participant believes that its score will be
B(L|{z})−B(L|{z}∪r). In expectation, this score is E[B(L|{z})−B(L|{z}∪r)] =
E[B(L|{z})] − E[B(L|{z} ∪ r)] = 0

Lemma 1. A participant Ai believes that, almost certainly, given a finite num-
ber of reports, EΦ[EΨ [Infl(oi|{oj}j �=i)]] > 0 when evaluated on {ztest} with ztest

in the distribution of observations.

Proof. Define B0(EΦ[EΨ [L(ztest, z)]]) = EΦ[L(z′
test, z)] + a(g, Ψ) as a partici-

pant’s belief about EΦ[EΨ [L(ztest, z)]], where z′
test is drawn from Φ, and a is

unknown, but does not depend on L because the participants have no knowl-
edge of L, and therefore no way of knowing if L introduces some bias given
Ψ . It similarly follows that a participant’s belief B1(EΨ [Infl(oi|{oj}j �=i)] =
Infl(φi|{oj}j �=i) + b(g, Ψ). Therefore, it is only necessary to show that
EΦ[Infl(φi|{oj}j �=i)] > 0 when evaluated on z′ ∈ Φ. This follows directly from
participant assumptions about risk-monotonicity.

The following theorem asserts that as long as the test set consists of truthful
information, the dominant strategy for participants is to either be truthful of
opt out. In the case where the coordinator possesses an independent test set,
this condition is satisfied trivially.

Theorem 2. Suppose that (a) the noise is unbiased and non-trivial, (b) the
participants do not have knowledge of the distribution or the model and (c) the
test set consists of truthful information. Then,

– for any αc > 0, for every participant the dominant strategy is either being
truthful or dropping out, and

– there is a large enough αc such that for every participant, almost certainly,
being truthful is the dominant strategy.

Proof. By Theorem 1, we have that αcInfl(hi) = 0, therefore the expected
utility of heuristic reporting is negative. By Lemma 1, the participant
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believes that EΦ[EΨ [Infl(oi|{oj}j �=i)]] > 0 almost certainly, therefore if αc >
δi

EΦ[EΨ [Infl(oi|{oj}j �=i)]]
, then the participant believes he or she will receive a posi-

tive utility almost certainly. If this inequality is not satisfied, the participant will
receive a negative utility regardless of the choice of strategy and will opt out.
There is always a large enough αc such that the inequality is satisfied and the
participant will be truthful.

We have thus shown that our incentive scheme induces truthful behavior as the
dominant strategy for all participants that do not opt out, and that furthermore
given a large enough payment no participants will opt out.

4.2 Using Participant Reports as Test Data

We have shown in Theorem 2 that under some reasonable assumptions, truthful
reporting is a dominant strategy for the participants. However, this requires a
truthful test set, which might not always be at the disposal of the coordinator.
There are also good reasons for the coordinator to collect test data from par-
ticipants: it allows it to cover a broader spectrum of cases, or to accommodate
concept drift. We first observe that, even if we collect the reports as test data,
truthful behavior is a Bayes-Nash Equilibrium:

Theorem 3. Suppose that (a) the noise is unbiased and non-trivial, (b) the
participants do not have knowledge of the distribution or the model and (c) the
test set consists of data provided by participants under the incentive scheme.
Then,

– for any αc > 0, there is a Bayes-Nash Equilibrium where every participant is
either truthful or drops out, and

– there is a large enough αc such that, almost certainly, there is a Bayes-Nash
Equilibrium where all participants are truthful.

Proof. If we assume that all participants that do not drop out are truthful, then
the test set is made up of truthful data. By Theorem 2, truthful behavior is the
best response for all participants, so it forms a Bayes-Nash equilibrium.

An equilibrium is a weaker notion than dominant strategies, so it is interest-
ing to ask if the coordinator can make truthful behavior the dominant strategy
even when test data has to be obtained from participants. Clearly, if all test
data is supplied by participants, this is not possible: consider the example where
all but one participant i submit test data according to a synthetic model M ′,
but only participant i observes true data according to a different true model M .
Then it will be better for participant i to report incorrectly according to model
M ′, so truthful behavior cannot be a dominant strategy.

However, it turns out that if only a fraction of the test data is supplied
by untrusted agents, we can place a bound on this fraction so that truthful
behavior is still a dominant strategy. To obtain such a result, we need to exclude
consideration of the cost of obtaining data, since we do not know what is the
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relative cost of obtaining true vs. heuristic data, and focus on the reporting
strategy only.

Let Φ1 be the distribution of truthful reports and Φ2 be the distribution of
heuristic reports. We assume they describe an input-output relationship such
that Φ(x, y) = q(x)p(y|x), and q1(x) = q2(x). This assumption merely asserts
that the data we are collecting is drawn from the same domain regardless of the
distribution of the output. Distributions Φ1 and Φ2 determine, in expectation,
models M1 and M2 respectively. Let us now define Ri,j as the expected risk of
model Mi evaluated on distribution Φj . Given some fixed training data set with
points drawn from a mixture of Φi and Φj , let Ii,j be the expected influence
of a data point sampled from distribution Φi on a test point from distribution
Φj . Using the standard mean-squared-error loss function, we have that Ri,j =
Rj,j + E[(Mi − Mj)2]. We then have the following:

Theorem 4. As long as the test data contains at most a fraction

p <
I2,2/R2,2

I1,1/R1,1 + I2,2/R2,2
+

I1,1 − I2,2

r(I1,1/R1,1 + I2,2/R2,2)

of non-truthful reports, truthful reporting remains the dominant strategy for par-
ticipants that do not choose to opt out.

Proof. Suppose we sample x1 points from Φ1 and x2 points from Φ2 to form
our test set T , where x1 + x2 = n, and call the resulting distribution Φc. Now
note that as R1,2 − R1,1 = r, and influence is proportional to the empirical risk,
the influence of a datapoint following M1 but tested on a sample from Φ2 is
decreased as follows:

I1,2 = I1,1(1 − r/R1,1)

and so the expected influence when evaluating on the mixture (x1, x2) is

I1,c = I1,1(1 − r/R1,1
x2

n
) = I1,1(1 − pr/R1,1)

I2,c = I2,2(1 − r/R2,2
x1

n
) = I2,2(1 − r(1 − p)/R2,2)

To ensure that reporting samples from Φ1 carry a higher expected reward,
we want to satisfy:

I1,c > I2,c

I1,1 − I2,2(1 − r/R2,2) > pr(I1,1/R1,1 + I2,2/R2,2)

p <
I1,1 − I2,2(1 − r/R2,2)
r(I1,1/R1,1 + I2,2/R2,2)

=
I2,2/R2,2

I1,1/R1,1 + I2,2/R2,2
+

I1,1 − I2,2

r(I1,1/R1,1 + I2,2/R2,2)
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If I2,2/R2,2 = I1,1/R1,1, the first term is = 1/2. The second term is a correction:
if I1,1 > I2,2, more non-truthful reports are tolerated as the influence when
improving the first model is stronger, otherwise it is the other way around.

A coordinator could use this result to decide how much test data to obtain
from participants. As the underlying phenomenon could evolve over time, it is
advantageous for the coordinator to include some contributed data in its test set
so that such evolution can be tracked. To evaluate the bound, the coordinator
could compare the statistics of scores obtained with trusted test data with those
obtained using contributed test data, and thus estimate the parameters I, as
well as the empirical risks of models fitted to the trusted and contributed data
to estimate the parameters R. It could thus obtain a stronger guarantee on the
quality of the test data.

5 Conclusion

When federated learning is extended to allow self-interested participants, free-
riding participants that submit low-quality or redundant data can have signifi-
cant negative impact on the result. Thus, it is important to provide incentives
that reward truthful data providers for their effort.

As the economics of a federated learning system can be complex [3], it is
important that the incentive scheme works with a bounded budget that is tied
to the quality of the resulting data. We have shown that a scheme based on
influence satisfies this criterion. At the same time, we have shown that it induces
the desired truthful behavior as dominant strategies in participants, and that
this holds even when some of the testing data is obtained from non-truthful
participants.

An important question for future work is how to compute the incentives
while maintaining privacy of the data. In the current scheme, a participant has
to submit its contribution, whether data or a model update, before the influence
can be computed. For limited cases, we have already shown how to compute an
influence approximation privately [4], but the general question remains open.
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Abstract. In current deep learning paradigms, local training or the
Standalone framework tends to result in overfitting and thus low util-
ity. This problem can be addressed by Distributed or Federated Learning
(FL) that leverages a parameter server to aggregate local model updates.
However, all the existing FL frameworks have overlooked an important
aspect of participation: collaborative fairness. In particular, all partici-
pants can receive the same or similar models, even the ones who con-
tribute relatively less, and in extreme cases, nothing. To address this
issue, we propose a novel Collaborative Fair Federated Learning (CFFL)
framework which utilizes reputations to enforce participants to converge
to different models, thus ensuring fairness and accuracy at the same time.
Extensive experiments on benchmark datasets demonstrate that CFFL
achieves high fairness and performs comparably to the Distributed frame-
work and better than the Standalone framework.

Keywords: Collaborative learning · Fairness · Reputation

1 Introduction

In machine learning practice, often organizations or companies (herein described
as participants) need to conduct collaborate learning in order to achieve more
accurate analysis, as the limited local data owned by a single participant gen-
erally results in an overfitted model that might deliver inaccurate results when
applied to the unseen data, i.e., poor generalizability. In this context, federated
learning (FL) emerged as a promising collaboration paradigm. The objective of
FL is to facilitate joint concurrent and distributed training of one global model
on locally stored data of the participants, by sharing model parameters in iter-
ative communication rounds among the participants.

However, in most of the current FL paradigms [5,8,14,22], all participants
can receive the same FL model in each communication round and in the end
regardless of their contributions in terms of quantity and quality of their shared
c© Springer Nature Switzerland AG 2020
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parameters. This is potentially unfair, because while the contributions of the
participants may vary, their final ‘rewards’ are the same, i.e., the jointly trained
model. In practice, such variations in the contributions may be due to a number
of reasons, the most obvious is that the quality of the data owned by different
participants is different [27]. In this regard, the data from some participants
may produce good model updates while data from some other participants may
even lead to updates that impair the model performance. For example, several
banks may want to work together to build a credit score predictor for small and
medium enterprises. However, larger banks with more data may be reluctant
to train their local models based on high quality local data for fear of smaller
banks benefiting from the shared FL model and eroding their market shares [23].
Furthermore, this setting can be vulnerable to free-riders as the framework is not
equipped to evaluate the contributions. Free-riders can simply share “useless”
model parameters and hide in the crowd, but in the end receive the “reward”.
Without the promise of collaborative fairness, participants with high quality
and large datasets may be discouraged from collaborating, thus hindering the
formation and progress of a healthy FL ecosystem. Most of the current research
on fairness focuses on an different concept of fairness, i.e., mitigating the model’s
predictive bias towards certain attributes [1,4]. The problem of treating FL
participants fairly according to their contributions remains open [23].

For any proposed solution or framework to be practical, it is essential that it
achieves fairness not at the cost of model performance. In this chapter, we address
the problem of treating FL participants fairly based on their contributions towards
building a healthy FL ecosystem. Our proposed framework is termed as Collabo-
rative Fair Federated Learning (CFFL) framework. In contrast with the existing
work such as [25] which requires external monetary rewards to incentivize good
behaviour, our framework makes fundamental changes to the current FL paradigm
so that instead of receiving the same FL model in each communication round, the
participants will receive models with qualities commensurate with their contribu-
tions. CFFL ensures collaborative fairness by introducing reputations and eval-
uating the contribution of each participant in the collaborative learning process.
We state that our CFFL is more suitable to horizontally federated learning (HFL)
to businesses (H2B) [12], such as companies, hospitals or financial institutions to
whom collaborative fairness is of significant concern.

Overall, our framework aims to enforce collaborative fairness in FL by adjust-
ing each participant’s local model performance according to their contribu-
tions [11,13]. Extensive experiments on benchmark datasets demonstrate that
our CFFL delivers the highest fairness, with the accuracy of the most contribu-
tive participant comparable to that of Distributed frameworks, and higher than
that of the Standalone framework. In the following sections, we interchangeably
use Distributed/Federated to refer to the Distributed framework. A short version
of this chapter appeared at FL-IJCAI’20 [10].

2 Related Work

We first relate our work to prior efforts on fairness in FL, which can be summa-
rized as the following lines of research.
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One research direction focuses on promoting collaborative fairness by using
incentive schemes combined with game theory, based on the reasoning that par-
ticipants should receive payoffs commensurate with their contributions. The
representative works include [2,17,24,25]. However, these works still allow all
participants to receive the same final FL model.

Another research direction addresses fairness issues in FL by optimiz-
ing for the performance of the device with the worst performance (largest
loss/prediction error). In particular, Mohri et al. [15] proposed a minimax opti-
mization scheme called Agnostic Federated Learning (AFL), which optimizes for
the performance of the single worst device by weighing devices adversarially. A
follow-up work called q-Fair Federated Learning (q-FFL) [9] generalizes AFL by
reducing the variance of the model performance across devices. Similar to the
idea behind AFL, in q-FFL, devices with higher loss are given higher relative
weight to encourage less variance in the final accuracy distribution [9]. This line
of work inherently advocates egalitarian equity, which can potentially deterio-
rate the collaborative fairness. Consequently, these methods are unable to detect
and isolate possible free-riders, since they actively optimize the performance of
the poorest-performing participants.

Different from all the above works, the most recent work by Lyu et al. [13] and
another concurrent but independent work by Sim et al. [20] are better aligned
with collaborative fairness in FL, where model accuracy is used as rewards for
FL participants. Lyu et al. [13] enforce different participants to converge dif-
ferent local models, and Sim et al. [20] proposed a method to inject carefully
computed Gaussian noise into the model parameters of the participants. In [13],
they adopted a mutual evaluation of local credibility mechanism, where each
participant privately rates the other participants in each communication round.
However, their framework is mainly designed for a decentralized block-chain sys-
tem, which may not be directly applicable FL settings which usually require a
server. On the other hand, in [20], the Shapley value [18] is computed given
each participant’s local data, which may not be practical in FL setting with a
large number of participants as the exact computation of Shapley values incurs
exponential runtime in the number of participants.

In this chapter, we follow the intuition in [13], and extend their work to
the general FL setting, in which a trusted server takes the role of a quality
controller by controlling how much each participant can download in each com-
munication round. In this way, each participant will be allocated with carefully
selected model parameters which lead to his/her individual model to converge
to performance commensurate with his/her contributions.

3 The CFFL Framework

3.1 Collaborative Fairness

In our framework, we achieve collaborative fairness by letting participants to
converge to different final models based on their contributions. Under this con-
text, we define collaborative fairness as:
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Definition 1. Collaborative fairness. In an FL system, a high-contribution par-
ticipant should be rewarded with a better performing local model than a low-
contribution participant. Mathematically, fairness can be quantifiably represented
by the correlation coefficient between the contributions of participants and their
respective final model accuracies.

3.2 Fairness via Reputation

In our CFFL framework, instead of downloading the global model from the
server as in all previous works, we modify the learning process by only allowing
participants to download the allocated aggregated updates according to their rep-
utations. The server keeps a reputation list for all the participants, and updates
it according to the quality of the uploaded gradients of each participant in each
communication round. In more detail, to quantify the reputation of participant
j, the server separately evaluates the quality of uploaded parameters by j, via
the accuracy on a public validation set V . The upload rate – θu – denotes the pro-
portion of parameters of which gradients are uploaded, i.e., if θu = 1, gradients
of all parameters are uploaded; if θu = 0.1, gradients of only 10% the parameters
are uploaded instead. We further denote the selected set of gradients as S, which
corresponds to θu gradients selected by the “largest values” criterion: sort gradi-
ents in Δwj , and upload θu of them, starting from the largest. Consequently, if
θu = 1, Δ(wj)S � Δwj , so in each round participant j uploads gradients on all
parameters, and therefore the server can derive participant j’s entire updated
model wj , as all participants are initialized with the same parameters in the
beginning. The server then computes the validation accuracy of participant j
based on wj and Δ(wj)S as vaccj ← V (wj ,Δ(wj)S). If θu �= 1, the server
integrates participant j’s uploaded gradients Δ(wj)S into an auxiliary model
wg to compute participant j’s validation accuracy as vaccj ← V (wg,Δ(wj)S).
Here, the auxiliary model wg is maintained by the server to aggregate local
model updates and calculate reputations of participants, so its parameters are
not broadcast to individual participants as in the standard FL systems.

Subsequently the server normalizes vaccj and passes the normalized vaccj

through a sinh(α) function in Eq. (1) to calculate the reputation cj of participant
j in the current communication round.

cj = sinh(α ∗ x) (1)

x stands for the normalized vaccj . The higher x, the more informative partici-
pant j’s uploaded gradients, and thus a higher reputation should be rewarded.
sinh(α) is introduced as a punishment function, and α denotes the punishment
factor, which serves to distinguish the reputations among participants based on
how informative their uploaded gradients are, in order to achieve better fair-
ness. Based on cj and participant j’s past reputation co

j , the server calculates an
updated reputation c′

j , thus iteratively and adaptively updating the reputation
of each participant. The high-contribution participant will be highly rated by



Collaborative Fairness in Federated Learning 193

the server, while the low-contribution participant can be identified and even iso-
lated from the collaboration, preventing the low-contribution participants from
dominating the whole system, or free-riding.

This updated reputation, c′
j determines how many aggregated updates each

participant will be allowed to download in the subsequent communication round.
The higher the c′

j , the more aggregated updates will be allocated to participant
j.

We remark that the aggregated updates refer to the collection of gradients
from all participants, and are used as a form of reward in each communication
round. The detailed realization of CFFL is given in Algorithm 1. In each com-
munication round, each participant sends θu fraction of clipped gradients to the
server, and server updates the reputations according to individual validation
accuracies, and then determines the number of aggregated updates to allocate
to each participant. We adopt gradient clipping to mitigate noisy updates from
abnormal examples/outliers.

3.3 Quantification of Fairness

In this chapter, we quantify collaborative fairness via the correlation coefficient
between participant contributions (X-axis: test accuracies of standalone mod-
els which characterize their individual learning capabilities on their own local
datasets) and participant rewards (Y-axis: test accuracies of final models received
by the participants).

Participants with higher standalone accuracies empirically contribute more.
Therefore, the X-axis can be expressed by Eq. 2, where saccj denotes the stan-
dalone model accuracy of participant j:

x = {sacc1, · · · , saccn} (2)

Similarly, Y-axis can be expressed by Eq. 3, where accj represents the final
model accuracy of participant j:

y = {acc1, · · · , accn} (3)

As the Y-axis measures the respective model performance of different par-
ticipants after collaboration, it is expected to be positively correlated with the
X-axis for a good measure of fairness. Hence, we formally quantify collaborative
fairness in Eq. 4:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)
(n − 1)sxsy

(4)

where x̄ and ȳ are the sample means of x and y, sx and sy are the corrected
standard deviations. The range of fairness falls within [−1, 1], with higher values
implying good fairness. Conversely, negative coefficient implies poor fairness.
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Algorithm 1. Collaborative Fair Federated Learning
Input: reputable participant set R; auxiliary model wg kept by server; local model w j ; local model

updates Δw j ; upload rate θu; validation set V ; local epochs E; coj : reputation of previous round;

Dj : data owned by each participant; data shard vector n = {n1, · · · , n|R|}; class shard vector

class = {class1, · · · , class|R|}.

Role: participant j

if j ∈ R then

Runs SGD on local data by using current local model w j and computes gradient vector Δw j ←
SGD(w j , Dj)

Clips gradient vector: Δw j ← clip(Δw j)

Sends the selected gradients Δ(w j)
S of size θu ∗ |Δw j | to the server, according to the “largest

values” criterion: sort gradients in Δw j , and upload θu of them, starting from the largest;

Downloads the allocated updates from the server, which is then integrated with all its local

updates as: w ′
j ← w j + Δw j + Δwj

g − nj
max(n)Δ(w j)

S (imbalanced data size) or w ′
j ← w j +

Δw j + Δwj
g − classj

max(class)Δ(w j)
S (imbalanced class number).

end if

Role: Server

Updates aggregation:

if data size is imbalanced then

Δwg ← ∑
j∈RΔ(w j)

S × nj
sum(n) .

end if

if class number is imbalanced then

Δwg ← ∑
j∈RΔ(w j)

S × classj
max(class) .

end if

if θu = 1 then

for j ∈ R do

vaccj ← V (w j + Δ(w j)
S).

Updates local model of participant j kept by the server: w ′
j ← w j +Δ(w j)

S for next round

of reputation evaluation.

end for

else

for j ∈ R do

vaccj ← V (wg + Δ(w j)
S).

end for

Updates temp model maintained by server w ′
g = wg + Δwg for next round of reputation

evaluation.

end if

for j ∈ R do

cj ← sinh(α ∗ vaccj∑
j∈Rvaccj

), c′
j ← coj ∗ 0.5 + cj ∗ 0.5

end for

Reputation normalisation: c′
j ← c′

j∑
j∈Rc′

j

if cj
′ < cth then

R ← R \ {j}, repeat reputation normalisation.

end if

for j ∈ R do

if data size is imbalanced then

numj ← c′
j

max(c) ∗ nj
max(n) ∗ |Δwg|

end if

if class number is imbalanced then

numj ← c′
j

max(c) ∗ classj
max(class) ∗ |Δwg|

end if

Groups numj aggregated updates into Δwj
g according to the “largest values” criterion,

and allocates an adjusted version Δwj
g − nj

max(n)Δ(w j)
S (imbalanced data size) or Δwj

g −
classj

max(class)Δ(w j)
S (imbalanced class number) to participant j.

end for
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4 Experiments

4.1 Datasets

We implement experiments on two benchmark datasets, MNIST1 and Adult Cen-
sus2. The MNIST dataset, for handwritten digit recognition, consists of 60,000
training examples and 10,000 test examples. The Adult Census dataset, con-
tains 14 demographic attributes, including age, race, education level, marital
status, occupation, etc. This dataset is typically used for a binary prediction
task: whether the annual income of an individual is over or under 50,000 dollars.
It consists of total 48,843 records, with 24% (11687) positive records (greater
than 50,000), and 76% (37155) negative records (less than 50,000). To mitigate
the imbalance, we randomly sample 11687 negative records to create a balanced
dataset. Following this, we then use an 80–20 train-test split. For both experi-
ments, we randomly set aside 10% of training examples as the validation set.

4.2 Baselines

To demonstrate the effectiveness of our CFFL, we compare it with the following
two representative baseline frameworks: Federated Averaging (FedAvg) from [14]
and Distributed Selective Stochastic Gradient Descent (DSSGD) from [19] for
FL.

Standalone framework assumes participants train standalone models on
local datasets without collaboration. This framework delivers minimum utility,
because each participant is susceptible to falling into local optima when training
alone. In addition, we remark that there is no concrete concept of collaborative
fairness in the Standalone framework, because participants do not collaborate
under this setting.

Distributed framework enables participants to train independently and con-
currently, and by sharing their gradient updates or model parameters to achieve
a better global model. We implement two commonly adopted frameworks for
distributed/federated learning. The first one is a standard approach in FL: Fed-
erated Averaging (FedAvg) [14]. The other one is called Distributed Selective
SGD (DSSGD) proposed by Shokri et al. [19], who showed that DSSGD empir-
ically outperfoms the centralized SGD and argued it is because updating only a
small fraction of parameters at each round acts as a regularization technique to
avoid overfitting by preventing the neural network weights from jointly “remem-
bering” the training data. Hence, we also include DSSGD for the analysis of the
Distributed framework and omit the centralized framework.

Furthermore, we investigate different upload rates θu = 0.1 and θu = 1 [19],
where gradients are uploaded according to the “largest values” criterion in [19].
Using the upload rate less than 1 has two advantages: reducing overfitting and
saving communication overhead.

1 http://yann.lecun.com/exdb/mnist/.
2 http://archive.ics.uci.edu/ml/datasets/Adult.

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml/datasets/Adult
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4.3 Experimental Setup

In order to evaluate the effectiveness of our CFFL in realistic settings of het-
erogeneous data distributions in terms of dataset size and class number, we
investigate the following two scenarios:

Imbalanced Data Size. To simulate dataset size heterogeneity, we follow a
power law to randomly partition total {3000, 6000, 12000} MNIST examples
among {5, 10, 20} participants respectively. Similarly, for Adult dataset, we
randomly partition {4000, 8000, 12000} examples among {5, 10, 20} participants
respectively. In this way, each participant has a distinctly different number of
examples, with the first participant has the least and the last participant has
the most. We remark that the purpose of allocating on average 600 MNIST
examples for each participant is to fairly compare with Shokri et al. [19], where
each participant has a small number of 600 local examples to simulate data
scarity which necessitates collaboration.

Imbalanced Class Numbers. To examine data distribution heterogeneity, we
vary the class numbers present in the dataset of each participant, increasing from
the first participant to the last. For this scenario, we only investigate MNIST
dataset as it contains 10 classes. We distribute classes in a linspace manner,
for example, participant-{1, 2, 3, 4, 5} own {1, 3, 5, 7, 10} classes from MNIST
dataset respectively. Specifically, for MNIST with total 10 classes and 5 partici-
pants, the first participant has data from only 1 class, while the last participant
has data from all 10 classes. We first partition the training set according to the
labels, then we sample and assign subsets of training set with corresponding
labels to the participants. Note that in this scenario, each participant still has
the same number of examples, i.e., 600 examples.

Model and Hyper-Parameters. For MNIST Imbalanced data size experi-
ment, we use a two-layer fully connected neural network with 128 and 64 units
respectively. The hyperparameters are: local epochs E = 2, local batch size
B = 16, and local learning rate lr = 0.15 for number of participants P = 5 and
lr = 0.25 for P = {10, 20}, with exponential decay γ = 0.977, gradient clip-
ping between [−0.01, 0.01], and a total of 30 communication rounds. For MNIST
Imbalanced class numbers experiment, we use the same neural network architec-
ture. The hyperparameters are: local epochs E = 1, local batch size B = 16,
and local learning rate lr = 0.15 for P = {5, 10, 20}, with exponential decay
γ = 0.977, gradient clipping between [−0.01, 0.01], and a total of 50 communi-
cation rounds. For Adult, we use a single layer fully connected neural network
with 32 units. The hyperparameters are: local epochs E = 2, local batch size
B = 16, and local learning rate lr = 0.03 for P = {5, 10, 20}, with exponen-
tial decay γ = 0.977, gradient clipping between [−0.01, 0.01], and a total of 30
communication rounds.

In addition, for both datasets, to reduce the impact of different initializa-
tions and avoid non-convergence, we use the same model initialization w0 for
all participants. Note that all participants carry out subsequent training locally
and individually.
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For all the experiments, we empirically set the reputation threshold via grid
search as cth = 1

|R| ∗ 1
3 for imbalanced data size, and cth = 1

|R| ∗ 1
6 for imbalanced

class numbers, where R is the set of participants with reputations higher than
the threshold. For the punishment factor, we empirically choose α = 5. We use
the Stochastic Gradient Descent (SGD) optimizer throughout.

Communication Protocol. In standard FL, the global model is given to all
participants, both during and at the end of the training. Such a setup forbids
the calculation of our definition of fairness via the pearson coefficient, when all
participants have the same ‘reward’. To mitigate this, we follow [19] to adopt the
round-robin communication protocol for DSSGD and FedAvg. In each communi-
cation round, participants upload parameter updates and download parameters
in sequence, so that their received models differ from each other in test accura-
cies. We then use the test accuracies for the calculation of fairness.

4.4 Experimental Results

Fairness Comparison. Table 1 lists the calculated fairness of DSSGD, FedAvg
and CFFL over MNIST and Adult under varying participant number settings
from {5, 10, 20}, and different upload rates θu from {0.1, 1}.

From the high values of fairness (some close to the theoretical limit of 1.0), we
conclude that CFFL achieves good fairness, and the results confirm the intuition
behind our notion of fairness: the participant who contributed more is rewarded
with a better model. We also observe that DSSGD and FedAvg yield significantly
lower fairness than our CFFL. This is expected since neither their communication
protocols nor the learning algorithms incorporate the concept of fairness.

Table 1. Fairness [%] of DSSGD, FedAvg and CFFL under varying participant number
settings (P-k), and upload rate θu.

Dataset MNIST Adult

Framework FedAvg DSSGD CFFL FedAvg DSSGD CFFL

θu NA 0.1 1 0.1 1 NA 0.1 1 0.1 1

P5 3.08 90.72 84.61 99.76 99.02 −3.33 15.61 35.71 98.44 99.37

P10 −50.47 −78.18 90.67 98.55 98.74 44.27 62.30 56.60 92.00 91.95

P20 60.41 −81.77 80.45 98.52 98.51 −34.32 60.30 58.01 80.56 79.52

Accuracy Comparison. Table 2 reports the corresponding accuracies on
MNIST and Adult datasets of {5, 10, 20} participants when θu = 0.1. For CFFL,
we report the best accuracy achieved among the participants, because they
receive models of different accuracies and we expect the most contributive partic-
ipant to receive a model with the highest accuracy comparable to or even better
than that of DSSGD and FedAvg. For the Standalone framework, we show the
accuracy of this same participant. We observe that CFFL obtains comparable
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Table 2. Maximum accuracy [%] over MNIST and adult of varying participant number
settings, achieved by DSSGD, FedAvg, Standalone framework, and our CFFL (θu =
0.1).

Framework MNIST Adult

P5 P10 P20 P5 P10 P20

DSSGD 93.28 94.20 82.36 81.94 82.78 82.07

FedAvg 93.62 95.32 96.26 82.58 83.14 83.16

Standalone 90.30 90.88 90.64 81.93 82.31 82.07

CFFL 91.83 93.00 93.25 81.96 82.63 82.72

Fig. 1. Individual convergence for MNIST using Standalone framework and our CFFL.
The 3 rows correspond to {5, 10, 20} participants, the 3 columns correspond to
{Standalone, CFFL with θu = 0.1, CFFL with θu = 1}.

accuracy to DSSGD and FedAvg, and even better accuracy than DSSGD for
P20. More importantly, our CFFL always attains higher accuracies than the
Standalone framework. For example, for MNIST dataset with 20 participants,
our CFFL achieves 93.25% test accuracy, which is much higher than the Stan-
dalone framework (90.64%). Under this setting, DSSGD achieving the lowest
accuracy may be attributed to the instability and fluctuations during training.
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The above fairness results in Table 1, and accuracy results in Table 2 demon-
strate that our proposed CFFL achieves both high fairness and comparable accu-
racy under various settings (Fig. 2).

Fig. 2. Individual convergence for adult using Standalone framework and our CFFL.
The 3 rows correspond to {5, 10, 20} participants, the 3 columns correspond to
{Standalone, CFFL with θu = 0.1, CFFL with θu = 1}.

Individual Model Performance. To examine the impact of our CFFL on
individual convergence, we plot the test accuracy over training process in Fig. 1.
It displays the test accuracies of the models of the participants for the Stan-
dalone framework and CFFL with upload rate of {0.1, 1} in MNIST over 30
communication rounds. We observe that in CFFL, each participant consistently
delivers better accuracy than their standalone model, implying that all partici-
pants stand to gain improvements in their model performance with collaboration.
More importantly, the figure clearly demonstrates that CFFL enforces the par-
ticipants to converge to different local models, which are still better than their
standalone models, thus achieving both fairness and improvement in model per-
formance. We do observe slight fluctuations at the beginning of training. This
can be attributed to that in CFFL, participants are allocated with different
aggregated updates from the server. We also note that including pretraining of
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few epochs at each participant before collaboration will not alter the overall con-
vergence behaviour, but providing relatively better fairness, especially in settings
with more participants.

Fig. 3. Individual model accuracy for MNIST class imbalanced scenario, where classes
are distributed in a linspace manner (for example, participant-{1, 2, 3, 4, 5} own {1, 3,
5, 7, 10} classes respectively). 3 columns correspond to {Standalone, CFFL θu = 0.1,
CFFL θu = 1.}

For Imbalanced class numbers, Fig. 3 shows individual model accuracies in
the Standalone framework and our CFFL. We see that all participants achieve
higher model accuracies in CFFL than their standalone counterparts. Similar
to the scenario of Imbalanced data size, all participants converge to different
final models, but with more obvious accuracy gaps, resulting in higher fairness.
Moreover, it takes longer time for participants to converge when there are more
participants participating in the system. The fluctuations and the longer conver-
gence time may be attributed to the increased heterogeneity in the participants’
datasets.



Collaborative Fairness in Federated Learning 201

5 Discussions

Robustness to Free-Riders. There may exist free-riders in FL systems, and
they aim to benefit from the global model without really contributing. Typi-
cally, free-riders may pretend to be contributing by generating and uploading
random or noisy updates. In standard FL systems, there is no specific safeguard
against this, so the free-riders can enjoy the system’s global model at virtually no
cost. Conversely, CFFL can automatically identify and isolate free-riders. This
is because the empirical utility (on the validation set) of the random or carefully
crafted gradients is generally low. As collaborative training proceeds, the free-
riders will receive gradually lower reputations, and eventually be isolated from
the system when their reputations fall below the reputation threshold. Through
our additional experiments (including 1 free rider who always uploads random
values as gradient updates), we observe that our CFFL can always identify and
isolate the free rider in the early stages of collaboration, without affecting either
accuracy or convergence.

Choice of Reputation Threshold. With a reputation threshold cth, the server
can stipulate a minimum empirical contribution for the participants. Reputation
mechanism can be used to detect and isolate the free-rider(s). A key challenge
lies in the selection of an appropriate threshold, as fairness and accuracy may
be inversely affected. For example, too small a cth might allow low-contribution
participant(s) to sneak into the federated system without being detected and
isolated. On the contrary, too large a cth might isolate too many participants to
achieve meaningful collaboration. In our experiments, we empirically search for
suitable values for different scenarios.

Coarse-Grained Fairness. The main design of this chapter targets at a fine-
grained concept of fairness, in which, each participant corresponds to a different
model. Another alternative is to consider coarse-grained fairness, in which, mul-
tiple participants can be categorised into a group with the same contribution
level, and participant groups at different contribution levels should receive the
different number of model updates, while participants in the same group receive
the same number of model updates [26].

Will Reputation Help Robustness? In addition to the free-rider(s) con-
sidered in this chapter, recent works pointed out that reputation score is also
helpful to defend against malicious participants in the system [16,28]. In partic-
ular, Regatti et al. [16] demonstrated that using reputation scores computed on
an auxiliary dataset with a larger step size for gradient aggregation is robust to
any number of Byzantine adversaries. Hence, it is promising to integrate sophis-
ticated reputation design into FL to help build a fair and robust system.

Fairness in Vertically FL (VFL). This chapter mainly investigated how to
ensure fairness in horizontally federated learning (HFL), in which datasets owned
by each participant share similar features but concern different users [6]. Another
interesting type of FL is called vertically federated learning (VFL), which is
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applicable to the cases in which participants have large overlaps in the sample
space but differ in the feature space, i.e., different participants hold different
attributes of the same records [21]. In VFL [3], there may only be one participant
who owns labels for the given learning task. It would be interesting to study how
to formulate and achieve fairness in VFL, and whether our fairness solution in
HFL can be adapted to this paradigm.

Fairness in Heterogeneous FL. For simplicity, our current design only consid-
ered homogeneous FL architectures, i.e., the same model architecture is shared
with all participants. It would be interesting to study how to extend the fairness
concept to FL with heterogeneous model architectures, or even different families
of learning algorithms [7]. In this scenario, instead of sharing gradients, partic-
ipants share local model predictions on the public data, i.e., through transfer
learning and knowledge distillation. A potential solution to ensure fairness would
be scoring their shared predictions.

6 Conclusion and Future Work

This chapter initiates the research problem of collaborative fairness in server-
based FL, and revolutionizes FL by enforcing participants to download different
ratios of the aggregated updates, and converge to different final models. A novel
collaborative fair federated learning framework named CFFL is proposed. Based
on empirical individual model performance on the public validation set, a notion
of reputation is introduced to mediate participant rewards across communication
rounds. Experimental results demonstrate that our CFFL achieves comparable
accuracy to two Distributed frameworks, and always achieves better accuracy
than the Standalone framework, confirming the effectiveness of CFFL of achiev-
ing both fairness and utility. We hope our preliminary study will shed light on
future research on collaborative fairness. A number of avenues for further work
are appealing. In particular, we would like to study how to quantify fairness
in more complex settings involving vertically FL, heterogeneous FL, and other
types of learning tasks such as speech, Natural Language Processing (NLP), etc.
It is expected that our system can find wide applications in real world.
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Abstract. Federated learning (FL) has great potential for coalescing
isolated data islands. It enables privacy-preserving collaborative model
training and addresses security and privacy concerns. Besides booming
technological breakthroughs in this field, for better commercialization of
FL in the business world, we also need to provide sufficient monetary
incentives to data providers. The problem of FL incentive mechanism
design is therefore proposed to find out the optimal organization and
payment structure for the federation. This problem can be tackled by
game theory.

In this chapter, we set up a research framework for reasoning about FL
incentive mechanism design. We introduce key concepts and their mathe-
matical notations specified under the FML environment, hereby propos-
ing a precise definition of the FML incentive mechanism design problem.
Then, we break down the big problem into a demand-side problem and
a supply-side problem. Based on different settings and objectives, we
provide a checklist for FL practitioners to choose the appropriate FL
incentive mechanism without deep knowledge in game theory.

As examples, we introduce the Crémer-McLean mechanism to solve
the demand-side problem and present a VCG-based mechanism, PVCG,
to solve the demand-side problem. These mechanisms both guarantee
truthfulness, i.e., they encourage participants to truthfully report their
private information and offer all their data to the federation. Crémer-
McLean mechanism, together with PVCG, attains allocative efficiency,
individual rationality, and weak budget balancedness at the same time,
easing the well-known tension between these objectives in the mechanism
design literature.
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1 Introduction

In most industries, data are segregated into isolated data islands, among which
direct data sharing is restricted by laws and regulations such as the General Data
Protection Regulation (GDPR) [6]. Federated learning (FL) [12] has emerged in
recent years as an alternative solution to train AI models based on distribut-
edly stored data while preserving data privacy. Commercial FL platforms have
been developed, e.g., TensorFlow Federated (TFF) from Google and FATE from
WeBank. Industries such as finance, insurance, telecommunications, healthcare,
education, and urban computing have great potential to benefit from FL tech-
nologies.

In real application scenarios of FL, where data providers are profit-seeking
business entities, FL may not be economically viable because of the free rider
problem, i.e., a rational data provider may hold back its data while expecting
others to contribute all their data to the federation. Without proper incentives,
it is hard to prevent such free-riding activities because the FL model, as a virtual
product, has characteristics of club goods, i.e., it is non-rivalrous in consumption.

In order to incentivize data providers to offer their best datasets to federated
learning, we need to pay data providers enough monetary reward to cover their
costs. The marginal monetary reward for contributing more data should be no
less than the marginal cost hence incurred. Also, we aim to maintain a balanced
budget and optimize for social welfare. At least three sources of information
asymmetry intertwined in this problem: 1) the datasets owned by each data
provider, 2) costs incurred to each data provider, and 3) model users’ valuations
on the trained FL model. An FL incentive mechanism, formulated as a function
that calculates payments to participants, is designed to overcome these informa-
tion asymmetries and to obtain the above-mentioned objectives. The problem of
FL incentive mechanism design is to find the optimal FL incentive mechanism.

In this chapter, we first propose a game-theoretic model for analyzing the
FL incentive mechanism design problem. We provide a checklist to specify het-
erogenous game settings and mechanism design objectives, together with four
benchmark theorems that help FL practitioners to choose the appropriate FL
incentive mechanism. Then, under our research framework, we provide two exam-
ples of FL incentive mechanisms, one on the demand side and the other on the
supply side. The proposed Crémer-McLean mechanism and Procurement-VCG
(PVCG) mechanism encourage FL participants to truthfully report their type
parameters and offer their best datasets to the federation. These mechanisms also
provide theoretical guarantees for incentive compatibility, allocative efficiency,
individual rationality, and weak budget balancedness.
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2 Problem Setup

In this section, we set up a game-theoretic environment for our following dis-
cussions. For readers unfamiliar with game theory and mechanism design, this
section also provides necessary background knowledge.

2.1 The Game-Theoretic Environment

Fig. 1. The circular flow diagram of federated learning.

The environment of FL incentive mechanism design is set up as follows:

– There exists a set of n data providers, denoted by N = (0, . . . , n − 1), and
another set of m model users, denoted by M = (n, . . . , n + m − 1);

– Each data provider i ∈ N owns a dataset d̄i. It claims it owns a dataset d̂i.
The federation accepts a dataset di ≤ d̂i from this data provider. We call
ηi = di � d̂i the acceptance ratio, where � denotes element-wise division.

– Trained on datasets d = (d0, . . . , dn−1) from all data providers, the usefulness
of the federated model is Q(d). Model users may be granted limited access to
the federated model such that the usefulness of the federated model to model
user j is κjQ(d), where κj is called the access permission.

– Each data provider i ∈ N has a cost type γi ∈ Γi. Its cost of contributing
data di is c(di, γi). The collection of cost types of all data providers forms the
cost type profile γ = (γ0, . . . , γn). Data provider i may report a different cost
type γ̂i.
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– Each model user j ∈ M has a valuation type θj ∈ Θj . Its valuation on
the trained federated model is w(κjQ(d), θj) = v(d, κj , θj). The collection
of valuation types of all model users forms the valuation type profile θ =
(θn, . . . , θn+m−1). Model user j may report a different valuation type θ̂j .

– The payment to data provider i ∈ N is pi ≥ 0. The payment to model user
j ∈ M is pj ≤ 0. We denote ps = (p0, . . . , pn−1) and pd = (pn, . . . , pn+m−1).
The federation income is I = −∑n+m−1

j=n pj ; the federation expenditure is
E =

∑n−1
i=0 pi; the federation profit is P =

∑n+m−1
l=0 pl.

– Participants’ preferences are represented by quasi-linear utility functions
ui(·) = pi(·) − ci(·), i ∈ N and uj(·) = pj(·) + vj(·), j ∈ M .

– The social effect of federated learning is measured by social surplus, defined
as S(·) =

∑n+m−1
j=n vj(·) − ∑n−1

i=0 ci(·), which includes consumer surplus Sd =
∑n+m−1

j=n vj(·) and producer surplus Sd = −∑n−1
i=0 ci(·).

– There is user-defined unfairness functions �s(ps, c) and �d(ps,v) that mea-
sures the unfairness among data providers and model users.

Figure 1 illustrates the flows of economic resources in this federated learning
game. Table 1 lists the mathematical symbols.

Table 1. List of mathematical symbols

Symbol Meaning

i Index of data provider

j Index of model user

d̄i, d̂i, or di Owned/claimed/accepted dataset

Q(d) Usefulness of federated model

γi or γ̂i True/reported cost type

θj or θ̂j True/reported valuation type

pi, pj Payment to participants

ηi(·) Acceptance ratio of datasets

κj(·) Access permission to the federated model

c(di, γi) Individual cost function

v(d, κj , θj) Individual valuation function

u(·) Utility function

I(·), E(·), P (·) Federation income/expenditure/profit

S(·), Sd(·), Ss(·) Social surplus/consumer surplus/producer surplus

�s(·), �d(·) Unfairness functions

2.2 Definition of the FL Incentive Mechanism Design Problem

With these concepts and notations introduced so far, we present a formal defi-
nition for the problem of FML incentive mechanism design.



A Game-Theoretic Framework for Incentive Mechanism Design 209

Definition 1 (FL Incentive Mechanism Design). FL incentive mechanism
design is to design the optimal ps(·), η(·), pd(·), κ(·), as functions of claimed d̂

and reported γ̂, θ̂, in order to achieve a set of objectives in Sect. 2.3.

There are three sources of intertwined information asymmetry, d̂, γ̂ and θ̂, in
the FL incentive mechanism design problem. When all variables are considered
simultaneously, this problem becomes extremely complicated. As a tradition
in the economic literature, we separate this big problem into a demand-side
subproblem and a supply-side sub-problem. Formally, we introduce the following
assumption:

Assumption 1 (Separation between Data Supply and Model
Demand). The data supply market and the model demand market are sepa-
rated. When an FL participant is both a data provider and a model user, its
decision as a data provider does not affect his decision as a model user, or vice
versa.

With Assumption 1, we can define the two subproblems as follows.

Definition 2 (Supply-Side FL Incentive Mechanism Design). Given
that the federation Income I(Q) and the model quality Q(d̂ � η) are exoge-
nous functions, the supply-side FL incentive mechanism design is to design
the optimal pi(d̂, γ̂) and ηi(d̂, γ̂), i = 1, . . . , n, as functions of claimed datasets
d̂i, i = 0, . . . , n − 1 and reported cost types γi, i = 1, . . . , n, in order to achieve
some desirable objectives in Sect. 2.3.

Definition 3 (Demand-Side FL Incentive Mechanism Design). Given
that the model quality Q is an exogenous constant, the demand-side FL incentive
mechanism design is to design the optimal pj(θ̂) andκj(θ̂), j = 1, . . . , m, as
functions of reported benefit types θ̂, j = 1, . . . ,m, in order to achieve some
desirable objectives in Sect. 2.3.

2.3 Objectives of FL Incentive Mechanism Design

Below is a list of desirable properties of FL incentive mechanism design. For
detailed explanations of these objectives, refer to [10].

– (Incentive Compatibility, IC) IC is attained if in equilibrium, all participants
report their types truthfully, i.e., θ̂ = θ. Different types of equilibriums cor-
respond to different IC conditions, which can be one of Nash Incentive Com-
patibility (NIC), Dominant Incentive Compatibility (DIC), Baysian Incentive
Compatibility (BIC), or Perfect Bayesian Incentive Compatibility (PBIC).

– (Individual Rationality, IR) A mechanism is individually rational (IR) if this
mechanism does not make any player worse off than if he quits the federation,
i.e.,

ui(d̂, γ̂) ≥ 0,∀i ∈ N and uj(θ̂) ≥ 0,∀j ∈ M. (1)

In games of incomplete information, IR can be ex-ante IR, interim IR or
ex-post IR.
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– (Budget Balance, BB) A mechanism is weakly budget balanced (WBB) if for
all feasible outcomes, the sum of payments is less than or equal to zero. i.e.,

n+m−1∑

l=1

pl(d̂, γ̂, θ̂) ≤ 0,∀d̂, γ̂, θ̂. (2)

It is strongly budget balanced (SBB) if the equity holds. In games of incomplete
information, BB can be ex-ante BB, interim BB or ex-post BB.

– (Social Optimization) social optimization can be social surplus maximization
(SSM) when social surplus is maximized or profit maximization (PM) if the
federation profit is maximized. Social surplus maximization implies allocative
efficiency (AE).

– (Fairness) We desire to minimize the unfairness function.

3 Specifications of FL Incentive Mechanisms

3.1 Non-standard Game Settings

Besides game settings in Sect. 2.2, several non-standard game settings also need
to be specified when we design FL incentive mechanisms. These non-standard
game settings include:

– (Level of Information Asymmetry) On the demand side, there may be or may
not be information asymmetry on valuation types. On the supply side, there
may be a) no information asymmetry, b) information asymmetry on datasets
only, c) about cost types only, or d) about both.

– (Mode of System Evolution) If the FL game is played for only once, it corre-
sponds to a static mechanism. If the FL game is played repeatedly or param-
eters change over time, it corresponds to a dynamic mechanism.

– (Belief Updates) In a dynamic FL game, as time passes by, agents update their
beliefs based on heuristic belief updates or Bayesian belief updates, according
to which agents update their information based on some heuristic rules or
Bayesian rules, respectively.

– (Controllable Parameters) The FL coordinator may determine ps(·), η(·),
pd(·), and κ(·),but in some situations, some of these parameters are not con-
trollable. For example, it may not be possible to set up access control on the
FML model so that κ(·) is not controllable, or it may not be possible to reject
datasets offered by data providers so that η(·) is not controllable. Also, there
are cases where price discrimination is not possible so that the unit price of
data/model services has to be the same for all data providers/model users.

– (Functional Forms) On the supply side, exact forms of the federation income
function I(Q), the model quality function Q(d), and the individual cost func-
tions c(di, γi) need to be specified. On the demand side, the form of the
individual valuation function w(κjQ, θj) need to be specified.
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3.2 Measures of Objectives

As a general rule, objectives in Sect. 2.3 cannot be attained simultaneously, so
we would like to know how well each objective is achieved by a given FL incentive
mechanism. There are also cases where the constraints of some objectives are
approximately achieved. The performance of an FL incentive mechanism on
achieving these objectives can be evaluated according to the following measures.

– (Data offering rate, DOR) DOR is defined as the total data offered by all
data providers to the total data owned by all data providers, i.e.,

DOR =
∑n−1

i=0 d̂i
∑n−1

i=0 d̄i

. (3)

The data offering rate varies from 0.0 to 1.0, with 1.0 indicating all data being
offered. When a payment scheme is incentive-compatible, the data offering
rate is 1.0.

– (Individual rationality index, IRI) Rational data providers are not expected
to stay in the federation if their costs cannot be covered by payments.
The individual rationality indicator IRi for data provider i is defined as IRi =
1 if pi − ci ≥ 0 and IRi = 0 otherwise.
The ideal case is that the payment scheme satisfies individual rationality
for all participants. For general cases, we measure the individual rationality
index (IRI), defined as the average of individual rationality indicators, i.e.,
IRI =

∑n−1
i=0 wi × IRi, where wi, i ∈ N are user-defined weights for the

relative importance of data owner I, e.g., wi = di∑n−1
l=0 dl

.
The individual rationality index varies from 0.0 to 1.0, with 1.0 indicating
individual rationality constraints satisfied for all participants.

– (Budget surplus margin, BSM) The budget surplus is the difference between
the total income received from model users and the total payments paid
to data owners. In practice, the budget surplus is the profit made by the
coordinator. Budget surplus margin is the ratio of the budget surplus to total
revenue of the federation, i.e.,

BSM =
−∑n+m−1

j=n pj − ∑n−1
i=0 pi

−∑n+m−1
j=n pj

. (4)

The budget surplus margin varies from −∞ to 1.0, with 0.0 indicating a
break-even point, and positive/negative values indicating net profits/losses,
respectively.

– (Efficiency Index, EI) In federated learning, allocative efficiency is achieved
when social surplus is maximized. The efficiency index(EI) is the ratio of
realized social surplus to the maximum possible social surplus, i.e.,

EI =
S(d̂,γ,θ,η(d̂, γ̂, θ̂),κ(d̂, γ̂, θ̂))

maxη ,κ S(d̄,γ,θ,η,κ)
(5)

EI varies from −∞ to 1.0, with 1.0 indicating allocative efficiency.
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– (Fairness Index, FI) In FL, we want the payment of a unit of contributed
data to be the same for all data providers. We set the unfairness function to
be the variance of the normalized unit price, i.e., rescaled to [0.0, 1.0], i.e.,

�(ps,d) = V ar{ pi/di
∑n−1

i=0 pi/
∑n−1

i=0 di

}. (6)

The normalized unit price is invariant with the change of measure.
The fairness index (FI) is the realized unfairness function rescaled to [0.0, 1.0],
i.e.,

FI =
1

1 + �(ps,d)
, (7)

which varies from 0.0 to 1.0, with 1.0 indicating the absolute fairness.

Table 2. Checklist for specifications of FL incentive mechanisms

Game settings Specifications

Demand-side settings Information asymmetry on valuation types Yes/No

Access permission control on FL model Yes/No/Partial

Price discrimination Yes/No

Specification of individual valuation functions Specification

Supply-side settings Information asymmetry on datasets Yes/No

Information asymmetry on cost types Yes/No

Ability to reject data owners Yes/No/Partial

Price discrimination Yes/No

Specification of individual cost functions Specification

Specification of the federation income function Specification

Specification of the model quality function Specification

Other settings Mode of system evolution Static/Dynamic

Belief updates No/Heuristic/Bayesian

Objectives Measures

Objectives IC Data offering rate

IR Individual rationality index

BB Budget Surplus Margin

Social optimization Efficiency index

Fairness Fairness index

3.3 A Checklist for FL Incentive Mechanisms

Designing FL incentive mechanisms often requires deep knowledge in game the-
ory, a field unfamiliar to most FL practitioners. Nevertheless, for FL practition-
ers to apply an FL incentive mechanism, they only need to make sure the game
settings of the targeted mechanism is a good approximation of the real-world
scenario. Besides, they would like to know how well the mechanism achieves the
objectives listed in Sect. 2.3. We recommend that a checklist of specifications,
e.g., Table 2, is provided with every FL incentive mechanism so that FL practi-
tioners can easily choose the right mechanism without understanding the inner
workings of these mechanisms.
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3.4 Benchmarks for Choosing FL Incentive Mechanisms

When choosing FL incentive mechanisms, simpler game settings and fewer objec-
tives are preferred. There is well-known tension between the multiple objectives
listed in Sect. 2.3 [8]. We can prove that when game settings become more com-
plicated or more objectives are optimized, the expected social surplus attained by
the optimal mechanism is reduced. Formally, we have the following benchmark
theorems. For proofs of these theorems, refer to [4].

Theorem 1 (More controllable parameters, better social optimiza-
tion). The more parameters can be controlled by the FL coordinator, the larger
is the expected social surplus attained by the optimal FL incentive mechanism.

Theorem 2 (Less information asymmetry, better social optimization).
When the IC constraint is concerned, the more accurate is the prior belief on

d̄, γ and θ, the larger is the expected social surplus attained by the optimal FL
incentive mechanism.

Theorem 3 (More constraints, worse social optimization). The more
constraints (such as IC, IR, BB), the smaller is the expected social surplus
attained by the optimal FL incentive mechanism.

According to these theorems, it would always be helpful if the FL coordinator
can better estimate the datasets and type parameters of FL participants. Also,
objectives in Sect. 2.3 compete with each other. If an objective is not a con-
cern for an FL scenario, the FL coordinator should not choose an FL incentive
mechanism optimized for that objective.

4 A Demand-Side FL Incentive Mechanism -
Crémer-McLean Mechanism

In this section and the next section, we provide two examples of FL incentive
mechanisms, on the demand side and the supply side, respectively.

4.1 Crémer-McLean Theorem

The demand-side mechanism introduced in this section is an application of the
famous Crémer-McLean mechanism [5]. In order to apply Crémer-McLean mech-
anism, we put two assumptions on the prior distribution Prior(θ). For more
discussions on these assumptions, refer to [2].

Assumption 2 (Crémer-McLean condition). The prior distribution of θ
satisfies the “Crémer-McLean condition” if there are no j ∈ M , θj ∈ Θj and
λj : Θj\{θj} 	→ R+ for which

Prior(θ−j |θj) =
∑

θ
′
j∈Θj\{θj}

λ(θ
′
j)Prior(θ−j |θ′

j), ∀θ−j ∈ Θ−j . (8)
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The Crémer-McLean condition is often referred to as correlated types. To
understand this, one can understand agent j’s belief about other agents’ types
Prior(θ−j |θj) as a vector with as many entries as Θ−j has elements. Each θj cor-
responds to such a vector. The Crémer-McLean condition requires that none of
these vectors can be written as a convex combination of other vectors. Note that
the Crémer-McLean condition is obviously violated when agent j’s conditional
beliefs are independent of his type, i.e., all these vectors are identical.

The assumption of correlated types is reasonable for the FL scenario. It is
highly possible that when the FL model brings high value to one model user, it
also brings high value to other model users.

Assumption 3 (Identifiability condition). The prior distribution of θ
satisfies the “identifiability condition” if, for all other prior distributions
Prior′(θ) �= Prior(θ) such that Prior′(θ) > 0 for all θ ∈ Θ, there is at least
one model user j and one valuation type θj ∈ Θj such that for any collection of
nonnegative coefficients λ(θ

′
j), θ

′
j ∈ Θj, we have

Prior′(θ−j |θj) �=
∑

θ
′
j∈Θj

λ(θ
′
j)Prior(θ−j |θ′

j) (9)

for at least one θ−j ∈ Θ−j.

Intuitively, this condition says that for any alternative prior distribution
Prior′(θ) > 0, there is at least one agent and one type of that agent such that
this agent cannot randomize over reports in a way that makes the conditional
distribution of all other types under Prior′(θ) indistinguishable from the condi-
tional distribution of all other types under Prior(θ). In practice, we do not need
to worry about this assumption because identifiability is generic in the topologi-
cal sense, i.e., for almost all prior distributions, we can assume the identifiability
condition holds. We have the following proposition, of which the proof can be
found in [9].

Proposition 1 (Genericity of identifiability). Suppose there are at least
three agents (m ≥ 3). Also, if m = 3, then at least one of the agents has at least
three types. Then almost all prior distributions Prior(θ) are identifiable.

Provided Assumption 2 and 3, we can guarantee the existence of an interim
truthful and interim individual rational demand-side mechanism that attracts
full consumer surplus. Here, interim incentive compatibility means truth-telling
is superior to other strategies in expectation under the conditional prior distri-
bution of other agents’ types, i.e.,

EPrior(θ−j |θj)[w(κj(θj ,θ−j)Q, θj) + pj(θj ,θ−j)] (10)

≥EPrior(θ−j |θj)[w(κj(θ̂j ,θ−j)Q, θj) + pj(θ̂j ,θ−j)], ∀j ∈ M,θ ∈ Θ, θ̂j ∈ Θj ;

interim individual rationality means the expected utilities of all agents are non-
negative, under the conditional prior distribution of other agents’ types, i.e.,

EPrior(θ−j |θj)[w(κj(θj ,θ−j)Q, θj) + pj(θj ,θ−j)] ≥ 0, ∀j ∈ M,θ ∈ Θ. (11)
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The Crémer-McLean Theorem is:

Theorem 4 (Crémer-McLean Theorem). When the Crémer-McLean con-
dition and the identifiability condition hold for Prior(θ), for any decision
rule κ(θ̂), there exists an interim incentive compatible and interim individ-
ually rational payment rule p(θ̂) that extracts full consumer surplus, i.e.,
−∑n+m−1

j=n pj(θ̂) =
∑n+m−1

j=n w(κj(θ̂)Q, θj).

As an application of this theorem, we can set κj(θ̂) ≡ 1, i.e., every model
user gets full access permission to the FL model. In this case, w(κj(θ̂)Q, θj) =
w(Q, θj), and we can find an interim incentive compatible and interim individu-
ally rational payment rule p(θ̂) such that −∑n+m−1

j=n pj(θ̂) =
∑n+m−1

j=n w(Q, θj).
As an example, consider the following payment rule:

pj(θ̂) = −w(Q, θ̂j) + β[α − ln(Prior(θ̂−j |θ̂j)], (12)

where β and α are two constants. We can prove that when β is large enough,
pj(θ̂) is interim incentive compatible. To understand this, noticing that if model
user j reports a θ̂j lower than his true θj .

To see this, noticing that the Lagrange equation for model user j to maximize
its utility is

∂

∂Prior(θ̂−j |θ̂j)
{EPrior(θ̂−j |θj)

pj(θ̂) + λ[
∑

θ̂−j

Prior(θ̂−j |θ̂j) − 1]}

= −
∂EPrior(θ̂−j |θj)

w(Q, θ̂j)

∂Prior(θ̂−j |θ̂j)
− β · Prior(θ̂−j |θj)

Prior(θ̂−j |θ̂j)
+ λ = 0, (13)

where λ is the Lagrange multiplier for the constraint
∑

θ̂−j
Prior(θ̂−j |θ̂j) ≡ 1.

When β is large enough compared to
∂EPrior(θ̂ −j |θj)w(Q,θ̂j)

∂Prior(θ̂−j |θ̂j)
, solving the Lagrange

equation in Eq. 13 results in

Prior(θ̂−j |θj)

Prior(θ̂−j |θ̂j)
 λ

β
, ∀θ̂−j . (14)

Therefore, Prior(θ̂−j |θj) has to be equivalent to Prior(θ̂−j |θ̂j), i.e., θ̂−j = θ−j .
If we set α = EPrior(θ)ln[Prior(θ−j |θj)], the payment rule in Eq. 12 is ex-

ante individual rational and extracts full consumer surplus ex ante. We can
use automated mechanism design to find a Crémer-McLean mechanism that is
also ex-post individual rational and extracts full consumer surplus ex post, as
explained in the following sub-section.

4.2 Training Crémer-McLean Mechanism

The Crémer-McLean payments can be calculated by automated mechanism
design techniques, e.g., refer to [1]. The method presented in this section is



216 M. Cong et al.

slightly different from that in [1], compared to which our method extracts full
consumer surplus ex post instead of ex ante.

The Crémer-McLean payments p(θ) should simultaneously satisfy the three
constraints in the following equation set 15, corresponding to ex-post full con-
sumer surplus extraction, interim incentive compatibility and ex-post individual
rationality, respectively.

⎧
⎪⎨

⎪⎩

−∑n+m−1
j=n pj(θ) =

∑n+m−1
j=n w(Q, θj), ∀θ;

∑
θ ′

−j
[w(Q, θj) + pj(θj ,θ

′
−j)]Prior(θ′

−j |θj) ≥ 0, ∀j ∈ M, θj ∈ Θj ;
∑

θ ′
−j

[pj(θj ,θ
′
−j) − pj(θ̂j ,θ

′
−j)]Prior(θ′

−j |θj) ≥ 0, ∀j ∈ M, θj ∈ Θj .

(15)

Crémer-McLean Theorem guarantees that there is a solution p(θ) to Eq. 15.
In order to find such a solution, we can minimize the following LOSS in Eq.
16, because it is easy to see that p(θ) is a solution to Eq. 15 i.f.f. it minimizes
the LOSS in Eq. 16 to 0. With such a LOSS function, we can easily learn the
demand-side Crémer-McLean payments by applying standard backpropagation
algorithms.

LOSS = {
n+m−1∑

j=n

[w(Q, θj) + pj(θ)]}2 (16)

+
n+m−1∑

j=n

ReLu{−
∑

θ ′
−j

[w(Q, θj) + pj(θj ,θ
′
−j)]Prior(θ′

−j |θj)}

+
n+m−1∑

j=n

ReLu{−
∑

θ ′
−j

[pj(θj ,θ
′
−j) − pj(θ̂j ,θ

′
−j)]Prior(θ′

−j |θj)},

where θ,θ′, θ̂ are drawn randomly from the prior distribution of θ.

5 A Supply-Side FL Incentive Mechanism - PVCG

As a counterpart of Crémer-McLean mechanism, which is optimal on the demand
side, we introduce an optimal supply-side procurement auction in this section.
This proposed procurement auction, accompanied by the demand-side Crémer-
McLean mechanism, maximizes producer surplus by incentivizing data providers
to offer all their data to the federation and truthfully report their cost types.
For more discussions on PVCG, refer to [3].

As explained in Sect. 2.3. When designing the supply-side mechanism, we
assume the federation income I(Q) and the model quality Q(d̂�η) are exogenous
functions. For example, when Crémer-McLean mechanism is adopted on the
demand side, we know the federation income is:

I(Q) = −
n+m−1∑

j=n

pj(θ) =
n+m−1∑

j=n

w(κj(θ)Q, θj), (17)
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where θ is assumed to be an exogenous parameter, so we can ignore it when we
focus on the supply side. Because the federation income indirectly depends on
Q(d̂ � η), we also write I(d̂ � η) = I(Q(d̂ � η)).

5.1 The Procurement Auction

One can carry out the proposed procurement auction and compute the payments
to data providers by following the following steps.

Step 1. Data providers claim datasets to offer and bid on cost types
As the first step, every data provider submits a sealed bid for their respective

claimed datasets and cost types. The claimed dataset d̂i is the best dataset that
data provider i claims it can offer to federated learning. It may differ from the
dataset d̄i actually owned by data provider i. Similarly, the reported cost type
γ̂i may differ from the true cost type γi.

Step 2. The coordinator chooses the optimal acceptance ratios
Then, the coordinator decides how many data to accept from each data

provider. It chooses di ≤ d̂i, i = 0, . . . , n − 1 that maximize the social sur-
plus. Equivalently, the coordinator calculates the optimal acceptance ratio ηi ∈
[0, 1]dim(di) = di � d̂i such that di = d̂i � ηi, where [0, 1] denotes the interval
between 0 and 1.

The optimal acceptance ratios (η∗
0 , . . . , η∗

n−1) = η∗ are calculated according
to the following formula:

η∗ = argmaxη∈[0,1]dim(xi)×n{S(x̂ � η, γ̂)} (18)

= argmax
η∈[0,1]dim(di)×n

I(d̂ � η) −
n−1∑

i=0

ci(d̂i � ηi, γ̂i).

Because different (d̂, γ̂) results in different η∗, η∗ is written as η∗(d̂, γ̂). Cor-
respondingly, the maximum producer surplus is denoted by S∗(d̂, γ̂) = I(d̂ �
η∗(d̂, γ̂)) − ∑n−1

i=0 ci(d̂i � η∗
i (d̂, γ̂), γ̂i).

It is worth noting that although S∗(d̂, γ̂) and S(d,γ) both represent producer
surplus, they are different functions. The first parameter d in S(·) is the accepted
dataset, whereas the first parameter d̂ in S∗(·) is the claimed dataset. d and d̂

are related by d = d̂ � η∗.
Step 3. Data providers contribute accepted datasets to federated learning
In this step, data providers are required to contribute the accepted dataset

d̂�η∗ to federated learning. Since in the first step, data provider i has claimed the
ability to offer a dataset no worse than d̂i, if it cannot contribute d̂i �η∗

i ≤ d̂i, we
impose a high punishment on it. With the contributed datasets, data providers
collaboratively produce the output virtual product, bringing income I(d̂ � η∗)
to the federation.

Step 4. The coordinator makes transfer payments to data providers according
to the PVCG sharing rule
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In this final step, the coordinator pays data providers according to the PVCG
sharing rule. The PVCG payment

pi(·) = τi(·) + h∗
i (·) (19)

is composed of two parts, the VCG payment τi and the optimal adjustment
payment h∗

i . The VCG payment is designed to induce truthfulness, i.e., the
reported capacity limits d̂ and reported cost type γ̂ are equal to the true capacity
limits d̄ and true cost type γ. The adjustment payment is optimized so that ex-
post individual rationality and ex-post weak budget balancedness can also be
attained.

With η∗ calculated in Step 2, the VCG payment τi to data provider i is:

τi = S∗(d̂, γ̂) − S∗
−i(d̂−i, γ̂−i) + c(d̂i � η∗

i (x̂, γ̂))

= [I(d̂ � η∗(d̂, γ̂)) − I(d̂−i � η−i∗(d̂−i, γ̂−i))]

−
n−1∑

k=0, �=i

[c(d̂k � η∗
k(d̂, γ̂, θ̂), γ̂k) − c(d̂k � η−i∗

k (d̂−i, γ̂−i, θ̂), γ̂k)], (20)

where (d̂−i, γ̂−i) denotes the claimed datasets and the reported cost types
excluding data provider i. η−i∗ and S∗

−i(d̂−i, γ̂−i) are the corresponding optimal
acceptance ratios and maximum producer surplus. Note that η−i∗ is different
from η∗

−i: the former maximizes S(d̂−i � η−i, γ̂−i), whereas the latter is the
component of η∗ that maximizes S(d̂�η, γ̂). τ = (τ0, . . . , τn−1) is a function of
(d̂, γ̂), written as τ (d̂, γ̂).

The adjustment payment hi(d̂−i, γ̂−i) is a function of (d̂−i, γ̂−i). The optimal
adjustment payments (h∗

0(·), . . . , h∗
n−1(·)) = h∗(·) are determined by solving the

following functional equation (a type of equation in which the unknowns are
functions instead of variables; refer to [11] for more details):

n−1∑

i=0

ReLu[−(S∗(d,γ) − S∗
−i(d−i,γ−i)) − hi(d−i,γ−i)]

+ ReLu{
n−1∑

i=0

[(S∗(d,γ) − S∗
−i(d−i,γ−i) + hi(d−i,γ−i)] − S∗(d,γ)} (21)

≡ 0, ∀(d̄,γ) ∈ supp(Prior(d,γ)),

where supp(Prior(d,γ)) is the support of the prior distribution Prior(d,γ) of the
true parameters (d,γ). Support is a terminology from measure theory, defined as
supp(Prior(d,γ)) = {(d,γ)|Prior(d,γ) > 0}. In general, there is no closed-form
solution to Eq. 21, so we employ neural network techniques to learn the solution,
as is explained in the following sub-section.

Through rigorous mathematical derivation, we can prove that with some
reasonable assumptions, the PVCG payment rule thus calculated is dominant
incentive compatible, allocative efficient, ex-post individual rational, and ex-post
weak budget balanced. For detailed proofs of these properties, refer to [3].
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5.2 Learning the Optimal Adjustment Payments

We can prove that the solution h∗(·) to Eq. 21, if existing, is also a solution to
the following minimization problem:

h∗(·) = argminh(·)E(x̄,γ ,θ){LOSS}, (22)

where the expectation is over the prior distribution of (x̄,γ,θ). Here, we bring
back the valuation type θ because we want the adjustment payments applicable
to all possible θ. Note that different θ results in different federation income
function I(d̂ � η). Hence the maximum producer surplus also depends on θ.

LOSS is defined as

LOSS = Loss1 + Loss2 = 0, (23)

where

Loss1 =
n−1∑

i=0

ReLu[−(S∗(x̄,γ,θ) − S∗
−i(x̄−i,γ−i,θ))

− hi(x̄−i,γ−i,θ)] and (24)

Loss2 = ReLu[
n−1∑

i=0

[(S∗(x̄,γ,θ) − S∗
−i(x̄−i,γ−i,θ))

+ hi(x̄−i,γ−i,θ)] − S∗(x̄,γ,θ)]. (25)

This fact informs us that we can learn the optimal adjustment payments h∗(·)
by minimizing the expected LOSS function. Also, we know neural networks can
approximate arbitrary continuous functions to arbitrary precisions [7]. There-
fore, we construct n neural networks NETh

i , i ∈ N to approximate hi(·), i ∈ N .
Output nodes of these n networks, denoted by NETh

i .o, i ∈ N , are combined into
a single composite neural network in Fig. 2 with the loss function in Eq. 23–25.

Fig. 2. The structure of the composite neural network of PVCG
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The training data (d̄t,γt,θt), t = 0, 1, . . . , T are drawn from their prior dis-
tribution Prior(d̄,γ,θ) and T is the sample size. For the tth sample, τ t =
τ (d̄t,γt,θt), S∗t = S∗(d̄t,γt,θt), and S∗t

−i = S∗(d̄t
−i,γ

t
−i,θ

t). Since we only
need synthetic data to train this network, we can generate as many data as
needed. As a result, LOSS can be minimized to its theoretical minimum almost
perfectly in experiments.

Fig. 3. Training loss v.s. iterations (left) and PVCG payment v.s. reported capacity
limit & reported cost type (right)

To illustrate the effectiveness of this neural network method, we learned the
adjustment payments for a hypothetical scenario. We set the individual valuation
functions and individual cost functions as follows:

v(d) = θi

√
√
√
√n(

n−1∑

k=0

dk) and ci(di, γi) = γidi, i ∈ N. (26)

We report the experiment results for n = 10,m = 2, Prior(x̄i) =
Uniform[0, 5], i ∈ N , Prior(γi) = Uniform[0, 1], i ∈ N , and Prior(θj) = [0, 1], j ∈
M . We let NETh

i , i ∈ N each have three 10-dimensional hidden layers.
The loss curve is shown in the left figure of Fig. 3. The training loss fast

converges to 0, as expected. After we obtain the trained networks [NETh
i ], i ∈ N ,

we can use trained networks to calculate PVCG payments p(d̂, γ̂, θ̂) for any
reported (d̂, γ̂, θ̂). For illustration, we draw p0, the payment to data provider 0,
with respect to d̂0 and γ̂0 in the right figure in Fig. 3, fixing parameters of other
participants at d̂i ≡ 2.5, γ̂i ≡ 0.5, i ∈ N, �= 0, θ̂j ≡ 0.5, j ∈ M .

We can see that p0 increases with d̄0. This indicates that the more data
a data provider claim, the more data are accepted from this data provider;
hence, it receives higher payments. Also, p0 remains constant with γ0 when γ0 is
below a threshold and sharply drops to around 0 when γ0 passes the threshold.
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This implies that the payment to a data provider should only be affected by
its contribution to the federated learning process rather than its cost, but if a
data provider’s cost is too high, the optimal social choice is to exclude this data
provider from the federation and thus pay it nothing.

6 Summary

In this chapter, we set up a game-theoretic framework for studying FL incentive
mechanisms. We introduced the key concepts, mathematical symbols, definitions,
and key assumptions that are necessary for readers to understand the FL incen-
tive mechanism design problem and its objectives. Then, we suggest breaking
down the original complicated problem into two sub-problems: a demand-side
problem and a supply-side problem. We provide a checklist for FL practitioners
to quickly understand the specifications and objectives of any given FL incentive
mechanism so that real-world FL practitioners can choose the most appropriate
mechanism without understanding its internal workings.

As examples, we introduced two FL incentive mechanisms designed under our
proposed framework: the Crémer-McLean mechanism on the demand side and
a VCG-based procurement auction, PVCG, on the supply side. These mecha-
nisms both guarantee truthfulness, i.e., they encourage participants to truthfully
report their private information and offer all their data to the federation. The
Crémer-McLean mechanism, together with PVCG, attains allocative efficiency,
individual rationality, and weak budget balancedness at the same time, easing
the tension between these objectives.
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Abstract. Recommender systems are heavily data-driven. In general,
the more data the recommender systems use, the better the recommen-
dation results are. However, due to privacy and security constraints,
directly sharing user data is undesired. Such decentralized silo issues
commonly exist in recommender systems. There have been many pilot
studies on protecting data privacy and security when utilizing data silos.
But, most works still need the users’ private data to leave the local data
repository. Federated learning is an emerging technology, which tries to
bridge the data silos and build machine learning models without compro-
mising user privacy and data security. In this chapter, we introduce a new
notion of federated recommender systems, which is an instantiation of
federated learning on decentralized recommendation. We formally define
the problem of the federated recommender systems. Then, we focus on
categorizing and reviewing the current approaches from the perspective
of the federated learning. Finally, we put forward several promising future
research challenges and directions.

1 Introduction

The recommender system (RecSys) plays an essential role in real-world applica-
tions. It has become an indispensable tool for coping with information overload
and is a significant business for a lot of internet companies around the world. In
general, the more data RecSys use, the better the recommendation performance
we can obtain. The RecSys need to know as much as possible from the user to
provide a reasonable recommendation. They collect the private user data, such
as the behavioral information, the contextual information, the domain knowl-
edge, the item metadata, the purchase history, the recommendation feedback,
the social data, and so on. In pursuit of better recommendations, some recom-
mender systems integrate multiple data sources from other organizations. All
these informative user data is centrally stored at the database of each organiza-
tion to support different kinds of recommendation services.

Liu Yang and Ben Tan are both co-first authors with equal contribution. This work
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Fig. 1. The illustration of a Federated Recommender System. FedRec addresses the
data silo issue and builds recommender systems without compromising privacy and
security.

However, data centralization in RecSys could lead to serious privacy and
security risks. For example, recommenders may unsolicitedly collect users’ pri-
vate data and share the data with third parties for profits. Besides, user privacy
may also leak during data transmission. Moreover, in recent years, several acts
protecting the privacy and security have come out, such as the General Data
Protection Regulation (GDPR)1. The protection of privacy and security is an
integral part of the RecSys. There have been pilot studies to protect user privacy
and data security in the RecSys [6]. These approaches typically utilize obfusca-
tion or cryptography techniques. Some of them add noises in different procedures
of the recommendation. Others encrypt data before transmitting it to the rec-
ommender. However, most of them still need private data to leave their local
data repository. How to enable recommendations across data silos securely and
privately remains a challenging task.

Federated learning is an emerging technology for decentralized machine learn-
ing [13]. It protects parties’ data privacy in the joint training of machine learn-
ing models. Parties could be mobile devices or organizations [26]. User private
data is stored locally at each party. Only the intermediate results, e.g., param-
eter updates, are used to communicate with other parties. Federated learning
allows knowledge to be shared among multiple parties without compromising
user privacy and data security. Compared with the conventional data-centralized
machine learning approaches, federated learning reduces both the privacy risks
and costs. This area has been paid more and more attention recently, in both
academia and industry.

1 GDPR is a regulation in EU law on data protection and privacy in the European
Union and the European Economic Area. https://gdpr.eu/.

https://gdpr.eu/
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In this chapter, we introduce a new notion of Federated Recommender Sys-
tem (FedRec), as shown in Fig. 1. Compared to the conventional RecSys, FedRec
primarily protects user privacy and data security through decentralizing private
user data locally at each party. According to the data structure of recommen-
dation tasks, we conclude the FedRec categorization. Moreover, we illustrate
with typical real-world scenarios for each categorization and explain the existing
solutions according to each scenario. When building real-world FedRec, people
could encounter different challenges. On the one hand, the prevalent RecSys
is so complicated and continuously improved with the state-of-the-art machine
learning algorithms. On the other hand, there exist many open questions as new
challenges that recommendations bring to federated learning. For these chal-
lenges, we categorize them at two levels, i.e., algorithm-level and system-level,
and discuss the solutions in the existing works.

Overall, our contributions are threefold: 1) We propose the notion of FedRec
and provide a categorization method according to the data structure of the
RecSys; 2) We make a first survey on the existing works about FedRec in terms
of each category; 3) We give a discussion about the challenges that exist in the
FedRec.

2 Federated Recommender System

To protect privacy in RecSys, we introduce the new notion of the Federated
Recommender System (FedRec). FedRec adopts the data decentralization archi-
tecture. Parties keep their private data locally and train recommendation models
collaboratively in a secure and privacy-preserving way. Each party could be a
RecSys or data provider. A RecSys party basically contains the rating informa-
tion, the user profiles, and the item attributes. A data provider party owns more
user profiles or item attributes. In the following parts of this section, firstly, we
define the FedRec. Secondly, we conclude the categories of FedRec in terms of its
data structure. In each category, we give the problem definition, describe typical
real-world scenarios, and discuss corresponding related works.

2.1 Definition of Federated Recommender System

Define N parties, K of whom are recommender systems, i.e., Gk∈{1,...,K} =
{Uk, Ik,Rk,Xk,X

′
k}. Uk = {u1

k, u
2
k, ..., u

nk

k } and Ik = {i1k, i
2
k, ..., i

mk

k } stand
for the user set and item set respectively. Rk ∈ R

nk×mk is the rating matrix.
Xk ∈ R

nk×dk and X ′
k ∈ R

mk×d
′
k represent the user profiles and item attributes

respectively. The other H parties are data providers containing user profiles, i.e.,
Dh∈{1,...,H} = {Uh,Xh}, or item attributes, i.e., Dh = {Ih,X

′
h}.

Definition 1. FedRec aims to collaboratively train recommendation model(s)
among multiple parties without direct access to the private data of each other:
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arg min
θ̃k

K∑

k=1

L(Rk, f
fed

θ̃k
(Uk, Ik|Gk,z(Gk′ ∈{1,...,K}\{k}),

z(Dh∈{1,...,H}))),

(1)

where L(·, ·) is a loss function, ffed

θ̃k
(·, ·) is the prediction model for the kth

FedRec, and z(·) stands for the data processing technique that exchanges inter-
mediate results between parties instead of the raw data.

We expect that the performance of FedRec is better than the performance of
each RecSys training with its own data, while very close to the performance of
simply aggregating all parties’ data together without considering data privacy
and security:

|V (ffed

θ̃k
) − V (fθk

)| > δ and |V (fsum
θ̄k

) − V (ffed

θ̃k
)| ≤ ε, (2)

where δ ∈ R
+, ε ∈ R

∗, and V (·) is the evaluation function utilized by RecSys.
The prediction model fθk

is obtained via separately training the model with the
recommender’s own data:

arg min
θk

L(Rk, fθk
(Uk, Ik|Gk)). (3)

The recommender fsum
θ̄k

is obtained via training the recommendation model with
all parties’ data simply consolidated together:

arg min
θ̄k

K∑

k=1

L(Rk, f
sum
θ̄k

(Uk, Ik|Gk′ ∈{1,...,K},

Dh∈{1,...,H})).

(4)

2.2 Categorization of Federated Recommender System

We categorize the typical scenarios of FedRec according to the data structure
of the RecSys. RecSys mainly consists of two types of entities, i.e., users and
items. Shared users or items naturally connect the parties of FedRec. As shown
in Fig. 2(a), 2(b) and 2(c), we divide FedRec into Horizontal FedRec, Verti-
cal FedRec and Transfer FedRec according to the sharing situation of users
and items. In this subsection, we describe the details of each category and pro-
vide typical scenarios for illustration. Related works about FedRec are discussed
under the corresponding categories.

Horizontal Federated Recommender System. As shown in Fig. 2(a), the
horizontal FedRec is introduced where items are shared, but users are different
between parties. Under this setting, the parties could be in the form of individual
users or sets of users.
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Definition 2. Given N parties and each party contains a set of users or an indi-
vidual user, i.e., Gi∈{1,...,N} = {Ui, Ii,Ri,Xi,X

′
i}, Ui �= Uj , Ii = Ij ,∀Gi,Gj , i �=

j, horizontal FedRec aims to train a recommender model by integrating users’ his-
torical behaviors on shared items from different parties, without revealing user’s
privacy:

Fig. 2. The categorization of federated recommender systems.
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arg min
θ̃

N∑

k=1

L(Rk, f
fed

θ̃
(Uk, Ik|z(Gk′∈{1,...,K}\{k}))). (5)

Typical Scenario of Horizontal FedRec. As shown in Fig. 3, users enjoy a per-
sonalized movie recommendation service provided by a movie recommender. But
they do not want their private data to be collected. Inside the recommender,
to preserve the data privacy of each user, we prefer to have the training data
distributed on the local devices. Each user device is regarded as a party con-
taining the rating information between one specific user and all items. Those
devices can build a RecSys together to achieve both personalization and privacy
requirements.

Fig. 3. The typical scenario of Horizontal FedRec. Each party is the device of an
individual user. They share the same items but have different users.

Several current works focus on this scenario. [4] proposed a Federated Col-
laborative Filter (FCF) algorithm based on matrix factorization. In traditional
RecSys, the matrix factorization algorithms work by decomposing the user-item
rating matrix into the product of two lower matrices, i.e., the user latent factors
matrix and the item latent factors matrix. In the FedRec setting, FCF introduces
a central server to maintain the shared item latent factors, while the user latent
factors are stored locally on each device. In each iteration of training, the server
distributes the item latent factors to each party. Then, parties update their user
latent factor by local rating data and send the item latent factor updates back to
the server for aggregation. During the training process, only the model updates
are transmitted. No users’ private data is collected. To avoid interaction with a
third-party central server, [8] provided a fully-decentralized matrix factorization
approach without central server. Parties communicate directly with each other to
update the model. Besides, [5] proposed another decentralized method of matrix
factorization. Local models are exchanged in the neighborhood, not with an arbi-
trary party. This approach further improves the performance of the algorithm.
Moreover, [2] proposed a federated meta-learning framework for the recommen-
dation. It regards the recommendation for each user as one separate task and
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designs a meta-learner to generate each task parameters. This framework utilizes
a support set to generate the recommendation model on each party and com-
putes the loss gradient on a query set. In addition, [11] offered another federated
meta-learning algorithm for recommendation. It needs no separate support and
query sets. The latter one performs relatively well within considerably fewer
episodes in the experiments. Furthermore, [16] proposed a distributed factoriza-
tion machine algorithm, which is known as DiFacto. It addresses the efficiency
problem when scaling to large amounts of data and large numbers of users.

All the works mentioned above do not adopt other security methods. They
own a privacy advantage compared to the data-centralized approaches. How-
ever, privacy risks still exist when transferring plain-text model parameters. A
few works further utilize the obfuscation methods based on the data-centralized
architecture. The obfuscation methods contain the anonymization, the random-
ization, and the differential privacy techniques. Among them, the differential
privacy (DP) technique is a popular method. It incorporates random noise to
anonymize data and protect privacy. It also offers a provable privacy guaran-
tee and low computation costs. [19] proposed the private social recommendation
(PrivSR) algorithm by utilizing the DP technique. This approach is based on
a matrix factorization method with the friends-impacting regularizer. Since an
inference attack can be conducted from the contribution of one particular user,
the DP noise is added into the objective function to perturb the individual’s
involvement. [14] proposed the federated online learning to the rank algorithm
by using users’ online feedback. It trains the ranking model on local devices in
a way that respects the users’ privacy and utilizes the DP technique to protect
model privacy on the server. DP noise is injected into the communicated values
before transmitted to the server, which is different from the PrivSR. However,
DP also introduces additional noise. These works involve a trade-off between
performance and privacy.

To avoid performance loss, the other works make use of the cryptography
techniques instead of the obfuscation methods. The cryptography methods con-
tain homomorphic encryption (HE), secure multi-party computation (SMC) pro-
tocols, etc. They guarantee good security protection without the loss of accu-
racy. HE techniques have been widely utilized because it allows computing over
encrypted data without access to the secret key. [1] proposed the secure fed-
erated matrix factorization algorithm (FedMF) with HE schemes. Each user
encrypts the item latent factor updates with HE before transmitting. Besides,
the item latent factor is aggregated and maintained by the central server under
the encrypted form. No information of latent factors and updates will be leaked
to the introduced server. [15] provided an efficient privacy-preserving item-based
collaborative filtering algorithm. An SMC protocol is designed to compute the
summation of private values of each party without revealing them. Then with
this protocol, the PrivateCosine and PrivatePearson algorithm are implemented
to calculate the item correlations. Final recommendations are generated using
the correlations without revealing privacy.
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Vertical Federated Recommender System. The vertical FedRec is shown
in Fig. 2(b). Two parties shared the same user set, but different item set or
feature spaces. Under this setting, the parties could be different recommenders
or data providers.

Definition 3. Given two parties, one of whom is a RecSys, i.e., GA =
{UA, IA,RA,XA,X

′
A}, the other one is a data provider or the other recom-

mender. Taking a data provider as an example, we have DB = {UB ,XB}, and
UA = UB = U . The vertical FedRec aims to train a recommender model by
exploiting the side information of users from the data provider or other recom-
menders. The training process is completed in a secure and privacy-preserving
manner:

arg min
θ̃

L(RA, ffed

θ̃
(U , IA, z(XB)|z(DB))). (6)

Typical Scenario of Vertical FedRec. As illustrated in Fig. 4, the participants
contain a RecSys, and a data provider. For instance, one party is a book RecSys
and the other party is a data provider who can offer rich user profiles. They have
a large set of users in common. The vertical FedRec helps to build a better book
recommendation service without data privacy leakage.

Fig. 4. The typical scenario of Vertical FedRec. One party is a book recommender,
while the other one is a data provider with user profiles. They share the same users
but have different items.

Several existing works have been designed for such a feature distributed learn-
ing problem where party A and B hold different feature sets. [10] proposed an
asynchronous stochastic gradient descent algorithm. Each party could use an
arbitrary model to map its local features to a local prediction. Then local pre-
dictions from different parties are aggregated into a final output using linear and
nonlinear transformations. The training procedure of each party is allowed to be
at various iterations up to a bounded delay. This approach does not share any
raw data and local models. Therefore, it has fewer privacy risks. Besides, for a
higher level of privacy, it can easily incorporate the DP technique. Similar to
horizontal FedRec, there are also works that further utilize cryptography tech-
niques. [3] presented a secure gradient-tree boosting algorithm. This algorithm
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adopts HE methods to provide lossless performance as well as preserving pri-
vacy. And [7] proposed a secure linear regression algorithm. MPC protocols are
designed using garbled circuits to obtain a highly scalable solution.

Parties of vertical FedRec could also be two recommenders with different item
sets. For instance, a movie RecSys and a book RecSys have a large user overlap-
ping but different items to recommend. It is assumed that users share a similar
taste in movies with books. With FedRec, the two parties want to train bet-
ter recommendation algorithms together in a secure and privacy-preserving way.
[21] proposed a secure, distributed item-based CF method. It jointly improves
the effect of several RecSys, which offer different subsets of items to the same
underlying population of users. Both the predicted ratings of items and their
predicted rankings could be computed without compromising privacy nor pre-
dictions’ accuracy.

Transfer Federated Recommender System. As Shown in Fig. 2(c), in
the transfer federated recommender system, neither users nor items are shared
between parties. In most cases, the parties are different recommender systems.

Definition 4. Given two parties, who are different recommender systems,
i.e., GS = {US , IS ,RS ,XS ,X

′
S} as the source-domain party, GT =

{UT , IT ,RT ,XT ,X
′
T } as the target-domain party, and US �= UT , IS �= IT . Gen-

erally, RS contains much more rating information than RT . Transfer FedRec
aims to train a recommender model by transferring knowledge from the source-
domain party to the target-domain party, without revealing user privacy:

arg min
θ̃

N∑

k∈{S,T}
λkL(Rk, f

fed

θ̃k
(Uk, Ik|z(Gk′∈{S,T}\{k})), (7)

where λk is the weight for balancing the performance of two parties.

Typical Scenario of Transfer FedRec. As shown in Fig. 5, a popular book rec-
ommender system in region A wants to help another new movie recommender
system in region B to collaboratively learn a movie recommendation model. In
this case, both users and items of the two parties are different.

Since both users and items are different between parties, it’s challenging to
construct a federated recommender system directly. However, federated transfer
learning [20] offers a feasible scheme. A limited set of co-occurrence samples is
used as a “bridge” to transfer knowledge from the source domain to the target
domain. At first, parties update their neural networks using local data. Then,
they together optimize the loss on the co-occurrence samples. The secret sharing
technique is adopted to design a secure and efficient algorithm. Similarly, this
algorithm can be applied in the transfer FedRec scenario via co-occurrence users
or items.

As we have reviewed, horizontal FedRec managing RecSys across individ-
uals or user sets is important and attracts lots of research attention. Vertical
FedRec and transfer FedRec building RecSys among organizations are typical
tasks in recommendation businesses. Yet, vertical and transfer FedRec are still
underexplored areas with a lot of opportunities.
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Fig. 5. The typical scenario of Transfer FedRec. One party is a book recommender,
while the other one is a movie recommender in the different region. They share neither
users nor items.

3 Challenges and Future Directions

In this section, we discuss the possible challenges when constructing FedRec. An
industrial FedRec is more than the recommendation algorithms. It should also
contain a comprehensive design of the system. Therefore, our discussion about
the challenges is divided into the algorithm level and the system level. At the
algorithm level, we discuss the possible difficulties of designing different federated
recommender algorithms using popular models in the current recommendation
area. Meanwhile, at the system level, we list several critical challenges of design-
ing FedRec in terms of the characteristics of RecSys. Besides, we discuss current
solutions for all the problems mentioned.

3.1 Algorithm-Level Challenges

Federated Deep Model for Recommendation. Deep recommendation
models could cause severe problems when utilizing non-linear activation func-
tions. Complex functions, e.g., tanh and relu activation functions, are not well
supported by HE. This limitation seriously affects the deep models’ applica-
tion in FedRec. For solving this problem, [9] utilized low degree polynomials
as the approximation of activation functions. There exists a trade-off between
the model performance and the degree of polynomial approximation. This work
provides the polynomial approximations with the lowest degrees as possible for
three common activation functions, i.e., ReLU, Sigmoid, and Tanh.

Federated Graph Model for Recommendation. Protecting the privacy of
structure information in the graph is the main difficulty of federalizing the graph-
based models. The Graph-based models for recommendations utilize the relation
information between users and items to enrich their representations. The relation
information is more complicated than the feature information. Different secure
methods are adopted to protect the privacy of the graph in the present works.
For instance, [22] utilized a graph sampling method to improve both the effi-
ciency and privacy of the privacy-preserving association rules mining approaches.
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Users decide locally and privately, whether to become part of the sample. They
are in control of their data and maintain sensitive item sets. Users with common
interests are represented by the user groups. Neither the recommender nor other
users know about the specific item sets of one particular user.

Federated Reinforcement Learning Model for Recommendation. The
challenge of federalizing reinforcement learning models is to delicately design
the state, action, and reward to catch the instant user interest and decide what
to share among parties. Although reinforcement learning has an vital role in
RecSys, its application in FedRec is still underexplored. Yet, there have been
several works about federated reinforcement learning applied in other areas. [18]
provided the lifelong federated reinforcement learning architecture for robots to
perform lifelong learning of navigation in cloud robotic systems. A knowledge
fusion algorithm and transfer learning approach are designed to fuse the robots’
prior knowledge and make robots quickly adapt to the new environments.

3.2 System-Level Challenges

Design of Recall and Ranking in FedRec. The main challenge in the sys-
tem level is to design privacy-preserving recall and ranking procedures with
real-time feedback. RecSys sequentially adopts these two procedures to obtain
the final recommendations. Conventionally, RecSys centrally collects the users’
private data, and these two steps are designed to carry out on the central server.
However, concerning user privacy, FedRec should modify the original design.

We discuss two extreme cases. The first case is server-side recall and par-
ticipant side ranking. Firstly, each party sends the encrypted “noisy” model
parameters to the server. Then recall procedure is carried out on the server-side.
The resulted top-N items are then sent back to each party. Then, the ranking
procedure is carried out at each party. There is a chance of privacy leakage
because the server knows the exact results of recall. Several works have tried
to address this problem. For example, [12] utilizes the private stream searching
technique to obtain the result delivery without exposing its contents. The second
case is participant-side recall and ranking. The server sends all item attributes
and content to each party. Then, the whole recall and ranking procedures are
carried out on the participant side. This design contains no leak of user pri-
vacy but will result in copious communication costs. Besides, it requires lots of
computation resources and local storage for each party. However, with the fast
development of 5G technology2 in recent years, the communication cost problem
could be alleviated to some extent.

Communication Cost in FedRec. Communication cost is one of the major
problems that affect the performance of federated learning. Because of the

2 5G is the fifth generation wireless technology for digital cellular networks.
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high-dimensional features and real-time requirement of RecSys, the communi-
cation cost problem is much serious in FedRec. Pilot works have tried to com-
press the high-dimensional features. Communication-mitigated federated learn-
ing (CMFL) [23] assumes that some local optimizations are not helpful to the
global convergence, therefore reducing the total bits transferred in each update
via data compression. CMFL identifies irrelevant updates made by each party
and precludes them from updating. In more detail, it provides clients with feed-
back information regarding the global tendency of model updating. Each client
checks if its update aligns with this global tendency and is relevant enough to
model improvement.

Flexibility and Scalability in FedRec. As the number of parties keeps
increasing, the challenge is to design better model-parallel and model-updating
scheduling schema to guarantee convergence of the FedRec models. Many of the
federated learning systems adopt a synchronous client-server architecture [17,25],
which is inflexible and unscalable. In the RecSys, millions of users consume the
recommendation services. Too many parties checking in at the same time can
congest the network on the central server. It is hard to guarantee that all par-
ties could participate in the whole process of federated training. As a result,
the performance of the federated model severely suffers. Various solutions have
been designed to address this challenge. Based on the client-server architecture,
[25] proposed a new asynchronous federated optimization algorithm. The cen-
tral server immediately updates the global model whenever receiving a local
model from one arbitrary party. And the communication between parties and
the central server is non-blocking. Abandoning the client-server architecture, [8]
proposed the gossip learning algorithm, which can be regarded as a variant of
federated learning with a fully decentralized architecture. Parties directly com-
municate with each other for collaborative training.

Non-IID Data in FedRec. The “long tail” phenomenon is common in RecSys
and makes the non-IID data problem inevitable in FedRec. The performance of
federated learning severely degrades due to the highly skewed non-IID. As the
distance between the data distribution at each party becomes more significant,
the accuracy of the model decreases accordingly. To alleviate the non-IID prob-
lem, a data-sharing strategy has been proposed by reducing the distance [27].
This approach shares a global data set of a uniform distribution over all classes
among parties. In the initialization stage, a warm-up model, trained on the glob-
ally shared data, is distributed to each party instead of a random model. Then,
the shared data and private data are used together to train the local model at
each party.

Malicious Participants Cooperation in FedRec. In reality, the parties in
the RecSys have a high probability of being untrustworthy [6]. These parties do
not follow the frequently used assumption that both the participants and the
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central server are honest-but-curious. They may behave incorrectly in gradient
collecting or parameter updating, while the servers may be malicious as well.
Therefore, the honest parties could have a privacy leak in these scenarios. Among
the existing solutions, [24] proposed the DeepChain as one possible solution,
which combines the Blockchain3 and federated learning. Based on the Blockchain
technique, DeepChain provides a value-driven incentive mechanism to force the
participants to behave correctly, which preserves the privacy of local gradients
and guarantees the auditability of the training process. Smart contracts, i.e.,
the trading contract and the processing contract, are utilized to guide the secure
training process.

4 Conclusion

In this chapter, we investigate the user privacy and data security in RecSys. The
risk of security and privacy is mainly raised by the central collection and stor-
age of users’ private data. Considering the growing privacy concern and related
acts like GDPR, we introduce the new notion of the federated recommender
system (FedRec). With FedRec, multiple parties could collaboratively train bet-
ter recommendation models with users’ private data maintained locally at each
party. We categorize FedRec according to the data structure of RecSys. Many
existing works focus on the horizontal FedRec scenarios, while the vertical and
transfer FedRec have been given less attention. Besides, many current prevailing
recommendation algorithms have not been applied in FedRec, either. Therefore,
FedRec is a promising direction with huge potential opportunities. In our future
work, we will concentrate on implementing an open-source FedRec library with
rich recommendation algorithms and overcoming the system-level challenges as
they arise.
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Abstract. Open banking enables individual customers to own their
banking data, which provides fundamental support for the boosting of
a new ecosystem of data marketplaces and financial services. In the
near future, it is foreseeable to have decentralized data ownership in the
finance sector using federated learning. This is a just-in-time technology
that can learn intelligent models in a decentralized training manner. The
most attractive aspect of federated learning is its ability to decompose
model training into a centralized server and distributed nodes without
collecting private data. This kind of decomposed learning framework has
great potential to protect users’ privacy and sensitive data. Therefore,
federated learning combines naturally with an open banking data mar-
ketplaces. This chapter will discuss the possible challenges for applying
federated learning in the context of open banking, and the corresponding
solutions have been explored as well.

Keywords: Federated learning · Heterogeneous federated learning ·
Few-shot federated learning · One-class federated learning · Open
banking · Data marketplace

1 Introduction

As a subspecies to the open innovation [7,8] concept, open banking is an emerg-
ing trend in turning banks into financial service platforms, namely banking as
a service. From a financial technology perspective, open banking refers to: [14]
1) the use of open application programming interfaces (APIs) that enable third-
party developers to build applications and services around the financial institu-
tion, 2) greater financial transparency options for account holders ranging from
open data to private data, and 3) the use of open-source technology to achieve
the above. [6] Open banking can be naturally evolved into a new ecosystem of
data marketplaces where participants can buy and sell data.

As stated by McKinsey & Company [6], open banking could bring benefits to
banks in various ways, including better customer experience, increased revenue
streams, and a sustainable service model for under-served markets. Open banking
will form a new ecosystem for financial services by sharing banking data across
organizations and providing new services. However, there are inherent risks in
sharing banking data, which is sensitive, privacy-concerned, and valuable. It is
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critical to developing processes and governance underpinning the technical con-
nections. Moreover, the European Union’s General Data Protection Regulation
(GDPR) [12] enforces organizations to pay great attention when sharing and
using customers’ data.

In the new financial ecosystem, a number of small and medium-sized enter-
prises will provide novel applications using artificial intelligence (AI) technology.
Intelligent applications are already driving a dramatic shift in how financial insti-
tutions attract and retain active customers. In recent times AI has become widely
applied to review small loan applications fast and automatically. In this AI wave,
the machine learning (ML) model with a deep neural network architecture has
been a huge success in many financial applications. Imagine the open banking
scenario in the near future, with a vast amount of customer data derived from
various financial service providers that can be integrated and utilized to train
a comprehensive AI model superior to all existing models. Federated learning
(FL) is a decentralized ML framework that is able to collaboratively train an AI
model while preserving user privacy. It is naturally suited to distributed data
ownership settings in an open banking scenario.

In the context of open banking, federated learning needs to be adapted and
enhanced to solve a few practical challenges, such as broad heterogeneity across
users, limited times to access personal data, narrow scope of one user, and man-
aging incentives for data contributors. In the following sections, we will briefly
introduce applications of open banking, and then discuss the practical challenges
with corresponding techniques that present solutions.

2 Applications of Open Banking

2.1 Open Innovation and Open Banking

Open innovation is “a distributed innovation process based on purposively man-
aged knowledge flows across organizational boundaries, using pecuniary and non-
pecuniary mechanisms in line with the organization’s business model” [7]. The
flows of knowledge may involve various ways to leverage internal and external
resources and knowledge. Open banking is a kind of open innovation in the
banking industry. By leveraging both internal and external knowledge, many
innovative applications will emerge to benefit the whole finance industry, includ-
ing both banks and third-party companies.

Open Banking. [6] can be defined as a collaborative model in which banking
data is shared through APIs between two or more unaffiliated parties to deliver
enhanced capabilities to the marketplaces. The potential benefits of open bank-
ing are substantial including customer experience, revenue, and new service
models. It will also improve the finance industry by including more small and
medium-sized players with innovative ideas and fine-grained service for different
segmentations of customers. In addition to well-known players like Mint, exam-
ples include alternative underwriters ranging from Lending Club in the United
States to M-Shwari in Africa to Lenddo in the Philippines, and payments dis-
ruptors like Stripe and Braintree.



242 G. Long et al.

The United Kingdom’s. The Competition and Markets Authority issued a ruling
in August 2016 that required the UK’s nine biggest UK retail banks at that time
– HSBC, Barclays, RBS, Santander, Bank of Ireland, Allied Irish Bank, Danske
Bank, Lloyds, and Nationwide – to allow licensed startups direct access to their
data down to the level of account-based transactions. By August 2020 there
were 240 providers regulated by the Financial Conduct Authority enrolled in
open banking. They include many providers of financial apps that help manage
finances as well as consumer credit firms that use open banking to access account
information for affordability checks and verification.

Australia launched an open banking project on 1 July 2019 as part of a
Consumer Data Rights (CDR) project of the Australian Treasury department
and the Australian Competition and Consumer Commission (ACCC). The CDR
is envisaged to become an economy-wide system that will enable the safe and
secure transfer of consumer data. CDR legislation was passed by the Australian
Parliament in August 2019. From 1 July 2020 Australia’s bank customers have
been being able to give permission to accredited third parties to access their
savings and credit card data. This enables customers to search for better deals
on banking products and to track their banking in one place.

China’s state media reports that China’s financial authorities plan to launch
new regulations and policies for the open banking sector and open APIs. Eco-
nomic Information Observer said that Chinese authorities will “unveil policies
in relation to the regulation of open API’s and accelerate the formulation of
regulatory standards in relation to open banking in China”. Chinese authorities
will also strengthen the regulation of client-end software provided by financial
institutions, and expand filing for mobile financial apps from trial areas to the
whole of the country. Some Internet giants have already dived into this new
trend. For example, Tencent Cloud and WeBank collaborate to launch a Fintech
Lab to explore open banking in China. PwC China also has an investigation
report with a high-level design for the open banking ecosystem in China [40].

2.2 Open Banking Related Applications

Open banking has significantly advanced along various pathways [30]. They
include enhancing intelligent applications in existing areas of banking, such as
fraud detection, assessment of loan or credit card, customer retention, and per-
sonalized service. Below we will introduce the recent developments in open bank-
ing related applications worldwide.

Payment Management: In February 2020 payments organization Nacha
announced a rollout of an online platform, namely Phixius, that integrates tech-
nology, rules, and participants to exchange payment-related information across
ecosystem participants. It is associated with the current reliance on proprietary
bilateral data-sharing agreements, which limits broader efficiency. The platform
is intended to enable companies to exchange payment-related information to
improve fraud protection, automate manual processes, and improve customer
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experiences. Moreover, digital payments company Payrailz announced a partner-
ship with a credit union and FinTech collaborator, namely Constellation Digital
Partners, to develop an elevated joint payment solution for credit union clients.

API Integration: The UK’s Starling Bank has been expanding its Business
Marketplaces for small businesses by integrating multiple ecosystem partici-
pants including Mortgage lender Molo, a freelance career management portal,
and accounting system PayStream. These participants can access Starling Bank
account data via an API, and it enables the financial institution to connect
businesses with integrated solutions. Moreover, in February 2020 the Common-
wealth Bank of Australia launched a free app that enables small businesses to
consolidate data from various platforms, such as Xero and Google Analytics.
This solution, Vonto, is designed to offer transparent and quick insights, con-
necting small business owners with 10 “key insights” each morning, including
cash flow, social media engagement, and website traffic. The UK’s Simply Asset
Finance collaborates with open banking platform AccountScore, to enable Sim-
ply to wield an API to unlock borrower data for deeper underwriting capabilities.
The companies said they will use the rich data set to assist lending decisions.

2.3 Federated Learning for Open Banking

Federated learning is a decentralized machine learning framework that can train
a model without direct access to users’ private data. The model coordinator and
user/participant exchange model parameters that can avoid sending user data.
However, the exchanging of model parameters, or gradients in machine learning
terminology, may cause data leakage [12]. Therefore, differential privacy [11]
technology is essential for federated learning to protect privacy from gradient-
based cyber-attack [1].

Data sharing is the key idea in open banking. As there are inherent risks dur-
ing data sharing, it is critical to develop processes and governance underpinning
the new trend [6]. Customers are more likely to not sell the data, but to use the
data to train a model in the local device. Moreover, as required by the GDPR,
the shared data for a particular financial service, e.g. credit card application,
cannot be used for another purpose, e.g. model training. It is therefore a natural
solution to integrate federated learning with an open banking data marketplaces.

Privacy concerns are top priority in federated learning. In most cases, mali-
cious attackers pretend to be a model coordinator of federated learning and can
then use gradient-based privacy attack methods to guess what user data look
like, to cause privacy leakage. Therefore, differential privacy, secure aggregation
[4], and homomorphic encryption are widely used methods for data protection
in the federated learning framework. This chapter does not discuss details of
privacy-preserving techniques and data encryption as they have been well stud-
ied in many literature reviews [26,32].

Incentive management is a practical challenge in open banking. Studies of
this problem are two-fold: 1) how to incentivize data owners to participate in
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federated learning by contributing their data, and 2) how to measure each par-
ticipant’s contribution. Different forms of incentives are possible, such as user-
defined utility and money-based rewards, and have been well discussed in the
literature [20,21,36,39].

Data heterogeneity is an inherent challenge in a large-scale system across
many organizations. In open banking, the user may come from different banks
with different feature spaces. The same user may have different pieces of infor-
mation in multiple banks. To utilize these data in federated learning, the major
issue is to align the heterogeneous structured data via horizontal/vertical feder-
ated learning and federated transfer learning [35].

Statistical heterogeneity is caused by the diverse nature of user behaviors.
Each user’s data may vary in its hidden distribution. This kind of heterogeneity
challenge widely exists in a large-scale machine learning system.

Model heterogeneity is the scenario that different participants may choose and
run a model with personalized model architectures. It is critical to solving the
problem of how a central server can aggregate information across participants
with heterogeneous models.

Charging by access times is possible in federated learning. Access to a user’s
profile is not unlimited and could be charged by times. This raises the ques-
tion of how the model trainer can complete the training process by accessing
a user’s profile in a few rounds, namely federated learning with few-shot round
communications.

Only positive labels arise because each user usually only has one-class data
while the global model trains a bi-class or multi-class classifier. For example, if
we want to train a fraud detection model, we find that most users only have non-
fraud data. Training on participants’ data with only positive labels is a challenge
known as a one-class problem. Aggregating these one-class classifiers is also a
new challenge in federated learning.

In the following sections, we discuss the statistical heterogeneity, model het-
erogeneity, access limits, and one-class problems that are rarely discussed in
other places.

3 Problem Formulation

The learning process of federated learning is decomposed into two parts that
occur in different places: server (coordinator) and nodes (participants). These
two parts are linked to each other via a specifically designed mechanism. In
particular, the participant i can train a local model hi using its own dataset Di =
{(xi·, yi·)}. The model hi is initialized by a globally shared model parameter W
which is then fine-tuned to a new local model with parameters Wi using the data
from node i.

It is proposed that the coordinator in federated learning can learn a global
model controlled by W that could be shared with all participants on distributed
nodes. Through a few rounds of communication, the global model has been
gradually improved to better suit all participants, and the final global model
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is an optimal solution that could directly be deployed on each participant for
further use. In particular, the optimal global model is expected to minimize the
total loss of all participants, and it is defined as below.

n∑

i=1

pi · L(Di,W ) =
n∑

i=1

pi · Li (1)

where L(.) is the loss function for each participant’s learning task, W is the
model parameters, and pi is the weight to represent each node’s importance.
In general, pi is decided by considering the node’s data set size |Di| so that
each instance, regardless of the location or data owner, has equal importance
contributing to the overall loss. Sometimes, we use Li as a brief denotation of
the L(Di,W ).

4 Statistical Heterogeneity in Federated Learning

One challenge of federated learning is statistical heterogeneity in which users
have different data distribution. Statistical heterogeneity is an inherent charac-
teristic of a user’s behaviour. It is also identified as a non-IID problem. Conven-
tional machine learning is built upon the IID assumption of a uniform dataset.
The stochastic gradient descent (SGD) optimization used in vanilla federated
learning is not specifically designed and optimized for tackling non-IID data. As
described in Fig. 1, each participant’s data are generated from different distri-
butions. Each local model should then be initialized by the global model that
represents a particular distribution.

From the Bayes theorem perspectives, the classifications are highly linked to
several distributions: p(x), p(y), p(x|y) and p(y|x). The variance of any distribu-
tion across participants will cause inconsistency in learning that will eventually
damage the performance of a federated learning task. To solve this challenge, the
simplest solution is to enhance existing distributed machine learning to be more

Fig. 1. Statistical heterogeneity problem in federated learning
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robust for tolerating heterogeneity across data nodes [23], or to re-weight the
contribution of each node according to the similarity of global and local models
[19]. However, that solution still uses one global model to service all variety of
participants. A better solution is to increase the number of global models from
one to multiple (Sect. 4.1). We can cluster or group the participants so that
same-group participants with the same or similar distributions will contribute
one of the global models, and each group will have a unique global model. Per-
sonalized federated learning (Sect. 4.2) is a recent method that tries to increase
the number of global models to be equivalent to the number of participants,
and then each participant will have a unique model including both a commonly
shared part and personalized information.

4.1 Clustered Federated Learning

A machine learning model could be treated as a function to approximate the
distribution. In general, two models with similar parameters or functions are
more likely to produce a similar outcome regarding the same input. Therefore,
measuring models’ similarity is an indirect way to measure distribution. Below
are the related methods for clustered federated learning.

Xie et al. [34] addresses the non-IID challenge of federated learning and
proposes a multi-center aggregation approach. The non-IID problem in federated
learning is defined as a joint optimization problem of multiple centers/clusters
across participants. It can simultaneously learn multiple global models from
participants with non-IID data, and the clustering and model learning are jointly
optimized in a stochastic expectation maximization framework. In particular, the
loss function of the federated learning framework is defined as below.

n∑

i=1

pi · min
k

||Wi − W (k)||2 (2)

where the similarity of two models is measured by the L2 distance between the
i-th participant’s model Wi and the global model W (k) of the cluster k (Table 1).

Table 1. Comparison of clustering-based federated learning

Methods Motivation Clustering Factors Measurement

Multi-center
FL[34]

Better
initialisation

K-means Model
parameters

L2-distance

Hierarchical
clustering-based
FL [5,31]

Similar
distribution

Hierarchical
clustering

Gradients Cosine
similarity &
L1/L2 distance

Hypothesis
clustering-based
FL [13,25]

Better
hypothesis

K-means Test accuracy The loss of
hypothesis
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In some cases using Convolutional Neural Networks (CNN) as basic model
architecture, two neurons from different models may have similar functions but
with different neuron indices. Therefore, neuron matching of two CNN models
cannot be simply applied to index-based matching, and it needs to be carefully
considered for functionality matching. A proper neuron matching mechanism in
the context of federated learning can improve the performance [33]. It could be
further applied to clustering-based federated learning that considers matching
neurons in both averaging and clustering steps.

[31] proposes to distinguish participants based on their hidden data generat-
ing distribution by inspecting the cosine similarity αi,j between their gradient
updates ri and rj . Based on the measurement in Eq. 3, a hierarchical clustering
method is proposed to iteratively split participants into multiple groups, in which
pairs of participants with larger similarity are more likely to be allocated to the
same group. Below is the equation to calculate the similarity between a pair of
participants i and j. Moreover, [5] discussed using different measurements.

αi,j := α(∇ri(Wi),∇rj(Wj)) :=
< ∇ri(Wi),∇rj(Wj) >

||∇ri(Wi)|| ||∇rj(Wj)|| (3)

where the Wi and Wj are the model parameters of participants i ad j respectively.
Mansour et al. in [25] use a performance indicator to decide the cluster assign-

ment for each node. In particular, given K clusters with model Fk controlled by
W , the participant i will be assigned to cluster k whose model will generate the
minimal loss L using the test data set Di from participant i. The overall loss
can be rewritten as follows.

n∑

i=1

pi · min
k

{L(Di,Wk)} (4)

in where W(k) is the parameters of the k-th global model/hypothesis. The paper
gives a comprehensive theoretical analysis of the given method. Then, [13] con-
ducts convergence rate analysis in the same method. [27] proposes a similar
solution from a mixture of distribution perspectives.

4.2 Personalized Modelling

When a service provider wants to provide a service that is the best for each
individual customer, the model trained in the central server needs to be per-
sonalized or customized. The simplest solution is to treat the global model as a
pre-trained model, and then use local data to fine-tune the global model, which
will derive a personalized model. However, in most cases, each participant just
has a limited number of instances, and the fine-tuning operation will cause over-
fitting or increase the generalization error. Another solution is to treat each cus-
tomer as a target task and the pre-trained global model as a source task, then
to apply transfer learning [28] or domain adaptation [3] methods to fine-tune
each personalized model. These methods will further leverage the global infor-
mation to improve the fine-tuning process for each participant. [25] discusses
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two approaches, namely Data Interpolation and Model Interpolation, to learn
a personalized federated learning model by weighting two components between
local and global servers in terms of data distributions or models respectively.

Personalization Layers. In general, a model can be decomposed into two parts: a
representation learning part and a decisive part. For example, CNN is composed
of convolution layers for representation extraction and fully-connected layers
for classification decision. In a federated learning setting, heterogeneity could
impact one of the two parts. [2] proposes to share representation layers across
participants, and then keep decision layers as a personalized part. [24] thinks
representation layers should be the personalized part, and then the decision
layers could be shared across participants.

Mixture Models. If we cannot clearly identify which parts in the model will be
impacted by the heterogeneity, we can roughly mix the global model and local
models to incorporate both common knowledge and personalized knowledge. [9]
proposes a mixture model of global and local models in a federated setting.
The local model can preserve the personalized information and the global model
provides common information. In particular, the loss is designed as below.

n∑

i

pi · {L(Di,W ) + λL(Di,Wi)} (5)

where λ is the mixing weight, L(Di,W ) and L(Di,Wi) are the loss of participant
i using global and local model’s parameters W and Wi respectively.

Personalized Models with Constraints. In FedAVG, the pre-trained global model
will be deployed to each participant for direct use. However, each participant
could use their own data to fine-tune the pre-trained global model to generate
a personalized model. [10,16] enables participants to pursue their personalized
models with different directions, but use a regularization term to limit each
personalized model to not far away from the “initial point”, the global model. A
regularization term will be applied to each participant’s personalized model to
limit the distance of personalized changes. The model is to be optimized using
the loss function below.

n∑

i=1

pi · {L(Di,Wi) +
λ

2
||Wi − W ||2} (6)

where L is the loss function decided by dataset Di and the i-th participant’s
model parameter, and W is the global model’s parameter. The regularization
term could be attached to the global model or local model respectively. Moreover,
it could be added to the federated learning process [23].

[41] allows each participant to take one more gradient descent step from the
global model. This one step optimization is toward a personalized model. The
loss is changed as below.
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n∑

i

pi · Li(W − ∇Li(W )) (7)

where Li is the loss function of the i-th participant that is controlled by the
weights W and data set Di.

5 Model Heterogeneity

5.1 Model Architecture Heterogeneity

Model heterogeneity will ruin the model aggregation operator that is the core
part of federated learning. To enable the aggregation, we need to find a way to
transform heterogeneous models into homogeneous models. As shown in Fig. 2,
the participants in a federated learning system could have heterogeneous models
with different architectures. Therefore, the global model W ′ is also different from
each local model W . It will become a challenge to aggregate the heterogeneous
model in the federated setting.

Knowledge distillation is such a technology to “compress” or “distill” a large
model into a small model. It was proposed by Hinton et al. [17] in 2015. It can
extract information from a “teacher” model W ′ into a simpler “student” model
W . Given the same inputs, the objective function is to control the student model
to produce similar outputs (probability vector) with the teacher model while
considering ground truth. The loss function is defined below.

Ls({(x, y′)},W ) + λ · Lh({(x, ŷ)},W ) (8)

where ŷ and y′ represent the label from ground truth and teacher model’s pre-
dicted probability of labels, W is the parameters for the student model, Ls is
a soft loss function to measure the dissimilarity or distance between two distri-
butions of predicted labels from teacher model and student model respectively,

Fig. 2. Mode heterogeneity problem in federated learning
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Lh is a loss function between predicted labels and ground truth, and λ is an
importance weight of Ls and Lh.

In [22], each participant owns a private dataset and a public dataset is shared
across all participants and servers. A local model is trained in a transfer learning
framework by leveraging both public and private datasets. Then, a decentralized
knowledge distillation will be applied to exchange information between partici-
pants and the coordinator. In particular, each participant calculates the predic-
tion probability for all instances in the public dataset, and then sends it to the
coordinator for prediction averaging. The averaged prediction probability could
be viewed as the output of a teacher model (teacher) that is an ensemble learning
of many local models, and the teacher model’s outputs will be sent back to each
participant to train a student model in a knowledge distillation process. In this
work, the heterogeneous local models exchange prediction probability acquired
on the public dataset, and knowledge distillation allows exchanging information
in a model agnostic way.

The authors in [15] leverage distillation in a semi-supervised setting to reduce
the size of the global model. The distillation mechanism also potentially adds
privacy guarantees by replacing some sensitive model parameters during the dis-
tillation process. In [18], a new federated distillation (FD) is proposed to improve
communication efficiency for an on-device machine learning framework. The pro-
posed FD exchanges the model output rather than the model parameters, which
allows the on-device ML to adopt large local models. Prior to operating FD, the
non-IID datasets are rectified via federated augmentation, where a generative
adversarial network is used for data augmentation under the trade-off between
privacy leakage and communication overhead.

This technique can be used to bridge the gap between a global model and a
local model for a specific client. In [37], the pre-trained global model is treated
as the teacher, while the adapted model is treated as a student. The participant
will train a unique local model with specific architecture that is different from
the others. However, this solution assumes the federated model is pre-trained,
and the knowledge distillation is just for the deployment stage or personalization
step rather than federated learning.

6 Limited Number of Uses of Participants

In an open banking data marketplaces, the use of participants’ data may be
charged by times. For example, in a federated learning process, if the coordinator
asks the participant to train the local model three times, they should be charged
by three times as well. Moreover, the participant’s data is a dynamically changing
profile including its banking-related activities. To capture the dynamic changes
of the customers, the federated learning may take an incremental or lifelong
learning strategy to regularly use a participant’s data to refine the global model.
This will bring a new challenge for continuously sharing data in a long-term
model training framework.

The pay-per-access mechanism can also be modeled as a few-shot federated
learning problem in which the server can take very few communication rounds
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with each participant. Regardless of whether the federated learning is horizontal
or vertical, the participants can help the coordinator to train a local model
according to the global model’s parameters at a particular moment. Thus, the
coordinator will pursue highly efficient communication with participants using
their data.

Some techniques can be used to solve the few-shot federated learning chal-
lenge in open banking. In [15], Guha et al. present one-shot federated learning
that allows the central server to learn a global model over the network in a single
round of communication. The proposed approach utilizes ensemble learning and
knowledge aggregation to effectively and efficiently leverage information in large
networks with thousands of devices. With this technique, the financial service
provider can access the data from multiple data holders and finish model train-
ing in only one round of communication. This greatly improves the efficiency of
communication and reduces the risk of sensitive data leakage.

7 Only Positive Labels in Each Participant

The one-class challenge is also a problem. For example, in a fraud detection
or break contract, one user’s data can only be labeled as fraud or not-fraud.
Most users are labeled as the not-fraud class, which means that there are only a
small number of users with the fraud class. Although each user can design and
train personalized model based on its own financial data, the model may not be
accurate enough as a result of the one-class problem. As shown in Fig. 3, the
overall learning task is a bi-class problem although each participant has only a
one-class learning task. The participant cannot properly train a bi-class classifier
to be aggregated in the coordinator’s model or global server.

In open banking scenarios, solutions to the one-class problem can fall into two
categories. One is to embed the specific one-class classification algorithm into the
imbalanced federated financial system from a task-level perspective. The other is
to adjust the weights and incentive mechanism among users from a system-level

Fig. 3. One-class problem in federated learning
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perspective. One-class classification is also known as anomaly detection in fraud
detection applications, where outliers or anomalies are rare examples that do
not fit in with the rest of the data.

In [38], the authors propose a federated learning-based proactive content
caching (FPCC) scheme which is based on a hierarchical architecture where the
server aggregates user-side updates to construct a global model. Based on a
stacked auto-encoder, FPCC allows each user to perform training on its local
data using hybrid filtering. In open banking, the users’ similarity in a financial
perspective can be calculated using the features generated from a stacked auto-
encoder. In this way, it is easier to make fraud detection with imbalanced data
distribution.

The authors in [29] addressed that federated learning setup allows an adver-
sary to poison at least one of the local models and influence the outcome of one-
class classification. Moreover, malicious behaviour can increase time-to-detection
of the attacks. To solve these above issues, they designed a permitted blockchain-
based federated learning method where the updates for the auto-encoder model
are chained together on the distributed ledger. The trained auto-encoder can
recognize the test samples of the baseline class while marking the other test
samples that do not fit into the trained model as a potential negative class.

8 Summary

This chapter discusses the challenges of applying federated learning in the con-
text of open banking. In particular, we focus on discussing the statistical hetero-
geneity (Sect. 4), model heterogeneity (Sect. 5), access limits (Sect. 6), and one-
class problems (Sect. 7) that are rarely discussed in other places. This chapter
explores various solutions to solve the aforementioned practical challenges in
open banking, and then foresee the advancement of federated learning in the
context of real-world scenarios.
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Abstract. In-hospital mortality prediction is a crucial task in the clin-
ical settings. Nevertheless, individual hospitals alone often have limited
amount of local data to build a robust model. Usually domain transfer of
an in-hospital mortality prediction model built with publicly-accessible
dataset is conducted. The study in [6] shows quantitatively that with
more datasets from different hospitals being shared, the generalizabil-
ity and performance of domain transfer improves. We see this as an area
that Federated Learning could help. It enables collaborative modelling to
take place in a decentralized manner, without the need for aggregating all
datasets in one place. This chapter reports a recent pilot of building an in-
hospital mortality model with Federated Learning. It empirically shows
that Federated Learning does achieve a similar level of performance with
centralized training, but with additional benefit of no dataset exchang-
ing among different hospitals. It also compares the performance of two
common federated aggregation algorithms empirically in the Intensive
Care Unit (ICU) setting, namely FedAvg and FedProx.

Keywords: In-hospital Mortality Prediction · Federated Learning ·
eICU

1 Introduction

Mortality prediction is a crucial task in the clinical settings. When a patient is
admitted, predicting their mortality at the end of ICU stay or within a fixed
period of time (e.g. 28 days, one month, or three months) is one way of esti-
mating the severity of their condition. This information is essential in managing
treatment planning and resource allocation. In practice, severity scores such as
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SOFA [19], SAPS II [10] and APACHE II [8] are often calculated for patients
at ICU admission for that purpose. Many of these scores were constructed by
first building a mortality prediction model and then simplifying it into a scoring
system. The effectiveness of severity scores are also often accessed by their cor-
relation with patients’ mortality. Thus, developing a good mortality prediction
model works towards obtaining a more effective severity score [6].

Typically individual hospitals alone have a limited amount of local data to
build a robust model. Usually, a hospital would domain transfer an existing in-
hospital mortality prediction model that is built with publicly-accessible dataset
or other hospitals’ datasets. The study in [6] shows quantitatively that with
more datasets from different hospitals being shared, the generalizability and
performance of domain transfer improves. This also highlights the importance
of data sharing in the development of high performance predictive models in the
clinical settings.

Nevertheless, it is extremely common in healthcare that hospitals quarantine
their datasets (often citing reasonable privacy concerns) and develop models
internally. Even though hospitals are convinced of the value of data sharing,
analysis in a centralized manner, which requires datasets from all participating
hospitals or centers to be gathered in one place, incurs an increased risk in data
privacy and security since sensitive datasets are now shared with external partic-
ipants. In addition, moving datasets to a centralized location, either physically
or over the network, introduces another attack vector for data leakage. Besides
the privacy and security risk, the administrative effort to coordinate data sharing
is also non-trivial since each participant usually has its own policies regarding
data usage and data ownership. A method that enables collaborative modelling
to take place in a decentralized manner, without the need for aggregating all
datasets in one place, would thus make multi-center studies much more feasible.

Federated Learning is an emerging machine learning paradigm that enables
building machine learning models collaboratively using distributed datasets. It
was originally proposed by Google to build a query suggestion model for Gboard
[9]. Each device trains a model with its own local dataset, and sends model
parameters to a coordinator for aggregation into a common model usable by all
participating devices. Since then, it has been extended to a more general setting,
where different participants have isolated data in silos [7,21]. The number of par-
ticipants involved could also be small, compared to the billion scale of devices in
the original application of mobile devices [9]. In essence, with Federated Learn-
ing, individual participants train local models on local data alone and exchange
model parameters (e.g. the weights and/or gradients) with different participants
at some frequency. The local model parameters are then aggregated to generate
a global model. Various federated aggregation methods have been proposed. The
aggregation is typically done with a coordinator, though it could also be done
without one.

Federated Learning makes multi-center studies in medical research more fea-
sible by enabling model training in a decentralized manner without the need
for the individual centers to expose their dataset. In this chapter, we present a
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recent pilot applying Federated Learning to training machine learning models
to predict mortality at the end of ICU stay based on electronic health records
(EHR) from multiple ICU centers. We utilize the eICU Collaborative Research
Database (eICU-CRD) [16], which collected EHR of patients admitted to around
200 different ICUs in the United States in year 2014 and 2015.

We empirically evaluate that Federated Learning does achieve level of per-
formance comparable with centralized training. This is aligned with the findings
in [6], but with the additional benefit of not incurring data exchange among
participants. We also evaluate that FedAvg [14] and FedProx [11] achieved
similar performance. FedAvg and FedProx are two of the most commonly
used federated aggregation algorithms. This could be due to the fact that there
are relatively small number of participants involved in this pilot, and the sta-
tistical heterogeneity and system heterogeneity is comparatively less significant.
FedProx is shown to perform better than FedAvg when the heterogeneity is
more severe, e.g. settings with more mobile devices are jointly training a global
model [11]. To the best of our knowledge, we are the first one to empirically
compare FedAvg and FedProx in Federated Learning with EHR.

This pilot also points directions for future work. For example, we plan to
further explore other federated aggregation methods besides FedAvg and Fed-
Prox with more participants in the clinical settings. We also plan to explore
applying Federated Learning to more complex problems in healthcare, e.g medi-
cal imaging. In this pilot, we apply two different imputation strategies, one with
a supervised machine learning model based on present feature values and the
other with a simple strategy (to impute with mean for numerical features and
mode for categorical ones). These two achieve similar performance. We plan to
further study suitable imputation strategies for Federated Learning.

The rest of this chapter is organised as follows. Section 2 provides a survey of
the related work. Section 3 details the methodology used in this pilot, including
the dataset used, the pre-processing of the dataset, and the various models built.
Section 4 reports the results obtained. Conclusions and possible future directions
are summarized in Sect. 5.

2 Related Works

2.1 Federated Aggregation Algorithms

The key idea of Federated Learning is that individual participants train local
models on their local dataset alone and exchange model parameters (e.g. the
weights and/or gradients) among different participants at some frequency. There
is no exchange of local datasets among different participants. The local model
parameters are then aggregated to generate a global model. The aggregation
can be conducted under the facilitation of a coordinator, which usually does not
contribute any dataset. It can also be done without a coordinator.
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A number of federated aggregations methods have been proposed, with
FedAvg [14] being one of the most commonly used. More formally, FedAvg
tries to optimize the following distributed optimization problem:

min
w

(
F (w) =

N∑
i=1

piFi(w)
)

(1)

where N is the number of participants, and pi is the weight of participant i and∑N
i=1 pi = 1. Fi(·) is the local objective function.
At each global communication round t, a global model structure is broadcast

to all participants. Each participant performs local training, using mini-batch
gradient descent, for E local epochs with B mini-batch size. After E local epochs,
each participant sends the parameters from its most recently obtained model
state to the coordinator. The coordinator then aggregates these parameters into
a single global model, with individual participants’ parameters weighted by pi,
which are typically proportional to the participants’ data volume.

The above scenario assumes full participation, i.e. all the N participants par-
ticipate in the training and all participants train with same E local epochs. This
is not practical due to the system heterogeneity across different participants, e.g.
resource constraints in terms of the computation power and network connections
vary. This is known to cause straggler’s effort, which means everyone waits for
the slowest [11,12]. To address this, partial participation can be allowed, i.e. the
coordinator only uses the first K participants’ response to update the global
model.

Furthermore, the global model may not converge in the presence of statis-
tical heterogeneity, e.g. situations that dataset is not independently and identi-
cally distributed across different participants (i.e. a phenomenon called non-IID
dataset) and a high number of local epochs are used.

More formally, in Federated Learning setting, the local dataset at partici-
pant i is drawn from distribution Pi, i.e. (X, y) ∼ Pi(X, y). When non-IID is
referenced, it refers to the difference between Pi and Pj , i.e. Pi �= Pj . We have
Pi(X, y) = Pi(y|X)Pi(X) = Pi(X|y)Pi(y). The deviation in any of the com-
ponents could lead to a non-IID dataset. Different participants may also have
different sizes of datasets, which could also contribute to non-IID data.

Some improvements to address the performance in the presence of non-IID
data have been proposed, including FedProx [11]. FedProx allows partici-
pants to carry out different numbers of local epochs. Besides this, an additional
proximal term is also introduced. Instead of just minimizing the local objective
function Fi(·), a participant is now to minimize the following objective hi:

hi(w,wt) = Fi(w) +
µ

2

∥∥w − wt
∥∥2 (2)

where wt is the model parameters received from the coordinator after previ-
ous round of federated aggregation. The additional proximal term addresses the
statistical heterogeneity by restricting the local updates to be closer to the lat-
est global model. The convergence guarantee of FedProx is developed under
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the assumption of bounded dissimilarity in the network. Yet, FedProx is very
sensitive to the value of µ, the hyperparameter scaling the effect of proximal
term.

2.2 Federated Learning with EHR

Typically individual hospital alone have a limited amount of local data to build a
robust model to predict in-hospital mortality. Usually, a hospital would domain
transfer an existing in-hospital mortality prediction model that is built with
publicly-accessible dataset or other hospitals’ datasets. The study in [6] shows
quantitatively that with more datasets from different hospitals being shared, the
generalizability and performance of domain transfer improved. This highlights
the importance of data sharing in the development of high performance predic-
tive models in the clinical settings. And we see this as an area that Federated
Learning could help.

Federated Learning with EHR data is a relatively new research topic. There
is limited prior work. [15] and [2] experimented with applying FedAvg [14]
and Differential Privacy [3] to predicting ICU mortality and length of stay. [13]
introduced Federated-Autonomous Deep Learning (FADL for short), which is
built on top of FedAvg. FADL was applied in predicting ICU mortality based
on medication intake. FADL’s performance was shown to be an improvement
over FedAvg’s and similar to that of conventional centralized training. FADL
involves two phases - global training and local training. The global training
requires training the first layer of neural network with datasets from all hospitals
with fixed global rounds and local epochs per global round. Subsequently, the
models are locally trained in parallel on their own datasets in the layers 2 and
3 of the neural network for a fixed number of epochs. As a result, each hospital
has its own specialised model for prediction.

[5] achieved high predictive accuracy when applying Federated Learning to
prediction of ICU mortality and length of stay by clustering patients into clinical
meaningful groups. The clustering is done by first training a denoising autoen-
coder on each hospital’s dataset and averaged at the coordinator, which is used
to convert patient’s features into privacy-preserving representations. The patient
clustering is conducted based on those representations. Finally, each hospital
individually learns models for different clusters identified. The learned cluster
models are sent to the coordinator for weighted average based on the cluster
size.

3 Methods

In this section, we provide a detailed account of the dataset used, the pre-
processing done, and the design of various experiments.
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3.1 eICU Data

eICU Collaborative Research Database (eICU-CRD) [16] has been commonly
used in EHR studies. It is a multi-center database sourced from the Philips eICU
programme. Its multi-center nature makes it a natural choice for conducting
Federated Learning pilot.

All records in the eICU-CRD dataset (eICU for short in the rest of this
chapter) have been de-identified, and contains 200,859 distinct unit stays. We
follow the data extraction steps in [6]. We excluded records that have the follow-
ing traits: non-ICU stays, ICU stays which do not have an APACHE IVa score,
non-adult patient, bad data, or organ donor. Such exclusion criteria would avoid
repeated sampling and remove records that have an administrative intention. To
ensure a fair evaluation of hospitals’ modelling performance, only hospitals with
at least 500 stays have been retained. The final cohort contains 50, 099 ICU stays
from 46 (out of 179) hospitals. We further retained top 20 hospitals for analysis
based on the number of ICU stays each hospital has. The number of ICU stays
each hospital has is listed in Table 1.

Table 1. ICU stays of the hospitals used in the pilot

Hospital ID ICU stays % of Total data Hospital ID ICU stays % of Total data

73 3,005 9.09% 188 1,601 4.84%

264 2,833 8.57% 449 1,335 4.04%

338 2,320 7.02% 208 1,161 3.51%

443 2,279 6.89% 307 1,102 3.33%

458 2,101 6.36% 416 1,083 3.28%

420 1,937 5.86% 413 1,066 3.22%

252 1,898 5.74% 394 1,022 3.09%

300 1,856 5.61% 199 1,022 3.09%

122 1,823 5.51% 345 1,012 3.06%

243 1,632 4.94% 248 970 2.93%

For each ICU stay, we extracted a dataset from a fixed window of length W =
24 (h) starting on ICU admission. The features were extracted from a number of
physiologic and laboratory measurements, e.g. glucose, bilirubin, urine output.
Features extracted used consistent functional forms, e.g. the first, last, or sum (in
the case of urine output). Besides these, we also extracted gender, age, race, and
whether the hospital admission was for an elective surgery (binary covariate).
No explicit data regarding treatment were extracted, e.g. use of vasopressors,
mechanical ventilation, dialysis, etc. A total of 84 features were obtained.
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In this pilot, each individual hospital is considered one participant in Fed-
erated Learning. They jointly train a global model without exposing local
datasets. A coordinator is introduced to facilitate the federated aggregation in
the 20-participant Federated Learning. The coordinator does not contribute any
dataset.

3.2 Data Pre-processing

Missing Data Imputation. Missing values are present in eICU, with varying
degrees across different hospitals. As different hospitals do not expose their local
datasets to one another with Federated Learning, imputation of missing values
is conducted locally at individual hospitals.

For each individual hospital, it is assumed that the data is missing at random,
and a machine learning based imputation approach is applied [4]. Inspired by
MissForest [20], we apply an iterative imputation scheme by training a supervised
learning model on the observed values in the first step, followed by predicting
the missing values. This then proceeds iteratively.

For a feature Xt, assume it has missing values at entries i
(t)
mis ⊆ {1, ..., n}.

We can separate the dataset into four parts:

1. the observed values of feature Xt, denoted as y
(t)
obs

2. the missing values of feature Xt, denoted as y
(t)
mis

3. the features other than Xt with observations i
(t)
obs = {1, ..., n} \ i

(t)
mis, denoted

as x
(t)
obs

4. the features other than Xt with observation i
(t)
mis, denoted as x

(t)
mis

We first sort the features according to the nullity (i.e. the amount of missing
values) starting with the lowest one. For each feature Xt, the missing values
are imputed by first fitting a supervised model with x

(t)
obs as features and y

(t)
obs

as labels; and then predicting the missing value y
(t)
mis by applying the trained

model on x
(t)
mis. After that, the same imputation procedure is applied on the

next feature with the second lowest nullity. This procedure is repeated on the
remaining features with missing values iteratively. Note that in this scheme, the
label in the original dataset (before imputation) is also treated as a feature that
can be used to train a supervised model during the imputation procedure.

Figure 1 provides an illustration of the imputation procedure. In this example,
feature X2 and X3 have missing values as shown in Fig. 1 (1). Feature X3
has a lower nullity than X2, i.e. X3 has one missing value while X2 has two.
A supervised model is trained with the last three rows of X1 and Target as
features and X3 as the label as shown in Fig. 1 (2). The missing value of X3 is
then imputed by applying the trained model on the first row of X1 and Target
in Fig. 1 (3). Now feature X3 is complete. And it is used together with X1 and
Target to train another supervised model to impute the missing values of X2 in
Fig. 1 (4).
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Fig. 1. Illustration of the imputation procedure

CatBoost [17] is used to build the supervised models due to its superior han-
dling of both categorical and numerical features, which are both present in eICU.

Feature Alignment. For the categorical features (e.g. race) in eICU, One-Hot
Encoding is applied. With Federated Learning, each hospital does not expose its
dataset to others, One-Hot Encoding is conducted locally. Nevertheless, since
different hospitals generate and collect data independently, it is possible that
some categories in some common features in one hospital may not be present in
other hospitals. For example, Hispanic is not present in certain hospital used in
this pilot while it appears in other hospitals.

Therefore, an additional step to align features across different hospitals is
necessary. Each hospital still conducts One-Hot Encoding locally. After that,
the feature names from all participating hospitals are sent to the coordinator.
No local dataset is sent to the coordinator. The coordinator would then align
the features and send the universe of the categorical feature header back to all
the hospitals. Upon receiving the aligned features, the individual hospitals would
create additional features if necessary, and fill in zeros to represent non-presence
of the related categories. An example of feature alignment is shown in Fig. 2.

Fig. 2. Illustration of the feature alignment procedure
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3.3 Experimental Design

Setup. The outcome we are predicting is in-hospital mortality, which is treated
as a binary classification problem. The incidence of in-hospital mortality across
all 20 hospitals is shown in Fig. 3.

Fig. 3. Incidence of in-hospital mortality by hospitals

All the models built in the experiments are logistic regression (with regular-
ization). Logistic regression is chosen because of its inherent explainability. Due
to the heavy imbalance of the two classes, we use Area Under Precision-Recall
Curve (AUC-PR) as the metric to measure the models’ performance.

A series of experiments are conducted to evaluate the benefit of Federated
Learning in clinical data analysis and to compare the performance of FedAvg
and FedProx, which are two commonly used federated aggregation methods.
The following set of experimental conditions are evaluated:

� Local training: A model is trained for each hospital using only its local
training dataset (no other hospitals’ data is used), and the evaluation is also
done with a local testing dataset.

� Centralized training: A scenario is simulated where all hospitals’ datasets
are available in a central location. A centralized model is trained with a
consolidated training dataset which is an aggregation of all 20 hospitals’ local
training datasets. The centralized model’s performance is then evaluated with
each individual hospital’s local testing dataset.

� Federated training: All hospitals jointly train a global model with Fed-
erated Learning. Both FedAvg and FedProx have been implemented as
federated aggregation methods, and their performance will be compared. For
both aggregation methods, all hospitals jointly train a model with full partic-
ipation, i.e. no hospital would drop out from the federated training half-way.
For each round of federated training, all hospitals would train same number
of local epochs, which is set to be E = 5.
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4 Experiment Results

AUC-PRs for each hospital across eight methods: local training, centralized
training, federated training with a combination of FedAvg or FedProx,
and with or without the use of Catboost for imputation, are reported in Fig. 4.
For better comparison, the same results are visualized in Fig. 5. When Catboost-
based imputation is not used, we use a simple imputation strategy that imputes
with mean for numerical features and mode for categorical features.

Fig. 4. AUC-PRs of models built with different methods
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Fig. 5. Comparison of model performance

Overall, centralized training and federated training performed bet-
ter than local training. Model trained with hospital 199 local dataset with
Catboost-based imputation is the only local training model that achieves the
best overall AUC-PR compared to both centralized training and federated
training. The difference between centralized training and federated train-
ing is not noticeable. There are one or two hospitals where centralized learn-
ing yielded an improvement of more than 0.05 in AUC-PR over federated
training:

– with Catboost-based imputation, centralized training achieves a noticeable
improvement in AUC-PR over federated training (with both FedAvg and
FedProx) for hospital 122 (the improvement is >0.2) and 458 (the improve-
ment is >0.06).

– with simple imputation, centralized training achieves a noticeable improve-
ment in AUC-PR over federated training (with both FedAvg and Fed-
Prox) for hospital 394 (the improvement is >0.09).

This observation highlights the benefits of Federated Learning in the clinical
settings. It addresses the concerns of data privacy and takes away the need for
exchanging datasets in the multi-center scenarios, yet it could achieve similar
performance as what centralized training could do with aggregating data from
multiple centers together.

Within federated training, FedAvg and FedProx perform on the same
level. Around three fourths of the hospitals saw a difference within 0.01 in AUC-
PR between FedAvg and FedProx, with or without Catboost imputation. This
could be due to the fact that there are relatively small number of participants
(20 hospitals) involved in this pilot, and the statistical heterogeneity and system
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heterogeneity is comparatively less significant. FedProx is shown to have better
performance when heterogeneity is more severe, e.g. settings with more mobile
devices are jointly training a global model together [11].

For the comparison between the Catboost-based and simple imputation
strategies, no significant difference is observed in the performance of the models
derived the respective strategies.

5 Discussion and Future Work

In this chapter, we present a pilot study of applying Federated Learning in pre-
dicting ICU mortality. The results are promising. The experiments showed that
centralized training and federated training performed better than local
training in predicting mortality in the ICU. This gives evidence to the effective-
ness of collaborative model training in healthcare domain where hospitals would
benefit from having a model trained on data from other hospitals in addition to
their own data. The results also showed Federated Learning to be equally effec-
tive as centralized training. This highlights the potential of Federated Learning
as a replacement for centralized learning in multi-center studies with enhanced
data security and privacy without sacrificing model performance.

Nevertheless it also warrants further investigation into Federated Learning
in the healthcare domain. In this pilot study, we only applied Federated Learn-
ing in training a logistic regression model to solve a binary classification task.
We plan to explore applying Federated Learning to more complex problems in
healthcare. One such area is medical imaging where deep neural networks have
proved to be very effective in solving several non-trivial classification and seg-
mentation tasks [1,18]. We also observed that FedAvg and FedProx perform
on the same level. This could be due to the relatively small number of par-
ticipants involved and the full participation assumption in this pilot. The sta-
tistical heterogeneity and system heterogeneity is therefore comparatively less
significant. We plan to further explore various federated aggregation methods
including FedAvg, FedProx, and other variants in more realistic clinical set-
tings, e.g. more participants and partial participation. Additionally, the results
showed that the current implementation of Catboost-based imputation does not
provide improvement over simple imputation strategy. One possible direction
is to develop an early stopping mechanism for Catboost-based imputation and
identify non-essential features globally without different participants exposing
dataset.
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4. Garćıa-Laencina, P.J., Sancho-Gómez, J., Figueiras-Vidal, A.R.: Pattern classifi-
cation with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010).
https://doi.org/10.1007/s00521-009-0295-6

5. Huang, L., Shea, A.L., Qian, H., Masurkar, A., Deng, H., Liu, D.: Patient clustering
improves efficiency of federated machine learning to predict mortality and hospital
stay time using distributed electronic medical records. J. Biomed. Inform. 99,
103291 (2019)

6. Johnson, A.E., Pollard, T.J., Naumann, T.: Generalizability of predictive models
for intensive care unit patients. arXiv preprint arXiv:1812.02275 (2018)

7. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv
preprint arXiv:1912.04977 (2019)

8. Knaus, W.A., Draper, E.A., Wagner, D.P., Zimmerman, J.E.: APACHE II: a sever-
ity of disease classification system. Crit. Care Med. 13(10), 818–829 (1985)
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Abstract. To meet the standard of differential privacy, noise is usually
added into the original data, which inevitably deteriorates the predicting
performance of subsequent learning algorithms. In this chapter, moti-
vated by the success of improving predicting performance by ensemble
learning, we propose to enhance privacy-preserving logistic regression
by stacking. We show that this can be done either by sample-based
or feature-based partitioning. However, we prove that when privacy-
budgets are the same, feature-based partitioning requires fewer samples
than sample-based one, and thus likely has better empirical performance.
As transfer learning is difficult to be integrated with a differential pri-
vacy guarantee, we further combine the proposed method with hypoth-
esis transfer learning to address the problem of learning across different
organizations. Finally, we not only demonstrate the effectiveness of our
method on two benchmark data sets, i.e., MNIST and NEWS20, but also
apply it into a real application of cross-organizational diabetes prediction
from RUIJIN data set, where privacy is of a significant concern.

1 Introduction

In recent years, data privacy has become a serious concern in both academia and
industry [1,6–8]. There are now privacy laws, such as Europe’s General Data
Protection Regulation (GDPR), which regulates the protection of private data
and restricts data transmission between organizations. These raise challenges
for cross-organizational machine learning [14,22,23,30], in which data have to
be distributed to different organizations, and the learning model needs to make
predictions in private.

A number of approaches have been proposed to ensure privacy protection.
In machine learning, differential privacy [8] is often used to allow data be
exchanged among organizations. To design a differentially private algorithm,
carefully designed noise is usually added to the original data to disambiguate
the algorithms. Many standard learning algorithms have been extended for dif-
ferential privacy. These include logistic regression [6], trees [10,11], and deep net-
works [1,25]. In particular, linear models are simple and easy to understand, and
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their differentially private variants (such as privacy-preserving logistic regression
(PLR)) [6]) have rigorous theoretical guarantees [2,6,14,16]. However, the injec-
tion of noise often degrades prediction performance.

Ensemble learning can often significantly improve the performance of a sin-
gle learning model [31]. Popular examples include bagging [4], boosting [12], and
stacking [29]. These motivate us to develop an ensemble-based method which
can benefit from data protection, while enjoying good prediction performance.
Bagging and boosting are based on partitioning of training samples, and use pre-
defined rules (majority or weighted voting) to combine predictions from models
trained on different partitions. Bagging improves learning performance by reduc-
ing the variance. Boosting, on the other hand, is useful in converting weak models
to a strong one. However, the logistic regression model, which is the focus in this
chapter, often has good performance in many applications, and is a relatively
strong classifier. Besides, it is a convex model and relatively stable.

Thus, in this chapter, we focus on stacking. While stacking also partitions
the training data, this can be based on either samples [5,20,26] or features [3].
Multiple low-level models are then learned on the different data partitions, and a
high-level model (typically, a logistic regression model) is used to combine their
predictions. By combining with PLR, we show how differential privacy can be
ensured in stacking. Besides, when the importance of features is known a priori,
they can be easily incorporated in feature-based partitioning. We further analyze
the learning guarantee of sample-based and feature-based stacking, and show
theoretically that feature-based partitioning can have lower sample complexity
(than sample-based partitioning), and thus better performance. By adapting the
feature importance, its learning performance can be further boosted.

To demonstrate the superiority of the proposed method, we perform exper-
iments on two benchmark data sets (MNIST and NEWS20). Empirical results
confirm that feature-based stacking performs better than sample-based stack-
ing. It is also better than directly using PLR on the training data set. Besides,
the prediction performance is further boosted when feature importance is used.
Finally, we apply the proposed approach for cross-organizational diabetes predic-
tion in the transfer learning setting. The experiment is performed on the RUIJIN
data set, which contains over ten thousands diabetes records from across China.
Results show significantly improved diabetes prediction performance over the
state-of-the-art, while still protecting data privacy.

Notation. In the sequel, vectors are denoted by lowercase boldface, and (·)�

denotes transpose of a vector/matrix; σ(a) = exp(a)/(1+exp(a)) is the sigmoid
function. A function g is μ-strongly convex if g(αw + (1 − α)u) ≤ αg(w) + (1 −
α)g(u) − μ

2α(1 − α)‖w − u‖2 for any α ∈ (0, 1).

2 Related Works

2.1 Differential Privacy

Differential privacy [7,8] has been established as a rigorous standard to guaran-
tee privacy for algorithms that access private data. Intuitively, given a privacy
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budget ε, an algorithm preserves ε-differentially privacy if changing one entry in
the data set does not change the likelihood of any of the algorithm’s output by
more than ε. Formally, it is defined as follows.

Definition 1 ([7]). A randomized mechanism M is ε-differentially private if
for all output t of M and for all input data D1,D2 differing by one element,
Pr(M(D1) = t) ≤ eε Pr(M(D2) = t).

To meet the ε-differentially privacy guarantee, careful perturbation or noise
usually needs to be added to the learning algorithm. A smaller ε provides stricter
privacy guarantee but at the expense of heavier noise, leading to larger perfor-
mance deterioration [2,6]. A relaxed version of ε-differentially private, called
(ε, δ)-differentially privacy in which δ measures the loss in privacy, is proposed
[8]. However, we focus on the more stringent Definition 1 in this chapter.

2.2 Privacy-Preserving Logistic Regression (PLR)

Logistic regression has been popularly used in machine learning [13]. Various dif-
ferential privacy approaches have been developed for logistic regression. Exam-
ples include output perturbation [6,7], gradient perturbation [1] and objective
perturbation [2,6]. In particular, objective perturbation, which adds designed
and random noise to the learning objective, has both privacy and learning guar-
antees as well as good empirical performance.

Privacy-preserving logistic regression (PLR) [6] is the state-of-the-art model
based on objective perturbation. Given a data set D = {xi, yi}n

i=1, where xi ∈
R

d is the sample and yi the corresponding class label, we first consider the
regularized risk minimization problem:

min
w

1/n

∑n

i=1
�(w�xi, yi) + λg(w), (1)

where w is a vector of the model parameter, �(ŷ, y) = log(1+e−yŷ) is the logistic
loss (with predicted label ŷ and given label y), g is the regularizer and λ ≥ 0 is a
hyperparameter. To guarantee privacy, Chauduri et al. (2011) added two extra
terms to (1), leading to:

min
w

1/n

n∑

i=1

�(w�xi, yi)+b�w/n+Δ‖w‖2
/2 + λg(w), (2)

where b is random noise drawn from h(b) ∝ exp(ε′
/2‖b‖) with E(‖b‖) = 2d/ε′,

ε′ is a privacy budget modified from ε, and Δ is a scalar depending on λ, n, ε.
The whole PLR procedure is shown in Algorithm 1.

Proposition 1 ([6]). If the regularizer g is strongly convex, Algorithm 1 pro-
vides ε-differential privacy.
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Algorithm 1. PLR: Privacy-preserving logistic regression.
Require: privacy budget ε, data set D;
1: ε′ = ε − log(1 + 1/2nλ + 1/16n2λ2);
2: if ε′ > 0 then
3: Δ = 0;
4: else
5: Δ = (4n(exp(ε/4) − 1))−1 − λ and ε′ = ε/2;
6: end if
7: scale ‖x‖ ≤ 1 for all x ∈ D;
8: pick a random vector b from h(b) ∝ exp (ε′‖b‖/2);
9: obtain w by solving (2);

10: return w.

While privacy guarantee is desirable, the resultant privacy-preserving
machine learning model may not have good learning performance. In practice,
the performance typically degrades dramatically because of the introduction of
noise [2,6,24,25]. Assume that samples from D are drawn i.i.d. from an under-
lying distribution P . Let L(w;P ) = E(x,y)∼P [�(w�x, y)] be the expected loss of
the model. The following Proposition shows the number of samples needed for
PLR to have comparable performance as a given baseline model.

Proposition 2 ([6]). Let g(·) = 1/2‖·‖2, and v be a reference model parameter.
Given δ > 0 and εg > 0, there exists a constant C1 such that when

n > C1 max
(‖v‖2 log( 1

δ )/ε2g, d log( d
δ )‖v‖/εgε, ‖v‖2

/εgε
)
, (3)

w from Algorithm 1 meets Pr[L(w,P )≤L(v,P )+εg]≥1−δ.

2.3 Multi-Party Data Learning

Ensemble learning has been considered with differential privacy under multi-
party data learning (MPL). The task is to combine predictors from multiple
parties with privacy [23]. Pathak et al. (2010) first proposed a specially designed
protocol to privately combine multiple predictions. The performance is later sur-
passed by [14,22], which uses another classifier built on auxiliary unlabeled data.
However, all these combination methods rely on extra, privacy-insensitive public
data, which may not be always available. Moreover, the aggregated prediction
may not be better than the best single party’s prediction. There are also MPL
methods that do not use ensemble learning. Rajkumar and Agarwal (2012) used
stochastic gradient descent, and Xie et al. (2017) proposed a multi-task learn-
ing method. While these improve the performance of the previous ones based
on aggregation, they gradually lose the privacy guarantee after more and more
iterations.
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3 Privacy-Preserving Ensemble

In this section, we propose to improve the learning guarantee of PLR by ensemble
learning [31]. Popular examples include bagging [4], boosting [12], and stacking
[29]. Bagging and boosting are based on partitioning of training samples, and
use pre-defined rules (majority or weighted voting) to combine predictions from
models trained on different partitions. Bagging improves learning performance
by reducing the variance. However, logistic regression is a convex model and
relatively stable. Boosting, on the other hand, is useful in combining weak models
to a strong one, while logistic regression is a relatively strong classifier and often
has good performance in many applications.

3.1 Privacy-Preserving Stacking with Sample Partitioning (SP)

We first consider using stacking with SP, and PLR is used as both the low-level
and high-level models (Algorithm 2). As stacking does not impose restriction on
the usage of classifiers on each partition of the training data, a simple combina-
tion of stacking and PLR can be used to provide privacy guarantee.

Algorithm 2. PST-S: Privacy-preserving stacking with SP.
Require: privacy budget ε, data set D;
1: partition D into disjoint sets Dl and Dh, for training of the low-level and high-level

models, respectively;
2: partition samples in Dl to K disjoint sets {S1, . . . , SK};
3: for k = 1, . . . , K do
4: train PLR (Algorithm 1) with privacy budget ε on Sk, and obtain the low-level

model parameter wl
k;

5: end for
6: construct meta-data set Ms = {[σ(x�wl

1);. . . ;σ(x�wl
K)], y} using all samples

{x, y} ∈ Dh;
7: train PLR (Algorithm 1) with privacy budget ε on Ms, and obtain the high-level

model parameter wh;
8: return {wl

k} and wh.

Proposition 3. If the regularizer g is strongly convex, Algorithm 2 provides
ε-differential privacy.

However, while the high-level model can be better than any of the single low-
level models [9], Algorithm 2 may not perform better than directly using PLR
on the whole D for the following two reasons. First, each low-level model uses
only Sk (step 4), which is about 1/K the size of D (assuming that the data set
D is partitioned uniformly). This smaller sample size may not satisfy condition
(3) in Proposition 2. Second, in many real-world applications, features are not of
equal importance. For example, for diabetes prediction using the RUIJIN data set
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(Table 3), Glu120 and Glu0, which directly measure glucose levels in the blood, are
more relevant than features such as age and number of children. However, during
training of the low-level models, Algorithm 2 adds equal amounts of noise to all
features. If we can add less noise to the more important features while keeping the
same privacy guarantee, we are likely to get better learning performance.

3.2 Privacy-Preserving Stacking with Feature Partitioning (FP)

To address the above problems, we propose to partition the data based on fea-
tures instead of samples in training the low-level models. The proposed feature-
based stacking approach is shown in Algorithm 3. Features are partitioned into
K subsets, and Dl is split correspondingly into K disjoint sets {F1, . . . ,FK}.
Obviously, as the number of training samples is not reduced, the sample size
condition for learning performance guarantee is easier to be satisfied (details
will be established in Theorem 1)1.

Algorithm 3. PST-F: Privacy-preserving stacking with FP.
Require: privacy budget ε, data set D, feature importance {qk}K

k=1 where qk ≥ 0 and∑K
k=1 qk = 1;

1: partition D into disjoint sets Dl and Dh, for training of the low-level model and
high-level model, respectively;

2: partition Dl to K disjoint sets {F1, . . . , FK} based on features;
3: ε′ = ε − ∑K

k=1 log(1 + q2
k/2nλk + q4

k/16n2λ2
k);

4: for k = 1, . . . , K do
5: scale ‖x‖ ≤ qk for all x ∈ Fk;
6: if ε′ > 0 then
7: Δk = 0 and εk = ε′;
8: else
9: Δk = q2

k/4n(exp(εqk/4)−1) − λk and εk = ε/2;
10: end if
11: pick a random bk from h(b) ∝ exp(εk‖b‖/2);
12: wl

k = arg minw
1/n

∑
xi∈Fk

�(w�xi, yi) + b�
k w/n + Δ‖w‖2

/2 + λkgk(w);
13: end for
14: construct meta-data set Mf = {[σ(x�

(1)w
l
1),. . . ,σ(x�

(K)w
l
K)], y} using all {x, y} ∈

Dh, where x(k) is a vector made from x by taking features covered by Fk;
15: train PLR (Algorithm 1) with privacy budget ε on Mf , and obtain the high-level

model parameter wh;
16: return {wl

k} and wh.

When the relative importance of feature subsets is known, Algorithm 3 adds
less noise to the more important features. Specifically, let the importance2 of Fk

(with dk features) be qk, where qk ≥ 0 and
∑

k=1 qk = 1, and is independent

1 —qk to partitions.
2 When feature importance is not known, q1 = · · · = qK = 1/K.
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with D. Assume that ε′ > 0 in step 6 (and thus εk = ε′). Recall from Sect. 2.2
that E(‖bk‖) = 2dk/εk = 2dk/ε′. By scaling the samples in each Fk as in step 5, the
injected noise level in Fk is given by E(‖bk‖)/‖x‖ = 2dk/ε′qk. This is thus inversely
proportional to the importance qk.

Remark 1. In the special case where only one feature group has nonzero impor-
tance, Algorithm 3 reduces Algorithm 1 on that group, and privacy is still
guaranteed.

Finally, a privacy-preserving low-level logistic regression model is obtained in
step 12, and a privacy-preserving high-level logistic regression model is obtained
in step 15. Theorem 1 guarantees privacy of Algorithm 3. Note that the proofs
in [2,6] cannot be directly used, as they consider neither stacking nor feature
importance.

Theorem 1. If all gk’s are strongly convex, Algorithm 3 provides ε-differential
privacy.

Analogous to Proposition 1, the following bounds the learning performance
of each low-level model.

Theorem 2. gk = 1/2‖ · −uk‖2, where uk is any constant vector, and vk is a
reference model parameter. Let ak = qk‖vk‖. given δ > 0 and εg > 0, there exists
a constant C1 such that when

n>C1 max
(
a2

k log(1/δ)/ε2g, d log(d/Kδ)ak/qkKεgε, a2
k/εgε

)
, (4)

wl
k from Algorithm 3 satisfies Pr[L(wl

k, P ) ≤ L(vk, P ) + εg] ≥ 1 − δ.

Remark 2. When K =1 (a single low-level model trained with all features) and
uk =0, Theorem 2 reduces to Proposition 2.

Note that, to keep the same bound L(vk, P )+εg, since xs’ are scaled by qk, vk

should be scaled by 1/qk, so E(ak) = E(qk‖vk‖) remains the same as qk changes.
Thus, Theorem 2 shows that low-level models on more important features can
indeed learn better, if these features are assigned with larger qk. Since stacking
can have better performance than any single model [9,27] and Theorem 2 can
offer better learning guarantee than Proposition 2, Algorithm 3 can have better
performance than Algorithm 1. Finally, compared with Proposition 1, gk in
Theorem 2 is more flexible in allowing an extra uk. We will show in Sect. 3.3
that this is useful for transfer learning.

Since the learning performance of stacking itself is still an open issue [27],
we leave the guarantee for the whole Algorithm 3 as future work. A potential
problem with FP is that possible correlations among feature subsets can no
longer be utilized. However, as the high-level model can combine information
from various low-level models, empirical results in Sect. 4.1 show that this is not
problematic unless K is very large.
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3.3 Application to Transfer Learning

Transfer learning [21] is a powerful and promising method to extract useful
knowledge from a source domain to a target domain. A popular transfer learn-
ing approach is hypothesis transfer learning (HTL) [17], which encourages the
hypothesis learned in the target domain to be similar with that in the source
domain. For application to (1), HTL adds an extra regularizer as:

min
w

∑
xi∈Dtgt

�(w�xi, yi)+λg(w)+η/2‖w−wsrc‖2. (5)

Here, η is a hyperparameter, Dtgt is the target domain data, and wsrc is obtained
from the source domain. Algorithm 4 shows how PST-F can be extended with
HTL using privacy budgets εsrc and εtgt for the source and target domains,
respectively. The same feature partitioning is used on both the source and tar-
get data. PLR is trained on each source domain data subset to obtain (wsrc)k

(steps 2–4). This is then transferred to the target domain using PST-F with
gk(w)= 1

2‖w−(wsrc)k‖2 (step 5).

Algorithm 4. PST-H: Privacy-preserving stacking with HTL.
Require: source data sets Dsrc, target data set Dtgt, and corresponding privacy bud-

gets εsrc and εtgt, respectively.
(source domain processing)

1: partition Dsrc to K disjoint sets {F1, . . . , FK} based on features;
2: for k = 1, . . . , K do
3: train PLR with privacy budget εsrc on Fk and obtain (wsrc)k;
4: end for

(target domain processing)
5: obtain

{
(wtgt)

l
k

}
and wh

tgt from PST-F (Algorithm 1) by taking gk(w)= 1/2‖w−
(wsrc)k‖2 and privacy budget εtgt on Dtgt;

6: return {(wsrc)k} for source domain,
{
(wtgt)

l
k

}
and wh

tgt for target domain.

The following provides privacy guarantees on both the source and target
domains. Recently, privacy-preserving HTL is also proposed in [28]. However, it
does not consider stacking and ignores feature importance.

Corollary 1. Algorithm 4 provides εsrc- and εtgt-differential privacy guarantees
for the source and target domains.

4 Experiments

4.1 Benchmark Datasets

Experiments are performed on two popular benchmark data sets for evaluating
privacy-preserving learning algorithms [22,25,28]: MNIST [19] and NEWS20 [18]
(Table 1). The MNIST data set contains images of handwritten digits. Here, we
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Table 1. Summary of the MNIST and NEWS20 data sets.

MNIST NEWS20

#train #test #features #train #test #features

3000 2000 100 4321 643 100

use the digits 0 and 8. We randomly select 5000 samples. 60% of them are used
for training (with 1/3 of this used for validation), and the remaining 20% for test-
ing. The NEWS20 data set is a collection of newsgroup documents. Documents
belonging to the topic “sci” are taken as positive samples, while those in the topic
“talk” are taken as negative. Finally, we use PCA to reduce the feature dimen-
sionality to 100, as original dimensionality for MINIST/NEWS20 is too high for
differentially private algorithms to handle as the noise will be extremely large.
Note that we use PCA for simplicity of the ablation study. However, note that
the importance scores should be obtained from side information independent
from the data or from experts’ opinions (as in diabetes example). Otherwise,
ε-differential privacy will not be guaranteed.

The following algorithms are compared: (i) PLR, which applies Algorithm 1
on the training data; (ii) PST-S: Algorithm 2, based on SP; and (iii) PST-F:
Algorithm 3, based on FP. We use K = 5 and 50% of the data for Dl and the
remaining for Dh. Two PST-F variants are compared: PST-F(U), with random
FP and equal feature importance. And PST-F(W), with partitioning based on
the PCA feature scores; and the importance of the kth group Fk is

qk =
∑

i:fi∈Fk
vi/

∑
j:fj∈Dl vj, (6)

where vi is the variance of the ith feature fi. Gradient perturbation is worse
than objective perturbation in logistic regression [2], thus is not compared.

The area-under-the-ROC-curve (AUC) [15] on the testing set is used for
performance evaluation. Hyper-parameters are tuned using the validation set.
To reduce statistical variations, the experiment is repeated 10 times, and the
results averaged.

Varying Privacy Budget ε. Figure 1 shows the testing AUC’s when the privacy
budget ε is varied. As can be seen, the AUCs for all methods improve when the
privacy requirement is relaxed (ε is large and less noise is added). Moreover,
PST-S can be inferior to PLR, due to insufficient training samples caused by
SP. Both PST-F(W) and PST-F(U) have better AUCs than PST-S and PLR.
In particular, PST-F(W) is the best as it can utilize feature importance. Since
PST-S is inferior to PST-F(U), we only consider PST-F(U) in the following
experiments.

Varying Number of Partitions K. In this experiment, we fix ε = 1, and vary
K. As can be seen from Fig. 2(a)–(b), when K is very small, ensemble learning
is not effective. When K is too large, a lot of feature correlation information is
lost and the testing AUC also decreases.
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(a) MNIST. (b) NEWS20.

Fig. 1. Testing AUC vs ε. Here, “∞” corresponds to the non-privacy-preserving version
of the corresponding algorithms.

Changing the Feature Importance. In the above experiments, feature
importance is defined based on the variance from PCA. Here, we show how fea-
ture importance influences prediction performance. In real-world applications,
we may not know the exact importance of features. Thus, we replace variance
vi by the ith power of α (αi), where α is a positive constant, and use (6) for
assigning weights. Note that when α<1, more importance features have larger
weights; and vice versa when α > 1. Note that PST-F(W) does not reduce to
PST-F(U) when α = 1, as more important features are still grouped together.
Figure 2(c)–(d) show the testing AUCs at different α’s. As can be seen, with
proper assigned weights (i.e., α < 1 and more important features have larger
qk’s), the testing AUC can get higher. If less important features are more val-
ued, the testing AUC decreases and may not be better than PST-F(U), which
uses uniform weights. Moreover, we see that PST-F(W) is not sensitive to the
weights once they are properly assigned.

Choice of High-Level Model. We compare different high-level models in
combining predictions from the low-level models. The following methods are
compared: (i) major voting (C-mv) from low-level models; (ii) weighted major
voting (C-wmv), which uses {qk} as the weights; and (iii) by a high-level model
in PST-F (denoted “C-hl”). Figure 3 shows results on NEWS20 with ε=1.0. As
can be seen, C-0 in Fig. 3(b) has the best performance among all single low-level
models, as it contains the most important features. Besides, stacking (i.e., C-hl),
is the best way to combine predictions from C-{0-4}, which also offers better
performance than any single low-level models.
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Table 2. Testing AUC on all branches of RUIJIN data set. The best and comparable
results according to pair-wise 95% significance test are high-lighted. Testing AUC of
PLR on main center is 0.668 ± 0.026.

branch# 1 2 3 4 5 6 7 8
PST-H(W) 0.747±0.032 0.736±0.032 0.740±0.040 0.714±0.040 0.766±0.039 0.707±0.017 0.721±0.0464 0.753±0.042
PST-H(U) 0.678±0.049 0.724±0.037 0.652±0.103 0.708±0.033 0.653±0.070 0.663±0.036 0.682±0.0336 0.692±0.044
PPHTL 0.602±0.085 0.608±0.078 0.528±0.062 0.563±0.067 0.577±0.075 0.601±0.031 0.580±0.0708 0.583±0.056
PLR(target) 0.548±0.088 0.620±0.055 0.636±0.046 0.579±0.075 0.533±0.058 0.613±0.035 0.561±0.0764 0.584±0.045
branch# 9 10 11 12 13 14 15 16
PST-H(W) 0.701±0.023 0.698±0.036 0.736±0.046 0.738±0.045 0.746±0.0520 0.661±0.094 0.697±0.023 0.604±0.012
PST-H(U) 0.635±0.026 0.644±0.050 0.635±0.054 0.645±0.061 0.718±0.0647 0.644±0.044 0.647±0.061 0.567±0.036
PPHTL 0.547±0.066 0.517±0.075 0.565±0.059 0.547±0.089 0.592±0.0806 0.615±0.071 0.558±0.065 0.524±0.027
PLR(target) 0.515±0.065 0.555±0.061 0.553±0.066 0.520±0.088 0.619±0.0701 0.563±0.026 0.558±0.060 0.517±0.053

Table 3. Some features in the RUIJIN data set, and importance is suggested by
doctors. Top (resp. bottom) part: Features collected from the first (resp. second) inves-
tigation.

Name Importance Explaination

mchild 0.010 Number of children

weight 0.012 Birth weight

bone 0.013 Bone mass measurement

eggw 0.005 Frequency of having eggs

Glu120 0.055 Glucose level 2 h after meals

Glu0 0.060 Glucose level immediately after meals

age 0.018 Age

bmi 0.043 Body mass index

HDL 0.045 High-density lipoprotein

4.2 Diabetes Prediction

Diabetes is a group of metabolic disorders with high blood sugar levels over a pro-
longed period. The RUIJIN diabetes data set is collected by the Shanghai Ruijin
Hospital during two investigations (in 2010 and 2013), conducted by the main
hospital in Shanghai and 16 branches across China. The first investigation con-
sists of questionnaires and laboratory tests collecting demographics, life-styles,
disease information, and physical examination results. The second investiga-
tion includes diabetes diagnosis. Some collected features are shown in Table 3.
Table 4 shows a total of 105,763 participants who appear in both two investi-
gations. The smaller branches may not have sufficient labeled medical records
for good prediction. Hence, it will be useful to borrow knowledge learned by the
main hospital. However, users’ privacy is a major concern, and patients’ personal
medical records in the main hospital should not be leaked to the branches.

In this section, we apply the method in Sect. 3.3 for diabetes prediction.
Specifically, based on the patient data collected during the first investigation
in 2010, we predict whether he/she will have diabetes diagnosed in 2013. The
main hospital serves as the source domain, and the branches are the target
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(a) MNIST. (b) NEWS20.

Fig. 2. Testing AUC with different K (first row) and different feature importance
settings (second row).

domains. We set εsrc = εtgt = 1.0. The following methods are also compared:
(i) PLR(target), which directly uses PLR on the target data; (ii) PPHTL [28]:
a recently proposed privacy-preserving HTL method based on PLR; (iii) PST-
F(U): There are 50 features, and they are randomly split into five groups, i.e.,
K = 5, and each group have equal weights; (iv) PST-F(W): Features are first
sorted by importance, and then grouped as follows: The top 10 features are
placed in the first group, the next 10 features go to the second group, and so
on. qk is set based on (6), with vi being the importance values provided by the
doctors. The other settings are the same as in Sect. 4.1.

Results are shown in Table 2. PPHTL may not have better performance
than PLR(target), which is perhaps due to noise introduced in features. How-
ever, PST-F(U) improves over PPHTL by feature splitting, and consistently
outperforms PLR(target). PST-F(W), which considers features importance, is
the best.
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(a) PST-F(U). (b) PST-F(W).

Fig. 3. Testing AUC of low-levels models and different combining methods on NEWS20
(ε = 1.0), where C-0 to C-4 are performance of low-level models.

Table 4. Number of samples collected from the main hospital and 16 branches in the
RUIJIN data set.

main #1 #2 #3 #4 #5 #6 #7 #8
12,7024,3344,7396,1212,3275,6196,3604,9665,793

#9 #10 #11 #12 #13 #14 #15 #16
6,2153,6595,5792,3164,2856,0176,4824,493

5 Conclusion

In this chapter, we propose a new privacy-preserving machine learning method,
which improves privacy-preserving logistic regression by stacking. This can be
done by either sample-based or feature-based partitioning of the data set. We
provide theoretical justifications that the feature-based approach is better and
requires a smaller sample complexity. Besides, when the importance of features
is available, this can further boost the feature-based approach both in theory
and practice. Effectiveness of the proposed method is verified on both standard
benchmark data sets and a real-world cross-organizational diabetes prediction
application.
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