Edge Tree Spanners

195

Fernanda Couto, Luís Cunha, and Daniel Posner

Abstract A tree *t*-spanner of a graph *G* is a spanning tree *T* of *G* in which any two adjacent vertices of *G* have distance at most *t* in *T*. The line graph $L(G)$ of a graph *G* is the intersection graph of the edges of *G*. We define the edge tree *t*-spanner of a graph *G* as a spanning tree *T* of $L(G)$ in which any two edges that share an endpoint in *G* have distance at most *t* in *T* . Although determining if G has a tree 3 spanner is an open problem for more than 20 years, we settle that deciding if a graph *G* has an edge tree 3-spanner is polynomial-time solvable. As a consequence, we present polynomial time algorithms for the edge tree *t*-spanner problem for several graph classes such as trees, join of graphs, split graphs, *P*4-tidy, and *(*1*,* 2*)*-graphs. Moreover, we establish that deciding whether a graph *G* has an edge tree 8-spanner is NP-complete, even if *G* is bipartite.

Keywords Tree *t*-spanner \cdot Edge tree *t*-spanner \cdot Polynomial time algorithms \cdot NP-completeness · Line graphs · Graph classes

1 Introduction

The problem of looking for a spanning tree with constraints on the vertices' or edges' distances is a combinatorial challenge with many applications and approaches [\[1,](#page-12-0) [11\]](#page-12-1). A *tree t*-*spanner* of a graph *G* is a spanning tree *T* of *G* in which any two adjacent vertices of *G* have distance at most *t* in *T* . A graph *G* having a tree *t*-spanner is called a *t*-*admissible* graph. The smallest *t* for which a graph *G* is *t*-admissible is the *stretch index of G* and is denoted by $\sigma_T(G)$ (or

L. Cunha Universidade Federal Fluminense, Niterói, Brazil e-mail: lfignacio@ic.uff.br

F. Couto $(\boxtimes) \cdot$ D. Posner

Universidade Federal Rural do Rio de Janeiro, Nova Iguaçu, Brazil e-mail: [fernandavdc@ufrrj.br;](mailto:fernandavdc@ufrrj.br) posner@cos.ufrj.br

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 C. Gentile et al. (eds.), *Graphs and Combinatorial Optimization: from Theory to Applications*, AIRO Springer Series 5, https://doi.org/10.1007/978-3-030-63072-0_16

simply $\sigma(G)$). The *t*-*admissibility* problem aims to decide whether a given graph G has $\sigma(G) \leq t$. The problem of determining the tree stretch index, i.e. *the minimum stretch spanning tree problem* (MSST) has been studied by establishing bounds on $\sigma(G)$ or developing the computational complexity of the decision version of MSST for several graph classes [\[2](#page-12-2)[–4\]](#page-12-3). Cai and Corneil [\[2\]](#page-12-2) proved that *t*-admissibility is NP-complete, for $t > 4$, whereas 2-admissible graphs can be recognized in polynomial-time. However, the characterization of 3-admissible graphs is still an open problem.

The characterization for 2-admissible graphs [\[2\]](#page-12-2), stated in Theorem [1,](#page-1-0) deals with triconnected components of a connected graph, defined as any maximal subgraph that does not contain two vertices whose removal disconnects the graph (the authors also consider K_2 and K_3 as triconnected components). A *nonseparable* graph is a graph without a *cut vertex*, i.e., a vertex whose removal disconnects the graph. A *star* with $n + 1$ vertices is the complete bipartite graph $K_{1,n}$. A *v*-*centered star* is a star centered on *v*, that is a universal vertex. Similarly, a bi-star is a graph such that there is an edge uv and every edge of E shares an endpoint with uv . Hence, *uv* is a *universal edge* of the bi-star. A *uv*-*centered bi-star* is a bi-star centered on a universal edge *uv*.

Theorem 1 ([\[2\]](#page-12-2)) *A nonseparable graph G is* 2*-admissible if and only if G contains a spanning tree T such that for each triconnected component H of G*, *T* \cap *H is a spanning star of H.*

Given a graph *G*, its *line graph* $L(G)$ is obtained as follows: $V(L(G)) = E(G)$; $E(L(G)) = \{ \{uv, uw\} | uv, uw \in E(G) \}.$ I.e., each edge of *G* is a vertex of $L(G)$ and if two edges share an endpoint, then their corresponding vertices are adjacent in $L(G)$. The *distance between two edges* e_1 and e_2 of *G*, for $e_1, e_2 \in E(G)$ is the distance between their corresponding vertices in *L(G)*.

We define the *edge tree t*-*spanner* of a graph *G* as a spanning tree *T* of *L(G)* such that, for any two adjacent edges of *G*, their distance is at most *t* in *T* . Therefore, an edge tree *t*-spanner of *G* is a tree *t*-spanner of *L(G)*.

A graph *G* that has an edge tree *t*-spanner is called *edge t*-*admissible*. The smallest *t* for which *G* is an edge *t*-admissible graph is the *edge stretch index of G*, and is denoted by $\sigma'_T(G)$ (or simply $\sigma'(G)$). The *edge t*-*admissibility* problem aims to decide whether a given graph *G* has $\sigma'(G) \leq t$. Figure [1](#page-2-0) depicts the relation between the edge tree spanner of a graph and the tree spanner of its line graph.

An immediate consequence of MSST is that the property of being *t*-admissible graph is not hereditary, i.e., if *G* is *t*-admissible then there may exist a subgraph *H* of *G* that is not *t*-admissible. Indeed, the addition of a universal vertex u to any *t*-admissible graph results in a 2-admissible graph by a *u*-centered star.

On the other hand, regarding the edge tree *t*-spanner, in Sect. [3](#page-4-0) we prove that being an edge 3-admissible graph is a hereditary property, and based on that, we are able to decide whether *G* is edge 3-admissible in polynomial time. Moreover, in Sect. [4](#page-8-0) we determine polynomial time algorithms to obtain the edge stretch index for some edge 4-admissible and edge 5-admissible classes, such as split graphs, join graphs, *P*4-tidy graphs and *(*1*,* 2*)*-graphs. In Sect. [5,](#page-10-0) we prove that

Fig. 1 A graph *G*, a tree 3-spanner of *L(G)* in red, and *G* with the related edge 3-spanner in red

edge 8-admissibility is NP-complete for *(*2*,* 0*)*-graphs, i.e. bipartite graphs. In Sect. [6,](#page-11-0) we present concluding remarks. Next (Sect. [2\)](#page-2-1), we relate admissibility and edge admissibility problems, presenting immediate consequences and preliminary results.

2 Admissibility Versus Edge Admissibility for Graph Classes

Since induced cycles in a graph *G* correspond to cycles of the same length in *L(G)*, we have that $\sigma'(C_n) = \sigma(C_n) = n - 1$. Although cycle graphs satisfy $\sigma' = \sigma$, for several other classes the stretch index is different of the edge stretch index.

For instance, trees are 1-admissible and the unique edge 1-admissible graphs are the ones such that their line graphs are trees. Since line graphs are claw-free, then path graphs are the unique edge 1-admissible graphs. In Proposition [1](#page-2-2) we determine the edge stretch index of trees.

Proposition 1 *Let G be a tree. If G is a path graph then* $\sigma'(G) = 1$ *, otherwise* $\sigma'(\bar{G}) = 2.$

Proof Note that if *G* is a path, then $L(G)$ is a path and $\sigma'(G) = 1$. For any other tree there is a vertex of degree at least 3, implying a complete subgraph of length at least 3 in *L(G)*. Each internal node *u* of *G* correspond to a maximal complete subgraph of $L(G)$ of size $d_G(u)$ and two of such maximal complete subgraphs share at most a vertex in $L(G)$. Hence, any triconnected component of $L(G)$ is a complete subgraph and satisfies Theorem [1.](#page-1-0)

Since the study of edge tree spanners is equivalent to the study of tree spanners of line graphs, and deciding whether a graph is 2-admissible is polynomial-time solvable, Theorem [1](#page-1-0) implies Corollary [1.](#page-2-3)

Corollary 1 *Edge* 2*-admissibility is polynomial-time solvable.*

The edge stretch index of cycle graphs and complete graphs are useful to characterize edge 3-admissible graphs, as discussed in Sect. [3.](#page-4-0)

Complete graphs are 2-admissible, however their line graphs are not. In order to prove that $\sigma'(K_n) = 4$, from Lemma [1](#page-3-0) we have that $\sigma'(K_5) \leq 4$, and it is possible to prove that K_5 is not edge 3-admissible, as highlighted below.

To prove that K_5 is not edge 3-admissible, one can verify by a case analysis that it is not possible obtain a spanning tree *T* such that $T \cap L(K_5)$ has at least 3 internal nodes. Clearly, $T \cap L(K_5)$ cannot have more than 3 internal nodes, because otherwise the edge factor of such a tree would be at least 4. Moreover, it is not possible obtain a spanning tree *T* such that $T \cap L(K_5)$ is a bi-star or it is a tree with three internal nodes whose leaves at distance 4 in *T* are not adjacent in $L(K_5)$.

In Sect. [3](#page-4-0) we prove that being edge 3-admissible is a hereditary property for induced subgraphs (Lemma [2\)](#page-4-1), then Corollary [3](#page-5-0) states that $\sigma'(K_n) = 4$, for $n \ge 5$.

A graph *G* has a *distance two dominating edge uv* if every edge of *E(G)* has a vertex in *^N*[*u*]∪*N*[*v*] as one of its endpoints, where *^N*[*x*] is the *closed neighborhood of x*, i.e. $N[x] = N(x) \cup \{x\}$. Moreover, *G* has two adjacent distance two dominating edges *uv* and *vw* if every edge of $E(G)$ has a vertex in $N[u] \cup N[v] \cup N[w]$ as one of its endpoints.

Lemma 1 *A graph G with a distance two dominating edge <i>uv has* $\sigma'(G) \leq 4$ *.*

Proof Since *G* has a distance two dominating edge *uv*, there is a spanning tree with diameter at most four of $L(G)$ with the vertex *uv* as its root, the vertices $\{ux \mid ux \in$ *E(G)*}∪ {*vy* | *vy* ∈ *E(G)*} adjacent to *uv*, and the remaining vertices of *L(G)* adjacent to some vertex in {*ux* | *ux* ∈ *E(G)*}∪ {*vv* | *vv* ∈ *E(G)*}. adjacent to some vertex in $\{ux \mid ux \in E(G)\} \cup \{vy \mid vy \in E(G)\}.$

Figure [2](#page-3-1) depicts graphs with distance two dominating edges and their edge tree 4 spanners, as the proof of Lemma [1.](#page-3-0) A graph is *split* if its vertex set can be partitioned into a stable set and a clique. The *join* between two graphs G_1 and G_2 results in the graph *G* such that $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup \{uv \mid u \in G\}$ *V*(*G*₁) and *v* ∈ *V*(*G*₂)}.

Several graph classes can be constructed by join and complement of join operations, i.e. *union* operations. Cographs are the *P*4-free graphs, i.e. graphs without a P_4 as an induced subgraph, and G is a cograph iff it has the following recursive definition: (i) *G* is a K_1 ; (ii) *G* is a join of cographs; (iii) *G* is a union of cographs. A generalization of cographs are the graphs with few *P*4's, such as *P*4-sparse and *P*4-tidy [\[7\]](#page-12-4).

Fig. 2 A split graph and a join graph with their edge tree 4-spanners

A graph is *P*4-*sparse* if for each set of 5 vertices, there is at most one induced *P*4. A graph is *P*4-*tidy* if for each induced *P*⁴ of *G*, say *P*, there is at most one vertex $v \in V(G) \setminus V(P)$ such that $V(P) \cup \{v\}$ induces at most two P_4 's in *G*. P_4 tidy generalizes P_4 -sparse graphs, and G is a P_4 -tidy graph iff it has the following recursive definition: (i) *G* is P_5 , C_5 , $\overline{P_5}$, or K_1 ; (ii) *G* is a join of P_4 -tidy graphs; (iii) *G* is a union of P_4 -tidy graphs; (iv) *G* is a spider; (v) *G* is an almost spider. A graph is a *spider* graph if its vertex set can be partitioned into \mathscr{S}, \mathscr{K} and \mathscr{R} such that (i) *K* is a clique (*K* is called *body*), *S* is a stable set and $|\mathcal{S}| = |\mathcal{K}| > 2$; (ii) each vertex of \mathcal{R} (\mathcal{R} is called *head*) is adjacent to all vertices of \mathcal{K} and is non-adjacent to any vertex of \mathscr{S} ; (iii) There is a bijection $f : \mathscr{S} \mapsto \mathscr{K}$ such that, for all $x \in \mathscr{S}$, either $N(x) = \{f(x)\}\$, or $N(x) = \mathcal{K} - \{f(x)\}\$. A graph is an *almost-spider* graph if it can be constructed from a spider graph $G = (\mathcal{S}, \mathcal{K}, \mathcal{R})$ by adding a vertex v' which is either a false twin of *v* or a true twin of *v*, such that $v \in \mathcal{S} \cup \mathcal{K}$ [\[10\]](#page-12-5).

Split graphs, join graphs and *P*₄-tidy graphs are 3-admissible [\[3,](#page-12-6) [4\]](#page-12-3). Corollary [2](#page-4-2) follows from Lemma [1](#page-3-0) and: for split graphs, any clique's edge is distance two dominating; for join graphs between G_1 and G_2 , any uv such that $u \in V(G_1)$ and $v \in V(G_2)$ is distance two dominating; for P_4 -tidy graphs, any edge between the head and the body is distance two dominating.

Corollary 2 *Split graphs, join graphs and P*4*-tidy graphs are edge* 4*-admissible.*

Since 3-admissibility is still open and *t*-admissibility is NP-complete, for $t > 4$, we are interested to establish the computational complexity of determining the edge stretch index. In Sect. [3,](#page-4-0) we prove that edge 3-admissibility is polynomial-time solvable, and as an immediate consequence, we are able to determine in polynomial time the edge stretch index for any edge 4-admissible graph, such as split graphs, join graphs and *P*4-tidy graphs (Corollary [6\)](#page-8-1).

3 Edge 3-Admissibility Is Polynomial-Time Solvable

Lemma 2 *Edge* 3*-admissibility is a hereditary property for induced subgraphs.*

Proof Assume that there is an edge 3-admissible graph *G* with an induced subgraph *H* such that *H* is not edge 3-admissible. W.l.o.g. let G' be an induced subgraph of *G* such that: $|V(G')| = |V(H)| + 1$, *u* ∈ $V(G') ∩ V(H)$; *G'* is edge 3-admissible; *H* is edge *k*-admissible for $k \geq 4$; *T'* is an edge tree 3-spanner of *G'*; and *T* is an edge *k*-tree spanner of *H* with $k \geq 4$. In any edge tree *k*-spanner *T* of *H* there is a path *P* with $k + 1$ vertices using edges of *T* and an edge of G' not in *T* between the two endpoints of this path (see Fig. [3a](#page-5-1) that considers $k = 5$). Since G' is edge 3-admissible, the addition of the vertex *u* must remove a part of that path *P* from *T*. For the sake of contradiction, assume T'' is a tree that contains at least three internal nodes among the edges incident to *u*. Since these edges have *u* as endpoint, then the leaves that are at distance 4 in T'' correspond to adjacent edges in G' , a contradiction. Therefore, the edges incident to u must be a bi-star in T' (see Fig. [3b](#page-5-1)).

Fig. 3 (a) $V(H) = \{v, w, x, v, z, t\}$ and a path *P* in red. (**b**) In red a bi-star satisfying Case 1. (**c**) In red a bi-star satisfying Case 2

Fig. 4 *C*₄ and *K*₄ whose vertices have degree at least 3 and 4 in *G*, resp. Note that $d_T(e_1, e_2) = 4$

W.l.o.g. assume that *u* is adjacent to all vertices of *G* related to the path *P* of *T* . The edges of the bi-stars cover at most four vertices of *P*. We have two cases: Case 1: the bi-star connects consecutive vertices of *P*. In this case it does not reduce the distance between the vertices of P in T' (e.g. see Fig. [3b](#page-5-1), the distance between *vw* and *vt* is 5 in T') and T' is not an edge tree 3-spanner, a contradiction; Case 2: the bi-star connects non-consecutive vertices of *P*. In this case it does reduce the distance between vertices of P , however, the vertex xy between this non consecutive vertex of P is connected to leaves of the two centers of the bi-star in $L(G)$, which implies that T' is not edge 3-admissible, a contradiction (Fig. [3c](#page-5-1)).

Corollary 3 *Any complete graph* K_n *has* $\sigma'(K_n) = 4$ *, for* $n \ge 5$ *.*

Proof Since $\sigma'(K_5) = 4$ (Sect. [2\)](#page-2-1) and for $n \geq 5$, K_n has a K_5 as an induced subgraph, then, by Lemma [2,](#page-4-1) we have that K_n are not edge 3-admissible, for $n \geq 5$. Furthermore, complete graphs have a distance two dominating edge, hence by Lemma [1,](#page-3-0) $\sigma'(K_n) \leq 4$, for $n \geq 5$, and the result follows.

Line graphs of K_n are complement of *Kneser graph* $KG_{n,2}$ [\[8\]](#page-12-7), then $\sigma(KG_n, 2) = 4.$

Note that C_k and K_k , for $k \geq 5$ are not subgraphs of edge 3-admissible graphs. See Fig. [4](#page-5-2) for examples of *C*⁴ and *K*⁴ where all vertices have degree at least 3 and 4 in *G*, resp. Suppose *H* is an induced C_4 (or K_4) in *G*. In $L(G[H])$ there must be a path through all $L(C_4)$'s vertices (or through four $L(K_4)$'s vertices) and one more vertex corresponding to an edge that does not belong to the C_4 (to the K_4) in H . Hence, it implies that $\sigma'(H) \geq 4$ $\sigma'(H) \geq 4$, and Corollary 4 follows.

Corollary 4 *Let G be an edge* 3-*admissible graph. If* $X \in \{C_4, K_4\}$ *is an induced subgraph of G, then there is a vertex* $v \in V(X)$ *such that* $N_G(v) \subseteq V(X)$ *.*

By Corollary [4,](#page-5-3) any edge 3-admissible graph has vertices of degree 2 and 3 in each induced C_4 's and K_4 , resp. Hence, Construction [2](#page-6-0) presents a way to break C_4 's and K_4 's into P_5 's and K_3 's, resp., in order to present a stronger necessary condition in Lemma [4.](#page-6-1)

Construction 2 Let G be a graph that satisfies: G does not have induced C_k *nor* K_k , for $k > 5$, as induced subgraphs; for each induced C_4 there is a vertex *of degree two in G; and for each induced K*⁴ *there is a vertex of degree three in G. We construct a graph H from G as follows:*

- *1. each induced* $C_4 = a, b, c, d, a, for $d_G(a) = 2$, is transformed into a $P_5 = 1$$ *a, b, c, d, a by adding a new vertex a and the edge da , and removing the edge da;*
- 2. each induced $K_4 = \{a, b, c, d\}$ *, for* $d_G(a) = 3$ *, is transformed into three complete graphs K*³ *by adding a new vertex a and: removing edge ba; adding edges ba'* and *ca'*.

Lemma 3 *A graph G is edge* 3*-admissible if and only if the graph H from Construction [2](#page-6-0) is edge* 3*-admissible.*

Proof If *G* is edge 3-admissible, then all edges of an edge tree 3-spanner of *G* are used to obtain a spanning tree of *H* and we do not increase the edge stretch index from *G* to *H*, because, by construction, we are not increasing a maximum path between any two adjacent vertices of *G* in *H*. If *H* is edge 3-admissible, then all edges of an edge tree 3-spanner of *H* are used for a spanning tree of *G* and, since we are identifying vertices that belong only to C_4 's or K_4 's in G , such identification does not affect cycles that give the edge tree 3-spanner of *H* and does not increase such index of *^G* by the used edges of *^H*.

A *k*-*tree* is a graph obtained from a K_{k+1} by repeatedly adding vertices in such a way that each added vertex *v* has exactly *k* neighbors defining a clique of size $k + 1$. A *partial k*-*tree* is a subgraph of a *k*-tree [\[9\]](#page-12-8).

Lemma 4 *Let G be an edge* 3*-admissible graph. If H is the graph obtained from G in Construction [2,](#page-6-0) then H is a chordal partial* 2*-tree graph.*

Proof If *G* is edge 3-admissible with $X \in \{C_4, K_4\}$ as an induced subgraph, then, by Corollary [4,](#page-5-3) *X* must have at least one vertex *a* such that $N(a) \subseteq X$. Based on that, in Construction [2](#page-6-0) we obtain a graph without C_4 's nor K_4 's. Since, by Lemma [3,](#page-6-2) the transformed graph *H* from an edge 3-admissible graph *G* is also edge 3-admissible, we have that the length of any clique is at most 3 and it does not have C_k , for $k \geq 4$. Since chordal graphs with maximum clique of length 3 are partial 2-tree [\[9\]](#page-12-8), we have that *H* is a chordal partial 2-tree graph.

By Lemma [4,](#page-6-1) edge tree 3-spanner graphs are formed by 2-trees where either an edge or a vertex connects two 2-trees. Hence, for the former case such edge is a bridge and for the later case it is a cut vertex of the graph. Lemmas [5](#page-7-0) and [6](#page-7-1) present conditions that force spanning trees correspond to edge 3-admissible graphs.

Lemma 5 *Given an edge* 3*-admissible graph G and two* 2*-trees A*¹ *and A*² *connected by a bridge uv, such that* $|V(A_i)| > 3$ *for* $i \in \{1, 2\}$ *, then for any edge* 3*-spanner T*, *uv is a pendant vertex in* $T[A_1 \cup \{u, v\}]$ *, i.e.* $d_{T[A_1 \cup \{u, v\}]}(uv) = 1$ *.*

Proof Assume $u \in A_1, u, x, y$ is a triangle and $v \in A_2$. Suppose $d_{T[A_1 \cup \{u, v\}]}(uv) \ge$ 2, hence *xy* must be adjacent to either *ux* or to *uy* in *T*. W.l.o.g., let *xy* be adjacent to *uy*, then, there is an edge *wx* in *A*¹ which implies the distance between *wx* and *xy* to be equal to 4 by a path through *uv*, a contradiction.

Each bridge forces a unique way to obtain an edge tree 3-spanner of *G*. Hence, by Lemma [5,](#page-7-0) assume *G* is 2-*edge connected*, i.e. there is not a bridge in *G*. Otherwise, we consider each connected component separately after the bridges removal of *G*.

Now, consider the case that *G* has a cut vertex. Let a *windmill graph Wd(*3*, n)* be the graph constructed for $n \geq 2$ by identifying *n* copies of K_3 at a universal vertex. Since an edge 3-admissible graph is partial 2-tree, we have that if there is a cut vertex *u* in *G*, then *G*[*N_G*[*u*]] contains a windmill graph $Wd(3, d)$, for $2 \le d \le \frac{d_G(u)}{2}$. Let a *diamond graph* be a K_4 minus an edge. Each K_3 of a windmill centered in *u* has two vertices of degree 2, or it has a cut vertex of *G* distinct of *u*, or it belongs to a diamond graph of *G*.

Lemma 6 *Let G be* 2*-*edge connected *graph with a cut vertex u and edge* 3 *admissible. If the associated windmill graph* $Wd(3, n)$ *centered in u satisfies* $n \geq 3$ *, then u belongs to at most* 2 *diamonds in G.*

Proof Assume that *u* is center of the windmill graph $Wd(3, 3)$ and it belongs to 3 diamonds D_1 , D_2 and D_3 in *G*. We prove that *G* is not edge 3-admissible, and then it implies that if *G* is edge 3-admissible, then *u* does not belong to more than 3 diamonds for every $n \geq 3$, either, because the hereditary property proved in Lemma [2.](#page-4-1)

Note that $L(H)$, for $H = Wd(3, 3) \cup D_1 \cup D_2 \cup D_3$, is composed by a K_6 and the addition of three other subgraphs, named B_1 , B_2 and B_3 , constructed by a join between a vertex and a *C*4. Moreover, each edge of a perfect matching of the K_6 , $\{e_1, e_2, e_3\}$, is identified to an edge of B_1 , B_2 and B_3 that belongs to the *C*4s, resp. Suppose that *L(H)* is 3-admissible, hence for any tree 3-spanner *T* of *L(H)* we have that *T* ∩ *L(H)* is a *f l*-centered bi-star, for *f* and *l* being any two K_6 's vertices. Since any vertex of the K_6 belongs to exactly one of the other three subgraphs added to it, i.e. each K_6 's vertex belongs to either B_1 , B_2 or B_3 , then at least two adjacent vertices of *L(H)* are adjacent to leaves of the *f l*-centered bi-star, implying $\sigma'(H) = 4$. $(H) = 4.$

If there is a vertex *u* that belongs to $Wd(3, 2)$ then there are two solutions in $T \cap$ $Wd(3, 2)$, less than isomorphism. Consider a $Wd(3, 2)$ such that $V(Wd(3, 2)) =$ $\{u, v, w, v', w'\}$ such that u, v, w and u, v', w' induce K_3 's. Note that an edge tree 3-spanner $T \cap Wd(3, 2)$ can be formed as follows: Case 1: $\{uv, uw\}$, $\{uv, vw\}$, {*uv, uv* }, {*uv , uw* }, {*uv , v w* }; Case 2: {*uv, uw*}, {*uv, vw*}, {*uv, uv* }, {*uv, uw* }, $\{uv', v'w'\}$. Any other edge tree spanner of $Wd(3, 2)$ is not edge tree 3-spanner.

Although a $Wd(3, 2)$ graph centered in *u* may have two spanning trees, if each triangle also belongs to a diamond, let D_1 and D_2 be such diamonds with vertices $V(D_1) = \{u, v, w, x\}$ and $V(D_1) = \{u, v', w', x'\}$, then the previous Case 1 is the unique edge tree 3-spanner for $T \cap Wd(3, 2)$, less than isomorphism.

Furthermore, let $H = Wd(3, 2) \cup D_1$ be formed by a $Wd(3, 2)$ centered in *u* with vertices $V(Wd(3, 2)) = \{u, v, w, v', w'\}$ such that *vw* belongs to the diamond D_1 with vertices $V(D_1) = \{v, w, s, t\}$, then we have that *H* is not edge 3-admissible, which can be verified by conditions above and a simple case analyses.

Hence, we have presented necessary conditions of a 2-edge connected graph *G* satisfying Construction [2](#page-6-0) to be edge 3-admissible when it has a cut vertex.

Now, consider *G* a biconnected graph. Theorem [2](#page-8-2) characterizes such graphs. The *diameter* of a graph *G* is the greatest distance between any pair of vertices, and is denoted by *D(G)*.

Theorem 2 *Given G a biconnected graph with* $D(G) \leq 3$ *. We have that* $\sigma'(G) \leq 3$ *if and only if either there is distance two dominating edge* $e_1 = uv$ *or for any edges* $e_1 = uv$, $e_2 = uw$, and $e_3 \notin N(u) \cup N(v) \cup N(w)$, e_3 *is adjacent to edges only of* $N(v)$ (or equivalently, only of $N(w)$).

Proof If *G* has a dominating edge, for $D(G) \leq 3$, then $\sigma'(G) \leq 3$ by a *uv* centered bi-star. Or, if any edge is not dominated by e_1 but it is adjacent to edges only of $N(v)$, then in the solution spanning tree such vertex is adjacent to a leaf of *v* and it does not turn $\sigma'(G) \geq 4$ because it is not adjacent to leaves of *u*. Assume that *G* is edge 3-admissible, there is not a distance two dominating edge and there is an edge *e*₃, such that $e_3 \notin N(u) \cup N(v) \cup N(w)$ that is adjacent to edges of $N(v)$ and $N(w)$. In this case e_3 is connected to leaves of the two centers of the bi-star in $L(G)$, which implies that T' is not edge 3-admissible, a contradiction.

Note that Theorem [2](#page-8-2) gives another argument on the lower bound of Corollary [3,](#page-5-0) since a K_n does not satisfy conditions of Theorem [2.](#page-8-2)

Corollary 5 *Edge* 3*-admissibility is polynomial-time solvable.*

4 Edge Stretch Index for Split and Generalized Split Graphs

Since $\sigma'(G) \leq 4$ for graphs with a distance two dominating edge (Theorem [1\)](#page-3-0), the polynomial time algorithm for edge 3-admissible of Corollary [5](#page-8-3) also works for these graphs and their subclasses, such as split graphs, join graphs and *P*4-tidy graphs. I.e., we know whether these graphs have $\sigma'(G) = 2$, $\sigma'(G) = 3$ or $\sigma'(G) = 4$.

Corollary 6 *Edge t-admissibility is polynomial-time solvable for split graphs, join graphs and P*4*-tidy graphs.*

As presented in Corollary [6,](#page-8-1) we are able to determine the edge stretch index for split graphs. Split graphs can be generalized as the (k, ℓ) -graphs, which are the

Fig. 5 Cases of *(*1*,* 2*)*-graphs and the corresponding edge tree spanners. (**a**) an edge 5-admissible graph. (**b**) and (**c**) are edge 4-admissible graphs

graphs that the vertex set can be partitioned into k stable sets and ℓ cliques. The (k, ℓ) -graphs are also denoted as the generalized split graphs [\[5\]](#page-12-9).

In [\[4\]](#page-12-3), the dichotomy *P versus* NP-complete on deciding the stretch index for (k, ℓ) -graphs was partially classified. One of the open problems regarding MSST is to establish the computational complexity for *(*1*,* 2*)*-graphs. Next, we prove that the edge stretch index for *(*1*,* 2*)*-graphs can be determined in polynomial time.

We denote a $(1, 2)$ -graph as a graph $G = (V, E)$ where V is partitioned into *V* = \mathcal{K}_1 ∪ \mathcal{K}_2 ∪ *S*, such that each \mathcal{K}_i induces a clique and *S* is a stable set.

Lemma 7 *If G is a (*1*,* 2*)-graph, then G is edge* 5*-admissible.*

Proof Since *G* is connected, there is a path between a vertex $u \in \mathcal{K}_1$ and $v \in \mathcal{K}_2$ by an edge *uv* or by a $P_3 = u, w, v$. Figure [5](#page-9-0) depicts the cases of (1, 2)-graphs and their edge 5-tree spanners. In Fig. [5a](#page-9-0) there is an induced C_6 by two vertices of each clique and two vertices of *S*, implying a non-edge in any tree, hence $\sigma'(G) \leq 5$. \Box

Theorem 3 *A* (1, 2*)-graph* $G = (\mathcal{K}_1 \cup \mathcal{K}_2 \cup S, E)$ *has* $\sigma'(G) \leq 4$ *if and only if* G *has a distance two dominating edge or two adjacent distance two dominating edges that are adjacent to at least one edge of each pair of edges incident to a vertex of S such that one endpoint of an edge of this pair is in* K_1 *and another one in* K_2 *.*

Proof From Lemma [1,](#page-3-0) if *G* has a distance two dominating edge, then *G* is edge 4-admissible. Moreover, if *G* has two distance two dominating edges e_1 and e_2 adjacent to at least one edge of each pair of edges incident to a vertex of *S* such that one endpoint of an edge of this pair is in \mathcal{K}_1 and an endpoint of the other edge is in \mathcal{K}_2 , one obtain an edge tree 4-spanner *T* of *G* by selecting any spanning tree of *L(G)* that maximizes the degrees of these two distance two dominating edges in *T* .

Conversely, for the sake of contradiction assume that *G* does not have such distance two dominating edges and *T* is an edge tree 4-spanner of *G*. Since *G* is connected, there is a vertex of *S* adjacent to both \mathcal{K}_1 and \mathcal{K}_2 and we can select these two edges of *S* to be two distance two dominating edges of *G*. Therefore, for all distance two dominating edges e_1 and e_2 of *G* we have two edges e_i and e_f incident to a vertex of *S* such that these edges are both not adjacent to e_1 and e_2 . Therefore, in the best case scenario these two edges are adjacent to edges e'_1 and e'_2

adjacent to e_1 and e_2 . However, we have a path in *T* e_i e'_1 e_1 e_2 e'_2 e_f with these two edges e_i and e_f sharing an endpoint, which implies that T is not an edge 4-tree spanner of G .

Corollary 7 *Edge t-admissibility is polynomial-time solvable for (*1*,* 2*)-graphs.*

5 Edge 8-Admissibility Is NP-Complete for Bipartite Graphs

Next, we present a polynomial time transformation from 3-SAT [\[6\]](#page-12-10) to edge 8admissibility for *(*2*,* 0*)*-graphs, i.e. bipartite graphs.

Construction 3 Given an instance $I = (U, C)$ of 3-SAT we construct a graph G *as follows. We add a* P_2 *with labels x and* x' *to* G *. For each variable* $u \in U$ *we add* $a C_8$ *to G* with three consecutive vertices labeled as *u*, m_u , and \overline{u} and the other five *consecutive vertices labeled as* u_1 *to* u_5 *. For each* u_i *,* $i = 1, \ldots, 5$ *,* u *and* \overline{u} *we add a pendant vertex. For each variable* $u \in U$ *we add the edge* $x m_u$ *to G. For each clause* $c_1 = (u, v, w) \in C$ *, we add two vertices vertex* c_1 *and* c'_1 *to G and the edges* $c_1c'_1$, c_1u , c_1v , and c_1w *. For each variable* $u \in U$ *we add a* P_4 *to G with endpoints labeled* p_{u1} *and* p_{u4} *and the edges* $p_{u1}x$ *and* $p_{u4}m_u$ *.*

Figure [6](#page-10-1) depicts an example of a graph obtained from a 3-SAT instance.

The key idea of the proof of Theorem [4](#page-11-1) is that, for each variable $u \in U$, we have exactly one edge in the edge tree 8-spanner *T* which is near to *x* and *u* or \overline{u} . We relate this proximity to a true assignment of that literal. Next, we require that at least one edge incident to each clause to be connected to a true literal. Otherwise, if they are all false literals, we end up with two of the edges incident to that clause being vertices of *L(G)* with distance at least 9 in *T* .

Fig. 6 Graph obtained from Construction [3](#page-10-2) on the instance $I = (\{u, v, w\}, \{(u, v, w), (\overline{u}, v, \overline{w}\})$ and an edge tree 8-spanner of it in red

Theorem 4 *Edge* 8*-admissibility is* NP*-complete for bipartite graphs.*

Proof By construction, *G* is bipartite. Moreover, not only the problem is in NP, but also the size of the graph *G*, obtained from Construction [3](#page-10-2) on an instance $I =$ *(U, C)* of 3-SAT, is polynomially bounded by the size of *I* . We prove that *G* is edge 8-admissible if and only if there is a truth assignment to *I* . Consider a truth assignment of $I = (U, C)$. We obtain an edge tree 8-spanner *T* of *G* as follows (see Fig. [6\)](#page-10-1).

Add to *T* the edges: $\{x'x, xm_u \mid u \in U\}$; $\{xm_u, m_uu \mid u \in U \text{ and } u \text{ is true}\}$ or

 $\{xm_u, m_u\overline{u} \mid u \in U \text{ and } \overline{u} \text{ is true}\}; \{um_u, \overline{u}m_u \mid u \in U\};$ For each clause select a true literal and add to *T* : { $c'c$, $uc \mid c$ is a clause with the selected true literal *u*};

 ${uc, um_u \mid c$ is a clause with the selected true literal *u*};

 $\{\overline{u}c, \overline{u}m_u \mid c \text{ is a clause with the selected true literal } \overline{u}\};$

 ${uc, vc \mid c$ is a clause with the selected trueliteral *u* and *v* is other literal of *c*};

For each variable $u \in U$ add to T the edges: $\{m_u p_{u_4}, p_{u_4}p_{u_3}\}$; $\{p_{u_4} p_{u_3}, p_{u_3}p_{u_4}\}$; $\{p_{u_3}p_{u_2}, p_{u_2}p_{u_1}\}; \{p_{u_2}p_{u_1}, p_{u_1}x\}; \{p_{u_1}x, xm_u\}; \{um_u, uu_1\}; \{\overline{u}m_u, \overline{u}u_5\};$ $\{uu_1, u_1u_2\}$; $\{u_3u_4, u_4u_5\}$; $\{u_4u_5, \overline{u_4}u_5\}$; and each pendant *G* is added to a solution tree as Fig. [6](#page-10-1)

Consider an edge tree 8-spanner *T* of *G* (resp. tree 8-spanner of $L(G)$), we present a truth assignment of $I = (U, C)$. First we claim that for each variable $u \in U$, there is exactly one of these two edges in *T* : { $x m_u$, $u m_u$ } and { $x m_u$ }. Assume that both edges are in *T*. There are in $L(G)$ two adjacent vertices $u_i u_{i+1}$ and $u_{i+1}u_{i+2}$ of the cycle C_9 of variable *u* with distance 9 in *T*, a contradiction. Now, assume that both edges are not in *T* . We consider two cases. If there are no edges $p_{u_4}m_u$, um_u or $p_{u_4}m_u$, $\overline{u}m_u$, then there are in $L(G)$ two adjacent vertices $p_{\mu} m_{\mu}$ and $u m_{\mu}$ (or $\overline{u} m_{\mu}$) with distance at least 9 in *T*, since it is necessary to make a path passing through xx' , a contradiction. Otherwise, there is an edge $p_{u_4}m_u$, um_u or $p_{u_4}m_u$, $\overline{u}m_u$. In both cases, let $c_1 = (u, v, w)$ be a clause that contains *u*, there are in $L(G)$ two adjacent vertices c_1v , vv_1 that have distance at least 9 in *T*, a contradiction.

Hence, relate the edge $\{xm_u, um_u\}$ or $\{xm_u, m_u\overline{u}\}$ in *T* for each variable $u \in U$ to a true assignment to the literal u or \bar{u} . Assume that there is a clause with three false literals $c_3 = (x, y, z)$. No matter how we connect the vertices c'_3c_3 , c_3x , c_3y and $c_3 z$ in *T*, two of them have distance at least 9 in *T*, a contradiction. Therefore, each clause has at least one true literal, and this is a truth assignment of *^I* .

Construction [3](#page-10-2) can be adapted in order to prove that edge 2*k*-admissibility is NPcomplete, for $k \geq 5$. It can be obtained by subdividing the edge m_u x and the cycles corresponding to each variable *u*.

6 Concluding Remarks

We have obtained the edge stretch index of some graph classes, or equivalently, the stretch index of line graphs, such as gridline graphs (line graphs of bipartite graphs); complement of Kneser graphs *KGn,*² (line graphs of complete graphs); and line graphs of (k, ℓ) -graphs. Although deciding the 3-admissibility is open for more than 20 years, we characterize the edge 3-admissible graphs in polynomial time, and we also prove that edge 8-admissibility is NP-complete, even for bipartite graphs. Hence, some open questions arise, such as determine the computational complexity of edge *t*-admissibility for $4 \le t \le 7$, and $t = 2k + 1$, $k \ge 4$.

Acknowledgments This study was partially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

References

- 1. Bhatt, S., Chung, F., Leighton, T., Rosenberg, A.: Optimal simulations of tree machines. In: 27th Annual Symposium on Foundations of Computer Science, pp. 274–282. IEEE, Piscataway (1986)
- 2. Cai, L., Corneil, D.G.: Tree spanners. SIAM J. Discrete Math. **8**(3), 359–387 (1995)
- 3. Couto, F., Cunha, L.F.I.: Tree t-spanners of a graph: minimizing maximum distances efficiently. In: 12th COCOA, Lecture Notes in Computer Science, vol. 11346, pp. 46–61 (2018)
- 4. Couto, F., Cunha, L.F.I.: Hardness and efficiency on minimizing maximum distances for graphs with few P4's and (k, ℓ) -graphs. Electron. Notes Theor. Comput. Sci. 346, 355–367 (2019)
- 5. Couto, F., Faria, L., Gravier, S., Klein, S.: Chordal-(2, 1) graph sandwich problem with boundary conditions. Electron. Notes Discrete Math. **69**, 277–284 (2018)
- 6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman Co., New York (1979)
- 7. Giakoumakis, V., Roussel, F., Thuillier, H.: On P4-tidy graphs. Discr. Math. Theoretical Comput. Sci. **1**, 17–41 (1997)
- 8. Godsil, C., Royle, G.: Kneser graphs. In: Algebraic Graph Theory, pp. 135–161. Springer, New York (2001)
- 9. Heggernes, P.: Treewidth, partial k-trees, and chordal graphs. INF334-Advanced algorithmical techniques, Department of Informatics, University of Bergen (2005)
- 10. Jamison, B., Olariu, S.: P-components and the homogeneous decomposition of graphs. SIAM J. Discrete Math. **8**(3), 448–463 (1995)
- 11. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. **18**(4), 740–747 (1989)