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Abstract Many authors, mainly in the context of the Bin Packing Problem with
Conflicts, used the random graph generator proposed in “Heuristics and lower
bounds for the bin packing problem with conflicts” [M. Gendreau, G. Laporte, and
F. Semet, Computers & Operations Research, 31:347–358, 2004]. In this paper
we show that the graphs generated in this way are not arbitrary but threshold
ones. Computational results show that instances of the Bin Packing Problem with
Conflicts on threshold graphs are easier to solve w.r.t. instances on arbitrary graphs.

Keywords Bin packing with conflicts · Threshold graphs · Random graph
generator

1 Introduction

The Bin Packing Problem with Conflicts (BPPC), first introduced in a scheduling
context in [14], is defined as follows: given a graph G = (V ,E), a nonnegative
integer weightwi for each vertex i ∈ V , and a nonnegative integerB, find a partition
of V into k subsets V1, . . . , Vk , such that the sum of the weights of the vertices
assigned to same subset is less than or equal to B, two vertices connected by an
edge do not belong to the same subset, and k is minimum.

The minimum value of k will be denoted kBPPC . The graphG = (V ,E) is called
conflict graph and two vertices connected by an edge are said to be in conflict.

BPPC generalizes two well known combinatorial optimization problems, the
Bin Packing Problem and the Vertex Coloring Problem. In fact, BPPC reduces to
Bin Packing when the edge set E of the graph G is empty, and it reduces to Vertex
Coloring when B ≥ ∑

i∈V wi or when G is complete. Observe that Vertex Coloring
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is solvable in linear time on threshold graphs, nevertheless BPPC with a threshold
conflict graph is NP -hard because Bin Packing is [10].

In this paper we show that a popular random graph generator [11], widely used in
the context of the Bin Packing Problem with Conflicts, generates threshold graphs.
Threshold graphs are very special interval graphs, contradicting the authors [11]
who claim that “No assumptions are made on the adjacency structure of the graph”,
and strengthening [28] where the authors recognise the graphs as being arbitrary
interval graphs [28].

In Sect. 2 we recall the definition of threshold graphs and discuss some of their
peculiar properties, in Sect. 3 we present the generator defined in [11] showing
that it produces threshold graphs, in Sect. 4 we analyse the effects of using this
generator on instances of Bin Packing Problem with Conflicts. Concluding remarks
are discussed in Sect. 5.

2 Threshold Graphs

A graph G = (V ,E) is a threshold graph if there exist a real number d (the
threshold) and a weight px for every vertex x ∈ V such that (i, j) is an edge iff
(pi + pj )/2 ≤ d (see [12]). W.l.o.g. from now on we assume that px ∈ [0, 1] ∀x

(as a consequence it makes sense to choose d ∈ [0, 1]).
According to this definition it follows that a vertex i is connected to all the

vertices j such that pj ≤ 2d − pi . Let N(x) denote the set of vertices adjacent
to x and let deg(x) = |N(x)|. Then N(h) ⊇ N(k) and deg(h) ≥ deg(k) if and only
if ph ≤ pk .

A threshold graph has many peculiar properties as it is at the same time an
interval graph, a co-interval graph, a cograph, a split graph, and a permutation
graph. In addition, its complement, where (i, j) is an edge iff (pi + pj )/2 > d,
is a threshold graph too.

W.l.o.g. from now on we assume that the vertices of a threshold graph G are
numbered in such a way that i < j if and only if deg(i) ≥ deg(j). Then the n × n

symmetric adjacency matrix M = [mi,j ] of G always appears as in Fig. 1, where an
entry 0 is coloured in white and an entry 1 is highlighted in grey, and mi,i = 0 for
i = 1, . . . , n.
By what above, we observe what follows.

1. For each row i, let last_col(i) = max{j : mi,j = 1, j = 1, . . . , n} if mi,1 = 1,
and last_col(i) = 0 if mi,1 = 0 (see Fig. 1b); hence last_col(i) ≥ last_col(i +
1).

2. Let t = min{j : mj,j+1 = 0, j = 1, . . . , n}. Then the set of vertices {1, . . . , t}
induces a maximum clique of size ω(G) = t (see Fig. 1a). In fact, by definition,
mt−1,t = 1, thus last_col(t − 1) ≥ t and, by Point 1, mi,j = 1 for i = 1, . . . , t
and j = 1, . . . , t , i �= j .
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Fig. 1 Examples of adjacency matrices of threshold graphs with n = 60 nodes and threshold (a)
d = 0.2, (b) d = 0.5, and (c) d = 0.7

3. The set of vertices {t, . . . , n} induces a maximum independent set of size
n − t + 1. In fact, by definition, mt,t+1 = 0 and mt,t−1 = 1 (as mt−1,t = 1)
thus last_col(t) = t − 1 and mi,j = 0 for i = t, . . . , n and j = t, . . . , n (see
Point 1.).

4. Let g = last_col(n) (see Fig. 1c). If g ≥ 1, vertex i, for i = 1, . . . , g, is
connected to any other vertex.

5. Recalling that a threshold graph G is a particular interval graph, it is always
possible to derive a family of (open) intervals whose intersection graph is G,
namely: to each vertex j = t, . . . , n, associate the interval Ij = (lj , rj ) =
(j − t, j − t + 1); to each vertex j = 1, . . . , t − 1, associate the interval Ij =
(lj , rj ) = (0, rlast_col(j)) = (0, last_col(j) − t + 1) (we remark that rj ≥ 1 as
last_col(j) ≥ t}). See an example in Fig. 2.

6. The edge density δ = 2|E|/(n(n − 1)) of G is not equal to the threshold d,
generally speaking.

For n → ∞ and p1, . . . , pn uniformly distributed in [0, 1], one has:
7. ω(G) = t = nd.
8. The edge density δ = 2|E|/(n(n − 1)) of G depends on d. Precisely

δ = f (d) =

⎧
⎪⎨

⎪⎩

2(nd)2−nd
n(n−1) for d ≤ 0.5

n(n−1)−2n2(1−d)2−n(1−d)
n(n−1) for d ≥ 0.5

In fact, for d ≤ 0.5 the 2|E| 1’s are in the area A ∪ B ∪ C (see Fig. 3a). In a
similar way one can compute the number of 1’s in the matrix when d ≥ 0.5.

9. g = 0 when d ≤ 0.5, and g = n(2d − 1) when d ≥ 0.5 (see Fig. 3b).
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Fig. 2 (a) The adjacency matrix of threshold graph with n = 20 nodes and (b) the corresponding
opened interval model

According to Points 2 and 3 above, when d ≥ 0.5, in any optimal solution ofBPPC

one has Vi = {i} for i = 1, . . . , g. The remaining sets Vi for i ≥ g + 1 can
be determined by solving a smaller instance Q defined on the last n − g vertices
(observe that the problem becomes simpler and simpler as d increases). The conflict
graph of Q is a threshold graph with expected edge density 0.5, thus it contains a
maximum clique of expected size (n − g)/2. According to Point 7, when n = 120
and d = 0.9, a lower bound for kBPPC is nd = 108 (indeed this value appears in
Table 2, column LBO, Size 120, d = 90 in [9]).

Fig. 3 The expected adjacency matrix when n → ∞ and with threshold (a) d ≤ 0.5 and (b)
d ≥ 0.5
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3 On the Random Graph Generator Proposed in [11]

In [11] the following random graph generator is described: “A value pi was first
assigned to each vertex i ∈ V according to a continuous uniform distribution on
[0, 1]. Each edge (i, j) of G was created whenever (pi +pj )/2 ≤ d, where d is the
expected density of G.”.

This generator clearly produces a threshold graph whose expected edge density
is not d as claimed but it is the one discussed in Points 6 and 8 of Sect. 2.

To get a threshold graph with expected edge density δ one has to set

d =

⎧
⎪⎨

⎪⎩

1+√
1+8n(n−1)δ

4n for δ ≤ 0.5

1 + 1−√
1+8n(n−1)(1−δ)

4n for δ ≥ 0.5

Already for n ≥ 100 these values can be approximated to d = √
δ/2 and

d = 1 − √
(1 − δ)/2, respectively.

The generator in [11] has been improperly used to generate arbitrary graphs [3–
9, 13, 15–28, 30, 31]. In particular, the authors in [26] made publicly available
“benchmark” instances generated in this way (see http://or.dei.unibo.it/library/
bin-packing-problem-conflicts) and used by many authors [4–9, 13, 15–17, 19–
21, 25, 27, 28, 30, 31].

Most of the authors using the generator in [11] claim that they group the graphs
of their test bed by edge densities, but actually they group the graphs by threshold
values. Our analysis of the instances introduced in [26] shows that the relation
between the threshold d and the corresponding edge density δ is the following.

d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

δ 0.00 0.02 0.08 0.18 0.32 0.50 0.68 0.82 0.92 0.98

We remark that the values of δ coincide with those which can be computed by the
formula of Point 8 in Sect. 2.

4 Computational Results on Different Graph Classes

Since threshold graphs are a subclass of interval graphs, which are in their turn
a subclass of arbitrary graphs, we expect that BPPC on threshold graphs is the
easiest to solve. To prove our claim we conducted some computational experiments.

By X(n, δ) we denote a set of ten instances with n vertices, bound B = 150, and
conflict graphX with expected edge density δ ∈ {0.02, 0.08, 0.18, 0.32, 0.50, 0.68,
0.82, 0.92, 0.98} (the same densities of the instances used in [26]). In particular, we

http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://or.dei.unibo.it/library/bin-packing-problem-conflicts
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choose n ∈ {250, 1000} and X ∈ {T , I,A}, where X = T (I, A, respectively) when
the conflict graph is a threshold (interval, arbitrary, respectively) graph.

The T (250, δ) and T (1000, δ) instances are exactly those in the classes 2 and 4
described in [26], respectively. Precisely, given n, the weight of the i-th vertex of
the k-th instance of T (n, δ) is the same for all δ.

As for the I (n, δ), the weight of the i-th vertex of the k-th instance coincides with
the weight of the i-th vertex of the k-th instance of T (n, δ), and the arbitrary interval
conflict graphs have been generated according to the interval graph generator in [2].1

As for the A(n, δ), the weight of the i-th vertex of the k-th instance coincides
with the weight of the i-th vertex of the k-th instance of T (n, δ), and the arbitrary
conflict graphs have been generated as in [28]: “We began with the empty graph. We
iteratively selected an item pair (i, j) at random (with uniform distribution); then
edge (i, j) was added to the graph if it was not already defined. The procedure was
interrupted as soon as the desired graph density was reached.”.

We solved to optimality the T (n, δ), I (n, δ), and A(n, δ) instances for all n and δ

by means of the Vector Packing Solver 3.1.2 (VPS for short) defined in [4], available
at http://vpsolver.dcc.fc.up.pt/. This method is based on an arc-flow formulation
with side constraints and builds very strong integer programming models that can be
given in input to any state-of-the-art mixed integer programming solver. Actually,
the arc-flow formulation is derived from a suitable graph which is preliminarily
generated and whose size increases rapidly with B. We remark that the algorithm
is applied to many classical combinatorial problems: in particular, it is one of the
best behaving exact approaches for the instances introduced in [26], which are all
solved to optimality within 50min and with an average runtime of 2min. For our
analysis we solved the integer programming model with Cplex 12.6 on an Intel Core
i7-3632QM 2.20GHz with 16GB RAM under a Linux operating system, setting a
time limit of 600 s for each instance. The instances used in this section and many
others can be downloaded at [1].

The computational results are summarized in Table 1, where rows are indexed
by δ, and columns by the type of the conflict graph. In the “Opt” columns we report
the number of instances, out of ten, solved to optimality within the time limit, and
in the “Time” columns the time in seconds required to solve one instance, averaged
over the solved instances, only.

The results in the table show that threshold instances T are easier w.r.t. instances
with interval conflict graphs, and these latter are easier than those with arbitrary
conflict graphs, confirming our claim.

We remark that, as far as we know, no tests on instances of BPPC with arbitrary
interval conflict graphs were performed in the literature. The authors in [28] observe
that the conflict graphs of the benchmark instances in [26] are interval graphs and
not arbitrary graphs (actually they are not arbitrary interval ones). Nevertheless, to

1The generator in [2] is not able to produce interval graphs with n = 1000 and edge density
δ = 0.98; in the corresponding cell of Table 1 of the present paper the average edge density of the
ten instances is 0.96.

http://vpsolver.dcc.fc.up.pt/
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Table 1 Computational results on instances with threshold (T ), interval (I )1, and arbitrary (A)
conflict graphs

n = 250 n = 1000

T I A T I A

Opt Time Opt Time Opt Time Opt Time Opt Time Opt Time

δ 0.02 10 1.28 1 138.28 1 206.62 10 76.37 0 − 0 −
0.08 10 2.75 0 − 0 − 10 292.26 0 − 0 −
0.18 10 3.37 1 522.39 0 − 10 359.16 0 − 0 −
0.32 10 3.81 10 201.56 4 340.2 3 444.77 0 − 0 −
0.50 10 1.00 10 15.31 10 75.16 10 390.94 0 − 0 −
0.68 10 0.53 10 3.24 10 12.43 10 294.12 0 − 0 −
0.82 10 0.29 10 2.02 10 5.15 10 222.57 5 543.92 0 −
0.92 10 0.11 10 1.39 10 2.89 10 197.60 10 453.98 0 −
0.98 10 0.04 10 1.03 10 1.92 10 199.36 10 366.07 3 561.02

our knowledge, the authors in [28] are the only ones who test their algorithm on
instances with arbitrary conflict graphs.

5 Concluding Remarks

In this paper we show that graphs of the BPPC instances considered in [3–9, 13, 15–
28, 30, 31] and generated according to [11] are threshold graphs (and not arbitrary
ones), and their edge density is not the declared one.

We also show that BPPC instances with threshold conflict graphs are compu-
tationally easier to solve than instances with interval or arbitrary conflict graphs
(the instances used and many others are available at [1]). This behaviour confirms
the behaviour of the computational complexity of many classical combinatorial
problems on the three graph classes considered.

We believe that the reduced difficulty of these instances is mainly due to the
structure of the conflict graph and not to “the presence of capacity constraints on
the cardinality of the color classes” as suggested in [8]. This could be ascertained
by solving BPPC instances with arbitrary interval conflict graphs and with arbitrary
conflict graphs.

We also remark that the authors in [11] claim to use “the procedure described
in” [29], but this is not true. In fact, the procedure in [29] generates “edge (i, j)

with probability” (pi + pj )/2: by doing so it generalizes the uniform random graph
generator and outputs arbitrary graphs.
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