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Abstract A tree t-spanner of a graph G is a spanning tree T of G in which any two
adjacent vertices of G have distance at most t in T . The line graph L(G) of a graph
G is the intersection graph of the edges of G. We define the edge tree t-spanner
of a graph G as a spanning tree T of L(G) in which any two edges that share an
endpoint in G have distance at most t in T . Although determining if G has a tree 3-
spanner is an open problem for more than 20 years, we settle that deciding if a graph
G has an edge tree 3-spanner is polynomial-time solvable. As a consequence, we
present polynomial time algorithms for the edge tree t-spanner problem for several
graph classes such as trees, join of graphs, split graphs, P4-tidy, and (1, 2)-graphs.
Moreover, we establish that deciding whether a graph G has an edge tree 8-spanner
is NP-complete, even if G is bipartite.

Keywords Tree t-spanner · Edge tree t-spanner · Polynomial time algorithms ·
NP-completeness · Line graphs · Graph classes

1 Introduction

The problem of looking for a spanning tree with constraints on the vertices’
or edges’ distances is a combinatorial challenge with many applications and
approaches [1, 11]. A tree t-spanner of a graph G is a spanning tree T of G in
which any two adjacent vertices of G have distance at most t in T . A graph G

having a tree t-spanner is called a t-admissible graph. The smallest t for which
a graph G is t-admissible is the stretch index of G and is denoted by σT (G) (or
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simply σ(G)). The t-admissibility problem aims to decide whether a given graph G

has σ(G) ≤ t . The problem of determining the tree stretch index, i.e. the minimum
stretch spanning tree problem (MSST) has been studied by establishing bounds on
σ(G) or developing the computational complexity of the decision version of MSST
for several graph classes [2–4]. Cai and Corneil [2] proved that t-admissibility
is NP-complete, for t ≥ 4, whereas 2-admissible graphs can be recognized in
polynomial-time. However, the characterization of 3-admissible graphs is still an
open problem.

The characterization for 2-admissible graphs [2], stated in Theorem 1, deals with
triconnected components of a connected graph, defined as any maximal subgraph
that does not contain two vertices whose removal disconnects the graph (the authors
also consider K2 and K3 as triconnected components). A nonseparable graph is a
graph without a cut vertex, i.e., a vertex whose removal disconnects the graph. A
star with n + 1 vertices is the complete bipartite graph K1,n. A v-centered star is
a star centered on v, that is a universal vertex. Similarly, a bi-star is a graph such
that there is an edge uv and every edge of E shares an endpoint with uv. Hence,
uv is a universal edge of the bi-star. A uv-centered bi-star is a bi-star centered on a
universal edge uv.

Theorem 1 ([2]) A nonseparable graph G is 2-admissible if and only if G contains
a spanning tree T such that for each triconnected component H of G, T ∩ H is a
spanning star of H .

Given a graph G, its line graph L(G) is obtained as follows: V (L(G)) = E(G);
E(L(G)) = {{uv, uw}|uv, uw ∈ E(G)}. I.e., each edge of G is a vertex of L(G)

and if two edges share an endpoint, then their corresponding vertices are adjacent
in L(G). The distance between two edges e1 and e2 of G, for e1, e2 ∈ E(G) is the
distance between their corresponding vertices in L(G).

We define the edge tree t-spanner of a graphG as a spanning tree T ofL(G) such
that, for any two adjacent edges of G, their distance is at most t in T . Therefore, an
edge tree t-spanner of G is a tree t-spanner of L(G).

A graph G that has an edge tree t-spanner is called edge t-admissible. The
smallest t for which G is an edge t-admissible graph is the edge stretch index of
G, and is denoted by σ ′

T (G) (or simply σ ′(G)). The edge t-admissibility problem
aims to decide whether a given graph G has σ ′(G) ≤ t . Figure 1 depicts the relation
between the edge tree spanner of a graph and the tree spanner of its line graph.

An immediate consequence of MSST is that the property of being t-admissible
graph is not hereditary, i.e., if G is t-admissible then there may exist a subgraph
H of G that is not t-admissible. Indeed, the addition of a universal vertex u to any
t-admissible graph results in a 2-admissible graph by a u-centered star.

On the other hand, regarding the edge tree t-spanner, in Sect. 3 we prove that
being an edge 3-admissible graph is a hereditary property, and based on that, we
are able to decide whether G is edge 3-admissible in polynomial time. Moreover,
in Sect. 4 we determine polynomial time algorithms to obtain the edge stretch
index for some edge 4-admissible and edge 5-admissible classes, such as split
graphs, join graphs, P4-tidy graphs and (1, 2)-graphs. In Sect. 5, we prove that
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Fig. 1 A graph G, a tree 3-spanner of L(G) in red, and G with the related edge 3-spanner in red

edge 8-admissibility is NP-complete for (2, 0)-graphs, i.e. bipartite graphs. In
Sect. 6, we present concluding remarks. Next (Sect. 2), we relate admissibility and
edge admissibility problems, presenting immediate consequences and preliminary
results.

2 Admissibility Versus Edge Admissibility for Graph Classes

Since induced cycles in a graph G correspond to cycles of the same length in L(G),
we have that σ ′(Cn) = σ(Cn) = n − 1. Although cycle graphs satisfy σ ′ = σ , for
several other classes the stretch index is different of the edge stretch index.

For instance, trees are 1-admissible and the unique edge 1-admissible graphs are
the ones such that their line graphs are trees. Since line graphs are claw-free, then
path graphs are the unique edge 1-admissible graphs. In Proposition 1 we determine
the edge stretch index of trees.

Proposition 1 Let G be a tree. If G is a path graph then σ ′(G) = 1, otherwise
σ ′(G) = 2.

Proof Note that ifG is a path, thenL(G) is a path and σ ′(G) = 1. For any other tree
there is a vertex of degree at least 3, implying a complete subgraph of length at least
3 in L(G). Each internal node u of G correspond to a maximal complete subgraph
of L(G) of size dG(u) and two of such maximal complete subgraphs share at most a
vertex inL(G). Hence, any triconnected component ofL(G) is a complete subgraph
and satisfies Theorem 1. ��

Since the study of edge tree spanners is equivalent to the study of tree spanners
of line graphs, and deciding whether a graph is 2-admissible is polynomial-time
solvable, Theorem 1 implies Corollary 1.

Corollary 1 Edge 2-admissibility is polynomial-time solvable.

The edge stretch index of cycle graphs and complete graphs are useful to
characterize edge 3-admissible graphs, as discussed in Sect. 3.
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Complete graphs are 2-admissible, however their line graphs are not. In order to
prove that σ ′(Kn) = 4, from Lemma 1 we have that σ ′(K5) ≤ 4, and it is possible
to prove that K5 is not edge 3-admissible, as highlighted below.

To prove that K5 is not edge 3-admissible, one can verify by a case analysis
that it is not possible obtain a spanning tree T such that T ∩ L(K5) has at least 3
internal nodes. Clearly, T ∩L(K5) cannot have more than 3 internal nodes, because
otherwise the edge factor of such a tree would be at least 4. Moreover, it is not
possible obtain a spanning tree T such that T ∩ L(K5) is a bi-star or it is a tree with
three internal nodes whose leaves at distance 4 in T are not adjacent in L(K5).

In Sect. 3 we prove that being edge 3-admissible is a hereditary property for
induced subgraphs (Lemma 2), then Corollary 3 states that σ ′(Kn) = 4, for n ≥ 5.

A graph G has a distance two dominating edge uv if every edge of E(G) has a
vertex inN [u]∪N [v] as one of its endpoints, whereN [x] is the closed neighborhood
of x, i.e.N [x] = N(x)∪{x}. Moreover,G has two adjacent distance two dominating
edges uv and vw if every edge of E(G) has a vertex in N [u] ∪ N [v] ∪ N [w] as one
of its endpoints.

Lemma 1 A graph G with a distance two dominating edge uv has σ ′(G) ≤ 4.

Proof Since G has a distance two dominating edge uv, there is a spanning tree with
diameter at most four of L(G) with the vertex uv as its root, the vertices {ux | ux ∈
E(G)} ∪ {vy | vy ∈ E(G)} adjacent to uv, and the remaining vertices of L(G)

adjacent to some vertex in {ux | ux ∈ E(G)} ∪ {vy | vy ∈ E(G)}. ��
Figure 2 depicts graphs with distance two dominating edges and their edge tree 4-

spanners, as the proof of Lemma 1. A graph is split if its vertex set can be partitioned
into a stable set and a clique. The join between two graphs G1 and G2 results in the
graphG such that V (G) = V (G1)∪V (G2) andE(G) = E(G1)∪E(G2)∪{uv | u ∈
V (G1) and v ∈ V (G2)}.

Several graph classes can be constructed by join and complement of join
operations, i.e. union operations. Cographs are the P4-free graphs, i.e. graphs
without a P4 as an induced subgraph, and G is a cograph iff it has the following
recursive definition: (i) G is a K1; (ii) G is a join of cographs; (iii) G is a union
of cographs. A generalization of cographs are the graphs with few P4’s, such as
P4-sparse and P4-tidy [7].

u

v

u

v

u vu v

Fig. 2 A split graph and a join graph with their edge tree 4-spanners
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A graph is P4-sparse if for each set of 5 vertices, there is at most one induced
P4. A graph is P4-tidy if for each induced P4 of G, say P , there is at most one
vertex v ∈ V (G) \ V (P ) such that V (P ) ∪ {v} induces at most two P4’s in G. P4-
tidy generalizes P4-sparse graphs, and G is a P4-tidy graph iff it has the following
recursive definition: (i) G is P5, C5, P5, or K1; (ii) G is a join of P4-tidy graphs; (iii)
G is a union of P4-tidy graphs; (iv) G is a spider; (v) G is an almost spider. A graph
is a spider graph if its vertex set can be partitioned into S ,K and R such that (i)
K is a clique (K is called body), S is a stable set and |S | = |K | ≥ 2; (ii) each
vertex of R (R is called head) is adjacent to all vertices of K and is non-adjacent
to any vertex ofS ; (iii) There is a bijection f : S 
→ K such that, for all x ∈ S ,
either N(x) = {f (x)}, or N(x) = K − {f (x)}. A graph is an almost-spider graph
if it can be constructed from a spider graph G = (S ,K ,R) by adding a vertex v′
which is either a false twin of v or a true twin of v, such that v ∈ S ∪ K [10].

Split graphs, join graphs and P4-tidy graphs are 3-admissible [3, 4]. Corollary 2
follows from Lemma 1 and: for split graphs, any clique’s edge is distance two
dominating; for join graphs between G1 and G2, any uv such that u ∈ V (G1)

and v ∈ V (G2) is distance two dominating; for P4-tidy graphs, any edge between
the head and the body is distance two dominating.

Corollary 2 Split graphs, join graphs and P4-tidy graphs are edge 4-admissible.

Since 3-admissibility is still open and t-admissibility is NP-complete, for t ≥ 4,
we are interested to establish the computational complexity of determining the edge
stretch index. In Sect. 3, we prove that edge 3-admissibility is polynomial-time
solvable, and as an immediate consequence, we are able to determine in polynomial
time the edge stretch index for any edge 4-admissible graph, such as split graphs,
join graphs and P4-tidy graphs (Corollary 6).

3 Edge 3-Admissibility Is Polynomial-Time Solvable

Lemma 2 Edge 3-admissibility is a hereditary property for induced subgraphs.

Proof Assume that there is an edge 3-admissible graph Gwith an induced subgraph
H such that H is not edge 3-admissible. W.l.o.g. let G′ be an induced subgraph of
G such that: |V (G′)| = |V (H)| + 1, u ∈ V (G′) ∩ V (H); G′ is edge 3-admissible;
H is edge k-admissible for k ≥ 4; T ′ is an edge tree 3-spanner of G′; and T is an
edge k-tree spanner of H with k ≥ 4. In any edge tree k-spanner T of H there is
a path P with k + 1 vertices using edges of T and an edge of G′ not in T between
the two endpoints of this path (see Fig. 3a that considers k = 5). Since G′ is edge
3-admissible, the addition of the vertex u must remove a part of that path P from
T . For the sake of contradiction, assume T ′′ is a tree that contains at least three
internal nodes among the edges incident to u. Since these edges have u as endpoint,
then the leaves that are at distance 4 in T ′′ correspond to adjacent edges in G′, a
contradiction. Therefore, the edges incident to u must be a bi-star in T ′ (see Fig. 3b).
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Fig. 3 (a) V (H) = {v,w, x, y, z, t} and a path P in red. (b) In red a bi-star satisfying Case 1. (c)
In red a bi-star satisfying Case 2
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Fig. 4 C4 and K4 whose vertices have degree at least 3 and 4 in G, resp. Note that dT (e1, e2) = 4

W.l.o.g. assume that u is adjacent to all vertices of G related to the path P of T .
The edges of the bi-stars cover at most four vertices of P . We have two cases:
Case 1: the bi-star connects consecutive vertices of P . In this case it does not reduce
the distance between the vertices of P in T ′ (e.g. see Fig. 3b, the distance between
vw and vt is 5 in T ′) and T ′ is not an edge tree 3-spanner, a contradiction; Case 2:
the bi-star connects non-consecutive vertices of P . In this case it does reduce the
distance between vertices of P , however, the vertex xy between this non consecutive
vertex of P is connected to leaves of the two centers of the bi-star in L(G), which
implies that T ′ is not edge 3-admissible, a contradiction (Fig. 3c). ��
Corollary 3 Any complete graph Kn has σ ′(Kn) = 4, for n ≥ 5.

Proof Since σ ′(K5) = 4 (Sect. 2) and for n ≥ 5, Kn has a K5 as an induced
subgraph, then, by Lemma 2, we have that Kn are not edge 3-admissible, for
n ≥ 5. Furthermore, complete graphs have a distance two dominating edge, hence
by Lemma 1, σ ′(Kn) ≤ 4, for n ≥ 5, and the result follows. ��

Line graphs of Kn are complement of Kneser graph KGn,2 [8], then
σ(KGn,2) = 4.

Note that Ck and Kk , for k ≥ 5 are not subgraphs of edge 3-admissible graphs.
See Fig. 4 for examples of C4 and K4 where all vertices have degree at least 3 and
4 in G, resp. Suppose H is an induced C4 (or K4) in G. In L(G[H ]) there must be
a path through all L(C4)’s vertices (or through four L(K4)’s vertices) and one more
vertex corresponding to an edge that does not belong to the C4 (to the K4) in H .
Hence, it implies that σ ′(H) ≥ 4, and Corollary 4 follows.

Corollary 4 Let G be an edge 3-admissible graph. If X ∈ {C4,K4} is an induced
subgraph of G, then there is a vertex v ∈ V (X) such that NG(v) ⊆ V (X).
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By Corollary 4, any edge 3-admissible graph has vertices of degree 2 and 3 in
each induced C4’s and K4, resp. Hence, Construction 2 presents a way to break C4’s
and K4’s into P5’s and K3’s, resp., in order to present a stronger necessary condition
in Lemma 4.

Construction 2 Let G be a graph that satisfies: G does not have induced Ck

nor Kk , for k ≥ 5, as induced subgraphs; for each induced C4 there is a vertex
of degree two in G; and for each induced K4 there is a vertex of degree three in G.
We construct a graph H from G as follows:

1. each induced C4 = a, b, c, d, a, for dG(a) = 2, is transformed into a P5 =
a, b, c, d, a′ by adding a new vertex a′ and the edge da′, and removing the edge
da;

2. each induced K4 = {a, b, c, d}, for dG(a) = 3, is transformed into three
complete graphs K3 by adding a new vertex a′ and: removing edge ba; adding
edges ba′ and ca′.

Lemma 3 A graph G is edge 3-admissible if and only if the graph H from
Construction 2 is edge 3-admissible.

Proof If G is edge 3-admissible, then all edges of an edge tree 3-spanner of G are
used to obtain a spanning tree of H and we do not increase the edge stretch index
from G to H , because, by construction, we are not increasing a maximum path
between any two adjacent vertices of G in H . If H is edge 3-admissible, then all
edges of an edge tree 3-spanner of H are used for a spanning tree of G and, since
we are identifying vertices that belong only to C4’s or K4’s in G, such identification
does not affect cycles that give the edge tree 3-spanner of H and does not increase
such index of G by the used edges of H . ��

A k-tree is a graph obtained from a Kk+1 by repeatedly adding vertices in such a
way that each added vertex v has exactly k neighbors defining a clique of size k +1.
A partial k-tree is a subgraph of a k-tree [9].

Lemma 4 Let G be an edge 3-admissible graph. If H is the graph obtained from
G in Construction 2, then H is a chordal partial 2-tree graph.

Proof If G is edge 3-admissible with X ∈ {C4,K4} as an induced subgraph, then,
by Corollary 4,X must have at least one vertex a such thatN(a) ⊆ X. Based on that,
in Construction 2 we obtain a graph without C4’s nor K4’s. Since, by Lemma 3, the
transformed graph H from an edge 3-admissible graph G is also edge 3-admissible,
we have that the length of any clique is at most 3 and it does not have Ck , for k ≥ 4.
Since chordal graphs with maximum clique of length 3 are partial 2-tree [9], we
have that H is a chordal partial 2-tree graph. ��

By Lemma 4, edge tree 3-spanner graphs are formed by 2-trees where either an
edge or a vertex connects two 2-trees. Hence, for the former case such edge is a
bridge and for the later case it is a cut vertex of the graph. Lemmas 5 and 6 present
conditions that force spanning trees correspond to edge 3-admissible graphs.
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Lemma 5 Given an edge 3-admissible graph G and two 2-trees A1 and A2
connected by a bridge uv, such that |V (Ai)| > 3 for i ∈ {1, 2}, then for any edge
3-spanner T , uv is a pendant vertex in T [A1 ∪ {u, v}], i.e. dT [A1∪{u,v}](uv) = 1.

Proof Assume u ∈ A1, u, x, y is a triangle and v ∈ A2. Suppose dT [A1∪{u,v}](uv) ≥
2, hence xy must be adjacent to either ux or to uy in T . W.l.o.g., let xy be adjacent
to uy, then, there is an edge wx in A1 which implies the distance between wx and
xy to be equal to 4 by a path through uv, a contradiction. ��

Each bridge forces a unique way to obtain an edge tree 3-spanner ofG. Hence, by
Lemma 5, assume G is 2-edge connected, i.e. there is not a bridge in G. Otherwise,
we consider each connected component separately after the bridges removal of G.

Now, consider the case that G has a cut vertex. Let a windmill graph Wd(3, n) be
the graph constructed for n ≥ 2 by identifying n copies of K3 at a universal vertex.
Since an edge 3-admissible graph is partial 2-tree, we have that if there is a cut vertex
u in G, then G[NG[u]] contains a windmill graph Wd(3, d), for 2 ≤ d ≤ dG(u)

2 . Let
a diamond graph be a K4 minus an edge. Each K3 of a windmill centered in u has
two vertices of degree 2, or it has a cut vertex of G distinct of u, or it belongs to a
diamond graph of G.

Lemma 6 Let G be 2-edge connected graph with a cut vertex u and edge 3-
admissible. If the associated windmill graph Wd(3, n) centered in u satisfies n ≥ 3,
then u belongs to at most 2 diamonds in G.

Proof Assume that u is center of the windmill graph Wd(3, 3) and it belongs to 3
diamonds D1, D2 and D3 in G. We prove that G is not edge 3-admissible, and
then it implies that if G is edge 3-admissible, then u does not belong to more
than 3 diamonds for every n ≥ 3, either, because the hereditary property proved
in Lemma 2.

Note that L(H), for H = Wd(3, 3) ∪ D1 ∪ D2 ∪ D3, is composed by a K6
and the addition of three other subgraphs, named B1, B2 and B3, constructed by
a join between a vertex and a C4. Moreover, each edge of a perfect matching of
the K6, {e1, e2, e3}, is identified to an edge of B1, B2 and B3 that belongs to the
C4s, resp. Suppose that L(H) is 3-admissible, hence for any tree 3-spanner T of
L(H) we have that T ∩ L(H) is a f l-centered bi-star, for f and l being any two
K6’s vertices. Since any vertex of the K6 belongs to exactly one of the other three
subgraphs added to it, i.e. each K6’s vertex belongs to either B1, B2 or B3, then at
least two adjacent vertices of L(H) are adjacent to leaves of the f l-centered bi-star,
implying σ ′(H) = 4. ��

If there is a vertex u that belongs to Wd(3, 2) then there are two solutions in T ∩
Wd(3, 2), less than isomorphism. Consider a Wd(3, 2) such that V (Wd(3, 2)) =
{u, v,w, v′, w′} such that u, v,w and u, v′, w′ induce K3’s. Note that an edge tree
3-spanner T ∩ Wd(3, 2) can be formed as follows: Case 1: {uv, uw}, {uv, vw},
{uv, uv′}, {uv′, uw′}, {uv′, v′w′}; Case 2: {uv, uw}, {uv, vw}, {uv, uv′}, {uv, uw′},
{uv′, v′w′}. Any other edge tree spanner of Wd(3, 2) is not edge tree 3-spanner.
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Although a Wd(3, 2) graph centered in u may have two spanning trees, if each
triangle also belongs to a diamond, let D1 and D2 be such diamonds with vertices
V (D1) = {u, v,w, x} and V (D1) = {u, v′, w′, x′}, then the previous Case 1 is the
unique edge tree 3-spanner for T ∩ Wd(3, 2), less than isomorphism.

Furthermore, letH = Wd(3, 2)∪D1 be formed by aWd(3, 2) centered in uwith
vertices V (Wd(3, 2)) = {u, v,w, v′, w′} such that vw belongs to the diamond D1
with vertices V (D1) = {v,w, s, t}, then we have that H is not edge 3-admissible,
which can be verified by conditions above and a simple case analyses.

Hence, we have presented necessary conditions of a 2-edge connected graph G

satisfying Construction 2 to be edge 3-admissible when it has a cut vertex.
Now, consider G a biconnected graph. Theorem 2 characterizes such graphs. The

diameter of a graph G is the greatest distance between any pair of vertices, and is
denoted by D(G).

Theorem 2 Given G a biconnected graph withD(G) ≤ 3. We have that σ ′(G) ≤ 3
if and only if either there is distance two dominating edge e1 = uv or for any edges
e1 = uv, e2 = uw, and e3 /∈ N(u) ∪ N(v) ∪ N(w), e3 is adjacent to edges only of
N(v) (or equivalently, only of N(w)).

Proof If G has a dominating edge, for D(G) ≤ 3, then σ ′(G) ≤ 3 by a uv centered
bi-star. Or, if any edge is not dominated by e1 but it is adjacent to edges only of
N(v), then in the solution spanning tree such vertex is adjacent to a leaf of v and it
does not turn σ ′(G) ≥ 4 because it is not adjacent to leaves of u. Assume that G is
edge 3-admissible, there is not a distance two dominating edge and there is an edge
e3, such that e3 /∈ N(u)∪N(v)∪N(w) that is adjacent to edges of N(v) and N(w).
In this case e3 is connected to leaves of the two centers of the bi-star in L(G), which
implies that T ′ is not edge 3-admissible, a contradiction. ��

Note that Theorem 2 gives another argument on the lower bound of Corollary 3,
since a Kn does not satisfy conditions of Theorem 2.

Corollary 5 Edge 3-admissibility is polynomial-time solvable.

4 Edge Stretch Index for Split and Generalized Split Graphs

Since σ ′(G) ≤ 4 for graphs with a distance two dominating edge (Theorem 1), the
polynomial time algorithm for edge 3-admissible of Corollary 5 also works for these
graphs and their subclasses, such as split graphs, join graphs and P4-tidy graphs. I.e.,
we know whether these graphs have σ ′(G) = 2, σ ′(G) = 3 or σ ′(G) = 4.

Corollary 6 Edge t-admissibility is polynomial-time solvable for split graphs, join
graphs and P4-tidy graphs.

As presented in Corollary 6, we are able to determine the edge stretch index
for split graphs. Split graphs can be generalized as the (k, �)-graphs, which are the
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Fig. 5 Cases of (1, 2)-graphs and the corresponding edge tree spanners. (a) an edge 5-admissible
graph. (b) and (c) are edge 4-admissible graphs

graphs that the vertex set can be partitioned into k stable sets and � cliques. The
(k, �)-graphs are also denoted as the generalized split graphs [5].

In [4], the dichotomy P versus NP-complete on deciding the stretch index for
(k, �)-graphs was partially classified. One of the open problems regarding MSST is
to establish the computational complexity for (1, 2)-graphs. Next, we prove that the
edge stretch index for (1, 2)-graphs can be determined in polynomial time.

We denote a (1, 2)-graph as a graph G = (V ,E) where V is partitioned into
V = K1 ∪ K2 ∪ S, such that each Ki induces a clique and S is a stable set.

Lemma 7 If G is a (1, 2)-graph, then G is edge 5-admissible.

Proof Since G is connected, there is a path between a vertex u ∈ K1 and v ∈ K2
by an edge uv or by a P3 = u,w, v. Figure 5 depicts the cases of (1, 2)-graphs and
their edge 5-tree spanners. In Fig. 5a there is an induced C6 by two vertices of each
clique and two vertices of S, implying a non-edge in any tree, hence σ ′(G) ≤ 5. ��

Theorem 3 A (1, 2)-graph G = (K1 ∪K2 ∪ S,E) has σ ′(G) ≤ 4 if and only if G
has a distance two dominating edge or two adjacent distance two dominating edges
that are adjacent to at least one edge of each pair of edges incident to a vertex of S
such that one endpoint of an edge of this pair is in K1 and another one inK2.

Proof From Lemma 1, if G has a distance two dominating edge, then G is edge
4-admissible. Moreover, if G has two distance two dominating edges e1 and e2
adjacent to at least one edge of each pair of edges incident to a vertex of S such that
one endpoint of an edge of this pair is in K1 and an endpoint of the other edge is
in K2, one obtain an edge tree 4-spanner T of G by selecting any spanning tree of
L(G) that maximizes the degrees of these two distance two dominating edges in T .

Conversely, for the sake of contradiction assume that G does not have such
distance two dominating edges and T is an edge tree 4-spanner of G. Since G is
connected, there is a vertex of S adjacent to both K1 and K2 and we can select
these two edges of S to be two distance two dominating edges of G. Therefore, for
all distance two dominating edges e1 and e2 of G we have two edges ei and ef

incident to a vertex of S such that these edges are both not adjacent to e1 and e2.
Therefore, in the best case scenario these two edges are adjacent to edges e′

1 and e′
2
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adjacent to e1 and e2. However, we have a path in T ei e′
1 e1 e2 e′

2 ef with these
two edges ei and ef sharing an endpoint, which implies that T is not an edge 4-tree
spanner of G. ��
Corollary 7 Edge t-admissibility is polynomial-time solvable for (1, 2)-graphs.

5 Edge 8-Admissibility Is NP-Complete for Bipartite Graphs

Next, we present a polynomial time transformation from 3-SAT [6] to edge 8-
admissibility for (2, 0)-graphs, i.e. bipartite graphs.

Construction 3 Given an instance I = (U,C) of 3-SAT we construct a graph G

as follows. We add a P2 with labels x and x′ to G. For each variable u ∈ U we add
a C8 to G with three consecutive vertices labeled as u, mu, and u and the other five
consecutive vertices labeled as u1 to u5. For each ui, i = 1, . . . , 5, u and u we add
a pendant vertex. For each variable u ∈ U we add the edge xmu to G. For each
clause c1 = (u, v,w) ∈ C, we add two vertices vertex c1 and c′

1 to G and the edges
c1c

′
1, c1u, c1v, and c1w. For each variable u ∈ U we add a P4 to G with endpoints

labeled pu1 and pu4 and the edges pu1x and pu4mu.

Figure 6 depicts an example of a graph obtained from a 3-SAT instance.
The key idea of the proof of Theorem 4 is that, for each variable u ∈ U , we

have exactly one edge in the edge tree 8-spanner T which is near to x and u or u.
We relate this proximity to a true assignment of that literal. Next, we require that at
least one edge incident to each clause to be connected to a true literal. Otherwise,
if they are all false literals, we end up with two of the edges incident to that clause
being vertices of L(G) with distance at least 9 in T .

Fig. 6 Graph obtained from Construction 3 on the instance I = ({u, v,w}, {(u, v,w), (u, v,w})
and an edge tree 8-spanner of it in red
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Theorem 4 Edge 8-admissibility is NP-complete for bipartite graphs.

Proof By construction, G is bipartite. Moreover, not only the problem is in NP,
but also the size of the graph G, obtained from Construction 3 on an instance I =
(U,C) of 3-SAT, is polynomially bounded by the size of I . We prove that G is
edge 8-admissible if and only if there is a truth assignment to I . Consider a truth
assignment of I = (U,C). We obtain an edge tree 8-spanner T of G as follows (see
Fig. 6).

Add to T the edges: {x′x, xmu | u ∈ U}; {xmu,muu | u ∈ U and u is true} or
{xmu,muu | u ∈ U and u is true}; {umu, umu | u ∈ U}; For each clause select a

true literal and add to T : {c′c, uc | c is a clause with the selected true literal u};
{uc, umu | c is a clause with the selected true literal u};
{uc, umu | c is a clause with the selected true literal u};
{uc, vc | c is a clause with the selected trueliteral u and v is other literal of c};
For each variable u ∈ U add to T the edges: {mupu4 , pu4pu3}; {pu4pu3 , pu3pu2};

{pu3pu2 , pu2pu1}; {pu2pu1 , pu1x}; {pu1x, xmu}; {umu, uu1}; {umu, uu5};
{uu1, u1u2}; {u3u4, u4u5}; {u4u5, uu5}; and each pendant G is added to a solution
tree as Fig. 6

Consider an edge tree 8-spanner T of G (resp. tree 8-spanner of L(G)), we
present a truth assignment of I = (U,C). First we claim that for each variable
u ∈ U , there is exactly one of these two edges in T : {xmu, umu} and {xmu, umu}.
Assume that both edges are in T . There are in L(G) two adjacent vertices uiui+1
and ui+1ui+2 of the cycle C9 of variable u with distance 9 in T , a contradiction.
Now, assume that both edges are not in T . We consider two cases. If there are no
edges pu4mu, umu or pu4mu, umu, then there are in L(G) two adjacent vertices
pu4mu and umu (or umu) with distance at least 9 in T , since it is necessary to make
a path passing through xx′, a contradiction. Otherwise, there is an edge pu4mu, umu

or pu4mu, umu. In both cases, let c1 = (u, v,w) be a clause that contains u, there
are in L(G) two adjacent vertices c1v, vv1 that have distance at least 9 in T , a
contradiction.

Hence, relate the edge {xmu, umu} or {xmu,muu} in T for each variable u ∈ U

to a true assignment to the literal u or u. Assume that there is a clause with three
false literals c3 = (x, y, z). No matter how we connect the vertices c′

3c3, c3x, c3y

and c3z in T , two of them have distance at least 9 in T , a contradiction. Therefore,
each clause has at least one true literal, and this is a truth assignment of I . ��

Construction 3 can be adapted in order to prove that edge 2k-admissibility isNP-
complete, for k ≥ 5. It can be obtained by subdividing the edge mux and the cycles
corresponding to each variable u.

6 Concluding Remarks

We have obtained the edge stretch index of some graph classes, or equivalently,
the stretch index of line graphs, such as gridline graphs (line graphs of bipartite
graphs); complement of Kneser graphsKGn,2 (line graphs of complete graphs); and
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line graphs of (k, �)-graphs. Although deciding the 3-admissibility is open for more
than 20 years, we characterize the edge 3-admissible graphs in polynomial time, and
we also prove that edge 8-admissibility is NP-complete, even for bipartite graphs.
Hence, some open questions arise, such as determine the computational complexity
of edge t-admissibility for 4 ≤ t ≤ 7, and t = 2k + 1, k ≥ 4.
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