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Abstract We present a family of graphs implicitly involved in sequential models,
which are obtained by adding edges between elements of a discrete sequence
appearing simultaneously in a window of size w, and study their combinatorial
properties. First, we study the conditions for a graph to be a sequence graph. Second,
we provide, when possible, the number of sequences it represents. For w = 2,
unweighted 2-sequence graphs are simply connected graphs, whereas unweighted 2-
sequence digraphs form a less trivial family. The decision and counting for weighted
2-sequence graphs can be transformed by reduction into Eulerian graph problems.
Finally, we present a polynomial time algorithm to decide if an undirected and
unweighted graph has the said property for w ≥ 3. The question of NP -hardness is
left opened for other cases.
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1 Introduction

The graphs we are interested in this paper, referred to as sequence graphs,
represent the co-occurrences (potentially oriented) of the elements in a sequence
appearing simultaneously in a window of constant size w. These structures encode
information of several sequential models, in particular for natural language [4, 7, 9],
supplementing the information of bag-of-words representations, which are invariant
to any permutation. They also have been used for biological sequences, namely for
protein visualization or protein-protein interaction prediction [2, 8]. In this work,
we are interested in two main questions; first the question of recognition of such
graphs, and second, the counting of corresponding sequences.
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1.1 Definitions and Problem Statement

In the following, let x = x1, x2, . . . , xp be a finite sequence of discrete elements
among a finite vocabulary X. Without loss of generality, we can suppose that X =
{1, . . . , n}, let Ip = {1, . . . , p} and let N∗ be the set of strictly positive integers.

Definition 1 G = (V ,E) is the graph of the sequence x with window size w ∈ N
∗

if and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I 2
p, |k − k′| ≤ w − 1, xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced by

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I 2
p, k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j (2)

Finally, a weighted sequence digraph G is endowed with the matrix Π(G) = (πij )

such that:

πij = Card {(k, k′) ∈ I 2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j} (3)

By convention, a weighted (undirected) sequence graph is endowed with Π = (πij ),
πij = π

′
ij + π

′
j i if i 
= j and π ′

ij otherwise, where π ′ verifies Eq. (3).
We say that x is a w-admissible sequence for G if G is the graph of the sequence

x. G is referred to as the w-sequence graph of x with window size w.

πij represents the number of co-occurrences of i and j in a window of size w.
Hence, the graph of a sequence x is unique for a given w. In the following, we use
Gw(x) as a shorthand for the w-sequence graph of x. In the weighted and directed
case, it can be obtained with Algorithm 1.

Algorithm 1: Construction of a weighted sequence digraph
Data: Sequence x of length p, window size w, p ≥ w ≥ 2
Result: (Gw(x), Π)

1 V ← Ø;
2 d ← number of distinct elements of x;
3 Initialize Π = (πi,j ) to d × d matrix of zeros;
4 for i = 1 → p − 1 do
5 V ← V ∪ {xi , xi+1} ;
6 for j = i + 1 → min(i + w − 1, p) do
7 πxi ,xj

← πxi ,xj
+ 1;

8 end
9 end

10 Return V, Π
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If G is not oriented, one should replace line 7 of Algorithm 1 by the “sym-
metrized” update:

if πi 
= πj : α ← πxi,xj
, πxi ,xj

← α + 1, πxj ,xi
← α + 1

else : πxi,xi
← πxi,xi

+ 1
(4)

The procedure in Algorithm 1 defines a correspondence between the sequence set
SX into the graph set G : φw : SX → G , x �→ Gw(x). G ∈ Im φw exactly means that
G is a w−sequence graph. For a given w, the two problems we address in this paper
are the characterization (or recognition) of w-sequences graph, and the counting of
the number of their w-admissible sequences.

1.2 Related Work

Despite their relations with co-occurrences based models for language [1, 7, 9], no
such combinatorial questions were investigated in computational linguistics which
we believe to be of interest, namely to understand the degree of ambiguity of
these models. Besides, such structures have been partially studied in the Distance
Geometry (DG) literature before, mostly to do with proteins, where an “atom
window” can be defined by using the protein backbone [6]. However, the type of
graph studied in Distance geometry does not refer directly to the results we are
investigating in this paper. Indeed, the necessary and sufficient conditions for which
such study would apply are:

• each element of the sequence x is associated with a unique vertex (which is not
the case we investigate here, since a symbol can be repeated several times but
only one vertex is created)

• the absence of loops

As a consequence, the results mentioned in the DG survey [6] do not apply to the
present case.

1.3 Notations

In the following, we use Md(N) as a shorthand for the square d × d matrices over
the set of natural integers, Tr(M) for the trace of a matrix M , and Sp(M) for its set
of eigenvalues.
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2 2-Sequence Graphs

In this section, we consider w = 2. Algorithm 1 encodes each adjacency in the
sequence x as an edge in Gw(x). Obviously, the simplest case concerns undirected
graphs as stated in the:

Proposition 1 Let G = (V ,E) be an unweighted and undirected graph with |V | >

1. Then, the following assertions are equivalent:

(i) G is connected
(ii) G has a 2-admissible sequence
(iii) G admits an infinite number of 2-admissible sequences

Proof If G is connected, a sequence is obtained by visiting all edges, for instance
using a list of arbitrary sequences and shortest paths. The other implications are
immediate. ��

For digraphs, the previous characterization is wrong, even with strong connec-
tivity. A counter example is given in Fig. 1. However, strong connectivity remains a
sufficient condition:

Proposition 2 Let G = (V ,E) be an unweighted digraph. If G is strongly
connected then G ∈ Im φ2. Moreover, a 2-admissible sequence can start or end
at any given vertex of G.

Proof Straightforward, similarly to (i) �⇒ (ii) for Proposition 1. ��
Proposition 3 Let G = (V ,E) be an unweighted digraph. If G is Eulerian or
semi-Eulerian, then G ∈ Im φ2.

Proof If G is Eulerian or semi-Eulerian, there exists a walk going through all edges,
this walk defines a 2-admissible sequence. ��

Again the converse of Proposition 3 does not hold as depicted in Fig. 2. First, it
is natural to consider the case of directed acyclic graphs (DAGs):

1 2 3

Fig. 1 G has 1 2 3 as a 2-admissible sequence but is not strongly connected

1

2 34 5

Fig. 2 G has 3 5 3 1 2 1 2 3 2 4 as a 2-admissible sequence but is not Eulerian nor semi-Eulerian
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Proposition 4 Let G = (V ,E) be a DAG. G is a 2-sequence graph if and only if
it is a directed path, i.e. G is a directed tree where each node has at most one child
and at most one parent. In this case, G has a unique 2-admissible sequence.

Proof If G is a directed path, since G is finite, it admits a source node. Therefore
a 2-admissible sequence is obtained by simply going through all vertices from the
source node. This is obviously the only one.

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a
directed path, there are two cases: either there exists a vertex having two children,
or two parents. Let s be a vertex having 2 distinct children c1 and c2. This is not
possible since there cannot be a walk going through (s, c1) and (s, c2): G would
have a cycle otherwise. Finally a vertex v cannot have two parents p1 and p2: if
a 2-admissible sequence existed, it would have to go through (p1, v) and (p2, v),
creating a cycle, hence the contradiction. ��

Every directed graph G is a DAG of its strongly connected components. In the
following, let R(G) be the DAG obtained by contracting the strongly connected
components of G.

Proposition 5 Let G = (V ,E) be a digraph. If G is a 2-sequence graph then R(G)

is a 2-sequence graph.

Proof Let G be a 2-sequence graph, and let us suppose that R(G) is not a
2-sequence graph. Since R(G) is a (weakly) connected DAG, then using Propo-
sition 4, it cannot be a directed path, so R(G) has either a node having two children
or two parents. Let S be a node of R(G) having at least 2 distinct children C1 and
C2. This means that there exist three distinct corresponding nodes in V , s, v1 and v2
such that (s, v1) ∈ E and (s, v2) ∈ E. Since G is a 2-sequence graph, there exists
a walk covering (s, v1) and (s, v2), such walk would make S, C1 and C2 the same
node in H(G), hence the contradiction. The case for which a vertex has two parents
is dealt with similarly. ��

The converse of Proposition 5 does not hold as depicted in Fig. 3, which
motivates the following definition.

Definition 2 Let G be a digraph, and R+(G) be the weighted DAG obtained from
R(G), such that the weight of an edge is the number of distinct arcs from two
strongly connected components in G.

Theorem 1 Let G = (V ,E) be an unweighted digraph.

Fig. 3 G is not a 2-sequence
graph while R(G) is. (a) G.
(b) R(G)

1 2

34

(a)

c1

(b)

c2
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G is a 2-sequence graph if and only if R+(G) is a directed path and its weights
are all equal to 1.

Proof If G is a 2-sequence graph, R(G) is a 2-sequence graph using Proposition 5.
Also Proposition 4 implies that R(G) and R+(G) are directed paths. Moreover,
if R+(G) had a weight strictly greater than 1, then there would be strictly more
than one edge between two strongly connected components C1 and C2. All these
edges go in the same direction otherwise C1 ∪ C2 would be part of a larger strongly
connected component. This is a contradiction since any 2-admissible sequence
would have to go from C1 to C2 and then come back to C1 (or conversely) and
C1 ∪ C2 would again be part of a larger strongly connected component.

Conversely, let us suppose R+(G) is a a directed path and its weights are equal
to one. First, there exists a walk x1, . . . , xp covering all edges of R+(G) verifying:
(i) ∀i, xi ∈ V or xi represents a strongly connected component of G, (ii) there is
only one edge in G between from xi to xi+1 and (iii) x has no repetition, i.e. there is
no common vertex in G between xi and xi+1. We construct a 2-admissible sequence
y for G by means of the following procedure.

Initialisation: If x1 ∈ V , we simply set y ← x1. Otherwise, x1 corresponds to a
strongly connected component C1 of G and we add to y any 2-admissible sequence
of C1.

For i ∈ {1, .., p − 1}:
• If (xi, xi+1) ∈ E: we add xi+1 to the sequence y.
• If xi ∈ V and xi+1 is a strongly connected component Ci of G: By assumption,

there exists only one edge of G from xi to a vertex of Ci , say ci
0. Since Ci is

strongly connected, using Proposition 2, Ci has a walk going through all of its
edges and starting in ci

0, say ci
0, . . . , c

i
p. We add ci

0, . . . , c
i
p to y.

• If xi corresponds to a strongly connected component Ci and xi+1 ∈ V : we
perform similar operations by stopping on the single node of Ci that has a edge
to xi+1 (this is possible thanks to Proposition 2).

• xi and xi+1 both correspond to strongly connected components Ci and Ci+1,
there exists only one edge between in E between Ci and Ci+1, say ei =
(vi, vi+1). We can complete y by a walk from the last vertex visited which belong
to Ci and vi , and then by a 2-admissible sequence through Ci+1 starting in vi and
ending in vi+1.

The process stops when i = p −1, and all edges are covered by the sequence y. ��
Therefore, an algorithm to decide if a digraph is a 2-sequence graph is obtained

by extracting its strongly connected components (there exist linear time algorithms
e.g. [10]), and to count the number of distinct edges between these.

Corollary 1 Let G be an unweighted digraph. The possible numbers of 2-
admissible sequences for G is exactly {0, 1,+∞}. Moreover, G admits a unique
2-admissible sequence if and only if G is a directed path.

Proof Let G a be 2-sequence graph. G verifies the characterization of Theorem 1.
If R(G) has a vertex C representing a strongly connected component of G (or
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Fig. 4 G is strongly
connected but is not a
2-sequence graph 1 2 3

3 1

1

a vertex with a loop), then by adding an arbitrary number of cycles in C to the
admissible sequence y (cf. Proof 2), the new sequence is still admissible. Otherwise,
if every vertex of R(G) is in V without self-loops in E, then G is a DAG. Using
Proposition 4, y is the unique 2-admissible sequence. ��

2.1 Weighted 2-Sequence Graphs

The weighted case cannot be treated similarly due to the constraint 3. A coun-
terexample is depicted in Fig. 4. Moreover, a weighted graph has a finite number
of admissible sequences. This property can be seen using Proposition 6 below.

Proposition 6 If a graph is a weighted w-sequence graph, all of its admissible
sequences have the same length.

Proof Let x be a w-admissible sequence for G of length p. If G is a digraph,
Algorithm 1 is incrementing (p − w + 1)(w − 1) + (w−1)(w−2)

2 times the total
weight, therefore:

∑

i,j

πij = (p − w + 1)(w − 1) + (w − 1)(w − 2)

2
(5)

If w ≥ 2, this yields: p = w − 1 − w−2
2 + 1

(w−1)

∑
i,j πij

Otherwise, if G is undirected, the weights matrix obtained with Algorithm 1 does
not yield Eq. (5), due to the update of Eq. (4). The weights on the diagonal remain
the same, but the others are multiplied by 2, hence the formula:

∑

i,j

πij + Tr(Π) = 2(p − w + 1)(w − 1) + (w − 1)(w − 2) (6)

leading to p = 1
2(w−1)

[∑i,j πij + Tr(Π)]. ��
Corollary 2 Let G be a weighted w-sequence digraph, and Π its weights matrix.
If w even, then (w − 1) | ∑

i,j πij .

Corollary 3 Let G be a w-sequence (undirected) graph and Π its weights matrix.
Then 2(w − 1) | ∑

i,j πij + Tr(Π).

Definition 3 Let ψ(G) be the auxiliary multigraph with the same vertices as G =
(V ,E) and with πij edges between (i, j) ∈ V 2.



216 S. Khalife

Due to the previous study, the characterization of weighted 2-sequence graphs using
ψ(G) is immediate. A semi-Eulerian graph is a graph that admits a Eulerian walk
(instead of cycle for Eulerian graphs).

Theorem 2 If G is a weighted graph (directed or not), with Π(G) ∈ Md(N), then:
G ∈ Im φ2 ⇐⇒ ψ(G) is connected and semi-Eulerian.

Proof G ∈ Im φ2 means that there is a trail going through each edge (i, j) ∈ E

exactly πij times. This trail corresponds to a semi-Eulerian path in ψ(G). ��

2.2 Counting 2-Admissible Sequences for Weighted Graphs

Proposition 7 sums up the results for the counting problem of a weighted graph:

Proposition 7 Counting the number of 2-sequences for a weighted graph is #P -
complete. However, if G is a weighted digraph with Π(G) ∈ Md(N), then the
number p2 of 2-admissible sequences is given by:

p2 = t (ψ(G))∏
e∈E πe!

∏

v∈V

(
degψ(G)(ψ(v)) − 1

)! (7)

where t (G) is the number of spanning trees of a graph G. If L is the Laplacian
matrix of G, then t (G) is given by t (G) = ∏

λi∈Sp(L)
λi 
=0

λi .

Proof Given a 2-admissible sequence of G, the choice of a corresponding Eulerian
path in ψ(G) is the choice of σ = (τ1, . . . , τ|E|) of |E| permutations of {1, . . . , πe}
representing the visit order in ψ(G). G �→ ψ(G) being bijective, counting Eulerian
paths in an undirected graph is #P -complete [3], hence so is the problem of counting
the 2-sequences of a weighted graph. BEST [11] and Matrix tree [5] theorems allow
to derive formula (7) which guarantees in that the problem on digraphs is in P . ��

To use formula (7), degψ(G)(ψ(v)) can be obtained using the following formula:
degψ(G)(ψ(v)) = ∑

n∈V
πnv + ∑

n∈V
πvn.

The results are summed up in Table 1.

Table 1 Results for various instances of our problems (w = 2)

Undirected Directed

Problem Unweighted Weighted Unweighted Weighted

Nb. sequences (P) {0,+∞} #P -hard (P) {0, 1,+∞} (P) BEST Theorem

G ∈ Im φ2? G connected ψ(G) Eulerian or Theorem 1 ψ(G) Eulerian or

semi Eulerian semi Eulerian
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3 What Happens If w > 2?

The characterization of 3-graphs is not the same as for 2-graphs, as the
counter-example in Fig. 5a shows: the depicted graph has no loop so there
must at least one clique of size 3, which is not the case. Similarly, Fig. 5b
depicts a counter example for directed graphs: G does not have loop, so
if it had a 3-admissible sequence, such sequence must be of the form
{1 2 3 1 . . . , 1 3 2 1 . . . , 2 3 1 2 . . . , 3 2 1 3 . . . , 2 1 3 2 . . .} but then (2, 1) would form
an edge.

Similarly to the procedure in Sect. 2.1, we will use an auxiliary graph built on
G. Let H(G) = (E,EH ) be the new graph obtained with the following procedure.
Two edges e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if
(An illustration is given Fig. 6):

v2 = v3 and (v1, v4) ∈ E (8)

Therefore, by definition, a walk P in H(G) is always of the form:

P = (t1, t2), . . . , (tp−1, tp) s.t ∀i ∈ {1, . . . , p − 1}, (ti , ti+1) ∈ E (9)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G). However, the converse is not true as depicted in
Fig. 7. In order to determine if G = (V ,E) has an admissible sequence for any w, a
procedure is to recursively merge pairs of vertices, maintaining constraints defined
below. These constraints are similar to Eq. (8). We adopt the following notations,
ui,j = (ui, uj ) and u1:k = (u1, . . . , uk). The iterative procedure (for w ≥ 3) is
summed up in 10.

1 2 3

(a) (b)

1 2 33

Fig. 5 Counter-examples for w = 3. (a) G is connected but does not have any 3-admissible
sequence. (b) G is strongly connected but does not have any 3-admissible sequence

1 2

3

12 23

13

123

13

(a) (b) (c)

Fig. 6 Reduction on a simple example (w = 3). (a) Original graph G. (b) Graph H . (c) DAG
R(H)
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1 2

34

(a) (b) (c)

31

24
23

43

42

41
34

32

31

2443

41 32

34234

Fig. 7 Procedure to find a 3-admissible sequence. 34234, 41: is 3-admissible, with authentic
sequence 3 4 2 3 4 1. (a) Original graph G. (b) Graph H is not a 2-sequence graph. (c) DAG
R(H(1))

Namely, ∀k ∈ {2, . . . , w − 2}, one has

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E}
(10)

Let H(k) = (E(k), E(k+1)), it can be defined recursively through:

H(0) = G ∀k ∈ N
∗, H (k) = f (H(k−1)) (11)

where f transforms edges into vertices and creates edges between new vertices that
verify Eq. (10). It should be noted that H(G) is directed if and only if G is.

Definition 4 Let u be a vertex of H(k) for k ∈ N, u = (u1, . . . , uk, uk+1),
where uj ∈ V for each j . The sequence u1, . . . , uk+1 is the authentic
sequence of u. We also call an authentic sequence of a walk on H(k): P =
(x1, . . . , xk+1), (x2, . . . , xk+2), . . . , (xv, . . . , xv+k) the sequence x1, x2, . . . , xv+k .

In order to obtain admissible sequences of length p, the computation of H(p)

requires p iterations, and the number of vertices and edges of H(k) can increase
during iterations (the complete graph is an example for which theses numbers
increase quadratically).

Proposition 8 Let x = x1, . . . , xp be a w-admissible sequence of a graph (or
digraph) G = (V ,E). If w ≤ p, then x is an authentic sequence of a walk of
length p − w + 1 on H(w−2).

Proof Let x = x1, . . . , xp be a w-admissible sequence of G. Let P be a
walk on H(w−2), and P [i] be the i-th element of P , P [i] ∈ H(w−2): P [i] =
(P [i]1, . . . , P [i]w−1).

Let us suppose that w ≤ p (which we can always do), and let us show the
following property by induction on k:

∀k ∈ {w − 1, . . . , p}, ∃ walk P on H(w−2),

x1:k = P [1]1, P [2]1, . . . , P [k − (w − 1)]1, P [k + 1 − (w − 1)]1:(w−1)

(12)



Sequence Graphs: Characterization and Counting of Admissible Elements 219

• Initialisation: k = w − 1. By construction of H(w−2), x1:w−1 is the authentic
sequence of “static walk”: P = P [1] = x1:w−1 ∈ H(w−2).

• Induction: let us suppose the property is verified for k ∈ {w − 1, . . . , p − 1}, i.e.
there exists a walk P on H(w−2) such that:

x1:k = P [1]1, P [2]1, . . . , P [k − (w − 1)]1, P [k + 1 − (w − 1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k+1−(w−1), . . . , k},∀j ∈ {i+1, . . . ,min{k+1, i+w−1}} : (xi, xj ) ∈ E

Therefore, by definition of H(w−2), ξk+1 = xk+1−(w−1), . . . , xk+1 ∈ H(w−2).

Let P [k + 2 − (w − 1)] =∧ ξk+1, then P [k + 2 − (w − 1)]1:(w−1) =
xk+1−(w−1), . . . , xk+1. Besides, from the induction assumption: ∀i ∈ {1, . . . , k −
(w − 1)}, P [i]1 = xi . This ensures that: x1:(k+1) = P [1]1, P [2]1, . . . , P [k + 1 −
(w − 1)]1, P [k + 2 − (w − 1)]1:(w−1) which ends the induction and the proof. ��
Theorem 3 Let G be a graph and w ∈ N

∗ − {1, 2}. If G is undirected and
unweighted then deciding if G is a w-sequence graph is in P .

Proof It is possible to compute the connected components of H(w−2), say
C1, . . . , Cm, in polynomial time. For each i ∈ {1, . . . , m}, it is possible to construct
walks covering all edges in polynomial time (for instance iteratively using shortest
paths). Let W1, . . . ,Wm be such walks and X1, . . . , Xm their respective authentic
sequences. Using Proposition 8, G is a w-sequence graph if and only if there exists
a walk W̃i0 on some Ci0 creating exactly the edges of G. However, Wi0 creates more
edges than any walk on Ci0 by construction.

In conclusion, the assertion: ∃i ∈ {1, . . . , m}, φw(Xi) = G is a characterization
of G being a w-sequence graph. This assertion is decidable in polynomial time since
for all i, computing φw(Xi) requires a polynomial number of operations. ��

For digraphs, the analogue of the aforementioned procedure would consist in
enumerating all paths in the DAG R(H(w−2)). However, the number of paths can be
exponential, even for a sequence graph. For the sake of completeness, we will prove
that the reduction by strongly connected components preserves admissibility.

Lemma 1 Let x be a walk on H(w−2) whose authentic sequence is w-admissible
for its corresponding unweighted graph G. If x goes through a strongly component
C of H(w−2), adding any supplementary path of C to x lets x w-admissible. Any
graph generated by a walk on H(w−2) can be generated by a walk on R(H(w−2)).

Proof Let P = P [1], , . . . , P [r] be a walk on H(w−2) going through a strongly
connected component C, with an arbitrary ordering of its vertices, i.e. C =
{c1, . . . , cm}. This means ∃(m0, i0) ∈ {1, . . . , m} × {1, . . . , r − 1} s.t P [i0] = cm0

and (cm0 , P [i0+1]) ∈ E. Let C = cm0 , cj1 , . . . , cjv be a path in C with (cjv , P [i0+
1]) ∈ E. Let Q be the new path: Q = P [1], . . . , P [i0], cj1 , . . . , cjv , P [i0 +
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Algorithm 2: A recognition algorithm for unweighted digraphs
Data: Graph G, window width w

Result: (Boolean, empty set or w-admissible sequence)
1 Build H(w−2) recursively (e.g. with 11);
2 Construct Rw

H = R(H(w−2)) ;
3 for source-sink path of Rw

H do
4 if authentic sequence of path is w-admissible for G then
5 return (True, sequence)
6 end
7 end
8 return (False, ∅);

1], . . . , P [r]. By construction of H(w−2), the edges created by any walk on H(w−2)

are in E, so Q is still admissible.
Let us label every node of R(H(w−2)) representing a strongly connected compo-

nent of H(w−2) by any 2−admissible sequence (one exists thanks to Proposition 2).
A walk on H(w−2): x1, . . . , xp can be met by a walk on R(H(w−2)) using the
following procedure:

For i ∈ {1, . . . , p − 1}:
• if xi, xi+1 ∈ E, we keep xi and xi+1
• if xi ∈ V and xi+1 is in a strongly connected component of H(w−2) (but a node of

R(H(w−2))), represented by c1, . . . , cCi
, then a path from xi+1 to c1 exists since

the component is strongly connected: xi+1, p1, . . . , pm, c1. We keep xi, xi+1,
p1, . . . , pm, c1, . . . , cCi

. Using the aforementioned result, this does not perturb
admissibility.

• if xi+1 ∈ V and xi is in a strongly connected component of Hw−2, we proceed
similarly (xi and xi+1 are swapped).

• if both xi+1 and xi are strongly connected components of Hw−2, we add
intermediary nodes to connected both components similarly.

��

4 Conclusion

In this preliminary study, we considered two main combinatorial problems: the
recognition problem of sequences graphs, and the counting of their realizations.
Solving the second problem totally solves the first one, but in the trivial case w = 2,
the first one is “simpler”: the recognition problem of sequence graphs is P for w = 2
for any data instance, but the counting problem is #P -hard for weighted graphs. This
justifies the distinction of these problems from a computational point of view.

Furthermore, for w > 2, the recognition problem is in P for one configuration
(unweighted graphs), but the complexity classes of the other instances are left
opened, and so are the counting problems for w > 3. A possible lead to
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answer these questions would be to investigate forbidden patterns in a sequence
graph. Finally, it should be noted that the abstraction of sequences graphs exactly
coincides with the graphs implicitly involved in co-occurrence models or point
wise-mutual information models [1, 7, 9], used as input of algorithms to construct
word representations. In these models, representations are ambiguous if the given
weighted graph has several realizations. Therefore, other extensions of this work
would be to propose scalable algorithms (or at least, for reasonable values of w and
length of the sequences) to count and explicit realizations, in order to obtain more
information about the degree of ambiguity in these models.
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