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Abstract An acyclic coloring of a digraph as defined by V. Neumann-Lara is a
vertex-coloring such that no monochromatic directed cycles occur. Counting the
number of such colorings with k colors can be done by counting so-called Neumann-
Lara-coflows (NL-coflows), which build a polynomial in k. We will present a
representation of this polynomial using totally cyclic subdigraphs, which form a
graded poset Q. Furthermore we will decompose our NL-coflow polynomial, which
becomes the chromatic polynomial of a digraph by multiplication with the number
of colors to the number of components, using the geometric structure of the face
lattices of a class of polyhedra that corresponds to Q. This decomposition leads to
a representation using certain subsets of edges of the underlying undirected graph
and will confirm the equality of our chromatic polynomial of a digraph and the
chromatic polynomial of the underlying undirected graph in the case of symmetric
digraphs.

Keywords Dichromatic number · Chromatic polynomial · Flow polynomial ·
Totally cyclic subdigraphs · Face lattice

1 Introduction

The notion of classic graph coloring deals with finding the smallest integer k such
that the vertices of an undirected graph can be colored with k colors, where no
two adjacent vertices share the same color. The chromatic polynomial counts those
proper colorings a graph admits, subject to the number of colors. William T. Tutte
developed a dual concept [17], namely his nowhere-zero flows (NZ-flows), which
build a polynomial, the flow polynomial, too.
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We turn our attention to directed graphs, or digraphs for short. In 1982 Víctor
Neumann-Lara [12] introduced the dichromatic number of a digraph D as the
smallest integer k such that the vertices of D can be colored with k colors and each
color class induces an acyclic digraph. This seems to be a reasonable generalization
of the chromatic number since both numbers coincide in the symmetric case, where
we have all arcs in both directions.

Moreover Neumann-Lara conjectured in 1985, that every orientation of a simple
planar graph can be acyclically colored with two colors [13]. Regarding the
dichromatic number this is not the only conjecture remaining widely open. Up to
some relaxations, for instance Mohar and Li [10] affirmed the two-color-conjecture
for planar digraphs of digirth four, it is known [4], that deciding whether an arbitrary
digraph has dichromatic number at most two is NP-complete.

Although some progress has been made according thresholds (see e.g. [8]), even
the complete case seems to be quite hard. To our knowledge it is not known how
many vertices suffice to build a tournament which has dichromatic number five [14].

Nevertheless, Ellis and Soukup determined [6] thresholds for the minimum num-
ber of cycles, where reversing their orientation yields a digraph resp. tournament
that has dichromatic number at most two.

Comparing the chromatic and the dichromatic number Erdős and Neumann-
Lara conjectured [7] in 1979 that if the dichromatic number of a class of graphs
is bounded, so is their chromatic number. While Mohar and Wu [11] considered the
fractional chromatic number of linear programming proving a fractional version,
this is another conjecture remaining unsolved.

With our work we hope to contribute to a better understanding of the dichromatic
number. W. Hochstättler [9] developed a flow theory for the dichromatic number
transferring Tutte’s theory of NZ-flows from classic graph colorings. Together with
B. Altenbokum [2] we pursued this analogy by introducing algebraic Neumann-
Lara-flows (NL-flows) as well as a polynomial counting these flows. The formula
we derived contains the Möbius function of a certain poset. Here, we will derive the
values of the Möbius function by showing that the poset correlates to the face lattice
of a polyhedral cone.

Probably, the chromatic polynomial of a graph is better known than the flow
polynomial. Therefore, in this paper we consider the dual case of our NL-flow
polynomial, the NL-coflow polynomial which equals the chromatic polynomial for
the dichromatic number divided by the number of colors if the digraph is connected.
We will present a representation using totally cyclic subdigraphs and decompose
them to obtain an even simpler representation. In particular, it will suffice to consider
certain subsets of edges of the underlying undirected graph.

Our notation is fairly standard and, if not explicitly defined, should follow the
books of Bondy and Murty [5] for digraphs and Beck and Sanyal [3] for polyhedral
geometry. Note that all our digraphs may have parallel and antiparallel arcs as well
as loops if not explicitly excluded.
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2 Definitions and Tools

Let G be a finite Abelian group and D = (V ,A) a digraph. Recall that a map
f : A −→ G is a flow in D, if it satisfies Kirchhoff’s law of flow conservation

∑

a∈∂+(v)

f (a) =
∑

a∈∂−(v)

f (a) (1)

in every vertex v ∈ V , where ∂+(v) and ∂−(v) denote the set of outgoing resp.
incoming arcs at v.

Analogously, a map g : A −→ G is a coflow in D, if it satisfies Kirchhoff’s law
for (weak) cycles C ⊆ A

∑

a∈C+
g(a) =

∑

a∈C−
g(a), (2)

where C+ and C− denote the set of arcs in C that are traversed in forward resp. in
backward direction.

Now let n be the number of vertices,m be the number of arcs and letM denote the
totally unimodular (n×m)-incidence matrix of D. While condition (1) is equivalent
to the condition that the vector f = (f (a1), . . . , f (am))� is an element of the null
space of M , that is Mf = 0, condition (2) is equivalent to the condition that the
vector g = (g(a1), . . . , g(am)) is an element of the row space ofM , that is g = pM ,
for some (1 × n)-vector p ∈ G|V |.

Definition 1 A digraph D = (V ,A) is called totally cyclic, if every component is
strongly connected. A feedback arc set of a digraph is a set S ⊆ A such that D − S

is acyclic.

Definition 2 Let D = (V ,A) be a digraph and G a finite Abelian group. An NL-
G-coflow in D is a coflow g : A −→ G in D whose support contains a feedback
arc set. For k ∈ Z and G = Z, a coflow g is an NL-k-coflow, if

g(a) ∈ {0,±1, . . . ,±(k − 1)} , for all a ∈ A,

such that its support contains a feedback arc set.

In order to develop a closed formula for the number of NL-G-coflows we
use a generalization of the well-known inclusion-exclusion formula, the Möbius
inversion.

Definition 3 (See e.g. [1]) Let (P,≤) be a finite poset, then theMöbius function is
defined as follows

μ : P × P → Z, μ(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 , if x � y

1 , if x = y

−∑
x≤z<y μ(x, z) , otherwise .
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Proposition 1 (See [1, 15]) Let (P,≤) be a finite poset, f, g : P −→ K functions
and μ the Möbius function. Then the following equivalence holds

f (x) =
∑

y≥x

g(y), for all x ∈ P ⇐⇒ g(x) =
∑

y≥x

μ(x, y)f (y), for all x ∈ P.

With this so called Möbius inversion from above it will suffice to compute the
number of G-coflows in some given minors B, which is |G|rk(B), where rk(B) is the
rank of the incidence matrix of G[B] which equals |V (B)| − c(B), i.e. the number
of vertices minus the number of connected components of G[B].

3 The NL-Coflow Polynomial

In this chapter we will define the NL-coflow polynomial, which counts the number
of NL-G-coflows, using Möbius inversion. Therefor we need a specific partially
ordered set. The following poset (C ,≥) with

C := {
A/C | ∃ C1, . . . , Cr directed cycles, such that C =

r⋃

i=1

Ci

}

and

A/
⋃

j∈J

Cj ≥ A/
⋃

i∈I

Ci :⇔
⋃

j∈J

Cj ⊆
⋃

i∈I

Ci,

will serve our purpose. Note that in case D is strongly connected, A is the unique
minimum of this poset.

Definition 4 Let D = (V ,A) be a digraph and μ the Möbius function of C . Then
the NL-Coflow Polynomial of D is defined as

ψD
NL(x) :=

∑

Y∈C
μ(A, Y )xrk(Y ).

The dual version of Theorem 3.5 in [2] reveals the following.

Theorem 1 The number of NL-G-coflows of a digraphD depends only on the order
k of G and is given by ψD

NL(k).

Proof Using Proposition 1 with fk, gk : C → Z, such that fk(Y ) indicates all
G-coflows and gk(Y ) all NL-G-coflows in D[Y ], it suffices to show that

fk(Z) =
∑

Y≤Z
Y∈C

gk(Y ) (3)
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holds for all Z ∈ C . Then we obtain

ψD
NL(k) = gk(A) =

∑

Y≤A
Y∈C

μ(A, Y )fk(Y ) =
∑

Y∈C
μ(A, Y )krk(Y ),

since the number of G-coflows on D[Y ] is given by krk(Y ).
Concerning (3) let Z ∈ C and ϕ be a G-coflow on D[Z]. With d we denote the

number of directed cycles in D[Z] and set

Y := Z/

d⋃

i=1

{Ci | Ci is a directed cycle in D[Z] and ∀c ∈ Ci : ϕ(c) = 0} .

Then clearly Y ∈ C and ϕ|Y is an NL-G-coflow on D[Y ].
The other direction is obvious since every NL-G-coflow g on D[Y ] with Y ∈ C

can be extended to a G-coflow g̃ on D[Z], setting g̃(a) := 0G for all a ∈ Z−Y . �

3.1 Totally Cyclic Subdigraphs

Since many unions of directed cycles determine the same strongly connected
subdigraph it suffices to consider all totally cyclic subdigraphs which turn out to
form a graded poset.

Lemma 1 The poset

Q := {B ⊆ A | D[B] is totally cyclic subdigraph of D},

ordered by inclusion, is a graded poset with rank function rkQ and its Möbius
function alternates in the following fashion:

μQ(∅, B) = (−1)rkQ(B).

Proof Let M be the totally unimodular (n × m)-incidence matrix of D. We will
show that the face lattice of the polyhedral cone PC described by

⎛

⎝
M

−M

−I

⎞

⎠ x ≤ 0,

corresponds to Q.
Since M is totally unimodular all extreme rays of PC are spanned by integral

points. It follows that every totally cyclic subdigraph can be represented by a face
of PC, where an arc 1 ≤ i ≤ m exists iff for the corresponding entry xi > 0 holds.
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Thus the elements of the face lattice of PC coincide with the elements of our
poset and so do the Möbius functions. Well-known facts from topological geometry
which can be found for instance in Corollary 3.3.3 and Theorem 3.5.1 in [3] yield
that Q is a graded poset and

μQ(∅, B) = (−1)dim(B)+1χ(B) = (−1)rkQ(B)χ(B),

where χ denotes the reduced Euler characteristic, which equals one in this case,
since the faces of PC build non-empty closed polytopes (see e.g. Thm. 3.4.1 in
[3]). �
Theorem 2 Let D be a digraph and (Q,⊆) the poset defined above. Then the NL-
coflow polynomial of D is given by

ψD
NL(x) =

∑

B∈Q

(−1)rkQ(B)xrk(A/B).

Proof With Lemma 1 we immediately obtain:

ψD
NL(x) =

∑

Y∈C
μ(A, Y )xrk(Y ) =

∑

B∈Q

μQ(∅, B)xrk(A/B) =
∑

B∈Q

(−1)rkQ(B)xrk(A/B).

�
It is well known that coflows and colorings are in bijection, once the color of

some vertex in each connected component has been chosen. As a consequence
we have the following corollary, where c(D) denotes the number of connected
components in D.

Corollary 1 The chromatic polynomial of a digraph D is given as

χ(D, x) = xc(D) · ψD
NL(x) =

∑

B∈Q

(−1)rkQ(B)xrk(A/B)+c(D).

4 Decomposing the NL-Coflow Polynomial

In the following we will put our previous results into the setting of polyhedral
geometry. There we will find a way to compound some of the objects considered,
which will, going back to graph theory, decompose the NL-coflow polynomial such
that only certain subsets of edges of the underlying undirected graph need to be
considered.

More precisely, fixing the support, implying a fixed exponent in our polynomial,
we will show that all existing totally cyclic orientations correlate to the face lattice
of some usually unbounded polyhedron. This will yield a relation between the above
mentioned poset Q and the maximal faces of a class of polyhedra to be defined in
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the following. Using the geometric structure of those polyhedra we can contract
the corresponding order complex and, by correlating the corresponding Möbius
functions, obtain an even simpler representation of the NL-coflow polynomial and
therefore of the chromatic polynomial of arbitrary digraphs.

Let D = (V ,A) be a digraph, G = (V ,E) its underlying undirected graph with
|V | = n and |E| = m. For ∅ �= B ⊆ E a partial orientation O(B) is an orientation
of a subset B ′ ⊆ B of the edges, where the remaining edges in B \B ′ are considered
as pair of antiparallel arcs, called digons. We say a partial orientation is totally cyclic
if the corresponding induced digraph is. Once the support is fixed, there is a unique
inclusionwise maximal partial orientation, denoted with Ō(B), where we have as
many digons as possible.

A flow x = (
⇀
x ,

↼
x )� ∈ R

2m on D is related to a partial orientation O(B) by
orienting only the edges with xi �= 0.

Let M be the totally unimodular incidence (n × m)-matrix of the subgraph
induced by ∅ �= B ⊆ E. Then x ∈ R

2m is a flow iff (M,−M)x = 0 holds.
Now, consider the following system

(M,−M)(
⇀
x ,

↼
x )� = 0

⇀
xi + ↼

xi ≥ 1 ∀1 ≤ i ≤ m
⇀
xi = 0 if

⇀

i /∈ A but
↼

i ∈ A
↼
xi = 0 if

↼

i /∈ A but
⇀

i ∈ A
⇀
x ,

↼
x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(P )

We denote the polyhedron described above with P and take a look at its vertices,
which are the solutions of the program (P ), in the first place.

Lemma 2 Let x = (
⇀
x ,

↼
x )� be a solution of (P ). Then a solution y = (

⇀
y ,

↼
y )�

of (P ) exists with supp(y) ⊆ supp(x) and
⇀
ya = ↼

ya = 1
2 , if a is a bridge and

min{⇀
ya,

↼
ya} = 0, otherwise.

Proof Let y be a solution with minimal support such that the corresponding partial
orientation contains a minimum number of directed cycles.

Let 1 ≤ ⇀
a ≤ m. If a is a bridge, then y⇀

a
= y↼

a
has to hold since otherwise the

flow condition would be violated. In the other case assume that y⇀
a

≥ y↼
a

> 0. Let
⇀
a = (v,w) and C := {⇀a , b0, b1, . . . , bk} be a directed cycle. After reassigning

ỹ⇀
a

:= 1 + y⇀
a

− y↼
a

≥ 1,

ỹ↼
a

:= y↼
a

− y↼
a

= 0,

ỹb := yb + 1,∀b ∈ C \ {a}
ỹc := yc, otherwise,
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the flow condition still holds in v:

∑

i∈∂+(v)

ỹi =
∑

i∈∂+(v)

i �=⇀
a

yi + 1 + y⇀
a

− y↼
a

=
∑

i∈∂+(v)

yi + 1 + y⇀
a

− y↼
a

− y⇀
a

=
∑

i∈∂−(v)

yi + 1 − y↼
a

=
∑

i∈∂−(v)

i �=↼
a ,i �=bk

ỹi + 1 + yb =
∑

i∈∂−(v)

ỹi ,

as well as in w:

∑

i∈∂+(w)

ỹi =
∑

i∈∂+(w)

i �=↼
a ,i �=b0

yi + yb + 1 =
∑

i∈∂+(w)

yi − y↼
a

+ 1

=
∑

i∈∂−(w)

i �=⇀
a

ỹi + y⇀
a

+ 1 − y↼
a

=
∑

i∈∂−(w)

ỹi .

Thus the solution ỹ yields a contradiction to y having minimal support. �
As a result of the preceding lemma, the vertices V of P are totally cyclic

subdigraphs, where the only remaining digons are bridges.
To describe the polyhedron completely we take a look at the recession cone

rec(P ) = {y ∈ R
2m | ∀c ∈ P, ∀λ ≥ 0 : c + λy ∈ P }

= P(A, 0)

= Cone
(
{y ∈ R

2m | y is directed cycle}
)

.

Thus we have P = Conv(V ) + Cone
({y ∈ R

2m | y is directed cycle}) .

In the following we would like to correlate the elements of our poset Q to the
face lattice of P , where maximal and minimal elements, 1̂ and 0̂, are adjoined and
the corresponding Möbius function is denoted with μP .

Since there may be several faces corresponding to the same element of Q we
define a closure operator on the set of faces cl : F → F as follows, where eq(F )

is the set of constraints in (P ) where equality holds:

cl(F ) = Fmax :=
∨

{F̃ | supp(F̃ ) = supp(F )}
= {x ∈ P | supp(Fmax) = supp(F ), eq(Fmax) is minimal},

where ∨ is the join of all faces with equal support in the face lattice.
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This function is well-defined since the dimension of every face is bounded by 2m
and Fmax is uniquely determined since the join is. It is also easy to check that cl is
indeed a closure operator.

Now we can identify the maximal faces with the elements of Q by either
forgetting the values of a flow or by first taking an arbitrary flow x ∈ R

2m+ satisfying
⇀
x + ↼

x ≥ 1, that lives on some face Fx and then taking its closure operator cl(Fx).
As a result the Möbius function of F behaves for x, y ∈ P as follows (see

Prop. 2 on p. 349 in [15]):

∑

z∈P
cl(Fz)=cl(Fy)

μP (Fx, Fz) =
{

μF̄ (cl(Fx), cl(Fy)) , if Fx = cl(Fx)

0 , if Fx ⊂ cl(Fx)
.

This is why we will simply write μP (B,B ′) instead of μF̄ (cl(Fx), cl(Fy)) for

flows x, y on B,B ′ ∈ Q. Also we identify 0̂ with ∅ and 1̂ with Ō(B), respectively.
Examining the polyhedron P we find three cases which determine the structure

and therefore the Möbius function of the face lattice:

1. There is exactly one vertex v in P .

1.1 There are no further faces in P including v, i.e. dim(P ) = 0.
1.2 There are further faces in P including v, so P is a pointed cone and

dim(P ) ≥ 1.

2. There are at least two vertices in P .

Note that all cases are mutually exclusive and complete since every P has at least
one vertex.

Lemma 3 Let ∅ �= X ∈ F be a face of P . Then

μP (∅, X) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if dim(X) = 0,

(−1)rkP (X) in cases 1.1 and 2,

0 in case 1.2.

Proof If X is a vertex, then dim(X) = 0 and

μP (∅, X) = −μP (∅,∅) = −1 = (−1)rkP (X).

For the other cases we will use Theorem 3.5.1 and Corollary 3.3.3 in [3]:

μP (∅, X) = (−1)dim(X)+1χ(X) = (−1)rkP (X)χ(X),

where χ denotes the reduced Euler characteristic.
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1.2 Since there is only one vertex, every face of dimension greater 0 builds a pointed
cone. Proposition 3.4.9 in [3] yields that χ(X) = 0.

2. Since there are at least two vertices, there are also some faces including them.
Those form non-empty closed polytopes with χ(X) = 1 (see Thm. 3.4.1 in
[3]). �

Comparing the Möbius functions of P and Q we find the following relation,
where cr(B) = |B| − |V (B)| + c(B) denotes the corank and β(B) the number of
bridges in the graph induced by B ⊆ E.

Lemma 4 Let ∅ �= B ⊆ E and O(B) be a totally cyclic partial orientation of B,
then

μQ(∅,O(B)) = (−1)cr(B)+β(B)+1μP (∅,O(B))

holds, if μP (∅, X) alternates, i.e. in cases 1.1, 2 and if dim(X) = 0, where X ∈ F
is the maximal face corresponding to O(B). Otherwise (in case 1.2) we find

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = 0.

Proof If both Möbius functions alternate it suffices to consider elementsO(B) ⊆ A

where rkP (O(B)) is minimal. In this case μP (∅,O(B)) = −1 and we are left to
verify

μQ(∅,O(B)) = (−1)cr(B)+β(B).

We prove the statement by induction over the number of edges in B. The base cases
can be easily checked. Deleting one edge d ∈ B yields the following two cases:

1. d is a bridge.
Then rkQ(B −d) = rkQ(B)−1, cr(B −d) = cr(B) and β(B −d) = β(B)−1.

2. d is not a bridge.
Then rkQ(B −d) = rkQ(B)−1, cr(B −d) = cr(B)−1 and β(B −d) = β(B).

Using the induction hypothesis we find in both cases

(−1)rkQ(B) = (−1)rkQ(B−d)+1 IH= (−1)cr(B−d)+β(B−d)+1 = (−1)cr(B)+β(B).

Otherwise, i.e. case 1.2 due to Lemma 3, we have exactly one vertex and some faces
containing it. The number of these faces is determined by the number of digons in
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Ō(B), which we denote with d. Then we have

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = −
(

d

0

)
+

(
d

1

)
−

(
d

2

)
+ . . . ±

(
d

d

)
= −

d∑

k=0

(−1)k
(

d

k

)
= 0.

�

The key point is the following lemma, where the contraction finally takes place.

Lemma 5 Let ∅ �= B ⊆ E. Then

∑

∅�=X⊆Ō(B)

μP (∅, X) = −1.

Proof Since P is obviously unbounded and has at least one vertex, Corollary
3.4.10 in [3] yields that P has reduced Euler characteristic zero. Consequently
the corresponding Möbius function μP (∅, Ō(B)), which is the reduced Euler
characteristic (see Prop. 3.8.6 in [16]), equals zero, too. As a result,

0 = μP (∅, Ō(B)) = −
∑

∅⊆X �=Ō(B)

μP (∅, X) = −1 −
∑

∅�=X⊆Ō(B)

μP (∅, X)

holds. �
Combining the last two lemmas we find two different kinds of compression:

In cases 1.1 and 2 it suffices to count the element having minimal support due
to Lemma 5 and in case 1.2 all totally cyclic partial orientations sum up to zero
due to Lemma 4. The following observation translates these cases from polyhedral
language into graph theoretical properties.

Definition 5 Let D = (V ,A) be a totally cyclic digraph. A digon d ⊆ A is called
redundant for cyclicity if D − d is still totally cyclic.

Note that every bridge is redundant for cyclicity. Fig. 1 shows a digon that is
redundant but not a bridge.

Lemma 6 Case 1.2 does not hold true if and only if there exists a digon in Ō(B)

that is redundant for cyclicity but not a bridge, or every digon in Ō(B) is a bridge.

Fig. 1 A digon that is redundant for cyclicity
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Proof First we proof the following equivalence:

There are at least two vertices in P if and only if there is a digon in Ō(B) that is redundant
for cyclicity but not a bridge.

Let e be a digon in Ō(B) that is redundant but not a bridge, then Ō(B) − ↼
e

and Ō(B) − ⇀
e contain vertices including

↼
e , resp.

⇀
e which hence are two different

vertices in P . For the other direction take vertices v �= w in P . Then v ∪ w is a
face in P including a digon e that is no bridge. Assume e is not redundant, then

Ō(B)−↼
e or Ō(B)−⇀

e could not have been totally cyclic and so one of the vertices
v or w.

Consequently case 1.2 does not hold true iff there is a digon that is redundant but
not a bridge (case 2) or, if there is only one vertex in P , then there are no further
faces including it, which means that every digon in Ō(B) is a bridge (case 1.1). �

This leads to the following main result of this paper, a representation of the NL-
coflow polynomial for arbitrary digraphs, where we sum only over certain subsets
of the edges of the underlying undirected graph.

Theorem 3 Let D = (V ,A) be a digraph and G = (V ,E) its underlying
undirected graph. Then

ψD
NL(x) =

∑

B∈T C

(−1)|B|xc̃(B)−c(D)

holds, where c̃(B) counts the components in the spanning subgraph of G with edge
set B and T C includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A such that Ō(B) has no digons but bridges or Ō(B) has a digon that is
redundant but not a bridge.

Proof Instead of counting totally cyclic subdigraphs one can count totally cyclic
partial orientations of a fixed underlying subgraph. Thus the preceding lemmas yield

ψD
NL(x) =

∑

X⊆A
tot.cyclic

μQ(∅, X)xrk(A/X)

=
∑

B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B)

=
∑

∅�=B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B) + x−c(D)

Lemma 4=
∑

∅�=B⊆E
(∗)

∑

O(B)
tot.cyclic

(−1)cr(B)+β(B)+1μP (∅,O(B))xrk(A/B) + x−c(D)
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Fig. 2 A totally cyclic orientation that is not considered in T C

Lemma 5=
∑

∅�=B⊆E
(∗)

(−1)cr(B)+β(B)xrk(A/B) + x−c(D)

=
∑

B⊆E
(∗)

(−1)cr(B)+β(B)xn−|V (B)|+c(B)−c(D).

Condition (∗) means, that we sum over all B ⊆ E having a totally cyclic partial
orientation O(B) ⊆ A, where case 1.2 is not true. Due to Lemma 6 this situation
occurs if and only if Ō(B) has no digons but bridges, or there exists a digon that is
redundant but not a bridge. Clearly, n − |V (B)| + c(B) = c̃(B) holds, and we are
left to verify

(−1)cr(B)+β(B) = (−1)|B|.

This can be done by induction. Deleting a bridge d ∈ B yields cr(B − d) = cr(B)

and β(B−d) = β(B)−1 while deleting a non-bridge yields cr(B−d) = cr(B)−1
and β(B − d) = β(B). In both cases we find

(−1)cr(B)+β(B) = (−1)cr(B−d)+β(B−d)+1 IH= (−1)|B−d|+1 = (−1)|B|. �

Note that T C includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A, but not those, where Ō(B) includes a digon that is no bridge and no
digon is redundant unless it is a bridge in Ō(B) (Fig. 2).

5 Symmetric Digraphs

Considering symmetric digraphs D = (V ,A), it is obvious that the NL-coflow
polynomial equals the chromatic polynomial χ(G, x) of the underlying undirected
graph G = (V ,E) divided by the number of colors since both polynomials count
the same objects. Using Theorem 3 we find an alternative proof of this fact, where
the chromatic polynomial is represented by (see [5])

χ(G, x) =
∑

B⊆E

(−1)|B|xc̃(B).
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Corollary 2 Let D = (V ,A) be a symmetric digraph and G = (V ,E) its
underlying undirected graph. Then the following holds

ψD
NL(x) = χ(G, x) · x−c(G).

Proof In a symmetric digraph every edge is a digon, so for every subset B ⊆ E

there exists a totally cyclic partial orientation O(B). Furthermore, if cr(D) = 0,
every digon is a bridge and if cr(D) ≥ 1 there exists a cycle of length ≥ 3 in D

where every digon is redundant but no bridge. �
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