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Abstract This paper deals with a multi-objective location-routing problem (MO-
LRP) and follows the idea of sectorization to simplify the solution approaches. The
MO-LRP consists of sectorization, sub-sectorization, and routing sub-problems. In
the sectorization sub-problem, a subset of potential distribution centres (DCs) is
opened and a subset of customers is assigned to each of them. Each DC and the
customers assigned to it form a sector. Afterward, in the sub-sectorization stage
customers of each DC are divided into different sub-sector. Then, in the routing
sub-problem, a route is determined and a vehicle is assigned to meet demands.
To solve the problem, we design two approaches, which adapt the sectorization,
sub-sectorization and routing sub-problems with the non-dominated sorting genetic
algorithm (NSGA-II) in two different manners. In the first approach, NSGA-II is
used to find non-dominated solutions for all sub-problems, simultaneously. The
second one is similar to the first one but it has a hierarchical structure, such that
the routing sub-problem is solved with a solver for binary integer programming
in MATLAB optimization toolbox after solving sectorization and sub-sectorization
sub-problem with NSGA-II. Four benchmarks are used and based on a comparison
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between the obtained results it is shown that the first approach finds more non-
dominated solutions. Therefore, it is concluded that the simultaneous approach is
more effective than the hierarchical approach for the defined problem in terms of
finding more non-dominated solutions.

Keywords Location-routing problems · Sectorization · Routing · Evolutionary
algorithm · Non-dominated sorting genetic algorithm · Binary integer
programming

1 Introduction

Sectorization is generally related to geographical aspects and has many applications
in dividing a large political territory or districts of sales, airspace, municipality,
healthcare, electric power, emergency service, internet networking, police patrol,
public transportation network, social facilities, collection and transportation of
solid waste in municipalities, etc., into smaller regions [2, 4, 5, 11, 12]. The
equilibrium of load, distance, client, contiguity, and compactness are the criteria
which are generally considered in sectorization [14]. The concept of sectorization,
is similar to clustering though have significant differences. Clustering strives for
inner homogeneity of data while sectorization aims at the outer similarity. Therefore
models for solving both problems are in general not compatible [6].

One of the problems that is related to territorial design is the location-routing
problem (LRP). In the literature, it is stated that LRP consists of two difficult
problems as the facility location problem (FLP) and also the vehicle routing problem
(VRP) [7]. Many methods have been proposed to solve different types of LRP, which
is an NP-hard problem [13]. In this work, we deal with a multi-objective location-
routing problem (MO-LRP), where there are a set of potential DCs and also a set of
customers in different geographical locations with known demands. Unlike previous
studies, we model it as a problem consisting of sectorization, sub-sectorization, and
routing sub-problems. In the sectorization stage, a subset of potential DCs is selected
to be opened and customers are divided among them. Each DC and its assigned
customers form a sector. In the sub-sectorization stage the customers of each DC
are divided into sub-sectors. To meet their demands a fleet is considered. Starting
from and returning to a DC, a route is defined for each sub-sector [8, 14–16].

Previously MO-LRP has been solved based on sectorization concept; for exam-
ple, Barreto et al. [1] integrate some hierarchical and non-hierarchical clustering
techniques into a sequential heuristic algorithm to solve this problem. Martinho et
al. [8] propose a method consisting of pre-sectorization, sectorization, routing, and
multi-criteria evaluation phases to deal with multi-criteria and large dimensions of
the capacitated location-routing problem (CLRP). Different from these studies, we
design two new approaches adapting the non-dominated sorting genetic algorithm
(NSGA-II) with sectorization, sub-sectorization and routing sub-problems and solve
MO-LRP by them. In the first one, all sub-problems are solved simultaneously
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with NSGA-II. The second approach is similar to the first one however, it has
a hierarchical structure such that after creation of sectors and sub-sectors with
NSGA-II, routes are defined using a binary integer programming solver for the
obtained Pareto solutions. It should be noted that the operators of NSGA-II used
in both approaches are the same as in the algorithm proposed by Deb et al.
[3]. Also, in this study, new chromosome representation, crossover and mutation
operators are designed and used in NSGA-II to solve MO-LRP, which comprise
sectorization, sub-sectorization and routing stages. The operators can be used in
similar evolutionary algorithms to solve the problem based on the sectorization
concept.

A comparison is made over four benchmarks, based on the number of non-
dominated solutions acquired by the approaches. The results show that the first
approach is able to find more non-dominated solutions.

The other sections of the study are such that the problem and proposed
approaches are described in Sects. 2 and 3. The experimental results, conclusion
and future works are the last two sections of the work.

2 Problem Description

In this section, we describe the problem, which is solved by both approaches. In the
problem, there are some potential DCs and also some customers. A subset of DCs
is opened and a subset of customers is assigned to each of them. Then routes are
defined to meet the demands of customers. Each route starts from a DC and returns
to the same DC by visiting a subset of the assigned customers. There is a cost to open
each DC and it is desired to minimize the total cost of opening DCs. As described
in Sect. 1, we name each opened DC and the customers assigned to it a sector. The
resulting sectors are desired to be balanced both in terms of customers’ demands
and distance on routes, which are defined as the standard deviations of demands
and distances in sub-sectors. In addition, in the formed sub-sectors, customers are
desired to be quite close to the center, which is defined as the compactness of sub-
sectors.

In Fig. 1, an illustrative example is presented, where DCs and customers are
shown with squares and circles, respectively. The squares shown in green and blue
are the opened ones. Each DC and the assigned customers form a sector, which are
shown with the same color. In this example, each sector is divided into two sub-
sectors, and a route is defined for each one. For instance, the routes denoted by dark
and light green, are determined for the sub-sectors with green DC.

Some of the terminology and notations used in the paper are summarized in
Table 1.
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Fig. 1 An illustrative
example

Table 1 Used notations

f1 Total cost to open DCs

f2 Standard deviation of demands in sub-sectors

f3 Standard deviation of compactness of sub-sectors

f4 Standard deviation of distances in sub-sectors

i, j ∈ Ī = {1, . . . , I } Index of all customers

k ∈ K̄ = {1, . . . , K} Index of DCs

m ∈ M̄ = {1, . . . ,M} Index of sub-sectors

COk Opening cost of DC k

DEi Demand of customer i

DEm Total demand of customers in sub-sector m

DSij Distance of path from customer i to customer j

DSm Total distance along the route in sub-sector m

CEm Total distance between the centroid and customers in sub-sector m

CEm
max Distance between the centroid and farthest customer in sub-sector m

CPm Compactness of sub-sector m

VC Capacity of each vehicle

xk Decision variable about if DC k opened or not

ymi Decision variable about if customer i belongs to sub-sector m or not

zmij Decision variable about if there is a path from customer i to customer j

on the defined route for sub-sector m

As defined in Eq. 1, f1 is the total cost of opening DCs.

f1 =
L∑

l=1

COk × xk (1)

where

xk =
{

1, if DC k is opened

0, otherwise.
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For each sector, the sub-problems of sub-sectorization and routing are solved.
Sectors and sub-sectors are expected to be balanced in terms of demand and
distance. So, the objective functions of sub-sectorization and routing sub-problems
are the standard deviations of demands, distances and compactness in sub-sectors,
defined as in Eqs. 2, 4 and 3.

f2 =
√√√√ 1

M − 1

M∑

m=1

(DEm − D̄E)2 (2)

where DEm = ∑I
i=1 DEi × ymi and D̄E =

∑M
m=1 DEm

M
and

ymi =
{

1, if customer i belongs to sub − sector m

0, otherwise.

f3 =
√√√√ 1

M − 1

M∑

m=1

(CPm − ¯CP)2 (3)

where CPm = CEm

CEm
max

and ¯CP =
∑M

m=1 CP
m

M
.

To calculate CEm
max the coordinates of the centre point of each sub-sector are

considered as the average of the coordinates of the customers in the sub-sector.

f4 =
√√√√ 1

M − 1

M∑

m=1

(DSm − D̄S)2 (4)

DSm = ∑M
m=1

∑I
i=1

∑I
j DSij × zmij and D̄S =

∑M
m=1 DSm

M
.

zmij =
⎧
⎨

⎩
1, if the path from customer i to customer j is on a defined route in sub-sector m

0, otherwise.

It is assumed that all customers are connected with each other.
There are also some constraints; each customer must be only assigned to one

sector, which is imposed by Constraint 5.

M∑

m=1

ymi = 1, ∀i ∈ Ī (5)

One vehicle is allocated to a sub-sector. It is assumed that the eets are homoge-
neous, i.e. the capacity of the vehicles is the same. Therefore, there is no need for a
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decision variable for assigning the vehicles. However, the total demand of customers
in each sector must be less than or equal to the capacity of each vehicle, which is
imposed by Constraint 6.

DEm ≤ VC, ∀m ∈ M̄ (6)

In addition, the number of sub-sectors must be less than or equal to the number
of vehicles.

3 Solution Approaches and Algorithms

In this section, the solution approaches are described, which are also summarized
in Fig. 2. In both approaches, sectorization, sub-sectorization and routing sub-
problems are solved sequentially, and in this sense, both have a hierarchical
structure. But in the first approach, Pareto optimality is evaluated inside of NSGA-
II considering all objective functions, simultaneously. However, in the second
approach, sectorization and sub-sectorization sub-problems are solved with NSGA-
II and Pareto optimality is evaluated considering the total cost to open DCs, the
standard deviations of demands and compactness in sub-sectors. For the non-
dominated solutions obtained in this way, the routing sub-problem is solved with
a solver to minimize the standard deviation of distance in sub-sectors. In the second
approach, since the problem is solved in two different stages, it is called as a
hierarchical approach.

At first, using the weighted sum method the problem is transformed to a single-
objective one and it is solved with a single-objective genetic algorithm (SOGA).
The purpose is to make comparison with the multi-objective one and also to create
the initial populations of NSGA-II in the two approaches. Using weights wi , the
objective function of the single-objective problem is defined as in Eq. 7.

Min f = w1 × f1 + w2 × f2 + w3 × f3 + w4 × f4 (7)

Fig. 2 General steps of the approaches
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To generate initial population of the SOGA, randomly a subset of potential DCs
is opened and the corresponding objective function is calculated. Each customer is
assigned to the nearest open DC and in this way sectors are formed. If no customer
is assigned to a DC, it is removed from the opened DCs. The sectors are divided
into sub-sectors, taking the constraints of capacity and number of vehicles into
account. It is supposed that a vehicle is allocated to each sub-sector and the fleets
are homogeneous.

During iterations, new individuals of the SOGA are derived using crossover and
mutation operators. The objective functions of the new individuals formed in this
process may change, in which case they must be recalculated. The used chromosome
structure is seen in Fig. 3, where each column represents a DC and the subjacent
rows, shows the related sectors and sub-sectors. Figure 3a and b show an example
chromosome before and after sub-sectorization. In Fig. 3, ‘{}’ is used to show that
the corresponding DC is not open and therefore no customer is assigned to it. Using
the nearest neighbor heuristic, a traveling salesman problem (TSP) is solved for each
sub-sectors. A route is defined starting from a DC, visiting the nearest customer at
each stage, repeating this process until all customers are visited, and returning to
the DC. After solving TSP for each sub-sector, the customers in the second line are
written sequentially.

In the designed crossover operator, which is seen in Fig. 4, a subset of customers
is selected and is replaced in sectors of children according to the parents. For
example, as shown in red in Fig. 4, customers 1, 3 and 9 are selected. In parent
2, customer 3 is in the sector related to DC 1 and customers 1 and 9 are in the sector
related to DC 4. Therefore, in child 1, these customers are placed in the sectors
related to DCs 1 and 4. A similar process is done for child 2 considering parent 1. In
children, customers are placed in random positions. The order of customers in the
representation of sectors in chromosomes affects the formation of sub-sectors.

Fig. 3 Information about DCs, assigned customers (a) before and (b) after sub-sectorization
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Fig. 4 The used crossover

As seen in Fig. 5, three types of mutations are used. The operator seen in Fig. 5a
is similar to the single-point crossover but it is a mutation because it is applied to a
single chromosome. In this operator, two sectors of a chromosome are selected and a
process similar to single-point crossover is performed. Using the mutation operator
shown in Fig. 5b, an open DC is randomly selected to close and its customers are
assigned to another DC, which is randomly selected to open. If all DCs are open, one
of them is closed randomly and its customers are added to another DC, which is also
chosen randomly. As mentioned before, the order of customers in the representation
of sectors in chromosomes is important and affects the formation of sub-sectors’.
In the mutation operation shown in Fig. 5c a sector is selected randomly, and the
order of customers in the representation of sectors in the chromosome is changed
randomly. To apply the mutation, one of these three operations is randomly selected
and performed.

Both crossover and mutation operators are applied to the part of chromosomes
that represents sectors. Sub-sectors are created from sectors, taking into account the
constraints of the number and capacity of vehicles.

The final population obtained after finishing the SOGA iterations is used as
the initial population of NSGA-II in both approaches. NSGA-II applies the same
crossover and mutation operators with SOGA. In NSGA-II, during iterations, the
parent and offspring populations are selected and merged. Using the non-dominated
sorting and crowding distance calculation, Pareto fronts are formed and then the
new population is chosen using the selection operator. The general steps of the
implemented NSGA-II can also be found in [17].

As seen in Fig. 2, the two approaches are similar, and in both the sectorization
and sub-sectorization steps are done with NSGA-II. In the first approach, routing
is also done in NSGA-II. For this aim, using the nearest neighbor heuristic, a TSP
is solved for each sub-sectors. But in the second approach the routing problem is
solved outside of NSGA-II. It is performed when the iterations of the algorithm are
finished. This process is done once and only for non-dominated solutions obtained
by NSGA-II. For this aim, a TSP is solved for each formed sub-sectors using
the intlinprog function, which is a binary integer linear programming solver in
MATLAB optimization toolbox.

We suppose that each sub-sector is a complete graph, whose vertices are the DC
and customers. A directional link between vertices is named a trip. Tours consist
of a combination of trips. If there is a trip between two vertices on a route, the
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corresponding binary variable equals 1 and in otherwise it is 0. In this way, the
binary decision variables of the model are defined as all possible trips. The distance
of each trip is calculated and to be minimized, the objective function of the routing
problem is the total distance of the resulting trips, which is also defined as in Eq. 4.

The intlinprog function can deal with both equality and inequality linear
constraints. In the applied routing problem there are two types of linear equality
constraints. The first one ensures that in each sub-sector the total number of trips is
equal to the number of vertices, while the second one makes certain that each vertex
has connected to two trips [10].

During the routing, sub-tours may occur, which are disconnected loops instead of
a continuous path. In the applied method, iteratively, sub-tours are detected for each
obtained solution and inequality constraints are used to prevent them. This process
can be summarized as: suppose that s vertices create a sub-tour. In this case, there
are s links that connect them to each other. The corresponding constraint provides
that the number of links between the vertices is less than or equal to s − 1. A more
detailed description of the used routing method at this stage can be found in [10].

4 Experimental Results

We implement the approaches described in Sect. 3 in MATLAB R2019b environ-
ment on an Intel Core i7 processor, 1.8 GHz with 16 GB of RAM. The parameters
used in both NSGA-II and also SOGA are: population size= 200, number of
iterations= 300, crossover rate= 0.6 and mutation rate= 0.1. The weights defined
in Eq. 7 are: w1 = w2 = 1, w3 = 20, to generate initial populations of NSGA-II
in the first and second approached w4 = 1 and w4 = o, respectively. The reason
to choose f3 = 20 is that in some trial runs, values were generally as 20 times less
than the others. Equal weights are given for the other objective-functions.

Indicating as Number of customers×Number of vehicles×Number of possible
DCs, four benchmarks are generated as 15 × 5 × 3, 30 × 10 × 6, 60 × 20 × 12
and 120 × 40 × 24. We use the discrete uniform distributions as U(10, 100) to
create customers’ demands. After defining the demands of customers, the total
demand is calculated and then the capacity of each vehicle is defined as 1.3× round
(total demand/number of vehicles). Furthermore, the coordinates of both customers
and DCs in two dimensions are generated according to the normal distribution as
N(50, 10). The opening cost of each DC is created according to U(10, 15).

For each benchmark, when the solutions achieved by two approaches are
compared with each other, some of them dominate others. So, for each benchmark,
we again do a domination check between solutions that two approaches get. To do
a comparison, we divide the number of non-dominated solutions (NC) obtained by
each of the approaches into the number of all non-dominated solutions. The acquired
value is shown by e. Related results are presented in Table 2.
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Table 2 Comparison
between the approaches Benchmark NCall

First approach Second approach

NC e NC e

15 × 5 × 3 31 25 81% 6 19%

30 × 10 × 6 37 33 89% 4 11%

60 × 20 × 12 49 42 86% 7 14%

120 × 40 × 24 62 53 85% 9 15%

As shown in Table 2, the first approach in all of the benchmarks achieves
significantly better results than the second one according to the value of e. Therefore,
it can be considered as an efficient approach to solving all stages of MO-LRP
simultaneously with an effective algorithm as NSGA-II.

Excluding benchmark 1, in the other ones, the best solution found by SOGA is
among the non-dominated solutions obtained NSGA-II. Similar results are obtained
when the initial solution is not taken from SOGA and is derived in NSGA-II. But,
in this case, more non-dominated solutions are found. For example, in this way, 81
more non-dominated solutions are found applying the first approach for benchmark
1, however, the variance of the value of the objective functions increases. Even in
this case, the best solution found with SOGA is among the non-dominated solutions.

All details about the benchmark and the obtained non-dominated solutions are
accessible via the corresponding author’s email address.

5 Conclusion and Future Work

In this paper, we designed two approaches to solve MO-LRP. The problem
consists of four objective functions, which are the total cost of opening DCs, the
standard deviations of demands, distances and compactness in sub-sectors. Unlike
previous studies, to solve the problem, we adapted sub-problems of sectorization,
sub-sectorization and routing into two approaches. In the first approach, sector-
ization, sub-sectorization and routing sub-problems were solved simultaneously
with NSGA-II. But in the second approach, there was a hierarchical structure such
that the routing problem was solved for non-dominated solutions obtained after
performing sectorization and sub-sectorization with NSGA-II. For this aim, a TSP
solved using a function in the MATLAB optimization toolbox for each formed sub-
sector.

The approaches are applied for four benchmarks and the achieved results are
compared based on the number of non-dominated solutions. According to the
acquired results, the most important outcome of this study can be summarized like
this: the simultaneous approach for this problem is more effective in terms of finding
more non-dominated solutions.

The sectorization and sub-sectorization stages in both approaches are mixed-
integer quadratic programming optimization problems. As in many other softwares,
it is also possible to solve such models in MATLAB. For example, qpprob function



262 A. Teymourifar et al.

is one of the options that can be used for this aim but in case of using this function
the nonlinear part of the objective function must be added as a constraint. The reason
is that MATLAB, currently, does not have a solver for non-linear objective functions
[9]. In future studies, it is planned to propose new methods by using linearization
techniques as well as using the non-linear part of the objective functions as the
constraints.

In this study, new chromosome representation, crossover and mutation operators
designed to use in NSGA-II, which can be applied in similar algorithms. In future
studies, more effective operators will be proposed.

The weights used to transform the multi-objective problem into a single-objective
one affect the results. In further studies, more detailed works will be carried out on
this matter.

Sectorization is more appropriate for solving large-scale problems. In future
studies, larger benchmarks will be derived and solved.
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