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Abstract The burning number is a recently introduced graph parameter indicating
the spreading speed of content in a graph through its edges. While the conjectured
upper bound on the necessary number of time steps until all vertices are reached
is proven for some specific graph classes, it remains open for trees in general. We
present two different proofs for ordinary caterpillars and prove the conjecture for a
generalised version of caterpillars and for trees with a sufficient number of legs.
Furthermore, determining the burning number for spider graphs, trees with max-
imum degree three and path-forests is known to be NP-complete; however, we
show that the complexity is already inherent in caterpillars with maximum degree
three.
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1 Introduction

Given an undirected graph G = (V ,E), the burning number b(G) indicates the
minimum number of steps to inflame the whole graph while in each time step the
fire spreads from all burning vertices to their neighbours and one additional vertex
can be lit. This concept was introduced as a possible representation of the spread of
content in an online social network in [2], but also other issues, e.g. the contagion
of illnesses, can be modelled.

A sequence of vertices B = (b1, . . . , bm) is said to be a burning sequence
or burning strategy if the vertices burn off the whole graph in m steps when lit
successively. For m = b(G), we say B is an optimum burning sequence or an
optimum burning strategy. The set of all vertices which receive the fire from a vertex
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bi (or theoretically would, if they were not already burning) together with bi itself is
called a burning circle and is denoted by Vi . Thus, the problem of finding a burning
strategy can be reformulated into a covering problem V = V1∪· · ·∪Vm. The extent
of a burning circle is given by diam(Vi) + 1 = 2i − 1. We denote the problem of
determining the burning number for a graph by BURNING NUMBER.

In 2014, an upper bound for the burning number was conjectured for all
connected graphs [2].

Burning Number Conjecture If G is a connected graph of order n, then

b(G) ≤ ⌈√
n
⌉

.

The conjecture is proven for paths, cycles, Hamiltonian graphs and spiders [3].
Further, it can be easily checked that graphs with a small vertex number fulfil the
conjecture. For paths whose length is a square number, the conjecture holds with
equality and, as shown in [2], the conjecture is true for all connected graphs if it
holds for trees in general.

Firstly, in Sect. 2 the Burning Number Conjecture is proven for caterpillars in
two different ways: once by using the principle of infinite descent and alterna-
tively, by determining a burning strategy complying with the conjectured bound.
Subsequently, in Sect. 3, we show that BURNING NUMBER is NP-complete for
caterpillars. In Sect. 4, we focus on the validity of the conjecture for 2-caterpillars
and p-caterpillars with a sufficient number of leaves relative to the order of the
graph.

2 The Burning Number Conjecture for Caterpillars

In this section, we investigate the Burning Number Conjecture for caterpillars, trees
in which all vertices are within the distance one of a central spine or more vivid:

A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoints is
removed. [4]

Consequently, the graph class of caterpillars can also be described by forbidden
minors C3 and S2,2,2 as in Fig. 1.

Let G = (V ,E) denote a caterpillar with n := |V | vertices, a spine P� =
{v1, . . . , v�} of length � and n − � vertices adjacent to P� \ {v1, v�}, which we
call legs. We assume � ≥ 4 and n ≥ � + 2; otherwise G is a spider graph and
the conjecture holds. Further, it can easily be seen that the conjecture is true for all
graphs with n ≤ 9.
Applying the (proven) conjecture for paths to the Spine P�, we clearly get the
following upper bound for the caterpillar.
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Fig. 1 Forbidden minors C3
and S2,2,2 in a caterpillar

Fig. 2 In the proof of
Theorem 1, we generate G′
by removing the grey vertices
of V1 in the minimum
counterexample G

2k−1

V1

Proposition 1 If G is a caterpillar, then b(G) ≤
⌈√

�
⌉

+ 1. Thus, the conjecture is

proven to be true for
⌈√

n
⌉ ≥

⌈√
�
⌉

+ 1.

In fact, the conjecture holds for all caterpillars, which can be shown using the
principle of infinite descent.

Theorem 1 (Burning Number Conjecture for Caterpillars) The burning num-
ber of a caterpillar G satisfies b(G) ≤ ⌈√

n
⌉
.

Proof Let the graph G be a caterpillar and a minimum counterexample regarding n

with b(G) >
⌈√

n
⌉ =: k. We distinguish two cases:

• If either the spine vertex v2k−1 has no legs or v2k−1 has a leg, but at least one
of the vertices v1, . . . , v2k−2 has an adjacent leg as well, we remove the largest
burning circle V1 with extent diam(V1)+1 = 2k−1 without loss of generality at
the end of the spine Pl as shown in Fig. 2. Depending on whether v2k−1 is legless
or not, we shorten the spine by 2k − 1 or (2k − 1) − 1 vertices, respectively, to
maintain the connectivity.
In both sub-cases, we obtain a new caterpillar G′ with

�′ ≤ � − (2k − 1) + 2= � − 2
⌈√

n
⌉ + 3,

n′ ≤ n − (2k − 1) = n − 2
⌈√

n
⌉ + 1,

and for the burning number of G′ it follows that b(G′) >
⌈√

n
⌉−1; otherwise G

would not be a counterexample. Since G is minimum by assumption, we further

have b(G′) ≤
⌈√

n′
⌉
.
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This yields

⌈√
n′

⌉
≥ b(G′) >

⌈√
n
⌉ − 1,

and thus
⌈√

n′
⌉

= ⌈√
n
⌉
. With the estimate from above

⌈√
n − 2

⌈√
n
⌉ + 1

⌉
=

⌈√
n
⌉
, and therefore the two radicands lie between the same square numbers

⌈√
n
⌉2 and

(⌈√
n
⌉ − 1

)2. As a consequence,

n − (⌈√
n
⌉ − 1

)2 ≥ 2
⌈√

n
⌉ − 1 + 1,

or equivalently, n ≥ (⌈√
n
⌉ − 1

)2 + 2
⌈√

n
⌉ = ⌈√

n
⌉2 + 1. This is a

contradiction.
• If otherwise v1, . . . , v2k−2 are legless, but v2k−1 is not, we remove the two largest

burning circles V1 with extent diam(V1) + 1 = 2k − 1 and V2 with extent
diam(V2) + 1 = 2k − 3 without loss of generality at the end of the spine P�.
We shorten the spine by (2k − 3) + (2k − 1) − 1 vertices as shown in Fig. 3.
Analogously to the first case, for the remaining caterpillar G′′ it follows that

�′′ ≤ � − (2k − 3) − (2k − 1) + 2,

n′′ ≤ n − (2k − 3) − (2k − 1) + 1 − 1 ≤ (⌈√
n
⌉ − 2

)2
,

and b(G′′) >
⌈√

n
⌉ − 2; otherwise, G would not be a counterexample. Since G

is minimum, we further have b(G′) ≤
⌈√

n′′
⌉
. This yields the contradiction

⌈√
n
⌉ − 2 < b(G′′) ≤

⌈√
n′′

⌉
≤ ⌈√

n
⌉ − 2.

Therefore, the minimum counterexample cannot exist. ��
The following alternative proof works without the principle of infinite descent and
provides a burning strategy in

⌈√
n
⌉
steps for all caterpillars.

v1 v2 v2k−3

v2k−2

v2k−1 v4k−5 v4k−4

2k−3 2k−1

V1V2

Fig. 3 Let v2k−1 have adjacent legs and v1, . . . , v2k−2 be legless. We remove the grey vertices
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Fig. 4 In the first case, v2k−1
is legless and we delete the
grey vertices

v1 v2 v2k−2 v2k−1

2k−1

V1

Fig. 5 We assume v2k−1 and
at least one of v1, . . . , v2k−2
to have legs and delete the
grey vertices v1 v2 v2k−2 v2k−1

2k−1

V1

Proof Let again k := ⌈√
n
⌉
denote the maximum number of steps such that the

conjecture still holds. Recursively removing burning circles to reduce the vertex
number at least down to the next smaller square number, we consider two cases:

• In the first case, v2k−1 ∈ P� has no legs. After deleting v1, . . . , v2k−1 with all
adjacent legs, the remaining graph has at most n−(2k−1) ≤ ⌈√

n
⌉2−2

⌈√
n
⌉+

1 = (
⌈√

n
⌉ − 1)2 vertices as depicted in Fig. 4.

• In the other case, we distinguish whether any of the vertices v1, . . . , v2k−2 has
an adjacent leg or not. If not all of these spine vertices are legless, we remove
v1, . . . , v2k−2 together with their legs as outlined in Fig. 5. Again, the vertex set
of the remaining graph contains—just as in the first case—at most (

⌈√
n
⌉ − 1)2

vertices.
Otherwise, if v1, . . . , v2k−2 are legless and v2k−1 has an adjacent leg as shwon

in Fig. 3, we delete v1, . . . , v2k−3 and further v(2k−3)+1, . . . , v(2k−3)+(2k−2) with
all their legs (at least the leg adjacent to v2k−1) such that the new graph consists
of at most n−(2k−3)−(2k−2)−1 ≤ ⌈√

n
⌉2−(2

⌈√
n
⌉−1)−(2

⌈√
n
⌉−3) =

(
⌈√

n
⌉ − 2)2 vertices.

Hence, after the vertex removal the order of the remaining graph G′ decreases at
least to n′ ≤ (

⌈√
n
⌉ − 1)2 and the claim follows recursively. ��

It can easily be seen that the alternative proof yields an algorithm to burn a caterpillar
in

⌈√
n
⌉
steps, though may not necessarily be optimum.
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3 The NP-Completeness of the Burning Number Problem
for Caterpillars

TheNP-completeness of determining the burning number for caterpillars indicates
the unstructured nature of the problem as the difficulty or complexity is already
hidden in such a simple graph class. Our proof is structured similar to the proof
for trees of maximum degree three in [1] and uses a reduction from DISTINCT 3-
PARTITION.

Problem: DISTINCT 3-PARTITION

Instance: A set X = {a1, . . . , a3n} of 3n distinct positive integers and a positive
integer S, fulfilling

∑3n
i=1 ai = n · S with S

4 < ai < S
2 for all 1 ≤ i ≤

3n.
Question: Can X be partitioned into n triples each of whose elements sum up to

S?

DISTINCT 3-PARTITION isNP-complete in the strong sense as shown in [5], which
means the problem remains NP-complete even if S is bounded from above by a
polynomial in n.

Theorem 2 BURNING NUMBER is NP-complete for caterpillars of maximum
degree three.

Proof BURNING NUMBER is in NP as a burning sequence for a graph can be
verified in polynomial time by checking whether the whole vertex set is covered by
the union of the corresponding burning circles.

To prove the NP-completeness, we reduce DISTINCT 3-PARTITION in polyno-
mial time to BURNING NUMBER. Given an instance for DISTINCT 3-PARTITION as
stated above, we denote m := max{ai | ai ∈ X}, m := {1, . . . , m} and Y := m \ X.
Transferred to the universe of BURNING NUMBER, we get X′ := {2ai −1 | ai ∈ X},
S′ := 2S − 3, Om := {2i − 1 | i ∈ m} and Y ′ := Om \ X′.

Now we construct a caterpillar G of maximum degree three as follows: For each
triple whose unknown elements should add up to S we build a path QX′

i (for all
1 ≤ i ≤ n) of order S′ and for all numbers in Y (which are not available for the
triples) a separate path QY ′

i (for all 1 ≤ i ≤ m − 3n) of order Y ′. The resulting path
forest

n⋃

i=1

QX′
i ∪

m−3n⋃

i=1

QY ′
i

corresponds to
⋃m

i=1 P2i−1 and can thus be burnt in m steps. Next, we need to
connect the graph by using caterpillars to keep the individual paths separated from
each other. In order to do so, we need at most m + 1 caterpillars G1, . . . ,Gm+1
whereby Gi has a spine of length 2(2m+1− i)+1 with exactly one leg attached to
each spine vertex (except the two terminal vertices). The caterpillars and the paths
are arranged alternately until only caterpillars are left, which are then placed at the
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end. The subgraphs are connected through an edge between their end vertices. We
denote the longest path in G by P� and get

� =
∣∣
∣∣

n⋃

i=1

V
(
QX′

i

)∣∣
∣∣ ∪

∣∣
∣∣

m−3n⋃

i=1

V
(
QY ′

i

)∣∣
∣∣ ∪

∣∣
∣∣

m+1⋃

i=1

V
(
P2(2m+1−i)+1

)
∣∣
∣∣

=
m∑

i=1

(2i − 1) +
m+1∑

i=1

(2(2m + 1 − i) + 1)

=
m∑

i=1

(2i − 1) +
2m+1∑

i=m+1

(2i − 1)

= (2m + 1)2.

The inequality in the conjecture is tight for paths; thus b(G) ≥ b(P�) =
⌈√

�
⌉

=
2m + 1. Due to the strong NP-completeness of DISTINCT 3-PARTITION, we can
assume S to be inO(

nO(1)
)
and as m is bounded by S, the caterpillar G is computed

in polynomial time with regard to the input length. Further, we constructed the
caterpillar G in such a way that if X can be partitioned into n triples, each of
whose elements add up to S (and equivalently QX′

1 , . . . , QX′
n can be partitioned

into paths {Pi | i ∈ X′}), lighting the central spine vertex of caterpillar Gi in step i

(for 1 ≤ i ≤ m + 1) and lighting the central vertex of path P2(2m+1−i)+1 in step i

(for m + 2 ≤ i ≤ 2m + 1) burns the whole graph in 2m + 1 steps. Consequently,
b(G) ≤ 2m + 1 holds and altogether, b(G) = 2m + 1.

To prove the opposite direction, we assume b(G) = 2m + 1 and let
(x1, . . . , x2m+1) be an optimal burning sequence for the caterpillar G. First, we
can observe that xi is a spine vertex for all 1 ≤ i ≤ 2m + 1 and the burning circles

have to be pairwise disjoint as � is a square number and b(P�) =
⌈√

�
⌉
. Next, the

largest burning circle has to cover G1 with spine P2(2m+1)−1. Otherwise, at least
two burning circles are needed which would have to intersect at two spine vertices
to cover all legs as pictured in Fig. 6. Inductively, Gi has to be covered with the i-th
largest burning circle; thus the central spine vertex of Gi has to be lit in the i-th step
for all 1 ≤ i ≤ m + 1.
Therefore,

⋃m+1
i=1 Gi will be burning after 2m+1 steps induced by x1, . . . , xm+1 and

in the last m time steps xm+2, . . . , x2m+1 have to ignite
⋃n

i=1 QX′
i ∪ ⋃m−3n

i=1 QY ′
i =⋃m

i=1 P2i−1, i.e., the remaining subpaths need to be covered by

2m+1⋃

i=m+2

N2m+1−i[xi].

As seen before the burning circles have to be disjoint; thusN2m+1−i[xi] has to cover
a path of length 2(2m + 1 − i) − 1 for m + 2 ≤ i ≤ 2m + 1. Hence, each QY ′

i for
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2(2m+ 1)−1

Fig. 6 If we do not coverG1 with the largest burning circles, at least two spine vertices are covered
twice

1 ≤ i ≤ m − 3n is covered by itself and each QX′
i for 1 ≤ i ≤ n is partitioned in

paths of lengths X′. Since S
4 < ai < S

2 by assumption, each partition consists of
three elements in X′, which add up to 2S − 3. By retranslating this 3-partition of X′
to X we obtain the sought-for partition into n triples each of whose elements sum
up to S. ��
As caterpillars are exactly the trees of pathwidth one the above theorem provides a
statement about the complexity of graphs whose spanning trees are caterpillars.

Corollary 1 BURNING NUMBER is NP-complete for graphs of pathwidth one.

4 The Burning Number Conjecture for p-Caterpillars

In this section, we turn the study to the more general case of p-caterpillars.

Definition 1 (p-Caterpillar) A p-caterpillar G is a tree in which all vertices are
within a distance p of a central spine P� = {v1, . . . , v�}, which is the longest path
in G.
Further, r-legs of a given p-caterpillar are defined as disjoint subtrees ofG−P� with
depth r − 1, for r ≤ p, whose roots are in distance one of the spine. We denote the
maximum length of all legs attached to spine vertex vi by pmax(vi) and the number
of all vertices which are connected to the spine via vi by pΣ(vi).

Thus, the parameter p indicates the maximum length of the legs and for every tree T

there is a p such that T can be regarded as a p-caterpillar. Obviously, a 1-caterpillar
denotes a ‘common’ caterpillar.

Proposition 2 For a p-caterpillar G it follows that b(G) ≤
⌈√

�
⌉

+ p. Thus, for
⌈√

n
⌉ ≥

⌈√
�
⌉

+ p the conjecture is proven to be true.

Using a similar idea as in the alternative proof of Theorem 1, we can prove the
Burning Number Conjecture for 2-caterpillars.
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v1 v2 v3 v2k−3 v2k−1

2k−1

V1

Fig. 7 We remove the grey vertices of the largest burning circle V1 in a 2-caterpillar

Theorem 3 (Burning Number Conjecture for 2-Caterpillars) The burning num-
ber of a 2-caterpillar G satisfies b(G) ≤ ⌈√

n
⌉
.

Proof As in the alternative proof of Theorem 1 we remove recursively the largest
burning circles and thereby intend to reduce the number of vertices to fall below the
next smaller square number. If pmax(v2k−2) ≤ 1 and pmax(v2k−1) = 0, we delete
the vertices v1, . . . , v2k−1 together with all adjacent legs and obtain a graph whose
vertex number is at most

⌊√
n
⌋2. In the case pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1

but
∑2k−3

i=1 pΣ(vi) ≥ 2, removing the vertices v1, . . . , v2k−3 with their adjacent legs

as depicted in Fig. 7 suffices to undercut
⌊√

n
⌋2 vertices in the remaining graph.

Analogously, for
∑2k−2

i=1 pΣ(vi) = 1 and pmax(v2k−2) ≤ 1 but pmax(v2k−1) ≥ 1,
we remove v1, . . . , v2k−2 with all adjacent legs. Hence, it remains to consider the
cases

(a)
2k−3∑

i=1
pΣ(vi) = 1 with pmax(v2k−2) = 2 and

(b)
2k−3∑

i=1
pΣ(vi) = 0 with pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1.

If in case (a) we additionally have

(2k−1)+(2k−3)−4∑

i=2k−1

pΣ(vi) ≥ 1 or pmax
(
v(2k−1)+(2k−3)−3

) ≤ 1,

we arrange the two largest burning circles V1 and V2 with an overlap of two vertices
as outlined in Fig. 8. We delete the vertices v1, . . . , v(2k−1)+(2k−3)−4 and, if

pmax
(
v(2k−1)+(2k−3)−3

) ≤ 1,

we also remove vertex v(2k−1)+(2k−3)−3 with all its adjacent legs. Hence, at most
n − (2k − 1) − (2k − 3) vertices are left.
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v1 v2 v3 v2k−2v2k−3 v2k−1 v(2k−1)
+(2k−3)

2k−3

V2

2k−1

V1

Fig. 8 We arrange the two largest burning circles V1 and V2 with an overlap of two vertices

v1 v2 v3 v2k−2v2k−3 v2k−1 v(2k−1)
+(2k−3)

v(2k−3)
+(2k−5)+1

2k−3

V2

2k−5

V3

2k−1

V1

Fig. 9 We delete the grey vertices of the three largest burning circles V1, V2 and V3

If, however, in case (a) we additionally have

(2k−1)+(2k−3)−4∑

i=2k−1

pΣ(vi) = 0 and pmax
(
v(2k−1)+(2k−3)−3

) = 2,

we consider the three largest burning circles and position them as shown in Fig. 9.
The removal of v1, . . . , v(2k−1)+(2k−3)−4 with all adjacent legs yields a graph with
at most n − (2k − 1) − (2k − 3) − (2k − 5) − 1 vertices.
Lastly, in case (b) we can assume without loss of generality that

∑2k−3
i=1 pΣ(vi) = 0

with pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1 holds for both ends of the spine
(otherwise we can apply one of the cases above on the other end), i.e., additionally,
we have

∑2k−3
i=1 pΣ(v�−i+1) = 0. Considering the three largest burning circles

again, we place V3 and V1 at the beginning of the spine if

(2k−5)+(2k−1)−2∑

i=2k−2

pΣ(vi) ≥ 2

and at the end if

�−((2k−5)+(2k−1)−2)+1∑

i=�−(2k−2)+1

pΣ(vi) ≥ 2.
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v1 v2 v2k−3v2k−5 v2k−1 v(2k−1)
+(2k−3)

2k−5

V3

2k−1

V1

v�v�−1

2k−3

V2

v�−(2k−1)
+1

v�−(2k−3)
+1

Fig. 10 We delete the grey vertices of the three largest burning circles V1, V2 and V3

As outlined in Fig. 10, we place V2 at the respective other side of the spine and
remove the vertices v1, . . . , v(2k−5)+(2k−1)−2 as well as v�, . . . , v�−(2k−3)+1, and
v�, . . . , v�−((2k−5)+(2k−1)−2)+1 as well as v1, . . . , v2k−3, respectively.
In the remaining case, both sums equal one, pΣ(v2k−1) = pΣ

(
v�−(2k−1)+1

) = 1
and pΣ(vi) = 0 for all other (2k−5)+(2k−1)−2 spine vertices at both ends. Thus,
we incorporate V4, placing it next to V2 without overlap, and additionally remove
2k − 7 spine vertices, one of which has an adjacent leg.
This completes the proof of the Burning Number Conjecture for 2-caterpillars. ��
Next, we prove the Burning Number Conjecture for 3-caterpillars with at least
2
⌈√

n
⌉ − 1 vertices of degree one.

Theorem 4 The burning number of a 3-caterpillar G with at least 2
⌈√

n
⌉ − 1

vertices of degree one satisfies b(G) ≤ ⌈√
n
⌉
.

Proof Assume G = (V ,E) to be a minimum counterexample regarding the vertex
number n. Hence, b(G) >

⌈√
n
⌉ =: k and |L| ≥ 2k−1 with the notation L := {v ∈

V | deg(v) = 1}. Deleting all leaves, the remaining graph G − L is a 2-caterpillar,
for which the conjecture is proven to be true. Thus

b(G − L) ≤
⌈√

n − |L|
⌉

≤
⌈√

n − 2k + 1
⌉

≤
⌈√

k2 − 2k + 1
⌉

≤ k − 1.

However, if G − L burns after
⌈√

n
⌉ − 1 steps, using the same burning strategy, G

can be burnt in
⌈√

n
⌉
steps. This contradicts the assumption; so no counterexample

exists. ��
Finally, we can also prove the conjectured upper bound more general for p-
caterpillars with at least 2

⌈√
n
⌉ − 1 disjoint legs of length p.

Theorem 5 For any p-caterpillar G with at least 2
⌈√

n
⌉−1 disjoint legs of length

p, we have b(G) ≤ ⌈√
n
⌉
.

Proof Suppose G = (V ,E) is a minimum counterexample regarding p and among
these minimal regarding its order n. Now, let Lp be the set of all leaves at the end
of p-legs. Then again, b(G) >

⌈√
n
⌉ =: k and |Lp| ≥ 2k − 1. Deleting Lp, the

remaining graph G − Lp is a (p − 1)-caterpillar with at least 2k − 1 disjoint legs of
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length p − 1, and thus

b(G − Lp) ≤
⌈√

n − |Lp|
⌉

≤
⌈√

n − 2k + 1
⌉

≤
⌈√

k2 − 2k + 1
⌉

≤ k − 1.

Now, if G − Lp burns after
⌈√

n
⌉ − 1 steps, G can be burnt in

⌈√
n
⌉
steps, a

contradiction. ��

5 Concluding Remarks

By the results of this paper, it remains to prove the conjecture for p-caterpillars,
p ≥ 3, with less than 2

⌈√
n
⌉ − 1 disjoint p-legs to complete the proof of the

conjectured bound for all connected graphs. Minimum counterexamples for these
remaining graph classes can be characterised in great detail. We plan to investigate
these characterisations to prove the conjecture in future work.
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