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Abstract Graph parameters like the chromatic number, independence number,
clique number and many others alongside with their corresponding adjacency matrix
have been broadly studied and extended to hypergraphs classes. A generalized
power graph Gk

s of a graph G is a k-uniform hypergraph constructed by blowing
up each vertex of G into a s-set of vertices and then adding k − 2s vertices of
degree one to each edge, where k ≥ 2s. A natural question is whether there exists
any relation between structural parameters and spectral parameters of Gk

s with the
respective parameters of the original graph G. In this paper we positively answer
this question and investigate the parameters behavior.

Keywords Hypergraph · Generalized power graph · Strong chromatic number ·
Adjacency matrix of hypergraph · Spectral parameters

1 Introduction

A hypergraph H = (V ,E) is given by a vertex set V and a set E = {e : e ⊆ V },
whose elements are called (hyper) edges. A graph G = (V ,E) is a hypergraph such
that |e| ≤ 2 for every e ∈ E.

Different aspects of a graph like clique number, vertex or edge coloring, match-
ing, connectivity, have been widely studied in many areas and can be generalized
to hypergraph theory, for example hypergraph coloring and strong hypergraph
coloring, weak and strong vertex connectivity [4, 9]. In [1], the authors stated
that strong hypergraph coloring captures many previously studied graph coloring
properties. These different ways of expanding a graph parameter have attracted the
attention of researchers: [9] studied the difference between weak and strong vertex
connectivity; and [2, 7, 11] exclusively focused their work on a single parameter.
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Spectral graph theory is another area that can be extended to hypergraphs. The
goal of spectral graph theory is to study eigenvalues and eigenvectors of matrices
associated with graphs finding information of structural properties of these graphs.
Many graph matrices are studied in spectral graph theory which can also be extended
to hypergraphs in different ways. The study of hypergraph matrices started in the
1990s with a generalization of the graph adjacency matrix [10], and new matrices
are still being defined. In 2019, [3], a similar but different adjacency matrix of a
hypergraph is defined, allowing a generalization of important spectral graph theory
results to hypergraphs. Another approach to spectral hypergraph theory was given
in 2012, [8], when it is proposed the study of hypergraphs through tensors.

This work aims to investigate the relation between hypergraph structural param-
eters and spectral parameters of a class of uniform hypergraphs, called generalized
power graph, that was first considered in [15]. Recently, this class was studied by
considering its tensor spectra [13–15].

Since these hypergraphs are constructed from a base graph, we discuss four
main topics: the relation between hypergraph parameters with their respective graph
parameters; the behavior of distinct variations of generalized graph parameters on
this hypergraph class; the relation between the adjacency matrix of this hypergraph
with matrices of the base graph; and new relations of hypergraph parameters and
the adjacency matrix eigenvalues.

2 Preliminaries

A hypergraph H = (V ,E) is k-uniform if |e| = k for every edge e ∈ E(H). A
simple graph G = (V ,E) is a 2-uniform hypergraph. In this work we consider only
simple hypergraphs, i.e. it contains no loops (edges with |e| = 1) and no repeated
edges. A null hypergraph contains no vertices (or no edges) and a hypergraph with
only one vertex is called trivial. Two vertices in a hypergraph are adjacent if there
is an edge which contains both vertices, and the degree of a vertex v ∈ V is d(v) =
| {e : v ∈ e} |, the number of edges that contain v.

A path P in a hypergraph H is a vertex-edge alternating sequence: P =
v0, e1, v1, e2, . . . , vr−1, er , vr such that v0, v1, . . . , vr are distinct vertices;
e1, e2, . . . , er are distinct edges; and vi−1, vi ∈ ei, i = 1, 2, . . . , r . The length of a
path P is the number of distinct edges. A hypergraph is connected if for any pair of
vertices, there is a path which connects these vertices; it is not connected otherwise.

Let G be a graph and s ≥ 1 an integer. The s-extension Gs of G is a 2s-
uniform hypergraph obtained from G by replacing each vertex vi ∈ V by a set
Svi

= {vi1, . . . , vis}, where Svi
∩ Svj

= ∅ for every vi �= vj . These s new vertices
are called copies of vi . More precisely, V (GS) = {v11, . . . , v1s , . . . , vn1, . . . , vns}
and E(Gs) = {

Svi
∪ Svj

: {
vi, vj

} ∈ E
}
. Note that |V (Gs)| = s · |V (G)| and

|E(Gs)| = |E(G)|.
For a graph G = (V ,E) and an integer k ≥ 2, the k-expansion Gk of G (also

called the kth power graph of G) is a k-uniform hypergraph obtained from G by
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Fig. 1 Graph G = P4 an its respective G2 and G6
2

adding k − 2 new vertices of degree one to each edge of G. Note that |V (Gk)| =
|V (G)| + (k − 2) · |E(G)| and |E(Gk)| = |E(G)|.

Let s ≥ 1 and k ≥ 2s be two integers and consider a graph G. The generalized
power graph Gk

s is the k-uniform hypergraph (Gs)
k , obtained by adding k −2s new

vertices to each edge of Gs . These (k − 2s) · |E(G)| new vertices of degree one are
called additional vertices of Gk

s . Note that |V (Gk
s )| = s · |V (G)|+ (k −2s) · |E(G)|

and |E(Gk
s )| = |E(G)|. See an example in Fig. 1.

Let G be a simple graph with n vertices. The adjacency matrix of G, denoted
by A(G), is the n × n symmetric matrix with entries aij = 1 if there is an edge
joining vertices vi and vj ; and aij = 0 otherwise. The degree matrix of G, denoted
by D(G), is the n × n diagonal matrix defined as D(G) = Diag(d(v1), . . . , d(vn))

where d(vi) is the degree of the vertex vi . The signless Laplacian matrix for G,
denoted by Q(G), is the n × n symmetric matrix given by Q(G) = D(G) + A(G).
We denote the eigenvalues of A(G) as λ1(G) ≥ . . . ≥ λn(G) and the eigenvalues
of Q(G) as q1(G) ≥ . . . ≥ qn(G).

Let H be a hypergraph with n vertices. The adjacency matrix of H , denoted by
A(H) is the n × n symmetric matrix with entries aij = | {e ∈ E(H) : vi, vj ∈ e

} |.
We also denote the eigenvalues of A(H) as λ1(H) ≥ . . . ≥ λn(H).

Note that all previously defined matrices are real and symmetric, so they are
Hermitian (a square matrix that is equal to its own conjugate transpose).

Now, we recall some matrix theory results that we use latter. Let X be a m × n

matrix and let Y be a p × q matrix. The kronecker product X ⊗ Y is the mp × nq

matrix:

X ⊗ Y =
⎡

⎢
⎣

x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

⎤

⎥
⎦ .
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Theorem 1 ([16]) Let X be a n×n matrix and Y a m×m matrix. If x1 ≥ . . . ≥ xn

are the eigenvalues of X and y1 ≥ . . . ≥ ym the eigenvalues of Y , then the nm

eigenvalues of X ⊗ Y are: x1y1, . . . , x1ym, x2y1, . . . , x2ym, . . . , xny1, . . . , xnym.

The next theorem, by Weyl [12], is a well known inequality that gives lower and
upper bounds for the eigenvalues of a matrix sum.

Theorem 2 ([12]) Let X and Y be square n × n Hermitian matrices with eigenval-
ues x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn respectively. If the eigenvalues of the sum
Z = X + Y are z1 ≥ . . . ≥ zn, then xk + yn ≤ zk ≤ xk + y1.

A hypergraph version of the Wilf’s theorem was established in [3] stating a
relation between the chromatic number and the largest eigenvalue of its adjacency
matrix. This generalization can be restricted to uniform hypergraphs as follows:

Theorem 3 ([3]) Let H be a k-uniform hypergraph, then χS(H) ≤ 1 + λ1(H).

3 Structural Parameters

Graph parameters can be extended to hypergraphs and most of them in more than
one way. In this section we investigate how these parameters behave on the class Gk

s

and their relation with the respective parameters of the original graph G.
Let H be a k-uniform hypergraph. A set U ⊆ V (H) is a clique if every subset of

U with k elements is an edge of H . The clique number is ω(H) = max{|U | : U ⊆
V (H) is a clique}.
Proposition 1 Given a graph G with at least one edge, s ≥ 1 and k ≥ 2s (except
the case where s = 1 and k = 2, i.e. Gk

s = G), we have that ω(Gk
s ) = k. Moreover,

every clique in Gk
s is composed by the k vertices of an edge.

Proof First, observe that the intersection between two edges of Gk
s is formed by a

set of s vertices or is empty. Choose any set of k + 1 vertices of Gk
s and suppose it

is a clique. This means that there exist two edges in Gk
s which share k − 1 common

vertices. This is a contradiction since k ≥ 2s, s �= 1 and k �= 2. Clearly any set of
k vertices of an edge is a clique. ��

A matching of a hypergraph H = (V ,E) is a set M ⊂ E of pairwise disjoint
hyperedges of H . The matching number ν(H) is the cardinality of a maximum
matching.

Proposition 2 If G is a graph with s ≥ 1 and k ≥ 2s, then ν(Gk
s ) = ν(G).

A perfect matching of a hypergraph H is a matching M such that each vertex in
V (H) is covered by exactly one edge in M . It is easy to see that for s ≥ 1, Gs has
a perfect matching if and only if G has a perfect matching.

Proposition 3 Let G be a graph that is not the union of disjoint edges. For s ≥ 1
and k > 2s the hypergraph Gk

s does not have a perfect matching.
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Proof Since k > 2s, each edge of Gk
s have k − 2s vertices of degree one. The only

way that all those vertices are covered by a matching M is when M = E(Gk
s ), and

that can happen only when G is the union of disjoint edges. ��
Given a hypergraph H = (V ,E) we construct new hypergraphs by deleting

vertices in the following ways. The strong vertex deletion of a vertex v ∈ V creates
the hypergraph H ′ = (V ′, E′) where V ′ = V − v and E′ = {e ∈ E : v /∈ e}. That
is, the strong deletion of v removes v from the vertex set and removes all edges
that contain v from the hypergraph. For any subset X of V , we use H −(S) X to
denote the hypergraph formed by strongly deleting all the vertices of X from H . A
vertex v ∈ V is called a strong cut vertex of H if H −(S) v has more connected
components than H , and a set X ⊆ V is called a strong vertex cut of H if H −(S) X

is disconnected. We define the strong vertex connectivity of H , denoted κS(H) as
follows: if H has at least one strong vertex cut, then κS(H) is the cardinality of a
minimum strong vertex cut of H ; otherwise, κS(H) = |V | − 1. By convention, the
strong vertex connectivity of a null or trivial hypergraph is 1. Observe that κS(H) ≤
δ(H).

Proposition 4 Given a connected graph G, s ≥ 1 and k ≥ 2s integers such that
Gk

s �= G then κS(Gk
s ) = 1.

Proof If k > 2s removing a vertex that is originally from Gs disconnects Gk
s , since

its deletion removes at least one edge and hence the k − 2s additional vertices of
this edge become isolated. Similarly, if k = 2s then s > 1 and Gk

s = Gs . Removing
any vertex leaves the s − 1 vertices that are its copies isolated. ��

The weak vertex deletion of a vertex v ∈ V creates the hypergraph H ′ = (V ′, E′)
where V ′ = V − v and E′ = {e − {v} : e ∈ E}. That is, the weak deletion
of v removes v from the vertex set, and all occurrences of v from the edges
of the hypergraph H . For any subset X of V , we use H −(W) X to denote the
hypergraph formed by weakly deleting all the vertices of X from H . Since we are
only considering simple hypergraphs, we remove edges with only one vertex. A
vertex v ∈ V is called a weak cut vertex of H if H −(W) v has more connected
components than H , and a set X ⊆ V is called a weak vertex cut of H if H −(W) X

is disconnected. We define the weak vertex connectivity of H , denote κW (H) as
follows: if H has at least one weak vertex cut, then κW (H) is the cardinality of a
minimum weak vertex cut of H ; otherwise, κW (H) = |V | − 1. By convention, the
weak vertex connectivity of a null or trivial hypergraph is 1.

Proposition 5 Given a connected graph G that is not the complete graph and an
integer s ≥ 1, then κW (Gs) = s.κ(G).

Proof Note that by the construction of Gs , we have that if X ⊂ V (Gs) is a weak
vertex cut of Gs then X = Sv1 ∪Sv2 . . .∪Svr and {v1, . . . , vr } ⊆ V (G) is a vertex cut
of G. Now, let {v1, . . . , vr } be a minimum vertex cut of G. So, Sv1 ∪ Sv2 . . . ∪ Svr is
a minimum weak vertex cut in Gs with s.κ(G) elements, otherwise v1, . . . vr would
not be a minimum vertex cut of G, a contradiction. ��
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Proposition 6 Let G be a connected graph that is not the complete graph, s ≥ 1
and k > 2s be two integers. Then:

(i) If κW (Gs) = s, then κW (Gk
s ) = s.

(ii) If κW (Gs) ≥ 2s, then κW (Gk
s ) = 2s.

Proof First we observe that a vertex cut of Gs is a vertex cut of Gk
s . Also, after the

k-expansion Gk
s of Gs , the only new minimum vertex cut is the one where we isolate

the additional k − 2s new vertices of an edge by removing the 2s already existing
vertices (since the new vertices of Gk

s make no difference in a vertex cut). Hence:

(i) if X is a minimum weak vertex cut of Gs with less than 2s elements, then it is
a minimum weak vertex cut of Gk

s .
(ii) if κW (Gs) ≥ 2s, a minimum weak vertex cut of Gs has more than 2s elements.

For each edge of Gk
s , the set of the 2s vertices that came from Gs is a minimum

weak vertex cut of Gk
s since their removal leaves the additional k−2s remaining

vertices isolated. ��
Next result follows from the fact that if s = 1 then Gs = G and Gk

s = Gk .

Corollary 1 Let G be a connected graph. For any k > 2 we have that:

(i) if κ(G) = 1, then κW (Gk) = 1;
(ii) if κ(G) ≥ 2, then κW (Gk) = 2.

We observe from the previous results that the difference between weak and
strong vertex connectivity of hypergraphs can be arbitrarily large, since κS(Gk

s ) = 1
and κW (Gk

s ) ≥ s, with s as large as desired. Finally, we also remark that the
inequality κW (H) ≤ δ(H) is not valid: if G is a connected graph with κ(G) ≥ 2,
we have for k > 2s that δ(Gk

s ) = 1 < 2s = κW (Gk
s ).

The distance d(v, u) between two vertices v and u is the minimum length of
a path that connects v and u. The diameter d(H) of H is defined by d(H) =
max {d(v, u) : v, u ∈ V }. It is easy to see that given a graph G and s ≥ 1, then
d(Gs) = d(G). But this is not always true for the k-expansion.

Proposition 7 d(G) ≤ d(Gk
s ) ≤ d(G) + 2, for any graph G, s ≥ 1 and k ≥ 2s, .

Proof Suppose d(Gs) = r and P = v1, e1, v2, e2, . . . , vr , er , vr+1 be a maximum
path of Gs . If k > 2s, we add k − 2s vertices on each edge to obtain Gk

s . After that,
if there is an additional vertex u such that {u, v1} belongs to an edge e �= e1 and
another additional vertex w such that {w, vr+1} belongs to an edge f �= er , the path
P = u, e, v1, e1, v2, e2, . . . , vr , er , vr+1, f,w have length d(G) + 2. Moreover,
d(Gk

s ) = d(G) + 2 since we have at most 2 additional vertices on a path and the
path must start and end on them, otherwise we would have to repeat edges. ��

A hypergraph coloring is an assigning of colors {1, 2, . . . , c} to each vertex of
V (H) in such a way that each edge contains at least two vertices of distinct colors. A
coloring using at most c colors is called a c-coloring. The chromatic number χ(H)

of a hypergraph H is the least integer c such that H has a c-coloring.
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It is easy to see that given a graph G we have that χ(Gk) = χ(Gs) = χ(Gk
s ) = 2

(except when s = 1 and k = 2). Another type of coloring, that is also a
generalization of graph coloring, is the strong hypergraph coloring: is an assigning
of colors {1, 2, . . . , c} to each vertex of V (H) in such a way that every vertex of an
edge has distinct colors. The strong chromatic number χS(H) of a hypergraph H

is the least integer c such that H has a strongly c-coloring. Given a hypergraph H ,
note that:

1. χS(H) ≥ |e| for every e ∈ E(H);
2. χ(H) ≤ χS(H), since a strong hypergraph coloring is also a hypergraph

coloring;
3. ω(H) ≤ χS(H) (similarly to graphs);
4. for the class Gk

s , the inequality ω(H) ≤ χ(H) is not valid, since χ(Gk
s ) = 2 but

we can have edges (cliques) arbitrarily large.

We do not consider χ(G) = χS(Gk
s ) = 1, since G has at least one edge. The

following results establish relations between χ(G), χS(Gs) and χS(Gk
s ).

Proposition 8 If G is a graph and s ≥ 1 is an integer, then χS(Gs) ≤ s.χ(G).

Proof Let χ(G) = c, we obtain a sc-strong coloring of Gs as follows: if v ∈ V (G)

has color c(v) ∈ {1, . . . , c} then, in Gs , assign colors {1 + (c(v) − 1)s, 2 + (c(v) −
1)s, . . . , s + (c(v) − 1)s} to Sv . ��

Note that this bound is tight in the sense that the equality holds for any s-
extension of the complete graph and does not hold for the 2-extension of C5.

Proposition 9 Let s ≥ 1, k > 2s be two integers and let G be a graph. We have
that:

(i) if χS(Gs) < k then χS(Gk
s ) = k;

(ii) if χS(Gs) ≥ k then χS(Gk
s ) = χS(Gs).

Proof

(i) Let χS(Gs) = c < k, we obtain a k-strong coloring of Gk
s as follows: we color

the vertices of Gk
s that came from Gs with the same c-colors used in Gs . Hence,

for each edge of Gk
s , we already used 2s colors from the set {1, 2, .., k} , k > 2s.

Again, for each edge, we color the k − 2s new additional vertices with the
remaining k − 2s distinct colors. This k-strong coloring of Gk

s is minimum,
since k is the size of each edge of Gk

s .
(ii) Let χS(Gs) = c ≥ k and consider a c-strong coloring of Gs . We color the

vertices of Gk
s that came from Gs with the same c-colors used in Gs . For each

edge, we color the k − 2s additional vertices with any k − 2s distinct colors
from {1, 2, .., c} different from the 2s colors already used in the vertices that
came from Gs (since c ≥ k ≥ 2s such colors exist). Suppose that it is possible
to use less than c-colors in Gk

s . This implies that we can color all the vertices
of Gk

s that came from Gs with less than c-colors and hence Gs with less than c

colors, a contradiction. ��
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Corollary 2 Let G be a graph and k ≥ 2 an integer. Thus:

(i) if χ(G) < k then χS(Gk) = k;
(ii) if χ(G) ≥ k then χS(Gk) = χ(G).

A set U ⊆ V is a strong independent set if no two vertices of U are adjacent.
The strong independence number is α′(H) = max{|U | : U ⊆ V (H) is a strong
independent set of H }. Let G be a graph and s ≥ 1. From the construction of Gs

we have that α′(Gs) = α(G).

Proposition 10 If G is a graph, s ≥ 1 and k > 2s, then α′(Gk
s ) = |E(G)|.

Proof Since k > 2s, every edge of Gk
s has at least one additional vertex. A set

formed by choosing, for each edge, one of these additional vertices is a strong
independent set of size |E(Gk

s )| = |E(G)|. This set is maximum since α′(H) ≤
|E(H)|, for any hypergraph H . ��

Another generalization of a graph independent set is as follows: a set U ⊆ V is
an independent set if no edge of H is contained in U . As before, the independence
number is α(H) = max{|U | : U ⊆ V (H) is an independent set of H }. Observe that
if U is a strong independent set of a hypergraph H then U is also an independent
set of H , since if U contains no two adjacent vertices then U does not contain an
edge of H . So we have that α′(H) ≤ α(H).

Proposition 11 If G is a graph and s ≥ 1, then α(Gs) ≥ (s − 1) · |V (G)| + α(G).

Proof Let V (G) = {v1, . . . , vn} and V (Gs) = Sv1 ∪ . . . ∪ Svn . We obtain an
independent set with (s − 1) · n elements by choosing s − 1 vertices of Svi

, for
each i = 1, . . . , n. Now, adding a maximum stable set of G to the previous set
produces a stable set of Gs with (s − 1) · n + α(G) vertices. ��
Proposition 12 IfG be a graph, s ≥ 1 and k ≥ 2s, then α(Gk

s ) ≥ (s−1)·|V (G)|+
α(G) + (k − 2s) · |E(G)|.
Proof By the construction of Gk

s and Proposition 11, a stable set of Gs is also
a stable set of Gk

s with (s − 1) · |V (G)| + α(G) vertices. Adding to this stable
set every k − 2s additional vertices of each edge of Gk

s produces a stable set with
(s − 1) · |V (G)| + α(G) + (k − 2) · |E(G)| elements. ��
Corollary 3 Let G be a graph and k ≥ 2, then α(Gk) ≥ α(G) + (k − 2) · |E(G)|.

4 Spectral Parameters

In this section we investigate spectral properties of hypergraphs and establish
relations with structural parameters. The following result relates the adjacency
matrix of Gs with the matrices A(G) and Q(G).
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Proposition 13 Let G be a graph with n vertices and s > 1. The adjacency matrix
A(Gs) is given on s × s blocks of size n × n by:

A(Gs) =

⎡

⎢⎢⎢⎢⎢
⎣

A(G) Q(G) Q(G) . . . Q(G)

Q(G) A(G) Q(G) . . . Q(G)

Q(G) Q(G) A(G) . . . Q(G)
...

...
...

. . .
...

Q(G) Q(G) Q(G) . . . A(G)

⎤

⎥⎥⎥⎥⎥
⎦

= (Js ⊗ Q(G)) + (Is ⊗ −D(G)),

where Js is the s × s matrix with 1 on all entries and Is is the s × s identity matrix.

Proof First we show that A(Gs) can be written in blocks like above. Let G be a
graph on n vertices, then |V (Gs)| = sn. So, we order the vertices of the matrix as
follows: V (Gs) = {v11, v21, . . . , vn1, v12, v22, . . . , vn2, v13, v23, . . . , vn3, . . . ,

v1s , v2s , . . . , vsn}, where Sv1 = {v11, v12, . . . , v1s} , Sv2 = {v21, v22, . . . , v2s},
. . . , Svn = {vn1, vn2, . . . , vns}. We suppose that the vertices v11, v21, . . . , vn1 are
the vertices that come from G. So the n × n block formed by these is A(G), since
two vertices that are not copies from each other, share an edge in Gs if and only if
they share an edge in G. Hence, we can see that all the diagonal blocks, formed by
the vertices {v1i , v2i , . . . , vni} × {v1i , v2i , . . . , vni} , i = 1, . . . , s, also correspond
to A(G).

For the other blocks we observe that, for every i �= j , the blocks formed by
{v1i , v2i , . . . , vni} × {

v1j , v2j , . . . , vnj

}
are always the same, since the vertices are

copies from one another.
The block where i = 1 and j = 2 have the following structure: the vertices

v11 and v12 are copies so they are in the same edges; and the number of edges they
belong is exactly dG(v1). So, their entry is equal dG(v1), the degree of v1 in G. The
same works for the entries v21 × v22, v31 × v32,. . . ,vn1 × vn2. So, the diagonal of
the block is made of the degrees in G. The entries that are not in the diagonal, for
example, the entry v11 × v22 is the same entry as v11 × v21, since v22 is a copy of
the vertex v21. So, these blocks are equal D(G) + A(G) = Q(G). ��
Proposition 14 Let G be a graph on n vertices, s > 1 an integer and d1, . . . , dn

the vertices degree of G. Then −d1, . . . ,−dn are eigenvalues of A(Gs). Moreover,
each −di has multiplicity at least s − 1.

Proof Consider the vector (−1, 0, . . . , 0|, 1, 0, . . . , 0|, 0, . . . , 0|, . . . , |0, . . . , 0) ∈
Rsn, formed of s “blocks” with n entries each (ie, | − 1, 0, . . . , 0| has n entries,
|1, 0, . . . , 0| has n entries, |0, . . . , 0| has n entries). This vector is an eigenvector of
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A(Gs) associated to the eigenvalue −d1. Indeed:

⎡

⎢⎢⎢⎢⎢
⎣

A(G) Q(G) Q(G) . . . Q(G)

Q(G) A(G) Q(G) . . . Q(G)

Q(G) Q(G) A(G) . . . Q(G)
...

...
...

. . .
...

Q(G) Q(G) Q(G) . . . A(G)

⎤

⎥⎥⎥⎥⎥
⎦

.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1
0
...

0
−−

1
0
...

0
−−

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

−1.0 + 1.d1

−a2,1 + a2,1
...

−an,1 + an,1

−−
−1.d1 + 1.0
−a2,1 + a2,1

...

−an,1 + an,1

−−
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

d1

0
...

0
−−
−d1

0
...

0
−−

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Note that the vectors
(−1, 0, . . . , 0|, 0, . . . , 0|, 1, 0, . . . , 0|, . . . , |0, . . . , 0),
(−1, 0, . . . , 0|, 0, . . . , 0|, 0, . . . , 0|, 1, 0, . . . , 0|, . . . , |0, . . . , 0), . . .,
(−1, 0, . . . , 0|, 0, . . . , 0|, 0, . . . , 0|, . . . , |1, . . . , 0)

are also eigenvectors of A(Gs) associated to the eigenvalue −d1. Since we have s

blocks, the multiplicity of −d1 is at least s − 1. Similarly to −d2, starting with the
eigenvector:
(0,−1, . . . , 0|, 0, 1, . . . , 0|, 0, . . . , 0|, . . . , |0, . . . , 0)

up to −dn, when starting with the eigenvector:
(0, 0, . . . ,−1|, 0, 0, . . . , 1|, 0, . . . , 0|, . . . , |0, . . . , 0). ��

Next result immediately follows from the previous proposition observing that if
G is connected then every vertex degree is positive.

Corollary 4 If G is a graph on n vertices and s > 1 an integer, then A(Gs) has at
least n · (s − 1) non positive eigenvalues. Moreover, if G is connected then A(Gs)

has at least n·(s−1) negative eigenvalues (hence,A(Gs) has at most n non negative
eigenvalues).

Next proposition provides bounds for the greatest eigenvalue of A(Gs).

Proposition 15 If G be a graph with n vertices and s > 1 integer, then

s.q1(G) − Δ(G) ≤ λ1(Gs) ≤ s.q1(G) − δ(G).

Proof For the left inequality, we observe that is known that the largest eigenvalue
of Js is s. Thus, by Theorem 1, the largest eigenvalue of Js ⊗ Q(G) is s · q1(G).
Also, the smallest eigenvalue of −D(G) is −Δ(G). So, by Theorem 1, the smallest
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eigenvalue of Is ⊗−D(G) is −Δ(G). Since A(Gs) = (Js ⊗Q(G))+(Is ⊗−D(G)),
from Theorem 2, we have that s · q1(G) − Δ(G) ≤ λ1(Gs).

For the right inequality, we observe again that the largest eigenvalue of Js⊗Q(G)

is s.q1(G). Also, the largest eigenvalue of −D(G) is −δ(G). So, by Theorem 1, the
largest eigenvalue of Is ⊗ −D(G) is −δ(G). Since A(Gs) = (Js ⊗ Q(G)) + (Is ⊗
−D(G)), we have from theorem 2 that λ1(Gs) ≤ s.q1(G) − δ(G). ��

We observe that the bound given by Proposition 15 is tight in the sense that the
equality holds for any regular graph G and for any s > 1. In what follows we obtain
some results relating structural and spectral parameters.

A well known spectral graph theory result is: given a connected graph G the
number of distinct eigenvalues of A(G) is at least d(G) + 1 (this is also true for the
number of distinct eigenvalues of Q(G)). This result is still true on hypergraphs, and
the proof is basically the same. In [5] this bound is proved for the signless Laplacian
matrix of a hypergraphs. We prove this result for hypergraphs adjacency matrix but
first we present the following lemma.

Lemma 1 LetH be a hypergraph andA = A(H) its adjacency matrix. (Al)i,j > 0
if there is a path with length l connecting two distinct vertices i and j , and (Al)i,j =
0 otherwise (where (Al)i,j denotes the entry i, j of A(H)l).

Proof The proof is by induction on l. If l = 1 the property clearly holds. Suppose
the statement is true for l ≥ 1 and now we check for l + 1. Note that (Al+1)i,j =∑n

k=1(A
l)i,k(A)k,j . If there is a path with length l + 1 joining i and j then there

must exist a path with length l joining i to a neighbor u of j . So (A)u,j = 1 and by
induction hypothesis (Al)i,u > 0. Therefore (Al+1)i,j > 0. If there is no path with
length l + 1 joining i and j then there does exist no path with length l joining i to
any neighbor of j . So, if u is a neighbor of j we have that (Al)i,u = 0. When u is
not a neighbor of j , we have that (A)u,j = 0. Therefore (Al+1)i,j = 0. ��
Proposition 16 If H is a connected hypergraph then | {distinct eigenvalues of
A(H)} | ≥ d(H) + 1.

Proof Let λ1, . . . , λt be all the distinct eigenvalues of A = A(H). Then
(A − λ1I ) . . . (A − λtI ) = 0. So, we have that At is a linear combination of
At−1, . . . , A, I . Suppose by contradiction that t ≤ d(H). Hence there exist
vertices i and j such that d(i, j) = t and from our previous lemma, we have
that (At )i,j > 0. since there exists no path with length shorter than t joining i

and j, (At−1)i,j = 0, . . . , (A)i,j = 0, (I )i,j = 0. This is a contradiction, since
(At )i,j = c1(A

t−1)i,j + . . . + ct−1(A)i,j + ct (I )i,j . ��
Previous proposition together with Proposition 7 result this simple corollary.

Corollary 5 If G is connected then | {distinct eigenvalues of A(Gk
s )

} | ≥ d(G)+1.

In other words, to find connected hypergraphs of the class Gk
s with few distinct

adjacency eigenvalues, we have to look for graphs G with small diameter.
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The next proposition gives us a different bound for χS(Gk
s ), in terms of the largest

eigenvalue of Q(G) and the minimum degree of the graph G.

Proposition 17 Given a graph G, s > 1 and k ≥ 2s we have that χS(Gk
s ) = k or

χ(Gk
s ) ≤ 1 + s.q1(G) − δ(G).

Proof If χS(Gk
s ) �= k then by Proposition 9 χS(Gk

s ) = χS(Gs). Where by
Theorem 3 and Proposition 15 we have: χS(Gs) ≤ 1+λ1(Gs) ≤ 1+s.q1(G)−δ(G).

��
A result from spectral graph theory states that if G is a graph, then α(G) ≤

min
{
λ(G)−, λ(G)+

}
, where λ(G)− is the number of non positive eigenvalues of

A(G) and λ(G)+ is the number of non negative eigenvalues of A(G)”. We show
that this is not valid for the independence number of the class Gs .

Proposition 18 If s > 1 and G is a connected graph on n vertices, then α(Gs) >

min
{
λ(Gs)

−, λ(Gs)
+}

.

Proof From Corollary 4, we have that A(Gs) has at most n non negative eigen-
values. Hence, by Proposition 11: α(Gs) ≥ (s − 1)n + α(G) > n ≥ λ(Gs)

+ ≥
min

{
λ(Gs)

−, λ(Gs)
+}

. ��
Another result states that, for any graph G,

|V (G)|
α(G)

≤ λ1(G) + 1”. This fact has
not yet been generalized for hypergraphs and we prove its validity for connected
hypergraphs in the class Gs .

Proposition 19 If G is connected on n vertices and s > 1 then |V (Gs)|
α(Gs)

≤ λ1(Gs)+
1.

Proof By Proposition 11, we have that |V (Gs)|
α(Gs)

= sn
α(Gs)

≤ sn
(s−1)n+α(G)

≤ sn
(s−1)n

=
s

s−1 . From Proposition 15, we have that s · q1(G) − Δ(G) ≤ λ1(Gs). Thus, it
suffices to show that s

(s−1)
≤ s.q1(G) − Δ(G) + 1 or, in other words, that s ≤

(s − 1)(s.q1(G) − Δ(G) + 1). Since s > 1, if s.q1(G) − Δ(G) + 1 ≥ 2 then the
above inequality is valid, indeed: s.q1(G)−Δ(G)+1 ≥ s(Δ(G)+1)−Δ(G)+1 =
(s − 1)Δ(G) + s + 1 ≥ 2. Where the first inequality holds because: [6] If G is a
connected graph then q1(G) ≥ Δ(G) + 1. ��
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