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Preface

The Cologne-Twente Workshop (CTW) on Graphs and Combinatorial Optimization
is a workshop series initiated by Ulrich Faigle, around the time he moved from
the Twente University to the University of Cologne. After many CTW editions
in Twente and Cologne, it was decided that CTWs were mature enough to move
about: in 2004, the CTW was organized in Villa Vigoni (Menaggio, Como, Italy)
by Francesco Maffioli (Politecnico di Milano) and Leo Liberti (CNRS-LIX). Since
then, the CTW visited again Italy for three times, beyond France, Germany, the
Netherlands, and Turkey. This edition is the first time that the CTW is organized
with the contribution of CNR-IASI members (Claudio Gentile, Giuseppe Stecca,
Paolo Ventura, Giovanni Rinaldi, and Fabio Furini) in addition to the members of
University of Rome “Tor Vergata” (Andrea Pacifici), Roma Tre University (Gaia
Nicosia), and CNRS & LIX Polytechnique Palaiseau (Leo Liberti).

Having been initially set up by discrete applied mathematicians, the CTW still
follows the mathematical tradition. In this CTW edition (hereafter, CTW2020), for
the first time we adopted two submission tracks: standard papers of at most 12 pages
and traditional CTW extended abstracts of at most 4 pages.

This volume collects the standard papers that were submitted to the CTW2020.
The papers underwent a standard peer review process performed by a Program
Committee consisting of 30 members:1 17 CTW steering committee members and

1Ali Fuat Alkaya (Marmara U., Turkey), Christoph Buchheim (TU Dortmund, Germany),
Francesco Carrabs (U. Salerno, Italy), Alberto Ceselli (U. Milano, Italy), Roberto Cordone (U.
Milano, Italy), Ekrem Duman (Ozyegin U., Turkey), Yuri Faenza (Columbia U., USA), Bernard
Gendron (IRO U. Montreal & CIRRELT, Canada), Claudio Gentile (CNR-IASI, Italy), Johann
Hurink (U. Twente, The Netherlands), Ola Jabali (Politecnico di Milano, Italy), Leo Liberti (CNRS
& LIX Polytechnique Palaiseau, France), Frauke Liers (FAU Erlangen-Nuremberg, Germany),
Bodo Manthey (U. Twente, The Netherlands), Gaia Nicosia (U. Roma Tre, Italy), Tony Nixon (U.
Lancaster, UK), Andrea Pacifici (U. Roma Tor Vergata, Italy), Ulrich Pferschy (U. Graz, Austria),
Stefan Pickl (U. Bundeswehr München, Germany), Michael Poss (LIRMM U. Montpellier &
CNRS, France), Bert Randerath (U. Koeln, Germany), Giovanni Righini (U. Milano, Italy), Heiko
Roeglin (U. Bonn, Germany), Oliver Schaudt (RTWH Aachen U., Germany), Rainer Schrader
(U. Koeln, Germany), Giuseppe Stecca (CNR-IASI, Italy), Frank Vallentin (U. Koeln, Germany),
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vi Preface

13 guest members. PC members came from Italy, Germany, France, the USA,
Canada, the Netherlands, the UK, Austria, and Turkey. We received 46 submissions
of which we accepted 31 for publication in this volume with a rate of success of
67%.

The chapters of this volume present works on graph theory, discrete mathe-
matics, combinatorial optimization, and operations research methods, with partic-
ular emphasis on coloring, graph decomposition, connectivity, distance geometry,
mixed-integer programming, machine learning, heuristics, meta-heuristics, math-
heuristics, and exact methods. Applications are related to logistics, production
planning, energy, telecommunications, healthcare, and circular economy.

The scientific program of the CTW2020 includes the 31 standard papers in this
volume, 33 extended abstracts, and two plenary invited talks. As usual for the CTW,
extended abstracts were subject to a high acceptance level, allowing also papers
presenting preliminary results with a particular accent to works presented by MScs,
PhDs, or Postdocs. The traditional CTW extended abstracts will be published on
the conference’s website http://ctw2020.iasi.cnr.it, where also additional material
collected during the conference will be posted.

We thank all the PC members and the subreviewers for the complex work
performed to select the papers and to improve their quality considering also a
possible second round of revision.

Following the CTW tradition, a special issue of Discrete Applied Mathematics
(DAM) dedicated to this workshop and its main topics of interest will be edited.

Not every CTW edition features invited plenary speakers, but this one does.
Two very well-known researchers accepted our invitation: Prof. Dan Bienstock
(Columbia University) and Prof. Marco Sciandrone (University of Florence). Prof.
Dan Bienstock works in many topics of Combinatorial Optimization, Integer and
Mixed-Integer Programming, and Network Design. He is the author of many journal
and conference papers and of two textbooks: “Electrical Transmission System
Cascades and Vulnerability: An Operations Research Viewpoint,” ISBN 978-1-
611974-15-7, SIAM-MOS Series on Optimization (2015), and “Potential Function
Methods for Approximately Solving Linear Programming Problems: Theory and
Practice,” ISBN 1-4020-7173-6, Kluwer Academic Publishers, Boston (2002). Prof.
Marco Sciandrone works in Nonlinear Programming with a particular expertise in
Machine Learning, Neural Networks, Multiobjective Optimization, and Nonlinear
Approximation of Discrete Variables.

Finally, we thank AIRO for hosting this volume in its AIRO-Springer series.
We thank both AIRO and CNR-IASI for their support to the realization of the
conference.

Paolo Ventura (CNR-IASI, Italy), Maria Teresa Vespucci (U. Bergamo, Italy), and Angelika
Wiegele (Alpen-Adria U. Klagenfurt, Austria).

http://ctw2020.iasi.cnr.it


Preface vii

This conference was originally supposed to take place in the wonderful Ischia
island on 15–17 June, 2020. Due to the Covid-19 pandemic, we were first obliged
to reschedule the conference in September 14–16, 2020, and then to move it online
as the majority of conferences in 2020. Nevertheless, we very much hope you will
all enjoy the CTW2020.

Rome, Italy Claudio Gentile
Rome, Italy Giuseppe Stecca
Rome, Italy Paolo Ventura
September 2020
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The Chromatic Polynomial of a Digraph

Winfried Hochstättler and Johanna Wiehe

Abstract An acyclic coloring of a digraph as defined by V. Neumann-Lara is a
vertex-coloring such that no monochromatic directed cycles occur. Counting the
number of such colorings with k colors can be done by counting so-called Neumann-
Lara-coflows (NL-coflows), which build a polynomial in k. We will present a
representation of this polynomial using totally cyclic subdigraphs, which form a
graded poset Q. Furthermore we will decompose our NL-coflow polynomial, which
becomes the chromatic polynomial of a digraph by multiplication with the number
of colors to the number of components, using the geometric structure of the face
lattices of a class of polyhedra that corresponds to Q. This decomposition leads to
a representation using certain subsets of edges of the underlying undirected graph
and will confirm the equality of our chromatic polynomial of a digraph and the
chromatic polynomial of the underlying undirected graph in the case of symmetric
digraphs.

Keywords Dichromatic number · Chromatic polynomial · Flow polynomial ·
Totally cyclic subdigraphs · Face lattice

1 Introduction

The notion of classic graph coloring deals with finding the smallest integer k such
that the vertices of an undirected graph can be colored with k colors, where no
two adjacent vertices share the same color. The chromatic polynomial counts those
proper colorings a graph admits, subject to the number of colors. William T. Tutte
developed a dual concept [17], namely his nowhere-zero flows (NZ-flows), which
build a polynomial, the flow polynomial, too.

W. Hochstättler · J. Wiehe (�)
FernUniversität in Hagen, Hagen, Germany
e-mail: winfried.hochstaettler@fernuni-hagen.de; johanna.wiehe@fernuni-hagen.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Gentile et al. (eds.), Graphs and Combinatorial Optimization:
from Theory to Applications, AIRO Springer Series 5,
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2 W. Hochstättler and J. Wiehe

We turn our attention to directed graphs, or digraphs for short. In 1982 Víctor
Neumann-Lara [12] introduced the dichromatic number of a digraph D as the
smallest integer k such that the vertices of D can be colored with k colors and each
color class induces an acyclic digraph. This seems to be a reasonable generalization
of the chromatic number since both numbers coincide in the symmetric case, where
we have all arcs in both directions.

Moreover Neumann-Lara conjectured in 1985, that every orientation of a simple
planar graph can be acyclically colored with two colors [13]. Regarding the
dichromatic number this is not the only conjecture remaining widely open. Up to
some relaxations, for instance Mohar and Li [10] affirmed the two-color-conjecture
for planar digraphs of digirth four, it is known [4], that deciding whether an arbitrary
digraph has dichromatic number at most two is NP-complete.

Although some progress has been made according thresholds (see e.g. [8]), even
the complete case seems to be quite hard. To our knowledge it is not known how
many vertices suffice to build a tournament which has dichromatic number five [14].

Nevertheless, Ellis and Soukup determined [6] thresholds for the minimum num-
ber of cycles, where reversing their orientation yields a digraph resp. tournament
that has dichromatic number at most two.

Comparing the chromatic and the dichromatic number Erdős and Neumann-
Lara conjectured [7] in 1979 that if the dichromatic number of a class of graphs
is bounded, so is their chromatic number. While Mohar and Wu [11] considered the
fractional chromatic number of linear programming proving a fractional version,
this is another conjecture remaining unsolved.

With our work we hope to contribute to a better understanding of the dichromatic
number. W. Hochstättler [9] developed a flow theory for the dichromatic number
transferring Tutte’s theory of NZ-flows from classic graph colorings. Together with
B. Altenbokum [2] we pursued this analogy by introducing algebraic Neumann-
Lara-flows (NL-flows) as well as a polynomial counting these flows. The formula
we derived contains the Möbius function of a certain poset. Here, we will derive the
values of the Möbius function by showing that the poset correlates to the face lattice
of a polyhedral cone.

Probably, the chromatic polynomial of a graph is better known than the flow
polynomial. Therefore, in this paper we consider the dual case of our NL-flow
polynomial, the NL-coflow polynomial which equals the chromatic polynomial for
the dichromatic number divided by the number of colors if the digraph is connected.
We will present a representation using totally cyclic subdigraphs and decompose
them to obtain an even simpler representation. In particular, it will suffice to consider
certain subsets of edges of the underlying undirected graph.

Our notation is fairly standard and, if not explicitly defined, should follow the
books of Bondy and Murty [5] for digraphs and Beck and Sanyal [3] for polyhedral
geometry. Note that all our digraphs may have parallel and antiparallel arcs as well
as loops if not explicitly excluded.
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2 Definitions and Tools

Let G be a finite Abelian group and D = (V ,A) a digraph. Recall that a map
f : A −→ G is a flow in D, if it satisfies Kirchhoff’s law of flow conservation

∑

a∈∂+(v)

f (a) =
∑

a∈∂−(v)

f (a) (1)

in every vertex v ∈ V , where ∂+(v) and ∂−(v) denote the set of outgoing resp.
incoming arcs at v.

Analogously, a map g : A −→ G is a coflow in D, if it satisfies Kirchhoff’s law
for (weak) cycles C ⊆ A

∑

a∈C+
g(a) =

∑

a∈C−
g(a), (2)

where C+ and C− denote the set of arcs in C that are traversed in forward resp. in
backward direction.

Now let n be the number of vertices,m be the number of arcs and let M denote the
totally unimodular (n×m)-incidence matrix of D. While condition (1) is equivalent
to the condition that the vector f = (f (a1), . . . , f (am))

� is an element of the null
space of M , that is Mf = 0, condition (2) is equivalent to the condition that the
vector g = (g(a1), . . . , g(am)) is an element of the row space of M , that is g = pM ,
for some (1 × n)-vector p ∈ G|V |.

Definition 1 A digraph D = (V ,A) is called totally cyclic, if every component is
strongly connected. A feedback arc set of a digraph is a set S ⊆ A such that D − S

is acyclic.

Definition 2 Let D = (V ,A) be a digraph and G a finite Abelian group. An NL-
G-coflow in D is a coflow g : A −→ G in D whose support contains a feedback
arc set. For k ∈ Z and G = Z, a coflow g is an NL-k-coflow, if

g(a) ∈ {0,±1, . . . ,±(k − 1)} , for all a ∈ A,

such that its support contains a feedback arc set.

In order to develop a closed formula for the number of NL-G-coflows we
use a generalization of the well-known inclusion-exclusion formula, the Möbius
inversion.

Definition 3 (See e.g. [1]) Let (P,≤) be a finite poset, then the Möbius function is
defined as follows

μ : P × P → Z, μ(x, y) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 , if x � y

1 , if x = y

−∑x≤z<y μ(x, z) , otherwise .
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Proposition 1 (See [1, 15]) Let (P,≤) be a finite poset, f, g : P −→ K functions
and μ the Möbius function. Then the following equivalence holds

f (x) =
∑

y≥x

g(y), for all x ∈ P ⇐⇒ g(x) =
∑

y≥x

μ(x, y)f (y), for all x ∈ P.

With this so called Möbius inversion from above it will suffice to compute the
number of G-coflows in some given minors B, which is |G|rk(B), where rk(B) is the
rank of the incidence matrix of G[B] which equals |V (B)| − c(B), i.e. the number
of vertices minus the number of connected components of G[B].

3 The NL-Coflow Polynomial

In this chapter we will define the NL-coflow polynomial, which counts the number
of NL-G-coflows, using Möbius inversion. Therefor we need a specific partially
ordered set. The following poset (C ,≥) with

C := {
A/C | ∃ C1, . . . , Cr directed cycles, such that C =

r⋃

i=1

Ci

}

and

A/
⋃

j∈J
Cj ≥ A/

⋃

i∈I
Ci :⇔

⋃

j∈J
Cj ⊆

⋃

i∈I
Ci,

will serve our purpose. Note that in case D is strongly connected, A is the unique
minimum of this poset.

Definition 4 Let D = (V ,A) be a digraph and μ the Möbius function of C . Then
the NL-Coflow Polynomial of D is defined as

ψD
NL(x) :=

∑

Y∈C
μ(A, Y )xrk(Y ).

The dual version of Theorem 3.5 in [2] reveals the following.

Theorem 1 The number of NL-G-coflows of a digraphD depends only on the order
k of G and is given by ψD

NL(k).

Proof Using Proposition 1 with fk, gk : C → Z, such that fk(Y ) indicates all
G-coflows and gk(Y ) all NL-G-coflows in D[Y ], it suffices to show that

fk(Z) =
∑

Y≤Z
Y∈C

gk(Y ) (3)
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holds for all Z ∈ C . Then we obtain

ψD
NL(k) = gk(A) =

∑

Y≤A
Y∈C

μ(A, Y )fk(Y ) =
∑

Y∈C
μ(A, Y )krk(Y ),

since the number of G-coflows on D[Y ] is given by krk(Y ).
Concerning (3) let Z ∈ C and ϕ be a G-coflow on D[Z]. With d we denote the

number of directed cycles in D[Z] and set

Y := Z/

d⋃

i=1

{Ci | Ci is a directed cycle in D[Z] and ∀c ∈ Ci : ϕ(c) = 0} .

Then clearly Y ∈ C and ϕ|Y is an NL-G-coflow on D[Y ].
The other direction is obvious since every NL-G-coflow g on D[Y ] with Y ∈ C

can be extended to a G-coflow g̃ on D[Z], setting g̃(a) := 0G for all a ∈ Z−Y . �

3.1 Totally Cyclic Subdigraphs

Since many unions of directed cycles determine the same strongly connected
subdigraph it suffices to consider all totally cyclic subdigraphs which turn out to
form a graded poset.

Lemma 1 The poset

Q := {B ⊆ A | D[B] is totally cyclic subdigraph ofD},

ordered by inclusion, is a graded poset with rank function rkQ and its Möbius
function alternates in the following fashion:

μQ(∅, B) = (−1)rkQ(B).

Proof Let M be the totally unimodular (n × m)-incidence matrix of D. We will
show that the face lattice of the polyhedral cone PC described by

⎛

⎝
M

−M

−I

⎞

⎠ x ≤ 0,

corresponds to Q.
Since M is totally unimodular all extreme rays of PC are spanned by integral

points. It follows that every totally cyclic subdigraph can be represented by a face
of PC, where an arc 1 ≤ i ≤ m exists iff for the corresponding entry xi > 0 holds.
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Thus the elements of the face lattice of PC coincide with the elements of our
poset and so do the Möbius functions. Well-known facts from topological geometry
which can be found for instance in Corollary 3.3.3 and Theorem 3.5.1 in [3] yield
that Q is a graded poset and

μQ(∅, B) = (−1)dim(B)+1χ(B) = (−1)rkQ(B)χ(B),

where χ denotes the reduced Euler characteristic, which equals one in this case,
since the faces of PC build non-empty closed polytopes (see e.g. Thm. 3.4.1 in
[3]). �
Theorem 2 Let D be a digraph and (Q,⊆) the poset defined above. Then the NL-
coflow polynomial ofD is given by

ψD
NL(x) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B).

Proof With Lemma 1 we immediately obtain:

ψD
NL(x) =

∑

Y∈C
μ(A, Y)xrk(Y ) =

∑

B∈Q
μQ(∅, B)xrk(A/B) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B).

�
It is well known that coflows and colorings are in bijection, once the color of

some vertex in each connected component has been chosen. As a consequence
we have the following corollary, where c(D) denotes the number of connected
components in D.

Corollary 1 The chromatic polynomial of a digraphD is given as

χ(D, x) = xc(D) · ψD
NL(x) =

∑

B∈Q
(−1)rkQ(B)xrk(A/B)+c(D).

4 Decomposing the NL-Coflow Polynomial

In the following we will put our previous results into the setting of polyhedral
geometry. There we will find a way to compound some of the objects considered,
which will, going back to graph theory, decompose the NL-coflow polynomial such
that only certain subsets of edges of the underlying undirected graph need to be
considered.

More precisely, fixing the support, implying a fixed exponent in our polynomial,
we will show that all existing totally cyclic orientations correlate to the face lattice
of some usually unbounded polyhedron. This will yield a relation between the above
mentioned poset Q and the maximal faces of a class of polyhedra to be defined in
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the following. Using the geometric structure of those polyhedra we can contract
the corresponding order complex and, by correlating the corresponding Möbius
functions, obtain an even simpler representation of the NL-coflow polynomial and
therefore of the chromatic polynomial of arbitrary digraphs.

Let D = (V ,A) be a digraph, G = (V ,E) its underlying undirected graph with
|V | = n and |E| = m. For ∅ �= B ⊆ E a partial orientation O(B) is an orientation
of a subset B ′ ⊆ B of the edges, where the remaining edges in B \B ′ are considered
as pair of antiparallel arcs, called digons. We say a partial orientation is totally cyclic
if the corresponding induced digraph is. Once the support is fixed, there is a unique
inclusionwise maximal partial orientation, denoted with Ō(B), where we have as
many digons as possible.

A flow x = (
⇀
x ,

↼
x )� ∈ R

2m on D is related to a partial orientation O(B) by
orienting only the edges with xi �= 0.

Let M be the totally unimodular incidence (n × m)-matrix of the subgraph
induced by ∅ �= B ⊆ E. Then x ∈ R

2m is a flow iff (M,−M)x = 0 holds.
Now, consider the following system

(M,−M)(
⇀
x ,

↼
x )� = 0

⇀
xi + ↼

xi ≥ 1 ∀1 ≤ i ≤ m
⇀
xi = 0 if

⇀

i /∈ A but
↼

i ∈ A
↼
xi = 0 if

↼

i /∈ A but
⇀

i ∈ A
⇀
x ,

↼
x ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(P )

We denote the polyhedron described above with P and take a look at its vertices,
which are the solutions of the program (P ), in the first place.

Lemma 2 Let x = (
⇀
x ,

↼
x )� be a solution of (P ). Then a solution y = (

⇀
y ,

↼
y )�

of (P ) exists with supp(y) ⊆ supp(x) and
⇀
ya = ↼

ya = 1
2 , if a is a bridge and

min{⇀ya, ↼
ya} = 0, otherwise.

Proof Let y be a solution with minimal support such that the corresponding partial
orientation contains a minimum number of directed cycles.

Let 1 ≤ ⇀
a ≤ m. If a is a bridge, then y⇀

a
= y↼

a
has to hold since otherwise the

flow condition would be violated. In the other case assume that y⇀
a

≥ y↼
a
> 0. Let

⇀
a = (v,w) and C := {⇀a , b0, b1, . . . , bk} be a directed cycle. After reassigning

ỹ⇀
a

:= 1 + y⇀
a

− y↼
a

≥ 1,

ỹ↼
a

:= y↼
a

− y↼
a

= 0,

ỹb := yb + 1,∀b ∈ C \ {a}
ỹc := yc, otherwise,
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the flow condition still holds in v:

∑

i∈∂+(v)

ỹi =
∑

i∈∂+(v)

i �=⇀
a

yi + 1 + y⇀
a

− y↼
a

=
∑

i∈∂+(v)

yi + 1 + y⇀
a

− y↼
a

− y⇀
a

=
∑

i∈∂−(v)

yi + 1 − y↼
a

=
∑

i∈∂−(v)

i �=↼
a ,i �=bk

ỹi + 1 + yb =
∑

i∈∂−(v)

ỹi ,

as well as in w:

∑

i∈∂+(w)

ỹi =
∑

i∈∂+(w)

i �=↼
a ,i �=b0

yi + yb + 1 =
∑

i∈∂+(w)

yi − y↼
a

+ 1

=
∑

i∈∂−(w)

i �=⇀
a

ỹi + y⇀
a

+ 1 − y↼
a

=
∑

i∈∂−(w)

ỹi .

Thus the solution ỹ yields a contradiction to y having minimal support. �
As a result of the preceding lemma, the vertices V of P are totally cyclic

subdigraphs, where the only remaining digons are bridges.
To describe the polyhedron completely we take a look at the recession cone

rec(P ) = {y ∈ R
2m | ∀c ∈ P, ∀λ ≥ 0 : c + λy ∈ P }

= P(A, 0)

= Cone
(
{y ∈ R

2m | y is directed cycle}
)
.

Thus we have P = Conv(V ) + Cone
({y ∈ R

2m | y is directed cycle}) .
In the following we would like to correlate the elements of our poset Q to the

face lattice of P , where maximal and minimal elements, 1̂ and 0̂, are adjoined and
the corresponding Möbius function is denoted with μP .

Since there may be several faces corresponding to the same element of Q we
define a closure operator on the set of faces cl : F → F as follows, where eq(F )

is the set of constraints in (P ) where equality holds:

cl(F ) = Fmax :=
∨

{F̃ | supp(F̃ ) = supp(F )}
= {x ∈ P | supp(Fmax) = supp(F ), eq(Fmax) is minimal},

where ∨ is the join of all faces with equal support in the face lattice.
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This function is well-defined since the dimension of every face is bounded by 2m
and Fmax is uniquely determined since the join is. It is also easy to check that cl is
indeed a closure operator.

Now we can identify the maximal faces with the elements of Q by either
forgetting the values of a flow or by first taking an arbitrary flow x ∈ R

2m+ satisfying
⇀
x + ↼

x ≥ 1, that lives on some face Fx and then taking its closure operator cl(Fx).
As a result the Möbius function of F behaves for x, y ∈ P as follows (see

Prop. 2 on p. 349 in [15]):

∑

z∈P
cl(Fz)=cl(Fy)

μP (Fx, Fz) =
{
μF̄ (cl(Fx), cl(Fy)) , if Fx = cl(Fx)

0 , if Fx ⊂ cl(Fx)
.

This is why we will simply write μP (B,B ′) instead of μF̄ (cl(Fx), cl(Fy)) for

flows x, y on B,B ′ ∈ Q. Also we identify 0̂ with ∅ and 1̂ with Ō(B), respectively.
Examining the polyhedron P we find three cases which determine the structure

and therefore the Möbius function of the face lattice:

1. There is exactly one vertex v in P .

1.1 There are no further faces in P including v, i.e. dim(P ) = 0.
1.2 There are further faces in P including v, so P is a pointed cone and

dim(P ) ≥ 1.

2. There are at least two vertices in P .

Note that all cases are mutually exclusive and complete since every P has at least
one vertex.

Lemma 3 Let ∅ �= X ∈ F be a face of P . Then

μP (∅,X) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 if dim(X) = 0,

(−1)rkP (X) in cases 1.1 and 2,

0 in case 1.2.

Proof If X is a vertex, then dim(X) = 0 and

μP (∅,X) = −μP (∅,∅) = −1 = (−1)rkP (X).

For the other cases we will use Theorem 3.5.1 and Corollary 3.3.3 in [3]:

μP (∅,X) = (−1)dim(X)+1χ(X) = (−1)rkP (X)χ(X),

where χ denotes the reduced Euler characteristic.
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1.2 Since there is only one vertex, every face of dimension greater 0 builds a pointed
cone. Proposition 3.4.9 in [3] yields that χ(X) = 0.

2. Since there are at least two vertices, there are also some faces including them.
Those form non-empty closed polytopes with χ(X) = 1 (see Thm. 3.4.1 in
[3]). �

Comparing the Möbius functions of P and Q we find the following relation,
where cr(B) = |B| − |V (B)| + c(B) denotes the corank and β(B) the number of
bridges in the graph induced by B ⊆ E.

Lemma 4 Let ∅ �= B ⊆ E and O(B) be a totally cyclic partial orientation of B,
then

μQ(∅,O(B)) = (−1)cr(B)+β(B)+1μP (∅,O(B))

holds, if μP (∅,X) alternates, i.e. in cases 1.1, 2 and if dim(X) = 0, where X ∈ F
is the maximal face corresponding to O(B). Otherwise (in case 1.2) we find

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = 0.

Proof If both Möbius functions alternate it suffices to consider elements O(B) ⊆ A

where rkP (O(B)) is minimal. In this case μP (∅,O(B)) = −1 and we are left to
verify

μQ(∅,O(B)) = (−1)cr(B)+β(B).

We prove the statement by induction over the number of edges in B. The base cases
can be easily checked. Deleting one edge d ∈ B yields the following two cases:

1. d is a bridge.
Then rkQ(B−d) = rkQ(B)−1, cr(B−d) = cr(B) and β(B−d) = β(B)−1.

2. d is not a bridge.
Then rkQ(B−d) = rkQ(B)−1, cr(B−d) = cr(B)−1 and β(B−d) = β(B).

Using the induction hypothesis we find in both cases

(−1)rkQ(B) = (−1)rkQ(B−d)+1 IH= (−1)cr(B−d)+β(B−d)+1 = (−1)cr(B)+β(B).

Otherwise, i.e. case 1.2 due to Lemma 3, we have exactly one vertex and some faces
containing it. The number of these faces is determined by the number of digons in
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Ō(B), which we denote with d . Then we have

∑

O(B)⊆A
tot.cyclic

μQ(∅,O(B)) = −
(
d

0

)
+
(
d

1

)
−
(
d

2

)
+ . . . ±

(
d

d

)
= −

d∑

k=0

(−1)k
(
d

k

)
= 0.

�

The key point is the following lemma, where the contraction finally takes place.

Lemma 5 Let ∅ �= B ⊆ E. Then

∑

∅�=X⊆Ō(B)

μP (∅,X) = −1.

Proof Since P is obviously unbounded and has at least one vertex, Corollary
3.4.10 in [3] yields that P has reduced Euler characteristic zero. Consequently
the corresponding Möbius function μP (∅, Ō(B)), which is the reduced Euler
characteristic (see Prop. 3.8.6 in [16]), equals zero, too. As a result,

0 = μP (∅, Ō(B)) = −
∑

∅⊆X �=Ō(B)

μP (∅,X) = −1 −
∑

∅�=X⊆Ō(B)

μP (∅,X)

holds. �
Combining the last two lemmas we find two different kinds of compression:

In cases 1.1 and 2 it suffices to count the element having minimal support due
to Lemma 5 and in case 1.2 all totally cyclic partial orientations sum up to zero
due to Lemma 4. The following observation translates these cases from polyhedral
language into graph theoretical properties.

Definition 5 Let D = (V ,A) be a totally cyclic digraph. A digon d ⊆ A is called
redundant for cyclicity if D − d is still totally cyclic.

Note that every bridge is redundant for cyclicity. Fig. 1 shows a digon that is
redundant but not a bridge.

Lemma 6 Case 1.2 does not hold true if and only if there exists a digon in Ō(B)

that is redundant for cyclicity but not a bridge, or every digon in Ō(B) is a bridge.

Fig. 1 A digon that is redundant for cyclicity
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Proof First we proof the following equivalence:

There are at least two vertices in P if and only if there is a digon in Ō(B) that is redundant
for cyclicity but not a bridge.

Let e be a digon in Ō(B) that is redundant but not a bridge, then Ō(B) − ↼
e

and Ō(B) − ⇀
e contain vertices including

↼
e , resp.

⇀
e which hence are two different

vertices in P . For the other direction take vertices v �= w in P . Then v ∪ w is a
face in P including a digon e that is no bridge. Assume e is not redundant, then

Ō(B)−↼
e or Ō(B)−⇀

e could not have been totally cyclic and so one of the vertices
v or w.

Consequently case 1.2 does not hold true iff there is a digon that is redundant but
not a bridge (case 2) or, if there is only one vertex in P , then there are no further
faces including it, which means that every digon in Ō(B) is a bridge (case 1.1). �

This leads to the following main result of this paper, a representation of the NL-
coflow polynomial for arbitrary digraphs, where we sum only over certain subsets
of the edges of the underlying undirected graph.

Theorem 3 Let D = (V ,A) be a digraph and G = (V ,E) its underlying
undirected graph. Then

ψD
NL(x) =

∑

B∈T C

(−1)|B|xc̃(B)−c(D)

holds, where c̃(B) counts the components in the spanning subgraph of G with edge
set B and T C includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A such that Ō(B) has no digons but bridges or Ō(B) has a digon that is
redundant but not a bridge.

Proof Instead of counting totally cyclic subdigraphs one can count totally cyclic
partial orientations of a fixed underlying subgraph. Thus the preceding lemmas yield

ψD
NL(x) =

∑

X⊆A
tot.cyclic

μQ(∅,X)xrk(A/X)

=
∑

B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B)

=
∑

∅�=B⊆E

∑

O(B)
tot.cyclic

μQ(∅,O(B))xrk(A/B) + x−c(D)

Lemma 4=
∑

∅�=B⊆E
(∗)

∑

O(B)
tot.cyclic

(−1)cr(B)+β(B)+1μP (∅,O(B))xrk(A/B) + x−c(D)
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Fig. 2 A totally cyclic orientation that is not considered in T C

Lemma 5=
∑

∅�=B⊆E
(∗)

(−1)cr(B)+β(B)xrk(A/B) + x−c(D)

=
∑

B⊆E
(∗)

(−1)cr(B)+β(B)xn−|V (B)|+c(B)−c(D).

Condition (∗) means, that we sum over all B ⊆ E having a totally cyclic partial
orientation O(B) ⊆ A, where case 1.2 is not true. Due to Lemma 6 this situation
occurs if and only if Ō(B) has no digons but bridges, or there exists a digon that is
redundant but not a bridge. Clearly, n − |V (B)| + c(B) = c̃(B) holds, and we are
left to verify

(−1)cr(B)+β(B) = (−1)|B|.

This can be done by induction. Deleting a bridge d ∈ B yields cr(B − d) = cr(B)

and β(B−d) = β(B)−1 while deleting a non-bridge yields cr(B−d) = cr(B)−1
and β(B − d) = β(B). In both cases we find

(−1)cr(B)+β(B) = (−1)cr(B−d)+β(B−d)+1 IH= (−1)|B−d |+1 = (−1)|B|. �

Note that TC includes all B ⊆ E which admit a totally cyclic partial orientation
O(B) in A, but not those, where Ō(B) includes a digon that is no bridge and no
digon is redundant unless it is a bridge in Ō(B) (Fig. 2).

5 Symmetric Digraphs

Considering symmetric digraphs D = (V ,A), it is obvious that the NL-coflow
polynomial equals the chromatic polynomial χ(G, x) of the underlying undirected
graph G = (V ,E) divided by the number of colors since both polynomials count
the same objects. Using Theorem 3 we find an alternative proof of this fact, where
the chromatic polynomial is represented by (see [5])

χ(G, x) =
∑

B⊆E

(−1)|B|xc̃(B).
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Corollary 2 Let D = (V ,A) be a symmetric digraph and G = (V ,E) its
underlying undirected graph. Then the following holds

ψD
NL(x) = χ(G, x) · x−c(G).

Proof In a symmetric digraph every edge is a digon, so for every subset B ⊆ E

there exists a totally cyclic partial orientation O(B). Furthermore, if cr(D) = 0,
every digon is a bridge and if cr(D) ≥ 1 there exists a cycle of length ≥ 3 in D

where every digon is redundant but no bridge. �
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On List k-Coloring Convex Bipartite
Graphs

Josep Díaz, Öznur Yaşar Diner, Maria Serna, and Oriol Serra

Abstract List k-Coloring (LI k-COL) is the decision problem asking if a given
graph admits a proper coloring compatible with a given list assignment to its vertices
with colors in {1, 2, . . . , k}. The problem is known to be NP-hard even for k = 3
within the class of 3-regular planar bipartite graphs and for k = 4 within the class
of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the
complexity of LI 3-COL in the class of chordal bipartite graphs. In this paper, we
give a partial answer to this question by showing that LI k-COL is polynomial in the
class of convex bipartite graphs. We show first that biconvex bipartite graphs admit a
multichain ordering, extending the classes of graphs where a polynomial algorithm
of Enright et al. (SIAM J Discrete Math 28(4):1675–1685, 2014) can be applied to
the problem. We provide a dynamic programming algorithm to solve the LI k-COL

in the class of convex bipartite graphs. Finally, we show how our algorithm can be
modified to solve the more general LI H -COL problem on convex bipartite graphs.
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1 Introduction

A coloring of a graph G = (V ,E) is a map c : V → N. A coloring is proper if no
two adjacent vertices are assigned the same color. If there is a proper coloring of a
graph that uses at most k colors, then we say that G is k-colorable, and that c is a
k-coloring for G. The coloring problem COL asks for a given graph G = (V ,E),
and a positive integer k, whether there is a k-coloring for G or not. When k is fixed,
we have the k-COLORING problem.

A list assignmentL : V → 2N is a map assigning a set of positive integers to each
vertex of G. Given G and L, the List Coloring problem LICOL asks for the existence
of a proper coloring c that obeys L, i.e., each vertex receives a color from its own
list. If the answer is positive, G is said to be L-colorable. Variants of the problem
are defined by bounding the total number of available colors or by bounding the list
size. In LIST k-COLORING (LI k-COL), L(v) ⊆ {1, 2, . . . , k} for each v ∈ V . Thus,
there are k colors in total. On the other hand, in k-LIST COLORING (k-LICOL) each
list L has size at most k. In this case, the total number of colors can be larger than k.

Precoloring Extension, PREXT, is a special case of LICOL and a generalization
of COL. In PREXT all of the vertices in a subset W of V are previously colored;
and the task is to extend this coloring to all of the vertices. If, in addition, the total
number of colors is bounded, say by k, then it is called the k-Precoloring Extension,
k-PREXT. k-COL is clearly a special case of k-PREXT, which in turn is a special
case of LI k-COL. Refer to [16] for a chart summarizing these relationships.

For general graphs COL and its variants LICOL and PREXT are NP-complete; see
[14, 24]. Most of their variants are NP-complete even when the parameter k is fixed
for small values of k: k-COL, k-LICOL, LI k-COL and k-PREXT are NP-complete
when k ≥ 3 [29]; and they are polynomially solvable when k ≤ 2 [13, 38].

Concerning the complexity of these problems in graph classes, COL is solvable
in polynomial time for perfect graphs [18] whereas LICOL is NP-complete when
restricted to perfect graphs and many of its subclasses, such as split graphs, bipartite
graphs [28] and interval graphs [2]. On the other hand, LICOL is polynomially
solvable for trees, complete graphs and graphs of bounded treewidth [23]. Refer
to Tuza [37], and more recently to Paulusma [33] for related surveys.

For small values of k, Jansen and Scheffler [23] have shown that 3-LICOL is NP-
complete when restricted to complete bipartite graphs and cographs, as observed in
[15]. Kratochvíl and Tuza [27] showed that 3-LICOL is NP-complete even if each
color appears in at most three lists, each vertex in the graph has degree at most three
and the graph is planar. 3-PREXT is NP-complete even for 3-regular planar bipartite
graphs and for planar bipartite graphs with maximum degree 4 [7].

For fixed k ≥ 3, LI k-COL is polynomially solvable for P5-free graphs [20].
Note that chordal bipartite graphs contain P5-free graphs, but P6 free graphs are
incomparable with chordal bipartite graphs [35]. LI 3-COL is polynomial for P6-
free graphs [6] and for P7-free graphs [3]. Computational complexity of LI 3-COL

for P8-free bipartite graphs is open [3]. Even the restricted case of LI 3-COL for
P8-free chordal bipartite graphs is open. Golovach et al. [16] give a survey that
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summarizes the results for LI k-COL on H -free graphs in terms of the structure of
H .

PREXT problem is solvable in linear time on P5-free graphs; and it is NP-
complete when restricted to P6-free chordal bipartite graphs [22]. 3-PREXT is
NP-complete even for planar bipartite graphs [26], even for those having maximum
degree 4 [7]. Recall that PREXT generalizes k-PrExt and LI k-COL generalizes k-
PREXT. But there is no direct relation between PREXT and LI k-COL [16].

Coloring problems can be placed in the more general class of H -coloring
problems. Given two graphs G and H , a function f : V (G) → V (H) such that
f (u) and f (v) are adjacent in H whenever u and v are adjacent in G is called a
graph homomorphism from G to H . For a fixed graph H and for an input G, the
H -coloring problem, H -COL asks whether there is a G to H homomorphism. In the
list H -coloring problem, LI H -COL, each vertex of the input graph G is associated
with a list of vertices of H , and the question is whether a G to H homomorphism
exists that maps each vertex to a member of its list. Observe that LI H -COL is a
generalization of LI k-COL. The complexities of the H -coloring and list H -coloring
problems for arbitrary input graphs are completely characterized in terms of the
structure of H , see Nešetřil and Hell [19].

Although intensive research on this subject has been undertaken in the last
two decades, there are still numerous open questions regarding computational
complexities on LICOL and its variants when they are restricted to certain graph
classes. Huang et al. [21] proved that LI 4-COL is NP-complete for P8-free chordal
bipartite graphs and 4-PREXT is NP-complete for P10-free chordal bipartite graphs.
They further pose the problem on the computational complexity of the LI 3-COL

and 3-PREXT on chordal bipartite graphs. Here LI k-COL and k-PREXT on convex
bipartite graphs, a proper subclass of chordal bipartite graphs, are studied for fixed
k, and a partial answer to this question is given. Figure 1 summarizes the related
results. Note that, here by LI k-COL it is assumed that k is fixed.

A bipartite graph G = (X ∪ Y,E) is convex if it admits an ordering on one
of the parts of the bipartition, say X, such that the neighbours of each vertex in Y

are consecutive in this order. If both color classes admit such an ordering the graph
is called biconvex bipartite (see Sect. 2 for formal definitions). Chordal bipartite
graphs contain convex bipartite graphs properly. Convex bipartite graphs contain
as a proper subclass biconvex bipartite graphs, which contain bipartite permutation
graphs properly. More information on these classes can be found in Spinrad [35]
and in Brandstädt et al. [4].

Enright et al. [12] have shown that LI k-COL is solvable in polynomial time
when restricted to graphs with all connected induced subgraphs having a multichain
ordering. They apply this result to permutation graphs and interval graphs. Here, we
show that connected biconvex graphs also admit a multichain ordering, implying a
polynomial time algorithm for LI k-COL on this graph class.

From the point of view of parameterized complexity, treewidth can be computed
in polynomial time on chordal bipartite graphs [25]. LI k-COL can be solved in
polynomial time on chordal bipartite graphs with bounded treewidth [9, 23], which
includes chordal bipartite graphs of bounded degree [30]. LI k-COL is polynomial
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Complete Bipartite: LI k-COL P, 3-LI COL NPC [23]

Bipartite Permutation: LI k-COL P [12]

Biconvex Bipartite: LI k-COL P [*]

Convex Bipartite: LI k-COL P [*]

Chordal Bipartite: LI 3-COL [?], LI k-COL, k ≥ 4, NPC [21]

Bipartite LI 3-COL NPC[28]

Fig. 1 Chart for known complexities for LICOL and its variants for chordal bipartite graphs and
its subclasses, for k ≥ 3. The complexity results marked with [*] is the topic of this paper, while
[?] stands for open cases. Results without reference are trivial. P stands for Polynomial and NPC
for NP-complete

for graphs of bounded cliquewidth [8]. Note that convex bipartite graph contains
graphs with unbounded treewidth as well as graphs with unbounded cliquewidth.

The paper is organized as follows. In Sect. 2, we give the necessary definitions.
In Sect. 3, we show that connected biconvex bipartite graphs admit multichain
ordering. In Sect. 4, we show that, for fixed k, LI k-COL is polynomially solvable
when it is restricted to convex bipartite graphs. Then, we show how to extend this
result to LI H -COL. For an extended version of this paper the reader may refer to
[10].

2 Preliminaries

We consider finite simple graphs G = (V ,E). For terminology refer to Diestel [11].
An edge joining non adjacent vertices in the cycle, Cn, is called a chord. A graph
G is chordal if every induced cycle of length n ≥ 4 has a chord. Chordal bipartite
graphs are bipartite graphs in which every induced Cn, n ≥ 6 has a chord. This
graph class is introduced by Golumbic and Gross [17]. Chordal bipartite graphs
may contain induced C4, so they do not constitute a subclass of chordal graphs but
it is a proper subclass of bipartite graphs. Chordal bipartite graphs can be recognized
in polynomial time [32].

A bipartite graph is represented by G = (X ∪ Y,E), where X and Y form a
bipartition of the vertex set into stable sets. An ordering of the vertices X in a
bipartite graph G = (X ∪ Y,E) has the adjacency property (or the ordering is
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Fig. 2 A convex bipartite
graph which is not biconvex

y1 y2 y3 y4Y

X x1 x2 x3 x4 x5 x6 x7 x8 x9

said to be convex) and G is said to have convexity with respect to X if, for each
vertex v ∈ Y , N(v) consists of vertices which are consecutive in the ordering of X.
We say that an ordering of the vertices X in a bipartite graph G = (X ∪ Y,E) has
the enclosure property if for every pair of vertices u, v ∈ Y such that N(u) ⊆ N(v),
the vertices in N(v)\N(u) occur consecutively in the ordering of X.

Convex bipartite graphs are bipartite graphs G = (X ∪ Y,E) that have the
adjacency property on one of the partite sets and biconvex bipartite graphs have
the adjacency property on both partite sets X and Y . Figure 2 shows a graph that
is convex but not biconvex. Bipartite permutation graphs are biconvex bipartite
graphs in which one of the partite sets obeys both the adjacency and the enclosure
properties. There are linear time recognition algorithms for these classes [31, 36].

A chain graph [39] is a bipartite graph that contains no induced 2K2 (a graph
formed by two independent edges). The following characterization from [12] is
equivalent: a connected bipartite graph with bipartite sets X and Y is a chain
graph if and only if for any two vertices y1, y2 ∈ Y we have N(y1) ⊆ N(y2)

or N(y2) ⊆ N(y1). If the vertices in X are ordered with respect to their degrees
starting from the highest degree, then for any y ∈ Y , the vertices in N(y) will be
consecutive in the ordering on X and, if the graph is connected, there is always a
vertex y ∈ Y so that N(y) includes the first vertex in X. In particular, chain graphs
are a proper subclass of convex bipartite graphs.

3 List k-Coloring on Biconvex Graphs

Enright et al. [12] show that LI k-COL, as well as the general LI H -COL, is
solvable in polynomial time when restricted to graphs with all connected induced
subgraphs having a multichain ordering. They apply this result to permutation
graphs and interval graphs. Here, we show that connected biconvex graphs also
admit a multichain ordering.

The distance layers of a connected graph G = (V ,E) from a vertex v0 are
L0, L1, ..., Lz, where L0 = {v0} and, for i > 0, Li consists of the vertices at
distance i from v0 and z is the largest integer for which this set is non-empty (see
Fig. 3 for an example). These layers form a multi-chain ordering [5] of G if, for
every two consecutive layers Li and Li+1, the edges connecting these two layers
form a chain graph (not necessarily the layers themselves). All connected bipartite
permutation graphs [5] and interval graphs [12] admit multichain orderings. Observe



20 J. Díaz et al.

Fig. 3 A convex bipartite
graph and its associated
distance layers from x1

L0 L1 L2 L3 L4

x1

x5

x6

x7
y2 x4

x3

y4

y1 x2

y3

y1 y2 y3 y4

x1 x2 x3 x4 x5 x6 x7

Fig. 4 Subdivision of K1,3 v1

v2 v4 v6

v3 v5 v7

that, for the graph given in Fig. 3, the distance layers from x1 provide a multichain
ordering.

Recall that a subdivision of a graph G is the graph G′ = subd(G) obtained from
G by replacing each edge by a path of length two. Thus |E(G′)| = 2|E(G)| and
|V (G′)| = |V (G)| + |E(G)|.
Lemma 1 If G is a biconvex graph, then G does not contain subd(K1,3) as an
induced subgraph.

Proof Let G be a biconvex graph and let H = subd(K1,3). Let v1 be the vertex of
degree 3 in H , v2, v4 and v6 be the vertices in N(v1) and v3, v5 and v7 the vertices
of degree 1 so that vi is adjacent to vi+1 for i = 2, 4, 6, see Fig. 4. We observe
that there is no ordering of {v1, . . . , v7} in which the three sets N(v2) = {v1, v3},
N(v4) = {v1, v5} and N(v6) = {v1, v7} become consecutive. Therefore, a bipartite
graph which contains H as an induced subgraph does not admit a biconvex ordering.

�
Proposition 1 Every connected biconvex graph admits a multichain ordering.

Proof To see that biconvex graphs admit a multichain ordering, we use the notion of
biconvex straight ordering introduced by Abbas and Stewart [1]. Let G = (X, Y,E)

be a bipartite graph with a linear ordering ≤ defined on X∪Y . Two edges xy, x ′y ′ ∈
E, where x, x ′ ∈ X and y, y ′ ∈ Y , are said to cross if x < x ′ and y > y ′. If xy and
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x ′y ′ cross, we call (x, y ′) and (x ′, y) the corresponding straight pairs. An ordering
on X ∪ Y is a straight ordering if, for each pair xy, x ′y ′ of crossing edges, at least
one of the corresponding straight pairs, (x, y ′) or (x ′, y), is an edge of the graph [1].

Let G = (X, Y,E) be a connected biconvex graph. It follows from [1, Theorem
11] that G admits a biconvex straight ordering, say v0, v1, . . . , vn of X ∪ Y . Let
L0 = {v0}, L1, ..., Lm be the distance layers of G from v0. Since the graph G is
connected, V = L0 ∪ L1 ∪ · · · ∪ Lm. Let us show that these layers form a multi-
chain ordering.

The first layers L0 and L1 trivially form a multi-chain ordering. Let L1 =
{vi1 , · · · , vi
}, where the vertices are listed according to the ordering. When 
 = 1,
L1, L2 trivially form a chain graph. When 
 > 1, since the ordering is straight,
all the edges joining vi1 with vertices in L2 cross with the edge v0vi2 . As, vi2
is not connected to v0, the other straight pair (vi1 , vi2) should be an edge in G.
Therefore, N(vi1 ) ⊆ N(vi2 ). By iterating the same argument, we see that N(vi1 ) ⊆
· · · ⊆ N(vi
 ). Thus, the layers L0, L1, L2 form a multi-chain ordering. By a similar
discussion, it can be shown that L0, L1, L2, L3 form a multichain ordering.

Suppose that m > 3. Let i > 3 be the largest subscript such that L0, L1, . . . , Li

form a multichain ordering. Suppose for a contradiction that i < m. Thus, the
bipartite graph induced by the layers Li,Li+1 contain an induced copy of 2K2,
say with edges uv, u′v′, u, u′ ∈ Li and v, v′ ∈ Li+1. As the ordering is straight, we
may assume u < u′ and v < v′. We consider two cases:

Case 1 N(u) ∩ N(u′) ∩ Li−1 �= ∅. Let w ∈ N(u) ∩ N(u′) ∩ Li−1 and
consider predecessors w′ ∈ Li−2, w

′′ ∈ Li−3 of w. Then the subgraph induced
by w,w′, w′′, u, u′, v, v′ is isomorphic to a subdivision H of K1,3, contradicting
Lemma 1.

Case 2 N(u) ∩ N(u′) ∩ Li−1 = ∅. Let w ∈ N(u) ∩ Li−1 and w′ ∈ N(u′) ∩ Li−1
be some predecessors of u and u′ in the previous layer. Observe that the two edges
wu,w′u′ induce a 2K2 in the subgraph induced by Li−1 ∪ Li contradicting the
choice of i.

�
Let us state the main result by Enright et al. in [12] explicitly:

Theorem 1 ([12]) Let H be a fixed graph. LI H -COL is polynomial- time solvable
for input graphsG satisfying that every connected induced subgraph of G admits a
multichain ordering.

Proposition 1 and Theorem 1 give us the main result in this section.

Theorem 2 For any fixed H , LI H -COL is solvable in polynomial time when
restricted to biconvex graphs.

As LI k-COL is a particular case of LI H -COL and LI k-COL generalizes k-
PREXT, we have the following corollary.

Corollary 1 LI k-COL and k-PREXT are solvable in polynomial time when
restricted to biconvex graphs.
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Concerning the running time of the algorithms, it is shown in Abbas and Stewart
[1] that a biconvex straight ordering of a biconvex bipartite graph can be found in
linear time on the number of vertices of the graph. On the other hand, the algorithm
in [12] is shown to run in time O(nk

2−3k+4) time when a multichain ordering in
decreasing ordering of degrees is given. Observe that to get such ordering, we only
have to reorder the elements in the layers provided by the straight ordering, therefore
it can be obtained in linear time. Altogether, it gives an upper bound O(nk

2−3k+4)

on the complexity of LI k-COL in the class of biconvex graphs.

4 List k-Coloring of Convex Bipartite Graphs

Let G = (X∪Y,E) be a connected bipartite graph that is convex with respect to X.
Let X = {x1, . . . , xn} be a convex ordering of X, that is, for each y ∈ Y there are
two positive integers ay ≤ by such that N(y) = {xi | ay ≤ i ≤ by}.

Consider the set of integers A = {ay | y ∈ Y } and B = {by | y ∈ Y }. For the
graph given in Fig. 5, A = {1, 4, 5, 7} and B = {5, 7, 8, 9}.

We use the set B to direct the dynamic programming algorithm and the elements
in A to determine the relevant information to be kept for the next step. Assume that
B = {b1, . . . , bβ} are sorted so that b1 < b2 < · · · < bβ . By connectivity of G,
we have bβ = n. For each 1 ≤ j ≤ β, let Xj = {xi ∈ X | i ≤ bj }, Yj = {y ∈
Y | by ≤ bj }, and Zj = {y ∈ Y | ay ≤ bj < by}. Define Gj = G[Xj ∪ Yj ].
Observe that Gβ = G, Zβ = ∅ and that Zj contains those vertices in Y whose
neighborhood starts before or at bj and ends after bj . For example, for the graph
given in Fig. 5, b2 = 7,X2 = {x1, x2, . . . , x7}, Y2 = {y1, y2} and Z2 = {y3, y4}.
For sake of simplicity, we assume an initial point b0 = 0, so that G0 is the empty
graph.

Let K be a set of k colors. Assume that each vertex u in G has an associated
list L(u) ⊆ K . We next define the information that we want to compute for each
1 ≤ bj ≤ bβ . For each 1 ≤ j ≤ β, define A(j) = {ay | y ∈ Zj } ∪ {bj }. As before,

y1 y2 y3 y4

12 23 13 12

13 12 123 12 12 23 13 13 13

x1 x2 x3 x4 x5 x6 x7 x8 x9

Fig. 5 A list assignment for the convex bipartite graph given in Fig. 2. Labels inside vertex
indicate the list of colors, from {1, 2, 3}, associated to the node
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we assume that the elements in A(j) = {a1,j , . . . , aαj ,j } are increasingly ordered,
a1,j < a2,j < · · · < aαj ,j = bj . To simplify notation, set aαj+1,j = bj +1 to make
sure that a higher value always exists. For the example in Fig. 5, A(2) = {5, 6, 7}.
For the fictitious initial b value j = 0, we take A(0) = {0}.

Fix j , 1 ≤ j ≤ β. For each 1 ≤ i ≤ αj and S � K , Tj (i, S) will hold value
true whenever there is a valid list coloring of Gj such that it uses no color in S for

the set Xj
i = {x
 | ai,j ≤ 
 < ai+1,j }. Observe that we are not considering K as a

potential set as not using any color is impossible.
The Color Algorithm will compute those values in three steps. In going from

j − 1 to j , first it computes the values for the x ∈ Xj that were not in Xj−1
combining this information with the relevant information computed in the previous
step. Next, it incorporates the restriction from y ∈ Yj that were not in Yj−1. Finally,
it rearranges the information to keep only the values for the index in A(j).

Color Algorithm: Let j , 1 ≤ j ≤ β. Initially set A(0) = {0}, b0 = 0 and set
T0(0, S) to TRUE for any S. When j ≥ 1 assume that the values of Tj−1 have
already been computed.

Step 1 Extending to new parts.
Let A′(j) = A(j−1)∪{ay | bj−1 < ay ≤ bj }∪{bj }. For j > 1, by construction,
those values lie before bj and some of them have no corresponding entries in
Tj−1. Assume that A′(j) = {a′

1, . . . , a
′
γj } increasingly ordered. Let a′

γj+1 =
bj + 1. We set Tj−1(
, S) for αj−1 < 
 ≤ γj and S � K to be true whenever
there is a valid list coloring of the set X′(
) = {xi | a′


 ≤ i < a′

+1}. For this,

the algorithm checks whether L(x)\S �= ∅ for each x ∈ X′(
). If this is the case,
one can select a color not in S and get a valid coloring. Accordingly we update
the value of Tj−1(αj−1, S) so that it remains TRUE if it was already set to TRUE
and the previous condition holds for the elements in X′(αj−1)

Step 2 Incorporating Yj .
For y ∈ Yj and ai ∈ [ay, by], consider any entry Tj−1(i, S) set to TRUE. If
S ∩ L(y) = ∅, the corresponding entry is changed to FALSE.
Next, the values on Tj−1 are processed in increasing order of xi : any entry (i, S)

holding value TRUE will remain TRUE whenever there is an entry (i − 1, S′)
holding value TRUE with S ⊆ S′. By monotonicity, the property holds whenever
Tj−1(i − 1, S) is TRUE.
After processing y, if Tj−1(l, S) holds true, for each piece [a′

l, a
′
l+1) between

ay and by , we can pick a common color not in S but in L(y) to color y that is
compatible with some list coloring on the X relevant parts that do not use S.

Step 3 Compacting to get Tj .

For each 1 ≤ i ≤ αj the set Xj
i might contain several subintervals on X′(j),

considered either in Tj−1 that will not be needed later on. We fusion those sets
from left to right, adding one at a time, setting Tj (i, S) to true whenever there are
corresponding entries holding value true for sets S1 and S2 so that S ⊆ S1 ∩ S2.
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Lemma 2 LetG = (X∪Y,E) be a connected convex bipartite graph,L be a color
assignment for G. There is an L-coloring of G if and only if there is S ⊆ K such
that at the end of the execution of the Color Algorithm Tβ(αβ, S) = true.

Proof Assume that G admits a list coloring. Let c be an L-coloring of G. For U ⊆
X let SU = K \ c(X). Observe that L does not use any color in SU on U and
furthermore, for any y ∈ Y so that N(y) ∩ U �= ∅, L(y) ∩ SU �= ∅. Using this fact,
it follows that the entries in the tables for the corresponding sets get the value true
and at the end of the algorithm T (β, {c(xn)}) will be true.

Conversely, we can prove that the Color Algorithm correctly computes the values
of Tj for 1 ≤ j ≤ β. The proof is by induction. Observe that for j = 1 the table R

provides the right indices and the initialization step provides the correct values for
the table on an empty graph. By induction hypothesis, we assume that the values of
Tj are correctly computed. Step 1 guarantees that the desired coloring exists when
adding only the X part on Gj to Gj−1. Step 2 has two parts. The first one guarantees
that only those entries with sets that are compatible with the list of the vertices in Yj

are still alive. The second one ensures that when combining two consecutive pieces
having a common neighborhood on Yj a common set of colors (a subset) is available
to color these vertices. Finally, Step 3 merges tables for pieces that have the same Y

neighborhood outside Gj . Again, we need to maintain a common set of colors free
for potential use on these neighbors. �

Finally, observe that all the running time of the Color Algorithm is polynomial in
|G| and in 2k. Furthermore, the k-PREXT can be polynomially reduced to LI k-COL.
Therefore, we get our main result.

Theorem 3 For k ≥ 3, LI k-COL and k-PREXT on convex bipartite graphs can be
solved in polynomial time.

The Color Algorithm can be modified to solve the LI H -COL on convex bipartite
graphs. For this, the algorithm keeps track instead of the unused color on the X part
of the used ones. For doing that, we have to consider some longer subdivision of the
intervals in the X part. Step 2 will check that at least one of the colors in the list of y
is connected to all the used colors in the X part. Step 3 is also modified as the global
set of used colors will be the union.

Theorem 4 For fixed H , LI H -COL on convex bipartite graphs can be solved in
polynomial time.

5 Conclusions

In this paper, the problem posed by Huang et al. [21] on the computational
complexity of the LI 3-COL and 3-PREXT on chordal bipartite graphs is addressed.
A partial answer to a general version of this question is given by increasing the
subclasses of chordal bipartite graphs for which polynomial time algorithms for the
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LI k-COL are known to biconvex bipartite graphs and convex bipartite graphs. Note
that the later class includes convex bipartite graphs with bounded degree, complete
bipartite graphs which have unbounded treewidth, as well as graphs with unbounded
cliquewidth. Interestingly enough, the second result can also be extended, with
a slight modification, to solve LI H -COL for the same graph class. The paper
includes another result of independent interest: any connected biconvex bipartite
graph admits a multichain ordering.

On the other hand, chordal bipartite graphs form a much larger graph class.
Using the terminology of [34], it is a superfactorial graph class whereas convex
bipartite graphs is a factorial graph class. Although LI k-COL is hard for k ≥ 4
when restricted to chordal bipartite graphs, finding the computational complexity of
LI 3-COL for chordal bipartite graphs is the next natural open question.
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Total Chromatic Sum for Trees

Ewa Kubicka, Grzegorz Kubicki, Michał Małafiejski,
and Krzysztof M. Ocetkiewicz

Abstract The total chromatic sum of a graph is the minimum sum of colors (natural
numbers) taken over all proper colorings of vertices and edges of a graph. We
provide infinite families of trees for which the minimum number of colors to achieve
the total chromatic sum is equal to the total chromatic number. We construct infinite
families of trees for which these numbers are not equal, disproving the conjecture
from 2012.

Keywords Total colorings · Sum of colors · Trees

1 Introduction

Consider a proper coloring φ of vertices of a graph G using natural numbers; i.e.
φ : V (G) → N and φ(u) �= φ(v) whenever uv is an edge of G. The chromatic
sum of G, denoted Σ(G), is the minimum sum

∑
v∈V (G) φ(v) taken over all proper

colorings φ of G. A coloring is optimal if the sum of colors equals Σ(G).
This idea was introduced by Kubicka [4] in 1989, and since then much more work

has been done with calculating the chromatic sums of graphs, generating algorithms
to find chromatic sums and optimal colorings, and calculating the complexity of
finding chromatic sums of graphs in certain families. Erdös et al. [2] constructed
infinite families of graphs for which the minimum number of colors necessary to get
an optimal coloring of G was larger than χ(G). This graph parameter, the minimum
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number of colors necessary for an optimal coloring, is called the strength of G, and
denoted by σ(G) [3]. In [2], it is shown that even trees can have arbitrarily high
strength, even though their chromatic number is 2. In fact, Erdös et al. [2] found for
every k ≥ 3 the smallest tree of strength k. In [3], Jiang and West also constructed
trees with strength k but not of minimum order but of minimum maximum degree,
Δ = 2k − 2.

We say that a graph G is strong if χ(G) < σ(G). The smallest strong graph is
the tree on eight vertices given in Fig. 1.

These color-sum concepts can be applied to edge coloring as well. In an
analogous way, one can define the edge chromatic sum of a graph, its edge strength
σ ′, and ask the question of whether or not χ ′ = σ ′. In 1997, Mitchem et al. [7]
proved that every graph has a proper edge coloring with minimum sum that uses
only Δ or Δ + 1 colors. This implies that the only way for a graph to have χ ′ < σ ′
is to have both χ ′ = Δ and σ ′ = Δ + 1. We say that a graph G with this property,
namely χ ′(G) < σ ′(G), is E-strong. The smallest known E-strong graph M is
presented in Fig. 2.
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Fig. 1 The smallest strong tree
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Fig. 2 E-strong graph M with Δ = 5, χ ′ = 5, and σ ′ = 6. On the left side with five colors used,
the sum of the colors is 45. If we introduce a sixth color and change the colors of the edges whose
color labels are circled, we obtain a coloring with sum 43
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2 Total Chromatic Sum and Total Strength

A total coloring φ of G is an assignment of natural numbers to vertices and edges of
a graph. A total coloring of G is proper if no pair of adjacent or incident elements
(vertices or edges) is assigned the same color. A total-k-coloring φ of G is a proper
total coloring that uses k colors. The total chromatic number χ"(G) of a graph
G is the smallest number k for which G has a total-k-coloring. The famous Total
Coloring Conjecture stating that

χ"(G) ≤ Δ(G) + 2

for every graph G, where Δ(G) is the maximum degree of G, was posed indepen-
dently by Vizing [8, 9] and Behzad [1].

The total chromatic sum of a graph is defined in a similar way to the chromatic
sum. The total chromatic sum of G, denoted Σ"(G), is the minimum sum∑

x∈V (G)∪E(G) φ(x) taken over all proper total colorings φ of G. A total coloring is
optimal if the sum of colors of vertices and edges of G equals Σ"(G). The minimum
number of colors necessary for an optimal total coloring is called the T- strength of
G, and is denoted by σ "(G). We say that a graph G is T -strong if σ "(G) > χ"(G).
The total chromatic sum and the related parameters were introduced by Leidner [6]
in his Ph.D. dissertation.

The total chromatic sum was determined for many families of graphs. In [6]
and [5], several infinite families of T-strong graphs, it means graphs for which we
need more colors for optimal total coloring than the total chromatic number, were
constructed. Each graph from the following list is T-strong:

1. Cycles of length 3n, n ≥ 2, with one chord joining vertices at distance congruent
to 3 along the cycle. Those graphs have Δ = 3, χ" = 4, and σ " = 5.

2. Cycles of length 3n, n ≥ 2, with two independent chords with proper distances
along the cycle. For those graphs also Δ = 3, χ" = 4, and σ " = 5.

3. Graphs G obtained from M , the graph from Fig. 2, by attaching a copy of K2k+1
to each vertex. Here Δ(G) = 2k + 5, χ"(G) = 2k + 6, and σ "(G) = 2k + 7.

The smallest T-strong graph is a 6-cycle with a diametral chord, or equivalently the
graph P2 × P3. Two colorings, the first using χ"(G) colors and the second that is
optimal and uses one more color are depicted in Fig. 3. Leidner [6] verified by an
exhaustive computer search that P2 ×P3 is the smallest T -strong graph and the only
one of order smaller than 9.

Fig. 3 The grid graph
P2 × P3 total-colored in two
ways
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In the next sections, we show new results for the total chromatic sum of trees and
the existence of T - strong trees. Two conjectures about the total strength of a graphs
were stated in [5].

Conjecture 1 For every graph G, χ"(G) ≤ σ "(G) ≤ χ"(G) + 1.

Conjecture 2 No tree is T -strong.

In this paper, we prove that no tree requires more than Δ+2 colors to achieve its
total chromatic sum, which proves Conjecture 1 for trees. We construct a polynomial
time algorithm to determine the total chromatic sum and the total chromatic strength
of a tree. We prove that all trees with no adjacent vertices of maximum degree
have the total chromatic number equal to the total chromatic strength. Finally, we
disprove Conjecture 2 providing infinite families of T-strong trees.

3 Upper Bound on Total Strength of Trees

Let G = (V ,E) be a tree. We define a distance between elements of G.

• If u, v ∈ V , then d(u, v) is the number of edges on the u − v path.
• If e, f ∈ E, then d(e, f ) is the number of vertices on the e − f path.
• If e = uv ∈ E and w ∈ V , then d(e,w) = 1

2 + min{d(u,w), d(v,w)}.
It is easy to check that d is a metric on V ∪ E.

It is well known that every tree is either unicentral or bicentral, i.e. has the
center consisting of one vertex or two adjacent vertices, respectively. For the purpose
of this note we call the strong center of G:

– the central vertex u if G if unicentral,
– the edge e = uv if G is bicentral with the center cent (G) = {u, v}.
Theorem 1 No tree requiresΔ + 3 or more colors for an optimal total coloring.

Proof Let Δ = Δ(G). We will show that there is an optimal coloring of G without
a color c = Δ+3. For larger colors, the proof is similar but simpler. Suppose, to the
contrary, that the color c = Δ+ 3 must occur in any optimal coloring of G. Among
all such colorings select a coloring ϕ in which the color c occurs as far away from
the strong center of G as possible. Suppose first that color c = Δ + 3 occurs on
the edge e = xy, x closer to the center than y (if {e} is not a strong center of G).
Let E(x) and E(y) denote the set of edges incident to x and y, respectively. Define
two sets of elements of G, L = {x} ∪ E(x) − {e} and R = {y} ∪ E(y) − {e}.
Notice that |L|, |R| ≤ Δ; also all elements of L (and of R) must be colored with
different colors. If ϕ(R) ⊂ ϕ(L), then because |ϕ(L)| ≤ Δ, we can find a color
c1 ∈ {1, 2, . . . ,Δ + 1} that was not used on elements from L and from R. Recolor
e with c1 obtaining a total coloring with a smaller sum. If ϕ(R) \ ϕ(L) �= ∅, say
c1 ∈ ϕ(R) \ ϕ(L), and c1 = ϕ(α), then recolor the element α by c and the edge
e by c1. This produces the total coloring of G with the same sum but with color
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c = Δ + 3 father away from the strong center of G; a contradiction. Notice that the
same argument can be used if the color on e is Δ + 2 (not Δ + 3). This observation
will be used in the proof of the next theorem.

It remains to consider the case when in the coloring ϕ of G, the element with
color c = Δ+3 is a vertex v. Of course, v is not a leaf since any leaf can be colored
with a color from {1, 2, 3}. Let u be a neighbor of v closer to the strong center of G
than v, or the other vertex of the strong center if the center of G is {u, v}. Assume
that ϕ(u) = c1 and ϕ(uv) = c2. Since deg(v) ≤ Δ, there are two colors, say c3
and c4 from {1, 2, . . . .,Δ + 2} that are not present on the edges incident to v (for
illustration see Fig. 4). If c1 ∈ ϕ(E(v)−{e}), then both colors c3 and c4 must be used
on neighbors of v, say c3 = ϕ(x), c4 = ϕ(y), otherwise we could recolor v with c3
or c4, obtaining a smaller sum of colors. Therefore, there is a color c5(c5 �= c1) on
an edge f incident to v that is not used on the neighbors of v. We can interchange
colors c and c5 on v and f obtaining a coloring in which c is father away from the
strong center of G; a contradiction. Similar argument works if c1 /∈ ϕ(E(v) − {e}).
Without loss of generality, we might assume that c1 = c3. Then color c4 must occur
on a neighbor of v, say c4 = ϕ(x); otherwise we could recolor v with c4. Now, one
of the colors from ϕ(E(v) − {e}) is not used on any neighbor of v, say this color is
c5 and it occurs on the edge f , c5 = ϕ(f ). Similarly, we can interchange colors c

and c5 on v and f obtaining a coloring with the color c farther away from the strong
center of G; a contradiction. �

It is well known that, with the exception of K2, χ"(G) = Δ + 1 for every tree
G with maximum degree Δ. Therefore, as the corollary of Theorem 1, for trees we
have the following two possibilities:

1. χ"(G) = Δ + 1 = σ "(G), which means that G is not T-strong, or
2. χ"(G) = Δ + 1 and σ "(G) = Δ + 2, if a tree G is T-strong.

This observation verifies Conjecture 1 for trees.

c1

u

c

v

c4

c3

(e)=c2
no c5

on these

vertices
(f)=c5

Fig. 4 Illustration of the proof of Theorem 1
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4 Total Strength of Trees with No Adjacent Vertices
of Maximum Degree

abel3:sec:4
A tree G is called ΔΔ-free if G has no adjacent vertices of maximum degree.

Theorem 2 No ΔΔ-free tree is T-strong.

Proof Assume, to the contrary, that there exists a T-strong tree. Such a tree must
have Δ ≥ 3. Among all such trees consider those of minimum order. For each tree
of this property, select an optimal total coloring ϕ (the coloring with the sum of
colors equal to

∑
"(G)) in which the color c (c = Δ + 2) occurs as far away from

the strong center of G as possible. Consider a particular tree G with such coloring
ϕ. By the observation in the first part of the proof of Theorem 1, this color cannot
occur on any edge of G.

Thus, one can assume that in the coloring ϕ(G), the element colored with c is
some vertex, say v. If deg(v) ≤ Δ − 1, then we get a contradiction using a similar
argument as in the proof of Theorem 1, where numbers Δ and Δ + 3 denoting the
degree of v and the largest color c, respectively, are now replaced by Δ−1 and Δ+2.
It remains to show that there is no ΔΔ-free tree with the color Δ + 2 occurring on
the vertex v with deg(v) = Δ. So assume that ϕ(v) = Δ + 2, the neighbor of v

“toward the center of G” is u (notice that deg(u) ≤ Δ − 1 because G is ΔΔ-free),
ϕ(u) = c1, and ϕ(uv) = c2.

Case 1 If c1 /∈ ϕ(E(v)−{e}) and ϕ(N(v))−u) = ϕ(E(v)−{e}) (the same palette
of colors is used on Δ − 1 edges and Δ − 1 neighbors of v away from the strong
center), then there must be a color among them, say c3 on the edge f that is not used
on E(u). We can modify ϕ by coloring v by c2, f by Δ+2, and e by c3, obtaining a
coloring with the same sum but with color Δ+ 2 father away from the strong center
of G; a contradiction.

Case 2 If c1 /∈ ϕ(E(v) − {e}) and ϕ(N(v)) − u) �= ϕ(E(v) − {e}), then there is
a color c3 ∈ ϕ(E(v) − {e}) that is not present on any neighbor of v, suppose that
c3 occurs on an edge f . By interchanging colors c3 and Δ + 2 on f and v, f will
receive colorΔ+2 which is father away from the strong center of G; a contradiction.

Case 3 If c1 ∈ ϕ(E(v)−{e}), say ϕ(f ) = c1, then there is a color c3(c3 �= c1, c3 �=
c2) that is not present on E(v) − e but is present on some neighbor of v, say x.

Case 3a If no other neighbor of v has color c3, we swap colors of v and x obtaining
the coloring with color Δ + 2 farther away from the strong center of G (Fig. 5).

Case 3b If there is another neighbor of v with color c3, then one of the Δ − 2
colors from the edges E(v) − e − f is not present on the neighbors of v; say color
c4 occurring on an edge h. Modify the coloring ϕ by swapping colors of v and h;
the color Δ + 2 will be on h that is farther away from the strong center of G; a
contradiction (Fig. 6). �
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Fig. 5 Illustration of Case 3a
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Fig. 6 Illustration of Case 3b
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Fig. 7 An example of a tree
fragment

v

e

The only case in which we cannot “push” color Δ + 2 away from the strong
center is for a tree with two adjacent vertices u and v both of degree Δ such that the
pallets of colors on E(u) − e, E(v) − e, and N(v) − u are identical.

5 Polynomial Time Algorithm for Trees

In this section we propose an O(nΔ4) algorithm for finding the total chromatic sum,
the minimum sum total coloring and the total strength of an arbitrary tree.

Let G be a tree, and let v ∈ V (G) and e ∈ E(G), e = vu. We define a fragment
tree or an f-tree with respect to v and e, to be a component of G\e containing
v, together with an attached edge e joining v and u, but without the vertex u (see
Fig. 7). We denote this fragment tree by Q(v, e). Formally, Q(v, e) is not a graph.
By p(v) we mean the vertex u.
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Let F = Q(v, e) be an f-tree of some tree. By the root of F , denoted by r(F ),
we mean the vertex v, and by the extent of F , denoted by x(F ), we mean the edge
e. Obviously, Q(r(F ), x(F )) = F . By F̂ we mean F with attached p(r(F )). By
a total coloring of an f -tree F we mean a partial total coloring of F̂ , with colors
assigned to V (F̂ )\{p(r(F ))} ∪ E(F̂ ). By Δ(F) we mean Δ(F̂ ).

Let F be an f -tree of some tree G and let c ≥ Δ(F) + 1 be an integer (an upper
bound for the number of colors). The cost matrix Cc

F of the f -tree F is a square
c× c matrix whose (p, q)-entry, for p �= q , denotes the sum of colors of an optimal
total coloring of F using at most c colors where the root r(F ) has color p and the
extend x(F ) has assigned color q . The diagonal entries of Cc

F are undefined, since
in a proper total coloring we must have p �= q .

If F = Q(v, e) and the neighbors of v are v1, v2, . . . , vk adjacent to v by the
edges e1, e2, . . . , ek (see Fig. 8), then knowing the cost matrices Cc

Fi
for the k

fragments Fi = Q(vi, ei), 1 ≤ i ≤ k, we can evaluate the cost matrix for F .
Namely, the (p, q)-entry of Cc

F is the minimum of the sums p + q +Cc
F1

[p1, q1] +
. . . + Cc

Fk
[pk, qk] taken over all colors pi, qi ∈ {1, . . . , c} such that for each

i, 1 ≤ i ≤ k, pi �= qi and pi �= p and all colors in the set {p, q, q1, . . . , qk}
are different.

If G is a tree rooted at v and the neighbors of v are v1, v2, . . . , vk , then in a
similar manner we can evaluate the cost vector Cc

G for G knowing cost matrices for
all k fragments Fi = Q(vi, ei), 1 ≤ i ≤ k, where ei = vvi . The p-entry Cc

G[p] of
this vector equals the minimum of the sums p + Cc

F1
[p1, q1] + . . . + Cc

Fk
[pk, qk]

taken over all colors pi, qi ∈ {1, . . . , c} such that for each i, 1 ≤ i ≤ k, pi �= qi and
pi �= p and all colors in the set {p, q1, . . . , qk} are different.

Theorem 3 There is an algorithm of complexity O(nΔ4) for finding the minimum
total chromatic sum of a tree in the class of trees of order n and the degree bounded
by Δ.

v1

e1

v2

e2

vk

ek

v

e

Fig. 8 Decomposing a tree fragment into k smaller fragments



Total Chromatic Sum for Trees 35

Proof Let G be a tree of order n and maximum degree Δ(G) = Δ. Select any vertex
of G as a root; call it r . Direct all edges of G toward the root. Sort the vertices in a
topological order in accordance to the orientation of edges. Select c = Δ + 2, since
by Theorem 1 no tree needs more than Δ + 2 colors for a optimal total coloring.
Initialize the algorithm by assigning the cost matrix for any fragment F consisting
of a leaf with its pendant edge Cc

F (p, q) = p + q .
If v is not a root and not a leaf, and has v1, v2, . . . , vk as predecessors, compute

cost matrix Cc
F for the f -fragment Q(v, e), where e is the only edge of v directed

towards r . If v = r is the root of G, compute the cost vector Cc
G. Total chromatic

sum of G equals

Σ ′′(G) = min
1≤p≤Δ+2

{Cc
G[p]}.

It is not difficult to see that the complexity of this algorithm is O(nΔ4). �
By running this algorithm with c = Δ(G) + 1 and c = Δ(G) + 2, we can

determine the total strength σ ′′(G) of a tree G. If the algorithm returns the same
costs for both upper bounds for c, then σ ′′(G) = Δ(G) + 1. If the cost for c =
Δ(G) + 2 is smaller than for c = Δ(G) + 1, then σ ′′(G) = Δ(G) + 2 and G is
T -strong.

6 Existence of T-strong Trees

From the proof of Theorem 2, we can get some information about an optimal total
coloring of any T-strong tree G. The structure of such a tree and an optimal total
coloring of G must be as follows:

1. G must have two adjacent vertices, say u and v, both of degree Δ(G).
2. Color Δ + 2 must occur at one of those vertices, say v.
3. The three palettes of colors occurring on vertices adjacent to v (not counting u),

the edges incident to v (not counting uv), and the edges incident to u (without
uv as well) must be identical.

Using this observation. we were able to construct a T -strong tree. The smallest
in the family of all subcubic trees (Δ ≤ 3) is the tree T50, of order 50, depicted in
Fig. 9. Our algorithm verified that σ "(T50) = 5. We used the vertex marked black
as the root for running our algorithm. Notice that its neighbor r(L) is the root of a
subtree isomorphic to the other half of T50.

Theorem 4 There is an infinite family of T -strong trees.
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Fig. 9 The smallest subcubic T -strong tree T50

Fig. 10 Fragments A and X used for constructing larger T -strong trees

Proof Two f -trees A and X given in Fig. 10 have the following property. In any
optimal coloring of A and X roots r(A) and r(X) must have colors 2, 3, or 4 and
the extents must be colored with 1. Moreover, changing colors on those elements
increases the cost of both f -trees by the same amount. This means that replacing
a fragment A in any tree G by the fragment X does not change the coloring of
the rest of G. Notice that X has four more vertices than A and X contains A as a
subfragment. Starting with the T -strong tree T50, we can replace any f -tree A in it
by a copy of X obtaining a T -strong tree of order 54. Continuing these fragments’
replacements, we can construct subcubic T -strong trees of arbitrarily large order.

�
Our algorithm verified that the smallest T -strong tree with vertices of degree 1

and 3 only is the tree T122 depicted in Fig. 11. We also found a T -strong tree of
order 266 with Δ = 4. Both of these trees can generate infinite families of T -strong
trees by similar fragment replacements.



Total Chromatic Sum for Trees 37

Fig. 11 T -strong tree T122 of order 122 with degree set {1, 3}
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An Incremental Search Heuristic
for Coloring Vertices of a Graph

Subhankar Ghosal and Sasthi C. Ghosh

Abstract Graph coloring is one of the fundamentally known NP-complete prob-
lem. Several heuristics have been developed to solve this problem, among which
greedy coloring is the most naturally used one. In greedy coloring, vertices are
traversed following an order and hence performance of it highly depends on finding
a good order. In this paper, we propose an incremental search heuristic (ISH)
which considers some ρ1 random orders and for each of them it calls a selective
search (SS) procedure with parameter ρ2. Given an order, SS considers only those
orders which produces equal or less number of distinct colors than a given order.
We showed that those orders can be partitioned into disjoint subsets of equivalent
orders. To make effective search, SS selects and evaluates only one order from
such a subset. Analytically we have shown that ISH can solve the graph coloring
instances on sparse graph in expected polynomial time. Through simulations, we
have evaluated ISH on 86 challenging benchmarks and compare results with state of
the art existing algorithms. We observed that ISH significantly outperforms existing
algorithms specially for sparse graphs and also produces reasonably good results for
others.

Keywords Graph coloring · Incremental search · Selective search · Equivalent
orders · Benchmarks

1 Introduction

Graph coloring is the problem of assigning positive integers to the vertices of
a graph G such that no monochromatic edge exists in G. It is well-known that
finding chromatic number of a graph is NP-Complete [1]. It is also known that if
unique game conjecture is true providing n1/ε approximation (∀ε > 0) solution of
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graph coloring is also NP-hard [2]. Several heuristic algorithms exist for coloring
a graph, a good survey of which can be found in [3, 4]. Recently a reinforcement
learning based local search algorithm [5], a modified cuckoo algorithm [6], a hybrid
evolutionary algorithm [7], a feasible and infeasible search based algorithm [8] and a
parallel ordering based algorithm [9] are developed for coloring vertices of a graph.

Greedy coloring is one of the most natural graph coloring technique. Greedy
coloring visits vertices of a graph in an order and while visiting a vertex it puts the
minimum color absent in all of its neighbors. But performance of greedy coloring
entirely depends on the order it visits the vertices. Thus with greedy coloring the
problem boils down to the problem of finding an optimum order among the n!
possible orders, where n is the number of vertices in G. Several authors have
proposed methods to find good orders such as [10, 11] and [12]. One such good order
is the order obtained by sorting the vertices of a graph according to non-increasing
order of their degrees. Authors of [10] have shown that with this ordering a graph
G having degree sequence d1 ≥ d2 ≥ · · · ≥ dn, has total number of colors to
be used as χ(G) ≤ 1 + max

i
min(di, i − 1). Another good order is Kempe order

[13]. The order is generated as following. We find a vertex with minimum degree
in the graph and push it into a stack and remove it from the graph. Recursively
apply this step on the residual graph till the graph become empty. Then pop the
elements from the stack and this will give the Kempe order. In [12] authors provided
an Dsature order defined as follow. Choose a random vertex and enqueue it into a
queue. Calculate the saturation degree of all the vertices, not in queue, as defined
bellow. The saturation degree of a vertex is the number of it’s neighbors in the queue.
Now choose the vertex with the maximum saturation degree and enqueue it into the
queue. Continue this process till the queue contains all the vertices of the graph.
Dequeue the elements from the queue and consider this order as the Dsature order.

As finding optimum order is a hard problem, several authors have developed
different search heuristics to find a near optimum order. Some of them are
based on simulated annealing [14, 15], genetic algorithms [16], hill climbing,
memetic-algorithm [17] and tabu-search [18, 19] heuristic. Simulated annealing is a
probabilistic heuristic where probability of accepting a worse solution is decreased
over time. In genetic algorithm, a set of orders is considered initially. They had
been subject to mutation, cross over and selection to generate a set of better orders.
In hill climbing, starting from an arbitrary order it tries to find a better order by
incremental changes to the solution. When it got stuck at local optimum, it jumps
to a random location and starts from there. In tabu-search, when stuck in local
optimum, it chooses a worsening move. It also keeps record of previous steps to
prune the chance to search the same zone again.

It is evident that all of the above mentioned heuristic algorithms may eventually
reach to a poorer order than the current best order during the search process.
Unlike these search paradigms, we propose an selective search algorithm (SS) which
considers only those orders which produce at most the same span (no of distinct
colors used) than a given order. SS then partitions those orders into disjoint subsets
of equivalent orders. An order is equivalent to another if the color vectors produced
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by applying greedy coloring on them are identical, where colors appear in a color
vector in natural order of the vertices. SS evaluates only one order from such a set
of equivalent orders. In a call of SS, ρ2 such orders are evaluated. In this way SS
enhances the optimum hitting probability by an exponential factor of n. Note that SS
requires an initial order to start its searching. Starting with an initial order, SS may
not cover the whole n! orders even for arbitrarily large ρ2. To complete the search, in
ISH, we execute SS with ρ1 random orders and report the minimum span produced
by them. In ISH we essentially call the greedy coloring Ω(ρ1ρ2) times. We then
calculate the expected value of ρ1ρ2 to reach the optimum. We notice that for sparse
graphs ISH solves the coloring problem in expected polynomial time. We evaluate
ISH on 86 well-known challenging benchmarks and compare the results with state
of the art existing algorithms. We observe that ISH significantly outperforms the
existing algorithms for all sparse benchmarks and also produces reasonably good
results for others. In this paper, we have adopted the concepts of pseudo-vertices
and equivalent orders from [20], however, there application and subsequent analysis
are significantly different.

2 Key Ideas

Consider a graph G(V,E) with n vertices v1, v2, · · · , vn, where V is the set of
vertices and E is the set of edges. Let S = (vl1, vl2, · · · , vln ) be an arbitrary order
of the vertices of G, where 1 ≤ lk ≤ n. Assuming colors are positive integers
starting from 1, let c(vlk ) be the color of vertex vlk obtained by applying greedy
coloring on G following order S. Recall that greedy coloring colors the vertices
of a graph following a specific order of the vertices and while coloring a vertex it
puts the minimum color that is absent in all of its neighboring vertices. Hence c(vlk )

depends only on the colors assigned to the vertices vl1 , vl2, · · · , vlk−1 that appear
before vlk in S. Moreover, greedy coloring always produces a no-hole coloring. A
coloring of G is a no-hole coloring if it uses all colors between 1 and its maximum
color. Given S, let C = (c(v1), c(v2), · · · , c(vn)) be the color vector obtained by
applying greedy coloring on G following S. Note that in the color vector, colors of
the vertices are stored in the ascending order of their vertex indexes. With respect to
the resulted color vector obtained by greedy coloring, an order may be considered
as equivalent to another order as formally defined in Definition 1.

Definition 1 (Equivalent Order) Let S1 and S2 be two orders of the vertices of G.
Let C1 and C2 be the color vectors generated by greedy coloring while applied upon
S1 and S2 respectively. Then orders S1 and S2 are said to be equivalent to each other,
if and only if C1 = C2.

The span of a color vector C denoted by span(C) is the total number of distinct
colors in C. As colors start from 1 and greedy coloring produces no-hole coloring,
span(C) is essentially same as the maximum color used in C.
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Definition 2 Let S1 and S2 be two orders of the vertices of G. Let C1 and C2 be
the color vectors generated by applying greedy coloring on S1 and S2 respectively.
Then S1 � S2 if and only if span(C1) ≤ span(C2).

Note that C essentially partitions the graph into k = span(C) vertex disjoint
independent sets each of which contains all the vertices of a particular color. We call
each such independent set as a pseudo-vertex as formally defined in Definition 3.

Definition 3 (Pseudo-Vertex) Let S be an order of the vertices of G and C be
the color vector obtained by applying greedy coloring on S. Let k = span(C). A
pseudo-vertex Vi is a subset of vertices of G all of which get color i in C, where
1 ≤ i ≤ k.

Let S be an order and V1, V2, · · · , Vk be the k pseudo-vertices of C, where
n1 = |V1|, n2 = |V2|, · · · , nk = |Vk|. Let Π(S) be the set of all permutations of
V1, V2, · · · , Vk , and π = (Vl1, Vl2, · · · , Vlk ) ∈ Π be an arbitrary permutation. Let
L(π) be the set of all orders generated from π by permuting the vertices within each
pseudo-vertex while keeping the order of the pseudo-vertices intact. All orders in
L(π) are said to be the orders represented by π . Let Nk = |L(π)| = n1!n2! · · · nk!.
Figure 1 shows an example of construction of L(π).

In Theorem 1, we will prove that all those Nk orders represented by L(π) are
equivalent to each other.

Theorem 1 Let S be an order of the vertices of G and V1, V2, · · · , Vk be the k

pseudo-vertices of C, where C is the color vector obtained by applying greedy
coloring on S. Let π = (Vl1, Vl2, · · · , Vlk ) ∈ Π(S) be an arbitrary permutation. All
orders in L(π) are equivalent to each other.

Proof Let S1, S2 ∈ L(π) such that S1 �= S2. Also assume that S1 =
(vr1, vr2, · · · vrn), where 1 ≤ ri ≤ n for all i. Let C1 and C2 be the color vectors
generated by greedy coloring while applied upon S1 and S2 respectively. To show
S1 is equivalent to S2, we have to prove that c1(vri ) = c2(vri ) for all vri . We
prove this by induction on i. Since Vl1 is an independent set, the color of all its
vertices must be 1 in both C1 and C2. Hence the first vertex of S1 appears in Vl1

corresponding to both orders S1 and S2. So, c1(vr1) = c2(vr1) = 1. Hence the
base case is done. Our induction hypothesis is, for all vertex vrj appears before vri

Fig. 1 Vertices and pseudo-vertices
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in S1, c1(vrj ) = c2(vrj ). We now left to prove c1(vri ) = c2(vri ). Let vri ∈ Vlm .
Note that c1(vri ) and c2(vri ) depend only on the colors of those vertices which
appear before vri in S1 and S2 respectively. All the vertices of Vl1, Vl2, · · · , Vlm−1

and some vertices of Vlm may only appear before vri in both S1 and S2. Since Vlm is
an independent set, eventually c1(vri ) and c2(vri ) depend only on the vertices that

belong to
m−1⋃

j=1

Vlj . But according to our induction hypothesis, c1(vrj ) = c2(vrj ) for

all vrj ∈
m−1⋃

j=1

Vlj . Hence the proof. �

So far we get that ∀π ∈ Π(S), L(π) is an equivalent set. We now show that
there is a special permutation π0(S) = (V1, V2, · · · , Vk) ∈ Π(S) such that for each
π ∈ Π(S) if S ∈ L(π0(S)) and S′ ∈ L(π), then the span produced by greedy
coloring on S is greater than or equals to that of S′. Each order S ∈ L(π0(S)) will
be termed as cardinal order, as formally defined in Definition 4.

Definition 4 (Cardinal Order) An order S = (vl1, vl2, · · · , vln ) of the vertices of
G is said to be a cardinal order if C is the color vector generated by greedy coloring
while applied upon S, such that c(vl1) ≤ c(vl2) ≤ · · · ≤ c(vln), where c(vlk ) denotes
the color of vlk .

Theorem 2 Let S be an order and upon applying greedy coloring on S we get
channel vector C with pseudo-vertices V1, V2, · · · , Vk respectively. Then ∀S′ ∈
L(π0(S)), S′ and S are equivalent orders.

Proof Let S′ = (vr1, vr2 , · · · , vrn) and C′ be the color vector generated by greedy
coloring applied upon S′, where 1 ≤ vri ≤ n for all i. We are left to show that
c(vri ) = c′(vri ) ∀i. We will apply induction on i to prove this. For i = 1 the proof
is trivial. Hence the base case is done. Our induction hypothesis is, c(vrj ) = c′(vrj )
for all vertices vrj appearing before vri in S′. Note that c′(vri ) depends only on
the colors of those vertices which appear before vri in S′. It is evident that all the
vertices which have been colored with less than c(vri ) in C must appear before vri
in S′ according to the construction of S′. Hence c′(vri ) cannot be less than c(vri ).
Some vertices which have been colored with c(vri ) in C may also appear before vri
in S′. But all such vertices belong to an independent set in G. Hence c(vri ) = c′(vri ).
Hence the proof. �
Theorem 3 Let S be an order and upon applying greedy coloring on S we get
pseudo-vertices V1, V2, · · · , Vk respectively. If π ∈ Π(S) then ∀S′ ∈ L(π), S′ � S.

Proof Let S′ = (vr1 , vr2, · · · , vrn), where 1 ≤ vri ≤ n for all 1 ≤ i ≤ n. Let C and
C′ be the color vectors generated by greedy coloring while applied upon S and S′
respectively. Let vri belongs to the pseudo-vertex which is in mi-th position in π ,
where 1 ≤ mi ≤ k. Our claim is that c′(vri ) ≤ mi ∀i. Since 1 ≤ mi ≤ k, if our
claim is true, then we can immediately conclude that span(C′) ≤ k = span(C).
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So we are left to prove our claim. We prove this by induction on i. Since all
vertices belong to the pseudo-vertex appeared in the first position in π get color
1 in C′, our claim is trivially true for all such vertices. Hence base case is done.
We now consider in induction hypothesis that for all vertices appear before vertex
vri in S′ our claim is true. This implies that our claim is true for all vertices which
belong to the pseudo-vertices of C appeared before mi-th position in π . Note that
c′(vri ) depends only on the colors of those vertices which appear before vri in S′.
There are mi −1 pseudo-vertices before mi-th position in π . Hence according to our
induction hypothesis, the colors of the vertices belong to those pseudo-vertices are
at most mi−1. Note that some vertices belong to the pseudo-vertex in mi-th position
may also appear before vri in S′. Since each pseudo-vertex is an independent set,
c′(vri ) does not depend on those vertices. Hence c′(vri ) ≤ mi . Hence the proof. �
Remark 1 From Theorem 3 we can conclude that for a given order S, there are at
least k! ×Nk orders S′s such that each S′ � S. Also, from Theorem 1 we get that, by
visiting an order represented by a particular permutation of the pseudo-vertices, we
can essentially find the minimum span generated by Nk orders represented by that
permutation. Hence by visiting only one order from each of k! different permutations
of the pseudo-vertices, we can essentially find the minimum span generated by k! ×
Nk orders.

In Theorem 4 we will show that given a color vector C′ we can build an order S
and the corresponding C such that span(C) ≤ span(C′).

Theorem 4 Given any coloring C′ of G we could generate an order S by sorting
the vertices of G according to ascending order of their colors in C′. If C is the
color vector generated by greedy coloring while applied upon S, then span(C) ≤
span(C′).

Proof Let S = (vl1, vl2, · · · , vln ) be an order of vertices of G and C is the channel
vector generated by greedy coloring while applied upon S. We claim that c(vli ) ≤
c′(vli ) for all li , 1 ≤ li ≤ n. We prove this by induction on i. For the first vertex, the
claim is trivially true. So the base case is done. In induction hypothesis we assume
that the claim is true for each vertex which appears prior to vli in S. Let N(vli ) be
the set of neighbors of vli in G which appear before vli in S. As S is constructed
by sorting the vertices according to ascending order of their colors in C′, we get
c′(vl1) ≤ c′(vl2) ≤ · · · ≤ c′(vli ). Since c′(vli ) is a valid coloring of vli in C′, N(vli )

cannot contain c′(vli ). In other words, c′(vlj ) ≤ c′(vli ) − 1 for ∀vlj ∈ N(vli ). From
the induction hypothesis, we get c(vlj ) ≤ c′(vlj ) for ∀vlj ∈ N(vli ). The previous
two arguments together imply c(vlj ) ≤ c′(vli ) − 1 for ∀vlj ∈ N(vli ). Since C is
obtained by greedy coloring, c(vli ) must be the minimum color which is not been
used in any of the vertices of N(vli ), implying c(vli ) ≤ c′(vli ). Hence the proof. �
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3 Incremental Search Heuristic (ISH)

3.1 Selective Search (SS) Algorithm

So far we get that from a given color vector C′ of G we can generate an order S

such that C is the channel vector generated by greedy coloring while applied upon
S where span(C) ≤ span(C′). Again from C we can construct k pseudo-vertices
V1, V2, · · · , Vk where k = span(C). It is also evident that for each order S′ ∈ L(π)

where π ∈ Π(S), S′ �S. Also all Nk = |L(π)| orders are equivalent to S′. From the
above discussion we can think of a natural algorithm which can be stated as: Given
C′, we first generate S and then build C. Next we consider π ∈ Π(S), apply greedy
coloring on S′ ∈ L(π) and check whether the span is improved. If improved, we
consider this new order as S and repeat the procedure. If the span is not improved,
we consider another permutation of the pseudo-vertices and repeat the process.
Since there are k! permutations of the pseudo-vertices of C, it may not be practical
to consider all of them. So we introduce a parameter ρ and consider ρ random
permutations. If an improvement is found, we further consider ρ permutations. In
each iteration, SS evaluates an order using greedy coloring, which takes O(n2) time
and O(n2) space complexity. It is evident that the span obtained after evaluating an
order could be at most Δ(G)+ 1, where Δ(G) is the maximum degree of G. Hence
the process could be repeated at most Δ(G)+1 times. Thus the total time and space
complexities of SS are O(ρ(Δ(G) + 1)n2) = O(ρn3) and O(n2) respectively.
Formally SS is presented in Algorithm 1. Note that in each iteration of SS, by

visiting only one order we eventually visit Nk =
k∏

i=1

ni ! ≥ (
n

k
!)k = Ω((

n

ek
)n)

(using Stirling’s approximation) orders. Hence we hit the optimum with probability
Nk × p(k), where p(k) is the probability that a random order with span ≤ k is
optimum.

Algorithm 1: Selective search (SS) algorithm
Input: G,C, ρ
Output: C

1 Find S by sorting the vertices according to ascending order of their colors in C;
2 C = C′ be the color vector generated by the greedy coloring while applied upon S;
3 k = span(C);
4 for i = 1, 2, · · ·ρ do
5 Let π ∈ Π(S) and S′ ∈ L(π);
6 C′ be the color vector generated by the greedy coloring while applied upon S′;
7 if span(C′) < span(C) then
8 C = C′;
9 Reset i = 1;

10 return C
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3.2 Incremental Search Heuristic (ISH) Algorithm

ISH generates ρ1 random orders and calls SS with ρ = ρ2 for each of them and
finally returns the color vector having the minimum span. ISH is formally presented
in Algorithm 2. Similar to SS the time and space complexities of ISH are O(ρ1ρ2n

4)

and O(n2) respectively.

Algorithm 2: Incremental search heuristic (ISH)
Input: G,ρ1,rho2
Output: Cmin

1 Set Cmin = (1, 2, · · · , |V (G)|);
2 for i = 1, 2, · · · , ρ1 do
3 Generate a random order S of the vertices;
4 C be the color vector generated by the greedy coloring while applied upon S;
5 C = SS(G,C, ρ2);
6 if span(C) < span(Cmin) then
7 Cmin = C;
8 Reset i = 1;

9 return Cmin;

4 Expected Value of ρ1ρ2

Let’s define a step as applying greedy coloring on an order and obtaining a color
vector. Clearly SS and ISH execute Ω(ρ) and Ω(ρ1ρ2) steps.

Theorem 5 If ISH produces span less than or equals to k in each step, then

expected number of steps to find optimum is E[ρ1ρ2] = O( 1
k! (

ek2

n
)n).

Proof Let A(k) be the set of orders which produce span ≤ k while greedy
coloring is applied upon them. Considering ko as the optimum span, we get
p(k) = |A(ko)|

|A(k)| . Again |A(k)| ≤ n! hence p(k) ≥ |A(ko)|
n! . If an order with span

ko is optimum, then all the orders represented by all the ko! different permutations
of its pseudo-vertices must also be optimum. Since each permutation represent
Nko = Ω(( n

eko
)n) (Stirling’s approximation) orders, there are |A(ko)| = ko! ×

Nko = Ω(ko!( n
eko

)n)) optimum orders. Hence using Stirling’s approximation we

get p(k) = Ω(ko!
n! (

n
eko

)n) = Ω(ko!
kno

) = Ω( k!
kn
), ∀k ≥ ko. Since in a step, ISH

essentially evaluates Nk orders, expected number of steps to find an optimum order

is E[ρ1ρ2] = 1
Nkp(k)

= O( 1
k! (

ek2

n
)n). �
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Corollary 1 If k ≤
√

n

e
then E[ρ1ρ2] = O(1).

Since for greedy coloring k ≤ Δ(G) + 1, Corollary 2 is immediate.

Corollary 2 If Δ(G) + 1 ≤
√

n

e
, then E[ρ1ρ2] = O(1).

Remark 2 It is a well-known fact that solving the graph coloring problem even for
sparse graph is hard. It is known from [21] that even coloring a planer graph with
maximum degree just 4 is NP-Complete. Using ISH we can solve these sparse graph
instances in expected polynomial time. This is a key feature of ISH algorithm.

It is evident that ISH performs well for graphs whose maximum degree is small.
We now consider the performance of ISH for the graphs with small average degree.
For this purpose, we consider Erdos-Reyni random graph G(n, p), where n is the
number of vertices and each edge is generated independently with probability p.
For G(n, p), where np = O(1), if k is the span produced by greedy coloring then

k ∼n np [22]. Here x(n) ∼n y(n) �⇒ lim
n→∞

x(n)

y(n)
= 1. From Corollary 1, the

following theorem is immediate, where x(n) ≤n y(n) �⇒ lim
n→∞

x(n)

y(n)
≤ 1.

Theorem 6 In Erdos-Reyni random graphG(n, p), if average degreeΔa = np ≤n√
n
e
then E[ρ1ρ2] = O(1).

5 Simulation

We simulate ISH and compare with 9 state of the art algorithms based on the results
obtained on 86 challenging benchmarks taken from [15, 23–31]. Table 1 shows the
results. Here n represents number of vertices and e represents number of edges of

the corresponding benchmarks. All benchmarks for which Δa ≤
√

n
e
, we termed

them as sparse benchmarks and marked in bold. DBG represents a hybrid genetic
algorithm reported in [32]. MCOACOL represents a modified cuckoo optimization
algorithm reported in [6]. Best of [33] represents the minimum span produced
and its corresponding time among the five integer linear programming based
algorithms REP, POP, POP2, ASS+(c) and ASS+(e) reported in [33]. DR represents
a Doglas-Ranchford algorithm reported in [34]. EBDA represents a Enhanced binary
dragonfly algorithm reported in [35]. Note that these algorithms are considered by
many authors [36–39]. We run our ISH with ρ1 = ρ2 = ρ = 10,000. For a
particular algorithm,χ represents chromatic number and T represents the time taken
by the corresponding algorithm to reach the corresponding value of χ . For example,
for benchmarks “1-Fullins-5” and “school1-nsh”, we get χ = 6, T = 0.002752s
and χ = 14, T = 0.656823s by executing only 3 and 1310 solutions respectively.
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The time taken by different algorithms are represented in seconds (s). In case of
Best of [33], h represents 1 h. For state of the art algorithms, we summarize the
number of instances for which span (χ) and time (T ) is greater, equal and smaller
than that of ISH at the bottom of the table. We also mark the table entries for both
χ and T which are better than those of ISH in bold font.

It is evident from Table 1 that for all sparse benchmarks, ISH produces
optimal results very quickly, mostly in the range of microseconds, which is less
than several magnitude than other algorithms. This superior performance of ISH
on sparse benchmarks is in accordance with our theoretical findings stated in
Theorem 6. For other benchmarks also, its performance is reasonably good. From
the summary of results presented at the bottom of Table 1, it implies that for a large
number of benchmarks, ISH outperforms other algorithms in terms of span or time
significantly.

6 Conclusion

In this paper we have proposed an incremental search heuristic for coloring graphs.
We simulate ISH on 86 benchmark instances and show that it performs significantly
good for sparse graphs and reasonably good for other benchmarks.
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Improved Bounds on the Span of
L(1, 2)-edge Labeling of Some Infinite
Regular Grids

Susobhan Bandopadhyay, Sasthi C. Ghosh, and Subhasis Koley

Abstract For two given non-negative integers h and k, an L(h, k)-edge labeling of
a graph G is the assignment of labels {0, 1, · · · , n} to the edges so that two edges
having a common vertex are labeled with difference at least h and two edges not
having any common vertex but having a common edge connecting them are labeled
with difference at least k. The span λ′

h,k(G) is the minimum n such that G admits an
L(h, k)-edge labeling. Here our main focus is on finding λ′

h,k(G) for L(1, 2)-edge
labeling of infinite regular hexagonal (T3), square (T4) and triangular (T6) grids. It
was known that 7 ≤ λ′

h,k(T3) ≤ 8, 10 ≤ λ′
h,k(T4) ≤ 11 and 16 ≤ λ′

h,k(T6) ≤ 20.
Here we have shown that λ′

h,k(T3) ≤ 7, λ′
h,k(T4) ≥ 11 and λ′

h,k(T6) ≥ 19.

Keywords L(1, 2)-edge labelling · Bounds · Minimum span · Infinite regular
grids

1 Introduction

Channel assignment problem (CAP) is one of the fundamental problems in wireless
communication where frequency channels are assigned to transmitters such that
interference can not occur. The objective of the CAP is to minimize the span of
frequency spectrum. In 1980, Hale [6] first formulated the CAP as a classical vertex
coloring problem. Later on, in 1988 Roberts [9] introduced L(h, k)-vertex labeling
as defined below:

Definition 1 For two non-negative integers h and k, an L(h, k)-vertex labeling of a
graphG(V,E) is a function f : V −→ {0, 1, · · · , n},∀v ∈ V such that |f(u)−f(v)| ≥
h when d(u, v) = 1 and |f(u)− f(v)| ≥ k when d(u, v) = 2. For two vertices u and
v, the distance, d(u, v) is k′ if at least k′ edges are required to connect u and v.
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The span λh,k(G) of L(h, k)-vertex labeling is the minimum n such that G admits
an L(h, k)-vertex labeling. In 1992 Griggs and Yeh [5] extended the concept of
L(h, k) labeling by introducing L(k1, k2, · · · , kl)-vertex labeling with separation
{k1, k2, · · · , kl} for {1, 2, · · · , l} distant vertices and their main focus was on
L(h, k)-vertex labeling for a special case h = 2, k = 1. In 2007, Griggs and
Jin [4] studied L(h, k)-edge labeling, which can be formally defined as:

Definition 2 For two non-negative integers h and k, an L(h, k)-edge labeling of a
graph G(V,E) is a function f′ : E −→ {0, 1, · · · , n},∀e ∈ E such that |f′(e1) −
f′(e2)| ≥ h when d(e1, e2) = 1 and |f′(e1) − f′(e2)| ≥ k when d(e1, e2) = 2. Here,
for any two edges e1 and e2, the distance d(e1, e1) is k′ if at least (k′ − 1) edges are
required to connect e1 and e2.

Like L(h, k)-vertex labeling, the span λ′
h,k(G) of L(h, k)-edge labeling is the

minimum n such that G admits an L(h, k)-edge labeling. In 2011, Calamoneri
did a rigorous survey [1] on both vertex and edge labeling problems. Authors in
[2, 3, 7, 8] have studied L(h, k)-edge labeling of regular infinite hexagonal (T3),
square (T4) and triangular (T6) grids for the special case of h = 1 and k = 2. They
obtained some upper and lower bounds on λ′

1,2(G) for T3, T4 and T6 with a gap
between them. In this paper, we improve some of these gaps.

Given a graph G(V,E), its line graph L(G)(V ′, E′) is a graph such that each
vertex of L(G) represents an edge of G and two vertices of L(G) have an edge if and
only if their corresponding edges share a common vertex in G. It is well-known that
if G is d-regular then L(G) is 2(d−1)-regular. Figure 1 shows T3, T4, L(T3), L(T4)

and T6. It is also well-known that edge labeling of G is equivalent to vertex labeling
of L(G). In our approach, instead of L(1, 2)-edge labeling of T3 and T4, we use
L(1, 2)-vertex labeling of L(T3) and L(T4). Note that L(T6) is 10-regular. Because
of this high degree, we consider L(1, 2)-edge labeling of T6 directly. Our results on
λ′

1,2(G) for T3, T4 and T6 are stated in Table 1. In this table, a − b represents that
a ≤ λ′

1,2(G) ≤ b. Here, we use the term ‘coloring’ and ‘labeling’ interchangeably.

a.T3 b.L(T3) and T4 c.L(T4) d.T6

Fig. 1 T3, T4, their line graphs and T6
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Table 1 The main results

T3 T4 T6

Known Ours Known Ours Known Ours

λ′
1,2(G) 7-8 [7] 7-7 10-11 [7] 11-11 16-20 [2] 19-20

2 Results

2.1 Hexagonal Grid

Let us consider the induced subgraph GS of L(T3) as shown in Fig. 2a, where all
vertices are at mutual distance at most three. It is clear that λ1,2(L(T3)) ≥ λ1,2(GS).
A color can be reused at a pair of vertices at mutual distance three apart in GS . But
we observe that if any color is reused at distance three in GS , then there exists a
color which remains unused in GS . Thus there is no such benefit of reusing a color
over using all different colors in GS . This motivates us to consider reusing a color
at distance four only keeping all colors distinct at GS . We show in Theorem 1 that
such a coloring of L(T3) exists which uses colors from 0 to 7 only.

Theorem 1 λ′
1,2(T3) = 7.

Proof Consider the coloring function g of vertices v = (x, y) as g(v)(x,y) =
(x + 5y) mod 8. Here coordinates (x, y) of a vertex v can be computed from the
origin O(0, 0) as shown in Fig. 2b. The minimum and maximum color used here
are 0 and 7 respectively. It can also be verified that g satisfies the L(1, 2)-vertex
labeling requirements of L(T3). Hence λ1,2(L(T3)) ≤ 7. It has been shown in [7]
that λ1,2(L(T3)) ≥ 7. Hence λ′

1,2(T3) = λ1,2(L(T3)) = 7. In Fig. 2b, an L(1, 2)-
vertex labeling of L(T3) has been shown. �

It is evident that λ′
1,2,1(T3) ≥ λ′

1,2(T3) = 7. In the coloring function g stated
above, observe that no vertices at distance three have the same color in L(T3). Hence

v1

v2 v3

v4 v5 v6

v7 v8

(a) (b)

0 1 2 3 4 5 6 77

2 3 4 5 6 7 0 1 2

0 1 2 3 4 5765

0 1 2 3 4 5 6 7 0 X

Y

O(0,0)

v(3,2)

Fig. 2 (a) Sub graph Gs of L(T3). (b) A feasible L(1, 2)-labeling of L(T3)
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g also satisfies the L(1, 2, 1)-edge labeling requirements for T3. So, λ′
1,2,1(T3) ≤ 7.

Hence we have the following result.

Corollary 1 λ′
1,2,1(T3) = 7.

2.2 Square Grid

Let us consider the induced subgraph G of L(T4) as shown in Fig. 3 where all
vertices are at mutual distance at most three. Let S1 = {a, b}, S2 = {k, l}, S3 =
{c, g}, S4 = {f, j } and S5 = {d, e, h, i}.
Definition 3 The set of vertices in S5 are termed as central vertices in G.

Definition 4 The set of vertices in S1 ∪ S2 ∪ S3 ∪ S4 are termed as peripheral
vertices in G.

Now we have the following observations in G. Here the color of vertex a is
denoted by f(a).

Observation 1 If colors of vertices of G are all distinct then λ1,2(G) ≥ 11.

Proof As G has 12 vertices, if all of them get distinct colors then λ1,2(G) ≥ 11. �
Observation 2 No color can be used thrice inG. Colors used at the central vertices
in S5 cannot be reused in G. Colors used at the peripheral vertices in S1 can be
reused only at the peripheral vertices in S2. Similarly, colors used at the peripheral
vertices in S3 can be reused only at the peripheral vertices in S4.

Proof No three vertices are mutually distant three apart. Hence no color can be used
thrice in G. For any central vertex in S5 there does not exist any vertex in G which
is distance three apart from it. So colors used in the central vertices in S5 cannot be
reused in G. For all peripheral vertices in S1 ∪ S2, d(x, y) = 3 only when x ∈ S1
and y ∈ S2. Hence color used at peripheral vertex in S1 can only be reused in S2.
Similarly, color used at peripheral vertex in S3 can only be reused in S4. �
Observation 3 If f(x) = f(y) = c where x ∈ S1 and y ∈ S2 then either c ± 1
is to be used in (S1 ∪ S2) \ {x, y} or it should remain unused in G. Similarly, if
f(x) = f(y) = c where x ∈ S3 and y ∈ S4 then either c ± 1 is to be used in
(S3 ∪ S4) \ {x, y} or it should remain unused in G.

Fig. 3 Sub graph G of L(T4) a b

c d e f

g h i j

k l
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a b

c d e f

g h i j

k l

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

a(c1) b(c2)

c(c4) d(c7) e(c6) f(c3)

g(c3) h(c8) i(c5) j(c4)

k(c2) l(c1)

p1

q1

r1 s1

t1

p2 q2

r2

s2

t2

p3

q3

r3s3

t3

p4q4

r4

s4

t4

(a) (b)

Fig. 4 (a) The subgraph G1. (b) A feasible L(1, 2)-labeling of G

Proof Note that for all vertices z ∈ V (G)\(S1∪S2), either d(z, x) = 2 or d(z, y) =
2, where x ∈ S1 and y ∈ S2. Hence c±1 cannot be used in V (G)\(S1∪S2). So c±1
can only be used in (S1 ∪ S2) \ {x, y} or it should remain unused in G. Similarly,
if f(x) = f(y) = c, where x ∈ S3 and y ∈ S4, then c ± 1 can only be used in
(S3 ∪ S4) \ {x, y} or it should remain unused in G. �
Observation 4 Let f(x) = f(y) = c where x ∈ S1 and y ∈ S2. If |f(x)− f(x ′)| ≥ 2,
where x ′ ∈ S1 \ {x}, then one of c ± 1 must remain unused in G. Similarly if
|f(y)− f(y ′)| ≥ 2, where y ′ ∈ S2 \ {y}, then one of c ± 1 must remain unused in G.
Similar facts hold when x ∈ S3, x ′ ∈ S3 \ {x}, y ∈ S4 and y ′ ∈ S4 \ {y}.
Proof Since |f(x) − f(x ′)| ≥ 2, f(x ′) �= c ± 1. Hence from Observation 3, one of
c ± 1 must remain unused in G. �

If no color is reused in G, then λ1,2(G) ≥ 11 from Observation 1. To make
λ1,2(G) < 11, at least one color must be reused in G. From Observation 2, there
are at most 4 distinct pairs of peripheral vertices in G where a pair can have the
same color. Now consider the subgraph G1 of L(T4) as shown in Fig. 4a. Note
that G1 consists of 5 subgraphs G′, G′

1, G′
2, G′

3 and G′
4 which all are isomorphic

to G having central vertices {d, h, i, e}, {t1, c, d, a}, {b, e, f, t2}, {i, l, t3, j } and
{g, t4, k, h} respectively. Based on the span requirements of coloring G1, we derive
the following theorem.

Theorem 2 λ1,2(L(T4)) ≥ λ1,2(G1) ≥ 11.

Proof

Case 1 When at most one pair of peripheral vertices use the same color in any sub
graph of L(T4) isomorphic to G.
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If no color is reused in G′, then λ1,2(G
′) ≥ 11 from Observation 1. We now

consider the case when exactly one pair reuse a color in G′. Without loss of
generality, consider f(a) = f(l) = c1. From Observation 3, c1 ± 1 can only be
put in {b, k}. Let f(k) = c1 − 1 and f(b) = c1 + 1. We assume that c1 − 1 is the
minimum color. Let us consider f(d) = c1 + n where n ∈ N and n ≥ 2. From
Observation 4, x ∈ {c1, c1 + n} can be reused in G′

2 only if one of x ± 1 remains
unused in G′

2. In either case, λ1,2(G
′
2) ≥ 11. So x cannot be reused in G′

2. Since
f(a) = f(l) = c1, c1 −1 can only be put in {r2, s2} as vertex b is already colored and
for all other vertices z ∈ V (G′

2)\{r2, s2}, either d(z, a) = 2 or d(z, l) = 2. Without
loss of generality, let f(r2) = c1 − 1. In that case, c1 + n ± 1 can only be put in
{e, s2}. Without loss of generality, let f(e) = c1 +n−1 and f(s2) = c1 +n+1. Since
f(a) = f(l) = c1, f(i) �= c1 ±1 and hence |f(l)− f(i)| ≥ 2. Now if |f(d)− f(c)| ≥ 2,
then from Observation 4, one of f(c) ± 1, f(d) ± 1 and f(i) ± 1 remains unused
in G′

4 if f(c) or f(d) or f(i) is reused in G′
4 respectively. In either case, this implies

λ1,2(G
′
4) ≥ 11. So |f(d) − f(c)| = 1 and f(c) = c1 + n + 1. There are 5 more

vertices {g, h, i, j, f } in G′ which are to be colored with 5 distinct colors. Hence
at least color c1 + n + 6 must be used. Observe that if f(f ) = c1 + n + 2 then
|f(e)−f(f )| = 3 and |f(k)−f(h)| ≥ 3 implying λ1,2(G

′
3) ≥ 11 from Observation 4.

As d(s2, i) = d(s2, j) = 2 and f(s2) = c1 + n + 1, we get f(i) �= c1 + n + 2 and
f(j) �= c1 + n + 2. Therefore, either f(g) = c1 + n + 2 or f(h) = c1 + n + 2. So,
f(p4) �= c1 + n+ 1 and f(q4) �= c1 + n+ 1. In that case, f(p4) and f(q4) must be in
{c1+n, c1+n−1} if color c1+n is to be reused in G′

4, otherwise, λ1,2(G1) ≥ 11. As
c1 cannot be reused in G′

4, either f(r4) = c1+1 or f(s4) = c1+1. Let f(r4) = c1+1.
When n = 2, c1 + n − 1 = c1 + 1 and when n = 3, c1 + n − 1 = c1 + 2. As
d(p4, l) = d(p4, r4) = d(q4, l) = d(q4, r4) = 2, f(p4), f(q4) /∈ {c1 + 1, c1 + 2}.
So, n ≥ 4 and hence c1 + n + 6 ≥ c1 + 10. So at least 12 color are required in G1
including c1 − 1 and c1 + 10. Hence λ1,2(G2) ≥ 11.

Case 2 There exists at least one subgraph of L(T4) isomorphic to G where two
pairs of peripheral vertices use a color each.

There are two different ways of reusing two colors in G′.

Case 2.1 First consider the case when f(a) = f(l) = c1 and f(c) = f(j) = c2. From
Observation 3, c1±1 and c2±1 must be used in {b, k} and {g, f } respectively. From
Observation 2, c1 can only be reused in {r2, s2} in G′

2. But f(r2) �= c1 and f(s2) �= c1
as |f(b) − c1| = 1 and d(b, r2) = d(b, s2) = 2. Again, from Observation 2, c2 can
only be reused in {p2, q2}. But f(p2) �= c2 and f(q2) �= c2 as |f(f ) − c2| = 1 and
d(f, p2) = d(f, q2) = 2. From Observation 3, if f(i) is to be reused in G′

2, then
|f(i) − c2| = 1. But f(i) �= c2 ± 1 as d(c, i) = 2 and f(c) = c2. If f(d) is to be
reused in G′

2, then |f(d) − c1| = 1. But f(d) �= c1 ± 1 as d(d, l) = 2 and f(l) = c1.
Therefore, no color can be reused in G′

2 and hence λ1,2(G1) ≥ 11.

Case 2.2 Consider the case when f(a) = f(l) = c1 and f(b) = f(k) = c2. Without
loss of generality, assume c2 > c1. From Observation 3, c1 ± 1 and c2 ± 1 must be
used in {b, k} and {a, l} respectively. Even if we set c2 = c1+1, at least one of c1−1
and c2+1 must remain unused in G′. So the 8 vertices in V (G′)\({a, l}∪{b, k})must
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get 8 distinct colors other than c1 and c2. So, λ1,2(G
′) ≥ 10. Note that λ1,2(G

′) =
10 only if c2 = c1 + 1, c1 is minimum color (c1 − 1 does not exists) or c2 is
maximum color (c2 + 1 does not exists). If both c1 and c2 are non-extreme color,
then λ1,2(G

′) ≥ 11 and we are done. So, we consider c1 = 0, c2 = c1 + 1 = 1 and
c2 + 1 = 2 as unused in G′. In that case, f(d) = x ≥ 3 and hence |f(d)− f(a)| ≥ 3.
From Observation 4, if x is reused in G′

2, then one of x ± 1 cannot be used in G′
2.

If only x is reused in G′
2, then λ1,2(G

′
2) ≥ 11. If x and one of {f(i), f(j)} are reused

in G′
2, then from Case 2.1 above, λ1,2(G1) ≥ 11. If x and both of {f(i), f(j)} are

reused in G′
2, from Case 3 below, we will see that λ1,2(G1) ≥ 11. So, to keep

λ1,2(G1) < 11, x should not be reused in G′
2. In that case, x − 1 must be used at

one of {c, g, h, e} in G′. Now arguing similarly as stated in case 1, we can conclude
that x + 7 must be used in G′

1 or G′
2. If x = 3, then x − 1 = 2 must be used in

G′ which is a contradiction, as 2 must remain unused in G′. Hence x ≥ 4 implying
x + 7 = 11. Hence λ1,2(G1) ≥ 11.

Case 3 The exists at least one sub graph of L(T4) isomorphic to G where three
pairs of peripheral vertices use a color each.

Without loss of generality, let us consider f(a) = f(l) = c1, f(b) = f(k) = c2
and f(c) = f(j) = c3. From Observation 3, c1 ± 1 and c2 ± 1 must be used in {b, k}
and {a, l} respectively. It can be observed that λ1,2(G

′) = 9 only if |c1 − c2| = 1,
|c3 − f(g)| = 1, |c3 − f(f )| = 1 and any one of {c1, c2} is one extreme color.
Without loss of generality consider f(g) = c3 + 1, f(f ) = c3 − 1, c1 is minimum
color and c2 = c1 + 1. From Observation 2, c3 can only be reused in {p2, q2}. But
f(p2) �= c3 and f(q2) �= c3 as f(f ) = c3 − 1 and d(f, p2) = d(f, q2) = 2. From
Observation 3, if f(i) is to be reused in G′

2, then |f(i) − c3| = 1. But f(i) �= c3 ± 1
as d(c, i) = 2 and f(c) = c3. From Observation 2, c1 can only be reused in {r2, s2}.
But f(r2) �= c1 and f(s2) �= c1 as f(b) = c2 = c1 + 1 and d(b, r2) = d(b, s2) = 2.
Now arguing similarly as stated in case 2.2 above, we can conclude that c2 + 1
must remain unused in G′. So, (c1 − f(d)) ≥ 3. Now from Observation 4, if f(d) is
reused in G′

2 then any one of f(d) ± 1 must remain unused in G′
2. Thus in G′

2, only
f(d) can be reused by keeping one of f(d) ± 1 as unused. Hence λ1,2(G1) ≥ 11.
If we consider λ1,2(G

′) = 10, the same result can be obtained by considering the
corresponding G′

i , 1 ≤ i ≤ 4.

Case 4 The exists at least one subgraph of L(T4) isomorphic to G where all four
pairs of peripheral vertices use a color each.

Let us consider f(a) = f(l) = c1, f(b) = f(k) = c2, f(g) = f(f ) = c3 and
f(c) = f(j) = c4. From Observation 3, c1 ±1, c2 ±1, c3 ±1 and c4 ±1 must be used
in {b, k}, {a, l}, {c, j } and {g, f } respectively. It can be observed that λ1,2(G

′) = 9
only if |c1 − c2| = 1, |c3 − c4| = 1, one of {c1, c2} is an extreme color and one
of {c3, c4} is the other extreme color. Without loss of generality, consider c1 = 0,
c4 = 9, c2 = c1 +1 = 1 and c3 = c4 −1 = 8. So c2 +1 = 2 and c3 −1 = 7 are two
distinct unused colors. Without loss of generality, consider c8 = c2 +2, c5 = c8 +1,
c6 = c5 + 1 and c7 = c6 + 1. Since |c3 − c4| = 1 and d(g, p4) = d(g, q4) = 2,
we get f(p4) �= c4 and f(q4) �= c4. Similarly, f(r4) �= c1 and f(s4) �= c1. From
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Observation 2, c5 can only be reused at {s4, r4} in G′
4 but f(s4) �= c5 and f(r4) �= c5

as d(h, s4) = d(h, r4) = 2 and f(h) = c8 = c5 − 1. Therefore, only c7 can be
reused in {p4, q4}. From Observation 4, one of c7 ± 1 must remain unused in G′

4 as
(c4 − c7) = 3. Hence λ1,2(G1) ≥ 11. For other assignment of central vertices and
for the case when λ1,2(G

′) = 10, we can obtain the same result by considering the
corresponding G′

i , 1 ≤ i ≤ 4. �

2.3 Triangular Grid

Here we first define some notations.
For any vertex u, the set of vertices which are adjacent to u is called N(u).

Let us define N(S) = {∪u∈SN(u) : u ∈ S}. Let v be any vertex in T6. Consider
the subgraph Gv(V,E) of T6 centering v as shown in Fig. 5, where V = N(v) ∪
N(N(v)) and E is set of all the edges which are incident to u where u ∈ N(v).
Observe that in Gv , for any two edges e1 and e2, d(e1, e2) ≤ 3. Now we define the
following three sets of edges S1, S2 and S3:

S1: Edges of Gv incident to v.
S2: Edges of Gv whose both end points incident to e1 and e2 where e1, e2 ∈ S1.
S3: E \ (S1 ∪ S2).
Consider the 6-cycle, Hv formed with the edges of S2 in Gv . We say e and e1

as a pair of opposite edges in Hv if and only if d(e, e1) = 3. This implies that the
same color can be used at a pair of opposite edges in L(1, 2)-edge labeling. An edge
e(v,w) covers the set of edges E′ if for every e′ ∈ E′, d(e, e′) ≤ 2. This implies
that a color used at e cannot be used at any edge e′ ∈ E′ in L(1, 2)-edge labeling.
Now we have the following lemmas.

Lemma 1 If c be a color used to color an edge e in S1, then c cannot be used in
E \ e.

Proof Since e is incident to v, for any other edge e1 ∈ E, d(e, e1) ≤ 2. Hence
f ′(e1) �= c for L(1, 2)-edge labeling, where f ′(e1) denotes the color of e1. �

Fig. 5 A subgraph Gv of T6

v
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Lemma 2 If c be a color used to color an edge in S1, then c+1 and c−1 both can
be used at most once in Gv .

Proof Let e be an edge in S1 such that f ′(e) = c. Since e is incident to v, for any
other edge e1 ∈ E, d(e, e1) ≤ 2. Let Se = {e1 : d(e, e1) = 1}. For L(1, 2)-edge
labeling, c + 1 can only be used in an edge e1 in Se. It can be noted that for any two
edges e1, e2 ∈ Se, d(e1, e2) ≤ 2. Hence c + 1 can be used at most once. Proof for
c − 1 can be done in similar manner. �
Lemma 3 If c be a color used to color an edge e in S2, then c can be used at most
one edge in E \ e in Gv .

Proof Note that c cannot be used at any edge in S1. Here c can be used at the
opposite edge e1 of e in S2 or at an edge e2 in S3, which is adjacent to e1. When c

is used at e and e1, then c cannot be used again in Gv as e and e1 together cover all
the edges of Gv . When c is used at e and e2, c cannot be used again in Gv as e and
e2 together also cover all the edges of Gv . �
Lemma 4 If c be a color used to color an edge e in S2, then c + 1 and c − 1 both
can be used at most twice in Gv .

Proof Suppose e1 be an edge colored with c + 1. If e1 is not adjacent to e then
d(e1, e) = 3. From statement of Lemma 3, it follows that there does not exist two
edges along with e in Gv which are mutually distance 3 apart, otherwise c would
have been used for three times. Hence c + 1 can be used at most once.

When e1 is adjacent to e, e2 can be colored with c + 1 if e2 is at distance 3 apart
from both e1 and e. Again from the statement of Lemma 3, it follows that there
does not exist two edges along with e in Gv which are mutually distance 3 apart,
otherwise c would have been used for three times. So, c + 1 can be used at most
twice, one in one of the edges adjacent to e and other in one of the edges which are
at distance 3 apart from e. Proof for c − 1 can be done in similar manner. �
Lemma 5 If c be a color used to color an edge e in S3, then c can be used at most
twice in E \ e.

Proof It follows from Fig. 5 that exactly one end point of e is incident to a vertex
in Hv . Note that for any walk through Hv , every third vertex is distance 2 apart. So
edges incident to those vertices are distance 3 apart. Since the order of Hv is 6, there
can be at most 6/2 = 3 vertices which are mutually distance 2 apart. Hence c can
be used thrice. �
Lemma 6 If c be a color used to color an edge e in S3, then c + 1 and c − 1 both
can be used at most thrice in Gv .

Proof We know that c + 1 can be used at an edge adjacent to e. From Lemma 5 it
is clear that c can be used at most thrice. So, c + 1 can also be used at most thrice,
where each such edge is adjacent to one of the three edges colored with c. It can be
proved similarly for c − 1. �
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Lemma 7

i. To color the edges of S1, at least 6 colors are required.
ii. To color the edges of S2, at least 3 colors are required.
iii. To color the edges of S3, at least 6 colors are required.

Proof

i. From Lemma 1, every edge of S1 has an unique color. As there are 6 edges in
S1, 6 distinct colors are required here.

ii. In S2, there are 3 pairs of opposite edges. Each pair of opposite edges requires
at least one unique color. So at least 3 colors are required.

iii. A color can be used thrice in S3 by Lemma 5. In S3, there are 18 edges. So, at
least 6 colors are required. �

Theorem 3 For any optimal labeling of Gv , 6 consecutive colors including either
the minimum color or the maximum color must be used in S1.

Proof It is clear from Lemma 7.i that S1 needs at least 6 colors to color its edges.
From Lemma 2, note that if c be a color used in an edge of S1 then both c + 1 and
c − 1 can be used at most once in Gv . Whereas a color can be used twice in S2 and
thrice in S3. Thus our aim should be to minimize the number of colors which can
be used only once in Gv . This implies that consecutive colors should be used in S1
for optimal coloring. If the minimum color (min) or the maximum color (max) is
used in S1 then further benefit can be achieve as min− 1 or max + 1 does not exist.
Therefore, optimal span can be achieved only when the colors of S1 are consecutive
including either min or max. �
Theorem 4 For any optimal labeling of Gv , 3 colors like {c, c + 2, c + 4} have to
be used twice each in S2.

Proof Let c be a color used in S2. From Lemma 3, observe that c can be used
at most twice in Gv . Also, no matter how many times c is used in S2, it follows
from Lemma 4 that both c + 1 and c − 1 can be used at most twice in Gv . Let
CS2 = {c, c + 1, c − 1| ∀c used at S2}. Note that a color can be used at most thrice
in Gv . So our goal is to minimize |CS2 |, where |CS2 | is the cardinality of set CS2 .
Observe that minimum 3 colors are required and maximum 6 colors can be used to
color S2. If 3 colors {c, c+ 2, c+ 4} are used then |CS2 | ≥ 6, assuming one of them
is an extreme color. If 6 consecutive colors are used then |CS2 | ≥ 7, assuming one
of them is an extreme color. One can follow that in all the other cases |CS2 | > 7. So
for optimal coloring of Gv , 3 colors such as {c, c + 2, c + 4} have to be used twice
each in S2. �
Lemma 8 If three consecutive colors c, c+ 1, c+ 2 are used thrice each in S3 then
neither c − 1 nor c + 3 can be used in S3.

Proof Observe that there are exactly 2 sets of three alternating vertices in Hv where
a color can be used thrice at edges incident to any set of alternating vertices. If c−1
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would have been used in S3 then either it was used at an edge adjacent to the edges
colored with c or at an edge distance 3 apart from the edge colored with c. Now
observe that c and c − 1 are used at two edges of S3 which form a triangle with
one edge of S2. Suppose c, c − 1 be the colors used at those two edges e, e1 ∈ S3
respectively, where e is incident to u and e1 is incident to w where uw ∈ S2. Note
that c is used thrice in S3. Then c must be reused at an edge incident to x, and
xw ∈ S2. So c and c − 1 are used at two edges at distance 2 apart, which violets the
condition of L(1, 2)-edge labeling. Hence c − 1 cannot be used in Gv . Similarly it
can be shown that c+3 can also not be used in Gv . This implies that no 4 consecutive
colors can be used thrice each in Gv . �
Lemma 9 If all colors in {c, c + 2, c + 4} are used twice each in S2 then at least 6
colors are required which all are either higher than c + 4 or lower than c.

Proof From Theorem 4, it follows that |CS2 | = 6 for optimal coloring of Gv . So
c+1, c+3 and one of c+5 and c−1 must be used in S3. Without loss of generality,
assume that colors {c + 1, c + 3, c + 5} are used in S3. Using Lemma 4 it can be
verified that colors c + 1, c + 3 and c + 5 can be used at most twice in S3. That
means using these three colors at most 6 edges can be colored in S3. So 12 edges
remain uncolored till now. By Lemma 6 a color can be used thrice in S3. Again, it
follows from Lemma 8 that no 4 consecutive colors can be used thrice each in S3.
Hence the maximum color used in S3 will be at least (c+ 5)+ 5. Similarly it can be
shown that minimum color used in S3 will be at most (c − 1) − 5 for the case when
{c − 1, c + 1, c + 3} are used at S3. �
Theorem 5 λ′

1,2(Gv) ≥ 17.

Proof By Theorem 3, 6 consecutive colors must be used to color the edges of S1.
Recall that, we assume the minimum color is used at S1. Let c′ be the maximum
color used at S1 and c′′ be the minimum color used at S2. From Theorem 4, 3 colors
must be used to color the edges of S2 and in that case by Lemma 1, (c′′ − c′) ≥ 2.
Note that, c′+1 and c′′−1 can be used at most once and twice respectively. However
a color can be used thrice in S3. Therefore, it is beneficial if c′ + 1 = c′′ − 1. Now if
{c, c + 2, c + 4} are used at S2 then {c − 2, c − 3, · · · c − 7} are used at S1. Now if
{c+1, c+3, c+5} are used in S3 then from Lemma 9, it follows that c+10 must be
used at S3. So, λ′

1,2(Gv) ≥ ((c+10)−(c−7)) = 17. Similarly, if {c−1, c+1, c+3}
are used at S3, λ′

1,2(Gv) ≥ ((c + 11) − (c − 6)) = 17. Hence the proof. �
We assume that the minimum color is used in S1. The maximum color can be

used at most thrice in S3 and at most twice in S2. In all cases, there exists a vertex
say v′ in Hv such that color of any edge incident to v′ is neither minimum nor
maximum. Now we consider the subgraph Gv′ of T6 centering v′ and isomorphic to
Gv .

Let min1 and max1 be the minimum and maximum colors used to color the edges
of S′

1 in Gv′ .
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Lemma 10 If max1 − min1 ≥ 7, i.e., there exists at least two intermediate colors
between min1 and max1 which are not used in S′

1, then λ′
1,2(Gv′) ≥ 19.

Proof There must be at least two unused colors say, {c1, c2} such that for each
c ∈ {c1, c2} either c + 1 or c − 1 is used in S′

1. From Lemma 2, it can be said that
each of c1, c2, min1 − 1 and max1 + 1 can be used at most once in Gv′ . Observe
from discussion of Theorem 5, that for any optimal coloring of Gv′ , each color must
be used at least twice in Gv′ \S′

1. Note that at most 4 edges can be colored by c1, c2,
min1 − 1 and max1 + 1. But for optimal coloring, c1, c2, min1 − 1 and max1 + 1
should have been colored at least 8 edges. For those four uncolored edges, at least
two additional colors must be required as a color can be used at most thrice in Gv′ .
Hence the proof. �
Theorem 6 λ′

1,2(T6) ≥ 19.

Proof Assume that x be such a vertex which is not adjacent to edges colored with
any of min or max in Gx . Let us consider Gx is not colored and u, w be two vertices
of Hx in Gx . Let us define Sx1 as the set of edges adjacent to x. Now we consider
the following two cases.

• When w ∈ N(u): u and w are connected by an edge e. Let {c1, · · · , c6} and
{c′

1, · · · , c′
6} be two sequences consisting of consecutive colors are used at the

edges incident to u and w respectively. It is possible to assign consecutive colors
at those edges when e is colored with either c6 = c′

1 or c1 = c′
6. Now observe two

edges e′ and e′
1 of Sx1 are already colored and those are not consecutive. Note that

|f ′(e′) − f ′(e′
1)| ≥ 2. If |f ′(e′) − f ′(e′

1)| = 2 then f ′(e′) and f ′(e′
1) is neither

minimum nor maximum color used in u and w. Then any color of any other edge
in Sx1 is neither consecutive to f ′(e′) nor f ′(e′

1). So max −min ≥ 7 where min

and max be the minimum and maximum colors used to color the edges of Sx1. If
|f ′(e′) − f ′(e′

1)| > 2, then also max − min ≥ 7. Therefore from Lemma 10, at
least 20 colors are required for Gx . Hence λ′

1,2(T6) ≥ λ′
1,2(Gx) ≥ 19.

• When w /∈ N(u): Note that x ∈ {N(u)∩N(w)}. Let two sequences {c1, · · · , c6}
and {c′

1, · · · , c′
6}consisting of consecutive colors are used at the edges incident

to u and w respectively. Let uv and wv are e′ and e′
1 respectively. If f ′(e′)

and f ′(e′
1) are consecutive then either f ′(e′) = c6, f ′(e′

1) = c′
1 or f ′(e′) =

c1, f ′(e′
1) = c′

6. Now observe that for any other edge e in Sx1, |f ′(e)−f ′(e′)| >
2 implying max −min ≥ 7 where min and max be the minimum and maximum
colors used to color the edges of Sx1. If f ′(e′) and f ′(e′

1) are not consecutive
then |f ′(e′) − f ′(e′

1)| ≥ 2. If |f ′(e′) − f ′(e′
1)| = 2 then the intermediate color

must be used at an edge e ∈ Sx1. There are still 4 edges remain uncolored. It can
be checked that for any coloring of the rest of the graph, there exists a vertex y

in Hx ∪ x, for which max − min ≥ 7 where min and max be the minimum and
maximum colors used to color the edges incident to u. Hence from Lemma 10,
at least 20 colors are required for Gx . Hence λ′

1,2(T6) ≥ λ′
1,2(Gx) ≥ 19.

Hence the proof. �
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3 Conclusions

In this article we improved some lower and upper bounds for infinite regular
hexagonal, square and triangular grids using structural properties of those graphs.
An interesting problem will be to improve or introduce new bounds on those graphs
for other values of h and k. It would also be interesting to examine similar bounds
for other infinite regular grids.
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Optimal Tree Decompositions Revisited:
A Simpler Linear-Time FPT Algorithm

Ernst Althaus and Sarah Ziegler

Abstract In 1996, Bodlaender showed the celebrated result that an optimal tree
decomposition of a graph of bounded treewidth can be found in linear time. The
algorithm is based on an algorithm of Bodlaender and Kloks that computes an
optimal tree decomposition given a non-optimal tree decomposition of bounded
width. Both algorithms, in particular the second, are hardly accessible. We present
the second algorithm in a much simpler way in this paper and refer to an extended
version for the first. In our description of the second algorithm, we start by
explaining how all tree decompositions of subtrees defined by the nodes of the
given tree decomposition can be enumerated. We group tree decompositions into
equivalence classes depending on the current node of the given tree decomposition,
such that it suffices to enumerate one tree decomposition per equivalence class and,
for each node of the given tree decomposition, there are only a constant number of
classes which can be represented in constant space.

Keywords Tree decompositions · Parametrized complexity · Simplified
description

1 Introduction

Tree decompositions and treewidth are important concepts in parameterized com-
plexity and are therefore introduced in many textbooks on graph-theory, graph
algorithms, or parameterized complexity, e.g., [4–6, 8]. They are even introduced
in the basic algorithms book of Kleinberg and Tardos [7]. Many NP-hard problems
are fixed-parameter tractable in the treewidth—i.e., for a graph G = (V ,E) of
treewidth tw, they can be solved in time O(f (tw) · poly(|V|,|E|)) for a computable
function f and a polynomial poly. A necessary condition for these algorithms is
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that a tree decomposition with a similar width as the treewidth of the graph can be
computed. In most textbooks, a (rather complicated) algorithm that computes a tree
decomposition of width at most 4tw is shown.

Bodlaender [2] proved that an optimal tree decomposition of a graph G with fixed
treewidth can be computed in linear time. Since its publication, this paper has been
cited more than 1500 times. The algorithm, however, does not appear in textbooks,
as its presentation is way too complicated. We aim to give a simpler description in
order to make the algorithm accessible to a wider audience.

The algorithm is based on an algorithm by Bodlaender and Kloks [3] that
computes an optimal tree decomposition in linear time, if a (non-optimal) tree
decomposition of fixed width is given. Bodlaender [2] shows how, given a graph G,
one can find a graph G′ of at most the same treewidth that is a constant factor smaller
and it is easy to construct a tree decomposition for G of width 2tw from an optimal
tree decomposition of G′. The algorithm has linear running time. Together with the
algorithm of Bodlaender and Kloks, this gives an exact linear time algorithm:

• Compute G′.
• Compute an optimal tree decomposition of G′ recursively.
• Construct a tree decomposition of G of width at most 2tw from the tree

decomposition of G′.
• Use the algorithm of Bodlaender and Kloks to find the optimal tree decomposi-

tion.

Several attempts were made to simplify the construction of an appropriate graph
G′ (i.e., with the properties mentioned above) from G (see e.g., [5, 9]). Hence, we
only show the main ideas of our work on the algorithm of Bodlaender and Klocks
in this extended abstract and refer to [1] for more details the overall algorithm.

2 Definitions and Basic Properties

In this Section, we give sketch some definitions of some basic properties, that we
will use later in the paper. All definitions are standard and the properties are well
known (see, e.g., [4]).

A tree decomposition (T , (Xt )t∈T ) for a graph G is a tuple of a tree T over some
set of vertices V (T ) and subsets of vertices Xt ⊆ V (G) of G, one for each vertex
in T , such that the following three properties hold:

(Node coverage) For each v ∈ V (G) there is at least one t ∈ V (T ) such that
v ∈ Xt .

(Edge coverage) For each uv ∈ E(G) there is at least one t ∈ V (T ) such that u
and v are in Xt .

(Coherence) If v ∈ Xt1 and v ∈ Xt2 for v ∈ V (G) and t1, t2 ∈ V (T ) then v ∈ Xt3

for all vertices t3 on the unique path in T from t1 to t2.
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The sets Xt are called the bags. The width of a tree decomposition
(T , (Xt )v∈V (T )) is the maximal cardinality of one of the sets Xt minus one, i.e.,
maxt∈V (T ) |Xt | − 1. The treewidth of a graph G is the minimal width of a tree
decomposition of G.

To make a clearer distinction between the vertices V (G) of the graph and those
of the tree of the tree decomposition, we call the elements of V (T ) nodes and the
elements of V (G) vertices in the following.

If there are bags t �= t ′ in a tree decomposition with Xt ⊆ Xt ′ , we call the
tree decomposition redundant and otherwise non-redundant. There is always a non-
redundant tree decomposition of minimal width. The number of nodes of a non-
redundant tree decomposition is at most |V (G)|.

Choosing an arbitrary node r ∈ V (T ) of (T , (Xt )t∈T ) as root, we get a rooted
tree decomposition with natural parent-child and ancestor-descendant relations.
For a node t �= r let p(t) be the parent of t . For a rooted tree decomposition
(T , (Xt )t∈V (t)) and t ∈ V (T ), let X+

t be the set of all vertices in descendants of
t and G+

t = G[X+
t ] the induced graph of these vertices.

A rooted tree decomposition (T , (Xt )t∈T ) with root r is called nice, if the
following properties hold:

• Xr = ∅ and Xt = ∅ for all leaves t of T , i.e., the bags of all leaves and the root
are empty

• Every non-leaf node t ∈ V (t) is of one of the following three types:

Join-node: t has exactly two children t1, t2 and Xt = Xt1 = Xt2 .
Introduce-node: t has exactly one child t ′ and Xt = Xt ′ ∪ {v} for some vertex

v ∈ V \ Xt ′ . We say that v is introduced at t .
Forget-node: t has exactly one child t ′ and Xt ′ = Xt ∪ {v} for some vertex

v ∈ V \ Xt . We say that v is forgotten at t .

Given a tree decomposition (T , (Xt )t∈T ) of width tw of G, we can compute in
time O(tw2(|V (T )| + |V (G)|)) a nice tree decomposition of G of width tw with at
most O(tw|V (G)|) nodes.

3 Computing an Optimal Tree Decomposition from an
Arbitrary One

We want to compute an optimal tree decomposition of a graph G = (V ,E). Notice
that there is an optimal tree decomposition consisting of at most n nodes. There
are only a finite number of tree topologies with at most n nodes. Hence we can
enumerate all such topologies and all assignments of subsets of V with a size of
at most tw to the nodes and check the three properties of a tree decomposition to
compute the optimal tree decomposition. We now want to improve upon this simple
algorithm by using a given tree decomposition of G.
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Fig. 1 Consider the graph on the left (a). (b) Shows an optimal tree decomposition for it. If we
remove the vertices a and b from all bags as shown in (c), we obtain a tree decomposition for
G[{c, d, e, f }]. Assume that the given tree decomposition has a node t̂ with Xt̂ = {c, d} and X+

t̂
=

{c, d, e, f }. Then the tree decompositions enumerated for t̂ already covered all edges incident to e

and f and hence, it does not matter whether a bag contains these vertices, only the current size of
the bag matters. Formally, this is captured by the restricted bags depicted in (d) ignoring the green
part. We can assume that no node is added to the bottom-right leaf in (d) later in the construction,
as its restricted bag is contained in the restricted bag of its parent and contains additional nodes.
This is as we could add an additional leave only containing the nodes of the restricted bag and the
additional nodes as depicted in (e)

3.1 Enumerating Tree Decompositions with a Detour

Let G = (V ,E) be the given graph and T̂ = (T̂ , (Yt̂ )t̂∈V (T̂ )
) be a nice (and

hence rooted) tree decomposition of G of width ˆtw. Both the graph G and the
tree decomposition T̂ are given to the algorithm and we fix this notation for the
remainder of this section. We assume that G is connected and hence edge coverage
implies node coverage.

In order to reduce the number of enumerated tree decompositions, we want to
make use of the given (non-optimal) tree decomposition. Notice that given a tree
decomposition T for G, we obtain a tree decomposition for G+

t̂
if we intersect

all bags of T with Y+
t̂

(see Fig. 1a–c). For all t̂ ∈ V (T̂ ), we enumerate all tree

decompositions of G+
t̂

of width at most ˆtw with at most n nodes bottom up, denoted
as T Dt̂ . Hence, for the root r̂ of the given tree decomposition, we enumerate all tree
decompositions of width at most ˆtw of G and the problem is solved. Moreover, it is
easy to enumerate T Dt̂ from its children as follows:

Construction 1 (Base Case)

Leaves: For a leaf t̂ of T̂ , the set T Dt̂ contains all tree decompositions
(T , (∅)t∈V (T )) for an arbitrary tree T of at most n nodes.

Join-Node: Consider an arbitrary tree decomposition T = (T , (Xt )t∈V (T )) in
T Dt̂ for a join-node t̂ with children t̂1 and t̂2. Notice that T i = (T , (Xt ∩
Y+
t̂ i
)t∈V (t)) ∈ T Dt̂ i for i ∈ {1, 2} hence enumerated in T Dt̂ i . Furthermore

the tree T and Xt ∩ Yt̂ for all t ∈ T are the same on all three tree
decompositions. Therefore all tree decompositions in T Dt̂ can be constructed
by choosing tree decompositions T 1 = (T 1, (X1

t )t∈V (T 1)) ∈ T Dt̂1 and T 2 =
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(T 2, (X2
t )t∈V (T 2)) ∈ T Dt̂2 with the same tree, i.e., T 1 = T 2 and such that

X1
t ∩Yt̂ = X2

t ∩Yt̂ for all t ∈ T 1 and constructing T = (T 1, (X1
t ∪X2

t )t∈V (T 1)).

For a join-node t̂ , we define Jt̂ : T Dt̂1 × T Dt̂2 → 2T Dt̂ by Jt̂ (T 1,T 2) = {T }
for T 1,T 2 and T as above, i.e., Jt̂ (T 1,T 2) is the set containing the tree
decomposition constructed from T 1 and T 2 as explained above as the single
element. Jt̂ maps to the power set of all tree decompositions as this is consistent
with the corresponding definition for introduce- and forget-nodes.

Introduce-Node: Consider an tree decomposition T = (T , (Xt )t∈V (T )) in T Dt̂

for an introduce-node t̂ with child t̂ ′ for which the vertex v ∈ V is introduced.
Notice that T ′ = (T , (Xt \ {v})t∈V (T )) is a tree decomposition in T Dt̂ ′ .
Furthermore the nodes t of V (T ) such that the bag Xt contains v form a subtree
of T . For each edge vw ∈ E(G+

t̂
) adjacent to v, there is at least one bag

containing v and w in T . Hence, we can enumerate all tree decompositions in
T Dt̂ as follows: We choose a tree decomposition T ′ in T Dt̂ ′ and a subtree of the
tree of T ′ with the properties mentioned earlier. For these choices, we construct
the tree decomposition in T Dt̂ from T ′ by adding v into the bags of the selected
subtree. We refer to the set that contains all these tree decompositions as It̂ (T ′).

Forget-Node: Consider an arbitrary tree decomposition T = (T , (Xt )t∈V (T )) in
T Dt̂ for a forget-node t̂ with child t̂ ′ for which the vertex v ∈ V is forgotten.
Notice that T is also a tree decomposition in T Dt̂ ′ (as G+

t̂
= G+

t̂ ′ ) and hence
the tree decomposition in T Dt̂ are the same as the ones in T Dt̂ ′ . We define Ft̂ :
T Dt̂ ′ → 2T Dt̂ by Ft̂ (T ) = {T }.
We do not argue about the running time to enumerate these tree decompositions

(since we will be computing something different anyway), but we notice that the
number of enumerated tree decompositions is at most Tn · nn· ˆtw, where Tn is the
number of tree topologies with at most n nodes.

This estimate of the number of enumerated tree decompositions is a function
in n and ˆtw and not only in ˆtw. We now reduce the number of enumerated tree
decompositions to make it a function in ˆtw only. We show that it suffices to store
some limited information for a tree decomposition T that is enumerated at a node
t̂ of the given tree decomposition T̂ : We store only a part of the tree of T and
only those vertices in the bags of T that are in Yt̂ of T̂ . Hence, several tree
decompositions have the same limited information. We write T 1 ≡t̂

s T 2 if two tree
decompositions have the same limited information and call them equivalent. Before
defining ≡t̂

s , we will define finer classes ≡t̂
b and ≡t̂

c, i.e., we iteratively show that
we can ignore some information in the construction of the tree decompositions.

The classes will be such that equivalent tree decompositions have the same
treewidth and if one can use one tree decomposition to construct a certain tree
decomposition in the parent node of the given tree decomposition, we can use
each equivalently to construct an equivalent one. In order to compensate for the
removal of nodes of the tree, we allow to add additional leaves whose bags are
subsets of the parental bags and copy certain nodes of degree two. The set of all
tree decompositions that can be constructed from the limited information of T is
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denoted by E t̂ (Lt̂ (T )). More formally, the following will hold for the equivalence
class ≡t̂

s and similarly for the classes ≡t̂
b without possible modifications of the tree

decomposition T and ≡t̂
c by allowing to add additional leaves to T .

Lemma 1

Join-node: Let t̂ be a join-node with child nodes t̂1 and t̂2, A,A′ ∈ T Dt̂1 with

A ≡t̂1

b A′ and B,B ′ ∈ T Dt̂2 with B ≡t̂2

b B ′. If C ∈ Jt̂ (E
t̂ (Lt̂ (A)),Et̂ (Lt̂ (B)))

then there is C′ ∈ Jt̂ (E
t̂ (Lt̂ (A′)), Et̂ (Lt̂ (B ′))) with C′ ≡t̂

b C.
Introduce-node: Let t̂ be an introduce-node with child node t̂ ′ and A,A′ ∈ T Dt̂ ′

with A ≡t̂ ′
b A′. If C ∈ It̂ (E

t̂ (Lt̂ (A))) then there is C′ ∈ It̂ (E
t̂ (Lt̂ (A′))) with

C′ ≡t̂
b C.

Forget-node: Let t̂ be a forget-node with child node t̂ ′ and A,A′ ∈ T Dt̂ ′ with

A ≡t̂ ′
b A′. If C ∈ Ft̂ (E

t̂ (Lt̂ (A))) then there is C′ ∈ Ft̂ (E
t̂ (Lt̂ (A′))) with C′ ≡t̂

b

C.

Proof As we will see, the limited information of the tree decompositions in
Jt̂ (E

t̂ (Lt̂ (A)),Et̂ (Lt̂ (B))), It̂ (E
t̂ (Lt̂ (A))) and Ft̂ (E

t̂ (Lt̂ (A))) can be computed
from the limited information of A (and B). Therefore, if we replace A by A′ (and
B by B ′) in the construction, the construction will lead to tree decompositions with
the same limited information. �

3.2 Equivalence Classes on Bags

Given a tree decomposition T = (T , {Xt }t∈V (T 1)), we define the restricted bags
with respect to t̂ to be the tuples (Xt ∩ Yt̂ , |Xt |)t∈V (T ), i.e., the vertices of the bag
are restricted to the vertices of the current bag of the given tree decomposition
and we store the sizes of the bags. The restricted bag representation of a tree
decomposition T = (T , (Xt)t∈V (T )) consists of the tree T and of the restricted bags
for all t ∈ V (T ). We call tree decompositions T 1 = (T 1, {X1

t }t∈V (T 1)) and T 2 =
(T 2, {X2

t }t∈V (T 2)) in T Dt̂ bag-equivalent, if their restricted bag representations are

the same and write T 1 ≡t̂
b T 2 in his case.

We will not show the construction of J t̂ , I t̂ and F t̂ but give the main points.
For a join-node, the vertices of the restricted bags have to be the same and the size
can easily be computed out of the sizes of the children. For an introduce-node, we
note that the validity of a chosen subtree for the new vertex only depends on the
vertices that are contained in the restricted bags of the given tree decomposition.
For a forget-node, we simply remove the forgotten vertex from all restricted bags.
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3.3 The Core of a Tree Decomposition

In this section, we will use the following fact about tree decompositions: If t is a
node with bag Xt , we can add a new node t ′, the edge t t ′ and chose Xt ′ ⊆ Xt to
obtain another tree decomposition of the same width. We call this an addition of a
leaf to the tree decomposition.

In the following, we will show that we can assume some structure of the con-
structed optimal tree decomposition which depends on the given tree decomposition
T̂ = (T̂ , (Yt̂ )t̂∈V (T̂ )

).

Lemma 2 Assume t is a leaf with adjacent node p(t) in the constructed tree
decomposition T = (T , (Xt )t∈V (t)) such thatXt \Yt̂ �= ∅ andXt ∩Yt̂ ⊆ Xp(t) ∩Yt̂

for some node t̂ ∈ V (T̂ ). Then there is an optimal tree decomposition such that no
node from V \ Y+

t̂
is contained in Xt .

Proof Let the notation be given as stated in the lemma. Assume Z := Xt ∩(V \Y+
t̂
)

is non-empty. We can remove all vertices in Z from Xt and create a new child of
p(t) with bag Z∪ (Xt ∩Y+

t̂
) to get another tree decomposition. This transformation

cannot increase with the width of the tree decomposition and all edges are still
covered. �

Informally, a leaf with a bag whose vertices are a subset of the vertices of its
parent gets only additional vertices later on in the construction if it does not contain
vertices that are already forgotten (see Fig. 1d, e). Notice that if a node becomes a
leaf by the removal of a node, the rule can be applied to this node too.

Given a tree decomposition T = (T , {Xt }t∈V (T )) ∈ T Dt̂ we define its t̂-core as
follows: As long as there is a leaf t in T such that Xt ∩ Yt̂ ⊆ Xp(t) ∩ Yt̂ remove
the leaf from t where p(t) is the node adjacent to t (see Fig. 2a and b). Since it
is possible to remove the largest bag in this way, we store the size of the largest
bag with the core. We call two tree decompositions T 1 and T 2 t̂-core-equivalent
if their cores are identical (including the restricted bags of the nodes that were not
removed from the core and the size of the largest bag), denoted by T 1 ≡t̂

c T 2. In
the following, it is easier if we can assume that Yt̂ �= ∅ and hence, we start the
construction with the parents p(t̂) of the leaves t̂ . Their cores consist of a single
node whose bag contains the single vertex in Yp(t̂).

In order to compensate this removal of bags, we have to allow the adding of
additional leaves in the construction. By Lemma 2, we can assume that the bag of a
leaf connected to a node t that contains a node from V \ Y+

t̂
does not contain nodes

from Y+
t̂

\ Xt . For a tree decomposition T let Lt̂ (T ) be the (infinite) set of all tree

decompositions that can be obtained by iteratively adding leaves to nodes of the t̂-
core of T , whose bags are subsets of Yt̂ . Lt̂ depends on the node t̂ of the given tree
decomposition as we have to start the addition on a node of the core. Notice that all
elements of Lt̂ (T ) have the same core as T .

Notice that each leaf of the core has a unique vertex as otherwise each vertex
of the leaf would also be contained in its adjacent node and hence the leaf can
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Fig. 2 Assume we consider a tree with its restricted bags as shown in (a). The nodes shown in red
are removed from the core (depicted in (b)) as they are leaves and their restricted bags are subsets
of the bags of their adjacent nodes. Notice that we remove the largest bag and hence we store its
size with the core. In (c) we show the compact representation of the core, i.e., the path of nodes of
degree 2 having equal vertices in the restricted bag are replaced by a single node and the sizes of
the original nodes are represented as an integer sequence in the replacement

be removed. Hence, the number of leaves is at most ˆtw. Furthermore, the number
of nodes of the core of degree at least three is at most ˆtw as the tree has at
most ˆtw leaves. In the following, we give up assumption that the constructed tree
decomposition has at most n nodes, but we assume that each path of nodes of degree
2 in the core has a length of at most n.

We will not show the construction for J t̂ (Lt̂ (A),Lt̂ (B)), I t̂ (Lt̂ (A)) and
F t̂ (Lt̂ (A)), but give the main points. For a join-node, we note that if we can
join two tree decompositions, their cores must be the same. For an introduce-node
we have to distinguish two cases. If the vertex is added to at least one bag of the
core, the core does not change. Otherwise the new vertex will be in exactly one
bag of the new core, which is connected to the old core by a single path which we
removed then constructing the core. Hence, we have to try all possibilities of adding
path of nested subsets of length at most n. For a forget-node, we potentially have to
remove further nodes from the core.

3.4 The Compressed Core of a Tree Decomposition

In the following, it is easier to consider a different representation of the cores. We
replace each maximal path of nodes in the tree of degree 2 such that the vertices
in the restricted bags are the same by a single node, and assign the sequence of
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integers of the sizes of the bags of the path with the new node (see Fig. 2c). We
call this the compact representation of the core. Notice that in this representation,
the number of nodes becomes bounded in ˆtw since between two nodes t and t ′ of
degree at least three, we have at most |Xt \Xt ′ | + |Xt ′ \Xt | ≤ 2 ˆtw nodes of degree
two. On the other hand, each node has an integer sequence assigned to it of length
up to n. We define equivalence classes on integer sequences such that the number
of equivalence classes becomes bounded in ˆtw. We call two tree decompositions
T 1 and T 2 sequence-equivalent, if the compact representations of their cores are
the same and each pair of integer sequences assigned to a node in the compact
representation of the core are equivalent, denoted as T 1 ≡t̂

s T 2.
In this section, we use the following fact about tree decompositions: Assume that

T = (T , (Xt )t∈V (T )) is a tree decomposition of G and t t ′ is an edge of T . If we
add a bag t ′′ with Xt ′′ = Xt to T , remove the edge t t ′ and add edges t t ′′ and t ′′t ′,
we get another tree decomposition of G of the same width. We call the resulting
tree decomposition an extension of T . In the following, we restrict this operation to
edges t t ′ such that the degree of t is two in the core of T . For a tree decompositionT
let E t̂ (T ) be the set of all tree decomposition that can be obtained from T by a series
of such extensions. Notice that although E t̂ (T ) is infinite, we will define a finite
number of equivalence classes. Notice that the tree of the compact representation of
the core is the same for each element of E t̂ (Lt̂ (T )), but the integer sequences differ.

In the next lemma we show that we may assume that a vertex added to a subpath
in T of t1, . . . , tk with integer sequence (a1, . . . , ak) is added up to a node t
 such
that there are no i ≤ 
 ≤ j with min(ai, aj ) < a
 < max(ai, aj ).

Lemma 3 Consider a node t̂ of the given tree decomposition and the compact
representation of the core of a tree decomposition in T Dt̂ . Assume (a1, . . . , ak)

is the integer sequence of a node and i < j are such that ai ≥ ak and aj ≤ ak for
all i ≤ k ≤ j . Let 
 be the smallest index such that a
 > ai (if such an 
 exists,
set 
 = j otherwise). Let Zi, . . . , Zj be the vertices of V \ Y+

t̂
of bags of the nodes

corresponding to ai, . . . , aj in the final tree decomposition. There is an optimal tree
decomposition such that Z
′ = Zj for all 
 ≤ 
′ ≤ j and no edges adjacent to a
′
are added to the core later in the construction. Similarly, if ai ≤ ak and aj ≥ ak ,
we can assume Z
′ = Zi and no edges adjacent to a
′ are added to core for all
i ≤ 
′ ≤ 
, for 
 being the largest index such that a
 > aj .

Proof Consider an arbitrary tree decomposition T and assume it does not have the
property. Let t be a node of the compact representation of the core for which the
property does not hold for the subsequence (ai, . . . , aj ) of its integer sequence and
let ti , . . . , tj the nodes of the tree of T corresponding to ai, . . . , aj . Notice that we
can assume that the edges adjacent to the nodes corresponding to ti , . . . , tj have
bags that are either subsets of Y+

t̂
∩ Xt or subsets of (V \ Y+

t̂
) ∪ Xt by Lemma 2.

We extend ti , i.e., the node with the smallest bag, j − i+1 times, i.e., instead of a
single node ti for size ai , we now have nodes t1

i , . . . , t
j−i+1
i , all of size ai . We move

the sets Zi, . . . , Zj to the nodes t1
i , . . . , t

j−i+1
i and with them all edges whose other
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Fig. 3 Assume we have a path of four nodes in the core such that the sets of vertices of the
restricted bags are equal (and hence these and possible further nodes are replaced by a single node
in the restricted core), say X. Assume furthermore that the first node has the smallest number of
vertices and the last has the largest number, and that the sets of vertices Z1, . . . , Z4 are added to
these nodes later on in the construction. We proved that we may assume that Z2 = Z3 = Z4.
Otherwise, we could add three copies of the first node in the beginning and give the first three
nodes the additional vertices Z1, Z2 and Z3 and all remaining nodes the additional vertices Z4. By
Lemma 2, the bags of nodes incident to the nodes may be assumed to be either subsets of X ∪ Y+

t̂

(shown in red) or subsets of X ∪ (V \ Y+
t̂
) (shown in blue). The first kind of edges stay at their

original positions whereas the second kind are moved to the front

incident nodes have bags are subsets of (V \Y+
t̂
)∪Xt . The bags of nodes t2, . . . , tj

are all set to Zj (see Fig. 3 for an illustration).
This results in a tree decomposition of at most the same width (The bags of ti and

tj are not changed. For the new nodes tki , we have that |Xtki
| at most the size of bag

of the node that contained the assigned Z
 in the originating tree decomposition.
The bags of the nodes ti+1, . . . , tj−1 have at most the size of that of tj .) that has the
property for ai, . . . , aj . We can repeat this construction until all such conditions are
satisfied. �

Notice furthermore that if we add a vertex v up to the node t
, we can first extend
t
 and add only up to the first appearance of t
 such that after the insertion, the first
node not containing v is the copy of t
 and still has size a
.

For an integer sequence A = (a1, . . . , ak), we define its typical sequence τ (A) as
follows: Apply one of the following two operations until no further such operation
is possible (we will show that the resulting sequence is unique and hence it is indeed
a definition)

• Remove duplicates: if ai = ai+1 for 1 ≤ i ≤ k − 1, replace (a1, . . . , ak) by
(a1, . . . , ai, ai+2, . . . , ak)

• Delete dominated parts: for 1 ≤ i < j ≤ k with min(ai, aj ) ≤ a
 ≤
max(ai, aj ) for all i ≤ 
 ≤ j , replace (a1, . . . , ak) by (a1, . . . , ai, aj , . . . , ak).
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In [1] we show that τ (A) is a unique subsequence of A (Property P1) and there
are at most 2 · 22 ˆtw different typical sequences (Property P2). Hence, there are
only a bounded number of typical sequences if their integers are bounded by ˆtw.
We will call two integer sequences equivalent, if their typical sequences are the
same. An extension of an integer sequence (a1, . . . , an) is a sequence of the form
(a1, . . . , ai , ai, . . . , an) for 1 ≤ i ≤ n, i.e., one integer is repeated. The set of all
extensions of an integer sequence A is denoted as E(A). Notice that an extension of
a tree decomposition corresponds to an extension of the integer sequence assigned
to one of the nodes of the compact core. Notice that all extensions AE ∈ E(A) of A
have the same typical sequence.

Let T ,T ′ ∈ TDt̂ with T ′ ∈ E t̂ (T ) and assume that we can use T in the
construction of a tree decomposition of G of width tw. Notice that we can also
use T ′ to construct such a tree decomposition T ′′ (if we do not restrict to tree
decompositions of at most n nodes) since we can extend all tree decompositions
used in the construction of T ′′ at the same nodes as we extended T to obtain T ′.
We call an integer sequence A superior to B if there are A′ ∈ E(A) and B ′ ∈ E(B)

such that A′ ≤ B ′. In [1] we show that A is superior to τ (A) (Property (P3)) and that
τ (A) is superior to A (Property (P4)). Hence, if we constructed a tree decomposition
for which a node of the compact representation has the integer sequence A, we
can assume that we have a tree decomposition with integer sequence τ (A) (even
if no such tree decomposition exists) since for all tree decompositions that can be
constructed from the latter, we can construct a tree decomposition of the same width
as the first.

Finally, we show in [1] that we can compute all typical sequences that can arise
when adding up two extensions of two typical sequences (Property (P5)).

The compressed core of a tree decomposition is the compact representation of its
core, where each node is assigned its typical sequence together with the size of the
largest bag. We call two tree decompositions sequence-equivalent, denoted as ≡t̂

s , if
their compressed cores are the same.

In order to compensate the replacement of an integer sequence by its typical
sequence, we allow arbitrary extensions of the compressed core.

We will not show how the sets J t̂ (E t̂ (Lt̂ (A)), E t̂ (Lt̂ (B))), I t̂ (E t̂ (Lt̂ (A))) and
F t̂ (E t̂ (Lt̂ (A))) are constructed but give the main points. First, we note that we
can consider the integer sequences assigned to the nodes of the compact core
independently. For a join-node, we have to compute all typical sequences of integer
sequences obtained by adding two extensions of the given typical sequences which
can be done by (P5). For an introduce-node, use the Lemma 3 by which we can
assume that the vertex is either added to all nodes of the integer sequence or it is
added up to a node which is contained in the typical sequence and this node can be
assumed to be extended before. Hence, we can perform the necessary operations
directly on the typical sequences. In a forget-node, we potentially have to join
typical sequences if restricted bags become equal. Notice that the compressed cores
of the elements in J t̂ (E t̂ (Lt̂ (A)), E t̂ (Lt̂ (B))), I t̂ (E t̂ (Lt̂ (A))) and F t̂ (E t̂ (Lt̂ (A)))
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can be directly computed from the compressed cores of A (and B) and hence
Lemma 1 holds for ≡t̂

s .
For proof of the necessary properties of typical sequences, we refer to the

extended version of this paper[1]. Furthermore, we estimate the number of compact
cores enumerated for each bag and the running time in that paper. Here, we only
remark that it is not hard to see that this number and the running time can be bounded
by a function computable from ˆtw.

4 Conclusion

We gave simpler descriptions of two algorithms: The algorithm of Bodlaender
and Kloks [3] that computes an optimal tree decomposition for a graph G given
a (non-optimal) tree decomposition of bounded width in linear time, and the
algorithm of Bodlaender [2] that uses the first algorithm to compute an optimal
tree decomposition of a graph with bounded treewidth in linear time.

Although we were able to shorten the text significantly, the description is still
too long to become part of textbooks. We hope that even simpler descriptions of the
algorithms can be found in the future, which will finally allow these algorithms to
be shown in textbooks.

References

1. Althaus, E., Ziegler, S.: Optimal tree decompositions revisited: a simpler linear-time FPT
algorithm. CoRR 1912.09144 (2019)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM J. Comput. 25(6), 1305–1317 (1996)

3. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and
treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, Berlin (2013)

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Berlin (2006)

7. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley, Boston (2006)
8. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series in Mathe-

matics and Its Applications. Oxford University Press, Oxford (2006)
9. Perkovic, L., Reed, B.A.: An improved algorithm for finding tree decompositions of small width.

Int. J. Found. Comput. Sci. 11(3), 365–371 (2000)



On Superperfection of Edge Intersection
Graphs of Paths

Hervé Kerivin and Annegret Wagler

Abstract The routing and spectrum assignment problem in flexgrid elastic optical
networks can be modeled in two phases: a selection of paths in the network and an
interval coloring problem in the edge intersection graph of these paths. The interval
chromatic number equals the smallest size of a spectrum such that a proper interval
coloring is possible, the weighted clique number is a natural lower bound. Graphs
where both parameters coincide for all possible non-negative integral weights are
called superperfect. We examine the question which minimal non-superperfect
graphs can occur in the edge intersection graphs of paths in different underlying
networks. We show that for any possible network (even if it is restricted to a path)
the resulting edge intersection graphs are not necessarily superperfect and discuss
some consequences.

Keywords Routing and spectrum assignment problem · Edge intersection graph
of paths · Interval coloring · Superperfection

1 Introduction

Flexgrid elastic optical networks constitute a new generation of optical networks
in response to the sustained growth of data traffic volumes and demands in
communication networks. In optical networks, light is used as communication
medium between sender and receiver nodes, and the frequency spectrum of an
optical fiber is divided into narrow frequency slots of fixed spectrum width. Any
sequence of consecutive slots can form a channel that can be switched in the
network to create a lightpath (i.e., an optical connection represented by a route
and a channel). The routing and spectrum assignment (RSA) problem consists of
establishing the lightpaths for a set of end-to-end traffic demands, that is, finding a
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route and assigning an interval of consecutive frequency slots for each demand such
that the intervals of lightpaths using a same edge in the network are disjoint, see e.g.
[17]. Thereby, the following constraints need to be respected when dealing with the
RSA problem:

1. spectrum continuity: the frequency slots allocated to a demand remain the same
on all the edges of a route;

2. spectrum contiguity: the frequency slots allocated to a demand must be contigu-
ous;

3. non-overlapping spectrum: a frequency slot can be allocated to at most one
demand.

The RSA problem has started to receive a lot of attention over the last few years.
It has been shown to be NP-hard [3, 18]. In fact, if for each demand the route is
already known, the RSA problem reduces to the so-called spectrum assignment
(SA) problem and only consists of determining the demands’ channels. Even the
SA problem has been shown to be NP-hard on paths [16].

More formally, for the RSA problem, we are given an optical network G and a
set D of end-to-end traffic demands where each demand is specified by a pair u, v
of distinct nodes in G and the number duv of required frequency slots. The routing
part of the RSA problem consists of selecting a route through G from u to v, i.e.
a (u, v)-path Puv in G, for each such traffic demand. The spectrum assignment can
then be interpreted as an interval coloring of the edge intersection graph I (P) of
the set P of selected paths:

• Each path Puv ∈ P becomes a node of I (P) and two nodes are joined by an
edge if the corresponding paths in G are in conflict as they share an edge (notice
that we do not care whether they share nodes).

• Any interval coloring in this graph I (P) weighted with the demands duv
correctly solves the spectrum assignment: we assign a frequency interval of duv
consecutive frequency slots (spectrum contiguity) to every node of I (P) (and,
thus, to every path Puv ∈ P (spectrum continuity)) in such a way that the
intervals of adjacent nodes are disjoint (non-overlapping spectrum).

Let d ∈ Z
|D |
+ be the vector whose entries duv are the slot requirements associated

with the demands between pairs u, v of nodes in D . The interval chromatic number
χI (I (P),d) is the minimum spectrum width such that I (P) weighted with the
vector d of traffic demands duv for each path Puv has a proper interval coloring.
Given G and D , the minimum spectrum width of any solution of the RSA problem,
thus, equals

χI (G,D) = min{χI (I (P),d) : P possible routing of demands D in G}.

For each routing P , the weighted clique number ω(I (P),d), also taking the traffic
demands duv as weights, equals the weight of a heaviest clique in I (P) and is a
natural lower bound for χI (I (P),d) (as clearly the intervals of all nodes in a clique
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in I (P) have to be disjoint by construction of I (P)). However, it is not always
possible to find a solution with this lower bound as spectrum width, as weighted
clique number and interval chromatic number are not always equal.

Graphs where weighted clique number and interval chromatic number coincide
for all possible non-negative integral weights are called superperfect.

A graph is perfect if and only if this holds for every (0, 1)-weighting d of its
nodes. According to a characterization achieved by Chudnovsky et al. [4], perfect
graphs are precisely the graphs without chordless cycles C2k+1 with k ≥ 2, termed
odd holes, or their complements, the odd antiholes C2k+1 (the complement G has
the same nodes as G, but two nodes are adjacent in G if and only if they are non-
adjacent in G).

In particular, every superperfect graph is perfect.
On the other hand, comparability graphs form a subclass of superperfect graphs.

A graph G = (V ,E) is comparability if and only if there exists a partial order
O on V × V such that uv ∈ E if and only if u and v are comparable w.r.t. O .
Hoffman [12] proved that every comparability graph is superperfect. Gallai [6]
characterized comparability graphs by giving a complete list of minimal non-
comparability graphs, that are

• odd holes C2k+1 for k ≥ 2 and antiholes Cn for n ≥ 6,
• the graphs Jk and J ′

k for k ≥ 2 and the graphs J ′′
k for k ≥ 3 (see Fig. 1),

• the complements of Dk for k ≥ 2 and of Ek , Fk for k ≥ 1 (see Fig. 2),
• the complements of A1, . . . , A10 (see Fig. 3).

Jk k>2
1

2 3 2k 2k+1

J’k k>2

1

2k+1

2k3

2

1

2k

2k−13
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J’’k k>3

a b a b a b

Fig. 1 Minimal non-comparability graphs: Jk, J ′
k for k ≥ 2 and J ′′

k for k ≥ 3
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Fig. 2 Minimal non-comparability graphs: the complements of Dk , Ek , Fk
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Fig. 3 Minimal non-comparability graphs: the graphs A1, . . . , A10

As comparability graphs form a subclass of superperfect graphs, we have
that every non-superperfect graph is in particular non-comparability, which raises
the question which minimal non-comparability graphs are also minimal non-
superperfect. Clearly, odd holes and odd antiholes are minimal non-superperfect
(as they are minimal non-perfect). It has been shown by Golumbic [7] that A1,
D2, E1, E2 and J2 are non-superperfect, but that there are also superperfect non-
comparability graphs such as e.g. even antiholes C2k for k ≥ 3.

Furthermore, Andreae showed in [1], that the graphs J ′′
k for k ≥ 3 and the

complements of A3, . . . , A10 are superperfect, but that the graphs Jk for k ≥ 2
and J ′

k for k ≥ 3 as well as the complements of Dk for k ≥ 2 and of Ek , Fk for
k ≥ 1 are non-superperfect.

Note that Andreae wrongly determined A2 as superperfect which is, in fact,
not the case (see Fig. 4 for a weight vector d and an optimal interval coloring
showing that ω(A2,d) = 5 < 6 = χI (A2,d) holds). Moreover, Andreae wrongly
determined J ′

2 as non-superperfect which is, in fact, not the case:

Lemma 1 J ′
2 is a superperfect graph.

Hence, all the previous results together imply the following:

Corollary 1 The following minimal non-comparability graphs are also minimal
non-superperfect:

• A1 and A2,
• odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
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Fig. 4 The graph A2
together with node weights d
and an optimal interval
coloring showing ω(A2,d) =
5 < 6 = χI (A2,d)
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• the graphs Jk for k ≥ 2 and J ′
k for k ≥ 3 as well as

• the complements of Dk for k ≥ 2 and of Ek , Fk for k ≥ 1.

Note that we have ω(G, 1) < χI (G, 1) with 1 = (1, . . . , 1) if G is an odd
hole or an odd antihole (as they are not perfect), whereas the other minimal non-
comparability non-superperfect graphs are perfect and, thus, ω(G,d) < χI (G,d)
is attained for some d �= 1 (see Fig. 4).

We examine, for different underlying networks G, the question whether or not
there is a solution of the RSA problem with

ω(G,D) = min{ω(I (P),d) : P possible routing of demands D in G}

as spectrum width which depends on the occurrence of (minimal) non-superperfect
graphs in the edge intersection graphs I (P).

Note that for some networks G, the edge intersection graphs form well-studied
graph classes: if G is a path (resp. tree, resp. cycle), then I (P) is an interval graph
(resp. EPT graph, resp. circular-arc graph). However, if G is a sufficiently large
grid, then it is known by Golumbic et al. [9] that I (P) can be any graph. Modern
optical networks do not fall in any of these classes, but are 2-connected, sparse
planar graphs with small maximum degree with a grid-like structure.

We first study the cases when the underlying network G is a path, a tree or a
cycle (see Sects. 2–4). We recall results on interval graphs, EPT graphs and circular-
arc graphs from [5, 8, 14] and then discuss which minimal non-comparability non-
superperfect graphs can occur. In addition, we exhibit new examples of minimal
non-superperfect graphs within these classes.

All of these non-superperfect graphs are inherited for the case when G is an
optical network, and we give also representations as edge intersection graphs for
the remaining minimal non-comparability non-superperfect graphs. In view of the
result on edge intersection graphs of paths in a sufficiently large grid [9], we expect
that any further minimal non-superperfect graph has such a representation and give
some further new examples of such graphs.

To find new examples, we make use of the complete list of minimal non-
comparability graphs found by Gallai [6] and the fact that any candidate for a
new minimal non-superperfect graph can neither be imperfect nor a comparability
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graph. Thus, among the graphs with n nodes, the candidates of new minimal non-
superperfect graphs are all graphs that are

• perfect (i.e. do not contain odd holes or odd antiholes),
• do not contain any minimal non-superperfect graph with ≤ n nodes,
• contain a minimal non-comparability superperfect graph with < n nodes.

We close with some concluding remarks and open problems.

2 If the Network Is a Path

If the underlying optical network is a path P , then there exists exactly one (u, v)-
path Puv in P for every traffic demand between a pair u, v of nodes. Hence, if P is
a path, then P and I (P) are uniquely determined for any set of end-to-end traffic
demands, and the RSA problem reduces to the spectrum assignment part. The edge
intersection graph I (P) of the (unique) routing P of the demands is an interval
graph (i.e. the intersection graph of intervals in a line, here represented as subpaths
of a path).

Interval graphs are known to be perfect by Berge [2]. In order to examine which
minimal non-comparability non-superperfect graphs are interval graphs, we rely on
a characterization of minimal non-interval graphs from [14].

A graph is triangulated if it does not have holes Ck with k ≥ 4 as induced
subgraph. Interval graphs are triangulated [11] hence all holes are in particular
minimal non-interval graphs.

Theorem 1 IfP is a set of paths in a path, then I (P) is an interval graph and can
contain the graphs Jk for all k ≥ 2, J ′

k for all k ≥ 3 and E2, but none of the other
minimal non-comparability non-superperfect graphs.

This implies that edge intersection graphs of paths in a path are not necessarily
superperfect.

We next briefly discuss which further minimal non-superperfect graphs can be
interval graphs. Recall that all of them have to contain a minimal non-comparability
superperfect graph as proper induced subgraph. We observe that any further minimal
non-superperfect interval graph can contain

• no even antihole C2k for k ≥ 3 (as they all contain a C4 induced by 1, 2, 4, 5),
• none of the graphs J ′′

k for all k ≥ 3 (as they all contain a C4 induced by
1, 2, 2k, 2k − 1),

• none of the graphs A3, . . .A8 (as they all contain a C4, see Fig. 3),

but only A9, A10 and J ′
2. However, there is no example of a minimal non-

superperfect interval graph containing A9, A10 or J ′
2 known yet.
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3 If the Network Is a Tree

If the underlying network G is a tree, then there exists also exactly one (u, v)-path
Puv in G for every traffic demand between a pair u, v of nodes. Hence, if G is a
tree, then P and I (P) are uniquely determined for any set D of end-to-end traffic
demands, and the RSA problem again reduces to the spectrum assignment part. The
resulting edge intersection graph I (P) belongs to the class of EPT graphs studied in
[8]. We recall results from [8] on holes in EPT graphs and examine which minimal
non-superperfect graphs can occur in such graphs.

It is known from [8] that EPT graphs are not necessarily perfect as they can
contain odd holes. More precisely, Golumbic and Jamison showed the following:

Theorem 2 (Golumbic and Jamison [8]) If the edge intersection graph I (P) of
a collectionP of paths in a tree T contains a holeCk with k ≥ 4, then T contains a
star K1,k with nodes b, a1, . . . , ak and there are k paths P1, . . . , Pk inP such that
Pi precisely contains the edges bai and bai+1 of this star (where indices are taken
modulo k).

Figure 5 illustrates the case of C5 = I (P). From the above result, Golumbic
and Jamison deduced the possible adjacencies of a hole which further implies that
several graphs cannot occur as induced subgraphs of EPT graphs, including the
complement of the P6 and the two graphs G1 and G2 shown in Fig. 6.

That P 6 is a non-EPT graph shows particularly that no antihole Ck for k ≥ 7 can
occur in such graphs. This implies:

Theorem 3 (Golumbic and Jamison [8]) An EPT graph is perfect if and only if it
does not contain an odd hole.

With view on Theorem 2, this is clearly the case when the underlying tree has
maximum degree 4, as noted in [8].

Fig. 5 The odd hole
C5 = I (P) with P in a star
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Fig. 6 The non-EPT graphs
G1 and G2
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Based on the above results, we further examine which minimal non-
comparability non-superperfect graphs can occur in edge intersection graphs of
paths in a tree:

Theorem 4 If P is a set of paths in a tree, then the EPT graph I (P) can contain
A1, A2 and

• odd holes C2k+1 for k ≥ 2, but no odd antiholes C2k+1 for k ≥ 3,
• the graphs Jk for all k ≥ 2 and J ′

k for all k ≥ 3,
• D2, D3, E1, E2, E3, F 1, F 2, F 3, but none of Dk , Ek , Fk for k ≥ 4.

This implies that perfect EPT graphs are not necessarily superperfect.
We next briefly discuss which further minimal non-superperfect graphs can be

EPT graphs. Recall that all of them have to be perfect and have to contain a
minimal non-comparability superperfect graph as proper induced subgraph. Among
the minimal non-comparability superperfect graphs, the following are EPT graphs:
J ′

2 and

• C6 but no even antihole C2k for k ≥ 4 (as they all contain P 6) by Golumbic and
Jamison [8],

• none of the graphs J ′′
k for all k ≥ 3 (as they all contain G1 induced by the nodes

1, 2, 3, 4, 5, 2k),
• the graphs A3, . . .A6, A8, . . .A10 (but not A7 as it has a G2).

Hence, any minimal non-superperfect EPT graph not being minimal non-
comparability has to contain one of C6, A3, . . .A6, A8, . . .A10 or J ′

2 as proper
induced subgraph. Figure 7 shows one example containing A10: it is non-
superperfect (due to the indicated weight vector d causing a gap between weighted
clique and interval chromatic number), it is minimal (as it does not have a non-
comparability subgraph different from A10), it is an EPT graph (see the according
path representation). However, note that the graph is not an interval graph (as it
contains a C4 induced by a, e, f, h).

Fig. 7 A minimal
non-superperfect EPT graph
containing A10
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4 If the Network Is a Cycle

If the underlying optical network is a cycle C, then there exist exactly two (u, v)-
paths Puv in C for every traffic demand between a pair u, v of nodes. Hence, if C is
a cycle, then the number of possible routings P (and their edge intersection graphs
I (P)) is exponential in the number |D | of end-to-end traffic demands, namely 2|D |.

Moreover, the edge intersection graphs of paths in a cycle are clearly circular-arc
graphs (that are the intersection graphs of arcs in a cycle, here represented as paths
in a hole Cn). It is well-known that circular-arc graphs are not necessarily perfect
as they can contain both odd holes and odd antiholes, see e.g. [5] and Fig. 8 for
illustration.

In order to address the question which of the studied perfect minimal non-
comparability, non-superperfect graphs can occur in circular-arc graphs, we either
present according path collections for the affirmative cases or exhibit a minimal
non-circular-arc graph otherwise. For that, we first show the following:

Lemma 2 E3 is a minimal non-circular-arc graph.

Making use of the above facts, we can prove:

Theorem 5 If P is a set of paths in a cycle, then the circular-arc graph I (P) can
contain A1 but not A2,

• all odd holes C2k+1 and odd antiholes C2k+1 for k ≥ 2,
• the graphs Jk for all k ≥ 2 and J ′

k for all k ≥ 3,
• D2, D3, D4, but not the graphsDk for k ≥ 5,
• E1 and E2, but not the graphs Ek for k ≥ 3,
• F 2, but not F 1 neither the graphs Fk for k ≥ 3.

We next discuss which further minimal non-superperfect graphs can be circular-
arc graphs. For that, we first show the following:

Lemma 3 J ′′
3 is a minimal non-circular-arc graph.

Fig. 8 The odd antihole
C7 = I (P) with P in a
cycle
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Fig. 9 A minimal
non-superperfect circular-arc
graph containing A6
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Remark 1 Note that E3 and J ′′
3 are, to the best of our knowledge, new examples of

minimal non-circular-arc graphs (see e.g. the results on circular-arc graphs surveyed
in [5]).

Recall that every further minimal non-superperfect graph has to be perfect and
has to contain a minimal non-comparability superperfect proper induced subgraph.
Among the perfect minimal non-comparability superperfect graphs, the following
are circular-arc graphs: J ′

2 but

• no even antihole C2k for k ≥ 3 (“folklore”),
• neither J ′′

3 (by Lemma 3) nor the graphs J ′′
k for all k ≥ 4 (as they all contain

the well-known minimal non-circular-arc graph K2,3 induced by the nodes
1, 2, 4, 6, 2k),

• all of the graphs A3, . . .A10.

Hence, any minimal non-superperfect circular-arc graph not being minimal non-
comparability has to contain one of A3, . . .A10 or J ′

2 as proper induced subgraph.
Figure 9 shows one example containing A6: it is non-superperfect (due to the
indicated weight vector d causing a gap between weighted clique and interval
chromatic number), it is minimal (as it does not have a non-comparability subgraph
different from A6), it is a circular-arc graph (see the according path representation).
However, note that the graph is not an interval graph (as A6 is not).

5 The General Case

Modern optical networks have clearly not a tree-like structure neither are just cycles
due to survivability aspects concerning node or edge failures in the network G, see
e.g. [13]. Instead, today’s optical networks are 2-connected, sparse planar graphs
with small maximum degree and have more a grid-like structure, see as example
Fig. 10 showing the Telefónica network of Spain taken from [15].
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Fig. 10 The Telefónica network of Spain from [15]

We first wonder which minimal non-comparability non-superperfect graphs can
occur in edge intersection graphs of paths in such networks G and can show:

Theorem 6 All minimal non-comparability non-superperfect graphs can occur in
edge intersection graphs I (P) of setsP of paths in optical networksG.

In addition, there are further minimal non-superperfect graphs in edge intersec-
tion graphs of paths in networks.

Figure 11 shows one example containing A7: it is non-superperfect (due to
the indicated weight vector d causing a gap between weighted clique and interval
chromatic number), it is minimal (as removing node g or h yields A7, and removing
any other node results in a comparability graph), and it has a path representation in
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Fig. 11 A minimal non-superperfect graph containing A7 and a path representation in a sparse
planar graph
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a sparse planar graph. However, note that the graph is neither an EPT graph (as A7
is not), nor a circular-arc graph (as nodes a, e, f, g, h induce a K2,3).

We expect that all minimal non-superperfect graphs can occur in edge inter-
section graphs of paths in networks, as soon as the networks G satisfy minimal
survivability conditions concerning edge or node failures.

6 Concluding Remarks

From the fact that both, EPT graphs and circular-arc graphs, are not necessarily
perfect, we notice that also edge intersection graphs of paths in networks are
not necessarily perfect and, thus, also not necessarily superperfect. If we restrict
the networks to paths, then I (P) is an interval graph, but still not necessarily
superperfect (as the minimal non-superperfect graphs Jk for all k ≥ 2, J ′

k for all
k ≥ 3 and E1 can occur). This is in accordance with the fact that the SA problem
has been showed to be NP-hard on paths [16].

Hence, in all networks, it depends on the weights d induced by the traffic
demands whether there is a gap between the weighted clique number ω(I (P),d)
and the interval chromatic number χI (I (P),d). To determine the size of this gap,
we propose to extend the concept of χ-binding functions introduced in [10] for usual
coloring to interval coloring in weighted graphs, that is, to χI -binding functions f

with

χI (I (P),d) ≤ f (ω(I (P),d))

for edge intersection graphs I (P) in a certain class of networks and all possible
non-negative integral weights d.

It is clearly of interest to study such χI -binding functions for different families
of minimal non-superperfect graphs and to identify a hierarchy of graph classes
between trees respectively cycles and sparse planar graphs resembling the struc-
ture of modern optical networks in terms of the gap between ωI (I (P),d) and
χI (I (P),d).

Furthermore, in networks different from trees, the routing part of the RSA
problem is crucial and raises the question whether it is possible to select the routes
in P in such a way that neither non-superperfect subgraphs nor unnecessarily large
weighted cliques occur in I (P).

Finally, giving a complete list of minimal non-superperfect graphs is an open
problem, so that our future work comprises to find more minimal non-superperfect
graphs and to examine the here addressed questions for them.
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A Cycle-Based Formulation
for the Distance Geometry Problem

Leo Liberti, Gabriele Iommazzo, Carlile Lavor, and Nelson Maculan

Abstract The distance geometry problem consists in finding a realization of a
weighted graph in a Euclidean space of given dimension, where the edges are
realized as straight segments of length equal to the edge weight. We propose and
test a new mathematical programming formulation based on the incidence between
cycles and edges in the given graph.

Keywords Mathematical programming · Cycle basis · Protein conformation

1 Introduction

The DISTANCE GEOMETRY PROBLEM (DGP), also known as the realization
problem in geometric rigidity, belongs to a more general class of metric completion
and embedding problems.
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DGP. Given a positive integer K and a simple undirected graph G = (V ,E) with an edge
weight function d : E → R≥0, establish whether there exists a realization x : V → R

K of
the vertices such that Eq. (1) below is satisfied:

∀{i, j} ∈ E ‖xi − xj‖ = dij , (1)

where xi ∈ R
K for each i ∈ V and dij is the weight on edge {i, j} ∈ E.

In its most general form, the DGP might be parametrized over any norm. In
practice, the 
2 norm is the most usual choice. The DGP with the 
2 norm is
sometimes called the EUCLIDEAN DGP (EDGP). For the EDGP, Eq. (1) is often
reformulated to:

∀{i, j } ∈ E ‖xi − xj‖2
2 = d2

ij , (2)

which is a system of quadratic polynomial equations with no linear terms.
The EDGP is motivated by many scientific and technological applications. The

clock synchronization problem, for example, aims at establishing the absolute time
of a set of clocks when only the time difference between subsets of clocks can
be exchanged [29]. The sensor network localization problem aims at finding the
positions of a moving wireless sensor on a 2D manifold given an estimation of some
of the pairwise Euclidean distances [2]. The MOLECULAR DGP (MDGP) aims at
finding the positions of atoms in a protein, given some of the pairwise Euclidean
distances [15, 16]. In general, the DGP is an inverse problem which occurs every
time one can measure some of the pairwise distances in a set of entities, and needs
to establish their position.

The DGP is weakly NP-hard even when restricted to simple cycle graphs and
strongly NP-hard even when restricted to integer edge weights in {1, 2} in general
graphs [27]. It is in NP if K = 1 but not known to be in NP if K > 1 for general
graphs [4], which is an interesting open question [19]. More information about the
DGP can be found in [22].

There are many approaches to solving the DGP. Generally speaking, application-
specific solution algorithms exploit some of the graph structure, if induced by the
application. For example, a condition often asked when reconstructing the positions
of sensor networks is that the realization should be unique (as one would not know
how to choose between multiple realizations), a condition called global rigidity
[7] which can, at least generically, be imposed directly on the unweighted input
graph. For protein structures, on the other hand, which are found in nature in several
isomers, one is often interested in finding all (incongruent) realizations of the given
protein graph [20]. Since such graphs are rigid, one can devise an algorithm (called
Branch-and-Prune) which, following a given vertex order, branches on reflections
of the position of the next vertex, which is computed using trilateration [18, 21].
In absence of any information on the graph structure, however, one can resort to
Mathematical Programming (MP) formulations and corresponding solvers [8, 23].
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The MP formulation which is most often used reformulates Eq. (2) to the
minimization of the sum of squared error terms:

min
x

∑

{i,j}∈E
(‖xi − xj‖2

2 − d2
ij )

2. (3)

This formulation describes an unconstrained polynomial minimization problem.
The polynomial in question has degree 4, is always nonnegative, and generally
nonconvex and multimodal. Each solution x∗ having global minimum value equal
to zero is a realization of the given graph.

As far as we know, all existing MP formulations for the EDGP are based on the
incidence of edges and vertices. In this paper we discuss a new MP formulation for
the EDGP based on the incidence of cycles and edges instead, some variants, and a
computational comparison with a well-known edge-based formulation.

2 A New Formulation Based on Cycles

In this section we propose a new formulation for the EDGP. The basic idea stems
from the fact that the quantities xik − xjk sum up to zero over all edges of any
cycle in the given graph for each dimensional index k ≤ K . This idea was used in
[27] for proving weak NP-hardness of the DGP on cycle graphs, by reduction from
PARTITION. For a subgraph H of a graph G = (V ,E), we use V (H) and E(H)

to denote vertex and edge set of H explicitly; given a set F of edges we use V (F)

to denote the set of incident vertices. Let m = |E| and n = |V |. For a mapping
x : V → R

K we denote by x[U ] the restriction of x to a subset U ⊆ V .

Lemma 1 Given an integer K > 0, a simple undirected weighted graph G =
(V ,E, d) and a mapping x : V → R

K , then for each cycleC inG, each orientation
of the edges in C given by a closed trail W(C) in the cycle, and each k ≤ K we
have:

∑

(i,j)∈W(C)

(xik − xjk) = 0. (4)

Proof We renumber the vertices in V (C) to 1, 2, . . . , γ = |V (C)| following the
walk order in W(C). Then Eq. (4) can be explicitly written as:

(x1k − x2k) + (x2k − x3k) + · · · + (xγ k − x1k) =
= x1k − (x2k − x2k) − · · · − (xγ k − xγ k) − x1k = 0,

as claimed. �
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We introduce new decision variables yijk replacing the terms xik − xjk for each
{i, j } ∈ E and k ≤ K . Equation (2) then becomes:

∀{i, j } ∈ E
∑

k≤K

y2
ijk = d2

ij . (5)

We remark that for the DGP with other norms this constraint changes. For the 
1 or

∞ norms, for example, we would have:

∀{i, j } ∈ E
∑

k≤K

|yijk | = dij or max
k≤K

|yijk| = dij . (6)

Next, we adjoin the constraints on cycles:

∀k ≤ K,C ⊂ G

(
C is a cycle ⇒

∑

{i,j}∈E(C)

yijk = 0

)
. (7)

We also note that the feasible value of a yijk variable is the (oriented) length of
the segment representing the edge {i, j } projected on the k-th coordinate. We can
therefore infer bounds for y as follows:

∀k ≤ K, {i, j } ∈ E − dij ≤ yijk ≤ dij . (8)

We now prove our main result, i.e. that Eqs. (5) and (7) are a valid MP
formulation for the EDGP.

Theorem 1 There exists a vector y∗ ∈ R
Km which satisfies Eqs. (5) and (7),

parametrized on K,G, if and only if (K,G) is a YES instance of the EDGP.

Proof (⇐) Assume that (K,G) is a YES instance of the EDGP. Then G has a
realization x∗ ∈ R

nK in R
K . We define y∗

ijk = x∗
ik − x∗

jk for all {i, j } ∈ E and
k ≤ K . Since x∗ is a realization of G, by definition it satisfies Eq. (2), and, by
substitution, Eq. (5). Moreover, any realization of G satisfies Eq. (4) over each cycle
by Lemma 1. Hence, by replacement, it also satisfies Eq. (7).

(⇒) Assume next that (K,G) is a NO instance of the EDGP, and suppose that
Eqs. (5) and (7) have a non-empty feasible set Y . For every y ∈ Y we consider the
K linear systems

∀{i, j } ∈ E xik − xjk = yijk, (9)

for each k ≤ K , each with n variables and m equations. We square both sides then
sum over k ≤ K to obtain

∑
k≤K(xik − xjk)

2 = ∑
k≤K y2

ijk for all {i, j } ∈ E.

By Eq. (5) we have
∑

k≤K y2
ijk = d2

ij whence follows Eq. (2), contradicting the
assumption that the EDGP is NO. So we need only show that there is a solution x

to Eq. (9) for any given y ∈ Y .
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We first consider the case where G is not biconnected: let G be a union of two
graphs G′,G′′ with a single common vertex v. Assume recursively that the claim
holds for both G′ and G′′, so we get realizations x ′, x ′′ for G′,G′′: simply translate
x ′′ so that x ′

v = x ′′
v , and let x be the concatenation of x ′, x ′′. Then x satisfies Eq. (9)

by translation invariance (given by xi − xj = (xi − z)− (xj − z) for any translation
vector z).

Next, we consider the case where G is a tree: by the above reasoning, we can
assume that G is a path (since a tree is a connected union of pendant paths, dealt
with above) with n vertices and n− 1 edges. Then for each fixed k ≤ K Eq. (9) has
n variables and n−1 equations. Let A be the set of vertices incident to a single edge
and B the set of vertices incident to two edges (clearly A∪B = V ). If i ∈ A then xi
occurs in a single equation; if i ∈ B then xi occurs in exactly two equations. Thus
the linear dependence condition

∑
{i,j}∈E λijk(xik − xjk) = 0 (†) requires all of the

λijk involving i ∈ A to be zero, which implies j ∈ A too (if j ∈ B there would be
an xj term left in (†)): this implies λ = 0, showing that the system has rank n − 1.
Hence Eq. (9) has uncountably many solutions. This is repeated for every k ≤ K to
yield a realization of the tree in R

K .
Now we assume WLOG that G is biconnected, since any pendant trees can

be easily treated separately as shown above, and proceed by induction on the
simple cycles of G. For the base case, we consider a cycle C with corresponding
y satisfying Eqs. (5) and (7). Since C is a cycle, it has the same number of vertices
and edges, say q . This implies that, for any fixed k ≤ K , Eq. (9) is a linear system
of equations Mx = y with a q × q matrix M as shown below:

M =

⎛
⎜⎜⎜⎜⎝

1 −1
1 −1

1
. . .
. . . −1

−1 1

⎞
⎟⎟⎟⎟⎠

.

By Eq. (4) and by inspection it is clear that the rank of M is exactly q − 1: then
Eq. (7) ensures that Eq. (9) has uncountably many solutions. Repeating this for
every k ≤ K we obtain a realization x of C with K degrees of freedom.

Since any cycle basis generates the set of all cycles in a graph, for the induction
step we consider a cycle basis B of G that is fundamental (see Sect. 3). We assume
that G′ is a union of fundamental cycles in B with realization x ′ satisfying Eq. (9),
and that C is another fundamental cycle in B with realization xC . We aim at proving
that Eq. (9) has a solution for G′ ∪ C. Since G is biconnected, the induction can
proceed by ear decomposition [25], which means that G′ is also biconnected, and
that C is such that E(G′) ∩E(C) = F is a non-empty path in G′. We want to show
that C can be realized so the edges in F are realized according to x ′: we argue that
there is x̃ : V (C) � V (F) → R

K such that x̄C = (x ′[V (F)], x̃) is a realization
of C. It suffices to assume that E(C) � F consists of a single edge, say {u, v},
since any more edges can be considered as a pendant path attached to G′ (easily
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dealt with as we saw above since paths are trees) and a single edge. This means that
u, v ∈ V (F), i.e. x ′ already maps V (G′)∪V (C) to R

K . Thus we only need to check
that x ′

uk − x ′
vk = yuvk for each k ≤ K .

By Eq. (4) applied to C = F ∪ {{u, v}} and the facts that (a) C is a cycle in G

and (b) x ′ realizes G′, which contains F , we have

∀k ≤ K
∑

{i,j}∈C
(x ′

ik − x ′
jk) = 0. (10)

By Eq. (7) applied to C and the fact that Y �= ∅ we have

∀k ≤ K
∑

{i,j}∈C
yijk = 0. (11)

By induction hypothesis x ′ satisfies Eq. (9), whence

∀k ≤ K, {i, j } ∈ F x ′
ik − x ′

jk = yijk. (12)

We replace Eq. (12) in Eq. (11), obtaining

∀k ≤ K
∑

{i,j}∈F
(x ′

ik − x ′
jk) = −yuvk. (13)

Subtracting Eq. (13) from Eq. (10) finally yields x ′
uk − x ′

vk = yuvk for all k ≤ K ,
which concludes the proof. �
The issue with Theorem (1) is that it relies on the exponentially large family of
constraints Eq. (7). While this is sometimes addressed by algorithmic techniques
such as row generation, we shall see in the following that it suffices to consider a
polynomial set of cycles (which, moreover, can be found in polynomial time) in the
quantifier of Eq. (7).

3 The Cycle Vector Space and its Bases

We recall that incidence vectors of cycles (in a Euclidean space having |E|
dimensions) form a vector space over a field F, which means that every cycle can
be expressed as a weighted sum of cycles in a basis. In this interpretation, a cycle
in G is simply a subgraph of G where each vertex has even degree: we denote their
set by C . This means that Eq. (7) is actually quantified over a subset of C , namely
the simple connected cycles. Every basis has cardinality m − n + a, where a is
the number of connected components of G. If G is connected, cycle bases have
cardinality m − n + 1 [28].
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Our interest in introducing cycle bases is that we would like to quantify Eq. (7)
polynomially rather than exponentially in the size of G. Our goal is to replace “C
a simple connected cycle in C ” by “C in a cycle basis of G”. In order to show that
this limited quantification is enough to imply every constraint in Eq. (7), we have to
show that, for each simple connected cycle C ∈ C , the corresponding constraint in
Eq. (7) can be obtained as a weighted sum of constraints corresponding to the basis
elements.

Another feature of Eq. (7) to keep in mind is that edges are implicitly given a
direction: for each cycle, the term for the undirected edge {i, j } in Eq. (7) is (xik −
xjk). Note that while {i, j } is exactly the same vertex set as {j, i}, the corresponding
term is either positive or not, depending on the direction (i, j) or (j, i). We deal
with this issue by arbitrarily directing the edges in E to obtain a set A of arcs, and
considering directed cycles in the directed graph Ḡ = (V ,A). In this interpretation,
the incidence vector of a directed cycle C of Ḡ is a vector cC ∈ R

m satisfying [14,
§2, p. 201]:

∀j ∈ V (C)
∑

(i,j)∈A
cCij =

∑

(j,
)∈A
cCj
. (14)

A directed circuit D of Ḡ is obtained by applying the edge directions from Ḡ

to a connected subgraph of G where each vertex has degree exactly 2 (note that a
directed circuit need not be strongly connected, although its undirected version is
connected). Its incidence vector cD ∈ {−1, 0, 1}m is defined as follows:

∀(i, j) ∈ A cDij �

⎧
⎨

⎩

1 if (i, j) ∈ A(D)

−1 if (j, i) ∈ A(D)

0 otherwise

where we have used A(D) to mean the arcs in the subgraph D. In other words,
whenever we walk over an arc (i, j) in the natural direction i → j we let the (i, j)-
th component of cD be 1; if we walk over (i, j) in the direction j → i we assign a
−1, and otherwise a zero.

3.1 Constraints Over Cycle Bases

The properties of undirected and directed cycle bases have been investigated in a
sequence of papers by many authors, culminating with [14]. We now prove that it
suffices to quantify Eq. (7) over a directed cycle basis.
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Proposition 1 Let B be a directed cycle basis of Ḡ over Q. Then Eq. (7) holds if
and only if:

∀k ≤ K,B ∈ B
∑

(i,j)∈A(B)

cBij yijk = 0. (15)

Proof Necessity (7) ⇒ (15) follows because Eq. (7) is quantified over all cycles:
in particular, it follows for any undirected cycle in any undirected cycle basis.
Moreover, the signs of all terms in the sum of Eq. (15) are consistent, by definition,
with the arbitrary edge direction chosen for Ḡ.

Next, we claim sufficiency (15) ⇒ (7). Let C ∈ C be a simple cycle, and C̄ be its
directed version with the directions inherited from Ḡ. Since B is a cycle basis, we
know that there is a coefficient vector (γB | B ∈ B) ∈ R

|B| such that:

cC̄ =
∑

B∈B
γBc

B. (16)

We now consider the expression:

∀k ≤ K
∑

B∈B
γB

∑

(i,j)∈A(B)

cBij yijk . (17)

On the one hand, by Eq. (16), Eq. (17) is identically equal to
∑

(i,j)∈A(C̄) c
C̄
ij yijk

for each k ≤ K; on the other hand, each inner sum in Eq. (17) is equal to zero by
Eq. (15). This implies

∑
(i,j)∈A(C̄) c

C̄
ij yijk = 0 for each k ≤ K . Since C is simple

and connected C̄ is a directed circuit, which implies that cC̄ ∈ {−1, 0, 1}. Now it
suffices to replace −yijk with yjik to obtain

∀k ≤ K
∑

{i,j}∈E(C)

yijk = 0,

where the edges on C are indexed in such a way as to ensure they appear in order of
consecutive adjacency. �
Obviously, if B has minimum (or just small) cardinality, Eq. (15) will be sparsest
(or just sparse), which is often a desirable property of linear constraints occurring in
MP formulations. Hence we should attempt to find short cycle bases B.

In summary, given a basis B of the directed cycle space of Ḡ where cB is the
incidence vector of a cycle B ∈ B, the following:

min
s≥0,y

∑
{i,j}∈E

(s+ij + s−ij )

∀(i, j) ∈ A(Ḡ)
∑
k≤K

y2
ijk − d2

ij = s+ij − s−ij

∀k ≤ K,B ∈ B
∑

(i,j)∈A(B)

cBij yijk = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(18)
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is a valid formulation for the EDGP. The solution of Eq. (18) yields a feasible vector
y∗. We must then exploit Eq. (9) to obtain a realization x∗ for G.

3.2 How to Find Directed Cycle Bases

We require directed cycle bases over Q. By [14, Thm. 2.4], each undirected cycle
basis gives rise to a directed cycle basis (so it suffices to find a cycle basis of G

and then direct the cycles using the directions in Ḡ). Horton’s algorithm [12] and
its variants [11, 24] find a minimum cost cycle basis in polynomial time. The most
efficient deterministic variant is O(m3n) [24], and the most efficient randomized
variant has the complexity of matrix multiplication. Existing approximation algo-
rithms have marginally better complexity.

It is not clear, however, that the provably sparsest constraint system will make
the DGP actually easier to solve. We therefore consider a much simpler algorithm:
starting from a spanning tree, we pick the m−n+1 circuits that each chord (i.e., non-
tree) edge defines with the rest of the tree. This algorithm [26] yields a fundamental
cycle basis (FCB). Finding the minimum FCB is known to be NP-hard [9], but
heuristics based on spanning trees prove to be very easy to implement and work
reasonably well [9] (optionally, their cost can be improved by an edge-swapping
phase [1, 17]).

4 Computational Results

The aim of this section is to compare the computational performance of the new
“cycle formulation” Eqns. (18) and (9) with the standard “edge formulation” Eq. (3).
We note that both formulations are nonconvex Nonlinear Programs (NLP), which
are generally hard to solve. We therefore used a very simple 3-iteration multi-start
heuristic based on calling a local NLP solver from a random initial starting point at
each iteration, and updating the best solution found so far as needed.

We remark that we added the centroid constraints:

∀k ≤ K
∑

i≤n

xik = 0

to the edge formulation Eq. (3). In our experience, these constraints (which simply
remove the degrees of translation freedom) give a slight stability advantage to the
edge formulation when solved with most local NLP solvers.
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We evaluate the quality of a realization x of a graph G according to mean (MDE)
and largest distance error (LDE), defined this way:

MDE(x,G) = 1

|E|
∑

{i,j}∈E

∣∣‖xi − xj‖2 − dij
∣∣

LDE(x,G) = max{i,j}∈E
∣∣‖xi − xj‖2 − dij

∣∣.

We remark that these realization quality measures are formally different from the
objective functions of the formulations we benchmarked.

The CPU time taken to find the solution may also be important, depending on
the application. In real-time control of underwater vehicles [3], for example, DGP
instances might need to be solved every second. In other applications, such as
finding protein structure from distance data [5], the CPU time is not so important.

Our tests were carried out on a single CPU of a 2.1 GHz 4-CPU 8-core-per-CPU
machine with 64 GB RAM running Linux. We used AMPL [10] to implement our
formulations and solution algorithms, and the local NLP IpOpt solver [6] to solve
each formulation locally (Tables 1–2).

Our first benchmark contains a diverse collection of randomly generated
weighted graphs of small size and many different types (Table 2), realized in
R

2. The cycle formulation finds better MDE values, while the edge formulation
generally finds better LDE values and is faster. The instance names in Table 2
label the graph type and some random generation parameters: almostreg-k-n
are almost k-regular graphs on n vertices, bipartite-n-p are bipartite graphs
on 2n vertices with edge density p, cluster-n-k-p-q are k-clustered n-graphs

Table 1 Cycle formulation vs. edge formulation performance on protein graphs (realizations in
K = 3 dimensions). Boldface figures denote best results

Instance m n mdeC mdeE ldeC ldeE cpuC cpuE

1guu 955 150 0.057 0.061 1.913 1.884 18.18 37.14

1guu-1 959 150 0.035 0.038 2.025 1.824 24.27 5.48
1guu-4000 968 150 0.061 0.060 2.324 2.121 24.24 6.97
pept 999 107 0.104 0.161 3.367 2.963 34.67 10.89
2kxa 2711 177 0.053 0.155 3.613 3.936 169.95 35.44
res_2kxa 2627 177 0.131 0.045 3.197 3.442 153.00 32.40
C0030pkl 3247 198 0.009 0.059 2.761 3.965 156.09 76.58
cassioli-130731 4871 281 0.005 0.060 3.447 3.963 376.33 143.31
100d 5741 488 0.146 0.246 4.295 4.090 3024.67 253.56
helix_amber 6265 392 0.038 0.059 3.528 4.578 1573.10 212.68
water 11939 648 0.222 0.422 4.557 4.322 9384.08 3836.23
3al1 17417 678 0.084 0.124 4.165 4.087 4785.91 1467.74
1hpv 18512 1629 0.334 0.338 4.256 4.619 53848.33 6620.70
il2 45251 2084 1.481 0.248 9.510 4.415 2323.90 24321.25
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Table 2 Cycle formulation vs. edge formulation performance on various small sized graphs
(realizations in K = 2 dimensions). Boldface figures denote best results

Instance m n mdeC mdeE ldeC ldeE cpuC cpuE

almostreg-3-100 298 100 0 0 0.048 0.041 0.88 0.23
almostreg-3-150 448 150 0 0 0.330 0.282 1.29 0.30
almostreg-3-200 598 200 0 0 0.030 0.020 2.15 0.44
almostreg-3-50 146 50 0 0 0 0 0.31 0.11
almostreg-6-100 591 100 0.077 0.093 0.740 0.410 6.85 0.35
almostreg-6-150 893 150 0.085 0.099 1.030 0.485 16.52 0.68
almostreg-6-200 1192 200 0.076 0.098 0.729 0.501 34.07 1.35
almostreg-6-50 292 50 0.082 0.099 0.648 0.471 1.80 0.13
almostreg-8-100 777 100 0.105 0.131 0.846 0.577 8.89 0.42
almostreg-8-150 1189 150 0.104 0.121 0.805 0.528 34.84 0.83
almostreg-8-200 1581 200 0.104 0.125 0.974 0.654 48.10 1.79
almostreg-8-50 387 50 0.104 0.113 0.670 0.520 2.46 0.13
bipartite-100-03 3044 200 0.206 0.218 0.931 0.790 209.15 7.86
bipartite-100-06 6024 200 0.225 0.234 0.978 0.753 439.74 8.00
bipartite-150-03 6708 300 0.220 0.232 0.951 0.724 582.71 14.37
bipartite-150-06 13466 300 0.231 0.240 0.852 0.808 1904.18 30.79
bipartite-200-03 11906 400 0.223 0.235 0.936 0.812 3183.43 33.06
bipartite-200-06 23963 400 0.235 0.244 0.888 0.741 4885.52 64.03
bipartite-50-03 744 100 0.166 0.185 0.936 0.787 29.27 1.11
bipartite-50-06 1468 100 0.201 0.217 1.011 0.754 80.80 1.38
cluster-120-4-05-01 1495 120 0.191 0.206 0.873 0.838 98.67 1.69
cluster-120-8-05-01 1149 120 0.181 0.196 0.892 0.740 62.29 1.04
cluster-150-2-05-01 3337 150 0.218 0.230 0.901 0.936 605.00 3.66
cluster-150-8-05-01 1750 150 0.190 0.205 0.886 0.831 70.66 2.44
cluster-200-2-05-01 5957 200 0.231 0.241 0.931 0.952 612.82 8.01
cluster-200-4-05-01 4155 200 0.221 0.233 0.924 0.906 397.45 7.67
cluster-200-8-05-01 3046 200 0.206 0.220 0.988 0.851 462.46 5.61
cluster-50-2-05-01 361 50 0.159 0.171 0.742 0.679 7.52 0.20
cluster-50-4-05-01 242 50 0.145 0.167 0.899 0.588 3.63 0.18
cluster-50-8-05-01 187 50 0.113 0.133 0.716 0.500 2.73 0.16
euclid-150-02 2341 150 0 0 0 0 286.09 2.69
euclid-150-05 5678 150 0 0 0 0 991.87 2.86
euclid-150-08 8915 150 0 0 0 0 1507.94 3.88
euclid-200-05 10037 200 0 0 0 0 1881.40 5.47
euclid-200-08 15877 200 0 0 0 0 3114.95 7.96
flowersnark120 720 480 0 0 0.151 0.109 7.86 8.21

flowersnark-150 900 600 0 0 0.101 0.086 36.53 15.50
flowersnark-200 1200 800 0 0 0.141 0.123 18.02 31.04

flowersnark40 240 160 0 0 0.016 0.005 1.92 0.35
flowersnark80 480 320 0 0 0.068 0.059 3.18 1.08
hypercube-10 5120 1024 0.128 0.152 1.004 0.653 4965.30 133.93

(continued)
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Table 2 (continued)

Instance m n mdeC mdeE ldeC ldeE cpuC cpuE

hypercube-5 80 32 0.054 0.058 0.401 0.321 0.95 0.10
hypercube-6 192 64 0.075 0.087 0.774 0.426 4.20 0.20
hypercube-8 1024 256 0.104 0.127 0.876 0.631 81.68 2.59
powerlaw-100-2-05 148 100 0.024 0.025 0.338 0.309 1.24 0.38
powerlaw-100-2-08 178 100 0.042 0.042 0.464 0.398 1.64 0.59
powerlaw-150-2-05 223 150 0.034 0.035 0.404 0.360 1.37 1.94

powerlaw-150-2-08 268 150 0.047 0.047 0.471 0.404 2.44 1.73
powerlaw-200-2-05 298 200 0.025 0.026 0.581 0.443 2.64 1.27
powerlaw-200-2-08 358 200 0.037 0.038 0.454 0.376 3.75 1.78
random-100-02 1093 100 0.193 0.203 0.874 0.742 48.43 0.67
random-100-05 2479 100 0.224 0.234 0.938 0.855 168.40 1.48
random-150-02 2394 150 0.209 0.223 0.932 0.809 226.60 3.98
random-150-05 5675 150 0.241 0.250 0.965 0.953 580.59 6.10
random-200-02 4097 200 0.218 0.228 0.930 0.887 271.94 7.68
random-200-05 10023 200 0.248 0.255 0.949 0.952 1024.32 11.43
random-50-02 291 50 0.143 0.161 0.922 0.638 7.03 0.17
random-50-05 665 50 0.195 0.212 0.836 0.953 16.20 0.23
rnddegdist-100 2252 100 0.223 0.235 0.929 0.963 136.74 1.48
rnddegdist-150 5293 150 0.240 0.249 0.939 0.955 819.86 3.91
rnddegdist-30 174 30 0.156 0.179 0.767 0.667 2.26 0.11
rnddegdist-40 221 40 0.156 0.175 0.672 0.628 2.93 0.17
tripartite-100-02 4038 300 0.198 0.213 0.968 0.737 369.77 10.39
tripartite-100-05 10003 300 0.227 0.238 0.917 0.729 1150.35 21.37
tripartite-150-02 9061 450 0.213 0.227 0.956 0.765 2005.30 32.43
tripartite-150-05 22431 450 0.235 0.245 0.876 0.751 4687.28 45.27
tripartite-30-02 359 90 0.106 0.118 0.736 0.547 10.31 0.37
tripartite-50-02 995 150 0.153 0.173 0.958 0.722 38.55 1.00
tripartite-50-05 2519 150 0.208 0.220 0.849 0.736 160.43 2.39

with intercluster density p and intracluster density q , euclid-n-p are graphs on
n random points in the plane with density p, flowersnark-n are flower snark
graphs [13] of order n, hypercube-n are graphs on 2n vertices connected with a
hypercube topology, powerlaw-n-t-a are degi = ani−t power law graphs on n

vertices with biconnectedness guaranteed by the addition of a Hamiltonian cycle,
random-n-p are Erdős-Renyi graphs on n vertices with density p, rnddegdist-
n are biconnected random graphs on n vertices with a randomly generated degree
distribution, tripartite-n-p are tripartite graphs on 3n vertices with edge
density p.

Our second benchmark contains medium to large scale protein graph instances
(Table 1), realized in R

3. It turns out that the cycle formulation gives generally better
quality solutions (the MDE is better on all instances but two, the LDE is better a little
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less than half of the times), but takes more time in order to find them. In our largest
tested instance (il2) the trend is reversed, meaning that the cycle formulation found
a bad quality solution but in a tenth of the time.

In all cases, finding the cycle basis and solving the auxiliary retrieval problem
Eq. (9) takes a tiny fraction of the total solution time.

Acknowledgments While the seminal idea for considering DGPs over cycles dates from Saxe’s
NP-hardness proof [27], the “cycle formulation” concept occurred to us as one of the authors (LL)
attended a talk by Matteo Gallet given at the Erwin Schrödinger Institute (ESI), Vienna, during the
Geometric Rigidity workshop 2018. LL has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement
n. 764759 “MINOA”. CL is grateful to the Brazilian research agencies FAPESP and CNPq for
support.

References

1. Amaldi, E., Liberti, L., Maffioli, F., Maculan, N.: Edge-swapping algorithms for the minimum
fundamental cycle basis problem. Math. Methods Oper. Res. 69, 205–223 (2009)

2. Aspnes, J., Eren, T., Goldenberg, D., Morse, S., Whiteley, W., Yang, R., Anderson, B.,
Belhumeur, P.: A theory of network localization. IEEE Trans. Mobile Comput. 5(12), 1663–
1678 (2006)

3. Bahr, A., Leonard, J., Fallon, M.: Cooperative localization for autonomous underwater
vehicles. Int. J. Robot. Res. 28(6), 714–728 (2009)

4. Beeker, N., Gaubert, S., Glusa, C., Liberti, L.: Is the distance geometry problem in NP?
In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.) Distance Geometry: Theory,
Methods, and Applications, pp. 85–94. Springer, New York (2013)

5. Cassioli, A., Bordeaux, B., Bouvier, G., Mucherino, A., Alves, R., Liberti, L., Nilges, M.,
Lavor, C., Malliavin, T.: An algorithm to enumerate all possible protein conformations
verifying a set of distance constraints. BMC Bioinf. 16, 23–38 (2015)

6. COIN-OR: Introduction to IPOPT: a tutorial for downloading, installing, and using IPOPT
(2006)

7. Connelly, R.: Generic global rigidity. Discret. Comput. Geom. 33, 549–563 (2005)
8. D’Ambrosio, C., Vu, K., Lavor, C., Liberti, L., Maculan, N.: New error measures and methods

for realizing protein graphs from distance data. Discrete Comput. Geom. 57(2), 371–418
(2017)

9. Deo, N., Prabhu, G., Krishnamoorthy, M.: Algorithms for generating fundamental cycles in a
graph. ACM Trans. Math. Softw. 8(1), 26–42 (1982)

10. Fourer, R., Gay, D.: The AMPL Book. Duxbury Press, Pacific Grove (2002)
11. Golynski, A., Horton, J.: A polynomial time algorithm to find the minimum cycle basis of a

regular matroid. In: 8th Scandinavian Workshop on Algorithm Theory (2002)
12. Horton, J.: A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J.

Comput. 16(2), 358–366 (1987)
13. Isaacs, R.: Infinite families of nontrivial trivalent graphs which are not Tait colorable. Am.

Math. Month. 82(3), 221–239 (1975)
14. Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., Zweig, K.: Cycle

bases in graphs: characterization, algorithms, complexity, and applications. Comput. Sci. Rev.
3, 199–243 (2009)



106 L. Liberti et al.

15. Lavor, C., Liberti, L., Maculan, N.: Molecular distance geometry problem. In: Floudas, C.,
Pardalos, P. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 2305–2311. Springer, New
York (2009)

16. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable
molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

17. Lee, J., Liberti, L.: A matroid view of key theorems for edge-swapping algorithms. Math.
Methods Oper. Res. 76, 125–127 (2012)

18. Liberti, L., Lavor, C.: Euclidean Distance Geometry: An Introduction. Springer, New York
(2017)

19. Liberti, L., Lavor, C.: Open research areas in distance geometry. In: Migalas, A., Pardalos,
P. (eds.) Open Problems in Optimization and Data Analysis. Springer Optimization and Its
Applications, vol. 141, pp. 183–223. Springer, New York (2018)

20. Liberti, L., Lavor, C., Alencar, J., Abud, G.: Counting the number of solutions of kDMDGP
instances. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture
Notes in Computer Science, vol. 8085, pp. 224–230. Springer, New York (2013)

21. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance
geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

22. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applica-
tions. SIAM Rev. 56(1), 3–69 (2014)

23. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods:
from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2010)

24. Liebchen, C., Rizzi, R.: A greedy approach to compute a minimum cycle basis of a directed
graph. Inf. Process. Lett. 94, 107–112 (2005)

25. Lovász, L., Plummer, M.: On minimal elementary bipartite graphs. J. Combin. Theory B 23,
127–138 (1977)

26. Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Commun. ACM
12(9), 514–518 (1969)

27. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of
17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

28. Seshu, S., Reed, M.: Linear Graphs and Electrical Networks. Addison-Wesley, Reading (1961)
29. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Appl.

Comput. Harmonic Anal. 30, 20–36 (2011)



The Unsuitable Neighbourhood
Inequalities for the Fixed Cardinality
Stable Set Polytope

Phillippe Samer and Dag Haugland

Abstract Given an undirected graph G = (V ,E) and an integer k ∈ {1, . . . , |V |},
we initiate the combinatorial study of stable sets of cardinality exactly k in G. Our
aim is to instigate the polyhedral investigation of the convex hull of fixed cardinality
stable sets, and we begin by introducing a large class of valid inequalities to the
natural integer programming formulation of the problem.

Keywords Stable sets · Independent sets · Cardinality constraints · Valid
inequalities · Integer programming · Combinatorial optimization

1 From Conflict-Free Trees to Fixed Cardinality Stable Sets

We investigate a problem that is appealing to different research directions around
algorithms, combinatorics and optimization. Let G = (V ,E) be a finite, simple,
undirected graph, and denote n = |V |, and m = |E|. A stable set (or independent
set, or co-clique) in G is a subset of pairwise non-adjacent vertices. Given k ∈
{1, . . . , n} and a vertex-weighting function w : V → Q+, the k stable set problem
consists in finding a minimum weight stable set of cardinality k in G, or deciding
that none exists. Note that k is also part of the input to this problem; if it were an
arbitrary fixed integer, the enumeration and optimization problems over stable sets
of that cardinality could be solved in time polynomially bounded by a function of n.

Our original motivation for considering fixed cardinality stable sets stems
from the NP-hard problem of determining minimum spanning trees under conflict
constraints (MSTCC). Given a graph G = (V ,E) and a set of conflicting edge pairs
C ⊆ E × E, a conflict-free spanning tree in G is a set of edges T ⊆ E inducing a
spanning tree in G, such that for each (e, f ) ∈ C, at most one of the edges e and
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f is in T . The MSTCC problem, introduced by Darmann et al. [5], asks for such a
conflict-free spanning tree of minimum weight.

Different combinatorial and algorithmic results about the MSTCC problem
explore the associated conflict graph H = (E,C), which has a vertex corresponding
to each edge in the original graph G, and we represent each conflict constraint
by an (undirected) edge connecting the corresponding vertices in H . Note that
each conflict-free spanning tree in G is a subset of E which corresponds both to
a spanning tree in G and to a stable set in H . Therefore, one can equivalently search
for stable sets in H of cardinality exactly |V | − 1 which do not induce cycles in the
original graph G.

It is not hard to devise different approaches for studying the MSTCC problem
exploring the connection with fixed cardinality stable sets. Therefore, results of
different nature from research on the k stable set problem (e.g. integer programming
formulations and valid inequalities, well-solved particular cases, primal and dual
bounds) could provide fundamental components to advance knowledge on the
MSTCC problem as well.

It is surprising that the combinatorics and optimization literature has not
addressed the k stable set problem problem in depth before. The convex hull of
stable sets of cardinality at most k was studied by Janssen and Kilakos [8], but
only for k ∈ {2, 3}. Apart from that article, it has also appeared as part of an
algorithm for a variant of the survivable network design problem [3, Chapter 2],
where only an alternative proof of one of the original results on [8] is given. We
remark that the thorough survey on fixed cardinality versions of combinatorial
optimization problems by Bruglieri et al. [4] does not mention stable sets, in spite
of the major role played by that structure throughout the development of polyhedral
combinatorics.

Our contribution with this work is twofold. First, we draw attention to the fixed
cardinality version of a classical structure in combinatorial optimization and graph
theory, motivated by its application in the MSTCC problem. Second, we introduce
an exponential class of valid inequalities to the fixed cardinality stable set polytope,
whose separation problem is interesting in its own right.

2 Polyhedral Results

For any graph G, we denote by V (G) and E(G) the sets of vertices and edges of G,
respectively. For conciseness, we abbreviate ‘stable set of cardinality k’ as k-stab.
The family of all k-stabs in G is denoted F (G, k). Recall that the incidence vector
of any S ⊂ V is χS ∈ {0, 1}V defined by χS

i = 1 if i ∈ S, and χS
i = 0 if i ∈ V \S;

so the central object of our interest is C(G, k) = conv
{
χS : S ∈ F (G, k)

}
, i.e. the

convex hull of incidence vectors of all the k-stabs in G.
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The natural integer programming (IP) formulation for minimum-weight k-stabs
in G is

min

{
∑

v∈V
w(v)xv : x ∈ P(G, k) ∩ {0, 1}n

}
, (1)

where P(G, k) denotes the polyhedral region defined by:

∑

v∈V
xv = k (2)

xu + xv ≤ 1 ∀ {u, v} ∈ E (3)

0 ≤ xv ≤ 1 ∀v ∈ V (4)

Constraints (3) are known as edge inequalities, imposing that no two adjacent
vertices belong to the selection in x. Together with bounds (4), they determine the
fractional stable set polytope [14, Section 64.5].

Remark 1 Recall that a vector z is half-integer if 2z is integer. A classical result
of Nemhauser and Trotter [11] shows that the fractional stable set polytope is half-

integer, i.e. all its vertices are
{

0, 1
2 , 1

}
-valued. Since that is the starting point for

a series of both polyhedral and algorithmic advances, one could be interested in
extending that result for P(G, k) as well. Unfortunately, we could verify that is
not the case. While no small counterexample is found, we report a computational
finding using benchmark instances from the minimum spanning tree under conflict
constraints problem [13]. When Ĝ corresponds to the conflict graph associated with
instance z100-300-1344 in that paper, which has 300 vertices and 1344 edges,
and k = 60, the primal simplex method implemented in Gurobi Optimizer 8.1
(with all presolve, heuristics and cut options disabled) terminates with a solution
corresponding to a vertex of P(Ĝ, k) which is not half-integer.

We introduce next a class of valid inequalities for C(G, k), exploring the
relationship between k, the size of the neighbourhood

N(S) = {u ∈ V \S : ∃ {u, v} ∈ E for some v ∈ S}

of any set S ⊂ V , and how many vertices from S can appear in any k-stab. First,
denoting the set of neighbours of a vertex v ∈ V by δ(v), that is δ(v) = N({v}),
one can immediately observe that no vertex which has too many neighbours to still
build a k-stab can be chosen. This gives the following simple reduction rule.

Proposition 1 If x is the incidence vector of any k-stab, and v ∈ V is such that
|δ(v)| > n − k, then xv = 0.

In an attempt to enforce an algebraic expression that enough vertices are left
upon choosing a set S ⊂ V towards building a k-stab, we introduce a class of
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exponentially-many constraints, which we refer to as unsuitable neighbourhood
inequalities (UNI).

Theorem 1 The inequality
∑

v∈S xv ≤ |S|−1 is valid for C(G, k), for each S ⊂ V

such that 1 ≤ |S| < k and |N(S)| > n − k.

Proof From |S| < k, it follows that S is not a k-stab in itself. If S were a subset
of any k-stab, there should be at least k − |S| vertices left to choose from, while no
neighbour in N(S) can be selected towards building a stable set. That is

n − |S| − |N(S)| ≥ k − |S| , ∀S ⊂ V, 1 ≤ |S| < k,

⇔ |N(S)| ≤ n − k , ∀S ⊂ V, 1 ≤ |S| < k.

Since |N(S)| > n − k by hypothesis, S cannot be part of a k-stab. Therefore no
incidence vector x of a k-stab induces the selection of all the vertices in S, and the
result follows. �

While Proposition 1 is clearly a special case of Theorem 1, one could ask whether
the UNI indeed give a stronger condition. The positive answer follows next.

Theorem 2 For any graph G and k > 1, the UNI imply the condition enforced by
Proposition 1 in the description of C(G, k), but the converse does not hold.

Proof Let x be a vector satisfying all UNI. The inequalities in Proposition 1 are
implied by the UNI with |S| = 1. Suppose that S = {u} and |N(S)| = |δ(u)| >

n− k. Then u cannot be extended to a k-stab and the UNI include xu = ∑
v∈S xv ≤

|S| − 1 = 0, which is the condition on the former proposition.
Now the converse does not hold, i.e. even if |δ(v)| ≤ n − k for each v ∈ V ,

the UNI need not be automatically satisfied, as the following counterexample shows
(see Fig. 1). Consider the graph G = 2P3, which consists of two copies of the path
graph on 3 vertices put together, so that n = 6, and suppose that k = 3. Since all
vertices have degree 1 or 2, it follows that |δ(u)| ≤ n − k = 3 for each vertex u.
On the other hand, with a test set S consisting of the two vertices of degree 2 in the
middle of the paths, we have 1 ≤ |S| < k and |N(S)| = 4 > n − k, thus yielding
the unsuitable neighbourhood inequality given by

∑
v∈S xv ≤ |S| − 1 = 1 which

separates from the convex hull C(G, k) any vector selecting those two vertices. �

Proposition 2 In either of the following two conditions, the corresponding unsuit-
able neighbourhood inequality is redundant in C(G, k): (i) if S ⊂ V is not

Fig. 1 The graph 2P3 and
the selection of its two central
vertices
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independent, or (ii) if S ⊂ V is not minimal with respect to the condition |N(S)| >
n − k.

Proof If u, v ∈ S are adjacent vertices, the edge inequality xu + xv ≤ 1 implies∑
v∈S xv ≤ |S| − 1.
Otherwise, let S ⊂ V with 1 ≤ |S| < k and N(S) > n−k be a given independent

set, and suppose that T � S is such that |N(T )| > n − k. The UNI corresponding
to T is

∑
v∈T xv ≤ |T | − 1. Combined with xv ≤ 1 for each v ∈ S\T , it implies

the UNI corresponding to S, i.e.
∑

v∈S xv ≤ |S| − 1, which is thus redundant in the
description of C(G, k). �

Recall that the domination number γ (G) gives the least cardinality of a domi-
nating set in G = (V ,E), i.e. a subset D ⊂ V such that every vertex u ∈ V \D has
a neighbour in D. If a lower bound on the domination number of G is known, the
following result might be useful.

Proposition 3 If γ (G) ≥ k, then there exists no UNI for C(G, k).

Proof Suppose there were S ⊂ V with 1 ≤ |S| < k and |N(S)| > n−k, and denote
T = V \ {S ∪ N(S)}. Note that any vertex belongs to exactly one among S, N(S),
or T ; then

|S| + |N(S)| + |T | = n �⇒ |S| + |T | = n− |N(S)| �⇒ |S| + |T | < n− [n− k] = k,

since |N(S)| > n − k. Now, S ∪ T would be a dominating set of cardinality strictly
less than k, contradicting the hypothesis that γ (G) ≥ k. �

On the algorithmic side, it is in general impractical to include a priori all
minimal UNI in an IP formulation for a black-box solver, since the number of
those inequalities may grow exponentially with the size of the input (n, k). The
natural approach in this case is to try to cut off successive solutions x∗ to a
linear programming (LP) relaxation, by finding cutting planes corresponding to
UNI violated at x∗, i.e. separating x∗ from C(G, k), or deciding that none exists.
Answering that question is known as the separation problem for a class of valid
inequalities.

Definition 1 (Separation Problem for UNI) Given a graph G = (V ,E), with n =
|V |, k ∈ {2, . . . , n − 1}, and x∗ ∈ [0, 1]n satisfying the conditions that

∑
v∈V x∗

v =
k and that x∗

u + x∗
v ≤ 1 for each {u, v} ∈ E, determine

i. either a set S ⊂ V , with 1 ≤ |S| ≤ k − 1 and |N(S)| ≥ n − (k − 1), such
that

∑
v∈S x∗

v > |S| − 1, in which case the unsuitable neighbourhood inequality
corresponding to S separates x∗ from C(G, k),

ii. or that no such set exists, in which case all UNI are satisfied at x∗.

We give next a slight reformulation of the separation problem which might be
useful in future work. Given the input [G, k, x∗] corresponding to Definition 1,
define y∗ ∈ [0, 1]n such that y∗

v = 1 − x∗
v . Note now that

∑
v∈S x∗

v > |S| − 1
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if and only if
∑

v∈S y∗
v < 1. We thus have the following equivalent statement of the

problem.

Definition 2 (Equivalent Formulation of the Separation Problem for UNI)
Given a graph G = (V ,E), with n = |V |, k ∈ {2, . . . , n − 1}, and y∗ ∈ [0, 1]n
satisfying the conditions that

∑
v∈V y∗

v = n − k and that y∗
u + y∗

v ≥ 1 for each
{u, v} ∈ E, determine

i. either a set S ⊂ V , with |N(S)| ≥ n−(k−1) and
∑

v∈S y∗
v < 1, in which case the

unsuitable neighbourhood inequality corresponding to S separates x∗ = 1 − y∗
from C(G, k),

ii. or that no such set exists, in which case all UNI are satisfied at x∗ = 1 − y∗.

We consider this statement of the problem to be particularly appealing. Note
that if S has size exactly k − 1, then |N(S)| ≥ n − (k − 1) implies that it would
be a dominating set. Given the condition that adjacent vertices have y∗ values
summing up to at least 1, and that we require

∑
v∈S y∗

v < 1, we would actually
have an independent dominating set if |S| = k − 1, i.e. a subset of vertices which
is both dominating and independent (stable). Now, allowing |S| ≤ k − 1 means
that there might be q ∈ {0, 1, . . . , k − 2} vertices neither in S nor dominated
by it. If we define a q-quasi dominating set in a graph G = (V ,E) to be a
subset of vertices which is dominating in G[V \X], for some X ⊂ V, |X| ≤
q , our separation problem corresponds to finding an independent (k − 2)-quasi
dominating set of weight at most 1, or deciding that none exists. (Recall that,
for any graph G and U ⊂ V (G), the induced subgraph G [U ] is a graph
with vertex set U and all of the edges in E(G) which have both endpoints in
U .)

We leave the open question of establishing the complexity of that problem.

Conjecture 1 The separation problem for UNI is NP-hard.

3 Concluding Remarks and Directions Towards
a Branch-and-Cut Algorithm

We investigate in this work the fixed cardinality version of the classical stable set
problem, highlighting an interesting gap in the combinatorial optimization literature.
Generalizing the remark that vertices of too high degree cannot be in a stable set of
cardinality k, we derive a large class of valid inequalities for the k-stab polytope.
The corresponding separation problem asks for optimizing over subgraphs with a
domination-like property and an additional budget constraint.

We are interested in a deeper polyhedral investigation, the starting point of
which is to shed light on the relevance of the inequalities we introduce here,
and how they relate to other families of valid inequalities for the classical stable
set polytope. Moreover, progress in this direction could lead to an interesting
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algorithm for solving the MSTCC problem, as we indicate in Sect. 1. The remaining
ingredient to find conflict-free spanning trees in the original graph G, from a
cardinality k = |V (G)| − 1 stable set in the conflict-graph H , is to enforce
an acyclic solution in the original graph. That could be attained by using a
relax-and-cut approach (see [6, 9], for instance), separating subtour elimination
constraints and immediately dualizing them in a Lagrangean fashion. In fact, Lucena
[9] introduced an effective relax-and-cut algorithm for the fixed cardinality set
partitioning problem.

We conclude by indicating selected insights on the practical issue of leveraging
a modern branch-and-cut solver for the classical stable set problem (referring the
reader to the eminently readable tutorial of Rebennack et al. [12]) towards one for
the fixed cardinality version.

3.1 UNI Separation with MIP Heuristics

Besides the natural strategies of designing separation heuristics or including a priori
some UNI corresponding to sets S of small cardinality, it might prove useful to
explore an IP formulation of the separation problem. One can actually use good
but not necessarily optimal solutions to that auxiliary IP, which give very effective
cutting planes, for instance, in the context of an example of optimizing over the first
Chvátal closure [2, Section 5.4]. Most MIP solvers include a collection of general
purpose heuristics to accelerate the availability of integer feasible solutions, like
local branching, feasibility pump and neighbourhood diving methods; see [7] for a
recent survey.

The following is described in light of Definition 2, with input [G, k, y∗]. We
suppose further that the input is preprocessed by the reduction rules:

(i) Remove any vertex v such that y∗
v = 1

(ii) Remove isolated vertices

Those operations do not change the problem answer, since a UNI is automatically
satisfied if it contains a vertex with y∗

v = 1, and since isolated vertices are not
contained in a minimal set S corresponding to a UNI.

For each v ∈ V , let variables zv ∈ {0, 1} be such that zv = 1 if and only if v ∈ S,
and wv ∈ {0, 1} be such that wv = 1 if and only if v ∈ N[S] = S∪N(S), the closed
neighbourhood of S ⊂ V . Then, we have to determine

ρ = min

{
∑

v∈V
y∗
v · zv : (z,w) ∈ PUNI(G, y∗) ∩ {0, 1}2n

}
, (5)
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where PUNI(G, y∗) denotes the polyhedral region:

∑

v∈V
(wv − zv) ≥ n − (k − 1) (6)

zu ≤ wv ∀u ∈ V,∀v ∈ N[u] (7)
∑

u∈N[v]
zu ≥ wv ∀v ∈ V (8)

zu + zv ≤ 1 ∀ {u, v} ∈ E (9)

0 ≤ zv ≤ 1 ∀v ∈ V (10)

0 ≤ wv ≤ 1 ∀v ∈ V (11)

The objective function in (5) accounts for the used y∗ budget, as prescribed in
Definition 2. Inequality (6) guarantees the minimum number of vertices dominated
by S (excluding those which are in S). Inequalities (7) and (8) bind the binary
variables w and z, to enforce the domination condition that wv = 1 if and only
if zu = 1 for some u ∈ N[v].

Inequalities (9) are redundant, being implied at integer points in PUNI(G, y∗) by
(6) and the fact the input parameter satisfies y∗

u + y∗
v ≥ 1 for each {u, v} ∈ E. Still,

adding those inequalities is likely to tighten the LP relaxation bounds, and hence
speed up the overall optimization procedure.

The exact separation problem thus reduces to deciding if ρ < 1. The MIP
heuristic, on the other hand, consists of searching (e.g. allowing a MIP solver to
run with a prescribed time limit) for any integer feasible solution (z′,w′) with an
objective value less than 1, which determines the UNI

∑
v∈S ′ xv ≤ |S′| − 1, with

S′ = {
v ∈ V : z′v = 1

}
, violated at x∗ = 1 − y∗.

3.2 Balanced Branching

A fundamental component for the performance of branch-and-cut algorithms for
the classical stable set problem is the balanced branching rule of Balas and
Yu [1]; see also [12] and [10]. Its original motivation also applies to the fixed
cardinality setting: avoiding unbalanced branch-and-bound trees when branching
on a fractional variable xv , since fixing xv = 1 has the larger impact of implying
xu = 0 for each u ∈ N(v), while fixing xv = 0 has no impact on the neighbourhood.

The general branching scheme can be adapted to find minimum weight k-stabs
with little effort. Suppose that, on a given node of the enumeration tree, G′ =
(V ′, E′) denotes the subgraph induced by vertices not fixed in this subproblem,
and that z is the best primal bound available. Let W ⊆ V ′ be such that we can
determine efficiently that the minimum weight of a k-stab in the subgraph induced
by W , denoted z(W), is such that z(W) ≥ z. Note that, if W = V ′, the subproblem
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is fathomed and the whole subtree rooted on this node can be pruned. Otherwise, if
the search on this subtree is to eventually find that z(V ′) < z, any bound-improving
solution must intersect V ′\W = {

v1, . . . , vp
}
. That is, we can partition the search

space into the sets

V ′
i = {vi}

⋃
V ′\ (N(vi ) ∪ {vi+1, . . . , vp

})

for 1 ≤ i ≤ p. The enumeration can therefore branch on p subproblems, each fixing
xvi = 1, and fixing at 0 those variables corresponding to N(vi ) ∪ {vi+1, . . . , vp

}
.

Now, there are different strategies to determine subgraph W . The standard one
is to find a collection of cliques in G′, e.g. with as many cliques as the currently
available lower bound, when searching for maximum cardinality stable sets. For
minimum-weight k-stabs, the natural idea would be to greedily find k cliques, such
that the combined weight of the cheapest vertices in each exceed z. We describe
next an alternative approach tailored for optimizing over k-stabs, leaving for future
work the task of comparing those two strategies, whether theoretically or according
to computational experience.

Recall that a matching in a graph is a subset of pairwise non-adjacent edges, that
is, a subset of edges without common vertices. Since each k-stab contains at most
one vertex from each edge in a matching, a lower bound on z(W) can be derived
by simply picking the k vertices of lowest weight among: (i) the cheapest vertex in
each matched edge, and (ii) the remaining vertices not covered by the matching. We
thus have the following result, which we state in the general form of a combinatorial
dual bound for the minimum weight of k-stab in an arbitrary graph.

Theorem 3 Suppose that P(G, k) ∩ {0, 1}n �= ∅, so that problem (1) is well-
defined. Let M ⊂ E be any matching in G. Define ce = min

{
w(vi),w(vj )

}
for

each edge e = {
vi, vj

} ∈ M . Also define cu = w(vu) for any vertex vu not covered
by the matching M . Then, the sum of the k lowest values in the image of c(·) is a
lower bound on (1). That is, given an order c1 ≤ c2 · · · ≤ c(n−|M|) on {ce}e∈M ∪
{cu}u∈V \VM

, where VM corresponds to the set of vertices covered by M , we have

that
∑k

i=1 ci is a lower bound on the weight of a k-stab in G.

Therefore, using the weight function corresponding to c(·) in the above theorem,
we can determine candidate subgraphs W by inspecting, for each l ∈ {1, . . . , k}:
1. A minimum-weight matching in G′ with cardinality l

2. A suitable choice of k − l vertices not covered by the matching

Finally, note that finding a minimum-weight matching of a specified cardinality in
a graph is a well-solved problem. More generally, for any l, u ∈ Z+, l ≤ u, the
convex hull of incidence vectors of matchings M ⊂ E(G) such that l ≤ |M| ≤ u is
equal to the set of those vectors in the matching polytope of G satisfying l ≤ 1�x ≤
u, that is, l ≤ ∑

e∈E(G) x(e) ≤ u; see [14, Section 18.5f].
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Relating Hypergraph Parameters of
Generalized Power Graphs

Lucas L. S. Portugal, Renata Del Vecchio, and Simone Dantas

Abstract Graph parameters like the chromatic number, independence number,
clique number and many others alongside with their corresponding adjacency matrix
have been broadly studied and extended to hypergraphs classes. A generalized
power graph Gk

s of a graph G is a k-uniform hypergraph constructed by blowing
up each vertex of G into a s-set of vertices and then adding k − 2s vertices of
degree one to each edge, where k ≥ 2s. A natural question is whether there exists
any relation between structural parameters and spectral parameters of Gk

s with the
respective parameters of the original graph G. In this paper we positively answer
this question and investigate the parameters behavior.

Keywords Hypergraph · Generalized power graph · Strong chromatic number ·
Adjacency matrix of hypergraph · Spectral parameters

1 Introduction

A hypergraph H = (V ,E) is given by a vertex set V and a set E = {e : e ⊆ V },
whose elements are called (hyper) edges. A graphG = (V ,E) is a hypergraph such
that |e| ≤ 2 for every e ∈ E.

Different aspects of a graph like clique number, vertex or edge coloring, match-
ing, connectivity, have been widely studied in many areas and can be generalized
to hypergraph theory, for example hypergraph coloring and strong hypergraph
coloring, weak and strong vertex connectivity [4, 9]. In [1], the authors stated
that strong hypergraph coloring captures many previously studied graph coloring
properties. These different ways of expanding a graph parameter have attracted the
attention of researchers: [9] studied the difference between weak and strong vertex
connectivity; and [2, 7, 11] exclusively focused their work on a single parameter.
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Spectral graph theory is another area that can be extended to hypergraphs. The
goal of spectral graph theory is to study eigenvalues and eigenvectors of matrices
associated with graphs finding information of structural properties of these graphs.
Many graph matrices are studied in spectral graph theory which can also be extended
to hypergraphs in different ways. The study of hypergraph matrices started in the
1990s with a generalization of the graph adjacency matrix [10], and new matrices
are still being defined. In 2019, [3], a similar but different adjacency matrix of a
hypergraph is defined, allowing a generalization of important spectral graph theory
results to hypergraphs. Another approach to spectral hypergraph theory was given
in 2012, [8], when it is proposed the study of hypergraphs through tensors.

This work aims to investigate the relation between hypergraph structural param-
eters and spectral parameters of a class of uniform hypergraphs, called generalized
power graph, that was first considered in [15]. Recently, this class was studied by
considering its tensor spectra [13–15].

Since these hypergraphs are constructed from a base graph, we discuss four
main topics: the relation between hypergraph parameters with their respective graph
parameters; the behavior of distinct variations of generalized graph parameters on
this hypergraph class; the relation between the adjacency matrix of this hypergraph
with matrices of the base graph; and new relations of hypergraph parameters and
the adjacency matrix eigenvalues.

2 Preliminaries

A hypergraph H = (V ,E) is k-uniform if |e| = k for every edge e ∈ E(H). A
simple graphG = (V ,E) is a 2-uniform hypergraph. In this work we consider only
simple hypergraphs, i.e. it contains no loops (edges with |e| = 1) and no repeated
edges. A null hypergraph contains no vertices (or no edges) and a hypergraph with
only one vertex is called trivial. Two vertices in a hypergraph are adjacent if there
is an edge which contains both vertices, and the degree of a vertex v ∈ V is d(v) =
| {e : v ∈ e} |, the number of edges that contain v.

A path P in a hypergraph H is a vertex-edge alternating sequence: P =
v0, e1, v1, e2, . . . , vr−1, er , vr such that v0, v1, . . . , vr are distinct vertices;
e1, e2, . . . , er are distinct edges; and vi−1, vi ∈ ei , i = 1, 2, . . . , r . The length of a
path P is the number of distinct edges. A hypergraph is connected if for any pair of
vertices, there is a path which connects these vertices; it is not connected otherwise.

Let G be a graph and s ≥ 1 an integer. The s-extension Gs of G is a 2s-
uniform hypergraph obtained from G by replacing each vertex vi ∈ V by a set
Svi = {vi1, . . . , vis}, where Svi ∩ Svj = ∅ for every vi �= vj . These s new vertices
are called copies of vi . More precisely, V (GS) = {v11, . . . , v1s , . . . , vn1, . . . , vns }
and E(Gs) = {

Svi ∪ Svj : {vi, vj
} ∈ E

}
. Note that |V (Gs)| = s · |V (G)| and

|E(Gs)| = |E(G)|.
For a graph G = (V ,E) and an integer k ≥ 2, the k-expansion Gk of G (also

called the kth power graph of G) is a k-uniform hypergraph obtained from G by
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v1

v11 v12 v21 v22 v31 v32
v41 v42

v11 v12 v21 v22 v31 v32 v41 v42

v2 v3 v4

Fig. 1 Graph G = P4 an its respective G2 and G6
2

adding k − 2 new vertices of degree one to each edge of G. Note that |V (Gk)| =
|V (G)| + (k − 2) · |E(G)| and |E(Gk)| = |E(G)|.

Let s ≥ 1 and k ≥ 2s be two integers and consider a graph G. The generalized
power graphGk

s is the k-uniform hypergraph (Gs)
k , obtained by adding k−2s new

vertices to each edge of Gs . These (k − 2s) · |E(G)| new vertices of degree one are
called additional vertices of Gk

s . Note that |V (Gk
s )| = s · |V (G)|+ (k−2s) · |E(G)|

and |E(Gk
s )| = |E(G)|. See an example in Fig. 1.

Let G be a simple graph with n vertices. The adjacency matrix of G, denoted
by A(G), is the n × n symmetric matrix with entries aij = 1 if there is an edge
joining vertices vi and vj ; and aij = 0 otherwise. The degree matrix of G, denoted
by D(G), is the n× n diagonal matrix defined as D(G) = Diag(d(v1), . . . , d(vn))

where d(vi) is the degree of the vertex vi . The signless Laplacian matrix for G,
denoted by Q(G), is the n× n symmetric matrix given by Q(G) = D(G) +A(G).
We denote the eigenvalues of A(G) as λ1(G) ≥ . . . ≥ λn(G) and the eigenvalues
of Q(G) as q1(G) ≥ . . . ≥ qn(G).

Let H be a hypergraph with n vertices. The adjacency matrix of H , denoted by
A(H) is the n × n symmetric matrix with entries aij = | {e ∈ E(H) : vi, vj ∈ e

} |.
We also denote the eigenvalues of A(H) as λ1(H) ≥ . . . ≥ λn(H).

Note that all previously defined matrices are real and symmetric, so they are
Hermitian (a square matrix that is equal to its own conjugate transpose).

Now, we recall some matrix theory results that we use latter. Let X be a m × n

matrix and let Y be a p × q matrix. The kronecker product X ⊗ Y is the mp × nq

matrix:

X ⊗ Y =
⎡

⎢⎣
x11Y . . . x1nY
...

. . .
...

xm1Y . . . xmnY

⎤

⎥⎦ .
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Theorem 1 ([16]) LetX be a n×n matrix and Y am×m matrix. If x1 ≥ . . . ≥ xn
are the eigenvalues of X and y1 ≥ . . . ≥ ym the eigenvalues of Y , then the nm

eigenvalues of X ⊗ Y are: x1y1, . . . , x1ym, x2y1, . . . , x2ym, . . . , xny1, . . . , xnym.

The next theorem, by Weyl [12], is a well known inequality that gives lower and
upper bounds for the eigenvalues of a matrix sum.

Theorem 2 ([12]) LetX and Y be square n× n Hermitian matrices with eigenval-
ues x1 ≥ . . . ≥ xn and y1 ≥ . . . ≥ yn respectively. If the eigenvalues of the sum
Z = X + Y are z1 ≥ . . . ≥ zn, then xk + yn ≤ zk ≤ xk + y1.

A hypergraph version of the Wilf’s theorem was established in [3] stating a
relation between the chromatic number and the largest eigenvalue of its adjacency
matrix. This generalization can be restricted to uniform hypergraphs as follows:

Theorem 3 ([3]) Let H be a k-uniform hypergraph, then χS(H) ≤ 1 + λ1(H).

3 Structural Parameters

Graph parameters can be extended to hypergraphs and most of them in more than
one way. In this section we investigate how these parameters behave on the class Gk

s

and their relation with the respective parameters of the original graph G.
Let H be a k-uniform hypergraph. A set U ⊆ V (H) is a clique if every subset of

U with k elements is an edge of H . The clique number is ω(H) = max{|U | : U ⊆
V (H) is a clique}.
Proposition 1 Given a graph G with at least one edge, s ≥ 1 and k ≥ 2s (except
the case where s = 1 and k = 2, i.e. Gk

s = G), we have that ω(Gk
s ) = k. Moreover,

every clique in Gk
s is composed by the k vertices of an edge.

Proof First, observe that the intersection between two edges of Gk
s is formed by a

set of s vertices or is empty. Choose any set of k + 1 vertices of Gk
s and suppose it

is a clique. This means that there exist two edges in Gk
s which share k − 1 common

vertices. This is a contradiction since k ≥ 2s, s �= 1 and k �= 2. Clearly any set of
k vertices of an edge is a clique. �

A matching of a hypergraph H = (V ,E) is a set M ⊂ E of pairwise disjoint
hyperedges of H . The matching number ν(H) is the cardinality of a maximum
matching.

Proposition 2 If G is a graph with s ≥ 1 and k ≥ 2s, then ν(Gk
s ) = ν(G).

A perfect matching of a hypergraph H is a matching M such that each vertex in
V (H) is covered by exactly one edge in M . It is easy to see that for s ≥ 1, Gs has
a perfect matching if and only if G has a perfect matching.

Proposition 3 Let G be a graph that is not the union of disjoint edges. For s ≥ 1
and k > 2s the hypergraphGk

s does not have a perfect matching.
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Proof Since k > 2s, each edge of Gk
s have k − 2s vertices of degree one. The only

way that all those vertices are covered by a matching M is when M = E(Gk
s ), and

that can happen only when G is the union of disjoint edges. �
Given a hypergraph H = (V ,E) we construct new hypergraphs by deleting

vertices in the following ways. The strong vertex deletion of a vertex v ∈ V creates
the hypergraph H ′ = (V ′, E′) where V ′ = V − v and E′ = {e ∈ E : v /∈ e}. That
is, the strong deletion of v removes v from the vertex set and removes all edges
that contain v from the hypergraph. For any subset X of V , we use H −(S) X to
denote the hypergraph formed by strongly deleting all the vertices of X from H . A
vertex v ∈ V is called a strong cut vertex of H if H −(S) v has more connected
components than H , and a set X ⊆ V is called a strong vertex cut of H if H −(S) X

is disconnected. We define the strong vertex connectivity of H , denoted κS(H) as
follows: if H has at least one strong vertex cut, then κS(H) is the cardinality of a
minimum strong vertex cut of H ; otherwise, κS(H) = |V | − 1. By convention, the
strong vertex connectivity of a null or trivial hypergraph is 1. Observe that κS(H) ≤
δ(H).

Proposition 4 Given a connected graph G, s ≥ 1 and k ≥ 2s integers such that
Gk

s �= G then κS(G
k
s ) = 1.

Proof If k > 2s removing a vertex that is originally from Gs disconnects Gk
s , since

its deletion removes at least one edge and hence the k − 2s additional vertices of
this edge become isolated. Similarly, if k = 2s then s > 1 and Gk

s = Gs . Removing
any vertex leaves the s − 1 vertices that are its copies isolated. �

The weak vertex deletion of a vertex v ∈ V creates the hypergraphH ′ = (V ′, E′)
where V ′ = V − v and E′ = {e − {v} : e ∈ E}. That is, the weak deletion
of v removes v from the vertex set, and all occurrences of v from the edges
of the hypergraph H . For any subset X of V , we use H −(W) X to denote the
hypergraph formed by weakly deleting all the vertices of X from H . Since we are
only considering simple hypergraphs, we remove edges with only one vertex. A
vertex v ∈ V is called a weak cut vertex of H if H −(W) v has more connected
components than H , and a set X ⊆ V is called a weak vertex cut of H if H −(W) X

is disconnected. We define the weak vertex connectivity of H , denote κW (H) as
follows: if H has at least one weak vertex cut, then κW(H) is the cardinality of a
minimum weak vertex cut of H ; otherwise, κW(H) = |V | − 1. By convention, the
weak vertex connectivity of a null or trivial hypergraph is 1.

Proposition 5 Given a connected graph G that is not the complete graph and an
integer s ≥ 1, then κW (Gs) = s.κ(G).

Proof Note that by the construction of Gs , we have that if X ⊂ V (Gs) is a weak
vertex cut of Gs then X = Sv1 ∪Sv2 . . .∪Svr and {v1, . . . , vr } ⊆ V (G) is a vertex cut
of G. Now, let {v1, . . . , vr } be a minimum vertex cut of G. So, Sv1 ∪ Sv2 . . .∪ Svr is
a minimum weak vertex cut in Gs with s.κ(G) elements, otherwise v1, . . . vr would
not be a minimum vertex cut of G, a contradiction. �
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Proposition 6 Let G be a connected graph that is not the complete graph, s ≥ 1
and k > 2s be two integers. Then:

(i) If κW (Gs) = s, then κW (Gk
s ) = s.

(ii) If κW (Gs) ≥ 2s, then κW(Gk
s ) = 2s.

Proof First we observe that a vertex cut of Gs is a vertex cut of Gk
s . Also, after the

k-expansionGk
s of Gs , the only new minimum vertex cut is the one where we isolate

the additional k − 2s new vertices of an edge by removing the 2s already existing
vertices (since the new vertices of Gk

s make no difference in a vertex cut). Hence:

(i) if X is a minimum weak vertex cut of Gs with less than 2s elements, then it is
a minimum weak vertex cut of Gk

s .
(ii) if κW(Gs) ≥ 2s, a minimum weak vertex cut of Gs has more than 2s elements.

For each edge of Gk
s , the set of the 2s vertices that came from Gs is a minimum

weak vertex cut of Gk
s since their removal leaves the additional k−2s remaining

vertices isolated. �
Next result follows from the fact that if s = 1 then Gs = G and Gk

s = Gk .

Corollary 1 Let G be a connected graph. For any k > 2 we have that:

(i) if κ(G) = 1, then κW(Gk) = 1;
(ii) if κ(G) ≥ 2, then κW(Gk) = 2.

We observe from the previous results that the difference between weak and
strong vertex connectivity of hypergraphs can be arbitrarily large, since κS(G

k
s ) = 1

and κW(Gk
s ) ≥ s, with s as large as desired. Finally, we also remark that the

inequality κW (H) ≤ δ(H) is not valid: if G is a connected graph with κ(G) ≥ 2,
we have for k > 2s that δ(Gk

s ) = 1 < 2s = κW(Gk
s ).

The distance d(v, u) between two vertices v and u is the minimum length of
a path that connects v and u. The diameter d(H) of H is defined by d(H) =
max {d(v, u) : v, u ∈ V }. It is easy to see that given a graph G and s ≥ 1, then
d(Gs) = d(G). But this is not always true for the k-expansion.

Proposition 7 d(G) ≤ d(Gk
s ) ≤ d(G) + 2, for any graphG, s ≥ 1 and k ≥ 2s, .

Proof Suppose d(Gs) = r and P = v1, e1, v2, e2, . . . , vr , er , vr+1 be a maximum
path of Gs . If k > 2s, we add k − 2s vertices on each edge to obtain Gk

s . After that,
if there is an additional vertex u such that {u, v1} belongs to an edge e �= e1 and
another additional vertex w such that {w, vr+1} belongs to an edge f �= er , the path
P = u, e, v1, e1, v2, e2, . . . , vr , er , vr+1, f,w have length d(G) + 2. Moreover,
d(Gk

s ) = d(G) + 2 since we have at most 2 additional vertices on a path and the
path must start and end on them, otherwise we would have to repeat edges. �

A hypergraph coloring is an assigning of colors {1, 2, . . . , c} to each vertex of
V (H) in such a way that each edge contains at least two vertices of distinct colors. A
coloring using at most c colors is called a c-coloring. The chromatic number χ(H)

of a hypergraph H is the least integer c such that H has a c-coloring.
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It is easy to see that given a graph G we have that χ(Gk) = χ(Gs) = χ(Gk
s ) = 2

(except when s = 1 and k = 2). Another type of coloring, that is also a
generalization of graph coloring, is the strong hypergraph coloring: is an assigning
of colors {1, 2, . . . , c} to each vertex of V (H) in such a way that every vertex of an
edge has distinct colors. The strong chromatic number χS(H) of a hypergraph H

is the least integer c such that H has a strongly c-coloring. Given a hypergraph H ,
note that:

1. χS(H) ≥ |e| for every e ∈ E(H);
2. χ(H) ≤ χS(H), since a strong hypergraph coloring is also a hypergraph

coloring;
3. ω(H) ≤ χS(H) (similarly to graphs);
4. for the class Gk

s , the inequality ω(H) ≤ χ(H) is not valid, since χ(Gk
s ) = 2 but

we can have edges (cliques) arbitrarily large.

We do not consider χ(G) = χS(G
k
s ) = 1, since G has at least one edge. The

following results establish relations between χ(G), χS(Gs) and χS(G
k
s ).

Proposition 8 If G is a graph and s ≥ 1 is an integer, then χS(Gs) ≤ s.χ(G).

Proof Let χ(G) = c, we obtain a sc-strong coloring of Gs as follows: if v ∈ V (G)

has color c(v) ∈ {1, . . . , c} then, in Gs , assign colors {1 + (c(v) − 1)s, 2 + (c(v) −
1)s, . . . , s + (c(v) − 1)s} to Sv . �

Note that this bound is tight in the sense that the equality holds for any s-
extension of the complete graph and does not hold for the 2-extension of C5.

Proposition 9 Let s ≥ 1, k > 2s be two integers and let G be a graph. We have
that:

(i) if χS(Gs) < k then χS(G
k
s ) = k;

(ii) if χS(Gs) ≥ k then χS(G
k
s ) = χS(Gs).

Proof

(i) Let χS(Gs) = c < k, we obtain a k-strong coloring of Gk
s as follows: we color

the vertices of Gk
s that came from Gs with the same c-colors used in Gs . Hence,

for each edge of Gk
s , we already used 2s colors from the set {1, 2, .., k} , k > 2s.

Again, for each edge, we color the k − 2s new additional vertices with the
remaining k − 2s distinct colors. This k-strong coloring of Gk

s is minimum,
since k is the size of each edge of Gk

s .
(ii) Let χS(Gs) = c ≥ k and consider a c-strong coloring of Gs . We color the

vertices of Gk
s that came from Gs with the same c-colors used in Gs . For each

edge, we color the k − 2s additional vertices with any k − 2s distinct colors
from {1, 2, .., c} different from the 2s colors already used in the vertices that
came from Gs (since c ≥ k ≥ 2s such colors exist). Suppose that it is possible
to use less than c-colors in Gk

s . This implies that we can color all the vertices
of Gk

s that came from Gs with less than c-colors and hence Gs with less than c

colors, a contradiction. �
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Corollary 2 Let G be a graph and k ≥ 2 an integer. Thus:

(i) if χ(G) < k then χS(G
k) = k;

(ii) if χ(G) ≥ k then χS(G
k) = χ(G).

A set U ⊆ V is a strong independent set if no two vertices of U are adjacent.
The strong independence number is α′(H) = max{|U | : U ⊆ V (H) is a strong
independent set of H }. Let G be a graph and s ≥ 1. From the construction of Gs

we have that α′(Gs) = α(G).

Proposition 10 If G is a graph, s ≥ 1 and k > 2s, then α′(Gk
s ) = |E(G)|.

Proof Since k > 2s, every edge of Gk
s has at least one additional vertex. A set

formed by choosing, for each edge, one of these additional vertices is a strong
independent set of size |E(Gk

s )| = |E(G)|. This set is maximum since α′(H) ≤
|E(H)|, for any hypergraph H . �

Another generalization of a graph independent set is as follows: a set U ⊆ V is
an independent set if no edge of H is contained in U . As before, the independence
number is α(H) = max{|U | : U ⊆ V (H) is an independent set of H }. Observe that
if U is a strong independent set of a hypergraph H then U is also an independent
set of H , since if U contains no two adjacent vertices then U does not contain an
edge of H . So we have that α′(H) ≤ α(H).

Proposition 11 If G is a graph and s ≥ 1, then α(Gs) ≥ (s − 1) · |V (G)| + α(G).

Proof Let V (G) = {v1, . . . , vn} and V (Gs) = Sv1 ∪ . . . ∪ Svn . We obtain an
independent set with (s − 1) · n elements by choosing s − 1 vertices of Svi , for
each i = 1, . . . , n. Now, adding a maximum stable set of G to the previous set
produces a stable set of Gs with (s − 1) · n + α(G) vertices. �
Proposition 12 IfG be a graph, s ≥ 1 and k ≥ 2s, then α(Gk

s ) ≥ (s−1)·|V (G)|+
α(G) + (k − 2s) · |E(G)|.
Proof By the construction of Gk

s and Proposition 11, a stable set of Gs is also
a stable set of Gk

s with (s − 1) · |V (G)| + α(G) vertices. Adding to this stable
set every k − 2s additional vertices of each edge of Gk

s produces a stable set with
(s − 1) · |V (G)| + α(G) + (k − 2) · |E(G)| elements. �
Corollary 3 Let G be a graph and k ≥ 2, then α(Gk) ≥ α(G) + (k − 2) · |E(G)|.

4 Spectral Parameters

In this section we investigate spectral properties of hypergraphs and establish
relations with structural parameters. The following result relates the adjacency
matrix of Gs with the matrices A(G) and Q(G).
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Proposition 13 Let G be a graph with n vertices and s > 1. The adjacency matrix
A(Gs) is given on s × s blocks of size n × n by:

A(Gs) =

⎡
⎢⎢⎢⎢⎢⎣

A(G) Q(G) Q(G) . . . Q(G)

Q(G) A(G) Q(G) . . . Q(G)

Q(G) Q(G) A(G) . . . Q(G)
...

...
...

. . .
...

Q(G) Q(G) Q(G) . . . A(G)

⎤
⎥⎥⎥⎥⎥⎦

= (Js ⊗ Q(G)) + (Is ⊗ −D(G)),

where Js is the s × s matrix with 1 on all entries and Is is the s × s identity matrix.

Proof First we show that A(Gs) can be written in blocks like above. Let G be a
graph on n vertices, then |V (Gs)| = sn. So, we order the vertices of the matrix as
follows: V (Gs) = {v11, v21, . . . , vn1, v12, v22, . . . , vn2, v13, v23, . . . , vn3, . . . ,

v1s, v2s , . . . , vsn}, where Sv1 = {v11, v12, . . . , v1s} , Sv2 = {v21, v22, . . . , v2s},
. . . , Svn = {vn1, vn2, . . . , vns}. We suppose that the vertices v11, v21, . . . , vn1 are
the vertices that come from G. So the n × n block formed by these is A(G), since
two vertices that are not copies from each other, share an edge in Gs if and only if
they share an edge in G. Hence, we can see that all the diagonal blocks, formed by
the vertices {v1i , v2i , . . . , vni } × {v1i , v2i , . . . , vni } , i = 1, . . . , s, also correspond
to A(G).

For the other blocks we observe that, for every i �= j , the blocks formed by
{v1i , v2i , . . . , vni} × {

v1j , v2j , . . . , vnj
}

are always the same, since the vertices are
copies from one another.

The block where i = 1 and j = 2 have the following structure: the vertices
v11 and v12 are copies so they are in the same edges; and the number of edges they
belong is exactly dG(v1). So, their entry is equal dG(v1), the degree of v1 in G. The
same works for the entries v21 × v22, v31 × v32,. . . ,vn1 × vn2. So, the diagonal of
the block is made of the degrees in G. The entries that are not in the diagonal, for
example, the entry v11 × v22 is the same entry as v11 × v21, since v22 is a copy of
the vertex v21. So, these blocks are equal D(G) + A(G) = Q(G). �
Proposition 14 Let G be a graph on n vertices, s > 1 an integer and d1, . . . , dn
the vertices degree of G. Then −d1, . . . ,−dn are eigenvalues of A(Gs). Moreover,
each −di has multiplicity at least s − 1.

Proof Consider the vector (−1, 0, . . . , 0|, 1, 0, . . . , 0|, 0, . . . , 0|, . . . , |0, . . . , 0) ∈
Rsn, formed of s “blocks” with n entries each (ie, | − 1, 0, . . . , 0| has n entries,
|1, 0, . . . , 0| has n entries, |0, . . . , 0| has n entries). This vector is an eigenvector of
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A(Gs) associated to the eigenvalue −d1. Indeed:

⎡

⎢⎢⎢⎢⎢⎣

A(G) Q(G) Q(G) . . . Q(G)

Q(G) A(G) Q(G) . . . Q(G)

Q(G) Q(G) A(G) . . . Q(G)
...

...
...

. . .
...

Q(G) Q(G) Q(G) . . . A(G)

⎤

⎥⎥⎥⎥⎥⎦
.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
0
...

0
−−

1
0
...

0
−−

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.0 + 1.d1

−a2,1 + a2,1
...

−an,1 + an,1

−−
−1.d1 + 1.0
−a2,1 + a2,1

...

−an,1 + an,1

−−
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

0
...

0
−−
−d1

0
...

0
−−

0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the vectors
(−1, 0, . . . , 0|, 0, . . . , 0|, 1, 0, . . . , 0|, . . . , |0, . . . , 0),
(−1, 0, . . . , 0|, 0, . . . , 0|, 0, . . . , 0|, 1, 0, . . . , 0|, . . . , |0, . . . , 0), . . .,
(−1, 0, . . . , 0|, 0, . . . , 0|, 0, . . . , 0|, . . . , |1, . . . , 0)
are also eigenvectors of A(Gs) associated to the eigenvalue −d1. Since we have s

blocks, the multiplicity of −d1 is at least s − 1. Similarly to −d2, starting with the
eigenvector:
(0,−1, . . . , 0|, 0, 1, . . . , 0|, 0, . . . , 0|, . . . , |0, . . . , 0)
up to −dn, when starting with the eigenvector:
(0, 0, . . . ,−1|, 0, 0, . . . , 1|, 0, . . . , 0|, . . . , |0, . . . , 0). �

Next result immediately follows from the previous proposition observing that if
G is connected then every vertex degree is positive.

Corollary 4 If G is a graph on n vertices and s > 1 an integer, then A(Gs) has at
least n · (s − 1) non positive eigenvalues. Moreover, if G is connected then A(Gs)

has at least n·(s−1) negative eigenvalues (hence,A(Gs) has at most n non negative
eigenvalues).

Next proposition provides bounds for the greatest eigenvalue of A(Gs).

Proposition 15 If G be a graph with n vertices and s > 1 integer, then

s.q1(G) − Δ(G) ≤ λ1(Gs) ≤ s.q1(G) − δ(G).

Proof For the left inequality, we observe that is known that the largest eigenvalue
of Js is s. Thus, by Theorem 1, the largest eigenvalue of Js ⊗ Q(G) is s · q1(G).
Also, the smallest eigenvalue of −D(G) is −Δ(G). So, by Theorem 1, the smallest
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eigenvalue of Is⊗−D(G) is −Δ(G). Since A(Gs) = (Js⊗Q(G))+(Is⊗−D(G)),
from Theorem 2, we have that s · q1(G) − Δ(G) ≤ λ1(Gs).

For the right inequality, we observe again that the largest eigenvalue of Js⊗Q(G)

is s.q1(G). Also, the largest eigenvalue of −D(G) is −δ(G). So, by Theorem 1, the
largest eigenvalue of Is ⊗ −D(G) is −δ(G). Since A(Gs) = (Js ⊗Q(G)) + (Is ⊗
−D(G)), we have from theorem 2 that λ1(Gs) ≤ s.q1(G) − δ(G). �

We observe that the bound given by Proposition 15 is tight in the sense that the
equality holds for any regular graph G and for any s > 1. In what follows we obtain
some results relating structural and spectral parameters.

A well known spectral graph theory result is: given a connected graph G the
number of distinct eigenvalues of A(G) is at least d(G)+ 1 (this is also true for the
number of distinct eigenvalues of Q(G)). This result is still true on hypergraphs, and
the proof is basically the same. In [5] this bound is proved for the signless Laplacian
matrix of a hypergraphs. We prove this result for hypergraphs adjacency matrix but
first we present the following lemma.

Lemma 1 LetH be a hypergraph andA = A(H) its adjacencymatrix. (Al)i,j > 0
if there is a path with length l connecting two distinct vertices i and j , and (Al)i,j =
0 otherwise (where (Al)i,j denotes the entry i, j of A(H)l).

Proof The proof is by induction on l. If l = 1 the property clearly holds. Suppose
the statement is true for l ≥ 1 and now we check for l + 1. Note that (Al+1)i,j =∑n

k=1(A
l)i,k(A)k,j . If there is a path with length l + 1 joining i and j then there

must exist a path with length l joining i to a neighbor u of j . So (A)u,j = 1 and by
induction hypothesis (Al)i,u > 0. Therefore (Al+1)i,j > 0. If there is no path with
length l + 1 joining i and j then there does exist no path with length l joining i to
any neighbor of j . So, if u is a neighbor of j we have that (Al)i,u = 0. When u is
not a neighbor of j , we have that (A)u,j = 0. Therefore (Al+1)i,j = 0. �
Proposition 16 If H is a connected hypergraph then | {distinct eigenvalues of
A(H)} | ≥ d(H) + 1.

Proof Let λ1, . . . , λt be all the distinct eigenvalues of A = A(H). Then
(A − λ1I) . . . (A − λtI) = 0. So, we have that At is a linear combination of
At−1, . . . , A, I . Suppose by contradiction that t ≤ d(H). Hence there exist
vertices i and j such that d(i, j) = t and from our previous lemma, we have
that (At )i,j > 0. since there exists no path with length shorter than t joining i

and j, (At−1)i,j = 0, . . . , (A)i,j = 0, (I )i,j = 0. This is a contradiction, since
(At )i,j = c1(A

t−1)i,j + . . . + ct−1(A)i,j + ct (I )i,j . �
Previous proposition together with Proposition 7 result this simple corollary.

Corollary 5 IfG is connected then | {distinct eigenvalues of A(Gk
s )
} | ≥ d(G)+1.

In other words, to find connected hypergraphs of the class Gk
s with few distinct

adjacency eigenvalues, we have to look for graphs G with small diameter.
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The next proposition gives us a different bound for χS(G
k
s ), in terms of the largest

eigenvalue of Q(G) and the minimum degree of the graph G.

Proposition 17 Given a graph G, s > 1 and k ≥ 2s we have that χS(G
k
s ) = k or

χ(Gk
s ) ≤ 1 + s.q1(G) − δ(G).

Proof If χS(G
k
s ) �= k then by Proposition 9 χS(G

k
s ) = χS(Gs). Where by

Theorem 3 and Proposition 15 we have: χS(Gs) ≤ 1+λ1(Gs) ≤ 1+s.q1(G)−δ(G).
�

A result from spectral graph theory states that if G is a graph, then α(G) ≤
min

{
λ(G)−, λ(G)+

}
, where λ(G)− is the number of non positive eigenvalues of

A(G) and λ(G)+ is the number of non negative eigenvalues of A(G)”. We show
that this is not valid for the independence number of the class Gs .

Proposition 18 If s > 1 and G is a connected graph on n vertices, then α(Gs) >

min
{
λ(Gs)

−, λ(Gs)
+}.

Proof From Corollary 4, we have that A(Gs) has at most n non negative eigen-
values. Hence, by Proposition 11: α(Gs) ≥ (s − 1)n + α(G) > n ≥ λ(Gs)

+ ≥
min

{
λ(Gs)

−, λ(Gs)
+}. �

Another result states that, for any graph G,
|V (G)|
α(G)

≤ λ1(G) + 1”. This fact has
not yet been generalized for hypergraphs and we prove its validity for connected
hypergraphs in the class Gs .

Proposition 19 IfG is connected on n vertices and s > 1 then |V (Gs)|
α(Gs)

≤ λ1(Gs)+
1.

Proof By Proposition 11, we have that |V (Gs)|
α(Gs)

= sn
α(Gs)

≤ sn
(s−1)n+α(G)

≤ sn
(s−1)n =

s
s−1 . From Proposition 15, we have that s · q1(G) − Δ(G) ≤ λ1(Gs). Thus, it
suffices to show that s

(s−1) ≤ s.q1(G) − Δ(G) + 1 or, in other words, that s ≤
(s − 1)(s.q1(G) − Δ(G) + 1). Since s > 1, if s.q1(G) − Δ(G) + 1 ≥ 2 then the
above inequality is valid, indeed: s.q1(G)−Δ(G)+1 ≥ s(Δ(G)+1)−Δ(G)+1 =
(s − 1)Δ(G) + s + 1 ≥ 2. Where the first inequality holds because: [6] If G is a
connected graph then q1(G) ≥ Δ(G) + 1. �
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Assur Decompositions
of Direction-Length Frameworks

Anthony Nixon

Abstract A bar-joint framework is a realisation of a graph consisting of stiff bars
linked by universal joints. The framework is rigid if the only bar-length preserving
continuous motions of the joints arise from isometries. A rigid framework is isostatic
if deleting any single edge results in a flexible framework. Generically, rigidity
depends only on the graph and we say an Assur graph is a pinned isostatic graph
with no proper pinned isostatic subgraphs. Any pinned isostatic graph can be
decomposed into Assur components which may be of use for mechanical engineers
in decomposing mechanisms for simpler analysis and synthesis. A direction-
length framework is a generalisation of bar-joint framework where some distance
constraints are replaced by direction constraints. We initiate a theory of Assur graphs
and Assur decompositions for direction-length frameworks using graph orientations
and spanning trees and then analyse choices of pinning set.

Keywords Assur decomposition · Assur graph · Bar-joint framework ·
Direction-length framework · Pinned framework · Rigid graph

1 Introduction

A (bar-joint) framework (G, p) in R
d is the combination of a finite graph G =

(V ,E) and a map p : V → R
d . (G, p) is rigid if the only edge-length-preserving

continuous motions of the vertices arise from isometries of Rd and flexible if it is
not rigid. It is typically of interest to characterise minimal rigidity, or isostaticity,
which is when (G, p) is rigid but (G − e, p) is flexible for any e ∈ E.

In this article we will work with pinned frameworks where the locations of
some subset of the vertex set are fixed in the framework; hence these points are
completely immobilised. An Assur decomposition of an isostatic framework (G, p)
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is a decomposition of the edge set of G such that each component is rigid as a pinned
framework and no subframework of any component has that property.

In mechanical engineering, analysis of isostatic graphs, often through Assur
decompositions, is used in the design, synthesis and control of mechanisms
[2, 16, 18, 19]. Mathematically, Assur decompositions of frameworks in R

d have
been studied from combinatorial and geometric perspectives [13, 14, 17]. Of most
relevance to us is the main result of [17] which shows that the Assur decomposition
of a pinned isostatic graph is exactly equivalent, on the one hand, to a block
decomposition of the pinned rigidity matrix and, on the other hand, to a strongly
connected component decomposition of a d-orientation of the graph.

We extend these techniques to allow direction constraints. A DL-graph G =
(V ;D,L) consists of a graph G in which the edge set E is partitioned into two
parts D and L. We refer to edges in D as direction edges and edges in L as length
edges. A d-dimensional direction-length framework (G, p), abbreviated henceforth
to DL-framework, consists of a DL-graph G = (V ;D,L) and a map p : V → R

d .
(Throughout we will assume d ≥ 2.) The framework has two types of constraint for
the edges: each e ∈ L will correspond to a length constraint; and each f ∈ D to a
direction constraint. We will say that a DL-framework is specifically one in which D

and L are non-empty. We will use the terms: pure if either D or L is empty; length
pure if D = ∅; and direction pure if L = ∅. Frameworks with direction constraints
were first considered in [23]. Subsequently, in the 2-dimensional case [15], it was
proved that for a graph G = (V ,E), a generic direction pure framework (G, p) is
rigid if and only if the corresponding length pure framework (G, p) is rigid.

A DL-framework (G, p) is generic if the set containing the coordinates of the
vertices is algebraically independent over Q. The following characterisation of
rigidity for generic DL-frameworks in R

2 was proved by Servatius and Whiteley.

Theorem 1 ([15]) A generic DL-framework (G, p) is isostatic in R
2 if and only

if

1. |D ∪ L| = 2|V | − 2;
2. |E′| ≤ 2|V ′| − 2 for all (V ′, E′) ⊂ G;
3. |E′| ≤ 2|V ′| − 3 for all (V ′, E′) ⊂ G with |E′| > 0 and E′ ⊂ D or E′ ⊂ L.

In Sect. 2 we provide further background on DL-frameworks and then we develop
some basic results on pinned DL-frameworks. In Sect. 3 we define and characterise
the Assur decomposition of a DL-framework. Section 4 discusses drivers. In
particular we show which components of the Assur decomposition are in motion
when a single edge is removed from a particular component. In Sect. 5 we look in
more detail at the special case when the DL-framework is pinned with exactly 1
pinned vertex. In this case we describe how the Assur decomposition changes when
we vary the choice of pinned vertex. We conclude, in Sect. 6, by discussing further
avenues for exploration.

We expect Assur decompositions of pinned isostatic DL-frameworks will com-
plement the existing uses of Assur decompositions in mechanical engineering
[18, 19]. Further applications may be possible in wireless sensor networks [3] or
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in the control of robotic formations [22, 24] where direction frameworks are often
used under the name bearing rigidity. In particular, it may already be interesting to
the bearing rigidity community to be aware that the Assur decomposition results of
[13, 14, 17] immediately adapt to the 2-dimensional direction pure case. In what
follows we will work with DL-frameworks and develop analogous results.

2 Pinned Direction-Length Frameworks

Two DL-frameworks (G, p) and (G, q) in R
d are said to be equivalent if q(u) −

q(v) is a scalar multiple of p(u) − p(v) for all uv ∈ D with p(u) �= p(v) and
‖p(u) − p(v)‖ = ‖q(u) − q(v)‖ for all uv ∈ L. They are congruent if (G, q) can
be obtained from (G, p) by a translation and a dilation by ±1. We say (G, p) is
rigid if there exists an ε > 0 such that if a DL-framework (G, q) is equivalent to
(G, p) and satisfies ‖p(v) − q(v)‖ < ε for all v ∈ V then (G, q) is congruent to
(G, p). Equivalently, every continuous motion of the points p(v), v ∈ V respecting
the length and direction constraints results in a DL-framework which is congruent
to (G, p).

To introduce the rigidity matrix for a DL-framework, as in [5], take a DL-
framework (G, p) in R

d where p is injective. For any direction edge e = uv

we let Be be a (d − 1) × d matrix whose rows are a basis for the subspace of
R

d orthogonal to 〈p(u) − p(v)〉. A rigidity matrix RDL(G,p) for (G, p) is a
((d−1)|D|+|L|)×d|V | matrix constructed as follows. We first choose an arbitrary
reference orientation for the edges of D, and use the notation e = uv to mean that
e has been oriented from u to v. Each edge in D corresponds to d − 1 consecutive
rows of RDL(G,p), each edge in L to one row of RDL(G,p), and each vertex in
V to d consecutive columns of RDL(G,p). The submatrix of RDL(G,p) with rows
labelled by e = uv ∈ D and columns labelled by x ∈ V is Be if x = u, is −Be if
x = v, and is the (d − 1) × d zero matrix otherwise. The submatrix of RDL(G,p)

with row labelled by e = uv ∈ L and columns labelled by x ∈ V is p(u) − p(v)

if x = u, is p(v) − p(u) if x = v, and is zero otherwise. It is easy to see that
the kernel of RDL(G,p) always contains at least d linearly independent vectors,
corresponding to translations.

Next we introduce pinned frameworks with direction and length constraints. Let
G = (P, I ;D,L) consist of a graph G on a vertex set V which is partitioned into
two parts P and I , and an edge set E which is also partitioned into two parts D and
L. We will consider rigidity where vertices in P are pinned and vertices in I are
known as inner vertices.

Let G = (P, I ;D,L) and p : V → R
d . In the DL-framework (G, p)

we have length and direction constraints as described above and each v ∈ P is
immobilised by any continuous motion. We say that (G, p) is pinned rigid if every
continuous motion of the points p(v), v ∈ I respecting the length and direction
constraints results in a DL-framework which is congruent to (G, p). The rigidity
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matrix R
pin
DL(G,p) for a pinned DL-framework (G, p) in R

d arises from RDL(G,p)

by deleting the d-tuple of columns corresponding to each pinned vertex v ∈ P .
We define (G, p) to be: pinned infinitesimally rigid if rank RDL(G,p) = d|I |;
pinned independent if R

pin
DL(G,p) has linearly independent rows; pinned isostatic

if it is pinned infinitesimally rigid and pinned independent; and generic if the set
of coordinates of the inner and pinned vertices is algebraically independent over Q.
We also say that (non-zero) vectors in kerRpin

DL(G,p) are infinitesimal motions of
(G, p). Hence infinitesimal motions only apply at inner vertices.

Remark 1 Note that in dimension greater than two each direction constraint
provides more than 1 row in the rigidity matrix. Hence it is possible, simply for
parity reasons, that a (pinned) direction pure framework is “minimally rigid” in the
sense that it is rigid but deleting any edge results in a flexible framework, while at
the same time having linearly dependent rows in its rigidity matrix. Since length
edges provide precisely one row we can avoid this problem in the general case.

Example 1 Consider the graph G = (P, I ;D,L) on 5 vertices where P =
{v}, G[I ] induces the complete graph on 4 vertices, the edge set of G[I ] has been
partitioned into two paths of length 3 one in D and one in L, and the final two edges
are incident to v and to distinct points of I , again one each in D and L. (See Fig. 1.)
The rigidity matrix, Rpin

DL(G,p), of (G, p) in R
2 is as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[p(v1) − p(v2)]⊥ [p(v2) − p(v1)]⊥ 0 0
p(v1) − p(v3) 0 p(v3) − p(v1) 0

[p(v1) − p(v4)]⊥ 0 0 [p(v4) − p(v1)]⊥
0 p(v2) − p(v3) p(v3) − p(v2) 0
0 p(v2) − p(v4) 0 p(v4) − p(v2)

0 0 [p(v3) − p(v4)]⊥ p(v4) − p(v3)]⊥
p(v1) − p(v) 0 0 0

0 [p(v2) − p(v)]⊥ 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where you notice that the submatrix obtained by deleting the last two rows is
precisely the matrix RDL(K4, p|K4). It is not hard to check, for any generic p ∈
R

2|P∪I |, that rank R
pin
DL(G,p) = 8 = |D|+ |L| and hence (G, p) is pinned isostatic

in R
2.

Any generic realisation of the graph H is also pinned isostatic which is easy to
deduce from the fact that (G, p) is pinned isostatic as H is formed from G by a
sequence of degree 2 vertex additions.

Note that it is easy to see that both examples are rigid, though not isostatic, when
re-interpreted as pure frameworks. To obtain an example that is pinned iostatic as
a DL-framework but flexible as a pure framework is also easy. One example would
be to add four new vertices to G, add a K4 on these new vertices and attach them to
G by two edges, say incident to v3 and v4. That the result will be pinned-isostatic
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v1 v2

v3 v4

v

v5

v6

v7

v1
v2

v3
v4

v

Fig. 1 Two pinned isostatic DL-frameworks G,H . We adopt the convention throughout that
vertices in P will be represented by unfilled circles and vertices in I by filled circles. Furthermore,
edges in D will be represented by dashed lines and edges in L by unbroken lines

follows from Theorem 1 (provided the new K4 contains edges of each type), see also
Proposition 1 below, but the framework has an obvious motion as a pure framework.

Jackson and Keevash [5] proved that, generically, rigidity and infinitesimal
rigidity coincide for unpinned DL-frameworks and hence rigidity depends only on
the underlying graph. Their techniques extend to pinned DL-frameworks giving us
the following lemmas.

Lemma 1 Let (G, p) be a generic pinned DL-framework. Then (G, p) is rigid if
and only if it is infinitesimally rigid.

Lemma 2 Let (G, p) be a generic pinned isostatic DL-framework in R
d . Then G

satisfies

(1) (d − 1)|D| + |L| = d|I |;
(2) (d − 1)|D′| + |L′| ≤ d|I ′| for all (V ′, E′) ⊂ G with V ′ = P ′ ∪ I ′ and

E′ = D′ ∪ L′.

In fact, one may easily derive more precise necessary counts by considering the
number of pinned vertices in a subgraph and whether it is pure or not. Indeed in R

2

there are the following 3 additional conditions:

(3) |D′| + |L′| ≤ 2|I ′| − 1 for all pure subgraphs with |P ′| = 1;
(4) |D′| + |L′| ≤ 2|I ′| − 2 for all subgraphs with |P ′| = 0;
(5) |D′| + |L′| ≤ 2|I ′| − 3 for all pure subgraphs with |P ′| = 0.

We note the following converse to Lemma 2 in dimension 2.

Proposition 1 Let G = (V ,E). A DL-framework (G, p) is pinned isostatic in R
2

if and only if G satisfies conditions (1)–(5).

Proof Necessity was discussed above. We prove that if G satisfies (1)–(5) then
(G, p) is a pinned isostatic DL-framework. To do this we add a (non-pinned)
isostatic DL-graph GP = (P,EP ) on the pinned vertices and then replace each
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pinned vertex with an inner vertex to get a graph G∗ = (V ∗, E∗) where V ∗ = V =
I∪P and E∗ = D∗∪L∗ = E∪EP . Observe that, by (1) and by applying Theorem 1
to GP , G∗ satisfies

|E∗| = |E| + |EP | = 2|I | + 2|P | − 2 = 2|V ∗| − 2,

and similarly, using (2)–(5) we have |E′| ≤ 2|V ′| − 2 for all (V ′, E′) ⊂ G∗ and
|E′| ≤ 2|V ′|−3 for all (V ′, E′) ⊂ G∗ with E′ ⊂ D∗ or E′ ⊂ L∗. Hence Theorem 1
implies that (G∗, p) is (unpinned) isostatic. It follows that (G, p) is isostatic. �

In a DL-framework (G, p) in R
d , each direction constraint produces d−1 rows in

R
pin
DL(G,p). Hence it will be convenient to consider the graph G+ = (V +, E+) =

(P+, I+;D+, L+) which arises from G by replacing each e ∈ D with d − 1 copies
of the edge e (and setting P+ = P, I+ = I and L+ = L). Note in dimension 2,
G = G+. A DL-orientation of G+ is an orientation such that: for each edge of D all
parallel copies in D+ have the same orientation; all inner vertices have out-degree
d; and all pinned vertices have out-degree 0.

Lemma 3 Let (G, p) be a pinned isostatic DL-framework in R
d . Then there is a

DL-orientation of G+. Moreover let O and O ′ be two DL-orientations ofG+. Then
the strongly connected components are the same in both DL-orientations.

Proof For any subgraph (P ′, I ′;D′, L′) of G we have, By Lemma 2, |(D′)+| +
|(L′)+| = (d−1)|D′|+|L′| ≤ d|I ′|. The first assertion now follows from a standard
result on orientations of sparse graphs first proved by Hakimi [4, Theorem 2]. The
second conclusion is a consequence of the fact that O may be obtained from O ′ by
reversing directions on the edges in some set of cycles [17, Corollary 2.2]. �

3 Assur Graphs and Assur Decompositions

For a pinned DL-framework we can consider the minimal pinned isostatic subframe-
work. This corresponds to the smallest subframework of (G, p) which is pinned
isostatic (necessarily this subframework contains at least one pinned vertex v1).
The edge set of such a subgraph is the first Assur component C1. With C1 chosen
we consider a new graph in which the entire subgraph induced by C1 is pinned.
We then find the smallest pinned isostatic subframework and call it’s edge set C2.
By repeating until C1, C2, . . . , Ct partitions the edge set of G we obtain the Assur
decomposition of G. It would be equivalent (see Proposition 2) to, at each stage,
contract Ci to a single pinned vertex. We can decompose the (square) pinned rigidity
matrix into indecomposable blocks by permuting rows and columns until the blocks
are in lower triangular form. Given a DL-orientation we can read off the strongly
connected components of G+. We augment the definition of strongly connected
component by including edges directed out of the component.
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Lastly, we use d-tree decomposition for the decomposition of G+ into compo-
nents, each of which is the edge-disjoint union of d spanning trees and no proper
subgraph has that property. We insist that the first component contains some number
of pinned vertices (and for the purpose of the tree decomposition, the pinned
vertices are considered as a single vertex), and in subsequent components the earlier
components are considered as a single pinned vertex. Given a graph that is the edge-
disjoint union of d spanning trees, a DL-orientation can be assigned. In particular we
can choose P as the sink (with out-degree 0) and direct the edges in each spanning
tree towards v. Hence one may think of this decomposition as into edge-disjoint
spanning trees along with edges directed out of the component.

Our first main result shows that these four decompositions are equivalent provid-
ing multiple ways of understanding, testing and computing Assur decompositions
of generically isostatic DL-frameworks.

Theorem 2 Given a generic pinned isostatic DL-framework (G, p) and any DL-
orientation of G+, the following are equivalent:

(1) the Assur decomposition of (G, p);
(2) the strongly connected decomposition ofG+;
(3) the block decomposition of Rpin

DL(G,p);
(4) the d-tree decomposition of G+.

Proof Since the equivalence of (1), (2) and (3) can be proven by adapting the
technique used in [11, Theorem 3] (or alternatively in [17, Theorem 3.5]) we are
brief. Observe first that, since (G, p) is pinned isostatic, every square submatrix is
invertible and hence (3) ⇒ (1) is immediate.

For (1) ⇒ (2) let G1 be the graph of the first Assur component. By Lemma 3 we
may choose a DL-orientation of G+. Suppose G+

1 contains a proper subgraph H+
1

which is a strongly connected component of G+ containing some pinned vertex. If
|E(H+

1 )| < d|I (H+
1 )| then counting edges in G+

1 − H+
1 (including edges between

them) contradicts the fact that (G1, p|G1) is isostatic. Hence Lemma 2 implies that
|E(H+

1 )| = d|I (H+
1 )|, contradicting the assumption that G1 is an Assur graph.

To see (2) ⇒ (3) suppose there are two or more strongly connected components.

Then take the bottom component with its edges to the pinned vertices. In R
pin
DL(G,p)

apply a permutation of rows and a permutation of column vertices to place these
rows and columns at the top left of the matrix. The remaining matrix forms a second
block to which we iterate this process giving the desired lower block triangular form.

(1) ⇒ (4) follows from Lemma 2 using a classical theorem of Nash-Williams [9]
and similarly we can deduce (4) ⇒ (3) noting that (G, p) is isostatic so R

pin
DL(G,p)

has no linearly dependent submatrices. �
The equivalence also holds at the level of components. That is, the first Assur

component is exactly the first strongly connected component, the first component of
the block decomposition of the pinned direction-length rigidity matrix and the first
component of the d-tree decomposition.
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Example 2 In Fig. 1 we gave examples of pinned isostatic DL-frameworks (G, p)

and (H, q) in R
2. G itself is an Assur graph so the Assur decomposition is

trivial. G occurs as a subgraph of H and hence is the first component C1 in the
Assur decompositionC1, C2, C3, C4 of (H, p). The remainder of the decomposition
consists of single vertices attached to the below components. Note that C2 could
either be v5 or v7; they are incomparable in the induced partial order, however
v6 must come after v5. In general the partial order of the Assur decomposition is
unique, but there can be multiple different linear extensions.

For pure isostatic frameworks in 2-dimensions, it was proved in [13] that
contracting the set of pinned vertices to a single vertex takes us from a pinned
isostatic framework to a framework whose graph is a generic circuit: that is the
graph induced by a circuit in the generic 2-dimensional rigidity matroid (see [1]
for details on this class of graphs). We can give the following analogue for DL-
frameworks in our next result.

Proposition 2 Let (G, p) be a pinned DL-framework in R
2 with |D′| + |L′| ≤

2|I ′| − 1 for all pure subgraphs. Suppose that P = {v1, . . . , vk}. Let G′ = G/P

denote the graph formed by contracting v1, . . . , vk to a single pinned vertex v. Then
(G, p) is pinned isostatic if and only if (G′, p′) is pinned isostatic, for any generic
p′.

Proof It is easy to verify that G satisfies conditions (1), (2), (4) and (5) of
Proposition 1 if and only if G′ does. That G satisfies (3) if and only if G′ does
follows from the hypothesis that |D′| + |L′| ≤ 2|I ′| − 1 for all pure subgraphs of
G. �

For example, suppose G is the pinned graph consisting of a cycle Ck , for k ≥ 3,
of inner vertices, P consists of a set of k vertices and the remaining edges form a
perfect matching between Ck and P (with any pattern of direction and length edges
that respects the hypotheses of the proposition). Note that Proposition 1 implies that
generic realisations of G and the wheel graph Wk obtained from G by contracting
the k pinned vertices are pinned isostatic in R

2.
We conclude this section with an algorithmic remark. The pebble game [6], as

extended in [8], can be used to efficiently assign a DL-orientation to G. It is not hard
to extend this to check the pure subgraph conditions and hence determine whether
a pinned DL-framework is pinned isostatic in R

2. Moreover finding strongly
connected components, and hence Assur components, can be done in linear time
[20].

4 Drivers and Strongly Assur Graphs

Key to applications of Assur graphs in mechanical engineering is the control and
synthesis of mechanisms [16, 19]. Thus, in this section, we derive several results
showing how knowledge of the Assur decomposition allows us to control the 1
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degree of freedom motion which results from deleting a single edge from a pinned
isostatic DL-framework.

Lemma 4 Let (G, p) be a generic pinned isostatic DL-framework in R
d . Suppose

Ck is an Assur component containing the edge e ∈ D∪L. Then (G−e, p) has a non-
trivial continuous motion which is necessarily zero on all vertices in components
below or incomparable to Ck .

Proof Since (G, p) is pinned isostatic, (G − e, p) is not infinitesimally rigid and
hence Lemma 1 implies that (G− e, p) has a non-trivial continuous motion. By the
definition of Assur decomposition all components below or incomparable to Ck are
pinned isostatic and hence are fixed by the motion. �

An Assur graph is strongly Assur if the infinitesimal motion created by removing
any edge has a non-trivial velocity at every inner vertex.

Lemma 5 Let (G, p) be a generic pinned isostatic DL-framework in R
2. Suppose

each component in the Assur decomposition is strongly Assur and letCk be an Assur
component containing the edge e. Then (G − e, p) has a non-trivial continuous
motion which is non-zero on all inner vertices in Ck and all inner vertices in
components above Ck in the Assur decomposition.

Proof As in Lemma 4 there is a non-trivial continuous motion of (G − e, p). That
this motion is non-zero on all vertices in Ck and all vertices in components above Ck

in the Assur decomposition follows from Proposition 1 and the definitions of Assur
decomposition and strongly Assur graph. �

The following lemma will put a strong condition on the nature of continuous
motions for DL-frameworks in R

2.

Lemma 6 Let (G, p) be a generic pinned isostatic DL-framework in R
2. Then

(G, p) is Assur if and only if (G, p) is strongly Assur.

Proof One direction is obvious. For the converse, assume G is an Assur graph.
Delete an edge e = ab and we have |E(G − e)| = 2|I (G − e)| − 1 by Lemma 2.
This implies there is a non-trivial infinitesimal motion u of (G − e, p). Suppose
u(v) = 0 for some v ∈ I . Then v is rigidly connected to the pinned vertices.
Hence Proposition 1 implies that v must be contained in a pinned subgraph H with
|E(H)| = 2|I (H)|. Since H contains at most one of a, b we have |I (H)| < |I (G)|
contradicting the minimality of G. �

We remark that the corresponding result with d ≥ 3 is already false in the length
pure case (see [17]) and similar examples can be constructed for DL-frameworks.
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5 Grounding Isostatic DL-Frameworks

In this section we consider how to pin isostatic DL-frameworks. Note that Proposi-
tion 2 motivates us to focus our attention on pinning a single vertex. We consider
how the choice of this pinned vertex affects the resulting Assur decomposition.

Lemma 7 Let T be a tree on n vertices. Let G be the DL-graph on V (T ) formed
from doubling every edge in E(T ) and assigning one copy of each edge to D and
one to L. Then, after pinning any single vertex, (G, p) is pinned isostatic in Rd , for
any generic p, and the Assur decomposition of (G, p) has n − 1 components.

Proof Let (G, p) be generic in R
d . Since T is a tree it is easy to see that G can

be constructed by a sequence of degree 2 vertex additions starting at any vertex. Let
K1 → G1 → G2 → · · · → Gn = G be any such sequence. By analysing each
RDL(Gi, p|Gi ) we see that (Gi, p|Gi ) is isostatic for each 1 ≤ i ≤ n. The first
conclusion is now clear and the second follows from the fact that any subtree of T
induces an isostatic subframework. �

At the other extreme we have the following lemma.

Lemma 8 Let (G, p) be a generic pinned isostatic DL-framework in R
d and

suppose that any proper subgraphH ofG+ satisfies |E(H)| ≤ d|V (H)|− (d + 1).
Then the Assur decomposition of (G, p) has precisely one component.

Proof The hypothesis on G+ ensures that (G, p) has no proper pinned rigid
subframework. The result follows. �

A special case, when d = 2, is to take G = (V ,E) to be a generic circuit, with
any non-trivial partition of E (into D and L), and identify some v ∈ V as pinned.

Next, given an arbitrary pinned isostatic DL-framework, we consider how to
determine which vertex is the optimal choice to pin in order to maximise, or
minimise, the number of components. To answer this question, we introduce the
following directed acyclic graph. Let G = (V ,E) and (G, p) be a generic

(unpinned) isostatic DL-framework in R
d . We form a directed graph

−→
D = (U, F ),

which we shall call the pinning digraph for G as follows. The set U is the set of
subsets of V which induce unpinned isostatic graphs in G (including V itself and
each single vertex). There is an edge directed from X ∈ U to Y ∈ U if and only if
X � Y and there is no Z ∈ U such that X � Z � Y .

Example 3 Let (H, p) be the pinned isostatic DL-framework in Fig. 1. Consider the
(unpinned) isostatic framework (H − v, p|H−v). In Fig. 2 we construct the pinning

digraph
−→
D for (H − v, p|H−v). If we take v6 as the pinned vertex then we obtain

the Assur decomposition C1 = K4 + {v5, v6} and C2 = K4 + {v5, v6, v7}, whereas
if we take v3 as the pinned vertex then the Assur decomposition has alternative
linear extensions of the partial order, one such choice being C1 = K4, C2 = K4 +
v5, C3 = K4 + {v5, v7}, C4 = K4 + {v5, v6, v7}.
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v1 v2 v3 v4 v5 v6 v7

K4

K4+v7K4+v5

K4+{v5,v6}

K4+{v5,v6,v7}

K4+{v5,v7}

Fig. 2 A pinning digraph of an unpinned isostatic DL-framework. All edges are directed vertically
downwards in the figure, arrows omitted. For brevity K4 is used to denote its vertex set

The following lemma records some basic properties of pinning digraphs; each
property follows quickly from the definition.

Lemma 9 Let (G, p) be a generic isostatic DL-framework in R
d and let

−→
D be the

pinning digraph for G. Then:
−→
D is acyclic and triangle-free; V is the unique sink

of
−→
D ; and each vertex v ∈ V is a source of

−→
D .

Theorem 3 Let G = (V ,E) and let (G, p) be a generic isostatic DL-framework
in R

d . Then the Assur decomposition of (G, p) with x ∈ V pinned is in one-one

correspondence with the set of directed paths from x to V in
−→
D .

Proof It follows from the construction of
−→
D that each path from x to V corresponds

to a linear extension of the partial order of the Assur decomposition of (G, p) with
x pinned. The theorem follows from the uniqueness of the partial order associated
to an Assur decomposition of a pinned isostatic framework. �

In particular, this implies that every directed path from x to V has the same

length. Thus we can use
−→
D to choose a pinned vertex which will minimise, or

maximise, the number of components in an Assur decomposition.

Corollary 1 Let G = (V ,E) and let (G, p) be a generic isostatic DL-framework

in R
d with pinning digraph

−→
D . Let x ∈ V be the source of

−→
D whose distance to

V is minimal (resp. maximal). Then pinning x results in a pinned isostatic graph
G whose Assur decomposition has the minimum (resp. maximum) number of Assur
components.
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6 Concluding Remarks

There are an array of open questions and potential extensions. We mention just three.

Complexity of the Assur decomposition. How may we minimise the complex-
ity of the Assur decomposition? This could be in terms of the number of
components, how close to linear the partial order can be or the complexity of
individual components. We pose the question, given a random generic isostatic
DL-framework in R

2, what structure does the associated pinning digraph have?
Special positions of Assur graphs. For length pure frameworks, it was proved

in [14] that any Assur graph has a special position in which there is a nowhere
zero equilibrium stress1 and a special position in which there is a nowhere zero
infinitesimal motion. It is not clear how to extend these results to DL-frameworks
as their proof technique breaks down (see Proposition 2).

Alternative constraint systems. There are a number of other rigidity contexts
where the count |E| = k|V | − k is fundamental including: frameworks on the
cylinder [10], in 
q spaces [7], fixed lattice periodic frameworks [12] and body-
bar frameworks [21]. We expect our techniques can be adapted to each of these
contexts.
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On the Burning Number
of p-Caterpillars

Michaela Hiller, Arie M. C. A. Koster, and Eberhard Triesch

Abstract The burning number is a recently introduced graph parameter indicating
the spreading speed of content in a graph through its edges. While the conjectured
upper bound on the necessary number of time steps until all vertices are reached
is proven for some specific graph classes, it remains open for trees in general. We
present two different proofs for ordinary caterpillars and prove the conjecture for a
generalised version of caterpillars and for trees with a sufficient number of legs.
Furthermore, determining the burning number for spider graphs, trees with max-
imum degree three and path-forests is known to be NP-complete; however, we
show that the complexity is already inherent in caterpillars with maximum degree
three.

Keywords Burning number · Computational complexity · Caterpillar graphs

1 Introduction

Given an undirected graph G = (V ,E), the burning number b(G) indicates the
minimum number of steps to inflame the whole graph while in each time step the
fire spreads from all burning vertices to their neighbours and one additional vertex
can be lit. This concept was introduced as a possible representation of the spread of
content in an online social network in [2], but also other issues, e.g. the contagion
of illnesses, can be modelled.

A sequence of vertices B = (b1, . . . , bm) is said to be a burning sequence
or burning strategy if the vertices burn off the whole graph in m steps when lit
successively. For m = b(G), we say B is an optimum burning sequence or an
optimum burning strategy. The set of all vertices which receive the fire from a vertex
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bi (or theoretically would, if they were not already burning) together with bi itself is
called a burning circle and is denoted by Vi . Thus, the problem of finding a burning
strategy can be reformulated into a covering problem V = V1 ∪· · ·∪Vm. The extent
of a burning circle is given by diam(Vi) + 1 = 2i − 1. We denote the problem of
determining the burning number for a graph by BURNING NUMBER.

In 2014, an upper bound for the burning number was conjectured for all
connected graphs [2].

Burning Number Conjecture If G is a connected graph of order n, then

b(G) ≤ ⌈√
n
⌉
.

The conjecture is proven for paths, cycles, Hamiltonian graphs and spiders [3].
Further, it can be easily checked that graphs with a small vertex number fulfil the
conjecture. For paths whose length is a square number, the conjecture holds with
equality and, as shown in [2], the conjecture is true for all connected graphs if it
holds for trees in general.

Firstly, in Sect. 2 the Burning Number Conjecture is proven for caterpillars in
two different ways: once by using the principle of infinite descent and alterna-
tively, by determining a burning strategy complying with the conjectured bound.
Subsequently, in Sect. 3, we show that BURNING NUMBER is NP-complete for
caterpillars. In Sect. 4, we focus on the validity of the conjecture for 2-caterpillars
and p-caterpillars with a sufficient number of leaves relative to the order of the
graph.

2 The Burning Number Conjecture for Caterpillars

In this section, we investigate the Burning Number Conjecture for caterpillars, trees
in which all vertices are within the distance one of a central spine or more vivid:

A caterpillar is a tree which metamorphoses into a path when its cocoon of endpoints is
removed. [4]

Consequently, the graph class of caterpillars can also be described by forbidden
minors C3 and S2,2,2 as in Fig. 1.

Let G = (V ,E) denote a caterpillar with n := |V | vertices, a spine P
 =
{v1, . . . , v
} of length 
 and n − 
 vertices adjacent to P
 \ {v1, v
}, which we
call legs. We assume 
 ≥ 4 and n ≥ 
 + 2; otherwise G is a spider graph and
the conjecture holds. Further, it can easily be seen that the conjecture is true for all
graphs with n ≤ 9.
Applying the (proven) conjecture for paths to the Spine P
, we clearly get the
following upper bound for the caterpillar.
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Fig. 1 Forbidden minors C3
and S2,2,2 in a caterpillar

Fig. 2 In the proof of
Theorem 1, we generate G′
by removing the grey vertices
of V1 in the minimum
counterexample G

2k−1

V1

Proposition 1 IfG is a caterpillar, then b(G) ≤
⌈√



⌉
+ 1. Thus, the conjecture is

proven to be true for
⌈√

n
⌉ ≥

⌈√


⌉

+ 1.

In fact, the conjecture holds for all caterpillars, which can be shown using the
principle of infinite descent.

Theorem 1 (Burning Number Conjecture for Caterpillars) The burning num-
ber of a caterpillar G satisfies b(G) ≤ ⌈√

n
⌉
.

Proof Let the graph G be a caterpillar and a minimum counterexample regarding n

with b(G) >
⌈√

n
⌉ =: k. We distinguish two cases:

• If either the spine vertex v2k−1 has no legs or v2k−1 has a leg, but at least one
of the vertices v1, . . . , v2k−2 has an adjacent leg as well, we remove the largest
burning circle V1 with extent diam(V1)+1 = 2k−1 without loss of generality at
the end of the spine Pl as shown in Fig. 2. Depending on whether v2k−1 is legless
or not, we shorten the spine by 2k − 1 or (2k − 1) − 1 vertices, respectively, to
maintain the connectivity.
In both sub-cases, we obtain a new caterpillar G′ with


′ ≤ 
 − (2k − 1) + 2= 
 − 2
⌈√

n
⌉+ 3,

n′ ≤ n − (2k − 1) = n − 2
⌈√

n
⌉+ 1,

and for the burning number of G′ it follows that b(G′) >
⌈√

n
⌉−1; otherwise G

would not be a counterexample. Since G is minimum by assumption, we further

have b(G′) ≤
⌈√

n′
⌉

.
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This yields

⌈√
n′
⌉

≥ b(G′) >
⌈√

n
⌉− 1,

and thus
⌈√

n′
⌉

= ⌈√
n
⌉

. With the estimate from above
⌈√

n − 2
⌈√

n
⌉+ 1

⌉
=

⌈√
n
⌉

, and therefore the two radicands lie between the same square numbers
⌈√

n
⌉2 and

(⌈√
n
⌉− 1

)2. As a consequence,

n − (⌈√
n
⌉− 1

)2 ≥ 2
⌈√

n
⌉− 1 + 1,

or equivalently, n ≥ (⌈√
n
⌉− 1

)2 + 2
⌈√

n
⌉ = ⌈√

n
⌉2 + 1. This is a

contradiction.
• If otherwise v1, . . . , v2k−2 are legless, but v2k−1 is not, we remove the two largest

burning circles V1 with extent diam(V1) + 1 = 2k − 1 and V2 with extent
diam(V2) + 1 = 2k − 3 without loss of generality at the end of the spine P
.
We shorten the spine by (2k − 3) + (2k − 1) − 1 vertices as shown in Fig. 3.
Analogously to the first case, for the remaining caterpillar G′′ it follows that


′′ ≤ 
 − (2k − 3) − (2k − 1) + 2,

n′′ ≤ n − (2k − 3) − (2k − 1) + 1 − 1 ≤ (⌈√
n
⌉− 2

)2
,

and b(G′′) >
⌈√

n
⌉− 2; otherwise, G would not be a counterexample. Since G

is minimum, we further have b(G′) ≤
⌈√

n′′
⌉

. This yields the contradiction

⌈√
n
⌉− 2 < b(G′′) ≤

⌈√
n′′
⌉

≤ ⌈√
n
⌉− 2.

Therefore, the minimum counterexample cannot exist. �
The following alternative proof works without the principle of infinite descent and
provides a burning strategy in

⌈√
n
⌉

steps for all caterpillars.

v1 v2 v2k−3

v2k−2

v2k−1 v4k−5 v4k−4

2k−3 2k−1

V1V2

Fig. 3 Let v2k−1 have adjacent legs and v1, . . . , v2k−2 be legless. We remove the grey vertices
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Fig. 4 In the first case, v2k−1
is legless and we delete the
grey vertices

v1 v2 v2k−2 v2k−1

2k−1

V1

Fig. 5 We assume v2k−1 and
at least one of v1, . . . , v2k−2
to have legs and delete the
grey vertices v1 v2 v2k−2 v2k−1

2k−1

V1

Proof Let again k := ⌈√
n
⌉

denote the maximum number of steps such that the
conjecture still holds. Recursively removing burning circles to reduce the vertex
number at least down to the next smaller square number, we consider two cases:

• In the first case, v2k−1 ∈ P
 has no legs. After deleting v1, . . . , v2k−1 with all
adjacent legs, the remaining graph has at most n−(2k−1) ≤ ⌈√

n
⌉2−2

⌈√
n
⌉+

1 = (
⌈√

n
⌉− 1)2 vertices as depicted in Fig. 4.

• In the other case, we distinguish whether any of the vertices v1, . . . , v2k−2 has
an adjacent leg or not. If not all of these spine vertices are legless, we remove
v1, . . . , v2k−2 together with their legs as outlined in Fig. 5. Again, the vertex set
of the remaining graph contains—just as in the first case—at most (

⌈√
n
⌉− 1)2

vertices.
Otherwise, if v1, . . . , v2k−2 are legless and v2k−1 has an adjacent leg as shwon

in Fig. 3, we delete v1, . . . , v2k−3 and further v(2k−3)+1, . . . , v(2k−3)+(2k−2) with
all their legs (at least the leg adjacent to v2k−1) such that the new graph consists
of at most n−(2k−3)−(2k−2)−1 ≤ ⌈√

n
⌉2−(2

⌈√
n
⌉−1)−(2

⌈√
n
⌉−3) =

(
⌈√

n
⌉− 2)2 vertices.

Hence, after the vertex removal the order of the remaining graph G′ decreases at
least to n′ ≤ (

⌈√
n
⌉− 1)2 and the claim follows recursively. �

It can easily be seen that the alternative proof yields an algorithm to burn a caterpillar
in
⌈√

n
⌉

steps, though may not necessarily be optimum.
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3 The NP-Completeness of the Burning Number Problem
for Caterpillars

The NP-completeness of determining the burning number for caterpillars indicates
the unstructured nature of the problem as the difficulty or complexity is already
hidden in such a simple graph class. Our proof is structured similar to the proof
for trees of maximum degree three in [1] and uses a reduction from DISTINCT 3-
PARTITION.

Problem: DISTINCT 3-PARTITION

Instance: A set X = {a1, . . . , a3n} of 3n distinct positive integers and a positive
integer S, fulfilling

∑3n
i=1 ai = n · S with S

4 < ai <
S
2 for all 1 ≤ i ≤

3n.
Question: Can X be partitioned into n triples each of whose elements sum up to

S?

DISTINCT 3-PARTITION is NP-complete in the strong sense as shown in [5], which
means the problem remains NP-complete even if S is bounded from above by a
polynomial in n.

Theorem 2 BURNING NUMBER is NP-complete for caterpillars of maximum
degree three.

Proof BURNING NUMBER is in NP as a burning sequence for a graph can be
verified in polynomial time by checking whether the whole vertex set is covered by
the union of the corresponding burning circles.

To prove the NP-completeness, we reduce DISTINCT 3-PARTITION in polyno-
mial time to BURNING NUMBER. Given an instance for DISTINCT 3-PARTITION as
stated above, we denote m := max{ai | ai ∈ X}, m := {1, . . . ,m} and Y := m \ X.
Transferred to the universe of BURNING NUMBER, we get X′ := {2ai−1 | ai ∈ X},
S′ := 2S − 3, Om := {2i − 1 | i ∈ m} and Y ′ := Om \ X′.

Now we construct a caterpillar G of maximum degree three as follows: For each
triple whose unknown elements should add up to S we build a path QX′

i (for all
1 ≤ i ≤ n) of order S′ and for all numbers in Y (which are not available for the
triples) a separate path QY ′

i (for all 1 ≤ i ≤ m− 3n) of order Y ′. The resulting path
forest

n⋃

i=1

QX′
i ∪

m−3n⋃

i=1

QY ′
i

corresponds to
⋃m

i=1 P2i−1 and can thus be burnt in m steps. Next, we need to
connect the graph by using caterpillars to keep the individual paths separated from
each other. In order to do so, we need at most m + 1 caterpillars G1, . . . ,Gm+1
whereby Gi has a spine of length 2(2m+1− i)+1 with exactly one leg attached to
each spine vertex (except the two terminal vertices). The caterpillars and the paths
are arranged alternately until only caterpillars are left, which are then placed at the
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end. The subgraphs are connected through an edge between their end vertices. We
denote the longest path in G by P
 and get


 =
∣∣∣∣

n⋃

i=1

V
(
QX′

i

)∣∣∣∣ ∪
∣∣∣∣
m−3n⋃

i=1

V
(
QY ′

i

)∣∣∣∣ ∪
∣∣∣∣
m+1⋃

i=1

V
(
P2(2m+1−i)+1

)∣∣∣∣

=
m∑

i=1

(2i − 1) +
m+1∑

i=1

(2(2m + 1 − i) + 1)

=
m∑

i=1

(2i − 1) +
2m+1∑

i=m+1

(2i − 1)

= (2m + 1)2.

The inequality in the conjecture is tight for paths; thus b(G) ≥ b(P
) =
⌈√



⌉

=
2m + 1. Due to the strong NP-completeness of DISTINCT 3-PARTITION, we can
assume S to be in O

(
nO(1)

)
and as m is bounded by S, the caterpillar G is computed

in polynomial time with regard to the input length. Further, we constructed the
caterpillar G in such a way that if X can be partitioned into n triples, each of
whose elements add up to S (and equivalently QX′

1 , . . . ,QX′
n can be partitioned

into paths {Pi | i ∈ X′}), lighting the central spine vertex of caterpillar Gi in step i

(for 1 ≤ i ≤ m + 1) and lighting the central vertex of path P2(2m+1−i)+1 in step i

(for m + 2 ≤ i ≤ 2m + 1) burns the whole graph in 2m + 1 steps. Consequently,
b(G) ≤ 2m + 1 holds and altogether, b(G) = 2m + 1.

To prove the opposite direction, we assume b(G) = 2m + 1 and let
(x1, . . . , x2m+1) be an optimal burning sequence for the caterpillar G. First, we
can observe that xi is a spine vertex for all 1 ≤ i ≤ 2m + 1 and the burning circles

have to be pairwise disjoint as 
 is a square number and b(P
) =
⌈√



⌉

. Next, the

largest burning circle has to cover G1 with spine P2(2m+1)−1. Otherwise, at least
two burning circles are needed which would have to intersect at two spine vertices
to cover all legs as pictured in Fig. 6. Inductively, Gi has to be covered with the i-th
largest burning circle; thus the central spine vertex of Gi has to be lit in the i-th step
for all 1 ≤ i ≤ m + 1.
Therefore,

⋃m+1
i=1 Gi will be burning after 2m+1 steps induced by x1, . . . , xm+1 and

in the last m time steps xm+2, . . . , x2m+1 have to ignite
⋃n

i=1 Q
X′
i ∪⋃m−3n

i=1 QY ′
i =⋃m

i=1 P2i−1, i.e., the remaining subpaths need to be covered by

2m+1⋃

i=m+2

N2m+1−i [xi].

As seen before the burning circles have to be disjoint; thus N2m+1−i[xi] has to cover
a path of length 2(2m + 1 − i) − 1 for m + 2 ≤ i ≤ 2m + 1. Hence, each QY ′

i for
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2(2m+ 1)−1

Fig. 6 If we do not cover G1 with the largest burning circles, at least two spine vertices are covered
twice

1 ≤ i ≤ m − 3n is covered by itself and each QX′
i for 1 ≤ i ≤ n is partitioned in

paths of lengths X′. Since S
4 < ai < S

2 by assumption, each partition consists of
three elements in X′, which add up to 2S − 3. By retranslating this 3-partition of X′
to X we obtain the sought-for partition into n triples each of whose elements sum
up to S. �
As caterpillars are exactly the trees of pathwidth one the above theorem provides a
statement about the complexity of graphs whose spanning trees are caterpillars.

Corollary 1 BURNING NUMBER is NP-complete for graphs of pathwidth one.

4 The Burning Number Conjecture for p-Caterpillars

In this section, we turn the study to the more general case of p-caterpillars.

Definition 1 (p-Caterpillar) A p-caterpillar G is a tree in which all vertices are
within a distance p of a central spine P
 = {v1, . . . , v
}, which is the longest path
in G.
Further, r-legs of a given p-caterpillar are defined as disjoint subtrees of G−P
 with
depth r − 1, for r ≤ p, whose roots are in distance one of the spine. We denote the
maximum length of all legs attached to spine vertex vi by pmax(vi) and the number
of all vertices which are connected to the spine via vi by pΣ(vi).

Thus, the parameter p indicates the maximum length of the legs and for every tree T

there is a p such that T can be regarded as a p-caterpillar. Obviously, a 1-caterpillar
denotes a ‘common’ caterpillar.

Proposition 2 For a p-caterpillar G it follows that b(G) ≤
⌈√



⌉

+ p. Thus, for
⌈√

n
⌉ ≥

⌈√


⌉

+ p the conjecture is proven to be true.

Using a similar idea as in the alternative proof of Theorem 1, we can prove the
Burning Number Conjecture for 2-caterpillars.
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v1 v2 v3 v2k−3 v2k−1

2k−1

V1

Fig. 7 We remove the grey vertices of the largest burning circle V1 in a 2-caterpillar

Theorem 3 (Burning Number Conjecture for 2-Caterpillars) The burning num-
ber of a 2-caterpillarG satisfies b(G) ≤ ⌈√

n
⌉
.

Proof As in the alternative proof of Theorem 1 we remove recursively the largest
burning circles and thereby intend to reduce the number of vertices to fall below the
next smaller square number. If pmax(v2k−2) ≤ 1 and pmax(v2k−1) = 0, we delete
the vertices v1, . . . , v2k−1 together with all adjacent legs and obtain a graph whose
vertex number is at most

⌊√
n
⌋2

. In the case pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1

but
∑2k−3

i=1 pΣ(vi) ≥ 2, removing the vertices v1, . . . , v2k−3 with their adjacent legs

as depicted in Fig. 7 suffices to undercut
⌊√

n
⌋2 vertices in the remaining graph.

Analogously, for
∑2k−2

i=1 pΣ(vi) = 1 and pmax(v2k−2) ≤ 1 but pmax(v2k−1) ≥ 1,
we remove v1, . . . , v2k−2 with all adjacent legs. Hence, it remains to consider the
cases

(a)
2k−3∑
i=1

pΣ(vi) = 1 with pmax(v2k−2) = 2 and

(b)
2k−3∑
i=1

pΣ(vi) = 0 with pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1.

If in case (a) we additionally have

(2k−1)+(2k−3)−4∑

i=2k−1

pΣ(vi) ≥ 1 or pmax
(
v(2k−1)+(2k−3)−3

) ≤ 1,

we arrange the two largest burning circles V1 and V2 with an overlap of two vertices
as outlined in Fig. 8. We delete the vertices v1, . . . , v(2k−1)+(2k−3)−4 and, if

pmax
(
v(2k−1)+(2k−3)−3

) ≤ 1,

we also remove vertex v(2k−1)+(2k−3)−3 with all its adjacent legs. Hence, at most
n − (2k − 1) − (2k − 3) vertices are left.
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v1 v2 v3 v2k−2v2k−3 v2k−1 v(2k−1)
+(2k−3)

2k−3

V2

2k−1

V1

Fig. 8 We arrange the two largest burning circles V1 and V2 with an overlap of two vertices

v1 v2 v3 v2k−2v2k−3 v2k−1 v(2k−1)
+(2k−3)

v(2k−3)
+(2k−5)+1

2k−3

V2

2k−5

V3

2k−1

V1

Fig. 9 We delete the grey vertices of the three largest burning circles V1, V2 and V3

If, however, in case (a) we additionally have

(2k−1)+(2k−3)−4∑

i=2k−1

pΣ(vi) = 0 and pmax
(
v(2k−1)+(2k−3)−3

) = 2,

we consider the three largest burning circles and position them as shown in Fig. 9.
The removal of v1, . . . , v(2k−1)+(2k−3)−4 with all adjacent legs yields a graph with
at most n − (2k − 1) − (2k − 3) − (2k − 5) − 1 vertices.
Lastly, in case (b) we can assume without loss of generality that

∑2k−3
i=1 pΣ(vi) = 0

with pmax(v2k−2) = 2 or pmax(v2k−1) ≥ 1 holds for both ends of the spine
(otherwise we can apply one of the cases above on the other end), i.e., additionally,
we have

∑2k−3
i=1 pΣ(v
−i+1) = 0. Considering the three largest burning circles

again, we place V3 and V1 at the beginning of the spine if

(2k−5)+(2k−1)−2∑

i=2k−2

pΣ(vi) ≥ 2

and at the end if


−((2k−5)+(2k−1)−2)+1∑

i=
−(2k−2)+1

pΣ(vi) ≥ 2.
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v1 v2 v2k−3v2k−5 v2k−1 v(2k−1)
+(2k−3)

2k−5

V3

2k−1

V1

v�v�−1

2k−3

V2

v�−(2k−1)
+1

v�−(2k−3)
+1

Fig. 10 We delete the grey vertices of the three largest burning circles V1, V2 and V3

As outlined in Fig. 10, we place V2 at the respective other side of the spine and
remove the vertices v1, . . . , v(2k−5)+(2k−1)−2 as well as v
, . . . , v
−(2k−3)+1, and
v
, . . . , v
−((2k−5)+(2k−1)−2)+1 as well as v1, . . . , v2k−3, respectively.
In the remaining case, both sums equal one, pΣ(v2k−1) = pΣ

(
v
−(2k−1)+1

) = 1
and pΣ(vi) = 0 for all other (2k−5)+(2k−1)−2 spine vertices at both ends. Thus,
we incorporate V4, placing it next to V2 without overlap, and additionally remove
2k − 7 spine vertices, one of which has an adjacent leg.
This completes the proof of the Burning Number Conjecture for 2-caterpillars. �
Next, we prove the Burning Number Conjecture for 3-caterpillars with at least
2
⌈√

n
⌉− 1 vertices of degree one.

Theorem 4 The burning number of a 3-caterpillar G with at least 2
⌈√

n
⌉ − 1

vertices of degree one satisfies b(G) ≤ ⌈√
n
⌉
.

Proof Assume G = (V ,E) to be a minimum counterexample regarding the vertex
number n. Hence, b(G) >

⌈√
n
⌉ =: k and |L| ≥ 2k−1 with the notation L := {v ∈

V | deg(v) = 1}. Deleting all leaves, the remaining graph G − L is a 2-caterpillar,
for which the conjecture is proven to be true. Thus

b(G − L) ≤
⌈√

n − |L|
⌉

≤
⌈√

n − 2k + 1
⌉

≤
⌈√

k2 − 2k + 1
⌉

≤ k − 1.

However, if G − L burns after
⌈√

n
⌉− 1 steps, using the same burning strategy, G

can be burnt in
⌈√

n
⌉

steps. This contradicts the assumption; so no counterexample
exists. �
Finally, we can also prove the conjectured upper bound more general for p-
caterpillars with at least 2

⌈√
n
⌉− 1 disjoint legs of length p.

Theorem 5 For any p-caterpillarG with at least 2
⌈√

n
⌉−1 disjoint legs of length

p, we have b(G) ≤ ⌈√
n
⌉
.

Proof Suppose G = (V ,E) is a minimum counterexample regarding p and among
these minimal regarding its order n. Now, let Lp be the set of all leaves at the end
of p-legs. Then again, b(G) >

⌈√
n
⌉ =: k and |Lp| ≥ 2k − 1. Deleting Lp , the

remaining graph G−Lp is a (p− 1)-caterpillar with at least 2k − 1 disjoint legs of
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length p − 1, and thus

b(G − Lp) ≤
⌈√

n − |Lp|
⌉

≤
⌈√

n − 2k + 1
⌉

≤
⌈√

k2 − 2k + 1
⌉

≤ k − 1.

Now, if G − Lp burns after
⌈√

n
⌉ − 1 steps, G can be burnt in

⌈√
n
⌉

steps, a
contradiction. �

5 Concluding Remarks

By the results of this paper, it remains to prove the conjecture for p-caterpillars,
p ≥ 3, with less than 2

⌈√
n
⌉ − 1 disjoint p-legs to complete the proof of the

conjectured bound for all connected graphs. Minimum counterexamples for these
remaining graph classes can be characterised in great detail. We plan to investigate
these characterisations to prove the conjecture in future work.

References

1. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph is hard.
Discrete Appl. Math. 232, 73–87 (2017)

2. Bonato, A., Janssen, J., Roshanbin, E.: How to burn a graph. Internet Math. 12(1–2), 85–100
(2016)

3. Bonato, A., Lidbetter, T.: Bounds on the burning numbers of spiders and path-forests. Theor.
Comput. Sci. 794, 12–19 (2019)

4. Harary, F., Schwenk, A.J.: The number of caterpillars. Discrete Math. 6(4), 359–365 (1973)
5. Hulett, H., Will, T.G., Woeginger, G.J.: Multigraph realizations of degree sequences: maximiza-

tion is easy, minimization is hard. Oper. Res. Lett. 36(5), 594–596 (2008)



An Approximation Algorithm for
Network Flow Interdiction with Unit
Costs and Two Capacities

Jan Boeckmann and Clemens Thielen

Abstract In the network flow interdiction problem, an interdictor aims to remove
arcs of total cost at most a given budget B from a graph with given arc costs and
capacities such that the value of a maximum flow from a source s to a sink t is
minimized. Although the problem has high applicability in real world problems
and is known to be strongly NP-hard, only few polynomial-time approximation
algorithms are known. In this paper, we present a (B + 1)-approximation algorithm
for the special case where arcs have unit costs and may only have a small or a large
capacity. Thereby, we develop the first approximation algorithm for a variant of NFI
whose approximation ratio only depends on the budget available to the interdictor,
but not on the size of the graph.

Keywords Network flow interdiction · Two capacities · Approximation
algorithm

1 Introduction

In the network flow interdiction problem (NFI), an interdictor aims to remove arcs of
total cost at most a given budget B from a graph with given arc costs and capacities
such that the value of a maximum flow from a source s to a sink t is minimized.
The problem has first been stated in 1964 [8] and has been widely studied since
then due to its numerous applications ranging from supply line disruption to critical
infrastructure analysis [6] and drug interdiction [9]. The problem formulation used
in most of the literature today has been introduced by Phillips [7], who shows
multiple hardness results on different classes of graphs. Furthermore, they present
a pseudopolynomial-time algorithm and an FPTAS for the problem on planar
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graphs. Burch et al. [3] and Chestnut and Zenklusen [4] both present algorithms
for the general version of NFI that, for any ε > 0, either returns a (1 + 1

ε
)-

approximate solution or a (super-) optimal solution violating the budget by a factor
of at most (1 + ε). The algorithm by Chestnut and Zenklusen even works for a
generalized class of interdiction problems. So far, the best known polynomial-time
approximation algorithm for NFI presented by Chestnut and Zenklusen [5] achieves
an approximation ratio of 2(n − 1), where n is the number of nodes in the graph.
They also present a hardness of approximation result using a reduction from the
densest k subgraph problem, which is known to be hard to approximate [2] under
certain assumptions.

1.1 Our Contribution

We present a polynomial-time (B + 1)-approximation algorithm for a special case
of NFI. In this problem variant that we call u-NFI, the arcs have unit costs and
arc capacities are restricted to two possible values 1 and u > 1. To the best
of our knowledge, this is the first algorithm for a variant of NFI to achieve an
approximation ratio that only depends on the interdiction budget B, but not on the
size of the graph. Moreover, we show that our analysis of the algorithm is essentially
tight. The problem u-NFI is strongly NP-hard and the best approximation algorithm
known for it is the one presented by Chestnut and Zenklusen [5], which achieves an
approximation ratio of (n− 1) even for the more general version of NFI where arcs
have unit costs but may have arbitrary capacities. Since s can always be separated
from t on simple graphs for any budget B ≥ n − 1 by simply removing the at
most n − 1 arcs starting in s, the approximation ratio we obtain thus dominates the
previously best known approximation ratio for u-NFI on simple graphs.

2 Problem Definition and Structural Results

Let G = (V ,E) be a directed graph with nonnegative arc costs and capacities, let
s �= t be two nodes in G, and let B > 0 be an interdiction budget. The network
flow interdiction problem (NFI) asks for a subset R ⊆ E of arcs of total cost at
most B such that the value of a maximum s-t-flow in the network GR := (V ,E \R)

is minimized. In this paper, we consider the special case where arcs have unit costs
and the arc capacities are restricted to {1, u} for some u > 1. Here, B can clearly be
assumed to be integral and the problem can be formally defined as follows:

Definition 1 (u-NFI)

INSTANCE: A directed graph G = (V ,E), two nodes s �= t in G, a budget
B ∈ N>0, and arc capacities c : E → {1, u}, where u ∈ Q>1.
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TASK: Find a subset R ⊆ E of arcs with |R| ≤ B such that the value val(R) of a
maximum s-t-flow in the graph GR = (V ,E \ R) is minimized.

A proof of strong NP-hardness of the general version of NFI, which also shows
strong NP-hardness of u-NFI, can be found in [9]. Arcs having capacity u are
called large arcs and arcs having capacity 1 are called small arcs, and we denote
the capacity of an arc r ∈ E by cr := c(r). We assume throughout the paper that
the arcs are ordered by some arbitrary but fixed ordering, which is used for the
purpose of tie breaking. The terms cut and s-t-cut are used as synonyms and refer
to a partition V = S∪̇T of the nodes of G such that s ∈ S and t ∈ T . For any
subset R ⊆ E of removed arcs, we use δ+

GR
(S) to denote the set of arcs starting

in S ⊆ V and ending in V \ S in the resulting graph GR = (V ,E \ R), and say
that these arcs are in the cut (S, V \ S) in GR . The capacity of a cut (S, T ) in
the graph GR is defined as the sum of the capacities of the arcs in δ+

GR
(S), and a

minimum cut in GR is a cut of minimum capacity in GR.
An instance of u-NFI is called trivial if its optimum objective value equals

zero. By the well-known max-flow min-cut theorem (cf. [1]), it is easy to check in
polynomial time whether a given instance is trivial by testing whether a minimum
cut in the original graph G with all arc capacities set to one has capacity at
most B. In the following, we assume that all instances are non-trivial. The following
observation also follows directly from the max-flow min-cut theorem:

Observation 2 For any solution R ⊆ E, its objective value val(R) equals the
capacity of a minimum s-t-cut in the graphGR .

The computation of minimum cuts plays an important role in our algorithm and
its analysis. Throughout the paper, we use an arbitrary but fixed (deterministic)
algorithm to compute a minimum s-t-cut in a given graph in polynomial time.1

For a solution R, we denote the minimum cut in the resulting graph GR computed
by this minimum cut algorithm by CR = (SR, TR).

Lemma 3 For a solution R ⊆ E, either R ⊆ δ+
G(SR), or val(R) can be reduced by

removing an arc in R \ δ+
G(SR) from R and adding an arc from δ+

G(SR) \ R to R.

Proof Assume that there exists an arc r̂ ∈ R \ δ+
G(SR). Since the instance is non-

trivial, there must also exist an arc r ′ ∈ δ+
G(SR) \ R. Now let R′ := (R \ {r̂}) ∪ {r ′}.

By Observation 2, removing r̂ from R does not change val(R), but adding r ′ to R

decreases val(R) by cr ′ > 0. Therefore, val(R′) = val(R) − cr ′ < val(R). �
Corollary 4 For any optimal solution ROPT, there exists a cut (S, T ) such that
ROPT ⊆ δ+

G(S). �
While any solution R gives rise to a cut CR , a given cut also gives rise to a

solution by using the interdiction budget B to reduce the capacity of the cut as
far as possible, which can be easily achieved by first removing as many large arcs

1For an overview of state-of-the-art minimum cut algorithms, we refer to [1].
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from C as possible and then using any remaining budget to remove small arcs. This
motivates the following definition:

Definition 5 For an s-t-cut C in G, we define RC ⊆ E as the solution containing
the B arcs of largest capacity from the cut C, where ties are broken by the
fixed ordering of the arcs. Furthermore, we define the value of the cut C as
val(C) := val(RC) and call the cut C optimal if RC is an optimal solution.

Clearly, if an (approximately) optimal cut C is known, the corresponding
(approximately) optimal solution RC can easily be computed in polynomial time.
Therefore, the challenge in u-NFI lies in the computation of a cut C whose value
val(C) is as low as possible. Since val(C) = val(RC) depends on the number of
large arcs and the number of small arcs in C, this motivates the following definition:

Definition 6 For an s-t-cut C, we denote the number of large arcs in C in the
original graph G by q(C), and the number of small arcs by p(C). For q ∈ N,
we define Cq as the set of cuts with exactly q large arcs in G. A cut of minimum
capacity in G amongst all cuts in Cq is called a q-min-cut.

Note that Cq might be empty for some q ∈ N, in which case no q-min-cut exists.
If Cq is nonempty, however, the fact that every cut must contain at least B + 1 arcs
due to the non-triviality of the instance implies that the original capacity of any cut
in Cq can be reduced by the same amount by removing at most B arcs. This yields:

Lemma 7 Any optimal cut COPT must be a q-min-cut for q = q(COPT) (and any
q-min-cut for q = q(COPT) is then also optimal). �

In order to find a good solution for u-NFI, our algorithm iteratively computes
q-min-cuts for different values of q . The numbers of large arcs in the following two
cuts provide bounds on the values of q to consider (as we show in Theorem 10):

Definition 8 We define Cl as the cut with the least number of arcs in G that is
found by applying the minimum cut algorithm to G with all arc capacities set to
one. Similarly, we let Cm denote the minimum cut in G found by the minimum cut
algorithm applied to G with the original arc capacities.

The following observation follows by the same argument as Lemma 7:

Observation 9 The cut Cl is a q(Cl)-min-cut and the cut Cm is a q(Cm)-min-cut.
Moreover, Cl is optimal if it contains at most B large arcs, and Cm is optimal if it
contains at least B large arcs. �
Due to Observation 9, we assume in the following that q(Cl) > B and q(Cm) < B.

Theorem 10

(i) If there exists a q-min-cut Ĉ for some q > q(Cl), then val(Cl) < val(Ĉ).
(ii) If there exists a q-min-cut Ĉ for some q < q(Cm), then val(Cm) < val(Ĉ).

Thus, there exists an optimal cut that is a q-min-cut for some q(Cm) ≤ q ≤ q(Cl).
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Proof We only show (i). The proof of (ii) is analogous and the existence
of an optimal q-min-cut for some q(Cm) ≤ q ≤ q(Cl) follows directly
from (i), (ii), and Lemma 7. So let Ĉ be a q-min-cut for some q > q(Cl). Then,
q + p(Ĉ) ≥ q(Cl) + p(Cl) as Cl is a cut with the least number of arcs. Moreover,
q > q(Cl) > B and u > 1, so we obtain that

val(Cl) = (q(Cl) − B) · u + p(Cl)

= (q − B) · u + p(Ĉ) −
(
(q − q(Cl)) · u + p(Ĉ) − p(Cl)

)

< val(Ĉ) − (q − q(Cl) + p(Ĉ) − p(Cl)) ≤ val(Ĉ). �

3 Capacity-γ -Min-Cuts

Lemma 7 and Theorem 10 clearly motivate to take a closer look at the problem of
computing a q-min-cut (or returning that there exists none) for any given q . This
problem, however, is strongly NP-hard in general since, by Theorem 10, u-NFI can
be solved by computing q-min-cuts for polynomially many values of q .

Corollary 11 Computing a q-min-cut (or returning that none exists) for some given
q ∈ N is strongly NP-hard. �
The basic idea of our algorithm is to compute q-min-cuts for some values of q by
computing minimum cuts in the original graph G when varying the capacity of the
large arcs between 1 and u. This motivates the following definition.

Definition 12 For γ ≥ 1, the graph Gγ is defined to be the original graph G with
large arcs having capacity γ instead of u. For a cut C, we denote its capacity in the
original graph G (with large arcs having capacity u) by cap(C) and its capacity in
Gγ by capγ (C). A minimum cut in Gγ is called a capacity-γ -min-cut.

Clearly, the cut Cl is a capacity-1-min-cut and the cut Cm is a capacity-u-min-cut.

Lemma 13 If Cγ is a capacity-γ -min-cut for some γ ≥ 1, then it is a q-min-cut
for q = q(Cγ ).

Proof Let Cγ be a capacity-γ -min-cut, and let q = q(Cγ ), so that Cγ ∈ Cq and
cap(Cγ ) = q · u + p(Cγ ). Suppose for the sake of a contradiction that there exists
a cut Ĉ ∈ Cq with cap(Ĉ) < cap(Cγ ). Then it holds that q · u + p(Ĉ) = cap(Ĉ) <

cap(Cγ ) = q · u + p(Cγ ) and, therefore, p(Ĉ) < p(Cγ ). But this means that
capγ (Ĉ) = q · γ + p(Ĉ) < q · γ + p(Cγ ) = capγ (Cγ ), which is a contradiction
to Cγ being a capacity-γ -min-cut. �

The next lemma states that the number of large arcs in a capacity-γ -min-cut
decreases monotonically as γ increases.
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Lemma 14 If Cγ1 is a capacity-γ1-min-cut and Cγ2 is a capacity-γ2-min-cut for
1 ≤ γ1 < γ2 ≤ u, then q(Cγ1) ≥ q(Cγ2).

Proof Let q1 := q(Cγ1), p1 :=p(Cγ1) and q2 := q(Cγ2), p2 :=p(Cγ2). By def-
inition of the two cuts, we have capγ1(Cγ1) ≤ capγ1(Cγ2) and capγ2(Cγ2) ≤
capγ2(Cγ1), which yields

q1 · γ1 + p1 = capγ1(Cγ1) ≤ capγ1(Cγ2) = q2 · γ1 + p2, and (1)

q2 · γ2 + p2 = capγ2(Cγ2) ≤ capγ2(Cγ1) = q1 · γ2 + p1. (2)

Adding (1) and (2) yields q1 · γ1 + p1 + q2 · γ2 + p2 ≤ q2 · γ1 + p2 + q1 · γ2 + p1,
which means that q1 ≥ q2 since γ1 < γ2. �
We are now ready to state our algorithm in Algorithm 1. It uses the recursive
bisection procedure stated in Algorithm 2 in order to compute capacity-γ -min-cuts.
Whenever two cuts C1 and C2 have been found for γ1 and γ2, respectively, the next
candidate value γ̂ is chosen as the value for which the capacities of C1 and C2
in Gγ̂ are equal, and a capacity-γ̂ -min-cut Ĉ is computed. If Ĉ has a lower capacity
than C1 (and also C2) in Gγ̂ , the bisection method is called recursively for C1 and Ĉ

and for C2 and Ĉ. Otherwise, the recursion ends and the cuts C1 and C2 are returned.

Lemma 15 Let C1 �= C2 be two cuts for which bisection(C1, C2) is called
during the execution of Algorithm 1, and let γ1, γ2 be the values of γ for which C1

Algorithm 1: Bisection-cut
1 Algorithm bisec-cut()
2 Compute Cl and Cm

3 if q(Cl) ≤ B then
4 return Cl

5 else if q(Cm) ≥ B then
6 return Cm

7 else
8 return RC for C being a cut of minimum value val(C) in bisection(Cl, Cm)
9 end

Algorithm 2: Bisection-procedure

1 Procedure bisection(C1 , C2)

2 Let γ̂ := p(C2)−p(C1)
q(C1)−q(C2)

and compute a capacity-γ̂ -min-cut Ĉ

3 if capγ̂ (Ĉ) ≤ capγ̂ (C1) and q(Ĉ) /∈ {q(C1), q(C2)} then
4 return bisection(C1, Ĉ) ∪ bisection(Ĉ, C2)
5 else
6 return {C1, C2}
7 end
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and C2, respectively, have been computed as capacity-γ -min-cuts during the
algorithm. Then 1 ≤ γ1 ≤ γ̂ ≤ γ2 ≤ u.

Proof We show by induction over the recursion tree produced by the recursive
calls of the bisection procedure that, whenever bisection(C1, C2) is called
for two cuts C1, C2 as in the claim, then either 1 ≤ γ1 < γ̂ < γ2 ≤ u, or
γ̂ ∈ {γ1, γ2} and no further recursive calls of the bisection procedure are made
within bisection(C1, C2). Since Algorithm 1 first calls bisection (Cl, Cm)
and the cuts Cl, Cm obtained for γ = 1 and γ = u, respectively, satisfy the
assumptions of the lemma, this will show the claim.

So let bisection(C1, C2) be called during the algorithm and assume
that the statement holds for all predecessors in the recursion tree. In particular,
it holds for the parent in the recursion tree. Without loss of generality, let
bisection(C′, C2) be the parent recursion step, where C′ is a cut that has
been previously computed as a capacity-γ ′-min-cut during the algorithm. Then
the cut Ĉ computed in the parent recursion step equals C1 and is computed
as a capacity-γ1-min-cut. Hence, applying the induction hypothesis for the
parent recursion step implies that 1 ≤ γ ′ < γ1 < γ2 ≤ u. Now consider
the call to bisection(C1, C2), which computes a new capacity-γ̂ -min-
cut. Since 1 ≤ γ1 < γ2 ≤ u, Lemma 14 shows that q(C1) ≥ q(C2). As
bisection(C1, C2) has been called, we must also have q(C1) �= q(C2) by
line 3 in the bisection procedure, which yields q(C1) > q(C2). For the sake
of a contradiction, suppose that γ̂ < γ1. By the choice of γ̂ , it holds that
γ̂ · q(C1) + p(C1) = γ̂ · q(C2) + p(C2). But by using that q(C1) > q(C2),
this yields

γ1 · q(C1) + p(C1) = γ̂ · q(C1) + p(C1) + (γ1 − γ̂ ) · q(C1)

> γ̂ · q(C2) + p(C2) + (γ1 − γ̂ ) · q(C2) = γ1 · q(C2) + p(C2),

which means that C1 is not a capacity-γ1-min-cut. This is a contradiction to the
choice of C1, so we obtain that γ̂ ≥ γ1. Along the same lines, one can prove that
γ̂ ≤ γ2. Consequently, we obtain that 1 ≤ γ1 ≤ γ̂ ≤ γ2 ≤ u.

It remains to show that, if γ̂ ∈ {γ1, γ2}, no further recursive calls of the
bisection procedure are made within bisection(C1, C2). Assume without loss
of generality that γ̂ = γ1. Since the algorithm used for computing a capacity-γ̂ -min-
cut (i.e., a minimum cut in Gγ̂ ) in line 3 of the bisection procedure is deterministic,
it then follows that Ĉ = C1 and, in particular, q(Ĉ) = q(C1). This implies that no
further recursion steps are made within bisection(C1, C2), which completes
the proof. �

Using Lemmas 14 and 15, it is now easy to see that Algorithm 1 runs in
polynomial time: A single execution of the bisection procedure can be performed
in polynomial time since a capacity-γ̂ -min-cut can be obtained by computing
a minimum cut in Gγ̂ . Moreover, whenever bisection(C1, C2) is called in
Algorithm 1, Lemma 15 shows that 1 ≤ γ1 ≤ γ̂ ≤ γ2 ≤ u for γ1, γ2 as in the
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lemma. Thus, either γ̂ ∈ {γ1, γ2}, in which case the computed capacity γ̂ -min-
cut Ĉ equals C1 or C2 since the algorithm used for computing a capacity-γ̂ -min-cut
in line 3 of the bisection procedure is deterministic, or 1 ≤ γ1 < γ̂ < γ2 ≤ u,
so Lemma 14 yields q(C2) ≤ q(Ĉ) ≤ q(C1). Thus, since no recursive call to the
bisection procedure is made if q(Ĉ) ∈ {q(C1), q(C2)}, at most three q-min-cuts can
be computed within Algorithm 1 for each 0 ≤ q ≤ m (where m is the number of
arcs in G), i.e., there are at most 3(m + 1) calls of the bisection procedure.

We now show that the algorithm is a (B+1)-approximation algorithm for u-NFI.
To this end, first recall that we assume q(Cl) > B and q(Cm) < B, so the algorithm
does actually call the bisection procedure.

Proposition 16 LetCOPT be an optimal cut. If Algorithm 1 finds two cutsC,C′ such
that B ≤ q(C′) ≤ q(COPT) ≤ q(C) or such that q(C′) ≤ q(COPT) ≤ q(C) ≤ B,
then the algorithm returns an optimal solution.

Proof First note that, if q(COPT) = q(C) or q(COPT) = q(C′), then C or C′,
respectively, is a q(COPT)-min-cut by Lemma 13, which is optimal by Lemma 7.
Hence, we may assume in the following that q(C′) < q(COPT) < q(C).

Moreover, we may assume without loss of generality that C is the cut in the
set bisection(Cl, Cm) with minimum value q(C) such that q(C) > q(COPT), and
that C′ is the cut in bisection(Cl, Cm) with maximum value q(C′) such that q(C′) <
q(COPT). This means that bisection(C,C′) was called at some point in time during
the algorithm and returned {C,C′} without any further recursive calls.

Case 1: B ≤ q(C′) < q(COPT) < q(C).
Let γ̂ = p(C ′)−p(C)

q(C)−q(C ′) be the value for which a capacity-γ̂ -min-cut is computed in
bisection(C,C′). Since q(COPT) /∈ {q(C), q(C′)} and bisection(C,C′) returned
{C,C′} without any further recursive calls, we must have capγ̂ (COPT) ≥
capγ̂ (C) = capγ̂ (C′). As q(COPT) > q(C′) and γ̂ ≤ u, this yields that also
capu(COPT) ≥ capu(C′). Therefore, since q(COPT) > q(C′) ≥ B,

val(COPT) = capu(COPT) − B · u ≥ capu(C′) − B · u = val(C′),

which means that C′ is an optimal cut in bisection(Cl, Cm).
Case 2: q(C′) < q(COPT) < q(C) ≤ B

Then val(C) = q(C) + p(C) − B and val(COPT) = q(COPT) + p(COPT) − B.
With γ̂ = p(C ′)−p(C)

q(C)−q(C ′) as in Case 1, we again have capγ̂ (COPT) ≥ capγ̂ (C).

As q(C) > q(COPT) and γ̂ ≥ 1, this yields that also cap1(COPT) ≥ cap1(C).
Therefore,

val(COPT) = q(COPT) + p(COPT) − B = cap1(COPT) − B ≥ cap1(C) − B = val(C),

which means that C is an optimal cut in bisection(Cl, Cm). �
In the following, let C1 denote a cut in bisection(Cl, Cm) with minimum

value q(C1) such that q(C1) > B, and let C2 denote a cut in bisection(Cl, Cm)
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with maximum value q(C2) such that B > q(C2) (both of these cuts exist due to the
assumption that q(Cl) > B and q(Cm) < B). Note that, by Lemma 16, Algorithm 1
can only return a suboptimal solution if every optimal cut COPT as in Theorem 10
satisfies q(C2) < q(COPT) < q(C1). Hence, in the following, we focus on this case
and fix an optimal cut COPT with q(C2) < q(COPT) < q(C1).

Lemma 17 For the numbers of small arcs, it holds that p(C1) < p(COPT) <

p(C2).

Proof If we had p(COPT) ≤ p(C1), then q(C1) > q(COPT) would yield
capγ (C1) = γ · q(C1) + p(C1) > γ · q(COPT) + p(COPT) = capγ (COPT) for
any γ ≥ 1, which means that C1 would not be a capacity-γ -min-cut for any γ and
could, thus, not be in bisection(Cl, Cm).

If we had p(COPT) ≥ p(C2), then, since q(COPT) > q(C2), the cut C2 would
contain strictly less large arcs and no more small arcs than COPT, which means
that COPT could not be an optimal cut. �

We now prove a central result in our analysis of Algorithm 1, which shows the
approximation guarantee of the algorithm conditioned on the existence of an affine
function with certain properties. Such an affine function will afterwards be derived
from the optimal cut COPT. To state the result, we need the following definition.

Definition 18 Let g(γ ) = qg · γ + pg with constants qg, pg ∈ Q be an affine
function of γ . Then its interdicted value is defined as val(g) := qg + pg − B.

Proposition 19 Let γ̂ := p(C2)−p(C1)
q(C1)−q(C2)

. If there exists an affine function g(γ ) = qg ·
γ + pg with

(a) qg ≤ B,
(b) g(γ̂ ) ≥ capγ̂ (C1) = capγ̂ (C2),
(c) q(C1) − qg ≥ 1,
(d) val(g) = val(COPT),

then Algorithm 1 is a (B + 1)-approximation for u-NFI.

Proof First note that, by definition of C1 and C2, bisection (C1, C2) must have
been called at some point during the execution of Algorithm 1, so Lemma 15 yields
that 1 ≤ γ̂ ≤ u.

The rest of the proof is divided into three steps. First, we show that the algorithm
is an r-approximation for some r > 1 if val(C2) is large enough. Afterwards, we
show that the algorithm is an r-approximation if val(C2) is small enough. Finally,
we combine the results of the previous steps and prove that, for r :=B + 1, one of
the two conditions on val(C2) guaranteeing that the algorithm is an r-approximation
must always hold.
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For the first step, we start by defining a function f2 by f2(γ ) := capγ (C2) −
g(γ ) = γ · (q(C2) − qg) + p(C2) − pg . As g(γ̂ ) ≥ capγ̂ (C1) = capγ̂ (C2) by (b),
it holds that

0 ≥ f2(γ̂ ) = γ̂ · (q(C2) − qg) + p(C2) − pg

= (q(C2) − qg) + p(C2) − pg + (γ̂ − 1) · (q(C2) − qg)

= f2(1) + (γ̂ − 1) · (q(C2) − qg).

This yields that

− f2(1) ≥ (γ̂ − 1) · (q(C2) − qg)

⇒ g(1) − cap1(C2) ≥ (γ̂ − 1) · (q(C2) − qg)

⇒ g(1) ≥ (γ̂ − 1) · (q(C2) − qg) + cap1(C2)

⇒ qg + pg − B ≥ (γ̂ − 1) · (q(C2) − qg) + q(C2) + p(C2) − B

⇒ val(g) ≥ (γ̂ − 1) · (q(C2) − qg) + val(C2)

⇒ val(COPT) ≥ (γ̂ − 1) · (q(C2) − B) + val(C2) (by (a) and (d))

Now let r > 1. Since the cut C2 is found by the algorithm, the algorithm is an
r-approximation if val(C2) ≤ r ·val(COPT) or, equivalently, if val(COPT)/val(C2) ≥
1/r . By the inequality above, this holds if

(γ̂ − 1) · (q(C2) − B) + val(C2)

val(C2)
≥ 1

r

⇔ (γ̂ − 1) · (q(C2) − B)

val(C2)
≥ 1 − r

r

⇔ r

r − 1
· (γ̂ − 1) · (B − q(C2)) ≤ val(C2) (3)

Similar to the first step, for the second step, define a function f1 by
f1(γ ) := capγ (C1)− g(γ ) = γ · (q(C1)− qg)+p(C1)−pg. As g(γ̂ ) ≥ capγ̂ (C1)

by (b), it holds that

f1(γ̂ ) ≤ 0

⇒ γ̂ · (q(C1) − qg) + p(C1) − pg ≤ 0

⇒ (q(C1) − qg) + p(C1) − pg + (γ̂ − 1) · (q(C1) − qg) ≤ 0

⇒ f1(1) + (γ̂ − 1) · (q(C1) − qg) ≤ 0

⇒ f1(1) ≤ (γ̂ − 1) · (qg − q(C1))
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Rewriting val(g) = q(C1)+p(C1)+ f1(1)−B and using that val(g) = val(COPT)

by (d), we, thus, obtain

val(COPT) = val(g) ≥ q(C1) + p(C1) + (γ̂ − 1) · (q(C1) − qg) − B.

Now again let r > 1. Then the algorithm is an r-approximation if val(C2) ≤ r ·
val(COPT), which, by the above, holds if

val(C2) ≤ r · (q(C1) + p(C1) + (γ̂ − 1) · (q(C1) − qg) − B
)
.

Using that q(C1) − qg ≥ 1 by (c), the algorithm is, thus, an r-approximation if

val(C2) ≤ r · (q(C1) + p(C1) + (γ̂ − 1) − B
)
. (4)

For the third and last step, we use that, if the algorithm is not an r-approximation,
then Inequalities (3) and (4) must both be violated, i.e., we must have

r

r − 1
· (γ̂ − 1) · (B − q(C2)) > val(C2) > r · (q(C1) + p(C1) + (γ̂ − 1) − B

)
.

(5)

For the sake of a contradiction, suppose that the algorithm is not a (B + 1)-
approximation. Then, by setting r :=B + 1 in (5), it holds that

1

B
· (γ̂ − 1) · (B − q(C2)) > q(C1) + p(C1) + (γ̂ − 1) − B (6)

If γ̂ = 1, plugging it into (6) yields 0 > q(C1) + p(C1) − B, which contradicts
the assumption that the instance is non-trivial. If γ̂ > 1, dividing (6) by γ̂ − 1 > 0
yields

1

B
· (B − q(C2))

︸ ︷︷ ︸
≤1

>
q(C1) + p(C1) − B

(γ̂ − 1)︸ ︷︷ ︸
>0

+1,

which is a contradiction (the fraction on the right hand side is strictly positive due
to the assumption that the instance is non-trivial). �
Lemma 20 If there exists an optimal cut COPT with q(COPT) ≤ B, then the
algorithm is a (B + 1)-approximation.

Proof Define an affine function g by g(γ ) := q(COPT) · γ + p(COPT). It is easy to
check that this function fulfills the conditions of Proposition 19. �
Lemma 21 If there exists an optimal cut COPT with q(COPT) > B, then the
algorithm is a (B + 1)-approximation.
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Proof We show that the affine function g defined by g(γ ) :=B · γ + p(COPT) +
(q(COPT) − B) · u fulfills the conditions of Proposition 19. Conditions (a) and (c)
follow immediately from the definition of g. Condition (d) is fulfilled because
val(g) = qg + pg − B = p(COPT) + (q(COPT) − B) · u = val(COPT).

To show Condition (b), we use that g(u) = val(g)+B ·u = val(COPT)+B ·u =
capu(COPT). As qg = B < q(COPT), this also yields g(γ̂ ) ≥ capγ̂ (COPT). Moreover,
capγ̂ (COPT) ≥ capγ̂ (C1) = capγ̂ (C2): If not, the capacity-γ̂ -min-cut Ĉ computed
during the call to bisection (C1, C2) would satisfy capγ̂ (Ĉ) ≤ capγ̂ (COPT) <

capγ̂ (C1) = capγ̂ (C2) and, thus, also q(Ĉ) /∈ {q(C1), q(C2)} since q(Ĉ) = q(C1)

or q(Ĉ) = q(C2) together with capγ̂ (Ĉ) < capγ̂ (C1) = capγ̂ (C2) would imply
that C1 or C2, respectively, could not be a capacity-γ -min-cut for any γ . �
Theorem 22 Algorithm 1 is a (B + 1)-approximation algorithm for u-NFI. �

Finally, we provide an example where the approximation ratio is almost tight.
The graph in this example is series-parallel, which means that our analysis is almost
tight even for series-parallel graphs.

Example 23 Let G = (V ,E) be given by V = {s, v1, v2, t} and E = E1 ∪E2 ∪E3,
where E1 consists of (B+1)2 small parallel arcs from s to v1, E2 consists of B large
and B + 1 small parallel arcs from v1 to v2, and E3 consists of B + 1 large parallel
arcs from v2 to t .

This graph contains only three cuts. When choosing u large enough compared
to B, the minimum cut Cm in G will be the cut ({s}, {v1, v2, t}), while the unique
optimal cut will be COPT = ({s, v1}, {v2, t}). The least cut Cl is given by the third cut
({s, v1, v2}, {t}). We start by showing that COPT might not be found by Algorithm 1
when calling bisection(Cl, Cm). To this end, note that we obtain γ̂ = B + 1 in
the call to bisection(Cl, Cm), and all three cuts have the same capacity of (B + 1)2

in Gγ̂ . Thus, the deterministic minimum cut algorithm might return Cl or Cm as the
minimum cut in Gγ̂ , in which case COPT is not found by the algorithm—which we
assume in the following.

For the values of the cuts, we have val(Cl) = u, val(COPT) = B + 1 and
val(Cm) = B2 + B + 1. Thus, for u > B2 + B + 1, the cut Cm will be the cut
returned by the algorithm and val(Cm) = B2 + B + 1 > B2 + B = B · val(COPT),
which shows that the algorithm is not a B-approximation algorithm for u-NFI.

4 Conclusion

To the best of our knowledge, the approximation algorithm for u-NFI presented
in this paper is the first approximation algorithm for any variant of NFI whose
approximation ratio only depends on the budget available to the interdictor, but not
on the size of the graph. A noteworthy property of the algorithm is that the budget B
is only used for the final choice of which cut to return from the set of cuts computed
during the algorithm. This means that a single execution of the algorithm returns
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a set of cuts that contains a (B + 1)-approximate cut for any possible interdiction
budget B.

An interesting question for future research is whether the techniques developed
here for u-NFI can be generalized in order to construct approximation algorithms
for the case of three or more different arc capacities.
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On the Benchmark Instances for the Bin
Packing Problem with Conflicts

Tiziano Bacci and Sara Nicoloso

Abstract Many authors, mainly in the context of the Bin Packing Problem with
Conflicts, used the random graph generator proposed in “Heuristics and lower
bounds for the bin packing problem with conflicts” [M. Gendreau, G. Laporte, and
F. Semet, Computers & Operations Research, 31:347–358, 2004]. In this paper
we show that the graphs generated in this way are not arbitrary but threshold
ones. Computational results show that instances of the Bin Packing Problem with
Conflicts on threshold graphs are easier to solve w.r.t. instances on arbitrary graphs.

Keywords Bin packing with conflicts · Threshold graphs · Random graph
generator

1 Introduction

The Bin Packing Problem with Conflicts (BPPC), first introduced in a scheduling
context in [14], is defined as follows: given a graph G = (V ,E), a nonnegative
integer weight wi for each vertex i ∈ V , and a nonnegative integer B, find a partition
of V into k subsets V1, . . . , Vk , such that the sum of the weights of the vertices
assigned to same subset is less than or equal to B, two vertices connected by an
edge do not belong to the same subset, and k is minimum.

The minimum value of k will be denoted kBPPC . The graph G = (V ,E) is called
conflict graph and two vertices connected by an edge are said to be in conflict.

BPPC generalizes two well known combinatorial optimization problems, the
Bin Packing Problem and the Vertex Coloring Problem. In fact, BPPC reduces to
Bin Packing when the edge set E of the graph G is empty, and it reduces to Vertex
Coloring when B ≥ ∑

i∈V wi or when G is complete. Observe that Vertex Coloring
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is solvable in linear time on threshold graphs, nevertheless BPPC with a threshold
conflict graph is NP -hard because Bin Packing is [10].

In this paper we show that a popular random graph generator [11], widely used in
the context of the Bin Packing Problem with Conflicts, generates threshold graphs.
Threshold graphs are very special interval graphs, contradicting the authors [11]
who claim that “No assumptions are made on the adjacency structure of the graph”,
and strengthening [28] where the authors recognise the graphs as being arbitrary
interval graphs [28].

In Sect. 2 we recall the definition of threshold graphs and discuss some of their
peculiar properties, in Sect. 3 we present the generator defined in [11] showing
that it produces threshold graphs, in Sect. 4 we analyse the effects of using this
generator on instances of Bin Packing Problem with Conflicts. Concluding remarks
are discussed in Sect. 5.

2 Threshold Graphs

A graph G = (V ,E) is a threshold graph if there exist a real number d (the
threshold) and a weight px for every vertex x ∈ V such that (i, j) is an edge iff
(pi + pj )/2 ≤ d (see [12]). W.l.o.g. from now on we assume that px ∈ [0, 1] ∀x
(as a consequence it makes sense to choose d ∈ [0, 1]).

According to this definition it follows that a vertex i is connected to all the
vertices j such that pj ≤ 2d − pi . Let N(x) denote the set of vertices adjacent
to x and let deg(x) = |N(x)|. Then N(h) ⊇ N(k) and deg(h) ≥ deg(k) if and only
if ph ≤ pk .

A threshold graph has many peculiar properties as it is at the same time an
interval graph, a co-interval graph, a cograph, a split graph, and a permutation
graph. In addition, its complement, where (i, j) is an edge iff (pi + pj )/2 > d ,
is a threshold graph too.

W.l.o.g. from now on we assume that the vertices of a threshold graph G are
numbered in such a way that i < j if and only if deg(i) ≥ deg(j). Then the n × n

symmetric adjacency matrix M = [mi,j ] of G always appears as in Fig. 1, where an
entry 0 is coloured in white and an entry 1 is highlighted in grey, and mi,i = 0 for
i = 1, . . . , n.
By what above, we observe what follows.

1. For each row i, let last_col(i) = max{j : mi,j = 1, j = 1, . . . , n} if mi,1 = 1,
and last_col(i) = 0 if mi,1 = 0 (see Fig. 1b); hence last_col(i) ≥ last_col(i +
1).

2. Let t = min{j : mj,j+1 = 0, j = 1, . . . , n}. Then the set of vertices {1, . . . , t}
induces a maximum clique of size ω(G) = t (see Fig. 1a). In fact, by definition,
mt−1,t = 1, thus last_col(t − 1) ≥ t and, by Point 1, mi,j = 1 for i = 1, . . . , t
and j = 1, . . . , t , i �= j .
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Fig. 1 Examples of adjacency matrices of threshold graphs with n = 60 nodes and threshold (a)
d = 0.2, (b) d = 0.5, and (c) d = 0.7

3. The set of vertices {t, . . . , n} induces a maximum independent set of size
n − t + 1. In fact, by definition, mt,t+1 = 0 and mt,t−1 = 1 (as mt−1,t = 1)
thus last_col(t) = t − 1 and mi,j = 0 for i = t, . . . , n and j = t, . . . , n (see
Point 1.).

4. Let g = last_col(n) (see Fig. 1c). If g ≥ 1, vertex i, for i = 1, . . . , g, is
connected to any other vertex.

5. Recalling that a threshold graph G is a particular interval graph, it is always
possible to derive a family of (open) intervals whose intersection graph is G,
namely: to each vertex j = t, . . . , n, associate the interval Ij = (lj , rj ) =
(j − t, j − t + 1); to each vertex j = 1, . . . , t − 1, associate the interval Ij =
(lj , rj ) = (0, rlast_col(j)) = (0, last_col(j) − t + 1) (we remark that rj ≥ 1 as
last_col(j) ≥ t}). See an example in Fig. 2.

6. The edge density δ = 2|E|/(n(n − 1)) of G is not equal to the threshold d ,
generally speaking.

For n → ∞ and p1, . . . , pn uniformly distributed in [0, 1], one has:

7. ω(G) = t = nd .
8. The edge density δ = 2|E|/(n(n − 1)) of G depends on d . Precisely

δ = f (d) =

⎧
⎪⎨

⎪⎩

2(nd)2−nd
n(n−1) for d ≤ 0.5

n(n−1)−2n2(1−d)2−n(1−d)
n(n−1) for d ≥ 0.5

In fact, for d ≤ 0.5 the 2|E| 1’s are in the area A ∪ B ∪ C (see Fig. 3a). In a
similar way one can compute the number of 1’s in the matrix when d ≥ 0.5.

9. g = 0 when d ≤ 0.5, and g = n(2d − 1) when d ≥ 0.5 (see Fig. 3b).
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Fig. 2 (a) The adjacency matrix of threshold graph with n = 20 nodes and (b) the corresponding
opened interval model

According to Points 2 and 3 above, when d ≥ 0.5, in any optimal solution of BPPC

one has Vi = {i} for i = 1, . . . , g. The remaining sets Vi for i ≥ g + 1 can
be determined by solving a smaller instance Q defined on the last n − g vertices
(observe that the problem becomes simpler and simpler as d increases). The conflict
graph of Q is a threshold graph with expected edge density 0.5, thus it contains a
maximum clique of expected size (n − g)/2. According to Point 7, when n = 120
and d = 0.9, a lower bound for kBPPC is nd = 108 (indeed this value appears in
Table 2, column LBO, Size 120, d = 90 in [9]).

Fig. 3 The expected adjacency matrix when n → ∞ and with threshold (a) d ≤ 0.5 and (b)
d ≥ 0.5
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3 On the Random Graph Generator Proposed in [11]

In [11] the following random graph generator is described: “A value pi was first
assigned to each vertex i ∈ V according to a continuous uniform distribution on
[0, 1]. Each edge (i, j) of G was created whenever (pi +pj )/2 ≤ d , where d is the
expected density of G.”.

This generator clearly produces a threshold graph whose expected edge density
is not d as claimed but it is the one discussed in Points 6 and 8 of Sect. 2.

To get a threshold graph with expected edge density δ one has to set

d =

⎧
⎪⎨

⎪⎩

1+√
1+8n(n−1)δ

4n for δ ≤ 0.5

1 + 1−√
1+8n(n−1)(1−δ)

4n for δ ≥ 0.5

Already for n ≥ 100 these values can be approximated to d = √
δ/2 and

d = 1 − √
(1 − δ)/2, respectively.

The generator in [11] has been improperly used to generate arbitrary graphs [3–
9, 13, 15–28, 30, 31]. In particular, the authors in [26] made publicly available
“benchmark” instances generated in this way (see http://or.dei.unibo.it/library/
bin-packing-problem-conflicts) and used by many authors [4–9, 13, 15–17, 19–
21, 25, 27, 28, 30, 31].

Most of the authors using the generator in [11] claim that they group the graphs
of their test bed by edge densities, but actually they group the graphs by threshold
values. Our analysis of the instances introduced in [26] shows that the relation
between the threshold d and the corresponding edge density δ is the following.

d 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

δ 0.00 0.02 0.08 0.18 0.32 0.50 0.68 0.82 0.92 0.98

We remark that the values of δ coincide with those which can be computed by the
formula of Point 8 in Sect. 2.

4 Computational Results on Different Graph Classes

Since threshold graphs are a subclass of interval graphs, which are in their turn
a subclass of arbitrary graphs, we expect that BPPC on threshold graphs is the
easiest to solve. To prove our claim we conducted some computational experiments.

By X(n, δ) we denote a set of ten instances with n vertices, bound B = 150, and
conflict graph X with expected edge density δ ∈ {0.02, 0.08, 0.18, 0.32, 0.50, 0.68,
0.82, 0.92, 0.98} (the same densities of the instances used in [26]). In particular, we

http://or.dei.unibo.it/library/bin-packing-problem-conflicts
http://or.dei.unibo.it/library/bin-packing-problem-conflicts
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choose n ∈ {250, 1000} and X ∈ {T , I,A}, where X = T (I,A, respectively) when
the conflict graph is a threshold (interval, arbitrary, respectively) graph.

The T (250, δ) and T (1000, δ) instances are exactly those in the classes 2 and 4
described in [26], respectively. Precisely, given n, the weight of the i-th vertex of
the k-th instance of T (n, δ) is the same for all δ.

As for the I (n, δ), the weight of the i-th vertex of the k-th instance coincides with
the weight of the i-th vertex of the k-th instance of T (n, δ), and the arbitrary interval
conflict graphs have been generated according to the interval graph generator in [2].1

As for the A(n, δ), the weight of the i-th vertex of the k-th instance coincides
with the weight of the i-th vertex of the k-th instance of T (n, δ), and the arbitrary
conflict graphs have been generated as in [28]: “We began with the empty graph. We
iteratively selected an item pair (i, j) at random (with uniform distribution); then
edge (i, j) was added to the graph if it was not already defined. The procedure was
interrupted as soon as the desired graph density was reached.”.

We solved to optimality the T (n, δ), I (n, δ), and A(n, δ) instances for all n and δ

by means of the Vector Packing Solver 3.1.2 (VPS for short) defined in [4], available
at http://vpsolver.dcc.fc.up.pt/. This method is based on an arc-flow formulation
with side constraints and builds very strong integer programming models that can be
given in input to any state-of-the-art mixed integer programming solver. Actually,
the arc-flow formulation is derived from a suitable graph which is preliminarily
generated and whose size increases rapidly with B. We remark that the algorithm
is applied to many classical combinatorial problems: in particular, it is one of the
best behaving exact approaches for the instances introduced in [26], which are all
solved to optimality within 50 min and with an average runtime of 2 min. For our
analysis we solved the integer programming model with Cplex 12.6 on an Intel Core
i7-3632QM 2.20 GHz with 16 GB RAM under a Linux operating system, setting a
time limit of 600 s for each instance. The instances used in this section and many
others can be downloaded at [1].

The computational results are summarized in Table 1, where rows are indexed
by δ, and columns by the type of the conflict graph. In the “Opt” columns we report
the number of instances, out of ten, solved to optimality within the time limit, and
in the “Time” columns the time in seconds required to solve one instance, averaged
over the solved instances, only.

The results in the table show that threshold instances T are easier w.r.t. instances
with interval conflict graphs, and these latter are easier than those with arbitrary
conflict graphs, confirming our claim.

We remark that, as far as we know, no tests on instances of BPPC with arbitrary
interval conflict graphs were performed in the literature. The authors in [28] observe
that the conflict graphs of the benchmark instances in [26] are interval graphs and
not arbitrary graphs (actually they are not arbitrary interval ones). Nevertheless, to

1The generator in [2] is not able to produce interval graphs with n = 1000 and edge density
δ = 0.98; in the corresponding cell of Table 1 of the present paper the average edge density of the
ten instances is 0.96.

http://vpsolver.dcc.fc.up.pt/
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Table 1 Computational results on instances with threshold (T ), interval (I )1, and arbitrary (A)
conflict graphs

n = 250 n = 1000

T I A T I A

Opt Time Opt Time Opt Time Opt Time Opt Time Opt Time

δ 0.02 10 1.28 1 138.28 1 206.62 10 76.37 0 − 0 −
0.08 10 2.75 0 − 0 − 10 292.26 0 − 0 −
0.18 10 3.37 1 522.39 0 − 10 359.16 0 − 0 −
0.32 10 3.81 10 201.56 4 340.2 3 444.77 0 − 0 −
0.50 10 1.00 10 15.31 10 75.16 10 390.94 0 − 0 −
0.68 10 0.53 10 3.24 10 12.43 10 294.12 0 − 0 −
0.82 10 0.29 10 2.02 10 5.15 10 222.57 5 543.92 0 −
0.92 10 0.11 10 1.39 10 2.89 10 197.60 10 453.98 0 −
0.98 10 0.04 10 1.03 10 1.92 10 199.36 10 366.07 3 561.02

our knowledge, the authors in [28] are the only ones who test their algorithm on
instances with arbitrary conflict graphs.

5 Concluding Remarks

In this paper we show that graphs of the BPPC instances considered in [3–9, 13, 15–
28, 30, 31] and generated according to [11] are threshold graphs (and not arbitrary
ones), and their edge density is not the declared one.

We also show that BPPC instances with threshold conflict graphs are compu-
tationally easier to solve than instances with interval or arbitrary conflict graphs
(the instances used and many others are available at [1]). This behaviour confirms
the behaviour of the computational complexity of many classical combinatorial
problems on the three graph classes considered.

We believe that the reduced difficulty of these instances is mainly due to the
structure of the conflict graph and not to “the presence of capacity constraints on
the cardinality of the color classes” as suggested in [8]. This could be ascertained
by solving BPPC instances with arbitrary interval conflict graphs and with arbitrary
conflict graphs.

We also remark that the authors in [11] claim to use “the procedure described
in” [29], but this is not true. In fact, the procedure in [29] generates “edge (i, j)

with probability” (pi +pj )/2: by doing so it generalizes the uniform random graph
generator and outputs arbitrary graphs.
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Directed Zagreb Indices

Barbara M. Anthony and Alison M. Marr

Abstract Zagreb indices for undirected graphs were introduced nearly 50 years
ago. Their original development was related to uses in chemistry, but over time
mathematicians have also found them to be an interesting topic of study. We define
and introduce Zagreb indices for directed graphs, give results that parallel many of
the conjectures and theorems that exist for the original Zagreb indices, and produce
results specific to the directed graph case.

Keywords Directed graphs · First Zagreb index · Second Zagreb index

1 Introduction

The Zagreb indices were first introduced [4] nearly 50 years ago. Since that time
dozens of papers have been written comparing these two indices, finding bounds on
their values, and generalizing these indices. The popularity of these indices stems
from their applications to chemistry. For a general overview of the history of these
indices and their applications to chemistry, see [8]. Additionally, the survey [7] by
Liu and You summarizes some of the existing mathematical work in the field.

Let G = (V ,E) be a graph. Let d(v) denote the degree of vertex v in the graph
G. The classical definitions of the first and second Zagreb indices, developed by
Gutman and Trinajstić [4], are as follows:

Definition 1 ([4]) The first Zagreb index on a graph G is defined as

M1(G) =
∑

v∈V (G)

d(v)2.
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The second Zagreb index on a graph G is defined as

M2(G) =
∑

e=(u,v)∈E(G)

d(u)d(v).

In this paper, we define and examine a new generalization of Zagreb indices by
defining them on directed graphs. While work has been done on zeroth-order general
Randić indices (also motivated by chemistry, giving the sum of bond contributions)
on digraphs [9], this is the first time that directed Zagreb indices are being defined
and studied. Throughout this work, we use nodes and arcs when speaking about
directed graphs, and vertices and edges for undirected graphs. The number of nodes
or vertices is denoted by n, while the number of arcs or edges in a graph or digraph
is denoted by m. We use digraph and directed graph interchangeably. The in-degree
of a node u is denoted by d−(u), and the out-degree by d+(u). A source is a node
with in-degree zero, and a sink is a node with out-degree zero. Let D = (N,A) be a
directed graph. The in and out neighborhoods of a node u are defined, respectively,
as N−(u) = {v ∈ N(D)|(v, u) ∈ A(D)} and N+(u) = {v ∈ N(D)|(u, v) ∈
A(D)}.
Definition 2 The first Zagreb index on a directed graph D is defined as

#»
M1(D) =

∑

v∈N(D)

d+(v)d−(v).

The second Zagreb index on a directed graph D is defined as

#»
M2(D) =

∑

e=(u,v)∈A(D)

d+(u)d−(v).

We allow graphs to be connected or disconnected. We do not allow multiple arcs
or loops. We do not allow isolated nodes: just as their inclusion does not alter the
undirected Zagreb indices, nor do they change the directed Zagreb indices. When
the digraph under consideration is obvious from the context, we may omit it, simply
writing

#»
M1 instead of

#»
M1(D) for either of the directed Zagreb indices, and similarly

for the graph in undirected Zagreb indices.
An oriented graph is a digraph with no bidirected arcs, that is, if (u, v) is an arc

in the digraph, (v, u) cannot be an arc in the digraph. A cycle is a graph (or digraph
with no bidirected arcs) where n = m ≥ 3. If n is odd, it is an odd cycle; otherwise,
it is an even cycle. When the arcs in a cycle are all oriented in the same direction, it
is a directed cycle. Given a graph G, we define G∗ to be the digraph with bidirected
arcs in G∗ for every edge in G. Thus, for example, K∗

2 is a pair of bidirected arcs.

Given a digraph D, let
←−
D denote the digraph where the orientation of every arc in

D is flipped. We define a directed path to be a path in which all arcs are oriented so
that the destination of an arc in the path is the origin of the subsequent path arc.
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2 Results

This section begins with some fundamental properties of these newly defined
directed Zagreb indices. Next, we compare the two directed Zagreb indices and
relate these results to previously know relationships about the (undirected) Zagreb
indices. We examine the values of

#»
M1(D) and

#»
M2(D) for various cycles, stars, and

paths, characterize many categories of graphs in terms of whether or not
#»
M1 and

#»
M2 are equal, and then explore the possible values for

#»
M2(D) − #»

M1(D).

2.1 Fundamental Properties of Directed Zagreb Indices

Though
#   »
M1 is defined in terms of nodes, we show that we can in fact write

#»
M1 as a

sum over arcs in the digraph. We then observe that flipping the orientation of all arcs
in a digraph does not change the directed Zagreb indices. We give explicit formulas
for the directed Zagreb indices on regular digraphs. Finally, we show (in Property 4)
that the directed Zagreb indices of a disconnected graph are simply the sum of the
directed Zagreb indices of the components.

Property 1 An alternative way to write
#»
M1(D) is

#   »
M1(D) = 1

2

∑

e=(u,v)∈A(D)

(d−(u) + d+(v)).

Proof Consider a node x ∈ D. In the proposed alternative, the contribution of the
node x to

#»
M1(D) comes from every arc that it is a part of. For those arcs in which

x is the origin, we count the number of arcs that enter x, that is, d−(x), for every
arc that starts at x, whose number is d+(x), giving a total of d+(x)d−(x). For those
arcs in which x is the destination, we count the number of arcs that leave x, that is,
d+(x), and we count that for every entering arc, namely d−(x), again giving a total
of d+(x)d−(x). The division by two handles the double-counting. Ultimately, in
the alternative representation, we have counted d+(x)d−(x) for every node x ∈ D,
precisely matching the definition of

#»
M1(D). �

Property 2
#»
M1(D) = #»

M1(
←−
D) and

#»
M2(D) = #»

M2(
←−
D)

Property 3 Let D = (N,A) be a regular digraph with d+(v) = d−(v) = k ∀v ∈ N .
Then

#»
M1(D) = nk2 and

#»
M2(D) = mk2.

Corollary 1 The complete digraph K∗
n has

#»
M1(K

∗
n) = n(n − 1)2 and

#»
M2(K

∗
n) =

n(n − 1)3.

Property 4 Let a directed graph D consist of two connected components, digraphs
R and S. Then

#»
M1(D) = #»

M1(R) + #»
M1(S), and

#»
M2(D) = #»

M2(R) + #»
M2(S).
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Proof Since nodes in D can be partitioned into nodes in R and nodes in S,
#»
M1(D) = ∑

v∈N(D) d
+(v)d−(v) = ∑

v∈N(R) d
+(v)d−(v)+∑v∈N(S) d

+(v)d−(v)

= #»
M1(R) + #»

M1(S). Analogously, the arcs in D can be partitioned into the arcs in
R and the arcs in S, yielding the desired result for

#»
M2. �

2.2 Comparing Directed Zagreb Indices

One of the most popular avenues of research when studying the first two Zagreb
indices is to compare their values. For undirected Zagreb indices, M1 and M2 can
be equal, M1 > M2 or M1 < M2. In [6], Horoldagva, Das, and Selenge show which
classes of graphs fall into each of the three categories. We show that for directed
Zagreb indices only two of these options are possible.

Theorem 1 For any directed graphD,
#»
M1(D) ≤ #»

M2(D).

Proof Proof by induction on the number of arcs in D.
Base case: Trivially, if there are no arcs in D, then

#»
M1(D) = 0 = #»

M2(D).
For illustration, if D contains a single arc, then

#»
M1(D) = 0 · 1 + 1 · 0 = 0, and

#»
M2(D) = 1 · 1 = 1, so

#»
M1(D) <

#»
M2(D).

Inductive hypothesis: We assume that for any digraph D with k arcs,
#»
M1(D) ≤

#»
M2(D). Let D∧ be a digraph with k + 1 arcs. We want to show that

#»
M1(D

∧) ≤
#»
M2(D

∧).
Pick an arbitrary arc e = (u, v) ∈ D∧. Removing e from D∧ yields a digraph D′

with exactly k arcs, and thus
#»
M1(D

′) ≤ #»
M2(D

′) by the inductive hypothesis. Thus,
by construction, e �∈ D′.

We now consider how
#»
M1 differs between D′ and D∧. The only terms in the

sum which are altered are the terms contributed by the nodes u and v. In D∧,
the in-degree of node u is unchanged, and its out-degree increases by 1. Thus, the
contribution of u to

#»
M1 was previously d−(u)·d+(u), and is now d−(u)·(d+(u)+1),

showing that the change from the contribution of node u is exactly d−(u). Similarly,
the change from the contribution of node v is exactly d+(v).

Thus
#»
M1(D

∧) = #»
M1(D

′) + d−(u) + d+(v).
Calculating

#»
M2(D

∧), since e �∈ D′, #»
M2(D

∧) is precisely
#»
M2(D

′) plus the
contribution from arc e, both to the new summand term from e, and potential
increases to existing arcs in D′.

The new arc e generates a contribution of (d+(u) + 1)(d−(v) + 1), along with
additional nonnegative contributions to the terms for arcs leaving u and entering v,
namely

∑

x∈N+(u)

d−(x) +
∑

y∈N−(v)

d+(y).
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Thus

# »

M2(D
∧) = # »

M2(D
′)+d+(u)+d−(v)+d+(u)d−(v)+1+

∑

x∈N+(u)

d−(x)+
∑

y∈N−(v)

d+(y)

≥ #»
M1(D

′)+ d+(u)+ d−(v) + d+(u)d−(v) + 1 +
∑

x∈N+(u)

d−(x)+
∑

y∈N−(v)

d+(y)

= #»
M1(D

∧) + d+(u)d−(v) + 1 +
∑

x∈N+(u)

d−(x) +
∑

y∈N−(v)

d+(y)

≥ #»
M1(D

∧) since all terms are nonnegative.
�

We now establish an explicit connection between the classical Zagreb indices
on an undirected graph, and the directed Zagreb indices on the corresponding
digraph with bidirected arcs for all edges in the undirected graph. That result,
Proposition 1, combined with Theorem 1 lead us to an alternative proof of a known
result, that for undirected graphs the first Zagreb index is at most twice the second
Zagreb index. While the result was already presented in [2], we highlight it here in
Corollary 2 because of how it further illustrates the connection between the directed
and undirected Zagreb indices.

Proposition 1 Let G be an arbitrary undirected graph. Then M1(G) = #»
M1(G

∗)
and 2 · M2(G) = #»

M2(G
∗).

Proof Recall that G∗ is the directed graph with bidirected arcs in G∗ for every edge
in G. By construction of G∗, for any node v ∈ G∗ arising from a vertex x ∈ G,
d+(v) = d−(v) = d(x). The equality of M1(G) = #»

M1(G
∗) follows immediately,

and 2 ·M2(G) = #»
M2(G

∗) because there are two arcs in G∗ for every edge in G. �
Corollary 2 Let G be an arbitrary undirected graph. Then, M1(G) ≤ 2M2(G).

As reported in Caporossi et al. [1], experiments with the AutoGraphiX system

led to a conjecture that for undirected Zagreb indices
M1(G)

n
≤ M2(G)

m
, which

Pierre Hansen presented at the second meeting of the International Academy of
Mathematical Chemistry in 2006. However, while it was shown the following year
by Hansen and Vukicević [5] that the relationship always holds true for chemical
graphs, they show that the conjecture is not true for general graphs. One such
instance provided in [5] consists of a disconnected graph whose two components
were a K1,6 and C3. We show that there is a natural transformation of that graph into
the digraph K∗

1,6 ∪C∗
3 that likewise disproves the analogous inequality for digraphs.

Lemma 1 There exists a digraph such that
#»
M1(D)

n
>

#»
M2(D)

m
.
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Fig. 1 A directed Zagreb
instance where the first index
divided by the number of
nodes exceeds the second
index divided by the number
of arcs

Proof Let D = K∗
1,6 ∪C∗

3 , as shown in Fig. 1. Observe that
#»
M1(D) = 36 + 6 · 1 +

3 ·4 = 54, where the contributions come from the center of the star, the leaves of the
star, and the nodes of the cycle, respectively. Observe also that

#»
M2(D) = 6 · 6 + 6 ·

6 + 6 · 4 = 96, with contributions from the six arcs directed out of the center of the
star, the six arcs directed into the center of the star, and the six arcs in the C∗

3 . Since

the graph consists of 10 nodes and 18 arcs,
#»
M1(D)

n
= 5.4 > 5.333 =

#»
M2(D)

m
. �

2.3 Bounds on Directed Zagreb Indices

Considering all orientations on a particular graph, we can create bounds on the
possible values for

#»
M1(D) and

#»
M2(D).

Proposition 2 For any orientation of a K1,n (with no bidirectional arcs), 0 ≤
#»
M1(K1,n) ≤ )n2

4 * and ,n2

2 - ≤ #»
M2(K1,n) ≤ n2.

Proof For the lower bound for
#»
M1, consider a star K1,n where all arcs are directed

into the center. Then
#»
M1(K1,n) = 0. Clearly a negative value is not possible.

For the upper bound for
#»
M1, consider a star K1,n where )n

2 * of the arcs are
directed into the center, and the rest (,n

2 - arcs) are directed out of the center. This

is the largest that
#»
M1 can be as the only contribution to

#»
M1 is at the center, and

it is maximized when the in-degree and out-degree are as close as possible. Then
#»
M1(K1,n) = )n

2 * ∗ ,n
2 -. If n = 2s for some positive integer s, then )n

2 * ∗ ,n
2 - =

s ∗ s = s2 = n2/4 = )n2

4 *. If n = 2s + 1 for some positive integer s, then

)n
2 * ∗ ,n

2 - = )s + 1
2* ∗ ,s + 1

2- = s(s + 1) = s2 + s = ) 4s2+4s+1
4 * = )n2

4 *.
For

#»
M2, each arc contributes one times the in-degree (or out-degree) of the center.

Arcs directed into the center contribute the in-degree of the center, and arcs directed
out of the center contribute the out-degree of the center. Since the in-degree and
out-degree of the center sums to n,

#»
M2 is maximized when either the in-degree or

out-degree is maximized; that is, if all arcs are directed into the center of the star, or
all are directed out of center of the star,

#»
M2 = n2. Similarly, it is minimized when
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each is smallest, namely one is )n
2 * and the other is ,n

2 -. If n = 2s for some positive

integer s, then
#»
M2 = )n

2 *2 + ,n
2 -2 = s2 + s2 = 2s2 = ,n2

2 -. If n = 2s + 1, then
#»
M2 = )n

2 *2 + ,n
2 -2 = )s + 1

2*2 + ,s + 1
2-2 = s2 + (s + 1)2 = 2s2 + 2s + 1 =

4s2+4s+1+1
2 = n2+1

2 = ,n2

2 -. The result follows in either case. �
Proposition 3 For any oriented Pn, 0 ≤ #»

M1(Pn) ≤ n − 2 (where there is some
orientation which yields each possible integral value) and n−1 ≤ #»

M2(Pn) ≤ 4n−8.

Proof If arcs in Pn alternate directions, then
#»
M1(Pn) = 0. Clearly a negative value

is not possible. Each endpoint of the path is either a source or a sink and thus does
not contribute to

#»
M1. Each interior node on the path has either two arcs pointed

in, contributing nothing, two arcs pointing out, contributing nothing, or one arc
pointing in and one arc pointing out, contributing 1 to

#»
M1. Thus their sum,

#»
M1(Pn)

is maximized at n − 2 when all arcs are oriented in the same direction on the path,
and integral values between the bounds can be obtained by the appropriate number
of interior nodes with one arc pointing in and one arc pointing out.

For
#»
M2(Pn), each of the n−1 arcs must contribute at least 1, and the lower bound

of n − 1 is achieved when all arcs are oriented in the same direction on the path.
Each arc can contribute at most 4 to

#»
M2(Pn), which happens only if at each node the

in-degree and out-degree on the path are both 2. The number of such occurrences is
maximized when the arcs in Pn alternate directions. and all but the first and last arcs
thus contribute 4, yielding

#»
M2(Pn) = 4n − 8. �

We next give results about when
#»
M1(D) = 0 and when

#»
M1(D) �= 0.

Lemma 2
#»
M1(D) = 0 if and only if every node in D is either a source or a sink.

Proof
#»
M1(D) = 0 means that each node contributes 0 to the sum which means

either d+(v) = 0 or d−(v) = 0 for every node in D. Hence, each node is either
a source or a sink. And if each node is a source or sink that implies that either
d+(v) = 0 or d−(v) = 0 for every node v in D and hence

#»
M1(D) = 0. �

Proposition 4 If a graphG has an odd cycle, then
#»
M1(D) �= 0.

Proof Consider an odd cycle C in G. There is no possible orientation of the arcs
in C such that every node in C will be a sink or a source. That is, by a simple
parity argument, some node must have an arc entering it and an arc leaving it. Thus,
the directed graph D does not consist only of sources and sinks, and by Lemma 2,
#»
M1(D) �= 0. �
Proposition 5 If D contains no odd cycles, then there is an orientation of the arcs
in D so that

#»
M1(D) = 0.

Proof Since the digraph has no odd cycles, either it has no cycles, or its only cycles
are even. We consider those cases separately.

Suppose the digraph has no cycles. Take a longest path in the tree and orient
adjoining arcs in opposite directions. When all arcs on that path have been oriented,
return to any node on that path that is incident to unoriented arcs, and orient any
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adjacent arcs in the same direction as all the others at that node (either all into or all
out of the node) and then continue down each of those paths and orient adjoining
arcs in opposite directions. Repeat until all arcs are oriented. Then, by construction
every node in D is either a source or a sink, and by Lemma 2,

#»
M1(D) = 0.

Now suppose the digraph has at least one even cycle. Pick a largest even cycle,
and orient adjoining arcs in that cycle in opposite directions. Then, continue this
process on all remaining even cycles and/or paths until the graph clearly has only
sources and sinks. If there are any arcs within this previously oriented cycle, they
must only be connecting nodes that are an odd distance apart on the original cycle.
Hence, the arcs inside the cycle can be oriented to keep all nodes being sources and
sinks. Any paths that connect to a node of the original cycle and are not inside the
original cycle can be oriented as described above starting with the same direction as
the node where the path begins. Any additional cycles that might be adjoining the
original cycle can also be oriented to keep all nodes sources and sinks as they are
also even. �

2.4 Equality of Directed Zagreb Indices

We seek to fully characterize instances where
#»
M1 = #»

M2 �= 0. First we show that we
need only focus on connected digraphs. Then we show that directed cycles and K∗

2
have this property. However, we then show that digraphs where this equality holds
are quite limited. We conjecture that directed cycles, K∗

2 , and digraphs that are a
disjoint union of these digraphs are in fact the only digraphs for which equality of
#»
M1 = #»

M2 �= 0 holds. Proving this conjecture remains an open question, but we
make progress in that direction by showing that no digraph with a source and a sink
will have

#»
M1 = #»

M2, nor will oriented trees, nor a directed cycle plus an additional
arc, nor cycles that are oriented but not directed.

Lemma 3 If a disconnected graph has
#»
M1 = #»

M2 �= 0, then each of its connected
components must also have

#»
M1 = #»

M2 �= 0.

Proof By Property 4, the directed Zagreb indices of each component sum to the
directed Zagreb index of the overall graph. Since Theorem 1 ensures that

#»
M1 ≤ #»

M2
for every digraph, the only way that the overall digraph can have

#»
M1 = #»

M2 is thus
if for each component equality holds. �
Lemma 4 The directed cycle Cn has

#»
M1(Cn) = #»

M2(Cn) �= 0.

Proof By Property 3, since the in-degree and out-degree of every node is k = 1,
#»
M1(D) = nk2 = n and

#»
M2(D) = mk2 = m. Since m = n in Cn with n ≥ 3, the

result is immediate. �
Lemma 5 K∗

2 has
#»
M1(K

∗
2 ) = #»

M2(K
∗
2 ) �= 0.
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Conjecture 1 The directed cycle and K∗
2 (or graphs consisting solely of directed

cycles and K∗
2 ) are the only graphs in which

#»
M1 = #»

M2 �= 0.

The following results lend support to the conjecture.

Property 5 It is NOT true that inserting an arc will always increase
#»
M2 by more

than it increases
#»
M1.

Proof Consider a unidirectional path, that starts at node v0 and ends at node vn−1.
Suppose we then insert a directed arc from vn−1 to v0. The increase in

#»
M1 is 2, with

one each contributed at v0 and vn−1. The increase in
#»
M2 is 1, the contribution from

the new arc, as the sum from the other arcs does not change. �
Theorem 2 Any digraph with a source and a sink cannot have

#»
M1 = #»

M2.

Proof Proof by contradiction. Let D be a digraph with a node u that is a source,
and a node v that is a sink. Suppose that

#»
M1 = #»

M2. Insert an arc from v to u. The
increase in

#»
M2 is exactly 1, since the arc (v, u) contributes 1, but v as a sink had no

other arcs out of it, and u as a source had no other arcs into it. But the increase in
#»
M1 is more than 1, since the increase is precisely the number of arcs into v (which
is at least 1 as a sink) plus the number of arcs out of u (again, at least 1 as a source).
Since the increase in

#»
M1 is more than the increase in

#»
M2, the values

#»
M1 and

#»
M2

could not have been equal, contradicting the original assumption. �
Since every oriented tree must contain both a source and a sink, we have the

following corollary. We include the proof that every oriented tree must contain both
a source and a sink for completeness.

Corollary 3 Any oriented tree T with n ≥ 2 has
#»
M1(T ) <

#»
M2(T ).

Proof Suppose our tree T has no sinks. Pick an arbitrary node, and follow an
oriented edge (in the appropriate direction) out of that node. Repeat. Either we arrive
at a node that has out-degree 0, which is thus a sink, or we return to a node we have
already visited, which would mean there is a cycle, which is not possible in a tree.

Suppose instead our tree T has no source nodes. Reverse the orientation of all
edges. Then our reversed graph would be a tree with no sinks. However, by the
above argument, that is again impossible.

Thus, since every oriented tree has a source and a sink, we cannot have
#»
M1 =

#»
M2. �
Theorem 3 Any digraph D which consists of solely a directed cycle and one
additional arc has

#»
M1(D) <

#»
M2(D).

Proof First, recall that Lemma 4 ensures that
#»
M1 = #»

M2 for any directed cycle. A
graph that consists of a directed cycle and one additional arc can be constructed by
the addition of an arc in one of the following ways:

1. as a disconnected arc,
2. as a chord in the cycle,
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3. as an arc directed inward (or outward) into one node of the cycle and the other
node would be a new node, or

4. an arc going in the opposite direction of one of the current arcs in the cycle.

Let e be the new arc in each case below.

Case 1 [Disconnected arc]:
#»
M1(D+e) = #»

M1(D) and
#»
M1(D+e) = #»

M2(D)+1,
by Property 4 hence

#»
M1(D + e) <

#»
M2(D + e).

Case 2 [Chord in the cycle]:
#»
M1(D+ e) = #»

M1(D)+1+1 as two nodes will now
be contributing 2 instead of 1. Similarly,

#»
M2(D+e) = #»

M2(D)+4+1+1 where
the 4 is from the new arc and the two 1s are from the additional in/out degree at
the endpoints. Again, since

#»
M1(D) = #»

M2(D),
#»
M1(D + e) <

#»
M2(D + e).

Case 3 [New node]:
#»
M1(D + e) = #»

M1(D)+ 1 as only one node within the cycle
will have a changed in- (or out-) degree. Similarly,

#»
M2(D+e) = #»

M2(D)+2+1
where the 2 comes from the new arc and the 1 is how much the one arc in the
cycle will change by.

Case 4 [Opposite direction]:
#»
M1(D+e) = M1(D)+2 and

#»
M2(D+e) = M1(D)+

4 + 1 + 1 where the 4 is the new arc’s contribution and each 1 is the amount two
different arcs in the cycle will change.

In all cases, we see
#»
M1(D + e) >

#»
M2(D + e). �

Theorem 4 For any cycle C that is oriented but not directed,
#»
M1(C) <

#»
M2(C).

Proof Consider a cycle C of length n that is oriented but not directed. Let s be the
number of maximal directed paths of length 1 in the cycle. Let t be the number of
maximal directed paths of length greater than 1, but less than n in the cycle. Recall
that since C is not directed, no directed path in the cycle can have length more than
n − 1.

To calculate
#»
M1(C), first note that any node will either contribute 1 or 0. The

node contributes 1 if the node is part of a unidirectional path (with in-degree and
out-degree both one) and contributes 0 if it is a place where the direction of arcs in
the cycle changes (that is, the in-degree and out-degree are not equal). The direction
will change at s + t places (where the paths change direction) and thus

#»
M1(C) =

n− (s+ t) = n− s− t . Note: s+ t must be even as it counts the number of direction
changes and you cannot change direction an odd number of times and have a cycle.
Furthermore, s + t > 0 as the cycle C is not unidirectional.

For
#   »
M2(C), any edge that is a path of length 1 will contribute 4 to the sum. Any

path of length greater than 1 and less than n will have two arcs that each contribute
2 (the arcs at the start/end of the path). And, any arcs remaining will each contribute
one to the sum. This gives:

#»
M2(C) = 4s + 4t + n − s − 2t = n + 3s + 2t .

Since s and t are nonzero, n+ 3s + 2t > n− s − t which ensures that
#»
M1(C) <

#»
M2(C). �
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2.5 Differences of Zagreb Indices

For undirected graphs, differences between the first two Zagreb indices were first
studied in-depth by Furtula, Gutman, and Ediz in [3], who introduced the idea of the
reduced second Zagreb index and studied this difference mainly on trees. In 2016,
Das, Horoldagva, and Selenge [6] completely characterized which (undirected)
graphs have M1 − M2 = 0, M1 − M2 > 0 and M1 − M2 < 0. In the directed
case, we already know

#»
M2 − #»

M1 ≥ 0, and can in fact show that
#»
M2 − #»

M1 can equal
any nonnegative integer.

We know from Lemma 4 that
#»
M2 − #»

M1 can equal zero. In addition we can also
get

#»
M2 − #»

M1 = 1 as if D = Pn with all the arcs oriented in the same direction,
#»
M2 − #»

M1 = n− 1 − (n− 2) = 1. We also know we can make
#»
M2 − #»

M1 arbitrarily
large by noting that

#»
M2 − #»

M1 = 4n for any n ≥ 3 by using D = C∗
n , the cycle

with all bidirectional edges present or we can get
#»
M2 − #»

M1 = n2 for K1,n with all
the arcs directed out of the center. While these examples provide motivation that all
nonnegative integer values are possible for this difference, the following theorem
gives a construction technique for producing a digraph with any desired difference.

Theorem 5 For all s ∈ N, there exists a directed graph with
#»
M2 − #»

M1 = s.

Proof Let D be the digraph K1,n with x edges directed into the center and k edges
directed out of the center where x + k = n and k ≤ x. Consider the collection of
k + 1 digraphs {D = D0,D1,D2, . . . ,Dk} where Di is the digraph formed from D

by connecting i of the arcs directed out of the center to i different arcs directed into
the center. An example of this construction can be seen in Fig. 2.

Fig. 2 A construction
technique for digraphs with
all possible values for the
difference between the two
Zagreb indices. The inclusion
of any subset of the dotted
edges leads to one of the
digraphs in the collection
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In general,
#»
M2(Di)− #»

M1(Di) = (x2 + k2 + i)− (xk+ 2i) = x2 + k2 − xk − i.
Considering the case where x = k,

#»
M2(Di) − #»

M1(Di) = (2k2 + i) − (k2 + 2i) =
k2 − i and i ranges from 0 to k. Hence, in this case we get all the integers in the
interval [k2 − k, k2]. Now, consider the case where x = k + 1. Similar calculations
give

#»
M2(Di) − #»

M1(Di) = (k + 1)2 + k2 − k(k + 1) − i = k2 + k + 1 − i and
i ranges from 0 to k, so we get all the integers in the interval [k2 + 1, k2 + k + 1].
And if we move up to the next value for k, (so now x = k+1 and k becomes k+1),
we get

#»
M2(Di) − #»

M1(Di) = (k + 1)2 − i with i ranging from 0 to k + 1. So, we
get the next interval to be [k2 + k, k2 + 2k + 1]. And, thus the overlap of intervals
continues and we continue to increase the upper bound. If we plug in k = 1, we see
that we start the interval at [0, 1] and hence can get any nonnegative integer values
since these intervals line up and/or overlap and increase without bound. �

3 Conclusions and Open Questions

In this paper, we introduce the definition of first and second Zagreb indices on
directed graphs. Initial propositions are given, relationships between the two indices
are explored, and several classes of digraphs are studied in depth. We showed that
the difference between

#»
M2 and

#»
M1 can take on any nonnegative integer value and

state a conjecture on when this difference is zero. In particular, we believe that in all
cases other than a directed cycle or K∗

2 or disconnected combinations thereof, the
difference between

#»
M1 and

#»
M2 is non-zero and inserting additional arcs or nodes

will not result in equality of
#»
M1 and

#»
M2.

Another avenue of future research is motivated by Sect. 2.2. There we discuss
#»
M1/n ≤ #»

M2/m. While this was shown to not be true for all digraphs, could it be
true for all connected digraphs? Or even possibly for all digraphs where not all arcs
are bidirectional?

Finally, since directed Zagreb indices do not have the same chemistry motivations
of undirected Zagreb indices, they could be defined in many other ways or other
indices described on undirected graphs could be generalized for digraphs. New
definitions would prompt new results, propositions, and relationships, leading to
additional areas for mathematical exploration of indices on digraphs.
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Croatica Chem. Acta 76, 113–124 (2003)

9. Volkmann, L.: Sufficient conditions on the zeroth-order general Randić index for maximally
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Edge Tree Spanners

Fernanda Couto, Luís Cunha, and Daniel Posner

Abstract A tree t-spanner of a graph G is a spanning tree T of G in which any two
adjacent vertices of G have distance at most t in T . The line graph L(G) of a graph
G is the intersection graph of the edges of G. We define the edge tree t-spanner
of a graph G as a spanning tree T of L(G) in which any two edges that share an
endpoint in G have distance at most t in T . Although determining if G has a tree 3-
spanner is an open problem for more than 20 years, we settle that deciding if a graph
G has an edge tree 3-spanner is polynomial-time solvable. As a consequence, we
present polynomial time algorithms for the edge tree t-spanner problem for several
graph classes such as trees, join of graphs, split graphs, P4-tidy, and (1, 2)-graphs.
Moreover, we establish that deciding whether a graph G has an edge tree 8-spanner
is NP-complete, even if G is bipartite.

Keywords Tree t-spanner · Edge tree t-spanner · Polynomial time algorithms ·
NP-completeness · Line graphs · Graph classes

1 Introduction

The problem of looking for a spanning tree with constraints on the vertices’
or edges’ distances is a combinatorial challenge with many applications and
approaches [1, 11]. A tree t-spanner of a graph G is a spanning tree T of G in
which any two adjacent vertices of G have distance at most t in T . A graph G

having a tree t-spanner is called a t-admissible graph. The smallest t for which
a graph G is t-admissible is the stretch index of G and is denoted by σT (G) (or
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simply σ(G)). The t-admissibility problem aims to decide whether a given graph G

has σ(G) ≤ t . The problem of determining the tree stretch index, i.e. the minimum
stretch spanning tree problem (MSST) has been studied by establishing bounds on
σ(G) or developing the computational complexity of the decision version of MSST
for several graph classes [2–4]. Cai and Corneil [2] proved that t-admissibility
is NP-complete, for t ≥ 4, whereas 2-admissible graphs can be recognized in
polynomial-time. However, the characterization of 3-admissible graphs is still an
open problem.

The characterization for 2-admissible graphs [2], stated in Theorem 1, deals with
triconnected components of a connected graph, defined as any maximal subgraph
that does not contain two vertices whose removal disconnects the graph (the authors
also consider K2 and K3 as triconnected components). A nonseparable graph is a
graph without a cut vertex, i.e., a vertex whose removal disconnects the graph. A
star with n + 1 vertices is the complete bipartite graph K1,n. A v-centered star is
a star centered on v, that is a universal vertex. Similarly, a bi-star is a graph such
that there is an edge uv and every edge of E shares an endpoint with uv. Hence,
uv is a universal edge of the bi-star. A uv-centered bi-star is a bi-star centered on a
universal edge uv.

Theorem 1 ([2]) A nonseparable graphG is 2-admissible if and only ifG contains
a spanning tree T such that for each triconnected component H of G, T ∩ H is a
spanning star of H .

Given a graph G, its line graph L(G) is obtained as follows: V (L(G)) = E(G);
E(L(G)) = {{uv, uw}|uv, uw ∈ E(G)}. I.e., each edge of G is a vertex of L(G)

and if two edges share an endpoint, then their corresponding vertices are adjacent
in L(G). The distance between two edges e1 and e2 of G, for e1, e2 ∈ E(G) is the
distance between their corresponding vertices in L(G).

We define the edge tree t-spanner of a graph G as a spanning tree T of L(G) such
that, for any two adjacent edges of G, their distance is at most t in T . Therefore, an
edge tree t-spanner of G is a tree t-spanner of L(G).

A graph G that has an edge tree t-spanner is called edge t-admissible. The
smallest t for which G is an edge t-admissible graph is the edge stretch index of
G, and is denoted by σ ′

T (G) (or simply σ ′(G)). The edge t-admissibility problem
aims to decide whether a given graph G has σ ′(G) ≤ t . Figure 1 depicts the relation
between the edge tree spanner of a graph and the tree spanner of its line graph.

An immediate consequence of MSST is that the property of being t-admissible
graph is not hereditary, i.e., if G is t-admissible then there may exist a subgraph
H of G that is not t-admissible. Indeed, the addition of a universal vertex u to any
t-admissible graph results in a 2-admissible graph by a u-centered star.

On the other hand, regarding the edge tree t-spanner, in Sect. 3 we prove that
being an edge 3-admissible graph is a hereditary property, and based on that, we
are able to decide whether G is edge 3-admissible in polynomial time. Moreover,
in Sect. 4 we determine polynomial time algorithms to obtain the edge stretch
index for some edge 4-admissible and edge 5-admissible classes, such as split
graphs, join graphs, P4-tidy graphs and (1, 2)-graphs. In Sect. 5, we prove that
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Fig. 1 A graph G, a tree 3-spanner of L(G) in red, and G with the related edge 3-spanner in red

edge 8-admissibility is NP-complete for (2, 0)-graphs, i.e. bipartite graphs. In
Sect. 6, we present concluding remarks. Next (Sect. 2), we relate admissibility and
edge admissibility problems, presenting immediate consequences and preliminary
results.

2 Admissibility Versus Edge Admissibility for Graph Classes

Since induced cycles in a graph G correspond to cycles of the same length in L(G),
we have that σ ′(Cn) = σ(Cn) = n − 1. Although cycle graphs satisfy σ ′ = σ , for
several other classes the stretch index is different of the edge stretch index.

For instance, trees are 1-admissible and the unique edge 1-admissible graphs are
the ones such that their line graphs are trees. Since line graphs are claw-free, then
path graphs are the unique edge 1-admissible graphs. In Proposition 1 we determine
the edge stretch index of trees.

Proposition 1 Let G be a tree. If G is a path graph then σ ′(G) = 1, otherwise
σ ′(G) = 2.

Proof Note that if G is a path, then L(G) is a path and σ ′(G) = 1. For any other tree
there is a vertex of degree at least 3, implying a complete subgraph of length at least
3 in L(G). Each internal node u of G correspond to a maximal complete subgraph
of L(G) of size dG(u) and two of such maximal complete subgraphs share at most a
vertex in L(G). Hence, any triconnected component of L(G) is a complete subgraph
and satisfies Theorem 1. �

Since the study of edge tree spanners is equivalent to the study of tree spanners
of line graphs, and deciding whether a graph is 2-admissible is polynomial-time
solvable, Theorem 1 implies Corollary 1.

Corollary 1 Edge 2-admissibility is polynomial-time solvable.

The edge stretch index of cycle graphs and complete graphs are useful to
characterize edge 3-admissible graphs, as discussed in Sect. 3.
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Complete graphs are 2-admissible, however their line graphs are not. In order to
prove that σ ′(Kn) = 4, from Lemma 1 we have that σ ′(K5) ≤ 4, and it is possible
to prove that K5 is not edge 3-admissible, as highlighted below.

To prove that K5 is not edge 3-admissible, one can verify by a case analysis
that it is not possible obtain a spanning tree T such that T ∩ L(K5) has at least 3
internal nodes. Clearly, T ∩L(K5) cannot have more than 3 internal nodes, because
otherwise the edge factor of such a tree would be at least 4. Moreover, it is not
possible obtain a spanning tree T such that T ∩L(K5) is a bi-star or it is a tree with
three internal nodes whose leaves at distance 4 in T are not adjacent in L(K5).

In Sect. 3 we prove that being edge 3-admissible is a hereditary property for
induced subgraphs (Lemma 2), then Corollary 3 states that σ ′(Kn) = 4, for n ≥ 5.

A graph G has a distance two dominating edge uv if every edge of E(G) has a
vertex in N[u]∪N[v] as one of its endpoints, where N[x] is the closed neighborhood
of x, i.e. N[x] = N(x)∪{x}. Moreover,G has two adjacent distance two dominating
edges uv and vw if every edge of E(G) has a vertex in N[u] ∪N[v] ∪N[w] as one
of its endpoints.

Lemma 1 A graphG with a distance two dominating edge uv has σ ′(G) ≤ 4.

Proof Since G has a distance two dominating edge uv, there is a spanning tree with
diameter at most four of L(G) with the vertex uv as its root, the vertices {ux | ux ∈
E(G)} ∪ {vy | vy ∈ E(G)} adjacent to uv, and the remaining vertices of L(G)

adjacent to some vertex in {ux | ux ∈ E(G)} ∪ {vy | vy ∈ E(G)}. �
Figure 2 depicts graphs with distance two dominating edges and their edge tree 4-

spanners, as the proof of Lemma 1. A graph is split if its vertex set can be partitioned
into a stable set and a clique. The join between two graphs G1 and G2 results in the
graph G such that V (G) = V (G1)∪V (G2) and E(G) = E(G1)∪E(G2)∪{uv | u ∈
V (G1) and v ∈ V (G2)}.

Several graph classes can be constructed by join and complement of join
operations, i.e. union operations. Cographs are the P4-free graphs, i.e. graphs
without a P4 as an induced subgraph, and G is a cograph iff it has the following
recursive definition: (i) G is a K1; (ii) G is a join of cographs; (iii) G is a union
of cographs. A generalization of cographs are the graphs with few P4’s, such as
P4-sparse and P4-tidy [7].

u

v

u

v

u vu v

Fig. 2 A split graph and a join graph with their edge tree 4-spanners
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A graph is P4-sparse if for each set of 5 vertices, there is at most one induced
P4. A graph is P4-tidy if for each induced P4 of G, say P , there is at most one
vertex v ∈ V (G) \ V (P) such that V (P) ∪ {v} induces at most two P4’s in G. P4-
tidy generalizes P4-sparse graphs, and G is a P4-tidy graph iff it has the following
recursive definition: (i) G is P5, C5, P5, or K1; (ii) G is a join of P4-tidy graphs; (iii)
G is a union of P4-tidy graphs; (iv) G is a spider; (v) G is an almost spider. A graph
is a spider graph if its vertex set can be partitioned into S ,K and R such that (i)
K is a clique (K is called body), S is a stable set and |S | = |K | ≥ 2; (ii) each
vertex of R (R is called head) is adjacent to all vertices of K and is non-adjacent
to any vertex of S ; (iii) There is a bijection f : S .→ K such that, for all x ∈ S ,
either N(x) = {f (x)}, or N(x) = K − {f (x)}. A graph is an almost-spider graph
if it can be constructed from a spider graph G = (S ,K ,R) by adding a vertex v′
which is either a false twin of v or a true twin of v, such that v ∈ S ∪ K [10].

Split graphs, join graphs and P4-tidy graphs are 3-admissible [3, 4]. Corollary 2
follows from Lemma 1 and: for split graphs, any clique’s edge is distance two
dominating; for join graphs between G1 and G2, any uv such that u ∈ V (G1)

and v ∈ V (G2) is distance two dominating; for P4-tidy graphs, any edge between
the head and the body is distance two dominating.

Corollary 2 Split graphs, join graphs and P4-tidy graphs are edge 4-admissible.

Since 3-admissibility is still open and t-admissibility is NP-complete, for t ≥ 4,
we are interested to establish the computational complexity of determining the edge
stretch index. In Sect. 3, we prove that edge 3-admissibility is polynomial-time
solvable, and as an immediate consequence, we are able to determine in polynomial
time the edge stretch index for any edge 4-admissible graph, such as split graphs,
join graphs and P4-tidy graphs (Corollary 6).

3 Edge 3-Admissibility Is Polynomial-Time Solvable

Lemma 2 Edge 3-admissibility is a hereditary property for induced subgraphs.

Proof Assume that there is an edge 3-admissible graph G with an induced subgraph
H such that H is not edge 3-admissible. W.l.o.g. let G′ be an induced subgraph of
G such that: |V (G′)| = |V (H)| + 1, u ∈ V (G′) ∩ V (H); G′ is edge 3-admissible;
H is edge k-admissible for k ≥ 4; T ′ is an edge tree 3-spanner of G′; and T is an
edge k-tree spanner of H with k ≥ 4. In any edge tree k-spanner T of H there is
a path P with k + 1 vertices using edges of T and an edge of G′ not in T between
the two endpoints of this path (see Fig. 3a that considers k = 5). Since G′ is edge
3-admissible, the addition of the vertex u must remove a part of that path P from
T . For the sake of contradiction, assume T ′′ is a tree that contains at least three
internal nodes among the edges incident to u. Since these edges have u as endpoint,
then the leaves that are at distance 4 in T ′′ correspond to adjacent edges in G′, a
contradiction. Therefore, the edges incident to u must be a bi-star in T ′ (see Fig. 3b).
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Fig. 3 (a) V (H) = {v,w, x, y, z, t} and a path P in red. (b) In red a bi-star satisfying Case 1. (c)
In red a bi-star satisfying Case 2

e1 e2
e1 e2

Fig. 4 C4 and K4 whose vertices have degree at least 3 and 4 in G, resp. Note that dT (e1, e2) = 4

W.l.o.g. assume that u is adjacent to all vertices of G related to the path P of T .
The edges of the bi-stars cover at most four vertices of P . We have two cases:
Case 1: the bi-star connects consecutive vertices of P . In this case it does not reduce
the distance between the vertices of P in T ′ (e.g. see Fig. 3b, the distance between
vw and vt is 5 in T ′) and T ′ is not an edge tree 3-spanner, a contradiction; Case 2:
the bi-star connects non-consecutive vertices of P . In this case it does reduce the
distance between vertices of P , however, the vertex xy between this non consecutive
vertex of P is connected to leaves of the two centers of the bi-star in L(G), which
implies that T ′ is not edge 3-admissible, a contradiction (Fig. 3c). �
Corollary 3 Any complete graphKn has σ ′(Kn) = 4, for n ≥ 5.

Proof Since σ ′(K5) = 4 (Sect. 2) and for n ≥ 5, Kn has a K5 as an induced
subgraph, then, by Lemma 2, we have that Kn are not edge 3-admissible, for
n ≥ 5. Furthermore, complete graphs have a distance two dominating edge, hence
by Lemma 1, σ ′(Kn) ≤ 4, for n ≥ 5, and the result follows. �

Line graphs of Kn are complement of Kneser graph KGn,2 [8], then
σ(KGn,2) = 4.

Note that Ck and Kk , for k ≥ 5 are not subgraphs of edge 3-admissible graphs.
See Fig. 4 for examples of C4 and K4 where all vertices have degree at least 3 and
4 in G, resp. Suppose H is an induced C4 (or K4) in G. In L(G[H ]) there must be
a path through all L(C4)’s vertices (or through four L(K4)’s vertices) and one more
vertex corresponding to an edge that does not belong to the C4 (to the K4) in H .
Hence, it implies that σ ′(H) ≥ 4, and Corollary 4 follows.

Corollary 4 Let G be an edge 3-admissible graph. If X ∈ {C4,K4} is an induced
subgraph of G, then there is a vertex v ∈ V (X) such that NG(v) ⊆ V (X).
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By Corollary 4, any edge 3-admissible graph has vertices of degree 2 and 3 in
each induced C4’s and K4, resp. Hence, Construction 2 presents a way to break C4’s
and K4’s into P5’s and K3’s, resp., in order to present a stronger necessary condition
in Lemma 4.

Construction 2 Let G be a graph that satisfies: G does not have induced Ck

nor Kk , for k ≥ 5, as induced subgraphs; for each induced C4 there is a vertex
of degree two in G; and for each induced K4 there is a vertex of degree three in G.
We construct a graphH from G as follows:

1. each induced C4 = a, b, c, d, a, for dG(a) = 2, is transformed into a P5 =
a, b, c, d, a′ by adding a new vertex a′ and the edge da′, and removing the edge
da;

2. each induced K4 = {a, b, c, d}, for dG(a) = 3, is transformed into three
complete graphs K3 by adding a new vertex a′ and: removing edge ba; adding
edges ba′ and ca′.

Lemma 3 A graph G is edge 3-admissible if and only if the graph H from
Construction 2 is edge 3-admissible.

Proof If G is edge 3-admissible, then all edges of an edge tree 3-spanner of G are
used to obtain a spanning tree of H and we do not increase the edge stretch index
from G to H , because, by construction, we are not increasing a maximum path
between any two adjacent vertices of G in H . If H is edge 3-admissible, then all
edges of an edge tree 3-spanner of H are used for a spanning tree of G and, since
we are identifying vertices that belong only to C4’s or K4’s in G, such identification
does not affect cycles that give the edge tree 3-spanner of H and does not increase
such index of G by the used edges of H . �

A k-tree is a graph obtained from a Kk+1 by repeatedly adding vertices in such a
way that each added vertex v has exactly k neighbors defining a clique of size k+1.
A partial k-tree is a subgraph of a k-tree [9].

Lemma 4 Let G be an edge 3-admissible graph. If H is the graph obtained from
G in Construction 2, then H is a chordal partial 2-tree graph.

Proof If G is edge 3-admissible with X ∈ {C4,K4} as an induced subgraph, then,
by Corollary 4, X must have at least one vertex a such that N(a) ⊆ X. Based on that,
in Construction 2 we obtain a graph without C4’s nor K4’s. Since, by Lemma 3, the
transformed graph H from an edge 3-admissible graph G is also edge 3-admissible,
we have that the length of any clique is at most 3 and it does not have Ck , for k ≥ 4.
Since chordal graphs with maximum clique of length 3 are partial 2-tree [9], we
have that H is a chordal partial 2-tree graph. �

By Lemma 4, edge tree 3-spanner graphs are formed by 2-trees where either an
edge or a vertex connects two 2-trees. Hence, for the former case such edge is a
bridge and for the later case it is a cut vertex of the graph. Lemmas 5 and 6 present
conditions that force spanning trees correspond to edge 3-admissible graphs.
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Lemma 5 Given an edge 3-admissible graph G and two 2-trees A1 and A2
connected by a bridge uv, such that |V (Ai)| > 3 for i ∈ {1, 2}, then for any edge
3-spanner T , uv is a pendant vertex in T [A1 ∪ {u, v}], i.e. dT [A1∪{u,v}](uv) = 1.

Proof Assume u ∈ A1, u, x, y is a triangle and v ∈ A2. Suppose dT [A1∪{u,v}](uv) ≥
2, hence xy must be adjacent to either ux or to uy in T . W.l.o.g., let xy be adjacent
to uy, then, there is an edge wx in A1 which implies the distance between wx and
xy to be equal to 4 by a path through uv, a contradiction. �

Each bridge forces a unique way to obtain an edge tree 3-spanner of G. Hence, by
Lemma 5, assume G is 2-edge connected, i.e. there is not a bridge in G. Otherwise,
we consider each connected component separately after the bridges removal of G.

Now, consider the case that G has a cut vertex. Let a windmill graphWd(3, n) be
the graph constructed for n ≥ 2 by identifying n copies of K3 at a universal vertex.
Since an edge 3-admissible graph is partial 2-tree, we have that if there is a cut vertex
u in G, then G[NG[u]] contains a windmill graph Wd(3, d), for 2 ≤ d ≤ dG(u)

2 . Let
a diamond graph be a K4 minus an edge. Each K3 of a windmill centered in u has
two vertices of degree 2, or it has a cut vertex of G distinct of u, or it belongs to a
diamond graph of G.

Lemma 6 Let G be 2-edge connected graph with a cut vertex u and edge 3-
admissible. If the associated windmill graphWd(3, n) centered in u satisfies n ≥ 3,
then u belongs to at most 2 diamonds in G.

Proof Assume that u is center of the windmill graph Wd(3, 3) and it belongs to 3
diamonds D1, D2 and D3 in G. We prove that G is not edge 3-admissible, and
then it implies that if G is edge 3-admissible, then u does not belong to more
than 3 diamonds for every n ≥ 3, either, because the hereditary property proved
in Lemma 2.

Note that L(H), for H = Wd(3, 3) ∪ D1 ∪ D2 ∪ D3, is composed by a K6
and the addition of three other subgraphs, named B1, B2 and B3, constructed by
a join between a vertex and a C4. Moreover, each edge of a perfect matching of
the K6, {e1, e2, e3}, is identified to an edge of B1, B2 and B3 that belongs to the
C4s, resp. Suppose that L(H) is 3-admissible, hence for any tree 3-spanner T of
L(H) we have that T ∩ L(H) is a f l-centered bi-star, for f and l being any two
K6’s vertices. Since any vertex of the K6 belongs to exactly one of the other three
subgraphs added to it, i.e. each K6’s vertex belongs to either B1, B2 or B3, then at
least two adjacent vertices of L(H) are adjacent to leaves of the f l-centered bi-star,
implying σ ′(H) = 4. �

If there is a vertex u that belongs to Wd(3, 2) then there are two solutions in T ∩
Wd(3, 2), less than isomorphism. Consider a Wd(3, 2) such that V (Wd(3, 2)) =
{u, v,w, v′, w′} such that u, v,w and u, v′, w′ induce K3’s. Note that an edge tree
3-spanner T ∩ Wd(3, 2) can be formed as follows: Case 1: {uv, uw}, {uv, vw},
{uv, uv′}, {uv′, uw′}, {uv′, v′w′}; Case 2: {uv, uw}, {uv, vw}, {uv, uv′}, {uv, uw′},
{uv′, v′w′}. Any other edge tree spanner of Wd(3, 2) is not edge tree 3-spanner.
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Although a Wd(3, 2) graph centered in u may have two spanning trees, if each
triangle also belongs to a diamond, let D1 and D2 be such diamonds with vertices
V (D1) = {u, v,w, x} and V (D1) = {u, v′, w′, x ′}, then the previous Case 1 is the
unique edge tree 3-spanner for T ∩ Wd(3, 2), less than isomorphism.

Furthermore, let H = Wd(3, 2)∪D1 be formed by a Wd(3, 2) centered in u with
vertices V (Wd(3, 2)) = {u, v,w, v′, w′} such that vw belongs to the diamond D1
with vertices V (D1) = {v,w, s, t}, then we have that H is not edge 3-admissible,
which can be verified by conditions above and a simple case analyses.

Hence, we have presented necessary conditions of a 2-edge connected graph G

satisfying Construction 2 to be edge 3-admissible when it has a cut vertex.
Now, consider G a biconnected graph. Theorem 2 characterizes such graphs. The

diameter of a graph G is the greatest distance between any pair of vertices, and is
denoted by D(G).

Theorem 2 GivenG a biconnected graph withD(G) ≤ 3. We have that σ ′(G) ≤ 3
if and only if either there is distance two dominating edge e1 = uv or for any edges
e1 = uv, e2 = uw, and e3 /∈ N(u) ∪ N(v) ∪ N(w), e3 is adjacent to edges only of
N(v) (or equivalently, only of N(w)).

Proof If G has a dominating edge, for D(G) ≤ 3, then σ ′(G) ≤ 3 by a uv centered
bi-star. Or, if any edge is not dominated by e1 but it is adjacent to edges only of
N(v), then in the solution spanning tree such vertex is adjacent to a leaf of v and it
does not turn σ ′(G) ≥ 4 because it is not adjacent to leaves of u. Assume that G is
edge 3-admissible, there is not a distance two dominating edge and there is an edge
e3, such that e3 /∈ N(u)∪N(v)∪N(w) that is adjacent to edges of N(v) and N(w).
In this case e3 is connected to leaves of the two centers of the bi-star in L(G), which
implies that T ′ is not edge 3-admissible, a contradiction. �

Note that Theorem 2 gives another argument on the lower bound of Corollary 3,
since a Kn does not satisfy conditions of Theorem 2.

Corollary 5 Edge 3-admissibility is polynomial-time solvable.

4 Edge Stretch Index for Split and Generalized Split Graphs

Since σ ′(G) ≤ 4 for graphs with a distance two dominating edge (Theorem 1), the
polynomial time algorithm for edge 3-admissible of Corollary 5 also works for these
graphs and their subclasses, such as split graphs, join graphs and P4-tidy graphs. I.e.,
we know whether these graphs have σ ′(G) = 2, σ ′(G) = 3 or σ ′(G) = 4.

Corollary 6 Edge t-admissibility is polynomial-time solvable for split graphs, join
graphs and P4-tidy graphs.

As presented in Corollary 6, we are able to determine the edge stretch index
for split graphs. Split graphs can be generalized as the (k, 
)-graphs, which are the
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u vw u v u vw

a) b) c)

Fig. 5 Cases of (1, 2)-graphs and the corresponding edge tree spanners. (a) an edge 5-admissible
graph. (b) and (c) are edge 4-admissible graphs

graphs that the vertex set can be partitioned into k stable sets and 
 cliques. The
(k, 
)-graphs are also denoted as the generalized split graphs [5].

In [4], the dichotomy P versus NP-complete on deciding the stretch index for
(k, 
)-graphs was partially classified. One of the open problems regarding MSST is
to establish the computational complexity for (1, 2)-graphs. Next, we prove that the
edge stretch index for (1, 2)-graphs can be determined in polynomial time.

We denote a (1, 2)-graph as a graph G = (V ,E) where V is partitioned into
V = K1 ∪ K2 ∪ S, such that each Ki induces a clique and S is a stable set.

Lemma 7 If G is a (1, 2)-graph, then G is edge 5-admissible.

Proof Since G is connected, there is a path between a vertex u ∈ K1 and v ∈ K2
by an edge uv or by a P3 = u,w, v. Figure 5 depicts the cases of (1, 2)-graphs and
their edge 5-tree spanners. In Fig. 5a there is an induced C6 by two vertices of each
clique and two vertices of S, implying a non-edge in any tree, hence σ ′(G) ≤ 5. �

Theorem 3 A (1, 2)-graphG = (K1 ∪K2 ∪ S,E) has σ ′(G) ≤ 4 if and only if G
has a distance two dominating edge or two adjacent distance two dominating edges
that are adjacent to at least one edge of each pair of edges incident to a vertex of S
such that one endpoint of an edge of this pair is inK1 and another one in K2.

Proof From Lemma 1, if G has a distance two dominating edge, then G is edge
4-admissible. Moreover, if G has two distance two dominating edges e1 and e2
adjacent to at least one edge of each pair of edges incident to a vertex of S such that
one endpoint of an edge of this pair is in K1 and an endpoint of the other edge is
in K2, one obtain an edge tree 4-spanner T of G by selecting any spanning tree of
L(G) that maximizes the degrees of these two distance two dominating edges in T .

Conversely, for the sake of contradiction assume that G does not have such
distance two dominating edges and T is an edge tree 4-spanner of G. Since G is
connected, there is a vertex of S adjacent to both K1 and K2 and we can select
these two edges of S to be two distance two dominating edges of G. Therefore, for
all distance two dominating edges e1 and e2 of G we have two edges ei and ef
incident to a vertex of S such that these edges are both not adjacent to e1 and e2.
Therefore, in the best case scenario these two edges are adjacent to edges e′

1 and e′
2
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adjacent to e1 and e2. However, we have a path in T ei e
′
1 e1 e2 e′

2 ef with these
two edges ei and ef sharing an endpoint, which implies that T is not an edge 4-tree
spanner of G. �
Corollary 7 Edge t-admissibility is polynomial-time solvable for (1, 2)-graphs.

5 Edge 8-Admissibility Is NP-Complete for Bipartite Graphs

Next, we present a polynomial time transformation from 3-SAT [6] to edge 8-
admissibility for (2, 0)-graphs, i.e. bipartite graphs.

Construction 3 Given an instance I = (U,C) of 3-SAT we construct a graph G

as follows. We add a P2 with labels x and x ′ to G. For each variable u ∈ U we add
a C8 to G with three consecutive vertices labeled as u, mu, and u and the other five
consecutive vertices labeled as u1 to u5. For each ui, i = 1, . . . , 5, u and u we add
a pendant vertex. For each variable u ∈ U we add the edge xmu to G. For each
clause c1 = (u, v,w) ∈ C, we add two vertices vertex c1 and c′

1 toG and the edges
c1c

′
1, c1u, c1v, and c1w. For each variable u ∈ U we add a P4 to G with endpoints

labeled pu1 and pu4 and the edges pu1x and pu4mu.

Figure 6 depicts an example of a graph obtained from a 3-SAT instance.
The key idea of the proof of Theorem 4 is that, for each variable u ∈ U , we

have exactly one edge in the edge tree 8-spanner T which is near to x and u or u.
We relate this proximity to a true assignment of that literal. Next, we require that at
least one edge incident to each clause to be connected to a true literal. Otherwise,
if they are all false literals, we end up with two of the edges incident to that clause
being vertices of L(G) with distance at least 9 in T .

Fig. 6 Graph obtained from Construction 3 on the instance I = ({u, v,w}, {(u, v,w), (u, v,w})
and an edge tree 8-spanner of it in red
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Theorem 4 Edge 8-admissibility is NP-complete for bipartite graphs.

Proof By construction, G is bipartite. Moreover, not only the problem is in NP,
but also the size of the graph G, obtained from Construction 3 on an instance I =
(U,C) of 3-SAT, is polynomially bounded by the size of I . We prove that G is
edge 8-admissible if and only if there is a truth assignment to I . Consider a truth
assignment of I = (U,C). We obtain an edge tree 8-spanner T of G as follows (see
Fig. 6).

Add to T the edges: {x ′x, xmu | u ∈ U}; {xmu,muu | u ∈ U and u is true} or
{xmu,muu | u ∈ U and u is true}; {umu, umu | u ∈ U}; For each clause select a

true literal and add to T : {c′c, uc | c is a clause with the selected true literal u};
{uc, umu | c is a clause with the selected true literal u};
{uc, umu | c is a clause with the selected true literal u};
{uc, vc | c is a clause with the selected trueliteral u and v is other literal of c};
For each variable u ∈ U add to T the edges: {mupu4, pu4pu3}; {pu4pu3, pu3pu2};

{pu3pu2, pu2pu1}; {pu2pu1, pu1x}; {pu1x, xmu}; {umu, uu1}; {umu, uu5};
{uu1, u1u2}; {u3u4, u4u5}; {u4u5, uu5}; and each pendant G is added to a solution
tree as Fig. 6

Consider an edge tree 8-spanner T of G (resp. tree 8-spanner of L(G)), we
present a truth assignment of I = (U,C). First we claim that for each variable
u ∈ U , there is exactly one of these two edges in T : {xmu, umu} and {xmu, umu}.
Assume that both edges are in T . There are in L(G) two adjacent vertices uiui+1
and ui+1ui+2 of the cycle C9 of variable u with distance 9 in T , a contradiction.
Now, assume that both edges are not in T . We consider two cases. If there are no
edges pu4mu, umu or pu4mu, umu, then there are in L(G) two adjacent vertices
pu4mu and umu (or umu) with distance at least 9 in T , since it is necessary to make
a path passing through xx ′, a contradiction. Otherwise, there is an edge pu4mu, umu

or pu4mu, umu. In both cases, let c1 = (u, v,w) be a clause that contains u, there
are in L(G) two adjacent vertices c1v, vv1 that have distance at least 9 in T , a
contradiction.

Hence, relate the edge {xmu, umu} or {xmu,muu} in T for each variable u ∈ U

to a true assignment to the literal u or u. Assume that there is a clause with three
false literals c3 = (x, y, z). No matter how we connect the vertices c′

3c3, c3x, c3y

and c3z in T , two of them have distance at least 9 in T , a contradiction. Therefore,
each clause has at least one true literal, and this is a truth assignment of I . �

Construction 3 can be adapted in order to prove that edge 2k-admissibility is NP-
complete, for k ≥ 5. It can be obtained by subdividing the edge mux and the cycles
corresponding to each variable u.

6 Concluding Remarks

We have obtained the edge stretch index of some graph classes, or equivalently,
the stretch index of line graphs, such as gridline graphs (line graphs of bipartite
graphs); complement of Kneser graphs KGn,2 (line graphs of complete graphs); and
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line graphs of (k, 
)-graphs. Although deciding the 3-admissibility is open for more
than 20 years, we characterize the edge 3-admissible graphs in polynomial time, and
we also prove that edge 8-admissibility is NP-complete, even for bipartite graphs.
Hence, some open questions arise, such as determine the computational complexity
of edge t-admissibility for 4 ≤ t ≤ 7, and t = 2k + 1, k ≥ 4.
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Sequence Graphs: Characterization and
Counting of Admissible Elements

Sammy Khalife

Abstract We present a family of graphs implicitly involved in sequential models,
which are obtained by adding edges between elements of a discrete sequence
appearing simultaneously in a window of size w, and study their combinatorial
properties. First, we study the conditions for a graph to be a sequence graph. Second,
we provide, when possible, the number of sequences it represents. For w = 2,
unweighted 2-sequence graphs are simply connected graphs, whereas unweighted 2-
sequence digraphs form a less trivial family. The decision and counting for weighted
2-sequence graphs can be transformed by reduction into Eulerian graph problems.
Finally, we present a polynomial time algorithm to decide if an undirected and
unweighted graph has the said property for w ≥ 3. The question of NP -hardness is
left opened for other cases.

Keywords Graphs · Combinatorics · Representations

1 Introduction

The graphs we are interested in this paper, referred to as sequence graphs,
represent the co-occurrences (potentially oriented) of the elements in a sequence
appearing simultaneously in a window of constant size w. These structures encode
information of several sequential models, in particular for natural language [4, 7, 9],
supplementing the information of bag-of-words representations, which are invariant
to any permutation. They also have been used for biological sequences, namely for
protein visualization or protein-protein interaction prediction [2, 8]. In this work,
we are interested in two main questions; first the question of recognition of such
graphs, and second, the counting of corresponding sequences.
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1.1 Definitions and Problem Statement

In the following, let x = x1, x2, . . . , xp be a finite sequence of discrete elements
among a finite vocabulary X. Without loss of generality, we can suppose that X =
{1, . . . , n}, let Ip = {1, . . . , p} and let N∗ be the set of strictly positive integers.

Definition 1 G = (V ,E) is the graph of the sequence x with window size w ∈ N
∗

if and only if V = {xi | i ∈ Ip}, and

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I 2
p, |k − k′| ≤ w − 1, xk = i and xk′ = j (1)

For digraphs, Eq. (1) is replaced by

(i, j) ∈ E ⇐⇒ ∃(k, k′) ∈ I 2
p, k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j (2)

Finally, a weighted sequence digraph G is endowed with the matrix Π(G) = (πij )

such that:

πij = Card {(k, k′) ∈ I 2
p | k ≤ k′ ≤ k + w − 1, xk = i and xk′ = j } (3)

By convention, a weighted (undirected) sequence graph is endowed with Π = (πij ),
πij = π

′
ij + π

′
ji if i �= j and π ′

ij otherwise, where π ′ verifies Eq. (3).
We say that x is a w-admissible sequence for G if G is the graph of the sequence

x. G is referred to as the w-sequence graph of x with window size w.

πij represents the number of co-occurrences of i and j in a window of size w.
Hence, the graph of a sequence x is unique for a given w. In the following, we use
Gw(x) as a shorthand for the w-sequence graph of x. In the weighted and directed
case, it can be obtained with Algorithm 1.

Algorithm 1: Construction of a weighted sequence digraph
Data: Sequence x of length p, window size w, p ≥ w ≥ 2
Result: (Gw(x), Π)

1 V ← Ø;
2 d ← number of distinct elements of x;
3 Initialize Π = (πi,j ) to d × d matrix of zeros;
4 for i = 1 → p − 1 do
5 V ← V ∪ {xi , xi+1} ;
6 for j = i + 1 → min(i + w − 1, p) do
7 πxi ,xj ← πxi ,xj + 1;
8 end
9 end

10 Return V, Π
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If G is not oriented, one should replace line 7 of Algorithm 1 by the “sym-
metrized” update:

if πi �= πj : α ← πxi,xj , πxi,xj ← α + 1, πxj ,xi ← α + 1

else : πxi,xi ← πxi,xi + 1
(4)

The procedure in Algorithm 1 defines a correspondence between the sequence set
SX into the graph set G : φw : SX → G , x .→ Gw(x). G ∈ Imφw exactly means that
G is a w−sequence graph. For a given w, the two problems we address in this paper
are the characterization (or recognition) of w-sequences graph, and the counting of
the number of their w-admissible sequences.

1.2 Related Work

Despite their relations with co-occurrences based models for language [1, 7, 9], no
such combinatorial questions were investigated in computational linguistics which
we believe to be of interest, namely to understand the degree of ambiguity of
these models. Besides, such structures have been partially studied in the Distance
Geometry (DG) literature before, mostly to do with proteins, where an “atom
window” can be defined by using the protein backbone [6]. However, the type of
graph studied in Distance geometry does not refer directly to the results we are
investigating in this paper. Indeed, the necessary and sufficient conditions for which
such study would apply are:

• each element of the sequence x is associated with a unique vertex (which is not
the case we investigate here, since a symbol can be repeated several times but
only one vertex is created)

• the absence of loops

As a consequence, the results mentioned in the DG survey [6] do not apply to the
present case.

1.3 Notations

In the following, we use Md(N) as a shorthand for the square d × d matrices over
the set of natural integers, Tr(M) for the trace of a matrix M , and Sp(M) for its set
of eigenvalues.
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2 2-Sequence Graphs

In this section, we consider w = 2. Algorithm 1 encodes each adjacency in the
sequence x as an edge in Gw(x). Obviously, the simplest case concerns undirected
graphs as stated in the:

Proposition 1 LetG = (V ,E) be an unweighted and undirected graph with |V | >
1. Then, the following assertions are equivalent:

(i) G is connected
(ii) G has a 2-admissible sequence
(iii) G admits an infinite number of 2-admissible sequences

Proof If G is connected, a sequence is obtained by visiting all edges, for instance
using a list of arbitrary sequences and shortest paths. The other implications are
immediate. �

For digraphs, the previous characterization is wrong, even with strong connec-
tivity. A counter example is given in Fig. 1. However, strong connectivity remains a
sufficient condition:

Proposition 2 Let G = (V ,E) be an unweighted digraph. If G is strongly
connected then G ∈ Imφ2. Moreover, a 2-admissible sequence can start or end
at any given vertex of G.

Proof Straightforward, similarly to (i) �⇒ (ii) for Proposition 1. �
Proposition 3 Let G = (V ,E) be an unweighted digraph. If G is Eulerian or
semi-Eulerian, thenG ∈ Imφ2.

Proof If G is Eulerian or semi-Eulerian, there exists a walk going through all edges,
this walk defines a 2-admissible sequence. �

Again the converse of Proposition 3 does not hold as depicted in Fig. 2. First, it
is natural to consider the case of directed acyclic graphs (DAGs):

1 2 3

Fig. 1 G has 1 2 3 as a 2-admissible sequence but is not strongly connected

1

2 34 5

Fig. 2 G has 3 5 3 1 2 1 2 3 2 4 as a 2-admissible sequence but is not Eulerian nor semi-Eulerian



Sequence Graphs: Characterization and Counting of Admissible Elements 213

Proposition 4 Let G = (V ,E) be a DAG. G is a 2-sequence graph if and only if
it is a directed path, i.e. G is a directed tree where each node has at most one child
and at most one parent. In this case, G has a unique 2-admissible sequence.

Proof If G is a directed path, since G is finite, it admits a source node. Therefore
a 2-admissible sequence is obtained by simply going through all vertices from the
source node. This is obviously the only one.

Conversely, let us suppose G is a DAG and a 2-sequence graph. If G is not a
directed path, there are two cases: either there exists a vertex having two children,
or two parents. Let s be a vertex having 2 distinct children c1 and c2. This is not
possible since there cannot be a walk going through (s, c1) and (s, c2): G would
have a cycle otherwise. Finally a vertex v cannot have two parents p1 and p2: if
a 2-admissible sequence existed, it would have to go through (p1, v) and (p2, v),
creating a cycle, hence the contradiction. �

Every directed graph G is a DAG of its strongly connected components. In the
following, let R(G) be the DAG obtained by contracting the strongly connected
components of G.

Proposition 5 LetG = (V ,E) be a digraph. IfG is a 2-sequence graph thenR(G)

is a 2-sequence graph.

Proof Let G be a 2-sequence graph, and let us suppose that R(G) is not a
2-sequence graph. Since R(G) is a (weakly) connected DAG, then using Propo-
sition 4, it cannot be a directed path, so R(G) has either a node having two children
or two parents. Let S be a node of R(G) having at least 2 distinct children C1 and
C2. This means that there exist three distinct corresponding nodes in V , s, v1 and v2
such that (s, v1) ∈ E and (s, v2) ∈ E. Since G is a 2-sequence graph, there exists
a walk covering (s, v1) and (s, v2), such walk would make S, C1 and C2 the same
node in H(G), hence the contradiction. The case for which a vertex has two parents
is dealt with similarly. �

The converse of Proposition 5 does not hold as depicted in Fig. 3, which
motivates the following definition.

Definition 2 Let G be a digraph, and R+(G) be the weighted DAG obtained from
R(G), such that the weight of an edge is the number of distinct arcs from two
strongly connected components in G.

Theorem 1 Let G = (V ,E) be an unweighted digraph.

Fig. 3 G is not a 2-sequence
graph while R(G) is. (a) G.
(b) R(G)

1 2

34

(a)

c1

(b)

c2
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G is a 2-sequence graph if and only if R+(G) is a directed path and its weights
are all equal to 1.

Proof If G is a 2-sequence graph, R(G) is a 2-sequence graph using Proposition 5.
Also Proposition 4 implies that R(G) and R+(G) are directed paths. Moreover,
if R+(G) had a weight strictly greater than 1, then there would be strictly more
than one edge between two strongly connected components C1 and C2. All these
edges go in the same direction otherwise C1 ∪C2 would be part of a larger strongly
connected component. This is a contradiction since any 2-admissible sequence
would have to go from C1 to C2 and then come back to C1 (or conversely) and
C1 ∪ C2 would again be part of a larger strongly connected component.

Conversely, let us suppose R+(G) is a a directed path and its weights are equal
to one. First, there exists a walk x1, . . . , xp covering all edges of R+(G) verifying:
(i) ∀i, xi ∈ V or xi represents a strongly connected component of G, (ii) there is
only one edge in G between from xi to xi+1 and (iii) x has no repetition, i.e. there is
no common vertex in G between xi and xi+1. We construct a 2-admissible sequence
y for G by means of the following procedure.

Initialisation: If x1 ∈ V , we simply set y ← x1. Otherwise, x1 corresponds to a
strongly connected component C1 of G and we add to y any 2-admissible sequence
of C1.

For i ∈ {1, .., p − 1}:
• If (xi, xi+1) ∈ E: we add xi+1 to the sequence y.
• If xi ∈ V and xi+1 is a strongly connected component Ci of G: By assumption,

there exists only one edge of G from xi to a vertex of Ci , say ci0. Since Ci is
strongly connected, using Proposition 2, Ci has a walk going through all of its
edges and starting in ci0, say ci0, . . . , c

i
p. We add ci0, . . . , c

i
p to y.

• If xi corresponds to a strongly connected component Ci and xi+1 ∈ V : we
perform similar operations by stopping on the single node of Ci that has a edge
to xi+1 (this is possible thanks to Proposition 2).

• xi and xi+1 both correspond to strongly connected components Ci and Ci+1,
there exists only one edge between in E between Ci and Ci+1, say ei =
(vi , vi+1). We can complete y by a walk from the last vertex visited which belong
to Ci and vi , and then by a 2-admissible sequence through Ci+1 starting in vi and
ending in vi+1.

The process stops when i = p−1, and all edges are covered by the sequence y. �
Therefore, an algorithm to decide if a digraph is a 2-sequence graph is obtained

by extracting its strongly connected components (there exist linear time algorithms
e.g. [10]), and to count the number of distinct edges between these.

Corollary 1 Let G be an unweighted digraph. The possible numbers of 2-
admissible sequences for G is exactly {0, 1,+∞}. Moreover, G admits a unique
2-admissible sequence if and only if G is a directed path.

Proof Let G a be 2-sequence graph. G verifies the characterization of Theorem 1.
If R(G) has a vertex C representing a strongly connected component of G (or
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Fig. 4 G is strongly
connected but is not a
2-sequence graph 1 2 3

3 1

1

a vertex with a loop), then by adding an arbitrary number of cycles in C to the
admissible sequence y (cf. Proof 2), the new sequence is still admissible. Otherwise,
if every vertex of R(G) is in V without self-loops in E, then G is a DAG. Using
Proposition 4, y is the unique 2-admissible sequence. �

2.1 Weighted 2-Sequence Graphs

The weighted case cannot be treated similarly due to the constraint 3. A coun-
terexample is depicted in Fig. 4. Moreover, a weighted graph has a finite number
of admissible sequences. This property can be seen using Proposition 6 below.

Proposition 6 If a graph is a weighted w-sequence graph, all of its admissible
sequences have the same length.

Proof Let x be a w-admissible sequence for G of length p. If G is a digraph,
Algorithm 1 is incrementing (p − w + 1)(w − 1) + (w−1)(w−2)

2 times the total
weight, therefore:

∑

i,j

πij = (p − w + 1)(w − 1) + (w − 1)(w − 2)

2
(5)

If w ≥ 2, this yields: p = w − 1 − w−2
2 + 1

(w−1)

∑
i,j πij

Otherwise, if G is undirected, the weights matrix obtained with Algorithm 1 does
not yield Eq. (5), due to the update of Eq. (4). The weights on the diagonal remain
the same, but the others are multiplied by 2, hence the formula:

∑

i,j

πij + Tr(Π) = 2(p − w + 1)(w − 1) + (w − 1)(w − 2) (6)

leading to p = 1
2(w−1) [

∑
i,j πij + Tr(Π)]. �

Corollary 2 Let G be a weighted w-sequence digraph, and Π its weights matrix.
If w even, then (w − 1) | ∑i,j πij .

Corollary 3 Let G be a w-sequence (undirected) graph and Π its weights matrix.
Then 2(w − 1) | ∑i,j πij + Tr(Π).

Definition 3 Let ψ(G) be the auxiliary multigraph with the same vertices as G =
(V ,E) and with πij edges between (i, j) ∈ V 2.



216 S. Khalife

Due to the previous study, the characterization of weighted 2-sequence graphs using
ψ(G) is immediate. A semi-Eulerian graph is a graph that admits a Eulerian walk
(instead of cycle for Eulerian graphs).

Theorem 2 IfG is a weighted graph (directed or not), withΠ(G) ∈ Md(N), then:
G ∈ Imφ2 ⇐⇒ ψ(G) is connected and semi-Eulerian.

Proof G ∈ Imφ2 means that there is a trail going through each edge (i, j) ∈ E

exactly πij times. This trail corresponds to a semi-Eulerian path in ψ(G). �

2.2 Counting 2-Admissible Sequences for Weighted Graphs

Proposition 7 sums up the results for the counting problem of a weighted graph:

Proposition 7 Counting the number of 2-sequences for a weighted graph is #P -
complete. However, if G is a weighted digraph with Π(G) ∈ Md(N), then the
number p2 of 2-admissible sequences is given by:

p2 = t (ψ(G))∏
e∈E πe!

∏

v∈V

(
degψ(G)(ψ(v)) − 1

)! (7)

where t (G) is the number of spanning trees of a graph G. If L is the Laplacian
matrix of G, then t (G) is given by t (G) = ∏

λi∈Sp(L)
λi �=0

λi .

Proof Given a 2-admissible sequence of G, the choice of a corresponding Eulerian
path in ψ(G) is the choice of σ = (τ1, . . . , τ|E|) of |E| permutations of {1, . . . , πe}
representing the visit order in ψ(G). G .→ ψ(G) being bijective, counting Eulerian
paths in an undirected graph is #P -complete [3], hence so is the problem of counting
the 2-sequences of a weighted graph. BEST [11] and Matrix tree [5] theorems allow
to derive formula (7) which guarantees in that the problem on digraphs is in P . �

To use formula (7), degψ(G)(ψ(v)) can be obtained using the following formula:
degψ(G)(ψ(v)) = ∑

n∈V πnv +∑
n∈V πvn.

The results are summed up in Table 1.

Table 1 Results for various instances of our problems (w = 2)

Undirected Directed

Problem Unweighted Weighted Unweighted Weighted

Nb. sequences (P) {0,+∞} #P -hard (P) {0, 1,+∞} (P) BEST Theorem

G ∈ Imφ2? G connected ψ(G) Eulerian or Theorem 1 ψ(G) Eulerian or

semi Eulerian semi Eulerian
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3 What Happens If w > 2?

The characterization of 3-graphs is not the same as for 2-graphs, as the
counter-example in Fig. 5a shows: the depicted graph has no loop so there
must at least one clique of size 3, which is not the case. Similarly, Fig. 5b
depicts a counter example for directed graphs: G does not have loop, so
if it had a 3-admissible sequence, such sequence must be of the form
{1 2 3 1 . . . , 1 3 2 1 . . . , 2 3 1 2 . . . , 3 2 1 3 . . . , 2 1 3 2 . . .} but then (2, 1) would form
an edge.

Similarly to the procedure in Sect. 2.1, we will use an auxiliary graph built on
G. Let H(G) = (E,EH ) be the new graph obtained with the following procedure.
Two edges e = (v1, v2), f = (v3, v4) of E are connected in H(G) if and only if
(An illustration is given Fig. 6):

v2 = v3 and (v1, v4) ∈ E (8)

Therefore, by definition, a walk P in H(G) is always of the form:

P = (t1, t2), . . . , (tp−1, tp) s.t ∀i ∈ {1, . . . , p − 1}, (ti , ti+1) ∈ E (9)

It is clear that if H(G) is a 2-graph, then G is a 3-graph since there is a walk
going through all edges of H(G). However, the converse is not true as depicted in
Fig. 7. In order to determine if G = (V ,E) has an admissible sequence for any w, a
procedure is to recursively merge pairs of vertices, maintaining constraints defined
below. These constraints are similar to Eq. (8). We adopt the following notations,
ui,j = (ui, uj ) and u1:k = (u1, . . . , uk). The iterative procedure (for w ≥ 3) is
summed up in 10.

1 2 3

(a) (b)

1 2 33

Fig. 5 Counter-examples for w = 3. (a) G is connected but does not have any 3-admissible
sequence. (b) G is strongly connected but does not have any 3-admissible sequence

1 2

3

12 23

13

123

13

(a) (b) (c)

Fig. 6 Reduction on a simple example (w = 3). (a) Original graph G. (b) Graph H . (c) DAG
R(H)
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1 2

34

(a) (b) (c)

31

24
23

43

42

41
34

32

31

2443

41 32

34234

Fig. 7 Procedure to find a 3-admissible sequence. 34234, 41: is 3-admissible, with authentic
sequence 3 4 2 3 4 1. (a) Original graph G. (b) Graph H is not a 2-sequence graph. (c) DAG
R(H(1))

Namely, ∀k ∈ {2, . . . , w − 2}, one has

E(k) = {u1:k+1 ∈ V k+1 | u1:k ∈ E(k−1), u2:k+1 ∈ E(k−1) ∧ (u1, uk+1) ∈ E}
(10)

Let H(k) = (E(k), E(k+1)), it can be defined recursively through:

H(0) = G ∀k ∈ N
∗, H (k) = f (H (k−1)) (11)

where f transforms edges into vertices and creates edges between new vertices that
verify Eq. (10). It should be noted that H(G) is directed if and only if G is.

Definition 4 Let u be a vertex of H(k) for k ∈ N, u = (u1, . . . , uk, uk+1),
where uj ∈ V for each j . The sequence u1, . . . , uk+1 is the authentic
sequence of u. We also call an authentic sequence of a walk on H(k): P =
(x1, . . . , xk+1), (x2, . . . , xk+2), . . . , (xv, . . . , xv+k) the sequence x1, x2, . . . , xv+k .

In order to obtain admissible sequences of length p, the computation of H(p)

requires p iterations, and the number of vertices and edges of H(k) can increase
during iterations (the complete graph is an example for which theses numbers
increase quadratically).

Proposition 8 Let x = x1, . . . , xp be a w-admissible sequence of a graph (or
digraph) G = (V ,E). If w ≤ p, then x is an authentic sequence of a walk of
length p − w + 1 on H(w−2).

Proof Let x = x1, . . . , xp be a w-admissible sequence of G. Let P be a
walk on H(w−2), and P [i] be the i-th element of P , P [i] ∈ H(w−2): P [i] =
(P [i]1, . . . , P [i]w−1).

Let us suppose that w ≤ p (which we can always do), and let us show the
following property by induction on k:

∀k ∈ {w − 1, . . . , p}, ∃ walk P on H(w−2),

x1:k = P [1]1, P [2]1, . . . , P [k − (w − 1)]1, P [k + 1 − (w − 1)]1:(w−1)
(12)
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• Initialisation: k = w − 1. By construction of H(w−2), x1:w−1 is the authentic
sequence of “static walk”: P = P [1] = x1:w−1 ∈ H(w−2).

• Induction: let us suppose the property is verified for k ∈ {w − 1, . . . , p − 1}, i.e.
there exists a walk P on H(w−2) such that:

x1:k = P [1]1, P [2]1, . . . , P [k − (w − 1)]1, P [k + 1 − (w − 1)]1:(w−1)

Since x is w-admissible, then by definition:

∀i ∈ {k+1−(w−1), . . . , k},∀j ∈ {i+1, . . . ,min{k+1, i+w−1}} : (xi, xj ) ∈ E

Therefore, by definition of H(w−2), ξk+1 = xk+1−(w−1), . . . , xk+1 ∈ H(w−2).

Let P [k + 2 − (w − 1)] =∧ ξk+1, then P [k + 2 − (w − 1)]1:(w−1) =
xk+1−(w−1), . . . , xk+1. Besides, from the induction assumption: ∀i ∈ {1, . . . , k −
(w − 1)}, P [i]1 = xi . This ensures that: x1:(k+1) = P [1]1, P [2]1, . . . , P [k + 1 −
(w − 1)]1, P [k + 2 − (w − 1)]1:(w−1) which ends the induction and the proof. �
Theorem 3 Let G be a graph and w ∈ N

∗ − {1, 2}. If G is undirected and
unweighted then deciding if G is a w-sequence graph is in P .

Proof It is possible to compute the connected components of H(w−2), say
C1, . . . , Cm, in polynomial time. For each i ∈ {1, . . . ,m}, it is possible to construct
walks covering all edges in polynomial time (for instance iteratively using shortest
paths). Let W1, . . . ,Wm be such walks and X1, . . . , Xm their respective authentic
sequences. Using Proposition 8, G is a w-sequence graph if and only if there exists
a walk W̃i0 on some Ci0 creating exactly the edges of G. However, Wi0 creates more
edges than any walk on Ci0 by construction.

In conclusion, the assertion: ∃i ∈ {1, . . . ,m}, φw(Xi) = G is a characterization
of G being a w-sequence graph. This assertion is decidable in polynomial time since
for all i, computing φw(Xi) requires a polynomial number of operations. �

For digraphs, the analogue of the aforementioned procedure would consist in
enumerating all paths in the DAG R(H(w−2)). However, the number of paths can be
exponential, even for a sequence graph. For the sake of completeness, we will prove
that the reduction by strongly connected components preserves admissibility.

Lemma 1 Let x be a walk on H(w−2) whose authentic sequence is w-admissible
for its corresponding unweighted graphG. If x goes through a strongly component
C of H(w−2), adding any supplementary path of C to x lets x w-admissible. Any
graph generated by a walk on H(w−2) can be generated by a walk on R(H(w−2)).

Proof Let P = P [1], , . . . , P [r] be a walk on H(w−2) going through a strongly
connected component C, with an arbitrary ordering of its vertices, i.e. C =
{c1, . . . , cm}. This means ∃(m0, i0) ∈ {1, . . . ,m} × {1, . . . , r − 1} s.t P [i0] = cm0

and (cm0, P [i0+1]) ∈ E. Let C = cm0 , cj1, . . . , cjv be a path in C with (cjv , P [i0+
1]) ∈ E. Let Q be the new path: Q = P [1], . . . , P [i0], cj1, . . . , cjv , P [i0 +
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Algorithm 2: A recognition algorithm for unweighted digraphs
Data: Graph G, window width w

Result: (Boolean, empty set or w-admissible sequence)
1 Build H(w−2) recursively (e.g. with 11);
2 Construct Rw

H = R(H(w−2)) ;
3 for source-sink path of Rw

H do
4 if authentic sequence of path is w-admissible for G then
5 return (True, sequence)
6 end
7 end
8 return (False, ∅);

1], . . . , P [r]. By construction of H(w−2), the edges created by any walk on H(w−2)

are in E, so Q is still admissible.
Let us label every node of R(H(w−2)) representing a strongly connected compo-

nent of H(w−2) by any 2−admissible sequence (one exists thanks to Proposition 2).
A walk on H(w−2): x1, . . . , xp can be met by a walk on R(H(w−2)) using the
following procedure:

For i ∈ {1, . . . , p − 1}:
• if xi, xi+1 ∈ E, we keep xi and xi+1
• if xi ∈ V and xi+1 is in a strongly connected component of H(w−2) (but a node of

R(H(w−2))), represented by c1, . . . , cCi , then a path from xi+1 to c1 exists since
the component is strongly connected: xi+1, p1, . . . , pm, c1. We keep xi, xi+1,
p1, . . . , pm, c1, . . . , cCi . Using the aforementioned result, this does not perturb
admissibility.

• if xi+1 ∈ V and xi is in a strongly connected component of Hw−2, we proceed
similarly (xi and xi+1 are swapped).

• if both xi+1 and xi are strongly connected components of Hw−2, we add
intermediary nodes to connected both components similarly.

�

4 Conclusion

In this preliminary study, we considered two main combinatorial problems: the
recognition problem of sequences graphs, and the counting of their realizations.
Solving the second problem totally solves the first one, but in the trivial case w = 2,
the first one is “simpler”: the recognition problem of sequence graphs is P for w = 2
for any data instance, but the counting problem is #P -hard for weighted graphs. This
justifies the distinction of these problems from a computational point of view.

Furthermore, for w > 2, the recognition problem is in P for one configuration
(unweighted graphs), but the complexity classes of the other instances are left
opened, and so are the counting problems for w > 3. A possible lead to
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answer these questions would be to investigate forbidden patterns in a sequence
graph. Finally, it should be noted that the abstraction of sequences graphs exactly
coincides with the graphs implicitly involved in co-occurrence models or point
wise-mutual information models [1, 7, 9], used as input of algorithms to construct
word representations. In these models, representations are ambiguous if the given
weighted graph has several realizations. Therefore, other extensions of this work
would be to propose scalable algorithms (or at least, for reasonable values of w and
length of the sequences) to count and explicit realizations, in order to obtain more
information about the degree of ambiguity in these models.
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Abstract In this paper, we propose a combined algorithm based on an Iter-
ated Local Search (ILS) and a mathematical model to solve the Time Window
Assignment Vehicle Routing Problem (TWAVRP). The TWAVRP appears when the
volume of customer demands is uncertain and time windows should be allocated to
customers so as to minimize expected travel costs. Our goal is to find a heuristic
strategy that can efficiently improve the current TWAVRP solution methods in the
literature. For this purpose, we first use an ILS algorithm to generate feasible sets
of routes. Then, we invoke a Mixed Integer Linear Programming formulation that
assigns time windows to customers and selects the subset of routes of minimum
expected cost. Computational results performed on benchmark instances show that
our algorithm is competitive with respect to the literature, especially for instances
with more than 45 customers.
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1 Introduction

Vehicle routing is a class of problems that appears in several combinatorial
optimization studies due to their practical relevance, mainly in the areas of retail
and transport [22]. The classical Vehicle Routing Problem (VRP) calls for shipping
freight to customers located along a distribution network by means of a fleet
of capacitated vehicles, with the aim of minimizing the delivery costs. Since its
introduction in the 1950s, several variations of the VRP have become prominent
in the literature. Among these, we mention the Vehicle Routing Problem with Time
Windows (VRPTW), where a given interval of time in which deliveries should occur
is associated with each customer.

Inspired by retail distribution networks, [20] introduced the Time Window
Assignment Vehicle Routing Problem (TWAVRP). The TWAVRP appears when the
volume of customer demands is uncertain and time windows should be allocated to
the customers located along a distribution network, so as to minimize the expected
travel costs. In the TWAVRP, each endogenous time window, that has a fixed-
width, must be associated within the exogenous time window of the customer. The
exogenous time windows is represented by the arrival and departure limits of a
customer. According to [16], the TWAVRP can be defined as a two-stage stochastic
optimization problem. Given a set of customers to be visited within a regular period,
the first stage decisions are to assign a set of time windows to customers, before
demand is known. In the second stage, after requests are revealed for each day,
delivery schedules respecting the assigned time windows must be designed.

The TWAVRP faced in this work is part of a research whose focus is to give an
efficient and accurate solution for a routing problem faced by an Italian company
providing logistics services in several distribution fields. One of the characteristics
presented in the particular routing problem faced by the company is the presence
of a time window assignment decision phase. Our purpose is to help the company
to minimize the actual delivery time and the total cost of the service they offer.
We decided to start our research by first looking at the combinatorial aspect of the
TWAVRP, with the aim of focusing later on its application to the company case
study. In particular, the main contribution of this paper is to provide an answer to
the following question: “Is there a heuristic strategy that can efficiently solve the
TWAVRP as defined by Dalmeijer and Spliet [7], Spliet and Gabor [20]?”. For this
purpose, we propose an algorithm that generates a set of routes by invoking an
Iterated Local Search (ILS) metaheuristic, and then selects the most appropriate
routes through an auxiliary mathematical formulation.

The remainder of the paper is structured as follows. Section 2 presents a brief
literature review concerning the VRPTW and the TWAVRP. Section 3 formally
describes the TWAVRP and presents a mathematical model. Section 4 reports
the methodology that we developed to solve the TWAVRP. Section 5 shows
the computational experiments that we performed. Finally, Sect. 6 presents some
conclusions and some future research perspectives.
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2 Brief Literature Review

Due to the academic interest in VRP variants and to the need of solving difficult real-
world problems, researchers have been focusing more and more on realistic VRP,
studying the class of so-called Rich Vehicle Routing Problems (RVRP). The RVRP
class deals with realistic objective functions, uncertainty, dynamism, and a variety
of practical constraints related to time, distance, heterogeneous fleet, inventory and
scheduling problems, to mention a few. The reader is referred to [4, 23, 24] for more
details about RVRP variants.

In this work, we deal with the TWAVRP, a problem that has characteristics
resembling the VRPTW. The VRPTW is a generalization of the VRP involving
appropriate time intervals for performing services, called time windows. In this class
of problems, customer service can only be started within the time window defined
by the customer [8]. Recently, several interesting VRPTW applications have been
addressed in the literature. Among these, we mention the delivery of food [1], the
electric vehicle recharging problem [11], and the use of anticipated deliveries in
pharmaceutical distribution [12].

In literature, we found some examples of classical approaches of VRPTW that
consider Branch-and-Price [3, 8] and Tabu Search algorithms [5, 6], and also more
recent studies with applications at delivery food [1] and electric vehicles recharging
problem [11].

The TWAVRP has characteristics that make it even harder to solve in practice
than the VRPTW [18]. Several methods have been developed for its solution in
recent years. The problem was formally introduced by [20] that considered a finite
number of scenarios with certain probabilities of realization. The authors proposed
a mathematical model involving a large number of variables and solved it using
a Branch-Price-and-Cut algorithm. Computational experiments on 40 instances
involving 10, 15, 20, and 25 customers proved the efficiency of the proposed
algorithm.

Moreover, [19] tackled a variant of the TWAVRP where, for each customer, a
time window is selected from a set of possibilities. To solve the problem, they
implemented a Branch-Price-and-Cut and a Tabu Search. The results they obtained
on a new set of instances showed that an approach considering five scenarios led to
an average cost reduction of about 3.6% compared to a single-scenario approach.

In their paper, [7] addressed the TWAVRP through a Branch-and-Cut algorithm.
They considered branching strategies based on a set of precedence inequalities. The
effectiveness of the algorithm was demonstrated through numerical experiments and
comparisons with the literature.

Inspired by a large European food retailer, [16] applied the TWAVRP to a real
food distribution case study, involving around 200 customers, with time windows
defined according to the product segments. This problem considers both the traveled
distance and fleet requirements costs. Solution method uses three phases: Route
Generation; Initial Solution Construction; and Improvement by a Matheuristic.
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Finally, [18] proposed a mathematical formulation for a TWAVRP variant that
includes time-dependent travel times. To deal with this new problem, they applied
a Branch-Price-and-Cut algorithm. Computational tests were run on artificial
instances having up to 25 customers. The best solution value they found was only
0.55% higher, on average, than the optimal solution value.

3 Formal Problem Definition

We deal with the same problem described by Dalmeijer and Spliet [7]. Consider a
set of customers denoted by H = {1, 2, . . . , n}. A graph G = (N,A) models the
network of this problem, where N = H ∪ {0, n + 1} is the overall set of nodes
and 0 and n + 1 represent, respectively, the departure and arrival depot nodes of all
routes. A set AH of arcs indicates the connections between any pair of customer
nodes i, j ∈ H . Similar to set N , we denote A = AH ∪ {(0, j) ∪ (j, n + 1) for all
j ∈ H}, as the overall set of arcs connecting customers and depot nodes. Each arc
(i, j) ∈ A has an associated travel time tij and a travel cost cij . The travel times are
non-negative and respect the triangular inequality (tij ≤ tik + tkj for all i, j , and k),
and the same applies to travel costs.

An unlimited set of homogeneous vehicles with capacity Q is available at the
departure depot. We consider a set Ω of demand scenarios, each having probability
of occurrence pω, for ω ∈ Ω , in such a way that

∑
ω∈Ω pω = 1. Each customer

j ∈ H has a demand in scenario ω ∈ Ω given by 0 ≤ qω
j ≤ Q.

Each customer j ∈ H has to be assigned to an endogenous time window
of width wj , which must be selected in a fixed exogenous time window [ej , lj ]
provided in input, where lj − ej ≥ wj . A time window [e0, l0] represents
the opening hours of the departure depot. Similarly, a time window [en+1, ln+1]
represents the opening hours of the arrival depot. The objective function consists
in minimizing the expected traveled cost over all scenarios, which is given by
min

∑
ω∈Ω pω

∑
(i,j)∈A cij x

ω
ij , where xω

ij is a binary variable that takes the value
1 if arc (i, j) ∈ A is traveled in scenario ω, 0 otherwise. For each scenario ω ∈ Ω , a
route is feasible if the exogenous time window constraints are satisfied, the capacity
constraints are satisfied and the customer j must be visited after the service time at
customer i added to the travel time tij in the case that the customer j is visited after
i.

4 An Iterated Local Search-Based Algorithm

The heuristic method proposed in this paper is outlined in Algorithm 1. It is based on
two successive phases, the first used to generate routes and the second used to select
a subset of routes having minimum cost. A similar idea was adopted by Moreira
and Costa [15], who efficiently solved a quite different combinatorial optimization
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problem involving job rotation schedules in assembly lines with heterogeneous
workers. Our method is composed of two parts. First, we generate a pool of
feasible routes, minimizing the total cost of each scenario (Lines 4–6), subject
to vehicle capacity constraints and exogenous time windows. Then, we call an
auxiliary Mixed Integer Linear Programming (MILP) formulation to select the most
appropriate routes of the set, so as to optimize the total cost over all scenarios
(Line 7) by respecting the generated endogenous time windows. The reference
framework of Phase 1 is the ILS introduced by Lourenço et al. [14]. Such ILS
has four components: (i) initial solution generator; (ii) local search procedure;
(iii) perturbation; and (iv) acceptance criterion. The choice of this metaheuristic
derives from the fact that it has been successfully applied in several combinatorial
optimization problems [2, 9, 17], including a number of VRP variants [10, 21].
Moreover, it contains fewer parameters to be fine-tuned with respect to other
metaheuristics. In Line 5, we represent the ILS by function ILS(Iω, α, niter ),
which returns the set of routes obtained by the execution of the metaheuristic after
receiving in input data Iω, that is all the data from scenario ω. Note that parameter α
corresponds to the perturbation factor, whereas niter gives the number of iterations
without improvements. Next, we explain each component of the ILS and of the
subsequent mathematical formulation used to select the final set of routes.

Algorithm 1: Main algorithm

1 Input: I (instance)
2 Output: (s, f (s)) (solution, and its objective function)
3 P ← ∅; / Empty pool of routes
4 foreach ω ∈ Ω do
5 P ← P ∪ ILS(Iω, α, niter ); / Generating the set of routes for each scenario
6 s ← RSM(P, I ); / Route Selector Model (RSM)
7 return (s, f (s));

4.1 Iterated Local Search (ILS)

Algorithm 2 gives the heuristic invoked to create the initial solution for the proposed
ILS. The algorithm is inspired by the greedy strategy presented by Zhigalov [25].
Let H̃ω be the set of all customers in scenario ω ∈ Ω , that is, all customers
demands in that scenario. First, H̃ω is sorted according to the earliest start time
of the exogenous time window (i.e., ei , for i ∈ H̃ω) of the customers (Line 4).
The main loop consists of Lines 5–17, and terminates when all customers have
been assigned. In each iteration, an empty route is opened (Line 6), and the highest
priority customers (according to the sorting in Line 4) are appended to the route, one
at a time, if such assignment respects vehicle capacity and time window constraints
(Lines 7–10). Feasibility is checked by invoking the infeasible(R) procedure. If the
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current route is feasible, customer j is included in the route (R) under construction
and then removed from H̃ω (Line 13).

Algorithm 2: Constructive Heuristic (CH)
1 Input: I (data set), Hω (set of all available customers for a data set I on scenario ω)
2 Output: s (feasible solution)
3 s ← ∅;
4 H̃ ← sort(Hω); / sort customers in non-descending order of earliest exogenous time

window
5 while H̃ �= ∅ do
6 R ← ∅;

7 foreach j ∈ H̃ do
8 R ← R ∪ {j};
9 if infeasible(R) = true then

10 R ← R\{j};
11 else
12 H̃ ← H̃ \{j};
13 s ← s ∪ R;
14 return s

The Local Search (LS) method is composed of six elementary neighborhoods:

N1 Relocate intra-route: change position of a customer in a route;
N2 Swap intra-route: swap two customer positions in a route;
N3 2-opt: invert a sequence of customers allocated to the same route;
N4 Relocate inter-route: relocate a customer to a different route in the same

scenario;
N5 Swap inter-route: exchange two customers allocated in different routes, in the

same scenario;
N6 Cross inter-route: split two routes at given points and exchange their remaining

parts.

The LS method invokes the neighborhoods according to the procedure shown
in Algorithm 3. Given a solution s, a list NL(s) of neighborhoods is initialized
according to the inter-route neighborhoods (N4, N5, and N6). If s′ is feasible and
the distance performed, represented by function f (s′), decreases compared to the
current solution (Line 7), an intra-route search procedure (N1, N2, and N3) is
performed over s′ (Lines 9–13). If the intra-route procedure improves s′, the current
solution s̃ is used to replace s∗ (Line 13). The process terminates when no inter-
neighborhood can return an improvement.

Starting from a solution s∗, the Perturbation method invokes a list NL(s∗) of
possible neighborhood moves according to the inter-route neighborhoods (N4, N5,
and N6). A percentage α of neighborhoods in NI(s∗) is randomly chosen and
applied to s∗. Regarding the Acceptance criterion, we accept only solutions that
are better than the current one. Algorithm 4 summarizes the ILS that is applied to
each scenario of Phase 1.
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Algorithm 3: Local Search method (LS)
1 Input: s (feasible solution)
2 Output: s∗ (best feasible solution found)
3 s∗ ← s;
4 foreach N ∈ NL(s∗) / NL(s∗): list of inter-neighborhoods of solution s∗
5 do
6 foreach s′ ∈ N do
7 if f (s′) < f (s∗) and feasible(s′) = true then
8 s∗ ← s′;
9 foreach N ∈ NI(s∗) / NI(s∗): list of intra-neighborhoods of solution s′

10 do
11 foreach s̃ ∈ N do
12 if f (s̃) < f (s∗) and feasible(s̃) = true then
13 s∗ ← s̃;

14 return s∗

Algorithm 4: Iterated Local Search (ILS)
1 Input: Hω (data set), α (perturbation factor), niter (number of iterations)
2 Output: P (set of feasible solutions found)
3 s∗ ← ∅; / Best solution found so far (take f (s∗) = +∞)
4 s ← CH(H,Hω); / Hω: set of available customers of data set H
5 sls ← LS(s);
6 P ← sls ∪ s; / Initializing the set of feasible solutions
7 s∗ ← sls ;
8 count ← 0
9 while count �= niter do

10 s′ ← Perturbation(s∗ , α);
11 sls ← LS(s′);
12 P ← P ∪ s′ ∪ sls ;
13 if f (s′) < f (s∗) then
14 s∗ ← s′;
15 count ← 0;
16 else
17 count ← count + 1;
18 return P;

4.2 Route Selector Model

The ILS algorithm generates a set P of viable routes for each scenario ω ∈ Ω

(see Algorithm 1). Note that all routes in P respect the capacity and time-windows
constraints. We built a MILP formulation, called Route Selector Model (RSM),
whose aim is to choose the most appropriate subset of routes from P , assigning
an endogenous time window to each customer, over all scenarios.

To present the RSM, we take from P : (i) f ω
jr as the starting time of service on

customer j on the route r in scenario ω; (ii) cωr as the cost to choose a route r ∈ P

in scenario ω; and (iii) xω
jr as a binary parameter equal to one if customer j belongs
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to route r ∈ Rω in scenario ω, 0 otherwise. Consider uω
r as a binary variable equal

to one if route r ∈ P is selected, 0 otherwise, and yi as a continuous variable that
measures the starting time of the endogenous time window of customer i ∈ H̃ω.
Recall that, as indicated above, wi gives the time window width of customer i. The
RSM is as follows:

min
∑

ω∈Ω
pωc

ω
r u

ω
r (1)

subject to

∑

r∈Rω

xω
jru

ω
r = 1 ∀j ∈ H,ω ∈ Ω (2)

∑

r∈Rω

f ω
jrx

ω
jru

ω
r ≥ yj ∀j ∈ H,ω ∈ Ω (3)

∑

r∈Rω

f ω
jrx

ω
jru

ω
r ≤ yj + wi ∀j ∈ H,ω ∈ Ω (4)

yj ∈ [ej , lj − wj ] ∀j ∈ H,ω ∈ Ω (5)

uω
r ∈ {0, 1} ∀ω ∈ Ω, r ∈ Rω. (6)

The model optimizes the total cost of the selected routes. Constraints (2)
indicate that each customer has to be served in all scenarios by a single route.
Constraints (3)–(4) establish the endogenous time windows. Domain variables are
presented by Constraints (5)–(6).

5 Computational Experiments

We performed a set of computational experiments aimed at assessing the per-
formance of the ILS-based algorithm that we developed for the TWAVRP. The
algorithms were implemented in Python 3.7.4, using the MILP solver Gurobi 8.1.1
for the development of the RSM (described in Sect. 4.2), running a single thread
for a time limit of 3600 s on each instance. All experiments were performed on a
PC Intel i7, 3.5 GHz with 16 GB RAM, which is similar to the computer used by
Dalmeijer and Spliet [7].

To generate the pool of routes, Algorithm 4 was executed five times on each
instance. This number was tuned through preliminary tests in which we obtained
a good trade-off between quality and computational effort. Furthermore, this value
allowed the algorithm to make good use of its stochastic components. The number
of iterations without improvements (niter ) and the perturbation percentage (α) were
fine-tuned through the Irace package [13]. For that purpose, we generated 200
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training instances by using the instance generator proposed by Dalmeijer and Spliet
[7]. The values returned by the Irace package at the end of this test were niter = 100
and α = 0.35.

5.1 Instances

We use the set of TWAVRP instances proposed by Spliet et al. [18]. Each instance
considers a different combination of number of customers, vehicle capacity, demand
for each scenario, probability of each scenario, size of exogenous and endogenous
time windows, travel costs, and travel times. In this way, the data set comprises
ninety instances divided into two classes: small instances and large ones. Small
instances contain four sets of ten instances each, having 10, 15, 20, and 25
customers, respectively. Large instances contain five sets of ten instances each,
with 30, 35, 40, 45, and 50 customers, respectively. The customer’s coordinates
were generated as uniformly distributed over a square with sides of length five. The
depot is located in the center of the square. Each instance includes demands for each
customer in three scenarios with equal probability of occurrence. Exogenous time
windows are distributed as follows: a time window [10, 16] is given to 10% of the
customers; [7, 21] to 30% of the customers; and [8, 18] to the remaining 60%. The
width of the endogenous time window is set to wi = 2 for all customers. The costs
and the travel times between the nodes were obtained by calculating the Euclidean
distances between their coordinates.

5.2 Results

The experiments compare our ILS based-algorithm with theBranch-and-Cut (B&C)
proposed by Dalmeijer and Spliet [7], which can be considered the state-of-
art method for the solution of the TWAVRP. The results that we obtained are
summarized in Table 1. They are aggregated for instances having the same quantity
of customers (first column). The remaining columns contain the average and the
standard deviation of each measure, with the exception of the B&C time as it was
executed just once. Columns B&C, ILS, and ILS + RSM, under the group CPU
time (seconds), give the computational times spent by, respectively, the algorithm by
Dalmeijer and Spliet [7], the ILS for the construction of the pool of routes, and the
overall Algorithm 1 including ILS and RSM. The column called Gap (%) indicates
the gap of the solution value found overall repetitions concerning the best solution
value. Column Gap ∗(%) indicate the standard deviation of the gap for the solution
value found overall repetitions concerning the best-known values obtained by the
B&C method.

Regarding instances that have between 10 to 35 customers, we can observe that
our method found relative average deviations from 1.5% to 0.16% compared with
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Table 1 Average results aggregated by number of customers (10 instances per line, 5 ILS
executions per instance)

Instance CPU time (seconds) Gaps

N. customers B&C ILS ILS + RSM Gap∗(%) Gap(%)

10 0.1 4.50 ± 0.29 6.61 ± 0.56 0.34 ± 1.00 0.41 ± 1.02

15 4.5 16.50 ± 1.17 26.25 ± 1.86 0.00 ± 0.18 0.11 ± 0.25

20 2.2 39.06 ± 2.01 80.30 ± 7.49 0.02 ± 0.05 0.06 ± 0.10

25 12.4 68.48 ± 2.03 153.29 ± 18.56 0.06 ± 0.14 0.27 ± 0.78

30 544.0 107.27 ± 3.40 284.38 ± 12.62 0.04 ± 0.10 0.28 ± 0.39

35 1531.7 161.59 ± 9.48 501.77 ± 97.94 0.02 ± 0.13 0.29 ± 0.42

40 3252.0 224.33 ± 6.11 749.92 ± 41.11 0.10 ± 0.52 0.72 ± 0.73

45 3600.0 289.34 ± 28.78 990.15 ± 172.79 −0.69 ± 0.83 −0.18 ± 1.61

50 3600.0 372.98 ± 24.41 1743.16 ± 261.71 −1.89 ± 0.12 −1.62 ± 1.31

the B&C solutions in the worst case, and that the total time of the five executions of
ILS + RSM is higher than the B&C execution time. In the group of larger instances
(45–50 customers), the ILS+ RSM outperforms the results found in literature
concerning both best-found and average solution values of the five performed tests.

Table 2 highlights the behavior of our method on the 20 larger instances having
45 and 50 customers. We report the lower bound and upper bound obtained in
[7] (columns LB and UB, respectively), and the best (column Best) and average
(column Avg) solution values found by our ILS+ RSM method. In the problems
with 45 customers, both methods were competitive, each finding the best results for
about half of the cases. Our method improved the solution cost obtained by the B&C
for all instances with 50 customers, both considering columns Best and Avg. We
estimate that the diversity of routes caused by different local search operators was
beneficial for the performance of the ILS+ RSM algorithm for these most difficult
instances. Overall, we can conclude that the ILS + RSM is a good heuristic method
for moderate and large size instances of the TWAVRP. Our research will now focus
on adapting it to the real-world case study that motivated our study, so as to embed
possible complicating constraints and solve even larger instances.

6 Conclusions and Future Research Avenues

We studied the Time Windows Assignment Vehicle Routing Problem (TWAVRP),
a VRP variant that appears when the volume of customer demands is uncertain
and visits over multiple days should be planned. The objective is to create routes
that minimize expected travel costs, assigning a time window over all scenarios
to each customer, and respecting the vehicle capacity. Our interest in this problem
derives from a real-world case study. We decided to begin our research with the
development of a good and flexible metaheuristic, and to test it on the benchmark
TWAVRP instances, so as to check if good-quality solutions can be found within
reasonable computational efforts.
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Table 2 Results for instances with 45–50 customers (best UB values appear in bold)

B&C by Dalmeijer

Instance and Spliet [7] ILS + RSM

# N. customers LB UB Best UB Avg. UB

71 45 49.52 51.78 51.22 51.41
72 45 50.73 52.13 51.86 52.94

73 45 41.50 41.70 41.95 42.24

74 45 47.25 47.84 47.96 48.16

75 45 48.77 49.86 49.47 50.02

76 45 48.38 52.09 49.90 50.03
77 45 50.09 51.18 51.18 51.25

78 45 52.02 53.95 53.35 53.74
79 45 47.45 48.21 48.27 48.69

80 45 49.57 50.57 50.61 50.78

81 50 56.81 58.85 58.16 58.29
82 50 51.50 53.20 52.98 53.03
83 50 57.45 60.67 58.77 58.89
84 50 52.31 56.38 54.09 54.23
85 50 53.74 56.07 55.06 55.26
86 50 51.68 54.76 53.02 53.16
87 50 52.47 54.14 53.81 53.87
88 50 54.82 56.91 56.27 56.36
89 50 59.23 61.51 60.32 60.62
90 50 57.68 59.55 58.95 59.23

To this aim, we proposed an Iterated Local Search (ILS) algorithm that generates
a pool of feasible routes for each scenario, and a mathematical model, called
Route Selector Model (RSM), that chooses the most appropriate routes, among
those created, in order to minimize total costs and indicate the time windows for
the customers. We compared the results of our algorithm (ILS+ RSM) with the
Branch-and-Cut proposed by Dalmeijer and Spliet [7]. The ILS + RSM presented
competitive results, concerning both solution quality and computational effort, in
particular for the larger size instances involving 45 and 50 customers.

Interesting avenues of further research concern: (i) incorporating new compli-
cating constraints deriving from the real-world case study in the metaheuristic;
(ii) testing other neighborhood-based metaheuristics as generators of routes; (iii)
testing multiple calls to the RSM with different pools of routes. This last avenue is
motivated by the fact that in our tests the RSM converged quickly to the incumbent
solution, so there is hope to find good solution values by invoking it multiple times.
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Synchronized Pickup and Delivery
Problems with Connecting FIFO Stack

Michele Barbato, Alberto Ceselli, and Nicolas Facchinetti

Abstract In this paper we introduce a class of routing problems where pickups and
deliveries need to be performed in two distinct regions, and must be synchronized by
considering the presence of a first-in-first-out channel linking them. Our research is
motivated by applications in the context of automated warehouses management. We
formalize our problem, defining eight variants which depend on the characteristics
of both the pickup and delivery vehicles, and the first-in-first-out linking channel.
We show that all variants are in general NP-hard. We focus on two of these variants,
proving that relevant sub-problems can be solved in polynomial-time. Our proofs
are constructive, consisting of resolution algorithms. We show the applicability of
our results by computational experiments on instances from the literature.

Keywords Optimization in manufacturing · Routing · FIFO loading · Dynamic
programming

1 Introduction

In the field of logistics the analysis of routing problems plays a fundamental role:
when applied to real-world situations, it may lead to considerable cost savings for
transportation companies operating over large regions, see [8].

Routing problems are often encountered on a smaller scale too. As a relevant
case, in this paper we introduce the family of synchronized pickup and delivery
problems with connecting first-in-first-out stack (SPDP-FS). It is inspired by the
production system of an industrial partner on smart cosmetics manufacturing [1].
Overall, problems in such a setting concern the transportation of items between a
pickup area and a delivery area inside the same factory. The two areas communicate
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through a first-in-first-out (FIFO) conveyor. As a consequence the pickup and
the delivery routes cannot be independently optimized. Instead they must be
coordinated so as not to violate the FIFO policy, and potentially synchronized. In
particular, in the application inspiring this work, the pickup vehicle is an automated
crane which collects items from the warehouse; at the end of each trip, that is a
sequence of pickup operations in which the crane starts empty, moves reaching and
incrementally loading items finally bringing them to an unloading spot, the items
are put on the conveyor in the same order they have been collected. The delivery
vehicle is an automated shuttle which must wait for loading until a batch of items is
put on the conveyor, but then might be free to follow any order to deliver them. Since
the vehicle capacities are finite and typically much lower than the overall number
of items to pickup and deliver (e.g., at most 2 or 3 items can be transported by a
single trip) the resulting problem of optimizing the pickup and delivery routes while
satisfying the constraints arising from the FIFO rule does not reduce in general to
classical routing problem as, e.g., the travelling salesman problem [3].

In this paper we provide a modeling of the above situation by introducing SPDP-
FS variants, each depending on the degree of freedom the vehicles have when
loading items to and from the conveyor with respect to the order of visits of the
pickup and delivery locations.

Contributions and Outline In Sect. 2 we formally define eight SPDP-FS variants
and show that they are all in general NP-hard. We consider the case in which the
capacities of the pickup and delivery vehicles are part of the input and study cases
in which they are fixed parameters. In Sect. 3 we focus on the variants in which
the order of the items on the conveyor must coincide with both their pickup and
delivery orders. We study how to complete partial solutions. To this aim we first
present an algorithm to construct a conveyor order which is consistent with two
given sets of pickup and delivery trips; our algorithm thus determines the feasibility
of the given sets of trips. Next, we present a dynamic programming algorithm to
determine the optimal pickup and delivery trips which are consistent with a given
conveyor order. In order to evaluate the suitability of the latter algorithm as a sub-
routine for more sophisticated SPDP-FS heuristics, in Sect. 4 we test it on instances
from the literature [7].

2 Modelling and Complexity

Throughout the paper, let n ∈ Z>0 and let G = (V ,A) be a complete digraph
on the vertex set V = {0, 1, 2, . . . , n}. The pickup network is a weighted digraph
D1 = (G, c1) with arc cost function c1 : A → R+ and whose vertices in V \ {0}
represent the positions of n items identical in terms of size. Intuitively,D1 represents
a storage area (a warehouse in the real application) for raw materials demanded by
the production units of a factory. The delivery network is represented by another
weighted digraph D2 = (G, c2) with arc cost function c2 : A → R+. Intuitively,D2
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represents a production area. We assume that the production unit located at vertex
i ∈ V \ {0} of D2 must receive the item located at vertex i ∈ V \ {0} of D1; in other
words, items and production units are in one-to-one correspondence.

The items are collected by a vehicle of finite capacity k1 by visiting the
corresponding vertices of D1. The capacity is finite, and typically lower than
|V \ {0}|: in order to pick up all items, the vehicle performs several trips, where
a trip is a sequence of vertices forming a simple directed cycle starting and ending
at vertex 0. Once items have been collected, they are delivered in an analogous
manner in D2 by a second vehicle of capacity k2.

Overall, a solution (P,D) consists of an ordered sequence of pickup trips P =
(p1, p2, . . . , p
) and of an ordered sequence of delivery trips D = (d1, d2, . . . , dm)

that must be synchronized: indeed the items are passed from the pickup area to
the delivery area by means of a FIFO stack (a horizontal conveyor in the real
application) whose input (resp. output) extremity is located at vertex 0 of D1

(resp. D2). Thus items collected by a pickup trip must be put on the stack before
those collected by subsequent pickup trips. By the FIFO policy a delivery trip di
preceding another delivery trip dj must deliver items that, on the stack, precede
those delivered by dj .

For a trip t we indicate as a ∈ t any arc between vertices which are consecutive in
t . For every trip t and for R = 1, 2 let cR(t) = ∑

a∈t cR(a) and for every sequence
of pickup trips P let c1(P ) = ∑


i=1 c
1(pi); symmetrically, c2(D) = ∑m

i=1 c
2(di).

The objective of a problem in the SPDP-FS family is to find a solution (P,D) that
minimizes c1(P ) + c2(D).

Example 1 In Fig. 1 we illustrate a small instance of a problem belonging to the
SPDP-FS family. A solution is depicted in boldface: the pickup vehicle (left)
performs first trip (1, 5, 4) then trip (2, 3). Hence items in {1, 4, 5} must be delivered
before items in {2, 3}. In the example they are in fact arranged in the order of visit.
This has an impact on the delivery solution. In the most constrained setting, the
delivery vehicle is forced to the inconvenient trip (1, 5, 4) to respect such an order,
as shown in Fig. 1. In fact, the order of visits is not the only degree of freedom of
the vehicles, which may or may not be allowed to permute items on the stack after
pickup or before delivery. This is what we call the permutation variant. For example,
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Fig. 1 Schematic illustration of the automated warehouse. The pickup area is on the left, delivery
area on the right. Both vehicles are assumed to have capacity 3. No permutations and no overlaps
are allowed



240 M. Barbato et al.

0

1

2 3

4

5

3 2 4 5 1 0

3

15

4

2

0

1

2 3

4

5

3 2 4 5 1 0

3

15

4

2

Fig. 2 Schematic illustration of the automated warehouse, when permutations are allowed (top)
and when overlaps are allowed (bottom)

in Fig. 2 (top) the delivery vehicle is allowed to retrieve the items {1, 4, 5} from the
stack, changing their order from (1, 5, 4) to (5, 1, 4) thereby removing the need of
a detour. Such an option may be symmetrically given to the pickup vehicle.

Besides permuting, delivery vehicles may or may not be allowed to mix items
from subsequent pickup batches. This is what we call the overlap variant. For
example, in Fig. 2 (bottom) the delivery vehicle is allowed to deliver (1, 5), wait
for the next pickup batch to arrive, and finally deliver (4, 2, 3), possibly improving
delivery cost. Permutation and overlap may or may not be allowed simultaneously,
giving more optimization potential at the expense of higher complexity in the real
world process. For instance, the trip (4, 2, 3) in the last example may be replaced
by (4, 3, 2), thus removing a detour. Pickup permutation and delivery permutation
are not equivalent. For instance, a delivery trip like (5, 4, 3) is feasible only due
to pickup permutations, while a delivery trip like (5, 2, 4) only due to delivery
permutations.

The SPDP-FS Variants As previously mentioned, the synchronization between
two sequences of pickup and delivery trips in a SPDP-FS solution may depend
not only on the order in which items are collected, but also on how items are
arranged on the stack. We therefore identify eight variants mixing the possibility
of permuting items by each vehicle (or not) and the presence of constraints allowing
(or disallowing) delivery trips to be overlapping different pickup trips. When
permutation is allowed we are essentially modelling situations where the items can
be loaded or unloaded without observing any particular order; when overlapping is
disallowed, we are modelling situations where the stack must be empty before a new
pickup trip can take place.
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Formally, for every trip t let V (t) be the set of vertices other than 0 visited by
t . Let P = (p1, p2, . . . , p
) be an ordered sequence of pickup trips such that the
V (pi) form a partitioning of V \ {0}. P induces a partial order: if v,w ∈ V \ {0},
we write v ≺P w if v ∈ pi and w ∈ pj for some 1 ≤ i < j ≤ 
 and we
write v �≺P w otherwise. A P-sequence, instead, is the (totally) ordered sequence of
vertices in V \ {0}, in the order they are visited in P . Identical definitions hold for a
partial order ≺D and a D-sequence w.r.t. a fixed ordered sequence of delivery trips
D = (d1, d2, . . . , dm). (P,D) forms a feasible SPDP-FS solution if it satisfies:

|V (pi)| ≤ k1 ∀i = 1, 2, . . . , 
 (1)

|V (dj )| ≤ k2 ∀j = 1, 2, . . . ,m (2)

V (p1), V (p2), . . . , V (p
) partition V \ {0} (3)

V (d1), V (d2), . . . , V (dm) partition V \ {0} (4)

Intuitively, SPDP-FS OVERLAP variants are those in which the FIFO stack is not
required to be empty before a new pickup trip can take place. As a result, delivery
trips can mix items from different pickup batches, as long as they are adjacent in the
stack. Formally, the OVERLAP variants are defined as follows:

NO-PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if and only
if it satisfies (1)–(4) and the P -sequence is identical to the D-sequence.

PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if and only if it
satisfies (1)–(4) and for every v,w ∈ V \ {0} such that v ≺P w it also holds
w �≺D v.

DELIVERY PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if
and only if it satisfies (1)–(4) and:

• for every j = 1, 2, . . . ,m, V (dj ) is a set of elements which are consecutive
in the P -sequence;

• for every v,w ∈ V \ {0}, if v ≺D w then v precedes w in the P -sequence.

PICKUP PERMUTATION,OVERLAP. The pair (P,D) is a feasible solution if and
only if it satisfies (1)–(4) and for every v,w ∈ V \ {0} such that v ≺P w we also
have that v precedes w in the D-sequence.

Symmetrically, in NO-OVERLAP variants the FIFO stack is required to be empty
before new pickup trips, and therefore delivery trips do not mix items from different
pickup trips. Their models are obtained from the four above by further adding the
condition: ∀j = 1, 2, . . . ,m, ∃ a unique i ∈ {1, 2, . . . , 
} s.t. V (dj ) ⊆ V (pi).

When the capacity values k1 and k2 are part of the input all SPDP-FS variants
above are NP-hard. We reduce from the Euclidean travelling salesman problem
(Euclidean-TSP) of which an instance is given by a complete graph H = (W,E)

with each vertex w ∈ W corresponding to a point π(w) in the Euclidean plane.
Letting c(v,w) be the Euclidean distance between π(v) and π(w), the Euclidean-
TSP asks to find a minimum weight Hamiltonian tour on the weighted graph (H, c).
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Note that function c is metric, that is, it satisfies the triangle inequality c(u, v) +
c(v,w) ≥ c(u,w). Nonetheless, the Euclidean-TSP is known to be NP-hard [6].

Proposition 1 If k1 and k2 are part of the input, the SPDP-FS is NP-hard.

Proof Let (H, c) be a weighted complete graph on n vertices defining an Euclidean-
TSP instance. We define a SPDP-FS instance on D1 = (H, c1) and D2 = (H, c2)

with k1 = n, k2 = 1 and c1(u, v) = c(u, v) and c2(u, v) = 0 for all u, v vertices
of H . Since c1 is metric and k1 = n a minimum cost Hamiltonian tour P of
D1 is also a minimum cost pickup sequence satisfying (1). Let the P -sequence
be (v1, v2, . . . , vn). The delivery sequence D = ((v1), (v2), . . . , (vn)) has cost
0; moreover (P,D) is feasible for all SPDP-FS variants. Hence the optimal value
of the given SPDP-FS instance is the optimal value of the starting Euclidean-TSP
instance.

Some variants of the SPDP-FS become solvable in polynomial time when the
capacities k1 and k2 are very specific fixed values. The most immediate case is
when k1 = k2 = 1 (independently on the variant): here all trips of a sequence
visit exactly one vertex v ∈ V \ {0}. Then, all pairs of sets P = {p1, p2, . . . , p
}
of pickup trips and D = {d1, d2, . . . , dm} of delivery trips, when an arbitrary (but
identical) ordering is applied to both, yield a feasible pair (P,D) of pickup and
delivery sequences for every variant. Moreover, the cost of such a solution does not
depend on the chosen order.

The cases with larger fixed values of k1 and k2 are more involved. In fact, we
are able to provide a polynomial-time algorithm only for the NO-OVERLAP variants
with k1, k2 ∈ {1, 2}.
Proposition 2 If k1, k2 ∈ {1, 2} there exists a polynomial-time algorithm solving
the NO-OVERLAP variants of the SPDP-FS.

Proof We start by calculating for all v ∈ V \ {0} the total cost c[v] of visiting
only v in a pickup trip and a delivery trip, i.e., c[v] = c1((v)) + c2((v)). We also
compute, for every v,w ∈ V \ {0}, the minimum total cost c[v,w] of visiting v

and w in the same pickup trip and of delivering them in any manner by satisfying
the NO-OVERLAP variant under consideration. Let t[v,w] denote the sequences of
pickup and delivery trips attaining value c[v,w]. The whole pre-processing phase
takes O(n2) time.

Now, for every v ∈ V \ {0} we let v′ and v′′ be two copies of v. We consider
H ′ and H ′′ two complete graphs on vertex sets W ′ = {v′ : v ∈ V \ {0}} and
W ′′ = {v′′ : v ∈ V \ {0}} respectively. From the union of H ′ and H ′′ we create
a new graph H obtained by further linking vertices v′ and v′′ for every v ∈ V \ {0}.
Finally, we associate weights s to the edges of H with se = c[v,w] if e = {v′, w′}
for some v,w ∈ V \ {0}, se = c[v] if e = {v′, v′′} for some v ∈ V \ {0} and
se = 0 otherwise. A perfect matching of minimum weight in (H, s) corresponds
to an optimal solution for the considered NO-OVERLAP variant: just perform the
trips in t[v,w] and trip (u) for every u, v,w ∈ V \ {0} such that {v′, w′} and
{u′, u′′} respectively belong to such a perfect matching. The proposition holds since
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a perfect matching of minimum weight can be computed in polynomial time on
every graph [4].

The algorithm provided in the proof of Proposition 2 easily generalizes to all
SPDP-FS variants if k1, k2 ∈ {1, 2} and at least one capacity value is 1. However,
when k1 = k2 = 2, the same algorithm does not work outside NO-OVERLAP

variants.
The last observation suggests that NO-OVERLAP variants may have some

structural feature which is not in common with the others. Supporting this intuition,
it is not hard to prove that (P,D) is a feasible solution to a PERMUTATION,NO-
OVERLAP problem if and only if it is a feasible solution to the corresponding
PICKUP PERMUTATION,NO-OVERLAP problem. This immediately implies that
if (P,D) is a feasible solution to the DELIVERY PERMUTATION,NO-OVERLAP

problem then it is a solution to the corresponding PICKUP PERMUTATION,NO-
OVERLAP problem. Such a phenomenon does not occur on OVERLAP variants.

In fact, we have analysed the inclusion relations between the sets of solutions
of the eight variants building a full set-inclusion hierarchy. To keep the focus
of the paper we omit these results. However, our main conclusion is that NO-
PERMUTATION variants take a relevant place in such a hierarchy, and are therefore
good candidates to start a structural investigation on the whole SPDP-FS family.

3 Algorithms for Sub-problems of NO-PERMUTATION

Variants

From now on we restrict to NO-PERMUTATION variants; in particular, we consider
relevant subproblems arising when only part of a solution is given, and either
feasibility must be checked or optimal completion must be found.

NO-PERMUTATION Feasibility Let us assume to have a set P = {p1, p2, . . . , p
}
of pickup trips and a set D = {d1, d2, . . . , dm} of delivery trips such that (1) and (2)
hold. The feasibility problem is to independently find an ordering of the elements of
P and D so that the resulting sequences P and D represent a feasible solution, or
to prove that no such ordering exists.

We start with the NO-PERMUTATION,OVERLAP case. Let us denote as starting
each vertex which is the first vertex of two trips in P∪D . A trip t ′ is said to be con-
tained in t if it is a subsequence of t . Two trips t = (u1, u2, . . . , uk, v1, v2, . . . , v
)

and t ′ = (v1, v2, . . . , v
,w1, w2, . . . , wm) are said overlapping: they respectively
end and start by a same non-empty subsequence; note that there can be at most one
trip overlapping with a given trip t . We can solve the feasibility problem for P and
D in polynomial time. We omit the details of the algorithm, but its general idea is
to consider a set T = P ∪ D , and then to pick a starting vertex v and one of the
trips t containing it, removing both t and all trips t ′ contained in t from T , to either
update t with a possible trip overlapping with t or pick another starting vertex and
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to iterate, until no update is possible. The problem is feasible if and only if T = ∅
at the end of this procedure.

In the NO-PERMUTATION,NO-OVERLAP case we first check that every pair of
trips p ∈ P and d ∈ D such that V (p) ∩ V (d) �= ∅ also satisfies V (d) ⊆ V (p). If
at least one pair violates the condition then P and D are infeasible. Otherwise we
run the iterative algorithm for the NO-PERMUTATION,OVERLAP case.

NO-PERMUTATION Splitting Now we turn our attention to the following subprob-
lem: a stack configuration is given as input (together with data), and the task is
to find pickup and delivery sequences of minimum cost which are consistent with
the given configuration. In other words, we assume that the pickup and delivery
sequences are fixed, while the depot return operations forming trips remain to be
optimized. Let S = (v1, . . . , vn) be a sequence of elements in V \ {0}. It represents
the order of the corresponding items on the stack. A splitting of S is a partition
of S into subsequences that respect its order. For example, if S = (1, 2, 3, 4, 5)
one of its splitting is ((1, 2), (3, 4, 5)), while ((3, 4, 5), (1, 2)) is not because it
does not respect the order of S. Here we consider both NO-PERMUTATION variants,
thus the trips of P and D in a feasible SPDP-FS solution (P,D) are splittings of
(v1, v2, . . . , vn). The optimal sequence splitting problem is to find two splittings
P and D of (v1, v2, . . . , vn), minimizing c1(P ) + c2(D) and such that (P,D) is
feasible for the considered NO-PERMUTATION variant. Up to renaming the vertices,
we give polynomial-time algorithms to solve this problem for S = (1, 2, . . . , n).

For what concerns NO-PERMUTATION,NO-OVERLAP, we use an acyclic network
N whose vertices are labelled (i, j) with 0 ≤ j ≤ i ≤ n. For every i = 0, 1, . . . , n
there are arcs from vertex (i, i) to all vertices (k, i) with i < k ≤ min{i + k1, n}.
For every i = 1, 2, . . . , n and j = 1, 2, . . . , i − 1 there are arcs from vertex (i, j)

to all vertices (i, k) with j < k ≤ min{j + k2, i}. Vertex (i, j) is interpreted as
a state in the construction of the optimal pickup and delivery splittings P and D,
namely it indicates that all vertices from 1 to i have been visited by some pickup
trip and all vertices from 1 to j have been visited by some delivery trip. Thus, the
arc from (i, i) to (i+k, i) for some 1 ≤ k ≤ k1 corresponds to extending the current
state (i, i) into state (i + k, i) by performing p = (i + 1, i + 2 . . . , i + k) as next
pickup trip. Similarly, the arc from (i, j) to (i, j + k) corresponds to performing
d = (j + 1, j + 2, . . . , j + k) as next trip in the optimal delivery sequence D. By
construction, |V (p)| ≤ k1, |V (d)| ≤ k2 for all pickup and delivery trips p and d

as above. Hence a path from (0, 0) to (n, n) corresponds to a pair (P,D) of pickup
and delivery splittings of S; moreover, the P -sequence and D-sequence of these
splittings coincide. Finally, representing N as in Fig. 3 (left) the arcs traversing N
“vertically” only leave from vertices on the “diagonal”. This property guarantees
that each trip in the delivery splitting is contained in a trip of the pickup splitting. To
see this, let us fix a path in N . This gives a splitting of S into pickup and delivery
trips. Let d = (j1 + 1, . . . , j2) be one such a delivery trip. It corresponds to the
arc of the path linking (i, j1) to (i, j2) for some i ≥ j2. Letting j0 be the smallest
index such that (i, j0) is traversed by the chosen path, the vertex preceding (i, j0)

in the path is necessarily (j0, j0). It follows that the pickup splitting of S contains



Synchronized Pickup and Delivery Problems with Connecting FIFO Stack 245

(0,0)

(1,0)

(2,0)

(3,0) (3,1) (3,2) (3,3)

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2) (3,3)

Fig. 3 Networks N for the optimal sequence splitting problem with n = k1 = k2 = 3 in the cases
NO-PERMUTATION,NO-OVERLAP (left) and NO-PERMUTATION,OVERLAP (right). The boldface
path in the left network corresponds to the splittings P = ((1), (2, 3)) and D = ((1), (2), (3)).
The boldface path in the right network corresponds to the splitting P = ((1), (2, 3)) and D =
((1, 2), (3))

the trip (j0 + 1, . . . , i). Since j0 ≤ j1 and i ≥ j2 we get V (d) ⊆ V (p). It follows
that every path in N from (0, 0) to (n, n) corresponds to a splitting of S which is
also a NO-PERMUTATION,NO-OVERLAP solution. In fact the latter is a one-to-one
correspondence as it can be easily verified by an analogous reasoning. An example
is given in Fig. 3 (left).

In a pre-processing step we calculate, in polynomial time, the cost c1[i1, i2]
of the trip corresponding to each arc between (i1, j) and (i2, j) as well as the
cost c2[j1, j2] of the trip corresponding to each arc between (i, j1) and (i, j2).
Associating these costs to the corresponding arcs in N we obtain an acyclic digraph
with nonnegative weights. A path of minimum weight from (0, 0) to (n, n) gives an
optimal splitting of S by the arc-trip correspondence explained above. Being N
acyclic, very efficient algorithms can be used to compute such a path [5, Sect. 24.2].

For what concerns NO-PERMUTATION,OVERLAP, instead, we use a network
N whose vertices are labelled (i, 0) and (n, j) for 0 ≤ i, j ≤ n. For every i =
0, 1, . . . , n there is an arc from vertex (i, 0) to all vertices (k, 0) with i < k ≤
min{i + k1, n}; similarly, for every j = 0, 1, . . . , n there is an arc from (n, j) to all
vertices (n, k) with j < k ≤ min{j + k2, n}. An example is given in Fig. 3 (right).
The arc-trip correspondence is the same as in the NO-PERMUTATION,NO-OVERLAP

case. Associating costs to the arcs as we did for that variant, we compute an optimal
pair of pickup and delivery splittings by finding a minimum cost shortest path in N .

4 Computational Results

Finally, we carried out experiments to assess the practical applicability of the opti-
mal splitting algorithms presented in Sect. 3 for both NO-PERMUTATION variants.
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Algorithms We designed dynamic programming algorithms which are able to
compute an optimal sequence splitting when a stack configuration is given.

Their structure is simple: once the appropriate network N is built, we consider
the vertices in the topological order induced by their labels, that is, row-by-row
and, for each row, column-by-column. Then, we assign partial splitting costs to
each vertex, with a procedure similar to [5, Sect. 24.2]. The partial splitting cost of
the starting vertex (0, 0) is initialized to 0. When a vertex is considered, its partial
splitting cost is set by looking at all its incoming arcs, and computing the minimum
among the cost of each arc plus the partial splitting cost of the corresponding starting
vertex. At the end of this procedure, the partial splitting cost of the vertex (n, n)

corresponds to an optimal (complete) one. A corresponding solution can be found
by keeping track of the arcs defining the minimum.

For testing, we took as starting stack configuration the sequence of items
corresponding to an optimal Hamiltonian tour of a complete graph having one vertex
for each item, and one arc (i, j) between each pair of items i and j , whose cost
is the sum of pickup and delivery distances between i and j . Clearly, an optimal
splitting of such a Hamiltonian tour is not guaranteed to produce and optimal SPDP-
FS solution. Therefore we have also experimented with a simple 2-opt local search
mechanism: we generate the full 2-opt neighborhood of the current solution and
score it by solving an optimal splitting problem for each of its elements. We take the
best solution in the neighborhood and we iterate, until a local minimum is reached.

As a trivial bound, we computed the optimal Hamiltonian tours of pickup and
delivery item graphs independently, and summed up their values: this is clearly a
relaxation of the problem, neglecting both the vehicle capacities and the effect of
the linking stack. Our algorithms have been implemented in C++ and compiled
with gcc version 7.2 with full optimization options. Optimal Hamiltonian tours have
been computed by means of the Concorde library [2]. Tests were run on a linux PC
equipped with an i7-3630QM CPU running at 2.40 GHz, single thread.

Datasets We considered a dataset of pickup and delivery instances originally
designed for the double travelling salesman problem with multiple stacks [7].
Our dataset includes three classes of instances, respectively containing 33, 66 and
132 pairs of pickup and delivery vertices. Ten instances are given for each class.
Distances were set as the euclidean ones computed from the input coordinates,
rounded to the nearest integer and finally corrected with an all-pair shortest path
procedure to ensure triangle inequalities to be respected. For each instance having
33 (resp. 66) pairs of vertices, we considered pickup vehicle capacities from 3 to 33
(resp. 66) in steps of 3, and delivery vehicle capacities from 3 to the pickup capacity
value in steps of 3. For each instance having 132 pairs of vertices we considered
instead capacities from 6 to 132 in steps of 6, and delivery vehicle capacities from 6
to the pickup capacity value in steps of 6. This procedure yielded a dataset of 11,440
instances for each variant.

Computing Time The computing time for solving a single optimal splitting
problem was always negligible (below 0.01s for both variants, independently on
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Fig. 4 Performance of heuristics

the instance size and capacity). The computing time for the full 2-opt local search
process was also negligible on instances with either 33 or 66 pairs of vertices,
independently from the pickup and delivery capacity values. Therefore, in Fig. 4
(left) we report the computing time (y axis) for the full 2-opt process only on
instances with 132 pairs of vertices (using logarithmic scale, on both variants),
averaged by pickup capacity value (x axis); in Fig. 4 (right) we report instead the
number of 2-opt moves required to reach a local minimum (y axis), on the same
instances and performing the same aggregation. Values related to the OVERLAP

variant are depicted in grey, those related to NO-OVERLAP in black.
As expected, higher capacity values yield higher computing times: the optimal

splitting graphs are more dense, and more checks are needed in the dynamic
programming algorithms. The number of 2-opt moves required to reach a local
minimum decreases as the capacity increases. We argue that higher capacity values
yield less overhead costs for the vehicle to return to the stack; as a consequence,
being the routing part of the cost dominant, the Hamiltonian tour is already similar
to a local minimum. The increase of overall CPU time is not monotone: for very
high pickup capacity values the reduced number of 2-opt moves balances the higher
CPU time needed during a single iteration.

Solutions Quality We denote as IS the value of the initial solution, as DA the sum
of costs of arcs leaving and returning to the depot for intermediate stops in such a
solution, as OS the solution value after 2-opt, and TB the value of the trivial bound.

Table 1 Quality of heuristics and bounds

Variant Size Avg. overhead Avg. impr. Avg. opt.

NO-OVERLAP 33 10.05% 0.84% 47.14%

66 8.17% 0.61% 54.27%

132 5.10% 0.41% 59.65%

OVERLAP 33 6.50% 0.76% 45.09%

66 5.56% 0.52% 53.00%

132 3.66% 0.33% 59.07%
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In Table 1 we report in turn, for each class of instances, for both OVERLAP and NO-
OVERLAP variants, the average fraction of the initial solution cost for the vehicle
to return to the stack with intermediate stops (overhead, DA/IS), the average overall
improvement yielded by 2-opt (impr., (TO-IS)/TO) and the average gap between the
value of the solution found by 2-opt and the trivial bound (opt., (TO-TB)/TO).

The results show that the overhead decreases as the number of items increases;
this is most probably a statistical side effect: when the set of items is large,
and the depot is in the baricenter of the item locations (as in our instances) the
probability of passing near the depot in a random connection is higher. The average
improvement yielded by 2-opt is always very low, and decreasing as the number
of items increases. At the same time, the gap between local minima solution
values and the trivial bound is very large, and increases as the number of items
increases. The values in these three columns make us conjecture that by computing
an optimal Hamiltonian tour, and then optimally split it, good heuristic solutions can
be achieved. However, we suspect the trivial bound to be very poor, thereby asking
for better lower bounding procedures.

5 Conclusions

From a modelling point of view, we restricted the complexity of SPDP-FS from
industry by considering two peculiar features: the possibility of changing the order
of items during loading or unloading operations to and from the conveyor, and the
possibility of starting pickup trips even if the conveyor is not empty.

We have shown that all variants arising from the combination of these features
are NP-hard, although some of them admit polynomial-time resolution algorithms
when the capacities of the vehicles are fixed to small values i.e., 1 or 2.

By focusing on the NO-PERMUTATION variants, we could find polynomial-
time algorithms for two relevant sub-problems: checking feasibility when the set
of pickup and delivery trips are given (but the order of items in the conveyor is
unknown), and optimizing the pickup and delivery trips when the order of items in
the conveyor is given.

Our algorithms proved to be effective also from an experimental point of view:
tests on instances of the double travelling salesman problem with multiple stacks
showed that a single sub-problem resolution can be carried out in fractions of a
second; their embedding in a simple local search algorithm provided promising
results.

Since, on the contrary, trivial lower bounds appear very weak, our current
research is focused on the design of good quality ones.
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A Comparison Between Simultaneous
and Hierarchical Approaches to Solve a
Multi-Objective Location-Routing
Problem

Aydin Teymourifar, Ana Maria Rodrigues, and José Soeiro Ferreira

Abstract This paper deals with a multi-objective location-routing problem (MO-
LRP) and follows the idea of sectorization to simplify the solution approaches. The
MO-LRP consists of sectorization, sub-sectorization, and routing sub-problems. In
the sectorization sub-problem, a subset of potential distribution centres (DCs) is
opened and a subset of customers is assigned to each of them. Each DC and the
customers assigned to it form a sector. Afterward, in the sub-sectorization stage
customers of each DC are divided into different sub-sector. Then, in the routing
sub-problem, a route is determined and a vehicle is assigned to meet demands.
To solve the problem, we design two approaches, which adapt the sectorization,
sub-sectorization and routing sub-problems with the non-dominated sorting genetic
algorithm (NSGA-II) in two different manners. In the first approach, NSGA-II is
used to find non-dominated solutions for all sub-problems, simultaneously. The
second one is similar to the first one but it has a hierarchical structure, such that
the routing sub-problem is solved with a solver for binary integer programming
in MATLAB optimization toolbox after solving sectorization and sub-sectorization
sub-problem with NSGA-II. Four benchmarks are used and based on a comparison
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between the obtained results it is shown that the first approach finds more non-
dominated solutions. Therefore, it is concluded that the simultaneous approach is
more effective than the hierarchical approach for the defined problem in terms of
finding more non-dominated solutions.

Keywords Location-routing problems · Sectorization · Routing · Evolutionary
algorithm · Non-dominated sorting genetic algorithm · Binary integer
programming

1 Introduction

Sectorization is generally related to geographical aspects and has many applications
in dividing a large political territory or districts of sales, airspace, municipality,
healthcare, electric power, emergency service, internet networking, police patrol,
public transportation network, social facilities, collection and transportation of
solid waste in municipalities, etc., into smaller regions [2, 4, 5, 11, 12]. The
equilibrium of load, distance, client, contiguity, and compactness are the criteria
which are generally considered in sectorization [14]. The concept of sectorization,
is similar to clustering though have significant differences. Clustering strives for
inner homogeneity of data while sectorization aims at the outer similarity. Therefore
models for solving both problems are in general not compatible [6].

One of the problems that is related to territorial design is the location-routing
problem (LRP). In the literature, it is stated that LRP consists of two difficult
problems as the facility location problem (FLP) and also the vehicle routing problem
(VRP) [7]. Many methods have been proposed to solve different types of LRP, which
is an NP-hard problem [13]. In this work, we deal with a multi-objective location-
routing problem (MO-LRP), where there are a set of potential DCs and also a set of
customers in different geographical locations with known demands. Unlike previous
studies, we model it as a problem consisting of sectorization, sub-sectorization, and
routing sub-problems. In the sectorization stage, a subset of potential DCs is selected
to be opened and customers are divided among them. Each DC and its assigned
customers form a sector. In the sub-sectorization stage the customers of each DC
are divided into sub-sectors. To meet their demands a fleet is considered. Starting
from and returning to a DC, a route is defined for each sub-sector [8, 14–16].

Previously MO-LRP has been solved based on sectorization concept; for exam-
ple, Barreto et al. [1] integrate some hierarchical and non-hierarchical clustering
techniques into a sequential heuristic algorithm to solve this problem. Martinho et
al. [8] propose a method consisting of pre-sectorization, sectorization, routing, and
multi-criteria evaluation phases to deal with multi-criteria and large dimensions of
the capacitated location-routing problem (CLRP). Different from these studies, we
design two new approaches adapting the non-dominated sorting genetic algorithm
(NSGA-II) with sectorization, sub-sectorization and routing sub-problems and solve
MO-LRP by them. In the first one, all sub-problems are solved simultaneously
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with NSGA-II. The second approach is similar to the first one however, it has
a hierarchical structure such that after creation of sectors and sub-sectors with
NSGA-II, routes are defined using a binary integer programming solver for the
obtained Pareto solutions. It should be noted that the operators of NSGA-II used
in both approaches are the same as in the algorithm proposed by Deb et al.
[3]. Also, in this study, new chromosome representation, crossover and mutation
operators are designed and used in NSGA-II to solve MO-LRP, which comprise
sectorization, sub-sectorization and routing stages. The operators can be used in
similar evolutionary algorithms to solve the problem based on the sectorization
concept.

A comparison is made over four benchmarks, based on the number of non-
dominated solutions acquired by the approaches. The results show that the first
approach is able to find more non-dominated solutions.

The other sections of the study are such that the problem and proposed
approaches are described in Sects. 2 and 3. The experimental results, conclusion
and future works are the last two sections of the work.

2 Problem Description

In this section, we describe the problem, which is solved by both approaches. In the
problem, there are some potential DCs and also some customers. A subset of DCs
is opened and a subset of customers is assigned to each of them. Then routes are
defined to meet the demands of customers. Each route starts from a DC and returns
to the same DC by visiting a subset of the assigned customers. There is a cost to open
each DC and it is desired to minimize the total cost of opening DCs. As described
in Sect. 1, we name each opened DC and the customers assigned to it a sector. The
resulting sectors are desired to be balanced both in terms of customers’ demands
and distance on routes, which are defined as the standard deviations of demands
and distances in sub-sectors. In addition, in the formed sub-sectors, customers are
desired to be quite close to the center, which is defined as the compactness of sub-
sectors.

In Fig. 1, an illustrative example is presented, where DCs and customers are
shown with squares and circles, respectively. The squares shown in green and blue
are the opened ones. Each DC and the assigned customers form a sector, which are
shown with the same color. In this example, each sector is divided into two sub-
sectors, and a route is defined for each one. For instance, the routes denoted by dark
and light green, are determined for the sub-sectors with green DC.

Some of the terminology and notations used in the paper are summarized in
Table 1.
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Fig. 1 An illustrative
example

Table 1 Used notations

f1 Total cost to open DCs

f2 Standard deviation of demands in sub-sectors

f3 Standard deviation of compactness of sub-sectors

f4 Standard deviation of distances in sub-sectors

i, j ∈ Ī = {1, . . . , I} Index of all customers

k ∈ K̄ = {1, . . . , K} Index of DCs

m ∈ M̄ = {1, . . . ,M} Index of sub-sectors

COk Opening cost of DC k

DEi Demand of customer i

DEm Total demand of customers in sub-sector m

DSij Distance of path from customer i to customer j

DSm Total distance along the route in sub-sector m

CEm Total distance between the centroid and customers in sub-sector m

CEm
max Distance between the centroid and farthest customer in sub-sector m

CPm Compactness of sub-sector m

VC Capacity of each vehicle

xk Decision variable about if DC k opened or not

ym
i Decision variable about if customer i belongs to sub-sector m or not

zmij Decision variable about if there is a path from customer i to customer j

on the defined route for sub-sector m

As defined in Eq. 1, f1 is the total cost of opening DCs.

f1 =
L∑

l=1

COk × xk (1)

where

xk =
{

1, if DC k is opened

0, otherwise.
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For each sector, the sub-problems of sub-sectorization and routing are solved.
Sectors and sub-sectors are expected to be balanced in terms of demand and
distance. So, the objective functions of sub-sectorization and routing sub-problems
are the standard deviations of demands, distances and compactness in sub-sectors,
defined as in Eqs. 2, 4 and 3.

f2 =
√√√√ 1

M − 1

M∑

m=1

(DEm − D̄E)2 (2)

where DEm = ∑I
i=1 DEi × ym

i and D̄E =
∑M

m=1 DEm

M
and

ym
i =

{
1, if customer i belongs to sub − sector m

0, otherwise.

f3 =
√√√√ 1

M − 1

M∑

m=1

(CPm − ¯CP )2 (3)

where CPm = CEm

CEm
max

and ¯CP =
∑M

m=1 CPm

M
.

To calculate CEm
max the coordinates of the centre point of each sub-sector are

considered as the average of the coordinates of the customers in the sub-sector.

f4 =
√√√√ 1

M − 1

M∑

m=1

(DSm − D̄S)2 (4)

DSm = ∑M
m=1

∑I
i=1

∑I
j DSij × zmij and D̄S =

∑M
m=1 DSm

M
.

zmij =
⎧
⎨

⎩
1, if the path from customer i to customer j is on a defined route in sub-sector m

0, otherwise.

It is assumed that all customers are connected with each other.
There are also some constraints; each customer must be only assigned to one

sector, which is imposed by Constraint 5.

M∑

m=1

ym
i = 1, ∀i ∈ Ī (5)

One vehicle is allocated to a sub-sector. It is assumed that the eets are homoge-
neous, i.e. the capacity of the vehicles is the same. Therefore, there is no need for a
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decision variable for assigning the vehicles. However, the total demand of customers
in each sector must be less than or equal to the capacity of each vehicle, which is
imposed by Constraint 6.

DEm ≤ VC, ∀m ∈ M̄ (6)

In addition, the number of sub-sectors must be less than or equal to the number
of vehicles.

3 Solution Approaches and Algorithms

In this section, the solution approaches are described, which are also summarized
in Fig. 2. In both approaches, sectorization, sub-sectorization and routing sub-
problems are solved sequentially, and in this sense, both have a hierarchical
structure. But in the first approach, Pareto optimality is evaluated inside of NSGA-
II considering all objective functions, simultaneously. However, in the second
approach, sectorization and sub-sectorization sub-problems are solved with NSGA-
II and Pareto optimality is evaluated considering the total cost to open DCs, the
standard deviations of demands and compactness in sub-sectors. For the non-
dominated solutions obtained in this way, the routing sub-problem is solved with
a solver to minimize the standard deviation of distance in sub-sectors. In the second
approach, since the problem is solved in two different stages, it is called as a
hierarchical approach.

At first, using the weighted sum method the problem is transformed to a single-
objective one and it is solved with a single-objective genetic algorithm (SOGA).
The purpose is to make comparison with the multi-objective one and also to create
the initial populations of NSGA-II in the two approaches. Using weights wi , the
objective function of the single-objective problem is defined as in Eq. 7.

Min f = w1 × f1 + w2 × f2 + w3 × f3 + w4 × f4 (7)

Fig. 2 General steps of the approaches
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To generate initial population of the SOGA, randomly a subset of potential DCs
is opened and the corresponding objective function is calculated. Each customer is
assigned to the nearest open DC and in this way sectors are formed. If no customer
is assigned to a DC, it is removed from the opened DCs. The sectors are divided
into sub-sectors, taking the constraints of capacity and number of vehicles into
account. It is supposed that a vehicle is allocated to each sub-sector and the fleets
are homogeneous.

During iterations, new individuals of the SOGA are derived using crossover and
mutation operators. The objective functions of the new individuals formed in this
process may change, in which case they must be recalculated. The used chromosome
structure is seen in Fig. 3, where each column represents a DC and the subjacent
rows, shows the related sectors and sub-sectors. Figure 3a and b show an example
chromosome before and after sub-sectorization. In Fig. 3, ‘{}’ is used to show that
the corresponding DC is not open and therefore no customer is assigned to it. Using
the nearest neighbor heuristic, a traveling salesman problem (TSP) is solved for each
sub-sectors. A route is defined starting from a DC, visiting the nearest customer at
each stage, repeating this process until all customers are visited, and returning to
the DC. After solving TSP for each sub-sector, the customers in the second line are
written sequentially.

In the designed crossover operator, which is seen in Fig. 4, a subset of customers
is selected and is replaced in sectors of children according to the parents. For
example, as shown in red in Fig. 4, customers 1, 3 and 9 are selected. In parent
2, customer 3 is in the sector related to DC 1 and customers 1 and 9 are in the sector
related to DC 4. Therefore, in child 1, these customers are placed in the sectors
related to DCs 1 and 4. A similar process is done for child 2 considering parent 1. In
children, customers are placed in random positions. The order of customers in the
representation of sectors in chromosomes affects the formation of sub-sectors.

Fig. 3 Information about DCs, assigned customers (a) before and (b) after sub-sectorization
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Fig. 4 The used crossover

As seen in Fig. 5, three types of mutations are used. The operator seen in Fig. 5a
is similar to the single-point crossover but it is a mutation because it is applied to a
single chromosome. In this operator, two sectors of a chromosome are selected and a
process similar to single-point crossover is performed. Using the mutation operator
shown in Fig. 5b, an open DC is randomly selected to close and its customers are
assigned to another DC, which is randomly selected to open. If all DCs are open, one
of them is closed randomly and its customers are added to another DC, which is also
chosen randomly. As mentioned before, the order of customers in the representation
of sectors in chromosomes is important and affects the formation of sub-sectors’.
In the mutation operation shown in Fig. 5c a sector is selected randomly, and the
order of customers in the representation of sectors in the chromosome is changed
randomly. To apply the mutation, one of these three operations is randomly selected
and performed.

Both crossover and mutation operators are applied to the part of chromosomes
that represents sectors. Sub-sectors are created from sectors, taking into account the
constraints of the number and capacity of vehicles.

The final population obtained after finishing the SOGA iterations is used as
the initial population of NSGA-II in both approaches. NSGA-II applies the same
crossover and mutation operators with SOGA. In NSGA-II, during iterations, the
parent and offspring populations are selected and merged. Using the non-dominated
sorting and crowding distance calculation, Pareto fronts are formed and then the
new population is chosen using the selection operator. The general steps of the
implemented NSGA-II can also be found in [17].

As seen in Fig. 2, the two approaches are similar, and in both the sectorization
and sub-sectorization steps are done with NSGA-II. In the first approach, routing
is also done in NSGA-II. For this aim, using the nearest neighbor heuristic, a TSP
is solved for each sub-sectors. But in the second approach the routing problem is
solved outside of NSGA-II. It is performed when the iterations of the algorithm are
finished. This process is done once and only for non-dominated solutions obtained
by NSGA-II. For this aim, a TSP is solved for each formed sub-sectors using
the intlinprog function, which is a binary integer linear programming solver in
MATLAB optimization toolbox.

We suppose that each sub-sector is a complete graph, whose vertices are the DC
and customers. A directional link between vertices is named a trip. Tours consist
of a combination of trips. If there is a trip between two vertices on a route, the
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corresponding binary variable equals 1 and in otherwise it is 0. In this way, the
binary decision variables of the model are defined as all possible trips. The distance
of each trip is calculated and to be minimized, the objective function of the routing
problem is the total distance of the resulting trips, which is also defined as in Eq. 4.

The intlinprog function can deal with both equality and inequality linear
constraints. In the applied routing problem there are two types of linear equality
constraints. The first one ensures that in each sub-sector the total number of trips is
equal to the number of vertices, while the second one makes certain that each vertex
has connected to two trips [10].

During the routing, sub-tours may occur, which are disconnected loops instead of
a continuous path. In the applied method, iteratively, sub-tours are detected for each
obtained solution and inequality constraints are used to prevent them. This process
can be summarized as: suppose that s vertices create a sub-tour. In this case, there
are s links that connect them to each other. The corresponding constraint provides
that the number of links between the vertices is less than or equal to s − 1. A more
detailed description of the used routing method at this stage can be found in [10].

4 Experimental Results

We implement the approaches described in Sect. 3 in MATLAB R2019b environ-
ment on an Intel Core i7 processor, 1.8 GHz with 16 GB of RAM. The parameters
used in both NSGA-II and also SOGA are: population size= 200, number of
iterations= 300, crossover rate= 0.6 and mutation rate= 0.1. The weights defined
in Eq. 7 are: w1 = w2 = 1, w3 = 20, to generate initial populations of NSGA-II
in the first and second approached w4 = 1 and w4 = o, respectively. The reason
to choose f3 = 20 is that in some trial runs, values were generally as 20 times less
than the others. Equal weights are given for the other objective-functions.

Indicating as Number of customers×Number of vehicles×Number of possible
DCs, four benchmarks are generated as 15 × 5 × 3, 30 × 10 × 6, 60 × 20 × 12
and 120 × 40 × 24. We use the discrete uniform distributions as U(10, 100) to
create customers’ demands. After defining the demands of customers, the total
demand is calculated and then the capacity of each vehicle is defined as 1.3× round
(total demand/number of vehicles). Furthermore, the coordinates of both customers
and DCs in two dimensions are generated according to the normal distribution as
N(50, 10). The opening cost of each DC is created according to U(10, 15).

For each benchmark, when the solutions achieved by two approaches are
compared with each other, some of them dominate others. So, for each benchmark,
we again do a domination check between solutions that two approaches get. To do
a comparison, we divide the number of non-dominated solutions (NC) obtained by
each of the approaches into the number of all non-dominated solutions. The acquired
value is shown by e. Related results are presented in Table 2.
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Table 2 Comparison
between the approaches Benchmark NCall

First approach Second approach

NC e NC e

15 × 5 × 3 31 25 81% 6 19%

30 × 10 × 6 37 33 89% 4 11%

60 × 20 × 12 49 42 86% 7 14%

120 × 40 × 24 62 53 85% 9 15%

As shown in Table 2, the first approach in all of the benchmarks achieves
significantly better results than the second one according to the value of e. Therefore,
it can be considered as an efficient approach to solving all stages of MO-LRP
simultaneously with an effective algorithm as NSGA-II.

Excluding benchmark 1, in the other ones, the best solution found by SOGA is
among the non-dominated solutions obtained NSGA-II. Similar results are obtained
when the initial solution is not taken from SOGA and is derived in NSGA-II. But,
in this case, more non-dominated solutions are found. For example, in this way, 81
more non-dominated solutions are found applying the first approach for benchmark
1, however, the variance of the value of the objective functions increases. Even in
this case, the best solution found with SOGA is among the non-dominated solutions.

All details about the benchmark and the obtained non-dominated solutions are
accessible via the corresponding author’s email address.

5 Conclusion and Future Work

In this paper, we designed two approaches to solve MO-LRP. The problem
consists of four objective functions, which are the total cost of opening DCs, the
standard deviations of demands, distances and compactness in sub-sectors. Unlike
previous studies, to solve the problem, we adapted sub-problems of sectorization,
sub-sectorization and routing into two approaches. In the first approach, sector-
ization, sub-sectorization and routing sub-problems were solved simultaneously
with NSGA-II. But in the second approach, there was a hierarchical structure such
that the routing problem was solved for non-dominated solutions obtained after
performing sectorization and sub-sectorization with NSGA-II. For this aim, a TSP
solved using a function in the MATLAB optimization toolbox for each formed sub-
sector.

The approaches are applied for four benchmarks and the achieved results are
compared based on the number of non-dominated solutions. According to the
acquired results, the most important outcome of this study can be summarized like
this: the simultaneous approach for this problem is more effective in terms of finding
more non-dominated solutions.

The sectorization and sub-sectorization stages in both approaches are mixed-
integer quadratic programming optimization problems. As in many other softwares,
it is also possible to solve such models in MATLAB. For example, qpprob function
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is one of the options that can be used for this aim but in case of using this function
the nonlinear part of the objective function must be added as a constraint. The reason
is that MATLAB, currently, does not have a solver for non-linear objective functions
[9]. In future studies, it is planned to propose new methods by using linearization
techniques as well as using the non-linear part of the objective functions as the
constraints.

In this study, new chromosome representation, crossover and mutation operators
designed to use in NSGA-II, which can be applied in similar algorithms. In future
studies, more effective operators will be proposed.

The weights used to transform the multi-objective problem into a single-objective
one affect the results. In further studies, more detailed works will be carried out on
this matter.

Sectorization is more appropriate for solving large-scale problems. In future
studies, larger benchmarks will be derived and solved.
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Piecewise Linear Valued Constraint
Satisfaction Problems with Fixed
Number of Variables

Manuel Bodirsky, Marcello Mamino, and Caterina Viola

Abstract Many combinatorial optimisation problems can be modelled as valued
constraint satisfaction problems. In this paper, we present a polynomial-time
algorithm solving the valued constraint satisfaction problem for a fixed number of
variables and for piecewise linear cost functions. Our algorithm finds the infimum
of a piecewise linear function and decides whether it is a proper minimum.

Keywords Valued constraint satisfaction · Linear programming · Fixed
dimension · Infinite-domain optimisation · Piecewise linear cost functions

1 Introduction

The input of a valued constraint satisfaction problem, or VCSP for short, is a
finite set of cost functions depending on a given finite set of variables, and the
computational task is to find an assignment of values for the variables that minimises
the sum of the cost functions. Many computational optimisation problems arising in
industry, business, manufacturing, and science, can be modelled as a VCSP.

VCSPs have been extensively studied in the case of cost functions defined on
a fixed finite set (the domain). The computational complexity of solving VCSPs
depends on the set of allowed cost functions and has recently been classified if the
domain is finite [3, 12–14, 21]: every finite domain VCSP is either polynomial-time
tractable or it is NP-complete.
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However, many outstanding combinatorial optimisation problems can be formu-
lated as VCSPs only by allowing cost functions defined on infinite domains, e.g.,
the set Q of rational numbers.

Despite the interest in concrete VCSPs over the set of rational numbers and
over other infinite numeric domains (e.g., the integers, the reals, or the complex
numbers), VCSPs over infinite domains have not yet been investigated system-
atically. The class of VCSPs for all sets of cost functions defined on arbitrary
infinite domains is too large to allow general complexity results. Indeed, every
computational problem is polynomial-time Turing-equivalent to the VCSP for a
suitable set of cost functions over an infinite domain [1]. Therefore, we need to
restrict the class of cost functions that we focus on. One restriction that captures
a great variety of theoretically and practical interesting optimisation problems is
the class of all piecewise linear (PL) cost functions over Q, i.e., Q-valued1 partial
functions, whose graph is the union of linear half spaces. In general, the VCSP
for PL cost functions is NP-complete. Indeed, the containment in NP follows from
the fact that the VCSP for the class of all PL cost functions is equivalent to
the existential theory of (Q; ≤,+, 1), which is in NP (see [2]). The NP-hardness
follows from the fact that there exist NP-complete problems, e.g., the MINIMUM

CORRELATION CLUSTERING, and the MINIMUM FEEDBACK ARC SET problem
(see [6, 9]), which can be formulated as instances of the VCSP for PL cost functions.

In this paper, we prove that the restriction of the VCSP for all PL cost functions
to instances with a fixed number of variables is polynomial-time tractable. The
restriction to a fixed number of variables has been studied for several problems
in computational optimisation, and usually this kind of restriction has led to an
improvement in the computational complexity: two remarkable examples of this
situation are the combinatorial polynomial-time algorithm of Megiddo [16] to solve
the restriction to a fixed number of variables of LINEAR PROGRAMMING (in its
full generality, Linear Programming can be solved in polynomial-time (see, e.g.,
[8, 10, 20]), but all the known algorithms rely on approximation procedures); and the
algorithm of Lenstra [15] to solve the restriction of Integer Programming Feasibility
(which is an NP-complete problem in its full generality) to a fixed number of
variables.

2 Preliminaries

We adopt the following notation: Q denotes the set of rational numbers, and xi
denotes the i-th component of a tuple x. We start with some preliminaries on the
cost functions that we want to take into account.

1In the PL setting the domains Q and R are interchangeable; we only require the coefficients of the
cost functions to be rational as we need to manipulate them computationally.
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Definition 1 A cost function over Q is a function f : Qn → Q ∪ {+∞}, for a
positive integer n. Here, +∞ is an extra element with the expected properties that
for all c ∈ Q ∪ {+∞}

(+∞) + c = c + (+∞) = +∞
and c < +∞ iff c ∈ Q.

A cost function f : Qn → Q ∪ {+∞} can also be seen as a partial function such
that f is not defined on x ∈ Q

n if, and only if, f (x) = +∞.

Definition 2 A set C ⊆ Q
d is a polyhedral set if it is the intersection on finitely

many (open or closed) half spaces, i.e., it can be specified by a conjunction of finitely
many linear constraints, i.e., for some r ∈ N there exist linear functions fi : Qd →
Q, for 1 ≤ i ≤ r , such that

C =
⎧
⎨

⎩x ∈ Q
d |

p∧

i=1

(fi(x) ≤ 0) ∧
q∧

i=p+1

(fi(x) < 0) ∧
r∧

i=q+1

(fi(x) = 0)

⎫
⎬

⎭ .

Observe that non-empty polyhedral sets in Q
d are, in particular, convex sets.

A polyhedral set C ⊆ Q
d is open if it is the intersection of finitely many open half

spaces, i.e., for some p ∈ N there exist fi : Qd → Q linear functions, 1 ≤ i ≤ p,
such that

C = {x ∈ Q
d |

p∧

i=1

(fi(x) < 0)}.

Similarly, a polyhedral set C ⊆ Q
d is closed if it is the intersection of finitely many

closed half spaces, i.e., for some q ∈ N there exist fi : Qd → Q linear functions,
1 ≤ i ≤ p, such that

C =
⎧
⎨

⎩x ∈ Q
d |

p∧

i=1

(fi(x) ≤ 0) ∧
q∧

i=p+1

(fi(x) = 0)

⎫
⎬

⎭ .

A polyhedral set C ⊆ Q
n is bounded if it is bounded as a subset of Qn. We remark

that the infimum of a linear function in a closed and bounded polyhedral set is a
proper minimum; while the infimum of a linear function in an open or unbounded
polyhedral set is attained only if the linear function is constant.

Definition 3 ([18], Definition 2.47) A function f : Qd → Q∪{+∞} is a piecewise
linear (PL) if its domain, dom(f ), can be represented as the union of finitely many
polyhedral sets, relative to each of which f (x) is given by a linear expression, i.e.,
there exist finitely many mutually disjoint C1, . . . , Cm polyhedral sets such that
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⋃m
i=1 Ci = dom(f ) ⊆ Q

d , and

f (x1, . . . , xd) =
{
ai

0 + ai
1x1 + · · · + ai

dxd if (x1, . . . , xd) ∈ Ci

+∞ if (x1, . . . , xd) ∈ Q
d \ dom(f )

where ai = (ai
0, a

i
1, . . . , a

i
d) ∈ Q

d+1, for 1 ≤ i ≤ m. Piecewise linear functions are
sometimes called semilinear functions.

We are now ready to formally define the computational problem that we want to
focus on.

Definition 4 Let d be a positive integer, and let V := {x1, . . . , xd} be a set of
variables. An instance I of the valued constraint satisfaction problem (VCSP) for
PL cost functions with variables in V consists of an expression φ of the form

m∑

i=1

fi(x
i
1, . . . , x

i
ar(fi))

where f1, . . . , fm are finitely many PL cost functions and all the xi
j are variables

from V . The task is to find the infimum cost of φ, defined as

inf
α : V→Q

m∑

i=1

fi(α(x
i
1), . . . , α(x

i
ar(fi)

)),

and to decide whether it is attained, i.e., whether it is a proper minimum or not.

The computational complexity of the VCSP for PL cost functions with variables
from a fixed set V depends on how the cost functions are represented in the input
instances. We fix a representation of cost functions which is strictly related both
to the mathematical properties of piecewise linear functions and to the algorithmic
procedures and mathematical tools that we want to use to deal with them.

Definition 5 (Representation of PL Cost Functions) We assume that a PL cost
function is given by a list of linear constraints, specifying the polyhedral sets, and
a list of linear polynomials and +∞ symbols, defining the value of the function
relatively to each polyhedral set. The linear constraints and the linear polynomials
are encoded by the list of their rational coefficients, and +∞ is represented by
a special symbol. The constants for (numerators and denominators of) rational
coefficients for linear constraints and linear polynomials are represented in binary.

LINEAR PROGRAMMING is an example of a problem which can be formulated
in our setting; it is also a tool that plays an important role later in the paper.

Definition 6 LINEAR PROGRAMMING (LP) is an optimisation problem with a
linear objective function and a set of linear constraints imposed upon a given set
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of underlying variables. A linear program has the form

minimise
n∑

j=1

cjxj

subject to
n∑

j=1

ai
jxj ≤ bi, for i ∈ {1, . . . ,m}.

This problem has n variables xj (ranging over the rationals or over the real numbers)
and m linear inequalities constraints. The coefficients cj , ai

j , and bi are rational
numbers, for all j ∈ {1, . . . , n}, and all i ∈ {1, . . . ,m}. The linear constraints,∑n

j=1 a
i
j xj ≤ bi , specify a polyhedral set, namely the feasibility polytope over

which the objective function has to be optimised.
An algorithm solving LP either finds a point in the feasibility polytope where

the objective function has the smallest value if such a point exists, or it reports that
the instance is infeasible (in this case we assume that the output of the algorithm is
+∞), or it reports that the infimum of the objective function is −∞ (in this case we
assume that the output of the algorithm is −∞).

The LINEAR PROGRAM FEASIBILITY problem, LPF, is a decision problem
having the form of a standard linear program but without any objective function
to minimise. The output of an algorithm solving LPF is “no” or “yes”, respectively,
depending on whether the polyhedral set defined by the linear constraints is empty
or not. Both LP and LPF can be solved in polynomial time (see, e.g., [8, 10, 20]).

In the remainder of the paper, we use the fact that LINEAR PROGRAM FEASIBIL-
ITY for a set of linear constraints containing also strict inequalities can be solved in
polynomial time. Given a set of linear constraints l and a linear expression obj, we
denote by LPF(l) the LPF instance defined by the linear constraints in l, and we
denote by LP(l, obj) the LP instance defined by the linear constraints in l and by
the objective function obj.

We remark that in LP and LPF the feasibility polytope is defined by weak linear
inequalities, i.e., by linear constraints of the form

∑n
j=1 ajxj ≤ b. The feasibility

of a set of linear constraints containing also strict linear inequalities (i.e., of the
form

∑n
j=1 ajxj < b) can be solved by solving a linear number of linear programs,

as shown in [7], where the authors give a polynomial-time algorithm deciding the
feasibility of a set of Horn disjunctive linear constraints. However, the feasibility
of a set of linear constraints containing strict and weak linear inequalities can be
decided by solving only one LP instance.

Lemma 1 (Motzkin Transposition Theorem [17, 19]) Let A ∈ Q
k1×d , and B ∈

Q
k2×d be matrices such that max(k1, d) ≥ 1. The system

{
Ax < 0

Bx ≤ 0
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has a solution x ∈ Q
d if, and only, if the system

{
AT y + BT z = 0

y ≥ 0, z ≥ 0

does not admit a solution (y, z) ∈ Q
k1+k2 such that y �= (0, . . . , 0).

Proposition 1 The LINEAR PROGRAM FEASIBILITY problem (LPF) for a finite
set of strict or weak linear inequalities is polynomial-time many-one reducible to
LP and, therefore, it can be solved in polynomial time.

Proof Let us assume that the linear constraints in the input consist of k1 strict
inequalities, and k2 weak inequalities, i.e., we have to check the satisfiability of
the following system

{∑d
i=1 aj,ixi + aj,d+1 < 0 for 1 ≤ j ≤ k1∑d
i=1 bj,ixi + bj,d+1 ≤ 0 for 1 ≤ j ≤ k2,

(1)

Let us first observe that the system (1) is equivalent to the following one

⎧
⎪⎪⎨

⎪⎪⎩

∑d+1
i=1 aj,i ti < 0 for 1 ≤ j ≤ k1

−td+1 < 0
∑d+1

i=1 bj,i ti ≤ 0 for 1 ≤ j ≤ k2.

(2)

Indeed, if (t1, . . . , td , td+1) is a solution for (2), then (x1, . . . , xd) with xi := ti
td+1

is
a solution for (1); vice versa if (x1, . . . , xd) is a solution for (1), then (x1, . . . , xd, 1)
is a solution for (2). Let us consider the following linear program

minimise
k1+1∑

j=1

(−yj )

subject to AT y + BT z

−y ≤ 0 (3)

−z ≤ 0,

with variables y1, . . . , yk1+1, z1, . . . , zk2 ,where A ∈ Q
(k1+1)×(d+1) is the matrix

such that (A)ji = aji for 1 ≤ j ≤ k1 and 1 ≤ i ≤ d + 1, and such that the
(k1 + 1)-th row of A is (0, . . . , 0,−1); and the matrix B ∈ Q

(k2)×(d+1) is such that
(B)ji = bji .

Observe that the linear program (3) can be computed in polynomial time (in the
size of the input). By Lemma 1, the system (2) is satisfiable if, and only if, the
feasibility polytope determined by the linear constraints in (3) does not admit a
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solution (y, z) ∈ Q
(k1+1)+k2 such that y �= (0, . . . , 0). If the output of the algorithm

for LP on instance (3) is +∞ or a tuple having 0 in the first k1 + 1 coordinates,
then the system (1) is satisfiable, and therefore we accept. Otherwise, if the output
is −∞ or a tuple (y, z) ∈ Q

(k1+1)+k2 such that y �= (0, . . . , 0), then the system (1)
is not satisfiable and we reject. �

3 PL VCSPs with Fixed Number of Variables

We exhibit a polynomial-time algorithm that solves the VCSP for PL cost functions
having variables from a fixed finite set. We assume that the input VCSP instance is
given as a sum of PL cost functions represented as in Definition 5. Our algorithm
computes the infimum of the objective function, and specifies whether it is attained,
i.e., whether it is a proper minimum.

The following theorem uses an idea that appeared in [2], Observation 17.

Theorem 1 Let V be a finite set of variables. Then there is a polynomial-time
algorithm that solves the VCSP for PL cost functions having variables in V .

Proof We prove that Algorithm 1 correctly solves the VCSP for PL cost functions
with variables in V in polynomial time. An input of an instance of the VCSP is a
representation of an objective function φ as the sum of a finite number of given cost
functions, f1, . . . , fn, applied to some of the variables in V = {x1, . . . , xd}, that is,

φ(x1, . . . , xd) =
n∑

i=1

fi(x
i),

where xi ∈ V ar(fi) for 1 ≤ i ≤ d . We can assume that the cost function fi is defined
for every x ∈ Q

d by

fi(x) =
{∑d

j=1 a
i,l
j xj + bi,l if Ci,l (x), for some 1 ≤ l ≤ mi

+∞ otherwise.

For every 1 ≤ l ≤ mi the formulas Ci,l(x) have the following form:

Ci,l (x) =
p∧

j=1

(h
i,l
j (x) ≤ 0) ∧

q∧

j=p+1

(h
i,l
j (x) < 0) ∧

r∧

j=q+1

(h
i,l
j (x) = 0),

for some p, q, r ∈ N and for some linear polynomials h
i,l
j : Qd → Q, where 1 ≤

j ≤ r . We assume that the cost functions fi are represented as in Definition 5.
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Algorithm 1 first extracts the list of linear polynomials p1, . . . , pk that appear in
the finite set of linear constraints defining some cost function fi , i.e.,

{p1, . . . , pk} :=
n⋃

i=1

mi⋃

l=1

⋃

j

{
h
i,l
j

}
.

Observe that the linear polynomials p1, . . . , pk decompose the space Q
d into σ

polyhedral sets, where

σ ≤ τd(k) =
d∑

i=0

2i

(
k

i

)
(4)

and that this bound is tight, i.e., σ = τd(k), whenever the hyperplanes defined by
pi(x) = 0, for 1 ≤ i ≤ k, are in general position.

Inequality (4) can be verified by induction on the number of hyperplanes, k.
Clearly, for all d ∈ N, one hyperplane divides Q

d into 3 = 20 + 21 polyhedral
sets. Suppose now that k ≥ 3 and that Inequality (4) is true for every d and for at
most k − 1 hyperplanes. Suppose that the k hyperplanes are in general position (we
get in this way the upper bound τd(k)). Observe that, by adding the hyperplanes
one-by-one, the k-th hyperplane intersects at most τd−1(k − 1) of the polyhedral
sets obtained until the previous step. In fact, this number is equal to the number of
polyhedral sets in which a hyperplane, that is a subspace of dimension d − 1, is
divided by k − 1 subspaces of dimension d − 2.

Suppose that we know how the space is decomposed into polyhedral sets by
the hyperplanes p1(x) = 0, . . . , pk−1(x) = 0. Adding pk(x) = 0 to the list of
hyperplanes decomposing the space, each one of the polyhedral sets intersecting it
is divided in three polyhedral sets (corresponding to pk(x) < 0, pk(x) = 0, and
pk(x) > 0, respectively). Summing up, at every step we add to the “old polyhedral
sets” (i.e., polyhedral sets obtained until the previous step) two more polyhedral sets
for each of the old ones intersecting pk(x) = 0, then it follows that

τd(k) = τd(k − 1) + 2τd−1(k − 1).

Using this equality and the inductive hypothesis we obtain

τd(k) = 2
d−1∑

i=0

2i

(
k − 1

i

)
+

d∑

i=0

2i

(
k − 1

i

)
=

d∑

i=1

2i

((
k − 1

i − 1

)
+
(
k − 1

i

))
+ 1

=
d∑

i=1

2i

(
k

i

)
+ 1 =

d∑

i=0

2i

(
k

i

)
.
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In particular, the number σ of polyhedral sets is bounded by a linear polynomial
in k, and the Algorithm 1 produces a tree, that a priori has 3k branches, but that
actually has O(k) branches.

The algorithm computes the list of all non-empty polyhedral sets by computing
at most

∑k−1
i=1 τd(i) instances of linear program feasibility, and then it computes the

infimum of the objective function in every non-empty polyhedral set by computing
at most 3τd(k) linear programs. Observe that the only closed and bounded non-
empty polyhedral sets computed by Algorithm 1 are 0-dimensional subspaces, i.e.,
points, and that all the other polyhedral sets computed are open or unbounded.
Therefore, in order to check whether the infimum in a polyhedral set C is a
minimum, it is enough to check whether the objective function in C is constant,
that is whether the infimum in C is equal to the supremum in C. This is done by
our algorithm solving at most 3τd(k) further linear programs. The linear expression
of the objective function in a polyhedral set can be computed by running a number
of LINEAR PROGRAM FEASIBILITY instances that is polynomial in the size of the
input instance. Globally, the running time of Algorithm 1 is polynomial in the size
of the input. �

4 Conclusion and Future Work

We have provided a polynomial-time algorithm solving the VCSP for piecewise
linear cost functions having a fixed number of variables. In the future, we would
like to continue this line of research by studying the computational complexity
of the VCSP with a fixed number of variables and semialgebraic cost functions.
A function f : Rn → R ∪ {+∞} is called semialgebraic if its domain can be
represented as the union of finitely many basic semialgebraic sets (see [2]) of the
form {x ∈ R

n | χ(x)} where χ is a conjunction of (weak or strict) polynomial
inequalities with integer coefficients, relative to each of which f (x) is given by a
polynomial expression with integer coefficients.

The VCSP for all semialgebraic cost function is equivalent to the existential
theory of the reals (see [2]), which is in PSPACE (see [4]). The restriction of
the feasibility problem associated with a semialgebraic VCSP to a fixed number
of variables is polynomial-time tractable by cylindrical decomposition (cf. [5]).
However, we do not know whether with this approach can solve our optimisation
problem in polynomial time. Another contribution related with our open problem
was given in [11] by Khachiyan and Porkolab, who proved that the problem of
minimising a convex polynomial objective function with integer coefficients over
a fixed number of integer variables, subject to polynomial constraints with integer
coefficients that define a convex region, can be solved in polynomial time in the size
of the input.
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Algorithm 1: Algorithm for PL VCSPs with a fixed number of variables

Input: φ(x) = f1(x) + · · · + fn(x) with fi(x) = fij (x) if x ∈ Cij , and the Cij ’s each given
as a finite set of linear conditions, for 1 ≤ j ≤ ni , and 1 ≤ i ≤ n.

Output: (val, attr) where val is the value of the infimum of the objective function, and attr is a
string which specifies whether val is attained (attr = “ min ”) or not (attr = “ inf ”).

{p1, . . . , pk} := the set of all the linear functions appearing in the Cij ’s;
L := {{}} (the set of polyhedral sets in which the pi ’s divide the space);
for i = 1, . . . , k do

for each l in L do
l−1 := l ∪ {pi < 0};
l0 := l ∪ {pi = 0};
l1 := l ∪ {−pi < 0};
for j = −1, 0, 1 do

if LPF(lj ) = yes then
L := (L \ {l}) ∪ {lj }

end
end

end
end
val := +∞;
attr :′′ inf ";
for each l in L do

lc := {} (the closure of l);
for each c ∈ l do

if c is of the form (p < 0) then
lc := lc ∪ {p ≤ 0}

else
lc := lc ∪ {c}

end
end
for i = 1, . . . , n do

gi := +∞;
for j = 1, . . . , ni do

if LPF(l ∪ Cij ) = yes then
gi(x) := fij (x)

end
end

end
obj := ∑n

i=1 gi(x);
m :=LP(lc , obj) (the infimum of φ in l);
M := −LP(lc , − obj) (the supremum of φ in l);
if m < val then

if m = M then
attr := “ min ”(the infimum is attained iff φ is constant in l)

else
attr := “ inf ”

end
end

end
return (val, attr);
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A Lagrangian Approach to Chance
Constrained Routing with Local
Broadcast

Matteo Cacciola, Antonio Frangioni, Laura Galli, and Giovanni Stea

Abstract Mobile cellular networks play a pivotal role in emerging Internet of
Things (IoT) applications, such as vehicular collision alerts, malfunctioning alerts
in Industry-4.0 manufacturing plants, periodic distribution of coordination infor-
mation for swarming robots or platooning vehicles, etc. All these applications are
characterized by the need of routing messages within a given local area (geographic
proximity) with constraints about both timeliness and reliability (i.e., probabil-
ity of reception). This paper presents a Non-Convex Mixed-Integer Nonlinear
Programming model for a routing problem with probabilistic constraints on a
wireless network. We propose an exact approach consisting of a branch-and-bound
framework based on a novel Lagrangian decomposition to derive lower bounds.
Preliminary experimental results indicate that the proposed algorithm is competitive
with state-of-the-art general-purpose solvers, and can provide better solutions than
existing highly tailored ad-hoc heuristics to this problem.

Keywords Chance-constrained optimization · Mixed-integer nonlinear
programming · Internet-of-things · Mobile network routing · Local broadcast ·
Lagrangian relaxation · Bundle methods · Branch-and-bound

1 Introduction

Long Term Evolution Advanced (LTE-A) technology for cellular networks is the
new forefront in the context of transmission networks for location-based broadcast
services, such as advertising, smart-city applications, and Internet-of-Things (IoT)
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deployments. Yet, some new IoT services, such as vehicular collision alerts and
augmented-reality live games, require low latency and high reliability, as well
as the possibility to target an area defined by the application itself rather than
the cell coverage. While traditional LTE-A tools can support these services, they
do so at a rather large cost in terms of energy. In fact, on the one hand, LTE’s
built-in Multicast/Broadcast mechanism was originally devised for broadcasting
multimedia, and therefore unsuitable to this task because it is static: the message
transmission format, the target area and the period of broadcast transmissions must
all be selected statically. On the other hand, having the base station (antenna),
called eNodeB (eNB) in the LTE terminology, relay messages to all the User
Equipment (UEs) in a target area using unicast downlink (DL) transmissions (one
per targeted UE) would require too many DL resources, hence too much energy.
For this reason, recently, a new communication framework has been proposed. We
consider a network of mobiles (UEs) which are under the control of a single eNB,
as shown in Fig. 1.

The eNB can send them information using DL (i.e., vertical) transmissions.
Information can also travel through device-to-device (D2D) links (i.e. horizontal
broadcast transmissions originated at UEs). Vertical links are reliable but costly,
and should be avoided if possible. By contrast, horizontal transmissions are free
(from the eNB viewpoint), but not reliable: there is no ARQ mechanism involved,
and it is impractical to try and ascertain which UEs, in the neighbourhood of
the transmitter, have successfully decoded a message. However, UEs can act
as multi-hop relays: horizontal transmissions are scheduled by the eNB, which
issues grants to the UEs that may transmit. This allows to model the probability
that a certain horizontal transmission is successful with a reasonable accuracy,
given the position of the UEs, the transmission power of the transmitter, and the

MEC
Host

Target area

DL

UE

D2D

BS

Fig. 1 System model
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modulation and coding scheme adopted for transmission. This yields a new Chance-
Constrained Unicast-Multicast Routing Problem (CCUMRP): select which vertical
and horizontal multi-hop transmissions to choose in order to guarantee that all
UEs receive the information with a certain level of reliability within a certain
time limit, at minimum energy cost. We propose a Non-Convex Mixed-Integer
Nonlinear Programming (MINLP) model for CCUMRP, together with an ad-hoc
Lagrangian decomposition approach to compute lower bounds that separates the
variable of the problem in a somewhat unusual fashion. We use the latter as the
basis of a Branch-and-Bound (B&B) approach that we computationally compare
both with state-of-the-art, general-purpose exact solvers and with highly tailored
ad-hoc heuristics for the problem.

We model the system as a graph G = (N,A), where N = { 0 } ∪ N ′ (0 being the
eNB and N ′ representing the UEs) with n = |N ′|, while the arc set A = A′ ∪ A′′
consists of two types of arcs:

• vertical arcs A′ of the form (0, i) for all i ∈ N ′, representing a DL transmission
between the eNB the UE i having probability 1 to be decoded successfully at i
but high energy cost;

• horizontal arcs A′′ of the form (i, j) for i �= j ∈ N ′, representing a D2D
transmission from i to j having probability 0 < Pij < 1 to be decoded
successfully at j , but low (energy) cost. (Probabilities are independent.)

In the initial stage of the process the eNB transmits the message to a subset
of UEs via DL (i.e., vertical transmission), while in the following stages only
horizontal transmissions are allowed. A node i ∈ N ′ can only issue an horizontal
transmission at a given stage if granted permission from the eNB. At most M grants
can be assigned in each stage, to ensure that the ensuing transmissions are not
mutually interfering. The problem is therefore to transmit the message to the entire
floorplan with the following constraints:

1. To ensure timeliness of reception of the message to all UEs, the broadcast process
must be over in k stages, with k known a priori. Because the first round is clearly
“special” (vertical transmissions from eNB to UEs), it is useful to define the set
K ′ = { 2 , . . . , k } of “normal” stages (horizontal transmissions between UEs).

2. To ensure reliability of reception, at the end of the broadcast process, each UE
must possess the message with at least a given probability α.

The main objective is to reduce the number of vertical transmissions. However,
besides them, we also need to decide which UEs should transmit when (i.e., in
which stage), so we must define the schedule of the grants that the eNB has to issue
in order to compose the broadcast schedule. A secondary objective is to issue the
least possible numbers of grants. In our model it is actually easy to generalize this
by considering node-and-stage weighted grants costs βh

i (i ∈ N ′, h ∈ K ′), e.g.,
depending on the type of node i and/or its remaining battery power.
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2 Mathematical Model and Decomposition

We define the following set of variables:

• binary xi for i ∈ N ′ indicating whether node i is selected in the initial set of UEs
that are reached by the vertical transmission from eNB at stage 1;

• continuous ph
i ∈ [ 0 , 1 ] for i ∈ N ′ and h ∈ K indicating the total probability

that node i has been reached at all stages up to h;
• binary gh

i for i ∈ N ′ and h ∈ K ′ indicating whether node i is selected to receive
a grant for broadcasting at stage h.

The MINLP model of CCUMRP is as follows:

min
∑

i∈N ′ xi +∑
h∈K ′

∑
i∈N ′ βh

i g
h
i (1)

p1
i = xi i ∈ N ′

(2)

pk
i ≥ α i ∈ N ′

(3)

1 − ph
i ≥ ( 1 − ph−1

i )
∏

(j,i)∈A′′( 1 − gh
j p

h−1
j Pji ) i ∈ N ′ , h ∈ K ′

(4)
∑

i∈N ′ gh
i ≤ M h ∈ K ′

(5)

xi ∈ { 0 , 1 } i ∈ N ′
(6)

0 ≤ ph
i ≤ 1 i ∈ N ′ , h ∈ K

(7)

gh
i ∈ { 0 , 1 } i ∈ N ′ , h ∈ K ′

(8)

The objective function (1) minimizes the number of initial vertical transmissions
used in the first stage (h = 1) and the cost of grants issued during the subsequent
stages (h ∈ K ′); it is therefore intended that βh

i 1 1. Constraints (2) ensure that all
initially targeted nodes are certainly reached. Constraints (3) impose that each UE
node i ∈ N ′ is ultimately (at stage k) reached with probability at least α; clearly,
it would be trivial to generalize the model by allowing node-specific thresholds αi .
Constraints (5) bound the total number of grants available at each stage (again, it
would be trivial to let M depend on h). Finally, the constrains characterizing the
model are the nonlinear nonconvex (4) ones, expressing the probability that node i

at stage h has not yet received the message.
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Clearly, the problem would be almost trivial were it not for (4); therefore, it is
those we will concentrate upon. Taking logarithms and noting that gh

j = 0 �⇒
log( 1 − gh

j p
h−1
j Pji ) = 0 they can be reduced to

log(1 − ph
i ) ≥ log( 1 − ph−1

i ) +∑
(j,i)∈A′′ gh

j log( 1 − ph−1
j Pji ) (9)

which is at least linear with respect to variables gh
j . However, the logarithm is

ill-defined when ph
i = 1, which certainly happens at least whenever xi = 1.

We therefore consider a restriction of the problem by selecting a constant p̄ < 1
“arbitrarily close to 1”, replacing (2) and (7), respectively, with

p1
i = xip̄ i ∈ N ′ (10)

0 ≤ ph
i ≤ p̄ i ∈ N ′ , h ∈ K ′ (11)

Clearly, each feasible solution of the new model is feasible for the original one as
well, and by choosing p̄ appropriately the practical difference between the two is
poised to be minimal. Finally, let us mention for future reference that for the second
stage (i.e., h = 2) constraints (9) can be written in the form

log(1 − p2
i ) ≥ log(1 − p̄)xi +∑

(j,i)∈A′′ g2
j log( 1 − Pji )xj i ∈ N ′ ,

(12)

whose useful property is that the right-hand side does not contain any continuous
variable (the p1

i having been substituted with the xi). Therefore, (4) can be replaced
by (9) for h ∈ K ′ \ {2} and by (12) for h = 2. Nor that this, by itself, makes
the constraints significantly easier to deal with. However, it allows us to propose a
decomposition approach to compute globally valid lower bounds. In particular, we
present a Lagrangian decomposition of the MINLP formulation

min
∑

i∈N ′ xi +∑
h∈K ′

∑
i∈N ′ βh

i g
h
i

(10) , (3) , (12) , (9) , (5) , (6) , (11) , (8)

The idea is to relax constraints (12) and (9) with Lagrangian multipliers λhi ≥ 0
for i ∈ N ′ and h ∈ K ′. In so doing, the problem is decomposed into k separate
sub-problem; this is clearly due to the fact that (12)/(9) are the only constraints that
link the variables of one stage to those of the following one. One may expect that
each sub-problem has the variables corresponding to one specific level h ∈ K , but
in fact the decomposition is somewhat different, and perhaps somewhat unusual.
Indeed, each sub-problem actually has variables “of one kind” for one stage h and
variables “of another kind” for the subsequent stage h + 1 (if any). This is due to
the terms gh

j log( 1 − ph−1
j Pji ) in (9) (and, similarly, g2

j log( 1 − Pji )xj in (12))

that link together variables gh
j with variables ph−1

j (xj ). We will now describe
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the sub-problems. Due to the special nature of the first stage, the corresponding
sub-problem clearly has a particular structure. Not having a subsequent stage, the
sub-problem corresponding to the last stage also has a peculiar form. All the sub-
problems corresponding to intermediate stages rather share the same structure.

The first sub-problem (h = 1) contains the xi variables (that substitute for the
probability variables p1

i ) of the first stage and the grant variables g2
i of the second

stage, reading

min
∑

i∈N ′
[
xi + β2

i g
2
i + λ2

i

(
log( 1 − p̄ )xi +∑

(j,i)∈A′′ g2
j log( 1 − Pji )xj

) ]
(13)

∑
i∈N ′ g2

i ≤ M

xi , g2
i ∈ { 0 , 1 } i ∈ N ′

Collecting like terms of (13), and observing that there is no point in setting g2
i = 1

if xi = 0, yields:

min
∑

i∈N ′
[
( 1 + λ2

i log( 1 − p̄ ) )xi + (
β2
i +∑

(i,j)∈A′′ λ2
j log( 1 − Pij )

)
g2
i

]

∑
i∈N ′ g2

i ≤ M

g2
i ≤ xi i ∈ N ′

xi , g2
i ∈ { 0 , 1 } i ∈ N ′

Since all nonlinear operations are applied to constants, the problem is linear.
Furthermore, the special structure of the constraints ensures that, despite the
variables being integer-valued, it can easily be solved in O(n logn).

Next, each of sub-problems (2 < h < k) contains grant variables gh+1
i of stage

h + 1 and probability variables ph
i of stage h, reading

min
∑

i∈N ′
[
(λh+1

i − λhi ) log(1 − ph
i )+

(
βh+1
i +∑

(i,j)∈A′′ λh+1
j log(1 − ph

i Pij )
)
gh+1
i

]
(14)

0 ≤ ph
i ≤ p̄ i ∈ N ′

∑
i∈N ′ gh+1

i ≤ M (15)

gh+1
i ∈ { 0 , 1 } i ∈ N ′ (16)

Clearly, in this problem each variable ph
i only interacts with the others via the

single term in which it is multiplied by the corresponding gh+1
i . The term is highly

nonlinear, but still one can consider the corresponding function

f h
i ( p , g ) = ( λh+1

i −λhi ) log(1−p)+( βh+1
i +∑(i,j)∈A′′ λh+1

j log( 1−pPij )
)
g .
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By computing the two costants p
h,g
i = argmin{ f h

i ( p , g ) : 0 ≤ p ≤ p̄ } for
g ∈ { 0 , 1 }, the sub-problem can be rewritten as

min
{ ∑

i∈N ′ f h
i ( p

h,1
i , 1 )gh+1

i + f h
i ( p

h,0
i , 0 )(1 − gh+1

i ) : (15) , (16)
}

and, therefore, again easily solved in O(n logn). The crux of the subproblem
therefore lies in the computation of ph,1

i and p
h,0
i . Computing the latter is trivial, as

it reduces to minimizing on p ∈ [ 0 , p̄ ] the monotone function (λh+1
i −λhi ) log(1−

p); the optimum necessarily lies in one of the two extremes. Finding p
h,1
i , instead,

requires to tackle a more complex one-dimensional minimization problem of the
form

min
{
f (p) = c log(1 − p) +∑

i∈N ′ ai log( 1 − pbi ) : 0 ≤ p ≤ p̄
}

(17)

where, ai = λh+1
i ≥ 0, 0 ≤ Pji = bi < 1, c = λh+1

i − λhi is unrestricted in sign,
and whose solution is discussed below.

Finally, the remaining Lagrangian term for k is

min
{ ∑

i∈N ′ −λki log(1 − pk
i ) : α ≤ pk

i ≤ p̄
}

that is separable over i; being the objective convex (λki ≥ 0), the optimum is in the
left endpoint pk

i = α.
The crucial step is clearly the ability to efficiently solve the one-dimensional

problem (17). Yet, if c ≥ 0 then the problem is trivial: f (p) is a decreasing function
with limp→1− f (p) = −∞, so the minimum is attained at p̄. We will therefore
concentrate on the case where c < 0 instead, for which we will prove that there is
at most one critical point p0 ∈ [ 0 , p̄ ]; moreover, the minimum is either attained
at 0 or p0. Indeed, f (p) is the sum of the increasing function c log( 1 − p ) (c <

0) with vertical asymptote at p = 1, and n decreasing functions ai log( 1 − pbi )

(ai ≥ 0) with vertical asymptotes at p = 1/bi > 1 (since bi < 1). Hence, clearly
as p → 1 the increasing function dominates: limp→1− f (p) = +∞, and f (p)

has to be strictly increasing “close to” p̄. As p approaches 0, instead, the behaviour
depends on the ai values. In particular, we prove the following two cases: either
the function is decreasing in 0 and becomes increasing “closer to” p̄, which implies
that the minimum is attained in the interior, or the function is increasing in 0 and
remains so in the whole interval, which implies that the minimum is attained at 0.

Lemma 1 If c < 0, 0 ≤ bi ≤ 1 and ai ≥ 0 then there exists at most one critical
point p0 ∈ [ 0 , 1 ) such that f ′(p0) = 0, and f (p) is strictly increasing in p0 <

p ≤ 1.
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Proof Consider f ′(p) = − c
1−p

−∑
i∈N ′ aibi

1−pbi
, we have

f ′(p) ≥ 0 ⇐⇒ −
∑

i∈N ′

(1 − p)aibi

(1 − pbi)c
= h(p) ≤ 1 .

It is now immediate to see that

h′(p) = −
∑

i∈N ′

aibi

c

bi − 1

(1 − pbi)2 ≤ 0

for all p ∈ [ 0 , 1 ]. This means that there can be at most one point p0 ∈ [ 0 , 1 )

such that f ′(p0) = 0, and therefore f (p) is strictly increasing in ( p0 , 1 ). �
We now analyse convexity of f , showing that if the function is non-convex then

there is exactly one point p̂ in which the second derivative changes its sign, and that
the function is convex in [ p̂ , 1 ].
Lemma 2 If c < 0, 0 ≤ bi ≤ 1 and ai ≥ 0, then there exists at most one point
p̂ ∈ [ 0 , 1 ) with f ′′(p̂) = 0, and f (p) is convex in p̂ ≤ p ≤ 1.

Proof Along the same lines, for f ′′(p) = − c

(1−p)2 −∑
i∈N ′

aib
2
i

(1−pbi)2 we have

f ′′(p) ≥ 0 ⇐⇒ −
∑

i∈N ′

(1 − p)2aib
2
i

(1 − pbi)2c
= h(p) ≤ 1

which similarly yields

h′(p) = −
∑

i∈N ′

aib
2
i

c
2(1 − p)(1 − pbi)

bi − 1

(1 − pbi)4 < 0

for all p ∈ [ 0 , 1 ]. Again, this implies that if f ′′(p̂) = 0 for some p̂ ∈ [ 0 , 1 ), then
f ′′(p) ≥ 0 (i.e., f is convex) for all p̂ ≤ p ≤ 1. �

To recap, the following three cases can happen:

1. f (p) is increasing in [ 0 , p̄ ], hence the minimum is 0;
2. f (p) is decreasing in 0 but convex in [ 0 , p̄ ], hence the minimum is in the

interior of the interval;
3. f (p) is decreasing in 0 and convex in [ p̂ , p̄ ] for some p̂ > 0, hence the

minimum lies in the interval [ p̂ , p̄ ];
that are represented in Figs. 2, 3, and 4, respectively.

From an algorithmic viewpoint, such a function can be efficiently globally
minimized using a simple globalization of Newton’s method. We keep an interval
[p− , p+ ] such that f ′(p−) < 0 and f ′(p+) > 0 (initialized as [ 0 , p̄ ], unless
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Fig. 2 Increasing

Fig. 3 Convex

f ′(0) ≥ 0 in which case we immediately terminate). If f ′′(p−) < 0 (f is non
convex at p−) we use a simple bisection rule to find a point p− < p′ < p+,
we compute f ′(p′) and shrink the interval accordingly. Otherwise (f is convex at
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Fig. 4 Concave, then convex

p−) we compute Newton’s step, and we accept it if it belongs to the interval and it
shrinks it enough; otherwise we revert to the simple bisection rule. This is clearly
convergent, and typically quadratically so in the tail. Note that in our function the
minimum is often close to 1, so instead of using a standard bisection we use the
point p′ = p− + 3/4(p+ −p−), as this typically leads to faster initial convergence.

3 Algorithmic Approaches and Experiments

Due to space restrictions, we briefly discuss the algorithmic approach that we
developed using the proposed model and decomposition method.

It is well-known that for each choice of λ ∈ R
2n+ , the solution of the corre-

sponding Lagrangian relaxation provides a valid global lower bound on the optimal
value of the original problem. To find the best possible Lagrangian relaxation, one
then has to solve the Lagrangian Dual problem, i.e., maximize over all λ ≥ 0 the
Lagrangian function consisting of the sum of the k terms previously described. The
efficiency of the solution process obviously depend on the specific algorithm used to
solve the Lagrangian Dual; in our case we use the freely available implementation
of the (generalized) proximal Bundle method [2] already used with success in other
applications (e.g., [4, 5]) provided by the NDOSolver/FiOracle suite of C++
solvers for NonDifferentiable Optimization problems developed by the Department
of Computer Science of the University of Pisa [9]. We refer to [2] and [9] for details
on Bundle methods.
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A fundamental component of any partial enumeration approach are the heuristics
used to produce good feasible solutions that can be used to prune nodes of the
decision tree (and that ultimately provide the returned best solution). We do this,
potentially at each iteration, using both the integer, but (typically) not feasible,
solution that we obtain by computing the Lagrangian function, and the continuous,
but (quickly) “almost feasible”, convexified solution that can be obtained as a
by-product of solving the master problem in the Bundle method [3]. Actually,
exploiting both synergistically has been shown to be useful in some applications
[1, 6].

Since both upper and lower bounds obtained with the methods previously
discussed are not very tight, we implemented an implicit enumeration (Branch-and-
Bound) algorithm in order to obtain better gaps.

We tested the model on the realistic scenarios constructed with the help of the
SimuLTE simulator developed at the Department of Information Engineering of
the University of Pisa [10]. The tool allows to create many instances of the problem
tuning the main parameters of interests; in our experiments we mainly concentrated
on the number of UEs, on the radius (in meters) of the geographical region of
interest, and on the required coverage probability α.

We compared our Lagrangian-based B&B with the state-of-the-art, general-
purpose MINLP solver BARON [8] 18.11.12, as well as with a highly-tailored
combinatorial heuristic available in SimuLTE and described in [7]. For BARON,
we scaled the objective function by a factor of 5 so that all the coefficients are
integer, allowing it to also exploit integrality to round up the lower bound. All codes
have been compiled with g++ 7.4.0 and ran single-threaded on a machine sporting
a 16-core Intel Xeon5120 CPU@2.20 GHz and 64 Gb RAM, running Ubuntu 18.04.
The results are reported in the following Tables, with two different time limits:
300 s and 3000 s. The instances are characterized by the number of UEs (“#”), the
radius (“r”) and the covering probability (“α”). For both exact methods we report
the total running time (“time”) if they terminated before the time limit, and “–
” otherwise, plus the total number of B&B nodes (“nodes”). We also report the
inherent gap (“gap”), i.e., (UB − LB)/max{1, LB} (in percentage), where UB

and LB are the best upper and lower bound on the optimal value produced by the
corresponding algorithm at termination. To better represent the relative quality of
the upper and lower bounds, we also separately report the primal gap (“pgap”)
(UB − UB)/max{1, UB} and the dual gap (“dgap”) (LB − LB)/max{1, LB}
(in percentage), where UB and LB are, respectively, the best (lowest) known upper
bound and best (highest) known lower bound on the optimal value of the instance.
Note that since the largest and hardest instances were not solved within 3000 s, a 0
primal or dual gap does necessarily means that the corresponding UB/LB are the
optimal value, but only that they are the best ever found in our experiments.

The results in Table 1 clearly show how challenging CCUMRP is. Only 10-UEs
instances can be all solved to optimality by our approach within the 5-min time
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Table 1 Computational results, time limit 300 s

Instances BARON B&B CH

# r α Time Nodes gap pgap dgap Time Nodes gap pgap dgap pgap

10 100 0.92 4.86 1 0.00 0.00 0.00 0.59 20 0.00 0.00 0.00 0.00

10 100 0.95 3.07 1 0.00 0.00 0.00 0.58 20 0.00 0.00 0.00 0.00

10 100 0.96 3.43 1 0.00 0.00 0.00 0.67 20 0.00 0.00 0.00 0.00

10 250 0.92 4.92 1 0.00 0.00 0.00 0.44 20 0.00 0.00 0.00 0.00

10 250 0.95 75.39 1 0.00 0.00 0.00 0.73 20 0.00 0.00 0.00 0.00

10 250 0.96 31.32 1 0.00 0.00 0.00 0.46 20 0.00 0.00 0.00 71.4

10 500 0.92 80.67 84 0.00 0.00 0.00 193.8 12, 323 0.00 0.00 0.00 71.4

10 500 0.95 44.45 52 0.00 0.00 0.00 44.00 2717 0.00 0.00 0.00 40.0

10 500 0.96 383.4 1597 0.00 0.00 0.00 229.1 5130 0.00 0.00 0.00 46.7

10 750 0.92 269.2 1778 0.00 0.00 0.00 153.42 2402 0.00 0.00 0.00 29.4

10 750 0.95 – 715 4.00 0.00 4.00 208.5 6880 0.00 0.00 0.00 38.5

10 750 0.96 – 717 13.0 0.00 13.0 29.87 1026 0.00 0.00 0.00 50.0

10 1000 0.92 1.78 1 0.00 0.00 0.00 79.81 2913 0.00 0.00 0.00 26.9

10 1000 0.95 1.42 1 0.00 0.00 0.00 210.0 13, 754 0.00 0.00 0.00 36.4

10 1000 0.96 0.82 1 0.00 0.00 0.00 1.91 120 0.00 0.00 0.00 63.6

25 100 0.92 – 1 3780 3050 120 121.6 164 0.00 0.00 0.00 0.00

25 100 0.95 – 17 100 0.00 100 98.45 130 0.00 0.00 0.00 0.00

25 100 0.96 – 18 80.0 0.00 80 57.56 84 0.00 0.00 0.00 0.00

25 250 0.92 – 1 3780 3050 120 12.83 58 0.00 0.00 0.00 0.00

25 250 0.95 – 1 3780 2600 140 11.30 58 0.00 0.00 0.00 0.00

25 250 0.96 – 1 3780 2600 140 10.04 56 0.00 0.00 0.00 0.00

25 500 0.92 – 1 3780 1354 260 – 1995 40.0 7.69 30.0 30.8

25 500 0.95 – 1 3780 1354 260 – 1983 23.1 23.1 0.00 69.2

25 500 0.96 – 1 3780 1250 260 – 1569 23.1 14.3 0.00 42.9

25 750 0.92 – 2 1160 456 80 – 642 40.0 2.94 8.00 32.4

25 750 0.95 – 5 1081 425 88 – 1263 23.3 2.78 0.00 22.2

25 750 0.96 – 4 1081 425 88 – 1004 23.3 2.78 0.00 22.2

25 1000 0.92 – 12 330 210 25 – 1332 14.6 3.28 0.00 36.2

25 1000 0.95 – 10 311 205 26 – 1185 12.5 1.61 3.57 29.0

25 1000 0.96 – 12 294 200 25 – 951 12.3 1.59 5.26 47.6

50 100 0.92 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00

50 100 0.95 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00

50 100 0.96 – 1 6280 5133 40 – 283 100 0.00 20.0 0.00

50 250 0.92 – 1 780 550 80 – 283 60.0 0.00 20.0 0.00

50 250 0.95 – 1 6280 4386 80 – 283 80.0 0.00 20.0 0.00

50 250 0.96 – 1 6280 4386 80 – 284 80.0 0.00 20.0 0.00

50 500 0.92 – 1 6280 2143 140 – 283 180 0.00 40.0 21.4

50 500 0.95 – 1 6280 1993 160 – 284 114 0.00 14.3 20.0

50 500 0.96 – 1 6280 1993 160 – 283 87.5 0.00 0.00 20.0

50 750 0.92 – 1 6280 913 200 – 292 230 6.45 0.00 3.20

(continued)
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Table 1 (continued)

Instances BARON B&B CH

# r α Time Nodes gap pgap dgap Time Nodes gap pgap dgap pgap

50 750 0.95 – 1 6280 772 260 – 291 192 5.56 0.00 22.2

50 750 0.96 – 1 6280 749 260 – 290 185 0.00 0.00 18.9

50 1000 0.92 – 1 6280 398 560 – 283 220 1.59 40.0 11.1

50 1000 0.95 – 1 6280 376 600 – 280 156 4.55 11.1 28.8

50 1000 0.96 – 1 6280 355 700 – 280 154 2.90 25.0 31.9

limit; it is generally more efficient than BARON (which fails to solve two) except
for very large r , where BARON closes at root node. Interestingly, the combinatorial
heuristic—which is the state-of-the-art for the problem up until this work—provides
solutions that can be in excess of 50% off the optimum, although of course does so
in orders-of-magnitude less time. When the size of the instances grows, BARON
is basically unable to solve the problem except in a handful of cases, providing
both lower and especially upper bounds that are of no practical value. Our approach
cannot be exactly deemed to be very successful, with final gaps up to 40% with 25
users and even in excess of 200% with 50 users; however, it still produces the best
solutions and lower bounds.

Moving to the time limit of 3000 s, depicted in Table 2, confirms that our
approach at least scales much better than BARON; the much faster bound com-
putation allows to enumerate more B&B nodes, which ultimately results in much
better upper and lower bounds. In particular, we are able to solve about half of the
instances with 25 users to optimality, with the other half ending with “reasonable”
gaps (at least, if compared with these of BARON, both lower and upper, and with
the upper bounds provided by the combinatorial heuristic). All in all, our approach
is only partly successful. In particular, the lower bound is not particularly tight,
which limits the size of the instances that can be practically solved. However, it
at least provides a way to assess the performances of the heuristics approaches
which, due to the extremely tight time limits (a handful of milliseconds) imposed
by the application, are probably the only practical way of approaching the problem.
Hopefully, the information provided by our approach will allow to better identify
the limits of the current heuristics, and develop better ones.
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Table 2 Computational results, time limit 3000 s

Instances BARON B&B CH

# r α Time Nodes gap pgap dgap Time Nodes gap pgap dgap pgap

10 100 0.92 5.13 1 0.00 0.00 0.00 0.59 20 0.00 0.00 0.00 0.00

10 100 0.95 3.12 1 0.00 0.00 0.00 0.58 20 0.00 0.00 0.00 0.00

10 100 0.96 3.48 1 0.00 0.00 0.00 0.67 20 0.00 0.00 0.00 0.00

10 250 0.92 4.69 1 0.00 0.00 0.00 0.44 20 0.00 0.00 0.00 0.00

10 250 0.95 75.22 1 0.00 0.00 0.00 0.73 20 0.00 0.00 0.00 0.00

10 250 0.96 31.12 1 0.00 0.00 0.00 0.46 20 0.00 0.00 0.00 71.4

10 500 0.92 82.39 84 0.00 0.00 0.00 193.7 12, 323 0.00 0.00 0.00 71.4

10 500 0.95 46.08 52 0.00 0.00 0.00 44.0 2717 0.00 0.00 0.00 40.0

10 500 0.96 383.4 1597 0.00 0.00 0.00 229.1 5130 0.00 0.00 0.00 46.7

10 750 0.92 269.2 1778 0.00 0.00 0.00 153.42 2402 0.00 0.00 0.00 29.4

10 750 0.95 439.0 911 0.00 0.00 0.00 208.5 6880 0.00 0.00 0.00 38.5

10 750 0.96 1456 2605 0.00 0.00 0.00 29.9 1026 0.00 0.00 0.00 50.0

10 1000 0.92 1.78 1 0.00 0.00 0.00 79.81 2913 0.00 0.00 0.00 26.9

10 1000 0.95 1.66 1 0.00 0.00 0.00 210.0 13, 754 0.00 0.00 0.00 36.4

10 1000 0.96 0.90 1 0.00 0.00 0.00 1.91 120 0.00 0.00 0.00 63.6

25 100 0.92 – 71 100 0.00 100 121.6 164 0.00 0.00 0.00 0.00

25 100 0.95 – 94 80.0 0.00 80.0 98.5 130 0.00 0.00 0.00 0.00

25 100 0.96 – 109 80.0 0.00 80.0 57.6 84 0.00 0.00 0.00 0.00

25 250 0.92 – 107 80.0 0.00 80.0 12.8 58 0.00 0.00 0.00 0.00

25 250 0.95 – 21 100 0.00 100 11.3 58 0.00 0.00 0.00 0.00

25 250 0.96 – 18 100 0.00 100 10.0 56 0.00 0.00 0.00 0.00

25 500 0.92 – 29 3680 1354 160 – 5300 27.3 7.69 18.2 30.8

25 500 0.95 – 28 3050 1354 117 – 7552 7.69 7.69 0.00 69.2

25 500 0.96 – 39 3050 1250 117 – 6404 23.1 14.3 0.00 42.9

25 750 0.92 – 35 950 456 50.0 – 4295 34.6 2.94 3.85 32.4

25 750 0.95 – 52 845 425 50.0 – 8314 23.3 2.78 0.00 22.2

25 750 0.96 – 49 845 425 50.0 – 4485 26.7 5.56 0.00 22.2

25 1000 0.92 – 82 294 210 14.6 – 12, 406 12.7 1.64 0.00 36.1

25 1000 0.95 – 83 286 205 18.4 – 11, 378 10.5 1.61 1.75 29.0

25 1000 0.96 – 104 49.0 20.6 17.7 – 10, 330 6.67 1.59 0.00 47.6

50 100 0.92 – 11 100 0.00 20 – 2805 80.0 0.00 0.00 0.00

50 100 0.95 – 1 6280 5133 40 – 2804 80.0 0.00 0.00 0.00

50 100 0.96 – 1 6280 5133 40 – 2803 80.0 0.00 0.00 0.00

50 250 0.92 – 1 80.0 0.00 40 – 2795 40.0 0.00 0.00 0.00

50 250 0.95 – 1 100 0.00 40 – 2796 60.0 0.00 0.00 0.00

50 250 0.96 – 1 100 0.00 40 – 2794 60.0 0.00 0.00 0.00

50 500 0.92 – 1 6280 2143 140 – 2773 100 0.00 0.00 21.4

50 500 0.95 – 1 6280 1993 160 – 2779 87.5 0.00 0.00 20.0

50 500 0.96 – 1 6280 1993 160 – 2763 87.5 0.00 0.00 20.0

50 750 0.92 – 8 3040 913 0.00 – 2947 230 6.45 0.00 3.20

(continued)
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Table 2 (continued)

Instances BARON B&B CH

# r α Time Nodes gap pgap dgap Time Nodes gap pgap dgap pgap

50 750 0.95 – 10 3040 773 30.0 – 2942 177 0.00 0.00 22.2

50 750 0.96 – 8 3040 749 30.0 – 2955 185 0.00 0.00 18.9

50 1000 0.92 – 20 1470 398 40.0 – 2825 125 0.00 0.00 11.1

50 1000 0.95 – 13 1395 376 42.9 – 2880 127 3.03 0.00 28.8

50 1000 0.96 – 14 1327 355 59.1 – 2784 97.1 0.00 0.00 31.9
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A Metaheuristic Approach for Biological
Sample Transportation in Healthcare

Paolo Detti, Garazi Zabalo Manrique de Lara, and Mario Benini

Abstract In this paper, a real-world transportation problem is addressed, concern-
ing the collection and the transportation of biological sample tubes from draw
centers to the main hospital in Bologna, Italy. Blood and other biological samples
are collected in different centers during morning hours. Then, they are transported
to the main hospital for their analysis by a fleet of vehicles. Each sample has a
given lifetime, i.e., a deadline. If a sample cannot arrive to the hospital before
the deadline either is discarded or a stabilization process must be carried out in
on of the dedicated facilities called Spoke Centers. After stabilization, a sample
can be delivered to the main hospital by a new deadline. Transfers of samples
are allowed at Spoke Centers. If a sample is delivered by a vehicle to a Spoke
Center to be processed, it can be picked up from the Spoke Center after the
stabilization by a different vehicle for the delivery to the main hospital. An Adaptive
Large Neighborhood Search Algorithm is developed and tested. Computational
experiments on different sets of instances based on real-life data are presented.

Keywords Vehicle routing problem · Healthcare · Transfers · Adaptive Large
Neighborhood Search

1 Introduction

The transportation problem addressed in this paper arises from a real-world health-
care application, concerning the reorganization of the transportation of biological
sample tubes from draw centers to the main hospital in Bologna, Italy, hereafter
called HUB. The problem basically consists in collecting and routing blood and
other biological samples from different locations and in delivering them to the HUB
for the analysis.
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Blood and other biological samples are drawn out in different centers, during
morning hours. Then, each sample must be transported to the HUB for the analysis
by a deadline. In fact, samples have a limited lifetime, i.e., a deadline, and have to
arrive to the main hospital by the deadline. If a sample cannot arrive to the HUB
before the end of its lifetime either is discarded or is stabilized to give it an extra
lifetime. After stabilization, a sample can be delivered to the main hospital by a
new deadline. The stabilization process is performed in dedicated facilities called
Spoke Centers. The overall objective of the problem is to minimize the number
of samples arriving late at the HUB and subsequently minimize the total distance
traveled by the vehicles. Furthermore, since a Spoke Center is highly expensive in
terms of machines and dedicated personnel, at a strategic level, a further objective is
to evaluate whether some of the Spoke Centers can be closed. The problem has
been first addressed in [1], where a mixed integer linear programming problem
has been proposed and solved on small instances generated from real data. In the
literature there are different works that address blood sample collection problems,
[4, 5, 10, 11]. Grasas et al. [4] consider the problem of sample collection and
transportation from different collection points to a core laboratory for testing in
Spain. The problem is modeled as a variant of the capacitated vehicle routing
problem with open routes and route length constraints, and a heuristic based on
a genetic algorithm is proposed. A similar problem is addressed in [10] where
a mobile blood collection system is designed and a routing problem is proposed
with the aim of transporting blood samples from blood mobile draw centers to
the depot. A mathematical model and a 2-stage IP based heuristic algorithm are
proposed to solve the problem. In [5], a vehicle routing problem is addressed for
blood transportation between hospitals or donor/client sites. A hybrid meta-heuristic
algorithm including genetic algorithms and local search is developed able to reduce
the cost and the response time for emergency. In [11], the problem of allocating
units of blood from a regional blood transfusion centre to the hospitals of its area is
considered. The problem is formulated as a multiobjective transportation problem.

Spoke Centers can be modeled as transfer points, where samples may be
“transferred” from one vehicle to another, after the end of the stabilization process.
Indeed, the vehicle delivering a sample to a Spoke Center does not have to wait until
the end of the stabilization process, but may depart after dropping the samples off.
Transportation problems with transfers have been addressed in the literature [3, 6, 8].
In [8], the pickup-and-delivery problem in which transfers are allowed is addressed,
and mixed integer-programming formulations are proposed and evaluated. The
pickup-and-delivery problem with transfers is also addressed in [6]. The authors
propose heuristics capable of efficiently inserting requests through transfer points
and embed them into an Adaptive Large Neighborhood Search (ALNS) scheme.
The approach is evaluated on real-life instances. Cortes et al. [3] address Dial-a-
Ride problems where passengers may be transferred from one vehicle to another
at specific locations. A mathematical programming formulation is presented and a
solution method based on Benders decomposition is proposed.

In this paper, an Adaptive Large Neighborhood Search based algorithm is
proposed able to tackle all the characteristics of the problem. The framework of the
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algorithm is based on the approach proposed by Ropke and Pisinger in [9] for the
pickup and delivery problem with time windows, and specific developments for the
problem under study have been introduced. A computational campaign on different
sets of instances based on real-life data is presented. A comparison between the
solutions obtained with the developed algorithm and the real solutions show the
effectiveness of the proposed approach, able to attain solutions with at most 3% of
samples delivered after their deadline, without any use of Spoke Centers.

The paper is organized as follows. In Sect. 2 a detailed description of the problem
is presented. Section 3 describes the ALNS algorithm used to tackle the problem.
The description of the real-life data and the computational results are reported in
Sect. 4, and finally conclusions are given in Sect. 5.

2 Problem Description

In the addressed problem, a set of transportation requests, i.e., biological samples,
must be carried from draw centers to the HUB. A fleet of vehicles, located
in geographically distributed depots is available to perform the transportation
requests. Given the small dimension of the samples, vehicles can be considered with
unlimited capacity. The problem consists in assigning the transportation requests to
the vehicles and in finding the routing of each vehicle in such a way that: (1) the
number of samples arriving on time is maximized; (2) the total traveled distance is
minimized. Additional constraints must be taken into account, regarding the arrival
to the HUB of the samples and the fulfillment of the time windows on the pickup
locations. In fact, a sample must be delivered to the hospital before a pre-specified
time span from its withdrawal. In other words, each sample has a lifetime, defining
a deadline in which the sample has to be delivered to the HUB. The pickup of the
samples can be performed during the opening hours of the draw centers, and pickup
and delivery operations require given times to load or unload a request. If a request
cannot be delivered to the HUB by the deadline, a stabilization process can be
performed that will give an extra lifetime to the biological sample. The stabilization
process is made in geographically distributed Spoke Centers. Observe that, in a
Spoke Center, a vehicle can depart after dropping the samples off, and another
vehicle can pass to pick up the sample after the end of the stabilization process.
Figure 1 shows a scheme of the two transportation modes of a request: either directly
from the draw center to the HUB or first from the draw center to a Spoke Center and
then to the HUB. In the remainder of this section, notation is introduced and a formal
definition of the problem is given. Let G = (V ,A) be a complete directed graph,
where V = {1, . . . , n, n + 1, n + 2, . . . , n + s + 2, n + s + 3, . . . , n + s + m + 3}
is the node set and A = {(i, j) : i, j ∈ V } is the arc set. The nodes in
P = {1, . . . , n} are the pickup nodes of the transportation requests, the node
n + 1, also denoted as H , is the delivery node, i.e., the HUB. The nodes in
SP = {n + 2, . . . , n + s + 2} correspond to the Spoke Centers and the nodes
in DEP = {n+ s + 3, . . . , n+ s + m+ 3} are the depots of the vehicles. For each
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Draw Center HUB
Lifetime LT

Spoke Center

Lifetime LT
Extra

lifetime ET

Fig. 1 Transportation modes of a sample

node i in P , LTi is the lifetime of request i, ETi is the extra lifetime gained if i

is processed in a Spoke Center, and [ei, li] is the related pickup time window. The
time window [ei, li] of each node i ∈ P indicates that request i can only be picked
up from its pickup location between time ei and li . A vehicle is allowed to arrive
at the location of i before the start of the time window, but it has to wait until ei to
begin the loading operation. Finally, let K = {1, . . . , k} be the set of vehicles.

3 An Adaptive Large Neighborhood Search Algorithm

In this section, the ALNS-based algorithm developed for the addressed problem is
presented. The basic framework of the algorithm is based on the approach proposed
in [9] for the pickup and delivery problem with time windows, where specific
developments for the problem under study have been introduced. The algorithm has
two main steps. First an initial solution, say s0, is generated not necessarily feasible,
through a fast insertion heuristic. Afterwards the solution is iteratively destroyed and
repaired until a maximum number of iterations is reached. More precisely, at each
iteration, the current solution is destroyed through a destroy heuristic and repaired
by an insertion heuristic in order to find a different, possibly better, solution. If the
new solution is accepted under given acceptance criteria, the solution is saved as the
new current solution, and the algorithm continues with the next iteration.

During our ALNS algorithm, the destroying and repairing operators are only
applied to solutions in which Spoke Centers are not used. In fact, the algorithm
can be employed in two modes: (1) either without any use of Spoke Centers; (2)
or with the use of Spoke Centers. The first mode has been designed to evaluate
the possibility of excluding Spoke Centers from the overall process. In the second
mode, the algorithm attempts to insert Spoke Centers periodically (i.e., at the end
of each segment as described in Sect. 3.4) by an ad hoc procedure, in order to solve
infeasibilities due to the violation of lifetime constraints of the current solution, if
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any. Then, the solution with Spoke Centers is saved if better than those obtained
so far, Spoke Centers are removed from the current solution and the research
process continues (on the current solution). The performances of the two modes
are evaluated by an experimental campaign in Sect. 4.

3.1 Evaluation Function and Route Length Minimization

Although the ALNS method has been originally designed to explore feasible
solutions [9], in our algorithm, we allow the exploration of infeasible solutions
in order to facilitate the search in the solution space. More precisely, during the
algorithm the violation of the two main set of constraints of the problem is allowed,
namely, the constraints on the lifetimes (i.e., deadlines) and on the time windows
of the requests. The violations of these constraints are weighted in the evaluation
function by penalty positive coefficients. More formally, given a solution s of the
problem, the evaluation function tackled by ALNS has two main components and
is equal to f (s) = f1(s) + f2(s). The function f1(s) corresponds to the total
distance of the routes. The term f2(s) is a penalization component of the form
f2(s) = αt(s)+βw(s), where t (s) and w(s) represent the total violation of solution
s with respect to lifetimes and time windows constraints, respectively, and α and β

are positive penalty coefficients. In more detail, given a solution s of the problem,
constraint violations are calculated as in (1) and (2), where, for each pickup request
i ∈ P :

• Ti and Di are the times in s, in which the request is ready to be transported and
is delivered to the main hospital, respectively, if i is not stabilized;

• if i is stabilized, TSTi and DSTi are the times in s, in which the request is ready
to be transported after the stabilization and is delivered to the main hospital,
respectively;

• δ(i) is 1 if i is stabilized in a Spoke Center and 0 otherwise, and Ai is the time in
which i is picked up by a vehicle from its pickup location. (Note that, (a)+ = a

if a > 0 and 0 otherwise.)

t (s) =
∑

i∈P

([(Di − Ti) − LTi]+(1 − δ(i)) + [(DSTi − TSTi ) − ETi ]+δ(i)
)

(1)

w(s) =
∑

i∈P
(Ai − li )

+. (2)

Initially, coefficients α and β are set to given values α0 and β0, respectively. At
each iteration, they are modified by a factor 1 + η, where η > 0, as follows. If
the lifetime constrains are violated (are not violated) by the current solution s, then
α = α(1 + η) is set (α = α/(1 + η) is set). The same rule is applied to β with
respect to time windows constraints.
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In order to minimize the length of the routes, a simple procedure is applied to
each solution s found during the algorithm. As in [2], the procedure tries to postpone
the starting of a route as much as possible while lifetime constraints are not violated
and the violation of the time window constraints is not increased. The procedure is
only applied to routes not containing any violation of lifetime constraints.

3.2 Destruction and Repairing Operators

In the ALNS algorithm developed for the problem, destruction operations are
performed by two removal heuristics. The heuristics are described below.

Worst Removal
The Worst Removal heuristic has been proposed in [9] and is based on calculating
the change in the objective function value when one of the selected requests is
removed. From the current solution s, nR requests are deleted in a semi-random
way. The probability that a request is removed from the solution is proportional to
the improvement that the request produces for the objective function.

Random Removal
This heuristic randomly deletes nR different requests from the solution.

The repairing operations are performed by the two heuristics described below.

Best Insertion
Best Insertion is a construction heuristic based on greedy criteria. At each iteration,
the insertion cost of each request is calculated for each possible position. The request
with the minimum insertion cost is then inserted in the position with the smallest
cost. The heuristic terminates when all the requests are added to the solution. The
heuristic stops when all requests are routed or none can be inserted [9].

Regret-2
This heuristic is based on the notion of regret used, for example, in [7] for the vehicle
routing problem with time windows (VRPTW), and also used in [9]. The Regret-
2 heuristic is based on the idea of inserting first the requests that will produce a
bigger increase of the objective function, when are not inserted immediately. At
each iteration, the request to be inserted is the one that maximizes the increase of
the objective function, called regret value. The procedure is repeated until all the
requests are inserted.

3.3 Adaptive Component and Heuristic Selection

At each iteration of the ALNS algorithm, a pair of destroy-repair heuristics
(described in Sects. 3.2) is selected with a certain probability. The selection is made
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using a roulette wheel selection principle [9], described in the following. A weight
wh and a score πh is assigned to each (destroy or repair) heuristic h. During the
algorithm, heuristic h is chosen with the following probability wh/

∑
j wj .

The weights wh are automatically adjusted during the algorithm using the scores.
The scores πh store the information on the performance of each heuristic. A
heuristic producing better results will have a higher score. During the search, the
ALNS algorithm is divided into segments that correspond to I iterations. (In our
experiments we set I = 100.) The score of each heuristic is set to 0 at the beginning
of each segment, and, at each iteration of the segment, is increased of σ1, σ2 or σ3,
where σ1, σ2 and σ3 are algorithm’s parameters, as follows. If the solution produced
by the applied destroy/repair heuristic pair is new and better than the best known
solution, σ1 is used; if the solution produced by the applied heuristic pair has not
been yet accepted and better than the current solution then σ2 is used; and if the
solution produced by the applied heuristic pair, completely new, has not been yet
accepted and is worse than the current solution σ3 is used. The scores of the pair
of destroy and repair heuristics are updated equally, as we cannot specify whether
the destroy or the repair heuristic was the one with the good performance. At the
beginning of the algorithm the same weight is assigned to all the heuristics. At the
end of each segment t , the weight of each heuristic h is updated for the next segment
t+1 as follows: wh,t+1 = wht(1− r)+ r πh

θh
, where πh is the score of the heuristic h

at the end of segment t and θh is the number of times the heuristic has been used so
far. The parameter r controls the sensitivity of the algorithm to the weight changes.
Note that, if r = 0 the same weight will be used during all the algorithm.

In order not to get stuck in a local minima, a simulated annealing approach is
used as acceptance criteria. Let s be the current solution, a new generated solution s′
will be accepted as the new current solution with probability e(f (s ′)−f (s))/T , where
T > 0 is the temperature. The initial temperature is T = T0 and decreases at each
iteration according to the expression T = T · c, where 0 < c < 1 is the cooling
rate. The initial temperature T0 depends on the initial solution and is set as follows.
Let f (s0) be the cost of the initial solution of the ALNS algorithm, then the initial
temperature is calculated in such a way that if the solution is w% worse than the
current solution, the solution is accepted with a probability of 0.5. More precisely
the initial temperature is set as T0 = −w·f (s0)

log(0.5) .

3.4 Spoke Insertion Procedure

In this section we describe how the insertion of the Spoke Centers, if needed, is
performed during the algorithm. (Recall that, a request stabilized in a Spoke Center
gains an extra lifetime.) Given a solution s in which no Spoke Center is used, the
procedure attempts to insert Spoke Centers in s. The objective is that of resolving
violations of lifetime constrains, if any. During the algorithm, the Spoke Insertion
procedure is executed after each segment, i.e. after I = 100 iterations, if a violation
on a lifetime of a request exists. Each Spoke Center is modeled as a pickup node and
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a delivery node. In the delivery node the samples are left for the stabilization and
in the pickup node the samples are picked up by a vehicle (after the stabilization
process) to deliver them to the HUB. In the procedure, the requests violating
the lifetime constraints and not already stabilized are first detected in the current
solution s. Then, Spoke Centers are inserted in the routes containing such requests
as follows. If a route only contains one request violating the lifetime constraint, say
request ip, the Spoke Center minimizing the sum of the distance to node ip and to
the subsequent request ip+1 in the route is chosen. The delivery node of the Spoke
is inserted right after the node ip. If a route has more than one request violating the
lifetime constraints, the insertion of a Spoke Center is performed as described above
by considering the last of such requests in the route. If all the lifetime violations are
solved with this insertion the procedure ends. If not, the procedure will start again
by choosing the last request in the route violating the lifetime constraints. At the end
of the Spoke Insertion procedure the new solution is stored if contains fewer lifetime
violations of the best solution found so far. Then, the ALNS algorithm continues on
the next segment starting by the initial solution s generated at the end of the segment
(before the application of the Spoke Insertion procedure).

Algorithm 1
ALNS Algorithm

Generate Initial Solution, s0
sbest ← s0 (best solution without Spoke Centers)
scur ← s0
Repeat

Selection Destroy and Repair heuristics
s ← scur
s ← Destroy(s)

s ← Repair(s)

if f (s) < f (sbest )

sbest ← s

scur ← s

else
if Accepted(s, scur )

scur ← s

end if
end if
if end of segment and Spoke Centers can be used

ssp ← InsertSpoke(sbest )

if RT viol(ssp) < RT viol(sspbest ) or sspbest = ∅
sspbest ← ssp (best solution with Spoke Centers)

end if
end if

Until a maximum number of iterations is reached
if Spoke Centers cannot be used

Apply the Post-Processing Procedure on sbest return sbest
else

Apply the Post-Processing Procedure on sspbest return sspbest

end
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3.5 Post-Processing Procedure

A post-processing procedure is applied in order to improve the final solution
returned by the algorithm. The post-processing procedure is focused on re-assigning
the requests belonging to the same draw center that are not transported together
(in the same route) with other requests produced in the same draw center. The
procedure basically tries to assign to a given vehicle as many samples as possible of
the same draw center, as long as this choice allows to fix the violations of deadlines’
constraints. The requests are re-assigned only if the overall deadline violation with
the re-assignment is less or equal than before.

4 Instance Description and Experimental Results

An experimental campaign has been performed on different sets of real data
provided by the Local Healthcare Agency of Bologna, and arising from the
metropolitan area of Bologna, Italy. In the area, there are 46 (blood and biological)
geographically distributed draw centers. The opening days and hours of each center
depend on the center itself and vary from Monday to Saturday, from 7 am to
10 am. According to the real data, in a center, a sample is drew every 3 min,
approximately. The number of available vehicles is 26 during weekdays and 16
on Saturday. Vehicles are located in 8 different depots. Each day, 12 Spoke Centers
are available for the stabilization process. The lifetime of a sample is of 120 min.
Hence, from its withdrawal, a sample i must be delivered to the main hospital or
to a Spoke Center within LTi = 120 min. The stabilization process takes 30 min
and gives to the stabilized sample ETi = 90 min of (extra) lifetime to arrive to the
main hospital (see Fig. 1). Hence, after the end of the stabilization process, a sample
must be delivered to the HUB within ETi = 90 min. The service time required
by a vehicle to load or unload samples at a draw center or at a Spoke Center is
sti = 10 min. The number of draw centers available each weekday ranges from 30
to 36 from Monday to Friday and is equal to 16 on Saturday. From the real data
described above, 4 sets of instances have been generated, called Set 1, Set 2, Set
3 and Set 4, by grouping samples in different ways. Each set contains 6 instances
(one for each day of the week, from Monday to Saturday). More precisely, recalling
that a biological sample is produced every 3 min, we organize biological samples in
batches and generate instances in which a batch is created every either 10, 15, 20
or 30 min of activity of a draw center. Hence, when batches are generated every
15 min, each batch will contain 5 samples (possibly except for the last batches
generated at each center). The lifetime of a batch, i.e., the deadline, is computed
taking into account the time of the production of the first sample included in the
batch. Therefore the bigger the batch is the smaller the lifetime of the batch is.
The earliest limit of the time window assigned to each batch is set equal to the
ending production time of the last sample of the batch and the latest limit of the
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Table 1 Number of requests per set each day

Set Time interval Monday Tuesday Wednesday Thursday Friday Saturday

1 30 104 109 100 118 100 58

2 20 147 155 140 167 141 82

3 15 208 220 200 238 200 116

4 10 312 329 300 356 300 174

time window is always set to 30 min after the closing time of the draw center. Thus,
the time window width of a batch varies depending on the samples assigned to it.
Table 1 shows the number of requests of each instance of Sets 1 − 4, corresponding
to the number of batches obtained by grouping samples every 30, 20, 15 and 10 min
respectively, from Monday to Saturday, according to the procedure described above.
The time interval used to group the samples is shown in the second column of the
table. Hence, by grouping samples every 30 min we get 6 instances (one for each
day from Monday to Saturday) with a number of batches, i.e., requests, ranging
from 58 to 118. Note that, such a variation depends on the opening times of the
draw centers, varying with the day of the week. By grouping samples every 10 min
we get the biggest instances with a number of requests ranging from 174 to 356.

As detailed in Sect. 3, the proposed ALNS algorithm has different parameters.
By a trial and error preliminary testing phase, α0 = 0.05 and β0 = 0.3 have been in
set in the evaluation function. The other parameters of the algorithm (introduced in
Sect. 3.3) have been set as in [9]: r = 0.1, σ1 = 33, σ2 = 9, σ3 = 19, c = 0.99975
and w = 0.05. At each iteration of the algorithm, 33% of the requests are removed
and then re-inserted. The maximum number of iterations is fixed to I tmax = 10,000.

4.1 Experimental Results

In this section, the experimental results on the four sets of instances described in
the previous section are presented. All tests have been executed on a PC equipped
with Intel i5 processor and 8 Gb of RAM. Five runs of the ALNS algorithm on each
set of instances have been performed. Table 2 reports the average results, over the
five runs, on each set of instances for every day of the week (see Table 1). The table
contains the results on the best average solution (over the five runs) attained without
any use of Spoke Centers, i.e., in which stabilization is not allowed (see Columns
2–5 of the table), the average results for the case in which Spoke Centers can be
used (Columns 6–10) and the best solution obtained in all the runs, with or without
the use of Spoke Centers (Columns 11–15). In all the cases, the solution with the
smallest number of late requests, i.e. batches, is considered as the best solution. In
columns 2, 6 and 11 of the table, dist is the average total travel distance of the best
solutions on the 5 runs of the algorithm. In Columns 3, 7 and 12, BLate reports on the
average percentage of tardy batches. A batch is tardy if it contains at least a sample
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delivered late with respect to the deadline. In Columns 4, 8 and 13, the maximum
(average) delay of a batch is reported, denoted as maxDelay , and, in Columns 5, 9
and 14, # visited is the average number of times a draw center is visited by a vehicle.
Finally, in Columns 10 and 15, BSpoke is the average number of batches delivered
to a Spoke Center (when Spoke Centers can be used).

We note that, apart from the instances of Set 4, the use of Spoke Centers yields
solutions with a smaller number of late batches (see Columns 3 and 7 of Table 2).
On the other hand, in terms of solution quality (i.e., percentage of tardy batches),
the ALNS algorithm attains the best results on the instances of Set 4 without any use
of Spoke Centers, finding solutions in which 3% of batches are late on average. On
the same set of instances, but with the use of Spoke Centers, the ALNS algorithm
yields solutions with 9% of late batches, on average. Such unexpected result is
probably due to the large dimension of the instances of Set 4, containing more
than 300 requests in the days from Monday to Friday. In fact, the instances of Set
4 related to the days of Tuesday and Thursday have the biggest dimension, with
329 and 356 requests respectively. On these instances, the algorithm finds solutions
with the largest percentage of late batches when Spoke Centers can be used (equal
to 25%, much bigger than the solutions without spokes on the same set, with at
most 10% of late batches). When Spoke Centers are enabled, the algorithm has the
best performance on Sets 2 and 3, with 6% and 7% of tardy batches, respectively.
Observe that, the instances of these sets are characterized by a smaller number of
requests than Set 4 and by requests with larger time-windows than those of Set
1. According to the traveled distance, solutions with Spoke Centers enabled and
a smaller number of samples per batch are those with a higher overall traveled
distance, dist. In solutions without Spoke Centers, each draw center is visited by
a vehicle a number of times ranging from 1.98 (on Set 1) to 2.26 on Set 3. Smaller
values are attained for instances with Spoke Centers in which the draw centers are
visited from 1.82 to 2.06 times, on average. Average computational times of the
algorithm on the instance sets ranges from about 145 s in Set 1 to about to 6400 s in
Set 4.

In the real-world application, around 40% of the samples arrives late with respect
to the lifetime constraints, on average, and each draw center is visited at most once
by a vehicle. On the other hand, the ALNS algorithm is able to attain solutions in
which about 3% of samples are delivered after their deadline, without any use of
Spoke Centers and visiting about twice each draw center. Such a result is interesting
at the strategic decision level, since it highlights that most of the samples can be
delivered on time even when no stabilization is performed.

5 Conclusions

In this paper, a problem arising from a real-world healthcare application has been
presented, in which biological samples must be transported from draw centers to the
main hospital within given deadlines. Dedicated centers, i.e., Spokes, can be used to
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enlarge the deadlines of the samples. An ALNS algorithm has been proposed able
to tackle all the characteristics of the problem. Computational results on real-life
instances show the effectiveness of the proposed approach.
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Optimal Planning of Waste Sorting
Operations Through Mixed Integer
Linear Programming

Diego Maria Pinto and Giuseppe Stecca

Abstract Circular economy imposes a new view of operations with the aim of zero
waste. To obtain this result it is critical to adopt an holistic approach and to optimize
every step of the production and logistics processes. This work investigates the
operations of waste recycling centers where materials are collected by a fleet of
trucks and then sorted in order to be converted in secondary raw materials. The
activity is characterized by low margins, uncertainties in supplies, and difficulties
to track flows. In these settings, we propose a mixed integer linear programming
model to schedule the sorting operations of each phase of the waste sorting process.
The model can be described as a variant of a lot size model with non linear costs
(approximated by mean of piece-wise linear functions) with the additional features
of scheduling the operations and allocating the appropriate workforce dimension.
The model is tested on a real world case study and results demonstrate the validity
of the approach.

Keywords Circular economy · Lot sizing · Mixed integer linear programming ·
Waste recycling

1 Introduction

Waste management is a worthwhile and important challenge concerning both
the protection of the environment and the conservation of natural resources.
Notably, a considerable attention has been directed over the last decade towards
the optimization of planning procedures related to waste management. In particular,
performances of municipal solid waste systems have been improving thanks to
a noticeable commitment of decision makers and research efforts regarding the
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optimization of each system components. In the meantime, some similar kind of
optimization models have been drastically reducing transportation costs enhancing
the growth of the online shopping of any sort of good. As a result, while logistic
companies start serving a new magnitude of customers, also a new dimension
of packaging waste started affecting the overall waste system. This leads to the
need of a stronger technological and strategic decision support to packaging waste
facilities in order to lower all the extra costs involved with the selective collection
and sorting of this kind of waste. Not only logistic companies but also every other
kind of industry generates a considerable amount of packaging waste. In Europe the
Directive 2004/12/EC on packaging and packaging waste laid down the European
recycling and recovery targets. In particular, official reporting on packaging waste
for all EU Member States was implemented in 2007 and since then Eurostat
monitors also the developments of this statistics. For example, in 2016, 170 kg of
packaging waste was generated per inhabitant in the EU (varying from 55 kg per
inhabitant in Croatia and 221 kg per inhabitant in Germany). Instead, from 2007 to
2016, paper and cardboard was the main packaging waste material in the EU (35.4
million tonnes in 2016) followed by plastic and glass (16.3 million tonnes for each
of these waste materials in 2016). Therefore, the need of meeting the recovery and
recycling targets imposed by EU law and the rising prices of raw materials used
for packaging have resulted in an increasing interest in the recovery of materials
from the waste streams. Moreover, the recycling industry is characterized by very
low margins and high percentage of operation and logistics costs. For this reason
it is critical the optimization of the process in order to turn it in an economically
sustainable business. Accordingly, the main research aim of this study is to develop a
mixed integer linear programming model for planning and scheduling the packaging
waste recycling operations. The model supports also other strategic decisions such
as sizing the amount of processed waste and allocating the optimal number of
operators for each shift of the waste sorting processes. To the best of our knowledge
and literature review, the subject has not gained large academic interest previously,
and with this work we intend to expand the operation research academic community
understanding on packaging waste management.

In the described setting, waste companies usually serve their industrial customers
according to a pull logic for the waste containers collection. Indeed, a company truck
picks up the waste container of a customer whenever the company logistic services
are contacted by the client for the container pick up. The production demand of the
waste facility arises from the need to program and size the sorting operations of a
certain quantity of waste in order to balance the availability of the buffer of received
material with the production and set-up costs of sorting operations and storage costs
of all the inter-operational buffers. Therefore, the simultaneity of the scheduling
problem and the lot sizing problem is highlighted. One of the main problems in the
field of production planning is indeed the lot sizing. Starting from the study of the
main lot-sizing models of the literature, we derived the formulation of a model that
could properly reflect the waste business reality. All models are wrong, but some are
useful, famous quote by George E. P. Box was taken into consideration when tuning
the complexity of the model because, even if we cannot describe exactly the reality,
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it could be very helpful if a model gets close enough. Hence, the formulation was
intended to be linear and it remained so after performing some suitable linearization.
The reminder of the paper is organized as follows: the recycling process is described
in Sect. 1.1; the literature review is given in Sects. 1.2 and 2 is dedicated to the
problem description and the MILP formulation; Sect. 3 presents the experimental
results and the instances creation procedure; Sect. 4 gives some conclusions and
research perspectives.

1.1 The Waste Sorting Process

A typical recycling plant manages flows of waste materials and process them by
separating all the several kinds of mixed materials such as paper, cardboard, iron,
wood, plastic and glass. Once those materials are separated from each other, they
are considered as secondary raw materials, and each kind of them is then moved to a
dedicated stock area. Depending on the type of material some minor transformation
may be necessary before stocking them. At the end of a complete sorting the
remaining part of the waste constituents that cannot be recycled are then treated
as trash and intended to be moved to a garbage dump. The waste sorting is divided
into two sorting jobs that are performed in series with an inter-operational buffer
between them. Indeed, during the rest of the dissertation we always refer to them
as first and second sorting respectively. The first sorting job is performed in order
to separate the components of the overall waste mix of a particularly big size. Not
only this matter would be too big to fit the conveyor belt on which a finer and
more precise second sorting is performed, but it can be actually moved directly to
the corresponding stock of secondary raw materials. This operation usually takes
place in the trucks dump area where each waste container is unloaded. This area
is indeed the first input buffer of the production problem addressed by this paper.
The first sorting job draws material from this buffer. As a result of this sorting,
the bigger and heavier part of the dumped material is moved to the corresponding
stock, and the smaller and lighter part is moved to a second buffer. This buffer feeds
a conveyor belt that is used in order to activate and accomplish the second sorting
job. This subsequent additional operation achieves a finer separation by making the
small mixed waste being carefully inspected by blue collars eventually supported
by dedicated devices such as cameras, sensors and any sort of smart mechanism
like a magnet used for separating small iron pieces. Depending on the dimension
of the second sorting cabin this can hold a maximum number of blue collars. Each
kind of matter slides into a dedicated buffer hole, one for each kind of secondary
raw material. The waste sorting stage is followed by the ending packaging phase.
The fundamental machine for this phase is a press, which is powered by an octopus
bucket. Once a minimum workable quantity of a certain material is selected and
stocked, an operator maneuvers the bucket, collects the batch of selected waste and
places it all inside the press. In this way single-material compact bales are created
and stacked pending collection by customers of secondary raw materials.
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1.2 Literature Review

The scientific literature related to the waste management is not particularly rich but
is expanding. The range of contributions is justified by the variety of technological
configurations and decision levels (mainly strategic and operational). At the same
time the main type of waste flows considered are municipal solid waste, even though
also food waste has been addressed by some research. Indeed the great majority
of works are related to the management or the strategic definition of municipal
solid waste networks, such as in [3, 8, 10–12]. Instead the conventional operational
task addressed by research is about waste shipment and collection trucks route
optimization [2, 4, 6, 7]. Besides them, a real case application is presented in [1]. The
last review of methods concerning optimal routing of solid waste collection trucks
is given in [9]. Moreover, a complete survey of both strategic and tactical issues in
solid waste management that have been addressed by operations research methods
is presented in [5]. As far as our knowledge is concerned, none of the previous
works is close to our operational type of waste management study. As a matter of
fact we present in this paper a new kind of operational application of mathematical
programming within the waste management paradigm.

2 Problem Definition and Modeling

In this section we describe the main operational features covered by the model and
present its formulation. It will clarify how the model is able to cover the principal
strategic decisions of the process while properly modeling the typical production
dynamics of a reverse logistic setting. First of all it is important to notice that, in the
considered industrial case, costs of storage are not measurable directly. In fact, the
waste stored in the buffers have neither cost nor value attributable to it that generate
a variable cost of storage. In particular, the only cost potentially attributable to the
waste concerns its transportation to the plant, but this is a cost paid by those who
need to dispose of their waste. Secondly, the quantity stored in the buffers has no
observable value since the percentages of the secondary raw materials contained in it
are not known before the sorting process is complete. Only once the sorting process
is complete, the waste regains its value since it can be sold again as a secondary
raw material. Of course, there are storage costs due to energy and staff employed,
however, since these are indirect and constant costs, they are not covered by the
model. At the same time the level of buffer storage can be such as to constitute a
criticality in terms of saturation of the storage capacity. This is particularly evident
when a specific level of stock is passed. Therefore, it was considered appropriate to
model this dynamic through a storage cost curve which originally included a non-
linearity from the exceeding of the critical stock level. The linearity of the model
is indeed guaranteed using a piece-wise linear curve that approximates the real cost
curve. Critical levels can be estimated considering the size of the buffer areas and
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the averages of both the specific weights of raw materials and the overall weight
of the unloaded containers. In addition to these, the indications about the threshold
perceived by the waste company in relation to the customer service level were also
considered. Thanks to this information, the filling percentages of the buffers which
constitute their critical stock level can be obtained.

In the following, we introduce a mixed integer linear programming (MILP)
model which defines the newly introduced problem. The notations that will be used
in the MILP, such as parameters and indexes, are the following:

• j = {1, . . . , J }: index of the J sorting stages
• p = {1, . . . , P }: index of the P time-shifts
• T : time horizon partitioned in time shifts with t ∈ {1, . . . , T } = T1 ∪ . . . ∪ TP
• C: hourly cost of each operator
• σt : working hours for time t determined by the corresponding shift p
• Ct = C ∗ σt : cost of each operator at time t

• fj : set-up cost of sorting stage j

• at : quantity of material in kg unloaded from trucks at time t

• αj : percentage of waste processed in stage j − 1, received in input by buffer j
• Sj : maximum inventory capacity of the sorting stage buffer j
• LCj : critical stock level threshold of buffer j
• ρj : fraction of material allowed to be left at buffer j at the end of time horizon
• Kj : single operator hourly production capacity [kg/h] of sorting stage j

• SKj,t = Kj ∗ σt : operator sorting capacity in sorting stage j , at time t

• M: maximum number of operators available in each time shift
• Ej : minimum number of operators to be employed in each time shift of stage j

• ∂hi
j : slope of the i-th part of linearization of the buffer j stock cost curve

The model consider the following variables.

• xj,t ∈ Z
+: operators employed in the sorting stage j at time t

• uj,t ∈ R
+: processed quantity at stage j at time t

• yj,t ∈ {0, 1}: equal to 1 if stage j is activated at time t , 0 otherwise
• Ij,t = I

′
j,t + I

′′
j,t ≥ 0: stock level of material in buffer j at time t ; for each stage

j the corresponding I ′
j,t and I ′′

j,t represent the inventory level before and after
reaching the critical threshold respectively.

• wj,t ∈ {0, 1}: equal to 1 if I
′′

j,t > 0, 0 otherwise. Indeed, this binary variables are
used to model the piece-wise linear functions of the buffer stock costs.

Considering a case study where J = 2 sorting stages, for the first sorting phase,
u1,t ≥ 0 and x1,t ∈ {0, 1} represent the quantity (in kg) of material to be selected and
decision to activate the process respectively at time t . For the second sorting phase,
u2,t ≥ 0 and x2,t ∈ {0, 1} represent the quantity (in kg) of material to be selected
and decision to activate the process respectively at time t . I1,t , I

′
1,t , I

′′
1,t ≥ 0 are the

inventory levels at first phase sorting buffer while I2,t , I
′
2,t , I

′′
2,t ≥ 0 are inventory

levels at second phase sorting buffer. As previously stated, w1 and w2 are used to
model the piece-wise linear functions of the buffer stock costs. In detail w1 = 0
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if I ′
1,t < LC, 1 if I ′

1,t = LC and I ′′
1,t > 0; similarly w2 = 0 if I ′

2,t < LC, 1 if
I ′

2,t = LC and I ′′
2,t > 0.

The model minimizes the sum of sorting and holding costs and is detailed as
following:

min Z =
∑

j∈J

∑

t∈T
Ctxj,t +

∑

j∈J

∑

t∈T
fj yj,t +

∑

j∈J

∑

t∈T

(
∂h1

j I
′
j,t + ∂h2

j I
′′
j,t

)
(1)

s.t.

Ej yj,t ≤ xj,t ≤ M yj,t ∀j ∈ J, t ∈ Tp, p ∈ P (2)
∑

j∈J
xj,t ≤ M ∀t ∈ T (3)

uj,t ≤ SKj,t xj,t ∀j ∈ J, t ∈ T (4)

I1,t = I1,t−1 + at − u1,t ∀t ∈ T \ 0 (5)

Ij,t = Ij,t−1 − uj,t + αj uj−1,t ∀t ∈ T \ 0, j ∈ J \ 1 (6)

Ij,t = I
′

j,t + I
′′

j,t ∀j ∈ J, t ∈ T (7)

LCj wj,t ≤ I
′

j,t ≤ LCj ∀j ∈ J, t ∈ T (8)

0 ≤ I
′′

j,t ≤ (Sj − LCj ) wj,t ∀j ∈ J, t ∈ T (9)

Ij,T ≤ ρj LCj ∀j ∈ J (10)

xj,t ∈ Z
+ ∀j ∈ J, t ∈ T (11)

uj,t ∈ R
+ ∀j ∈ J, t ∈ T (12)

yj,t ∈ {0, 1} ∀j ∈ J, t ∈ T (13)

The objective function (1) defines the minimization of the sum of the three cost
terms, which are sorting, setup, and inventory costs respectively. (2) and (3) bounds
the number of workers that can be assigned to each sorting station and to each time
shift. Constraints (4) limit the quantity sorted uj,t to the sorting capacity dependent
on the number of workers xj,t . The remaining constraint sets define and limit the
inventories: constraint set (5) defines the inventory for the first buffer, considering
the inbound material at and the sorted material u1t , while (6) defines the inventory
for the other buffers corresponding to j > 1. Indeed, constraints (6) describe the
waste flow across the sorting stages that follow one another: each subsequent inter-
operational buffer j receives by the previous sorting stage j − 1 a quantity of
waste equal to a αj percentage of the waste processed in stage j − 1. Constraint
sets (7), (8), and (9) define the piece-wise linear functions for inventories; in these
constraints, level Sj and maximum capacity LCj are connected with the inventory
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Fig. 1 Illustration of the model architecture when J = 2

levels through the variable wj,t . The last constraint set (10) imposes the maximum
unsorted material allowed to be left at the end of the planning period for each buffer.

Figure 1 shows a graph representation of the model over time, working shifts and
sorting stages including buffers stock evolution and sorting processes.

3 Experimental Results

This section holds the main results from the studied scenarios described in the
following Sect. 3.1. The model is tested on scenarios that are different in time
horizon dimension and in the range of production demand in terms of kg of waste
unloaded in the waste plant during each shift. All instances are created by a real-
world case study from a waste sorting plant located next to Rome, Italy. We solved
each scenario first by applying the Gurobi solver to the MILP model, then applying
the typical planning rule regularly used by the management of the waste plant.
This has been performed in order to test the model response to each of the feasible
instances and to measure the model performances against the company procedure.

3.1 Instances Creation

Thanks to the availability of company data we are able to properly create real-world
problem instances. Indeed, used data are rich both in terms of quantity and quality.
The considered recycling plant organizes its production in two working shifts of 6
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Fig. 2 Distribution of packaging waste weight unloads for each shift

Table 1 Upper and lower bounds of arrivals weight ranges in [kg]

Arrivals Shift_1 LB Shift_1 UB Shift_2 LB Shift_2 UB

Low 200 3250 200 2600

Moderate 3260 6600 2600 5400

Average 6600 10,800 5400 8650

High 10,800 16,500 8660 13,400

Extreme 16,500 38,000 13,400 28,000

and 7 h respectively. Therefore as a first step we performed a probability distribution
analysis of the waste weights unloaded from incoming trucks at each working
shift. The Anderson Darling test is used for the assessment of data normality. This
statistical test assesses whether a sample comes from a specified distribution and
set this hypothesis as the null hypothesis of the test. As a result, the hypothesis
of normality is rejected with some significance level if the test statistic exceeds a
given critical value. Tests are performed on data with the addiction of their negative
counterpart in order to prove a perfect skew-normal distribution as the positive
portion of a zero-mean normal distribution. Figure 2 shows a bar plot and the fitting
distribution for each work period.

Each test failed to reject the null hypothesis, ergo both arrivals distribution are
found. These distributions are then used for constructing reference intervals of
instances in terms of arrivals weight. We defined five dimensions of unloads such
as low, moderate, average, high, and extreme. Table 1 displays for each unloads
dimension the corresponding minimum and maximum weight of the arrival weight
intervals for each daily working shift. Combining these settings with the same
number of five different time horizon, we created a 5 × 5 grid of instances. Time
horizon test settings range from 1 to 5 weeks of production planning. Therefore,
considering six working days of two shifts each, tests are performed over T ∈
{12, 24, 36, 48, 60}.
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3.2 Results

We attempt to solve each scenario with both the presented MILP and the company
solution strategy using an Intel Core i7-4710HQ CPU @ 2.50 GHz with 8 GB RAM
with GUROBI 8 solver, and setting the solver time-limit to 1500 s. The company
solution is obtained by tuning the constraints set of the MILP formulation in order
to make it represent the actual solution scheme of the company decision makers.
As a main distinction, the company does not permit the simultaneity of different
sorting stages during the same working shift. Therefore, while the presented model
includes the creation of teams of operators dedicated to different and parallelized
sorting operations, this is not true for the company solution program. In addition,
when the company decision makers activate a working shift, they always allocate
the maximum number of available operators. We first give the presented formulation
response to each instance for what concerns the optimal solution objective value as
illustrated in Fig. 3. It is clear that the objective value linearly increases along both
the features of the instances grid. Instead, as shown in Fig. 4, the Gurobi solver
runtime is not affected by the arrivals dimension while it does increase as the time
horizon magnitude expands.

The model response is then compared with the actual strategy of the waste
company. Table 2 presents, for each instance, the differences in terms of optimal
objective value and in term of runtime needed to close the gap. We remark that the
objective value represents the sum of sorting and holding costs in EURO needed to
handle the arriving packaging waste over the considered time horizon. In the table,
as ObjVal_M regards the MILP model solutions, ObjVal_C concerns the actual

Fig. 3 Optimum obj. value for each instance
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Fig. 4 Runtime for each instance

company solution; the same goes for Runtime_M and Runtime_C. Both approaches
fail to find a solution for each of the extreme arrivals instances, thus confirming a
comprehensive and stressful test instances grid. At the same time it points out the
same feasibility limit of the model with respect to the company solution. For what
concerns the feasible instances, the main remarkable result is the optimality gain
obtained by the MILP model, which produces a better solution for each scenario.
Indeed, the percentage cost reduction ranges from a minimum of 5.5% for the most
demanding instance to a maximum of 15.9% for the longer horizon instance. There
is also a slight tendency of a higher costs reduction with lower quantity arrivals and
longer time plan. Instead, the convergence runtime to get the company solutions is
always shorter, except for the average arrivals scenarios. Certainly, on an equal time
horizon, these instances take longer to converge for the company solution criteria.
In order to extract deeper insights about the solver performance when dealing with
other model parameters setting, we performed two types of experiments. Few of
the tested instances faced some approximation problems that made the solver stuck
to a gap of about 0.25% for an indefinitely long time. Therefore we decided to set
the gap termination tolerance to 0.25% in order to prevent this behavior while still
providing a reasonable small convergence gap. We first attempted to solve instances
with a greater number of J sorting stages, up to 5 subsequent stages. These instances
also differ in time horizon but share the same kind of average magnitude of arriving
waste quantity. Results are presented in the first portion of Table 3, where it is
evident how the convergence gap and run-time increase with respect to the depth
of the parameters settings, i.e. the number of stages and time horizon. All instances
having more than two sorting stages fail to close the gap before reaching the time
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Table 2 Optimal objective value and runtime comparison with the company model [C]

Instances %Obj

TH—arrivals ObjVal_M Obj_Val_C reduction Runtime_M Runtime_C %Run diff

12—low 1151.036 1263.556 8.90 0.036 0.029 −0.241

12—moderate 3233.546 3421.400 5.50 0.052 0.033 −0.576

12—average 5388.570 6319.804 14.7 0.092 0.081 −0.136

12—high 8262.336 9117.556 9.4 0.271 0.050 −4.420

12—extreme Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

24—low 2708.048 3094.936 12.5 0.131 0.058 −1.259

24—moderate 6933.418 7659.156 9.5 0.446 0.126 −2.540

24—average 11,502.106 13,507.594 14.8 0.477 0.748 0.362

24—high 18,320.334 20,186.248 9.2 2.217 0.155 −13.303

24—extreme Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

36—low 4104.140 4564.886 10.1 0.333 0.152 −1.191

36—moderate 10,577.530 11,834.330 10.6 7.372 1.154 −5.388

36—average 17,902.680 20,485.472 12.6 6.530 31.161 0.790

36—high 28,025.228 30,655.698 8.6 1.837 0.361 −4.089

36—extreme Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

48—low 5952.454 7030.596 15.3 6.667 2.150 −2.101

48—moderate 14,472.414 15,962.360 9.3 64.374 6.642 −8.692

48—average 23,870.748 26,794.730 10.9 12.559 29.889 0.580

48—high 38,239.526 41,147.530 7.1 20.576 2.148 −8.579

48—extreme Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

60—low 7105.006 8443.570 15.9 26.816 2.697 −8.943

60—moderate 18,328.174 20,426.798 10.3 140.476 62.179 −1.259

60—average 30,355.192 34,709.392 12.5 148.196 300.026 0.506

60—high 47,101.504 50,434.394 6.6 98.605 1.611 −60.207

60—extreme Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible

Bold value indicates the maximum value present within the column “Obj reductions”

limit, except for the case of 36 working shifts to schedule with 3 or 4 sorting
stages. Still the convergence gap never exceeds 3.5% within the considered time
limit of 1500s. The last four columns of Table 3 include the number of variables and
constraints of each instance in order to better understand optimization performance
related to the instances size. The second portion of Table 3 presents the results
of a second test concerning the solver performance over a set of problems where
the production and stock costs of the formulation are alternately removed. These
are marked in first column with a “v” when the specific cost is present and “x”
otherwise. These formulation costs tuning can be suitable whenever the decision
maker wants to foster a scattered production schedule with a bigger lot size by
removing stock costs, or to encourage a lean production by removing the production
costs. Results prove how removing stock costs makes the problem easier to solve
with respect to its standard form, while promoting a lean production would make
the solver converge by exploring only its first node, a trivial optimal solution is
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indeed found by setting all variables in order to produce as much as allowed by the
formulation constraints.

4 Conclusions

We presented a mixed integer linear programming model for planning and schedul-
ing packaging waste recycling operations. The model supports several strategic
decisions that are critical in the business considered. Indeed, within the waste
industry, an high percentage of costs arises from sorting operations and logistics.
Moreover, the presented formulation is sufficiently flexible for what concerns the
sorting plants architectures that is able to replicate. In fact, by easily setting some
of its parameters, the formulation showed a good modeling capacity when used for
representing a real-world application. Results concerning costs optimization in the
considered case study are also encouraging. Indeed, for the company turnover, this
economical improvement is highly remarkable, taking into account the low margin
of the activity. Future works may consider to introduce more complexity in the
formulation, such as adding robustness on parameters values or production capacity
dependent on the size of working teams. Another formulation improvement would
be obtained by considering the fractions of material moving to the following sorting
phase being subject to each arriving materials composition.
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Selecting and Initializing Representative
Days for Generation and Transmission
Expansion Planning with High Shares
of Renewables

Giovanni Micheli, Maria Teresa Vespucci, Marco Stabile, and Alessia Cortazzi

Abstract Generation and Transmission Expansion Planning (GTEP) to achieve
decarbonisation targets in the power sector requires installing relevant shares of
production from Renewable Energy Sources (RES). GTEP optimization models
determine expansion plans over a long-term horizon so as to minimize the total
investment and operation cost. In the presence of high shares of non-dispatchable
RES power plants, operation costs must be evaluated taking into account the
different operating conditions due to the intermittency of RES power generations.
In this work we consider a GTEP model for a power system based on thermal,
solar and wind power generation and we introduce a novel approach to select
representative days (RDs), discretized in hours, in order to obtain accurate estimates
of the operational costs. The RDs are not connected, in order to get a decomposable
problem. A procedure is introduced to assign the ON/OFF status of every thermal
unit at the beginning of each RD. Numerical results on a test case of suitable
dimension show that the proposed method provides expansion plans very close
to those obtained by the complete hourly model, while dramatically reducing
computational costs.
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1 Introduction

Generation and transmission expansion planning (GTEP) is the problem of deter-
mining technology, capacity and location of new generation units, as well as new
electrical interconnections to be built. The definition of joint expansion plans is one
of the most relevant problems in the field of power systems and many approaches
have been proposed in recent years to deal with it [1, 2, 8, 10, 16, 20, 21]. Because
of the computational restrictions due to the long-term horizon, most of the existing
planning models represent power systems with a low level of technical and temporal
detail, ignoring operational unit commitment constraints and evaluating operations
on a daily or weekly basis. However, this approach is not appropriate for power
systems with increasing penetration of generation from renewable energy sources
(RES), since in this case a more detailed description of short-term dynamics is to be
included in the expansion planning framework in order to accurately address all the
challenges related to integrating high shares of intermittent energy sources [13].

To provide a better representation of the short-term operation while maintaining
the problem computationally tractable, some energy planning models use a small
number of representative days (RDs) instead of modeling every hour of the planning
horizon. Different approaches have been proposed in the literature to identify
RDs [3–7, 11, 12, 14]. However, the use of RDs raises the crucial issue regarding
how these days should be linked in the expansion planning model. Most of the
existing methods consider the RDs as temporally consecutive [15], linking these
days according to an arbitrary order, from which, however, the model results may be
affected. More sophisticated approaches, such as [19], connect RDs by computing
the transition matrix, which gives the number of transitions between each pair of
RDs. However, the interconnection among days increases computational costs and
prevents from exploiting the decomposable structure of the expansion planning
problem given by the use of disconnected RDs. Indeed, keeping RDs separate in
the long-term planning models allows pursuing scalability and solving large-scale
models in reasonable time through decomposition techniques [18].

The simplest approach to deal with temporally disconnected RDs assumes all
thermal plants are offline at the beginning of each RD, so that many start-up
manoeuvres need to take place in the first hour of each cluster in order to supply
load. The consequences of this approach are: (1) an over-estimation of start-up
costs and (2) a distortion of the system operation, since units with low start-up
costs may result preferable with respect to plants supplying base-load, that usually
have lower production costs but higher start-up costs. Thus, in order to provide an
accurate solution to the unit commitment problem while maintaining RDs separate,
it is necessary to apply a method that could accurately predict the online or offline
status of every thermal power plant at the beginning of each RD.

This paper contributes by developing a novel approach to identify RDs and by
providing a new method based on decision trees to determine the initial ON/OFF
status of thermal power plants in RDs. A simplified model for GTEP is used as a
testing framework to assess the performances of the proposed method. Specifically,
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in this paper expansion plans provided by the hourly model (i.e. the model that
considers all 8760 h in a year) are compared with those obtained by considering
RDs and different heuristic approaches to determine the initial status of thermal
plants. Numerical tests show how the proposed method provides better expansion
plans with respect to other approaches, while further reducing computational times
keeping RDs separate. The structure of the paper is as follows. Section 2 introduces
the MILP model for GTEP representing the testing framework of this analysis.
The model is referred to power systems in which thermal, wind and solar power
technologies are used to supply load (as it is, for instance, in the South of Italy).
In Sect. 3 we describe the cluster analysis to select the RDs. Section 4 introduces
the method to assign the status at the beginning of each RD for every thermal
power plant. In Sect. 5 we present a numerical test to assess the performances of
the proposed method with respect to other heuristics. Finally, conclusions are drawn
in Sect. 6.

2 Generation and Transmission Expansion Planning Model

In this section, the GTEP problem is formulated as a MILP model that determines
the investment schedule so as to minimize the total costs (i.e. investment and oper-
ation costs) over the planning period. Specifically, the formulation here introduced
is a simplified version of the model described in [9], as no hydro power plants,
batteries, decommissioning decisions or uncertainty sources are included in the
current formulation. Indeed, in order to assess the performances of the proposed
procedure for selecting and initializing RDs, in this work expansion plans obtained
with the proposed heuristic are compared with those provided by the hourly model.
Due to computational restrictions, expansion plans with the hourly model can be
obtained only by considering a simplified model for power systems.

The power system consists of a set Z of zones and the time horizon is discretized
in years, with the set of years denoted by Y . The structure of the power system at the
beginning of the planning horizon is described by set LE of power transmission lines
connecting zones, set KE of thermal power plants and parameters solz0 and windz0

that represent the solar power capacity and the wind power capacity, respectively,
installed in zone z ∈ Z. The decisions to be taken concern investments in new
transmission lines, new thermal power plants and new RES generation capacity.

The investments in new RES power generation capacity in zone z in year y are
represented by the continuous variables solz,y (solar power capacity) and windz,y
(wind power capacity). While it is possible to build wind and solar power plants
of any capacity, thermal units usually present specified size, which does not allow
modeling thermal power capacity expansion by means of continuous variables.
Therefore, given the set KC of candidate thermal power plants, for every k ∈ KC

and y ∈ Y we define binary variable δk,y to represent the decision to build thermal
power plant k in year y and binary variable θk,y to express the availability of thermal
power plant k in year y. Candidate plant k is available for production in year y (i.e.
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θk,y = 1) if it has been constructed in any year i, 1 ≤ i ≤ y, which is expressed by
constraints

θk,y =
y∑

i=1

δk,i k ∈ KC, y ∈ Y. (1)

The investment decisions regarding new transmission lines are modeled simi-
larly. Given the set LC of candidate transmission lines, for every l ∈ LC and y ∈ Y

we define the binary variable δl,y to represent the decision to build transmission line
l in year y and binary variable θl,y to express the availability of transmission line l

in year y. Constraints

θl,y =
y∑

i=1

δl,i l ∈ LC, y ∈ Y (2)

express that candidate transmission line l is available in year y (i.e. θl,y = 1) if it
has been constructed in any year i, 1 ≤ i ≤ y.

We now introduce the constraints that describe in detail the power system
short-term operation. In particular, the hourly energy balance and spinning reserve
constraints in every zone z are imposed and the unit commitment constraints of the
thermal power plants available in year y are taken into account. As mentioned above,
the short-term operation is modeled by considering in every year y a small set Cy of
RDs. In every hour t of every RD c ∈ Cy the solar power production in zone z is the
fraction μc

z,t of the solar power capacity in year y and the wind power production in
zone z is the fraction ρc

z,t of the wind power capacity in year y: therefore the zonal
hourly power production in each RD RESc

z,t is given by

RESc
z,t = μc

z,t

(
solz0 +

y∑

i=1

solz,i

)
+ ρc

z,t

(
windz0 +

y∑

i=1

windz,i

)

z ∈ Z, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (3)

The power output of thermal unit k in hour t of RD c is expressed as P kγ
c
k,t + pc

k,t ,
where γ c

k,t is the binary decision variable that represent the status of unit k, i.e. ON,
if γ c

k,t = 1 and OFF, if γ c
k,t = 0, P k > 0 is the minimum power output of unit k and

pc
k,t is the power output above the minimum, subject to

0 ≤ pc
k,t ≤ (

P k − P k

)
γ c
k,t k ∈ KE ∪KC, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y, (4)

where P k is the capacity of unit k. From (4) it follows that P kγ
c
k,t + pc

k,t = 0, if

γ c
k,t = 0, and P k ≤ Pkγ

c
k,t + pc

k,t ≤ P k, if γ c
k,t = 1.
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If candidate unit k ∈ KC is not available in year y, i.e. θk,y = 0, its status must
be OFF in all hours t of all RDs c ∈ Cy of year y: this is enforced by constraints

γ c
k,t ≤ θk,y k ∈ KC, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (5)

If candidate unit k ∈ KC is available in year y (i.e. θk,y = 1), its ON/OFF status
in every hour t of all RDs c ∈ Cy is determined by the model so as to guarantee
the hourly zonal energy balance constraints, the spinning reserve constraints and
the unit commitment constraints. The hourly zonal energy balance is expressed by
constraints

∑

k∈Ωk
z

(
P kγ

c
k,t + pc

k,t

)+ RESc
z,t +

∑

l|r(l)=z

xc
l,t+ENPc

z,t = Dc
z,t +

∑

l|s(l)=z

xc
l,t + OGc

z,t

z ∈ Z, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y

(6)

where Ωk
z is the set of thermal power plants located in zone z, while r(l) and

s(l) denote the receiving end-zone and the sending-end zone, respectively, of
transmission line l. Moreover, for every zone z in hour t of RD c parameter Dc

z,t

denotes the load, nonnegative slack variable ENPc
z,t ≥ 0 represents energy not

provided, nonnegative slack variable OGc
z,t ≥ 0 represents over-generation and

free variable xc
l,t denotes the power flow on transmission line l. In every hour t of

each RD c Eqs. (6) ensure equality between energy sources of zone z (given by
thermal, solar and wind generation and incoming energy flows) and energy uses of
zone z (given by load and outgoing energy flows). The continuous variables ENPc

z,t

and OGc
z,t allow detecting mismatch between supply and demand in the simulated

system.
The transmission network operation is represented by a transportation model.

Although transportation models do not provide a perfect representation of load
flows, in real-scale GTEP problems this choice is justified by the computational
burden. In our model, power flows xc

l,t are subject to lower transmission limit F l

and upper transmission limit F l by means of the following constraints

F l ≤ xc
l,t ≤ F l l ∈ LE, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y (7)

F lθl,y ≤ xc
l,t ≤ F lθl,y l ∈ LC, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (8)

Inequalities (8) impose consistency between power flows on candidate transmission
lines and the binary variables related to investment decisions, not allowing energy
flows on candidate lines which have not been built (i.e. θl,y = 0).

The spinning reserve is the amount of unused capacity in online power plants
which can compensate for power shortages or frequency drops within a given period
of time. The following constraints guarantee that the thermal power plants available
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in year y provide the requested spinning reserve level Rc
z,t in every zone z and in

every hour t of all RDs c ∈ Cy

∑

k∈KE

(
P k − P kγ

c
k,t − pc

k,t

)+
∑

k∈KC

(
Pkθk,y − P kγ

c
k,t − pc

k,t

) ≥ Rc
z,t

z ∈ Z, 1 ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (9)

In order to introduce the unit commitment constraints, binary variables αc
k,t and

βc
k,t are defined for every thermal power plant k and every hour t of all RDs c, where

αc
k,t represents the decision about whether or not thermal unit k is to be started up

in hour t of RD c and βc
k,t represents the decision about whether or not thermal unit

k is to be shut down in hour t of RD c. If unit k is started up in hour t of RD c (i.e.
αc
k,t = 1), it has to stay ON for at least MUTk hours: this is expressed by constraints

t∑

i=t−MUTk+1

αc
k,i ≤ γ c

k,t k ∈ K, MUTk ≤ t ≤ 24, c ∈ Cy, y ∈ Y (10)

which are called minimum up time constraints and impose that in an interval of
MUTk consecutive time periods a unit can be started-up at most once. For each
RD the minimum up time constraints are enforced for the hours from MUTk to 24,
being the RDs disconnected from each other. Analogously, if unit k is shut down in
hour t (i.e. βc

k,t = 1), it has to stay OFF for at least MDTk hours: this is expressed
by the following minimum down time constraints

t∑

i=t−MDTk+1

βc
k,i ≤ 1−γ c

k,t k ∈ K, MDTk ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (11)

Consistency must be enforced between binary variables that represent start-up,
shut down and status in adjacent hours: this is done by the constraints

γ c
k,t − γ c

k0
= αc

k,t − βc
k,t k ∈ K, t = 1, c ∈ Cy, y ∈ Y (12)

γ c
k,t − γ c

k,t−1 = αc
k,t − βc

k,t k ∈ K, 2 ≤ t ≤ 24, c ∈ Cy, y ∈ Y. (13)

In constraints (12) the parameter γ c
k0

represents the status of unit k at the beginning
of RD c. The procedure we propose to determine the values to be assigned to
γ c
k0

is outlined in Sect. 4. In the expansion plans definition, constraints to control
the renewable penetration are imposed: the following inequalities force the total
renewable generation in zone z in year y to cover at least ratio ϕz,y of the total
yearly load

∑

c∈Cy

wc

24∑

t=1

RESc
z,t ≥ ϕz,y

(
∑

c∈Cy

wc

24∑

t=1

Dc
z,t

)
z ∈ Z, y ∈ Y. (14)
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In constraints (14) the parameter wc denotes the weight of RD c. The objective
function comprises three terms: (1) the annualized investment costs in new thermal,
solar and wind generation; (2) the annualized investment costs in new transmission
lines; (3) the operating costs, which consider for each RD the sum of production
costs, start-up costs and penalties for energy not provided and over-generation.

min z =
∑

y∈Y

⎡

⎣
∑

k∈KC

ICth
k δk,y

(1 + r)y−y0
+
∑

z∈Z

ICsol
z,y solz,y + ICwind

z,y windz,y

(1 + r)y−y0

⎤

⎦+

+
∑

y∈Y

∑

l∈LC

ICline
l δl,y

(1 + r)y−y0
+

+
∑

y∈Y

∑

c∈Cy

wc

24∑

t=1

[
∑

k∈K
CMk,y

(
P kγ

c
k,t + pc

k,t

)+
∑

k∈K
SUCkα

c
k,t+

+cENP

∑

z∈Z
ENPc

z,t + cOG

∑

z∈Z
OGc

z,t

]
(15)

In (15) ICth
k denotes the investment cost of candidate thermal power plant k, while

parameters ICsol
z,y and ICwind

z,y represent the investment cost of new solar and wind

power capacity, respectively, in zone z and in year y. Moreover parameter ICline
l

denotes the investment cost of candidate transmission line l, CMk,y represents the
marginal production cost of thermal power plant k in year y, SUCk represents
the start-up cost of power plant k, while parameters cENP and cOG denote the
penalty costs for energy not provided and over-generation, respectively. Finally, y0
represents the reference year to which all investment costs are discounted, while r

denotes the annual discount rate.

3 The Selection of Representative Days

To reduce computational burden while maintaining a high level of temporal
detail, frequently a small number of RDs is considered to evaluate short-term
operation. Different approaches have been proposed to identify RDs. For instance,
some authors use simple heuristics, such as the selection of days containing the
minimum load, the maximum load or the largest daily demand spread [3]. Other
works combine heuristic approaches with the random selection of some additional
days [6, 7]. More advanced methods are based on clustering algorithms in order
to group days with similar load, wind power production or solar power production
into clusters [4, 11, 12]: clusters centroid or a specific historical day for each group
is then taken as RD. Finally, some works select RDs by minimizing the difference
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between the historical load duration curve and the one obtained from the load in the
RDs [5, 14].

In this section we propose a novel approach to select RDs from a set

Dd
z,t , μd

z,t , ρd
z,t , z ∈ Z, 1 ≤ d ≤ 365, 1 ≤ t ≤ 24, (16)

where the index d refers to the set of historical days and the load data Dd
z,t

are either historical values (typically related to the last year before the planning
horizon) or forecast values for the first year of the planning horizon, while μd

z,t and
ρd
z,t are technical production/capacity ratios for solar power production and wind

power production, respectively. By performing the cluster analysis on this data set,
correlations among production and load, as well as spatial correlations among zones,
can be taken into account.

RDs c1 and c2 are chosen as the days with minimum and maximum total load in
the power system, i.e.

D
c1
z,t , μ

c1
z,t , ρ

c1
z,t , c1 = argmind

(
∑

z∈Z

24∑

t=1

Dd
z,t

)
, z ∈ Z, 1 ≤ t ≤ 24 (17)

and

D
c2
z,t , μ

c2
z,t , ρ

c2
z,t , c2 = argmaxd

(
∑

z∈Z

24∑

t=1

Dd
z,t

)
, z ∈ Z, 1 ≤ t ≤ 24. (18)

Further RDs are selected by the following iterative procedure performed on the
modified data set which is obtained from the original one by deleting days c1 and c2
and by normalizing the load values Dd

z,t . For every zone z the load duration curve
LDCz,τ , 1 ≤ τ ≤ 8760 (i.e., the curve in which the original hourly load data Dd

z,t ,
1 ≤ d ≤ 365 and 1 ≤ t ≤ 24, are in order of decreasing magnitude) is determined
so as to be compared in the termination test with the zonal load duration curves
corresponding to the RDs and their associated weights. The steps of the iterative
procedure are as follows:

1. set k = 2;
2. the days of the modified data set are partitioned in k clusters by the k-medoids

algorithm;
3. the RD c2+ξ , for ξ , 1 ≤ ξ ≤ k, is selected from the original data set as the day

corresponding to the centroid of cluster ξ ; the weight associated to RD c2+ξ is
the number of days in cluster ξ ;

4. determine the load duration curve corresponding to the k + 2 RDs and their
associated weights (a unit weight is associated to c1 and c2) and compute the
mean absolute percentage error between the original load duration curve and the
one corresponding to the current set of RDs;
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5. if the system average mean absolute percentage error (i.e., the average between
the mean absolute percentage errors of zonal load duration curves) is below the
given threshold, stop, otherwise increase k by 1 and go to step 2.

Once the RDs for the first year of the planning horizon are determined, the RDs of
the following years are derived by applying annual growth factors to load profiles.

4 Determining the ON/OFF Status in Representative Days

In this section we describe our approach to assign a status to every thermal power
plant at the beginning of each RD so as to maintain RDs temporally disconnected.
In our work, parameters γ c

k0
are computed by estimating on historical data a decision

tree [17], which is a classifier expressed as a recursive partition of the instance
space. To the best of our knowledge, there are no similar works in the literature.
Specifically, we consider for each existing thermal power plant the vector of daily
initial statuses γ d

k0
, which describes the ON/OFF status of thermal power plant k

in the last hour of day d − 1, 2 ≤ d ≤ 365. In our analysis, parameters γ d
k0

are
computed by considering the last year before the planning horizon.

Then, for each thermal plant we compute the following features: (1) marginal
cost ratio, i.e. the ratio between unit marginal cost and average marginal cost of
available thermal plants; (2) start-up cost; (3) minimum up time; and (4) minimum
down time. These attributes, as well as parameters γ d

k0
, are used to train a decision

tree in order to estimate a classification rule to determine the initial ON status
according to features values. We then apply this classification rule to determine
the probability π

y
k of thermal power plant k having an initial ON status in year y.

Indeed, since production costs and available thermal units change throughout the
years of the planning horizon, each plant k is usually characterized by time-varying
marginal cost ratios and thus by different probabilities π

y
k along the planning

horizon. Moreover, it is worth mentioning that probabilities π
y
k are obtained for

both existing and candidate thermal power plants.
Finally, parameters π

y
k are used to set the probability of extracting 1 in the

random selection between 0 (i.e. OFF) and 1 (i.e. ON). For each thermal plant and
for every year y, this random selection is repeated for all RDs, in order to assign to
each RD c ∈ Cy a specific initial status γ c

k0
.

5 Case Studies and Results

As a case study, we chose the South-Italy power system, which is interesting because
it does not have big hydro reservoirs, being thermal, wind and solar plants the
available technology to supply load. We considered for year 2018 the existing
thermal plants in South-Italy, as well as the wind and solar installed capacity, and we
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studied the least-cost expansion for a single year by applying a load growth factor
of 3.5% and imposing a 30% level for renewables penetration.

To identify RDs, we applied the procedure described in Sect. 3 fixing a threshold
of 1% and obtaining 7 RDs. In order to determine the initial status of thermal plants
in each RD, we considered the thermal plants commitment in 2018. On this data we
estimated the decision tree shown in Fig. 1, which assigns to each thermal plant a
specific probability to be ON in the initial hour of RDs according to the attributes
values. As it can be noticed, the marginal cost ratio is the most relevant attribute in
this classification, as it realizes a clear partition: while units with marginal cost ratios
greater than 0.933 are usually OFF, the initial status for thermal plants with marginal
cost ratios lower than or equal to 0.849 is ON. Instead, in the range of (0.849; 0.933]
for marginal cost ratios the initial status is more uncertain and it depends also on the
other attributes values. Specifically, while thermal units with high start-up costs are
usually OFF, thermal plants with lower start-up costs are more often committed at
the beginning of the day, especially if they have enough flexibility.

The seven RDs with an initial ON/OFF status determined as explained in Sect. 4
have been then used to define the least-cost expansion plans in the considered
scenario. Specifically, in order to assess the performances of the proposed method,
the following four formulations were implemented.

1. P1: This is the hourly model considering 8760 values for load, solar and wind
profiles and representing the benchmark for expansion plans definition.

2. P2: This formulation links RDs obtained by our heuristic as commonly done in
the literature, i.e. with the RDs considered in an arbitrary order and with the
initial status of thermal power plants in RD c being equal to the final status in
RD c − 1, 2 ≤ c ≤ 7.

3. P3: In this model, RDs are not linked, but thermal plants are considered offline
at the beginning of each day.

4. P4: This is the complete formulation proposed in this paper.

Specifically, the comparison between P1 and P4 allows evaluating the accuracy of
the proposed method. P2 is implemented in order to observe the differences with the
common approach in the literature of linking RDs. Finally, by comparing P3 and P4,
one can clearly observe the improvement given by the clusters initialization.

Figure 2 shows the expansion plans determined with the four formulations.
As it can be noticed, both P2 and P4 provide expansion plans very similar to
the optimal ones identified by the hourly model P1, while P3 underestimates the
capacity of coal plants and overestimates the capacity of combined cycle power
plants (CCGTs). The same results can be observed by analyzing the total energy
produced by source. Indeed, while P2 and P4 closely replicate the optimal output
provided by formulation P1, model P3 uses thermal units fuelled with natural gas
much more than coal plants. This unbalance is due to start-up costs: since all thermal
units are OFF at the beginning of each RD, in order to supply load formulation P3
mainly employs CCGTs that present higher production costs but lower start-up costs
than coal plants.
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Fig. 2 Installed capacity by source (left) and total generation by source (right) in each formulation

Table 1 Costs [e] and solution time [min] for the four formulations

Investment Production Solution time
Formulation cost cost Start-up cost Total cost Total error [min]

P1 2.12 · 109 3.04 · 109 4.45 · 107 5.21 · 109 − 393.10

P2 2.19 · 109 3.11 · 109 3.46 · 107 5.33 · 109 2.50% 3.07

P3 2.21 · 109 3.39 · 109 4.42 · 108 6.04 · 109 16.09% 2.63

P4 2.16 · 109 3.09 · 109 4.00 · 107 5.29 · 109 1.64% 2.57

Finally, Table 1 compares costs and computational times of expansion plans
obtained with the four different formulations. As it can be observed, model P3,
considering all thermal plants OFF at the beginning of the RDs and committing
more CCGTs than coal plants, overestimates start-up costs, as well as production
and total costs. Instead, formulations P2 and P4 provide a very good estimation
of optimal system costs (P1), with P4 being the most accurate model. Moreover,
it is worth mentioning that while the hourly model takes 393.10 min to be solved,
expansion plans with formulation P4 are determined in 2.57 min.

6 Conclusions

This paper introduces a novel approach to select and initialize RDs for GTEP
models. Specifically, RDs are identified by iteratively applying the k-medoids
algorithm and considering for each data partition the goodness of the load duration
curves approximation. RDs are then initialized by assigning to any thermal plant
an initial ON/OFF status according to the probability provided by a decision tree
estimated on historical data. Thanks to this analysis, it is possible to keep RDs
separate in expansion planning models without dramatically overestimating start-
up costs and distorting thermal plants commitment decisions. Numerical tests show
how the expansion plans provided by the proposed method are very close to the
optimal ones identified by the hourly model and more accurate than capacity plans
obtained by linking RDs as common in the literature. Moreover, the main advantage
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of the proposed method over the approach of linking RDs is the scalability: given
the separation of RDs, decomposition techniques such as Benders algorithms can
be easily implemented in order to decompose the expansion planning model by
RD [18]. Thanks to this characteristic, the proposed method is particularly suited to
address long-term planning of large-scale power systems while obtaining tractable
problems.
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Start-up/Shut-Down MINLP
Formulations for the Unit Commitment
with Ramp Constraints

Tiziano Bacci, Antonio Frangioni, and Claudio Gentile

Abstract In (Bacci et al. New MINLP formulations for the single-unit commitment
problems with ramping constraints, 2019) the first MIP exact formulation was
provided that describes the convex hull of the solutions satisfying all the standard
operational constraints for the thermal units: minimum up- and down-time, mini-
mum and maximum power output, ramp (including start-up and shut-down) limits,
general history-dependent start-up costs, and nonlinear convex power production
costs. That formulation contains a polynomial, but large, number of variables and
constraints. We present two new formulations with fewer variables defined on the
shut-down period and computationally test the trade-off between reduced size and
possibly weaker bounds.

Keywords Unit commitment problem · Ramp constraints · MIP formulations ·
Dynamic programming · Convex costs

1 Introduction

The Unit Commitment (UC) problem is a fundamental problem in power industries.
It requires to coordinate the production of a set of power generation units by finding
a feasible schedule—satisfying complex operational constraints—of each, over
some time period, in order to minimize operational costs while satisfying system-
wide constraints. The latter usually comprise the satisfaction of the energy demand,
the provision of different types of reserve, and the handling of the transmission
network. Operational constraints depend on the type of generation units. Despite
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the significant increase of contribution of Renewable Energy Sources (RES) units
(wind, solar, . . . ), most power systems are still mainly based on thermal units
(comprised nuclear ones) and hydro units. Indeed, these are needed at least to be able
to cope with uncertainty in the production output typical of most RES units, which
lead to highly complex uncertain (robust and/or stochastic) UC variants [16]. Thus,
thermal units remain at the heart of basically every UC model of practical interest.
In the last decade, the advances in Mixed-Integer (linear and convex) Programming
(MIP) solvers have made MIP approaches an attractive option for solving UC, either
as a whole or for specific sub-problems in the context of decomposition approaches
(e.g., [2, 13, 14, 16]). This motivated a significant amount of research on the strong
combinatorial structure of operational constraints of thermal units. In [10] many of
the different types of formulations that appeared in the literature have been surveyed
and compared with a large computational experience.

In [1] we gave the first MIP description of the convex hull of the solutions
satisfying all the standard operational constraints for the thermal units: minimum
up- and down-time, minimum and maximum power output, ramp (including start-
up and shut-down) limits, general history-dependent start-up costs, and nonlinear
convex power production costs. This formulation is inspired by a Dynamic Pro-
gramming algorithm [4], and contains a polynomial number of variables and
constraints. However, the number of variables grows cubically with the number
of instants in the time horizon, making the formulation somehow impractical.
This is why we also presented two additional MIP formulations which trade a
weaker bound for fewer variables. We mention that three independent groups
obtained a similar result restricted to linear objective function: the first was [6, 7]
and then [8, 9] also appeared with very similar structure but with different proof
techniques.

In this paper we continue and extend this line of research by deriving two new
MIP formulations for UC that investigate complementary options to reduce the
number of variables. In [1] one of the presented formulations was based on variables
defining the power produced by a unit when the start-up time has been fixed. Here,
we present a nearly-symmetric formulation based on variables defining the power
produced by a unit when the shut-down time has been fixed. Despite the near
symmetry, the two formulation behave somewhat differently, as our computational
results show. Finally, we present and test a further formulation that combines both
the “start-up” and the “shut-down” approach.

The structure of the paper is as follows. In Sect. 2 we recall the most popular UC
formulation of thermal units. In Sect. 3 we recall the results in the recent paper [1]
on the new formulations based on the DP algorithm in [4]. In Sect. 4 we present
the new formulation based on shut-down power variables and the combined one. In
Sect. 5 we present some preliminary computational experiments to characterize the
placement of the new formulations within the state-of-the-art of MIP formulations
for UC. Finally, in Sect. 6 we sum up the results, and draw some possible lines for
future research on the topic.
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2 The Thermal Unit Commitment Problem

Here we briefly recall the MIP formulation of the thermal Unit Commitment
problem that became more and more popular in the last years, as it is one of
the main innovations which made UC solvable by standard MIP solvers. It has
been introduced in [12] and, independently, in [11], and it is usually referred to
as the “3-bin formulation” from the number of vectors of binary variables that are
considered.

Let I be the set of thermal generators, with m = |I |, and T = {1, . . . , n} be the
set of time periods in the planning horizon. Given two time instants t ′ and t ′′, we
will denote by T (t ′, t ′′) the set of all the periods from t ′ to t ′′, extremes included.
For each i ∈ I and t ∈ T , let pit (the power variables) be the power level of unit i
at period t , and xit (the commitment variables) be the binary variable denoting the
on/off state of unit i at period t . If xit = 1 (“on” state), then the power pit may
be nonzero and subject to some technical constraints specified in the following. If
xit = 0 (“off” state), then pit = 0. The 3-bin formulation requires two additional
sets of variables: start-up variables vit denoting if unit i has been started up at period
t (i.e., xit=1 and xi,t−1=0) and shut-down variables wit denoting if i has been shut
down at t (i.e., xit =0 and xi,t−1 =1). The basic version of the 3-bin formulation
is

min
∑

i∈I
∑

t∈T ( xitfi(pit /xit ) + cixit + sivit ) (1)
∑

i∈I pit = dt t ∈ T (2)

lixit ≤ pit ≤ uixit i ∈ I , t ∈ T (3)

∑
s∈T (t−τ i++1,t ) vis ≤ xit i ∈ I , t ∈ T ( τ+

i , n ) (4)

∑
s∈T (t−τ i−+1,t ) wis ≤ 1 − xit i ∈ I , t ∈ T ( τ−

i , n ) (5)

xit − xi,t−1 = vit − wit i ∈ I , t ∈ T (6)

pit − pi,t−1 ≤ Δ+
i xi,t−1 + l̄i vit i ∈ I , t ∈ T (7)

pi,t−1 − pit ≤ Δ−
i xit + ūiwit i ∈ I , t ∈ T (8)

xit , vit , wit ∈ {0, 1} i ∈ I , t ∈ T (9)

The objective function (1) is composed of three parts: the variable generation
costs evaluated as the Perspective Reformulation [4] of the quadratic function
fi(pit ) = aip

2
it + bi , the fixed generation costs cixit , and the start-up costs sivit .

For simplicity, in this formulation we consider only fixed start-up costs; history-
dependent start-up costs can be included with some complication [10], and are
handled basically “for free” by the DP-based formulations examined here (cf. [1]
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for details). The demand constraints (2) are the simplest version of system-wide
constraints, where dt is the (forecast) total energy demand at period t ; other types
may relate reserves and the distribution network (e.g. [10]), but we only consider (2)
since our focus is on the description of the individual thermal units, which is
logically independent from system-wide constraints.Minimum and maximum power
output constraints are imposed by (3), where li and ui are the extreme values
for the generated power for each unit i ∈ I (when on). In order to limit the
technical stress due to frequent start-up and shut-down operations, minimum up-
and down-time constraints (4)–(5) establish a minimum number of periods that
unit i has to be in on and off state, τ+

i and τ−
i , respectively; for simplicity we

have omitted the obvious constraint that may fix the on/off status of the unit
depending on its state prior to the beginning of the planning horizon. Constraints (6)
establishes the relation among state, start-up, and shut-down variables. Ramp-up
and ramp-down constraints (7)–(8) limit the maximum increase Δ+

i or decrease
Δ−

i , respectively, of the power produced by unit i in two consecutive time instants.
These are usually related with start-up and shut-down limits, that is the maximum
power l̄i when the unit is started-up and the maximum power ūi before the
unit is shut-down. For consistency, it must be li ≤ l̄i ≤ ui and li ≤ ūi ≤
ui .

The above formulation—minus (2), (7), and (8)—is known to be exact only when
no ramp-up/down limits are imposed. The question if it is possible to write an exact
formulation for UC restricted to a single thermal unit (1UC) in the variable space
of the 3-bin formulation is still unsolved. However, 1UC is known to be an easy
problem: indeed, in [4] a Dynamic Programming (DP) algorithm was proposed that
can solve 1UC with all the above constraints in O(n3) (and that can be generalized
to more complex objectives). Based on that, in [1] we gave the first exact formulation
for 1UC that considers all the above mentioned technical features, which is recalled
in the next section.

3 DP Formulations

For the description of the DP algorithm we drop the unit index i for notational
simplicity. We then define a state-space graph G = ( N , A ). The nodes in N are
of two types: ONt and OFFt for each t ∈ T , plus two special nodes, the source s

and the sink d . The arcs in A are of two types: ON-arcs (OFFh , ONk ), denoting
that the unit is turned on at the beginning of period h and unit remains on until the
end of period k, and OFF-arcs (ONk , OFFr ), denoting that the unit is off from
period k+1 to period r−1. Both on- and off-arcs are only constructed, obviously, if
they satisfy the minimum (respectively) up- and down-time constraints. Moreover,
there are the connections between the source node s and the ON and OFF nodes
defined according to the initial state of the unit. That is, if the unit is on since τ 0 − 0
periods, then there is an on-arc from s to each node ONk such that k + τ 0 ≥ τ+. If,
instead, the unit is off since −τ 0 periods, then there is an off-arc from s to each node
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OFFh such that h− τ 0 −1 ≥ τ−. ON-arcs (OFFh , ONk ) are labeled with costs
γ hk
ON computed as the fixed cost ci multiplied by (k − h + 1) plus variable costs,

i.e. the solution of the restricted Economic Dispatch problems, whose (efficient)
computation within the DP algorithm is described in [4]. OFF-arcs are labeled
with γ kr

OFF corresponding to the start-up cost. All nodes are then connected to the
sink node d: OFF-arcs (ONt , d ) and ON-arcs (OFFt , d ). Finally, the single arc
( s , d ) means that the unit remains with the same status for all the time horizon,
and it is an ON- or OFF-arc according to the fact that the unit, is, respectively, on or
off at time 0.

The formulation inspired by the DP algorithm for (1UC) consists of two parts:

• the shortest path formulation based on the state-space graph G;
• new power variables and the linking constraints with the previous part.

The shortest path formulation is straightforward: one just introduces the node-
arcs incidence matrix of the state-space graph and writes the obvious system of
inequalities. Then we can then simply write this part of the formulation as:

Eiyi = δi , yi ≥ 0 , (10)

where Ei is the node-arcs incidence matrix of Gi = ( Ni , Ai ) (here we
reintroduced the unit index i ∈ I ), yi is the vector of arc flow variables, and δi

is the vector with all zero entries except δis = −1 and δid = 1. Within the vector yi ,
we denote with yhk

i the variable associated with an ON-arc (OFFh , ONk ) ∈ Ai .
For short, we define as Ai

ON as the subset of such ON-arcs, and we denote them
simply as “( h , k )” (as the type of the nodes is obvious). For each ( h , k ) ∈ Ai

ON

and t ∈ T ( h , k ) we define a variable phk
it to denote the power level for each time

instant if the unit i is started-up at time h and shut-down at time k. The following
result is proven in [1]:

Theorem 1 Bacci et al. [1] The following is an exact formulation for (1UC):

min γ T
i yi +∑

( h , k )∈Ai
ON

∑
t∈T ( h , k ) y

hk
i fi(p

hk
it /y

hk
i )

)
(11)

(10)

liy
hk
i ≤ phk

ih ≤ l̄i y
hk
i

liy
hk
i ≤ phk

it ≤ uiy
hk
i t ∈ T ( h + 1 , k − 1 )

liy
hk
i ≤ phk

it ≤ ūiy
hk
i

phk
i,t+1 ≤ phk

it + yhk
i Δ+

i t ∈ T ( h , k − 1 )

phk
it ≤ phk

i,t+1 + yhk
i Δ−

i t ∈ T ( h , k − 1 )

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

( h , k ) ∈ Ai
ON (12)

Constraints (12) express the Economic Dispatch conditions associated with an
ON-arc (OFFh , ONk ) and the objective function (11) is the Perspective Refor-
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mulation [3] of the original objective function fi . This immediately yields the DP
formulation for the complete UC problem

min
∑

i∈I
(
γ T
i yi +∑

( h , k )∈Ai
ON

∑
t∈T ( h , k ) y

hk
i fi(p

hk
it /y

hk
i )

)

∑
i∈I
∑

( h , k ) : t∈T ( h , k ) p
hk
it = dt t ∈ T

(10), (12) i ∈ I

(13)

The number of binary and continuous variables in (13) is, respectively,O(n2|I |) and
O(n3|I |). Although the formulation provides (as expected) a strong bound, its size
grows quickly, in particular due to the number of continuous variables. Because of
this, in [1] two other formulations were introduced which are also based on the
DP approach, but achieve different trade-offs between size and tightness. When
restricted to 1UC, both are less tight than the exact formulation (10)–(12). The first
one uses the original O(n|I |) power variables pit of the 3-bin formulation, while the
second one presents a new type of power variables whose cardinality is intermediate
between 3-bin and DP formulations.

Given a unit i, consider the commitment variable xit , the start-up/shut-down
variables vit /wit and the set of variables yhk

i for ( h , k ) ∈ Ai
ON . It is easy to see

that these variables are related by the following equations:

xit = ∑
( h , k ):t∈T ( h , k ) y

hk
i , vit = ∑

k≥t y
tk
i , wit+1 = ∑

h≤t y
ht
i . (14)

Consequently, the ramp-up/down constraints assume, respectively, the following
form:

pit − pit−1 ≤ Δ+
i

∑
( h , k ) : t−1∈T ( h , k−1 ) y

hk
i + l̄i

∑
k : k≥t y

tk
i − li

∑
h : h≤t−1 yht−1

i (15)

pit−1 − pit ≤ Δ−
i

∑
( h , k ) : t−1∈T ( h , k−1 ) y

hk
i + ūi

∑
h : h≤t−1 yht−1

i − li
∑

k : k≥t y
tk
i (16)

Note that, in case the unit is on at the beginning of time horizon (τ 0
i > 0), the initial

ramp-up/down conditions have to be set by

pi1 ≤ (Δ+
i + pi0)

∑
k : 1≤k y

0k
i , −pi1 ≤ (Δ−

i − pi0)
∑

k : 1≤k y
0k
i (17)

Then minimum and maximum power output constraints can be rewritten as follows:

li
∑

( h , k ) : t∈T ( h , k ) y
hk
i ≤ pit ≤ ui

∑
( h , k ) : t∈T ( h , k ) y

hk
i (18)

The right-hand side of constraints (18) can be reinforced as follows. Assuming that
τ+
i ≥ 2, if a unit i is switched on at time t then

∑
k : k≥t y

tk
i = 1 and the power

pit is bounded by l̄i . If the unit is switched off at time t then
∑

h : h≤t y
ht
i = 1

and the power pit must not exceed ūi . In case the unit does not turn on or off
but it is committed at time t then

∑
( h , k ) : h<t<k y

hk
i = 1 holds. Consequently,
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there exists ( h , k ) such that h < t < k and yhk
i = 1. Because of the maximum

power output and the ramp-up/down constraints, the power pit is bounded by
ψhk

it = min{ ui , l̄i + Δ+
i (t − h) , ūi + Δ−

i (k − t) }. Furthermore, if the unit is
initially committed (τ 0

i > 0) then
∑

k≥1 y
0k
i = 1 and we have to set ψ0k

it =
min{ ui , pi0+Δ+

i ·t , ūi+Δ−
i (k−t) }. Hence, if τ+

i ≥ 2 then (18) can be reinforced
as

pit ≤ l̄i
∑

k : k≥t y
tk
i + ūi

∑
h : h≤t y

ht
i +∑

( h , k ) : h<t<k ψ
hk
it yhk

i (19)

whereas if τ+
i = 1 and ytt

i = 1, the power pit is bounded by the minimum between
l̄ and ū, which means that (18) rather becomes

pit ≤ l̄i
∑

k : k>t y
tk
i + ūi

∑
h : h<t y

ht
i +∑

( h , k ) : h<t<k ψ
hk
it yhk

i + min{ l̄i , ūi }ytt
i (20)

This finally yields the pt -model

min
∑

i∈I
(
γ T
i yi +∑

t∈T
∑

( h , k ) : t∈T ( h , k ) y
hk
i )fi(pit /(

∑
( h , k ) : t∈T ( h , k ) y

hk
i )

)

(2)
(10), (17) i ∈ I

(15), (16) i ∈ I, t ∈ T (2, n)

(18)–(20) i ∈ I, t ∈ T

(21)

The last formulation introduced in [1] is rather centered on defining variables ph
it

denoting the power produced by unit i if committed at time t and if it has been turned
on at time instant h; differently from the variable phk

it , in this case the time when the
unit will be turned off is not fixed. The relation between pit and ph

it variables is

pit = ∑
h : h≤t p

h
it . (22)

The ramp-up/down constraints are then reformulated as

ph
it − ph

it−1 ≤ Δ+
i

∑
k : k≥t y

hk
i − liy

ht−1
i h ∈ T ( 1 , n − 1 ) , t ∈ T ( h + 1 , n ) (23)

ph
it−1 − ph

it ≤ Δ−
i

∑
k : k≥t y

hk + ūiy
ht−1
i h ∈ T ( 1 , n − 1 ) , t ∈ T ( h + 1 , n ) (24)

If τ 0
i > 0, the initial ramp-up/down conditions can be imposed by

p0
i1 ≤ (Δ− + +p0)

∑
k : 1≤k y

0k
i , −p0

i1 ≤ (Δ− − −p0)
∑

k : 1≤k y
0k
i (25)

and minimum/maximum power output constraints take the form

li
∑

k : k≥t y
hk
i ≤ ph

it ≤ ui

∑
k : k≥t y

hk
i h ∈ T ( 0 , n ) , t ∈ T ( h , n ) (26)
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However, for t = h the rightmost inequality in (26) can be substituted by

ph
ih ≤ l̄i

∑
k : k>h y

hk
i + min{ l̄i , ūi }yhh

i (27)

while for t > h one can rather use

ph
it ≤ ūiy

ht
i +∑

k :k>t ψ
hk
it yhk

i (28)

In conclusion, the Start-Up formulation (SU) is

min
∑

i∈I

(
γ T
i yi +

∑

t∈T

∑

h : t≥h

(
∑

k : k≥t

yhk
i )fi(p

h
it /(

∑

k : k≥t

yhk
i ))

)
(29)

(10), (23)−(28) i ∈ I

∑

i∈I

∑

h : h≤t

ph
it = dt t ∈ T (30)

This has O(n2|I |) power variables, compared to O(n|I |) of the pt -model and
O(n3|I |) of the original DP formulation, with a bound to match [1].

4 Two New Formulations for UC

Mirroring the derivation of (29)–(30), we can construct a nearly symmetric formu-
lation, the Shut-Down formulation (SD). This is based on variables p̃k

it denoting the
power produced at time t by a unit i that will be turned off at time instant k, i.e.,

pit =
∑

k :k≥t

p̃k
it (31)

All the constraints can be derived by using (31); in particular, the ramp-up/down
constraints become

p̃k
it − p̃k

it−1 ≤ l̄iy
tk
i + Δ+

i

∑

h : h≤t−1

yhk
i k ∈ T ( 2 , n ) , t ∈ T ( 2 , k ) (32)

p̃k
it−1 − p̃k

it ≤ −liy
tk
i + Δ−

i

∑

h : h≤t−1

yhk
i k ∈ T ( 2 , n ) , t ∈ T ( 2 , k ) (33)

If τ 0
i > 0, the initial ramp-up/down conditions can be imposed by

p̃k
i1 ≤ (Δ− + +p0)y

0k
i , −p̃k

i1 ≤ (Δ− − −p0)y
0k
i k ∈ T (34)
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The minimum/maximum power output constraints take the form

li
∑

h : h≤t

yhk
i ≤ p̃k

it ≤ ui

∑

h : h≤t

yhk
i k ∈ T , t ∈ T ( 1 , k ) (35)

which for can t = k be strengthened by

p̃k
ik ≤ ūi

∑

h : h<k

yhk
i + min{ l̄i , ūi }ykk

i (36)

while for t < k by

p̃k
it ≤ l̄iy

tk
i +

∑

h : h<t

ψhk
it yhk

i (37)

due to the fact that the unit could be turned on at time t (ytk
i = 1) or not

(
∑

h : h<t y
hk
i = 1). All in all, the SD formulation is

min
∑

i∈I

(
γ T
i yi +

∑

t∈T

∑

k : t≤k

(
∑

h : h≤t

yhk
i )fi(p̃

k
it /(

∑

h : h≤t

yhk
i ))

)
(38)

(10), (32)−(37) i ∈ I

∑

i∈I

∑

k : k≥t

p̃k
it = dt t ∈ T (39)

It is now natural to define the Start-Up/Shut-Down formulation (SUSD) by basically
combining the previous two:

min
∑

i∈I

(
γ T
i yi +

∑

t∈T
θit
)

(40)

θit ≥
∑

h : h≤t

((
∑

k : k≥t

yhk
i )fi(p

h
it /(

∑

k : k≥t

yhk
i ))) i ∈ I , t ∈ T (41)

θit ≥
∑

k : k≥t

((
∑

h : h≤t

yhk
i )fi(p̃

k
it /(

∑

h : h≤t

yhk
i ))) i ∈ I , t ∈ T (42)

(10), (30), (23)−(28), (32)−(37) i ∈ I

∑

h : h≤t

ph
it =

∑

k : k≥t

p̃k
it t ∈ T (43)

Basically, (41) and (42) guarantee that the objective function (40) represents the
maximum between these of the SU and the SD formulations. The constraints, and
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in particular (43), enforce the intersection between the feasible solutions of the two
formulations. Thus, the lower bound provided by the continuous relaxation of the
SUSD formulation has to be at least as good as the ones of both the SU and the SD
models, at the cost of having roughly twice the number of variables of each (but still
O(n2|I |) as opposed to the O(n3|I |) ones of the original DP formulation).

5 Computational Results

We conducted some preliminary computational experiments to compare the new
formulations presented with the DP-based ones introduced in [1] as well as the
reference 3-bin model. For our tests, we considered standard benchmark realistic
instances with 10, 20 and 50 units and n = 24 time periods, available at http://www.
di.unipi.it/optimize/Data/UC.html

All the experiments were conducted on a PC with 2.2 GHz Intel Xeon Gold
5120 CPUs and 64 GB of RAM, under a GNU/Linux Ubuntu 18.04.3 LTS operating
system. We used CPLEX 12.9 as optimization tool. For a given number of units, we
considered ten instances and the average of the results thus obtained are reported.

As in [15], in Table 1 we report the number of variables (“v”) and the number
of constraints (“c”) of each model before any dynamic generation. Column “%v”
(“%c”) shows the percentage reduction of the number of variables (constraints)
after the CPLEX’s presolve. Concerning the dimensions of the formulations, the DP
model has the largest number of both variables and constraints, while the smallest
formulations are the 3-bin and the pt . The SU and SD models have essentially the
same number of variables and constraints, although the latter is slightly larger. On
the other hand, the size of the SUSD formulation is smaller than the DP one and
larger than the SD model. The results also reveal that the presolve of CPLEX seems
to be more efficient on the DP formulation w.r.t the SUSD model, although the
size of the former remains significantly larger. Furthermore, the presolve reduce

Table 1 LP size before CPLEX presolve and percentage of reduction after CPLEX presolve for
3-bin, DP, pt , SU, SD and SUSD formulations

3-bin DP pt

Units v c %v %c v c %v %c v c %v %c

10 2e+3 2e+3 23 20 3e+4 8e+4 12 22 3e+3 2e+3 13 14

20 3e+3 4e+3 21 19 7e+4 2e+5 11 19 8e+3 4e+3 12 13

50 8e+3 1e+4 19 17 2e+5 5e+5 11 20 2e+4 1e+4 8 11

SU SD SUSD

Units v c %v %c v c %v %c v c %v %c

10 7e+3 1e+4 13 19 9e+3 2e+4 9 9 1e+4 3e+4 9 13

20 2e+4 3e+4 12 19 2e+4 3e+4 8 9 3e+4 6e+4 8 13

50 4e+4 7e+4 9 13 5e+4 9e+4 8 9 7e+4 2e+5 6 10

http://www.di.unipi.it/optimize/Data/UC.html
http://www.di.unipi.it/optimize/Data/UC.html
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the number of variables and constraints more on the SU model than the SD one.
However, the 3-bin has the most consistent reduction of variables.

In Table 2 we compare the formulations by evaluating their continuous relax-
ations. In particular, for each instance size and for each model, “time” denotes
the average time for solving the linear relaxation while “gap” is the average gap
(in percentage) between the optimum and the value of the linear relaxation. As it
can be expected from the theory, the DP formulation is the one that provides the
best gaps; however, being the largest one, it also has a high computing time for the
linear relaxation. In general, a clear trend exists between having a larger number of
variables, and therefore a larger cost, and having a stronger bound. The interesting
comparison is between the SU and SD models that have basically identical size.
On the test instances, the SU formulation is somewhat less costly to solve and
it provides better bound for large instances. This is somewhat unexpected due to
the high degree of symmetry between the two, and worth further investigation.
Regarding the SUSD formulation, on these instances it obtains the same gaps as
the DP model; it is unclear whether this happens by chance or if it can be proven
theoretically. However, it also require more time, despite being smaller (cf. Table 1),
which is somewhat surprising. Finally, the 3-bin formulation provides the worst
lower bounds, although in much less time than the others.

Table 3 and 4 show the results obtained by setting a relative gap of 0.1%
(Table 3) and of 0.01% (Table 4), while solving the integer program, with a time
limit of 10,000 s. For each model, column “time” reports the average total time,
“opt” the number of instances, over ten, solved within the time limit, “nodes” the
number of nodes explored during the B&C, and “gap” the average final gap (in

Table 2 Linear relaxation gaps of the 3-bin, DP, pt , SU, SD, and SUSD formulations

3-bin DP pt SU SD SUSD

Units Time Gap Time Gap Time Gap Time Gap Time Gap Time Gap

10 0.15 2.077 16.81 1.222 0.94 1.335 2.85 1.280 3.94 1.264 46.26 1.222

20 0.34 1.691 93.61 0.811 2.21 0.894 8.40 0.822 12.34 0.880 161.70 0.811

50 1.19 0.906 574.98 0.137 6.88 0.190 34.06 0.146 42.98 0.178 772.12 0.137

Table 3 Computational results with gap 10−3 and time limit 10,000 s

3-bin DP pt

Units Time Opt Nodes Gap Time Opt Nodes Gap Time Opt Nodes Gap

10 77 10 333 0.08 1150 10 477 0.09 54 10 175 0.07

20 6213 5 1914 0.14 5859 7 824 0.28 1413 9 623 0.14

50 7038 3 909 0.20 8671 3 402 0.48 3409 7 434 0.10

SU SD SUSD

Units Time Opt Nodes Gap Time Opt Nodes Gap Time Opt Nodes Gap

10 199 10 299 0.09 222 10 297 0.07 1103 10 463 0.08

20 2366 9 1088 0.15 3255 10 1132 0.09 7068 5 692 0.62

50 4978 7 748 0.10 6248 7 735 0.25 9050 1 320 0.36
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Table 4 Computational results with gap 10−4 and time limit 10,000 s

3-bin DP pt

Units Time Opt Nodes Gap Time Opt Nodes Gap Time Opt Nodes Gap

10 83 10 407 0.01 1182 10 568 0.01 121 10 267 0.01

20 7138 4 2728 0.10 6526 6 1147 0.23 1888 9 1088 0.06

50 10,000 0 1469 0.17 10,001 0 473 0.49 9025 1 1538 0.06

SU SD SUSD

Units Time Opt Nodes Gap Time Opt Nodes Gap Time Opt Nodes Gap

10 206 10 352 0.00 234 10 359 0.01 1173 10 549 0.01

20 3000 8 1642 0.10 4405 9 1780 0.01 8677 4 1080 0.56

50 9053 1 1296 0.08 8528 2 1244 0.23 10,000 0 393 0.36

percentage). The results show that the SD formulation is indeed somewhat more
effective (surprisingly) than the SU one. It is also competitive with the pt -model,
which is the best performing one among the formulations presented in [1], in that it
solves a few more instances, albeit often (even though not always) at a higher cost.
Hence, the trade-off between the higher cost and the tighter bound (cf. Table 2) is
positive, at least on these instances. This is not the case for the SUSD model, that
has the worst results in general.

6 Conclusions

We have introduced two new formulations for the UC problem with convex cost
function. Both models are based on the DP one introduced in [1]. In particular, the
Shut-Down (SD) is a nearly symmetric formulation of the Start-Up (SU) model
already introduced in [1], while the Start-Up/Shut-Down (SUSD) is a combination
of the two. The results of computational experiments show that the SD formulation
is surprisingly more effective than its closest sibling, the SU one. The reason is not
clear, and surely worth further investigation. On the other hand, the SUSD model so
far does not seem effective for solving UC. However, it can be further investigated
in at least two aspects. First, the trade-off between size and bound quality is
inherently tied with the algorithm that is used to solve the continuous relaxation.
A column-and-rows generation approach, such as the Structured Dantzig-Wolfe
Decomposition [5], may considerably shift the balance in favour of models that
would not be effective using standard linear programming approaches. Second, the
experimental results show that the value of the linear relaxation of the SUSD model
is equal to the one provided by the DP formulation, that is the strongest model in this
sense. It may be interesting to investigate whether this equivalence can be proven
theoretically, since the SUSD model has much less variables than the DP one.
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Gaining or Losing Perspective for
Piecewise-Linear Under-Estimators of
Convex Univariate Functions
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Abstract We study MINLO (mixed-integer non-linear optimization) formulations
of the disjunction x ∈ {0} ∪ [
, u], where z is a binary indicator of x ∈ [
, u]
(0 ≤ 
 < u), and y “captures” f (x), which is assumed to be convex and positive
on its domain [
, u], but otherwise y = 0 when x = 0. This model is very useful
in non-linear combinatorial optimization, where there is a fixed cost of operating an
activity at level x in the operating range [
, u], and then there is a further (convex)
variable cost f (x). In particular, we study relaxations related to the perspective
transformation of a natural piecewise-linear under-estimator of f , obtained by
choosing linearization points for f . Using 3-d volume (in (x, y, z)) as a measure of
the tightness of a convex relaxation, we investigate relaxation quality as a function
of f , 
, u, and the linearization points chosen. We make a careful investigation for
convex power functions f (x) := xp, p > 1.
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1 Introduction

1.1 Definitions and Background

Let f be a univariate convex function with domain [
, u], where 0 ≤ 
 < u.
We assume that f is positive on [
, u]. We are interested in the mathematical-
optimization context of modeling a function, represented by a variable y, that is
equal to a given convex function f (x) on an “operating range” [
, u] and equal to
0 at 0. We do this using a 0/1 indicator variable z (which conveniently allows for
incorporating a fixed cost for x being in the operating range), and we represent the
relevant set disjunctively as follows.

We define

“Df (
, u) := conv

(
{(0, 0, 0)}

⋃{
(x, y, 1) ∈ R

3 :

f (
) + f (u) − f (
)

u − 

(x − 
) ≥ y ≥ f (x), u ≥ x ≥ 
,

})
.

Notice that for x ∈ {
, u}, we have y = f (x). So, the upper bound on y enables us
to capture the convex hull of the graph of the convex f (x) on [
, u], in the z = 1
plane.

Next, we define the perspective relaxation

“S∗
f (
, u) :=

cl

{
(x, y, z) ∈ R

3 :
(
f (
) − f (u) − f (
)

u − 




)
z + f (u) − f (
)

u − 

x ≥ y ≥ zf (x/z),

uz ≥ x ≥ 
z, 1 ≥ z > 0, y ≥ 0

}
,

where cl denotes the closure operator. Intersecting “S∗
f (
, u) with the hyperplane

defined by z = 0, leaves the single point (x, y, z) = (0, 0, 0). In this way, the
“perspective and closure” construction gives us exactly the value y = 0 that we
want at x = 0. Moreover, “S∗

f (
, u) is precisely the convex closure of “Df (
, u).

We compare convex bodies relaxing “S∗
f (
, u) via their volumes, with an eye

toward weighing the relative tightness of relaxations against the difficulty of solving
them. Generally, working with “S∗

f (
, u) implies using a cone solver (e.g., Mosek),
while relaxations imply the possibility of using more general NLP or even LP
solvers; see [11] for more discussion on this important motivating subject. One key
relaxation previously studied requires that the domain of f be all of [0, u], f is
convex on [0, u], f (0) = 0, and f is increasing on [0, u]. For example, convex
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power functions f (x) := xp with p > 1 have these properties. We define the naïve
relaxation

“S0
f (
, u) :=
{
(x, y, z) ∈ R

3 :
(
f (
) − f (u) − f (
)

u − 




)
z + f (u) − f (
)

u − 

x ≥ y ≥ f (x),

uz ≥ x ≥ 
z, 1 ≥ z ≥ 0,

}
.

1.2 Relation to Previous Literature

The perspective transformation of a convex function is well known in mathematics
(see [7], for example). Applying it in the context of our disjunction is also well
studied (see [1, 4, 5], with applications to non-linear facility location and also mean-
variance portfolio optimization in the style of Markowitz). The idea of using volume
to compare relaxations was introduced by Lee and Morris [8] (also see [10] and the
references therein). Recently, [11, 12] applied the idea of using volumes to evaluate
and compare the perspective relaxation with other relaxations of our disjunction.
Piecewise linearization is a very well studied and useful concept for handling non-
linearities (see, for example, [3, 9] and also the more recent [13, 14] and the many
references therein). It is a natural idea to strengthen a piecewise linearization of a
univariate function using the perspective idea, and then to evaluate it using volume
computation. This is what we pursue here, concentrating on piecewise-linear under-
estimators of univariate convex functions. We also wish to mention and emphasize
that our techniques are directly relevant for (additively) separable convex functions
(see [2, 6], and of course all of the exact global-optimization solvers which induce
a lot of separability).

1.3 Our Contribution and Organization

Our focus is on relaxations related to natural piecewise-linear under-estimators of f .
Piecewise linearization is a standard method for efficiently handling non-linearities
in optimization. For a convex function, it is easy to get a piecewise-linear under-
estimator. But there are a few issues to consider: the number of linearization points,
how to choose them, and how to handle the resulting piecewise-linearization.

In particular, we look at the behavior of the perspective relaxation of the
piecewise-linear under-estimator, as we vary placement and number of linearization
points describing the piecewise-linear under-estimator.
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In Sect. 2, we introduce notation for a natural piecewise-linear under-estimator
g of f on [
, u], using linearizations of f at the n + 1 points 
 =: ξ0 < ξ1 <

· · · < ξn := u, n ≥ 1, we define the convex relaxation “U∗
f (ξ ) := “S∗

g (
, u),
and we describe an efficient algorithm for determining its volume (Theorem 1 and
Corollary 2). Armed with this efficient algorithm, any global-optimization software
could decide between members of this family of formulations (depending on the
number and placement of linearization points) and also alternatives (e.g., “S∗

f (
, u)

and “S0
f (
, u), explored in [11]), trading off tightness of the formulations against the

relative ease/difficulty of working with them computationally.
In Sect. 3, we give a more detailed analysis for convex power functions f (x) :=

xp, for p > 1. We solve the minimization problem for vol( “U∗
f (ξ )) when p = 2

(Theorem 3), for an arbitrary number of linearization points, thus finding the
optimal placement of linearization points for convex quadratics. Further, from
this, we recover the associated formula from [11] for vol(“S∗

f (
, u)) (Corollary 4),
and we demonstrate that the minimum volume is always less than the volume of
the naïve relaxation when p = 2 (Corollary 5). When there is only one non-
boundary linearization point ξ1 (i.e., the case of n = 2), we demonstrate that
vol( “U∗

f (
, ξ1, u)) has a unique minimizer (Lemma 6, Theorem 7, Corollary 8). From
this we could build a reasonable “coordinate-descent style” algorithm for placing
linearization points, moving one point at a time to its volume-minimizing location.
We demonstrate that for convex power functions xp and a single non-boundary
linearization point, the location of the volume-minimizing perspective relaxation
is increasing in p on (1,∞) (Theorem 9). This starts to give us an idea about
where we can efficiently place linearization points for non-quadratics. Using a result
from [11], we give an efficient algorithm for computing the volume for the naïve
relaxation associated with the piecewise-linear under-estimator (Proposition 10).
This can be compared against the volumes for “S∗

f (
, u),
“S0
f (
, u), and “S∗

g (
, u).
In the special case of p = 2 and equally-spaced linearization points, we obtain a
closed-form expression for the volume for the naïve relaxation associated with the
piecewise-linear under-estimator (Corollary 11).

2 Piecewise-Linear Under-Estimation and Perspective

Piecewise-linear estimation is widely used in optimization. Lee and Wilson [9] pro-
vides some key relaxations using integer variables, even for non-convex functions on
multidimensional (polyhedral) domains. We are particularly interested in piecewise-
linear under-estimation because of its value in global optimization.

Given convex f : [
, u] → R++, we consider linearization points


 =: ξ0 < ξ1 < · · · < ξn := u

in the domain of f , and we assume that f is differentiable at these ξi .
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At each ξi , we have the tangent line

y = f (ξi) + f ′(ξi)(x − ξi), (Ti)

for i = 0, . . . , n. Considering tangent lines Ti and Ti−1 (for adjacent points), we
have the intersection point

(x, y) = (τi, f (ξi) + f ′(ξi)(τi − ξi)), for i = 1, . . . , n, (Pi)

where

τi :=
[
f (ξi) − f ′(ξi)ξi

]− [
f (ξi−1) − f ′(ξi−1)ξi−1

]

f ′(ξi−1) − f ′(ξi)
.

Finally, we define

(x, y) := (τ0 := 
, f (
)) (P0)

and

(x, y) := (τn+1 := u, f (u)). (Pn+1)

It is easy to see that 
 =: τ0 < τ1 < · · · < τn+1 := u, and that the piecewise-
linear function g : [
, u] → R, defined as the function having the graph that
connects the Pi , for i = 0, 1, . . . , n + 1, is a convex under-estimator of f (that
agrees with f at the ξi , i = 0, 1, . . . , n). In what follows, g is always defined as
above (from f and ξ ).

We wish to compute the volume of the set “U∗
f (ξ ) := “S∗

g(
, u). To proceed,
we work with the sequence τ0, τ1, . . . , τn+1 defined above. Below and later, adet
denotes the absolute value of the determinant.

Theorem 1

vol( “U∗
f (ξ )) = 1

6

n∑

i=1

adet

⎛

⎝
τ0 τi τi+1

g(τ0) g(τi) g(τi+1)

1 1 1

⎞

⎠ .

Proof We wish to compute the volume of the set “U∗
f (ξ ). This set is a pyramid

with apex (x, y, z) = (0, 0, 0) and base equal to the intersection of “U∗
f (ξ ) with the

hyperplane defined by the equation z = 1. The height of the apex over the base is
unity. So the volume of “U∗

f (ξ) is simply the area of the base divided by 3. We will
compute the area of the base by straightforward 2-d triangulation. Our triangles are
conv{P0, Pi, Pi+1}, for i = 1, . . . , n. The area of each triangle is 1/2 of the absolute
determinant of an appropriate 3 × 3 matrix. The formula follows. �
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Corollary 2 Assuming oracle access to f and f ′, we can compute vol( “U∗
f (ξ)) in

O(n) time.

3 Analysis of Convex Power Functions

Convex power functions constitute a broad and flexible class of increasing convex
functions, useful in a wide variety of applications. For convenience, let “U∗

p(ξ )

denote “U∗
f (ξ ), with f (x) := xp, p > 1. Next, we will see that equally-spaced

linearization points minimizes the volume of this relaxation when p = 2.

Theorem 3 ξi := 
+ i
n
(u− 
), for i = 0, 1, . . . , n, minimizes vol( “U∗

2 (ξ)), and the

minimum volume is 1
18 (u − 
)3 + (u−
)3

36n2 .

Proof The intersection points Pi are (
ξi−1+ξi

2 , ξi−1ξi). Let ξn+1 := u, then τi =
ξi−1+ξi

2 for 1 ≤ i ≤ n + 1. We have

vol( “U∗
2 (ξ)) = 1

6

n∑

i=1

adet

⎛

⎝
τ0 τi τi+1

g(τ0) g(τi) g(τi+1)

1 1 1

⎞

⎠

= 1

12

n∑

i=1

(ξi+1 − ξi−1)(ξi − 
)2

= 1

12

[
n∑

i=1

ξiξi−1(ξi−1 − ξi) + u3 − 2u2
 + 2u
2 − 
3

]
,

and

∂ vol( “U∗
2 (ξ ))

∂ξi
= 1

12
(ξi+1 − ξi−1)(2ξi − ξi+1 − ξi−1), for i ∈ [n − 1],

∂2 vol( “U∗
2 (ξ ))

∂ξ2
i

= 1

6
(ξi+1 − ξi−1), for i ∈ [n − 1],

∂2 vol( “U∗
2 (ξ ))

∂ξi∂ξi+1
= 1

6
(ξi − ξi+1), for i ∈ [n − 2].

Therefore, ∇2 vol( “U∗
2 (ξ )) is a tridiagonal matrix. It is easy to verify that

∇2 vol( “U∗
2 (ξ )) is diagonally dominant because (ξi+1 − ξi−1) = (ξi+1 − ξi) +

(ξi − ξi−1), thus ∇2 vol( “U∗
2 (ξ )) is positive semidefinite, i.e., vol( “U∗

2 (ξ )) is convex.
The global minimizer satisfies ∇ vol( “U∗

2 (ξ)) = 0, i.e., 2ξi − ξi+1 − ξi−1 = 0 for
i ∈ [n − 1], which proves that the points are equally spaced at the minimizer, and
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now a simple calculation give the minimum volume as

vol( “U∗
2 (ξ )) = 1

12

(
2

3
(u − 
)3 + 1

3n2 (u − 
)3
)

= 1

18
(u − 
)3 + (u − 
)3

36n2 .

�
Letting n go to infinity, we recover the volume of the perspective relaxation for

the quadratic.

Corollary 4 ([11]) vol(“S∗
2 ) = 1

18 (u − 
)3.

We can also now easily see that by using the perspective of our piecewise-linear
under-estimator, even with only one (well-placed) non-boundary linearization point,
we always outperform the naïve relaxation.

Corollary 5 vol( “U∗
2 (ξ )) ≤ vol(“S0

2 ), and with equality only if n = 1 and 
 = 0.

Proof The naïve-relaxation volume is 1
18 (u− 
)3 + (u3 − 
3)/36 (see [11]). Notice

that

(u − 
)3

36n2
≤ (u − 
)3

36
≤ u3 − 
3

36
.

The first inequality is strict when n > 1 and the second is strict when 
 > 0. �
Considering p �= 2, even for one non-boundary linearization point, vol( “U∗

p(ξ ))

is not generally convex in ξ1 for ξ = (
, ξ1, u). Still, it is very useful to make a
detailed study of optimal placement of a single non-boundary linearization point,
as it relates to optimality conditions for ξ . In this direction, we will establish that
vol( “U∗

p(
, ξ1, u)) has a unique minimizer. To pursue this, we need a definition and
a technical lemma.

Let

hp(ξ1) :=
(

up − 
p

up−1 − 
p−1 − ξ
p

1 − 
p

ξ
p−1
1 − 
p−1

)(
ξ
p

1 − up

ξ
p−1
1 − up−1

− up − 
p

up−1 − 
p−1

)
.

Note that hp depends on p, 
 and u, but we only highlight the dependence on p, so
as to keep the notation fairly light. We note that hp(ξ1) is not generally concave, for
p > 2, but we do have the following very useful lemma (we defer the long technical
proof to the journal version).

Lemma 6

(i) If 1 < p ≤ 2, then hp(ξ1) is strictly concave in ξ1;
(ii) If p > 2, then hp(ξ1) is strictly log-concave in ξ1.

Theorem 7

(i) If 1 < p ≤ 2, then vol( “U∗
p(
, ξ1, u)) is strictly convex in ξ1.
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Fig. 1 Proof of Theorem 7

(ii) If p > 2, then vol( “U∗
p(
, ξ1, u)) = C1 −C2hp(ξ1), where the constants C1, C2

and the strictly log-concave hp(ξ1) depend only on p, 
, u.

Proof Refer to Fig. 1. For fixed 
 and u, let T0, T1, T2 be the tangent lines at point

, ξ1, u; let P1 be the intersection point of T0, T1; let P2 be the intersection point of
T1, T2; let Q be the intersection point of T0, T2. Then the x coordinates of P1, P2,Q

are

τ1 = p − 1

p
· ξ

p

1 − 
p

ξ
p−1
1 − 
p−1

, τ2 = p − 1

p
· ξ

p

1 − up

ξ
p−1
1 − up−1

, τQ = p − 1

p
· up − 
p

up−1 − 
p−1
.

It is easy to see that vol( “U∗
p(
, ξ1, u)) = 1

3m(P0, P1, P2, P3) = 1
3m(P0,Q,P3) −

1
3m(P1 , Q,P2), where m(P0, P1, P2, P3), m(P0,Q,P3) and m(P1,Q,P2) denote
the area of the quadrangle P0, P1, P2, P3, the triangle P0,Q,P3 and P1,Q,P2,
respectively. Notice that m(P0,Q,P3) is constant for fixed 
, u, and m(P1,Q,P2)

is proportional to (τQ−τ1)(τ2−τQ). Therefore, finding the minimum of vol( “U∗
f (ξ))

is equivalent to finding the maximum of (τQ − τ1)(τ2 − τQ) = hp(ξ1).
Then the result directly follows from the fact that vol( “U∗

p(
, ξ1, u)) = C1 −
C2hp(ξ1), where C1, C2 are constant when p, 
, u are fixed. �

We immediately have the following very-useful result.

Corollary 8 For all p > 1, vol( “U∗
p(
, ξ1, u)) has a unique minimizer on (
, u).

Remark 1 If p > 2, then vol( “U∗
p(
, ξ1, u)) is not generally convex in ξ1, but it is

not convex only near 
.
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Theorem 9 For fixed 
 and u, the ξ1 that minimizes vol( “U∗
p(
, ξ1, u)) is increasing

in p on (1,∞).

Proof By Lemma 6, we know that hp(ξ1) = q1(ξ1)q2(ξ1) is concave when 1 <

p ≤ 2 and is log-concave when p > 2. Therefore, the unique minimizer ξ1 satisfies
d
dx

hp(ξ1) = 0 when 1 < p ≤ 2 and d
dx

loghp(ξ1) = 0 when p > 2. In both cases,
the unique minimizer ξ1 satisfies

q ′
1(ξ1)q2(ξ1) + q1(ξ1)q

′
2(ξ1) = 0.

Using q2(x)(u
p−1 − xp−1) = q1(x)(x

p−1 − 
p−1), we can simplify the optimality
condition to

G(x, p) := −xp + (p − 1)
p − p
p−1x

xp−1 − 
p−1
+ xp + (p − 1)up − pup−1x

up−1 − xp−1
= 0.

We are going to use the implicit function theorem to show that ξ1 := x(p)

satisfying G(ξ1, p) = 0 is increasing in p on (1,∞).

∂G(x, p)

∂p
= up−1(u − x)

up−1 − xp−1

[
(p − 1)xp−1 ln x

u(
up−1 − xp−1

) + 1

]

+ 
p−1(x − 
)

xp−1 − 
p−1

[
(p − 1)xp−1 ln x


(

p−1 − xp−1

) + 1

]
.

Next, we claim that

(p − 1)tp−1 ln t

1 − tp−1 > − tp − 1

p(t − 1)
, for all t ∈ (0, 1) ∪ (1,∞).

�
Proof of the Claim Let H(t) := p(p − 1)(1 − t)tp−1 ln t + (tp−1 − 1)(tp − 1).
Then

H ′(t) = p(p − 1)((p − 1)tp−2 − ptp−1) ln t + p(p − 1)(1 − t)tp−2

+ (p − 1)tp−2(tp − 1) + ptp−1(tp−1 − 1),

H ′(t)
tp−2

= ((p − 1) − pt)p(p − 1) ln t + p(p − 1)(1 − t)

+ (p − 1)(tp − 1) + p(tp − t),

d

dt

(
H ′(t)
tp−2

)
= −p2(p − 1) ln t + p(p − 1)2

t
− p3 + p(2p − 1)tp−1

= p2(tp−1 − 1 − ln tp−1) + p(p − 1)

(
p − 1

t
+ tp−1 − p

)
> 0.
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Because H ′(1) = 0, we have that H ′(t) < 0 for t ∈ (0, 1) and H ′(t) > 0 for
t ∈ (1,∞). Combined with H(1) = 0, we obtain H(t) > 0 for t ∈ (0, 1)∪ (1,∞),
which proves the claim.

Then

∂G(x, p)

∂p
>

up−1(u − x)

up−1 − xp−1

[
− xp − up

pup−1 (x − u)
+ 1

]

+ 
p−1(x − 
)

xp−1 − 
p−1

[
− xp − 
p

p
p−1 (x − 
)
+ 1

]

= 1

p
G(x, p) = 0.

Also

∂G(x, p)

∂x
= 1

x
G(x, p)

− (p − 1)
p−1(
p − xp − pxp−1(
 − x))

x(xp−1 − 
p−1)2

− (p − 1)up−1(up − xp − pxp−1(u − x))

x(up−1 − xp−1)2

< 0.

The last inequality follows from the strictly convexity of xp (p > 1) and
G(x, p) = 0.

By the implicit function theorem, we have

∂ξ1

∂p
= −

∂G(x,p)
∂p

∂G(x,p)
∂x

> 0.

Thus the ξ1 that minimizes vol( “U∗
p(
, ξ1, u)) is increasing in p on (1,∞). �

Defining g with respect to f (x) := xp on [
, u], with p > 1, we can then extend
g to the function ḡ, with domain all of [0, u]:

ḡ(x) :=
{

p−1x, x ∈ [0, 
);
g(x), x ∈ [
, u].

In this way, ḡ is a piecewise-linear increasing convex function on all of [0, u]. In
fact, ḡ is an under-estimator of the function that is f on [
, u] and 0 at 0. In what
follows, we calculate the volume of the naïve relaxation of the piecewise-linear
under-estimator “U0

p(ξ ) := “S0
ḡ (
, u), by applying Theorem 10 in [11] to ḡ.
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Proposition 10 For ξ = (
, ξ1, . . . , ξn−1, u), we can compute vol( “U0
p(ξ )) in O(n)

time.

Proof Sketch We define the τi and g from f ,
,u as usual. For x ∈ [
, u], we have

ḡ(x) = g(x) = g(τi)+ g(τi+1) − g(τi)

τi+1 − τi
(x − τi), ∀ x ∈ [τi, τi+1], i = 0, 1, . . . , n.

Applying Theorem 10 in [11] to ḡ, we have

vol( “U 0
p(ξ )) =

∫ g(
)

0

(∫ y


p−1u

y
g(u)

(uz − 
z)dz +
∫ y


p

y


p−1u

(g−1(y) − 
z)dz

)
dy

+
∫ g(u)

g(
)

⎛

⎝
∫ g−1(y)

u

y
g(u)

(uz − 
z)dz +
∫ 1

g−1(y)
u

(g−1(y) − 
z)dz

⎞

⎠ dy

− 1

6
(f (u) − f (
))(u − 
)

=
∫ g(
)

0

(∫ y


p−1u

y
g(u)

(uz − 
z)dz +
∫ y


p

y


p−1u

(g−1(y) − 
z)dz

)
dy

+
n∑

i=0

∫ g(τi+1)

g(τi )

⎛

⎝
∫ g−1(y)

u

y
g(u)

(uz − 
z)dz +
∫ 1

g−1(y)
u

(g−1(y) − 
z)dz

⎞

⎠ dy

− 1

6
(f (u) − f (
))(u − 
)

= (u − 
)
1+p

6u
− (u − 
)up

6
− 1

2
(up − 
p)
 − 1

6
(up − 
p)(u − 
)

+
n∑

i=0

∫ τi+1

τi

(
− 1

2u
z2 + z

)
g(τi+1) − g(τi )

τi+1 − τi
dz

= (u − 
)
1+p

6u
− (u − 
)up

6
− 1

2
(up − 
p)
 − 1

6
(up − 
p)(u − 
)

+
n∑

i=0

(
− 1

6u
(τ3

i+1 − τ3
i ) + 1

2
(τ2

i+1 − τ2
i )

)
pξ

p−1
i .

�
Corollary 11 For p = 2, and the equally spaced points ξi = 
 + i

n
(u − 
), for

i = 1, . . . , n − 1,

vol( “U0
2 (ξ)) = 3u3 + 
3 − 4u2


12
− (u − 
)(u2 − 
2)

6
+ (u − 
)4

24n2u
− (u − 
)
3

12u
.
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Recognizing Cartesian Products
of Matrices and Polytopes

Manuel Aprile, Michele Conforti, Yuri Faenza, Samuel Fiorini, Tony Huynh,
and Marco Macchia

Abstract The 1-product of matrices S1 ∈ R
m1×n1 and S2 ∈ R

m2×n2 is the
matrix in R

(m1+m2)×(n1n2) whose columns are the concatenation of each column
of S1 with each column of S2. Our main result is a polynomial time algorithm
for the following problem: given a matrix S, is S a 1-product, up to permutation
of rows and columns? Our main motivation is a close link between the 1-product
of matrices and the Cartesian product of polytopes, which relies on the concept
of slack matrix. Determining whether a given matrix is a slack matrix is an
intriguing problem whose complexity is unknown, and our algorithm reduces the
problem to irreducible instances. Our algorithm is based on minimizing a symmetric
submodular function that expresses mutual information in information theory. We
also give a polynomial time algorithm to recognize a more complicated matrix
product, called the 2-product. Finally, as a corollary of our 1-product and 2-product
recognition algorithms, we obtain a polynomial time algorithm to recognize slack
matrices of 2-level matroid base polytopes.

Keywords Cartesian product · Slack matrix · Mutual information · Submodular
optimization · 2-level polytopes
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1 Introduction

Determining if an object can be decomposed as the ‘product’ of two simpler objects
is a ubiquitous theme in mathematics and computer science. For example, every
integer n ≥ 2 has a unique factorization into primes, and every finite abelian group
is the direct sum of cyclic groups. Moreover, algorithms to efficiently find such
‘factorizations’ are widely studied, since many algorithmic problems are easy on
indecomposable instances. In this paper, our objects of interest are matrices and
polytopes.

For a matrix S, we let S
 be the 
th column of S. The 1-product of S1 ∈ R
m1×n1

and S2 ∈ R
m2×n2 is the matrix S1 ⊗ S2 ∈ R

(m1+m2)×(n1n2) such that for each
j ∈ [n1 · n2],

(S1 ⊗ S2)
j :=

(
Sk

1
S


2

)
,

where k ∈ [n1] and 
 ∈ [n2] satisfy j = (k − 1)n2 + 
. For example,

(
1 0
)⊗ (

0
) =

(
1 0
0 0

)
,

(
1 0
2 3

)
⊗
(

1 0 0
0 1 1

)
=

⎛

⎜⎜⎝

1 1 1 0 0 0
2 2 2 3 3 3
1 0 0 1 0 0
0 1 1 0 1 1

⎞

⎟⎟⎠ .

Two matrices are isomorphic if one can be obtained from the other by permuting
rows and columns. A matrix S is a 1-product if there exist two non-empty matrices
S1 and S2 such that S is isomorphic to S1 ⊗S2. The following is our first main result.

Theorem 1 Given S ∈ R
m×n, there is an algorithm that is polynomial1 in n,m

which correctly determines if S is a 1-product and, in case it is, outputs two matrices
S1, S2 such that S1 ⊗ S2 is isomorphic to S.

The proof of Theorem 1 is by reduction to symmetric submodular function
minimization using the concept of mutual information from information theory.
Somewhat surprisingly, we do not know of a simpler proof of Theorem 1.

Our main motivation for Theorem 1 is geometric. If P1 ⊆ R
d1 and P2 ⊆ R

d2

are polytopes, then their Cartesian product is the polytope P1 × P2 := {(x1, x2) ∈
R

d1 × R
d2 | x1 ∈ P1, x2 ∈ P2}.

Notice that if P is given by an irredundant inequality description, determining
if P = P1 × P2 for some polytopes P1, P2 amounts to determining whether the
constraint matrix can be put in block diagonal structure. If P is given as a list of
vertices, then the algorithm of Theorem 1 determines if P is a Cartesian product.

1A straightforward implementation of our algorithm would run in O(m3(m + n)) time. However,
throughout the paper we do not explicitly state the running times of our algorithms nor try to
optimize them.
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Furthermore it turns out that the 1-product of matrices corresponds to the
Cartesian product of polytopes if we represent a polytope via its slack matrix, as
we now describe.

Let P = conv({v1, . . . , vn}) = {x ∈ R
d | Ax ≤ b}, where {v1, . . . , vn} ⊆ R

d ,
A ∈ R

m×d and b ∈ R
m. The slack matrix associated to these descriptions of P is

the matrix S ∈ R
m×n+ with Si,j := bi − Aivj , for i ∈ [m] and j ∈ [n]. That is, Si,j

is the slack of point vj with respect to the inequality Aix ≤ bi .
Slack matrices were introduced in a seminal paper of Yannakakis [15], as a tool

for reasoning about the extension complexity of polytopes (see [5]).
Our second main result is the following corollary to Theorem 1.

Theorem 2 Given a polytope P represented by its slack matrix S ∈ R
m×n, there is

an algorithm that is polynomial in m,n which correctly determines if P is affinely
equivalent to a Cartesian product P1 × P2 and, in case it is, outputs two matrices
S1, S2 such that Si is the slack matrix of Pi , for i ∈ [2].

Some comments are in order here. First, our algorithm determines whether a
polytope P is affinely equivalent to a Cartesian product of two polytopes. Since
affine transformations do not preserve the property of being a Cartesian product, this
is a different problem than that of determining whether P equals P1 × P2 for some
polytopes P1, P2, which turns out to be much easier than the problem solved by
Theorem 2. Second, the definition of 1-product can be extended to a more complex
operation which we call 2-product. Theorems 1 and 2 can be extended to handle
2-products, see Theorem 12.

Slack matrices are fascinating objects, that are not fully understood. For instance,
given a matrix S ∈ R

m×n+ , the complexity of determining whether S is the slack
matrix of some polytope is open. In [7], the problem has been shown to be equivalent
to the Polyhedral Verification Problem (see [9]): given a vertex description of a
polytope P , and an inequality description of a polytope Q, determine whether P =
Q.

Polytopes that have a 0/1-valued slack matrix are called 2-level polytopes. These
form a rich class of polytopes including stable set polytopes of perfect graphs,
Birkhoff, and Hanner polytopes (see [1, 2, 11] for more examples and details).
We conjecture that slack matrix recognition is polynomial-time solvable for 2-level
polytopes.

Conjecture 3 Given S ∈ {0, 1}m×n, there is an algorithm that is polynomial inm,n

which correctly determines if S is the slack matrix of a polytope.

Conjecture 3 seems hard to settle: however it has been proven for certain
restricted classes of 2-level polytopes, most notably for stable set polytopes of
perfect graphs [1]. As a final result, we apply Theorem 1 and its extension to 2-
products to show that Conjecture 3 holds for 2-level matroid base polytopes (precise
definitions will be given later).

Theorem 4 Given S ∈ {0, 1}m×n, there is an algorithm that is polynomial in
m,n which correctly determines if S is the slack matrix of a 2-level matroid base
polytope.
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Paper Outline In Sect. 2 we study the properties of 1-products and 2-products
in terms of slack matrices. In Sect. 3 we give algorithms to efficiently recognize
1-products and 2-products, as well as showing a unique decomposition result for
1-products. Finally, in Sect. 4 we apply the previous results to slack matrices of
matroid base polytopes, obtaining Theorem 4.

The results presented in this paper are contained in the PhD thesis of the first
author [1]. We refer to [1] and to the arXiv version of the paper [3] for details and
omitted proofs.

2 Properties of 1-Products and 2-Products

Here we study the 1-product of matrices defined in the introduction, as well as the
2-product. We remark that the notion of 2-product can be generalized to k-products
for every k ≥ 3 (see [1] for more details). The k-product operation is similar to the
glued product of polytopes in [12], except that the latter is defined for 0/1 polytopes,
while we deal with general matrices.

We show that, under certain assumptions, the operations of 1- and 2-product
preserve the property of being a slack matrix. For a matrix S, col(S) denotes the set
of column vectors of S. We recall the following characterization of slack matrices,
due to [7].

Theorem 5 (Gouveia et al. [7]) Let S ∈ R
m×n be a nonnegative matrix of rank

at least 2. Then S is the slack matrix of a polytope if and only if conv(col(S)) =
aff(col(S)) ∩R

m+. Moreover, if S is the slack matrix of polytope P then P is affinely
equivalent to conv(col(S)).

Throughout the paper, we will assume that the matrices we deal with are of rank
at least 2, so we may apply Theorem 5 directly.

2.1 1-Products

We show that the 1-product operation preserves the property of being a slack matrix.

Lemma 6 Let S ∈ R
m×n+ and Si ∈ R

mi×ni+ for i ∈ [2] satisfy S = S1 ⊗ S2. Then
S is the slack matrix of a polytope P if and only if there exist polytopes Pi , i ∈ [2]
such that Si is the slack matrix of Pi and P is affinely equivalent to P1 × P2.

Sketch For i ∈ [2], let Ci := col(Si). From Theorem 5, and since col(S1 ⊗ S2) =
col(S1) × col(S2) = C1 × C2, Lemma 6 follows from (i) aff(C1 × C2) =
aff(C1)× aff(C2) and (ii) conv(C1 ×C2) = conv(C1)× conv(C2). Both statements
are straightforward to prove. �
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2.2 2-Products

We now define the operation of 2-product, and show that, under certain natural
assumptions, it also preserves the property of being a slack matrix.

Consider two real matrices S1, S2, and assume that S1 (resp. S2) has a 0/1 row
x1 (resp. y1), that is, a row whose entries are 0 or 1 only. We call x1, y1 special
rows. For any matrix M and row r of M , we denote by M − r the matrix obtained
from M by removing row r . The row x1 determines a partition of S1 − x1 into two
submatrices according to its 0 and 1 entries: we define S0

1 to be the matrix obtained
from S1 by deleting the row x1 and all the columns whose x1-entry is 1, and S1

1 is
defined analogously. Thus,

←

Similarly, y1 induces a partition of S2 −y1 into S0
2 , S

1
2 . Here we assume that none

of S0
1 , S

1
1 , S

0
2 , S

1
2 is empty, that is, we assume that the special rows contain both 0’s

and 1’s.
The 2-product of S1 ∈ R

m1×n1 with special row x1 and S2 ∈ R
m2×n2 with special

row y1 is defined as:

S = (S1, x1) ⊗2 (S2, y1) :=
(
S0

1 ⊗ S0
2 S1

1 ⊗ S1
2

0 · · · 0 1 · · · 1

)
.

Similarly as before, we say that S is a 2-product if there exist matrices S1, S2 and
0/1 rows x1 of S1, y1 of S2, such that S is isomorphic to (S1, x1)⊗2 (S2, y1). Again,
we will abuse notation and write S = (S1, x1) ⊗2 (S2, y1).

For a polytope P with slack matrix S, consider a row r of S corresponding to an
inequality aᵀx ≤ b that is valid for P . We say that r is 2-level with respect to S,
and that aᵀx ≤ b is 2-level with respect to P , if there exists a real b′ < b such that
all the vertices of P either lie on the hyperplane {x | aᵀx = b} or the hyperplane
{x | aᵀx = b′}.

We notice that, if r is 2-level, then r can be assumed to be 0/1 after scaling.
Moreover, adding to S the row 1 − r (that is, the complement of 0/1 row r) gives
another slack matrix of P . Indeed, such a row corresponds to the valid inequality
aᵀx ≥ b′.

The latter observation is crucial for our next lemma: we show that, if the special
rows are chosen to be 2-level, the operation of 2-product essentially preserves the
property of being a slack matrix. We remark that having a 2-level row is a quite
natural condition. For instance, for 0/1 polytopes, any non-negativity yields a 2-level
row in the corresponding slack matrix. By definition, all facet-defining inequalities
of a 2-level polytope are 2-level. Finally, we would like to mention that the following
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result could be derived from results from [12] (see also [4]), but we give here a new,
direct proof.

Lemma 7 Let S ∈ R
m×n+ and let Si ∈ R

mi×ni+ for i ∈ [2] such that S = (S1, x1)⊗2
(S2, y1) for some 2-level rows x1 of S1, y1 of S2. The following hold:

(i) If both S1 and S2 are slack matrices, then S is a slack matrix.
(ii) If S is a slack matrix, let S′

1 := S1 + (1 − x1) (that is, S1 with the additional
row 1 − x1), and similarly let S′

2 := S2 + (1 − y2). Then both S′
1 and S′

2 are
slack matrices.

Proof

(i) Let Pi := conv(col(Si)) ⊆ R
mi for i ∈ [2]. Recall that Si is the slack matrix of

Pi , by Theorem 5. Without loss of generality, x1 and y1 can be assumed to be
the first rows of S1, S2 respectively. We overload notation and denote by x1 the
first coordinate of x as a point in R

m1 , and similarly for y ∈ R
m2 . Let H denote

the hyperplane of Rm1+m2 defined by the equation x1 = y1.
We claim that S is a slack matrix of the polytope (P1×P2)∩H . By Lemma 6,

S is a submatrix of the slack matrix of (P1 ×P2)∩H . But the latter might have
some extra columns: hence we only need to show that intersecting P1 ×P2 with
H does not create any new vertex.

To this end we notice that no new vertex is created if and only if there is no
edge e of P1 × P2 such that H = {(x, y) | x1 = y1} intersects e in its interior.
Let e be an edge of P1 ×P2, and let (v1, v2) and (w1, w2) denote its endpoints,
where v1, w1 ∈ col(S1) and v2, w2 ∈ col(S2). By a well-known property of the
Cartesian product, v1 = w1 or v2 = w2. Suppose that (v1, v2) does not lie on
H . By symmetry, we may assume that v11 < v21. This implies v11 = 0 and
v21 = 1, which in turn implies w11 ≤ w21 (since v1 = w1 or v2 = w2). Thus
(w1, w2) lies on the same side of H as (v1, v2), and H cannot intersect e in its
interior. Therefore, the claim holds and S is a slack matrix.

(ii) Assume that S = (S1, x1)⊗2 (S2, y1) is a slack matrix. We show that S′
1 = S1+

(1 − x1) is a slack matrix, using Theorem 5. The argument for S′
2 is symmetric.

It suffices to show that aff(col(S)) ∩ R
m1+ ⊆ conv(col(S)) since the reverse

inclusion is obvious.
Let x∗ ∈ aff(col(S′

1))∩R
m1+ . One has x∗ = ∑

i∈I λivi for some coefficients
λi ∈ R with

∑
i∈I λi = 1, where vi ∈ col(S′

1) for i ∈ I . We partition the index
set I into I0 and I1, so that i ∈ I0 (resp. i ∈ I1) if vi has its x1 entry equal
to 0 (resp. 1). For simplicity, we may assume that x1 is the first row of S′

1, and
1 − x1 the second. Then, the first coordinate of x∗ is x∗

1 = ∑
i∈I1

λi ≥ 0, and
the second is x∗

2 = ∑
i∈I0

λi ≥ 0. Notice that x∗
1 + x∗

2 = ∑
i∈I λi = 1.

Now, we extend x∗ to a point x̃ ∈ aff(col(S)) by mapping each vi , i ∈ I to a
column of S, as follows. For each a ∈ {0, 1}, fix an arbitrary column ca of Sa

2 ,
then map each vi with i ∈ Ia to the column of S consisting of vi , without its
second component, followed by ca . We denote such a column by ui , for i ∈ I ,
and let x̃ := ∑

i∈I λiui .
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We claim that x̃ ∈ R
m+. This is trivial for any component corresponding to a

row of S1, since those are components of x∗ as well. Consider a component x̃j
corresponding to a row of S2, and denote by ca,j the corresponding component
of ca , for a = 0, 1. We have:

x̃j =
∑

i∈I0

λic0,j +
∑

i∈I1

λic1,j = x∗
2c0,j + x∗

1c1,j ≥ 0.

Now, Theorem 5 applied to S implies that x̃ ∈ conv(col(S)). That is, we can
write x̃ = ∑

i∈I ′ μiu
′
i where u′

i ∈ col(S) and μi ∈ R+ for i ∈ I ′ and∑
i∈I ′ μi = 1. For each i ∈ I ′, let v′

i ∈ col(S′
1) denote the column vector

obtained from u′
i by restricting to the rows of S1 and inserting as a second

component 1 − u′
i,1 = 1 − v′

i,1. We claim that x∗ = ∑
i∈I ′ μiv

′
i , which implies

that x∗ ∈ conv(col(S′
1)) and concludes the proof. The claim is trivially true for

all components of x∗ except for the second, for which one has x∗
2 = 1 − x∗

1
since v′

i,2 = 1 − v′
i,1 for all i ∈ I ′ by definition of v′

i . �

3 Algorithms

In this section we study the problem of recognizing 1-products. Given a matrix S,
we want to determine whether S is a 1-product, and find matrices S1, S2 such that
S = S1 ⊗ S2. Since we allow the rows and columns of S to be permuted in an
arbitrary way, the problem is non-trivial.

At the end of the section, we extend our methods to the problem of recognizing
2-products. We remark that the results in this section naturally extend to a more
general operation, the k-product, for every constant k (see [1] for more details).

We begin with a preliminary observation, which is the starting point of our
approach. Suppose that a matrix S is a 1-product S1 ⊗S2. Then the rows of S can be
partitioned into two sets R1, R2, corresponding to the rows of S1, S2 respectively.
We write that S is a 1-product with respect to the partition R1, R2. A column of the
form (a1, a2), where ai is a column vector with components indexed by Ri (i ∈ [2]),
is a column of S if and only if ai is a column of Si for each i ∈ [2]. Moreover,
the number of occurrences of (a1, a2) in S is just the product of the number of
occurrences of ai in Si for i ∈ [2]. Under uniform probability distributions on the
columns of S, S1 and S2, the probability of picking (a1, a2) in S is the product of
the probability of picking a1 in S1 and that of picking a2 in S2. We will exploit this
intuition below.
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3.1 Recognizing 1-Products via Submodular Minimization

First, we recall some notions from information theory, see [6] for a more complete
exposition. Let A and B be discrete random variables with ranges A and B,
respectively. The mutual information of A and B is:

I (A;B) =
∑

a∈A ,b∈B
Pr(A = a,B = b) · log2

Pr(A = a,B = b)

Pr(A = a) · Pr(B = b)
.

The mutual information of two random variables measures how close is their joint
distribution to the product of the two corresponding marginal distributions.

Let C1, . . . , Cm be discrete random variables. For X ⊆ [m] we consider the
random vectors CX := (Ci)i∈X and CX := (Ci)i∈X, where X := [m] \ X. The
function f : 2[m] → R such that

f (X) := I (CX;CX) (1)

will play a crucial role. We will use the following facts, which are proved in [6, 10].

Proposition 8

(i) For all discrete random variablesA andB, we have I (A;B) ≥ 0, with equality
if and only if A and B are independent.

(ii) If C1, . . . , Cm are discrete random variables, then the function f as in (1) is
submodular.

Let S be an m×n matrix. Let C := (C1, . . . , Cm) be a uniformly chosen random
column of S. That is, Pr(C = c) = μ(c)/n, where μ(c) denotes the number of
occurrences in S of the column c ∈ col(S).

Let f : 2[m] → R be defined as in (1). We remark that the definition of f

depends on S, which we consider fixed throughout the section. The set function
f is non-negative (by Proposition 8.(i)), symmetric (that is, f (X) = f (X)) and
submodular (by Proposition 8.(ii)).

The next lemma shows that we can determine whether S is a 1-product by
minimizing f .

Lemma 9 Let S ∈ R
m×n, and ∅ �= X � [m]. Then S is a 1-product with respect to

X,X if and only if CX and CX are independent random variables, or equivalently
(by Proposition 8.i), f (X) = 0.

Proof First, we prove “�⇒”. Suppose that S is a 1-product with respect to X,X

for some non-empty and proper set X of row indices of S. Let S = S1 ⊗ S2 be the
corresponding 1-product, where Si ∈ R

mi×ni for i ∈ [2].
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For every column c = (cX, cX) ∈ col(S), we have μ(c) = μ1(cX)μ2(cX), where
μi denotes the multiplicity of a column in Si , for i ∈ [2]. Hence

Pr(CX = cX, CX = cX) = Pr(C = c) = μ(c)

n

= μ1(cX) · n2

n
· n1 · μ2(cX)

n
= Pr(CX = cX) · Pr(CX = cX),

where we used n = n1n2. This proves that CX and CX are independent.
We now prove “⇐�”. Let a1, . . . , ak denote the different columns of the

restriction S
∣∣
X

of matrix S to the rows in X, and b1, . . . , b
 denote the different
columns of S

∣∣
X

(the restriction of matrix S to the rows in X). Since CX and CX are
independent, we have that, for every column c = (ai, bj ) of S,

μ(ai , bj ) = n ·Pr(CX = ai, CX = bj ) = n ·Pr(CX = ai)Pr(CX = bj ) = μX(ai)μX(bj )

n
,

where μX(·) and μX(·) denote multiplicities in S
∣∣
X

and S
∣∣
X

respectively.
Now, let M denote the k × 
 matrix such that Mi,j := μ(ai, bj ) for i ∈ [k] and

j ∈ [
]. We have shown that M is a non-negative integer matrix with a rank-1 non-
negative factorization of the form uvᵀ, where ui := μX(ai)/n and vj := μX(bj ),
for i ∈ [k] and j ∈ [
].

Next, one can easily turn this non-negative factorization into an integer one.
Suppose that ui is fractional for some i ∈ [k]. Writing ui as ui = pi/qi , where
pi ∈ Z≥0 and qi ∈ Z>0 are coprime, we see that qi divides vj since uivj is integer,
for every j ∈ [
]. Then the factorization qiu· 1

qi
vᵀ = u′(v′)ᵀ is such that v′ is integer

and u′ has at least one more integer component than u. Iterating this argument, we
obtain that M = u vᵀ where u, v have non-negative integer entries.

Finally, let S1 be the matrix consisting of the column ai repeated ui times for
i ∈ [k], and construct S2 from v in an analogous way. Clearly S = S1 ⊗ S2, and in
particular S is a 1-product with respect to the row partition X,X, which concludes
the proof. �

Notice that the previous proof also gives a way to efficiently reconstruct S1, S2
once we identified X such that f (X) = 0. In particular, if the columns of S are
all distinct, then S1 consists of all the distinct columns of S

∣∣
X

, each taken once,
and S2 is obtained analogously from S

∣∣
X

. The last ingredient we need is that every
(symmetric) submodular function can be minimized in polynomial time:

Theorem 10 (Queyranne [14]) There is a polynomial time algorithm that outputs
a set X such that X /∈ {∅, [m]} and f (X) is minimum, where f : 2[m] → R is any
given symmetric submodular function.

As a direct consequence, we obtain Theorem 1.
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Proof of Theorem 1 It is clear that f (X) can be computed in polynomial time for
any X. It suffices then to run Queyranne’s algorithm to find X minimizing f . If
f (X) > 0, then S is not a 1-product. Otherwise, f (X) = 0 and S1, S2 can be
reconstructed as described in the proof of Lemma 9. �

We conclude the section with a decomposition result which will be useful in the
next section. We call a matrix irreducible if it is not a 1-product. The result below
generalizes the fact that a polytope can be uniquely decomposed as a Cartesian
product of “irreducible” polytopes.

Lemma 11 Let S ∈ R
m×n be a matrix whose columns are all distinct. Then there

are matrices S1, . . . , St such that S = S1 ⊗ · · · ⊗ St , each Si is irreducible, and the
choice of the Si’s is unique up to isomorphism.

3.2 Extension to 2-Products

We now extend the previous results to obtain a polynomial algorithm to recognize
2-products. Recall that, if a matrix S is a 2-product, then it has a special row that
divides S into submatrices S0, S1, which are 1-products with respect to the same
partition. Hence, our algorithm starts by guessing the special row, and obtaining
the corresponding submatrices S0, S1. Let f0 (resp. f1) denote the function f as
defined in (1) with respect to the matrix S0 (S1), and let f̃ = f0 + f1. Notice that f̃
is submodular, and is zero if and only if each fi is. Let X be a proper subset of the
non-special rows of S (which are the rows of S0 and S1). It is an easy consequence
of Lemma 9 that S0, S1 are 1-products with respect to X if and only if f̃ (X) = 0.
Then S is a 2-product with respect to the chosen special rows if and only if the
minimum of f̃ is zero.

Once a feasible partition is found, S1, S2 can be reconstructed by first recon-
structing all of S0

1 , S
1
1 , S

0
2 , S

1
2 and then concatenating them and adding the special

rows. We obtained the following:

Theorem 12 Let S ∈ R
m×n. There is an algorithm that is polynomial in m,n and

determines whether S is a 2-product and, in case it is, outputs two matrices S1, S2
and special rows x1 of S1, y1 of S2, such that S = (S1, x1) ⊗2 (S2, y1).

4 Application to 2-Level Matroid Base Polytopes

In this section, we use the results in Sect. 3 to derive a polynomial time algorithm to
recognize the slack matrix of a 2-level matroid base polytope.

We start with some basic definitions and facts about matroids, and we refer the
reader to [13] for missing definitions and details. We regard a matroid M as a couple
(E,B), where E is the ground set of M , and B is its set of bases. A matroid
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M = (E,B) is uniform if B = (
E
k

)
, where k is the rank of M . We denote the

uniform matroid with n elements and rank k by Un,k .
Consider matroids M1 = (E1,B1) and M2 = (E2,B2), with non-empty ground

sets. If E1 ∩ E2 = ∅, the 1-sumM1 ⊕ M2 is defined as the matroid with ground set
E1 ∪E2 and base set B1 ×B2. If, instead, E1 ∩E2 = {p}, where p is neither a loop
nor a coloop in M1 or M2, we let the 2-sumM1⊕2M2 be the matroid with ground set
(E1∪E2)\{p}, and base set {(B1∪B2)\{p} | Bi ∈ Bi for i ∈ [2] and p ∈ B14B2}.
A matroid is connected if it cannot be written as the 1-sum of two matroids, each
with fewer elements.

The base polytope B(M) of a matroid M is the convex hull of the characteristic
vectors of its bases. It is easy to see that, if M = M1 ⊕ M2, then B(M) is the
Cartesian product B(M1) × B(M2), hence its slack matrix is a 1-product thanks to
Lemma 6. If M = M1 ⊕2 M2, then a slightly less trivial polyhedral relation holds,
providing a connection with the 2-product of slack matrices. We will explain this
connection below.

Our algorithm is based on the following decomposition result, that characterizes
those matroids M such that B(M) is 2-level (equivalently, such that B(M) admits a
0/1 slack matrix).

Theorem 13 ([8]) The base polytope of a matroidM is 2-level if and only ifM can
be obtained from uniform matroids through a sequence of 1-sums and 2-sums.

The general idea is to use the algorithms from Theorems 1 and 12 to decom-
pose our candidate slack matrix as 1-products and 2-products, until each factor
corresponds to the slack matrix of a uniform matroid. The latter can be easily
recognized. Indeed, the base polytope of the uniform matroid Un,k is the (n, k)-
hypersimplex B(Un,k) = {x ∈ [0, 1]E | ∑e xe = k}. If 2 ≤ k ≤ n − 2, the
(irredundant, 0/1) slack matrix S of B(Un,k) has 2n = 2|E| rows and

(
n
k

)
columns

of the form (v, 1 − v) where v ∈ {0, 1}n is a vector with exactly k ones, hence can
be recognized in polynomial time (in its size). We denote such matrix by Sn,k . If
k = 1, or equivalently k = n − 1, S = Sn,1 = Sn,n−1 is just the identity matrix
In. The case k = 0 or k = n corresponds to a non-connected matroid whose base
polytope is just a single vertex, and can be ignored for our purposes.

We now focus on the relationship between 1-sums and 1-products. As already
remarked, if S1, S2 are the slack matrices of B(M1), B(M2) respectively, then S1 ⊗
S2 is the slack matrix of B(M1) × B(M2) = B(M1 ⊕ M2). The next lemma shows
that the converse holds.

Lemma 14 Let M be a matroid and let S be the slack matrix of B(M). If S =
S1 ⊗ S2 for some matrices S1, S2, then there are matroids M1,M2 such that M =
M1 ⊕ M2 and Si is the slack matrix of B(Mi) for i ∈ [2].

Now, we deal with slack matrices of connected matroids and with the operation
of 2-product. We will need the following result, which provides a description of the
base polytope of a 2-product M1 ⊕2 M2 in terms of the base polytopes of M1,M2.
Its proof can be derived from [8], or found in [2].



372 M. Aprile et al.

Lemma 15 Let M1,M2 be matroids on ground sets E1, E2 respectively, with E1 ∩
E2 = {p}, and let M = M1 ⊕2 M2. Then B(M) is affinely equivalent to

(B(M1) × B(M2)) ∩ {(x, y) ∈ R
E1 ×R

E2 | xp + yp = 1}.

Lemma 15 implies that if M = M1 ⊕2 M2 and Si is a slack matrix of B(Mi) for
i ∈ [2], then the slack matrix of B(M) is actually (S1, xp) ⊗2 (S2, yp), where xp is
the row corresponding to xp ≥ 0, and yp the row corresponding to yp ≤ 1. If the
special rows xp, yp have this form, we say that they are coherent.

The only missing ingredient is now a converse to the above statement.

Lemma 16 Let M = (E,B) be a connected matroid and let S be the slack matrix
of B(M). Assume there are S1, S2 such that S = (S1, x1) ⊗2 (S2, y1), for some 2-
level rows x1, y1, and let S′

1 = S1 + (1 − x1) and similarly for S′
2. Assume that S1

or S′
1 is equal to Sd,k for some d > k ≥ 1. Then there is a matroid M2 such that

M = Ud,k ⊕2 M2 and S′
2 is a slack matrix of B(M2).

We are now ready to prove the main result of this section, namely, Theorem 4.

Proof of Theorem 4 We first check whether S = Sd,k for some d and k, in which
case we are done.

Then, we run the algorithm to recognize 1-products, and if S is a 1-product, we
decompose it in irreducible factors S1, . . . , St and test each Si separately. This can
be done efficiently thanks to Theorem 1, and using Lemma 14 we have that S is the
slack matrix of B(M) if and only if Si is the slack matrix of B(Mi) for each i, and
M = M1 ⊕ · · · ⊕ Mt .

We can now assume that S is irreducible, and apply the algorithm from
Theorem 12 until we decompose S as a repeated 2-product of matrices S1, . . . , St
where Si = Sdi,ki for i ∈ [t] (of course, if this is not possible, we conclude that S
is not a slack matrix of a base polytope). There is one last technicality we have to
deal with, before we can conclude that S is the slack matrix of a matroid polytope.
Indeed, as noticed above, we need to ensure that each pair of special rows involved
in a 2-product is coherent. This might not be possible since the form of the special
row of Si is fixed whenever Si is an identity matrix. However, one can model this
problem as a simple coloring problem on a tree: the tree naturally arises from the
decomposition on S that we performed, there are two colors, one for each possible
form of the special row, and some nodes have a fixed color (see [1] for the details).
One can efficiently determine whether the tree can be properly colored given these
constraints, thus concluding the algorithm. �
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Special Subclass of Generalized
Semi-Markov Decision Processes
with Discrete Time

Alexander Frank

Abstract The class of Generalized Semi-Markov Decision Processes (GSMDPs)
covers a large area of stochastic modelling. For continuous time steps modelled
problems are discussed in some articles, but not for the discrete case. Several events
can be triggered in the same time step and the evaluation of them is more complex
than for continuous time with an agreement, that two events can not be triggered at
the same time point.

In this paper a specification for discrete GSMDPs is defined and analysed.
The exponential cost, solving these problems exactly, are reduced to a polynomial
number by two randomized approaches. Runtimes and relative results, compared
to almost exact solutions, are shown and some extensions for the common class of
discrete GSMDPs are mentioned.

Keywords GSMDP · Discrete time steps · Events · Acyclic phase type
distribution · Randomized algorithms · Stochastic games · Unknown time event
planning

1 Introduction

Many planning problems with stochastic uncertainty can be modelled as Markovian
Decision Processes. The resulting agent assigns an optimal action in a given state
and released time by paying attention to the gaining rewards and the future states,
because of their condition to be memoryless. Those processes are used in stochastic
games, network planning, robotics and further more. Discrete- and continuous-time
Markov Decision Processes (MDPs and CTMDPs) can be solved efficiently with
policy iteration or linear programming, [7].
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One more universal class of decision problems is given by Generalized Semi-
Markov Decision Processes (GSMDPs). The formalism in this article is similar
to the definition by Younes and Simmons [8], based on previous definitions of
GSMPs by Glynn [4]. In this class of problems we have several events, which can
be triggered. Those events cause transitions from state to state and achieve some
rewards. It is possible that for a period of time no event is triggered and the agent
only knows the progressing clocks, so there are different sojourn times. By adding a
choice of actions affecting the active set of clocks the agent has to make a decision
for the underlying problem.

Another approach with events called alarms is discussed in [1] for continuous-
time Markov chains (CTMC) with alarms.

There are only a few articles about continuous time GSMDPs. [3] examine a
generalized model of Stochastic Automate (SA) with clocks, which are triggered
asynchronously, activating transitions in the SA. By the Kronecker product clock
states are combined to handle their interaction. Similarly [8], defined asynchronous
events by continuous phase-type distributions (PHDs). Events are triggered and
affect the underlying Markovian problem. They bring all active events in relation-
ship and calculate their coherent probabilities to trigger one of them without losing
the current progress of the others. Based on that article and a previous of [6], an
approximative planner for solving deliberation scheduling problems was build using
results for GSMDPs in [5].

To the best of my knowledge, there are no research articles written up to now
about discrete time GSMDPs. The fact that there are discrete time steps, in which
several events can be released, leads to a high dimensional problem. Even if the
events have a certain order to be worked off, the agent has to consider over an
exponential number of possible event combinations. This paper is focused on a
special subclass of discrete time GSMDPs. The first limitation is that once an action
is chosen in a state it is fixed until at least one event is triggered. The second
limitation is that all progress for all events is lost if at least one single event is
triggered.

The complexity is still PSPACE hard, but in this paper two randomized algo-
rithms in polynomial runtime are introduced and analysed. Some backgrounds and
a completed formulation for discrete time GSMDPs are given. After that, the two
randomized algorithms are explained and in the last section the results are discussed.

2 Definitions

In this section, basic definitions and problem formulations are introduced. In general
P(X) is the probability of X and E(X) is the expected reward. Bold letters are for
linear functions (like P) and calligraphic letters (like S ) are used for sets. 1 and 0
are vectors only consisting of 0 or rather 1 (where I have to say that the dimension
is always logically conceivable).
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2.1 Markov Decision Process

A tuple of (S ,A ,P,R,p0) defines a discrete Markov Decision Process (MDP)
where S is a finite set of states, A is a finite set of actions, P : S × A × S →
[0, 1] is the transition function for moving from s to s′ choosing action a and is
used as a set of stochastic matrices P(s, a, s′) ≡ Pa(s, s′), so that the condition∑

s ′∈S Pa(s, s′) = 1 is fulfilled for all s ∈ S . Furthermore R : S ×A ×S → R

is the reward function and is also used as a set of matrices R(s, a, s′) ≡ Ra(s, s′).
At least p0 ∈ R

1×|S | is the initial distribution over all states.
By mapping actions to states the agent produces a policy π(s, t) = a, depending

also on the past time t ∈ [0, T ]. It is called a pure policy if time has no relevance.
An optimal policy maximizes the gained (discounted) rewards in the time horizon

[0, T ]. There are some options to solve MDPs like policy iteration and linear
programming. These methods are exact and solve MDPs in a polynomial time.
Much more information about MDPs can be found in [7].

2.2 Generally Semi-Markov Decision Process

GSMDPs are defined as a tuple of (S ,A ,E ,C,P,R, F ). As in Sect. 2.1 , S and
A are sets of states and actions. E is an extension and a set of independent events
which are triggered with a probability given by F(t, e) for a discrete passed time
t ∈ N since activation of the event. E0 includes the trivial event e0, that nothing
happens. The function C : S × A × E → {0, 1} specifies if an event e ∈ E is
active C(s, a, e) = 1 or inactive C(s, a, e) = 0 in a given state and a chosen action.
The transition function P : S × E → S declares the full known following state,
if an event e ∈ E is triggered in s ∈ S . Also the rewards depend on the occurred
events R : S ×E0 ×S → R, however it is sufficient to know the current state and
event.

The agent has to make decisions identifying the active events. Then discrete
time steps are made until the first event is triggered. Furthermore, all other active
events can be triggered in the same time step. For a given order (or rather with
decreasing priority) the system is affected by the events so that the status of events
can be changed, transitions switch the state and rewards are gained. This happens
in a so called zero-step-phase, where a path γ =< s0, x1, s1, x2, . . . , x|E |, s|E | >,
consisting of triggering events xi = ei and running or disabled events xi = ei ,
makes uninterrupted state transitions. All possible paths γ during the zero-step-
phase are parts of the set of regular zero-steps Γ ∗. Every path γ ∈ Γ is also well
defined for a given initial state s0 by the formula γ =< x1, x2, . . . , x|E | >. The
reward for a zero-step path γ is computed additively

R(γ ) =
∑

i: xi=ei

R(si , ei, si+1) or R(γ ) = R(s0, e0, s0). (1)
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Fig. 1 Example: transition
graph for a fixed action a, 4
states and 3 events
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An optimal decision earns optimal rewards heeding to the next status of the system.
So the policy π : S × N

|E | maps an action to the given state and the passed event
times since an event gets active and has not been triggered before.

Therefore Γ ∗(s, a, s′) is defined as the set of all regular zero-step paths starting
in s and ending in s′ by choosing action a. Also t means the actual progress in the
current time step i. The set of all system paths is then defined by

Σ := {< s0, a1, γ1, s2, . . . , sT−1, aT , γT , sT > |si ∈ S , ai ∈ A , γi ∈ Γ ∗(si−1, ai, si )}.

Now the mathematical formula for the optimization criteria can be written as

max
π∈Π

∑

σ∈Σ
P(σ |π)

T∑

i=0

βi
∑

γ∈Γ ∗(si,π(si,t),si+1)

P(γ |π(si, t), t) · R(γ ) (2)

Figure 1 shows a small example for the transition graph with four states and three
events without decision making by given a single action a. C(·, a, ·) is visualized
by the set of edges, so all events not belonging to an edge are blocked (like
C(s2, a, e1) = 0). As an illustration let s4 be a semi-self-regulating state, s2 a
critical, working state and the rest (s1, s3) failure states. The event e3 stands for a
hardware crush, e2 for a autonomous software update (with possible system errors)
and e1 is a finished repair of a mechanic. If a maintenance is made every day for a
machine with this behaviour, several events can be triggered per day.

Starting in failure state s1 with a successful mechanic the system switches in the
critical, working state s2. After that a software update is also made autonomously
and crushes the system in a failure state s3. So in the next decision period (next day)
the machine is also in a failure state s1 or s3 corresponding to an additional hardware
error.

All reachable states starting in s1 are {s1, s2, s3} with a different number of paths
leading to the states:

|Γ ∗(s1, a, s1)| = 5, |Γ ∗(s1, a, s2)| = 1, |Γ ∗(s1, a, s3)| = 2
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2.3 Resetting Discrete GSMDPs

Discrete GSMDPs are very difficult to solve, due to an exponential huge definition
amount the agent has to handle. Even if the passed time has an upper bound for each
event forcing it to be triggered, the system is too huge to be solved in polynomial
time.

A resetting discrete GSMDP (GSMDP0) has the same definition as a GSMDP
with two more restrictions:

(a) If one or more events are triggered, before they are inactivated (per action or in
transitions of zero-steps), all progress of each event is set to 0 after the zero-
step-phase.

(b) When entering a state after one or more events are released the agent has to
make a decision for an action. This action is not able to be changed until the
next regular event is triggered.

Due to these two restrictions the agent only has to find a policy π : S → A .
The vector for the progress time in GSMDPs can be seen as t := t · C(s, a, ·).
Nevertheless the problem is further hard to solve, due to the evaluation of zero-
steps.

At least every time the agent has to make a decision the progress vector t ∈
N

1×|E | is 0. This criteria makes it possible to create an approximating model in
polynomial time. In the conclusion some approaches for future algorithms are
presented, solving discrete GSMDPs without specifications.

3 Randomized Approaches

Now the basic definitions are explained and a closer look at the analysis of
GSMDP0s is possible. The first question is: What happens in a discrete time step
of our model? The behaviour of the model in a discrete time step is defined as zero-
step-phase. Nevertheless there is also the opportunity that no event is released in
this time step. The set of all regular zero-steps is Γ ∗ with |Γ ∗| ≤ 2|E |, on the other
hand Γ is the set of all paths, regular or not.

At least two randomized approaches to solve discrete GSMDP0s approximate
in polynomial time are given. Both solve every instance exact if their input value for
the bounding capacity is unlimited.

3.1 Zero-Step-Phase

This phase is the main focus of this paper, because the zero-step-phases make
GSMPDs so difficult. For the analysis of the zero-step-phases the current state
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s ∈ S , only a single available action a ∈ A is considered and the past time
since no event has been triggered t ∈ N is known. Also for every event e ∈ E a
distribution function is known, given by an acyclic discrete Phase-Type distribution
(ADPH). These functions can be defined with a tuple (qe, Q̃e) of an initial vector
and a part of a probability matrix (without absorbing transitions). The advantage of
ADPHs is that the probability of a triggering event can be easily computed with

P(e|t) = 1 − ||qeQ̃t
e||1 = 1 −

n∑

i=1

qe ·
(

Q̃t
e(·, i)

)
. (3)

More information and different formalisms for ADPHs are introduced in [2].
Inasmuch as the focus of this paper is on the randomized algorithms transforming
GSMDP0s to manageable MDPs no other distributions are analysed. Nevertheless
the results can be derived if computable distributions for the events are given.

Not all events are active for a fixed combination of (s, a). The set of active events
in s under a is defined as

Eact (s, a) := {e ∈ E | C(s, a, e) = 1}. (4)

The probability that no event is triggered for the progress time t is

P(e0|t) =
∏

e∈Eact

||qeQ̃t(e)
e ||1 (5)

In the other case one or more events are released. All in all there are 2|Eact | possible
combinations of events, which are triggered or stay in progress. For a given zero-
step path γ ∈ Γ the correctness, if γ is also in Γ ∗, has to be evaluated. Also the
probability P(γ |a, t) (7) and rewards R(γ ) (1) of a path can be computed. The
special path γ0 :=< s0, e1, s0, s0, . . . , e|E |, s0 > is defined for no triggering event.

Definition 1 A path γ ∈ Γ is regular for an action a ∈ A and a progress vector t
(for a decreasing priority), if and only if

∀i ∈ {1, . . . , |E |} : (xi = ei) ⇒ (∀j < i : C(sj , a, ei) = 1
)
. (6)

So it has to be verified that the event is not set inactive before the priority of this
event is high. As an example you want to buy several things online in one session,
but when you come to the fourth article, it is already sold out.

Definition 2 The probability of a regular zero-step path γ ∈ Γ ∗ depends on the
probability that e is triggered in γ and Eq. (3), so it is P(ei |γ, a, t) = P(ei |t(ei)) ·∏i−1

j=0 C(sj , a, ei). The probability for the path now is given by

P(γ | a, t) =
∏

i:xi=ei

P(ei |γ, a, t) ·
∏

i:xi=ei

(1 − P(ei |γ, a, t)) (7)
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The additionally gained rewards are already defined in (1). For the planing of the
agent it is important to calculate correctness, probabilities and rewards for all γ ∈
Γ ∗. If multiple paths end in a state s′ the probabilities can be summarized as

P(s′|s, a, t) =
∑

γ∈Γ ∗(s,a,s ′)
P(γ |a, t). (8)

On the other hand the rewards are summarized with weights in relation to their
probabilities

R(s, a, t, s′) = P(s′|s, a, t)−1 ·
∑

γ∈Γ ∗(s,a,s ′)
P(γ |a, t) · R(γ ). (9)

Since all possibilities and rewards are computed, the agent has total knowledge
about the future status of the system. With these information an optimal decision
can be made to collect discounted rewards.

3.2 Randomized Γ -Method

The first approach to avoid an exponential number of zero-steps is to limit the set of
active unset events like in Algorithm 1. Generally there are |Eact | events which can
be triggered or not, leading to a set Γact with |Γact | = 2|Eact | different paths (also
with irregular paths).

The main idea of the Γ -method (1) is to fix so many events randomly in step
randomize of the algorithm depending on their probability, that the set of the other
events Erest fulfils 2|Erest | ≤ Ω . The more the probability of an event is near to 0 or
1, the more it is fixed randomly by the method. That means

P(e is fixed | Eact , s̃, a, t,Ω) = |P(e | t(e)) − 0.5|∑
ẽ∈Eact

|P(ẽ | t(ẽ)) − 0.5| . (10)

In randomize a total number of ,|Eact | − log2 Ω- events is selected to be fixed to 0
or 1 without double selection. Also the fixed value is randomly chosen equal to the
triggering probability (3). So with the randomize function Eact is split into Erest ,E0
and E1, where E0,E1 define sets of events specified to be triggered (e = 1) or not
(e = 0). Now the main loop of the following algorithm has an upper bound of Ω .

The update steps in Algorithm 1 are similar to Eqs. (8) and (9). For that the sum
in the equations is only a combination between two elements: the saved entries
L(s′), representing a summary of all paths before, and the new incoming path γ .
The sequence of the update steps is crucial, cause the results of (8) are required in
(9).

This method has a running time in Θ(Ω · |E |2 + |S |). Moreover Ω = 2|Eact |
leads to the exact solution and calculates all possible paths in the zero steps.
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Algorithm 1 Zero-steps over randomized paths
algorithm: zero_steps_Γ

input : (S , Eact ,P,C,R, F ), (s̃, a, t) ∈ S × A × N
|E |
0 , Ω ∈ N

output: L list of states, probabilities and rewards

L(s, ·, ·) ← [s, 0, 0]; // ∀s ∈ S (Erest , E0, E1) ← randomize(Eact , s̃, a, t,Ω)

// explained in Sect.3.2 Γ ′ ← P(Erest )\{γ0}
for γ ∈ Γ ′ do

if γ is regular (6) then
L(s′)(2) is updated with (8) // γ has destination state s′ L(s′)(3) is

updated with (9)
end

end

3.3 Randomized E -Method

The other Algorithm 2 based on a totally different structure. This time all steps for
a single event are evaluated and saved in a sorted list. The higher prior sorting key
is the actual state and the lower one is for blockings from C.

So at the time point when event e ∈ Eact is evaluated all list entries become an
update on the one hand for triggering and on the other for staying in progress. The
list size will grow by factor up to 2 in every iteration, so again we limit the size to
Ω .

In general two entries which are at the same state after an iteration step are
not able to be combined, because they walked different paths and passed different
C(·, a, ·). With an additional function combine_entries, which searches for and
combines same acting entries for all future iterations, the list is kept small. Sufficient
is the same state in L{·}(1) and the same relevant blockings for future iterations in
L{·}(2) This guarantees that the list size will increase to a maximum of 2|Eact |/2 and
after that it shrinks in every iteration until there are not more than |S | entries. The
combination of the last entries in the list item is equal to the proceeding in Sect. 3.2
with Eqs. (8) and (9).

The method insert(L, new,Ω) is relevant for the sorted list L, because it
searches for the correct place in L for an item, while it verifies that the capacity
of Ω is not exceeded. Otherwise insert calls another method to delete a random
item in L depending on its current probability L{·}(3).

The last line in the algorithm is to correct the influence of γ0. On the one hand it
is possible to stay in the initial state s̃ on the other hand it is possible to join the state
per a chain of transitions (zero-steps). But in the first case the progress is increased
by 1 and otherwise t is reset to 0. Hence both cases has to be separated.

As well as the Γ -method the Algorithm 2 solves the zero-steps exactly if Ω is
great enough. The running time of the E -method Algorithm 2 is defined in Θ(|E | ·
Ω3 + |S |).
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Algorithm 2 Zero-steps over events
algorithm: zero_steps_E

input : (S , Eact ,P,C,R, F ), (s̃, a, t) ∈ S × A × N
|E |
0 , Ω ∈ N

output: L list of reachable s, blockings, probabilities and rewards

L{1} ← [s̃, Eact , 0, 0]; for e ∈ Eact do
for l ∈ L and e unevaluated for l do

if e in l(2) inactive then
update l with e blocked;

else
snew ← P(l(1), e);
new ← [snew, l(2) · C(snew, a, ·), l(3) · P(e), l(4) + R(l(1), e, snew)];
l(3) ← l(3) · (1 − P(e));
L ← insert (L, new,Ω) // explained in Sect. 3.3;

end
end
L ← combine_entries(L) // explained in Sect. 3.3;

end
Correct the entry of l{·}(1) == s̃ // explained in Sect. 3.3;

3.4 Transformation to a MDP

The chance that no event triggers in a state s by choosing action a in t ∈ N time
steps converges to 0, because of the ADPHs. For a negligible error of ε > P(e0|t)
the progress time t reaches an upper bound of θ(s, a) ∈ N for every tuple of state
and action. The new set of states S̃ consists of

S̃ =
⋃

s∈S
(s, 0) ∪

⋃

s∈S ,a∈A ,t∈N≤θ(s,a)

(s, a, t).

Therefore the zero-step-phase has to be evaluated for every tuple (s, a, t) . With
the results of the zero-step-phases a MDP (S̃ ,A , P̃, R̃) can be built with the
expected transition probabilities and rewards. The entries in the list describe
the probabilities P(s′|s, a, t) = P̃((s, a, t), a, (s′, 0)) and the collected rewards
R̃((s, a, t), a, (s′, 0)). By adding expensive penalties for switching a chosen action
a′ in a given tuple (s, a, t) while no transition takes place the second restriction is
guaranteed. At least transitions from the states (s, 0) → (s, a, 1) and (s, a, t−1) →
(s, a, t) have to be computed with (t − 1) and Eq. (5).

By using one of the presented methods (Sects. 3.2 or 3.3) a MDP is build in a
time based on the method and S̃ . ADPHs can be built so that S̃ is enormous, but
in general the reached upper bound θ is super exponentially.
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4 Experiments

In this section the results for both randomized methods are shown. Their solutions
will be compared to each other and to the exact ones using the E -method with
Ω = 2|E |. The lack of literature causes no comparison to state of the art algorithms.

The test instances are randomized in transitions and transition probabilities,
the order of ADPHs is normally distributed with expectancy value equal to 5
and variance equal to 1. The entries of ADPHs are randomized exponentially.
The rewards are equally distributed just about [−|E |, |E |] and also the entries
C(s, a, e) ∈ {0, 1} have the same probability.

The instances are build for |S | = {50, 100}, different number of actions |A | =
{2, 4, 6, 8} and various events |E | ∈ {15, 20, 25} (for greater E s the exact solution
can not be computed with the used computers).

Both randomized approaches run 10 times for a single instance and for 10
different instances. Over all results for a fixed number of states, actions and events
the average values are calculated and presented. Here the E -method is shorten with
E and the Γ -method is named G.

In Fig. 2 the results for different actions and different Ωs are presented, with
a grid size (|S |) of 50 and 20 events. There is no obvious pattern for a specific
influence by the number of actions. Whereas the E -method has mostly a smaller
relative error to the exact solution, which is also cut with an error below ε, than the
Γ -method for an equal Ω . There are more unnoticed zero-step-paths with a higher
number of events. In general the quality of the solutions gets better for a greater Ω .
Thus it should be mentioned that for Ω = |S | · |E | always all relative errors are
lower than 10−5.

The next Fig. 3 shows the average results for fixed sets of S and A . It underlines
the statements that the goodness of the algorithms for a fixed Ω decreases and
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Table 1 Relative run times for |S | = 100 and |A | = 4

Method and |E | Ω = 20 Ω = 40 Ω = 60 Ω = 80 Ω = 100

E -method, |E | = 15 0.985 0.973 0.981 0.985 1.004

Γ -method, |E | = 15 0.791 1.379 1.385 2.543 2.531

E -method, |E | = 20 0.840 0.953 0.971 0.988 0.992

Γ -method, |E | = 20 0.368 0.689 0.689 1.364 1.365

E -method, |E | = 25 0.607 0.863 0.929 0.946 0.957

Γ -method, |E | = 25 0.204 0.303 0.305 0.613 0.610

the size of E influences the quality. Furthermore, several tests proof similar to the
runtime of the algorithms neither the size of S nor A is relevant for the quality of
both approaches.

The run times in Table 1 are relative to the time used by an exact model to be
created and solved. The missing force causes the polynomial approach to posses
possibly longer time as presented in the last column. It is evaluated that the Γ -
method is faster than the E -method, if the upper bound Ω is considerably lower
than 2|E |, otherwise if both algorithms compute almost the exact zero-steps, Γ -
method takes much longer. Consequently, that the list for the E -method is naturally
limited by

√
2|E | and the Γ -method has no smaller natural bound than 2|E |.

5 Conclusion

The experiments indicate, that both approaches have distinct advantages. Generally
small run times are possible with the Γ -method causing a loss of quality compared
to the exact solution. On the other hand the results of the E -method for the same Ω
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are closer to exact ones, but it takes more time. Both algorithms have a polynomial
time to evaluate the zero-steps and can be used to transform a GSMDP0 to an
approximating MDP. By expanding the state space with copies in several time
layers, a computable MDP is created in polynomial time. Edges are exclusive in
the copies of the same basic state and to other basic states (not to their copies, so
that “one way trees” are created).

Future work has to focus on the class of normal GSMDPs, which are more
complex. Hereby an exponential number of combinations of the states and different
progress times exists. Hence new approaches will be needed to decrease the decision
space by aggregating progress times or selecting representative states. If it will be
successful, a modified version of the algorithms can be used to evaluate the zero-
step-phase and transform the problem into a MDP.
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Coupling Machine Learning and Integer
Programming for Optimal TV Promo
Scheduling
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Abstract Optimal TV promo Scheduling is the process of scheduling promos over
breaks in order to maximize promos and programs’ viewership. It is a complex task
to tackle since viewership is an uncertain quantity to estimate affected by uncontrol-
lable events, many business requirements need to be satisfied and unexpected events
may require the definition of a new schedule in a very short time. In this work, a
new efficient framework for solving the Optimal TV promo Scheduling problem is
introduced by formulating the problem as an integer optimization problem where
the viewership is estimated through Machine Learning models. Different objective
functions are defined and benchmarked. Numerical results on real word instances
show the effectiveness of the resulting framework in solving the Optimal TV promo
Scheduling problem in a very short amount of time leading to good or optimal
solutions and improving schedules KPI provided by business experts.
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1 Introduction

TV Media companies divide the available airtime into several TV programs,
separated by breaks. Within breaks, two main kinds of spots can be placed:
commercials, which promote products or services offered by third-party companies,
and promos, which advertise TV programs or other products offered by the media
group itself. Usually, selling airtime to commercial advertisers represents one of the
main sources of revenue for media companies, while airing promos does not provide
any direct increase in the company revenue. Airing promos, instead, is responsible
for increasing and carry the viewership along channels and programs. Since the
price for airing commercials is determined by the viewership of the specific airtime
to be placed in, since the higher the viewership of the program/channel where the
commercial is placed, the higher the price for airing the commercial [6], promos
indirectly affect media group’s revenue by influencing the viewership. In this setting,
Optimal TV Promo Scheduling is meant to increase the viewership of programs
and channels of the media group so to increase the income from selling airtime to
commercials.

Overall the promo scheduling process is a challenging task for several reasons.
Firstly, estimating the impact of each promo-break combination to the overall
viewership requires the definition of accurate forecasting models. Secondly, many
business rules must be taken into consideration while scheduling promos, some
of them are strict requirements while others can be relaxed and violated if
justified. Finally, the frequent occurrence of unexpected events that result in sudden
changes in the overall airing schedule combined with the limited time available
to accommodate these unexpected changes, makes the scheduling procedure even
more complicated.

In this work, to measure the viewership of TV contents, we focus on Reach,
which is defined as the percentage of unique households reached by the aired
content. Concerning promos, we make a distinction between two types: promos
that promote TV programs, called Promos for programs, and promos that advertise
non-channel products of the media group (e.g. digital platforms streaming a TV
program), calledNon-channel promos. The program within which the promo is aired
will be called the host program, while the program promoted by the promo will be
called the client program.

Currently, the promo scheduling process is very inefficient, considering that the
number of variables and the set of constraints to take into account is very large and
the process is mostly done manually. In this study, we tackle the problem of Optimal
TV Promo Scheduling by coupling techniques belonging to the field of Machine
Learning and Integer Programming. Firstly, two forecasting models for estimating
the viewership of non-channel promos, and the viewership of programs promoted
by promos for programs are defined. On top of that, an integer optimization (IP)
problem is designed in order to determine the promo schedule such that the overall
viewership is maximized while satisfying all the business constraints. Numerical
results illustrate the effectiveness of this framework in solving real-word instances
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in a very short amount of time by finding optimal or near to optimal solutions always
outperforming business experts’ schedules. This work is focused on scheduling
promos day-by-day over a single channel, however, the framework can be extended
to consider longer time horizons and the influence between several channels.

2 Literature Review

Scheduling for broadcast television industry has already been widely studied [16].
Most of the literature on this topic has been focused on solving the scheduling
problem for airing commercials instead of promos. The first attempt in this field
is represented by Brown [3] who proposed a programming logic algorithm for
finding a feasible solution to the problem of scheduling commercials over breaks
without optimizing any specific function. In [1] a formulation for scheduling
commercials in a balanced way is proposed and then solved through ad-hoc
heuristics. Similarly, in [2] more complex real-world conditions are considered
in scheduling commercials and a heuristic method to solve it is proposed. More
recently, [15] applies statistical methods to estimate the viewership of commercials
and then integrate these estimations in an IP problem to maximize the income from
scheduling commercials. However, to solve the problem in a reasonable amount
of time, warm-start techniques were needed. Other applications of mathematical
programming for scheduling commercials can be found in [7, 14, 17] and the
reference therein.

Although scheduling commercials is closely related to the problem of scheduling
promos, they mainly differ in the purpose and the requirements they need to
satisfy. While scheduling commercials aims at allocating breaks such that revenue
is maximized, scheduling promos focus on maximizing viewership of promoted
programs. In addition, the set of constraints required in the two cases differ. Finally,
when it comes to viewership prediction, while in scheduling commercials we are
interested in estimating the viewership of the advertisement itself, when scheduling
promos we want to estimate the viewership obtained by the client program, which
represents a much more challenging task. While most of the literature has been
focused on solving scheduling problems for commercials, very few studies have
been focused on scheduling problems for promos. In particular, [5, 13] developed
genetic algorithms for maximizing the total gross rating point (GRP) derived by the
promo scheduling without specifying how the GRP is estimated.

This work represents the first attempt to solve the promo scheduling problem
in a very short time through exact algorithms and not heuristic methods. Good
solutions and small time to achieve them are both guaranteed without recurring
to sub-optimal methods. Moreover, compared to previous works, the application of
Machine Learning techniques for forecasting the client program viewership leads
to very accurate models providing more reliable predictions. Finally, the distinction
between soft and hard constraints allows the scheduler operator to have some control
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of the solution obtained by tuning the penalty parameters γ while guaranteeing those
stricter business requirements.

3 Problem Formulation

To solve the Optimal Promo Scheduling problem, two main frameworks are
considered: a Machine Learning framework which estimates the consequences of
placing a promo in a specific break; an optimization framework that, given the ML
predictions, solves an integer optimization problem to find the best pairs break-
promo.

3.1 Machine Learning Framework

As a first step, the estimated viewership that will result from placing a promo in
each specific break needs to be estimated with high accuracy. As already discussed,
we distinguish promos between Non-channel promos, namely promos advertising
media group’s products, and promos for programs, namely promos advertising a
specific program. For Non-channel promos we focus on estimating the Reach of the
promo itself, called Promo Reach (PR), since the reach of the advertised product is
not available and not easy to compute, while for Promos for programs we focus on
estimating the Reach of the promoted program, called Client Reach (CR).

The estimation of PR is achieved by considering promo and host program’s
information such as time of airing and duration of the content. Prediction of CR,
instead, is a more challenging task and is achieved by considering also client
program information, historical data, future information already available (e.g. the
number of days before the promoted program is aired) and the PR obtained by
placing the promo in a specific break (derived from the first prediction model).

The output of the ML framework is a matrix Φ, where φpt represent the final
viewership obtained by placing the promo p in the break t , regardless whether it
regards the CR obtained by promos for programs or the PR obtained by non-channel
promos.

3.2 Mathematical Formulation

In each break many promos can be aired. Once the prediction models are defined,
the main objective of the optimization framework is to choose which promos air in
each break. To formulate the optimization problem, the binary variables δpt ∈ {0, 1}
are defined, where δpt = 1 if promo p is assigned to break t and 0 otherwise. In



Coupling ML and IP for Optimal TV Promo Planning 391

Table 1 Parameters definition

Set of non-channel promos

P Set of promos P2 ⊂ P (P1 ∩ P2 = ∅)

T Set of breaks A ⊂ P Set of generic promos

Q Set of client programs B ⊂ P Set of specific promos
(G ∩ Z = ∅)

K Set of genres dp Duration of promo p

P (c) ⊆ P Subset of promos for campaign
c ∈ C

Dt Duration of break t

P (q) ⊆ P Subset of promos for client
program c ∈ C

r Required ratio of self promos

P (k) ⊆ P Subset of promos for genre k ∈ K kp Minimum number of times promo
p is aired

S ⊂ P Subset of self promos lp, up Nominal minimum and maximum
number

P1 ⊂ P Set of promos for programs of times promo p can be aired

Table 1 the mathematical notation is presented. Some of the terms here introduced
will be better discussed in the following.

Before considering the objective function, we focus on the constraints definition.
In particular, there are two different kinds of constraints: hard constraints, namely
constraints that cannot be violated; and soft constraints, namely constraints that
should be preferably satisfied but that are not strict requirements. While the former
set of constraints is defined through standard mathematical constraints, the latter is
defined as penalty/rewards terms in the objective function.

Hard Constraints

The polytope P ⊆ R
|P |×|T | defining the feasible region is expressed by the

following set of constraints:

∑

p∈P
δptdp ≤ Dt ∀t ∈ T (1)

∑

t∈T
δpt ≥ kp ∀p ∈ P (2)

∑

p∈P(j)

δpt ≤ 1 ∀t ∈ T , ∀j ∈ J = {C,Q,K} (3)

where: constraint (1) implies that in each break the sum of promos’ duration cannot
be higher than the break duration itself; constraint (2) implies that each promo needs
to be aired a minimum number of times per day; constraint (3) implies that at most
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one promo of each specific campaign, or client or genre can be placed in each break
(non-channel promos do not have a genre) to avoid audience over-exposition to
similar contents within the same break.

Soft Constraints

Ratio of Self Promos (SR) Promos for programs can be divided into two cate-
gories: promos for programs aired on the same channel (called self promos) and
promos for programs aired on other channels (called cross promos). Each channel
wants to broadcast more self promos than cross promos according to some business
strategy. This is modeled by introducing a specific target r on the percentage of self
promos aired in each day (in our study, r = 0.4) and asking to obtain values as close
as possible to this percentage:

gSR(δ) := −
∣∣∣∣∣∣

∑

p∈S

∑

t∈T
δpt − r

∑

p∈P

∑

t∈T
δpt

∣∣∣∣∣∣
(4)

Placement of Self Promos (SP) As a good business practice, each break should
start and end with a self promo so to give more emphasis to the channel where the
promos are aired. This constraint is considered in the post-processing of the solution
when the order of promos in each specific break is defined. However, this implies
that we should guarantee at least two self promos per break, which cannot be always
satisfied (e.g. if the available time is not enough to air two promos in the same slot).
As a consequence, given ht (δ) = 1 if

∑
p∈S δpt ≤ 1 and 0, we model it as follows:

gSP(δ) := −
∑

t∈T
ht (δ) (5)

Specifics Versus Generics (SG) Promos can be distinguished in two kinds: specific
promos are those promos promoting a specific content (e.g. a specific episode of a
Tv program), while generic promos are promos advertising some content without
any reference to a specific event (e.g. promote a Tv series without any reference
to a specific episode). As a good practice, media companies want to give higher
priority to specific promos over generic promos since their content is more relevant
and attractive for the audience. This constraint is modeled in the objective function
by adding the term:

gSG(δ) :=
∑

p∈Z

∑

t∈T
δpt −

∑

p∈G

∑

t∈T
δpt (6)

The following two constraints are not directly dictated by the business problem
we are modeling but derive from the formulation of the problem we defined.
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Promos Variation (PV) To avoid unbalanced schedules, we want each promo to be
aired possibly no more than its desired number of times, called θp, which depends
on the relevance of the product advertised by the promo (i.e. the average of the
potential viewership values). To determine the maximum frequency of each promo
that the planning should target, we define the constant θp for each promo, as follows:

θp :=
⌈
lp + (

up − lp
) μp − m

M − m

⌉
∀p ∈ P (7)

where: μp∈P :=
∑

t∈T φpt

T
, m := minp∈P {μp} and M := maxp∈P {μp}. Then, the

rule is modeled by introducing the following function:

gPV(δ) := −
∑

p∈P
max

{
0,
∑

t∈T
δpt − θp

}
(8)

Fill Gap (FG) To fill as much as possible all the available spaces within each break,
we introduce the term:

gFG(δ) := −
∣∣∣∣∣∣

∑

t∈T

⎛

⎝Dt −
∑

p∈P
δptdpt

⎞

⎠

∣∣∣∣∣∣
(9)

Objectives

The objective function is composed by a first term, f (δ), representing the final
objective we want to achieve (i.e. maximize the final viewership of each program)
and the set of penalties and rewards introduced when considering the soft rules.
Let G(δ) := ∑

j∈{SR,SC,SG,PV,FG} γjgj (δ), with γj ≥ 0 representing the cost of
violating the corresponding rules, then the objective function can be written as

F(δ) := f (δ) + G(δ) (10)

Concerning the first term f (δ), different options are considered.

Sum of the Viewership The promo placement impact is measured as the sum of
the predicted reaches for all the breaks considered by the planning. The reaches refer
to both the programs advertised and the promos advertising broadcasting products:

f (δ) :=
∑

p∈P

∑

t∈T
δptφpt (11)

Average of the Viewership The promo placement impact is measured as the sum
of the predicted mean reaches. Analogously to the former objective, the reaches
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refer to the programs advertised and the promos advertising non-channel products:

f (δ) :=
∑

q∈Q

∑
p∈P(q)

∑
t∈T δptφpt∑

p∈P(q)

∑
t∈T δpt

(12)

The term (11) is a linear function, easy to optimize, while the term (12) leads to an
increase in the complexity of the optimization problem in terms of formulation and
solution but is more in line with the real business objective, by aiming to increase
the average reach of each client program considering all aired promos that are
promoting it. The solutions returned when considering these two different terms
are analyzed in Sect. 4.2.

3.3 Formulation as Mixed Integer Linear Program (MILP)

The problem can be formulated as the following Integer Program (IP):

max
{
F(δ) : δ ∈ P ∩ {0, 1}|P |×|T |} (13)

The two objective functions discussed in the previous subsection give rise to
two distinct IP problems denoted respectively as IP-SUM and IP-AVG. Hence, the
following proposition holds:

Proposition 1 IP-SUM and IP-AVG can be reformulated as MILP problems.

Proof IP-SUM: by definition, f and P are given by linear expressions; since G is
the sum of piecewise linear functions, it can be reformulated as a MILP. IP-AVG:
it is easy to check that f can be written as the sum of products between binary and
continuous variables; hence, it can be linearized by introducing continuous variables
and indicator constraints.

4 Computational Experience

In this section, we report and discuss the numerical results of the Machine Learning
frameworks described in Sect. 3.1, and the solution of the optimization problems
defined in Sect. 3.2. Airtime data concerning a TV channel during 2018 were
provided by a large media company whose name is not disclosed for privacy
policy. The Machine Learning assets have been implemented in Python with
Jupyter notebooks by leveraging well-known open-source libraries, like pandas,
sklearn and xgboost. The optimization models have been developed in Python
with the IBM Decision Optimization docplex APIs, then solved with IBM
Decision Optimization on Cloud APIs[9], hosting IBM ILOG CPLEX 12.9 in an
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environment with 10 cores and 60 GB of RAM. The entire solution has been
deployed in IBM Cloud Pak for Data[8].

4.1 Machine Learning Results

For both PR and CR estimation, features selection strategies (e.g. correlation anal-
ysis and feature importance from decision trees) coupled with outliers elimination
were performed to filter out all those noisy and not influential features. For each
estimation task, different forecasting models were implemented and benchmarked.
Most of the 2018 data were used for training the models while few weeks were
kept out as test set. To avoid overfitting, the models were trained through a hyper-
parameter tuning and a cross-validation was performed with an expanding window
since we are dealing with time series data.

Concerning the results from predicting PR, XGBoost [4] over-performed the
other models with an R2 slightly higher than 90% and a mean absolute percentage
error (MAPE) around 10%. The duration of the host program and features related
to the airing time resulted among the most important features. Concerning the
results from predicting CR, by stacking XGBoost with a shallow Neural Network
[11, 12], we retained the high accuracy of predictions, while capturing the changes
of CR when placing the corresponding promo in different breaks. The results
indicate the R2 of around 90% and the MAPE of 6%. Among the most important
features, historical data of the client program followed by promos’ statistics like the
frequency of promos per day stood out.

4.2 Optimization Results

The two models, IP-SUM and IP-AVG, are tested over 7 real-world daily instances,
denoted day-i for i = 1, . . . 7, which have been provided by the broadcasting
company. Each instance is composed on average by 65 breaks, 42 promos and 40
programs. Table 2 compares the quality of the optimized solutions (denoted as δ")
with the ones provided by the business experts of the company (denoted as δ′). We
report the values of the relevant KPIs defined in Sect. 3.2 and the relative benefit
generated by the optimization computed as:

Gain := KPI(δ") − KPI(δ′)
1 × 10−6 + |KPI(δ′)| (14)

We refer to fSUM and fAVG as the formulas (11) and (12) respectively and divide
values by F(δ") as defined in (10) in order to make results easier to be interpreted.
Note that instances day-{1, 3} have been omitted from the comparison since the
solution returned by the business export turned out to be infeasible and difficult to
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recover. Moreover, the KPI associated to the soft rule SP (placement of self promos)
is not reported in the table as it is always equal to zero in all the compared solutions.

We observe that the optimization of IP-SUM raises the impact of the promo
placement, measured by F(δ), on average of 257%: the main drivers of these results
are fSUM(δ(P1)) and fSUM(δ(P2)) that increases the impact on average of resp.
194% and 183%. This means that IP-SUM is able to increase the quality of the
planning by providing a remarkably effective allocation of promos. Moreover, the
optimized solutions tend to increase the violation of soft-rule SR (ratio of self
promos), whereas the rules SG (specific versus generic promos) and PV (promos
variation) are better preserved. This suggests that a better diversification of programs
and products advertised by specific promos, at the cost of a higher violation of the
targeted self promo ratio, can remarkably boost the impact of the planning. However,
we highlight that the optimization of IP-SUM increases the average viewership
of programs and products, given by fAVG(δ(P1)) and fAVG(δ(P2)), on average
resp. of 0.29% and 13.39%. This result may give an indication of the conversion
rate of promos for programs (i.e. the percentage of customers that after having
watched the promo, watch the linked program as well) from the effectiveness of
the planning towards the viewership of programs and products, which is influenced
by heterogeneous exogenous factors out of the promo placements, like creativity,
authorship, quality of contents, etc.

We further confirm our results by analyzing the outcomes obtained for IP-
AVG, that aims to maximize the average viewership. In fact, we observe that
the total impact of the optimization of IP-AVG, measured by F(δ), increases on
average of 7.68%, where the average viewership of programs and products, given by
fAVG(δ(P1)) and fAVG(δ(P2)), contribute with an average increase of resp. 1.88%
and 4.75%. Furthermore, we observe that the optimization of IP-AVG offers more
balanced adherence and lower violation of the soft rules, except for SG: we may
conclude that generic promos would better consolidate and increase the average
viewership. Finally, we remark that the tuning of the parameters controlling the
soft rules can change the impact of the optimized solutions. Indeed, the introduced
models offer also the opportunity to analyze and validate in advance the effect of
corporate strategies towards the business practice of the promo planning.

Table 3 reports the size of the introduced programs, together with some compu-
tational aspects of their resolution. In particular, # bin var, # cont var, # lin cons
and # ind cons denote resp. the number of binary and continuous variables, and the
number of linear and indicator constraints. The KPIs time (sec) and gap (%) are
resp. the real time and the relative integrality gap obtained with CPLEX: IP-SUM
is solved at the optimum on average in less than 5 s, while sub-optimal solutions
to IP-AVG with gap (%) less than 1% are obtained within the same time limit. To
analyze how results can be improved by adopting an extended computational time
window, still acceptable for the business users, we set a limit of 300 s for IP-AVG.
In fact, we observe that gap (%) can be reduced on average from 1 to 0.09% by
extending the computation time from 5 to 300 s. While we keep default parameters
of CPLEX 12.9 for IP-SUM, to boost solutions of IP-AVG, we tuned the CPLEX
parameters [10]: we first set the parallel mode switch to deterministic in order to
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Table 3 Computational results

Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 Day-7

IP-SUM Time (s) 3.918 3.272 5.448 8.524 8.789 0.663 3.633

gap (%) 0 0 0 0 0 0 0

# bin var 2880 3293 3210 3108 4113 2923 2340

# cont var 24 25 25 24 24 22 23

# lin cons 4054 4327 4513 4312 5485 4271 3321

# ind cons 72 77 75 74 96 79 60

IP-AVG Time (s) 291.278 lim lim lim lim lim lim

Gap (%) 0 0.028 0.022 0.019 0.136 0.166 0.261

# bin var 2900 3313 3232 3129 4133 2942 2359

# cont var 2852 3261 3182 3079 4061 2885 2322

# lin cons 6882 7563 7670 7367 9522 7134 5620

# ind cons 5708 6529 6367 6163 8150 5786 4639

stabilize performance over multi-threading, then we set the MIP emphasis switch to
finding hidden feasible solutions and the RINS heuristic frequency to 10, in order
to generate multiple high-quality solutions, given the weak bounds induced by the
linearization and the business need of having multiple good scheduling options.
Finally, we can conclude that both the programs can be effectively solved, both in
terms of solution quality and computational time with respect to the business needs
leading to improvements in the schedule defined by business experts.

5 Conclusions

In this work, by coupling techniques belonging to the Machine Learning field with
Integer Programming, we have introduced a new framework for solving the Optimal
Promo Scheduling problem. Two different objective functions are introduced and
their properties analysed on real-word instances. The resulting framework turns out
to be effective in defining optimal or near to optimal schedules in a very short
amount of time if compared with previous works on this topic and by always
obtaining better solutions than those found by business experts. Furthermore, by
specifying the penalty terms γj , the solution can be tuned and adjusted according to
the strategic requirements specific to each TV media company.

Regarding future directions of investigation, it might be interesting to study
specific cuts that enable closing the gap when considering the IP-AVG objective
function so to guarantee the solution of the problem at the optimal value. Moreover,
a combination of the two different objective functions, IP-SUM and IP-AVG, could
be furtherly investigated so as to reach better schedules able to balance the two
objectives. Finally, some constraints could be reformulated so as to reduce the
computational complexity while solving the MILP problems.
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A Distributed Algorithm for Spectral
Sparsification of Graphs with
Applications to Data Clustering

Fabricio Mendoza-Granada and Marcos Villagra

Abstract Spectral sparsification is a technique that is used to reduce the number
of non-zero entries in a positive semidefinite matrix with little changes to its
spectrum. In particular, the main application of spectral sparsification is to construct
sparse graphs whose spectra are close to a given dense graph. We study spectral
sparsification under the assumption that the edges of a graph are allocated among
sites which can communicate among each other. In this work we show that if a
graph is allocated among several sites, the union of the spectral sparsifiers of each
induced subgraph give us an spectral sparsifier of the original graph. In contrast to
other works in the literature, we present precise computations of the approximation
factor of the union of spectral sparsifiers and give an explicit calculation of the
edge weights. Then we present an application of this result to data clustering in the
Number-On-Forehead model of multiparty communication complexity when input
data is allocated as a sunflower among sites in the party.

Keywords Spectral sparsification · Dense graphs · Distributed algorithms ·
Communication complexity · Data clustering

1 Introduction

Spectral sparsification is a technique introduced by Spielman and Teng [11] that is
used to approximate a graph G by a sparse graph H . The notion of approximation
used by spectral sparsification is that the spectra of both H and G must be close up
to a constant factor. Batson, Spielman and Srivastava [1] proved that every graph G

has an spectral sparsifier with a number of edges linear in the number of vertices of
G and provided an algorithm achieving such bound. There are several algorithms
in the literature that construct spectral sparsifiers of graphs with a trade-off between
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running time and number of edges of H . To the best of our knowledge, Lee and Sun
[8] has the best probabilistic algorithm for spectral sparsification with a running
time that is almost linear and constructs spectral sparsifiers with O(qn/ε2) edges,
where n is the number of vertices of G, ε is an approximation factor and q ≥ 10 is
a constant.

There are situations where algorithms need to work with data that is not
centralized and allocated in different sites. One way to deal with decentralized data
is to design communication protocols so that the sites can communicate among
them. The efficiency of a communication protocol can be measured by the number
of bits shared among the sites and such a measure is known as the communication
complexity of the protocol [10]. When data comes in the form of a graph, the
edges greatly affects communication complexity, and hence, computing spectral
sparsifiers of graphs in distributed systems is of great importance.

In this work we present a distributed algorithm for spectral sparsification of
graphs in the communication complexity model. In this model, we are only
interested in the communication costs among sites and we assume that each site
has arbitrary computational power. The idea behind this protocol is that, given an
input graph G, spectral sparsifiers of induced subgraphs of G can be computed in
each site first, and then any given site computes the union of such graphs which
results in a spectral sparsifier of G. Even though other works have used the idea of
taking the union of spectral sparsifiers like Chen et al. [2], they have not shown
a precise calculation of the approximation factor. The main contribution of this
work, presented in Theorem 1, is an estimation of the approximation factor and an
explicit calculation of the edge weights in the union of spectral sparsifiers. In order
to compute the approximation factor we introduce an idea that we call “overlapping
cardinality partition,” which is a way to partition the edge set of a graph with respect
to the number of times each edge is allocated among sites. Overlapping cardinality
partition is a technical tool that allows us to express the Laplacian matrix of the
union of induced subgraphs of G as a linear combination of the Laplacian matrices
of graphs induced from the partition.

In a second part of this paper, we present in Sect. 4 an application of Theorem 1
in distributed data clustering in the Number-On-Forehead model of communication
complexity. In particular, if we assume the existence of a sunflower structure [3–5]
on the input data, we show how a communication protocol can detect the presence
of the sunflower and take advantage of its kernel to reduce the communication costs.

The rest of this paper is organized as follows. In Sect. 2 we present the main
definitions and notation used throughout this work. In Sect. 3 we present the main
result of this work, and in Sect. 4 we present our application to data clustering.

2 Preliminaries and Notation

In this section we will introduce some definitions and notations that will be used
throughout this paper.
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2.1 Spectral Graph Theory

Let G = (V ,E,w) be an undirected and weighted graph with n vertices and m

edges. Let {Ei}i≥1 be family of subsets of E. We denote by Gi = (V ,Ei,wi) the
subgraph induced by Ei , where wi : Ei → R

+ is defined as wi(e) = w(e) for all
e ∈ Ei and 0 otherwise. Every graph G has an associated matrix called its Laplacian
matrix, or simply Laplacian, which is define as

LG = DG − WG,

where WG is the weighted adjacency matrix and DG is the weighted degree matrix.
We will omit the subindexG from LG,WG andDG when it is clear from the context.

The normalized Laplacian is defined as L = D−1/2LD−1/2. The Laplacian
matrix (and normalized Laplacian) is positive semidefinite (PSD) with its first
eigenvalue λ1 always equals zero with multiplicity equal to the number of connected
components of G [9]. Indeed, if there exists a multicut of size k in G then the k-th
smallest eigenvalue λk of L gives useful information to find a multicut.

One of the fastest methods to approximate an optimal multicut in a graph is the
so-called spectral clustering algorithm. This technique uses k eigenvectors of L or
L associated to the first k smallest eigenvalues in order to construct a matrix X with
the eigenvectors as columns, and then, it applies a simpler clustering algorithm (like
k-means) to the rows of X [9]. Lee et al. [7] proved that λk approximates the optimal
value of a multicut of size k in G and the eingevectors give the corresponding
partition over V .

2.2 Spectral Sparsification

Spectral sparsification is a technique used to reduce the density of a given PSD
matrix changing its spectra only by a constant factor of approximation. Given a
matrix M , spectral sparsification constructs another matrix which is “similar” to
M in some well-defined way. We will use a notion of similarity defined in [11]. A
subgraph H of G is called an ε-spectral sparsifier of G if for any x ∈ R

n we have
that

(1 − ε)xT LGx ≤ xT LHx ≤ (1 + ε)xT LGx.

The importance of a spectral sparsifier lies on the sparseness of LH , for example,
some computations are easier over an sparse matrix. There are deterministic and
probabilistic algorithms to find spectral sparsifiers of a given graph. The algorithm
of Batson, Spielman and Srivastava [1] is currently the best deterministic algorithm.

The algorithm of [1] constructs a graph with O(
qn

ε2 ) edges in O(
qmn5/q

ε4+4/q ) time, where
ε is the approximation factor and q ≥ 10 is a constant.
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3 A Distributed Algorithm for Spectral Sparsification

In this section we present our main result. In particular, given a graph G and a
family of induced subgraphs of G, we show that the union of spectral sparsifiers
of the induced subgraphs is a spectral sparsifier of G. In contrast to other work,
however, we give explicit bounds on the approximation factor and a construction of
the new weight function.

First we introduce some definitions which will help us understand the overlap-
ping of data among the sites. We denote by [n] the set {1, 2, . . . , n}.
Definition 1 (Occurrence Number) Let E = {E1, . . . , Et } be a family of subsets
of [n]. For any a ∈ [n], the occurrence number of a in E , denoted #(a), is the
maximum number of sets from E in which a appears.

Example 1 Let n = 7 and E = {{1, 2, 3}, {2, 3, 4}, {4, 5, 1}, {3, 2, 6}, {4, 7, 1},
{2, 3}, {5, 6, 7}, {1, 3, 5}, {2, 4}}. Here we have that #(1) = 4, #(2) = 5, #(3) = 5,
and so on. �
Definition 2 (Overlapping Cardinality) Let E = {E1, . . . , Et } be a family of
subsets of [n] for some fixed n and E = ⋃t

i=1 Ei . The overlapping cardinality of a
subset E′ ⊆ E in E is a positive integer k such that for each a ∈ E′ its ocurrence
number #(a) = k; otherwise the overlapping cardinality of E′ in E is 0.

The overlapping cardinality identifies the maximum number of times the ele-
ments of a subset appears in a family of subsets.

Example 2 Let n = 7 and E be as in Example 1. Here we have that E = ⋃t
i=1 Ei =

[n]. Now consider the sets {1, 4} and {1, 2, 3}.
• The overlapping cardinality of {1, 4} in E is 4, because #(1) = #(4) = 4.
• The overlapping cardinality of {1, 2, 3} in E is 0 because the occurrence number

of one of the elements of the set is different from the others, namely, #(1) = 4,
#(2) = 5, and #(3) = 5.

�
Now we use the idea of overlapping cardinality to construct a partition on the set

E of subsets of [n].
Definition 3 (Overlapping Cardinality Partition) Given a family E as in Defini-
tion 2, an overlapping cardinality partition over E on E is a partition {E′

1, . . . , E
′
k}

of E where each E′
i has overlapping cardinality ci on E . We call the sequence

(c1, c2, . . . , ck), with 1 ≤ c1 < c2 < · · · < ck , the overlapping cardinalities over
the family E .

Example 3 Take E from examples 1 and 2. An overlapping cardinality partition is

{{6, 7}, {5}, {1, 4}, {2, 3}}.
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Here, {6, 7} has overlapping cardinality equal to 2 because #(6) = #(7) = 2. The
subset {5} has overlapping cardinality equal to 3 because #(5) = 3. In Example 2
we saw that the subset {1, 4} has overlapping cardinality 4. Finally, the subset {2, 3}
has overlapping cardinality equal to 5 because #(2) = #(3) = 5. �

Our main technical lemma shows that the Laplacian of an input graph can be
rewritten as a linear combination of Laplacians corresponding to induced subgraphs
constructed from an overlapping cardinality partition of the set of edges.

For the rest of this section we make the following assumptions. Let G =
(V ,E,w) be an undirected and weighted graph with a function w : E → R

+,
let E = {E1, . . . , Et } be a collection of subsets of E such that

⋃t
i=1 Ei = E where

Ei �= ∅ and Gi = (V ,Ei,wi) is an induced subgraph of G where wi : Ei → R
+

and wi(e) = w(e) for all e ∈ Ei and 0 otherwise.

Lemma 1 If 1 ≤ c1 < c2 < · · · < ck are the overlapping cardinalities over
the family E with an overlapping cardinality partition {E′

cj
}j≤k, then

∑t
i=1 LGi =

∑k
j=1 cjLG′

cj
where LG′

cj
is the Laplacian of G′

cj
= (V ,E′

cj
, w′

cj
).

Proof First notice that, for all e = xy ∈ E′
cj

there exists a subfamily of E
with cardinality equal to cj such that e belongs to every member of it and its
associated subgraph. Take any xy ∈ E′

cj
for some j ∈ {1, . . . , k}. There exists cj

induced subgraphs Gi1, . . . ,Gicj
of G that has xy as an edge, and all other induced

subgraphs Gk1, . . . ,Gk
 do not have xy as an edge, where cj + 
 = t . This means
that

t∑

i=1

LGi (x, y) = cj · LG′
cj
(x, y) = −cj · w(x, y). (1)

Now, let dG(x) denote the degree of x in G. We know that dG(x) = ∑
y w(x, y)

where xy ∈ E. Since {E′
cj

}j≤k is a partition of E, we can rewrite the degree of x as

dG(x) =
∑

xyc1∈E′
c1

w(x, yc1) + · · · +
∑

xyck∈E′
ck

w(x, yck ).

Then, the degree of x in the graph G′
cj

is

LG′
cj
(x, x) =

∑

xycj ∈E′
cj

w(x, ycj ) = dG′
cj
(x).

If we take an edge xycj ∈ E′
cj

, where x is fixed, we know that xycj appears only in
the induced subgraphs Gi1 , . . . ,Gicj

, and hence, we obtain

t∑

i=1

⎛

⎜⎝
∑

xycj ∈E′
cj

wi(x, ycj )

⎞

⎟⎠ = cj · dG′
cj
(x). (2)
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If we take another edge uv ∈ E′
cm

, with m �= j , note that uv does not belong to any
of the graphs Gi1 , . . . ,Gicj

and each Laplacian matrix LGi1
, . . . , LGicj

has 0 in its

(u, v)-entry. Therefore, adding uv to Eq.(1) we have that

t∑

i=1

(
LGi (x, y) + LGi (u, v)

) = cj · LG′
cj
(x, y) + cm · LG′

cm
(u, v).

Extending this argument to all equivalent classes in {E′
cj

}j≤k, for each non-diagonal
entry (x, y), with xy ∈ E, it holds

t∑

i=1

LGi (x, y) =
k∑

j=1

cj · LG′
cj
(x, y). (3)

A similar argument can be made for the diagonal entries with Eq.(2), thus obtaining

t∑

i=1

⎛

⎜⎝
∑

xyc1∈E′
c1

wi(x, yc1 ) + · · · +
∑

xyck ∈E′
ck

wi(x, yck )

⎞

⎟⎠=
t∑

i=1

LGi
(x, x)=

k∑

j=1

cj · LG′
cj
(x, x).

(4)

Equations (3) and (4) imply the lemma. �
Now we will use Lemma 1 to show that the spectral sparsifier of

∑k
j=1 cjLG′

cj

is an spectral sparsifier of the Laplacian LG of an input graph G.

Theorem 1 Let (1 = c1 < c2 < · · · < ck) be the overlapping cardinalities
over the family E with {E′

cj
}j≤k its associated overlapping cardinality partition and

LG1, . . . , LGt the Laplacians of G1, . . . ,Gt . If Hi = (V ,Di, hi) is an ε-spectral
sparsifier of Gi , then H = (V ,

⋃t
i=1 Di, h) is an ε′-spectral sparsifier of G where

h(e) =
∑t

i=1 hi (e)

c1ck
and ε′ ≥ 1 − 1−ε

ck
.

Proof Let LHi be the Laplacian of Hi . By hypothesis we have that for every i ∈ [t]
and x ∈ R

V

(1 − ε)xT LGi x ≤ xT LHi x ≤ (1 + ε)xT LGi x.

Then we may take the summation over all i ∈ [t] to get

(1 − ε)

t∑

i=1

xT LGix ≤
t∑

i=1

xT LHi x ≤ (1 + ε)

t∑

i=1

xT LGix. (5)
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Now, lets consider the left hand side of Eq. (5). Using Lemma 1 we get

(1 − ε)

t∑

i=1

xT LGi x = (1 − ε)

k∑

i=1

ci · xT LG′
ci
x

≥ (1 − ε)c1

k∑

i=1

xT LG′
ci
x

= (1 − ε)c1x
T LGx, (6)

where the last equality follows from the fact that {E′
cj

}j≤k is a partition of E.
Similarly for the right hand side of Eq. (5) we have that

(1 + ε)

t∑

i=1

xT LGi x ≤ (1 + ε)ckx
T LGx. (7)

Therefore, by multiplying Eqs. (6) and (7) by 1
c1ck

we obtain

(1 − ε)
xT LGx

ck
≤ xT LHx ≤ (1 + ε)

xT LGx

c1
,

where xT LHx = (
∑t

i=1 x
T LHix)/(c1ck).

To finish the proof, note that we want 1−ε′ ≤ (1−ε)/ck and (1+ε)/c1 ≤ 1+ε′
with ε ≤ ε′ < 1. In order to solve this, we choose an ε′ ≥ 1 − 1−ε

ck
. First notice that

1 − ε′ ≤ 1 − 1 + 1−ε
ck

= 1−ε
ck

. Then we have that 1+ε
c1

≤ 1+ε′
c1

= 1 + ε′. �
From Theorem 1, a distributed algorithm for computing spectral sparsifiers is

natural. Just let every site compute a spectral sparsifier of its own input and then
each site sends its result to a coordinator that will construct the union of all spectral
sparsifiers.

4 Data Clustering in the Number-on-Forehead Model

In this section we will show an application of Theorem 1 to distributed data
clustering in the Number-On-Forehead model of communication complexity for the
case when the input data is allocated as a sunflower among sites.

Clustering is an unsupervised machine learning task that involves finding a
partition over a given set of points x1, . . . , xn ∈ R

d . Such a partition must fulfill
two conditions, (1) every two points in the same set must be “similar” in some
way and (2) every two points on different sets must be far from being similar.
Each equivalence class from the partition is also called a cluster. Clustering can
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be accomplished by different kinds of techniques, where spectral clustering [9] is
one of the fastest methods.

It is easy to see clustering as a graph problem, where each point corresponds to
a vertex in a complete graph and the cost of each edge is interpreted as a similarity
between points. Thus, finding a set of optimal clusters in data is equivalent to finding
an optimal multicut in a graph. Since the optimal multicut depends on the spectrum
of the graph’s Laplacian [7] and we want to keep the communication costs low, each
site must be capable of constructing sparse induced subgraphs of its own data while
preserving the spectrum of its graph Laplacian.

In our communication protocol, each site is assigned an induced subgraph of G,
and we want each site to be aware of all clusters in the data. Consequently, each site
must be capable of running a clustering algorithm on its own data, communicate
its results to the other sites, and then use the exchanged messages to construct
an approximation to the original graph G. This is where the distributed spectral
sparsification algorithm is relevant.

First, we will construct a protocol to verify if the input data in every site is a
sunflower. If the input is indeed allocated in a sunflower structure, then a party can
take advantage of the sunflower to find an approximation of clusters in the data.

4.1 Models of Communication and Their Complexity Measure

We will introduce some standard notations from communication complexity—we
refer the interested reader to the textbook by Kushilevitz and Nisan [6] for more
details. Let P1, P2, . . . , Ps be a set of sites where a site Pj has an input xj ∈ {0, 1}r ,
with r a positive integer. In a multiparty communication protocol, with s ≥ 3, the
sites want to jointly compute a function f : {0, 1}r × · · · × {0, 1}r → Z for some
finite codomain Z. In the Number-On-Forehead model of communication, or NOF
model, each site only has access to the other sites’s input but not its own, that is, a
site Pj has access to (x1, ..., xj−1, xj+1, ..., xs). In order to compute f the sites must
communicate, and they do so by writing bits on a blackboard which can be accessed
by all sites in the party. This is the so-called blackboard model of communication.

The maximum number of bits exchanged in the protocol over the worst-case
input is the cost of the protocol. The deterministic communication complexity of the
function f is the minimum cost over all protocols which compute f .

Let G = (V ,E) be an input graph and {Ej }j≤s be a family of subsets
of E. In order to study communication protocols for graph problems we
assume that Ej is the input data to site Pj . In the NOF model, we let
Fj = {E1, E2, . . . , Ej−1, Ej+1, . . . , Es} be the set of edges which Pj can access.
Given a site Pj , the symmetric difference on Pj , denoted Δj , is defined as the
symmetric difference among all sets Pj has access to, that is, Δj is the symmetric
difference between each set in Fj .

For the rest of this paper, we use as a shorthand E for the set {E1, . . . , Es} of
subsets of the set of edges E of an input graph G = (V ,E) with

⋃s
i=1 Ei = E,
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and F for the set {F1, . . . , Fs } where Fj = {E1, . . . , Ej−1, Ej+1, . . . , Es}. Here
F captures the idea of the NOF model where every site have access to the other’s
sites input but not its own.

4.2 Sunflowers and NOF Communication

A sunflower or Δ-System is a family of sets A = {A1, ..., At } where (Ai ∩ Aj) =⋂t
k=1 Ak = K for all i �= j . We call K the kernel of A . The family A is a weak

Δ-System if |Ai ∩ Aj | = λ for all i �= j for some constant λ [5]. It is known that if
A is a weak Δ-System and |A | ≥ 
2 − 
 + 2, where 
 = maxt

i=1{Ai}, then A is a
Δ-System [3].

We start with a simple fact that ensures the existence of Δ-Systems with the same
kernel in the NOF model if input data in a communication protocol is allocated as a
sunflower among sites.

Lemma 2 If s = |E | ≥ 3 and E is a Δ-System with kernel K , then any Fi is a
Δ-System with kernel K .

The following lemma states a sufficient condition for the existence of a Δ-System
in the input data in the NOF model with the requirement, however, that we need at
least four or more sites

Lemma 3 Let s = |E | ≥ 4. If, for all i ∈ [s], we have that Fi is a Δ-System, then
E is a Δ-System.

Proof Suppose that E is no a Δ-System, and we want to prove that for some 1 ≤
i ≤ s, Fi is not a Δ-System.

With no loss of generality, suppose that there exists exactly two sets Ei and Ej

that certify that E is not a Δ-System; that is, there exists Ei and Ej such that Ei ∩
Ej = K ′, and, for any a �= i and b �= j , it holds that Ea ∩ Ej = Eb ∩ Ei = K ,
with K �= K ′. Now take any Fc, with c different from i and j . Then Fc cannot be
a Δ-System because Ei and Ej belong to Fc and there is at least another set in Fc

because |E | ≥ 4. �
Lemma 3 implies that we only need to know if all sites in a communication

protocol have access to a Δ-System to ensure that an entire family of input sets is a
Δ-System, provided there are at least 4 sites.

Proposition 1 There exists a protocol that verifies if E , with |E | ≥ 4, is aΔ-System
or not with s − 1 bits of communication exchanged.

With Proposition 1, a multiparty communication protocol with a number of
sites s ≥ 4 can check for the existence of a sunflower structure in its input data.
Furthermore, if input data is allocated among sites as a sunflower, then, by Lemma 2,
any site immediately knows the kernel of the sunflower.
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4.3 Data Clustering with Sunflowers

In this section, we present a NOF communication protocol that exploits the sun-
flower structure in input data. First, we start by defining an overlapping coefficient
of the edges of G which can be seen as a measure of how well spread out are the
edges among sites.

Definition 4 The overlapping coefficient on site Pj is defined as δ(j) = |⋂i �=j Ei |
|⋃i �=j Ei |

and the greatest overlapping coefficient is defined as δ = maxj∈[s] δ(j).

The following proposition presents a simple protocol that makes every site aware
of the entire input graph.

Proposition 2 Let Pj be a site and let E be a weak Δ-System with each |Ek| = 


for k = 1, 2, . . . , s, with a kernel of size λ. Suppose that s ≥ 
2 − 
 + 3. If site Pj

sends all the edges in Δj , then every other site will know the entire graph G. The
number of edges this communication protocol sends is at most |⋃i �=j Ei |(1−δ)+
.

Proof We will prove this proposition by showing how each site constructs the graph
G. First, a given site Pj computes Δj and writes it on the blackboard. Since s ≥

2 − 
 + 3, by the result of Deza [3], we known that E is a sunflower with kernel
K and by Lemma 2 this kernel is the same in all sites. At this point all sites i �= j

know Δj , therefore, they can construct G by its own using the kernel K of E . In
one more round, one of the sites i �= j writes Ej so that site Pj can also construct
G.

In order to compute the communication cost of the protocol, first notice that δ =
λ/(|⋃i �=j Ei |) = λ/(|Δj | + λ),where we used the fact that the union of all edges
in every site equals the union of the symmetric difference and the kernel K . Then
we have that δ|Δj | = λ − δλ, which implies |Δj | = λ−δλ

δ
= |⋃i �=j Ei ||(1 − δ),

where the last equality follows from the fact that |⋃i �=j Ei | = λ/δ. Finally, after
Ej was sent to the blackboard the communication cost is |⋃i �=j Ei ||(1−δ)+
. �
Theorem 2 Let E be a weakΔ-system with each |Ek| = 
 for k = 1, 2, . . . , s, and
suppose that s ≥ 
2 − 
 + 3. There exists a communication protocol such that after
two rounds of communication every site knows an ε-spectral sparsifier of the entire

graphG with communication cost O
(

log
(

n

ε2

√
1 − δ

))
.

Proof From [3] we know that E is a sunflower with a kernel K of size λ and, by
Lemma 2, K is equal in all sites. First, a site Pj computes a spectral sparsifier Hj =
(V , Δ̂j ) of the induced subgraph Gj = (V ,Δj ) using the spectral sparsification
algorithm of [8]. This way we have that |Δ̂j | = O(n/ε2) where 0 < ε ≤ 1/120.
Then site Pj writes Δ̂j on the blackboard. Any other site i �= j constructs an
ε-spectral sparsifier H ′

i = (V , Êj ) of G′
i = (V ,Ej ). By Theorem 1, the graph

H = (V , Δ̂j ∪ Êj ) is a ε′-spectral sparsifier of G. In a second round, a given site Pi
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writes Êj on the blackboard. Finally, site Pj receives Êj and by Theorem 1 it can
also construct an ε′-spectral sparsifier for G. Finally, the communication complexity

is upper-bounded by O
(

log
(

n
ε2 (1 − δ)

)
+ log

(
n
ε2

))
= O

(
log

(
n
ε2

√
1 − δ

))
.

�
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