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Abstract The routing and spectrum assignment problem in flexgrid elastic optical
networks can be modeled in two phases: a selection of paths in the network and an
interval coloring problem in the edge intersection graph of these paths. The interval
chromatic number equals the smallest size of a spectrum such that a proper interval
coloring is possible, the weighted clique number is a natural lower bound. Graphs
where both parameters coincide for all possible non-negative integral weights are
called superperfect. We examine the question which minimal non-superperfect
graphs can occur in the edge intersection graphs of paths in different underlying
networks. We show that for any possible network (even if it is restricted to a path)
the resulting edge intersection graphs are not necessarily superperfect and discuss
some consequences.

Keywords Routing and spectrum assignment problem · Edge intersection graph
of paths · Interval coloring · Superperfection

1 Introduction

Flexgrid elastic optical networks constitute a new generation of optical networks
in response to the sustained growth of data traffic volumes and demands in
communication networks. In optical networks, light is used as communication
medium between sender and receiver nodes, and the frequency spectrum of an
optical fiber is divided into narrow frequency slots of fixed spectrum width. Any
sequence of consecutive slots can form a channel that can be switched in the
network to create a lightpath (i.e., an optical connection represented by a route
and a channel). The routing and spectrum assignment (RSA) problem consists of
establishing the lightpaths for a set of end-to-end traffic demands, that is, finding a
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route and assigning an interval of consecutive frequency slots for each demand such
that the intervals of lightpaths using a same edge in the network are disjoint, see e.g.
[17]. Thereby, the following constraints need to be respected when dealing with the
RSA problem:

1. spectrum continuity: the frequency slots allocated to a demand remain the same
on all the edges of a route;

2. spectrum contiguity: the frequency slots allocated to a demand must be contigu-
ous;

3. non-overlapping spectrum: a frequency slot can be allocated to at most one
demand.

The RSA problem has started to receive a lot of attention over the last few years.
It has been shown to be NP-hard [3, 18]. In fact, if for each demand the route is
already known, the RSA problem reduces to the so-called spectrum assignment
(SA) problem and only consists of determining the demands’ channels. Even the
SA problem has been shown to be NP-hard on paths [16].

More formally, for the RSA problem, we are given an optical network G and a
set D of end-to-end traffic demands where each demand is specified by a pair u, v

of distinct nodes in G and the number duv of required frequency slots. The routing
part of the RSA problem consists of selecting a route through G from u to v, i.e.
a (u, v)-path Puv in G, for each such traffic demand. The spectrum assignment can
then be interpreted as an interval coloring of the edge intersection graph I (P) of
the set P of selected paths:

• Each path Puv ∈ P becomes a node of I (P) and two nodes are joined by an
edge if the corresponding paths in G are in conflict as they share an edge (notice
that we do not care whether they share nodes).

• Any interval coloring in this graph I (P) weighted with the demands duv

correctly solves the spectrum assignment: we assign a frequency interval of duv

consecutive frequency slots (spectrum contiguity) to every node of I (P) (and,
thus, to every path Puv ∈ P (spectrum continuity)) in such a way that the
intervals of adjacent nodes are disjoint (non-overlapping spectrum).

Let d ∈ Z
|D |
+ be the vector whose entries duv are the slot requirements associated

with the demands between pairs u, v of nodes in D . The interval chromatic number
χI (I (P),d) is the minimum spectrum width such that I (P) weighted with the
vector d of traffic demands duv for each path Puv has a proper interval coloring.
Given G and D , the minimum spectrum width of any solution of the RSA problem,
thus, equals

χI (G,D) = min{χI (I (P),d) : P possible routing of demands D in G}.

For each routingP , the weighted clique number ω(I (P),d), also taking the traffic
demands duv as weights, equals the weight of a heaviest clique in I (P) and is a
natural lower bound for χI (I (P),d) (as clearly the intervals of all nodes in a clique
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in I (P) have to be disjoint by construction of I (P)). However, it is not always
possible to find a solution with this lower bound as spectrum width, as weighted
clique number and interval chromatic number are not always equal.

Graphs where weighted clique number and interval chromatic number coincide
for all possible non-negative integral weights are called superperfect.

A graph is perfect if and only if this holds for every (0, 1)-weighting d of its
nodes. According to a characterization achieved by Chudnovsky et al. [4], perfect
graphs are precisely the graphs without chordless cycles C2k+1 with k ≥ 2, termed
odd holes, or their complements, the odd antiholes C2k+1 (the complement G has
the same nodes as G, but two nodes are adjacent in G if and only if they are non-
adjacent in G).

In particular, every superperfect graph is perfect.
On the other hand, comparability graphs form a subclass of superperfect graphs.

A graph G = (V ,E) is comparability if and only if there exists a partial order
O on V × V such that uv ∈ E if and only if u and v are comparable w.r.t. O .
Hoffman [12] proved that every comparability graph is superperfect. Gallai [6]
characterized comparability graphs by giving a complete list of minimal non-
comparability graphs, that are

• odd holes C2k+1 for k ≥ 2 and antiholes Cn for n ≥ 6,
• the graphs Jk and J ′

k for k ≥ 2 and the graphs J ′′
k for k ≥ 3 (see Fig. 1),

• the complements of Dk for k ≥ 2 and of Ek , Fk for k ≥ 1 (see Fig. 2),
• the complements of A1, . . . , A10 (see Fig. 3).
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Fig. 1 Minimal non-comparability graphs: Jk , J ′
k for k ≥ 2 and J ′′

k for k ≥ 3
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Fig. 2 Minimal non-comparability graphs: the complements of Dk , Ek , Fk
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Fig. 3 Minimal non-comparability graphs: the graphs A1, . . . , A10

As comparability graphs form a subclass of superperfect graphs, we have
that every non-superperfect graph is in particular non-comparability, which raises
the question which minimal non-comparability graphs are also minimal non-
superperfect. Clearly, odd holes and odd antiholes are minimal non-superperfect
(as they are minimal non-perfect). It has been shown by Golumbic [7] that A1,
D2, E1, E2 and J2 are non-superperfect, but that there are also superperfect non-
comparability graphs such as e.g. even antiholes C2k for k ≥ 3.

Furthermore, Andreae showed in [1], that the graphs J ′′
k for k ≥ 3 and the

complements of A3, . . . , A10 are superperfect, but that the graphs Jk for k ≥ 2
and J ′

k for k ≥ 3 as well as the complements of Dk for k ≥ 2 and of Ek , Fk for
k ≥ 1 are non-superperfect.

Note that Andreae wrongly determined A2 as superperfect which is, in fact,
not the case (see Fig. 4 for a weight vector d and an optimal interval coloring
showing that ω(A2,d) = 5 < 6 = χI (A2,d) holds). Moreover, Andreae wrongly
determined J ′

2 as non-superperfect which is, in fact, not the case:

Lemma 1 J ′
2 is a superperfect graph.

Hence, all the previous results together imply the following:

Corollary 1 The following minimal non-comparability graphs are also minimal
non-superperfect:

• A1 and A2,
• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
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Fig. 4 The graph A2
together with node weights d
and an optimal interval
coloring showing ω(A2,d) =
5 < 6 = χI (A2,d)
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• the graphs Jk for k ≥ 2 and J ′
k for k ≥ 3 as well as

• the complements of Dk for k ≥ 2 and of Ek , Fk for k ≥ 1.

Note that we have ω(G, 1) < χI (G, 1) with 1 = (1, . . . , 1) if G is an odd
hole or an odd antihole (as they are not perfect), whereas the other minimal non-
comparability non-superperfect graphs are perfect and, thus, ω(G,d) < χI (G,d)

is attained for some d �= 1 (see Fig. 4).
We examine, for different underlying networks G, the question whether or not

there is a solution of the RSA problem with

ω(G,D) = min{ω(I (P),d) : P possible routing of demands D in G}

as spectrum width which depends on the occurrence of (minimal) non-superperfect
graphs in the edge intersection graphs I (P).

Note that for some networks G, the edge intersection graphs form well-studied
graph classes: if G is a path (resp. tree, resp. cycle), then I (P) is an interval graph
(resp. EPT graph, resp. circular-arc graph). However, if G is a sufficiently large
grid, then it is known by Golumbic et al. [9] that I (P) can be any graph. Modern
optical networks do not fall in any of these classes, but are 2-connected, sparse
planar graphs with small maximum degree with a grid-like structure.

We first study the cases when the underlying network G is a path, a tree or a
cycle (see Sects. 2–4). We recall results on interval graphs, EPT graphs and circular-
arc graphs from [5, 8, 14] and then discuss which minimal non-comparability non-
superperfect graphs can occur. In addition, we exhibit new examples of minimal
non-superperfect graphs within these classes.

All of these non-superperfect graphs are inherited for the case when G is an
optical network, and we give also representations as edge intersection graphs for
the remaining minimal non-comparability non-superperfect graphs. In view of the
result on edge intersection graphs of paths in a sufficiently large grid [9], we expect
that any further minimal non-superperfect graph has such a representation and give
some further new examples of such graphs.

To find new examples, we make use of the complete list of minimal non-
comparability graphs found by Gallai [6] and the fact that any candidate for a
new minimal non-superperfect graph can neither be imperfect nor a comparability
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graph. Thus, among the graphs with n nodes, the candidates of new minimal non-
superperfect graphs are all graphs that are

• perfect (i.e. do not contain odd holes or odd antiholes),
• do not contain any minimal non-superperfect graph with ≤ n nodes,
• contain a minimal non-comparability superperfect graph with < n nodes.

We close with some concluding remarks and open problems.

2 If the Network Is a Path

If the underlying optical network is a path P , then there exists exactly one (u, v)-
path Puv in P for every traffic demand between a pair u, v of nodes. Hence, if P is
a path, then P and I (P) are uniquely determined for any set of end-to-end traffic
demands, and the RSA problem reduces to the spectrum assignment part. The edge
intersection graph I (P) of the (unique) routing P of the demands is an interval
graph (i.e. the intersection graph of intervals in a line, here represented as subpaths
of a path).

Interval graphs are known to be perfect by Berge [2]. In order to examine which
minimal non-comparability non-superperfect graphs are interval graphs, we rely on
a characterization of minimal non-interval graphs from [14].

A graph is triangulated if it does not have holes Ck with k ≥ 4 as induced
subgraph. Interval graphs are triangulated [11] hence all holes are in particular
minimal non-interval graphs.

Theorem 1 IfP is a set of paths in a path, then I (P) is an interval graph and can
contain the graphs Jk for all k ≥ 2, J ′

k for all k ≥ 3 and E2, but none of the other
minimal non-comparability non-superperfect graphs.

This implies that edge intersection graphs of paths in a path are not necessarily
superperfect.

We next briefly discuss which further minimal non-superperfect graphs can be
interval graphs. Recall that all of them have to contain a minimal non-comparability
superperfect graph as proper induced subgraph. We observe that any further minimal
non-superperfect interval graph can contain

• no even antihole C2k for k ≥ 3 (as they all contain a C4 induced by 1, 2, 4, 5),
• none of the graphs J ′′

k for all k ≥ 3 (as they all contain a C4 induced by
1, 2, 2k, 2k − 1),

• none of the graphs A3, . . .A8 (as they all contain a C4, see Fig. 3),

but only A9, A10 and J ′
2. However, there is no example of a minimal non-

superperfect interval graph containing A9, A10 or J ′
2 known yet.
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3 If the Network Is a Tree

If the underlying network G is a tree, then there exists also exactly one (u, v)-path
Puv in G for every traffic demand between a pair u, v of nodes. Hence, if G is a
tree, then P and I (P) are uniquely determined for any set D of end-to-end traffic
demands, and the RSA problem again reduces to the spectrum assignment part. The
resulting edge intersection graph I (P) belongs to the class of EPT graphs studied in
[8]. We recall results from [8] on holes in EPT graphs and examine which minimal
non-superperfect graphs can occur in such graphs.

It is known from [8] that EPT graphs are not necessarily perfect as they can
contain odd holes. More precisely, Golumbic and Jamison showed the following:

Theorem 2 (Golumbic and Jamison [8]) If the edge intersection graph I (P) of
a collectionP of paths in a tree T contains a hole Ck with k ≥ 4, then T contains a
star K1,k with nodes b, a1, . . . , ak and there are k paths P1, . . . , Pk inP such that
Pi precisely contains the edges bai and bai+1 of this star (where indices are taken
modulo k).

Figure 5 illustrates the case of C5 = I (P). From the above result, Golumbic
and Jamison deduced the possible adjacencies of a hole which further implies that
several graphs cannot occur as induced subgraphs of EPT graphs, including the
complement of the P6 and the two graphs G1 and G2 shown in Fig. 6.

That P 6 is a non-EPT graph shows particularly that no antihole Ck for k ≥ 7 can
occur in such graphs. This implies:

Theorem 3 (Golumbic and Jamison [8]) An EPT graph is perfect if and only if it
does not contain an odd hole.

With view on Theorem 2, this is clearly the case when the underlying tree has
maximum degree 4, as noted in [8].

Fig. 5 The odd hole
C5 = I (P) with P in a star
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Fig. 6 The non-EPT graphs
G1 and G2
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Based on the above results, we further examine which minimal non-
comparability non-superperfect graphs can occur in edge intersection graphs of
paths in a tree:

Theorem 4 If P is a set of paths in a tree, then the EPT graph I (P) can contain
A1, A2 and

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,
• the graphs Jk for all k ≥ 2 and J ′

k for all k ≥ 3,
• D2, D3, E1, E2, E3, F 1, F 2, F 3, but none of Dk , Ek , Fk for k ≥ 4.

This implies that perfect EPT graphs are not necessarily superperfect.
We next briefly discuss which further minimal non-superperfect graphs can be

EPT graphs. Recall that all of them have to be perfect and have to contain a
minimal non-comparability superperfect graph as proper induced subgraph. Among
the minimal non-comparability superperfect graphs, the following are EPT graphs:
J ′
2 and

• C6 but no even antihole C2k for k ≥ 4 (as they all contain P 6) by Golumbic and
Jamison [8],

• none of the graphs J ′′
k for all k ≥ 3 (as they all contain G1 induced by the nodes

1, 2, 3, 4, 5, 2k),
• the graphs A3, . . .A6, A8, . . .A10 (but not A7 as it has a G2).

Hence, any minimal non-superperfect EPT graph not being minimal non-
comparability has to contain one of C6, A3, . . .A6, A8, . . .A10 or J ′

2 as proper
induced subgraph. Figure 7 shows one example containing A10: it is non-
superperfect (due to the indicated weight vector d causing a gap between weighted
clique and interval chromatic number), it is minimal (as it does not have a non-
comparability subgraph different from A10), it is an EPT graph (see the according
path representation). However, note that the graph is not an interval graph (as it
contains a C4 induced by a, e, f, h).

Fig. 7 A minimal
non-superperfect EPT graph
containing A10
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4 If the Network Is a Cycle

If the underlying optical network is a cycle C, then there exist exactly two (u, v)-
paths Puv in C for every traffic demand between a pair u, v of nodes. Hence, if C is
a cycle, then the number of possible routingsP (and their edge intersection graphs
I (P)) is exponential in the number |D | of end-to-end traffic demands, namely 2|D |.

Moreover, the edge intersection graphs of paths in a cycle are clearly circular-arc
graphs (that are the intersection graphs of arcs in a cycle, here represented as paths
in a hole Cn). It is well-known that circular-arc graphs are not necessarily perfect
as they can contain both odd holes and odd antiholes, see e.g. [5] and Fig. 8 for
illustration.

In order to address the question which of the studied perfect minimal non-
comparability, non-superperfect graphs can occur in circular-arc graphs, we either
present according path collections for the affirmative cases or exhibit a minimal
non-circular-arc graph otherwise. For that, we first show the following:

Lemma 2 E3 is a minimal non-circular-arc graph.

Making use of the above facts, we can prove:

Theorem 5 If P is a set of paths in a cycle, then the circular-arc graph I (P) can
contain A1 but not A2,

• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk for all k ≥ 2 and J ′

k for all k ≥ 3,
• D2, D3, D4, but not the graphs Dk for k ≥ 5,
• E1 and E2, but not the graphs Ek for k ≥ 3,
• F 2, but not F 1 neither the graphs Fk for k ≥ 3.

We next discuss which further minimal non-superperfect graphs can be circular-
arc graphs. For that, we first show the following:

Lemma 3 J ′′
3 is a minimal non-circular-arc graph.

Fig. 8 The odd antihole
C7 = I (P) with P in a
cycle
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Fig. 9 A minimal
non-superperfect circular-arc
graph containing A6
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Remark 1 Note that E3 and J ′′
3 are, to the best of our knowledge, new examples of

minimal non-circular-arc graphs (see e.g. the results on circular-arc graphs surveyed
in [5]).

Recall that every further minimal non-superperfect graph has to be perfect and
has to contain a minimal non-comparability superperfect proper induced subgraph.
Among the perfect minimal non-comparability superperfect graphs, the following
are circular-arc graphs: J ′

2 but

• no even antihole C2k for k ≥ 3 (“folklore”),
• neither J ′′

3 (by Lemma 3) nor the graphs J ′′
k for all k ≥ 4 (as they all contain

the well-known minimal non-circular-arc graph K2,3 induced by the nodes
1, 2, 4, 6, 2k),

• all of the graphs A3, . . .A10.

Hence, any minimal non-superperfect circular-arc graph not being minimal non-
comparability has to contain one of A3, . . .A10 or J ′

2 as proper induced subgraph.
Figure 9 shows one example containing A6: it is non-superperfect (due to the
indicated weight vector d causing a gap between weighted clique and interval
chromatic number), it is minimal (as it does not have a non-comparability subgraph
different from A6), it is a circular-arc graph (see the according path representation).
However, note that the graph is not an interval graph (as A6 is not).

5 The General Case

Modern optical networks have clearly not a tree-like structure neither are just cycles
due to survivability aspects concerning node or edge failures in the network G, see
e.g. [13]. Instead, today’s optical networks are 2-connected, sparse planar graphs
with small maximum degree and have more a grid-like structure, see as example
Fig. 10 showing the Telefónica network of Spain taken from [15].
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Fig. 10 The Telefónica network of Spain from [15]

We first wonder which minimal non-comparability non-superperfect graphs can
occur in edge intersection graphs of paths in such networks G and can show:

Theorem 6 All minimal non-comparability non-superperfect graphs can occur in
edge intersection graphs I (P) of setsP of paths in optical networks G.

In addition, there are further minimal non-superperfect graphs in edge intersec-
tion graphs of paths in networks.

Figure 11 shows one example containing A7: it is non-superperfect (due to
the indicated weight vector d causing a gap between weighted clique and interval
chromatic number), it is minimal (as removing node g or h yields A7, and removing
any other node results in a comparability graph), and it has a path representation in
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Fig. 11 A minimal non-superperfect graph containing A7 and a path representation in a sparse
planar graph
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a sparse planar graph. However, note that the graph is neither an EPT graph (as A7
is not), nor a circular-arc graph (as nodes a, e, f, g, h induce a K2,3).

We expect that all minimal non-superperfect graphs can occur in edge inter-
section graphs of paths in networks, as soon as the networks G satisfy minimal
survivability conditions concerning edge or node failures.

6 Concluding Remarks

From the fact that both, EPT graphs and circular-arc graphs, are not necessarily
perfect, we notice that also edge intersection graphs of paths in networks are
not necessarily perfect and, thus, also not necessarily superperfect. If we restrict
the networks to paths, then I (P) is an interval graph, but still not necessarily
superperfect (as the minimal non-superperfect graphs Jk for all k ≥ 2, J ′

k for all
k ≥ 3 and E1 can occur). This is in accordance with the fact that the SA problem
has been showed to be NP-hard on paths [16].

Hence, in all networks, it depends on the weights d induced by the traffic
demands whether there is a gap between the weighted clique number ω(I (P),d)

and the interval chromatic number χI (I (P),d). To determine the size of this gap,
we propose to extend the concept of χ -binding functions introduced in [10] for usual
coloring to interval coloring in weighted graphs, that is, to χI -binding functions f

with

χI (I (P),d) ≤ f (ω(I (P),d))

for edge intersection graphs I (P) in a certain class of networks and all possible
non-negative integral weights d.

It is clearly of interest to study such χI -binding functions for different families
of minimal non-superperfect graphs and to identify a hierarchy of graph classes
between trees respectively cycles and sparse planar graphs resembling the struc-
ture of modern optical networks in terms of the gap between ωI (I (P),d) and
χI (I (P),d).

Furthermore, in networks different from trees, the routing part of the RSA
problem is crucial and raises the question whether it is possible to select the routes
inP in such a way that neither non-superperfect subgraphs nor unnecessarily large
weighted cliques occur in I (P).

Finally, giving a complete list of minimal non-superperfect graphs is an open
problem, so that our future work comprises to find more minimal non-superperfect
graphs and to examine the here addressed questions for them.
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