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Abstract Given an undirected graph G = (V ,E) and an integer k ∈ {1, . . . , |V |},
we initiate the combinatorial study of stable sets of cardinality exactly k in G. Our
aim is to instigate the polyhedral investigation of the convex hull of fixed cardinality
stable sets, and we begin by introducing a large class of valid inequalities to the
natural integer programming formulation of the problem.
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1 From Conflict-Free Trees to Fixed Cardinality Stable Sets

We investigate a problem that is appealing to different research directions around
algorithms, combinatorics and optimization. Let G = (V ,E) be a finite, simple,
undirected graph, and denote n = |V |, and m = |E|. A stable set (or independent
set, or co-clique) in G is a subset of pairwise non-adjacent vertices. Given k ∈
{1, . . . , n} and a vertex-weighting function w : V → Q+, the k stable set problem
consists in finding a minimum weight stable set of cardinality k in G, or deciding
that none exists. Note that k is also part of the input to this problem; if it were an
arbitrary fixed integer, the enumeration and optimization problems over stable sets
of that cardinality could be solved in time polynomially bounded by a function of n.

Our original motivation for considering fixed cardinality stable sets stems
from the NP-hard problem of determining minimum spanning trees under conflict
constraints (MSTCC). Given a graph G = (V ,E) and a set of conflicting edge pairs
C ⊆ E × E, a conflict-free spanning tree in G is a set of edges T ⊆ E inducing a
spanning tree in G, such that for each (e, f ) ∈ C, at most one of the edges e and
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f is in T . The MSTCC problem, introduced by Darmann et al. [5], asks for such a
conflict-free spanning tree of minimum weight.

Different combinatorial and algorithmic results about the MSTCC problem
explore the associated conflict graphH = (E,C), which has a vertex corresponding
to each edge in the original graph G, and we represent each conflict constraint
by an (undirected) edge connecting the corresponding vertices in H . Note that
each conflict-free spanning tree in G is a subset of E which corresponds both to
a spanning tree in G and to a stable set in H . Therefore, one can equivalently search
for stable sets in H of cardinality exactly |V | − 1 which do not induce cycles in the
original graph G.

It is not hard to devise different approaches for studying the MSTCC problem
exploring the connection with fixed cardinality stable sets. Therefore, results of
different nature from research on the k stable set problem (e.g. integer programming
formulations and valid inequalities, well-solved particular cases, primal and dual
bounds) could provide fundamental components to advance knowledge on the
MSTCC problem as well.

It is surprising that the combinatorics and optimization literature has not
addressed the k stable set problem problem in depth before. The convex hull of
stable sets of cardinality at most k was studied by Janssen and Kilakos [8], but
only for k ∈ {2, 3}. Apart from that article, it has also appeared as part of an
algorithm for a variant of the survivable network design problem [3, Chapter 2],
where only an alternative proof of one of the original results on [8] is given. We
remark that the thorough survey on fixed cardinality versions of combinatorial
optimization problems by Bruglieri et al. [4] does not mention stable sets, in spite
of the major role played by that structure throughout the development of polyhedral
combinatorics.

Our contribution with this work is twofold. First, we draw attention to the fixed
cardinality version of a classical structure in combinatorial optimization and graph
theory, motivated by its application in the MSTCC problem. Second, we introduce
an exponential class of valid inequalities to the fixed cardinality stable set polytope,
whose separation problem is interesting in its own right.

2 Polyhedral Results

For any graph G, we denote by V (G) and E(G) the sets of vertices and edges of G,
respectively. For conciseness, we abbreviate ‘stable set of cardinality k’ as k-stab.
The family of all k-stabs in G is denoted F (G, k). Recall that the incidence vector
of any S ⊂ V is χS ∈ {0, 1}V defined by χS

i = 1 if i ∈ S, and χS
i = 0 if i ∈ V \S;

so the central object of our interest is C(G, k) = conv
{
χS : S ∈ F (G, k)

}
, i.e. the

convex hull of incidence vectors of all the k-stabs in G.
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The natural integer programming (IP) formulation for minimum-weight k-stabs
in G is

min

{
∑

v∈V

w(v)xv : x ∈ P(G, k) ∩ {0, 1}n
}

, (1)

where P(G, k) denotes the polyhedral region defined by:

∑

v∈V

xv = k (2)

xu + xv ≤ 1 ∀ {u, v} ∈ E (3)

0 ≤ xv ≤ 1 ∀v ∈ V (4)

Constraints (3) are known as edge inequalities, imposing that no two adjacent
vertices belong to the selection in x. Together with bounds (4), they determine the
fractional stable set polytope [14, Section 64.5].

Remark 1 Recall that a vector z is half-integer if 2z is integer. A classical result
of Nemhauser and Trotter [11] shows that the fractional stable set polytope is half-

integer, i.e. all its vertices are
{
0, 1

2 , 1
}
-valued. Since that is the starting point for

a series of both polyhedral and algorithmic advances, one could be interested in
extending that result for P(G, k) as well. Unfortunately, we could verify that is
not the case. While no small counterexample is found, we report a computational
finding using benchmark instances from the minimum spanning tree under conflict
constraints problem [13]. When Ĝ corresponds to the conflict graph associated with
instance z100-300-1344 in that paper, which has 300 vertices and 1344 edges,
and k = 60, the primal simplex method implemented in Gurobi Optimizer 8.1
(with all presolve, heuristics and cut options disabled) terminates with a solution
corresponding to a vertex of P(Ĝ, k) which is not half-integer.

We introduce next a class of valid inequalities for C(G, k), exploring the
relationship between k, the size of the neighbourhood

N(S) = {u ∈ V \S : ∃ {u, v} ∈ E for some v ∈ S}

of any set S ⊂ V , and how many vertices from S can appear in any k-stab. First,
denoting the set of neighbours of a vertex v ∈ V by δ(v), that is δ(v) = N({v}),
one can immediately observe that no vertex which has too many neighbours to still
build a k-stab can be chosen. This gives the following simple reduction rule.

Proposition 1 If x is the incidence vector of any k-stab, and v ∈ V is such that
|δ(v)| > n − k, then xv = 0.

In an attempt to enforce an algebraic expression that enough vertices are left
upon choosing a set S ⊂ V towards building a k-stab, we introduce a class of
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exponentially-many constraints, which we refer to as unsuitable neighbourhood
inequalities (UNI).

Theorem 1 The inequality
∑

v∈S xv ≤ |S|−1 is valid for C(G, k), for each S ⊂ V

such that 1 ≤ |S| < k and |N(S)| > n − k.

Proof From |S| < k, it follows that S is not a k-stab in itself. If S were a subset
of any k-stab, there should be at least k − |S| vertices left to choose from, while no
neighbour in N(S) can be selected towards building a stable set. That is

n − |S| − |N(S)| ≥ k − |S| , ∀S ⊂ V, 1 ≤ |S| < k,

⇔ |N(S)| ≤ n − k , ∀S ⊂ V, 1 ≤ |S| < k.

Since |N(S)| > n − k by hypothesis, S cannot be part of a k-stab. Therefore no
incidence vector x of a k-stab induces the selection of all the vertices in S, and the
result follows. �

While Proposition 1 is clearly a special case of Theorem 1, one could ask whether
the UNI indeed give a stronger condition. The positive answer follows next.

Theorem 2 For any graph G and k > 1, the UNI imply the condition enforced by
Proposition 1 in the description of C(G, k), but the converse does not hold.

Proof Let x be a vector satisfying all UNI. The inequalities in Proposition 1 are
implied by the UNI with |S| = 1. Suppose that S = {u} and |N(S)| = |δ(u)| >

n − k. Then u cannot be extended to a k-stab and the UNI include xu = ∑
v∈S xv ≤

|S| − 1 = 0, which is the condition on the former proposition.
Now the converse does not hold, i.e. even if |δ(v)| ≤ n − k for each v ∈ V ,

the UNI need not be automatically satisfied, as the following counterexample shows
(see Fig. 1). Consider the graph G = 2P3, which consists of two copies of the path
graph on 3 vertices put together, so that n = 6, and suppose that k = 3. Since all
vertices have degree 1 or 2, it follows that |δ(u)| ≤ n − k = 3 for each vertex u.
On the other hand, with a test set S consisting of the two vertices of degree 2 in the
middle of the paths, we have 1 ≤ |S| < k and |N(S)| = 4 > n − k, thus yielding
the unsuitable neighbourhood inequality given by

∑
v∈S xv ≤ |S| − 1 = 1 which

separates from the convex hull C(G, k) any vector selecting those two vertices. �

Proposition 2 In either of the following two conditions, the corresponding unsuit-
able neighbourhood inequality is redundant in C(G, k): (i) if S ⊂ V is not

Fig. 1 The graph 2P3 and
the selection of its two central
vertices
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independent, or (ii) if S ⊂ V is not minimal with respect to the condition |N(S)| >

n − k.

Proof If u, v ∈ S are adjacent vertices, the edge inequality xu + xv ≤ 1 implies∑
v∈S xv ≤ |S| − 1.
Otherwise, let S ⊂ V with 1 ≤ |S| < k andN(S) > n−k be a given independent

set, and suppose that T � S is such that |N(T )| > n − k. The UNI corresponding
to T is

∑
v∈T xv ≤ |T | − 1. Combined with xv ≤ 1 for each v ∈ S\T , it implies

the UNI corresponding to S, i.e.
∑

v∈S xv ≤ |S| − 1, which is thus redundant in the
description of C(G, k). �

Recall that the domination number γ (G) gives the least cardinality of a domi-
nating set in G = (V ,E), i.e. a subset D ⊂ V such that every vertex u ∈ V \D has
a neighbour in D. If a lower bound on the domination number of G is known, the
following result might be useful.

Proposition 3 If γ (G) ≥ k, then there exists no UNI for C(G, k).

Proof Suppose there were S ⊂ V with 1 ≤ |S| < k and |N(S)| > n−k, and denote
T = V \ {S ∪ N(S)}. Note that any vertex belongs to exactly one among S, N(S),
or T ; then

|S| + |N(S)| + |T | = n �⇒ |S| + |T | = n − |N(S)| �⇒ |S| + |T | < n − [n − k] = k,

since |N(S)| > n − k. Now, S ∪ T would be a dominating set of cardinality strictly
less than k, contradicting the hypothesis that γ (G) ≥ k. �

On the algorithmic side, it is in general impractical to include a priori all
minimal UNI in an IP formulation for a black-box solver, since the number of
those inequalities may grow exponentially with the size of the input (n, k). The
natural approach in this case is to try to cut off successive solutions x∗ to a
linear programming (LP) relaxation, by finding cutting planes corresponding to
UNI violated at x∗, i.e. separating x∗ from C(G, k), or deciding that none exists.
Answering that question is known as the separation problem for a class of valid
inequalities.

Definition 1 (Separation Problem for UNI) Given a graph G = (V ,E), with n =
|V |, k ∈ {2, . . . , n − 1}, and x∗ ∈ [0, 1]n satisfying the conditions that

∑
v∈V x∗

v =
k and that x∗

u + x∗
v ≤ 1 for each {u, v} ∈ E, determine

i. either a set S ⊂ V , with 1 ≤ |S| ≤ k − 1 and |N(S)| ≥ n − (k − 1), such
that

∑
v∈S x∗

v > |S| − 1, in which case the unsuitable neighbourhood inequality
corresponding to S separates x∗ from C(G, k),

ii. or that no such set exists, in which case all UNI are satisfied at x∗.

We give next a slight reformulation of the separation problem which might be
useful in future work. Given the input [G, k, x∗] corresponding to Definition 1,
define y∗ ∈ [0, 1]n such that y∗

v = 1 − x∗
v . Note now that

∑
v∈S x∗

v > |S| − 1
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if and only if
∑

v∈S y∗
v < 1. We thus have the following equivalent statement of the

problem.

Definition 2 (Equivalent Formulation of the Separation Problem for UNI)
Given a graph G = (V ,E), with n = |V |, k ∈ {2, . . . , n − 1}, and y∗ ∈ [0, 1]n
satisfying the conditions that

∑
v∈V y∗

v = n − k and that y∗
u + y∗

v ≥ 1 for each
{u, v} ∈ E, determine

i. either a set S ⊂ V , with |N(S)| ≥ n−(k−1) and
∑

v∈S y∗
v < 1, in which case the

unsuitable neighbourhood inequality corresponding to S separates x∗ = 1 − y∗
from C(G, k),

ii. or that no such set exists, in which case all UNI are satisfied at x∗ = 1 − y∗.

We consider this statement of the problem to be particularly appealing. Note
that if S has size exactly k − 1, then |N(S)| ≥ n − (k − 1) implies that it would
be a dominating set. Given the condition that adjacent vertices have y∗ values
summing up to at least 1, and that we require

∑
v∈S y∗

v < 1, we would actually
have an independent dominating set if |S| = k − 1, i.e. a subset of vertices which
is both dominating and independent (stable). Now, allowing |S| ≤ k − 1 means
that there might be q ∈ {0, 1, . . . , k − 2} vertices neither in S nor dominated
by it. If we define a q-quasi dominating set in a graph G = (V ,E) to be a
subset of vertices which is dominating in G[V \X], for some X ⊂ V, |X| ≤
q, our separation problem corresponds to finding an independent (k − 2)-quasi
dominating set of weight at most 1, or deciding that none exists. (Recall that,
for any graph G and U ⊂ V (G), the induced subgraph G [U ] is a graph
with vertex set U and all of the edges in E(G) which have both endpoints in
U .)

We leave the open question of establishing the complexity of that problem.

Conjecture 1 The separation problem for UNI is NP-hard.

3 Concluding Remarks and Directions Towards
a Branch-and-Cut Algorithm

We investigate in this work the fixed cardinality version of the classical stable set
problem, highlighting an interesting gap in the combinatorial optimization literature.
Generalizing the remark that vertices of too high degree cannot be in a stable set of
cardinality k, we derive a large class of valid inequalities for the k-stab polytope.
The corresponding separation problem asks for optimizing over subgraphs with a
domination-like property and an additional budget constraint.

We are interested in a deeper polyhedral investigation, the starting point of
which is to shed light on the relevance of the inequalities we introduce here,
and how they relate to other families of valid inequalities for the classical stable
set polytope. Moreover, progress in this direction could lead to an interesting
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algorithm for solving the MSTCC problem, as we indicate in Sect. 1. The remaining
ingredient to find conflict-free spanning trees in the original graph G, from a
cardinality k = |V (G)| − 1 stable set in the conflict-graph H , is to enforce
an acyclic solution in the original graph. That could be attained by using a
relax-and-cut approach (see [6, 9], for instance), separating subtour elimination
constraints and immediately dualizing them in a Lagrangean fashion. In fact, Lucena
[9] introduced an effective relax-and-cut algorithm for the fixed cardinality set
partitioning problem.

We conclude by indicating selected insights on the practical issue of leveraging
a modern branch-and-cut solver for the classical stable set problem (referring the
reader to the eminently readable tutorial of Rebennack et al. [12]) towards one for
the fixed cardinality version.

3.1 UNI Separation with MIP Heuristics

Besides the natural strategies of designing separation heuristics or including a priori
some UNI corresponding to sets S of small cardinality, it might prove useful to
explore an IP formulation of the separation problem. One can actually use good
but not necessarily optimal solutions to that auxiliary IP, which give very effective
cutting planes, for instance, in the context of an example of optimizing over the first
Chvátal closure [2, Section 5.4]. Most MIP solvers include a collection of general
purpose heuristics to accelerate the availability of integer feasible solutions, like
local branching, feasibility pump and neighbourhood diving methods; see [7] for a
recent survey.

The following is described in light of Definition 2, with input [G, k, y∗]. We
suppose further that the input is preprocessed by the reduction rules:

(i) Remove any vertex v such that y∗
v = 1

(ii) Remove isolated vertices

Those operations do not change the problem answer, since a UNI is automatically
satisfied if it contains a vertex with y∗

v = 1, and since isolated vertices are not
contained in a minimal set S corresponding to a UNI.

For each v ∈ V , let variables zv ∈ {0, 1} be such that zv = 1 if and only if v ∈ S,
and wv ∈ {0, 1} be such that wv = 1 if and only if v ∈ N [S] = S ∪N(S), the closed
neighbourhood of S ⊂ V . Then, we have to determine

ρ = min

{
∑

v∈V

y∗
v · zv : (z,w) ∈ PUNI(G, y∗) ∩ {0, 1}2n

}

, (5)
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where PUNI(G, y∗) denotes the polyhedral region:
∑

v∈V

(wv − zv) ≥ n − (k − 1) (6)

zu ≤ wv ∀u ∈ V,∀v ∈ N [u] (7)
∑

u∈N [v]
zu ≥ wv ∀v ∈ V (8)

zu + zv ≤ 1 ∀ {u, v} ∈ E (9)

0 ≤ zv ≤ 1 ∀v ∈ V (10)

0 ≤ wv ≤ 1 ∀v ∈ V (11)

The objective function in (5) accounts for the used y∗ budget, as prescribed in
Definition 2. Inequality (6) guarantees the minimum number of vertices dominated
by S (excluding those which are in S). Inequalities (7) and (8) bind the binary
variables w and z, to enforce the domination condition that wv = 1 if and only
if zu = 1 for some u ∈ N [v].

Inequalities (9) are redundant, being implied at integer points inPUNI(G, y∗) by
(6) and the fact the input parameter satisfies y∗

u + y∗
v ≥ 1 for each {u, v} ∈ E. Still,

adding those inequalities is likely to tighten the LP relaxation bounds, and hence
speed up the overall optimization procedure.

The exact separation problem thus reduces to deciding if ρ < 1. The MIP
heuristic, on the other hand, consists of searching (e.g. allowing a MIP solver to
run with a prescribed time limit) for any integer feasible solution (z′,w′) with an
objective value less than 1, which determines the UNI

∑
v∈S′ xv ≤ |S′| − 1, with

S′ = {
v ∈ V : z′

v = 1
}
, violated at x∗ = 1 − y∗.

3.2 Balanced Branching

A fundamental component for the performance of branch-and-cut algorithms for
the classical stable set problem is the balanced branching rule of Balas and
Yu [1]; see also [12] and [10]. Its original motivation also applies to the fixed
cardinality setting: avoiding unbalanced branch-and-bound trees when branching
on a fractional variable xv , since fixing xv = 1 has the larger impact of implying
xu = 0 for each u ∈ N(v), while fixing xv = 0 has no impact on the neighbourhood.

The general branching scheme can be adapted to find minimum weight k-stabs
with little effort. Suppose that, on a given node of the enumeration tree, G′ =
(V ′, E′) denotes the subgraph induced by vertices not fixed in this subproblem,
and that z is the best primal bound available. Let W ⊆ V ′ be such that we can
determine efficiently that the minimum weight of a k-stab in the subgraph induced
by W , denoted z(W), is such that z(W) ≥ z. Note that, if W = V ′, the subproblem
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is fathomed and the whole subtree rooted on this node can be pruned. Otherwise, if
the search on this subtree is to eventually find that z(V ′) < z, any bound-improving
solution must intersect V ′\W = {

v1, . . . , vp

}
. That is, we can partition the search

space into the sets

V ′
i = {vi}

⋃
V ′\ (

N(vi) ∪ {
vi+1, . . . , vp

})

for 1 ≤ i ≤ p. The enumeration can therefore branch on p subproblems, each fixing
xvi

= 1, and fixing at 0 those variables corresponding to N(vi) ∪ {
vi+1, . . . , vp

}
.

Now, there are different strategies to determine subgraph W . The standard one
is to find a collection of cliques in G′, e.g. with as many cliques as the currently
available lower bound, when searching for maximum cardinality stable sets. For
minimum-weight k-stabs, the natural idea would be to greedily find k cliques, such
that the combined weight of the cheapest vertices in each exceed z. We describe
next an alternative approach tailored for optimizing over k-stabs, leaving for future
work the task of comparing those two strategies, whether theoretically or according
to computational experience.

Recall that a matching in a graph is a subset of pairwise non-adjacent edges, that
is, a subset of edges without common vertices. Since each k-stab contains at most
one vertex from each edge in a matching, a lower bound on z(W) can be derived
by simply picking the k vertices of lowest weight among: (i) the cheapest vertex in
each matched edge, and (ii) the remaining vertices not covered by the matching. We
thus have the following result, which we state in the general form of a combinatorial
dual bound for the minimum weight of k-stab in an arbitrary graph.

Theorem 3 Suppose that P(G, k) ∩ {0, 1}n �= ∅, so that problem (1) is well-
defined. Let M ⊂ E be any matching in G. Define ce = min

{
w(vi), w(vj )

}
for

each edge e = {
vi, vj

} ∈ M . Also define cu = w(vu) for any vertex vu not covered
by the matching M . Then, the sum of the k lowest values in the image of c(·) is a
lower bound on (1). That is, given an order c1 ≤ c2 · · · ≤ c(n−|M|) on {ce}e∈M ∪
{cu}u∈V \VM

, where VM corresponds to the set of vertices covered by M , we have

that
∑k

i=1 ci is a lower bound on the weight of a k-stab in G.

Therefore, using the weight function corresponding to c(·) in the above theorem,
we can determine candidate subgraphs W by inspecting, for each l ∈ {1, . . . , k}:
1. A minimum-weight matching in G′ with cardinality l

2. A suitable choice of k − l vertices not covered by the matching

Finally, note that finding a minimum-weight matching of a specified cardinality in
a graph is a well-solved problem. More generally, for any l, u ∈ Z+, l ≤ u, the
convex hull of incidence vectors of matchings M ⊂ E(G) such that l ≤ |M| ≤ u is
equal to the set of those vectors in the matching polytope of G satisfying l ≤ 1�x ≤
u, that is, l ≤ ∑

e∈E(G) x(e) ≤ u; see [14, Section 18.5f].
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