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Abstract For two given non-negative integers h and k, an L(h, k)-edge labeling of
a graph G is the assignment of labels {0, 1, · · · , n} to the edges so that two edges
having a common vertex are labeled with difference at least h and two edges not
having any common vertex but having a common edge connecting them are labeled
with difference at least k. The span λ′

h,k(G) is the minimum n such that G admits an
L(h, k)-edge labeling. Here our main focus is on finding λ′

h,k(G) for L(1, 2)-edge
labeling of infinite regular hexagonal (T3), square (T4) and triangular (T6) grids. It
was known that 7 ≤ λ′

h,k(T3) ≤ 8, 10 ≤ λ′
h,k(T4) ≤ 11 and 16 ≤ λ′

h,k(T6) ≤ 20.
Here we have shown that λ′

h,k(T3) ≤ 7, λ′
h,k(T4) ≥ 11 and λ′

h,k(T6) ≥ 19.

Keywords L(1, 2)-edge labelling · Bounds · Minimum span · Infinite regular
grids

1 Introduction

Channel assignment problem (CAP) is one of the fundamental problems in wireless
communication where frequency channels are assigned to transmitters such that
interference can not occur. The objective of the CAP is to minimize the span of
frequency spectrum. In 1980, Hale [6] first formulated the CAP as a classical vertex
coloring problem. Later on, in 1988 Roberts [9] introduced L(h, k)-vertex labeling
as defined below:

Definition 1 For two non-negative integers h and k, an L(h, k)-vertex labeling of a
graphG(V,E) is a function f : V −→ {0, 1, · · · , n},∀v ∈ V such that |f(u)−f(v)| ≥
h when d(u, v) = 1 and |f(u)− f(v)| ≥ k when d(u, v) = 2. For two vertices u and
v, the distance, d(u, v) is k′ if at least k′ edges are required to connect u and v.
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The span λh,k(G) of L(h, k)-vertex labeling is the minimum n such that G admits
an L(h, k)-vertex labeling. In 1992 Griggs and Yeh [5] extended the concept of
L(h, k) labeling by introducing L(k1, k2, · · · , kl)-vertex labeling with separation
{k1, k2, · · · , kl} for {1, 2, · · · , l} distant vertices and their main focus was on
L(h, k)-vertex labeling for a special case h = 2, k = 1. In 2007, Griggs and
Jin [4] studied L(h, k)-edge labeling, which can be formally defined as:

Definition 2 For two non-negative integers h and k, an L(h, k)-edge labeling of a
graph G(V,E) is a function f′ : E −→ {0, 1, · · · , n},∀e ∈ E such that |f′(e1) −
f′(e2)| ≥ h when d(e1, e2) = 1 and |f′(e1) − f′(e2)| ≥ k when d(e1, e2) = 2. Here,
for any two edges e1 and e2, the distance d(e1, e1) is k′ if at least (k′ − 1) edges are
required to connect e1 and e2.

Like L(h, k)-vertex labeling, the span λ′
h,k(G) of L(h, k)-edge labeling is the

minimum n such that G admits an L(h, k)-edge labeling. In 2011, Calamoneri
did a rigorous survey [1] on both vertex and edge labeling problems. Authors in
[2, 3, 7, 8] have studied L(h, k)-edge labeling of regular infinite hexagonal (T3),
square (T4) and triangular (T6) grids for the special case of h = 1 and k = 2. They
obtained some upper and lower bounds on λ′

1,2(G) for T3, T4 and T6 with a gap
between them. In this paper, we improve some of these gaps.

Given a graph G(V,E), its line graph L(G)(V ′, E′) is a graph such that each
vertex ofL(G) represents an edge ofG and two vertices ofL(G) have an edge if and
only if their corresponding edges share a common vertex in G. It is well-known that
if G is d-regular then L(G) is 2(d −1)-regular. Figure 1 shows T3, T4, L(T3), L(T4)

and T6. It is also well-known that edge labeling of G is equivalent to vertex labeling
of L(G). In our approach, instead of L(1, 2)-edge labeling of T3 and T4, we use
L(1, 2)-vertex labeling of L(T3) and L(T4). Note that L(T6) is 10-regular. Because
of this high degree, we consider L(1, 2)-edge labeling of T6 directly. Our results on
λ′
1,2(G) for T3, T4 and T6 are stated in Table 1. In this table, a − b represents that

a ≤ λ′
1,2(G) ≤ b. Here, we use the term ‘coloring’ and ‘labeling’ interchangeably.

a.T3 b.L(T3) and T4 c.L(T4) d.T6

Fig. 1 T3, T4, their line graphs and T6
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Table 1 The main results

T3 T4 T6

Known Ours Known Ours Known Ours

λ′
1,2(G) 7-8 [7] 7-7 10-11 [7] 11-11 16-20 [2] 19-20

2 Results

2.1 Hexagonal Grid

Let us consider the induced subgraph GS of L(T3) as shown in Fig. 2a, where all
vertices are at mutual distance at most three. It is clear that λ1,2(L(T3)) ≥ λ1,2(GS).
A color can be reused at a pair of vertices at mutual distance three apart in GS . But
we observe that if any color is reused at distance three in GS , then there exists a
color which remains unused in GS . Thus there is no such benefit of reusing a color
over using all different colors in GS . This motivates us to consider reusing a color
at distance four only keeping all colors distinct at GS . We show in Theorem 1 that
such a coloring of L(T3) exists which uses colors from 0 to 7 only.

Theorem 1 λ′
1,2(T3) = 7.

Proof Consider the coloring function g of vertices v = (x, y) as g(v)(x,y) =
(x + 5y) mod 8. Here coordinates (x, y) of a vertex v can be computed from the
origin O(0, 0) as shown in Fig. 2b. The minimum and maximum color used here
are 0 and 7 respectively. It can also be verified that g satisfies the L(1, 2)-vertex
labeling requirements of L(T3). Hence λ1,2(L(T3)) ≤ 7. It has been shown in [7]
that λ1,2(L(T3)) ≥ 7. Hence λ′

1,2(T3) = λ1,2(L(T3)) = 7. In Fig. 2b, an L(1, 2)-
vertex labeling of L(T3) has been shown. �	

It is evident that λ′
1,2,1(T3) ≥ λ′

1,2(T3) = 7. In the coloring function g stated
above, observe that no vertices at distance three have the same color inL(T3). Hence

v1

v2 v3

v4 v5 v6

v7 v8

(a) (b)

0 1 2 3 4 5 6 77

2 3 4 5 6 7 0 1 2

0 1 2 3 4 5765

0 1 2 3 4 5 6 7 0 X

Y

O(0,0)

v(3,2)

Fig. 2 (a) Sub graph Gs of L(T3). (b) A feasible L(1, 2)-labeling of L(T3)
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g also satisfies the L(1, 2, 1)-edge labeling requirements for T3. So, λ′
1,2,1(T3) ≤ 7.

Hence we have the following result.

Corollary 1 λ′
1,2,1(T3) = 7.

2.2 Square Grid

Let us consider the induced subgraph G of L(T4) as shown in Fig. 3 where all
vertices are at mutual distance at most three. Let S1 = {a, b}, S2 = {k, l}, S3 =
{c, g}, S4 = {f, j} and S5 = {d, e, h, i}.
Definition 3 The set of vertices in S5 are termed as central vertices in G.

Definition 4 The set of vertices in S1 ∪ S2 ∪ S3 ∪ S4 are termed as peripheral
vertices in G.

Now we have the following observations in G. Here the color of vertex a is
denoted by f(a).

Observation 1 If colors of vertices of G are all distinct then λ1,2(G) ≥ 11.

Proof As G has 12 vertices, if all of them get distinct colors then λ1,2(G) ≥ 11. �	
Observation 2 No color can be used thrice inG. Colors used at the central vertices
in S5 cannot be reused in G. Colors used at the peripheral vertices in S1 can be
reused only at the peripheral vertices in S2. Similarly, colors used at the peripheral
vertices in S3 can be reused only at the peripheral vertices in S4.

Proof No three vertices are mutually distant three apart. Hence no color can be used
thrice in G. For any central vertex in S5 there does not exist any vertex in G which
is distance three apart from it. So colors used in the central vertices in S5 cannot be
reused in G. For all peripheral vertices in S1 ∪ S2, d(x, y) = 3 only when x ∈ S1
and y ∈ S2. Hence color used at peripheral vertex in S1 can only be reused in S2.
Similarly, color used at peripheral vertex in S3 can only be reused in S4. �	
Observation 3 If f(x) = f(y) = c where x ∈ S1 and y ∈ S2 then either c ± 1
is to be used in (S1 ∪ S2) \ {x, y} or it should remain unused in G. Similarly, if
f(x) = f(y) = c where x ∈ S3 and y ∈ S4 then either c ± 1 is to be used in
(S3 ∪ S4) \ {x, y} or it should remain unused in G.

Fig. 3 Sub graph G of L(T4) a b

c d e f

g h i j

k l
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a b

c d e f

g h i j

k l

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

a(c1) b(c2)

c(c4) d(c7) e(c6) f(c3)

g(c3) h(c8) i(c5) j(c4)

k(c2) l(c1)

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

(a) (b)

Fig. 4 (a) The subgraph G1. (b) A feasible L(1, 2)-labeling of G

Proof Note that for all vertices z ∈ V (G)\(S1∪S2), either d(z, x) = 2 or d(z, y) =
2, where x ∈ S1 and y ∈ S2. Hence c±1 cannot be used in V (G)\(S1∪S2). So c±1
can only be used in (S1 ∪ S2) \ {x, y} or it should remain unused in G. Similarly,
if f(x) = f(y) = c, where x ∈ S3 and y ∈ S4, then c ± 1 can only be used in
(S3 ∪ S4) \ {x, y} or it should remain unused in G. �	
Observation 4 Let f(x) = f(y) = c where x ∈ S1 and y ∈ S2. If |f(x)− f(x′)| ≥ 2,
where x′ ∈ S1 \ {x}, then one of c ± 1 must remain unused in G. Similarly if
|f(y) − f(y′)| ≥ 2, where y′ ∈ S2 \ {y}, then one of c± 1 must remain unused in G.
Similar facts hold when x ∈ S3, x′ ∈ S3 \ {x}, y ∈ S4 and y′ ∈ S4 \ {y}.
Proof Since |f(x) − f(x′)| ≥ 2, f(x′) �= c ± 1. Hence from Observation 3, one of
c ± 1 must remain unused in G. �	

If no color is reused in G, then λ1,2(G) ≥ 11 from Observation 1. To make
λ1,2(G) < 11, at least one color must be reused in G. From Observation 2, there
are at most 4 distinct pairs of peripheral vertices in G where a pair can have the
same color. Now consider the subgraph G1 of L(T4) as shown in Fig. 4a. Note
that G1 consists of 5 subgraphs G′, G′

1, G′
2, G′

3 and G′
4 which all are isomorphic

to G having central vertices {d, h, i, e}, {t1, c, d, a}, {b, e, f, t2}, {i, l, t3, j} and
{g, t4, k, h} respectively. Based on the span requirements of coloring G1, we derive
the following theorem.

Theorem 2 λ1,2(L(T4)) ≥ λ1,2(G1) ≥ 11.

Proof

Case 1 When at most one pair of peripheral vertices use the same color in any sub
graph of L(T4) isomorphic to G.
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If no color is reused in G′, then λ1,2(G
′) ≥ 11 from Observation 1. We now

consider the case when exactly one pair reuse a color in G′. Without loss of
generality, consider f(a) = f(l) = c1. From Observation 3, c1 ± 1 can only be
put in {b, k}. Let f(k) = c1 − 1 and f(b) = c1 + 1. We assume that c1 − 1 is the
minimum color. Let us consider f(d) = c1 + n where n ∈ N and n ≥ 2. From
Observation 4, x ∈ {c1, c1 + n} can be reused in G′

2 only if one of x ± 1 remains
unused in G′

2. In either case, λ1,2(G
′
2) ≥ 11. So x cannot be reused in G′

2. Since
f(a) = f(l) = c1, c1−1 can only be put in {r2, s2} as vertex b is already colored and
for all other vertices z ∈ V (G′

2)\{r2, s2}, either d(z, a) = 2 or d(z, l) = 2. Without
loss of generality, let f(r2) = c1 − 1. In that case, c1 + n ± 1 can only be put in
{e, s2}. Without loss of generality, let f(e) = c1+n−1 and f(s2) = c1+n+1. Since
f(a) = f(l) = c1, f(i) �= c1 ±1 and hence |f(l)− f(i)| ≥ 2. Now if |f(d)− f(c)| ≥ 2,
then from Observation 4, one of f(c) ± 1, f(d) ± 1 and f(i) ± 1 remains unused
in G′

4 if f(c) or f(d) or f(i) is reused in G′
4 respectively. In either case, this implies

λ1,2(G
′
4) ≥ 11. So |f(d) − f(c)| = 1 and f(c) = c1 + n + 1. There are 5 more

vertices {g, h, i, j, f } in G′ which are to be colored with 5 distinct colors. Hence
at least color c1 + n + 6 must be used. Observe that if f(f ) = c1 + n + 2 then
|f(e)−f(f )| = 3 and |f(k)−f(h)| ≥ 3 implying λ1,2(G

′
3) ≥ 11 from Observation 4.

As d(s2, i) = d(s2, j) = 2 and f(s2) = c1 + n + 1, we get f(i) �= c1 + n + 2 and
f(j) �= c1 + n + 2. Therefore, either f(g) = c1 + n + 2 or f(h) = c1 + n + 2. So,
f(p4) �= c1 + n + 1 and f(q4) �= c1 + n + 1. In that case, f(p4) and f(q4) must be in
{c1+n, c1+n−1} if color c1+n is to be reused inG′

4, otherwise, λ1,2(G1) ≥ 11. As
c1 cannot be reused in G′

4, either f(r4) = c1+1 or f(s4) = c1+1. Let f(r4) = c1+1.
When n = 2, c1 + n − 1 = c1 + 1 and when n = 3, c1 + n − 1 = c1 + 2. As
d(p4, l) = d(p4, r4) = d(q4, l) = d(q4, r4) = 2, f(p4), f(q4) /∈ {c1 + 1, c1 + 2}.
So, n ≥ 4 and hence c1 + n + 6 ≥ c1 + 10. So at least 12 color are required in G1
including c1 − 1 and c1 + 10. Hence λ1,2(G2) ≥ 11.

Case 2 There exists at least one subgraph of L(T4) isomorphic to G where two
pairs of peripheral vertices use a color each.

There are two different ways of reusing two colors in G′.

Case 2.1 First consider the case when f(a) = f(l) = c1 and f(c) = f(j) = c2. From
Observation 3, c1±1 and c2±1 must be used in {b, k} and {g, f } respectively. From
Observation 2, c1 can only be reused in {r2, s2} in G′

2. But f(r2) �= c1 and f(s2) �= c1
as |f(b) − c1| = 1 and d(b, r2) = d(b, s2) = 2. Again, from Observation 2, c2 can
only be reused in {p2, q2}. But f(p2) �= c2 and f(q2) �= c2 as |f(f ) − c2| = 1 and
d(f, p2) = d(f, q2) = 2. From Observation 3, if f(i) is to be reused in G′

2, then|f(i) − c2| = 1. But f(i) �= c2 ± 1 as d(c, i) = 2 and f(c) = c2. If f(d) is to be
reused in G′

2, then |f(d) − c1| = 1. But f(d) �= c1 ± 1 as d(d, l) = 2 and f(l) = c1.
Therefore, no color can be reused in G′

2 and hence λ1,2(G1) ≥ 11.

Case 2.2 Consider the case when f(a) = f(l) = c1 and f(b) = f(k) = c2. Without
loss of generality, assume c2 > c1. From Observation 3, c1 ± 1 and c2 ± 1 must be
used in {b, k} and {a, l} respectively. Even if we set c2 = c1+1, at least one of c1−1
and c2+1 must remain unused inG′. So the 8 vertices in V (G′)\({a, l}∪{b, k})must
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get 8 distinct colors other than c1 and c2. So, λ1,2(G′) ≥ 10. Note that λ1,2(G
′) =

10 only if c2 = c1 + 1, c1 is minimum color (c1 − 1 does not exists) or c2 is
maximum color (c2 + 1 does not exists). If both c1 and c2 are non-extreme color,
then λ1,2(G

′) ≥ 11 and we are done. So, we consider c1 = 0, c2 = c1 + 1 = 1 and
c2 + 1 = 2 as unused in G′. In that case, f(d) = x ≥ 3 and hence |f(d) − f(a)| ≥ 3.
From Observation 4, if x is reused in G′

2, then one of x ± 1 cannot be used in G′
2.

If only x is reused in G′
2, then λ1,2(G

′
2) ≥ 11. If x and one of {f(i), f(j)} are reused

in G′
2, then from Case 2.1 above, λ1,2(G1) ≥ 11. If x and both of {f(i), f(j)} are

reused in G′
2, from Case 3 below, we will see that λ1,2(G1) ≥ 11. So, to keep

λ1,2(G1) < 11, x should not be reused in G′
2. In that case, x − 1 must be used at

one of {c, g, h, e} in G′. Now arguing similarly as stated in case 1, we can conclude
that x + 7 must be used in G′

1 or G′
2. If x = 3, then x − 1 = 2 must be used in

G′ which is a contradiction, as 2 must remain unused in G′. Hence x ≥ 4 implying
x + 7 = 11. Hence λ1,2(G1) ≥ 11.

Case 3 The exists at least one sub graph of L(T4) isomorphic to G where three
pairs of peripheral vertices use a color each.

Without loss of generality, let us consider f(a) = f(l) = c1, f(b) = f(k) = c2
and f(c) = f(j) = c3. From Observation 3, c1 ± 1 and c2 ± 1 must be used in {b, k}
and {a, l} respectively. It can be observed that λ1,2(G

′) = 9 only if |c1 − c2| = 1,
|c3 − f(g)| = 1, |c3 − f(f )| = 1 and any one of {c1, c2} is one extreme color.
Without loss of generality consider f(g) = c3 + 1, f(f ) = c3 − 1, c1 is minimum
color and c2 = c1 + 1. From Observation 2, c3 can only be reused in {p2, q2}. But
f(p2) �= c3 and f(q2) �= c3 as f(f ) = c3 − 1 and d(f, p2) = d(f, q2) = 2. From
Observation 3, if f(i) is to be reused in G′

2, then |f(i) − c3| = 1. But f(i) �= c3 ± 1
as d(c, i) = 2 and f(c) = c3. From Observation 2, c1 can only be reused in {r2, s2}.
But f(r2) �= c1 and f(s2) �= c1 as f(b) = c2 = c1 + 1 and d(b, r2) = d(b, s2) = 2.
Now arguing similarly as stated in case 2.2 above, we can conclude that c2 + 1
must remain unused in G′. So, (c1 − f(d)) ≥ 3. Now from Observation 4, if f(d) is
reused in G′

2 then any one of f(d) ± 1 must remain unused in G′
2. Thus in G′

2, only
f(d) can be reused by keeping one of f(d) ± 1 as unused. Hence λ1,2(G1) ≥ 11.
If we consider λ1,2(G

′) = 10, the same result can be obtained by considering the
corresponding G′

i , 1 ≤ i ≤ 4.

Case 4 The exists at least one subgraph of L(T4) isomorphic to G where all four
pairs of peripheral vertices use a color each.

Let us consider f(a) = f(l) = c1, f(b) = f(k) = c2, f(g) = f(f ) = c3 and
f(c) = f(j) = c4. From Observation 3, c1±1, c2±1, c3±1 and c4±1 must be used
in {b, k}, {a, l}, {c, j} and {g, f } respectively. It can be observed that λ1,2(G′) = 9
only if |c1 − c2| = 1, |c3 − c4| = 1, one of {c1, c2} is an extreme color and one
of {c3, c4} is the other extreme color. Without loss of generality, consider c1 = 0,
c4 = 9, c2 = c1 +1 = 1 and c3 = c4 −1 = 8. So c2 +1 = 2 and c3 −1 = 7 are two
distinct unused colors. Without loss of generality, consider c8 = c2+2, c5 = c8+1,
c6 = c5 + 1 and c7 = c6 + 1. Since |c3 − c4| = 1 and d(g, p4) = d(g, q4) = 2,
we get f(p4) �= c4 and f(q4) �= c4. Similarly, f(r4) �= c1 and f(s4) �= c1. From
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Observation 2, c5 can only be reused at {s4, r4} in G′
4 but f(s4) �= c5 and f(r4) �= c5

as d(h, s4) = d(h, r4) = 2 and f(h) = c8 = c5 − 1. Therefore, only c7 can be
reused in {p4, q4}. From Observation 4, one of c7 ± 1 must remain unused in G′

4 as
(c4 − c7) = 3. Hence λ1,2(G1) ≥ 11. For other assignment of central vertices and
for the case when λ1,2(G

′) = 10, we can obtain the same result by considering the
corresponding G′

i , 1 ≤ i ≤ 4. �	

2.3 Triangular Grid

Here we first define some notations.
For any vertex u, the set of vertices which are adjacent to u is called N(u).

Let us define N(S) = {∪u∈SN(u) : u ∈ S}. Let v be any vertex in T6. Consider
the subgraph Gv(V,E) of T6 centering v as shown in Fig. 5, where V = N(v) ∪
N(N(v)) and E is set of all the edges which are incident to u where u ∈ N(v).
Observe that in Gv , for any two edges e1 and e2, d(e1, e2) ≤ 3. Now we define the
following three sets of edges S1, S2 and S3:

S1: Edges of Gv incident to v.
S2: Edges of Gv whose both end points incident to e1 and e2 where e1, e2 ∈ S1.
S3: E \ (S1 ∪ S2).
Consider the 6-cycle, Hv formed with the edges of S2 in Gv . We say e and e1

as a pair of opposite edges in Hv if and only if d(e, e1) = 3. This implies that the
same color can be used at a pair of opposite edges in L(1, 2)-edge labeling. An edge
e(v,w) covers the set of edges E′ if for every e′ ∈ E′, d(e, e′) ≤ 2. This implies
that a color used at e cannot be used at any edge e′ ∈ E′ in L(1, 2)-edge labeling.
Now we have the following lemmas.

Lemma 1 If c be a color used to color an edge e in S1, then c cannot be used in
E \ e.

Proof Since e is incident to v, for any other edge e1 ∈ E, d(e, e1) ≤ 2. Hence
f ′(e1) �= c for L(1, 2)-edge labeling, where f ′(e1) denotes the color of e1. �	

Fig. 5 A subgraph Gv of T6

v
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Lemma 2 If c be a color used to color an edge in S1, then c +1 and c −1 both can
be used at most once in Gv .

Proof Let e be an edge in S1 such that f ′(e) = c. Since e is incident to v, for any
other edge e1 ∈ E, d(e, e1) ≤ 2. Let Se = {e1 : d(e, e1) = 1}. For L(1, 2)-edge
labeling, c + 1 can only be used in an edge e1 in Se. It can be noted that for any two
edges e1, e2 ∈ Se, d(e1, e2) ≤ 2. Hence c + 1 can be used at most once. Proof for
c − 1 can be done in similar manner. �	
Lemma 3 If c be a color used to color an edge e in S2, then c can be used at most
one edge in E \ e in Gv .

Proof Note that c cannot be used at any edge in S1. Here c can be used at the
opposite edge e1 of e in S2 or at an edge e2 in S3, which is adjacent to e1. When c

is used at e and e1, then c cannot be used again in Gv as e and e1 together cover all
the edges of Gv . When c is used at e and e2, c cannot be used again in Gv as e and
e2 together also cover all the edges of Gv . �	
Lemma 4 If c be a color used to color an edge e in S2, then c + 1 and c − 1 both
can be used at most twice in Gv .

Proof Suppose e1 be an edge colored with c + 1. If e1 is not adjacent to e then
d(e1, e) = 3. From statement of Lemma 3, it follows that there does not exist two
edges along with e in Gv which are mutually distance 3 apart, otherwise c would
have been used for three times. Hence c + 1 can be used at most once.

When e1 is adjacent to e, e2 can be colored with c + 1 if e2 is at distance 3 apart
from both e1 and e. Again from the statement of Lemma 3, it follows that there
does not exist two edges along with e in Gv which are mutually distance 3 apart,
otherwise c would have been used for three times. So, c + 1 can be used at most
twice, one in one of the edges adjacent to e and other in one of the edges which are
at distance 3 apart from e. Proof for c − 1 can be done in similar manner. �	
Lemma 5 If c be a color used to color an edge e in S3, then c can be used at most
twice in E \ e.

Proof It follows from Fig. 5 that exactly one end point of e is incident to a vertex
in Hv . Note that for any walk through Hv , every third vertex is distance 2 apart. So
edges incident to those vertices are distance 3 apart. Since the order of Hv is 6, there
can be at most 6/2 = 3 vertices which are mutually distance 2 apart. Hence c can
be used thrice. �	
Lemma 6 If c be a color used to color an edge e in S3, then c + 1 and c − 1 both
can be used at most thrice in Gv .

Proof We know that c + 1 can be used at an edge adjacent to e. From Lemma 5 it
is clear that c can be used at most thrice. So, c + 1 can also be used at most thrice,
where each such edge is adjacent to one of the three edges colored with c. It can be
proved similarly for c − 1. �	
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Lemma 7

i. To color the edges of S1, at least 6 colors are required.
ii. To color the edges of S2, at least 3 colors are required.
iii. To color the edges of S3, at least 6 colors are required.

Proof

i. From Lemma 1, every edge of S1 has an unique color. As there are 6 edges in
S1, 6 distinct colors are required here.

ii. In S2, there are 3 pairs of opposite edges. Each pair of opposite edges requires
at least one unique color. So at least 3 colors are required.

iii. A color can be used thrice in S3 by Lemma 5. In S3, there are 18 edges. So, at
least 6 colors are required. �	

Theorem 3 For any optimal labeling of Gv , 6 consecutive colors including either
the minimum color or the maximum color must be used in S1.

Proof It is clear from Lemma 7.i that S1 needs at least 6 colors to color its edges.
From Lemma 2, note that if c be a color used in an edge of S1 then both c + 1 and
c − 1 can be used at most once in Gv . Whereas a color can be used twice in S2 and
thrice in S3. Thus our aim should be to minimize the number of colors which can
be used only once in Gv . This implies that consecutive colors should be used in S1
for optimal coloring. If the minimum color (min) or the maximum color (max) is
used in S1 then further benefit can be achieve as min− 1 or max + 1 does not exist.
Therefore, optimal span can be achieved only when the colors of S1 are consecutive
including either min or max. �	
Theorem 4 For any optimal labeling of Gv , 3 colors like {c, c + 2, c + 4} have to
be used twice each in S2.

Proof Let c be a color used in S2. From Lemma 3, observe that c can be used
at most twice in Gv . Also, no matter how many times c is used in S2, it follows
from Lemma 4 that both c + 1 and c − 1 can be used at most twice in Gv . Let
CS2 = {c, c + 1, c − 1| ∀c used at S2}. Note that a color can be used at most thrice
in Gv . So our goal is to minimize |CS2 |, where |CS2 | is the cardinality of set CS2 .
Observe that minimum 3 colors are required and maximum 6 colors can be used to
color S2. If 3 colors {c, c + 2, c + 4} are used then |CS2 | ≥ 6, assuming one of them
is an extreme color. If 6 consecutive colors are used then |CS2 | ≥ 7, assuming one
of them is an extreme color. One can follow that in all the other cases |CS2 | > 7. So
for optimal coloring of Gv , 3 colors such as {c, c + 2, c + 4} have to be used twice
each in S2. �	
Lemma 8 If three consecutive colors c, c + 1, c + 2 are used thrice each in S3 then
neither c − 1 nor c + 3 can be used in S3.

Proof Observe that there are exactly 2 sets of three alternating vertices in Hv where
a color can be used thrice at edges incident to any set of alternating vertices. If c−1
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would have been used in S3 then either it was used at an edge adjacent to the edges
colored with c or at an edge distance 3 apart from the edge colored with c. Now
observe that c and c − 1 are used at two edges of S3 which form a triangle with
one edge of S2. Suppose c, c − 1 be the colors used at those two edges e, e1 ∈ S3
respectively, where e is incident to u and e1 is incident to w where uw ∈ S2. Note
that c is used thrice in S3. Then c must be reused at an edge incident to x, and
xw ∈ S2. So c and c − 1 are used at two edges at distance 2 apart, which violets the
condition of L(1, 2)-edge labeling. Hence c − 1 cannot be used in Gv . Similarly it
can be shown that c+3 can also not be used inGv . This implies that no 4 consecutive
colors can be used thrice each in Gv . �	
Lemma 9 If all colors in {c, c + 2, c + 4} are used twice each in S2 then at least 6
colors are required which all are either higher than c + 4 or lower than c.

Proof From Theorem 4, it follows that |CS2 | = 6 for optimal coloring of Gv . So
c+1, c+3 and one of c+5 and c−1 must be used in S3. Without loss of generality,
assume that colors {c + 1, c + 3, c + 5} are used in S3. Using Lemma 4 it can be
verified that colors c + 1, c + 3 and c + 5 can be used at most twice in S3. That
means using these three colors at most 6 edges can be colored in S3. So 12 edges
remain uncolored till now. By Lemma 6 a color can be used thrice in S3. Again, it
follows from Lemma 8 that no 4 consecutive colors can be used thrice each in S3.
Hence the maximum color used in S3 will be at least (c + 5)+ 5. Similarly it can be
shown that minimum color used in S3 will be at most (c − 1) − 5 for the case when
{c − 1, c + 1, c + 3} are used at S3. �	
Theorem 5 λ′

1,2(Gv) ≥ 17.

Proof By Theorem 3, 6 consecutive colors must be used to color the edges of S1.
Recall that, we assume the minimum color is used at S1. Let c′ be the maximum
color used at S1 and c′′ be the minimum color used at S2. From Theorem 4, 3 colors
must be used to color the edges of S2 and in that case by Lemma 1, (c′′ − c′) ≥ 2.
Note that, c′+1 and c′′−1 can be used at most once and twice respectively. However
a color can be used thrice in S3. Therefore, it is beneficial if c′ + 1 = c′′ − 1. Now if
{c, c + 2, c + 4} are used at S2 then {c − 2, c − 3, · · · c − 7} are used at S1. Now if
{c+1, c+3, c+5} are used in S3 then from Lemma 9, it follows that c+10 must be
used at S3. So, λ′

1,2(Gv) ≥ ((c+10)−(c−7)) = 17. Similarly, if {c−1, c+1, c+3}
are used at S3, λ′

1,2(Gv) ≥ ((c + 11) − (c − 6)) = 17. Hence the proof. �	
We assume that the minimum color is used in S1. The maximum color can be

used at most thrice in S3 and at most twice in S2. In all cases, there exists a vertex
say v′ in Hv such that color of any edge incident to v′ is neither minimum nor
maximum. Now we consider the subgraph Gv′ of T6 centering v′ and isomorphic to
Gv .

Letmin1 andmax1 be the minimum and maximum colors used to color the edges
of S′

1 in Gv′ .
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Lemma 10 If max1 − min1 ≥ 7, i.e., there exists at least two intermediate colors
between min1 and max1 which are not used in S′

1, then λ′
1,2(Gv′) ≥ 19.

Proof There must be at least two unused colors say, {c1, c2} such that for each
c ∈ {c1, c2} either c + 1 or c − 1 is used in S′

1. From Lemma 2, it can be said that
each of c1, c2, min1 − 1 and max1 + 1 can be used at most once in Gv′ . Observe
from discussion of Theorem 5, that for any optimal coloring of Gv′ , each color must
be used at least twice in Gv′ \S′

1. Note that at most 4 edges can be colored by c1, c2,
min1 − 1 and max1 + 1. But for optimal coloring, c1, c2, min1 − 1 and max1 + 1
should have been colored at least 8 edges. For those four uncolored edges, at least
two additional colors must be required as a color can be used at most thrice in Gv′ .
Hence the proof. �	
Theorem 6 λ′

1,2(T6) ≥ 19.

Proof Assume that x be such a vertex which is not adjacent to edges colored with
any ofmin ormax in Gx . Let us consider Gx is not colored and u,w be two vertices
of Hx in Gx . Let us define Sx1 as the set of edges adjacent to x. Now we consider
the following two cases.

• When w ∈ N(u): u and w are connected by an edge e. Let {c1, · · · , c6} and
{c′

1, · · · , c′
6} be two sequences consisting of consecutive colors are used at the

edges incident to u and w respectively. It is possible to assign consecutive colors
at those edges when e is colored with either c6 = c′

1 or c1 = c′
6. Now observe two

edges e′ and e′
1 of Sx1 are already colored and those are not consecutive. Note that

|f ′(e′) − f ′(e′
1)| ≥ 2. If |f ′(e′) − f ′(e′

1)| = 2 then f ′(e′) and f ′(e′
1) is neither

minimum nor maximum color used in u and w. Then any color of any other edge
in Sx1 is neither consecutive to f ′(e′) nor f ′(e′

1). So max −min ≥ 7 where min

and max be the minimum and maximum colors used to color the edges of Sx1. If
|f ′(e′) − f ′(e′

1)| > 2, then also max − min ≥ 7. Therefore from Lemma 10, at
least 20 colors are required for Gx . Hence λ′

1,2(T6) ≥ λ′
1,2(Gx) ≥ 19.

• When w /∈ N(u): Note that x ∈ {N(u)∩N(w)}. Let two sequences {c1, · · · , c6}
and {c′

1, · · · , c′
6}consisting of consecutive colors are used at the edges incident

to u and w respectively. Let uv and wv are e′ and e′
1 respectively. If f ′(e′)

and f ′(e′
1) are consecutive then either f ′(e′) = c6, f ′(e′

1) = c′
1 or f ′(e′) =

c1, f ′(e′
1) = c′

6. Now observe that for any other edge e in Sx1, |f ′(e)−f ′(e′)| >

2 implying max −min ≥ 7 where min and max be the minimum and maximum
colors used to color the edges of Sx1. If f ′(e′) and f ′(e′

1) are not consecutive
then |f ′(e′) − f ′(e′

1)| ≥ 2. If |f ′(e′) − f ′(e′
1)| = 2 then the intermediate color

must be used at an edge e ∈ Sx1. There are still 4 edges remain uncolored. It can
be checked that for any coloring of the rest of the graph, there exists a vertex y

in Hx ∪ x, for which max − min ≥ 7 where min and max be the minimum and
maximum colors used to color the edges incident to u. Hence from Lemma 10,
at least 20 colors are required for Gx . Hence λ′

1,2(T6) ≥ λ′
1,2(Gx) ≥ 19.

Hence the proof. �	
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3 Conclusions

In this article we improved some lower and upper bounds for infinite regular
hexagonal, square and triangular grids using structural properties of those graphs.
An interesting problem will be to improve or introduce new bounds on those graphs
for other values of h and k. It would also be interesting to examine similar bounds
for other infinite regular grids.
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