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Abstract Zagreb indices for undirected graphs were introduced nearly 50 years
ago. Their original development was related to uses in chemistry, but over time
mathematicians have also found them to be an interesting topic of study. We define
and introduce Zagreb indices for directed graphs, give results that parallel many of
the conjectures and theorems that exist for the original Zagreb indices, and produce
results specific to the directed graph case.
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1 Introduction

The Zagreb indices were first introduced [4] nearly 50 years ago. Since that time
dozens of papers have been written comparing these two indices, finding bounds on
their values, and generalizing these indices. The popularity of these indices stems
from their applications to chemistry. For a general overview of the history of these
indices and their applications to chemistry, see [8]. Additionally, the survey [7] by
Liu and You summarizes some of the existing mathematical work in the field.

Let G = (V ,E) be a graph. Let d(v) denote the degree of vertex v in the graph
G. The classical definitions of the first and second Zagreb indices, developed by
Gutman and Trinajstić [4], are as follows:

Definition 1 ([4]) The first Zagreb index on a graph G is defined as

M1(G) =
∑

v∈V (G)

d(v)2.
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The second Zagreb index on a graph G is defined as

M2(G) =
∑

e=(u,v)∈E(G)

d(u)d(v).

In this paper, we define and examine a new generalization of Zagreb indices by
defining them on directed graphs. While work has been done on zeroth-order general
Randić indices (also motivated by chemistry, giving the sum of bond contributions)
on digraphs [9], this is the first time that directed Zagreb indices are being defined
and studied. Throughout this work, we use nodes and arcs when speaking about
directed graphs, and vertices and edges for undirected graphs. The number of nodes
or vertices is denoted by n, while the number of arcs or edges in a graph or digraph
is denoted by m. We use digraph and directed graph interchangeably. The in-degree
of a node u is denoted by d−(u), and the out-degree by d+(u). A source is a node
with in-degree zero, and a sink is a node with out-degree zero. Let D = (N,A) be a
directed graph. The in and out neighborhoods of a node u are defined, respectively,
as N−(u) = {v ∈ N(D)|(v, u) ∈ A(D)} and N+(u) = {v ∈ N(D)|(u, v) ∈
A(D)}.
Definition 2 The first Zagreb index on a directed graph D is defined as

#»
M1(D) =

∑

v∈N(D)

d+(v)d−(v).

The second Zagreb index on a directed graph D is defined as

#»
M2(D) =

∑

e=(u,v)∈A(D)

d+(u)d−(v).

We allow graphs to be connected or disconnected. We do not allow multiple arcs
or loops. We do not allow isolated nodes: just as their inclusion does not alter the
undirected Zagreb indices, nor do they change the directed Zagreb indices. When
the digraph under consideration is obvious from the context, we may omit it, simply
writing

#»
M1 instead of

#»
M1(D) for either of the directed Zagreb indices, and similarly

for the graph in undirected Zagreb indices.
An oriented graph is a digraph with no bidirected arcs, that is, if (u, v) is an arc

in the digraph, (v, u) cannot be an arc in the digraph. A cycle is a graph (or digraph
with no bidirected arcs) where n = m ≥ 3. If n is odd, it is an odd cycle; otherwise,
it is an even cycle. When the arcs in a cycle are all oriented in the same direction, it
is a directed cycle. Given a graph G, we define G∗ to be the digraph with bidirected
arcs in G∗ for every edge in G. Thus, for example, K∗

2 is a pair of bidirected arcs.

Given a digraph D, let
←−
D denote the digraph where the orientation of every arc in

D is flipped. We define a directed path to be a path in which all arcs are oriented so
that the destination of an arc in the path is the origin of the subsequent path arc.
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2 Results

This section begins with some fundamental properties of these newly defined
directed Zagreb indices. Next, we compare the two directed Zagreb indices and
relate these results to previously know relationships about the (undirected) Zagreb
indices. We examine the values of

#»
M1(D) and

#»
M2(D) for various cycles, stars, and

paths, characterize many categories of graphs in terms of whether or not
#»
M1 and

#»
M2 are equal, and then explore the possible values for

#»
M2(D) − #»

M1(D).

2.1 Fundamental Properties of Directed Zagreb Indices

Though
#   »
M1 is defined in terms of nodes, we show that we can in fact write

#»
M1 as a

sum over arcs in the digraph. We then observe that flipping the orientation of all arcs
in a digraph does not change the directed Zagreb indices. We give explicit formulas
for the directed Zagreb indices on regular digraphs. Finally, we show (in Property 4)
that the directed Zagreb indices of a disconnected graph are simply the sum of the
directed Zagreb indices of the components.

Property 1 An alternative way to write
#»
M1(D) is

#   »
M1(D) = 1

2

∑

e=(u,v)∈A(D)

(d−(u) + d+(v)).

Proof Consider a node x ∈ D. In the proposed alternative, the contribution of the
node x to

#»
M1(D) comes from every arc that it is a part of. For those arcs in which

x is the origin, we count the number of arcs that enter x, that is, d−(x), for every
arc that starts at x, whose number is d+(x), giving a total of d+(x)d−(x). For those
arcs in which x is the destination, we count the number of arcs that leave x, that is,
d+(x), and we count that for every entering arc, namely d−(x), again giving a total
of d+(x)d−(x). The division by two handles the double-counting. Ultimately, in
the alternative representation, we have counted d+(x)d−(x) for every node x ∈ D,
precisely matching the definition of

#»
M1(D). ��

Property 2
#»
M1(D) = #»

M1(
←−
D ) and

#»
M2(D) = #»

M2(
←−
D )

Property 3 LetD = (N,A) be a regular digraph with d+(v) = d−(v) = k ∀v ∈ N .
Then

#»
M1(D) = nk2 and

#»
M2(D) = mk2.

Corollary 1 The complete digraph K∗
n has

#»
M1(K

∗
n) = n(n − 1)2 and

#»
M2(K

∗
n) =

n(n − 1)3.

Property 4 Let a directed graph D consist of two connected components, digraphs
R and S. Then

#»
M1(D) = #»

M1(R) + #»
M1(S), and

#»
M2(D) = #»

M2(R) + #»
M2(S).
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Proof Since nodes in D can be partitioned into nodes in R and nodes in S,
#»
M1(D) = ∑

v∈N(D) d+(v)d−(v) = ∑
v∈N(R) d+(v)d−(v)+∑

v∈N(S) d+(v)d−(v)

= #»
M1(R) + #»

M1(S). Analogously, the arcs in D can be partitioned into the arcs in
R and the arcs in S, yielding the desired result for

#»
M2. ��

2.2 Comparing Directed Zagreb Indices

One of the most popular avenues of research when studying the first two Zagreb
indices is to compare their values. For undirected Zagreb indices, M1 and M2 can
be equal, M1 > M2 or M1 < M2. In [6], Horoldagva, Das, and Selenge show which
classes of graphs fall into each of the three categories. We show that for directed
Zagreb indices only two of these options are possible.

Theorem 1 For any directed graph D,
#»
M1(D) ≤ #»

M2(D).

Proof Proof by induction on the number of arcs in D.
Base case: Trivially, if there are no arcs in D, then

#»
M1(D) = 0 = #»

M2(D).
For illustration, if D contains a single arc, then

#»
M1(D) = 0 · 1 + 1 · 0 = 0, and

#»
M2(D) = 1 · 1 = 1, so

#»
M1(D) <

#»
M2(D).

Inductive hypothesis: We assume that for any digraph D with k arcs,
#»
M1(D) ≤

#»
M2(D). Let D∧ be a digraph with k + 1 arcs. We want to show that

#»
M1(D

∧) ≤
#»
M2(D

∧).
Pick an arbitrary arc e = (u, v) ∈ D∧. Removing e from D∧ yields a digraph D′

with exactly k arcs, and thus
#»
M1(D

′) ≤ #»
M2(D

′) by the inductive hypothesis. Thus,
by construction, e �∈ D′.

We now consider how
#»
M1 differs between D′ and D∧. The only terms in the

sum which are altered are the terms contributed by the nodes u and v. In D∧,
the in-degree of node u is unchanged, and its out-degree increases by 1. Thus, the
contribution of u to

#»
M1 was previously d−(u)·d+(u), and is now d−(u)·(d+(u)+1),

showing that the change from the contribution of node u is exactly d−(u). Similarly,
the change from the contribution of node v is exactly d+(v).

Thus
#»
M1(D

∧) = #»
M1(D

′) + d−(u) + d+(v).
Calculating

#»
M2(D

∧), since e �∈ D′, #»
M2(D

∧) is precisely
#»
M2(D

′) plus the
contribution from arc e, both to the new summand term from e, and potential
increases to existing arcs in D′.

The new arc e generates a contribution of (d+(u) + 1)(d−(v) + 1), along with
additional nonnegative contributions to the terms for arcs leaving u and entering v,
namely

∑

x∈N+(u)

d−(x) +
∑

y∈N−(v)

d+(y).
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Thus

# »

M2(D
∧) = # »

M2(D
′)+d+(u)+d−(v)+d+(u)d−(v)+1+

∑

x∈N+(u)

d−(x)+
∑

y∈N−(v)

d+(y)

≥ #»
M1(D

′) + d+(u) + d−(v) + d+(u)d−(v) + 1+
∑

x∈N+(u)

d−(x) +
∑

y∈N−(v)

d+(y)

= #»
M1(D

∧) + d+(u)d−(v) + 1 +
∑

x∈N+(u)

d−(x) +
∑

y∈N−(v)

d+(y)

≥ #»
M1(D

∧) since all terms are nonnegative.
��

We now establish an explicit connection between the classical Zagreb indices
on an undirected graph, and the directed Zagreb indices on the corresponding
digraph with bidirected arcs for all edges in the undirected graph. That result,
Proposition 1, combined with Theorem 1 lead us to an alternative proof of a known
result, that for undirected graphs the first Zagreb index is at most twice the second
Zagreb index. While the result was already presented in [2], we highlight it here in
Corollary 2 because of how it further illustrates the connection between the directed
and undirected Zagreb indices.

Proposition 1 Let G be an arbitrary undirected graph. Then M1(G) = #»
M1(G

∗)
and 2 · M2(G) = #»

M2(G
∗).

Proof Recall that G∗ is the directed graph with bidirected arcs in G∗ for every edge
in G. By construction of G∗, for any node v ∈ G∗ arising from a vertex x ∈ G,
d+(v) = d−(v) = d(x). The equality of M1(G) = #»

M1(G
∗) follows immediately,

and 2 ·M2(G) = #»
M2(G

∗) because there are two arcs in G∗ for every edge in G. ��
Corollary 2 Let G be an arbitrary undirected graph. Then, M1(G) ≤ 2M2(G).

As reported in Caporossi et al. [1], experiments with the AutoGraphiX system

led to a conjecture that for undirected Zagreb indices
M1(G)

n
≤ M2(G)

m
, which

Pierre Hansen presented at the second meeting of the International Academy of
Mathematical Chemistry in 2006. However, while it was shown the following year
by Hansen and Vukicević [5] that the relationship always holds true for chemical
graphs, they show that the conjecture is not true for general graphs. One such
instance provided in [5] consists of a disconnected graph whose two components
were a K1,6 and C3. We show that there is a natural transformation of that graph into
the digraph K∗

1,6 ∪C∗
3 that likewise disproves the analogous inequality for digraphs.

Lemma 1 There exists a digraph such that
#»
M1(D)

n
>

#»
M2(D)

m
.



186 B M. Anthony and A M. Marr

Fig. 1 A directed Zagreb
instance where the first index
divided by the number of
nodes exceeds the second
index divided by the number
of arcs

Proof Let D = K∗
1,6 ∪ C∗

3 , as shown in Fig. 1. Observe that
#»
M1(D) = 36+ 6 · 1+

3 ·4 = 54, where the contributions come from the center of the star, the leaves of the
star, and the nodes of the cycle, respectively. Observe also that

#»
M2(D) = 6 · 6+ 6 ·

6 + 6 · 4 = 96, with contributions from the six arcs directed out of the center of the
star, the six arcs directed into the center of the star, and the six arcs in the C∗

3 . Since

the graph consists of 10 nodes and 18 arcs,
#»
M1(D)

n
= 5.4 > 5.333 =

#»
M2(D)

m
. ��

2.3 Bounds on Directed Zagreb Indices

Considering all orientations on a particular graph, we can create bounds on the
possible values for

#»
M1(D) and

#»
M2(D).

Proposition 2 For any orientation of a K1,n (with no bidirectional arcs), 0 ≤
#»
M1(K1,n) ≤ �n2

4 � and �n2

2 � ≤ #»
M2(K1,n) ≤ n2.

Proof For the lower bound for
#»
M1, consider a star K1,n where all arcs are directed

into the center. Then
#»
M1(K1,n) = 0. Clearly a negative value is not possible.

For the upper bound for
#»
M1, consider a star K1,n where �n

2 � of the arcs are
directed into the center, and the rest (�n

2 � arcs) are directed out of the center. This
is the largest that

#»
M1 can be as the only contribution to

#»
M1 is at the center, and

it is maximized when the in-degree and out-degree are as close as possible. Then
#»
M1(K1,n) = �n

2 � ∗ �n
2 �. If n = 2s for some positive integer s, then �n

2 � ∗ �n
2 � =

s ∗ s = s2 = n2/4 = �n2

4 �. If n = 2s + 1 for some positive integer s, then

�n
2 � ∗ �n

2 � = �s + 1
2� ∗ �s + 1

2� = s(s + 1) = s2 + s = � 4s2+4s+1
4 � = �n2

4 �.
For

#»
M2, each arc contributes one times the in-degree (or out-degree) of the center.

Arcs directed into the center contribute the in-degree of the center, and arcs directed
out of the center contribute the out-degree of the center. Since the in-degree and
out-degree of the center sums to n,

#»
M2 is maximized when either the in-degree or

out-degree is maximized; that is, if all arcs are directed into the center of the star, or
all are directed out of center of the star,

#»
M2 = n2. Similarly, it is minimized when
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each is smallest, namely one is �n
2 � and the other is �n

2 �. If n = 2s for some positive

integer s, then
#»
M2 = �n

2 �2 + �n
2 �2 = s2 + s2 = 2s2 = �n2

2 �. If n = 2s + 1, then
#»
M2 = �n

2 �2 + �n
2 �2 = �s + 1

2�2 + �s + 1
2�2 = s2 + (s + 1)2 = 2s2 + 2s + 1 =

4s2+4s+1+1
2 = n2+1

2 = �n2

2 �. The result follows in either case. ��
Proposition 3 For any oriented Pn, 0 ≤ #»

M1(Pn) ≤ n − 2 (where there is some
orientation which yields each possible integral value) and n−1 ≤ #»

M2(Pn) ≤ 4n−8.

Proof If arcs in Pn alternate directions, then
#»
M1(Pn) = 0. Clearly a negative value

is not possible. Each endpoint of the path is either a source or a sink and thus does
not contribute to

#»
M1. Each interior node on the path has either two arcs pointed

in, contributing nothing, two arcs pointing out, contributing nothing, or one arc
pointing in and one arc pointing out, contributing 1 to

#»
M1. Thus their sum,

#»
M1(Pn)

is maximized at n − 2 when all arcs are oriented in the same direction on the path,
and integral values between the bounds can be obtained by the appropriate number
of interior nodes with one arc pointing in and one arc pointing out.

For
#»
M2(Pn), each of the n−1 arcs must contribute at least 1, and the lower bound

of n − 1 is achieved when all arcs are oriented in the same direction on the path.
Each arc can contribute at most 4 to

#»
M2(Pn), which happens only if at each node the

in-degree and out-degree on the path are both 2. The number of such occurrences is
maximized when the arcs in Pn alternate directions. and all but the first and last arcs
thus contribute 4, yielding

#»
M2(Pn) = 4n − 8. ��

We next give results about when
#»
M1(D) = 0 and when

#»
M1(D) �= 0.

Lemma 2
#»
M1(D) = 0 if and only if every node in D is either a source or a sink.

Proof
#»
M1(D) = 0 means that each node contributes 0 to the sum which means

either d+(v) = 0 or d−(v) = 0 for every node in D. Hence, each node is either
a source or a sink. And if each node is a source or sink that implies that either
d+(v) = 0 or d−(v) = 0 for every node v in D and hence

#»
M1(D) = 0. ��

Proposition 4 If a graph G has an odd cycle, then
#»
M1(D) �= 0.

Proof Consider an odd cycle C in G. There is no possible orientation of the arcs
in C such that every node in C will be a sink or a source. That is, by a simple
parity argument, some node must have an arc entering it and an arc leaving it. Thus,
the directed graph D does not consist only of sources and sinks, and by Lemma 2,
#»
M1(D) �= 0. ��
Proposition 5 If D contains no odd cycles, then there is an orientation of the arcs
in D so that

#»
M1(D) = 0.

Proof Since the digraph has no odd cycles, either it has no cycles, or its only cycles
are even. We consider those cases separately.

Suppose the digraph has no cycles. Take a longest path in the tree and orient
adjoining arcs in opposite directions. When all arcs on that path have been oriented,
return to any node on that path that is incident to unoriented arcs, and orient any
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adjacent arcs in the same direction as all the others at that node (either all into or all
out of the node) and then continue down each of those paths and orient adjoining
arcs in opposite directions. Repeat until all arcs are oriented. Then, by construction
every node in D is either a source or a sink, and by Lemma 2,

#»
M1(D) = 0.

Now suppose the digraph has at least one even cycle. Pick a largest even cycle,
and orient adjoining arcs in that cycle in opposite directions. Then, continue this
process on all remaining even cycles and/or paths until the graph clearly has only
sources and sinks. If there are any arcs within this previously oriented cycle, they
must only be connecting nodes that are an odd distance apart on the original cycle.
Hence, the arcs inside the cycle can be oriented to keep all nodes being sources and
sinks. Any paths that connect to a node of the original cycle and are not inside the
original cycle can be oriented as described above starting with the same direction as
the node where the path begins. Any additional cycles that might be adjoining the
original cycle can also be oriented to keep all nodes sources and sinks as they are
also even. ��

2.4 Equality of Directed Zagreb Indices

We seek to fully characterize instances where
#»
M1 = #»

M2 �= 0. First we show that we
need only focus on connected digraphs. Then we show that directed cycles and K∗

2
have this property. However, we then show that digraphs where this equality holds
are quite limited. We conjecture that directed cycles, K∗

2 , and digraphs that are a
disjoint union of these digraphs are in fact the only digraphs for which equality of
#»
M1 = #»

M2 �= 0 holds. Proving this conjecture remains an open question, but we
make progress in that direction by showing that no digraph with a source and a sink
will have

#»
M1 = #»

M2, nor will oriented trees, nor a directed cycle plus an additional
arc, nor cycles that are oriented but not directed.

Lemma 3 If a disconnected graph has
#»
M1 = #»

M2 �= 0, then each of its connected
components must also have

#»
M1 = #»

M2 �= 0.

Proof By Property 4, the directed Zagreb indices of each component sum to the
directed Zagreb index of the overall graph. Since Theorem 1 ensures that

#»
M1 ≤ #»

M2
for every digraph, the only way that the overall digraph can have

#»
M1 = #»

M2 is thus
if for each component equality holds. ��
Lemma 4 The directed cycle Cn has

#»
M1(Cn) = #»

M2(Cn) �= 0.

Proof By Property 3, since the in-degree and out-degree of every node is k = 1,
#»
M1(D) = nk2 = n and

#»
M2(D) = mk2 = m. Since m = n in Cn with n ≥ 3, the

result is immediate. ��
Lemma 5 K∗

2 has
#»
M1(K

∗
2 ) = #»

M2(K
∗
2 ) �= 0.
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Conjecture 1 The directed cycle and K∗
2 (or graphs consisting solely of directed

cycles and K∗
2 ) are the only graphs in which

#»
M1 = #»

M2 �= 0.

The following results lend support to the conjecture.

Property 5 It is NOT true that inserting an arc will always increase
#»
M2 by more

than it increases
#»
M1.

Proof Consider a unidirectional path, that starts at node v0 and ends at node vn−1.
Suppose we then insert a directed arc from vn−1 to v0. The increase in

#»
M1 is 2, with

one each contributed at v0 and vn−1. The increase in
#»
M2 is 1, the contribution from

the new arc, as the sum from the other arcs does not change. ��
Theorem 2 Any digraph with a source and a sink cannot have

#»
M1 = #»

M2.

Proof Proof by contradiction. Let D be a digraph with a node u that is a source,
and a node v that is a sink. Suppose that

#»
M1 = #»

M2. Insert an arc from v to u. The
increase in

#»
M2 is exactly 1, since the arc (v, u) contributes 1, but v as a sink had no

other arcs out of it, and u as a source had no other arcs into it. But the increase in
#»
M1 is more than 1, since the increase is precisely the number of arcs into v (which
is at least 1 as a sink) plus the number of arcs out of u (again, at least 1 as a source).
Since the increase in

#»
M1 is more than the increase in

#»
M2, the values

#»
M1 and

#»
M2

could not have been equal, contradicting the original assumption. ��
Since every oriented tree must contain both a source and a sink, we have the

following corollary. We include the proof that every oriented tree must contain both
a source and a sink for completeness.

Corollary 3 Any oriented tree T with n ≥ 2 has
#»
M1(T ) <

#»
M2(T ).

Proof Suppose our tree T has no sinks. Pick an arbitrary node, and follow an
oriented edge (in the appropriate direction) out of that node. Repeat. Either we arrive
at a node that has out-degree 0, which is thus a sink, or we return to a node we have
already visited, which would mean there is a cycle, which is not possible in a tree.

Suppose instead our tree T has no source nodes. Reverse the orientation of all
edges. Then our reversed graph would be a tree with no sinks. However, by the
above argument, that is again impossible.

Thus, since every oriented tree has a source and a sink, we cannot have
#»
M1 =

#»
M2. ��
Theorem 3 Any digraph D which consists of solely a directed cycle and one
additional arc has

#»
M1(D) <

#»
M2(D).

Proof First, recall that Lemma 4 ensures that
#»
M1 = #»

M2 for any directed cycle. A
graph that consists of a directed cycle and one additional arc can be constructed by
the addition of an arc in one of the following ways:

1. as a disconnected arc,
2. as a chord in the cycle,
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3. as an arc directed inward (or outward) into one node of the cycle and the other
node would be a new node, or

4. an arc going in the opposite direction of one of the current arcs in the cycle.

Let e be the new arc in each case below.

Case 1 [Disconnected arc]:
#»
M1(D +e) = #»

M1(D) and
#»
M1(D +e) = #»

M2(D)+1,
by Property 4 hence

#»
M1(D + e) <

#»
M2(D + e).

Case 2 [Chord in the cycle]:
#»
M1(D +e) = #»

M1(D)+1+1 as two nodes will now
be contributing 2 instead of 1. Similarly,

#»
M2(D+e) = #»

M2(D)+4+1+1 where
the 4 is from the new arc and the two 1s are from the additional in/out degree at
the endpoints. Again, since

#»
M1(D) = #»

M2(D),
#»
M1(D + e) <

#»
M2(D + e).

Case 3 [New node]:
#»
M1(D + e) = #»

M1(D) + 1 as only one node within the cycle
will have a changed in- (or out-) degree. Similarly,

#»
M2(D+e) = #»

M2(D)+2+1
where the 2 comes from the new arc and the 1 is how much the one arc in the
cycle will change by.

Case 4 [Opposite direction]:
#»
M1(D+e) = M1(D)+2 and

#»
M2(D+e) = M1(D)+

4+ 1+ 1 where the 4 is the new arc’s contribution and each 1 is the amount two
different arcs in the cycle will change.

In all cases, we see
#»
M1(D + e) >

#»
M2(D + e). ��

Theorem 4 For any cycle C that is oriented but not directed,
#»
M1(C) <

#»
M2(C).

Proof Consider a cycle C of length n that is oriented but not directed. Let s be the
number of maximal directed paths of length 1 in the cycle. Let t be the number of
maximal directed paths of length greater than 1, but less than n in the cycle. Recall
that since C is not directed, no directed path in the cycle can have length more than
n − 1.

To calculate
#»
M1(C), first note that any node will either contribute 1 or 0. The

node contributes 1 if the node is part of a unidirectional path (with in-degree and
out-degree both one) and contributes 0 if it is a place where the direction of arcs in
the cycle changes (that is, the in-degree and out-degree are not equal). The direction
will change at s + t places (where the paths change direction) and thus

#»
M1(C) =

n− (s + t) = n− s − t . Note: s + t must be even as it counts the number of direction
changes and you cannot change direction an odd number of times and have a cycle.
Furthermore, s + t > 0 as the cycle C is not unidirectional.

For
#   »
M2(C), any edge that is a path of length 1 will contribute 4 to the sum. Any

path of length greater than 1 and less than n will have two arcs that each contribute
2 (the arcs at the start/end of the path). And, any arcs remaining will each contribute
one to the sum. This gives:

#»
M2(C) = 4s + 4t + n − s − 2t = n + 3s + 2t.

Since s and t are nonzero, n + 3s + 2t > n − s − t which ensures that
#»
M1(C) <

#»
M2(C). ��
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2.5 Differences of Zagreb Indices

For undirected graphs, differences between the first two Zagreb indices were first
studied in-depth by Furtula, Gutman, and Ediz in [3], who introduced the idea of the
reduced second Zagreb index and studied this difference mainly on trees. In 2016,
Das, Horoldagva, and Selenge [6] completely characterized which (undirected)
graphs have M1 − M2 = 0, M1 − M2 > 0 and M1 − M2 < 0. In the directed
case, we already know

#»
M2 − #»

M1 ≥ 0, and can in fact show that
#»
M2 − #»

M1 can equal
any nonnegative integer.

We know from Lemma 4 that
#»
M2 − #»

M1 can equal zero. In addition we can also
get

#»
M2 − #»

M1 = 1 as if D = Pn with all the arcs oriented in the same direction,
#»
M2 − #»

M1 = n − 1− (n − 2) = 1. We also know we can make
#»
M2 − #»

M1 arbitrarily
large by noting that

#»
M2 − #»

M1 = 4n for any n ≥ 3 by using D = C∗
n , the cycle

with all bidirectional edges present or we can get
#»
M2 − #»

M1 = n2 for K1,n with all
the arcs directed out of the center. While these examples provide motivation that all
nonnegative integer values are possible for this difference, the following theorem
gives a construction technique for producing a digraph with any desired difference.

Theorem 5 For all s ∈ N, there exists a directed graph with
#»
M2 − #»

M1 = s.

Proof Let D be the digraph K1,n with x edges directed into the center and k edges
directed out of the center where x + k = n and k ≤ x. Consider the collection of
k + 1 digraphs {D = D0,D1,D2, . . . , Dk} where Di is the digraph formed from D

by connecting i of the arcs directed out of the center to i different arcs directed into
the center. An example of this construction can be seen in Fig. 2.

Fig. 2 A construction
technique for digraphs with
all possible values for the
difference between the two
Zagreb indices. The inclusion
of any subset of the dotted
edges leads to one of the
digraphs in the collection
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In general,
#»
M2(Di) − #»

M1(Di) = (x2 + k2 + i) − (xk + 2i) = x2 + k2 − xk − i.
Considering the case where x = k,

#»
M2(Di) − #»

M1(Di) = (2k2 + i) − (k2 + 2i) =
k2 − i and i ranges from 0 to k. Hence, in this case we get all the integers in the
interval [k2 − k, k2]. Now, consider the case where x = k + 1. Similar calculations
give

#»
M2(Di) − #»

M1(Di) = (k + 1)2 + k2 − k(k + 1) − i = k2 + k + 1 − i and
i ranges from 0 to k, so we get all the integers in the interval [k2 + 1, k2 + k + 1].
And if we move up to the next value for k, (so now x = k +1 and k becomes k +1),
we get

#»
M2(Di) − #»

M1(Di) = (k + 1)2 − i with i ranging from 0 to k + 1. So, we
get the next interval to be [k2 + k, k2 + 2k + 1]. And, thus the overlap of intervals
continues and we continue to increase the upper bound. If we plug in k = 1, we see
that we start the interval at [0, 1] and hence can get any nonnegative integer values
since these intervals line up and/or overlap and increase without bound. ��

3 Conclusions and Open Questions

In this paper, we introduce the definition of first and second Zagreb indices on
directed graphs. Initial propositions are given, relationships between the two indices
are explored, and several classes of digraphs are studied in depth. We showed that
the difference between

#»
M2 and

#»
M1 can take on any nonnegative integer value and

state a conjecture on when this difference is zero. In particular, we believe that in all
cases other than a directed cycle or K∗

2 or disconnected combinations thereof, the
difference between

#»
M1 and

#»
M2 is non-zero and inserting additional arcs or nodes

will not result in equality of
#»
M1 and

#»
M2.

Another avenue of future research is motivated by Sect. 2.2. There we discuss
#»
M1/n ≤ #»

M2/m. While this was shown to not be true for all digraphs, could it be
true for all connected digraphs? Or even possibly for all digraphs where not all arcs
are bidirectional?

Finally, since directed Zagreb indices do not have the same chemistry motivations
of undirected Zagreb indices, they could be defined in many other ways or other
indices described on undirected graphs could be generalized for digraphs. New
definitions would prompt new results, propositions, and relationships, leading to
additional areas for mathematical exploration of indices on digraphs.
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